indirect_reference_table.h revision dc061d038e4e48fe2a967fd4a9c200d112df5698
1/*
2 * Copyright (C) 2009 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#ifndef ART_RUNTIME_INDIRECT_REFERENCE_TABLE_H_
18#define ART_RUNTIME_INDIRECT_REFERENCE_TABLE_H_
19
20#include <stdint.h>
21
22#include <iosfwd>
23#include <string>
24
25#include "base/bit_utils.h"
26#include "base/logging.h"
27#include "base/mutex.h"
28#include "gc_root.h"
29#include "obj_ptr.h"
30#include "object_callbacks.h"
31#include "offsets.h"
32#include "read_barrier_option.h"
33
34namespace art {
35
36class RootInfo;
37
38namespace mirror {
39class Object;
40}  // namespace mirror
41
42class MemMap;
43
44/*
45 * Maintain a table of indirect references.  Used for local/global JNI
46 * references.
47 *
48 * The table contains object references that are part of the GC root set.
49 * When an object is added we return an IndirectRef that is not a valid
50 * pointer but can be used to find the original value in O(1) time.
51 * Conversions to and from indirect references are performed on upcalls
52 * and downcalls, so they need to be very fast.
53 *
54 * To be efficient for JNI local variable storage, we need to provide
55 * operations that allow us to operate on segments of the table, where
56 * segments are pushed and popped as if on a stack.  For example, deletion
57 * of an entry should only succeed if it appears in the current segment,
58 * and we want to be able to strip off the current segment quickly when
59 * a method returns.  Additions to the table must be made in the current
60 * segment even if space is available in an earlier area.
61 *
62 * A new segment is created when we call into native code from interpreted
63 * code, or when we handle the JNI PushLocalFrame function.
64 *
65 * The GC must be able to scan the entire table quickly.
66 *
67 * In summary, these must be very fast:
68 *  - adding or removing a segment
69 *  - adding references to a new segment
70 *  - converting an indirect reference back to an Object
71 * These can be a little slower, but must still be pretty quick:
72 *  - adding references to a "mature" segment
73 *  - removing individual references
74 *  - scanning the entire table straight through
75 *
76 * If there's more than one segment, we don't guarantee that the table
77 * will fill completely before we fail due to lack of space.  We do ensure
78 * that the current segment will pack tightly, which should satisfy JNI
79 * requirements (e.g. EnsureLocalCapacity).
80 *
81 * To make everything fit nicely in 32-bit integers, the maximum size of
82 * the table is capped at 64K.
83 *
84 * Only SynchronizedGet is synchronized.
85 */
86
87/*
88 * Indirect reference definition.  This must be interchangeable with JNI's
89 * jobject, and it's convenient to let null be null, so we use void*.
90 *
91 * We need a 16-bit table index and a 2-bit reference type (global, local,
92 * weak global).  Real object pointers will have zeroes in the low 2 or 3
93 * bits (4- or 8-byte alignment), so it's useful to put the ref type
94 * in the low bits and reserve zero as an invalid value.
95 *
96 * The remaining 14 bits can be used to detect stale indirect references.
97 * For example, if objects don't move, we can use a hash of the original
98 * Object* to make sure the entry hasn't been re-used.  (If the Object*
99 * we find there doesn't match because of heap movement, we could do a
100 * secondary check on the preserved hash value; this implies that creating
101 * a global/local ref queries the hash value and forces it to be saved.)
102 *
103 * A more rigorous approach would be to put a serial number in the extra
104 * bits, and keep a copy of the serial number in a parallel table.  This is
105 * easier when objects can move, but requires 2x the memory and additional
106 * memory accesses on add/get.  It will catch additional problems, e.g.:
107 * create iref1 for obj, delete iref1, create iref2 for same obj, lookup
108 * iref1.  A pattern based on object bits will miss this.
109 */
110typedef void* IndirectRef;
111
112/*
113 * Indirect reference kind, used as the two low bits of IndirectRef.
114 *
115 * For convenience these match up with enum jobjectRefType from jni.h.
116 */
117enum IndirectRefKind {
118  kHandleScopeOrInvalid = 0,           // <<stack indirect reference table or invalid reference>>
119  kLocal                = 1,           // <<local reference>>
120  kGlobal               = 2,           // <<global reference>>
121  kWeakGlobal           = 3,           // <<weak global reference>>
122  kLastKind             = kWeakGlobal
123};
124std::ostream& operator<<(std::ostream& os, const IndirectRefKind& rhs);
125const char* GetIndirectRefKindString(const IndirectRefKind& kind);
126
127/* use as initial value for "cookie", and when table has only one segment */
128static const uint32_t IRT_FIRST_SEGMENT = 0;
129
130/*
131 * Table definition.
132 *
133 * For the global reference table, the expected common operations are
134 * adding a new entry and removing a recently-added entry (usually the
135 * most-recently-added entry).  For JNI local references, the common
136 * operations are adding a new entry and removing an entire table segment.
137 *
138 * If "alloc_entries_" is not equal to "max_entries_", the table may expand
139 * when entries are added, which means the memory may move.  If you want
140 * to keep pointers into "table" rather than offsets, you must use a
141 * fixed-size table.
142 *
143 * If we delete entries from the middle of the list, we will be left with
144 * "holes".  We track the number of holes so that, when adding new elements,
145 * we can quickly decide to do a trivial append or go slot-hunting.
146 *
147 * When the top-most entry is removed, any holes immediately below it are
148 * also removed.  Thus, deletion of an entry may reduce "topIndex" by more
149 * than one.
150 *
151 * To get the desired behavior for JNI locals, we need to know the bottom
152 * and top of the current "segment".  The top is managed internally, and
153 * the bottom is passed in as a function argument.  When we call a native method or
154 * push a local frame, the current top index gets pushed on, and serves
155 * as the new bottom.  When we pop a frame off, the value from the stack
156 * becomes the new top index, and the value stored in the previous frame
157 * becomes the new bottom.
158 *
159 * To avoid having to re-scan the table after a pop, we want to push the
160 * number of holes in the table onto the stack.  Because of our 64K-entry
161 * cap, we can combine the two into a single unsigned 32-bit value.
162 * Instead of a "bottom" argument we take a "cookie", which includes the
163 * bottom index and the count of holes below the bottom.
164 *
165 * Common alternative implementation: make IndirectRef a pointer to the
166 * actual reference slot.  Instead of getting a table and doing a lookup,
167 * the lookup can be done instantly.  Operations like determining the
168 * type and deleting the reference are more expensive because the table
169 * must be hunted for (i.e. you have to do a pointer comparison to see
170 * which table it's in), you can't move the table when expanding it (so
171 * realloc() is out), and tricks like serial number checking to detect
172 * stale references aren't possible (though we may be able to get similar
173 * benefits with other approaches).
174 *
175 * TODO: consider a "lastDeleteIndex" for quick hole-filling when an
176 * add immediately follows a delete; must invalidate after segment pop
177 * (which could increase the cost/complexity of method call/return).
178 * Might be worth only using it for JNI globals.
179 *
180 * TODO: may want completely different add/remove algorithms for global
181 * and local refs to improve performance.  A large circular buffer might
182 * reduce the amortized cost of adding global references.
183 *
184 */
185union IRTSegmentState {
186  uint32_t          all;
187  struct {
188    uint32_t      topIndex:16;            /* index of first unused entry */
189    uint32_t      numHoles:16;            /* #of holes in entire table */
190  } parts;
191};
192
193// Try to choose kIRTPrevCount so that sizeof(IrtEntry) is a power of 2.
194// Contains multiple entries but only one active one, this helps us detect use after free errors
195// since the serial stored in the indirect ref wont match.
196static constexpr size_t kIRTPrevCount = kIsDebugBuild ? 7 : 3;
197
198class IrtEntry {
199 public:
200  void Add(ObjPtr<mirror::Object> obj) REQUIRES_SHARED(Locks::mutator_lock_);
201
202  GcRoot<mirror::Object>* GetReference() {
203    DCHECK_LT(serial_, kIRTPrevCount);
204    return &references_[serial_];
205  }
206
207  uint32_t GetSerial() const {
208    return serial_;
209  }
210
211  void SetReference(ObjPtr<mirror::Object> obj) REQUIRES_SHARED(Locks::mutator_lock_);
212
213 private:
214  uint32_t serial_;
215  GcRoot<mirror::Object> references_[kIRTPrevCount];
216};
217static_assert(sizeof(IrtEntry) == (1 + kIRTPrevCount) * sizeof(uint32_t),
218              "Unexpected sizeof(IrtEntry)");
219static_assert(IsPowerOfTwo(sizeof(IrtEntry)), "Unexpected sizeof(IrtEntry)");
220
221class IrtIterator {
222 public:
223  IrtIterator(IrtEntry* table, size_t i, size_t capacity) REQUIRES_SHARED(Locks::mutator_lock_)
224      : table_(table), i_(i), capacity_(capacity) {
225  }
226
227  IrtIterator& operator++() REQUIRES_SHARED(Locks::mutator_lock_) {
228    ++i_;
229    return *this;
230  }
231
232  GcRoot<mirror::Object>* operator*() REQUIRES_SHARED(Locks::mutator_lock_) {
233    // This does not have a read barrier as this is used to visit roots.
234    return table_[i_].GetReference();
235  }
236
237  bool equals(const IrtIterator& rhs) const {
238    return (i_ == rhs.i_ && table_ == rhs.table_);
239  }
240
241 private:
242  IrtEntry* const table_;
243  size_t i_;
244  const size_t capacity_;
245};
246
247bool inline operator==(const IrtIterator& lhs, const IrtIterator& rhs) {
248  return lhs.equals(rhs);
249}
250
251bool inline operator!=(const IrtIterator& lhs, const IrtIterator& rhs) {
252  return !lhs.equals(rhs);
253}
254
255class IndirectReferenceTable {
256 public:
257  /*
258   * WARNING: Construction of the IndirectReferenceTable may fail.
259   * error_msg must not be null. If error_msg is set by the constructor, then
260   * construction has failed and the IndirectReferenceTable will be in an
261   * invalid state. Use IsValid to check whether the object is in an invalid
262   * state.
263   */
264  IndirectReferenceTable(size_t max_count, IndirectRefKind kind, std::string* error_msg);
265
266  ~IndirectReferenceTable();
267
268  /*
269   * Checks whether construction of the IndirectReferenceTable succeeded.
270   *
271   * This object must only be used if IsValid() returns true. It is safe to
272   * call IsValid from multiple threads without locking or other explicit
273   * synchronization.
274   */
275  bool IsValid() const;
276
277  /*
278   * Add a new entry.  "obj" must be a valid non-nullptr object reference.
279   *
280   * Returns nullptr if the table is full (max entries reached, or alloc
281   * failed during expansion).
282   */
283  IndirectRef Add(uint32_t cookie, ObjPtr<mirror::Object> obj)
284      REQUIRES_SHARED(Locks::mutator_lock_);
285
286  /*
287   * Given an IndirectRef in the table, return the Object it refers to.
288   *
289   * Returns kInvalidIndirectRefObject if iref is invalid.
290   */
291  template<ReadBarrierOption kReadBarrierOption = kWithReadBarrier>
292  ObjPtr<mirror::Object> Get(IndirectRef iref) const REQUIRES_SHARED(Locks::mutator_lock_)
293      ALWAYS_INLINE;
294
295  // Synchronized get which reads a reference, acquiring a lock if necessary.
296  template<ReadBarrierOption kReadBarrierOption = kWithReadBarrier>
297  ObjPtr<mirror::Object> SynchronizedGet(IndirectRef iref) const
298      REQUIRES_SHARED(Locks::mutator_lock_) {
299    return Get<kReadBarrierOption>(iref);
300  }
301
302  /*
303   * Update an existing entry.
304   *
305   * Updates an existing indirect reference to point to a new object.
306   */
307  void Update(IndirectRef iref, ObjPtr<mirror::Object> obj) REQUIRES_SHARED(Locks::mutator_lock_);
308
309  /*
310   * Remove an existing entry.
311   *
312   * If the entry is not between the current top index and the bottom index
313   * specified by the cookie, we don't remove anything.  This is the behavior
314   * required by JNI's DeleteLocalRef function.
315   *
316   * Returns "false" if nothing was removed.
317   */
318  bool Remove(uint32_t cookie, IndirectRef iref);
319
320  void AssertEmpty() REQUIRES_SHARED(Locks::mutator_lock_);
321
322  void Dump(std::ostream& os) const REQUIRES_SHARED(Locks::mutator_lock_);
323
324  /*
325   * Return the #of entries in the entire table.  This includes holes, and
326   * so may be larger than the actual number of "live" entries.
327   */
328  size_t Capacity() const {
329    return segment_state_.parts.topIndex;
330  }
331
332  // Note IrtIterator does not have a read barrier as it's used to visit roots.
333  IrtIterator begin() {
334    return IrtIterator(table_, 0, Capacity());
335  }
336
337  IrtIterator end() {
338    return IrtIterator(table_, Capacity(), Capacity());
339  }
340
341  void VisitRoots(RootVisitor* visitor, const RootInfo& root_info)
342      REQUIRES_SHARED(Locks::mutator_lock_);
343
344  uint32_t GetSegmentState() const {
345    return segment_state_.all;
346  }
347
348  void SetSegmentState(uint32_t new_state) {
349    segment_state_.all = new_state;
350  }
351
352  static Offset SegmentStateOffset(size_t pointer_size ATTRIBUTE_UNUSED) {
353    // Note: Currently segment_state_ is at offset 0. We're testing the expected value in
354    //       jni_internal_test to make sure it stays correct. It is not OFFSETOF_MEMBER, as that
355    //       is not pointer-size-safe.
356    return Offset(0);
357  }
358
359  // Release pages past the end of the table that may have previously held references.
360  void Trim() REQUIRES_SHARED(Locks::mutator_lock_);
361
362  // Determine what kind of indirect reference this is. Opposite of EncodeIndirectRefKind.
363  ALWAYS_INLINE static inline IndirectRefKind GetIndirectRefKind(IndirectRef iref) {
364    return DecodeIndirectRefKind(reinterpret_cast<uintptr_t>(iref));
365  }
366
367 private:
368  static constexpr size_t kSerialBits = MinimumBitsToStore(kIRTPrevCount);
369  static constexpr uint32_t kShiftedSerialMask = (1u << kSerialBits) - 1;
370
371  static constexpr size_t kKindBits = MinimumBitsToStore(
372      static_cast<uint32_t>(IndirectRefKind::kLastKind));
373  static constexpr uint32_t kKindMask = (1u << kKindBits) - 1;
374
375  static constexpr uintptr_t EncodeIndex(uint32_t table_index) {
376    static_assert(sizeof(IndirectRef) == sizeof(uintptr_t), "Unexpected IndirectRef size");
377    DCHECK_LE(MinimumBitsToStore(table_index), BitSizeOf<uintptr_t>() - kSerialBits - kKindBits);
378    return (static_cast<uintptr_t>(table_index) << kKindBits << kSerialBits);
379  }
380  static constexpr uint32_t DecodeIndex(uintptr_t uref) {
381    return static_cast<uint32_t>((uref >> kKindBits) >> kSerialBits);
382  }
383
384  static constexpr uintptr_t EncodeIndirectRefKind(IndirectRefKind kind) {
385    return static_cast<uintptr_t>(kind);
386  }
387  static constexpr IndirectRefKind DecodeIndirectRefKind(uintptr_t uref) {
388    return static_cast<IndirectRefKind>(uref & kKindMask);
389  }
390
391  static constexpr uintptr_t EncodeSerial(uint32_t serial) {
392    DCHECK_LE(MinimumBitsToStore(serial), kSerialBits);
393    return serial << kKindBits;
394  }
395  static constexpr uint32_t DecodeSerial(uintptr_t uref) {
396    return static_cast<uint32_t>(uref >> kKindBits) & kShiftedSerialMask;
397  }
398
399  constexpr uintptr_t EncodeIndirectRef(uint32_t table_index, uint32_t serial) const {
400    DCHECK_LT(table_index, max_entries_);
401    return EncodeIndex(table_index) | EncodeSerial(serial) | EncodeIndirectRefKind(kind_);
402  }
403
404  static void ConstexprChecks();
405
406  // Extract the table index from an indirect reference.
407  ALWAYS_INLINE static uint32_t ExtractIndex(IndirectRef iref) {
408    return DecodeIndex(reinterpret_cast<uintptr_t>(iref));
409  }
410
411  IndirectRef ToIndirectRef(uint32_t table_index) const {
412    DCHECK_LT(table_index, max_entries_);
413    uint32_t serial = table_[table_index].GetSerial();
414    return reinterpret_cast<IndirectRef>(EncodeIndirectRef(table_index, serial));
415  }
416
417  // Abort if check_jni is not enabled. Otherwise, just log as an error.
418  static void AbortIfNoCheckJNI(const std::string& msg);
419
420  /* extra debugging checks */
421  bool GetChecked(IndirectRef) const REQUIRES_SHARED(Locks::mutator_lock_);
422  bool CheckEntry(const char*, IndirectRef, int) const;
423
424  /* semi-public - read/write by jni down calls */
425  IRTSegmentState segment_state_;
426
427  // Mem map where we store the indirect refs.
428  std::unique_ptr<MemMap> table_mem_map_;
429  // bottom of the stack. Do not directly access the object references
430  // in this as they are roots. Use Get() that has a read barrier.
431  IrtEntry* table_;
432  /* bit mask, ORed into all irefs */
433  const IndirectRefKind kind_;
434  /* max #of entries allowed */
435  const size_t max_entries_;
436};
437
438}  // namespace art
439
440#endif  // ART_RUNTIME_INDIRECT_REFERENCE_TABLE_H_
441