heap.cc revision 99c959f3868512bb95432cf02a1f0ad3971698bf
1/*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include "heap.h"
18
19#include <limits>
20#include <memory>
21#include <unwind.h>  // For GC verification.
22#include <vector>
23
24#include "art_field-inl.h"
25#include "base/allocator.h"
26#include "base/arena_allocator.h"
27#include "base/dumpable.h"
28#include "base/histogram-inl.h"
29#include "base/stl_util.h"
30#include "base/systrace.h"
31#include "base/time_utils.h"
32#include "common_throws.h"
33#include "cutils/sched_policy.h"
34#include "debugger.h"
35#include "dex_file-inl.h"
36#include "gc/accounting/atomic_stack.h"
37#include "gc/accounting/card_table-inl.h"
38#include "gc/accounting/heap_bitmap-inl.h"
39#include "gc/accounting/mod_union_table-inl.h"
40#include "gc/accounting/remembered_set.h"
41#include "gc/accounting/space_bitmap-inl.h"
42#include "gc/collector/concurrent_copying.h"
43#include "gc/collector/mark_compact.h"
44#include "gc/collector/mark_sweep.h"
45#include "gc/collector/partial_mark_sweep.h"
46#include "gc/collector/semi_space.h"
47#include "gc/collector/sticky_mark_sweep.h"
48#include "gc/reference_processor.h"
49#include "gc/space/bump_pointer_space.h"
50#include "gc/space/dlmalloc_space-inl.h"
51#include "gc/space/image_space.h"
52#include "gc/space/large_object_space.h"
53#include "gc/space/region_space.h"
54#include "gc/space/rosalloc_space-inl.h"
55#include "gc/space/space-inl.h"
56#include "gc/space/zygote_space.h"
57#include "gc/task_processor.h"
58#include "entrypoints/quick/quick_alloc_entrypoints.h"
59#include "heap-inl.h"
60#include "image.h"
61#include "intern_table.h"
62#include "jit/jit.h"
63#include "jit/jit_code_cache.h"
64#include "mirror/class-inl.h"
65#include "mirror/object-inl.h"
66#include "mirror/object_array-inl.h"
67#include "mirror/reference-inl.h"
68#include "os.h"
69#include "reflection.h"
70#include "runtime.h"
71#include "ScopedLocalRef.h"
72#include "scoped_thread_state_change.h"
73#include "handle_scope-inl.h"
74#include "thread_list.h"
75#include "well_known_classes.h"
76
77namespace art {
78
79namespace gc {
80
81static constexpr size_t kCollectorTransitionStressIterations = 0;
82static constexpr size_t kCollectorTransitionStressWait = 10 * 1000;  // Microseconds
83// Minimum amount of remaining bytes before a concurrent GC is triggered.
84static constexpr size_t kMinConcurrentRemainingBytes = 128 * KB;
85static constexpr size_t kMaxConcurrentRemainingBytes = 512 * KB;
86// Sticky GC throughput adjustment, divided by 4. Increasing this causes sticky GC to occur more
87// relative to partial/full GC. This may be desirable since sticky GCs interfere less with mutator
88// threads (lower pauses, use less memory bandwidth).
89static constexpr double kStickyGcThroughputAdjustment = 1.0;
90// Whether or not we compact the zygote in PreZygoteFork.
91static constexpr bool kCompactZygote = kMovingCollector;
92// How many reserve entries are at the end of the allocation stack, these are only needed if the
93// allocation stack overflows.
94static constexpr size_t kAllocationStackReserveSize = 1024;
95// Default mark stack size in bytes.
96static const size_t kDefaultMarkStackSize = 64 * KB;
97// Define space name.
98static const char* kDlMallocSpaceName[2] = {"main dlmalloc space", "main dlmalloc space 1"};
99static const char* kRosAllocSpaceName[2] = {"main rosalloc space", "main rosalloc space 1"};
100static const char* kMemMapSpaceName[2] = {"main space", "main space 1"};
101static const char* kNonMovingSpaceName = "non moving space";
102static const char* kZygoteSpaceName = "zygote space";
103static constexpr size_t kGSSBumpPointerSpaceCapacity = 32 * MB;
104static constexpr bool kGCALotMode = false;
105// GC alot mode uses a small allocation stack to stress test a lot of GC.
106static constexpr size_t kGcAlotAllocationStackSize = 4 * KB /
107    sizeof(mirror::HeapReference<mirror::Object>);
108// Verify objet has a small allocation stack size since searching the allocation stack is slow.
109static constexpr size_t kVerifyObjectAllocationStackSize = 16 * KB /
110    sizeof(mirror::HeapReference<mirror::Object>);
111static constexpr size_t kDefaultAllocationStackSize = 8 * MB /
112    sizeof(mirror::HeapReference<mirror::Object>);
113// System.runFinalization can deadlock with native allocations, to deal with this, we have a
114// timeout on how long we wait for finalizers to run. b/21544853
115static constexpr uint64_t kNativeAllocationFinalizeTimeout = MsToNs(250u);
116
117// For deterministic compilation, we need the heap to be at a well-known address.
118static constexpr uint32_t kAllocSpaceBeginForDeterministicAoT = 0x40000000;
119// Dump the rosalloc stats on SIGQUIT.
120static constexpr bool kDumpRosAllocStatsOnSigQuit = false;
121
122static constexpr size_t kNativeAllocationHistogramBuckets = 16;
123
124static inline bool CareAboutPauseTimes() {
125  return Runtime::Current()->InJankPerceptibleProcessState();
126}
127
128Heap::Heap(size_t initial_size,
129           size_t growth_limit,
130           size_t min_free,
131           size_t max_free,
132           double target_utilization,
133           double foreground_heap_growth_multiplier,
134           size_t capacity,
135           size_t non_moving_space_capacity,
136           const std::string& image_file_name,
137           const InstructionSet image_instruction_set,
138           CollectorType foreground_collector_type,
139           CollectorType background_collector_type,
140           space::LargeObjectSpaceType large_object_space_type,
141           size_t large_object_threshold,
142           size_t parallel_gc_threads,
143           size_t conc_gc_threads,
144           bool low_memory_mode,
145           size_t long_pause_log_threshold,
146           size_t long_gc_log_threshold,
147           bool ignore_max_footprint,
148           bool use_tlab,
149           bool verify_pre_gc_heap,
150           bool verify_pre_sweeping_heap,
151           bool verify_post_gc_heap,
152           bool verify_pre_gc_rosalloc,
153           bool verify_pre_sweeping_rosalloc,
154           bool verify_post_gc_rosalloc,
155           bool gc_stress_mode,
156           bool use_homogeneous_space_compaction_for_oom,
157           uint64_t min_interval_homogeneous_space_compaction_by_oom)
158    : non_moving_space_(nullptr),
159      rosalloc_space_(nullptr),
160      dlmalloc_space_(nullptr),
161      main_space_(nullptr),
162      collector_type_(kCollectorTypeNone),
163      foreground_collector_type_(foreground_collector_type),
164      background_collector_type_(background_collector_type),
165      desired_collector_type_(foreground_collector_type_),
166      pending_task_lock_(nullptr),
167      parallel_gc_threads_(parallel_gc_threads),
168      conc_gc_threads_(conc_gc_threads),
169      low_memory_mode_(low_memory_mode),
170      long_pause_log_threshold_(long_pause_log_threshold),
171      long_gc_log_threshold_(long_gc_log_threshold),
172      ignore_max_footprint_(ignore_max_footprint),
173      zygote_creation_lock_("zygote creation lock", kZygoteCreationLock),
174      zygote_space_(nullptr),
175      large_object_threshold_(large_object_threshold),
176      disable_thread_flip_count_(0),
177      thread_flip_running_(false),
178      collector_type_running_(kCollectorTypeNone),
179      last_gc_type_(collector::kGcTypeNone),
180      next_gc_type_(collector::kGcTypePartial),
181      capacity_(capacity),
182      growth_limit_(growth_limit),
183      max_allowed_footprint_(initial_size),
184      native_footprint_gc_watermark_(initial_size),
185      native_need_to_run_finalization_(false),
186      concurrent_start_bytes_(std::numeric_limits<size_t>::max()),
187      total_bytes_freed_ever_(0),
188      total_objects_freed_ever_(0),
189      num_bytes_allocated_(0),
190      native_bytes_allocated_(0),
191      native_histogram_lock_("Native allocation lock"),
192      native_allocation_histogram_("Native allocation sizes",
193                                   1U,
194                                   kNativeAllocationHistogramBuckets),
195      native_free_histogram_("Native free sizes", 1U, kNativeAllocationHistogramBuckets),
196      num_bytes_freed_revoke_(0),
197      verify_missing_card_marks_(false),
198      verify_system_weaks_(false),
199      verify_pre_gc_heap_(verify_pre_gc_heap),
200      verify_pre_sweeping_heap_(verify_pre_sweeping_heap),
201      verify_post_gc_heap_(verify_post_gc_heap),
202      verify_mod_union_table_(false),
203      verify_pre_gc_rosalloc_(verify_pre_gc_rosalloc),
204      verify_pre_sweeping_rosalloc_(verify_pre_sweeping_rosalloc),
205      verify_post_gc_rosalloc_(verify_post_gc_rosalloc),
206      gc_stress_mode_(gc_stress_mode),
207      /* For GC a lot mode, we limit the allocations stacks to be kGcAlotInterval allocations. This
208       * causes a lot of GC since we do a GC for alloc whenever the stack is full. When heap
209       * verification is enabled, we limit the size of allocation stacks to speed up their
210       * searching.
211       */
212      max_allocation_stack_size_(kGCALotMode ? kGcAlotAllocationStackSize
213          : (kVerifyObjectSupport > kVerifyObjectModeFast) ? kVerifyObjectAllocationStackSize :
214          kDefaultAllocationStackSize),
215      current_allocator_(kAllocatorTypeDlMalloc),
216      current_non_moving_allocator_(kAllocatorTypeNonMoving),
217      bump_pointer_space_(nullptr),
218      temp_space_(nullptr),
219      region_space_(nullptr),
220      min_free_(min_free),
221      max_free_(max_free),
222      target_utilization_(target_utilization),
223      foreground_heap_growth_multiplier_(foreground_heap_growth_multiplier),
224      total_wait_time_(0),
225      verify_object_mode_(kVerifyObjectModeDisabled),
226      disable_moving_gc_count_(0),
227      is_running_on_memory_tool_(Runtime::Current()->IsRunningOnMemoryTool()),
228      use_tlab_(use_tlab),
229      main_space_backup_(nullptr),
230      min_interval_homogeneous_space_compaction_by_oom_(
231          min_interval_homogeneous_space_compaction_by_oom),
232      last_time_homogeneous_space_compaction_by_oom_(NanoTime()),
233      pending_collector_transition_(nullptr),
234      pending_heap_trim_(nullptr),
235      use_homogeneous_space_compaction_for_oom_(use_homogeneous_space_compaction_for_oom),
236      running_collection_is_blocking_(false),
237      blocking_gc_count_(0U),
238      blocking_gc_time_(0U),
239      last_update_time_gc_count_rate_histograms_(  // Round down by the window duration.
240          (NanoTime() / kGcCountRateHistogramWindowDuration) * kGcCountRateHistogramWindowDuration),
241      gc_count_last_window_(0U),
242      blocking_gc_count_last_window_(0U),
243      gc_count_rate_histogram_("gc count rate histogram", 1U, kGcCountRateMaxBucketCount),
244      blocking_gc_count_rate_histogram_("blocking gc count rate histogram", 1U,
245                                        kGcCountRateMaxBucketCount),
246      alloc_tracking_enabled_(false),
247      backtrace_lock_(nullptr),
248      seen_backtrace_count_(0u),
249      unique_backtrace_count_(0u),
250      gc_disabled_for_shutdown_(false) {
251  if (VLOG_IS_ON(heap) || VLOG_IS_ON(startup)) {
252    LOG(INFO) << "Heap() entering";
253  }
254  ScopedTrace trace(__FUNCTION__);
255  Runtime* const runtime = Runtime::Current();
256  // If we aren't the zygote, switch to the default non zygote allocator. This may update the
257  // entrypoints.
258  const bool is_zygote = runtime->IsZygote();
259  if (!is_zygote) {
260    // Background compaction is currently not supported for command line runs.
261    if (background_collector_type_ != foreground_collector_type_) {
262      VLOG(heap) << "Disabling background compaction for non zygote";
263      background_collector_type_ = foreground_collector_type_;
264    }
265  }
266  ChangeCollector(desired_collector_type_);
267  live_bitmap_.reset(new accounting::HeapBitmap(this));
268  mark_bitmap_.reset(new accounting::HeapBitmap(this));
269  // Requested begin for the alloc space, to follow the mapped image and oat files
270  uint8_t* requested_alloc_space_begin = nullptr;
271  if (foreground_collector_type_ == kCollectorTypeCC) {
272    // Need to use a low address so that we can allocate a contiguous
273    // 2 * Xmx space when there's no image (dex2oat for target).
274    CHECK_GE(300 * MB, non_moving_space_capacity);
275    requested_alloc_space_begin = reinterpret_cast<uint8_t*>(300 * MB) - non_moving_space_capacity;
276  }
277
278  // Load image space(s).
279  if (!image_file_name.empty()) {
280    // For code reuse, handle this like a work queue.
281    std::vector<std::string> image_file_names;
282    image_file_names.push_back(image_file_name);
283    // The loaded spaces. Secondary images may fail to load, in which case we need to remove
284    // already added spaces.
285    std::vector<space::Space*> added_image_spaces;
286    uint8_t* const original_requested_alloc_space_begin = requested_alloc_space_begin;
287    for (size_t index = 0; index < image_file_names.size(); ++index) {
288      std::string& image_name = image_file_names[index];
289      std::string error_msg;
290      space::ImageSpace* boot_image_space = space::ImageSpace::CreateBootImage(
291          image_name.c_str(),
292          image_instruction_set,
293          index > 0,
294          &error_msg);
295      if (boot_image_space != nullptr) {
296        AddSpace(boot_image_space);
297        added_image_spaces.push_back(boot_image_space);
298        // Oat files referenced by image files immediately follow them in memory, ensure alloc space
299        // isn't going to get in the middle
300        uint8_t* oat_file_end_addr = boot_image_space->GetImageHeader().GetOatFileEnd();
301        CHECK_GT(oat_file_end_addr, boot_image_space->End());
302        requested_alloc_space_begin = AlignUp(oat_file_end_addr, kPageSize);
303        boot_image_spaces_.push_back(boot_image_space);
304
305        if (index == 0) {
306          // If this was the first space, check whether there are more images to load.
307          const OatFile* boot_oat_file = boot_image_space->GetOatFile();
308          if (boot_oat_file == nullptr) {
309            continue;
310          }
311
312          const OatHeader& boot_oat_header = boot_oat_file->GetOatHeader();
313          const char* boot_classpath =
314              boot_oat_header.GetStoreValueByKey(OatHeader::kBootClassPathKey);
315          if (boot_classpath == nullptr) {
316            continue;
317          }
318
319          space::ImageSpace::CreateMultiImageLocations(image_file_name,
320                                                       boot_classpath,
321                                                       &image_file_names);
322        }
323      } else {
324        LOG(ERROR) << "Could not create image space with image file '" << image_file_name << "'. "
325            << "Attempting to fall back to imageless running. Error was: " << error_msg
326            << "\nAttempted image: " << image_name;
327        // Remove already loaded spaces.
328        for (space::Space* loaded_space : added_image_spaces) {
329          RemoveSpace(loaded_space);
330          delete loaded_space;
331        }
332        boot_image_spaces_.clear();
333        requested_alloc_space_begin = original_requested_alloc_space_begin;
334        break;
335      }
336    }
337  }
338  /*
339  requested_alloc_space_begin ->     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
340                                     +-  nonmoving space (non_moving_space_capacity)+-
341                                     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
342                                     +-????????????????????????????????????????????+-
343                                     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
344                                     +-main alloc space / bump space 1 (capacity_) +-
345                                     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
346                                     +-????????????????????????????????????????????+-
347                                     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
348                                     +-main alloc space2 / bump space 2 (capacity_)+-
349                                     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
350  */
351  // We don't have hspace compaction enabled with GSS or CC.
352  if (foreground_collector_type_ == kCollectorTypeGSS ||
353      foreground_collector_type_ == kCollectorTypeCC) {
354    use_homogeneous_space_compaction_for_oom_ = false;
355  }
356  bool support_homogeneous_space_compaction =
357      background_collector_type_ == gc::kCollectorTypeHomogeneousSpaceCompact ||
358      use_homogeneous_space_compaction_for_oom_;
359  // We may use the same space the main space for the non moving space if we don't need to compact
360  // from the main space.
361  // This is not the case if we support homogeneous compaction or have a moving background
362  // collector type.
363  bool separate_non_moving_space = is_zygote ||
364      support_homogeneous_space_compaction || IsMovingGc(foreground_collector_type_) ||
365      IsMovingGc(background_collector_type_);
366  if (foreground_collector_type_ == kCollectorTypeGSS) {
367    separate_non_moving_space = false;
368  }
369  std::unique_ptr<MemMap> main_mem_map_1;
370  std::unique_ptr<MemMap> main_mem_map_2;
371
372  // Gross hack to make dex2oat deterministic.
373  if (foreground_collector_type_ == kCollectorTypeMS &&
374      requested_alloc_space_begin == nullptr &&
375      Runtime::Current()->IsAotCompiler()) {
376    // Currently only enabled for MS collector since that is what the deterministic dex2oat uses.
377    // b/26849108
378    requested_alloc_space_begin = reinterpret_cast<uint8_t*>(kAllocSpaceBeginForDeterministicAoT);
379  }
380  uint8_t* request_begin = requested_alloc_space_begin;
381  if (request_begin != nullptr && separate_non_moving_space) {
382    request_begin += non_moving_space_capacity;
383  }
384  std::string error_str;
385  std::unique_ptr<MemMap> non_moving_space_mem_map;
386  if (separate_non_moving_space) {
387    ScopedTrace trace2("Create separate non moving space");
388    // If we are the zygote, the non moving space becomes the zygote space when we run
389    // PreZygoteFork the first time. In this case, call the map "zygote space" since we can't
390    // rename the mem map later.
391    const char* space_name = is_zygote ? kZygoteSpaceName: kNonMovingSpaceName;
392    // Reserve the non moving mem map before the other two since it needs to be at a specific
393    // address.
394    non_moving_space_mem_map.reset(
395        MemMap::MapAnonymous(space_name, requested_alloc_space_begin,
396                             non_moving_space_capacity, PROT_READ | PROT_WRITE, true, false,
397                             &error_str));
398    CHECK(non_moving_space_mem_map != nullptr) << error_str;
399    // Try to reserve virtual memory at a lower address if we have a separate non moving space.
400    request_begin = reinterpret_cast<uint8_t*>(300 * MB);
401  }
402  // Attempt to create 2 mem maps at or after the requested begin.
403  if (foreground_collector_type_ != kCollectorTypeCC) {
404    ScopedTrace trace2("Create main mem map");
405    if (separate_non_moving_space || !is_zygote) {
406      main_mem_map_1.reset(MapAnonymousPreferredAddress(kMemMapSpaceName[0],
407                                                        request_begin,
408                                                        capacity_,
409                                                        &error_str));
410    } else {
411      // If no separate non-moving space and we are the zygote, the main space must come right
412      // after the image space to avoid a gap. This is required since we want the zygote space to
413      // be adjacent to the image space.
414      main_mem_map_1.reset(MemMap::MapAnonymous(kMemMapSpaceName[0], request_begin, capacity_,
415                                                PROT_READ | PROT_WRITE, true, false,
416                                                &error_str));
417    }
418    CHECK(main_mem_map_1.get() != nullptr) << error_str;
419  }
420  if (support_homogeneous_space_compaction ||
421      background_collector_type_ == kCollectorTypeSS ||
422      foreground_collector_type_ == kCollectorTypeSS) {
423    ScopedTrace trace2("Create main mem map 2");
424    main_mem_map_2.reset(MapAnonymousPreferredAddress(kMemMapSpaceName[1], main_mem_map_1->End(),
425                                                      capacity_, &error_str));
426    CHECK(main_mem_map_2.get() != nullptr) << error_str;
427  }
428
429  // Create the non moving space first so that bitmaps don't take up the address range.
430  if (separate_non_moving_space) {
431    ScopedTrace trace2("Add non moving space");
432    // Non moving space is always dlmalloc since we currently don't have support for multiple
433    // active rosalloc spaces.
434    const size_t size = non_moving_space_mem_map->Size();
435    non_moving_space_ = space::DlMallocSpace::CreateFromMemMap(
436        non_moving_space_mem_map.release(), "zygote / non moving space", kDefaultStartingSize,
437        initial_size, size, size, false);
438    non_moving_space_->SetFootprintLimit(non_moving_space_->Capacity());
439    CHECK(non_moving_space_ != nullptr) << "Failed creating non moving space "
440        << requested_alloc_space_begin;
441    AddSpace(non_moving_space_);
442  }
443  // Create other spaces based on whether or not we have a moving GC.
444  if (foreground_collector_type_ == kCollectorTypeCC) {
445    region_space_ = space::RegionSpace::Create("Region space", capacity_ * 2, request_begin);
446    AddSpace(region_space_);
447  } else if (IsMovingGc(foreground_collector_type_) &&
448      foreground_collector_type_ != kCollectorTypeGSS) {
449    // Create bump pointer spaces.
450    // We only to create the bump pointer if the foreground collector is a compacting GC.
451    // TODO: Place bump-pointer spaces somewhere to minimize size of card table.
452    bump_pointer_space_ = space::BumpPointerSpace::CreateFromMemMap("Bump pointer space 1",
453                                                                    main_mem_map_1.release());
454    CHECK(bump_pointer_space_ != nullptr) << "Failed to create bump pointer space";
455    AddSpace(bump_pointer_space_);
456    temp_space_ = space::BumpPointerSpace::CreateFromMemMap("Bump pointer space 2",
457                                                            main_mem_map_2.release());
458    CHECK(temp_space_ != nullptr) << "Failed to create bump pointer space";
459    AddSpace(temp_space_);
460    CHECK(separate_non_moving_space);
461  } else {
462    CreateMainMallocSpace(main_mem_map_1.release(), initial_size, growth_limit_, capacity_);
463    CHECK(main_space_ != nullptr);
464    AddSpace(main_space_);
465    if (!separate_non_moving_space) {
466      non_moving_space_ = main_space_;
467      CHECK(!non_moving_space_->CanMoveObjects());
468    }
469    if (foreground_collector_type_ == kCollectorTypeGSS) {
470      CHECK_EQ(foreground_collector_type_, background_collector_type_);
471      // Create bump pointer spaces instead of a backup space.
472      main_mem_map_2.release();
473      bump_pointer_space_ = space::BumpPointerSpace::Create("Bump pointer space 1",
474                                                            kGSSBumpPointerSpaceCapacity, nullptr);
475      CHECK(bump_pointer_space_ != nullptr);
476      AddSpace(bump_pointer_space_);
477      temp_space_ = space::BumpPointerSpace::Create("Bump pointer space 2",
478                                                    kGSSBumpPointerSpaceCapacity, nullptr);
479      CHECK(temp_space_ != nullptr);
480      AddSpace(temp_space_);
481    } else if (main_mem_map_2.get() != nullptr) {
482      const char* name = kUseRosAlloc ? kRosAllocSpaceName[1] : kDlMallocSpaceName[1];
483      main_space_backup_.reset(CreateMallocSpaceFromMemMap(main_mem_map_2.release(), initial_size,
484                                                           growth_limit_, capacity_, name, true));
485      CHECK(main_space_backup_.get() != nullptr);
486      // Add the space so its accounted for in the heap_begin and heap_end.
487      AddSpace(main_space_backup_.get());
488    }
489  }
490  CHECK(non_moving_space_ != nullptr);
491  CHECK(!non_moving_space_->CanMoveObjects());
492  // Allocate the large object space.
493  if (large_object_space_type == space::LargeObjectSpaceType::kFreeList) {
494    large_object_space_ = space::FreeListSpace::Create("free list large object space", nullptr,
495                                                       capacity_);
496    CHECK(large_object_space_ != nullptr) << "Failed to create large object space";
497  } else if (large_object_space_type == space::LargeObjectSpaceType::kMap) {
498    large_object_space_ = space::LargeObjectMapSpace::Create("mem map large object space");
499    CHECK(large_object_space_ != nullptr) << "Failed to create large object space";
500  } else {
501    // Disable the large object space by making the cutoff excessively large.
502    large_object_threshold_ = std::numeric_limits<size_t>::max();
503    large_object_space_ = nullptr;
504  }
505  if (large_object_space_ != nullptr) {
506    AddSpace(large_object_space_);
507  }
508  // Compute heap capacity. Continuous spaces are sorted in order of Begin().
509  CHECK(!continuous_spaces_.empty());
510  // Relies on the spaces being sorted.
511  uint8_t* heap_begin = continuous_spaces_.front()->Begin();
512  uint8_t* heap_end = continuous_spaces_.back()->Limit();
513  size_t heap_capacity = heap_end - heap_begin;
514  // Remove the main backup space since it slows down the GC to have unused extra spaces.
515  // TODO: Avoid needing to do this.
516  if (main_space_backup_.get() != nullptr) {
517    RemoveSpace(main_space_backup_.get());
518  }
519  // Allocate the card table.
520  // We currently don't support dynamically resizing the card table.
521  // Since we don't know where in the low_4gb the app image will be located, make the card table
522  // cover the whole low_4gb. TODO: Extend the card table in AddSpace.
523  UNUSED(heap_capacity);
524  // Start at 64 KB, we can be sure there are no spaces mapped this low since the address range is
525  // reserved by the kernel.
526  static constexpr size_t kMinHeapAddress = 4 * KB;
527  card_table_.reset(accounting::CardTable::Create(reinterpret_cast<uint8_t*>(kMinHeapAddress),
528                                                  4 * GB - kMinHeapAddress));
529  CHECK(card_table_.get() != nullptr) << "Failed to create card table";
530  if (foreground_collector_type_ == kCollectorTypeCC && kUseTableLookupReadBarrier) {
531    rb_table_.reset(new accounting::ReadBarrierTable());
532    DCHECK(rb_table_->IsAllCleared());
533  }
534  if (HasBootImageSpace()) {
535    // Don't add the image mod union table if we are running without an image, this can crash if
536    // we use the CardCache implementation.
537    for (space::ImageSpace* image_space : GetBootImageSpaces()) {
538      accounting::ModUnionTable* mod_union_table = new accounting::ModUnionTableToZygoteAllocspace(
539          "Image mod-union table", this, image_space);
540      CHECK(mod_union_table != nullptr) << "Failed to create image mod-union table";
541      AddModUnionTable(mod_union_table);
542    }
543  }
544  if (collector::SemiSpace::kUseRememberedSet && non_moving_space_ != main_space_) {
545    accounting::RememberedSet* non_moving_space_rem_set =
546        new accounting::RememberedSet("Non-moving space remembered set", this, non_moving_space_);
547    CHECK(non_moving_space_rem_set != nullptr) << "Failed to create non-moving space remembered set";
548    AddRememberedSet(non_moving_space_rem_set);
549  }
550  // TODO: Count objects in the image space here?
551  num_bytes_allocated_.StoreRelaxed(0);
552  mark_stack_.reset(accounting::ObjectStack::Create("mark stack", kDefaultMarkStackSize,
553                                                    kDefaultMarkStackSize));
554  const size_t alloc_stack_capacity = max_allocation_stack_size_ + kAllocationStackReserveSize;
555  allocation_stack_.reset(accounting::ObjectStack::Create(
556      "allocation stack", max_allocation_stack_size_, alloc_stack_capacity));
557  live_stack_.reset(accounting::ObjectStack::Create(
558      "live stack", max_allocation_stack_size_, alloc_stack_capacity));
559  // It's still too early to take a lock because there are no threads yet, but we can create locks
560  // now. We don't create it earlier to make it clear that you can't use locks during heap
561  // initialization.
562  gc_complete_lock_ = new Mutex("GC complete lock");
563  gc_complete_cond_.reset(new ConditionVariable("GC complete condition variable",
564                                                *gc_complete_lock_));
565  thread_flip_lock_ = new Mutex("GC thread flip lock");
566  thread_flip_cond_.reset(new ConditionVariable("GC thread flip condition variable",
567                                                *thread_flip_lock_));
568  task_processor_.reset(new TaskProcessor());
569  reference_processor_.reset(new ReferenceProcessor());
570  pending_task_lock_ = new Mutex("Pending task lock");
571  if (ignore_max_footprint_) {
572    SetIdealFootprint(std::numeric_limits<size_t>::max());
573    concurrent_start_bytes_ = std::numeric_limits<size_t>::max();
574  }
575  CHECK_NE(max_allowed_footprint_, 0U);
576  // Create our garbage collectors.
577  for (size_t i = 0; i < 2; ++i) {
578    const bool concurrent = i != 0;
579    if ((MayUseCollector(kCollectorTypeCMS) && concurrent) ||
580        (MayUseCollector(kCollectorTypeMS) && !concurrent)) {
581      garbage_collectors_.push_back(new collector::MarkSweep(this, concurrent));
582      garbage_collectors_.push_back(new collector::PartialMarkSweep(this, concurrent));
583      garbage_collectors_.push_back(new collector::StickyMarkSweep(this, concurrent));
584    }
585  }
586  if (kMovingCollector) {
587    if (MayUseCollector(kCollectorTypeSS) || MayUseCollector(kCollectorTypeGSS) ||
588        MayUseCollector(kCollectorTypeHomogeneousSpaceCompact) ||
589        use_homogeneous_space_compaction_for_oom_) {
590      // TODO: Clean this up.
591      const bool generational = foreground_collector_type_ == kCollectorTypeGSS;
592      semi_space_collector_ = new collector::SemiSpace(this, generational,
593                                                       generational ? "generational" : "");
594      garbage_collectors_.push_back(semi_space_collector_);
595    }
596    if (MayUseCollector(kCollectorTypeCC)) {
597      concurrent_copying_collector_ = new collector::ConcurrentCopying(this);
598      garbage_collectors_.push_back(concurrent_copying_collector_);
599    }
600    if (MayUseCollector(kCollectorTypeMC)) {
601      mark_compact_collector_ = new collector::MarkCompact(this);
602      garbage_collectors_.push_back(mark_compact_collector_);
603    }
604  }
605  if (!GetBootImageSpaces().empty() && non_moving_space_ != nullptr &&
606      (is_zygote || separate_non_moving_space || foreground_collector_type_ == kCollectorTypeGSS)) {
607    // Check that there's no gap between the image space and the non moving space so that the
608    // immune region won't break (eg. due to a large object allocated in the gap). This is only
609    // required when we're the zygote or using GSS.
610    // Space with smallest Begin().
611    space::ImageSpace* first_space = nullptr;
612    for (space::ImageSpace* space : boot_image_spaces_) {
613      if (first_space == nullptr || space->Begin() < first_space->Begin()) {
614        first_space = space;
615      }
616    }
617    bool no_gap = MemMap::CheckNoGaps(first_space->GetMemMap(), non_moving_space_->GetMemMap());
618    if (!no_gap) {
619      PrintFileToLog("/proc/self/maps", LogSeverity::ERROR);
620      MemMap::DumpMaps(LOG(ERROR), true);
621      LOG(FATAL) << "There's a gap between the image space and the non-moving space";
622    }
623  }
624  instrumentation::Instrumentation* const instrumentation = runtime->GetInstrumentation();
625  if (gc_stress_mode_) {
626    backtrace_lock_ = new Mutex("GC complete lock");
627  }
628  if (is_running_on_memory_tool_ || gc_stress_mode_) {
629    instrumentation->InstrumentQuickAllocEntryPoints();
630  }
631  if (VLOG_IS_ON(heap) || VLOG_IS_ON(startup)) {
632    LOG(INFO) << "Heap() exiting";
633  }
634}
635
636MemMap* Heap::MapAnonymousPreferredAddress(const char* name,
637                                           uint8_t* request_begin,
638                                           size_t capacity,
639                                           std::string* out_error_str) {
640  while (true) {
641    MemMap* map = MemMap::MapAnonymous(name, request_begin, capacity,
642                                       PROT_READ | PROT_WRITE, true, false, out_error_str);
643    if (map != nullptr || request_begin == nullptr) {
644      return map;
645    }
646    // Retry a  second time with no specified request begin.
647    request_begin = nullptr;
648  }
649}
650
651bool Heap::MayUseCollector(CollectorType type) const {
652  return foreground_collector_type_ == type || background_collector_type_ == type;
653}
654
655space::MallocSpace* Heap::CreateMallocSpaceFromMemMap(MemMap* mem_map,
656                                                      size_t initial_size,
657                                                      size_t growth_limit,
658                                                      size_t capacity,
659                                                      const char* name,
660                                                      bool can_move_objects) {
661  space::MallocSpace* malloc_space = nullptr;
662  if (kUseRosAlloc) {
663    // Create rosalloc space.
664    malloc_space = space::RosAllocSpace::CreateFromMemMap(mem_map, name, kDefaultStartingSize,
665                                                          initial_size, growth_limit, capacity,
666                                                          low_memory_mode_, can_move_objects);
667  } else {
668    malloc_space = space::DlMallocSpace::CreateFromMemMap(mem_map, name, kDefaultStartingSize,
669                                                          initial_size, growth_limit, capacity,
670                                                          can_move_objects);
671  }
672  if (collector::SemiSpace::kUseRememberedSet) {
673    accounting::RememberedSet* rem_set  =
674        new accounting::RememberedSet(std::string(name) + " remembered set", this, malloc_space);
675    CHECK(rem_set != nullptr) << "Failed to create main space remembered set";
676    AddRememberedSet(rem_set);
677  }
678  CHECK(malloc_space != nullptr) << "Failed to create " << name;
679  malloc_space->SetFootprintLimit(malloc_space->Capacity());
680  return malloc_space;
681}
682
683void Heap::CreateMainMallocSpace(MemMap* mem_map, size_t initial_size, size_t growth_limit,
684                                 size_t capacity) {
685  // Is background compaction is enabled?
686  bool can_move_objects = IsMovingGc(background_collector_type_) !=
687      IsMovingGc(foreground_collector_type_) || use_homogeneous_space_compaction_for_oom_;
688  // If we are the zygote and don't yet have a zygote space, it means that the zygote fork will
689  // happen in the future. If this happens and we have kCompactZygote enabled we wish to compact
690  // from the main space to the zygote space. If background compaction is enabled, always pass in
691  // that we can move objets.
692  if (kCompactZygote && Runtime::Current()->IsZygote() && !can_move_objects) {
693    // After the zygote we want this to be false if we don't have background compaction enabled so
694    // that getting primitive array elements is faster.
695    // We never have homogeneous compaction with GSS and don't need a space with movable objects.
696    can_move_objects = !HasZygoteSpace() && foreground_collector_type_ != kCollectorTypeGSS;
697  }
698  if (collector::SemiSpace::kUseRememberedSet && main_space_ != nullptr) {
699    RemoveRememberedSet(main_space_);
700  }
701  const char* name = kUseRosAlloc ? kRosAllocSpaceName[0] : kDlMallocSpaceName[0];
702  main_space_ = CreateMallocSpaceFromMemMap(mem_map, initial_size, growth_limit, capacity, name,
703                                            can_move_objects);
704  SetSpaceAsDefault(main_space_);
705  VLOG(heap) << "Created main space " << main_space_;
706}
707
708void Heap::ChangeAllocator(AllocatorType allocator) {
709  if (current_allocator_ != allocator) {
710    // These two allocators are only used internally and don't have any entrypoints.
711    CHECK_NE(allocator, kAllocatorTypeLOS);
712    CHECK_NE(allocator, kAllocatorTypeNonMoving);
713    current_allocator_ = allocator;
714    MutexLock mu(nullptr, *Locks::runtime_shutdown_lock_);
715    SetQuickAllocEntryPointsAllocator(current_allocator_);
716    Runtime::Current()->GetInstrumentation()->ResetQuickAllocEntryPoints();
717  }
718}
719
720void Heap::DisableMovingGc() {
721  if (IsMovingGc(foreground_collector_type_)) {
722    foreground_collector_type_ = kCollectorTypeCMS;
723  }
724  if (IsMovingGc(background_collector_type_)) {
725    background_collector_type_ = foreground_collector_type_;
726  }
727  TransitionCollector(foreground_collector_type_);
728  Thread* const self = Thread::Current();
729  ScopedThreadStateChange tsc(self, kSuspended);
730  ScopedSuspendAll ssa(__FUNCTION__);
731  // Something may have caused the transition to fail.
732  if (!IsMovingGc(collector_type_) && non_moving_space_ != main_space_) {
733    CHECK(main_space_ != nullptr);
734    // The allocation stack may have non movable objects in it. We need to flush it since the GC
735    // can't only handle marking allocation stack objects of one non moving space and one main
736    // space.
737    {
738      WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
739      FlushAllocStack();
740    }
741    main_space_->DisableMovingObjects();
742    non_moving_space_ = main_space_;
743    CHECK(!non_moving_space_->CanMoveObjects());
744  }
745}
746
747std::string Heap::SafeGetClassDescriptor(mirror::Class* klass) {
748  if (!IsValidContinuousSpaceObjectAddress(klass)) {
749    return StringPrintf("<non heap address klass %p>", klass);
750  }
751  mirror::Class* component_type = klass->GetComponentType<kVerifyNone>();
752  if (IsValidContinuousSpaceObjectAddress(component_type) && klass->IsArrayClass<kVerifyNone>()) {
753    std::string result("[");
754    result += SafeGetClassDescriptor(component_type);
755    return result;
756  } else if (UNLIKELY(klass->IsPrimitive<kVerifyNone>())) {
757    return Primitive::Descriptor(klass->GetPrimitiveType<kVerifyNone>());
758  } else if (UNLIKELY(klass->IsProxyClass<kVerifyNone>())) {
759    return Runtime::Current()->GetClassLinker()->GetDescriptorForProxy(klass);
760  } else {
761    mirror::DexCache* dex_cache = klass->GetDexCache<kVerifyNone>();
762    if (!IsValidContinuousSpaceObjectAddress(dex_cache)) {
763      return StringPrintf("<non heap address dex_cache %p>", dex_cache);
764    }
765    const DexFile* dex_file = dex_cache->GetDexFile();
766    uint16_t class_def_idx = klass->GetDexClassDefIndex();
767    if (class_def_idx == DexFile::kDexNoIndex16) {
768      return "<class def not found>";
769    }
770    const DexFile::ClassDef& class_def = dex_file->GetClassDef(class_def_idx);
771    const DexFile::TypeId& type_id = dex_file->GetTypeId(class_def.class_idx_);
772    return dex_file->GetTypeDescriptor(type_id);
773  }
774}
775
776std::string Heap::SafePrettyTypeOf(mirror::Object* obj) {
777  if (obj == nullptr) {
778    return "null";
779  }
780  mirror::Class* klass = obj->GetClass<kVerifyNone>();
781  if (klass == nullptr) {
782    return "(class=null)";
783  }
784  std::string result(SafeGetClassDescriptor(klass));
785  if (obj->IsClass()) {
786    result += "<" + SafeGetClassDescriptor(obj->AsClass<kVerifyNone>()) + ">";
787  }
788  return result;
789}
790
791void Heap::DumpObject(std::ostream& stream, mirror::Object* obj) {
792  if (obj == nullptr) {
793    stream << "(obj=null)";
794    return;
795  }
796  if (IsAligned<kObjectAlignment>(obj)) {
797    space::Space* space = nullptr;
798    // Don't use find space since it only finds spaces which actually contain objects instead of
799    // spaces which may contain objects (e.g. cleared bump pointer spaces).
800    for (const auto& cur_space : continuous_spaces_) {
801      if (cur_space->HasAddress(obj)) {
802        space = cur_space;
803        break;
804      }
805    }
806    // Unprotect all the spaces.
807    for (const auto& con_space : continuous_spaces_) {
808      mprotect(con_space->Begin(), con_space->Capacity(), PROT_READ | PROT_WRITE);
809    }
810    stream << "Object " << obj;
811    if (space != nullptr) {
812      stream << " in space " << *space;
813    }
814    mirror::Class* klass = obj->GetClass<kVerifyNone>();
815    stream << "\nclass=" << klass;
816    if (klass != nullptr) {
817      stream << " type= " << SafePrettyTypeOf(obj);
818    }
819    // Re-protect the address we faulted on.
820    mprotect(AlignDown(obj, kPageSize), kPageSize, PROT_NONE);
821  }
822}
823
824bool Heap::IsCompilingBoot() const {
825  if (!Runtime::Current()->IsAotCompiler()) {
826    return false;
827  }
828  ScopedObjectAccess soa(Thread::Current());
829  for (const auto& space : continuous_spaces_) {
830    if (space->IsImageSpace() || space->IsZygoteSpace()) {
831      return false;
832    }
833  }
834  return true;
835}
836
837void Heap::IncrementDisableMovingGC(Thread* self) {
838  // Need to do this holding the lock to prevent races where the GC is about to run / running when
839  // we attempt to disable it.
840  ScopedThreadStateChange tsc(self, kWaitingForGcToComplete);
841  MutexLock mu(self, *gc_complete_lock_);
842  ++disable_moving_gc_count_;
843  if (IsMovingGc(collector_type_running_)) {
844    WaitForGcToCompleteLocked(kGcCauseDisableMovingGc, self);
845  }
846}
847
848void Heap::DecrementDisableMovingGC(Thread* self) {
849  MutexLock mu(self, *gc_complete_lock_);
850  CHECK_GT(disable_moving_gc_count_, 0U);
851  --disable_moving_gc_count_;
852}
853
854void Heap::IncrementDisableThreadFlip(Thread* self) {
855  // Supposed to be called by mutators. If thread_flip_running_ is true, block. Otherwise, go ahead.
856  CHECK(kUseReadBarrier);
857  bool is_nested = self->GetDisableThreadFlipCount() > 0;
858  self->IncrementDisableThreadFlipCount();
859  if (is_nested) {
860    // If this is a nested JNI critical section enter, we don't need to wait or increment the global
861    // counter. The global counter is incremented only once for a thread for the outermost enter.
862    return;
863  }
864  ScopedThreadStateChange tsc(self, kWaitingForGcThreadFlip);
865  MutexLock mu(self, *thread_flip_lock_);
866  bool has_waited = false;
867  uint64_t wait_start = NanoTime();
868  while (thread_flip_running_) {
869    has_waited = true;
870    thread_flip_cond_->Wait(self);
871  }
872  ++disable_thread_flip_count_;
873  if (has_waited) {
874    uint64_t wait_time = NanoTime() - wait_start;
875    total_wait_time_ += wait_time;
876    if (wait_time > long_pause_log_threshold_) {
877      LOG(INFO) << __FUNCTION__ << " blocked for " << PrettyDuration(wait_time);
878    }
879  }
880}
881
882void Heap::DecrementDisableThreadFlip(Thread* self) {
883  // Supposed to be called by mutators. Decrement disable_thread_flip_count_ and potentially wake up
884  // the GC waiting before doing a thread flip.
885  CHECK(kUseReadBarrier);
886  self->DecrementDisableThreadFlipCount();
887  bool is_outermost = self->GetDisableThreadFlipCount() == 0;
888  if (!is_outermost) {
889    // If this is not an outermost JNI critical exit, we don't need to decrement the global counter.
890    // The global counter is decremented only once for a thread for the outermost exit.
891    return;
892  }
893  MutexLock mu(self, *thread_flip_lock_);
894  CHECK_GT(disable_thread_flip_count_, 0U);
895  --disable_thread_flip_count_;
896  if (disable_thread_flip_count_ == 0) {
897    // Potentially notify the GC thread blocking to begin a thread flip.
898    thread_flip_cond_->Broadcast(self);
899  }
900}
901
902void Heap::ThreadFlipBegin(Thread* self) {
903  // Supposed to be called by GC. Set thread_flip_running_ to be true. If disable_thread_flip_count_
904  // > 0, block. Otherwise, go ahead.
905  CHECK(kUseReadBarrier);
906  ScopedThreadStateChange tsc(self, kWaitingForGcThreadFlip);
907  MutexLock mu(self, *thread_flip_lock_);
908  bool has_waited = false;
909  uint64_t wait_start = NanoTime();
910  CHECK(!thread_flip_running_);
911  // Set this to true before waiting so that frequent JNI critical enter/exits won't starve
912  // GC. This like a writer preference of a reader-writer lock.
913  thread_flip_running_ = true;
914  while (disable_thread_flip_count_ > 0) {
915    has_waited = true;
916    thread_flip_cond_->Wait(self);
917  }
918  if (has_waited) {
919    uint64_t wait_time = NanoTime() - wait_start;
920    total_wait_time_ += wait_time;
921    if (wait_time > long_pause_log_threshold_) {
922      LOG(INFO) << __FUNCTION__ << " blocked for " << PrettyDuration(wait_time);
923    }
924  }
925}
926
927void Heap::ThreadFlipEnd(Thread* self) {
928  // Supposed to be called by GC. Set thread_flip_running_ to false and potentially wake up mutators
929  // waiting before doing a JNI critical.
930  CHECK(kUseReadBarrier);
931  MutexLock mu(self, *thread_flip_lock_);
932  CHECK(thread_flip_running_);
933  thread_flip_running_ = false;
934  // Potentially notify mutator threads blocking to enter a JNI critical section.
935  thread_flip_cond_->Broadcast(self);
936}
937
938void Heap::UpdateProcessState(ProcessState old_process_state, ProcessState new_process_state) {
939  if (old_process_state != new_process_state) {
940    const bool jank_perceptible = new_process_state == kProcessStateJankPerceptible;
941    for (size_t i = 1; i <= kCollectorTransitionStressIterations; ++i) {
942      // Start at index 1 to avoid "is always false" warning.
943      // Have iteration 1 always transition the collector.
944      TransitionCollector((((i & 1) == 1) == jank_perceptible)
945          ? foreground_collector_type_
946          : background_collector_type_);
947      usleep(kCollectorTransitionStressWait);
948    }
949    if (jank_perceptible) {
950      // Transition back to foreground right away to prevent jank.
951      RequestCollectorTransition(foreground_collector_type_, 0);
952    } else {
953      // Don't delay for debug builds since we may want to stress test the GC.
954      // If background_collector_type_ is kCollectorTypeHomogeneousSpaceCompact then we have
955      // special handling which does a homogenous space compaction once but then doesn't transition
956      // the collector.
957      RequestCollectorTransition(background_collector_type_,
958                                 kIsDebugBuild ? 0 : kCollectorTransitionWait);
959    }
960  }
961}
962
963void Heap::CreateThreadPool() {
964  const size_t num_threads = std::max(parallel_gc_threads_, conc_gc_threads_);
965  if (num_threads != 0) {
966    thread_pool_.reset(new ThreadPool("Heap thread pool", num_threads));
967  }
968}
969
970// Visit objects when threads aren't suspended. If concurrent moving
971// GC, disable moving GC and suspend threads and then visit objects.
972void Heap::VisitObjects(ObjectCallback callback, void* arg) {
973  Thread* self = Thread::Current();
974  Locks::mutator_lock_->AssertSharedHeld(self);
975  DCHECK(!Locks::mutator_lock_->IsExclusiveHeld(self)) << "Call VisitObjectsPaused() instead";
976  if (IsGcConcurrentAndMoving()) {
977    // Concurrent moving GC. Just suspending threads isn't sufficient
978    // because a collection isn't one big pause and we could suspend
979    // threads in the middle (between phases) of a concurrent moving
980    // collection where it's not easily known which objects are alive
981    // (both the region space and the non-moving space) or which
982    // copies of objects to visit, and the to-space invariant could be
983    // easily broken. Visit objects while GC isn't running by using
984    // IncrementDisableMovingGC() and threads are suspended.
985    IncrementDisableMovingGC(self);
986    {
987      ScopedThreadSuspension sts(self, kWaitingForVisitObjects);
988      ScopedSuspendAll ssa(__FUNCTION__);
989      VisitObjectsInternalRegionSpace(callback, arg);
990      VisitObjectsInternal(callback, arg);
991    }
992    DecrementDisableMovingGC(self);
993  } else {
994    // GCs can move objects, so don't allow this.
995    ScopedAssertNoThreadSuspension ants(self, "Visiting objects");
996    DCHECK(region_space_ == nullptr);
997    VisitObjectsInternal(callback, arg);
998  }
999}
1000
1001// Visit objects when threads are already suspended.
1002void Heap::VisitObjectsPaused(ObjectCallback callback, void* arg) {
1003  Thread* self = Thread::Current();
1004  Locks::mutator_lock_->AssertExclusiveHeld(self);
1005  VisitObjectsInternalRegionSpace(callback, arg);
1006  VisitObjectsInternal(callback, arg);
1007}
1008
1009// Visit objects in the region spaces.
1010void Heap::VisitObjectsInternalRegionSpace(ObjectCallback callback, void* arg) {
1011  Thread* self = Thread::Current();
1012  Locks::mutator_lock_->AssertExclusiveHeld(self);
1013  if (region_space_ != nullptr) {
1014    DCHECK(IsGcConcurrentAndMoving());
1015    if (!zygote_creation_lock_.IsExclusiveHeld(self)) {
1016      // Exclude the pre-zygote fork time where the semi-space collector
1017      // calls VerifyHeapReferences() as part of the zygote compaction
1018      // which then would call here without the moving GC disabled,
1019      // which is fine.
1020      DCHECK(IsMovingGCDisabled(self));
1021    }
1022    region_space_->Walk(callback, arg);
1023  }
1024}
1025
1026// Visit objects in the other spaces.
1027void Heap::VisitObjectsInternal(ObjectCallback callback, void* arg) {
1028  if (bump_pointer_space_ != nullptr) {
1029    // Visit objects in bump pointer space.
1030    bump_pointer_space_->Walk(callback, arg);
1031  }
1032  // TODO: Switch to standard begin and end to use ranged a based loop.
1033  for (auto* it = allocation_stack_->Begin(), *end = allocation_stack_->End(); it < end; ++it) {
1034    mirror::Object* const obj = it->AsMirrorPtr();
1035    if (obj != nullptr && obj->GetClass() != nullptr) {
1036      // Avoid the race condition caused by the object not yet being written into the allocation
1037      // stack or the class not yet being written in the object. Or, if
1038      // kUseThreadLocalAllocationStack, there can be nulls on the allocation stack.
1039      callback(obj, arg);
1040    }
1041  }
1042  {
1043    ReaderMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
1044    GetLiveBitmap()->Walk(callback, arg);
1045  }
1046}
1047
1048void Heap::MarkAllocStackAsLive(accounting::ObjectStack* stack) {
1049  space::ContinuousSpace* space1 = main_space_ != nullptr ? main_space_ : non_moving_space_;
1050  space::ContinuousSpace* space2 = non_moving_space_;
1051  // TODO: Generalize this to n bitmaps?
1052  CHECK(space1 != nullptr);
1053  CHECK(space2 != nullptr);
1054  MarkAllocStack(space1->GetLiveBitmap(), space2->GetLiveBitmap(),
1055                 (large_object_space_ != nullptr ? large_object_space_->GetLiveBitmap() : nullptr),
1056                 stack);
1057}
1058
1059void Heap::DeleteThreadPool() {
1060  thread_pool_.reset(nullptr);
1061}
1062
1063void Heap::AddSpace(space::Space* space) {
1064  CHECK(space != nullptr);
1065  WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
1066  if (space->IsContinuousSpace()) {
1067    DCHECK(!space->IsDiscontinuousSpace());
1068    space::ContinuousSpace* continuous_space = space->AsContinuousSpace();
1069    // Continuous spaces don't necessarily have bitmaps.
1070    accounting::ContinuousSpaceBitmap* live_bitmap = continuous_space->GetLiveBitmap();
1071    accounting::ContinuousSpaceBitmap* mark_bitmap = continuous_space->GetMarkBitmap();
1072    if (live_bitmap != nullptr) {
1073      CHECK(mark_bitmap != nullptr);
1074      live_bitmap_->AddContinuousSpaceBitmap(live_bitmap);
1075      mark_bitmap_->AddContinuousSpaceBitmap(mark_bitmap);
1076    }
1077    continuous_spaces_.push_back(continuous_space);
1078    // Ensure that spaces remain sorted in increasing order of start address.
1079    std::sort(continuous_spaces_.begin(), continuous_spaces_.end(),
1080              [](const space::ContinuousSpace* a, const space::ContinuousSpace* b) {
1081      return a->Begin() < b->Begin();
1082    });
1083  } else {
1084    CHECK(space->IsDiscontinuousSpace());
1085    space::DiscontinuousSpace* discontinuous_space = space->AsDiscontinuousSpace();
1086    live_bitmap_->AddLargeObjectBitmap(discontinuous_space->GetLiveBitmap());
1087    mark_bitmap_->AddLargeObjectBitmap(discontinuous_space->GetMarkBitmap());
1088    discontinuous_spaces_.push_back(discontinuous_space);
1089  }
1090  if (space->IsAllocSpace()) {
1091    alloc_spaces_.push_back(space->AsAllocSpace());
1092  }
1093}
1094
1095void Heap::SetSpaceAsDefault(space::ContinuousSpace* continuous_space) {
1096  WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
1097  if (continuous_space->IsDlMallocSpace()) {
1098    dlmalloc_space_ = continuous_space->AsDlMallocSpace();
1099  } else if (continuous_space->IsRosAllocSpace()) {
1100    rosalloc_space_ = continuous_space->AsRosAllocSpace();
1101  }
1102}
1103
1104void Heap::RemoveSpace(space::Space* space) {
1105  DCHECK(space != nullptr);
1106  WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
1107  if (space->IsContinuousSpace()) {
1108    DCHECK(!space->IsDiscontinuousSpace());
1109    space::ContinuousSpace* continuous_space = space->AsContinuousSpace();
1110    // Continuous spaces don't necessarily have bitmaps.
1111    accounting::ContinuousSpaceBitmap* live_bitmap = continuous_space->GetLiveBitmap();
1112    accounting::ContinuousSpaceBitmap* mark_bitmap = continuous_space->GetMarkBitmap();
1113    if (live_bitmap != nullptr) {
1114      DCHECK(mark_bitmap != nullptr);
1115      live_bitmap_->RemoveContinuousSpaceBitmap(live_bitmap);
1116      mark_bitmap_->RemoveContinuousSpaceBitmap(mark_bitmap);
1117    }
1118    auto it = std::find(continuous_spaces_.begin(), continuous_spaces_.end(), continuous_space);
1119    DCHECK(it != continuous_spaces_.end());
1120    continuous_spaces_.erase(it);
1121  } else {
1122    DCHECK(space->IsDiscontinuousSpace());
1123    space::DiscontinuousSpace* discontinuous_space = space->AsDiscontinuousSpace();
1124    live_bitmap_->RemoveLargeObjectBitmap(discontinuous_space->GetLiveBitmap());
1125    mark_bitmap_->RemoveLargeObjectBitmap(discontinuous_space->GetMarkBitmap());
1126    auto it = std::find(discontinuous_spaces_.begin(), discontinuous_spaces_.end(),
1127                        discontinuous_space);
1128    DCHECK(it != discontinuous_spaces_.end());
1129    discontinuous_spaces_.erase(it);
1130  }
1131  if (space->IsAllocSpace()) {
1132    auto it = std::find(alloc_spaces_.begin(), alloc_spaces_.end(), space->AsAllocSpace());
1133    DCHECK(it != alloc_spaces_.end());
1134    alloc_spaces_.erase(it);
1135  }
1136}
1137
1138void Heap::DumpGcPerformanceInfo(std::ostream& os) {
1139  // Dump cumulative timings.
1140  os << "Dumping cumulative Gc timings\n";
1141  uint64_t total_duration = 0;
1142  // Dump cumulative loggers for each GC type.
1143  uint64_t total_paused_time = 0;
1144  for (auto& collector : garbage_collectors_) {
1145    total_duration += collector->GetCumulativeTimings().GetTotalNs();
1146    total_paused_time += collector->GetTotalPausedTimeNs();
1147    collector->DumpPerformanceInfo(os);
1148  }
1149  if (total_duration != 0) {
1150    const double total_seconds = static_cast<double>(total_duration / 1000) / 1000000.0;
1151    os << "Total time spent in GC: " << PrettyDuration(total_duration) << "\n";
1152    os << "Mean GC size throughput: "
1153       << PrettySize(GetBytesFreedEver() / total_seconds) << "/s\n";
1154    os << "Mean GC object throughput: "
1155       << (GetObjectsFreedEver() / total_seconds) << " objects/s\n";
1156  }
1157  uint64_t total_objects_allocated = GetObjectsAllocatedEver();
1158  os << "Total number of allocations " << total_objects_allocated << "\n";
1159  os << "Total bytes allocated " << PrettySize(GetBytesAllocatedEver()) << "\n";
1160  os << "Total bytes freed " << PrettySize(GetBytesFreedEver()) << "\n";
1161  os << "Free memory " << PrettySize(GetFreeMemory()) << "\n";
1162  os << "Free memory until GC " << PrettySize(GetFreeMemoryUntilGC()) << "\n";
1163  os << "Free memory until OOME " << PrettySize(GetFreeMemoryUntilOOME()) << "\n";
1164  os << "Total memory " << PrettySize(GetTotalMemory()) << "\n";
1165  os << "Max memory " << PrettySize(GetMaxMemory()) << "\n";
1166  if (HasZygoteSpace()) {
1167    os << "Zygote space size " << PrettySize(zygote_space_->Size()) << "\n";
1168  }
1169  os << "Total mutator paused time: " << PrettyDuration(total_paused_time) << "\n";
1170  os << "Total time waiting for GC to complete: " << PrettyDuration(total_wait_time_) << "\n";
1171  os << "Total GC count: " << GetGcCount() << "\n";
1172  os << "Total GC time: " << PrettyDuration(GetGcTime()) << "\n";
1173  os << "Total blocking GC count: " << GetBlockingGcCount() << "\n";
1174  os << "Total blocking GC time: " << PrettyDuration(GetBlockingGcTime()) << "\n";
1175
1176  {
1177    MutexLock mu(Thread::Current(), *gc_complete_lock_);
1178    if (gc_count_rate_histogram_.SampleSize() > 0U) {
1179      os << "Histogram of GC count per " << NsToMs(kGcCountRateHistogramWindowDuration) << " ms: ";
1180      gc_count_rate_histogram_.DumpBins(os);
1181      os << "\n";
1182    }
1183    if (blocking_gc_count_rate_histogram_.SampleSize() > 0U) {
1184      os << "Histogram of blocking GC count per "
1185         << NsToMs(kGcCountRateHistogramWindowDuration) << " ms: ";
1186      blocking_gc_count_rate_histogram_.DumpBins(os);
1187      os << "\n";
1188    }
1189  }
1190
1191  if (kDumpRosAllocStatsOnSigQuit && rosalloc_space_ != nullptr) {
1192    rosalloc_space_->DumpStats(os);
1193  }
1194
1195  {
1196    MutexLock mu(Thread::Current(), native_histogram_lock_);
1197    if (native_allocation_histogram_.SampleSize() > 0u) {
1198      os << "Histogram of native allocation ";
1199      native_allocation_histogram_.DumpBins(os);
1200      os << " bucket size " << native_allocation_histogram_.BucketWidth() << "\n";
1201    }
1202    if (native_free_histogram_.SampleSize() > 0u) {
1203      os << "Histogram of native free ";
1204      native_free_histogram_.DumpBins(os);
1205      os << " bucket size " << native_free_histogram_.BucketWidth() << "\n";
1206    }
1207  }
1208
1209  BaseMutex::DumpAll(os);
1210}
1211
1212void Heap::ResetGcPerformanceInfo() {
1213  for (auto& collector : garbage_collectors_) {
1214    collector->ResetMeasurements();
1215  }
1216  total_bytes_freed_ever_ = 0;
1217  total_objects_freed_ever_ = 0;
1218  total_wait_time_ = 0;
1219  blocking_gc_count_ = 0;
1220  blocking_gc_time_ = 0;
1221  gc_count_last_window_ = 0;
1222  blocking_gc_count_last_window_ = 0;
1223  last_update_time_gc_count_rate_histograms_ =  // Round down by the window duration.
1224      (NanoTime() / kGcCountRateHistogramWindowDuration) * kGcCountRateHistogramWindowDuration;
1225  {
1226    MutexLock mu(Thread::Current(), *gc_complete_lock_);
1227    gc_count_rate_histogram_.Reset();
1228    blocking_gc_count_rate_histogram_.Reset();
1229  }
1230}
1231
1232uint64_t Heap::GetGcCount() const {
1233  uint64_t gc_count = 0U;
1234  for (auto& collector : garbage_collectors_) {
1235    gc_count += collector->GetCumulativeTimings().GetIterations();
1236  }
1237  return gc_count;
1238}
1239
1240uint64_t Heap::GetGcTime() const {
1241  uint64_t gc_time = 0U;
1242  for (auto& collector : garbage_collectors_) {
1243    gc_time += collector->GetCumulativeTimings().GetTotalNs();
1244  }
1245  return gc_time;
1246}
1247
1248uint64_t Heap::GetBlockingGcCount() const {
1249  return blocking_gc_count_;
1250}
1251
1252uint64_t Heap::GetBlockingGcTime() const {
1253  return blocking_gc_time_;
1254}
1255
1256void Heap::DumpGcCountRateHistogram(std::ostream& os) const {
1257  MutexLock mu(Thread::Current(), *gc_complete_lock_);
1258  if (gc_count_rate_histogram_.SampleSize() > 0U) {
1259    gc_count_rate_histogram_.DumpBins(os);
1260  }
1261}
1262
1263void Heap::DumpBlockingGcCountRateHistogram(std::ostream& os) const {
1264  MutexLock mu(Thread::Current(), *gc_complete_lock_);
1265  if (blocking_gc_count_rate_histogram_.SampleSize() > 0U) {
1266    blocking_gc_count_rate_histogram_.DumpBins(os);
1267  }
1268}
1269
1270Heap::~Heap() {
1271  VLOG(heap) << "Starting ~Heap()";
1272  STLDeleteElements(&garbage_collectors_);
1273  // If we don't reset then the mark stack complains in its destructor.
1274  allocation_stack_->Reset();
1275  allocation_records_.reset();
1276  live_stack_->Reset();
1277  STLDeleteValues(&mod_union_tables_);
1278  STLDeleteValues(&remembered_sets_);
1279  STLDeleteElements(&continuous_spaces_);
1280  STLDeleteElements(&discontinuous_spaces_);
1281  delete gc_complete_lock_;
1282  delete thread_flip_lock_;
1283  delete pending_task_lock_;
1284  delete backtrace_lock_;
1285  if (unique_backtrace_count_.LoadRelaxed() != 0 || seen_backtrace_count_.LoadRelaxed() != 0) {
1286    LOG(INFO) << "gc stress unique=" << unique_backtrace_count_.LoadRelaxed()
1287        << " total=" << seen_backtrace_count_.LoadRelaxed() +
1288            unique_backtrace_count_.LoadRelaxed();
1289  }
1290  VLOG(heap) << "Finished ~Heap()";
1291}
1292
1293space::ContinuousSpace* Heap::FindContinuousSpaceFromObject(const mirror::Object* obj,
1294                                                            bool fail_ok) const {
1295  for (const auto& space : continuous_spaces_) {
1296    if (space->Contains(obj)) {
1297      return space;
1298    }
1299  }
1300  if (!fail_ok) {
1301    LOG(FATAL) << "object " << reinterpret_cast<const void*>(obj) << " not inside any spaces!";
1302  }
1303  return nullptr;
1304}
1305
1306space::DiscontinuousSpace* Heap::FindDiscontinuousSpaceFromObject(const mirror::Object* obj,
1307                                                                  bool fail_ok) const {
1308  for (const auto& space : discontinuous_spaces_) {
1309    if (space->Contains(obj)) {
1310      return space;
1311    }
1312  }
1313  if (!fail_ok) {
1314    LOG(FATAL) << "object " << reinterpret_cast<const void*>(obj) << " not inside any spaces!";
1315  }
1316  return nullptr;
1317}
1318
1319space::Space* Heap::FindSpaceFromObject(const mirror::Object* obj, bool fail_ok) const {
1320  space::Space* result = FindContinuousSpaceFromObject(obj, true);
1321  if (result != nullptr) {
1322    return result;
1323  }
1324  return FindDiscontinuousSpaceFromObject(obj, fail_ok);
1325}
1326
1327void Heap::ThrowOutOfMemoryError(Thread* self, size_t byte_count, AllocatorType allocator_type) {
1328  // If we're in a stack overflow, do not create a new exception. It would require running the
1329  // constructor, which will of course still be in a stack overflow.
1330  if (self->IsHandlingStackOverflow()) {
1331    self->SetException(Runtime::Current()->GetPreAllocatedOutOfMemoryError());
1332    return;
1333  }
1334
1335  std::ostringstream oss;
1336  size_t total_bytes_free = GetFreeMemory();
1337  oss << "Failed to allocate a " << byte_count << " byte allocation with " << total_bytes_free
1338      << " free bytes and " << PrettySize(GetFreeMemoryUntilOOME()) << " until OOM";
1339  // If the allocation failed due to fragmentation, print out the largest continuous allocation.
1340  if (total_bytes_free >= byte_count) {
1341    space::AllocSpace* space = nullptr;
1342    if (allocator_type == kAllocatorTypeNonMoving) {
1343      space = non_moving_space_;
1344    } else if (allocator_type == kAllocatorTypeRosAlloc ||
1345               allocator_type == kAllocatorTypeDlMalloc) {
1346      space = main_space_;
1347    } else if (allocator_type == kAllocatorTypeBumpPointer ||
1348               allocator_type == kAllocatorTypeTLAB) {
1349      space = bump_pointer_space_;
1350    } else if (allocator_type == kAllocatorTypeRegion ||
1351               allocator_type == kAllocatorTypeRegionTLAB) {
1352      space = region_space_;
1353    }
1354    if (space != nullptr) {
1355      space->LogFragmentationAllocFailure(oss, byte_count);
1356    }
1357  }
1358  self->ThrowOutOfMemoryError(oss.str().c_str());
1359}
1360
1361void Heap::DoPendingCollectorTransition() {
1362  CollectorType desired_collector_type = desired_collector_type_;
1363  // Launch homogeneous space compaction if it is desired.
1364  if (desired_collector_type == kCollectorTypeHomogeneousSpaceCompact) {
1365    if (!CareAboutPauseTimes()) {
1366      PerformHomogeneousSpaceCompact();
1367    } else {
1368      VLOG(gc) << "Homogeneous compaction ignored due to jank perceptible process state";
1369    }
1370  } else {
1371    TransitionCollector(desired_collector_type);
1372  }
1373}
1374
1375void Heap::Trim(Thread* self) {
1376  Runtime* const runtime = Runtime::Current();
1377  if (!CareAboutPauseTimes()) {
1378    // Deflate the monitors, this can cause a pause but shouldn't matter since we don't care
1379    // about pauses.
1380    ScopedTrace trace("Deflating monitors");
1381    ScopedSuspendAll ssa(__FUNCTION__);
1382    uint64_t start_time = NanoTime();
1383    size_t count = runtime->GetMonitorList()->DeflateMonitors();
1384    VLOG(heap) << "Deflating " << count << " monitors took "
1385        << PrettyDuration(NanoTime() - start_time);
1386  }
1387  TrimIndirectReferenceTables(self);
1388  TrimSpaces(self);
1389  // Trim arenas that may have been used by JIT or verifier.
1390  runtime->GetArenaPool()->TrimMaps();
1391}
1392
1393class TrimIndirectReferenceTableClosure : public Closure {
1394 public:
1395  explicit TrimIndirectReferenceTableClosure(Barrier* barrier) : barrier_(barrier) {
1396  }
1397  virtual void Run(Thread* thread) OVERRIDE NO_THREAD_SAFETY_ANALYSIS {
1398    thread->GetJniEnv()->locals.Trim();
1399    // If thread is a running mutator, then act on behalf of the trim thread.
1400    // See the code in ThreadList::RunCheckpoint.
1401    barrier_->Pass(Thread::Current());
1402  }
1403
1404 private:
1405  Barrier* const barrier_;
1406};
1407
1408void Heap::TrimIndirectReferenceTables(Thread* self) {
1409  ScopedObjectAccess soa(self);
1410  ScopedTrace trace(__PRETTY_FUNCTION__);
1411  JavaVMExt* vm = soa.Vm();
1412  // Trim globals indirect reference table.
1413  vm->TrimGlobals();
1414  // Trim locals indirect reference tables.
1415  Barrier barrier(0);
1416  TrimIndirectReferenceTableClosure closure(&barrier);
1417  ScopedThreadStateChange tsc(self, kWaitingForCheckPointsToRun);
1418  size_t barrier_count = Runtime::Current()->GetThreadList()->RunCheckpoint(&closure);
1419  if (barrier_count != 0) {
1420    barrier.Increment(self, barrier_count);
1421  }
1422}
1423
1424void Heap::StartGC(Thread* self, GcCause cause, CollectorType collector_type) {
1425  MutexLock mu(self, *gc_complete_lock_);
1426  // Ensure there is only one GC at a time.
1427  WaitForGcToCompleteLocked(cause, self);
1428  collector_type_running_ = collector_type;
1429}
1430
1431void Heap::TrimSpaces(Thread* self) {
1432  {
1433    // Need to do this before acquiring the locks since we don't want to get suspended while
1434    // holding any locks.
1435    ScopedThreadStateChange tsc(self, kWaitingForGcToComplete);
1436    // Pretend we are doing a GC to prevent background compaction from deleting the space we are
1437    // trimming.
1438    StartGC(self, kGcCauseTrim, kCollectorTypeHeapTrim);
1439  }
1440  ScopedTrace trace(__PRETTY_FUNCTION__);
1441  const uint64_t start_ns = NanoTime();
1442  // Trim the managed spaces.
1443  uint64_t total_alloc_space_allocated = 0;
1444  uint64_t total_alloc_space_size = 0;
1445  uint64_t managed_reclaimed = 0;
1446  {
1447    ScopedObjectAccess soa(self);
1448    for (const auto& space : continuous_spaces_) {
1449      if (space->IsMallocSpace()) {
1450        gc::space::MallocSpace* malloc_space = space->AsMallocSpace();
1451        if (malloc_space->IsRosAllocSpace() || !CareAboutPauseTimes()) {
1452          // Don't trim dlmalloc spaces if we care about pauses since this can hold the space lock
1453          // for a long period of time.
1454          managed_reclaimed += malloc_space->Trim();
1455        }
1456        total_alloc_space_size += malloc_space->Size();
1457      }
1458    }
1459  }
1460  total_alloc_space_allocated = GetBytesAllocated();
1461  if (large_object_space_ != nullptr) {
1462    total_alloc_space_allocated -= large_object_space_->GetBytesAllocated();
1463  }
1464  if (bump_pointer_space_ != nullptr) {
1465    total_alloc_space_allocated -= bump_pointer_space_->Size();
1466  }
1467  if (region_space_ != nullptr) {
1468    total_alloc_space_allocated -= region_space_->GetBytesAllocated();
1469  }
1470  const float managed_utilization = static_cast<float>(total_alloc_space_allocated) /
1471      static_cast<float>(total_alloc_space_size);
1472  uint64_t gc_heap_end_ns = NanoTime();
1473  // We never move things in the native heap, so we can finish the GC at this point.
1474  FinishGC(self, collector::kGcTypeNone);
1475
1476  VLOG(heap) << "Heap trim of managed (duration=" << PrettyDuration(gc_heap_end_ns - start_ns)
1477      << ", advised=" << PrettySize(managed_reclaimed) << ") heap. Managed heap utilization of "
1478      << static_cast<int>(100 * managed_utilization) << "%.";
1479}
1480
1481bool Heap::IsValidObjectAddress(const mirror::Object* obj) const {
1482  // Note: we deliberately don't take the lock here, and mustn't test anything that would require
1483  // taking the lock.
1484  if (obj == nullptr) {
1485    return true;
1486  }
1487  return IsAligned<kObjectAlignment>(obj) && FindSpaceFromObject(obj, true) != nullptr;
1488}
1489
1490bool Heap::IsNonDiscontinuousSpaceHeapAddress(const mirror::Object* obj) const {
1491  return FindContinuousSpaceFromObject(obj, true) != nullptr;
1492}
1493
1494bool Heap::IsValidContinuousSpaceObjectAddress(const mirror::Object* obj) const {
1495  if (obj == nullptr || !IsAligned<kObjectAlignment>(obj)) {
1496    return false;
1497  }
1498  for (const auto& space : continuous_spaces_) {
1499    if (space->HasAddress(obj)) {
1500      return true;
1501    }
1502  }
1503  return false;
1504}
1505
1506bool Heap::IsLiveObjectLocked(mirror::Object* obj, bool search_allocation_stack,
1507                              bool search_live_stack, bool sorted) {
1508  if (UNLIKELY(!IsAligned<kObjectAlignment>(obj))) {
1509    return false;
1510  }
1511  if (bump_pointer_space_ != nullptr && bump_pointer_space_->HasAddress(obj)) {
1512    mirror::Class* klass = obj->GetClass<kVerifyNone>();
1513    if (obj == klass) {
1514      // This case happens for java.lang.Class.
1515      return true;
1516    }
1517    return VerifyClassClass(klass) && IsLiveObjectLocked(klass);
1518  } else if (temp_space_ != nullptr && temp_space_->HasAddress(obj)) {
1519    // If we are in the allocated region of the temp space, then we are probably live (e.g. during
1520    // a GC). When a GC isn't running End() - Begin() is 0 which means no objects are contained.
1521    return temp_space_->Contains(obj);
1522  }
1523  if (region_space_ != nullptr && region_space_->HasAddress(obj)) {
1524    return true;
1525  }
1526  space::ContinuousSpace* c_space = FindContinuousSpaceFromObject(obj, true);
1527  space::DiscontinuousSpace* d_space = nullptr;
1528  if (c_space != nullptr) {
1529    if (c_space->GetLiveBitmap()->Test(obj)) {
1530      return true;
1531    }
1532  } else {
1533    d_space = FindDiscontinuousSpaceFromObject(obj, true);
1534    if (d_space != nullptr) {
1535      if (d_space->GetLiveBitmap()->Test(obj)) {
1536        return true;
1537      }
1538    }
1539  }
1540  // This is covering the allocation/live stack swapping that is done without mutators suspended.
1541  for (size_t i = 0; i < (sorted ? 1 : 5); ++i) {
1542    if (i > 0) {
1543      NanoSleep(MsToNs(10));
1544    }
1545    if (search_allocation_stack) {
1546      if (sorted) {
1547        if (allocation_stack_->ContainsSorted(obj)) {
1548          return true;
1549        }
1550      } else if (allocation_stack_->Contains(obj)) {
1551        return true;
1552      }
1553    }
1554
1555    if (search_live_stack) {
1556      if (sorted) {
1557        if (live_stack_->ContainsSorted(obj)) {
1558          return true;
1559        }
1560      } else if (live_stack_->Contains(obj)) {
1561        return true;
1562      }
1563    }
1564  }
1565  // We need to check the bitmaps again since there is a race where we mark something as live and
1566  // then clear the stack containing it.
1567  if (c_space != nullptr) {
1568    if (c_space->GetLiveBitmap()->Test(obj)) {
1569      return true;
1570    }
1571  } else {
1572    d_space = FindDiscontinuousSpaceFromObject(obj, true);
1573    if (d_space != nullptr && d_space->GetLiveBitmap()->Test(obj)) {
1574      return true;
1575    }
1576  }
1577  return false;
1578}
1579
1580std::string Heap::DumpSpaces() const {
1581  std::ostringstream oss;
1582  DumpSpaces(oss);
1583  return oss.str();
1584}
1585
1586void Heap::DumpSpaces(std::ostream& stream) const {
1587  for (const auto& space : continuous_spaces_) {
1588    accounting::ContinuousSpaceBitmap* live_bitmap = space->GetLiveBitmap();
1589    accounting::ContinuousSpaceBitmap* mark_bitmap = space->GetMarkBitmap();
1590    stream << space << " " << *space << "\n";
1591    if (live_bitmap != nullptr) {
1592      stream << live_bitmap << " " << *live_bitmap << "\n";
1593    }
1594    if (mark_bitmap != nullptr) {
1595      stream << mark_bitmap << " " << *mark_bitmap << "\n";
1596    }
1597  }
1598  for (const auto& space : discontinuous_spaces_) {
1599    stream << space << " " << *space << "\n";
1600  }
1601}
1602
1603void Heap::VerifyObjectBody(mirror::Object* obj) {
1604  if (verify_object_mode_ == kVerifyObjectModeDisabled) {
1605    return;
1606  }
1607
1608  // Ignore early dawn of the universe verifications.
1609  if (UNLIKELY(static_cast<size_t>(num_bytes_allocated_.LoadRelaxed()) < 10 * KB)) {
1610    return;
1611  }
1612  CHECK_ALIGNED(obj, kObjectAlignment) << "Object isn't aligned";
1613  mirror::Class* c = obj->GetFieldObject<mirror::Class, kVerifyNone>(mirror::Object::ClassOffset());
1614  CHECK(c != nullptr) << "Null class in object " << obj;
1615  CHECK_ALIGNED(c, kObjectAlignment) << "Class " << c << " not aligned in object " << obj;
1616  CHECK(VerifyClassClass(c));
1617
1618  if (verify_object_mode_ > kVerifyObjectModeFast) {
1619    // Note: the bitmap tests below are racy since we don't hold the heap bitmap lock.
1620    CHECK(IsLiveObjectLocked(obj)) << "Object is dead " << obj << "\n" << DumpSpaces();
1621  }
1622}
1623
1624void Heap::VerificationCallback(mirror::Object* obj, void* arg) {
1625  reinterpret_cast<Heap*>(arg)->VerifyObjectBody(obj);
1626}
1627
1628void Heap::VerifyHeap() {
1629  ReaderMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
1630  GetLiveBitmap()->Walk(Heap::VerificationCallback, this);
1631}
1632
1633void Heap::RecordFree(uint64_t freed_objects, int64_t freed_bytes) {
1634  // Use signed comparison since freed bytes can be negative when background compaction foreground
1635  // transitions occurs. This is caused by the moving objects from a bump pointer space to a
1636  // free list backed space typically increasing memory footprint due to padding and binning.
1637  DCHECK_LE(freed_bytes, static_cast<int64_t>(num_bytes_allocated_.LoadRelaxed()));
1638  // Note: This relies on 2s complement for handling negative freed_bytes.
1639  num_bytes_allocated_.FetchAndSubSequentiallyConsistent(static_cast<ssize_t>(freed_bytes));
1640  if (Runtime::Current()->HasStatsEnabled()) {
1641    RuntimeStats* thread_stats = Thread::Current()->GetStats();
1642    thread_stats->freed_objects += freed_objects;
1643    thread_stats->freed_bytes += freed_bytes;
1644    // TODO: Do this concurrently.
1645    RuntimeStats* global_stats = Runtime::Current()->GetStats();
1646    global_stats->freed_objects += freed_objects;
1647    global_stats->freed_bytes += freed_bytes;
1648  }
1649}
1650
1651void Heap::RecordFreeRevoke() {
1652  // Subtract num_bytes_freed_revoke_ from num_bytes_allocated_ to cancel out the
1653  // the ahead-of-time, bulk counting of bytes allocated in rosalloc thread-local buffers.
1654  // If there's a concurrent revoke, ok to not necessarily reset num_bytes_freed_revoke_
1655  // all the way to zero exactly as the remainder will be subtracted at the next GC.
1656  size_t bytes_freed = num_bytes_freed_revoke_.LoadSequentiallyConsistent();
1657  CHECK_GE(num_bytes_freed_revoke_.FetchAndSubSequentiallyConsistent(bytes_freed),
1658           bytes_freed) << "num_bytes_freed_revoke_ underflow";
1659  CHECK_GE(num_bytes_allocated_.FetchAndSubSequentiallyConsistent(bytes_freed),
1660           bytes_freed) << "num_bytes_allocated_ underflow";
1661  GetCurrentGcIteration()->SetFreedRevoke(bytes_freed);
1662}
1663
1664space::RosAllocSpace* Heap::GetRosAllocSpace(gc::allocator::RosAlloc* rosalloc) const {
1665  if (rosalloc_space_ != nullptr && rosalloc_space_->GetRosAlloc() == rosalloc) {
1666    return rosalloc_space_;
1667  }
1668  for (const auto& space : continuous_spaces_) {
1669    if (space->AsContinuousSpace()->IsRosAllocSpace()) {
1670      if (space->AsContinuousSpace()->AsRosAllocSpace()->GetRosAlloc() == rosalloc) {
1671        return space->AsContinuousSpace()->AsRosAllocSpace();
1672      }
1673    }
1674  }
1675  return nullptr;
1676}
1677
1678static inline bool EntrypointsInstrumented() SHARED_REQUIRES(Locks::mutator_lock_) {
1679  instrumentation::Instrumentation* const instrumentation =
1680      Runtime::Current()->GetInstrumentation();
1681  return instrumentation != nullptr && instrumentation->AllocEntrypointsInstrumented();
1682}
1683
1684mirror::Object* Heap::AllocateInternalWithGc(Thread* self,
1685                                             AllocatorType allocator,
1686                                             bool instrumented,
1687                                             size_t alloc_size,
1688                                             size_t* bytes_allocated,
1689                                             size_t* usable_size,
1690                                             size_t* bytes_tl_bulk_allocated,
1691                                             mirror::Class** klass) {
1692  bool was_default_allocator = allocator == GetCurrentAllocator();
1693  // Make sure there is no pending exception since we may need to throw an OOME.
1694  self->AssertNoPendingException();
1695  DCHECK(klass != nullptr);
1696  StackHandleScope<1> hs(self);
1697  HandleWrapper<mirror::Class> h(hs.NewHandleWrapper(klass));
1698  klass = nullptr;  // Invalidate for safety.
1699  // The allocation failed. If the GC is running, block until it completes, and then retry the
1700  // allocation.
1701  collector::GcType last_gc = WaitForGcToComplete(kGcCauseForAlloc, self);
1702  // If we were the default allocator but the allocator changed while we were suspended,
1703  // abort the allocation.
1704  if ((was_default_allocator && allocator != GetCurrentAllocator()) ||
1705      (!instrumented && EntrypointsInstrumented())) {
1706    return nullptr;
1707  }
1708  if (last_gc != collector::kGcTypeNone) {
1709    // A GC was in progress and we blocked, retry allocation now that memory has been freed.
1710    mirror::Object* ptr = TryToAllocate<true, false>(self, allocator, alloc_size, bytes_allocated,
1711                                                     usable_size, bytes_tl_bulk_allocated);
1712    if (ptr != nullptr) {
1713      return ptr;
1714    }
1715  }
1716
1717  collector::GcType tried_type = next_gc_type_;
1718  const bool gc_ran =
1719      CollectGarbageInternal(tried_type, kGcCauseForAlloc, false) != collector::kGcTypeNone;
1720  if ((was_default_allocator && allocator != GetCurrentAllocator()) ||
1721      (!instrumented && EntrypointsInstrumented())) {
1722    return nullptr;
1723  }
1724  if (gc_ran) {
1725    mirror::Object* ptr = TryToAllocate<true, false>(self, allocator, alloc_size, bytes_allocated,
1726                                                     usable_size, bytes_tl_bulk_allocated);
1727    if (ptr != nullptr) {
1728      return ptr;
1729    }
1730  }
1731
1732  // Loop through our different Gc types and try to Gc until we get enough free memory.
1733  for (collector::GcType gc_type : gc_plan_) {
1734    if (gc_type == tried_type) {
1735      continue;
1736    }
1737    // Attempt to run the collector, if we succeed, re-try the allocation.
1738    const bool plan_gc_ran =
1739        CollectGarbageInternal(gc_type, kGcCauseForAlloc, false) != collector::kGcTypeNone;
1740    if ((was_default_allocator && allocator != GetCurrentAllocator()) ||
1741        (!instrumented && EntrypointsInstrumented())) {
1742      return nullptr;
1743    }
1744    if (plan_gc_ran) {
1745      // Did we free sufficient memory for the allocation to succeed?
1746      mirror::Object* ptr = TryToAllocate<true, false>(self, allocator, alloc_size, bytes_allocated,
1747                                                       usable_size, bytes_tl_bulk_allocated);
1748      if (ptr != nullptr) {
1749        return ptr;
1750      }
1751    }
1752  }
1753  // Allocations have failed after GCs;  this is an exceptional state.
1754  // Try harder, growing the heap if necessary.
1755  mirror::Object* ptr = TryToAllocate<true, true>(self, allocator, alloc_size, bytes_allocated,
1756                                                  usable_size, bytes_tl_bulk_allocated);
1757  if (ptr != nullptr) {
1758    return ptr;
1759  }
1760  // Most allocations should have succeeded by now, so the heap is really full, really fragmented,
1761  // or the requested size is really big. Do another GC, collecting SoftReferences this time. The
1762  // VM spec requires that all SoftReferences have been collected and cleared before throwing
1763  // OOME.
1764  VLOG(gc) << "Forcing collection of SoftReferences for " << PrettySize(alloc_size)
1765           << " allocation";
1766  // TODO: Run finalization, but this may cause more allocations to occur.
1767  // We don't need a WaitForGcToComplete here either.
1768  DCHECK(!gc_plan_.empty());
1769  CollectGarbageInternal(gc_plan_.back(), kGcCauseForAlloc, true);
1770  if ((was_default_allocator && allocator != GetCurrentAllocator()) ||
1771      (!instrumented && EntrypointsInstrumented())) {
1772    return nullptr;
1773  }
1774  ptr = TryToAllocate<true, true>(self, allocator, alloc_size, bytes_allocated, usable_size,
1775                                  bytes_tl_bulk_allocated);
1776  if (ptr == nullptr) {
1777    const uint64_t current_time = NanoTime();
1778    switch (allocator) {
1779      case kAllocatorTypeRosAlloc:
1780        // Fall-through.
1781      case kAllocatorTypeDlMalloc: {
1782        if (use_homogeneous_space_compaction_for_oom_ &&
1783            current_time - last_time_homogeneous_space_compaction_by_oom_ >
1784            min_interval_homogeneous_space_compaction_by_oom_) {
1785          last_time_homogeneous_space_compaction_by_oom_ = current_time;
1786          HomogeneousSpaceCompactResult result = PerformHomogeneousSpaceCompact();
1787          // Thread suspension could have occurred.
1788          if ((was_default_allocator && allocator != GetCurrentAllocator()) ||
1789              (!instrumented && EntrypointsInstrumented())) {
1790            return nullptr;
1791          }
1792          switch (result) {
1793            case HomogeneousSpaceCompactResult::kSuccess:
1794              // If the allocation succeeded, we delayed an oom.
1795              ptr = TryToAllocate<true, true>(self, allocator, alloc_size, bytes_allocated,
1796                                              usable_size, bytes_tl_bulk_allocated);
1797              if (ptr != nullptr) {
1798                count_delayed_oom_++;
1799              }
1800              break;
1801            case HomogeneousSpaceCompactResult::kErrorReject:
1802              // Reject due to disabled moving GC.
1803              break;
1804            case HomogeneousSpaceCompactResult::kErrorVMShuttingDown:
1805              // Throw OOM by default.
1806              break;
1807            default: {
1808              UNIMPLEMENTED(FATAL) << "homogeneous space compaction result: "
1809                  << static_cast<size_t>(result);
1810              UNREACHABLE();
1811            }
1812          }
1813          // Always print that we ran homogeneous space compation since this can cause jank.
1814          VLOG(heap) << "Ran heap homogeneous space compaction, "
1815                    << " requested defragmentation "
1816                    << count_requested_homogeneous_space_compaction_.LoadSequentiallyConsistent()
1817                    << " performed defragmentation "
1818                    << count_performed_homogeneous_space_compaction_.LoadSequentiallyConsistent()
1819                    << " ignored homogeneous space compaction "
1820                    << count_ignored_homogeneous_space_compaction_.LoadSequentiallyConsistent()
1821                    << " delayed count = "
1822                    << count_delayed_oom_.LoadSequentiallyConsistent();
1823        }
1824        break;
1825      }
1826      case kAllocatorTypeNonMoving: {
1827        // Try to transition the heap if the allocation failure was due to the space being full.
1828        if (!IsOutOfMemoryOnAllocation<false>(allocator, alloc_size)) {
1829          // If we aren't out of memory then the OOM was probably from the non moving space being
1830          // full. Attempt to disable compaction and turn the main space into a non moving space.
1831          DisableMovingGc();
1832          // Thread suspension could have occurred.
1833          if ((was_default_allocator && allocator != GetCurrentAllocator()) ||
1834              (!instrumented && EntrypointsInstrumented())) {
1835            return nullptr;
1836          }
1837          // If we are still a moving GC then something must have caused the transition to fail.
1838          if (IsMovingGc(collector_type_)) {
1839            MutexLock mu(self, *gc_complete_lock_);
1840            // If we couldn't disable moving GC, just throw OOME and return null.
1841            LOG(WARNING) << "Couldn't disable moving GC with disable GC count "
1842                         << disable_moving_gc_count_;
1843          } else {
1844            LOG(WARNING) << "Disabled moving GC due to the non moving space being full";
1845            ptr = TryToAllocate<true, true>(self, allocator, alloc_size, bytes_allocated,
1846                                            usable_size, bytes_tl_bulk_allocated);
1847          }
1848        }
1849        break;
1850      }
1851      default: {
1852        // Do nothing for others allocators.
1853      }
1854    }
1855  }
1856  // If the allocation hasn't succeeded by this point, throw an OOM error.
1857  if (ptr == nullptr) {
1858    ThrowOutOfMemoryError(self, alloc_size, allocator);
1859  }
1860  return ptr;
1861}
1862
1863void Heap::SetTargetHeapUtilization(float target) {
1864  DCHECK_GT(target, 0.0f);  // asserted in Java code
1865  DCHECK_LT(target, 1.0f);
1866  target_utilization_ = target;
1867}
1868
1869size_t Heap::GetObjectsAllocated() const {
1870  Thread* const self = Thread::Current();
1871  ScopedThreadStateChange tsc(self, kWaitingForGetObjectsAllocated);
1872  // Need SuspendAll here to prevent lock violation if RosAlloc does it during InspectAll.
1873  ScopedSuspendAll ssa(__FUNCTION__);
1874  ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
1875  size_t total = 0;
1876  for (space::AllocSpace* space : alloc_spaces_) {
1877    total += space->GetObjectsAllocated();
1878  }
1879  return total;
1880}
1881
1882uint64_t Heap::GetObjectsAllocatedEver() const {
1883  uint64_t total = GetObjectsFreedEver();
1884  // If we are detached, we can't use GetObjectsAllocated since we can't change thread states.
1885  if (Thread::Current() != nullptr) {
1886    total += GetObjectsAllocated();
1887  }
1888  return total;
1889}
1890
1891uint64_t Heap::GetBytesAllocatedEver() const {
1892  return GetBytesFreedEver() + GetBytesAllocated();
1893}
1894
1895class InstanceCounter {
1896 public:
1897  InstanceCounter(const std::vector<mirror::Class*>& classes,
1898                  bool use_is_assignable_from,
1899                  uint64_t* counts)
1900      SHARED_REQUIRES(Locks::mutator_lock_)
1901      : classes_(classes), use_is_assignable_from_(use_is_assignable_from), counts_(counts) {}
1902
1903  static void Callback(mirror::Object* obj, void* arg)
1904      SHARED_REQUIRES(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
1905    InstanceCounter* instance_counter = reinterpret_cast<InstanceCounter*>(arg);
1906    mirror::Class* instance_class = obj->GetClass();
1907    CHECK(instance_class != nullptr);
1908    for (size_t i = 0; i < instance_counter->classes_.size(); ++i) {
1909      mirror::Class* klass = instance_counter->classes_[i];
1910      if (instance_counter->use_is_assignable_from_) {
1911        if (klass != nullptr && klass->IsAssignableFrom(instance_class)) {
1912          ++instance_counter->counts_[i];
1913        }
1914      } else if (instance_class == klass) {
1915        ++instance_counter->counts_[i];
1916      }
1917    }
1918  }
1919
1920 private:
1921  const std::vector<mirror::Class*>& classes_;
1922  bool use_is_assignable_from_;
1923  uint64_t* const counts_;
1924  DISALLOW_COPY_AND_ASSIGN(InstanceCounter);
1925};
1926
1927void Heap::CountInstances(const std::vector<mirror::Class*>& classes, bool use_is_assignable_from,
1928                          uint64_t* counts) {
1929  InstanceCounter counter(classes, use_is_assignable_from, counts);
1930  VisitObjects(InstanceCounter::Callback, &counter);
1931}
1932
1933class InstanceCollector {
1934 public:
1935  InstanceCollector(mirror::Class* c, int32_t max_count, std::vector<mirror::Object*>& instances)
1936      SHARED_REQUIRES(Locks::mutator_lock_)
1937      : class_(c), max_count_(max_count), instances_(instances) {
1938  }
1939  static void Callback(mirror::Object* obj, void* arg)
1940      SHARED_REQUIRES(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
1941    DCHECK(arg != nullptr);
1942    InstanceCollector* instance_collector = reinterpret_cast<InstanceCollector*>(arg);
1943    if (obj->GetClass() == instance_collector->class_) {
1944      if (instance_collector->max_count_ == 0 ||
1945          instance_collector->instances_.size() < instance_collector->max_count_) {
1946        instance_collector->instances_.push_back(obj);
1947      }
1948    }
1949  }
1950
1951 private:
1952  const mirror::Class* const class_;
1953  const uint32_t max_count_;
1954  std::vector<mirror::Object*>& instances_;
1955  DISALLOW_COPY_AND_ASSIGN(InstanceCollector);
1956};
1957
1958void Heap::GetInstances(mirror::Class* c,
1959                        int32_t max_count,
1960                        std::vector<mirror::Object*>& instances) {
1961  InstanceCollector collector(c, max_count, instances);
1962  VisitObjects(&InstanceCollector::Callback, &collector);
1963}
1964
1965class ReferringObjectsFinder {
1966 public:
1967  ReferringObjectsFinder(mirror::Object* object,
1968                         int32_t max_count,
1969                         std::vector<mirror::Object*>& referring_objects)
1970      SHARED_REQUIRES(Locks::mutator_lock_)
1971      : object_(object), max_count_(max_count), referring_objects_(referring_objects) {
1972  }
1973
1974  static void Callback(mirror::Object* obj, void* arg)
1975      SHARED_REQUIRES(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
1976    reinterpret_cast<ReferringObjectsFinder*>(arg)->operator()(obj);
1977  }
1978
1979  // For bitmap Visit.
1980  // TODO: Fix lock analysis to not use NO_THREAD_SAFETY_ANALYSIS, requires support for
1981  // annotalysis on visitors.
1982  void operator()(mirror::Object* o) const NO_THREAD_SAFETY_ANALYSIS {
1983    o->VisitReferences(*this, VoidFunctor());
1984  }
1985
1986  // For Object::VisitReferences.
1987  void operator()(mirror::Object* obj, MemberOffset offset, bool is_static ATTRIBUTE_UNUSED) const
1988      SHARED_REQUIRES(Locks::mutator_lock_) {
1989    mirror::Object* ref = obj->GetFieldObject<mirror::Object>(offset);
1990    if (ref == object_ && (max_count_ == 0 || referring_objects_.size() < max_count_)) {
1991      referring_objects_.push_back(obj);
1992    }
1993  }
1994
1995  void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root ATTRIBUTE_UNUSED)
1996      const {}
1997  void VisitRoot(mirror::CompressedReference<mirror::Object>* root ATTRIBUTE_UNUSED) const {}
1998
1999 private:
2000  const mirror::Object* const object_;
2001  const uint32_t max_count_;
2002  std::vector<mirror::Object*>& referring_objects_;
2003  DISALLOW_COPY_AND_ASSIGN(ReferringObjectsFinder);
2004};
2005
2006void Heap::GetReferringObjects(mirror::Object* o, int32_t max_count,
2007                               std::vector<mirror::Object*>& referring_objects) {
2008  ReferringObjectsFinder finder(o, max_count, referring_objects);
2009  VisitObjects(&ReferringObjectsFinder::Callback, &finder);
2010}
2011
2012void Heap::CollectGarbage(bool clear_soft_references) {
2013  // Even if we waited for a GC we still need to do another GC since weaks allocated during the
2014  // last GC will not have necessarily been cleared.
2015  CollectGarbageInternal(gc_plan_.back(), kGcCauseExplicit, clear_soft_references);
2016}
2017
2018bool Heap::SupportHomogeneousSpaceCompactAndCollectorTransitions() const {
2019  return main_space_backup_.get() != nullptr && main_space_ != nullptr &&
2020      foreground_collector_type_ == kCollectorTypeCMS;
2021}
2022
2023HomogeneousSpaceCompactResult Heap::PerformHomogeneousSpaceCompact() {
2024  Thread* self = Thread::Current();
2025  // Inc requested homogeneous space compaction.
2026  count_requested_homogeneous_space_compaction_++;
2027  // Store performed homogeneous space compaction at a new request arrival.
2028  ScopedThreadStateChange tsc(self, kWaitingPerformingGc);
2029  Locks::mutator_lock_->AssertNotHeld(self);
2030  {
2031    ScopedThreadStateChange tsc2(self, kWaitingForGcToComplete);
2032    MutexLock mu(self, *gc_complete_lock_);
2033    // Ensure there is only one GC at a time.
2034    WaitForGcToCompleteLocked(kGcCauseHomogeneousSpaceCompact, self);
2035    // Homogeneous space compaction is a copying transition, can't run it if the moving GC disable count
2036    // is non zero.
2037    // If the collector type changed to something which doesn't benefit from homogeneous space compaction,
2038    // exit.
2039    if (disable_moving_gc_count_ != 0 || IsMovingGc(collector_type_) ||
2040        !main_space_->CanMoveObjects()) {
2041      return kErrorReject;
2042    }
2043    if (!SupportHomogeneousSpaceCompactAndCollectorTransitions()) {
2044      return kErrorUnsupported;
2045    }
2046    collector_type_running_ = kCollectorTypeHomogeneousSpaceCompact;
2047  }
2048  if (Runtime::Current()->IsShuttingDown(self)) {
2049    // Don't allow heap transitions to happen if the runtime is shutting down since these can
2050    // cause objects to get finalized.
2051    FinishGC(self, collector::kGcTypeNone);
2052    return HomogeneousSpaceCompactResult::kErrorVMShuttingDown;
2053  }
2054  collector::GarbageCollector* collector;
2055  {
2056    ScopedSuspendAll ssa(__FUNCTION__);
2057    uint64_t start_time = NanoTime();
2058    // Launch compaction.
2059    space::MallocSpace* to_space = main_space_backup_.release();
2060    space::MallocSpace* from_space = main_space_;
2061    to_space->GetMemMap()->Protect(PROT_READ | PROT_WRITE);
2062    const uint64_t space_size_before_compaction = from_space->Size();
2063    AddSpace(to_space);
2064    // Make sure that we will have enough room to copy.
2065    CHECK_GE(to_space->GetFootprintLimit(), from_space->GetFootprintLimit());
2066    collector = Compact(to_space, from_space, kGcCauseHomogeneousSpaceCompact);
2067    const uint64_t space_size_after_compaction = to_space->Size();
2068    main_space_ = to_space;
2069    main_space_backup_.reset(from_space);
2070    RemoveSpace(from_space);
2071    SetSpaceAsDefault(main_space_);  // Set as default to reset the proper dlmalloc space.
2072    // Update performed homogeneous space compaction count.
2073    count_performed_homogeneous_space_compaction_++;
2074    // Print statics log and resume all threads.
2075    uint64_t duration = NanoTime() - start_time;
2076    VLOG(heap) << "Heap homogeneous space compaction took " << PrettyDuration(duration) << " size: "
2077               << PrettySize(space_size_before_compaction) << " -> "
2078               << PrettySize(space_size_after_compaction) << " compact-ratio: "
2079               << std::fixed << static_cast<double>(space_size_after_compaction) /
2080               static_cast<double>(space_size_before_compaction);
2081  }
2082  // Finish GC.
2083  reference_processor_->EnqueueClearedReferences(self);
2084  GrowForUtilization(semi_space_collector_);
2085  LogGC(kGcCauseHomogeneousSpaceCompact, collector);
2086  FinishGC(self, collector::kGcTypeFull);
2087  {
2088    ScopedObjectAccess soa(self);
2089    soa.Vm()->UnloadNativeLibraries();
2090  }
2091  return HomogeneousSpaceCompactResult::kSuccess;
2092}
2093
2094void Heap::TransitionCollector(CollectorType collector_type) {
2095  if (collector_type == collector_type_) {
2096    return;
2097  }
2098  VLOG(heap) << "TransitionCollector: " << static_cast<int>(collector_type_)
2099             << " -> " << static_cast<int>(collector_type);
2100  uint64_t start_time = NanoTime();
2101  uint32_t before_allocated = num_bytes_allocated_.LoadSequentiallyConsistent();
2102  Runtime* const runtime = Runtime::Current();
2103  Thread* const self = Thread::Current();
2104  ScopedThreadStateChange tsc(self, kWaitingPerformingGc);
2105  Locks::mutator_lock_->AssertNotHeld(self);
2106  // Busy wait until we can GC (StartGC can fail if we have a non-zero
2107  // compacting_gc_disable_count_, this should rarely occurs).
2108  for (;;) {
2109    {
2110      ScopedThreadStateChange tsc2(self, kWaitingForGcToComplete);
2111      MutexLock mu(self, *gc_complete_lock_);
2112      // Ensure there is only one GC at a time.
2113      WaitForGcToCompleteLocked(kGcCauseCollectorTransition, self);
2114      // Currently we only need a heap transition if we switch from a moving collector to a
2115      // non-moving one, or visa versa.
2116      const bool copying_transition = IsMovingGc(collector_type_) != IsMovingGc(collector_type);
2117      // If someone else beat us to it and changed the collector before we could, exit.
2118      // This is safe to do before the suspend all since we set the collector_type_running_ before
2119      // we exit the loop. If another thread attempts to do the heap transition before we exit,
2120      // then it would get blocked on WaitForGcToCompleteLocked.
2121      if (collector_type == collector_type_) {
2122        return;
2123      }
2124      // GC can be disabled if someone has a used GetPrimitiveArrayCritical but not yet released.
2125      if (!copying_transition || disable_moving_gc_count_ == 0) {
2126        // TODO: Not hard code in semi-space collector?
2127        collector_type_running_ = copying_transition ? kCollectorTypeSS : collector_type;
2128        break;
2129      }
2130    }
2131    usleep(1000);
2132  }
2133  if (runtime->IsShuttingDown(self)) {
2134    // Don't allow heap transitions to happen if the runtime is shutting down since these can
2135    // cause objects to get finalized.
2136    FinishGC(self, collector::kGcTypeNone);
2137    return;
2138  }
2139  collector::GarbageCollector* collector = nullptr;
2140  {
2141    ScopedSuspendAll ssa(__FUNCTION__);
2142    switch (collector_type) {
2143      case kCollectorTypeSS: {
2144        if (!IsMovingGc(collector_type_)) {
2145          // Create the bump pointer space from the backup space.
2146          CHECK(main_space_backup_ != nullptr);
2147          std::unique_ptr<MemMap> mem_map(main_space_backup_->ReleaseMemMap());
2148          // We are transitioning from non moving GC -> moving GC, since we copied from the bump
2149          // pointer space last transition it will be protected.
2150          CHECK(mem_map != nullptr);
2151          mem_map->Protect(PROT_READ | PROT_WRITE);
2152          bump_pointer_space_ = space::BumpPointerSpace::CreateFromMemMap("Bump pointer space",
2153                                                                          mem_map.release());
2154          AddSpace(bump_pointer_space_);
2155          collector = Compact(bump_pointer_space_, main_space_, kGcCauseCollectorTransition);
2156          // Use the now empty main space mem map for the bump pointer temp space.
2157          mem_map.reset(main_space_->ReleaseMemMap());
2158          // Unset the pointers just in case.
2159          if (dlmalloc_space_ == main_space_) {
2160            dlmalloc_space_ = nullptr;
2161          } else if (rosalloc_space_ == main_space_) {
2162            rosalloc_space_ = nullptr;
2163          }
2164          // Remove the main space so that we don't try to trim it, this doens't work for debug
2165          // builds since RosAlloc attempts to read the magic number from a protected page.
2166          RemoveSpace(main_space_);
2167          RemoveRememberedSet(main_space_);
2168          delete main_space_;  // Delete the space since it has been removed.
2169          main_space_ = nullptr;
2170          RemoveRememberedSet(main_space_backup_.get());
2171          main_space_backup_.reset(nullptr);  // Deletes the space.
2172          temp_space_ = space::BumpPointerSpace::CreateFromMemMap("Bump pointer space 2",
2173                                                                  mem_map.release());
2174          AddSpace(temp_space_);
2175        }
2176        break;
2177      }
2178      case kCollectorTypeMS:
2179        // Fall through.
2180      case kCollectorTypeCMS: {
2181        if (IsMovingGc(collector_type_)) {
2182          CHECK(temp_space_ != nullptr);
2183          std::unique_ptr<MemMap> mem_map(temp_space_->ReleaseMemMap());
2184          RemoveSpace(temp_space_);
2185          temp_space_ = nullptr;
2186          mem_map->Protect(PROT_READ | PROT_WRITE);
2187          CreateMainMallocSpace(mem_map.get(),
2188                                kDefaultInitialSize,
2189                                std::min(mem_map->Size(), growth_limit_),
2190                                mem_map->Size());
2191          mem_map.release();
2192          // Compact to the main space from the bump pointer space, don't need to swap semispaces.
2193          AddSpace(main_space_);
2194          collector = Compact(main_space_, bump_pointer_space_, kGcCauseCollectorTransition);
2195          mem_map.reset(bump_pointer_space_->ReleaseMemMap());
2196          RemoveSpace(bump_pointer_space_);
2197          bump_pointer_space_ = nullptr;
2198          const char* name = kUseRosAlloc ? kRosAllocSpaceName[1] : kDlMallocSpaceName[1];
2199          // Temporarily unprotect the backup mem map so rosalloc can write the debug magic number.
2200          if (kIsDebugBuild && kUseRosAlloc) {
2201            mem_map->Protect(PROT_READ | PROT_WRITE);
2202          }
2203          main_space_backup_.reset(CreateMallocSpaceFromMemMap(
2204              mem_map.get(),
2205              kDefaultInitialSize,
2206              std::min(mem_map->Size(), growth_limit_),
2207              mem_map->Size(),
2208              name,
2209              true));
2210          if (kIsDebugBuild && kUseRosAlloc) {
2211            mem_map->Protect(PROT_NONE);
2212          }
2213          mem_map.release();
2214        }
2215        break;
2216      }
2217      default: {
2218        LOG(FATAL) << "Attempted to transition to invalid collector type "
2219                   << static_cast<size_t>(collector_type);
2220        break;
2221      }
2222    }
2223    ChangeCollector(collector_type);
2224  }
2225  // Can't call into java code with all threads suspended.
2226  reference_processor_->EnqueueClearedReferences(self);
2227  uint64_t duration = NanoTime() - start_time;
2228  GrowForUtilization(semi_space_collector_);
2229  DCHECK(collector != nullptr);
2230  LogGC(kGcCauseCollectorTransition, collector);
2231  FinishGC(self, collector::kGcTypeFull);
2232  {
2233    ScopedObjectAccess soa(self);
2234    soa.Vm()->UnloadNativeLibraries();
2235  }
2236  int32_t after_allocated = num_bytes_allocated_.LoadSequentiallyConsistent();
2237  int32_t delta_allocated = before_allocated - after_allocated;
2238  std::string saved_str;
2239  if (delta_allocated >= 0) {
2240    saved_str = " saved at least " + PrettySize(delta_allocated);
2241  } else {
2242    saved_str = " expanded " + PrettySize(-delta_allocated);
2243  }
2244  VLOG(heap) << "Collector transition to " << collector_type << " took "
2245             << PrettyDuration(duration) << saved_str;
2246}
2247
2248void Heap::ChangeCollector(CollectorType collector_type) {
2249  // TODO: Only do this with all mutators suspended to avoid races.
2250  if (collector_type != collector_type_) {
2251    if (collector_type == kCollectorTypeMC) {
2252      // Don't allow mark compact unless support is compiled in.
2253      CHECK(kMarkCompactSupport);
2254    }
2255    collector_type_ = collector_type;
2256    gc_plan_.clear();
2257    switch (collector_type_) {
2258      case kCollectorTypeCC: {
2259        gc_plan_.push_back(collector::kGcTypeFull);
2260        if (use_tlab_) {
2261          ChangeAllocator(kAllocatorTypeRegionTLAB);
2262        } else {
2263          ChangeAllocator(kAllocatorTypeRegion);
2264        }
2265        break;
2266      }
2267      case kCollectorTypeMC:  // Fall-through.
2268      case kCollectorTypeSS:  // Fall-through.
2269      case kCollectorTypeGSS: {
2270        gc_plan_.push_back(collector::kGcTypeFull);
2271        if (use_tlab_) {
2272          ChangeAllocator(kAllocatorTypeTLAB);
2273        } else {
2274          ChangeAllocator(kAllocatorTypeBumpPointer);
2275        }
2276        break;
2277      }
2278      case kCollectorTypeMS: {
2279        gc_plan_.push_back(collector::kGcTypeSticky);
2280        gc_plan_.push_back(collector::kGcTypePartial);
2281        gc_plan_.push_back(collector::kGcTypeFull);
2282        ChangeAllocator(kUseRosAlloc ? kAllocatorTypeRosAlloc : kAllocatorTypeDlMalloc);
2283        break;
2284      }
2285      case kCollectorTypeCMS: {
2286        gc_plan_.push_back(collector::kGcTypeSticky);
2287        gc_plan_.push_back(collector::kGcTypePartial);
2288        gc_plan_.push_back(collector::kGcTypeFull);
2289        ChangeAllocator(kUseRosAlloc ? kAllocatorTypeRosAlloc : kAllocatorTypeDlMalloc);
2290        break;
2291      }
2292      default: {
2293        UNIMPLEMENTED(FATAL);
2294        UNREACHABLE();
2295      }
2296    }
2297    if (IsGcConcurrent()) {
2298      concurrent_start_bytes_ =
2299          std::max(max_allowed_footprint_, kMinConcurrentRemainingBytes) - kMinConcurrentRemainingBytes;
2300    } else {
2301      concurrent_start_bytes_ = std::numeric_limits<size_t>::max();
2302    }
2303  }
2304}
2305
2306// Special compacting collector which uses sub-optimal bin packing to reduce zygote space size.
2307class ZygoteCompactingCollector FINAL : public collector::SemiSpace {
2308 public:
2309  ZygoteCompactingCollector(gc::Heap* heap, bool is_running_on_memory_tool)
2310      : SemiSpace(heap, false, "zygote collector"),
2311        bin_live_bitmap_(nullptr),
2312        bin_mark_bitmap_(nullptr),
2313        is_running_on_memory_tool_(is_running_on_memory_tool) {}
2314
2315  void BuildBins(space::ContinuousSpace* space) {
2316    bin_live_bitmap_ = space->GetLiveBitmap();
2317    bin_mark_bitmap_ = space->GetMarkBitmap();
2318    BinContext context;
2319    context.prev_ = reinterpret_cast<uintptr_t>(space->Begin());
2320    context.collector_ = this;
2321    WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
2322    // Note: This requires traversing the space in increasing order of object addresses.
2323    bin_live_bitmap_->Walk(Callback, reinterpret_cast<void*>(&context));
2324    // Add the last bin which spans after the last object to the end of the space.
2325    AddBin(reinterpret_cast<uintptr_t>(space->End()) - context.prev_, context.prev_);
2326  }
2327
2328 private:
2329  struct BinContext {
2330    uintptr_t prev_;  // The end of the previous object.
2331    ZygoteCompactingCollector* collector_;
2332  };
2333  // Maps from bin sizes to locations.
2334  std::multimap<size_t, uintptr_t> bins_;
2335  // Live bitmap of the space which contains the bins.
2336  accounting::ContinuousSpaceBitmap* bin_live_bitmap_;
2337  // Mark bitmap of the space which contains the bins.
2338  accounting::ContinuousSpaceBitmap* bin_mark_bitmap_;
2339  const bool is_running_on_memory_tool_;
2340
2341  static void Callback(mirror::Object* obj, void* arg)
2342      SHARED_REQUIRES(Locks::mutator_lock_) {
2343    DCHECK(arg != nullptr);
2344    BinContext* context = reinterpret_cast<BinContext*>(arg);
2345    ZygoteCompactingCollector* collector = context->collector_;
2346    uintptr_t object_addr = reinterpret_cast<uintptr_t>(obj);
2347    size_t bin_size = object_addr - context->prev_;
2348    // Add the bin consisting of the end of the previous object to the start of the current object.
2349    collector->AddBin(bin_size, context->prev_);
2350    context->prev_ = object_addr + RoundUp(obj->SizeOf(), kObjectAlignment);
2351  }
2352
2353  void AddBin(size_t size, uintptr_t position) {
2354    if (is_running_on_memory_tool_) {
2355      MEMORY_TOOL_MAKE_DEFINED(reinterpret_cast<void*>(position), size);
2356    }
2357    if (size != 0) {
2358      bins_.insert(std::make_pair(size, position));
2359    }
2360  }
2361
2362  virtual bool ShouldSweepSpace(space::ContinuousSpace* space ATTRIBUTE_UNUSED) const {
2363    // Don't sweep any spaces since we probably blasted the internal accounting of the free list
2364    // allocator.
2365    return false;
2366  }
2367
2368  virtual mirror::Object* MarkNonForwardedObject(mirror::Object* obj)
2369      REQUIRES(Locks::heap_bitmap_lock_, Locks::mutator_lock_) {
2370    size_t obj_size = obj->SizeOf();
2371    size_t alloc_size = RoundUp(obj_size, kObjectAlignment);
2372    mirror::Object* forward_address;
2373    // Find the smallest bin which we can move obj in.
2374    auto it = bins_.lower_bound(alloc_size);
2375    if (it == bins_.end()) {
2376      // No available space in the bins, place it in the target space instead (grows the zygote
2377      // space).
2378      size_t bytes_allocated, dummy;
2379      forward_address = to_space_->Alloc(self_, alloc_size, &bytes_allocated, nullptr, &dummy);
2380      if (to_space_live_bitmap_ != nullptr) {
2381        to_space_live_bitmap_->Set(forward_address);
2382      } else {
2383        GetHeap()->GetNonMovingSpace()->GetLiveBitmap()->Set(forward_address);
2384        GetHeap()->GetNonMovingSpace()->GetMarkBitmap()->Set(forward_address);
2385      }
2386    } else {
2387      size_t size = it->first;
2388      uintptr_t pos = it->second;
2389      bins_.erase(it);  // Erase the old bin which we replace with the new smaller bin.
2390      forward_address = reinterpret_cast<mirror::Object*>(pos);
2391      // Set the live and mark bits so that sweeping system weaks works properly.
2392      bin_live_bitmap_->Set(forward_address);
2393      bin_mark_bitmap_->Set(forward_address);
2394      DCHECK_GE(size, alloc_size);
2395      // Add a new bin with the remaining space.
2396      AddBin(size - alloc_size, pos + alloc_size);
2397    }
2398    // Copy the object over to its new location. Don't use alloc_size to avoid valgrind error.
2399    memcpy(reinterpret_cast<void*>(forward_address), obj, obj_size);
2400    if (kUseBakerOrBrooksReadBarrier) {
2401      obj->AssertReadBarrierPointer();
2402      if (kUseBrooksReadBarrier) {
2403        DCHECK_EQ(forward_address->GetReadBarrierPointer(), obj);
2404        forward_address->SetReadBarrierPointer(forward_address);
2405      }
2406      forward_address->AssertReadBarrierPointer();
2407    }
2408    return forward_address;
2409  }
2410};
2411
2412void Heap::UnBindBitmaps() {
2413  TimingLogger::ScopedTiming t("UnBindBitmaps", GetCurrentGcIteration()->GetTimings());
2414  for (const auto& space : GetContinuousSpaces()) {
2415    if (space->IsContinuousMemMapAllocSpace()) {
2416      space::ContinuousMemMapAllocSpace* alloc_space = space->AsContinuousMemMapAllocSpace();
2417      if (alloc_space->HasBoundBitmaps()) {
2418        alloc_space->UnBindBitmaps();
2419      }
2420    }
2421  }
2422}
2423
2424void Heap::PreZygoteFork() {
2425  if (!HasZygoteSpace()) {
2426    // We still want to GC in case there is some unreachable non moving objects that could cause a
2427    // suboptimal bin packing when we compact the zygote space.
2428    CollectGarbageInternal(collector::kGcTypeFull, kGcCauseBackground, false);
2429    // Trim the pages at the end of the non moving space. Trim while not holding zygote lock since
2430    // the trim process may require locking the mutator lock.
2431    non_moving_space_->Trim();
2432  }
2433  Thread* self = Thread::Current();
2434  MutexLock mu(self, zygote_creation_lock_);
2435  // Try to see if we have any Zygote spaces.
2436  if (HasZygoteSpace()) {
2437    return;
2438  }
2439  Runtime::Current()->GetInternTable()->AddNewTable();
2440  Runtime::Current()->GetClassLinker()->MoveClassTableToPreZygote();
2441  VLOG(heap) << "Starting PreZygoteFork";
2442  // The end of the non-moving space may be protected, unprotect it so that we can copy the zygote
2443  // there.
2444  non_moving_space_->GetMemMap()->Protect(PROT_READ | PROT_WRITE);
2445  const bool same_space = non_moving_space_ == main_space_;
2446  if (kCompactZygote) {
2447    // Temporarily disable rosalloc verification because the zygote
2448    // compaction will mess up the rosalloc internal metadata.
2449    ScopedDisableRosAllocVerification disable_rosalloc_verif(this);
2450    ZygoteCompactingCollector zygote_collector(this, is_running_on_memory_tool_);
2451    zygote_collector.BuildBins(non_moving_space_);
2452    // Create a new bump pointer space which we will compact into.
2453    space::BumpPointerSpace target_space("zygote bump space", non_moving_space_->End(),
2454                                         non_moving_space_->Limit());
2455    // Compact the bump pointer space to a new zygote bump pointer space.
2456    bool reset_main_space = false;
2457    if (IsMovingGc(collector_type_)) {
2458      if (collector_type_ == kCollectorTypeCC) {
2459        zygote_collector.SetFromSpace(region_space_);
2460      } else {
2461        zygote_collector.SetFromSpace(bump_pointer_space_);
2462      }
2463    } else {
2464      CHECK(main_space_ != nullptr);
2465      CHECK_NE(main_space_, non_moving_space_)
2466          << "Does not make sense to compact within the same space";
2467      // Copy from the main space.
2468      zygote_collector.SetFromSpace(main_space_);
2469      reset_main_space = true;
2470    }
2471    zygote_collector.SetToSpace(&target_space);
2472    zygote_collector.SetSwapSemiSpaces(false);
2473    zygote_collector.Run(kGcCauseCollectorTransition, false);
2474    if (reset_main_space) {
2475      main_space_->GetMemMap()->Protect(PROT_READ | PROT_WRITE);
2476      madvise(main_space_->Begin(), main_space_->Capacity(), MADV_DONTNEED);
2477      MemMap* mem_map = main_space_->ReleaseMemMap();
2478      RemoveSpace(main_space_);
2479      space::Space* old_main_space = main_space_;
2480      CreateMainMallocSpace(mem_map, kDefaultInitialSize, std::min(mem_map->Size(), growth_limit_),
2481                            mem_map->Size());
2482      delete old_main_space;
2483      AddSpace(main_space_);
2484    } else {
2485      if (collector_type_ == kCollectorTypeCC) {
2486        region_space_->GetMemMap()->Protect(PROT_READ | PROT_WRITE);
2487      } else {
2488        bump_pointer_space_->GetMemMap()->Protect(PROT_READ | PROT_WRITE);
2489      }
2490    }
2491    if (temp_space_ != nullptr) {
2492      CHECK(temp_space_->IsEmpty());
2493    }
2494    total_objects_freed_ever_ += GetCurrentGcIteration()->GetFreedObjects();
2495    total_bytes_freed_ever_ += GetCurrentGcIteration()->GetFreedBytes();
2496    // Update the end and write out image.
2497    non_moving_space_->SetEnd(target_space.End());
2498    non_moving_space_->SetLimit(target_space.Limit());
2499    VLOG(heap) << "Create zygote space with size=" << non_moving_space_->Size() << " bytes";
2500  }
2501  // Change the collector to the post zygote one.
2502  ChangeCollector(foreground_collector_type_);
2503  // Save the old space so that we can remove it after we complete creating the zygote space.
2504  space::MallocSpace* old_alloc_space = non_moving_space_;
2505  // Turn the current alloc space into a zygote space and obtain the new alloc space composed of
2506  // the remaining available space.
2507  // Remove the old space before creating the zygote space since creating the zygote space sets
2508  // the old alloc space's bitmaps to null.
2509  RemoveSpace(old_alloc_space);
2510  if (collector::SemiSpace::kUseRememberedSet) {
2511    // Sanity bound check.
2512    FindRememberedSetFromSpace(old_alloc_space)->AssertAllDirtyCardsAreWithinSpace();
2513    // Remove the remembered set for the now zygote space (the old
2514    // non-moving space). Note now that we have compacted objects into
2515    // the zygote space, the data in the remembered set is no longer
2516    // needed. The zygote space will instead have a mod-union table
2517    // from this point on.
2518    RemoveRememberedSet(old_alloc_space);
2519  }
2520  // Remaining space becomes the new non moving space.
2521  zygote_space_ = old_alloc_space->CreateZygoteSpace(kNonMovingSpaceName, low_memory_mode_,
2522                                                     &non_moving_space_);
2523  CHECK(!non_moving_space_->CanMoveObjects());
2524  if (same_space) {
2525    main_space_ = non_moving_space_;
2526    SetSpaceAsDefault(main_space_);
2527  }
2528  delete old_alloc_space;
2529  CHECK(HasZygoteSpace()) << "Failed creating zygote space";
2530  AddSpace(zygote_space_);
2531  non_moving_space_->SetFootprintLimit(non_moving_space_->Capacity());
2532  AddSpace(non_moving_space_);
2533  // Create the zygote space mod union table.
2534  accounting::ModUnionTable* mod_union_table =
2535      new accounting::ModUnionTableCardCache("zygote space mod-union table", this,
2536                                             zygote_space_);
2537  CHECK(mod_union_table != nullptr) << "Failed to create zygote space mod-union table";
2538  // Set all the cards in the mod-union table since we don't know which objects contain references
2539  // to large objects.
2540  mod_union_table->SetCards();
2541  AddModUnionTable(mod_union_table);
2542  large_object_space_->SetAllLargeObjectsAsZygoteObjects(self);
2543  if (collector::SemiSpace::kUseRememberedSet) {
2544    // Add a new remembered set for the post-zygote non-moving space.
2545    accounting::RememberedSet* post_zygote_non_moving_space_rem_set =
2546        new accounting::RememberedSet("Post-zygote non-moving space remembered set", this,
2547                                      non_moving_space_);
2548    CHECK(post_zygote_non_moving_space_rem_set != nullptr)
2549        << "Failed to create post-zygote non-moving space remembered set";
2550    AddRememberedSet(post_zygote_non_moving_space_rem_set);
2551  }
2552}
2553
2554void Heap::FlushAllocStack() {
2555  MarkAllocStackAsLive(allocation_stack_.get());
2556  allocation_stack_->Reset();
2557}
2558
2559void Heap::MarkAllocStack(accounting::ContinuousSpaceBitmap* bitmap1,
2560                          accounting::ContinuousSpaceBitmap* bitmap2,
2561                          accounting::LargeObjectBitmap* large_objects,
2562                          accounting::ObjectStack* stack) {
2563  DCHECK(bitmap1 != nullptr);
2564  DCHECK(bitmap2 != nullptr);
2565  const auto* limit = stack->End();
2566  for (auto* it = stack->Begin(); it != limit; ++it) {
2567    const mirror::Object* obj = it->AsMirrorPtr();
2568    if (!kUseThreadLocalAllocationStack || obj != nullptr) {
2569      if (bitmap1->HasAddress(obj)) {
2570        bitmap1->Set(obj);
2571      } else if (bitmap2->HasAddress(obj)) {
2572        bitmap2->Set(obj);
2573      } else {
2574        DCHECK(large_objects != nullptr);
2575        large_objects->Set(obj);
2576      }
2577    }
2578  }
2579}
2580
2581void Heap::SwapSemiSpaces() {
2582  CHECK(bump_pointer_space_ != nullptr);
2583  CHECK(temp_space_ != nullptr);
2584  std::swap(bump_pointer_space_, temp_space_);
2585}
2586
2587collector::GarbageCollector* Heap::Compact(space::ContinuousMemMapAllocSpace* target_space,
2588                                           space::ContinuousMemMapAllocSpace* source_space,
2589                                           GcCause gc_cause) {
2590  CHECK(kMovingCollector);
2591  if (target_space != source_space) {
2592    // Don't swap spaces since this isn't a typical semi space collection.
2593    semi_space_collector_->SetSwapSemiSpaces(false);
2594    semi_space_collector_->SetFromSpace(source_space);
2595    semi_space_collector_->SetToSpace(target_space);
2596    semi_space_collector_->Run(gc_cause, false);
2597    return semi_space_collector_;
2598  } else {
2599    CHECK(target_space->IsBumpPointerSpace())
2600        << "In-place compaction is only supported for bump pointer spaces";
2601    mark_compact_collector_->SetSpace(target_space->AsBumpPointerSpace());
2602    mark_compact_collector_->Run(kGcCauseCollectorTransition, false);
2603    return mark_compact_collector_;
2604  }
2605}
2606
2607collector::GcType Heap::CollectGarbageInternal(collector::GcType gc_type,
2608                                               GcCause gc_cause,
2609                                               bool clear_soft_references) {
2610  Thread* self = Thread::Current();
2611  Runtime* runtime = Runtime::Current();
2612  // If the heap can't run the GC, silently fail and return that no GC was run.
2613  switch (gc_type) {
2614    case collector::kGcTypePartial: {
2615      if (!HasZygoteSpace()) {
2616        return collector::kGcTypeNone;
2617      }
2618      break;
2619    }
2620    default: {
2621      // Other GC types don't have any special cases which makes them not runnable. The main case
2622      // here is full GC.
2623    }
2624  }
2625  ScopedThreadStateChange tsc(self, kWaitingPerformingGc);
2626  Locks::mutator_lock_->AssertNotHeld(self);
2627  if (self->IsHandlingStackOverflow()) {
2628    // If we are throwing a stack overflow error we probably don't have enough remaining stack
2629    // space to run the GC.
2630    return collector::kGcTypeNone;
2631  }
2632  bool compacting_gc;
2633  {
2634    gc_complete_lock_->AssertNotHeld(self);
2635    ScopedThreadStateChange tsc2(self, kWaitingForGcToComplete);
2636    MutexLock mu(self, *gc_complete_lock_);
2637    // Ensure there is only one GC at a time.
2638    WaitForGcToCompleteLocked(gc_cause, self);
2639    compacting_gc = IsMovingGc(collector_type_);
2640    // GC can be disabled if someone has a used GetPrimitiveArrayCritical.
2641    if (compacting_gc && disable_moving_gc_count_ != 0) {
2642      LOG(WARNING) << "Skipping GC due to disable moving GC count " << disable_moving_gc_count_;
2643      return collector::kGcTypeNone;
2644    }
2645    if (gc_disabled_for_shutdown_) {
2646      return collector::kGcTypeNone;
2647    }
2648    collector_type_running_ = collector_type_;
2649  }
2650  if (gc_cause == kGcCauseForAlloc && runtime->HasStatsEnabled()) {
2651    ++runtime->GetStats()->gc_for_alloc_count;
2652    ++self->GetStats()->gc_for_alloc_count;
2653  }
2654  const uint64_t bytes_allocated_before_gc = GetBytesAllocated();
2655  // Approximate heap size.
2656  ATRACE_INT("Heap size (KB)", bytes_allocated_before_gc / KB);
2657
2658  DCHECK_LT(gc_type, collector::kGcTypeMax);
2659  DCHECK_NE(gc_type, collector::kGcTypeNone);
2660
2661  collector::GarbageCollector* collector = nullptr;
2662  // TODO: Clean this up.
2663  if (compacting_gc) {
2664    DCHECK(current_allocator_ == kAllocatorTypeBumpPointer ||
2665           current_allocator_ == kAllocatorTypeTLAB ||
2666           current_allocator_ == kAllocatorTypeRegion ||
2667           current_allocator_ == kAllocatorTypeRegionTLAB);
2668    switch (collector_type_) {
2669      case kCollectorTypeSS:
2670        // Fall-through.
2671      case kCollectorTypeGSS:
2672        semi_space_collector_->SetFromSpace(bump_pointer_space_);
2673        semi_space_collector_->SetToSpace(temp_space_);
2674        semi_space_collector_->SetSwapSemiSpaces(true);
2675        collector = semi_space_collector_;
2676        break;
2677      case kCollectorTypeCC:
2678        concurrent_copying_collector_->SetRegionSpace(region_space_);
2679        collector = concurrent_copying_collector_;
2680        break;
2681      case kCollectorTypeMC:
2682        mark_compact_collector_->SetSpace(bump_pointer_space_);
2683        collector = mark_compact_collector_;
2684        break;
2685      default:
2686        LOG(FATAL) << "Invalid collector type " << static_cast<size_t>(collector_type_);
2687    }
2688    if (collector != mark_compact_collector_ && collector != concurrent_copying_collector_) {
2689      temp_space_->GetMemMap()->Protect(PROT_READ | PROT_WRITE);
2690      if (kIsDebugBuild) {
2691        // Try to read each page of the memory map in case mprotect didn't work properly b/19894268.
2692        temp_space_->GetMemMap()->TryReadable();
2693      }
2694      CHECK(temp_space_->IsEmpty());
2695    }
2696    gc_type = collector::kGcTypeFull;  // TODO: Not hard code this in.
2697  } else if (current_allocator_ == kAllocatorTypeRosAlloc ||
2698      current_allocator_ == kAllocatorTypeDlMalloc) {
2699    collector = FindCollectorByGcType(gc_type);
2700  } else {
2701    LOG(FATAL) << "Invalid current allocator " << current_allocator_;
2702  }
2703  if (IsGcConcurrent()) {
2704    // Disable concurrent GC check so that we don't have spammy JNI requests.
2705    // This gets recalculated in GrowForUtilization. It is important that it is disabled /
2706    // calculated in the same thread so that there aren't any races that can cause it to become
2707    // permanantly disabled. b/17942071
2708    concurrent_start_bytes_ = std::numeric_limits<size_t>::max();
2709  }
2710
2711  // It's time to clear all inline caches, in case some classes can be unloaded.
2712  if (((gc_type == collector::kGcTypeFull) || (gc_type == collector::kGcTypePartial)) &&
2713      (runtime->GetJit() != nullptr)) {
2714    runtime->GetJit()->GetCodeCache()->ClearGcRootsInInlineCaches(self);
2715  }
2716
2717  CHECK(collector != nullptr)
2718      << "Could not find garbage collector with collector_type="
2719      << static_cast<size_t>(collector_type_) << " and gc_type=" << gc_type;
2720  collector->Run(gc_cause, clear_soft_references || runtime->IsZygote());
2721  total_objects_freed_ever_ += GetCurrentGcIteration()->GetFreedObjects();
2722  total_bytes_freed_ever_ += GetCurrentGcIteration()->GetFreedBytes();
2723  RequestTrim(self);
2724  // Enqueue cleared references.
2725  reference_processor_->EnqueueClearedReferences(self);
2726  // Grow the heap so that we know when to perform the next GC.
2727  GrowForUtilization(collector, bytes_allocated_before_gc);
2728  LogGC(gc_cause, collector);
2729  FinishGC(self, gc_type);
2730  // Inform DDMS that a GC completed.
2731  Dbg::GcDidFinish();
2732  // Unload native libraries for class unloading. We do this after calling FinishGC to prevent
2733  // deadlocks in case the JNI_OnUnload function does allocations.
2734  {
2735    ScopedObjectAccess soa(self);
2736    soa.Vm()->UnloadNativeLibraries();
2737  }
2738  return gc_type;
2739}
2740
2741void Heap::LogGC(GcCause gc_cause, collector::GarbageCollector* collector) {
2742  const size_t duration = GetCurrentGcIteration()->GetDurationNs();
2743  const std::vector<uint64_t>& pause_times = GetCurrentGcIteration()->GetPauseTimes();
2744  // Print the GC if it is an explicit GC (e.g. Runtime.gc()) or a slow GC
2745  // (mutator time blocked >= long_pause_log_threshold_).
2746  bool log_gc = gc_cause == kGcCauseExplicit;
2747  if (!log_gc && CareAboutPauseTimes()) {
2748    // GC for alloc pauses the allocating thread, so consider it as a pause.
2749    log_gc = duration > long_gc_log_threshold_ ||
2750        (gc_cause == kGcCauseForAlloc && duration > long_pause_log_threshold_);
2751    for (uint64_t pause : pause_times) {
2752      log_gc = log_gc || pause >= long_pause_log_threshold_;
2753    }
2754  }
2755  if (log_gc) {
2756    const size_t percent_free = GetPercentFree();
2757    const size_t current_heap_size = GetBytesAllocated();
2758    const size_t total_memory = GetTotalMemory();
2759    std::ostringstream pause_string;
2760    for (size_t i = 0; i < pause_times.size(); ++i) {
2761      pause_string << PrettyDuration((pause_times[i] / 1000) * 1000)
2762                   << ((i != pause_times.size() - 1) ? "," : "");
2763    }
2764    LOG(INFO) << gc_cause << " " << collector->GetName()
2765              << " GC freed "  << current_gc_iteration_.GetFreedObjects() << "("
2766              << PrettySize(current_gc_iteration_.GetFreedBytes()) << ") AllocSpace objects, "
2767              << current_gc_iteration_.GetFreedLargeObjects() << "("
2768              << PrettySize(current_gc_iteration_.GetFreedLargeObjectBytes()) << ") LOS objects, "
2769              << percent_free << "% free, " << PrettySize(current_heap_size) << "/"
2770              << PrettySize(total_memory) << ", " << "paused " << pause_string.str()
2771              << " total " << PrettyDuration((duration / 1000) * 1000);
2772    VLOG(heap) << Dumpable<TimingLogger>(*current_gc_iteration_.GetTimings());
2773  }
2774}
2775
2776void Heap::FinishGC(Thread* self, collector::GcType gc_type) {
2777  MutexLock mu(self, *gc_complete_lock_);
2778  collector_type_running_ = kCollectorTypeNone;
2779  if (gc_type != collector::kGcTypeNone) {
2780    last_gc_type_ = gc_type;
2781
2782    // Update stats.
2783    ++gc_count_last_window_;
2784    if (running_collection_is_blocking_) {
2785      // If the currently running collection was a blocking one,
2786      // increment the counters and reset the flag.
2787      ++blocking_gc_count_;
2788      blocking_gc_time_ += GetCurrentGcIteration()->GetDurationNs();
2789      ++blocking_gc_count_last_window_;
2790    }
2791    // Update the gc count rate histograms if due.
2792    UpdateGcCountRateHistograms();
2793  }
2794  // Reset.
2795  running_collection_is_blocking_ = false;
2796  // Wake anyone who may have been waiting for the GC to complete.
2797  gc_complete_cond_->Broadcast(self);
2798}
2799
2800void Heap::UpdateGcCountRateHistograms() {
2801  // Invariant: if the time since the last update includes more than
2802  // one windows, all the GC runs (if > 0) must have happened in first
2803  // window because otherwise the update must have already taken place
2804  // at an earlier GC run. So, we report the non-first windows with
2805  // zero counts to the histograms.
2806  DCHECK_EQ(last_update_time_gc_count_rate_histograms_ % kGcCountRateHistogramWindowDuration, 0U);
2807  uint64_t now = NanoTime();
2808  DCHECK_GE(now, last_update_time_gc_count_rate_histograms_);
2809  uint64_t time_since_last_update = now - last_update_time_gc_count_rate_histograms_;
2810  uint64_t num_of_windows = time_since_last_update / kGcCountRateHistogramWindowDuration;
2811  if (time_since_last_update >= kGcCountRateHistogramWindowDuration) {
2812    // Record the first window.
2813    gc_count_rate_histogram_.AddValue(gc_count_last_window_ - 1);  // Exclude the current run.
2814    blocking_gc_count_rate_histogram_.AddValue(running_collection_is_blocking_ ?
2815        blocking_gc_count_last_window_ - 1 : blocking_gc_count_last_window_);
2816    // Record the other windows (with zero counts).
2817    for (uint64_t i = 0; i < num_of_windows - 1; ++i) {
2818      gc_count_rate_histogram_.AddValue(0);
2819      blocking_gc_count_rate_histogram_.AddValue(0);
2820    }
2821    // Update the last update time and reset the counters.
2822    last_update_time_gc_count_rate_histograms_ =
2823        (now / kGcCountRateHistogramWindowDuration) * kGcCountRateHistogramWindowDuration;
2824    gc_count_last_window_ = 1;  // Include the current run.
2825    blocking_gc_count_last_window_ = running_collection_is_blocking_ ? 1 : 0;
2826  }
2827  DCHECK_EQ(last_update_time_gc_count_rate_histograms_ % kGcCountRateHistogramWindowDuration, 0U);
2828}
2829
2830class RootMatchesObjectVisitor : public SingleRootVisitor {
2831 public:
2832  explicit RootMatchesObjectVisitor(const mirror::Object* obj) : obj_(obj) { }
2833
2834  void VisitRoot(mirror::Object* root, const RootInfo& info)
2835      OVERRIDE SHARED_REQUIRES(Locks::mutator_lock_) {
2836    if (root == obj_) {
2837      LOG(INFO) << "Object " << obj_ << " is a root " << info.ToString();
2838    }
2839  }
2840
2841 private:
2842  const mirror::Object* const obj_;
2843};
2844
2845
2846class ScanVisitor {
2847 public:
2848  void operator()(const mirror::Object* obj) const {
2849    LOG(ERROR) << "Would have rescanned object " << obj;
2850  }
2851};
2852
2853// Verify a reference from an object.
2854class VerifyReferenceVisitor : public SingleRootVisitor {
2855 public:
2856  VerifyReferenceVisitor(Heap* heap, Atomic<size_t>* fail_count, bool verify_referent)
2857      SHARED_REQUIRES(Locks::mutator_lock_, Locks::heap_bitmap_lock_)
2858      : heap_(heap), fail_count_(fail_count), verify_referent_(verify_referent) {}
2859
2860  size_t GetFailureCount() const {
2861    return fail_count_->LoadSequentiallyConsistent();
2862  }
2863
2864  void operator()(mirror::Class* klass ATTRIBUTE_UNUSED, mirror::Reference* ref) const
2865      SHARED_REQUIRES(Locks::mutator_lock_) {
2866    if (verify_referent_) {
2867      VerifyReference(ref, ref->GetReferent(), mirror::Reference::ReferentOffset());
2868    }
2869  }
2870
2871  void operator()(mirror::Object* obj, MemberOffset offset, bool is_static ATTRIBUTE_UNUSED) const
2872      SHARED_REQUIRES(Locks::mutator_lock_) {
2873    VerifyReference(obj, obj->GetFieldObject<mirror::Object>(offset), offset);
2874  }
2875
2876  bool IsLive(mirror::Object* obj) const NO_THREAD_SAFETY_ANALYSIS {
2877    return heap_->IsLiveObjectLocked(obj, true, false, true);
2878  }
2879
2880  void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root) const
2881      SHARED_REQUIRES(Locks::mutator_lock_) {
2882    if (!root->IsNull()) {
2883      VisitRoot(root);
2884    }
2885  }
2886  void VisitRoot(mirror::CompressedReference<mirror::Object>* root) const
2887      SHARED_REQUIRES(Locks::mutator_lock_) {
2888    const_cast<VerifyReferenceVisitor*>(this)->VisitRoot(
2889        root->AsMirrorPtr(), RootInfo(kRootVMInternal));
2890  }
2891
2892  virtual void VisitRoot(mirror::Object* root, const RootInfo& root_info) OVERRIDE
2893      SHARED_REQUIRES(Locks::mutator_lock_) {
2894    if (root == nullptr) {
2895      LOG(ERROR) << "Root is null with info " << root_info.GetType();
2896    } else if (!VerifyReference(nullptr, root, MemberOffset(0))) {
2897      LOG(ERROR) << "Root " << root << " is dead with type " << PrettyTypeOf(root)
2898          << " thread_id= " << root_info.GetThreadId() << " root_type= " << root_info.GetType();
2899    }
2900  }
2901
2902 private:
2903  // TODO: Fix the no thread safety analysis.
2904  // Returns false on failure.
2905  bool VerifyReference(mirror::Object* obj, mirror::Object* ref, MemberOffset offset) const
2906      NO_THREAD_SAFETY_ANALYSIS {
2907    if (ref == nullptr || IsLive(ref)) {
2908      // Verify that the reference is live.
2909      return true;
2910    }
2911    if (fail_count_->FetchAndAddSequentiallyConsistent(1) == 0) {
2912      // Print message on only on first failure to prevent spam.
2913      LOG(ERROR) << "!!!!!!!!!!!!!!Heap corruption detected!!!!!!!!!!!!!!!!!!!";
2914    }
2915    if (obj != nullptr) {
2916      // Only do this part for non roots.
2917      accounting::CardTable* card_table = heap_->GetCardTable();
2918      accounting::ObjectStack* alloc_stack = heap_->allocation_stack_.get();
2919      accounting::ObjectStack* live_stack = heap_->live_stack_.get();
2920      uint8_t* card_addr = card_table->CardFromAddr(obj);
2921      LOG(ERROR) << "Object " << obj << " references dead object " << ref << " at offset "
2922                 << offset << "\n card value = " << static_cast<int>(*card_addr);
2923      if (heap_->IsValidObjectAddress(obj->GetClass())) {
2924        LOG(ERROR) << "Obj type " << PrettyTypeOf(obj);
2925      } else {
2926        LOG(ERROR) << "Object " << obj << " class(" << obj->GetClass() << ") not a heap address";
2927      }
2928
2929      // Attempt to find the class inside of the recently freed objects.
2930      space::ContinuousSpace* ref_space = heap_->FindContinuousSpaceFromObject(ref, true);
2931      if (ref_space != nullptr && ref_space->IsMallocSpace()) {
2932        space::MallocSpace* space = ref_space->AsMallocSpace();
2933        mirror::Class* ref_class = space->FindRecentFreedObject(ref);
2934        if (ref_class != nullptr) {
2935          LOG(ERROR) << "Reference " << ref << " found as a recently freed object with class "
2936                     << PrettyClass(ref_class);
2937        } else {
2938          LOG(ERROR) << "Reference " << ref << " not found as a recently freed object";
2939        }
2940      }
2941
2942      if (ref->GetClass() != nullptr && heap_->IsValidObjectAddress(ref->GetClass()) &&
2943          ref->GetClass()->IsClass()) {
2944        LOG(ERROR) << "Ref type " << PrettyTypeOf(ref);
2945      } else {
2946        LOG(ERROR) << "Ref " << ref << " class(" << ref->GetClass()
2947                   << ") is not a valid heap address";
2948      }
2949
2950      card_table->CheckAddrIsInCardTable(reinterpret_cast<const uint8_t*>(obj));
2951      void* cover_begin = card_table->AddrFromCard(card_addr);
2952      void* cover_end = reinterpret_cast<void*>(reinterpret_cast<size_t>(cover_begin) +
2953          accounting::CardTable::kCardSize);
2954      LOG(ERROR) << "Card " << reinterpret_cast<void*>(card_addr) << " covers " << cover_begin
2955          << "-" << cover_end;
2956      accounting::ContinuousSpaceBitmap* bitmap =
2957          heap_->GetLiveBitmap()->GetContinuousSpaceBitmap(obj);
2958
2959      if (bitmap == nullptr) {
2960        LOG(ERROR) << "Object " << obj << " has no bitmap";
2961        if (!VerifyClassClass(obj->GetClass())) {
2962          LOG(ERROR) << "Object " << obj << " failed class verification!";
2963        }
2964      } else {
2965        // Print out how the object is live.
2966        if (bitmap->Test(obj)) {
2967          LOG(ERROR) << "Object " << obj << " found in live bitmap";
2968        }
2969        if (alloc_stack->Contains(const_cast<mirror::Object*>(obj))) {
2970          LOG(ERROR) << "Object " << obj << " found in allocation stack";
2971        }
2972        if (live_stack->Contains(const_cast<mirror::Object*>(obj))) {
2973          LOG(ERROR) << "Object " << obj << " found in live stack";
2974        }
2975        if (alloc_stack->Contains(const_cast<mirror::Object*>(ref))) {
2976          LOG(ERROR) << "Ref " << ref << " found in allocation stack";
2977        }
2978        if (live_stack->Contains(const_cast<mirror::Object*>(ref))) {
2979          LOG(ERROR) << "Ref " << ref << " found in live stack";
2980        }
2981        // Attempt to see if the card table missed the reference.
2982        ScanVisitor scan_visitor;
2983        uint8_t* byte_cover_begin = reinterpret_cast<uint8_t*>(card_table->AddrFromCard(card_addr));
2984        card_table->Scan<false>(bitmap, byte_cover_begin,
2985                                byte_cover_begin + accounting::CardTable::kCardSize, scan_visitor);
2986      }
2987
2988      // Search to see if any of the roots reference our object.
2989      RootMatchesObjectVisitor visitor1(obj);
2990      Runtime::Current()->VisitRoots(&visitor1);
2991      // Search to see if any of the roots reference our reference.
2992      RootMatchesObjectVisitor visitor2(ref);
2993      Runtime::Current()->VisitRoots(&visitor2);
2994    }
2995    return false;
2996  }
2997
2998  Heap* const heap_;
2999  Atomic<size_t>* const fail_count_;
3000  const bool verify_referent_;
3001};
3002
3003// Verify all references within an object, for use with HeapBitmap::Visit.
3004class VerifyObjectVisitor {
3005 public:
3006  VerifyObjectVisitor(Heap* heap, Atomic<size_t>* fail_count, bool verify_referent)
3007      : heap_(heap), fail_count_(fail_count), verify_referent_(verify_referent) {}
3008
3009  void operator()(mirror::Object* obj)
3010      SHARED_REQUIRES(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
3011    // Note: we are verifying the references in obj but not obj itself, this is because obj must
3012    // be live or else how did we find it in the live bitmap?
3013    VerifyReferenceVisitor visitor(heap_, fail_count_, verify_referent_);
3014    // The class doesn't count as a reference but we should verify it anyways.
3015    obj->VisitReferences(visitor, visitor);
3016  }
3017
3018  static void VisitCallback(mirror::Object* obj, void* arg)
3019      SHARED_REQUIRES(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
3020    VerifyObjectVisitor* visitor = reinterpret_cast<VerifyObjectVisitor*>(arg);
3021    visitor->operator()(obj);
3022  }
3023
3024  void VerifyRoots() SHARED_REQUIRES(Locks::mutator_lock_) REQUIRES(!Locks::heap_bitmap_lock_) {
3025    ReaderMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
3026    VerifyReferenceVisitor visitor(heap_, fail_count_, verify_referent_);
3027    Runtime::Current()->VisitRoots(&visitor);
3028  }
3029
3030  size_t GetFailureCount() const {
3031    return fail_count_->LoadSequentiallyConsistent();
3032  }
3033
3034 private:
3035  Heap* const heap_;
3036  Atomic<size_t>* const fail_count_;
3037  const bool verify_referent_;
3038};
3039
3040void Heap::PushOnAllocationStackWithInternalGC(Thread* self, mirror::Object** obj) {
3041  // Slow path, the allocation stack push back must have already failed.
3042  DCHECK(!allocation_stack_->AtomicPushBack(*obj));
3043  do {
3044    // TODO: Add handle VerifyObject.
3045    StackHandleScope<1> hs(self);
3046    HandleWrapper<mirror::Object> wrapper(hs.NewHandleWrapper(obj));
3047    // Push our object into the reserve region of the allocaiton stack. This is only required due
3048    // to heap verification requiring that roots are live (either in the live bitmap or in the
3049    // allocation stack).
3050    CHECK(allocation_stack_->AtomicPushBackIgnoreGrowthLimit(*obj));
3051    CollectGarbageInternal(collector::kGcTypeSticky, kGcCauseForAlloc, false);
3052  } while (!allocation_stack_->AtomicPushBack(*obj));
3053}
3054
3055void Heap::PushOnThreadLocalAllocationStackWithInternalGC(Thread* self, mirror::Object** obj) {
3056  // Slow path, the allocation stack push back must have already failed.
3057  DCHECK(!self->PushOnThreadLocalAllocationStack(*obj));
3058  StackReference<mirror::Object>* start_address;
3059  StackReference<mirror::Object>* end_address;
3060  while (!allocation_stack_->AtomicBumpBack(kThreadLocalAllocationStackSize, &start_address,
3061                                            &end_address)) {
3062    // TODO: Add handle VerifyObject.
3063    StackHandleScope<1> hs(self);
3064    HandleWrapper<mirror::Object> wrapper(hs.NewHandleWrapper(obj));
3065    // Push our object into the reserve region of the allocaiton stack. This is only required due
3066    // to heap verification requiring that roots are live (either in the live bitmap or in the
3067    // allocation stack).
3068    CHECK(allocation_stack_->AtomicPushBackIgnoreGrowthLimit(*obj));
3069    // Push into the reserve allocation stack.
3070    CollectGarbageInternal(collector::kGcTypeSticky, kGcCauseForAlloc, false);
3071  }
3072  self->SetThreadLocalAllocationStack(start_address, end_address);
3073  // Retry on the new thread-local allocation stack.
3074  CHECK(self->PushOnThreadLocalAllocationStack(*obj));  // Must succeed.
3075}
3076
3077// Must do this with mutators suspended since we are directly accessing the allocation stacks.
3078size_t Heap::VerifyHeapReferences(bool verify_referents) {
3079  Thread* self = Thread::Current();
3080  Locks::mutator_lock_->AssertExclusiveHeld(self);
3081  // Lets sort our allocation stacks so that we can efficiently binary search them.
3082  allocation_stack_->Sort();
3083  live_stack_->Sort();
3084  // Since we sorted the allocation stack content, need to revoke all
3085  // thread-local allocation stacks.
3086  RevokeAllThreadLocalAllocationStacks(self);
3087  Atomic<size_t> fail_count_(0);
3088  VerifyObjectVisitor visitor(this, &fail_count_, verify_referents);
3089  // Verify objects in the allocation stack since these will be objects which were:
3090  // 1. Allocated prior to the GC (pre GC verification).
3091  // 2. Allocated during the GC (pre sweep GC verification).
3092  // We don't want to verify the objects in the live stack since they themselves may be
3093  // pointing to dead objects if they are not reachable.
3094  VisitObjectsPaused(VerifyObjectVisitor::VisitCallback, &visitor);
3095  // Verify the roots:
3096  visitor.VerifyRoots();
3097  if (visitor.GetFailureCount() > 0) {
3098    // Dump mod-union tables.
3099    for (const auto& table_pair : mod_union_tables_) {
3100      accounting::ModUnionTable* mod_union_table = table_pair.second;
3101      mod_union_table->Dump(LOG(ERROR) << mod_union_table->GetName() << ": ");
3102    }
3103    // Dump remembered sets.
3104    for (const auto& table_pair : remembered_sets_) {
3105      accounting::RememberedSet* remembered_set = table_pair.second;
3106      remembered_set->Dump(LOG(ERROR) << remembered_set->GetName() << ": ");
3107    }
3108    DumpSpaces(LOG(ERROR));
3109  }
3110  return visitor.GetFailureCount();
3111}
3112
3113class VerifyReferenceCardVisitor {
3114 public:
3115  VerifyReferenceCardVisitor(Heap* heap, bool* failed)
3116      SHARED_REQUIRES(Locks::mutator_lock_,
3117                            Locks::heap_bitmap_lock_)
3118      : heap_(heap), failed_(failed) {
3119  }
3120
3121  // There is no card marks for native roots on a class.
3122  void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root ATTRIBUTE_UNUSED)
3123      const {}
3124  void VisitRoot(mirror::CompressedReference<mirror::Object>* root ATTRIBUTE_UNUSED) const {}
3125
3126  // TODO: Fix lock analysis to not use NO_THREAD_SAFETY_ANALYSIS, requires support for
3127  // annotalysis on visitors.
3128  void operator()(mirror::Object* obj, MemberOffset offset, bool is_static) const
3129      NO_THREAD_SAFETY_ANALYSIS {
3130    mirror::Object* ref = obj->GetFieldObject<mirror::Object>(offset);
3131    // Filter out class references since changing an object's class does not mark the card as dirty.
3132    // Also handles large objects, since the only reference they hold is a class reference.
3133    if (ref != nullptr && !ref->IsClass()) {
3134      accounting::CardTable* card_table = heap_->GetCardTable();
3135      // If the object is not dirty and it is referencing something in the live stack other than
3136      // class, then it must be on a dirty card.
3137      if (!card_table->AddrIsInCardTable(obj)) {
3138        LOG(ERROR) << "Object " << obj << " is not in the address range of the card table";
3139        *failed_ = true;
3140      } else if (!card_table->IsDirty(obj)) {
3141        // TODO: Check mod-union tables.
3142        // Card should be either kCardDirty if it got re-dirtied after we aged it, or
3143        // kCardDirty - 1 if it didnt get touched since we aged it.
3144        accounting::ObjectStack* live_stack = heap_->live_stack_.get();
3145        if (live_stack->ContainsSorted(ref)) {
3146          if (live_stack->ContainsSorted(obj)) {
3147            LOG(ERROR) << "Object " << obj << " found in live stack";
3148          }
3149          if (heap_->GetLiveBitmap()->Test(obj)) {
3150            LOG(ERROR) << "Object " << obj << " found in live bitmap";
3151          }
3152          LOG(ERROR) << "Object " << obj << " " << PrettyTypeOf(obj)
3153                    << " references " << ref << " " << PrettyTypeOf(ref) << " in live stack";
3154
3155          // Print which field of the object is dead.
3156          if (!obj->IsObjectArray()) {
3157            mirror::Class* klass = is_static ? obj->AsClass() : obj->GetClass();
3158            CHECK(klass != nullptr);
3159            for (ArtField& field : (is_static ? klass->GetSFields() : klass->GetIFields())) {
3160              if (field.GetOffset().Int32Value() == offset.Int32Value()) {
3161                LOG(ERROR) << (is_static ? "Static " : "") << "field in the live stack is "
3162                           << PrettyField(&field);
3163                break;
3164              }
3165            }
3166          } else {
3167            mirror::ObjectArray<mirror::Object>* object_array =
3168                obj->AsObjectArray<mirror::Object>();
3169            for (int32_t i = 0; i < object_array->GetLength(); ++i) {
3170              if (object_array->Get(i) == ref) {
3171                LOG(ERROR) << (is_static ? "Static " : "") << "obj[" << i << "] = ref";
3172              }
3173            }
3174          }
3175
3176          *failed_ = true;
3177        }
3178      }
3179    }
3180  }
3181
3182 private:
3183  Heap* const heap_;
3184  bool* const failed_;
3185};
3186
3187class VerifyLiveStackReferences {
3188 public:
3189  explicit VerifyLiveStackReferences(Heap* heap)
3190      : heap_(heap),
3191        failed_(false) {}
3192
3193  void operator()(mirror::Object* obj) const
3194      SHARED_REQUIRES(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
3195    VerifyReferenceCardVisitor visitor(heap_, const_cast<bool*>(&failed_));
3196    obj->VisitReferences(visitor, VoidFunctor());
3197  }
3198
3199  bool Failed() const {
3200    return failed_;
3201  }
3202
3203 private:
3204  Heap* const heap_;
3205  bool failed_;
3206};
3207
3208bool Heap::VerifyMissingCardMarks() {
3209  Thread* self = Thread::Current();
3210  Locks::mutator_lock_->AssertExclusiveHeld(self);
3211  // We need to sort the live stack since we binary search it.
3212  live_stack_->Sort();
3213  // Since we sorted the allocation stack content, need to revoke all
3214  // thread-local allocation stacks.
3215  RevokeAllThreadLocalAllocationStacks(self);
3216  VerifyLiveStackReferences visitor(this);
3217  GetLiveBitmap()->Visit(visitor);
3218  // We can verify objects in the live stack since none of these should reference dead objects.
3219  for (auto* it = live_stack_->Begin(); it != live_stack_->End(); ++it) {
3220    if (!kUseThreadLocalAllocationStack || it->AsMirrorPtr() != nullptr) {
3221      visitor(it->AsMirrorPtr());
3222    }
3223  }
3224  return !visitor.Failed();
3225}
3226
3227void Heap::SwapStacks() {
3228  if (kUseThreadLocalAllocationStack) {
3229    live_stack_->AssertAllZero();
3230  }
3231  allocation_stack_.swap(live_stack_);
3232}
3233
3234void Heap::RevokeAllThreadLocalAllocationStacks(Thread* self) {
3235  // This must be called only during the pause.
3236  DCHECK(Locks::mutator_lock_->IsExclusiveHeld(self));
3237  MutexLock mu(self, *Locks::runtime_shutdown_lock_);
3238  MutexLock mu2(self, *Locks::thread_list_lock_);
3239  std::list<Thread*> thread_list = Runtime::Current()->GetThreadList()->GetList();
3240  for (Thread* t : thread_list) {
3241    t->RevokeThreadLocalAllocationStack();
3242  }
3243}
3244
3245void Heap::AssertThreadLocalBuffersAreRevoked(Thread* thread) {
3246  if (kIsDebugBuild) {
3247    if (rosalloc_space_ != nullptr) {
3248      rosalloc_space_->AssertThreadLocalBuffersAreRevoked(thread);
3249    }
3250    if (bump_pointer_space_ != nullptr) {
3251      bump_pointer_space_->AssertThreadLocalBuffersAreRevoked(thread);
3252    }
3253  }
3254}
3255
3256void Heap::AssertAllBumpPointerSpaceThreadLocalBuffersAreRevoked() {
3257  if (kIsDebugBuild) {
3258    if (bump_pointer_space_ != nullptr) {
3259      bump_pointer_space_->AssertAllThreadLocalBuffersAreRevoked();
3260    }
3261  }
3262}
3263
3264accounting::ModUnionTable* Heap::FindModUnionTableFromSpace(space::Space* space) {
3265  auto it = mod_union_tables_.find(space);
3266  if (it == mod_union_tables_.end()) {
3267    return nullptr;
3268  }
3269  return it->second;
3270}
3271
3272accounting::RememberedSet* Heap::FindRememberedSetFromSpace(space::Space* space) {
3273  auto it = remembered_sets_.find(space);
3274  if (it == remembered_sets_.end()) {
3275    return nullptr;
3276  }
3277  return it->second;
3278}
3279
3280void Heap::ProcessCards(TimingLogger* timings,
3281                        bool use_rem_sets,
3282                        bool process_alloc_space_cards,
3283                        bool clear_alloc_space_cards) {
3284  TimingLogger::ScopedTiming t(__FUNCTION__, timings);
3285  // Clear cards and keep track of cards cleared in the mod-union table.
3286  for (const auto& space : continuous_spaces_) {
3287    accounting::ModUnionTable* table = FindModUnionTableFromSpace(space);
3288    accounting::RememberedSet* rem_set = FindRememberedSetFromSpace(space);
3289    if (table != nullptr) {
3290      const char* name = space->IsZygoteSpace() ? "ZygoteModUnionClearCards" :
3291          "ImageModUnionClearCards";
3292      TimingLogger::ScopedTiming t2(name, timings);
3293      table->ClearCards();
3294    } else if (use_rem_sets && rem_set != nullptr) {
3295      DCHECK(collector::SemiSpace::kUseRememberedSet && collector_type_ == kCollectorTypeGSS)
3296          << static_cast<int>(collector_type_);
3297      TimingLogger::ScopedTiming t2("AllocSpaceRemSetClearCards", timings);
3298      rem_set->ClearCards();
3299    } else if (process_alloc_space_cards) {
3300      TimingLogger::ScopedTiming t2("AllocSpaceClearCards", timings);
3301      if (clear_alloc_space_cards) {
3302        uint8_t* end = space->End();
3303        if (space->IsImageSpace()) {
3304          // Image space end is the end of the mirror objects, it is not necessarily page or card
3305          // aligned. Align up so that the check in ClearCardRange does not fail.
3306          end = AlignUp(end, accounting::CardTable::kCardSize);
3307        }
3308        card_table_->ClearCardRange(space->Begin(), end);
3309      } else {
3310        // No mod union table for the AllocSpace. Age the cards so that the GC knows that these
3311        // cards were dirty before the GC started.
3312        // TODO: Need to use atomic for the case where aged(cleaning thread) -> dirty(other thread)
3313        // -> clean(cleaning thread).
3314        // The races are we either end up with: Aged card, unaged card. Since we have the
3315        // checkpoint roots and then we scan / update mod union tables after. We will always
3316        // scan either card. If we end up with the non aged card, we scan it it in the pause.
3317        card_table_->ModifyCardsAtomic(space->Begin(), space->End(), AgeCardVisitor(),
3318                                       VoidFunctor());
3319      }
3320    }
3321  }
3322}
3323
3324struct IdentityMarkHeapReferenceVisitor : public MarkObjectVisitor {
3325  virtual mirror::Object* MarkObject(mirror::Object* obj) OVERRIDE {
3326    return obj;
3327  }
3328  virtual void MarkHeapReference(mirror::HeapReference<mirror::Object>*) OVERRIDE {
3329  }
3330};
3331
3332void Heap::PreGcVerificationPaused(collector::GarbageCollector* gc) {
3333  Thread* const self = Thread::Current();
3334  TimingLogger* const timings = current_gc_iteration_.GetTimings();
3335  TimingLogger::ScopedTiming t(__FUNCTION__, timings);
3336  if (verify_pre_gc_heap_) {
3337    TimingLogger::ScopedTiming t2("(Paused)PreGcVerifyHeapReferences", timings);
3338    size_t failures = VerifyHeapReferences();
3339    if (failures > 0) {
3340      LOG(FATAL) << "Pre " << gc->GetName() << " heap verification failed with " << failures
3341          << " failures";
3342    }
3343  }
3344  // Check that all objects which reference things in the live stack are on dirty cards.
3345  if (verify_missing_card_marks_) {
3346    TimingLogger::ScopedTiming t2("(Paused)PreGcVerifyMissingCardMarks", timings);
3347    ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
3348    SwapStacks();
3349    // Sort the live stack so that we can quickly binary search it later.
3350    CHECK(VerifyMissingCardMarks()) << "Pre " << gc->GetName()
3351                                    << " missing card mark verification failed\n" << DumpSpaces();
3352    SwapStacks();
3353  }
3354  if (verify_mod_union_table_) {
3355    TimingLogger::ScopedTiming t2("(Paused)PreGcVerifyModUnionTables", timings);
3356    ReaderMutexLock reader_lock(self, *Locks::heap_bitmap_lock_);
3357    for (const auto& table_pair : mod_union_tables_) {
3358      accounting::ModUnionTable* mod_union_table = table_pair.second;
3359      IdentityMarkHeapReferenceVisitor visitor;
3360      mod_union_table->UpdateAndMarkReferences(&visitor);
3361      mod_union_table->Verify();
3362    }
3363  }
3364}
3365
3366void Heap::PreGcVerification(collector::GarbageCollector* gc) {
3367  if (verify_pre_gc_heap_ || verify_missing_card_marks_ || verify_mod_union_table_) {
3368    collector::GarbageCollector::ScopedPause pause(gc);
3369    PreGcVerificationPaused(gc);
3370  }
3371}
3372
3373void Heap::PrePauseRosAllocVerification(collector::GarbageCollector* gc ATTRIBUTE_UNUSED) {
3374  // TODO: Add a new runtime option for this?
3375  if (verify_pre_gc_rosalloc_) {
3376    RosAllocVerification(current_gc_iteration_.GetTimings(), "PreGcRosAllocVerification");
3377  }
3378}
3379
3380void Heap::PreSweepingGcVerification(collector::GarbageCollector* gc) {
3381  Thread* const self = Thread::Current();
3382  TimingLogger* const timings = current_gc_iteration_.GetTimings();
3383  TimingLogger::ScopedTiming t(__FUNCTION__, timings);
3384  // Called before sweeping occurs since we want to make sure we are not going so reclaim any
3385  // reachable objects.
3386  if (verify_pre_sweeping_heap_) {
3387    TimingLogger::ScopedTiming t2("(Paused)PostSweepingVerifyHeapReferences", timings);
3388    CHECK_NE(self->GetState(), kRunnable);
3389    {
3390      WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
3391      // Swapping bound bitmaps does nothing.
3392      gc->SwapBitmaps();
3393    }
3394    // Pass in false since concurrent reference processing can mean that the reference referents
3395    // may point to dead objects at the point which PreSweepingGcVerification is called.
3396    size_t failures = VerifyHeapReferences(false);
3397    if (failures > 0) {
3398      LOG(FATAL) << "Pre sweeping " << gc->GetName() << " GC verification failed with " << failures
3399          << " failures";
3400    }
3401    {
3402      WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
3403      gc->SwapBitmaps();
3404    }
3405  }
3406  if (verify_pre_sweeping_rosalloc_) {
3407    RosAllocVerification(timings, "PreSweepingRosAllocVerification");
3408  }
3409}
3410
3411void Heap::PostGcVerificationPaused(collector::GarbageCollector* gc) {
3412  // Only pause if we have to do some verification.
3413  Thread* const self = Thread::Current();
3414  TimingLogger* const timings = GetCurrentGcIteration()->GetTimings();
3415  TimingLogger::ScopedTiming t(__FUNCTION__, timings);
3416  if (verify_system_weaks_) {
3417    ReaderMutexLock mu2(self, *Locks::heap_bitmap_lock_);
3418    collector::MarkSweep* mark_sweep = down_cast<collector::MarkSweep*>(gc);
3419    mark_sweep->VerifySystemWeaks();
3420  }
3421  if (verify_post_gc_rosalloc_) {
3422    RosAllocVerification(timings, "(Paused)PostGcRosAllocVerification");
3423  }
3424  if (verify_post_gc_heap_) {
3425    TimingLogger::ScopedTiming t2("(Paused)PostGcVerifyHeapReferences", timings);
3426    size_t failures = VerifyHeapReferences();
3427    if (failures > 0) {
3428      LOG(FATAL) << "Pre " << gc->GetName() << " heap verification failed with " << failures
3429          << " failures";
3430    }
3431  }
3432}
3433
3434void Heap::PostGcVerification(collector::GarbageCollector* gc) {
3435  if (verify_system_weaks_ || verify_post_gc_rosalloc_ || verify_post_gc_heap_) {
3436    collector::GarbageCollector::ScopedPause pause(gc);
3437    PostGcVerificationPaused(gc);
3438  }
3439}
3440
3441void Heap::RosAllocVerification(TimingLogger* timings, const char* name) {
3442  TimingLogger::ScopedTiming t(name, timings);
3443  for (const auto& space : continuous_spaces_) {
3444    if (space->IsRosAllocSpace()) {
3445      VLOG(heap) << name << " : " << space->GetName();
3446      space->AsRosAllocSpace()->Verify();
3447    }
3448  }
3449}
3450
3451collector::GcType Heap::WaitForGcToComplete(GcCause cause, Thread* self) {
3452  ScopedThreadStateChange tsc(self, kWaitingForGcToComplete);
3453  MutexLock mu(self, *gc_complete_lock_);
3454  return WaitForGcToCompleteLocked(cause, self);
3455}
3456
3457collector::GcType Heap::WaitForGcToCompleteLocked(GcCause cause, Thread* self) {
3458  collector::GcType last_gc_type = collector::kGcTypeNone;
3459  uint64_t wait_start = NanoTime();
3460  while (collector_type_running_ != kCollectorTypeNone) {
3461    if (self != task_processor_->GetRunningThread()) {
3462      // The current thread is about to wait for a currently running
3463      // collection to finish. If the waiting thread is not the heap
3464      // task daemon thread, the currently running collection is
3465      // considered as a blocking GC.
3466      running_collection_is_blocking_ = true;
3467      VLOG(gc) << "Waiting for a blocking GC " << cause;
3468    }
3469    ScopedTrace trace("GC: Wait For Completion");
3470    // We must wait, change thread state then sleep on gc_complete_cond_;
3471    gc_complete_cond_->Wait(self);
3472    last_gc_type = last_gc_type_;
3473  }
3474  uint64_t wait_time = NanoTime() - wait_start;
3475  total_wait_time_ += wait_time;
3476  if (wait_time > long_pause_log_threshold_) {
3477    LOG(INFO) << "WaitForGcToComplete blocked for " << PrettyDuration(wait_time)
3478        << " for cause " << cause;
3479  }
3480  if (self != task_processor_->GetRunningThread()) {
3481    // The current thread is about to run a collection. If the thread
3482    // is not the heap task daemon thread, it's considered as a
3483    // blocking GC (i.e., blocking itself).
3484    running_collection_is_blocking_ = true;
3485    VLOG(gc) << "Starting a blocking GC " << cause;
3486  }
3487  return last_gc_type;
3488}
3489
3490void Heap::DumpForSigQuit(std::ostream& os) {
3491  os << "Heap: " << GetPercentFree() << "% free, " << PrettySize(GetBytesAllocated()) << "/"
3492     << PrettySize(GetTotalMemory()) << "; " << GetObjectsAllocated() << " objects\n";
3493  DumpGcPerformanceInfo(os);
3494}
3495
3496size_t Heap::GetPercentFree() {
3497  return static_cast<size_t>(100.0f * static_cast<float>(GetFreeMemory()) / max_allowed_footprint_);
3498}
3499
3500void Heap::SetIdealFootprint(size_t max_allowed_footprint) {
3501  if (max_allowed_footprint > GetMaxMemory()) {
3502    VLOG(gc) << "Clamp target GC heap from " << PrettySize(max_allowed_footprint) << " to "
3503             << PrettySize(GetMaxMemory());
3504    max_allowed_footprint = GetMaxMemory();
3505  }
3506  max_allowed_footprint_ = max_allowed_footprint;
3507}
3508
3509bool Heap::IsMovableObject(const mirror::Object* obj) const {
3510  if (kMovingCollector) {
3511    space::Space* space = FindContinuousSpaceFromObject(obj, true);
3512    if (space != nullptr) {
3513      // TODO: Check large object?
3514      return space->CanMoveObjects();
3515    }
3516  }
3517  return false;
3518}
3519
3520void Heap::UpdateMaxNativeFootprint() {
3521  size_t native_size = native_bytes_allocated_.LoadRelaxed();
3522  // TODO: Tune the native heap utilization to be a value other than the java heap utilization.
3523  size_t target_size = native_size / GetTargetHeapUtilization();
3524  if (target_size > native_size + max_free_) {
3525    target_size = native_size + max_free_;
3526  } else if (target_size < native_size + min_free_) {
3527    target_size = native_size + min_free_;
3528  }
3529  native_footprint_gc_watermark_ = std::min(growth_limit_, target_size);
3530}
3531
3532collector::GarbageCollector* Heap::FindCollectorByGcType(collector::GcType gc_type) {
3533  for (const auto& collector : garbage_collectors_) {
3534    if (collector->GetCollectorType() == collector_type_ &&
3535        collector->GetGcType() == gc_type) {
3536      return collector;
3537    }
3538  }
3539  return nullptr;
3540}
3541
3542double Heap::HeapGrowthMultiplier() const {
3543  // If we don't care about pause times we are background, so return 1.0.
3544  if (!CareAboutPauseTimes() || IsLowMemoryMode()) {
3545    return 1.0;
3546  }
3547  return foreground_heap_growth_multiplier_;
3548}
3549
3550void Heap::GrowForUtilization(collector::GarbageCollector* collector_ran,
3551                              uint64_t bytes_allocated_before_gc) {
3552  // We know what our utilization is at this moment.
3553  // This doesn't actually resize any memory. It just lets the heap grow more when necessary.
3554  const uint64_t bytes_allocated = GetBytesAllocated();
3555  uint64_t target_size;
3556  collector::GcType gc_type = collector_ran->GetGcType();
3557  const double multiplier = HeapGrowthMultiplier();  // Use the multiplier to grow more for
3558  // foreground.
3559  const uint64_t adjusted_min_free = static_cast<uint64_t>(min_free_ * multiplier);
3560  const uint64_t adjusted_max_free = static_cast<uint64_t>(max_free_ * multiplier);
3561  if (gc_type != collector::kGcTypeSticky) {
3562    // Grow the heap for non sticky GC.
3563    ssize_t delta = bytes_allocated / GetTargetHeapUtilization() - bytes_allocated;
3564    CHECK_GE(delta, 0);
3565    target_size = bytes_allocated + delta * multiplier;
3566    target_size = std::min(target_size, bytes_allocated + adjusted_max_free);
3567    target_size = std::max(target_size, bytes_allocated + adjusted_min_free);
3568    native_need_to_run_finalization_ = true;
3569    next_gc_type_ = collector::kGcTypeSticky;
3570  } else {
3571    collector::GcType non_sticky_gc_type =
3572        HasZygoteSpace() ? collector::kGcTypePartial : collector::kGcTypeFull;
3573    // Find what the next non sticky collector will be.
3574    collector::GarbageCollector* non_sticky_collector = FindCollectorByGcType(non_sticky_gc_type);
3575    // If the throughput of the current sticky GC >= throughput of the non sticky collector, then
3576    // do another sticky collection next.
3577    // We also check that the bytes allocated aren't over the footprint limit in order to prevent a
3578    // pathological case where dead objects which aren't reclaimed by sticky could get accumulated
3579    // if the sticky GC throughput always remained >= the full/partial throughput.
3580    if (current_gc_iteration_.GetEstimatedThroughput() * kStickyGcThroughputAdjustment >=
3581        non_sticky_collector->GetEstimatedMeanThroughput() &&
3582        non_sticky_collector->NumberOfIterations() > 0 &&
3583        bytes_allocated <= max_allowed_footprint_) {
3584      next_gc_type_ = collector::kGcTypeSticky;
3585    } else {
3586      next_gc_type_ = non_sticky_gc_type;
3587    }
3588    // If we have freed enough memory, shrink the heap back down.
3589    if (bytes_allocated + adjusted_max_free < max_allowed_footprint_) {
3590      target_size = bytes_allocated + adjusted_max_free;
3591    } else {
3592      target_size = std::max(bytes_allocated, static_cast<uint64_t>(max_allowed_footprint_));
3593    }
3594  }
3595  if (!ignore_max_footprint_) {
3596    SetIdealFootprint(target_size);
3597    if (IsGcConcurrent()) {
3598      const uint64_t freed_bytes = current_gc_iteration_.GetFreedBytes() +
3599          current_gc_iteration_.GetFreedLargeObjectBytes() +
3600          current_gc_iteration_.GetFreedRevokeBytes();
3601      // Bytes allocated will shrink by freed_bytes after the GC runs, so if we want to figure out
3602      // how many bytes were allocated during the GC we need to add freed_bytes back on.
3603      CHECK_GE(bytes_allocated + freed_bytes, bytes_allocated_before_gc);
3604      const uint64_t bytes_allocated_during_gc = bytes_allocated + freed_bytes -
3605          bytes_allocated_before_gc;
3606      // Calculate when to perform the next ConcurrentGC.
3607      // Calculate the estimated GC duration.
3608      const double gc_duration_seconds = NsToMs(current_gc_iteration_.GetDurationNs()) / 1000.0;
3609      // Estimate how many remaining bytes we will have when we need to start the next GC.
3610      size_t remaining_bytes = bytes_allocated_during_gc * gc_duration_seconds;
3611      remaining_bytes = std::min(remaining_bytes, kMaxConcurrentRemainingBytes);
3612      remaining_bytes = std::max(remaining_bytes, kMinConcurrentRemainingBytes);
3613      if (UNLIKELY(remaining_bytes > max_allowed_footprint_)) {
3614        // A never going to happen situation that from the estimated allocation rate we will exceed
3615        // the applications entire footprint with the given estimated allocation rate. Schedule
3616        // another GC nearly straight away.
3617        remaining_bytes = kMinConcurrentRemainingBytes;
3618      }
3619      DCHECK_LE(remaining_bytes, max_allowed_footprint_);
3620      DCHECK_LE(max_allowed_footprint_, GetMaxMemory());
3621      // Start a concurrent GC when we get close to the estimated remaining bytes. When the
3622      // allocation rate is very high, remaining_bytes could tell us that we should start a GC
3623      // right away.
3624      concurrent_start_bytes_ = std::max(max_allowed_footprint_ - remaining_bytes,
3625                                         static_cast<size_t>(bytes_allocated));
3626    }
3627  }
3628}
3629
3630void Heap::ClampGrowthLimit() {
3631  // Use heap bitmap lock to guard against races with BindLiveToMarkBitmap.
3632  ScopedObjectAccess soa(Thread::Current());
3633  WriterMutexLock mu(soa.Self(), *Locks::heap_bitmap_lock_);
3634  capacity_ = growth_limit_;
3635  for (const auto& space : continuous_spaces_) {
3636    if (space->IsMallocSpace()) {
3637      gc::space::MallocSpace* malloc_space = space->AsMallocSpace();
3638      malloc_space->ClampGrowthLimit();
3639    }
3640  }
3641  // This space isn't added for performance reasons.
3642  if (main_space_backup_.get() != nullptr) {
3643    main_space_backup_->ClampGrowthLimit();
3644  }
3645}
3646
3647void Heap::ClearGrowthLimit() {
3648  growth_limit_ = capacity_;
3649  ScopedObjectAccess soa(Thread::Current());
3650  for (const auto& space : continuous_spaces_) {
3651    if (space->IsMallocSpace()) {
3652      gc::space::MallocSpace* malloc_space = space->AsMallocSpace();
3653      malloc_space->ClearGrowthLimit();
3654      malloc_space->SetFootprintLimit(malloc_space->Capacity());
3655    }
3656  }
3657  // This space isn't added for performance reasons.
3658  if (main_space_backup_.get() != nullptr) {
3659    main_space_backup_->ClearGrowthLimit();
3660    main_space_backup_->SetFootprintLimit(main_space_backup_->Capacity());
3661  }
3662}
3663
3664void Heap::AddFinalizerReference(Thread* self, mirror::Object** object) {
3665  ScopedObjectAccess soa(self);
3666  ScopedLocalRef<jobject> arg(self->GetJniEnv(), soa.AddLocalReference<jobject>(*object));
3667  jvalue args[1];
3668  args[0].l = arg.get();
3669  InvokeWithJValues(soa, nullptr, WellKnownClasses::java_lang_ref_FinalizerReference_add, args);
3670  // Restore object in case it gets moved.
3671  *object = soa.Decode<mirror::Object*>(arg.get());
3672}
3673
3674void Heap::RequestConcurrentGCAndSaveObject(Thread* self, bool force_full, mirror::Object** obj) {
3675  StackHandleScope<1> hs(self);
3676  HandleWrapper<mirror::Object> wrapper(hs.NewHandleWrapper(obj));
3677  RequestConcurrentGC(self, force_full);
3678}
3679
3680class Heap::ConcurrentGCTask : public HeapTask {
3681 public:
3682  ConcurrentGCTask(uint64_t target_time, bool force_full)
3683      : HeapTask(target_time), force_full_(force_full) { }
3684  virtual void Run(Thread* self) OVERRIDE {
3685    gc::Heap* heap = Runtime::Current()->GetHeap();
3686    heap->ConcurrentGC(self, force_full_);
3687    heap->ClearConcurrentGCRequest();
3688  }
3689
3690 private:
3691  const bool force_full_;  // If true, force full (or partial) collection.
3692};
3693
3694static bool CanAddHeapTask(Thread* self) REQUIRES(!Locks::runtime_shutdown_lock_) {
3695  Runtime* runtime = Runtime::Current();
3696  return runtime != nullptr && runtime->IsFinishedStarting() && !runtime->IsShuttingDown(self) &&
3697      !self->IsHandlingStackOverflow();
3698}
3699
3700void Heap::ClearConcurrentGCRequest() {
3701  concurrent_gc_pending_.StoreRelaxed(false);
3702}
3703
3704void Heap::RequestConcurrentGC(Thread* self, bool force_full) {
3705  if (CanAddHeapTask(self) &&
3706      concurrent_gc_pending_.CompareExchangeStrongSequentiallyConsistent(false, true)) {
3707    task_processor_->AddTask(self, new ConcurrentGCTask(NanoTime(),  // Start straight away.
3708                                                        force_full));
3709  }
3710}
3711
3712void Heap::ConcurrentGC(Thread* self, bool force_full) {
3713  if (!Runtime::Current()->IsShuttingDown(self)) {
3714    // Wait for any GCs currently running to finish.
3715    if (WaitForGcToComplete(kGcCauseBackground, self) == collector::kGcTypeNone) {
3716      // If the we can't run the GC type we wanted to run, find the next appropriate one and try that
3717      // instead. E.g. can't do partial, so do full instead.
3718      collector::GcType next_gc_type = next_gc_type_;
3719      // If forcing full and next gc type is sticky, override with a non-sticky type.
3720      if (force_full && next_gc_type == collector::kGcTypeSticky) {
3721        next_gc_type = HasZygoteSpace() ? collector::kGcTypePartial : collector::kGcTypeFull;
3722      }
3723      if (CollectGarbageInternal(next_gc_type, kGcCauseBackground, false) ==
3724          collector::kGcTypeNone) {
3725        for (collector::GcType gc_type : gc_plan_) {
3726          // Attempt to run the collector, if we succeed, we are done.
3727          if (gc_type > next_gc_type &&
3728              CollectGarbageInternal(gc_type, kGcCauseBackground, false) !=
3729                  collector::kGcTypeNone) {
3730            break;
3731          }
3732        }
3733      }
3734    }
3735  }
3736}
3737
3738class Heap::CollectorTransitionTask : public HeapTask {
3739 public:
3740  explicit CollectorTransitionTask(uint64_t target_time) : HeapTask(target_time) {}
3741
3742  virtual void Run(Thread* self) OVERRIDE {
3743    gc::Heap* heap = Runtime::Current()->GetHeap();
3744    heap->DoPendingCollectorTransition();
3745    heap->ClearPendingCollectorTransition(self);
3746  }
3747};
3748
3749void Heap::ClearPendingCollectorTransition(Thread* self) {
3750  MutexLock mu(self, *pending_task_lock_);
3751  pending_collector_transition_ = nullptr;
3752}
3753
3754void Heap::RequestCollectorTransition(CollectorType desired_collector_type, uint64_t delta_time) {
3755  Thread* self = Thread::Current();
3756  desired_collector_type_ = desired_collector_type;
3757  if (desired_collector_type_ == collector_type_ || !CanAddHeapTask(self)) {
3758    return;
3759  }
3760  CollectorTransitionTask* added_task = nullptr;
3761  const uint64_t target_time = NanoTime() + delta_time;
3762  {
3763    MutexLock mu(self, *pending_task_lock_);
3764    // If we have an existing collector transition, update the targe time to be the new target.
3765    if (pending_collector_transition_ != nullptr) {
3766      task_processor_->UpdateTargetRunTime(self, pending_collector_transition_, target_time);
3767      return;
3768    }
3769    added_task = new CollectorTransitionTask(target_time);
3770    pending_collector_transition_ = added_task;
3771  }
3772  task_processor_->AddTask(self, added_task);
3773}
3774
3775class Heap::HeapTrimTask : public HeapTask {
3776 public:
3777  explicit HeapTrimTask(uint64_t delta_time) : HeapTask(NanoTime() + delta_time) { }
3778  virtual void Run(Thread* self) OVERRIDE {
3779    gc::Heap* heap = Runtime::Current()->GetHeap();
3780    heap->Trim(self);
3781    heap->ClearPendingTrim(self);
3782  }
3783};
3784
3785void Heap::ClearPendingTrim(Thread* self) {
3786  MutexLock mu(self, *pending_task_lock_);
3787  pending_heap_trim_ = nullptr;
3788}
3789
3790void Heap::RequestTrim(Thread* self) {
3791  if (!CanAddHeapTask(self)) {
3792    return;
3793  }
3794  // GC completed and now we must decide whether to request a heap trim (advising pages back to the
3795  // kernel) or not. Issuing a request will also cause trimming of the libc heap. As a trim scans
3796  // a space it will hold its lock and can become a cause of jank.
3797  // Note, the large object space self trims and the Zygote space was trimmed and unchanging since
3798  // forking.
3799
3800  // We don't have a good measure of how worthwhile a trim might be. We can't use the live bitmap
3801  // because that only marks object heads, so a large array looks like lots of empty space. We
3802  // don't just call dlmalloc all the time, because the cost of an _attempted_ trim is proportional
3803  // to utilization (which is probably inversely proportional to how much benefit we can expect).
3804  // We could try mincore(2) but that's only a measure of how many pages we haven't given away,
3805  // not how much use we're making of those pages.
3806  HeapTrimTask* added_task = nullptr;
3807  {
3808    MutexLock mu(self, *pending_task_lock_);
3809    if (pending_heap_trim_ != nullptr) {
3810      // Already have a heap trim request in task processor, ignore this request.
3811      return;
3812    }
3813    added_task = new HeapTrimTask(kHeapTrimWait);
3814    pending_heap_trim_ = added_task;
3815  }
3816  task_processor_->AddTask(self, added_task);
3817}
3818
3819void Heap::RevokeThreadLocalBuffers(Thread* thread) {
3820  if (rosalloc_space_ != nullptr) {
3821    size_t freed_bytes_revoke = rosalloc_space_->RevokeThreadLocalBuffers(thread);
3822    if (freed_bytes_revoke > 0U) {
3823      num_bytes_freed_revoke_.FetchAndAddSequentiallyConsistent(freed_bytes_revoke);
3824      CHECK_GE(num_bytes_allocated_.LoadRelaxed(), num_bytes_freed_revoke_.LoadRelaxed());
3825    }
3826  }
3827  if (bump_pointer_space_ != nullptr) {
3828    CHECK_EQ(bump_pointer_space_->RevokeThreadLocalBuffers(thread), 0U);
3829  }
3830  if (region_space_ != nullptr) {
3831    CHECK_EQ(region_space_->RevokeThreadLocalBuffers(thread), 0U);
3832  }
3833}
3834
3835void Heap::RevokeRosAllocThreadLocalBuffers(Thread* thread) {
3836  if (rosalloc_space_ != nullptr) {
3837    size_t freed_bytes_revoke = rosalloc_space_->RevokeThreadLocalBuffers(thread);
3838    if (freed_bytes_revoke > 0U) {
3839      num_bytes_freed_revoke_.FetchAndAddSequentiallyConsistent(freed_bytes_revoke);
3840      CHECK_GE(num_bytes_allocated_.LoadRelaxed(), num_bytes_freed_revoke_.LoadRelaxed());
3841    }
3842  }
3843}
3844
3845void Heap::RevokeAllThreadLocalBuffers() {
3846  if (rosalloc_space_ != nullptr) {
3847    size_t freed_bytes_revoke = rosalloc_space_->RevokeAllThreadLocalBuffers();
3848    if (freed_bytes_revoke > 0U) {
3849      num_bytes_freed_revoke_.FetchAndAddSequentiallyConsistent(freed_bytes_revoke);
3850      CHECK_GE(num_bytes_allocated_.LoadRelaxed(), num_bytes_freed_revoke_.LoadRelaxed());
3851    }
3852  }
3853  if (bump_pointer_space_ != nullptr) {
3854    CHECK_EQ(bump_pointer_space_->RevokeAllThreadLocalBuffers(), 0U);
3855  }
3856  if (region_space_ != nullptr) {
3857    CHECK_EQ(region_space_->RevokeAllThreadLocalBuffers(), 0U);
3858  }
3859}
3860
3861bool Heap::IsGCRequestPending() const {
3862  return concurrent_gc_pending_.LoadRelaxed();
3863}
3864
3865void Heap::RunFinalization(JNIEnv* env, uint64_t timeout) {
3866  env->CallStaticVoidMethod(WellKnownClasses::dalvik_system_VMRuntime,
3867                            WellKnownClasses::dalvik_system_VMRuntime_runFinalization,
3868                            static_cast<jlong>(timeout));
3869}
3870
3871void Heap::RegisterNativeAllocation(JNIEnv* env, size_t bytes) {
3872  Thread* self = ThreadForEnv(env);
3873  {
3874    MutexLock mu(self, native_histogram_lock_);
3875    native_allocation_histogram_.AddValue(bytes);
3876  }
3877  if (native_need_to_run_finalization_) {
3878    RunFinalization(env, kNativeAllocationFinalizeTimeout);
3879    UpdateMaxNativeFootprint();
3880    native_need_to_run_finalization_ = false;
3881  }
3882  // Total number of native bytes allocated.
3883  size_t new_native_bytes_allocated = native_bytes_allocated_.FetchAndAddSequentiallyConsistent(bytes);
3884  new_native_bytes_allocated += bytes;
3885  if (new_native_bytes_allocated > native_footprint_gc_watermark_) {
3886    collector::GcType gc_type = HasZygoteSpace() ? collector::kGcTypePartial :
3887        collector::kGcTypeFull;
3888
3889    // The second watermark is higher than the gc watermark. If you hit this it means you are
3890    // allocating native objects faster than the GC can keep up with.
3891    if (new_native_bytes_allocated > growth_limit_) {
3892      if (WaitForGcToComplete(kGcCauseForNativeAlloc, self) != collector::kGcTypeNone) {
3893        // Just finished a GC, attempt to run finalizers.
3894        RunFinalization(env, kNativeAllocationFinalizeTimeout);
3895        CHECK(!env->ExceptionCheck());
3896        // Native bytes allocated may be updated by finalization, refresh it.
3897        new_native_bytes_allocated = native_bytes_allocated_.LoadRelaxed();
3898      }
3899      // If we still are over the watermark, attempt a GC for alloc and run finalizers.
3900      if (new_native_bytes_allocated > growth_limit_) {
3901        CollectGarbageInternal(gc_type, kGcCauseForNativeAlloc, false);
3902        RunFinalization(env, kNativeAllocationFinalizeTimeout);
3903        native_need_to_run_finalization_ = false;
3904        CHECK(!env->ExceptionCheck());
3905      }
3906      // We have just run finalizers, update the native watermark since it is very likely that
3907      // finalizers released native managed allocations.
3908      UpdateMaxNativeFootprint();
3909    } else if (!IsGCRequestPending()) {
3910      if (IsGcConcurrent()) {
3911        RequestConcurrentGC(self, true);  // Request non-sticky type.
3912      } else {
3913        CollectGarbageInternal(gc_type, kGcCauseForNativeAlloc, false);
3914      }
3915    }
3916  }
3917}
3918
3919void Heap::RegisterNativeFree(JNIEnv* env, size_t bytes) {
3920  size_t expected_size;
3921  {
3922    MutexLock mu(Thread::Current(), native_histogram_lock_);
3923    native_free_histogram_.AddValue(bytes);
3924  }
3925  do {
3926    expected_size = native_bytes_allocated_.LoadRelaxed();
3927    if (UNLIKELY(bytes > expected_size)) {
3928      ScopedObjectAccess soa(env);
3929      env->ThrowNew(WellKnownClasses::java_lang_RuntimeException,
3930                    StringPrintf("Attempted to free %zd native bytes with only %zd native bytes "
3931                                 "registered as allocated", bytes, expected_size).c_str());
3932      break;
3933    }
3934  } while (!native_bytes_allocated_.CompareExchangeWeakRelaxed(expected_size,
3935                                                               expected_size - bytes));
3936}
3937
3938size_t Heap::GetTotalMemory() const {
3939  return std::max(max_allowed_footprint_, GetBytesAllocated());
3940}
3941
3942void Heap::AddModUnionTable(accounting::ModUnionTable* mod_union_table) {
3943  DCHECK(mod_union_table != nullptr);
3944  mod_union_tables_.Put(mod_union_table->GetSpace(), mod_union_table);
3945}
3946
3947void Heap::CheckPreconditionsForAllocObject(mirror::Class* c, size_t byte_count) {
3948  CHECK(c == nullptr || (c->IsClassClass() && byte_count >= sizeof(mirror::Class)) ||
3949        (c->IsVariableSize() || c->GetObjectSize() == byte_count)) << c->GetClassFlags();
3950  CHECK_GE(byte_count, sizeof(mirror::Object));
3951}
3952
3953void Heap::AddRememberedSet(accounting::RememberedSet* remembered_set) {
3954  CHECK(remembered_set != nullptr);
3955  space::Space* space = remembered_set->GetSpace();
3956  CHECK(space != nullptr);
3957  CHECK(remembered_sets_.find(space) == remembered_sets_.end()) << space;
3958  remembered_sets_.Put(space, remembered_set);
3959  CHECK(remembered_sets_.find(space) != remembered_sets_.end()) << space;
3960}
3961
3962void Heap::RemoveRememberedSet(space::Space* space) {
3963  CHECK(space != nullptr);
3964  auto it = remembered_sets_.find(space);
3965  CHECK(it != remembered_sets_.end());
3966  delete it->second;
3967  remembered_sets_.erase(it);
3968  CHECK(remembered_sets_.find(space) == remembered_sets_.end());
3969}
3970
3971void Heap::ClearMarkedObjects() {
3972  // Clear all of the spaces' mark bitmaps.
3973  for (const auto& space : GetContinuousSpaces()) {
3974    accounting::ContinuousSpaceBitmap* mark_bitmap = space->GetMarkBitmap();
3975    if (space->GetLiveBitmap() != mark_bitmap) {
3976      mark_bitmap->Clear();
3977    }
3978  }
3979  // Clear the marked objects in the discontinous space object sets.
3980  for (const auto& space : GetDiscontinuousSpaces()) {
3981    space->GetMarkBitmap()->Clear();
3982  }
3983}
3984
3985void Heap::SetAllocationRecords(AllocRecordObjectMap* records) {
3986  allocation_records_.reset(records);
3987}
3988
3989void Heap::VisitAllocationRecords(RootVisitor* visitor) const {
3990  if (IsAllocTrackingEnabled()) {
3991    MutexLock mu(Thread::Current(), *Locks::alloc_tracker_lock_);
3992    if (IsAllocTrackingEnabled()) {
3993      GetAllocationRecords()->VisitRoots(visitor);
3994    }
3995  }
3996}
3997
3998void Heap::SweepAllocationRecords(IsMarkedVisitor* visitor) const {
3999  if (IsAllocTrackingEnabled()) {
4000    MutexLock mu(Thread::Current(), *Locks::alloc_tracker_lock_);
4001    if (IsAllocTrackingEnabled()) {
4002      GetAllocationRecords()->SweepAllocationRecords(visitor);
4003    }
4004  }
4005}
4006
4007void Heap::AllowNewAllocationRecords() const {
4008  CHECK(!kUseReadBarrier);
4009  MutexLock mu(Thread::Current(), *Locks::alloc_tracker_lock_);
4010  AllocRecordObjectMap* allocation_records = GetAllocationRecords();
4011  if (allocation_records != nullptr) {
4012    allocation_records->AllowNewAllocationRecords();
4013  }
4014}
4015
4016void Heap::DisallowNewAllocationRecords() const {
4017  CHECK(!kUseReadBarrier);
4018  MutexLock mu(Thread::Current(), *Locks::alloc_tracker_lock_);
4019  AllocRecordObjectMap* allocation_records = GetAllocationRecords();
4020  if (allocation_records != nullptr) {
4021    allocation_records->DisallowNewAllocationRecords();
4022  }
4023}
4024
4025void Heap::BroadcastForNewAllocationRecords() const {
4026  CHECK(kUseReadBarrier);
4027  // Always broadcast without checking IsAllocTrackingEnabled() because IsAllocTrackingEnabled() may
4028  // be set to false while some threads are waiting for system weak access in
4029  // AllocRecordObjectMap::RecordAllocation() and we may fail to wake them up. b/27467554.
4030  MutexLock mu(Thread::Current(), *Locks::alloc_tracker_lock_);
4031  AllocRecordObjectMap* allocation_records = GetAllocationRecords();
4032  if (allocation_records != nullptr) {
4033    allocation_records->BroadcastForNewAllocationRecords();
4034  }
4035}
4036
4037// Based on debug malloc logic from libc/bionic/debug_stacktrace.cpp.
4038class StackCrawlState {
4039 public:
4040  StackCrawlState(uintptr_t* frames, size_t max_depth, size_t skip_count)
4041      : frames_(frames), frame_count_(0), max_depth_(max_depth), skip_count_(skip_count) {
4042  }
4043  size_t GetFrameCount() const {
4044    return frame_count_;
4045  }
4046  static _Unwind_Reason_Code Callback(_Unwind_Context* context, void* arg) {
4047    auto* const state = reinterpret_cast<StackCrawlState*>(arg);
4048    const uintptr_t ip = _Unwind_GetIP(context);
4049    // The first stack frame is get_backtrace itself. Skip it.
4050    if (ip != 0 && state->skip_count_ > 0) {
4051      --state->skip_count_;
4052      return _URC_NO_REASON;
4053    }
4054    // ip may be off for ARM but it shouldn't matter since we only use it for hashing.
4055    state->frames_[state->frame_count_] = ip;
4056    state->frame_count_++;
4057    return state->frame_count_ >= state->max_depth_ ? _URC_END_OF_STACK : _URC_NO_REASON;
4058  }
4059
4060 private:
4061  uintptr_t* const frames_;
4062  size_t frame_count_;
4063  const size_t max_depth_;
4064  size_t skip_count_;
4065};
4066
4067static size_t get_backtrace(uintptr_t* frames, size_t max_depth) {
4068  StackCrawlState state(frames, max_depth, 0u);
4069  _Unwind_Backtrace(&StackCrawlState::Callback, &state);
4070  return state.GetFrameCount();
4071}
4072
4073void Heap::CheckGcStressMode(Thread* self, mirror::Object** obj) {
4074  auto* const runtime = Runtime::Current();
4075  if (gc_stress_mode_ && runtime->GetClassLinker()->IsInitialized() &&
4076      !runtime->IsActiveTransaction() && mirror::Class::HasJavaLangClass()) {
4077    // Check if we should GC.
4078    bool new_backtrace = false;
4079    {
4080      static constexpr size_t kMaxFrames = 16u;
4081      uintptr_t backtrace[kMaxFrames];
4082      const size_t frames = get_backtrace(backtrace, kMaxFrames);
4083      uint64_t hash = 0;
4084      for (size_t i = 0; i < frames; ++i) {
4085        hash = hash * 2654435761 + backtrace[i];
4086        hash += (hash >> 13) ^ (hash << 6);
4087      }
4088      MutexLock mu(self, *backtrace_lock_);
4089      new_backtrace = seen_backtraces_.find(hash) == seen_backtraces_.end();
4090      if (new_backtrace) {
4091        seen_backtraces_.insert(hash);
4092      }
4093    }
4094    if (new_backtrace) {
4095      StackHandleScope<1> hs(self);
4096      auto h = hs.NewHandleWrapper(obj);
4097      CollectGarbage(false);
4098      unique_backtrace_count_.FetchAndAddSequentiallyConsistent(1);
4099    } else {
4100      seen_backtrace_count_.FetchAndAddSequentiallyConsistent(1);
4101    }
4102  }
4103}
4104
4105void Heap::DisableGCForShutdown() {
4106  Thread* const self = Thread::Current();
4107  CHECK(Runtime::Current()->IsShuttingDown(self));
4108  MutexLock mu(self, *gc_complete_lock_);
4109  gc_disabled_for_shutdown_ = true;
4110}
4111
4112bool Heap::ObjectIsInBootImageSpace(mirror::Object* obj) const {
4113  for (gc::space::ImageSpace* space : boot_image_spaces_) {
4114    if (space->HasAddress(obj)) {
4115      return true;
4116    }
4117  }
4118  return false;
4119}
4120
4121bool Heap::IsInBootImageOatFile(const void* p) const {
4122  for (gc::space::ImageSpace* space : boot_image_spaces_) {
4123    if (space->GetOatFile()->Contains(p)) {
4124      return true;
4125    }
4126  }
4127  return false;
4128}
4129
4130void Heap::GetBootImagesSize(uint32_t* boot_image_begin,
4131                             uint32_t* boot_image_end,
4132                             uint32_t* boot_oat_begin,
4133                             uint32_t* boot_oat_end) {
4134  DCHECK(boot_image_begin != nullptr);
4135  DCHECK(boot_image_end != nullptr);
4136  DCHECK(boot_oat_begin != nullptr);
4137  DCHECK(boot_oat_end != nullptr);
4138  *boot_image_begin = 0u;
4139  *boot_image_end = 0u;
4140  *boot_oat_begin = 0u;
4141  *boot_oat_end = 0u;
4142  for (gc::space::ImageSpace* space_ : GetBootImageSpaces()) {
4143    const uint32_t image_begin = PointerToLowMemUInt32(space_->Begin());
4144    const uint32_t image_size = space_->GetImageHeader().GetImageSize();
4145    if (*boot_image_begin == 0 || image_begin < *boot_image_begin) {
4146      *boot_image_begin = image_begin;
4147    }
4148    *boot_image_end = std::max(*boot_image_end, image_begin + image_size);
4149    const OatFile* boot_oat_file = space_->GetOatFile();
4150    const uint32_t oat_begin = PointerToLowMemUInt32(boot_oat_file->Begin());
4151    const uint32_t oat_size = boot_oat_file->Size();
4152    if (*boot_oat_begin == 0 || oat_begin < *boot_oat_begin) {
4153      *boot_oat_begin = oat_begin;
4154    }
4155    *boot_oat_end = std::max(*boot_oat_end, oat_begin + oat_size);
4156  }
4157}
4158
4159}  // namespace gc
4160}  // namespace art
4161