heap.cc revision 38e68e9978236db87c9008bbe47db80525d2fa16
1/*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include "heap.h"
18
19#define ATRACE_TAG ATRACE_TAG_DALVIK
20#include <cutils/trace.h>
21
22#include <limits>
23#include <vector>
24#include <valgrind.h>
25
26#include "base/histogram-inl.h"
27#include "base/stl_util.h"
28#include "common_throws.h"
29#include "cutils/sched_policy.h"
30#include "debugger.h"
31#include "gc/accounting/atomic_stack.h"
32#include "gc/accounting/card_table-inl.h"
33#include "gc/accounting/heap_bitmap-inl.h"
34#include "gc/accounting/mod_union_table.h"
35#include "gc/accounting/mod_union_table-inl.h"
36#include "gc/accounting/remembered_set.h"
37#include "gc/accounting/space_bitmap-inl.h"
38#include "gc/collector/mark_sweep-inl.h"
39#include "gc/collector/partial_mark_sweep.h"
40#include "gc/collector/semi_space.h"
41#include "gc/collector/sticky_mark_sweep.h"
42#include "gc/space/bump_pointer_space.h"
43#include "gc/space/dlmalloc_space-inl.h"
44#include "gc/space/image_space.h"
45#include "gc/space/large_object_space.h"
46#include "gc/space/rosalloc_space-inl.h"
47#include "gc/space/space-inl.h"
48#include "gc/space/zygote_space.h"
49#include "entrypoints/quick/quick_alloc_entrypoints.h"
50#include "heap-inl.h"
51#include "image.h"
52#include "mirror/art_field-inl.h"
53#include "mirror/class-inl.h"
54#include "mirror/object.h"
55#include "mirror/object-inl.h"
56#include "mirror/object_array-inl.h"
57#include "mirror/reference-inl.h"
58#include "object_utils.h"
59#include "os.h"
60#include "reflection.h"
61#include "runtime.h"
62#include "ScopedLocalRef.h"
63#include "scoped_thread_state_change.h"
64#include "sirt_ref.h"
65#include "thread_list.h"
66#include "UniquePtr.h"
67#include "well_known_classes.h"
68
69namespace art {
70
71namespace gc {
72
73static constexpr bool kGCALotMode = false;
74static constexpr size_t kGcAlotInterval = KB;
75// Minimum amount of remaining bytes before a concurrent GC is triggered.
76static constexpr size_t kMinConcurrentRemainingBytes = 128 * KB;
77static constexpr size_t kMaxConcurrentRemainingBytes = 512 * KB;
78
79Heap::Heap(size_t initial_size, size_t growth_limit, size_t min_free, size_t max_free,
80           double target_utilization, size_t capacity, const std::string& image_file_name,
81           CollectorType post_zygote_collector_type, CollectorType background_collector_type,
82           size_t parallel_gc_threads, size_t conc_gc_threads, bool low_memory_mode,
83           size_t long_pause_log_threshold, size_t long_gc_log_threshold,
84           bool ignore_max_footprint, bool use_tlab, bool verify_pre_gc_heap,
85           bool verify_post_gc_heap, bool verify_pre_gc_rosalloc,
86           bool verify_post_gc_rosalloc)
87    : non_moving_space_(nullptr),
88      rosalloc_space_(nullptr),
89      dlmalloc_space_(nullptr),
90      main_space_(nullptr),
91      concurrent_gc_(false),
92      collector_type_(kCollectorTypeNone),
93      post_zygote_collector_type_(post_zygote_collector_type),
94      background_collector_type_(background_collector_type),
95      desired_collector_type_(collector_type_),
96      heap_trim_request_lock_(nullptr),
97      last_trim_time_(0),
98      heap_transition_target_time_(0),
99      heap_trim_request_pending_(false),
100      parallel_gc_threads_(parallel_gc_threads),
101      conc_gc_threads_(conc_gc_threads),
102      low_memory_mode_(low_memory_mode),
103      long_pause_log_threshold_(long_pause_log_threshold),
104      long_gc_log_threshold_(long_gc_log_threshold),
105      ignore_max_footprint_(ignore_max_footprint),
106      have_zygote_space_(false),
107      large_object_threshold_(std::numeric_limits<size_t>::max()),  // Starts out disabled.
108      collector_type_running_(kCollectorTypeNone),
109      last_gc_type_(collector::kGcTypeNone),
110      next_gc_type_(collector::kGcTypePartial),
111      capacity_(capacity),
112      growth_limit_(growth_limit),
113      max_allowed_footprint_(initial_size),
114      native_footprint_gc_watermark_(initial_size),
115      native_footprint_limit_(2 * initial_size),
116      native_need_to_run_finalization_(false),
117      // Initially assume we perceive jank in case the process state is never updated.
118      process_state_(kProcessStateJankPerceptible),
119      concurrent_start_bytes_(std::numeric_limits<size_t>::max()),
120      total_bytes_freed_ever_(0),
121      total_objects_freed_ever_(0),
122      num_bytes_allocated_(0),
123      native_bytes_allocated_(0),
124      gc_memory_overhead_(0),
125      verify_missing_card_marks_(false),
126      verify_system_weaks_(false),
127      verify_pre_gc_heap_(verify_pre_gc_heap),
128      verify_post_gc_heap_(verify_post_gc_heap),
129      verify_mod_union_table_(false),
130      verify_pre_gc_rosalloc_(verify_pre_gc_rosalloc),
131      verify_post_gc_rosalloc_(verify_post_gc_rosalloc),
132      allocation_rate_(0),
133      /* For GC a lot mode, we limit the allocations stacks to be kGcAlotInterval allocations. This
134       * causes a lot of GC since we do a GC for alloc whenever the stack is full. When heap
135       * verification is enabled, we limit the size of allocation stacks to speed up their
136       * searching.
137       */
138      max_allocation_stack_size_(kGCALotMode ? kGcAlotInterval
139          : (kVerifyObjectSupport > kVerifyObjectModeFast) ? KB : MB),
140      current_allocator_(kAllocatorTypeDlMalloc),
141      current_non_moving_allocator_(kAllocatorTypeNonMoving),
142      bump_pointer_space_(nullptr),
143      temp_space_(nullptr),
144      min_free_(min_free),
145      max_free_(max_free),
146      target_utilization_(target_utilization),
147      total_wait_time_(0),
148      total_allocation_time_(0),
149      verify_object_mode_(kVerifyObjectModeDisabled),
150      disable_moving_gc_count_(0),
151      running_on_valgrind_(RUNNING_ON_VALGRIND > 0),
152      use_tlab_(use_tlab) {
153  if (VLOG_IS_ON(heap) || VLOG_IS_ON(startup)) {
154    LOG(INFO) << "Heap() entering";
155  }
156  const bool is_zygote = Runtime::Current()->IsZygote();
157  // If we aren't the zygote, switch to the default non zygote allocator. This may update the
158  // entrypoints.
159  if (!is_zygote) {
160    desired_collector_type_ = post_zygote_collector_type_;
161    large_object_threshold_ = kDefaultLargeObjectThreshold;
162  } else {
163    if (kMovingCollector) {
164      // We are the zygote, use bump pointer allocation + semi space collector.
165      bool generational = post_zygote_collector_type_ == kCollectorTypeGSS;
166      desired_collector_type_ = generational ? kCollectorTypeGSS : kCollectorTypeSS;
167    } else {
168      desired_collector_type_ = post_zygote_collector_type_;
169    }
170  }
171  ChangeCollector(desired_collector_type_);
172
173  live_bitmap_.reset(new accounting::HeapBitmap(this));
174  mark_bitmap_.reset(new accounting::HeapBitmap(this));
175  // Requested begin for the alloc space, to follow the mapped image and oat files
176  byte* requested_alloc_space_begin = nullptr;
177  if (!image_file_name.empty()) {
178    space::ImageSpace* image_space = space::ImageSpace::Create(image_file_name.c_str());
179    CHECK(image_space != nullptr) << "Failed to create space for " << image_file_name;
180    AddSpace(image_space);
181    // Oat files referenced by image files immediately follow them in memory, ensure alloc space
182    // isn't going to get in the middle
183    byte* oat_file_end_addr = image_space->GetImageHeader().GetOatFileEnd();
184    CHECK_GT(oat_file_end_addr, image_space->End());
185    if (oat_file_end_addr > requested_alloc_space_begin) {
186      requested_alloc_space_begin = AlignUp(oat_file_end_addr, kPageSize);
187    }
188  }
189  MemMap* malloc_space_mem_map = nullptr;
190  const char* malloc_space_name = is_zygote ? "zygote space" : "alloc space";
191  if (is_zygote) {
192    // Allocate a single mem map that is split into the malloc space
193    // and the post zygote non-moving space to put them adjacent.
194    size_t post_zygote_non_moving_space_size = 64 * MB;
195    size_t non_moving_spaces_size = capacity + post_zygote_non_moving_space_size;
196    std::string error_str;
197    malloc_space_mem_map = MemMap::MapAnonymous(malloc_space_name, requested_alloc_space_begin,
198                                                non_moving_spaces_size, PROT_READ | PROT_WRITE,
199                                                true, &error_str);
200    CHECK(malloc_space_mem_map != nullptr) << error_str;
201    post_zygote_non_moving_space_mem_map_.reset(malloc_space_mem_map->RemapAtEnd(
202        malloc_space_mem_map->Begin() + capacity, "post zygote non-moving space",
203        PROT_READ | PROT_WRITE, &error_str));
204    CHECK(post_zygote_non_moving_space_mem_map_.get() != nullptr) << error_str;
205    VLOG(heap) << "malloc space mem map : " << malloc_space_mem_map;
206    VLOG(heap) << "post zygote non-moving space mem map : "
207               << post_zygote_non_moving_space_mem_map_.get();
208  } else {
209    // Allocate a mem map for the malloc space.
210    std::string error_str;
211    malloc_space_mem_map = MemMap::MapAnonymous(malloc_space_name, requested_alloc_space_begin,
212                                                capacity, PROT_READ | PROT_WRITE, true, &error_str);
213    CHECK(malloc_space_mem_map != nullptr) << error_str;
214    VLOG(heap) << "malloc space mem map : " << malloc_space_mem_map;
215  }
216  CHECK(malloc_space_mem_map != nullptr);
217  space::MallocSpace* malloc_space;
218  if (kUseRosAlloc) {
219    malloc_space = space::RosAllocSpace::CreateFromMemMap(malloc_space_mem_map, malloc_space_name,
220                                                          kDefaultStartingSize, initial_size,
221                                                          growth_limit, capacity, low_memory_mode_);
222    CHECK(malloc_space != nullptr) << "Failed to create rosalloc space";
223  } else {
224    malloc_space = space::DlMallocSpace::CreateFromMemMap(malloc_space_mem_map, malloc_space_name,
225                                                          kDefaultStartingSize, initial_size,
226                                                          growth_limit, capacity);
227    CHECK(malloc_space != nullptr) << "Failed to create dlmalloc space";
228  }
229  VLOG(heap) << "malloc_space : " << malloc_space;
230  if (kMovingCollector) {
231    // TODO: Place bump-pointer spaces somewhere to minimize size of card table.
232    // TODO: Having 3+ spaces as big as the large heap size can cause virtual memory fragmentation
233    // issues.
234    const size_t bump_pointer_space_size = std::min(malloc_space->Capacity(), 128 * MB);
235    bump_pointer_space_ = space::BumpPointerSpace::Create("Bump pointer space",
236                                                          bump_pointer_space_size, nullptr);
237    CHECK(bump_pointer_space_ != nullptr) << "Failed to create bump pointer space";
238    AddSpace(bump_pointer_space_);
239    temp_space_ = space::BumpPointerSpace::Create("Bump pointer space 2", bump_pointer_space_size,
240                                                  nullptr);
241    CHECK(temp_space_ != nullptr) << "Failed to create bump pointer space";
242    AddSpace(temp_space_);
243    VLOG(heap) << "bump_pointer_space : " << bump_pointer_space_;
244    VLOG(heap) << "temp_space : " << temp_space_;
245  }
246  non_moving_space_ = malloc_space;
247  malloc_space->SetFootprintLimit(malloc_space->Capacity());
248  AddSpace(malloc_space);
249
250  // Allocate the large object space.
251  constexpr bool kUseFreeListSpaceForLOS = false;
252  if (kUseFreeListSpaceForLOS) {
253    large_object_space_ = space::FreeListSpace::Create("large object space", nullptr, capacity);
254  } else {
255    large_object_space_ = space::LargeObjectMapSpace::Create("large object space");
256  }
257  CHECK(large_object_space_ != nullptr) << "Failed to create large object space";
258  AddSpace(large_object_space_);
259
260  // Compute heap capacity. Continuous spaces are sorted in order of Begin().
261  CHECK(!continuous_spaces_.empty());
262
263  // Relies on the spaces being sorted.
264  byte* heap_begin = continuous_spaces_.front()->Begin();
265  byte* heap_end = continuous_spaces_.back()->Limit();
266  if (is_zygote) {
267    CHECK(post_zygote_non_moving_space_mem_map_.get() != nullptr);
268    heap_begin = std::min(post_zygote_non_moving_space_mem_map_->Begin(), heap_begin);
269    heap_end = std::max(post_zygote_non_moving_space_mem_map_->End(), heap_end);
270  }
271  size_t heap_capacity = heap_end - heap_begin;
272
273  // Allocate the card table.
274  card_table_.reset(accounting::CardTable::Create(heap_begin, heap_capacity));
275  CHECK(card_table_.get() != NULL) << "Failed to create card table";
276
277  // Card cache for now since it makes it easier for us to update the references to the copying
278  // spaces.
279  accounting::ModUnionTable* mod_union_table =
280      new accounting::ModUnionTableCardCache("Image mod-union table", this, GetImageSpace());
281  CHECK(mod_union_table != nullptr) << "Failed to create image mod-union table";
282  AddModUnionTable(mod_union_table);
283
284  if (collector::SemiSpace::kUseRememberedSet) {
285    accounting::RememberedSet* non_moving_space_rem_set =
286        new accounting::RememberedSet("Non-moving space remembered set", this, non_moving_space_);
287    CHECK(non_moving_space_rem_set != nullptr) << "Failed to create non-moving space remembered set";
288    AddRememberedSet(non_moving_space_rem_set);
289  }
290
291  // TODO: Count objects in the image space here.
292  num_bytes_allocated_ = 0;
293
294  // Default mark stack size in bytes.
295  static const size_t default_mark_stack_size = 64 * KB;
296  mark_stack_.reset(accounting::ObjectStack::Create("mark stack", default_mark_stack_size));
297  allocation_stack_.reset(accounting::ObjectStack::Create("allocation stack",
298                                                          max_allocation_stack_size_));
299  live_stack_.reset(accounting::ObjectStack::Create("live stack",
300                                                    max_allocation_stack_size_));
301
302  // It's still too early to take a lock because there are no threads yet, but we can create locks
303  // now. We don't create it earlier to make it clear that you can't use locks during heap
304  // initialization.
305  gc_complete_lock_ = new Mutex("GC complete lock");
306  gc_complete_cond_.reset(new ConditionVariable("GC complete condition variable",
307                                                *gc_complete_lock_));
308  heap_trim_request_lock_ = new Mutex("Heap trim request lock");
309  last_gc_size_ = GetBytesAllocated();
310
311  if (ignore_max_footprint_) {
312    SetIdealFootprint(std::numeric_limits<size_t>::max());
313    concurrent_start_bytes_ = std::numeric_limits<size_t>::max();
314  }
315  CHECK_NE(max_allowed_footprint_, 0U);
316
317  // Create our garbage collectors.
318  for (size_t i = 0; i < 2; ++i) {
319    const bool concurrent = i != 0;
320    garbage_collectors_.push_back(new collector::MarkSweep(this, concurrent));
321    garbage_collectors_.push_back(new collector::PartialMarkSweep(this, concurrent));
322    garbage_collectors_.push_back(new collector::StickyMarkSweep(this, concurrent));
323  }
324  if (kMovingCollector) {
325    // TODO: Clean this up.
326    bool generational = post_zygote_collector_type_ == kCollectorTypeGSS;
327    semi_space_collector_ = new collector::SemiSpace(this, generational);
328    garbage_collectors_.push_back(semi_space_collector_);
329  }
330
331  if (running_on_valgrind_) {
332    Runtime::Current()->GetInstrumentation()->InstrumentQuickAllocEntryPoints();
333  }
334
335  if (VLOG_IS_ON(heap) || VLOG_IS_ON(startup)) {
336    LOG(INFO) << "Heap() exiting";
337  }
338}
339
340void Heap::ChangeAllocator(AllocatorType allocator) {
341  if (current_allocator_ != allocator) {
342    // These two allocators are only used internally and don't have any entrypoints.
343    CHECK_NE(allocator, kAllocatorTypeLOS);
344    CHECK_NE(allocator, kAllocatorTypeNonMoving);
345    current_allocator_ = allocator;
346    MutexLock mu(nullptr, *Locks::runtime_shutdown_lock_);
347    SetQuickAllocEntryPointsAllocator(current_allocator_);
348    Runtime::Current()->GetInstrumentation()->ResetQuickAllocEntryPoints();
349  }
350}
351
352void Heap::DisableCompaction() {
353  if (IsCompactingGC(post_zygote_collector_type_)) {
354    post_zygote_collector_type_ = kCollectorTypeCMS;
355  }
356  if (IsCompactingGC(background_collector_type_)) {
357    background_collector_type_ = post_zygote_collector_type_;
358  }
359  TransitionCollector(post_zygote_collector_type_);
360}
361
362std::string Heap::SafeGetClassDescriptor(mirror::Class* klass) {
363  if (!IsValidContinuousSpaceObjectAddress(klass)) {
364    return StringPrintf("<non heap address klass %p>", klass);
365  }
366  mirror::Class* component_type = klass->GetComponentType<kVerifyNone>();
367  if (IsValidContinuousSpaceObjectAddress(component_type) && klass->IsArrayClass<kVerifyNone>()) {
368    std::string result("[");
369    result += SafeGetClassDescriptor(component_type);
370    return result;
371  } else if (UNLIKELY(klass->IsPrimitive<kVerifyNone>())) {
372    return Primitive::Descriptor(klass->GetPrimitiveType<kVerifyNone>());
373  } else if (UNLIKELY(klass->IsProxyClass<kVerifyNone>())) {
374    return Runtime::Current()->GetClassLinker()->GetDescriptorForProxy(klass);
375  } else {
376    mirror::DexCache* dex_cache = klass->GetDexCache<kVerifyNone>();
377    if (!IsValidContinuousSpaceObjectAddress(dex_cache)) {
378      return StringPrintf("<non heap address dex_cache %p>", dex_cache);
379    }
380    const DexFile* dex_file = dex_cache->GetDexFile();
381    uint16_t class_def_idx = klass->GetDexClassDefIndex();
382    if (class_def_idx == DexFile::kDexNoIndex16) {
383      return "<class def not found>";
384    }
385    const DexFile::ClassDef& class_def = dex_file->GetClassDef(class_def_idx);
386    const DexFile::TypeId& type_id = dex_file->GetTypeId(class_def.class_idx_);
387    return dex_file->GetTypeDescriptor(type_id);
388  }
389}
390
391std::string Heap::SafePrettyTypeOf(mirror::Object* obj) {
392  if (obj == nullptr) {
393    return "null";
394  }
395  mirror::Class* klass = obj->GetClass<kVerifyNone>();
396  if (klass == nullptr) {
397    return "(class=null)";
398  }
399  std::string result(SafeGetClassDescriptor(klass));
400  if (obj->IsClass()) {
401    result += "<" + SafeGetClassDescriptor(obj->AsClass<kVerifyNone>()) + ">";
402  }
403  return result;
404}
405
406void Heap::DumpObject(std::ostream& stream, mirror::Object* obj) {
407  if (obj == nullptr) {
408    stream << "(obj=null)";
409    return;
410  }
411  if (IsAligned<kObjectAlignment>(obj)) {
412    space::Space* space = nullptr;
413    // Don't use find space since it only finds spaces which actually contain objects instead of
414    // spaces which may contain objects (e.g. cleared bump pointer spaces).
415    for (const auto& cur_space : continuous_spaces_) {
416      if (cur_space->HasAddress(obj)) {
417        space = cur_space;
418        break;
419      }
420    }
421    if (space == nullptr) {
422      if (allocator_mem_map_.get() == nullptr || !allocator_mem_map_->HasAddress(obj)) {
423        stream << "obj " << obj << " not a valid heap address";
424        return;
425      } else if (allocator_mem_map_.get() != nullptr) {
426        allocator_mem_map_->Protect(PROT_READ | PROT_WRITE);
427      }
428    }
429    // Unprotect all the spaces.
430    for (const auto& space : continuous_spaces_) {
431      mprotect(space->Begin(), space->Capacity(), PROT_READ | PROT_WRITE);
432    }
433    stream << "Object " << obj;
434    if (space != nullptr) {
435      stream << " in space " << *space;
436    }
437    mirror::Class* klass = obj->GetClass<kVerifyNone>();
438    stream << "\nclass=" << klass;
439    if (klass != nullptr) {
440      stream << " type= " << SafePrettyTypeOf(obj);
441    }
442    // Re-protect the address we faulted on.
443    mprotect(AlignDown(obj, kPageSize), kPageSize, PROT_NONE);
444  }
445}
446
447bool Heap::IsCompilingBoot() const {
448  for (const auto& space : continuous_spaces_) {
449    if (space->IsImageSpace() || space->IsZygoteSpace()) {
450      return false;
451    }
452  }
453  return true;
454}
455
456bool Heap::HasImageSpace() const {
457  for (const auto& space : continuous_spaces_) {
458    if (space->IsImageSpace()) {
459      return true;
460    }
461  }
462  return false;
463}
464
465void Heap::IncrementDisableMovingGC(Thread* self) {
466  // Need to do this holding the lock to prevent races where the GC is about to run / running when
467  // we attempt to disable it.
468  ScopedThreadStateChange tsc(self, kWaitingForGcToComplete);
469  MutexLock mu(self, *gc_complete_lock_);
470  ++disable_moving_gc_count_;
471  if (IsCompactingGC(collector_type_running_)) {
472    WaitForGcToCompleteLocked(self);
473  }
474}
475
476void Heap::DecrementDisableMovingGC(Thread* self) {
477  MutexLock mu(self, *gc_complete_lock_);
478  CHECK_GE(disable_moving_gc_count_, 0U);
479  --disable_moving_gc_count_;
480}
481
482void Heap::UpdateProcessState(ProcessState process_state) {
483  if (process_state_ != process_state) {
484    process_state_ = process_state;
485    if (process_state_ == kProcessStateJankPerceptible) {
486      // Transition back to foreground right away to prevent jank.
487      RequestCollectorTransition(post_zygote_collector_type_, 0);
488    } else {
489      // Don't delay for debug builds since we may want to stress test the GC.
490      RequestCollectorTransition(background_collector_type_, kIsDebugBuild ? 0 :
491          kCollectorTransitionWait);
492    }
493  }
494}
495
496void Heap::CreateThreadPool() {
497  const size_t num_threads = std::max(parallel_gc_threads_, conc_gc_threads_);
498  if (num_threads != 0) {
499    thread_pool_.reset(new ThreadPool("Heap thread pool", num_threads));
500  }
501}
502
503void Heap::VisitObjects(ObjectCallback callback, void* arg) {
504  Thread* self = Thread::Current();
505  // GCs can move objects, so don't allow this.
506  const char* old_cause = self->StartAssertNoThreadSuspension("Visiting objects");
507  if (bump_pointer_space_ != nullptr) {
508    // Visit objects in bump pointer space.
509    bump_pointer_space_->Walk(callback, arg);
510  }
511  // TODO: Switch to standard begin and end to use ranged a based loop.
512  for (mirror::Object** it = allocation_stack_->Begin(), **end = allocation_stack_->End();
513      it < end; ++it) {
514    mirror::Object* obj = *it;
515    if (obj != nullptr && obj->GetClass() != nullptr) {
516      // Avoid the race condition caused by the object not yet being written into the allocation
517      // stack or the class not yet being written in the object. Or, if kUseThreadLocalAllocationStack,
518      // there can be nulls on the allocation stack.
519      callback(obj, arg);
520    }
521  }
522  GetLiveBitmap()->Walk(callback, arg);
523  self->EndAssertNoThreadSuspension(old_cause);
524}
525
526void Heap::MarkAllocStackAsLive(accounting::ObjectStack* stack) {
527  space::ContinuousSpace* space1 = rosalloc_space_ != nullptr ? rosalloc_space_ : non_moving_space_;
528  space::ContinuousSpace* space2 = dlmalloc_space_ != nullptr ? dlmalloc_space_ : non_moving_space_;
529  // This is just logic to handle a case of either not having a rosalloc or dlmalloc space.
530  // TODO: Generalize this to n bitmaps?
531  if (space1 == nullptr) {
532    DCHECK(space2 != nullptr);
533    space1 = space2;
534  }
535  if (space2 == nullptr) {
536    DCHECK(space1 != nullptr);
537    space2 = space1;
538  }
539  MarkAllocStack(space1->GetLiveBitmap(), space2->GetLiveBitmap(),
540                 large_object_space_->GetLiveObjects(), stack);
541}
542
543void Heap::DeleteThreadPool() {
544  thread_pool_.reset(nullptr);
545}
546
547void Heap::AddSpace(space::Space* space, bool set_as_default) {
548  DCHECK(space != nullptr);
549  WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
550  if (space->IsContinuousSpace()) {
551    DCHECK(!space->IsDiscontinuousSpace());
552    space::ContinuousSpace* continuous_space = space->AsContinuousSpace();
553    // Continuous spaces don't necessarily have bitmaps.
554    accounting::SpaceBitmap* live_bitmap = continuous_space->GetLiveBitmap();
555    accounting::SpaceBitmap* mark_bitmap = continuous_space->GetMarkBitmap();
556    if (live_bitmap != nullptr) {
557      DCHECK(mark_bitmap != nullptr);
558      live_bitmap_->AddContinuousSpaceBitmap(live_bitmap);
559      mark_bitmap_->AddContinuousSpaceBitmap(mark_bitmap);
560    }
561    continuous_spaces_.push_back(continuous_space);
562    if (set_as_default) {
563      if (continuous_space->IsDlMallocSpace()) {
564        dlmalloc_space_ = continuous_space->AsDlMallocSpace();
565      } else if (continuous_space->IsRosAllocSpace()) {
566        rosalloc_space_ = continuous_space->AsRosAllocSpace();
567      }
568    }
569    // Ensure that spaces remain sorted in increasing order of start address.
570    std::sort(continuous_spaces_.begin(), continuous_spaces_.end(),
571              [](const space::ContinuousSpace* a, const space::ContinuousSpace* b) {
572      return a->Begin() < b->Begin();
573    });
574  } else {
575    DCHECK(space->IsDiscontinuousSpace());
576    space::DiscontinuousSpace* discontinuous_space = space->AsDiscontinuousSpace();
577    DCHECK(discontinuous_space->GetLiveObjects() != nullptr);
578    live_bitmap_->AddDiscontinuousObjectSet(discontinuous_space->GetLiveObjects());
579    DCHECK(discontinuous_space->GetMarkObjects() != nullptr);
580    mark_bitmap_->AddDiscontinuousObjectSet(discontinuous_space->GetMarkObjects());
581    discontinuous_spaces_.push_back(discontinuous_space);
582  }
583  if (space->IsAllocSpace()) {
584    alloc_spaces_.push_back(space->AsAllocSpace());
585  }
586}
587
588void Heap::RemoveSpace(space::Space* space) {
589  DCHECK(space != nullptr);
590  WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
591  if (space->IsContinuousSpace()) {
592    DCHECK(!space->IsDiscontinuousSpace());
593    space::ContinuousSpace* continuous_space = space->AsContinuousSpace();
594    // Continuous spaces don't necessarily have bitmaps.
595    accounting::SpaceBitmap* live_bitmap = continuous_space->GetLiveBitmap();
596    accounting::SpaceBitmap* mark_bitmap = continuous_space->GetMarkBitmap();
597    if (live_bitmap != nullptr) {
598      DCHECK(mark_bitmap != nullptr);
599      live_bitmap_->RemoveContinuousSpaceBitmap(live_bitmap);
600      mark_bitmap_->RemoveContinuousSpaceBitmap(mark_bitmap);
601    }
602    auto it = std::find(continuous_spaces_.begin(), continuous_spaces_.end(), continuous_space);
603    DCHECK(it != continuous_spaces_.end());
604    continuous_spaces_.erase(it);
605    if (continuous_space == dlmalloc_space_) {
606      dlmalloc_space_ = nullptr;
607    } else if (continuous_space == rosalloc_space_) {
608      rosalloc_space_ = nullptr;
609    }
610    if (continuous_space == main_space_) {
611      main_space_ = nullptr;
612    }
613  } else {
614    DCHECK(space->IsDiscontinuousSpace());
615    space::DiscontinuousSpace* discontinuous_space = space->AsDiscontinuousSpace();
616    DCHECK(discontinuous_space->GetLiveObjects() != nullptr);
617    live_bitmap_->RemoveDiscontinuousObjectSet(discontinuous_space->GetLiveObjects());
618    DCHECK(discontinuous_space->GetMarkObjects() != nullptr);
619    mark_bitmap_->RemoveDiscontinuousObjectSet(discontinuous_space->GetMarkObjects());
620    auto it = std::find(discontinuous_spaces_.begin(), discontinuous_spaces_.end(),
621                        discontinuous_space);
622    DCHECK(it != discontinuous_spaces_.end());
623    discontinuous_spaces_.erase(it);
624  }
625  if (space->IsAllocSpace()) {
626    auto it = std::find(alloc_spaces_.begin(), alloc_spaces_.end(), space->AsAllocSpace());
627    DCHECK(it != alloc_spaces_.end());
628    alloc_spaces_.erase(it);
629  }
630}
631
632void Heap::RegisterGCAllocation(size_t bytes) {
633  if (this != nullptr) {
634    gc_memory_overhead_.FetchAndAdd(bytes);
635  }
636}
637
638void Heap::RegisterGCDeAllocation(size_t bytes) {
639  if (this != nullptr) {
640    gc_memory_overhead_.FetchAndSub(bytes);
641  }
642}
643
644void Heap::DumpGcPerformanceInfo(std::ostream& os) {
645  // Dump cumulative timings.
646  os << "Dumping cumulative Gc timings\n";
647  uint64_t total_duration = 0;
648
649  // Dump cumulative loggers for each GC type.
650  uint64_t total_paused_time = 0;
651  for (const auto& collector : garbage_collectors_) {
652    CumulativeLogger& logger = collector->GetCumulativeTimings();
653    if (logger.GetTotalNs() != 0) {
654      os << Dumpable<CumulativeLogger>(logger);
655      const uint64_t total_ns = logger.GetTotalNs();
656      const uint64_t total_pause_ns = collector->GetTotalPausedTimeNs();
657      double seconds = NsToMs(logger.GetTotalNs()) / 1000.0;
658      const uint64_t freed_bytes = collector->GetTotalFreedBytes();
659      const uint64_t freed_objects = collector->GetTotalFreedObjects();
660      Histogram<uint64_t>::CumulativeData cumulative_data;
661      collector->GetPauseHistogram().CreateHistogram(&cumulative_data);
662      collector->GetPauseHistogram().PrintConfidenceIntervals(os, 0.99, cumulative_data);
663      os << collector->GetName() << " total time: " << PrettyDuration(total_ns) << "\n"
664         << collector->GetName() << " freed: " << freed_objects
665         << " objects with total size " << PrettySize(freed_bytes) << "\n"
666         << collector->GetName() << " throughput: " << freed_objects / seconds << "/s / "
667         << PrettySize(freed_bytes / seconds) << "/s\n";
668      total_duration += total_ns;
669      total_paused_time += total_pause_ns;
670    }
671  }
672  uint64_t allocation_time = static_cast<uint64_t>(total_allocation_time_) * kTimeAdjust;
673  if (total_duration != 0) {
674    const double total_seconds = static_cast<double>(total_duration / 1000) / 1000000.0;
675    os << "Total time spent in GC: " << PrettyDuration(total_duration) << "\n";
676    os << "Mean GC size throughput: "
677       << PrettySize(GetBytesFreedEver() / total_seconds) << "/s\n";
678    os << "Mean GC object throughput: "
679       << (GetObjectsFreedEver() / total_seconds) << " objects/s\n";
680  }
681  size_t total_objects_allocated = GetObjectsAllocatedEver();
682  os << "Total number of allocations: " << total_objects_allocated << "\n";
683  size_t total_bytes_allocated = GetBytesAllocatedEver();
684  os << "Total bytes allocated " << PrettySize(total_bytes_allocated) << "\n";
685  if (kMeasureAllocationTime) {
686    os << "Total time spent allocating: " << PrettyDuration(allocation_time) << "\n";
687    os << "Mean allocation time: " << PrettyDuration(allocation_time / total_objects_allocated)
688       << "\n";
689  }
690  os << "Total mutator paused time: " << PrettyDuration(total_paused_time) << "\n";
691  os << "Total time waiting for GC to complete: " << PrettyDuration(total_wait_time_) << "\n";
692  os << "Approximate GC data structures memory overhead: " << gc_memory_overhead_;
693}
694
695Heap::~Heap() {
696  VLOG(heap) << "Starting ~Heap()";
697  STLDeleteElements(&garbage_collectors_);
698  // If we don't reset then the mark stack complains in its destructor.
699  allocation_stack_->Reset();
700  live_stack_->Reset();
701  STLDeleteValues(&mod_union_tables_);
702  STLDeleteElements(&continuous_spaces_);
703  STLDeleteElements(&discontinuous_spaces_);
704  delete gc_complete_lock_;
705  VLOG(heap) << "Finished ~Heap()";
706}
707
708space::ContinuousSpace* Heap::FindContinuousSpaceFromObject(const mirror::Object* obj,
709                                                            bool fail_ok) const {
710  for (const auto& space : continuous_spaces_) {
711    if (space->Contains(obj)) {
712      return space;
713    }
714  }
715  if (!fail_ok) {
716    LOG(FATAL) << "object " << reinterpret_cast<const void*>(obj) << " not inside any spaces!";
717  }
718  return NULL;
719}
720
721space::DiscontinuousSpace* Heap::FindDiscontinuousSpaceFromObject(const mirror::Object* obj,
722                                                                  bool fail_ok) const {
723  for (const auto& space : discontinuous_spaces_) {
724    if (space->Contains(obj)) {
725      return space;
726    }
727  }
728  if (!fail_ok) {
729    LOG(FATAL) << "object " << reinterpret_cast<const void*>(obj) << " not inside any spaces!";
730  }
731  return NULL;
732}
733
734space::Space* Heap::FindSpaceFromObject(const mirror::Object* obj, bool fail_ok) const {
735  space::Space* result = FindContinuousSpaceFromObject(obj, true);
736  if (result != NULL) {
737    return result;
738  }
739  return FindDiscontinuousSpaceFromObject(obj, true);
740}
741
742struct SoftReferenceArgs {
743  IsMarkedCallback* is_marked_callback_;
744  MarkObjectCallback* mark_callback_;
745  void* arg_;
746};
747
748mirror::Object* Heap::PreserveSoftReferenceCallback(mirror::Object* obj, void* arg) {
749  SoftReferenceArgs* args = reinterpret_cast<SoftReferenceArgs*>(arg);
750  // TODO: Not preserve all soft references.
751  return args->mark_callback_(obj, args->arg_);
752}
753
754// Process reference class instances and schedule finalizations.
755void Heap::ProcessReferences(TimingLogger& timings, bool clear_soft,
756                             IsMarkedCallback* is_marked_callback,
757                             MarkObjectCallback* mark_object_callback,
758                             ProcessMarkStackCallback* process_mark_stack_callback, void* arg) {
759  // Unless we are in the zygote or required to clear soft references with white references,
760  // preserve some white referents.
761  if (!clear_soft && !Runtime::Current()->IsZygote()) {
762    SoftReferenceArgs soft_reference_args;
763    soft_reference_args.is_marked_callback_ = is_marked_callback;
764    soft_reference_args.mark_callback_ = mark_object_callback;
765    soft_reference_args.arg_ = arg;
766    soft_reference_queue_.PreserveSomeSoftReferences(&PreserveSoftReferenceCallback,
767                                                     &soft_reference_args);
768    process_mark_stack_callback(arg);
769  }
770  timings.StartSplit("(Paused)ProcessReferences");
771  // Clear all remaining soft and weak references with white referents.
772  soft_reference_queue_.ClearWhiteReferences(cleared_references_, is_marked_callback, arg);
773  weak_reference_queue_.ClearWhiteReferences(cleared_references_, is_marked_callback, arg);
774  timings.EndSplit();
775  // Preserve all white objects with finalize methods and schedule them for finalization.
776  timings.StartSplit("(Paused)EnqueueFinalizerReferences");
777  finalizer_reference_queue_.EnqueueFinalizerReferences(cleared_references_, is_marked_callback,
778                                                        mark_object_callback, arg);
779  process_mark_stack_callback(arg);
780  timings.EndSplit();
781  timings.StartSplit("(Paused)ProcessReferences");
782  // Clear all f-reachable soft and weak references with white referents.
783  soft_reference_queue_.ClearWhiteReferences(cleared_references_, is_marked_callback, arg);
784  weak_reference_queue_.ClearWhiteReferences(cleared_references_, is_marked_callback, arg);
785  // Clear all phantom references with white referents.
786  phantom_reference_queue_.ClearWhiteReferences(cleared_references_, is_marked_callback, arg);
787  // At this point all reference queues other than the cleared references should be empty.
788  DCHECK(soft_reference_queue_.IsEmpty());
789  DCHECK(weak_reference_queue_.IsEmpty());
790  DCHECK(finalizer_reference_queue_.IsEmpty());
791  DCHECK(phantom_reference_queue_.IsEmpty());
792  timings.EndSplit();
793}
794
795// Process the "referent" field in a java.lang.ref.Reference.  If the referent has not yet been
796// marked, put it on the appropriate list in the heap for later processing.
797void Heap::DelayReferenceReferent(mirror::Class* klass, mirror::Reference* ref,
798                                  IsMarkedCallback is_marked_callback, void* arg) {
799  DCHECK_EQ(klass, ref->GetClass());
800  mirror::Object* referent = ref->GetReferent();
801  if (referent != nullptr) {
802    mirror::Object* forward_address = is_marked_callback(referent, arg);
803    // Null means that the object is not currently marked.
804    if (forward_address == nullptr) {
805      Thread* self = Thread::Current();
806      // TODO: Remove these locks, and use atomic stacks for storing references?
807      // We need to check that the references haven't already been enqueued since we can end up
808      // scanning the same reference multiple times due to dirty cards.
809      if (klass->IsSoftReferenceClass()) {
810        soft_reference_queue_.AtomicEnqueueIfNotEnqueued(self, ref);
811      } else if (klass->IsWeakReferenceClass()) {
812        weak_reference_queue_.AtomicEnqueueIfNotEnqueued(self, ref);
813      } else if (klass->IsFinalizerReferenceClass()) {
814        finalizer_reference_queue_.AtomicEnqueueIfNotEnqueued(self, ref);
815      } else if (klass->IsPhantomReferenceClass()) {
816        phantom_reference_queue_.AtomicEnqueueIfNotEnqueued(self, ref);
817      } else {
818        LOG(FATAL) << "Invalid reference type " << PrettyClass(klass) << " " << std::hex
819                   << klass->GetAccessFlags();
820      }
821    } else if (referent != forward_address) {
822      // Referent is already marked and we need to update it.
823      ref->SetReferent<false>(forward_address);
824    }
825  }
826}
827
828space::ImageSpace* Heap::GetImageSpace() const {
829  for (const auto& space : continuous_spaces_) {
830    if (space->IsImageSpace()) {
831      return space->AsImageSpace();
832    }
833  }
834  return NULL;
835}
836
837static void MSpaceChunkCallback(void* start, void* end, size_t used_bytes, void* arg) {
838  size_t chunk_size = reinterpret_cast<uint8_t*>(end) - reinterpret_cast<uint8_t*>(start);
839  if (used_bytes < chunk_size) {
840    size_t chunk_free_bytes = chunk_size - used_bytes;
841    size_t& max_contiguous_allocation = *reinterpret_cast<size_t*>(arg);
842    max_contiguous_allocation = std::max(max_contiguous_allocation, chunk_free_bytes);
843  }
844}
845
846void Heap::ThrowOutOfMemoryError(Thread* self, size_t byte_count, bool large_object_allocation) {
847  std::ostringstream oss;
848  size_t total_bytes_free = GetFreeMemory();
849  oss << "Failed to allocate a " << byte_count << " byte allocation with " << total_bytes_free
850      << " free bytes";
851  // If the allocation failed due to fragmentation, print out the largest continuous allocation.
852  if (!large_object_allocation && total_bytes_free >= byte_count) {
853    size_t max_contiguous_allocation = 0;
854    for (const auto& space : continuous_spaces_) {
855      if (space->IsMallocSpace()) {
856        // To allow the Walk/InspectAll() to exclusively-lock the mutator
857        // lock, temporarily release the shared access to the mutator
858        // lock here by transitioning to the suspended state.
859        Locks::mutator_lock_->AssertSharedHeld(self);
860        self->TransitionFromRunnableToSuspended(kSuspended);
861        space->AsMallocSpace()->Walk(MSpaceChunkCallback, &max_contiguous_allocation);
862        self->TransitionFromSuspendedToRunnable();
863        Locks::mutator_lock_->AssertSharedHeld(self);
864      }
865    }
866    oss << "; failed due to fragmentation (largest possible contiguous allocation "
867        <<  max_contiguous_allocation << " bytes)";
868  }
869  self->ThrowOutOfMemoryError(oss.str().c_str());
870}
871
872void Heap::DoPendingTransitionOrTrim() {
873  Thread* self = Thread::Current();
874  CollectorType desired_collector_type;
875  // Wait until we reach the desired transition time.
876  while (true) {
877    uint64_t wait_time;
878    {
879      MutexLock mu(self, *heap_trim_request_lock_);
880      desired_collector_type = desired_collector_type_;
881      uint64_t current_time = NanoTime();
882      if (current_time >= heap_transition_target_time_) {
883        break;
884      }
885      wait_time = heap_transition_target_time_ - current_time;
886    }
887    ScopedThreadStateChange tsc(self, kSleeping);
888    usleep(wait_time / 1000);  // Usleep takes microseconds.
889  }
890  // Transition the collector if the desired collector type is not the same as the current
891  // collector type.
892  TransitionCollector(desired_collector_type);
893  // Do a heap trim if it is needed.
894  Trim();
895}
896
897void Heap::Trim() {
898  Thread* self = Thread::Current();
899  {
900    MutexLock mu(self, *heap_trim_request_lock_);
901    if (!heap_trim_request_pending_ || last_trim_time_ + kHeapTrimWait >= NanoTime()) {
902      return;
903    }
904    last_trim_time_ = NanoTime();
905    heap_trim_request_pending_ = false;
906  }
907  {
908    // Need to do this before acquiring the locks since we don't want to get suspended while
909    // holding any locks.
910    ScopedThreadStateChange tsc(self, kWaitingForGcToComplete);
911    // Pretend we are doing a GC to prevent background compaction from deleting the space we are
912    // trimming.
913    MutexLock mu(self, *gc_complete_lock_);
914    // Ensure there is only one GC at a time.
915    WaitForGcToCompleteLocked(self);
916    collector_type_running_ = kCollectorTypeHeapTrim;
917  }
918  uint64_t start_ns = NanoTime();
919  // Trim the managed spaces.
920  uint64_t total_alloc_space_allocated = 0;
921  uint64_t total_alloc_space_size = 0;
922  uint64_t managed_reclaimed = 0;
923  for (const auto& space : continuous_spaces_) {
924    if (space->IsMallocSpace()) {
925      gc::space::MallocSpace* alloc_space = space->AsMallocSpace();
926      total_alloc_space_size += alloc_space->Size();
927      managed_reclaimed += alloc_space->Trim();
928    }
929  }
930  total_alloc_space_allocated = GetBytesAllocated() - large_object_space_->GetBytesAllocated() -
931      bump_pointer_space_->Size();
932  const float managed_utilization = static_cast<float>(total_alloc_space_allocated) /
933      static_cast<float>(total_alloc_space_size);
934  uint64_t gc_heap_end_ns = NanoTime();
935  // We never move things in the native heap, so we can finish the GC at this point.
936  FinishGC(self, collector::kGcTypeNone);
937  // Trim the native heap.
938  dlmalloc_trim(0);
939  size_t native_reclaimed = 0;
940  dlmalloc_inspect_all(DlmallocMadviseCallback, &native_reclaimed);
941  uint64_t end_ns = NanoTime();
942  VLOG(heap) << "Heap trim of managed (duration=" << PrettyDuration(gc_heap_end_ns - start_ns)
943      << ", advised=" << PrettySize(managed_reclaimed) << ") and native (duration="
944      << PrettyDuration(end_ns - gc_heap_end_ns) << ", advised=" << PrettySize(native_reclaimed)
945      << ") heaps. Managed heap utilization of " << static_cast<int>(100 * managed_utilization)
946      << "%.";
947}
948
949bool Heap::IsValidObjectAddress(const mirror::Object* obj) const {
950  // Note: we deliberately don't take the lock here, and mustn't test anything that would require
951  // taking the lock.
952  if (obj == nullptr) {
953    return true;
954  }
955  return IsAligned<kObjectAlignment>(obj) && FindSpaceFromObject(obj, true) != nullptr;
956}
957
958bool Heap::IsNonDiscontinuousSpaceHeapAddress(const mirror::Object* obj) const {
959  return FindContinuousSpaceFromObject(obj, true) != nullptr;
960}
961
962bool Heap::IsValidContinuousSpaceObjectAddress(const mirror::Object* obj) const {
963  if (obj == nullptr || !IsAligned<kObjectAlignment>(obj)) {
964    return false;
965  }
966  for (const auto& space : continuous_spaces_) {
967    if (space->HasAddress(obj)) {
968      return true;
969    }
970  }
971  return false;
972}
973
974bool Heap::IsLiveObjectLocked(mirror::Object* obj, bool search_allocation_stack,
975                              bool search_live_stack, bool sorted) {
976  if (UNLIKELY(!IsAligned<kObjectAlignment>(obj))) {
977    return false;
978  }
979  if (bump_pointer_space_ != nullptr && bump_pointer_space_->HasAddress(obj)) {
980    mirror::Class* klass = obj->GetClass<kVerifyNone>();
981    if (obj == klass) {
982      // This case happens for java.lang.Class.
983      return true;
984    }
985    return VerifyClassClass(klass) && IsLiveObjectLocked(klass);
986  } else if (temp_space_ != nullptr && temp_space_->HasAddress(obj)) {
987    // If we are in the allocated region of the temp space, then we are probably live (e.g. during
988    // a GC). When a GC isn't running End() - Begin() is 0 which means no objects are contained.
989    return temp_space_->Contains(obj);
990  }
991  space::ContinuousSpace* c_space = FindContinuousSpaceFromObject(obj, true);
992  space::DiscontinuousSpace* d_space = NULL;
993  if (c_space != nullptr) {
994    if (c_space->GetLiveBitmap()->Test(obj)) {
995      return true;
996    }
997  } else {
998    d_space = FindDiscontinuousSpaceFromObject(obj, true);
999    if (d_space != nullptr) {
1000      if (d_space->GetLiveObjects()->Test(obj)) {
1001        return true;
1002      }
1003    }
1004  }
1005  // This is covering the allocation/live stack swapping that is done without mutators suspended.
1006  for (size_t i = 0; i < (sorted ? 1 : 5); ++i) {
1007    if (i > 0) {
1008      NanoSleep(MsToNs(10));
1009    }
1010    if (search_allocation_stack) {
1011      if (sorted) {
1012        if (allocation_stack_->ContainsSorted(const_cast<mirror::Object*>(obj))) {
1013          return true;
1014        }
1015      } else if (allocation_stack_->Contains(const_cast<mirror::Object*>(obj))) {
1016        return true;
1017      }
1018    }
1019
1020    if (search_live_stack) {
1021      if (sorted) {
1022        if (live_stack_->ContainsSorted(const_cast<mirror::Object*>(obj))) {
1023          return true;
1024        }
1025      } else if (live_stack_->Contains(const_cast<mirror::Object*>(obj))) {
1026        return true;
1027      }
1028    }
1029  }
1030  // We need to check the bitmaps again since there is a race where we mark something as live and
1031  // then clear the stack containing it.
1032  if (c_space != nullptr) {
1033    if (c_space->GetLiveBitmap()->Test(obj)) {
1034      return true;
1035    }
1036  } else {
1037    d_space = FindDiscontinuousSpaceFromObject(obj, true);
1038    if (d_space != nullptr && d_space->GetLiveObjects()->Test(obj)) {
1039      return true;
1040    }
1041  }
1042  return false;
1043}
1044
1045void Heap::DumpSpaces(std::ostream& stream) {
1046  for (const auto& space : continuous_spaces_) {
1047    accounting::SpaceBitmap* live_bitmap = space->GetLiveBitmap();
1048    accounting::SpaceBitmap* mark_bitmap = space->GetMarkBitmap();
1049    stream << space << " " << *space << "\n";
1050    if (live_bitmap != nullptr) {
1051      stream << live_bitmap << " " << *live_bitmap << "\n";
1052    }
1053    if (mark_bitmap != nullptr) {
1054      stream << mark_bitmap << " " << *mark_bitmap << "\n";
1055    }
1056  }
1057  for (const auto& space : discontinuous_spaces_) {
1058    stream << space << " " << *space << "\n";
1059  }
1060}
1061
1062void Heap::VerifyObjectBody(mirror::Object* obj) {
1063  if (this == nullptr && verify_object_mode_ == kVerifyObjectModeDisabled) {
1064    return;
1065  }
1066  // Ignore early dawn of the universe verifications.
1067  if (UNLIKELY(static_cast<size_t>(num_bytes_allocated_.Load()) < 10 * KB)) {
1068    return;
1069  }
1070  CHECK(IsAligned<kObjectAlignment>(obj)) << "Object isn't aligned: " << obj;
1071  mirror::Class* c = obj->GetFieldObject<mirror::Class, kVerifyNone>(
1072      mirror::Object::ClassOffset(), false);
1073  CHECK(c != nullptr) << "Null class in object " << obj;
1074  CHECK(IsAligned<kObjectAlignment>(c)) << "Class " << c << " not aligned in object " << obj;
1075  CHECK(VerifyClassClass(c));
1076
1077  if (verify_object_mode_ > kVerifyObjectModeFast) {
1078    // Note: the bitmap tests below are racy since we don't hold the heap bitmap lock.
1079    if (!IsLiveObjectLocked(obj)) {
1080      DumpSpaces();
1081      LOG(FATAL) << "Object is dead: " << obj;
1082    }
1083  }
1084}
1085
1086void Heap::VerificationCallback(mirror::Object* obj, void* arg) {
1087  reinterpret_cast<Heap*>(arg)->VerifyObjectBody(obj);
1088}
1089
1090void Heap::VerifyHeap() {
1091  ReaderMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
1092  GetLiveBitmap()->Walk(Heap::VerificationCallback, this);
1093}
1094
1095void Heap::RecordFree(size_t freed_objects, size_t freed_bytes) {
1096  DCHECK_LE(freed_bytes, num_bytes_allocated_.Load());
1097  num_bytes_allocated_.FetchAndSub(freed_bytes);
1098  if (Runtime::Current()->HasStatsEnabled()) {
1099    RuntimeStats* thread_stats = Thread::Current()->GetStats();
1100    thread_stats->freed_objects += freed_objects;
1101    thread_stats->freed_bytes += freed_bytes;
1102    // TODO: Do this concurrently.
1103    RuntimeStats* global_stats = Runtime::Current()->GetStats();
1104    global_stats->freed_objects += freed_objects;
1105    global_stats->freed_bytes += freed_bytes;
1106  }
1107}
1108
1109mirror::Object* Heap::AllocateInternalWithGc(Thread* self, AllocatorType allocator,
1110                                             size_t alloc_size, size_t* bytes_allocated,
1111                                             size_t* usable_size,
1112                                             mirror::Class** klass) {
1113  mirror::Object* ptr = nullptr;
1114  bool was_default_allocator = allocator == GetCurrentAllocator();
1115  DCHECK(klass != nullptr);
1116  SirtRef<mirror::Class> sirt_klass(self, *klass);
1117  // The allocation failed. If the GC is running, block until it completes, and then retry the
1118  // allocation.
1119  collector::GcType last_gc = WaitForGcToComplete(self);
1120  if (last_gc != collector::kGcTypeNone) {
1121    // If we were the default allocator but the allocator changed while we were suspended,
1122    // abort the allocation.
1123    if (was_default_allocator && allocator != GetCurrentAllocator()) {
1124      *klass = sirt_klass.get();
1125      return nullptr;
1126    }
1127    // A GC was in progress and we blocked, retry allocation now that memory has been freed.
1128    ptr = TryToAllocate<true, false>(self, allocator, alloc_size, bytes_allocated, usable_size);
1129  }
1130
1131  // Loop through our different Gc types and try to Gc until we get enough free memory.
1132  for (collector::GcType gc_type : gc_plan_) {
1133    if (ptr != nullptr) {
1134      break;
1135    }
1136    // Attempt to run the collector, if we succeed, re-try the allocation.
1137    bool gc_ran =
1138        CollectGarbageInternal(gc_type, kGcCauseForAlloc, false) != collector::kGcTypeNone;
1139    if (was_default_allocator && allocator != GetCurrentAllocator()) {
1140      *klass = sirt_klass.get();
1141      return nullptr;
1142    }
1143    if (gc_ran) {
1144      // Did we free sufficient memory for the allocation to succeed?
1145      ptr = TryToAllocate<true, false>(self, allocator, alloc_size, bytes_allocated, usable_size);
1146    }
1147  }
1148  // Allocations have failed after GCs;  this is an exceptional state.
1149  if (ptr == nullptr) {
1150    // Try harder, growing the heap if necessary.
1151    ptr = TryToAllocate<true, true>(self, allocator, alloc_size, bytes_allocated, usable_size);
1152  }
1153  if (ptr == nullptr) {
1154    // Most allocations should have succeeded by now, so the heap is really full, really fragmented,
1155    // or the requested size is really big. Do another GC, collecting SoftReferences this time. The
1156    // VM spec requires that all SoftReferences have been collected and cleared before throwing
1157    // OOME.
1158    VLOG(gc) << "Forcing collection of SoftReferences for " << PrettySize(alloc_size)
1159             << " allocation";
1160    // TODO: Run finalization, but this may cause more allocations to occur.
1161    // We don't need a WaitForGcToComplete here either.
1162    DCHECK(!gc_plan_.empty());
1163    CollectGarbageInternal(gc_plan_.back(), kGcCauseForAlloc, true);
1164    if (was_default_allocator && allocator != GetCurrentAllocator()) {
1165      *klass = sirt_klass.get();
1166      return nullptr;
1167    }
1168    ptr = TryToAllocate<true, true>(self, allocator, alloc_size, bytes_allocated, usable_size);
1169    if (ptr == nullptr) {
1170      ThrowOutOfMemoryError(self, alloc_size, false);
1171    }
1172  }
1173  *klass = sirt_klass.get();
1174  return ptr;
1175}
1176
1177void Heap::SetTargetHeapUtilization(float target) {
1178  DCHECK_GT(target, 0.0f);  // asserted in Java code
1179  DCHECK_LT(target, 1.0f);
1180  target_utilization_ = target;
1181}
1182
1183size_t Heap::GetObjectsAllocated() const {
1184  size_t total = 0;
1185  for (space::AllocSpace* space : alloc_spaces_) {
1186    total += space->GetObjectsAllocated();
1187  }
1188  return total;
1189}
1190
1191size_t Heap::GetObjectsAllocatedEver() const {
1192  return GetObjectsFreedEver() + GetObjectsAllocated();
1193}
1194
1195size_t Heap::GetBytesAllocatedEver() const {
1196  return GetBytesFreedEver() + GetBytesAllocated();
1197}
1198
1199class InstanceCounter {
1200 public:
1201  InstanceCounter(const std::vector<mirror::Class*>& classes, bool use_is_assignable_from, uint64_t* counts)
1202      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
1203      : classes_(classes), use_is_assignable_from_(use_is_assignable_from), counts_(counts) {
1204  }
1205  static void Callback(mirror::Object* obj, void* arg)
1206      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
1207    InstanceCounter* instance_counter = reinterpret_cast<InstanceCounter*>(arg);
1208    mirror::Class* instance_class = obj->GetClass();
1209    CHECK(instance_class != nullptr);
1210    for (size_t i = 0; i < instance_counter->classes_.size(); ++i) {
1211      if (instance_counter->use_is_assignable_from_) {
1212        if (instance_counter->classes_[i]->IsAssignableFrom(instance_class)) {
1213          ++instance_counter->counts_[i];
1214        }
1215      } else if (instance_class == instance_counter->classes_[i]) {
1216        ++instance_counter->counts_[i];
1217      }
1218    }
1219  }
1220
1221 private:
1222  const std::vector<mirror::Class*>& classes_;
1223  bool use_is_assignable_from_;
1224  uint64_t* const counts_;
1225  DISALLOW_COPY_AND_ASSIGN(InstanceCounter);
1226};
1227
1228void Heap::CountInstances(const std::vector<mirror::Class*>& classes, bool use_is_assignable_from,
1229                          uint64_t* counts) {
1230  // Can't do any GC in this function since this may move classes.
1231  Thread* self = Thread::Current();
1232  auto* old_cause = self->StartAssertNoThreadSuspension("CountInstances");
1233  InstanceCounter counter(classes, use_is_assignable_from, counts);
1234  WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
1235  VisitObjects(InstanceCounter::Callback, &counter);
1236  self->EndAssertNoThreadSuspension(old_cause);
1237}
1238
1239class InstanceCollector {
1240 public:
1241  InstanceCollector(mirror::Class* c, int32_t max_count, std::vector<mirror::Object*>& instances)
1242      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
1243      : class_(c), max_count_(max_count), instances_(instances) {
1244  }
1245  static void Callback(mirror::Object* obj, void* arg)
1246      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
1247    DCHECK(arg != nullptr);
1248    InstanceCollector* instance_collector = reinterpret_cast<InstanceCollector*>(arg);
1249    mirror::Class* instance_class = obj->GetClass();
1250    if (instance_class == instance_collector->class_) {
1251      if (instance_collector->max_count_ == 0 ||
1252          instance_collector->instances_.size() < instance_collector->max_count_) {
1253        instance_collector->instances_.push_back(obj);
1254      }
1255    }
1256  }
1257
1258 private:
1259  mirror::Class* class_;
1260  uint32_t max_count_;
1261  std::vector<mirror::Object*>& instances_;
1262  DISALLOW_COPY_AND_ASSIGN(InstanceCollector);
1263};
1264
1265void Heap::GetInstances(mirror::Class* c, int32_t max_count,
1266                        std::vector<mirror::Object*>& instances) {
1267  // Can't do any GC in this function since this may move classes.
1268  Thread* self = Thread::Current();
1269  auto* old_cause = self->StartAssertNoThreadSuspension("GetInstances");
1270  InstanceCollector collector(c, max_count, instances);
1271  WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
1272  VisitObjects(&InstanceCollector::Callback, &collector);
1273  self->EndAssertNoThreadSuspension(old_cause);
1274}
1275
1276class ReferringObjectsFinder {
1277 public:
1278  ReferringObjectsFinder(mirror::Object* object, int32_t max_count,
1279                         std::vector<mirror::Object*>& referring_objects)
1280      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
1281      : object_(object), max_count_(max_count), referring_objects_(referring_objects) {
1282  }
1283
1284  static void Callback(mirror::Object* obj, void* arg)
1285      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
1286    reinterpret_cast<ReferringObjectsFinder*>(arg)->operator()(obj);
1287  }
1288
1289  // For bitmap Visit.
1290  // TODO: Fix lock analysis to not use NO_THREAD_SAFETY_ANALYSIS, requires support for
1291  // annotalysis on visitors.
1292  void operator()(const mirror::Object* o) const NO_THREAD_SAFETY_ANALYSIS {
1293    collector::MarkSweep::VisitObjectReferences(const_cast<mirror::Object*>(o), *this, true);
1294  }
1295
1296  // For MarkSweep::VisitObjectReferences.
1297  void operator()(mirror::Object* referrer, mirror::Object* object,
1298                  const MemberOffset&, bool) const {
1299    if (object == object_ && (max_count_ == 0 || referring_objects_.size() < max_count_)) {
1300      referring_objects_.push_back(referrer);
1301    }
1302  }
1303
1304 private:
1305  mirror::Object* object_;
1306  uint32_t max_count_;
1307  std::vector<mirror::Object*>& referring_objects_;
1308  DISALLOW_COPY_AND_ASSIGN(ReferringObjectsFinder);
1309};
1310
1311void Heap::GetReferringObjects(mirror::Object* o, int32_t max_count,
1312                               std::vector<mirror::Object*>& referring_objects) {
1313  // Can't do any GC in this function since this may move the object o.
1314  Thread* self = Thread::Current();
1315  auto* old_cause = self->StartAssertNoThreadSuspension("GetReferringObjects");
1316  ReferringObjectsFinder finder(o, max_count, referring_objects);
1317  WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
1318  VisitObjects(&ReferringObjectsFinder::Callback, &finder);
1319  self->EndAssertNoThreadSuspension(old_cause);
1320}
1321
1322void Heap::CollectGarbage(bool clear_soft_references) {
1323  // Even if we waited for a GC we still need to do another GC since weaks allocated during the
1324  // last GC will not have necessarily been cleared.
1325  CollectGarbageInternal(gc_plan_.back(), kGcCauseExplicit, clear_soft_references);
1326}
1327
1328void Heap::TransitionCollector(CollectorType collector_type) {
1329  if (collector_type == collector_type_) {
1330    return;
1331  }
1332  VLOG(heap) << "TransitionCollector: " << static_cast<int>(collector_type_)
1333             << " -> " << static_cast<int>(collector_type);
1334  uint64_t start_time = NanoTime();
1335  uint32_t before_size  = GetTotalMemory();
1336  uint32_t before_allocated = num_bytes_allocated_.Load();
1337  ThreadList* tl = Runtime::Current()->GetThreadList();
1338  Thread* self = Thread::Current();
1339  ScopedThreadStateChange tsc(self, kWaitingPerformingGc);
1340  Locks::mutator_lock_->AssertNotHeld(self);
1341  const bool copying_transition =
1342      IsCompactingGC(background_collector_type_) || IsCompactingGC(post_zygote_collector_type_);
1343  // Busy wait until we can GC (StartGC can fail if we have a non-zero
1344  // compacting_gc_disable_count_, this should rarely occurs).
1345  for (;;) {
1346    {
1347      ScopedThreadStateChange tsc(self, kWaitingForGcToComplete);
1348      MutexLock mu(self, *gc_complete_lock_);
1349      // Ensure there is only one GC at a time.
1350      WaitForGcToCompleteLocked(self);
1351      // GC can be disabled if someone has a used GetPrimitiveArrayCritical but not yet released.
1352      if (!copying_transition || disable_moving_gc_count_ == 0) {
1353        // TODO: Not hard code in semi-space collector?
1354        collector_type_running_ = copying_transition ? kCollectorTypeSS : collector_type;
1355        break;
1356      }
1357    }
1358    usleep(1000);
1359  }
1360  tl->SuspendAll();
1361  PreGcRosAllocVerification(&semi_space_collector_->GetTimings());
1362  switch (collector_type) {
1363    case kCollectorTypeSS:
1364      // Fall-through.
1365    case kCollectorTypeGSS: {
1366      mprotect(temp_space_->Begin(), temp_space_->Capacity(), PROT_READ | PROT_WRITE);
1367      CHECK(main_space_ != nullptr);
1368      Compact(temp_space_, main_space_);
1369      DCHECK(allocator_mem_map_.get() == nullptr);
1370      allocator_mem_map_.reset(main_space_->ReleaseMemMap());
1371      madvise(main_space_->Begin(), main_space_->Size(), MADV_DONTNEED);
1372      // RemoveSpace does not delete the removed space.
1373      space::Space* old_space = main_space_;
1374      RemoveSpace(old_space);
1375      delete old_space;
1376      break;
1377    }
1378    case kCollectorTypeMS:
1379      // Fall through.
1380    case kCollectorTypeCMS: {
1381      if (IsCompactingGC(collector_type_)) {
1382        // TODO: Use mem-map from temp space?
1383        MemMap* mem_map = allocator_mem_map_.release();
1384        CHECK(mem_map != nullptr);
1385        size_t starting_size = kDefaultStartingSize;
1386        size_t initial_size = kDefaultInitialSize;
1387        mprotect(mem_map->Begin(), initial_size, PROT_READ | PROT_WRITE);
1388        CHECK(main_space_ == nullptr);
1389        if (kUseRosAlloc) {
1390          main_space_ =
1391              space::RosAllocSpace::CreateFromMemMap(mem_map, "alloc space", starting_size,
1392                                                     initial_size, mem_map->Size(),
1393                                                     mem_map->Size(), low_memory_mode_);
1394        } else {
1395          main_space_ =
1396              space::DlMallocSpace::CreateFromMemMap(mem_map, "alloc space", starting_size,
1397                                                     initial_size, mem_map->Size(),
1398                                                     mem_map->Size());
1399        }
1400        main_space_->SetFootprintLimit(main_space_->Capacity());
1401        AddSpace(main_space_);
1402        Compact(main_space_, bump_pointer_space_);
1403      }
1404      break;
1405    }
1406    default: {
1407      LOG(FATAL) << "Attempted to transition to invalid collector type";
1408      break;
1409    }
1410  }
1411  ChangeCollector(collector_type);
1412  PostGcRosAllocVerification(&semi_space_collector_->GetTimings());
1413  tl->ResumeAll();
1414  // Can't call into java code with all threads suspended.
1415  EnqueueClearedReferences();
1416  uint64_t duration = NanoTime() - start_time;
1417  GrowForUtilization(collector::kGcTypeFull, duration);
1418  FinishGC(self, collector::kGcTypeFull);
1419  int32_t after_size = GetTotalMemory();
1420  int32_t delta_size = before_size - after_size;
1421  int32_t after_allocated = num_bytes_allocated_.Load();
1422  int32_t delta_allocated = before_allocated - after_allocated;
1423  const std::string saved_bytes_str =
1424      delta_size < 0 ? "-" + PrettySize(-delta_size) : PrettySize(delta_size);
1425  LOG(INFO) << "Heap transition to " << process_state_ << " took "
1426      << PrettyDuration(duration) << " " << PrettySize(before_size) << "->"
1427      << PrettySize(after_size) << " from " << PrettySize(delta_allocated) << " to "
1428      << PrettySize(delta_size) << " saved";
1429}
1430
1431void Heap::ChangeCollector(CollectorType collector_type) {
1432  // TODO: Only do this with all mutators suspended to avoid races.
1433  if (collector_type != collector_type_) {
1434    collector_type_ = collector_type;
1435    gc_plan_.clear();
1436    switch (collector_type_) {
1437      case kCollectorTypeSS:
1438        // Fall-through.
1439      case kCollectorTypeGSS: {
1440        concurrent_gc_ = false;
1441        gc_plan_.push_back(collector::kGcTypeFull);
1442        if (use_tlab_) {
1443          ChangeAllocator(kAllocatorTypeTLAB);
1444        } else {
1445          ChangeAllocator(kAllocatorTypeBumpPointer);
1446        }
1447        break;
1448      }
1449      case kCollectorTypeMS: {
1450        concurrent_gc_ = false;
1451        gc_plan_.push_back(collector::kGcTypeSticky);
1452        gc_plan_.push_back(collector::kGcTypePartial);
1453        gc_plan_.push_back(collector::kGcTypeFull);
1454        ChangeAllocator(kUseRosAlloc ? kAllocatorTypeRosAlloc : kAllocatorTypeDlMalloc);
1455        break;
1456      }
1457      case kCollectorTypeCMS: {
1458        concurrent_gc_ = true;
1459        gc_plan_.push_back(collector::kGcTypeSticky);
1460        gc_plan_.push_back(collector::kGcTypePartial);
1461        gc_plan_.push_back(collector::kGcTypeFull);
1462        ChangeAllocator(kUseRosAlloc ? kAllocatorTypeRosAlloc : kAllocatorTypeDlMalloc);
1463        break;
1464      }
1465      default: {
1466        LOG(FATAL) << "Unimplemented";
1467      }
1468    }
1469    if (concurrent_gc_) {
1470      concurrent_start_bytes_ =
1471          std::max(max_allowed_footprint_, kMinConcurrentRemainingBytes) - kMinConcurrentRemainingBytes;
1472    } else {
1473      concurrent_start_bytes_ = std::numeric_limits<size_t>::max();
1474    }
1475  }
1476}
1477
1478// Special compacting collector which uses sub-optimal bin packing to reduce zygote space size.
1479class ZygoteCompactingCollector FINAL : public collector::SemiSpace {
1480 public:
1481  explicit ZygoteCompactingCollector(gc::Heap* heap) : SemiSpace(heap, false, "zygote collector"),
1482      bin_live_bitmap_(nullptr), bin_mark_bitmap_(nullptr) {
1483  }
1484
1485  void BuildBins(space::ContinuousSpace* space) {
1486    bin_live_bitmap_ = space->GetLiveBitmap();
1487    bin_mark_bitmap_ = space->GetMarkBitmap();
1488    BinContext context;
1489    context.prev_ = reinterpret_cast<uintptr_t>(space->Begin());
1490    context.collector_ = this;
1491    WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
1492    // Note: This requires traversing the space in increasing order of object addresses.
1493    bin_live_bitmap_->Walk(Callback, reinterpret_cast<void*>(&context));
1494    // Add the last bin which spans after the last object to the end of the space.
1495    AddBin(reinterpret_cast<uintptr_t>(space->End()) - context.prev_, context.prev_);
1496  }
1497
1498 private:
1499  struct BinContext {
1500    uintptr_t prev_;  // The end of the previous object.
1501    ZygoteCompactingCollector* collector_;
1502  };
1503  // Maps from bin sizes to locations.
1504  std::multimap<size_t, uintptr_t> bins_;
1505  // Live bitmap of the space which contains the bins.
1506  accounting::SpaceBitmap* bin_live_bitmap_;
1507  // Mark bitmap of the space which contains the bins.
1508  accounting::SpaceBitmap* bin_mark_bitmap_;
1509
1510  static void Callback(mirror::Object* obj, void* arg)
1511      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1512    DCHECK(arg != nullptr);
1513    BinContext* context = reinterpret_cast<BinContext*>(arg);
1514    ZygoteCompactingCollector* collector = context->collector_;
1515    uintptr_t object_addr = reinterpret_cast<uintptr_t>(obj);
1516    size_t bin_size = object_addr - context->prev_;
1517    // Add the bin consisting of the end of the previous object to the start of the current object.
1518    collector->AddBin(bin_size, context->prev_);
1519    context->prev_ = object_addr + RoundUp(obj->SizeOf(), kObjectAlignment);
1520  }
1521
1522  void AddBin(size_t size, uintptr_t position) {
1523    if (size != 0) {
1524      bins_.insert(std::make_pair(size, position));
1525    }
1526  }
1527
1528  virtual bool ShouldSweepSpace(space::ContinuousSpace* space) const {
1529    // Don't sweep any spaces since we probably blasted the internal accounting of the free list
1530    // allocator.
1531    return false;
1532  }
1533
1534  virtual mirror::Object* MarkNonForwardedObject(mirror::Object* obj)
1535      EXCLUSIVE_LOCKS_REQUIRED(Locks::heap_bitmap_lock_, Locks::mutator_lock_) {
1536    size_t object_size = RoundUp(obj->SizeOf(), kObjectAlignment);
1537    mirror::Object* forward_address;
1538    // Find the smallest bin which we can move obj in.
1539    auto it = bins_.lower_bound(object_size);
1540    if (it == bins_.end()) {
1541      // No available space in the bins, place it in the target space instead (grows the zygote
1542      // space).
1543      size_t bytes_allocated;
1544      forward_address = to_space_->Alloc(self_, object_size, &bytes_allocated, nullptr);
1545      if (to_space_live_bitmap_ != nullptr) {
1546        to_space_live_bitmap_->Set(forward_address);
1547      } else {
1548        GetHeap()->GetNonMovingSpace()->GetLiveBitmap()->Set(forward_address);
1549        GetHeap()->GetNonMovingSpace()->GetMarkBitmap()->Set(forward_address);
1550      }
1551    } else {
1552      size_t size = it->first;
1553      uintptr_t pos = it->second;
1554      bins_.erase(it);  // Erase the old bin which we replace with the new smaller bin.
1555      forward_address = reinterpret_cast<mirror::Object*>(pos);
1556      // Set the live and mark bits so that sweeping system weaks works properly.
1557      bin_live_bitmap_->Set(forward_address);
1558      bin_mark_bitmap_->Set(forward_address);
1559      DCHECK_GE(size, object_size);
1560      AddBin(size - object_size, pos + object_size);  // Add a new bin with the remaining space.
1561    }
1562    // Copy the object over to its new location.
1563    memcpy(reinterpret_cast<void*>(forward_address), obj, object_size);
1564    if (kUseBrooksPointer) {
1565      obj->AssertSelfBrooksPointer();
1566      DCHECK_EQ(forward_address->GetBrooksPointer(), obj);
1567      forward_address->SetBrooksPointer(forward_address);
1568      forward_address->AssertSelfBrooksPointer();
1569    }
1570    return forward_address;
1571  }
1572};
1573
1574void Heap::UnBindBitmaps() {
1575  for (const auto& space : GetContinuousSpaces()) {
1576    if (space->IsContinuousMemMapAllocSpace()) {
1577      space::ContinuousMemMapAllocSpace* alloc_space = space->AsContinuousMemMapAllocSpace();
1578      if (alloc_space->HasBoundBitmaps()) {
1579        alloc_space->UnBindBitmaps();
1580      }
1581    }
1582  }
1583}
1584
1585void Heap::PreZygoteFork() {
1586  CollectGarbageInternal(collector::kGcTypeFull, kGcCauseBackground, false);
1587  static Mutex zygote_creation_lock_("zygote creation lock", kZygoteCreationLock);
1588  Thread* self = Thread::Current();
1589  MutexLock mu(self, zygote_creation_lock_);
1590  // Try to see if we have any Zygote spaces.
1591  if (have_zygote_space_) {
1592    return;
1593  }
1594  VLOG(heap) << "Starting PreZygoteFork";
1595  // Trim the pages at the end of the non moving space.
1596  non_moving_space_->Trim();
1597  non_moving_space_->GetMemMap()->Protect(PROT_READ | PROT_WRITE);
1598  // Change the collector to the post zygote one.
1599  ChangeCollector(post_zygote_collector_type_);
1600  // TODO: Delete bump_pointer_space_ and temp_pointer_space_?
1601  if (semi_space_collector_ != nullptr) {
1602    // Temporarily disable rosalloc verification because the zygote
1603    // compaction will mess up the rosalloc internal metadata.
1604    ScopedDisableRosAllocVerification disable_rosalloc_verif(this);
1605    ZygoteCompactingCollector zygote_collector(this);
1606    zygote_collector.BuildBins(non_moving_space_);
1607    // Create a new bump pointer space which we will compact into.
1608    space::BumpPointerSpace target_space("zygote bump space", non_moving_space_->End(),
1609                                         non_moving_space_->Limit());
1610    // Compact the bump pointer space to a new zygote bump pointer space.
1611    temp_space_->GetMemMap()->Protect(PROT_READ | PROT_WRITE);
1612    zygote_collector.SetFromSpace(bump_pointer_space_);
1613    zygote_collector.SetToSpace(&target_space);
1614    zygote_collector.Run(kGcCauseCollectorTransition, false);
1615    CHECK(temp_space_->IsEmpty());
1616    total_objects_freed_ever_ += semi_space_collector_->GetFreedObjects();
1617    total_bytes_freed_ever_ += semi_space_collector_->GetFreedBytes();
1618    // Update the end and write out image.
1619    non_moving_space_->SetEnd(target_space.End());
1620    non_moving_space_->SetLimit(target_space.Limit());
1621    VLOG(heap) << "Zygote size " << non_moving_space_->Size() << " bytes";
1622  }
1623  // Save the old space so that we can remove it after we complete creating the zygote space.
1624  space::MallocSpace* old_alloc_space = non_moving_space_;
1625  // Turn the current alloc space into a zygote space and obtain the new alloc space composed of
1626  // the remaining available space.
1627  // Remove the old space before creating the zygote space since creating the zygote space sets
1628  // the old alloc space's bitmaps to nullptr.
1629  RemoveSpace(old_alloc_space);
1630  if (collector::SemiSpace::kUseRememberedSet) {
1631    // Sanity bound check.
1632    FindRememberedSetFromSpace(old_alloc_space)->AssertAllDirtyCardsAreWithinSpace();
1633    // Remove the remembered set for the now zygote space (the old
1634    // non-moving space). Note now that we have compacted objects into
1635    // the zygote space, the data in the remembered set is no longer
1636    // needed. The zygote space will instead have a mod-union table
1637    // from this point on.
1638    RemoveRememberedSet(old_alloc_space);
1639  }
1640  space::ZygoteSpace* zygote_space = old_alloc_space->CreateZygoteSpace("alloc space",
1641                                                                        low_memory_mode_,
1642                                                                        &main_space_);
1643  delete old_alloc_space;
1644  CHECK(zygote_space != nullptr) << "Failed creating zygote space";
1645  AddSpace(zygote_space, false);
1646  CHECK(main_space_ != nullptr);
1647  if (main_space_->IsRosAllocSpace()) {
1648    rosalloc_space_ = main_space_->AsRosAllocSpace();
1649  } else if (main_space_->IsDlMallocSpace()) {
1650    dlmalloc_space_ = main_space_->AsDlMallocSpace();
1651  }
1652  main_space_->SetFootprintLimit(main_space_->Capacity());
1653  AddSpace(main_space_);
1654  have_zygote_space_ = true;
1655  // Enable large object space allocations.
1656  large_object_threshold_ = kDefaultLargeObjectThreshold;
1657  // Create the zygote space mod union table.
1658  accounting::ModUnionTable* mod_union_table =
1659      new accounting::ModUnionTableCardCache("zygote space mod-union table", this, zygote_space);
1660  CHECK(mod_union_table != nullptr) << "Failed to create zygote space mod-union table";
1661  AddModUnionTable(mod_union_table);
1662  if (collector::SemiSpace::kUseRememberedSet) {
1663    // Add a new remembered set for the new main space.
1664    accounting::RememberedSet* main_space_rem_set =
1665        new accounting::RememberedSet("Main space remembered set", this, main_space_);
1666    CHECK(main_space_rem_set != nullptr) << "Failed to create main space remembered set";
1667    AddRememberedSet(main_space_rem_set);
1668  }
1669  // Can't use RosAlloc for non moving space due to thread local buffers.
1670  // TODO: Non limited space for non-movable objects?
1671  MemMap* mem_map = post_zygote_non_moving_space_mem_map_.release();
1672  space::MallocSpace* new_non_moving_space =
1673      space::DlMallocSpace::CreateFromMemMap(mem_map, "Non moving dlmalloc space", kPageSize,
1674                                             2 * MB, mem_map->Size(), mem_map->Size());
1675  AddSpace(new_non_moving_space, false);
1676  CHECK(new_non_moving_space != nullptr) << "Failed to create new non-moving space";
1677  new_non_moving_space->SetFootprintLimit(new_non_moving_space->Capacity());
1678  non_moving_space_ = new_non_moving_space;
1679  if (collector::SemiSpace::kUseRememberedSet) {
1680    // Add a new remembered set for the post-zygote non-moving space.
1681    accounting::RememberedSet* post_zygote_non_moving_space_rem_set =
1682        new accounting::RememberedSet("Post-zygote non-moving space remembered set", this,
1683                                      non_moving_space_);
1684    CHECK(post_zygote_non_moving_space_rem_set != nullptr)
1685        << "Failed to create post-zygote non-moving space remembered set";
1686    AddRememberedSet(post_zygote_non_moving_space_rem_set);
1687  }
1688}
1689
1690void Heap::FlushAllocStack() {
1691  MarkAllocStackAsLive(allocation_stack_.get());
1692  allocation_stack_->Reset();
1693}
1694
1695void Heap::MarkAllocStack(accounting::SpaceBitmap* bitmap1,
1696                          accounting::SpaceBitmap* bitmap2,
1697                          accounting::ObjectSet* large_objects,
1698                          accounting::ObjectStack* stack) {
1699  DCHECK(bitmap1 != nullptr);
1700  DCHECK(bitmap2 != nullptr);
1701  mirror::Object** limit = stack->End();
1702  for (mirror::Object** it = stack->Begin(); it != limit; ++it) {
1703    const mirror::Object* obj = *it;
1704    if (!kUseThreadLocalAllocationStack || obj != nullptr) {
1705      if (bitmap1->HasAddress(obj)) {
1706        bitmap1->Set(obj);
1707      } else if (bitmap2->HasAddress(obj)) {
1708        bitmap2->Set(obj);
1709      } else {
1710        large_objects->Set(obj);
1711      }
1712    }
1713  }
1714}
1715
1716void Heap::SwapSemiSpaces() {
1717  // Swap the spaces so we allocate into the space which we just evacuated.
1718  std::swap(bump_pointer_space_, temp_space_);
1719  bump_pointer_space_->Clear();
1720}
1721
1722void Heap::Compact(space::ContinuousMemMapAllocSpace* target_space,
1723                   space::ContinuousMemMapAllocSpace* source_space) {
1724  CHECK(kMovingCollector);
1725  CHECK_NE(target_space, source_space) << "In-place compaction currently unsupported";
1726  if (target_space != source_space) {
1727    semi_space_collector_->SetFromSpace(source_space);
1728    semi_space_collector_->SetToSpace(target_space);
1729    semi_space_collector_->Run(kGcCauseCollectorTransition, false);
1730  }
1731}
1732
1733collector::GcType Heap::CollectGarbageInternal(collector::GcType gc_type, GcCause gc_cause,
1734                                               bool clear_soft_references) {
1735  Thread* self = Thread::Current();
1736  Runtime* runtime = Runtime::Current();
1737  // If the heap can't run the GC, silently fail and return that no GC was run.
1738  switch (gc_type) {
1739    case collector::kGcTypePartial: {
1740      if (!have_zygote_space_) {
1741        return collector::kGcTypeNone;
1742      }
1743      break;
1744    }
1745    default: {
1746      // Other GC types don't have any special cases which makes them not runnable. The main case
1747      // here is full GC.
1748    }
1749  }
1750  ScopedThreadStateChange tsc(self, kWaitingPerformingGc);
1751  Locks::mutator_lock_->AssertNotHeld(self);
1752  if (self->IsHandlingStackOverflow()) {
1753    LOG(WARNING) << "Performing GC on a thread that is handling a stack overflow.";
1754  }
1755  bool compacting_gc;
1756  {
1757    gc_complete_lock_->AssertNotHeld(self);
1758    ScopedThreadStateChange tsc(self, kWaitingForGcToComplete);
1759    MutexLock mu(self, *gc_complete_lock_);
1760    // Ensure there is only one GC at a time.
1761    WaitForGcToCompleteLocked(self);
1762    compacting_gc = IsCompactingGC(collector_type_);
1763    // GC can be disabled if someone has a used GetPrimitiveArrayCritical.
1764    if (compacting_gc && disable_moving_gc_count_ != 0) {
1765      LOG(WARNING) << "Skipping GC due to disable moving GC count " << disable_moving_gc_count_;
1766      return collector::kGcTypeNone;
1767    }
1768    collector_type_running_ = collector_type_;
1769  }
1770
1771  if (gc_cause == kGcCauseForAlloc && runtime->HasStatsEnabled()) {
1772    ++runtime->GetStats()->gc_for_alloc_count;
1773    ++self->GetStats()->gc_for_alloc_count;
1774  }
1775  uint64_t gc_start_time_ns = NanoTime();
1776  uint64_t gc_start_size = GetBytesAllocated();
1777  // Approximate allocation rate in bytes / second.
1778  uint64_t ms_delta = NsToMs(gc_start_time_ns - last_gc_time_ns_);
1779  // Back to back GCs can cause 0 ms of wait time in between GC invocations.
1780  if (LIKELY(ms_delta != 0)) {
1781    allocation_rate_ = ((gc_start_size - last_gc_size_) * 1000) / ms_delta;
1782    VLOG(heap) << "Allocation rate: " << PrettySize(allocation_rate_) << "/s";
1783  }
1784
1785  DCHECK_LT(gc_type, collector::kGcTypeMax);
1786  DCHECK_NE(gc_type, collector::kGcTypeNone);
1787
1788  collector::GarbageCollector* collector = nullptr;
1789  // TODO: Clean this up.
1790  if (compacting_gc) {
1791    DCHECK(current_allocator_ == kAllocatorTypeBumpPointer ||
1792           current_allocator_ == kAllocatorTypeTLAB);
1793    gc_type = semi_space_collector_->GetGcType();
1794    CHECK(temp_space_->IsEmpty());
1795    semi_space_collector_->SetFromSpace(bump_pointer_space_);
1796    semi_space_collector_->SetToSpace(temp_space_);
1797    temp_space_->GetMemMap()->Protect(PROT_READ | PROT_WRITE);
1798    collector = semi_space_collector_;
1799    gc_type = collector::kGcTypeFull;
1800  } else if (current_allocator_ == kAllocatorTypeRosAlloc ||
1801      current_allocator_ == kAllocatorTypeDlMalloc) {
1802    for (const auto& cur_collector : garbage_collectors_) {
1803      if (cur_collector->IsConcurrent() == concurrent_gc_ &&
1804          cur_collector->GetGcType() == gc_type) {
1805        collector = cur_collector;
1806        break;
1807      }
1808    }
1809  } else {
1810    LOG(FATAL) << "Invalid current allocator " << current_allocator_;
1811  }
1812  CHECK(collector != nullptr)
1813      << "Could not find garbage collector with concurrent=" << concurrent_gc_
1814      << " and type=" << gc_type;
1815  ATRACE_BEGIN(StringPrintf("%s %s GC", PrettyCause(gc_cause), collector->GetName()).c_str());
1816  collector->Run(gc_cause, clear_soft_references);
1817  total_objects_freed_ever_ += collector->GetFreedObjects();
1818  total_bytes_freed_ever_ += collector->GetFreedBytes();
1819  RequestHeapTrim();
1820  // Enqueue cleared references.
1821  EnqueueClearedReferences();
1822  // Grow the heap so that we know when to perform the next GC.
1823  GrowForUtilization(gc_type, collector->GetDurationNs());
1824  if (CareAboutPauseTimes()) {
1825    const size_t duration = collector->GetDurationNs();
1826    std::vector<uint64_t> pauses = collector->GetPauseTimes();
1827    // GC for alloc pauses the allocating thread, so consider it as a pause.
1828    bool was_slow = duration > long_gc_log_threshold_ ||
1829        (gc_cause == kGcCauseForAlloc && duration > long_pause_log_threshold_);
1830    if (!was_slow) {
1831      for (uint64_t pause : pauses) {
1832        was_slow = was_slow || pause > long_pause_log_threshold_;
1833      }
1834    }
1835    if (was_slow) {
1836        const size_t percent_free = GetPercentFree();
1837        const size_t current_heap_size = GetBytesAllocated();
1838        const size_t total_memory = GetTotalMemory();
1839        std::ostringstream pause_string;
1840        for (size_t i = 0; i < pauses.size(); ++i) {
1841            pause_string << PrettyDuration((pauses[i] / 1000) * 1000)
1842                         << ((i != pauses.size() - 1) ? ", " : "");
1843        }
1844        LOG(INFO) << gc_cause << " " << collector->GetName()
1845                  << " GC freed "  <<  collector->GetFreedObjects() << "("
1846                  << PrettySize(collector->GetFreedBytes()) << ") AllocSpace objects, "
1847                  << collector->GetFreedLargeObjects() << "("
1848                  << PrettySize(collector->GetFreedLargeObjectBytes()) << ") LOS objects, "
1849                  << percent_free << "% free, " << PrettySize(current_heap_size) << "/"
1850                  << PrettySize(total_memory) << ", " << "paused " << pause_string.str()
1851                  << " total " << PrettyDuration((duration / 1000) * 1000);
1852        if (VLOG_IS_ON(heap)) {
1853            LOG(INFO) << Dumpable<TimingLogger>(collector->GetTimings());
1854        }
1855    }
1856  }
1857  FinishGC(self, gc_type);
1858  ATRACE_END();
1859
1860  // Inform DDMS that a GC completed.
1861  Dbg::GcDidFinish();
1862  return gc_type;
1863}
1864
1865void Heap::FinishGC(Thread* self, collector::GcType gc_type) {
1866  MutexLock mu(self, *gc_complete_lock_);
1867  collector_type_running_ = kCollectorTypeNone;
1868  if (gc_type != collector::kGcTypeNone) {
1869    last_gc_type_ = gc_type;
1870  }
1871  // Wake anyone who may have been waiting for the GC to complete.
1872  gc_complete_cond_->Broadcast(self);
1873}
1874
1875static void RootMatchesObjectVisitor(mirror::Object** root, void* arg, uint32_t /*thread_id*/,
1876                                     RootType /*root_type*/) {
1877  mirror::Object* obj = reinterpret_cast<mirror::Object*>(arg);
1878  if (*root == obj) {
1879    LOG(INFO) << "Object " << obj << " is a root";
1880  }
1881}
1882
1883class ScanVisitor {
1884 public:
1885  void operator()(const mirror::Object* obj) const {
1886    LOG(ERROR) << "Would have rescanned object " << obj;
1887  }
1888};
1889
1890// Verify a reference from an object.
1891class VerifyReferenceVisitor {
1892 public:
1893  explicit VerifyReferenceVisitor(Heap* heap)
1894      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_, Locks::heap_bitmap_lock_)
1895      : heap_(heap), failed_(false) {}
1896
1897  bool Failed() const {
1898    return failed_;
1899  }
1900
1901  // TODO: Fix lock analysis to not use NO_THREAD_SAFETY_ANALYSIS, requires support for smarter
1902  // analysis on visitors.
1903  void operator()(mirror::Object* obj, mirror::Object* ref,
1904                  const MemberOffset& offset, bool /* is_static */) const
1905      NO_THREAD_SAFETY_ANALYSIS {
1906    if (ref == nullptr || IsLive(ref)) {
1907      // Verify that the reference is live.
1908      return;
1909    }
1910    if (!failed_) {
1911      // Print message on only on first failure to prevent spam.
1912      LOG(ERROR) << "!!!!!!!!!!!!!!Heap corruption detected!!!!!!!!!!!!!!!!!!!";
1913      failed_ = true;
1914    }
1915    if (obj != nullptr) {
1916      accounting::CardTable* card_table = heap_->GetCardTable();
1917      accounting::ObjectStack* alloc_stack = heap_->allocation_stack_.get();
1918      accounting::ObjectStack* live_stack = heap_->live_stack_.get();
1919      byte* card_addr = card_table->CardFromAddr(obj);
1920      LOG(ERROR) << "Object " << obj << " references dead object " << ref << " at offset "
1921                 << offset << "\n card value = " << static_cast<int>(*card_addr);
1922      if (heap_->IsValidObjectAddress(obj->GetClass())) {
1923        LOG(ERROR) << "Obj type " << PrettyTypeOf(obj);
1924      } else {
1925        LOG(ERROR) << "Object " << obj << " class(" << obj->GetClass() << ") not a heap address";
1926      }
1927
1928      // Attmept to find the class inside of the recently freed objects.
1929      space::ContinuousSpace* ref_space = heap_->FindContinuousSpaceFromObject(ref, true);
1930      if (ref_space != nullptr && ref_space->IsMallocSpace()) {
1931        space::MallocSpace* space = ref_space->AsMallocSpace();
1932        mirror::Class* ref_class = space->FindRecentFreedObject(ref);
1933        if (ref_class != nullptr) {
1934          LOG(ERROR) << "Reference " << ref << " found as a recently freed object with class "
1935                     << PrettyClass(ref_class);
1936        } else {
1937          LOG(ERROR) << "Reference " << ref << " not found as a recently freed object";
1938        }
1939      }
1940
1941      if (ref->GetClass() != nullptr && heap_->IsValidObjectAddress(ref->GetClass()) &&
1942          ref->GetClass()->IsClass()) {
1943        LOG(ERROR) << "Ref type " << PrettyTypeOf(ref);
1944      } else {
1945        LOG(ERROR) << "Ref " << ref << " class(" << ref->GetClass()
1946                   << ") is not a valid heap address";
1947      }
1948
1949      card_table->CheckAddrIsInCardTable(reinterpret_cast<const byte*>(obj));
1950      void* cover_begin = card_table->AddrFromCard(card_addr);
1951      void* cover_end = reinterpret_cast<void*>(reinterpret_cast<size_t>(cover_begin) +
1952          accounting::CardTable::kCardSize);
1953      LOG(ERROR) << "Card " << reinterpret_cast<void*>(card_addr) << " covers " << cover_begin
1954          << "-" << cover_end;
1955      accounting::SpaceBitmap* bitmap = heap_->GetLiveBitmap()->GetContinuousSpaceBitmap(obj);
1956
1957      if (bitmap == nullptr) {
1958        LOG(ERROR) << "Object " << obj << " has no bitmap";
1959        if (!VerifyClassClass(obj->GetClass())) {
1960          LOG(ERROR) << "Object " << obj << " failed class verification!";
1961        }
1962      } else {
1963        // Print out how the object is live.
1964        if (bitmap->Test(obj)) {
1965          LOG(ERROR) << "Object " << obj << " found in live bitmap";
1966        }
1967        if (alloc_stack->Contains(const_cast<mirror::Object*>(obj))) {
1968          LOG(ERROR) << "Object " << obj << " found in allocation stack";
1969        }
1970        if (live_stack->Contains(const_cast<mirror::Object*>(obj))) {
1971          LOG(ERROR) << "Object " << obj << " found in live stack";
1972        }
1973        if (alloc_stack->Contains(const_cast<mirror::Object*>(ref))) {
1974          LOG(ERROR) << "Ref " << ref << " found in allocation stack";
1975        }
1976        if (live_stack->Contains(const_cast<mirror::Object*>(ref))) {
1977          LOG(ERROR) << "Ref " << ref << " found in live stack";
1978        }
1979        // Attempt to see if the card table missed the reference.
1980        ScanVisitor scan_visitor;
1981        byte* byte_cover_begin = reinterpret_cast<byte*>(card_table->AddrFromCard(card_addr));
1982        card_table->Scan(bitmap, byte_cover_begin,
1983                         byte_cover_begin + accounting::CardTable::kCardSize, scan_visitor);
1984      }
1985
1986      // Search to see if any of the roots reference our object.
1987      void* arg = const_cast<void*>(reinterpret_cast<const void*>(obj));
1988      Runtime::Current()->VisitRoots(&RootMatchesObjectVisitor, arg);
1989
1990      // Search to see if any of the roots reference our reference.
1991      arg = const_cast<void*>(reinterpret_cast<const void*>(ref));
1992      Runtime::Current()->VisitRoots(&RootMatchesObjectVisitor, arg);
1993    } else {
1994      LOG(ERROR) << "Root " << ref << " is dead with type " << PrettyTypeOf(ref);
1995    }
1996  }
1997
1998  bool IsLive(mirror::Object* obj) const NO_THREAD_SAFETY_ANALYSIS {
1999    return heap_->IsLiveObjectLocked(obj, true, false, true);
2000  }
2001
2002  static void VerifyRoots(mirror::Object** root, void* arg, uint32_t /*thread_id*/,
2003                          RootType /*root_type*/) {
2004    VerifyReferenceVisitor* visitor = reinterpret_cast<VerifyReferenceVisitor*>(arg);
2005    (*visitor)(nullptr, *root, MemberOffset(0), true);
2006  }
2007
2008 private:
2009  Heap* const heap_;
2010  mutable bool failed_;
2011};
2012
2013// Verify all references within an object, for use with HeapBitmap::Visit.
2014class VerifyObjectVisitor {
2015 public:
2016  explicit VerifyObjectVisitor(Heap* heap) : heap_(heap), failed_(false) {}
2017
2018  void operator()(mirror::Object* obj) const
2019      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
2020    // Note: we are verifying the references in obj but not obj itself, this is because obj must
2021    // be live or else how did we find it in the live bitmap?
2022    VerifyReferenceVisitor visitor(heap_);
2023    // The class doesn't count as a reference but we should verify it anyways.
2024    collector::MarkSweep::VisitObjectReferences(obj, visitor, true);
2025    if (obj->IsReferenceInstance()) {
2026      mirror::Reference* ref = obj->AsReference();
2027      visitor(obj, ref->GetReferent(), mirror::Reference::ReferentOffset(), false);
2028    }
2029    failed_ = failed_ || visitor.Failed();
2030  }
2031
2032  static void VisitCallback(mirror::Object* obj, void* arg)
2033      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
2034    VerifyObjectVisitor* visitor = reinterpret_cast<VerifyObjectVisitor*>(arg);
2035    visitor->operator()(obj);
2036  }
2037
2038  bool Failed() const {
2039    return failed_;
2040  }
2041
2042 private:
2043  Heap* const heap_;
2044  mutable bool failed_;
2045};
2046
2047// Must do this with mutators suspended since we are directly accessing the allocation stacks.
2048bool Heap::VerifyHeapReferences() {
2049  Thread* self = Thread::Current();
2050  Locks::mutator_lock_->AssertExclusiveHeld(self);
2051  // Lets sort our allocation stacks so that we can efficiently binary search them.
2052  allocation_stack_->Sort();
2053  live_stack_->Sort();
2054  // Since we sorted the allocation stack content, need to revoke all
2055  // thread-local allocation stacks.
2056  RevokeAllThreadLocalAllocationStacks(self);
2057  VerifyObjectVisitor visitor(this);
2058  // Verify objects in the allocation stack since these will be objects which were:
2059  // 1. Allocated prior to the GC (pre GC verification).
2060  // 2. Allocated during the GC (pre sweep GC verification).
2061  // We don't want to verify the objects in the live stack since they themselves may be
2062  // pointing to dead objects if they are not reachable.
2063  VisitObjects(VerifyObjectVisitor::VisitCallback, &visitor);
2064  // Verify the roots:
2065  Runtime::Current()->VisitRoots(VerifyReferenceVisitor::VerifyRoots, &visitor);
2066  if (visitor.Failed()) {
2067    // Dump mod-union tables.
2068    for (const auto& table_pair : mod_union_tables_) {
2069      accounting::ModUnionTable* mod_union_table = table_pair.second;
2070      mod_union_table->Dump(LOG(ERROR) << mod_union_table->GetName() << ": ");
2071    }
2072    // Dump remembered sets.
2073    for (const auto& table_pair : remembered_sets_) {
2074      accounting::RememberedSet* remembered_set = table_pair.second;
2075      remembered_set->Dump(LOG(ERROR) << remembered_set->GetName() << ": ");
2076    }
2077    DumpSpaces();
2078    return false;
2079  }
2080  return true;
2081}
2082
2083class VerifyReferenceCardVisitor {
2084 public:
2085  VerifyReferenceCardVisitor(Heap* heap, bool* failed)
2086      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_,
2087                            Locks::heap_bitmap_lock_)
2088      : heap_(heap), failed_(failed) {
2089  }
2090
2091  // TODO: Fix lock analysis to not use NO_THREAD_SAFETY_ANALYSIS, requires support for
2092  // annotalysis on visitors.
2093  void operator()(mirror::Object* obj, mirror::Object* ref, const MemberOffset& offset,
2094                  bool is_static) const NO_THREAD_SAFETY_ANALYSIS {
2095    // Filter out class references since changing an object's class does not mark the card as dirty.
2096    // Also handles large objects, since the only reference they hold is a class reference.
2097    if (ref != NULL && !ref->IsClass()) {
2098      accounting::CardTable* card_table = heap_->GetCardTable();
2099      // If the object is not dirty and it is referencing something in the live stack other than
2100      // class, then it must be on a dirty card.
2101      if (!card_table->AddrIsInCardTable(obj)) {
2102        LOG(ERROR) << "Object " << obj << " is not in the address range of the card table";
2103        *failed_ = true;
2104      } else if (!card_table->IsDirty(obj)) {
2105        // TODO: Check mod-union tables.
2106        // Card should be either kCardDirty if it got re-dirtied after we aged it, or
2107        // kCardDirty - 1 if it didnt get touched since we aged it.
2108        accounting::ObjectStack* live_stack = heap_->live_stack_.get();
2109        if (live_stack->ContainsSorted(const_cast<mirror::Object*>(ref))) {
2110          if (live_stack->ContainsSorted(const_cast<mirror::Object*>(obj))) {
2111            LOG(ERROR) << "Object " << obj << " found in live stack";
2112          }
2113          if (heap_->GetLiveBitmap()->Test(obj)) {
2114            LOG(ERROR) << "Object " << obj << " found in live bitmap";
2115          }
2116          LOG(ERROR) << "Object " << obj << " " << PrettyTypeOf(obj)
2117                    << " references " << ref << " " << PrettyTypeOf(ref) << " in live stack";
2118
2119          // Print which field of the object is dead.
2120          if (!obj->IsObjectArray()) {
2121            mirror::Class* klass = is_static ? obj->AsClass() : obj->GetClass();
2122            CHECK(klass != NULL);
2123            mirror::ObjectArray<mirror::ArtField>* fields = is_static ? klass->GetSFields()
2124                                                                      : klass->GetIFields();
2125            CHECK(fields != NULL);
2126            for (int32_t i = 0; i < fields->GetLength(); ++i) {
2127              mirror::ArtField* cur = fields->Get(i);
2128              if (cur->GetOffset().Int32Value() == offset.Int32Value()) {
2129                LOG(ERROR) << (is_static ? "Static " : "") << "field in the live stack is "
2130                          << PrettyField(cur);
2131                break;
2132              }
2133            }
2134          } else {
2135            mirror::ObjectArray<mirror::Object>* object_array =
2136                obj->AsObjectArray<mirror::Object>();
2137            for (int32_t i = 0; i < object_array->GetLength(); ++i) {
2138              if (object_array->Get(i) == ref) {
2139                LOG(ERROR) << (is_static ? "Static " : "") << "obj[" << i << "] = ref";
2140              }
2141            }
2142          }
2143
2144          *failed_ = true;
2145        }
2146      }
2147    }
2148  }
2149
2150 private:
2151  Heap* const heap_;
2152  bool* const failed_;
2153};
2154
2155class VerifyLiveStackReferences {
2156 public:
2157  explicit VerifyLiveStackReferences(Heap* heap)
2158      : heap_(heap),
2159        failed_(false) {}
2160
2161  void operator()(mirror::Object* obj) const
2162      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
2163    VerifyReferenceCardVisitor visitor(heap_, const_cast<bool*>(&failed_));
2164    collector::MarkSweep::VisitObjectReferences(const_cast<mirror::Object*>(obj), visitor, true);
2165  }
2166
2167  bool Failed() const {
2168    return failed_;
2169  }
2170
2171 private:
2172  Heap* const heap_;
2173  bool failed_;
2174};
2175
2176bool Heap::VerifyMissingCardMarks() {
2177  Thread* self = Thread::Current();
2178  Locks::mutator_lock_->AssertExclusiveHeld(self);
2179
2180  // We need to sort the live stack since we binary search it.
2181  live_stack_->Sort();
2182  // Since we sorted the allocation stack content, need to revoke all
2183  // thread-local allocation stacks.
2184  RevokeAllThreadLocalAllocationStacks(self);
2185  VerifyLiveStackReferences visitor(this);
2186  GetLiveBitmap()->Visit(visitor);
2187
2188  // We can verify objects in the live stack since none of these should reference dead objects.
2189  for (mirror::Object** it = live_stack_->Begin(); it != live_stack_->End(); ++it) {
2190    if (!kUseThreadLocalAllocationStack || *it != nullptr) {
2191      visitor(*it);
2192    }
2193  }
2194
2195  if (visitor.Failed()) {
2196    DumpSpaces();
2197    return false;
2198  }
2199  return true;
2200}
2201
2202void Heap::SwapStacks(Thread* self) {
2203  if (kUseThreadLocalAllocationStack) {
2204    live_stack_->AssertAllZero();
2205  }
2206  allocation_stack_.swap(live_stack_);
2207}
2208
2209void Heap::RevokeAllThreadLocalAllocationStacks(Thread* self) {
2210  // This must be called only during the pause.
2211  CHECK(Locks::mutator_lock_->IsExclusiveHeld(self));
2212  MutexLock mu(self, *Locks::runtime_shutdown_lock_);
2213  MutexLock mu2(self, *Locks::thread_list_lock_);
2214  std::list<Thread*> thread_list = Runtime::Current()->GetThreadList()->GetList();
2215  for (Thread* t : thread_list) {
2216    t->RevokeThreadLocalAllocationStack();
2217  }
2218}
2219
2220accounting::ModUnionTable* Heap::FindModUnionTableFromSpace(space::Space* space) {
2221  auto it = mod_union_tables_.find(space);
2222  if (it == mod_union_tables_.end()) {
2223    return nullptr;
2224  }
2225  return it->second;
2226}
2227
2228accounting::RememberedSet* Heap::FindRememberedSetFromSpace(space::Space* space) {
2229  auto it = remembered_sets_.find(space);
2230  if (it == remembered_sets_.end()) {
2231    return nullptr;
2232  }
2233  return it->second;
2234}
2235
2236void Heap::ProcessCards(TimingLogger& timings, bool use_rem_sets) {
2237  // Clear cards and keep track of cards cleared in the mod-union table.
2238  for (const auto& space : continuous_spaces_) {
2239    accounting::ModUnionTable* table = FindModUnionTableFromSpace(space);
2240    accounting::RememberedSet* rem_set = FindRememberedSetFromSpace(space);
2241    if (table != nullptr) {
2242      const char* name = space->IsZygoteSpace() ? "ZygoteModUnionClearCards" :
2243          "ImageModUnionClearCards";
2244      TimingLogger::ScopedSplit split(name, &timings);
2245      table->ClearCards();
2246    } else if (use_rem_sets && rem_set != nullptr) {
2247      DCHECK(collector::SemiSpace::kUseRememberedSet && collector_type_ == kCollectorTypeGSS)
2248          << static_cast<int>(collector_type_);
2249      TimingLogger::ScopedSplit split("AllocSpaceRemSetClearCards", &timings);
2250      rem_set->ClearCards();
2251    } else if (space->GetType() != space::kSpaceTypeBumpPointerSpace) {
2252      TimingLogger::ScopedSplit split("AllocSpaceClearCards", &timings);
2253      // No mod union table for the AllocSpace. Age the cards so that the GC knows that these cards
2254      // were dirty before the GC started.
2255      // TODO: Need to use atomic for the case where aged(cleaning thread) -> dirty(other thread)
2256      // -> clean(cleaning thread).
2257      // The races are we either end up with: Aged card, unaged card. Since we have the checkpoint
2258      // roots and then we scan / update mod union tables after. We will always scan either card.
2259      // If we end up with the non aged card, we scan it it in the pause.
2260      card_table_->ModifyCardsAtomic(space->Begin(), space->End(), AgeCardVisitor(), VoidFunctor());
2261    }
2262  }
2263}
2264
2265static mirror::Object* IdentityMarkObjectCallback(mirror::Object* obj, void*) {
2266  return obj;
2267}
2268
2269void Heap::PreGcVerification(collector::GarbageCollector* gc) {
2270  ThreadList* thread_list = Runtime::Current()->GetThreadList();
2271  Thread* self = Thread::Current();
2272
2273  if (verify_pre_gc_heap_) {
2274    thread_list->SuspendAll();
2275    {
2276      ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
2277      if (!VerifyHeapReferences()) {
2278        LOG(FATAL) << "Pre " << gc->GetName() << " heap verification failed";
2279      }
2280    }
2281    thread_list->ResumeAll();
2282  }
2283
2284  // Check that all objects which reference things in the live stack are on dirty cards.
2285  if (verify_missing_card_marks_) {
2286    thread_list->SuspendAll();
2287    {
2288      ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
2289      SwapStacks(self);
2290      // Sort the live stack so that we can quickly binary search it later.
2291      if (!VerifyMissingCardMarks()) {
2292        LOG(FATAL) << "Pre " << gc->GetName() << " missing card mark verification failed";
2293      }
2294      SwapStacks(self);
2295    }
2296    thread_list->ResumeAll();
2297  }
2298
2299  if (verify_mod_union_table_) {
2300    thread_list->SuspendAll();
2301    ReaderMutexLock reader_lock(self, *Locks::heap_bitmap_lock_);
2302    for (const auto& table_pair : mod_union_tables_) {
2303      accounting::ModUnionTable* mod_union_table = table_pair.second;
2304      mod_union_table->UpdateAndMarkReferences(IdentityMarkObjectCallback, nullptr);
2305      mod_union_table->Verify();
2306    }
2307    thread_list->ResumeAll();
2308  }
2309}
2310
2311void Heap::PreSweepingGcVerification(collector::GarbageCollector* gc) {
2312  // Called before sweeping occurs since we want to make sure we are not going so reclaim any
2313  // reachable objects.
2314  if (verify_post_gc_heap_) {
2315    Thread* self = Thread::Current();
2316    CHECK_NE(self->GetState(), kRunnable);
2317    {
2318      WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
2319      // Swapping bound bitmaps does nothing.
2320      gc->SwapBitmaps();
2321      if (!VerifyHeapReferences()) {
2322        LOG(FATAL) << "Pre sweeping " << gc->GetName() << " GC verification failed";
2323      }
2324      gc->SwapBitmaps();
2325    }
2326  }
2327}
2328
2329void Heap::PostGcVerification(collector::GarbageCollector* gc) {
2330  if (verify_system_weaks_) {
2331    Thread* self = Thread::Current();
2332    ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
2333    collector::MarkSweep* mark_sweep = down_cast<collector::MarkSweep*>(gc);
2334    mark_sweep->VerifySystemWeaks();
2335  }
2336}
2337
2338void Heap::PreGcRosAllocVerification(TimingLogger* timings) {
2339  if (verify_pre_gc_rosalloc_) {
2340    TimingLogger::ScopedSplit split("PreGcRosAllocVerification", timings);
2341    for (const auto& space : continuous_spaces_) {
2342      if (space->IsRosAllocSpace()) {
2343        VLOG(heap) << "PreGcRosAllocVerification : " << space->GetName();
2344        space::RosAllocSpace* rosalloc_space = space->AsRosAllocSpace();
2345        rosalloc_space->Verify();
2346      }
2347    }
2348  }
2349}
2350
2351void Heap::PostGcRosAllocVerification(TimingLogger* timings) {
2352  if (verify_post_gc_rosalloc_) {
2353    TimingLogger::ScopedSplit split("PostGcRosAllocVerification", timings);
2354    for (const auto& space : continuous_spaces_) {
2355      if (space->IsRosAllocSpace()) {
2356        VLOG(heap) << "PostGcRosAllocVerification : " << space->GetName();
2357        space::RosAllocSpace* rosalloc_space = space->AsRosAllocSpace();
2358        rosalloc_space->Verify();
2359      }
2360    }
2361  }
2362}
2363
2364collector::GcType Heap::WaitForGcToComplete(Thread* self) {
2365  ScopedThreadStateChange tsc(self, kWaitingForGcToComplete);
2366  MutexLock mu(self, *gc_complete_lock_);
2367  return WaitForGcToCompleteLocked(self);
2368}
2369
2370collector::GcType Heap::WaitForGcToCompleteLocked(Thread* self) {
2371  collector::GcType last_gc_type = collector::kGcTypeNone;
2372  uint64_t wait_start = NanoTime();
2373  while (collector_type_running_ != kCollectorTypeNone) {
2374    ATRACE_BEGIN("GC: Wait For Completion");
2375    // We must wait, change thread state then sleep on gc_complete_cond_;
2376    gc_complete_cond_->Wait(self);
2377    last_gc_type = last_gc_type_;
2378    ATRACE_END();
2379  }
2380  uint64_t wait_time = NanoTime() - wait_start;
2381  total_wait_time_ += wait_time;
2382  if (wait_time > long_pause_log_threshold_) {
2383    LOG(INFO) << "WaitForGcToComplete blocked for " << PrettyDuration(wait_time);
2384  }
2385  return last_gc_type;
2386}
2387
2388void Heap::DumpForSigQuit(std::ostream& os) {
2389  os << "Heap: " << GetPercentFree() << "% free, " << PrettySize(GetBytesAllocated()) << "/"
2390     << PrettySize(GetTotalMemory()) << "; " << GetObjectsAllocated() << " objects\n";
2391  DumpGcPerformanceInfo(os);
2392}
2393
2394size_t Heap::GetPercentFree() {
2395  return static_cast<size_t>(100.0f * static_cast<float>(GetFreeMemory()) / GetTotalMemory());
2396}
2397
2398void Heap::SetIdealFootprint(size_t max_allowed_footprint) {
2399  if (max_allowed_footprint > GetMaxMemory()) {
2400    VLOG(gc) << "Clamp target GC heap from " << PrettySize(max_allowed_footprint) << " to "
2401             << PrettySize(GetMaxMemory());
2402    max_allowed_footprint = GetMaxMemory();
2403  }
2404  max_allowed_footprint_ = max_allowed_footprint;
2405}
2406
2407bool Heap::IsMovableObject(const mirror::Object* obj) const {
2408  if (kMovingCollector) {
2409    DCHECK(!IsInTempSpace(obj));
2410    if (bump_pointer_space_->HasAddress(obj)) {
2411      return true;
2412    }
2413    // TODO: Refactor this logic into the space itself?
2414    // Objects in the main space are only copied during background -> foreground transitions or
2415    // visa versa.
2416    if (main_space_ != nullptr && main_space_->HasAddress(obj) &&
2417        (IsCompactingGC(background_collector_type_) ||
2418            IsCompactingGC(post_zygote_collector_type_))) {
2419      return true;
2420    }
2421  }
2422  return false;
2423}
2424
2425bool Heap::IsInTempSpace(const mirror::Object* obj) const {
2426  if (temp_space_->HasAddress(obj) && !temp_space_->Contains(obj)) {
2427    return true;
2428  }
2429  return false;
2430}
2431
2432void Heap::UpdateMaxNativeFootprint() {
2433  size_t native_size = native_bytes_allocated_;
2434  // TODO: Tune the native heap utilization to be a value other than the java heap utilization.
2435  size_t target_size = native_size / GetTargetHeapUtilization();
2436  if (target_size > native_size + max_free_) {
2437    target_size = native_size + max_free_;
2438  } else if (target_size < native_size + min_free_) {
2439    target_size = native_size + min_free_;
2440  }
2441  native_footprint_gc_watermark_ = target_size;
2442  native_footprint_limit_ = 2 * target_size - native_size;
2443}
2444
2445void Heap::GrowForUtilization(collector::GcType gc_type, uint64_t gc_duration) {
2446  // We know what our utilization is at this moment.
2447  // This doesn't actually resize any memory. It just lets the heap grow more when necessary.
2448  const size_t bytes_allocated = GetBytesAllocated();
2449  last_gc_size_ = bytes_allocated;
2450  last_gc_time_ns_ = NanoTime();
2451  size_t target_size;
2452  if (gc_type != collector::kGcTypeSticky) {
2453    // Grow the heap for non sticky GC.
2454    target_size = bytes_allocated / GetTargetHeapUtilization();
2455    if (target_size > bytes_allocated + max_free_) {
2456      target_size = bytes_allocated + max_free_;
2457    } else if (target_size < bytes_allocated + min_free_) {
2458      target_size = bytes_allocated + min_free_;
2459    }
2460    native_need_to_run_finalization_ = true;
2461    next_gc_type_ = collector::kGcTypeSticky;
2462  } else {
2463    // Based on how close the current heap size is to the target size, decide
2464    // whether or not to do a partial or sticky GC next.
2465    if (bytes_allocated + min_free_ <= max_allowed_footprint_) {
2466      next_gc_type_ = collector::kGcTypeSticky;
2467    } else {
2468      next_gc_type_ = have_zygote_space_ ? collector::kGcTypePartial : collector::kGcTypeFull;
2469    }
2470    // If we have freed enough memory, shrink the heap back down.
2471    if (bytes_allocated + max_free_ < max_allowed_footprint_) {
2472      target_size = bytes_allocated + max_free_;
2473    } else {
2474      target_size = std::max(bytes_allocated, max_allowed_footprint_);
2475    }
2476  }
2477  if (!ignore_max_footprint_) {
2478    SetIdealFootprint(target_size);
2479    if (concurrent_gc_) {
2480      // Calculate when to perform the next ConcurrentGC.
2481      // Calculate the estimated GC duration.
2482      const double gc_duration_seconds = NsToMs(gc_duration) / 1000.0;
2483      // Estimate how many remaining bytes we will have when we need to start the next GC.
2484      size_t remaining_bytes = allocation_rate_ * gc_duration_seconds;
2485      remaining_bytes = std::min(remaining_bytes, kMaxConcurrentRemainingBytes);
2486      remaining_bytes = std::max(remaining_bytes, kMinConcurrentRemainingBytes);
2487      if (UNLIKELY(remaining_bytes > max_allowed_footprint_)) {
2488        // A never going to happen situation that from the estimated allocation rate we will exceed
2489        // the applications entire footprint with the given estimated allocation rate. Schedule
2490        // another GC nearly straight away.
2491        remaining_bytes = kMinConcurrentRemainingBytes;
2492      }
2493      DCHECK_LE(remaining_bytes, max_allowed_footprint_);
2494      DCHECK_LE(max_allowed_footprint_, growth_limit_);
2495      // Start a concurrent GC when we get close to the estimated remaining bytes. When the
2496      // allocation rate is very high, remaining_bytes could tell us that we should start a GC
2497      // right away.
2498      concurrent_start_bytes_ = std::max(max_allowed_footprint_ - remaining_bytes, bytes_allocated);
2499    }
2500  }
2501}
2502
2503void Heap::ClearGrowthLimit() {
2504  growth_limit_ = capacity_;
2505  non_moving_space_->ClearGrowthLimit();
2506}
2507
2508void Heap::AddFinalizerReference(Thread* self, mirror::Object* object) {
2509  ScopedObjectAccess soa(self);
2510  ScopedLocalRef<jobject> arg(self->GetJniEnv(), soa.AddLocalReference<jobject>(object));
2511  jvalue args[1];
2512  args[0].l = arg.get();
2513  InvokeWithJValues(soa, nullptr, WellKnownClasses::java_lang_ref_FinalizerReference_add, args);
2514}
2515
2516void Heap::EnqueueClearedReferences() {
2517  Thread* self = Thread::Current();
2518  Locks::mutator_lock_->AssertNotHeld(self);
2519  if (!cleared_references_.IsEmpty()) {
2520    // When a runtime isn't started there are no reference queues to care about so ignore.
2521    if (LIKELY(Runtime::Current()->IsStarted())) {
2522      ScopedObjectAccess soa(self);
2523      ScopedLocalRef<jobject> arg(self->GetJniEnv(),
2524                                  soa.AddLocalReference<jobject>(cleared_references_.GetList()));
2525      jvalue args[1];
2526      args[0].l = arg.get();
2527      InvokeWithJValues(soa, nullptr, WellKnownClasses::java_lang_ref_ReferenceQueue_add, args);
2528    }
2529    cleared_references_.Clear();
2530  }
2531}
2532
2533void Heap::RequestConcurrentGC(Thread* self) {
2534  // Make sure that we can do a concurrent GC.
2535  Runtime* runtime = Runtime::Current();
2536  if (runtime == NULL || !runtime->IsFinishedStarting() || runtime->IsShuttingDown(self) ||
2537      self->IsHandlingStackOverflow()) {
2538    return;
2539  }
2540  // We already have a request pending, no reason to start more until we update
2541  // concurrent_start_bytes_.
2542  concurrent_start_bytes_ = std::numeric_limits<size_t>::max();
2543  JNIEnv* env = self->GetJniEnv();
2544  DCHECK(WellKnownClasses::java_lang_Daemons != nullptr);
2545  DCHECK(WellKnownClasses::java_lang_Daemons_requestGC != nullptr);
2546  env->CallStaticVoidMethod(WellKnownClasses::java_lang_Daemons,
2547                            WellKnownClasses::java_lang_Daemons_requestGC);
2548  CHECK(!env->ExceptionCheck());
2549}
2550
2551void Heap::ConcurrentGC(Thread* self) {
2552  if (Runtime::Current()->IsShuttingDown(self)) {
2553    return;
2554  }
2555  // Wait for any GCs currently running to finish.
2556  if (WaitForGcToComplete(self) == collector::kGcTypeNone) {
2557    // If the we can't run the GC type we wanted to run, find the next appropriate one and try that
2558    // instead. E.g. can't do partial, so do full instead.
2559    if (CollectGarbageInternal(next_gc_type_, kGcCauseBackground, false) ==
2560        collector::kGcTypeNone) {
2561      for (collector::GcType gc_type : gc_plan_) {
2562        // Attempt to run the collector, if we succeed, we are done.
2563        if (gc_type > next_gc_type_ &&
2564            CollectGarbageInternal(gc_type, kGcCauseBackground, false) != collector::kGcTypeNone) {
2565          break;
2566        }
2567      }
2568    }
2569  }
2570}
2571
2572void Heap::RequestCollectorTransition(CollectorType desired_collector_type, uint64_t delta_time) {
2573  Thread* self = Thread::Current();
2574  {
2575    MutexLock mu(self, *heap_trim_request_lock_);
2576    if (desired_collector_type_ == desired_collector_type) {
2577      return;
2578    }
2579    heap_transition_target_time_ = std::max(heap_transition_target_time_, NanoTime() + delta_time);
2580    desired_collector_type_ = desired_collector_type;
2581  }
2582  SignalHeapTrimDaemon(self);
2583}
2584
2585void Heap::RequestHeapTrim() {
2586  // GC completed and now we must decide whether to request a heap trim (advising pages back to the
2587  // kernel) or not. Issuing a request will also cause trimming of the libc heap. As a trim scans
2588  // a space it will hold its lock and can become a cause of jank.
2589  // Note, the large object space self trims and the Zygote space was trimmed and unchanging since
2590  // forking.
2591
2592  // We don't have a good measure of how worthwhile a trim might be. We can't use the live bitmap
2593  // because that only marks object heads, so a large array looks like lots of empty space. We
2594  // don't just call dlmalloc all the time, because the cost of an _attempted_ trim is proportional
2595  // to utilization (which is probably inversely proportional to how much benefit we can expect).
2596  // We could try mincore(2) but that's only a measure of how many pages we haven't given away,
2597  // not how much use we're making of those pages.
2598
2599  Thread* self = Thread::Current();
2600  Runtime* runtime = Runtime::Current();
2601  if (runtime == nullptr || !runtime->IsFinishedStarting() || runtime->IsShuttingDown(self)) {
2602    // Heap trimming isn't supported without a Java runtime or Daemons (such as at dex2oat time)
2603    // Also: we do not wish to start a heap trim if the runtime is shutting down (a racy check
2604    // as we don't hold the lock while requesting the trim).
2605    return;
2606  }
2607
2608  // Request a heap trim only if we do not currently care about pause times.
2609  if (!CareAboutPauseTimes()) {
2610    {
2611      MutexLock mu(self, *heap_trim_request_lock_);
2612      if (last_trim_time_ + kHeapTrimWait >= NanoTime()) {
2613        // We have done a heap trim in the last kHeapTrimWait nanosecs, don't request another one
2614        // just yet.
2615        return;
2616      }
2617      heap_trim_request_pending_ = true;
2618    }
2619    // Notify the daemon thread which will actually do the heap trim.
2620    SignalHeapTrimDaemon(self);
2621  }
2622}
2623
2624void Heap::SignalHeapTrimDaemon(Thread* self) {
2625  JNIEnv* env = self->GetJniEnv();
2626  DCHECK(WellKnownClasses::java_lang_Daemons != nullptr);
2627  DCHECK(WellKnownClasses::java_lang_Daemons_requestHeapTrim != nullptr);
2628  env->CallStaticVoidMethod(WellKnownClasses::java_lang_Daemons,
2629                            WellKnownClasses::java_lang_Daemons_requestHeapTrim);
2630  CHECK(!env->ExceptionCheck());
2631}
2632
2633void Heap::RevokeThreadLocalBuffers(Thread* thread) {
2634  if (rosalloc_space_ != nullptr) {
2635    rosalloc_space_->RevokeThreadLocalBuffers(thread);
2636  }
2637  if (bump_pointer_space_ != nullptr) {
2638    bump_pointer_space_->RevokeThreadLocalBuffers(thread);
2639  }
2640}
2641
2642void Heap::RevokeAllThreadLocalBuffers() {
2643  if (rosalloc_space_ != nullptr) {
2644    rosalloc_space_->RevokeAllThreadLocalBuffers();
2645  }
2646  if (bump_pointer_space_ != nullptr) {
2647    bump_pointer_space_->RevokeAllThreadLocalBuffers();
2648  }
2649}
2650
2651bool Heap::IsGCRequestPending() const {
2652  return concurrent_start_bytes_ != std::numeric_limits<size_t>::max();
2653}
2654
2655void Heap::RunFinalization(JNIEnv* env) {
2656  // Can't do this in WellKnownClasses::Init since System is not properly set up at that point.
2657  if (WellKnownClasses::java_lang_System_runFinalization == nullptr) {
2658    CHECK(WellKnownClasses::java_lang_System != nullptr);
2659    WellKnownClasses::java_lang_System_runFinalization =
2660        CacheMethod(env, WellKnownClasses::java_lang_System, true, "runFinalization", "()V");
2661    CHECK(WellKnownClasses::java_lang_System_runFinalization != nullptr);
2662  }
2663  env->CallStaticVoidMethod(WellKnownClasses::java_lang_System,
2664                            WellKnownClasses::java_lang_System_runFinalization);
2665}
2666
2667void Heap::RegisterNativeAllocation(JNIEnv* env, int bytes) {
2668  Thread* self = ThreadForEnv(env);
2669  if (native_need_to_run_finalization_) {
2670    RunFinalization(env);
2671    UpdateMaxNativeFootprint();
2672    native_need_to_run_finalization_ = false;
2673  }
2674  // Total number of native bytes allocated.
2675  native_bytes_allocated_.FetchAndAdd(bytes);
2676  if (static_cast<size_t>(native_bytes_allocated_) > native_footprint_gc_watermark_) {
2677    collector::GcType gc_type = have_zygote_space_ ? collector::kGcTypePartial :
2678        collector::kGcTypeFull;
2679
2680    // The second watermark is higher than the gc watermark. If you hit this it means you are
2681    // allocating native objects faster than the GC can keep up with.
2682    if (static_cast<size_t>(native_bytes_allocated_) > native_footprint_limit_) {
2683      if (WaitForGcToComplete(self) != collector::kGcTypeNone) {
2684        // Just finished a GC, attempt to run finalizers.
2685        RunFinalization(env);
2686        CHECK(!env->ExceptionCheck());
2687      }
2688      // If we still are over the watermark, attempt a GC for alloc and run finalizers.
2689      if (static_cast<size_t>(native_bytes_allocated_) > native_footprint_limit_) {
2690        CollectGarbageInternal(gc_type, kGcCauseForNativeAlloc, false);
2691        RunFinalization(env);
2692        native_need_to_run_finalization_ = false;
2693        CHECK(!env->ExceptionCheck());
2694      }
2695      // We have just run finalizers, update the native watermark since it is very likely that
2696      // finalizers released native managed allocations.
2697      UpdateMaxNativeFootprint();
2698    } else if (!IsGCRequestPending()) {
2699      if (concurrent_gc_) {
2700        RequestConcurrentGC(self);
2701      } else {
2702        CollectGarbageInternal(gc_type, kGcCauseForAlloc, false);
2703      }
2704    }
2705  }
2706}
2707
2708void Heap::RegisterNativeFree(JNIEnv* env, int bytes) {
2709  int expected_size, new_size;
2710  do {
2711    expected_size = native_bytes_allocated_.Load();
2712    new_size = expected_size - bytes;
2713    if (UNLIKELY(new_size < 0)) {
2714      ScopedObjectAccess soa(env);
2715      env->ThrowNew(WellKnownClasses::java_lang_RuntimeException,
2716                    StringPrintf("Attempted to free %d native bytes with only %d native bytes "
2717                                 "registered as allocated", bytes, expected_size).c_str());
2718      break;
2719    }
2720  } while (!native_bytes_allocated_.CompareAndSwap(expected_size, new_size));
2721}
2722
2723size_t Heap::GetTotalMemory() const {
2724  size_t ret = 0;
2725  for (const auto& space : continuous_spaces_) {
2726    // Currently don't include the image space.
2727    if (!space->IsImageSpace()) {
2728      ret += space->Size();
2729    }
2730  }
2731  for (const auto& space : discontinuous_spaces_) {
2732    if (space->IsLargeObjectSpace()) {
2733      ret += space->AsLargeObjectSpace()->GetBytesAllocated();
2734    }
2735  }
2736  return ret;
2737}
2738
2739void Heap::AddModUnionTable(accounting::ModUnionTable* mod_union_table) {
2740  DCHECK(mod_union_table != nullptr);
2741  mod_union_tables_.Put(mod_union_table->GetSpace(), mod_union_table);
2742}
2743
2744void Heap::CheckPreconditionsForAllocObject(mirror::Class* c, size_t byte_count) {
2745  CHECK(c == NULL || (c->IsClassClass() && byte_count >= sizeof(mirror::Class)) ||
2746        (c->IsVariableSize() || c->GetObjectSize() == byte_count) ||
2747        strlen(ClassHelper(c).GetDescriptor()) == 0);
2748  CHECK_GE(byte_count, sizeof(mirror::Object));
2749}
2750
2751void Heap::AddRememberedSet(accounting::RememberedSet* remembered_set) {
2752  CHECK(remembered_set != nullptr);
2753  space::Space* space = remembered_set->GetSpace();
2754  CHECK(space != nullptr);
2755  CHECK(remembered_sets_.find(space) == remembered_sets_.end());
2756  remembered_sets_.Put(space, remembered_set);
2757  CHECK(remembered_sets_.find(space) != remembered_sets_.end());
2758}
2759
2760void Heap::RemoveRememberedSet(space::Space* space) {
2761  CHECK(space != nullptr);
2762  auto it = remembered_sets_.find(space);
2763  CHECK(it != remembered_sets_.end());
2764  remembered_sets_.erase(it);
2765  CHECK(remembered_sets_.find(space) == remembered_sets_.end());
2766}
2767
2768}  // namespace gc
2769}  // namespace art
2770