ssa_liveness_analysis.cc revision c0572a451944f78397619dec34a38c36c11e9d2a
1/*
2 * Copyright (C) 2014 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include "ssa_liveness_analysis.h"
18
19#include "base/bit_vector-inl.h"
20#include "code_generator.h"
21#include "nodes.h"
22
23namespace art {
24
25void SsaLivenessAnalysis::Analyze() {
26  LinearizeGraph();
27  NumberInstructions();
28  ComputeLiveness();
29}
30
31static bool IsLoop(HLoopInformation* info) {
32  return info != nullptr;
33}
34
35static bool InSameLoop(HLoopInformation* first_loop, HLoopInformation* second_loop) {
36  return first_loop == second_loop;
37}
38
39static bool IsInnerLoop(HLoopInformation* outer, HLoopInformation* inner) {
40  return (inner != outer)
41      && (inner != nullptr)
42      && (outer != nullptr)
43      && inner->IsIn(*outer);
44}
45
46static void AddToListForLinearization(GrowableArray<HBasicBlock*>* worklist, HBasicBlock* block) {
47  size_t insert_at = worklist->Size();
48  HLoopInformation* block_loop = block->GetLoopInformation();
49  for (; insert_at > 0; --insert_at) {
50    HBasicBlock* current = worklist->Get(insert_at - 1);
51    HLoopInformation* current_loop = current->GetLoopInformation();
52    if (InSameLoop(block_loop, current_loop)
53        || !IsLoop(current_loop)
54        || IsInnerLoop(current_loop, block_loop)) {
55      // The block can be processed immediately.
56      break;
57    }
58  }
59  worklist->InsertAt(insert_at, block);
60}
61
62void SsaLivenessAnalysis::LinearizeGraph() {
63  // Create a reverse post ordering with the following properties:
64  // - Blocks in a loop are consecutive,
65  // - Back-edge is the last block before loop exits.
66
67  // (1): Record the number of forward predecessors for each block. This is to
68  //      ensure the resulting order is reverse post order. We could use the
69  //      current reverse post order in the graph, but it would require making
70  //      order queries to a GrowableArray, which is not the best data structure
71  //      for it.
72  GrowableArray<uint32_t> forward_predecessors(graph_.GetArena(), graph_.GetBlocks().Size());
73  forward_predecessors.SetSize(graph_.GetBlocks().Size());
74  for (size_t i = 0, e = graph_.GetBlocks().Size(); i < e; ++i) {
75    HBasicBlock* block = graph_.GetBlocks().Get(i);
76    size_t number_of_forward_predecessors = block->GetPredecessors().Size();
77    if (block->IsLoopHeader()) {
78      // We rely on having simplified the CFG.
79      DCHECK_EQ(1u, block->GetLoopInformation()->NumberOfBackEdges());
80      number_of_forward_predecessors--;
81    }
82    forward_predecessors.Put(block->GetBlockId(), number_of_forward_predecessors);
83  }
84
85  // (2): Following a worklist approach, first start with the entry block, and
86  //      iterate over the successors. When all non-back edge predecessors of a
87  //      successor block are visited, the successor block is added in the worklist
88  //      following an order that satisfies the requirements to build our linear graph.
89  GrowableArray<HBasicBlock*> worklist(graph_.GetArena(), 1);
90  worklist.Add(graph_.GetEntryBlock());
91  do {
92    HBasicBlock* current = worklist.Pop();
93    linear_order_.Add(current);
94    for (size_t i = 0, e = current->GetSuccessors().Size(); i < e; ++i) {
95      HBasicBlock* successor = current->GetSuccessors().Get(i);
96      int block_id = successor->GetBlockId();
97      size_t number_of_remaining_predecessors = forward_predecessors.Get(block_id);
98      if (number_of_remaining_predecessors == 1) {
99        AddToListForLinearization(&worklist, successor);
100      }
101      forward_predecessors.Put(block_id, number_of_remaining_predecessors - 1);
102    }
103  } while (!worklist.IsEmpty());
104}
105
106void SsaLivenessAnalysis::NumberInstructions() {
107  int ssa_index = 0;
108  size_t lifetime_position = 0;
109  // Each instruction gets a lifetime position, and a block gets a lifetime
110  // start and end position. Non-phi instructions have a distinct lifetime position than
111  // the block they are in. Phi instructions have the lifetime start of their block as
112  // lifetime position.
113  //
114  // Because the register allocator will insert moves in the graph, we need
115  // to differentiate between the start and end of an instruction. Adding 2 to
116  // the lifetime position for each instruction ensures the start of an
117  // instruction is different than the end of the previous instruction.
118  for (HLinearOrderIterator it(*this); !it.Done(); it.Advance()) {
119    HBasicBlock* block = it.Current();
120    block->SetLifetimeStart(lifetime_position);
121
122    for (HInstructionIterator inst_it(block->GetPhis()); !inst_it.Done(); inst_it.Advance()) {
123      HInstruction* current = inst_it.Current();
124      codegen_->AllocateLocations(current);
125      LocationSummary* locations = current->GetLocations();
126      if (locations != nullptr && locations->Out().IsValid()) {
127        instructions_from_ssa_index_.Add(current);
128        current->SetSsaIndex(ssa_index++);
129        current->SetLiveInterval(
130            LiveInterval::MakeInterval(graph_.GetArena(), current->GetType(), current));
131      }
132      current->SetLifetimePosition(lifetime_position);
133    }
134    lifetime_position += 2;
135
136    // Add a null marker to notify we are starting a block.
137    instructions_from_lifetime_position_.Add(nullptr);
138
139    for (HInstructionIterator inst_it(block->GetInstructions()); !inst_it.Done();
140         inst_it.Advance()) {
141      HInstruction* current = inst_it.Current();
142      codegen_->AllocateLocations(current);
143      LocationSummary* locations = current->GetLocations();
144      if (locations != nullptr && locations->Out().IsValid()) {
145        instructions_from_ssa_index_.Add(current);
146        current->SetSsaIndex(ssa_index++);
147        current->SetLiveInterval(
148            LiveInterval::MakeInterval(graph_.GetArena(), current->GetType(), current));
149      }
150      instructions_from_lifetime_position_.Add(current);
151      current->SetLifetimePosition(lifetime_position);
152      lifetime_position += 2;
153    }
154
155    block->SetLifetimeEnd(lifetime_position);
156  }
157  number_of_ssa_values_ = ssa_index;
158}
159
160void SsaLivenessAnalysis::ComputeLiveness() {
161  for (HLinearOrderIterator it(*this); !it.Done(); it.Advance()) {
162    HBasicBlock* block = it.Current();
163    block_infos_.Put(
164        block->GetBlockId(),
165        new (graph_.GetArena()) BlockInfo(graph_.GetArena(), *block, number_of_ssa_values_));
166  }
167
168  // Compute the live ranges, as well as the initial live_in, live_out, and kill sets.
169  // This method does not handle backward branches for the sets, therefore live_in
170  // and live_out sets are not yet correct.
171  ComputeLiveRanges();
172
173  // Do a fixed point calculation to take into account backward branches,
174  // that will update live_in of loop headers, and therefore live_out and live_in
175  // of blocks in the loop.
176  ComputeLiveInAndLiveOutSets();
177}
178
179void SsaLivenessAnalysis::ComputeLiveRanges() {
180  // Do a post order visit, adding inputs of instructions live in the block where
181  // that instruction is defined, and killing instructions that are being visited.
182  for (HLinearPostOrderIterator it(*this); !it.Done(); it.Advance()) {
183    HBasicBlock* block = it.Current();
184
185    BitVector* kill = GetKillSet(*block);
186    BitVector* live_in = GetLiveInSet(*block);
187
188    // Set phi inputs of successors of this block corresponding to this block
189    // as live_in.
190    for (size_t i = 0, e = block->GetSuccessors().Size(); i < e; ++i) {
191      HBasicBlock* successor = block->GetSuccessors().Get(i);
192      live_in->Union(GetLiveInSet(*successor));
193      size_t phi_input_index = successor->GetPredecessorIndexOf(block);
194      for (HInstructionIterator inst_it(successor->GetPhis()); !inst_it.Done(); inst_it.Advance()) {
195        HInstruction* phi = inst_it.Current();
196        HInstruction* input = phi->InputAt(phi_input_index);
197        input->GetLiveInterval()->AddPhiUse(phi, phi_input_index, block);
198        // A phi input whose last user is the phi dies at the end of the predecessor block,
199        // and not at the phi's lifetime position.
200        live_in->SetBit(input->GetSsaIndex());
201      }
202    }
203
204    // Add a range that covers this block to all instructions live_in because of successors.
205    // Instructions defined in this block will have their start of the range adjusted.
206    for (uint32_t idx : live_in->Indexes()) {
207      HInstruction* current = instructions_from_ssa_index_.Get(idx);
208      current->GetLiveInterval()->AddRange(block->GetLifetimeStart(), block->GetLifetimeEnd());
209    }
210
211    for (HBackwardInstructionIterator back_it(block->GetInstructions()); !back_it.Done();
212         back_it.Advance()) {
213      HInstruction* current = back_it.Current();
214      if (current->HasSsaIndex()) {
215        // Kill the instruction and shorten its interval.
216        kill->SetBit(current->GetSsaIndex());
217        live_in->ClearBit(current->GetSsaIndex());
218        current->GetLiveInterval()->SetFrom(current->GetLifetimePosition());
219      }
220
221      // All inputs of an instruction must be live.
222      for (size_t i = 0, e = current->InputCount(); i < e; ++i) {
223        HInstruction* input = current->InputAt(i);
224        // Some instructions 'inline' their inputs, that is they do not need
225        // to be materialized.
226        if (input->HasSsaIndex()) {
227          live_in->SetBit(input->GetSsaIndex());
228          input->GetLiveInterval()->AddUse(current, i, false);
229        }
230      }
231
232      if (current->HasEnvironment()) {
233        // All instructions in the environment must be live.
234        HEnvironment* environment = current->GetEnvironment();
235        for (size_t i = 0, e = environment->Size(); i < e; ++i) {
236          HInstruction* instruction = environment->GetInstructionAt(i);
237          if (instruction != nullptr) {
238            DCHECK(instruction->HasSsaIndex());
239            live_in->SetBit(instruction->GetSsaIndex());
240            instruction->GetLiveInterval()->AddUse(current, i, true);
241          }
242        }
243      }
244    }
245
246    // Kill phis defined in this block.
247    for (HInstructionIterator inst_it(block->GetPhis()); !inst_it.Done(); inst_it.Advance()) {
248      HInstruction* current = inst_it.Current();
249      if (current->HasSsaIndex()) {
250        kill->SetBit(current->GetSsaIndex());
251        live_in->ClearBit(current->GetSsaIndex());
252        LiveInterval* interval = current->GetLiveInterval();
253        DCHECK((interval->GetFirstRange() == nullptr)
254               || (interval->GetStart() == current->GetLifetimePosition()));
255        interval->SetFrom(current->GetLifetimePosition());
256      }
257    }
258
259    if (block->IsLoopHeader()) {
260      HBasicBlock* back_edge = block->GetLoopInformation()->GetBackEdges().Get(0);
261      // For all live_in instructions at the loop header, we need to create a range
262      // that covers the full loop.
263      for (uint32_t idx : live_in->Indexes()) {
264        HInstruction* current = instructions_from_ssa_index_.Get(idx);
265        current->GetLiveInterval()->AddLoopRange(block->GetLifetimeStart(),
266                                                 back_edge->GetLifetimeEnd());
267      }
268    }
269  }
270}
271
272void SsaLivenessAnalysis::ComputeLiveInAndLiveOutSets() {
273  bool changed;
274  do {
275    changed = false;
276
277    for (HPostOrderIterator it(graph_); !it.Done(); it.Advance()) {
278      const HBasicBlock& block = *it.Current();
279
280      // The live_in set depends on the kill set (which does not
281      // change in this loop), and the live_out set.  If the live_out
282      // set does not change, there is no need to update the live_in set.
283      if (UpdateLiveOut(block) && UpdateLiveIn(block)) {
284        changed = true;
285      }
286    }
287  } while (changed);
288}
289
290bool SsaLivenessAnalysis::UpdateLiveOut(const HBasicBlock& block) {
291  BitVector* live_out = GetLiveOutSet(block);
292  bool changed = false;
293  // The live_out set of a block is the union of live_in sets of its successors.
294  for (size_t i = 0, e = block.GetSuccessors().Size(); i < e; ++i) {
295    HBasicBlock* successor = block.GetSuccessors().Get(i);
296    if (live_out->Union(GetLiveInSet(*successor))) {
297      changed = true;
298    }
299  }
300  return changed;
301}
302
303
304bool SsaLivenessAnalysis::UpdateLiveIn(const HBasicBlock& block) {
305  BitVector* live_out = GetLiveOutSet(block);
306  BitVector* kill = GetKillSet(block);
307  BitVector* live_in = GetLiveInSet(block);
308  // If live_out is updated (because of backward branches), we need to make
309  // sure instructions in live_out are also in live_in, unless they are killed
310  // by this block.
311  return live_in->UnionIfNotIn(live_out, kill);
312}
313
314int LiveInterval::FindFirstRegisterHint(size_t* free_until) const {
315  if (GetParent() == this && defined_by_ != nullptr) {
316    // This is the first interval for the instruction. Try to find
317    // a register based on its definition.
318    DCHECK_EQ(defined_by_->GetLiveInterval(), this);
319    int hint = FindHintAtDefinition();
320    if (hint != kNoRegister && free_until[hint] > GetStart()) {
321      return hint;
322    }
323  }
324
325  UsePosition* use = first_use_;
326  size_t start = GetStart();
327  size_t end = GetEnd();
328  while (use != nullptr && use->GetPosition() <= end) {
329    size_t use_position = use->GetPosition();
330    if (use_position >= start && !use->GetIsEnvironment()) {
331      HInstruction* user = use->GetUser();
332      size_t input_index = use->GetInputIndex();
333      if (user->IsPhi()) {
334        // If the phi has a register, try to use the same.
335        Location phi_location = user->GetLiveInterval()->ToLocation();
336        if (SameRegisterKind(phi_location) && free_until[phi_location.reg()] >= use_position) {
337          return phi_location.reg();
338        }
339        const GrowableArray<HBasicBlock*>& predecessors = user->GetBlock()->GetPredecessors();
340        // If the instruction dies at the phi assignment, we can try having the
341        // same register.
342        if (end == predecessors.Get(input_index)->GetLifetimeEnd()) {
343          for (size_t i = 0, e = user->InputCount(); i < e; ++i) {
344            if (i == input_index) {
345              continue;
346            }
347            HInstruction* input = user->InputAt(i);
348            Location location = input->GetLiveInterval()->GetLocationAt(
349                predecessors.Get(i)->GetLifetimeEnd() - 1);
350            if (location.IsRegister() && free_until[location.reg()] >= use_position) {
351              return location.reg();
352            }
353          }
354        }
355      } else {
356        // If the instruction is expected in a register, try to use it.
357        LocationSummary* locations = user->GetLocations();
358        Location expected = locations->InAt(use->GetInputIndex());
359        // We use the user's lifetime position - 1 (and not `use_position`) because the
360        // register is blocked at the beginning of the user.
361        size_t position = user->GetLifetimePosition() - 1;
362        if (SameRegisterKind(expected) && free_until[expected.reg()] >= position) {
363          return expected.reg();
364        }
365      }
366    }
367    use = use->GetNext();
368  }
369
370  return kNoRegister;
371}
372
373int LiveInterval::FindHintAtDefinition() const {
374  if (defined_by_->IsPhi()) {
375    // Try to use the same register as one of the inputs.
376    const GrowableArray<HBasicBlock*>& predecessors = defined_by_->GetBlock()->GetPredecessors();
377    for (size_t i = 0, e = defined_by_->InputCount(); i < e; ++i) {
378      HInstruction* input = defined_by_->InputAt(i);
379      size_t end = predecessors.Get(i)->GetLifetimeEnd();
380      const LiveInterval& input_interval = input->GetLiveInterval()->GetIntervalAt(end - 1);
381      if (input_interval.GetEnd() == end) {
382        // If the input dies at the end of the predecessor, we know its register can
383        // be reused.
384        Location input_location = input_interval.ToLocation();
385        if (SameRegisterKind(input_location)) {
386          return input_location.reg();
387        }
388      }
389    }
390  } else {
391    LocationSummary* locations = GetDefinedBy()->GetLocations();
392    Location out = locations->Out();
393    if (out.IsUnallocated() && out.GetPolicy() == Location::kSameAsFirstInput) {
394      // Try to use the same register as the first input.
395      const LiveInterval& input_interval =
396          GetDefinedBy()->InputAt(0)->GetLiveInterval()->GetIntervalAt(GetStart() - 1);
397      if (input_interval.GetEnd() == GetStart()) {
398        // If the input dies at the start of this instruction, we know its register can
399        // be reused.
400        Location location = input_interval.ToLocation();
401        if (SameRegisterKind(location)) {
402          return location.reg();
403        }
404      }
405    }
406  }
407  return kNoRegister;
408}
409
410bool LiveInterval::SameRegisterKind(Location other) const {
411  return IsFloatingPoint()
412      ? other.IsFpuRegister()
413      : other.IsRegister();
414}
415
416bool LiveInterval::NeedsTwoSpillSlots() const {
417  return type_ == Primitive::kPrimLong || type_ == Primitive::kPrimDouble;
418}
419
420Location LiveInterval::ToLocation() const {
421  DCHECK(!IsHighInterval());
422  if (HasRegister()) {
423    if (IsFloatingPoint()) {
424      if (HasHighInterval()) {
425        return Location::FpuRegisterPairLocation(GetRegister(), GetHighInterval()->GetRegister());
426      } else {
427        return Location::FpuRegisterLocation(GetRegister());
428      }
429    } else {
430      if (HasHighInterval()) {
431        return Location::RegisterPairLocation(GetRegister(), GetHighInterval()->GetRegister());
432      } else {
433        return Location::RegisterLocation(GetRegister());
434      }
435    }
436  } else {
437    HInstruction* defined_by = GetParent()->GetDefinedBy();
438    if (defined_by->IsConstant()) {
439      return defined_by->GetLocations()->Out();
440    } else if (GetParent()->HasSpillSlot()) {
441      if (NeedsTwoSpillSlots()) {
442        return Location::DoubleStackSlot(GetParent()->GetSpillSlot());
443      } else {
444        return Location::StackSlot(GetParent()->GetSpillSlot());
445      }
446    } else {
447      return Location();
448    }
449  }
450}
451
452Location LiveInterval::GetLocationAt(size_t position) const {
453  return GetIntervalAt(position).ToLocation();
454}
455
456const LiveInterval& LiveInterval::GetIntervalAt(size_t position) const {
457  const LiveInterval* current = this;
458  while (!current->Covers(position)) {
459    current = current->GetNextSibling();
460    DCHECK(current != nullptr);
461  }
462  return *current;
463}
464
465}  // namespace art
466