ASTContext.cpp revision 40808ce6ac04b102c3b56244a635d6b98eed6d97
1//===--- ASTContext.cpp - Context to hold long-lived AST nodes ------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements the ASTContext interface.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/AST/ASTContext.h"
15#include "clang/AST/DeclCXX.h"
16#include "clang/AST/DeclObjC.h"
17#include "clang/AST/DeclTemplate.h"
18#include "clang/AST/Expr.h"
19#include "clang/AST/RecordLayout.h"
20#include "clang/Basic/TargetInfo.h"
21#include "llvm/ADT/StringExtras.h"
22#include "llvm/Bitcode/Serialize.h"
23#include "llvm/Bitcode/Deserialize.h"
24#include "llvm/Support/MathExtras.h"
25
26using namespace clang;
27
28enum FloatingRank {
29  FloatRank, DoubleRank, LongDoubleRank
30};
31
32ASTContext::ASTContext(const LangOptions& LOpts, SourceManager &SM,
33                       TargetInfo &t,
34                       IdentifierTable &idents, SelectorTable &sels,
35                       bool FreeMem, unsigned size_reserve) :
36  CFConstantStringTypeDecl(0), ObjCFastEnumerationStateTypeDecl(0),
37  SourceMgr(SM), LangOpts(LOpts), FreeMemory(FreeMem), Target(t),
38  Idents(idents), Selectors(sels)
39{
40  if (size_reserve > 0) Types.reserve(size_reserve);
41  InitBuiltinTypes();
42  BuiltinInfo.InitializeBuiltins(idents, Target, LangOpts.Freestanding);
43  TUDecl = TranslationUnitDecl::Create(*this);
44}
45
46ASTContext::~ASTContext() {
47  // Deallocate all the types.
48  while (!Types.empty()) {
49    Types.back()->Destroy(*this);
50    Types.pop_back();
51  }
52
53  {
54    llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*>::iterator
55      I = ASTRecordLayouts.begin(), E = ASTRecordLayouts.end();
56    while (I != E) {
57      ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second);
58      delete R;
59    }
60  }
61
62  {
63    llvm::DenseMap<const ObjCInterfaceDecl*, const ASTRecordLayout*>::iterator
64      I = ASTObjCInterfaces.begin(), E = ASTObjCInterfaces.end();
65    while (I != E) {
66      ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second);
67      delete R;
68    }
69  }
70
71  {
72    llvm::DenseMap<const ObjCInterfaceDecl*, const RecordDecl*>::iterator
73      I = ASTRecordForInterface.begin(), E = ASTRecordForInterface.end();
74    while (I != E) {
75      RecordDecl *R = const_cast<RecordDecl*>((I++)->second);
76      R->Destroy(*this);
77    }
78  }
79
80  TUDecl->Destroy(*this);
81}
82
83void ASTContext::PrintStats() const {
84  fprintf(stderr, "*** AST Context Stats:\n");
85  fprintf(stderr, "  %d types total.\n", (int)Types.size());
86  unsigned NumBuiltin = 0, NumPointer = 0, NumArray = 0, NumFunctionP = 0;
87  unsigned NumVector = 0, NumComplex = 0, NumBlockPointer = 0;
88  unsigned NumFunctionNP = 0, NumTypeName = 0, NumTagged = 0, NumReference = 0;
89  unsigned NumMemberPointer = 0;
90
91  unsigned NumTagStruct = 0, NumTagUnion = 0, NumTagEnum = 0, NumTagClass = 0;
92  unsigned NumObjCInterfaces = 0, NumObjCQualifiedInterfaces = 0;
93  unsigned NumObjCQualifiedIds = 0;
94  unsigned NumTypeOfTypes = 0, NumTypeOfExprTypes = 0;
95
96  for (unsigned i = 0, e = Types.size(); i != e; ++i) {
97    Type *T = Types[i];
98    if (isa<BuiltinType>(T))
99      ++NumBuiltin;
100    else if (isa<PointerType>(T))
101      ++NumPointer;
102    else if (isa<BlockPointerType>(T))
103      ++NumBlockPointer;
104    else if (isa<ReferenceType>(T))
105      ++NumReference;
106    else if (isa<MemberPointerType>(T))
107      ++NumMemberPointer;
108    else if (isa<ComplexType>(T))
109      ++NumComplex;
110    else if (isa<ArrayType>(T))
111      ++NumArray;
112    else if (isa<VectorType>(T))
113      ++NumVector;
114    else if (isa<FunctionNoProtoType>(T))
115      ++NumFunctionNP;
116    else if (isa<FunctionProtoType>(T))
117      ++NumFunctionP;
118    else if (isa<TypedefType>(T))
119      ++NumTypeName;
120    else if (TagType *TT = dyn_cast<TagType>(T)) {
121      ++NumTagged;
122      switch (TT->getDecl()->getTagKind()) {
123      default: assert(0 && "Unknown tagged type!");
124      case TagDecl::TK_struct: ++NumTagStruct; break;
125      case TagDecl::TK_union:  ++NumTagUnion; break;
126      case TagDecl::TK_class:  ++NumTagClass; break;
127      case TagDecl::TK_enum:   ++NumTagEnum; break;
128      }
129    } else if (isa<ObjCInterfaceType>(T))
130      ++NumObjCInterfaces;
131    else if (isa<ObjCQualifiedInterfaceType>(T))
132      ++NumObjCQualifiedInterfaces;
133    else if (isa<ObjCQualifiedIdType>(T))
134      ++NumObjCQualifiedIds;
135    else if (isa<TypeOfType>(T))
136      ++NumTypeOfTypes;
137    else if (isa<TypeOfExprType>(T))
138      ++NumTypeOfExprTypes;
139    else {
140      QualType(T, 0).dump();
141      assert(0 && "Unknown type!");
142    }
143  }
144
145  fprintf(stderr, "    %d builtin types\n", NumBuiltin);
146  fprintf(stderr, "    %d pointer types\n", NumPointer);
147  fprintf(stderr, "    %d block pointer types\n", NumBlockPointer);
148  fprintf(stderr, "    %d reference types\n", NumReference);
149  fprintf(stderr, "    %d member pointer types\n", NumMemberPointer);
150  fprintf(stderr, "    %d complex types\n", NumComplex);
151  fprintf(stderr, "    %d array types\n", NumArray);
152  fprintf(stderr, "    %d vector types\n", NumVector);
153  fprintf(stderr, "    %d function types with proto\n", NumFunctionP);
154  fprintf(stderr, "    %d function types with no proto\n", NumFunctionNP);
155  fprintf(stderr, "    %d typename (typedef) types\n", NumTypeName);
156  fprintf(stderr, "    %d tagged types\n", NumTagged);
157  fprintf(stderr, "      %d struct types\n", NumTagStruct);
158  fprintf(stderr, "      %d union types\n", NumTagUnion);
159  fprintf(stderr, "      %d class types\n", NumTagClass);
160  fprintf(stderr, "      %d enum types\n", NumTagEnum);
161  fprintf(stderr, "    %d interface types\n", NumObjCInterfaces);
162  fprintf(stderr, "    %d protocol qualified interface types\n",
163          NumObjCQualifiedInterfaces);
164  fprintf(stderr, "    %d protocol qualified id types\n",
165          NumObjCQualifiedIds);
166  fprintf(stderr, "    %d typeof types\n", NumTypeOfTypes);
167  fprintf(stderr, "    %d typeof exprs\n", NumTypeOfExprTypes);
168
169  fprintf(stderr, "Total bytes = %d\n", int(NumBuiltin*sizeof(BuiltinType)+
170    NumPointer*sizeof(PointerType)+NumArray*sizeof(ArrayType)+
171    NumComplex*sizeof(ComplexType)+NumVector*sizeof(VectorType)+
172    NumMemberPointer*sizeof(MemberPointerType)+
173    NumFunctionP*sizeof(FunctionProtoType)+
174    NumFunctionNP*sizeof(FunctionNoProtoType)+
175    NumTypeName*sizeof(TypedefType)+NumTagged*sizeof(TagType)+
176    NumTypeOfTypes*sizeof(TypeOfType)+NumTypeOfExprTypes*sizeof(TypeOfExprType)));
177}
178
179
180void ASTContext::InitBuiltinType(QualType &R, BuiltinType::Kind K) {
181  Types.push_back((R = QualType(new (*this,8) BuiltinType(K),0)).getTypePtr());
182}
183
184void ASTContext::InitBuiltinTypes() {
185  assert(VoidTy.isNull() && "Context reinitialized?");
186
187  // C99 6.2.5p19.
188  InitBuiltinType(VoidTy,              BuiltinType::Void);
189
190  // C99 6.2.5p2.
191  InitBuiltinType(BoolTy,              BuiltinType::Bool);
192  // C99 6.2.5p3.
193  if (Target.isCharSigned())
194    InitBuiltinType(CharTy,            BuiltinType::Char_S);
195  else
196    InitBuiltinType(CharTy,            BuiltinType::Char_U);
197  // C99 6.2.5p4.
198  InitBuiltinType(SignedCharTy,        BuiltinType::SChar);
199  InitBuiltinType(ShortTy,             BuiltinType::Short);
200  InitBuiltinType(IntTy,               BuiltinType::Int);
201  InitBuiltinType(LongTy,              BuiltinType::Long);
202  InitBuiltinType(LongLongTy,          BuiltinType::LongLong);
203
204  // C99 6.2.5p6.
205  InitBuiltinType(UnsignedCharTy,      BuiltinType::UChar);
206  InitBuiltinType(UnsignedShortTy,     BuiltinType::UShort);
207  InitBuiltinType(UnsignedIntTy,       BuiltinType::UInt);
208  InitBuiltinType(UnsignedLongTy,      BuiltinType::ULong);
209  InitBuiltinType(UnsignedLongLongTy,  BuiltinType::ULongLong);
210
211  // C99 6.2.5p10.
212  InitBuiltinType(FloatTy,             BuiltinType::Float);
213  InitBuiltinType(DoubleTy,            BuiltinType::Double);
214  InitBuiltinType(LongDoubleTy,        BuiltinType::LongDouble);
215
216  if (LangOpts.CPlusPlus) // C++ 3.9.1p5
217    InitBuiltinType(WCharTy,           BuiltinType::WChar);
218  else // C99
219    WCharTy = getFromTargetType(Target.getWCharType());
220
221  // Placeholder type for functions.
222  InitBuiltinType(OverloadTy,          BuiltinType::Overload);
223
224  // Placeholder type for type-dependent expressions whose type is
225  // completely unknown. No code should ever check a type against
226  // DependentTy and users should never see it; however, it is here to
227  // help diagnose failures to properly check for type-dependent
228  // expressions.
229  InitBuiltinType(DependentTy,         BuiltinType::Dependent);
230
231  // C99 6.2.5p11.
232  FloatComplexTy      = getComplexType(FloatTy);
233  DoubleComplexTy     = getComplexType(DoubleTy);
234  LongDoubleComplexTy = getComplexType(LongDoubleTy);
235
236  BuiltinVaListType = QualType();
237  ObjCIdType = QualType();
238  IdStructType = 0;
239  ObjCClassType = QualType();
240  ClassStructType = 0;
241
242  ObjCConstantStringType = QualType();
243
244  // void * type
245  VoidPtrTy = getPointerType(VoidTy);
246}
247
248//===----------------------------------------------------------------------===//
249//                         Type Sizing and Analysis
250//===----------------------------------------------------------------------===//
251
252/// getFloatTypeSemantics - Return the APFloat 'semantics' for the specified
253/// scalar floating point type.
254const llvm::fltSemantics &ASTContext::getFloatTypeSemantics(QualType T) const {
255  const BuiltinType *BT = T->getAsBuiltinType();
256  assert(BT && "Not a floating point type!");
257  switch (BT->getKind()) {
258  default: assert(0 && "Not a floating point type!");
259  case BuiltinType::Float:      return Target.getFloatFormat();
260  case BuiltinType::Double:     return Target.getDoubleFormat();
261  case BuiltinType::LongDouble: return Target.getLongDoubleFormat();
262  }
263}
264
265/// getDeclAlign - Return a conservative estimate of the alignment of the
266/// specified decl.  Note that bitfields do not have a valid alignment, so
267/// this method will assert on them.
268unsigned ASTContext::getDeclAlignInBytes(const Decl *D) {
269  unsigned Align = Target.getCharWidth();
270
271  if (const AlignedAttr* AA = D->getAttr<AlignedAttr>())
272    Align = std::max(Align, AA->getAlignment());
273
274  if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
275    QualType T = VD->getType();
276    // Incomplete or function types default to 1.
277    if (!T->isIncompleteType() && !T->isFunctionType()) {
278      while (isa<VariableArrayType>(T) || isa<IncompleteArrayType>(T))
279        T = cast<ArrayType>(T)->getElementType();
280
281      Align = std::max(Align, getPreferredTypeAlign(T.getTypePtr()));
282    }
283  }
284
285  return Align / Target.getCharWidth();
286}
287
288/// getTypeSize - Return the size of the specified type, in bits.  This method
289/// does not work on incomplete types.
290std::pair<uint64_t, unsigned>
291ASTContext::getTypeInfo(const Type *T) {
292  T = getCanonicalType(T);
293  uint64_t Width=0;
294  unsigned Align=8;
295  switch (T->getTypeClass()) {
296#define TYPE(Class, Base)
297#define ABSTRACT_TYPE(Class, Base)
298#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
299#define DEPENDENT_TYPE(Class, Base) case Type::Class:
300#include "clang/AST/TypeNodes.def"
301    assert(false && "Should not see non-canonical or dependent types");
302    break;
303
304  case Type::FunctionNoProto:
305  case Type::FunctionProto:
306  case Type::IncompleteArray:
307    assert(0 && "Incomplete types have no size!");
308  case Type::VariableArray:
309    assert(0 && "VLAs not implemented yet!");
310  case Type::ConstantArray: {
311    const ConstantArrayType *CAT = cast<ConstantArrayType>(T);
312
313    std::pair<uint64_t, unsigned> EltInfo = getTypeInfo(CAT->getElementType());
314    Width = EltInfo.first*CAT->getSize().getZExtValue();
315    Align = EltInfo.second;
316    break;
317  }
318  case Type::ExtVector:
319  case Type::Vector: {
320    std::pair<uint64_t, unsigned> EltInfo =
321      getTypeInfo(cast<VectorType>(T)->getElementType());
322    Width = EltInfo.first*cast<VectorType>(T)->getNumElements();
323    Align = Width;
324    // If the alignment is not a power of 2, round up to the next power of 2.
325    // This happens for non-power-of-2 length vectors.
326    // FIXME: this should probably be a target property.
327    Align = 1 << llvm::Log2_32_Ceil(Align);
328    break;
329  }
330
331  case Type::Builtin:
332    switch (cast<BuiltinType>(T)->getKind()) {
333    default: assert(0 && "Unknown builtin type!");
334    case BuiltinType::Void:
335      assert(0 && "Incomplete types have no size!");
336    case BuiltinType::Bool:
337      Width = Target.getBoolWidth();
338      Align = Target.getBoolAlign();
339      break;
340    case BuiltinType::Char_S:
341    case BuiltinType::Char_U:
342    case BuiltinType::UChar:
343    case BuiltinType::SChar:
344      Width = Target.getCharWidth();
345      Align = Target.getCharAlign();
346      break;
347    case BuiltinType::WChar:
348      Width = Target.getWCharWidth();
349      Align = Target.getWCharAlign();
350      break;
351    case BuiltinType::UShort:
352    case BuiltinType::Short:
353      Width = Target.getShortWidth();
354      Align = Target.getShortAlign();
355      break;
356    case BuiltinType::UInt:
357    case BuiltinType::Int:
358      Width = Target.getIntWidth();
359      Align = Target.getIntAlign();
360      break;
361    case BuiltinType::ULong:
362    case BuiltinType::Long:
363      Width = Target.getLongWidth();
364      Align = Target.getLongAlign();
365      break;
366    case BuiltinType::ULongLong:
367    case BuiltinType::LongLong:
368      Width = Target.getLongLongWidth();
369      Align = Target.getLongLongAlign();
370      break;
371    case BuiltinType::Float:
372      Width = Target.getFloatWidth();
373      Align = Target.getFloatAlign();
374      break;
375    case BuiltinType::Double:
376      Width = Target.getDoubleWidth();
377      Align = Target.getDoubleAlign();
378      break;
379    case BuiltinType::LongDouble:
380      Width = Target.getLongDoubleWidth();
381      Align = Target.getLongDoubleAlign();
382      break;
383    }
384    break;
385  case Type::FixedWidthInt:
386    // FIXME: This isn't precisely correct; the width/alignment should depend
387    // on the available types for the target
388    Width = cast<FixedWidthIntType>(T)->getWidth();
389    Width = std::max(llvm::NextPowerOf2(Width - 1), (uint64_t)8);
390    Align = Width;
391    break;
392  case Type::ExtQual:
393    // FIXME: Pointers into different addr spaces could have different sizes and
394    // alignment requirements: getPointerInfo should take an AddrSpace.
395    return getTypeInfo(QualType(cast<ExtQualType>(T)->getBaseType(), 0));
396  case Type::ObjCQualifiedId:
397  case Type::ObjCQualifiedClass:
398  case Type::ObjCQualifiedInterface:
399    Width = Target.getPointerWidth(0);
400    Align = Target.getPointerAlign(0);
401    break;
402  case Type::BlockPointer: {
403    unsigned AS = cast<BlockPointerType>(T)->getPointeeType().getAddressSpace();
404    Width = Target.getPointerWidth(AS);
405    Align = Target.getPointerAlign(AS);
406    break;
407  }
408  case Type::Pointer: {
409    unsigned AS = cast<PointerType>(T)->getPointeeType().getAddressSpace();
410    Width = Target.getPointerWidth(AS);
411    Align = Target.getPointerAlign(AS);
412    break;
413  }
414  case Type::Reference:
415    // "When applied to a reference or a reference type, the result is the size
416    // of the referenced type." C++98 5.3.3p2: expr.sizeof.
417    // FIXME: This is wrong for struct layout: a reference in a struct has
418    // pointer size.
419    return getTypeInfo(cast<ReferenceType>(T)->getPointeeType());
420  case Type::MemberPointer: {
421    // FIXME: This is not only platform- but also ABI-dependent. We follow
422    // the GCC ABI, where pointers to data are one pointer large, pointers to
423    // functions two pointers. But if we want to support ABI compatibility with
424    // other compilers too, we need to delegate this completely to TargetInfo
425    // or some ABI abstraction layer.
426    QualType Pointee = cast<MemberPointerType>(T)->getPointeeType();
427    unsigned AS = Pointee.getAddressSpace();
428    Width = Target.getPointerWidth(AS);
429    if (Pointee->isFunctionType())
430      Width *= 2;
431    Align = Target.getPointerAlign(AS);
432    // GCC aligns at single pointer width.
433  }
434  case Type::Complex: {
435    // Complex types have the same alignment as their elements, but twice the
436    // size.
437    std::pair<uint64_t, unsigned> EltInfo =
438      getTypeInfo(cast<ComplexType>(T)->getElementType());
439    Width = EltInfo.first*2;
440    Align = EltInfo.second;
441    break;
442  }
443  case Type::ObjCInterface: {
444    const ObjCInterfaceType *ObjCI = cast<ObjCInterfaceType>(T);
445    const ASTRecordLayout &Layout = getASTObjCInterfaceLayout(ObjCI->getDecl());
446    Width = Layout.getSize();
447    Align = Layout.getAlignment();
448    break;
449  }
450  case Type::Record:
451  case Type::Enum: {
452    const TagType *TT = cast<TagType>(T);
453
454    if (TT->getDecl()->isInvalidDecl()) {
455      Width = 1;
456      Align = 1;
457      break;
458    }
459
460    if (const EnumType *ET = dyn_cast<EnumType>(TT))
461      return getTypeInfo(ET->getDecl()->getIntegerType());
462
463    const RecordType *RT = cast<RecordType>(TT);
464    const ASTRecordLayout &Layout = getASTRecordLayout(RT->getDecl());
465    Width = Layout.getSize();
466    Align = Layout.getAlignment();
467    break;
468  }
469  }
470
471  assert(Align && (Align & (Align-1)) == 0 && "Alignment must be power of 2");
472  return std::make_pair(Width, Align);
473}
474
475/// getPreferredTypeAlign - Return the "preferred" alignment of the specified
476/// type for the current target in bits.  This can be different than the ABI
477/// alignment in cases where it is beneficial for performance to overalign
478/// a data type.
479unsigned ASTContext::getPreferredTypeAlign(const Type *T) {
480  unsigned ABIAlign = getTypeAlign(T);
481
482  // Doubles should be naturally aligned if possible.
483  if (T->isSpecificBuiltinType(BuiltinType::Double))
484    return std::max(ABIAlign, 64U);
485
486  return ABIAlign;
487}
488
489
490/// LayoutField - Field layout.
491void ASTRecordLayout::LayoutField(const FieldDecl *FD, unsigned FieldNo,
492                                  bool IsUnion, unsigned StructPacking,
493                                  ASTContext &Context) {
494  unsigned FieldPacking = StructPacking;
495  uint64_t FieldOffset = IsUnion ? 0 : Size;
496  uint64_t FieldSize;
497  unsigned FieldAlign;
498
499  // FIXME: Should this override struct packing? Probably we want to
500  // take the minimum?
501  if (const PackedAttr *PA = FD->getAttr<PackedAttr>())
502    FieldPacking = PA->getAlignment();
503
504  if (const Expr *BitWidthExpr = FD->getBitWidth()) {
505    // TODO: Need to check this algorithm on other targets!
506    //       (tested on Linux-X86)
507    FieldSize =
508      BitWidthExpr->getIntegerConstantExprValue(Context).getZExtValue();
509
510    std::pair<uint64_t, unsigned> FieldInfo =
511      Context.getTypeInfo(FD->getType());
512    uint64_t TypeSize = FieldInfo.first;
513
514    // Determine the alignment of this bitfield. The packing
515    // attributes define a maximum and the alignment attribute defines
516    // a minimum.
517    // FIXME: What is the right behavior when the specified alignment
518    // is smaller than the specified packing?
519    FieldAlign = FieldInfo.second;
520    if (FieldPacking)
521      FieldAlign = std::min(FieldAlign, FieldPacking);
522    if (const AlignedAttr *AA = FD->getAttr<AlignedAttr>())
523      FieldAlign = std::max(FieldAlign, AA->getAlignment());
524
525    // Check if we need to add padding to give the field the correct
526    // alignment.
527    if (FieldSize == 0 || (FieldOffset & (FieldAlign-1)) + FieldSize > TypeSize)
528      FieldOffset = (FieldOffset + (FieldAlign-1)) & ~(FieldAlign-1);
529
530    // Padding members don't affect overall alignment
531    if (!FD->getIdentifier())
532      FieldAlign = 1;
533  } else {
534    if (FD->getType()->isIncompleteArrayType()) {
535      // This is a flexible array member; we can't directly
536      // query getTypeInfo about these, so we figure it out here.
537      // Flexible array members don't have any size, but they
538      // have to be aligned appropriately for their element type.
539      FieldSize = 0;
540      const ArrayType* ATy = Context.getAsArrayType(FD->getType());
541      FieldAlign = Context.getTypeAlign(ATy->getElementType());
542    } else {
543      std::pair<uint64_t, unsigned> FieldInfo =
544        Context.getTypeInfo(FD->getType());
545      FieldSize = FieldInfo.first;
546      FieldAlign = FieldInfo.second;
547    }
548
549    // Determine the alignment of this bitfield. The packing
550    // attributes define a maximum and the alignment attribute defines
551    // a minimum. Additionally, the packing alignment must be at least
552    // a byte for non-bitfields.
553    //
554    // FIXME: What is the right behavior when the specified alignment
555    // is smaller than the specified packing?
556    if (FieldPacking)
557      FieldAlign = std::min(FieldAlign, std::max(8U, FieldPacking));
558    if (const AlignedAttr *AA = FD->getAttr<AlignedAttr>())
559      FieldAlign = std::max(FieldAlign, AA->getAlignment());
560
561    // Round up the current record size to the field's alignment boundary.
562    FieldOffset = (FieldOffset + (FieldAlign-1)) & ~(FieldAlign-1);
563  }
564
565  // Place this field at the current location.
566  FieldOffsets[FieldNo] = FieldOffset;
567
568  // Reserve space for this field.
569  if (IsUnion) {
570    Size = std::max(Size, FieldSize);
571  } else {
572    Size = FieldOffset + FieldSize;
573  }
574
575  // Remember max struct/class alignment.
576  Alignment = std::max(Alignment, FieldAlign);
577}
578
579void ASTContext::CollectObjCIvars(const ObjCInterfaceDecl *OI,
580                             std::vector<FieldDecl*> &Fields) const {
581  const ObjCInterfaceDecl *SuperClass = OI->getSuperClass();
582  if (SuperClass)
583    CollectObjCIvars(SuperClass, Fields);
584  for (ObjCInterfaceDecl::ivar_iterator I = OI->ivar_begin(),
585       E = OI->ivar_end(); I != E; ++I) {
586    ObjCIvarDecl *IVDecl = (*I);
587    if (!IVDecl->isInvalidDecl())
588      Fields.push_back(cast<FieldDecl>(IVDecl));
589  }
590}
591
592/// addRecordToClass - produces record info. for the class for its
593/// ivars and all those inherited.
594///
595const RecordDecl *ASTContext::addRecordToClass(const ObjCInterfaceDecl *D)
596{
597  const RecordDecl *&RD = ASTRecordForInterface[D];
598  if (RD)
599    return RD;
600  std::vector<FieldDecl*> RecFields;
601  CollectObjCIvars(D, RecFields);
602  RecordDecl *NewRD = RecordDecl::Create(*this, TagDecl::TK_struct, 0,
603                                         D->getLocation(),
604                                         D->getIdentifier());
605  /// FIXME! Can do collection of ivars and adding to the record while
606  /// doing it.
607  for (unsigned int i = 0; i != RecFields.size(); i++) {
608    FieldDecl *Field =  FieldDecl::Create(*this, NewRD,
609                                          RecFields[i]->getLocation(),
610                                          RecFields[i]->getIdentifier(),
611                                          RecFields[i]->getType(),
612                                          RecFields[i]->getBitWidth(), false);
613    NewRD->addDecl(Field);
614  }
615  NewRD->completeDefinition(*this);
616  RD = NewRD;
617  return RD;
618}
619
620/// setFieldDecl - maps a field for the given Ivar reference node.
621//
622void ASTContext::setFieldDecl(const ObjCInterfaceDecl *OI,
623                              const ObjCIvarDecl *Ivar,
624                              const ObjCIvarRefExpr *MRef) {
625  FieldDecl *FD = (const_cast<ObjCInterfaceDecl *>(OI))->
626                    lookupFieldDeclForIvar(*this, Ivar);
627  ASTFieldForIvarRef[MRef] = FD;
628}
629
630/// getASTObjcInterfaceLayout - Get or compute information about the layout of
631/// the specified Objective C, which indicates its size and ivar
632/// position information.
633const ASTRecordLayout &
634ASTContext::getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D) {
635  // Look up this layout, if already laid out, return what we have.
636  const ASTRecordLayout *&Entry = ASTObjCInterfaces[D];
637  if (Entry) return *Entry;
638
639  // Allocate and assign into ASTRecordLayouts here.  The "Entry" reference can
640  // be invalidated (dangle) if the ASTRecordLayouts hashtable is inserted into.
641  ASTRecordLayout *NewEntry = NULL;
642  unsigned FieldCount = D->ivar_size();
643  if (ObjCInterfaceDecl *SD = D->getSuperClass()) {
644    FieldCount++;
645    const ASTRecordLayout &SL = getASTObjCInterfaceLayout(SD);
646    unsigned Alignment = SL.getAlignment();
647    uint64_t Size = SL.getSize();
648    NewEntry = new ASTRecordLayout(Size, Alignment);
649    NewEntry->InitializeLayout(FieldCount);
650    // Super class is at the beginning of the layout.
651    NewEntry->SetFieldOffset(0, 0);
652  } else {
653    NewEntry = new ASTRecordLayout();
654    NewEntry->InitializeLayout(FieldCount);
655  }
656  Entry = NewEntry;
657
658  unsigned StructPacking = 0;
659  if (const PackedAttr *PA = D->getAttr<PackedAttr>())
660    StructPacking = PA->getAlignment();
661
662  if (const AlignedAttr *AA = D->getAttr<AlignedAttr>())
663    NewEntry->SetAlignment(std::max(NewEntry->getAlignment(),
664                                    AA->getAlignment()));
665
666  // Layout each ivar sequentially.
667  unsigned i = 0;
668  for (ObjCInterfaceDecl::ivar_iterator IVI = D->ivar_begin(),
669       IVE = D->ivar_end(); IVI != IVE; ++IVI) {
670    const ObjCIvarDecl* Ivar = (*IVI);
671    NewEntry->LayoutField(Ivar, i++, false, StructPacking, *this);
672  }
673
674  // Finally, round the size of the total struct up to the alignment of the
675  // struct itself.
676  NewEntry->FinalizeLayout();
677  return *NewEntry;
678}
679
680/// getASTRecordLayout - Get or compute information about the layout of the
681/// specified record (struct/union/class), which indicates its size and field
682/// position information.
683const ASTRecordLayout &ASTContext::getASTRecordLayout(const RecordDecl *D) {
684  D = D->getDefinition(*this);
685  assert(D && "Cannot get layout of forward declarations!");
686
687  // Look up this layout, if already laid out, return what we have.
688  const ASTRecordLayout *&Entry = ASTRecordLayouts[D];
689  if (Entry) return *Entry;
690
691  // Allocate and assign into ASTRecordLayouts here.  The "Entry" reference can
692  // be invalidated (dangle) if the ASTRecordLayouts hashtable is inserted into.
693  ASTRecordLayout *NewEntry = new ASTRecordLayout();
694  Entry = NewEntry;
695
696  // FIXME: Avoid linear walk through the fields, if possible.
697  NewEntry->InitializeLayout(std::distance(D->field_begin(), D->field_end()));
698  bool IsUnion = D->isUnion();
699
700  unsigned StructPacking = 0;
701  if (const PackedAttr *PA = D->getAttr<PackedAttr>())
702    StructPacking = PA->getAlignment();
703
704  if (const AlignedAttr *AA = D->getAttr<AlignedAttr>())
705    NewEntry->SetAlignment(std::max(NewEntry->getAlignment(),
706                                    AA->getAlignment()));
707
708  // Layout each field, for now, just sequentially, respecting alignment.  In
709  // the future, this will need to be tweakable by targets.
710  unsigned FieldIdx = 0;
711  for (RecordDecl::field_iterator Field = D->field_begin(),
712                               FieldEnd = D->field_end();
713       Field != FieldEnd; (void)++Field, ++FieldIdx)
714    NewEntry->LayoutField(*Field, FieldIdx, IsUnion, StructPacking, *this);
715
716  // Finally, round the size of the total struct up to the alignment of the
717  // struct itself.
718  NewEntry->FinalizeLayout();
719  return *NewEntry;
720}
721
722//===----------------------------------------------------------------------===//
723//                   Type creation/memoization methods
724//===----------------------------------------------------------------------===//
725
726QualType ASTContext::getAddrSpaceQualType(QualType T, unsigned AddressSpace) {
727  QualType CanT = getCanonicalType(T);
728  if (CanT.getAddressSpace() == AddressSpace)
729    return T;
730
731  // If we are composing extended qualifiers together, merge together into one
732  // ExtQualType node.
733  unsigned CVRQuals = T.getCVRQualifiers();
734  QualType::GCAttrTypes GCAttr = QualType::GCNone;
735  Type *TypeNode = T.getTypePtr();
736
737  if (ExtQualType *EQT = dyn_cast<ExtQualType>(TypeNode)) {
738    // If this type already has an address space specified, it cannot get
739    // another one.
740    assert(EQT->getAddressSpace() == 0 &&
741           "Type cannot be in multiple addr spaces!");
742    GCAttr = EQT->getObjCGCAttr();
743    TypeNode = EQT->getBaseType();
744  }
745
746  // Check if we've already instantiated this type.
747  llvm::FoldingSetNodeID ID;
748  ExtQualType::Profile(ID, TypeNode, AddressSpace, GCAttr);
749  void *InsertPos = 0;
750  if (ExtQualType *EXTQy = ExtQualTypes.FindNodeOrInsertPos(ID, InsertPos))
751    return QualType(EXTQy, CVRQuals);
752
753  // If the base type isn't canonical, this won't be a canonical type either,
754  // so fill in the canonical type field.
755  QualType Canonical;
756  if (!TypeNode->isCanonical()) {
757    Canonical = getAddrSpaceQualType(CanT, AddressSpace);
758
759    // Update InsertPos, the previous call could have invalidated it.
760    ExtQualType *NewIP = ExtQualTypes.FindNodeOrInsertPos(ID, InsertPos);
761    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
762  }
763  ExtQualType *New =
764    new (*this, 8) ExtQualType(TypeNode, Canonical, AddressSpace, GCAttr);
765  ExtQualTypes.InsertNode(New, InsertPos);
766  Types.push_back(New);
767  return QualType(New, CVRQuals);
768}
769
770QualType ASTContext::getObjCGCQualType(QualType T,
771                                       QualType::GCAttrTypes GCAttr) {
772  QualType CanT = getCanonicalType(T);
773  if (CanT.getObjCGCAttr() == GCAttr)
774    return T;
775
776  // If we are composing extended qualifiers together, merge together into one
777  // ExtQualType node.
778  unsigned CVRQuals = T.getCVRQualifiers();
779  Type *TypeNode = T.getTypePtr();
780  unsigned AddressSpace = 0;
781
782  if (ExtQualType *EQT = dyn_cast<ExtQualType>(TypeNode)) {
783    // If this type already has an address space specified, it cannot get
784    // another one.
785    assert(EQT->getObjCGCAttr() == QualType::GCNone &&
786           "Type cannot be in multiple addr spaces!");
787    AddressSpace = EQT->getAddressSpace();
788    TypeNode = EQT->getBaseType();
789  }
790
791  // Check if we've already instantiated an gc qual'd type of this type.
792  llvm::FoldingSetNodeID ID;
793  ExtQualType::Profile(ID, TypeNode, AddressSpace, GCAttr);
794  void *InsertPos = 0;
795  if (ExtQualType *EXTQy = ExtQualTypes.FindNodeOrInsertPos(ID, InsertPos))
796    return QualType(EXTQy, CVRQuals);
797
798  // If the base type isn't canonical, this won't be a canonical type either,
799  // so fill in the canonical type field.
800  // FIXME: Isn't this also not canonical if the base type is a array
801  // or pointer type?  I can't find any documentation for objc_gc, though...
802  QualType Canonical;
803  if (!T->isCanonical()) {
804    Canonical = getObjCGCQualType(CanT, GCAttr);
805
806    // Update InsertPos, the previous call could have invalidated it.
807    ExtQualType *NewIP = ExtQualTypes.FindNodeOrInsertPos(ID, InsertPos);
808    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
809  }
810  ExtQualType *New =
811    new (*this, 8) ExtQualType(TypeNode, Canonical, AddressSpace, GCAttr);
812  ExtQualTypes.InsertNode(New, InsertPos);
813  Types.push_back(New);
814  return QualType(New, CVRQuals);
815}
816
817/// getComplexType - Return the uniqued reference to the type for a complex
818/// number with the specified element type.
819QualType ASTContext::getComplexType(QualType T) {
820  // Unique pointers, to guarantee there is only one pointer of a particular
821  // structure.
822  llvm::FoldingSetNodeID ID;
823  ComplexType::Profile(ID, T);
824
825  void *InsertPos = 0;
826  if (ComplexType *CT = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos))
827    return QualType(CT, 0);
828
829  // If the pointee type isn't canonical, this won't be a canonical type either,
830  // so fill in the canonical type field.
831  QualType Canonical;
832  if (!T->isCanonical()) {
833    Canonical = getComplexType(getCanonicalType(T));
834
835    // Get the new insert position for the node we care about.
836    ComplexType *NewIP = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos);
837    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
838  }
839  ComplexType *New = new (*this,8) ComplexType(T, Canonical);
840  Types.push_back(New);
841  ComplexTypes.InsertNode(New, InsertPos);
842  return QualType(New, 0);
843}
844
845QualType ASTContext::getFixedWidthIntType(unsigned Width, bool Signed) {
846  llvm::DenseMap<unsigned, FixedWidthIntType*> &Map = Signed ?
847     SignedFixedWidthIntTypes : UnsignedFixedWidthIntTypes;
848  FixedWidthIntType *&Entry = Map[Width];
849  if (!Entry)
850    Entry = new FixedWidthIntType(Width, Signed);
851  return QualType(Entry, 0);
852}
853
854/// getPointerType - Return the uniqued reference to the type for a pointer to
855/// the specified type.
856QualType ASTContext::getPointerType(QualType T) {
857  // Unique pointers, to guarantee there is only one pointer of a particular
858  // structure.
859  llvm::FoldingSetNodeID ID;
860  PointerType::Profile(ID, T);
861
862  void *InsertPos = 0;
863  if (PointerType *PT = PointerTypes.FindNodeOrInsertPos(ID, InsertPos))
864    return QualType(PT, 0);
865
866  // If the pointee type isn't canonical, this won't be a canonical type either,
867  // so fill in the canonical type field.
868  QualType Canonical;
869  if (!T->isCanonical()) {
870    Canonical = getPointerType(getCanonicalType(T));
871
872    // Get the new insert position for the node we care about.
873    PointerType *NewIP = PointerTypes.FindNodeOrInsertPos(ID, InsertPos);
874    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
875  }
876  PointerType *New = new (*this,8) PointerType(T, Canonical);
877  Types.push_back(New);
878  PointerTypes.InsertNode(New, InsertPos);
879  return QualType(New, 0);
880}
881
882/// getBlockPointerType - Return the uniqued reference to the type for
883/// a pointer to the specified block.
884QualType ASTContext::getBlockPointerType(QualType T) {
885  assert(T->isFunctionType() && "block of function types only");
886  // Unique pointers, to guarantee there is only one block of a particular
887  // structure.
888  llvm::FoldingSetNodeID ID;
889  BlockPointerType::Profile(ID, T);
890
891  void *InsertPos = 0;
892  if (BlockPointerType *PT =
893        BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
894    return QualType(PT, 0);
895
896  // If the block pointee type isn't canonical, this won't be a canonical
897  // type either so fill in the canonical type field.
898  QualType Canonical;
899  if (!T->isCanonical()) {
900    Canonical = getBlockPointerType(getCanonicalType(T));
901
902    // Get the new insert position for the node we care about.
903    BlockPointerType *NewIP =
904      BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
905    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
906  }
907  BlockPointerType *New = new (*this,8) BlockPointerType(T, Canonical);
908  Types.push_back(New);
909  BlockPointerTypes.InsertNode(New, InsertPos);
910  return QualType(New, 0);
911}
912
913/// getReferenceType - Return the uniqued reference to the type for a reference
914/// to the specified type.
915QualType ASTContext::getReferenceType(QualType T) {
916  // Unique pointers, to guarantee there is only one pointer of a particular
917  // structure.
918  llvm::FoldingSetNodeID ID;
919  ReferenceType::Profile(ID, T);
920
921  void *InsertPos = 0;
922  if (ReferenceType *RT = ReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
923    return QualType(RT, 0);
924
925  // If the referencee type isn't canonical, this won't be a canonical type
926  // either, so fill in the canonical type field.
927  QualType Canonical;
928  if (!T->isCanonical()) {
929    Canonical = getReferenceType(getCanonicalType(T));
930
931    // Get the new insert position for the node we care about.
932    ReferenceType *NewIP = ReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
933    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
934  }
935
936  ReferenceType *New = new (*this,8) ReferenceType(T, Canonical);
937  Types.push_back(New);
938  ReferenceTypes.InsertNode(New, InsertPos);
939  return QualType(New, 0);
940}
941
942/// getMemberPointerType - Return the uniqued reference to the type for a
943/// member pointer to the specified type, in the specified class.
944QualType ASTContext::getMemberPointerType(QualType T, const Type *Cls)
945{
946  // Unique pointers, to guarantee there is only one pointer of a particular
947  // structure.
948  llvm::FoldingSetNodeID ID;
949  MemberPointerType::Profile(ID, T, Cls);
950
951  void *InsertPos = 0;
952  if (MemberPointerType *PT =
953      MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
954    return QualType(PT, 0);
955
956  // If the pointee or class type isn't canonical, this won't be a canonical
957  // type either, so fill in the canonical type field.
958  QualType Canonical;
959  if (!T->isCanonical()) {
960    Canonical = getMemberPointerType(getCanonicalType(T),getCanonicalType(Cls));
961
962    // Get the new insert position for the node we care about.
963    MemberPointerType *NewIP =
964      MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
965    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
966  }
967  MemberPointerType *New = new (*this,8) MemberPointerType(T, Cls, Canonical);
968  Types.push_back(New);
969  MemberPointerTypes.InsertNode(New, InsertPos);
970  return QualType(New, 0);
971}
972
973/// getConstantArrayType - Return the unique reference to the type for an
974/// array of the specified element type.
975QualType ASTContext::getConstantArrayType(QualType EltTy,
976                                          const llvm::APInt &ArySize,
977                                          ArrayType::ArraySizeModifier ASM,
978                                          unsigned EltTypeQuals) {
979  llvm::FoldingSetNodeID ID;
980  ConstantArrayType::Profile(ID, EltTy, ArySize, ASM, EltTypeQuals);
981
982  void *InsertPos = 0;
983  if (ConstantArrayType *ATP =
984      ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
985    return QualType(ATP, 0);
986
987  // If the element type isn't canonical, this won't be a canonical type either,
988  // so fill in the canonical type field.
989  QualType Canonical;
990  if (!EltTy->isCanonical()) {
991    Canonical = getConstantArrayType(getCanonicalType(EltTy), ArySize,
992                                     ASM, EltTypeQuals);
993    // Get the new insert position for the node we care about.
994    ConstantArrayType *NewIP =
995      ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
996    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
997  }
998
999  ConstantArrayType *New =
1000    new(*this,8)ConstantArrayType(EltTy, Canonical, ArySize, ASM, EltTypeQuals);
1001  ConstantArrayTypes.InsertNode(New, InsertPos);
1002  Types.push_back(New);
1003  return QualType(New, 0);
1004}
1005
1006/// getVariableArrayType - Returns a non-unique reference to the type for a
1007/// variable array of the specified element type.
1008QualType ASTContext::getVariableArrayType(QualType EltTy, Expr *NumElts,
1009                                          ArrayType::ArraySizeModifier ASM,
1010                                          unsigned EltTypeQuals) {
1011  // Since we don't unique expressions, it isn't possible to unique VLA's
1012  // that have an expression provided for their size.
1013
1014  VariableArrayType *New =
1015    new(*this,8)VariableArrayType(EltTy,QualType(), NumElts, ASM, EltTypeQuals);
1016
1017  VariableArrayTypes.push_back(New);
1018  Types.push_back(New);
1019  return QualType(New, 0);
1020}
1021
1022/// getDependentSizedArrayType - Returns a non-unique reference to
1023/// the type for a dependently-sized array of the specified element
1024/// type. FIXME: We will need these to be uniqued, or at least
1025/// comparable, at some point.
1026QualType ASTContext::getDependentSizedArrayType(QualType EltTy, Expr *NumElts,
1027                                                ArrayType::ArraySizeModifier ASM,
1028                                                unsigned EltTypeQuals) {
1029  assert((NumElts->isTypeDependent() || NumElts->isValueDependent()) &&
1030         "Size must be type- or value-dependent!");
1031
1032  // Since we don't unique expressions, it isn't possible to unique
1033  // dependently-sized array types.
1034
1035  DependentSizedArrayType *New =
1036      new (*this,8) DependentSizedArrayType(EltTy, QualType(), NumElts,
1037                                            ASM, EltTypeQuals);
1038
1039  DependentSizedArrayTypes.push_back(New);
1040  Types.push_back(New);
1041  return QualType(New, 0);
1042}
1043
1044QualType ASTContext::getIncompleteArrayType(QualType EltTy,
1045                                            ArrayType::ArraySizeModifier ASM,
1046                                            unsigned EltTypeQuals) {
1047  llvm::FoldingSetNodeID ID;
1048  IncompleteArrayType::Profile(ID, EltTy, ASM, EltTypeQuals);
1049
1050  void *InsertPos = 0;
1051  if (IncompleteArrayType *ATP =
1052       IncompleteArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
1053    return QualType(ATP, 0);
1054
1055  // If the element type isn't canonical, this won't be a canonical type
1056  // either, so fill in the canonical type field.
1057  QualType Canonical;
1058
1059  if (!EltTy->isCanonical()) {
1060    Canonical = getIncompleteArrayType(getCanonicalType(EltTy),
1061                                       ASM, EltTypeQuals);
1062
1063    // Get the new insert position for the node we care about.
1064    IncompleteArrayType *NewIP =
1065      IncompleteArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
1066    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1067  }
1068
1069  IncompleteArrayType *New = new (*this,8) IncompleteArrayType(EltTy, Canonical,
1070                                                           ASM, EltTypeQuals);
1071
1072  IncompleteArrayTypes.InsertNode(New, InsertPos);
1073  Types.push_back(New);
1074  return QualType(New, 0);
1075}
1076
1077/// getVectorType - Return the unique reference to a vector type of
1078/// the specified element type and size. VectorType must be a built-in type.
1079QualType ASTContext::getVectorType(QualType vecType, unsigned NumElts) {
1080  BuiltinType *baseType;
1081
1082  baseType = dyn_cast<BuiltinType>(getCanonicalType(vecType).getTypePtr());
1083  assert(baseType != 0 && "getVectorType(): Expecting a built-in type");
1084
1085  // Check if we've already instantiated a vector of this type.
1086  llvm::FoldingSetNodeID ID;
1087  VectorType::Profile(ID, vecType, NumElts, Type::Vector);
1088  void *InsertPos = 0;
1089  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
1090    return QualType(VTP, 0);
1091
1092  // If the element type isn't canonical, this won't be a canonical type either,
1093  // so fill in the canonical type field.
1094  QualType Canonical;
1095  if (!vecType->isCanonical()) {
1096    Canonical = getVectorType(getCanonicalType(vecType), NumElts);
1097
1098    // Get the new insert position for the node we care about.
1099    VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
1100    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1101  }
1102  VectorType *New = new (*this,8) VectorType(vecType, NumElts, Canonical);
1103  VectorTypes.InsertNode(New, InsertPos);
1104  Types.push_back(New);
1105  return QualType(New, 0);
1106}
1107
1108/// getExtVectorType - Return the unique reference to an extended vector type of
1109/// the specified element type and size. VectorType must be a built-in type.
1110QualType ASTContext::getExtVectorType(QualType vecType, unsigned NumElts) {
1111  BuiltinType *baseType;
1112
1113  baseType = dyn_cast<BuiltinType>(getCanonicalType(vecType).getTypePtr());
1114  assert(baseType != 0 && "getExtVectorType(): Expecting a built-in type");
1115
1116  // Check if we've already instantiated a vector of this type.
1117  llvm::FoldingSetNodeID ID;
1118  VectorType::Profile(ID, vecType, NumElts, Type::ExtVector);
1119  void *InsertPos = 0;
1120  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
1121    return QualType(VTP, 0);
1122
1123  // If the element type isn't canonical, this won't be a canonical type either,
1124  // so fill in the canonical type field.
1125  QualType Canonical;
1126  if (!vecType->isCanonical()) {
1127    Canonical = getExtVectorType(getCanonicalType(vecType), NumElts);
1128
1129    // Get the new insert position for the node we care about.
1130    VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
1131    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1132  }
1133  ExtVectorType *New = new (*this,8) ExtVectorType(vecType, NumElts, Canonical);
1134  VectorTypes.InsertNode(New, InsertPos);
1135  Types.push_back(New);
1136  return QualType(New, 0);
1137}
1138
1139/// getFunctionNoProtoType - Return a K&R style C function type like 'int()'.
1140///
1141QualType ASTContext::getFunctionNoProtoType(QualType ResultTy) {
1142  // Unique functions, to guarantee there is only one function of a particular
1143  // structure.
1144  llvm::FoldingSetNodeID ID;
1145  FunctionNoProtoType::Profile(ID, ResultTy);
1146
1147  void *InsertPos = 0;
1148  if (FunctionNoProtoType *FT =
1149        FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
1150    return QualType(FT, 0);
1151
1152  QualType Canonical;
1153  if (!ResultTy->isCanonical()) {
1154    Canonical = getFunctionNoProtoType(getCanonicalType(ResultTy));
1155
1156    // Get the new insert position for the node we care about.
1157    FunctionNoProtoType *NewIP =
1158      FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
1159    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1160  }
1161
1162  FunctionNoProtoType *New =new(*this,8)FunctionNoProtoType(ResultTy,Canonical);
1163  Types.push_back(New);
1164  FunctionNoProtoTypes.InsertNode(New, InsertPos);
1165  return QualType(New, 0);
1166}
1167
1168/// getFunctionType - Return a normal function type with a typed argument
1169/// list.  isVariadic indicates whether the argument list includes '...'.
1170QualType ASTContext::getFunctionType(QualType ResultTy,const QualType *ArgArray,
1171                                     unsigned NumArgs, bool isVariadic,
1172                                     unsigned TypeQuals) {
1173  // Unique functions, to guarantee there is only one function of a particular
1174  // structure.
1175  llvm::FoldingSetNodeID ID;
1176  FunctionProtoType::Profile(ID, ResultTy, ArgArray, NumArgs, isVariadic,
1177                             TypeQuals);
1178
1179  void *InsertPos = 0;
1180  if (FunctionProtoType *FTP =
1181        FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
1182    return QualType(FTP, 0);
1183
1184  // Determine whether the type being created is already canonical or not.
1185  bool isCanonical = ResultTy->isCanonical();
1186  for (unsigned i = 0; i != NumArgs && isCanonical; ++i)
1187    if (!ArgArray[i]->isCanonical())
1188      isCanonical = false;
1189
1190  // If this type isn't canonical, get the canonical version of it.
1191  QualType Canonical;
1192  if (!isCanonical) {
1193    llvm::SmallVector<QualType, 16> CanonicalArgs;
1194    CanonicalArgs.reserve(NumArgs);
1195    for (unsigned i = 0; i != NumArgs; ++i)
1196      CanonicalArgs.push_back(getCanonicalType(ArgArray[i]));
1197
1198    Canonical = getFunctionType(getCanonicalType(ResultTy),
1199                                &CanonicalArgs[0], NumArgs,
1200                                isVariadic, TypeQuals);
1201
1202    // Get the new insert position for the node we care about.
1203    FunctionProtoType *NewIP =
1204      FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
1205    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1206  }
1207
1208  // FunctionProtoType objects are allocated with extra bytes after them
1209  // for a variable size array (for parameter types) at the end of them.
1210  FunctionProtoType *FTP =
1211    (FunctionProtoType*)Allocate(sizeof(FunctionProtoType) +
1212                                 NumArgs*sizeof(QualType), 8);
1213  new (FTP) FunctionProtoType(ResultTy, ArgArray, NumArgs, isVariadic,
1214                              TypeQuals, Canonical);
1215  Types.push_back(FTP);
1216  FunctionProtoTypes.InsertNode(FTP, InsertPos);
1217  return QualType(FTP, 0);
1218}
1219
1220/// getTypeDeclType - Return the unique reference to the type for the
1221/// specified type declaration.
1222QualType ASTContext::getTypeDeclType(TypeDecl *Decl, TypeDecl* PrevDecl) {
1223  assert(Decl && "Passed null for Decl param");
1224  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
1225
1226  if (TypedefDecl *Typedef = dyn_cast<TypedefDecl>(Decl))
1227    return getTypedefType(Typedef);
1228  else if (isa<TemplateTypeParmDecl>(Decl)) {
1229    assert(false && "Template type parameter types are always available.");
1230  } else if (ObjCInterfaceDecl *ObjCInterface = dyn_cast<ObjCInterfaceDecl>(Decl))
1231    return getObjCInterfaceType(ObjCInterface);
1232
1233  if (RecordDecl *Record = dyn_cast<RecordDecl>(Decl)) {
1234    if (PrevDecl)
1235      Decl->TypeForDecl = PrevDecl->TypeForDecl;
1236    else
1237      Decl->TypeForDecl = new (*this,8) RecordType(Record);
1238  }
1239  else if (EnumDecl *Enum = dyn_cast<EnumDecl>(Decl)) {
1240    if (PrevDecl)
1241      Decl->TypeForDecl = PrevDecl->TypeForDecl;
1242    else
1243      Decl->TypeForDecl = new (*this,8) EnumType(Enum);
1244  }
1245  else
1246    assert(false && "TypeDecl without a type?");
1247
1248  if (!PrevDecl) Types.push_back(Decl->TypeForDecl);
1249  return QualType(Decl->TypeForDecl, 0);
1250}
1251
1252/// getTypedefType - Return the unique reference to the type for the
1253/// specified typename decl.
1254QualType ASTContext::getTypedefType(TypedefDecl *Decl) {
1255  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
1256
1257  QualType Canonical = getCanonicalType(Decl->getUnderlyingType());
1258  Decl->TypeForDecl = new(*this,8) TypedefType(Type::Typedef, Decl, Canonical);
1259  Types.push_back(Decl->TypeForDecl);
1260  return QualType(Decl->TypeForDecl, 0);
1261}
1262
1263/// getObjCInterfaceType - Return the unique reference to the type for the
1264/// specified ObjC interface decl.
1265QualType ASTContext::getObjCInterfaceType(ObjCInterfaceDecl *Decl) {
1266  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
1267
1268  Decl->TypeForDecl = new(*this,8) ObjCInterfaceType(Type::ObjCInterface, Decl);
1269  Types.push_back(Decl->TypeForDecl);
1270  return QualType(Decl->TypeForDecl, 0);
1271}
1272
1273/// buildObjCInterfaceType - Returns a new type for the interface
1274/// declaration, regardless. It also removes any previously built
1275/// record declaration so caller can rebuild it.
1276QualType ASTContext::buildObjCInterfaceType(ObjCInterfaceDecl *Decl) {
1277  const RecordDecl *&RD = ASTRecordForInterface[Decl];
1278  if (RD)
1279    RD = 0;
1280  Decl->TypeForDecl = new(*this,8) ObjCInterfaceType(Type::ObjCInterface, Decl);
1281  Types.push_back(Decl->TypeForDecl);
1282  return QualType(Decl->TypeForDecl, 0);
1283}
1284
1285/// \brief Retrieve the template type parameter type for a template
1286/// parameter with the given depth, index, and (optionally) name.
1287QualType ASTContext::getTemplateTypeParmType(unsigned Depth, unsigned Index,
1288                                             IdentifierInfo *Name) {
1289  llvm::FoldingSetNodeID ID;
1290  TemplateTypeParmType::Profile(ID, Depth, Index, Name);
1291  void *InsertPos = 0;
1292  TemplateTypeParmType *TypeParm
1293    = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
1294
1295  if (TypeParm)
1296    return QualType(TypeParm, 0);
1297
1298  if (Name)
1299    TypeParm = new (*this, 8) TemplateTypeParmType(Depth, Index, Name,
1300                                         getTemplateTypeParmType(Depth, Index));
1301  else
1302    TypeParm = new (*this, 8) TemplateTypeParmType(Depth, Index);
1303
1304  Types.push_back(TypeParm);
1305  TemplateTypeParmTypes.InsertNode(TypeParm, InsertPos);
1306
1307  return QualType(TypeParm, 0);
1308}
1309
1310QualType
1311ASTContext::getClassTemplateSpecializationType(TemplateDecl *Template,
1312                                               const TemplateArgument *Args,
1313                                               unsigned NumArgs,
1314                                               QualType Canon) {
1315  if (!Canon.isNull())
1316    Canon = getCanonicalType(Canon);
1317
1318  llvm::FoldingSetNodeID ID;
1319  ClassTemplateSpecializationType::Profile(ID, Template, Args, NumArgs);
1320
1321  void *InsertPos = 0;
1322  ClassTemplateSpecializationType *Spec
1323    = ClassTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
1324
1325  if (Spec)
1326    return QualType(Spec, 0);
1327
1328  void *Mem = Allocate((sizeof(ClassTemplateSpecializationType) +
1329                        sizeof(TemplateArgument) * NumArgs),
1330                       8);
1331  Spec = new (Mem) ClassTemplateSpecializationType(Template, Args, NumArgs,
1332                                                   Canon);
1333  Types.push_back(Spec);
1334  ClassTemplateSpecializationTypes.InsertNode(Spec, InsertPos);
1335
1336  return QualType(Spec, 0);
1337}
1338
1339/// CmpProtocolNames - Comparison predicate for sorting protocols
1340/// alphabetically.
1341static bool CmpProtocolNames(const ObjCProtocolDecl *LHS,
1342                            const ObjCProtocolDecl *RHS) {
1343  return LHS->getDeclName() < RHS->getDeclName();
1344}
1345
1346static void SortAndUniqueProtocols(ObjCProtocolDecl **&Protocols,
1347                                   unsigned &NumProtocols) {
1348  ObjCProtocolDecl **ProtocolsEnd = Protocols+NumProtocols;
1349
1350  // Sort protocols, keyed by name.
1351  std::sort(Protocols, Protocols+NumProtocols, CmpProtocolNames);
1352
1353  // Remove duplicates.
1354  ProtocolsEnd = std::unique(Protocols, ProtocolsEnd);
1355  NumProtocols = ProtocolsEnd-Protocols;
1356}
1357
1358
1359/// getObjCQualifiedInterfaceType - Return a ObjCQualifiedInterfaceType type for
1360/// the given interface decl and the conforming protocol list.
1361QualType ASTContext::getObjCQualifiedInterfaceType(ObjCInterfaceDecl *Decl,
1362                       ObjCProtocolDecl **Protocols, unsigned NumProtocols) {
1363  // Sort the protocol list alphabetically to canonicalize it.
1364  SortAndUniqueProtocols(Protocols, NumProtocols);
1365
1366  llvm::FoldingSetNodeID ID;
1367  ObjCQualifiedInterfaceType::Profile(ID, Decl, Protocols, NumProtocols);
1368
1369  void *InsertPos = 0;
1370  if (ObjCQualifiedInterfaceType *QT =
1371      ObjCQualifiedInterfaceTypes.FindNodeOrInsertPos(ID, InsertPos))
1372    return QualType(QT, 0);
1373
1374  // No Match;
1375  ObjCQualifiedInterfaceType *QType =
1376    new (*this,8) ObjCQualifiedInterfaceType(Decl, Protocols, NumProtocols);
1377
1378  Types.push_back(QType);
1379  ObjCQualifiedInterfaceTypes.InsertNode(QType, InsertPos);
1380  return QualType(QType, 0);
1381}
1382
1383/// getObjCQualifiedIdType - Return an ObjCQualifiedIdType for the 'id' decl
1384/// and the conforming protocol list.
1385QualType ASTContext::getObjCQualifiedIdType(ObjCProtocolDecl **Protocols,
1386                                            unsigned NumProtocols) {
1387  // Sort the protocol list alphabetically to canonicalize it.
1388  SortAndUniqueProtocols(Protocols, NumProtocols);
1389
1390  llvm::FoldingSetNodeID ID;
1391  ObjCQualifiedIdType::Profile(ID, Protocols, NumProtocols);
1392
1393  void *InsertPos = 0;
1394  if (ObjCQualifiedIdType *QT =
1395        ObjCQualifiedIdTypes.FindNodeOrInsertPos(ID, InsertPos))
1396    return QualType(QT, 0);
1397
1398  // No Match;
1399  ObjCQualifiedIdType *QType =
1400    new (*this,8) ObjCQualifiedIdType(Protocols, NumProtocols);
1401  Types.push_back(QType);
1402  ObjCQualifiedIdTypes.InsertNode(QType, InsertPos);
1403  return QualType(QType, 0);
1404}
1405
1406/// getTypeOfExprType - Unlike many "get<Type>" functions, we can't unique
1407/// TypeOfExprType AST's (since expression's are never shared). For example,
1408/// multiple declarations that refer to "typeof(x)" all contain different
1409/// DeclRefExpr's. This doesn't effect the type checker, since it operates
1410/// on canonical type's (which are always unique).
1411QualType ASTContext::getTypeOfExprType(Expr *tofExpr) {
1412  QualType Canonical = getCanonicalType(tofExpr->getType());
1413  TypeOfExprType *toe = new (*this,8) TypeOfExprType(tofExpr, Canonical);
1414  Types.push_back(toe);
1415  return QualType(toe, 0);
1416}
1417
1418/// getTypeOfType -  Unlike many "get<Type>" functions, we don't unique
1419/// TypeOfType AST's. The only motivation to unique these nodes would be
1420/// memory savings. Since typeof(t) is fairly uncommon, space shouldn't be
1421/// an issue. This doesn't effect the type checker, since it operates
1422/// on canonical type's (which are always unique).
1423QualType ASTContext::getTypeOfType(QualType tofType) {
1424  QualType Canonical = getCanonicalType(tofType);
1425  TypeOfType *tot = new (*this,8) TypeOfType(tofType, Canonical);
1426  Types.push_back(tot);
1427  return QualType(tot, 0);
1428}
1429
1430/// getTagDeclType - Return the unique reference to the type for the
1431/// specified TagDecl (struct/union/class/enum) decl.
1432QualType ASTContext::getTagDeclType(TagDecl *Decl) {
1433  assert (Decl);
1434  return getTypeDeclType(Decl);
1435}
1436
1437/// getSizeType - Return the unique type for "size_t" (C99 7.17), the result
1438/// of the sizeof operator (C99 6.5.3.4p4). The value is target dependent and
1439/// needs to agree with the definition in <stddef.h>.
1440QualType ASTContext::getSizeType() const {
1441  return getFromTargetType(Target.getSizeType());
1442}
1443
1444/// getSignedWCharType - Return the type of "signed wchar_t".
1445/// Used when in C++, as a GCC extension.
1446QualType ASTContext::getSignedWCharType() const {
1447  // FIXME: derive from "Target" ?
1448  return WCharTy;
1449}
1450
1451/// getUnsignedWCharType - Return the type of "unsigned wchar_t".
1452/// Used when in C++, as a GCC extension.
1453QualType ASTContext::getUnsignedWCharType() const {
1454  // FIXME: derive from "Target" ?
1455  return UnsignedIntTy;
1456}
1457
1458/// getPointerDiffType - Return the unique type for "ptrdiff_t" (ref?)
1459/// defined in <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
1460QualType ASTContext::getPointerDiffType() const {
1461  return getFromTargetType(Target.getPtrDiffType(0));
1462}
1463
1464//===----------------------------------------------------------------------===//
1465//                              Type Operators
1466//===----------------------------------------------------------------------===//
1467
1468/// getCanonicalType - Return the canonical (structural) type corresponding to
1469/// the specified potentially non-canonical type.  The non-canonical version
1470/// of a type may have many "decorated" versions of types.  Decorators can
1471/// include typedefs, 'typeof' operators, etc. The returned type is guaranteed
1472/// to be free of any of these, allowing two canonical types to be compared
1473/// for exact equality with a simple pointer comparison.
1474QualType ASTContext::getCanonicalType(QualType T) {
1475  QualType CanType = T.getTypePtr()->getCanonicalTypeInternal();
1476
1477  // If the result has type qualifiers, make sure to canonicalize them as well.
1478  unsigned TypeQuals = T.getCVRQualifiers() | CanType.getCVRQualifiers();
1479  if (TypeQuals == 0) return CanType;
1480
1481  // If the type qualifiers are on an array type, get the canonical type of the
1482  // array with the qualifiers applied to the element type.
1483  ArrayType *AT = dyn_cast<ArrayType>(CanType);
1484  if (!AT)
1485    return CanType.getQualifiedType(TypeQuals);
1486
1487  // Get the canonical version of the element with the extra qualifiers on it.
1488  // This can recursively sink qualifiers through multiple levels of arrays.
1489  QualType NewEltTy=AT->getElementType().getWithAdditionalQualifiers(TypeQuals);
1490  NewEltTy = getCanonicalType(NewEltTy);
1491
1492  if (ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
1493    return getConstantArrayType(NewEltTy, CAT->getSize(),CAT->getSizeModifier(),
1494                                CAT->getIndexTypeQualifier());
1495  if (IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT))
1496    return getIncompleteArrayType(NewEltTy, IAT->getSizeModifier(),
1497                                  IAT->getIndexTypeQualifier());
1498
1499  if (DependentSizedArrayType *DSAT = dyn_cast<DependentSizedArrayType>(AT))
1500    return getDependentSizedArrayType(NewEltTy, DSAT->getSizeExpr(),
1501                                      DSAT->getSizeModifier(),
1502                                      DSAT->getIndexTypeQualifier());
1503
1504  VariableArrayType *VAT = cast<VariableArrayType>(AT);
1505  return getVariableArrayType(NewEltTy, VAT->getSizeExpr(),
1506                              VAT->getSizeModifier(),
1507                              VAT->getIndexTypeQualifier());
1508}
1509
1510
1511const ArrayType *ASTContext::getAsArrayType(QualType T) {
1512  // Handle the non-qualified case efficiently.
1513  if (T.getCVRQualifiers() == 0) {
1514    // Handle the common positive case fast.
1515    if (const ArrayType *AT = dyn_cast<ArrayType>(T))
1516      return AT;
1517  }
1518
1519  // Handle the common negative case fast, ignoring CVR qualifiers.
1520  QualType CType = T->getCanonicalTypeInternal();
1521
1522  // Make sure to look through type qualifiers (like ExtQuals) for the negative
1523  // test.
1524  if (!isa<ArrayType>(CType) &&
1525      !isa<ArrayType>(CType.getUnqualifiedType()))
1526    return 0;
1527
1528  // Apply any CVR qualifiers from the array type to the element type.  This
1529  // implements C99 6.7.3p8: "If the specification of an array type includes
1530  // any type qualifiers, the element type is so qualified, not the array type."
1531
1532  // If we get here, we either have type qualifiers on the type, or we have
1533  // sugar such as a typedef in the way.  If we have type qualifiers on the type
1534  // we must propagate them down into the elemeng type.
1535  unsigned CVRQuals = T.getCVRQualifiers();
1536  unsigned AddrSpace = 0;
1537  Type *Ty = T.getTypePtr();
1538
1539  // Rip through ExtQualType's and typedefs to get to a concrete type.
1540  while (1) {
1541    if (const ExtQualType *EXTQT = dyn_cast<ExtQualType>(Ty)) {
1542      AddrSpace = EXTQT->getAddressSpace();
1543      Ty = EXTQT->getBaseType();
1544    } else {
1545      T = Ty->getDesugaredType();
1546      if (T.getTypePtr() == Ty && T.getCVRQualifiers() == 0)
1547        break;
1548      CVRQuals |= T.getCVRQualifiers();
1549      Ty = T.getTypePtr();
1550    }
1551  }
1552
1553  // If we have a simple case, just return now.
1554  const ArrayType *ATy = dyn_cast<ArrayType>(Ty);
1555  if (ATy == 0 || (AddrSpace == 0 && CVRQuals == 0))
1556    return ATy;
1557
1558  // Otherwise, we have an array and we have qualifiers on it.  Push the
1559  // qualifiers into the array element type and return a new array type.
1560  // Get the canonical version of the element with the extra qualifiers on it.
1561  // This can recursively sink qualifiers through multiple levels of arrays.
1562  QualType NewEltTy = ATy->getElementType();
1563  if (AddrSpace)
1564    NewEltTy = getAddrSpaceQualType(NewEltTy, AddrSpace);
1565  NewEltTy = NewEltTy.getWithAdditionalQualifiers(CVRQuals);
1566
1567  if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(ATy))
1568    return cast<ArrayType>(getConstantArrayType(NewEltTy, CAT->getSize(),
1569                                                CAT->getSizeModifier(),
1570                                                CAT->getIndexTypeQualifier()));
1571  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(ATy))
1572    return cast<ArrayType>(getIncompleteArrayType(NewEltTy,
1573                                                  IAT->getSizeModifier(),
1574                                                 IAT->getIndexTypeQualifier()));
1575
1576  if (const DependentSizedArrayType *DSAT
1577        = dyn_cast<DependentSizedArrayType>(ATy))
1578    return cast<ArrayType>(
1579                     getDependentSizedArrayType(NewEltTy,
1580                                                DSAT->getSizeExpr(),
1581                                                DSAT->getSizeModifier(),
1582                                                DSAT->getIndexTypeQualifier()));
1583
1584  const VariableArrayType *VAT = cast<VariableArrayType>(ATy);
1585  return cast<ArrayType>(getVariableArrayType(NewEltTy, VAT->getSizeExpr(),
1586                                              VAT->getSizeModifier(),
1587                                              VAT->getIndexTypeQualifier()));
1588}
1589
1590
1591/// getArrayDecayedType - Return the properly qualified result of decaying the
1592/// specified array type to a pointer.  This operation is non-trivial when
1593/// handling typedefs etc.  The canonical type of "T" must be an array type,
1594/// this returns a pointer to a properly qualified element of the array.
1595///
1596/// See C99 6.7.5.3p7 and C99 6.3.2.1p3.
1597QualType ASTContext::getArrayDecayedType(QualType Ty) {
1598  // Get the element type with 'getAsArrayType' so that we don't lose any
1599  // typedefs in the element type of the array.  This also handles propagation
1600  // of type qualifiers from the array type into the element type if present
1601  // (C99 6.7.3p8).
1602  const ArrayType *PrettyArrayType = getAsArrayType(Ty);
1603  assert(PrettyArrayType && "Not an array type!");
1604
1605  QualType PtrTy = getPointerType(PrettyArrayType->getElementType());
1606
1607  // int x[restrict 4] ->  int *restrict
1608  return PtrTy.getQualifiedType(PrettyArrayType->getIndexTypeQualifier());
1609}
1610
1611QualType ASTContext::getBaseElementType(const VariableArrayType *VAT) {
1612  QualType ElemTy = VAT->getElementType();
1613
1614  if (const VariableArrayType *VAT = getAsVariableArrayType(ElemTy))
1615    return getBaseElementType(VAT);
1616
1617  return ElemTy;
1618}
1619
1620/// getFloatingRank - Return a relative rank for floating point types.
1621/// This routine will assert if passed a built-in type that isn't a float.
1622static FloatingRank getFloatingRank(QualType T) {
1623  if (const ComplexType *CT = T->getAsComplexType())
1624    return getFloatingRank(CT->getElementType());
1625
1626  assert(T->getAsBuiltinType() && "getFloatingRank(): not a floating type");
1627  switch (T->getAsBuiltinType()->getKind()) {
1628  default: assert(0 && "getFloatingRank(): not a floating type");
1629  case BuiltinType::Float:      return FloatRank;
1630  case BuiltinType::Double:     return DoubleRank;
1631  case BuiltinType::LongDouble: return LongDoubleRank;
1632  }
1633}
1634
1635/// getFloatingTypeOfSizeWithinDomain - Returns a real floating
1636/// point or a complex type (based on typeDomain/typeSize).
1637/// 'typeDomain' is a real floating point or complex type.
1638/// 'typeSize' is a real floating point or complex type.
1639QualType ASTContext::getFloatingTypeOfSizeWithinDomain(QualType Size,
1640                                                       QualType Domain) const {
1641  FloatingRank EltRank = getFloatingRank(Size);
1642  if (Domain->isComplexType()) {
1643    switch (EltRank) {
1644    default: assert(0 && "getFloatingRank(): illegal value for rank");
1645    case FloatRank:      return FloatComplexTy;
1646    case DoubleRank:     return DoubleComplexTy;
1647    case LongDoubleRank: return LongDoubleComplexTy;
1648    }
1649  }
1650
1651  assert(Domain->isRealFloatingType() && "Unknown domain!");
1652  switch (EltRank) {
1653  default: assert(0 && "getFloatingRank(): illegal value for rank");
1654  case FloatRank:      return FloatTy;
1655  case DoubleRank:     return DoubleTy;
1656  case LongDoubleRank: return LongDoubleTy;
1657  }
1658}
1659
1660/// getFloatingTypeOrder - Compare the rank of the two specified floating
1661/// point types, ignoring the domain of the type (i.e. 'double' ==
1662/// '_Complex double').  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
1663/// LHS < RHS, return -1.
1664int ASTContext::getFloatingTypeOrder(QualType LHS, QualType RHS) {
1665  FloatingRank LHSR = getFloatingRank(LHS);
1666  FloatingRank RHSR = getFloatingRank(RHS);
1667
1668  if (LHSR == RHSR)
1669    return 0;
1670  if (LHSR > RHSR)
1671    return 1;
1672  return -1;
1673}
1674
1675/// getIntegerRank - Return an integer conversion rank (C99 6.3.1.1p1). This
1676/// routine will assert if passed a built-in type that isn't an integer or enum,
1677/// or if it is not canonicalized.
1678unsigned ASTContext::getIntegerRank(Type *T) {
1679  assert(T->isCanonical() && "T should be canonicalized");
1680  if (EnumType* ET = dyn_cast<EnumType>(T))
1681    T = ET->getDecl()->getIntegerType().getTypePtr();
1682
1683  // There are two things which impact the integer rank: the width, and
1684  // the ordering of builtins.  The builtin ordering is encoded in the
1685  // bottom three bits; the width is encoded in the bits above that.
1686  if (FixedWidthIntType* FWIT = dyn_cast<FixedWidthIntType>(T)) {
1687    return FWIT->getWidth() << 3;
1688  }
1689
1690  switch (cast<BuiltinType>(T)->getKind()) {
1691  default: assert(0 && "getIntegerRank(): not a built-in integer");
1692  case BuiltinType::Bool:
1693    return 1 + (getIntWidth(BoolTy) << 3);
1694  case BuiltinType::Char_S:
1695  case BuiltinType::Char_U:
1696  case BuiltinType::SChar:
1697  case BuiltinType::UChar:
1698    return 2 + (getIntWidth(CharTy) << 3);
1699  case BuiltinType::Short:
1700  case BuiltinType::UShort:
1701    return 3 + (getIntWidth(ShortTy) << 3);
1702  case BuiltinType::Int:
1703  case BuiltinType::UInt:
1704    return 4 + (getIntWidth(IntTy) << 3);
1705  case BuiltinType::Long:
1706  case BuiltinType::ULong:
1707    return 5 + (getIntWidth(LongTy) << 3);
1708  case BuiltinType::LongLong:
1709  case BuiltinType::ULongLong:
1710    return 6 + (getIntWidth(LongLongTy) << 3);
1711  }
1712}
1713
1714/// getIntegerTypeOrder - Returns the highest ranked integer type:
1715/// C99 6.3.1.8p1.  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
1716/// LHS < RHS, return -1.
1717int ASTContext::getIntegerTypeOrder(QualType LHS, QualType RHS) {
1718  Type *LHSC = getCanonicalType(LHS).getTypePtr();
1719  Type *RHSC = getCanonicalType(RHS).getTypePtr();
1720  if (LHSC == RHSC) return 0;
1721
1722  bool LHSUnsigned = LHSC->isUnsignedIntegerType();
1723  bool RHSUnsigned = RHSC->isUnsignedIntegerType();
1724
1725  unsigned LHSRank = getIntegerRank(LHSC);
1726  unsigned RHSRank = getIntegerRank(RHSC);
1727
1728  if (LHSUnsigned == RHSUnsigned) {  // Both signed or both unsigned.
1729    if (LHSRank == RHSRank) return 0;
1730    return LHSRank > RHSRank ? 1 : -1;
1731  }
1732
1733  // Otherwise, the LHS is signed and the RHS is unsigned or visa versa.
1734  if (LHSUnsigned) {
1735    // If the unsigned [LHS] type is larger, return it.
1736    if (LHSRank >= RHSRank)
1737      return 1;
1738
1739    // If the signed type can represent all values of the unsigned type, it
1740    // wins.  Because we are dealing with 2's complement and types that are
1741    // powers of two larger than each other, this is always safe.
1742    return -1;
1743  }
1744
1745  // If the unsigned [RHS] type is larger, return it.
1746  if (RHSRank >= LHSRank)
1747    return -1;
1748
1749  // If the signed type can represent all values of the unsigned type, it
1750  // wins.  Because we are dealing with 2's complement and types that are
1751  // powers of two larger than each other, this is always safe.
1752  return 1;
1753}
1754
1755// getCFConstantStringType - Return the type used for constant CFStrings.
1756QualType ASTContext::getCFConstantStringType() {
1757  if (!CFConstantStringTypeDecl) {
1758    CFConstantStringTypeDecl =
1759      RecordDecl::Create(*this, TagDecl::TK_struct, TUDecl, SourceLocation(),
1760                         &Idents.get("NSConstantString"));
1761    QualType FieldTypes[4];
1762
1763    // const int *isa;
1764    FieldTypes[0] = getPointerType(IntTy.getQualifiedType(QualType::Const));
1765    // int flags;
1766    FieldTypes[1] = IntTy;
1767    // const char *str;
1768    FieldTypes[2] = getPointerType(CharTy.getQualifiedType(QualType::Const));
1769    // long length;
1770    FieldTypes[3] = LongTy;
1771
1772    // Create fields
1773    for (unsigned i = 0; i < 4; ++i) {
1774      FieldDecl *Field = FieldDecl::Create(*this, CFConstantStringTypeDecl,
1775                                           SourceLocation(), 0,
1776                                           FieldTypes[i], /*BitWidth=*/0,
1777                                           /*Mutable=*/false);
1778      CFConstantStringTypeDecl->addDecl(Field);
1779    }
1780
1781    CFConstantStringTypeDecl->completeDefinition(*this);
1782  }
1783
1784  return getTagDeclType(CFConstantStringTypeDecl);
1785}
1786
1787QualType ASTContext::getObjCFastEnumerationStateType()
1788{
1789  if (!ObjCFastEnumerationStateTypeDecl) {
1790    ObjCFastEnumerationStateTypeDecl =
1791      RecordDecl::Create(*this, TagDecl::TK_struct, TUDecl, SourceLocation(),
1792                         &Idents.get("__objcFastEnumerationState"));
1793
1794    QualType FieldTypes[] = {
1795      UnsignedLongTy,
1796      getPointerType(ObjCIdType),
1797      getPointerType(UnsignedLongTy),
1798      getConstantArrayType(UnsignedLongTy,
1799                           llvm::APInt(32, 5), ArrayType::Normal, 0)
1800    };
1801
1802    for (size_t i = 0; i < 4; ++i) {
1803      FieldDecl *Field = FieldDecl::Create(*this,
1804                                           ObjCFastEnumerationStateTypeDecl,
1805                                           SourceLocation(), 0,
1806                                           FieldTypes[i], /*BitWidth=*/0,
1807                                           /*Mutable=*/false);
1808      ObjCFastEnumerationStateTypeDecl->addDecl(Field);
1809    }
1810
1811    ObjCFastEnumerationStateTypeDecl->completeDefinition(*this);
1812  }
1813
1814  return getTagDeclType(ObjCFastEnumerationStateTypeDecl);
1815}
1816
1817// This returns true if a type has been typedefed to BOOL:
1818// typedef <type> BOOL;
1819static bool isTypeTypedefedAsBOOL(QualType T) {
1820  if (const TypedefType *TT = dyn_cast<TypedefType>(T))
1821    if (IdentifierInfo *II = TT->getDecl()->getIdentifier())
1822      return II->isStr("BOOL");
1823
1824  return false;
1825}
1826
1827/// getObjCEncodingTypeSize returns size of type for objective-c encoding
1828/// purpose.
1829int ASTContext::getObjCEncodingTypeSize(QualType type) {
1830  uint64_t sz = getTypeSize(type);
1831
1832  // Make all integer and enum types at least as large as an int
1833  if (sz > 0 && type->isIntegralType())
1834    sz = std::max(sz, getTypeSize(IntTy));
1835  // Treat arrays as pointers, since that's how they're passed in.
1836  else if (type->isArrayType())
1837    sz = getTypeSize(VoidPtrTy);
1838  return sz / getTypeSize(CharTy);
1839}
1840
1841/// getObjCEncodingForMethodDecl - Return the encoded type for this method
1842/// declaration.
1843void ASTContext::getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl,
1844                                              std::string& S) {
1845  // FIXME: This is not very efficient.
1846  // Encode type qualifer, 'in', 'inout', etc. for the return type.
1847  getObjCEncodingForTypeQualifier(Decl->getObjCDeclQualifier(), S);
1848  // Encode result type.
1849  getObjCEncodingForType(Decl->getResultType(), S);
1850  // Compute size of all parameters.
1851  // Start with computing size of a pointer in number of bytes.
1852  // FIXME: There might(should) be a better way of doing this computation!
1853  SourceLocation Loc;
1854  int PtrSize = getTypeSize(VoidPtrTy) / getTypeSize(CharTy);
1855  // The first two arguments (self and _cmd) are pointers; account for
1856  // their size.
1857  int ParmOffset = 2 * PtrSize;
1858  for (ObjCMethodDecl::param_iterator PI = Decl->param_begin(),
1859       E = Decl->param_end(); PI != E; ++PI) {
1860    QualType PType = (*PI)->getType();
1861    int sz = getObjCEncodingTypeSize(PType);
1862    assert (sz > 0 && "getObjCEncodingForMethodDecl - Incomplete param type");
1863    ParmOffset += sz;
1864  }
1865  S += llvm::utostr(ParmOffset);
1866  S += "@0:";
1867  S += llvm::utostr(PtrSize);
1868
1869  // Argument types.
1870  ParmOffset = 2 * PtrSize;
1871  for (ObjCMethodDecl::param_iterator PI = Decl->param_begin(),
1872       E = Decl->param_end(); PI != E; ++PI) {
1873    ParmVarDecl *PVDecl = *PI;
1874    QualType PType = PVDecl->getOriginalType();
1875    if (const ArrayType *AT =
1876          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal()))
1877        // Use array's original type only if it has known number of
1878        // elements.
1879        if (!dyn_cast<ConstantArrayType>(AT))
1880          PType = PVDecl->getType();
1881    // Process argument qualifiers for user supplied arguments; such as,
1882    // 'in', 'inout', etc.
1883    getObjCEncodingForTypeQualifier(PVDecl->getObjCDeclQualifier(), S);
1884    getObjCEncodingForType(PType, S);
1885    S += llvm::utostr(ParmOffset);
1886    ParmOffset += getObjCEncodingTypeSize(PType);
1887  }
1888}
1889
1890/// getObjCEncodingForPropertyDecl - Return the encoded type for this
1891/// property declaration. If non-NULL, Container must be either an
1892/// ObjCCategoryImplDecl or ObjCImplementationDecl; it should only be
1893/// NULL when getting encodings for protocol properties.
1894/// Property attributes are stored as a comma-delimited C string. The simple
1895/// attributes readonly and bycopy are encoded as single characters. The
1896/// parametrized attributes, getter=name, setter=name, and ivar=name, are
1897/// encoded as single characters, followed by an identifier. Property types
1898/// are also encoded as a parametrized attribute. The characters used to encode
1899/// these attributes are defined by the following enumeration:
1900/// @code
1901/// enum PropertyAttributes {
1902/// kPropertyReadOnly = 'R',   // property is read-only.
1903/// kPropertyBycopy = 'C',     // property is a copy of the value last assigned
1904/// kPropertyByref = '&',  // property is a reference to the value last assigned
1905/// kPropertyDynamic = 'D',    // property is dynamic
1906/// kPropertyGetter = 'G',     // followed by getter selector name
1907/// kPropertySetter = 'S',     // followed by setter selector name
1908/// kPropertyInstanceVariable = 'V'  // followed by instance variable  name
1909/// kPropertyType = 't'              // followed by old-style type encoding.
1910/// kPropertyWeak = 'W'              // 'weak' property
1911/// kPropertyStrong = 'P'            // property GC'able
1912/// kPropertyNonAtomic = 'N'         // property non-atomic
1913/// };
1914/// @endcode
1915void ASTContext::getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD,
1916                                                const Decl *Container,
1917                                                std::string& S) {
1918  // Collect information from the property implementation decl(s).
1919  bool Dynamic = false;
1920  ObjCPropertyImplDecl *SynthesizePID = 0;
1921
1922  // FIXME: Duplicated code due to poor abstraction.
1923  if (Container) {
1924    if (const ObjCCategoryImplDecl *CID =
1925        dyn_cast<ObjCCategoryImplDecl>(Container)) {
1926      for (ObjCCategoryImplDecl::propimpl_iterator
1927             i = CID->propimpl_begin(), e = CID->propimpl_end(); i != e; ++i) {
1928        ObjCPropertyImplDecl *PID = *i;
1929        if (PID->getPropertyDecl() == PD) {
1930          if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
1931            Dynamic = true;
1932          } else {
1933            SynthesizePID = PID;
1934          }
1935        }
1936      }
1937    } else {
1938      const ObjCImplementationDecl *OID=cast<ObjCImplementationDecl>(Container);
1939      for (ObjCCategoryImplDecl::propimpl_iterator
1940             i = OID->propimpl_begin(), e = OID->propimpl_end(); i != e; ++i) {
1941        ObjCPropertyImplDecl *PID = *i;
1942        if (PID->getPropertyDecl() == PD) {
1943          if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
1944            Dynamic = true;
1945          } else {
1946            SynthesizePID = PID;
1947          }
1948        }
1949      }
1950    }
1951  }
1952
1953  // FIXME: This is not very efficient.
1954  S = "T";
1955
1956  // Encode result type.
1957  // GCC has some special rules regarding encoding of properties which
1958  // closely resembles encoding of ivars.
1959  getObjCEncodingForTypeImpl(PD->getType(), S, true, true, NULL,
1960                             true /* outermost type */,
1961                             true /* encoding for property */);
1962
1963  if (PD->isReadOnly()) {
1964    S += ",R";
1965  } else {
1966    switch (PD->getSetterKind()) {
1967    case ObjCPropertyDecl::Assign: break;
1968    case ObjCPropertyDecl::Copy:   S += ",C"; break;
1969    case ObjCPropertyDecl::Retain: S += ",&"; break;
1970    }
1971  }
1972
1973  // It really isn't clear at all what this means, since properties
1974  // are "dynamic by default".
1975  if (Dynamic)
1976    S += ",D";
1977
1978  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_nonatomic)
1979    S += ",N";
1980
1981  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_getter) {
1982    S += ",G";
1983    S += PD->getGetterName().getAsString();
1984  }
1985
1986  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_setter) {
1987    S += ",S";
1988    S += PD->getSetterName().getAsString();
1989  }
1990
1991  if (SynthesizePID) {
1992    const ObjCIvarDecl *OID = SynthesizePID->getPropertyIvarDecl();
1993    S += ",V";
1994    S += OID->getNameAsString();
1995  }
1996
1997  // FIXME: OBJCGC: weak & strong
1998}
1999
2000/// getLegacyIntegralTypeEncoding -
2001/// Another legacy compatibility encoding: 32-bit longs are encoded as
2002/// 'l' or 'L' , but not always.  For typedefs, we need to use
2003/// 'i' or 'I' instead if encoding a struct field, or a pointer!
2004///
2005void ASTContext::getLegacyIntegralTypeEncoding (QualType &PointeeTy) const {
2006  if (dyn_cast<TypedefType>(PointeeTy.getTypePtr())) {
2007    if (const BuiltinType *BT = PointeeTy->getAsBuiltinType()) {
2008      if (BT->getKind() == BuiltinType::ULong &&
2009          ((const_cast<ASTContext *>(this))->getIntWidth(PointeeTy) == 32))
2010        PointeeTy = UnsignedIntTy;
2011      else
2012        if (BT->getKind() == BuiltinType::Long &&
2013            ((const_cast<ASTContext *>(this))->getIntWidth(PointeeTy) == 32))
2014          PointeeTy = IntTy;
2015    }
2016  }
2017}
2018
2019void ASTContext::getObjCEncodingForType(QualType T, std::string& S,
2020                                        FieldDecl *Field) const {
2021  // We follow the behavior of gcc, expanding structures which are
2022  // directly pointed to, and expanding embedded structures. Note that
2023  // these rules are sufficient to prevent recursive encoding of the
2024  // same type.
2025  getObjCEncodingForTypeImpl(T, S, true, true, Field,
2026                             true /* outermost type */);
2027}
2028
2029static void EncodeBitField(const ASTContext *Context, std::string& S,
2030                           FieldDecl *FD) {
2031  const Expr *E = FD->getBitWidth();
2032  assert(E && "bitfield width not there - getObjCEncodingForTypeImpl");
2033  ASTContext *Ctx = const_cast<ASTContext*>(Context);
2034  unsigned N = E->getIntegerConstantExprValue(*Ctx).getZExtValue();
2035  S += 'b';
2036  S += llvm::utostr(N);
2037}
2038
2039void ASTContext::getObjCEncodingForTypeImpl(QualType T, std::string& S,
2040                                            bool ExpandPointedToStructures,
2041                                            bool ExpandStructures,
2042                                            FieldDecl *FD,
2043                                            bool OutermostType,
2044                                            bool EncodingProperty) const {
2045  if (const BuiltinType *BT = T->getAsBuiltinType()) {
2046    if (FD && FD->isBitField()) {
2047      EncodeBitField(this, S, FD);
2048    }
2049    else {
2050      char encoding;
2051      switch (BT->getKind()) {
2052      default: assert(0 && "Unhandled builtin type kind");
2053      case BuiltinType::Void:       encoding = 'v'; break;
2054      case BuiltinType::Bool:       encoding = 'B'; break;
2055      case BuiltinType::Char_U:
2056      case BuiltinType::UChar:      encoding = 'C'; break;
2057      case BuiltinType::UShort:     encoding = 'S'; break;
2058      case BuiltinType::UInt:       encoding = 'I'; break;
2059      case BuiltinType::ULong:
2060          encoding =
2061            (const_cast<ASTContext *>(this))->getIntWidth(T) == 32 ? 'L' : 'Q';
2062          break;
2063      case BuiltinType::ULongLong:  encoding = 'Q'; break;
2064      case BuiltinType::Char_S:
2065      case BuiltinType::SChar:      encoding = 'c'; break;
2066      case BuiltinType::Short:      encoding = 's'; break;
2067      case BuiltinType::Int:        encoding = 'i'; break;
2068      case BuiltinType::Long:
2069        encoding =
2070          (const_cast<ASTContext *>(this))->getIntWidth(T) == 32 ? 'l' : 'q';
2071        break;
2072      case BuiltinType::LongLong:   encoding = 'q'; break;
2073      case BuiltinType::Float:      encoding = 'f'; break;
2074      case BuiltinType::Double:     encoding = 'd'; break;
2075      case BuiltinType::LongDouble: encoding = 'd'; break;
2076      }
2077
2078      S += encoding;
2079    }
2080  }
2081  else if (T->isObjCQualifiedIdType()) {
2082    getObjCEncodingForTypeImpl(getObjCIdType(), S,
2083                               ExpandPointedToStructures,
2084                               ExpandStructures, FD);
2085    if (FD || EncodingProperty) {
2086      // Note that we do extended encoding of protocol qualifer list
2087      // Only when doing ivar or property encoding.
2088      const ObjCQualifiedIdType *QIDT = T->getAsObjCQualifiedIdType();
2089      S += '"';
2090      for (unsigned i =0; i < QIDT->getNumProtocols(); i++) {
2091        ObjCProtocolDecl *Proto = QIDT->getProtocols(i);
2092        S += '<';
2093        S += Proto->getNameAsString();
2094        S += '>';
2095      }
2096      S += '"';
2097    }
2098    return;
2099  }
2100  else if (const PointerType *PT = T->getAsPointerType()) {
2101    QualType PointeeTy = PT->getPointeeType();
2102    bool isReadOnly = false;
2103    // For historical/compatibility reasons, the read-only qualifier of the
2104    // pointee gets emitted _before_ the '^'.  The read-only qualifier of
2105    // the pointer itself gets ignored, _unless_ we are looking at a typedef!
2106    // Also, do not emit the 'r' for anything but the outermost type!
2107    if (dyn_cast<TypedefType>(T.getTypePtr())) {
2108      if (OutermostType && T.isConstQualified()) {
2109        isReadOnly = true;
2110        S += 'r';
2111      }
2112    }
2113    else if (OutermostType) {
2114      QualType P = PointeeTy;
2115      while (P->getAsPointerType())
2116        P = P->getAsPointerType()->getPointeeType();
2117      if (P.isConstQualified()) {
2118        isReadOnly = true;
2119        S += 'r';
2120      }
2121    }
2122    if (isReadOnly) {
2123      // Another legacy compatibility encoding. Some ObjC qualifier and type
2124      // combinations need to be rearranged.
2125      // Rewrite "in const" from "nr" to "rn"
2126      const char * s = S.c_str();
2127      int len = S.length();
2128      if (len >= 2 && s[len-2] == 'n' && s[len-1] == 'r') {
2129        std::string replace = "rn";
2130        S.replace(S.end()-2, S.end(), replace);
2131      }
2132    }
2133    if (isObjCIdStructType(PointeeTy)) {
2134      S += '@';
2135      return;
2136    }
2137    else if (PointeeTy->isObjCInterfaceType()) {
2138      if (!EncodingProperty &&
2139          isa<TypedefType>(PointeeTy.getTypePtr())) {
2140        // Another historical/compatibility reason.
2141        // We encode the underlying type which comes out as
2142        // {...};
2143        S += '^';
2144        getObjCEncodingForTypeImpl(PointeeTy, S,
2145                                   false, ExpandPointedToStructures,
2146                                   NULL);
2147        return;
2148      }
2149      S += '@';
2150      if (FD || EncodingProperty) {
2151        const ObjCInterfaceType *OIT =
2152                PointeeTy.getUnqualifiedType()->getAsObjCInterfaceType();
2153        ObjCInterfaceDecl *OI = OIT->getDecl();
2154        S += '"';
2155        S += OI->getNameAsCString();
2156        for (unsigned i =0; i < OIT->getNumProtocols(); i++) {
2157          ObjCProtocolDecl *Proto = OIT->getProtocol(i);
2158          S += '<';
2159          S += Proto->getNameAsString();
2160          S += '>';
2161        }
2162        S += '"';
2163      }
2164      return;
2165    } else if (isObjCClassStructType(PointeeTy)) {
2166      S += '#';
2167      return;
2168    } else if (isObjCSelType(PointeeTy)) {
2169      S += ':';
2170      return;
2171    }
2172
2173    if (PointeeTy->isCharType()) {
2174      // char pointer types should be encoded as '*' unless it is a
2175      // type that has been typedef'd to 'BOOL'.
2176      if (!isTypeTypedefedAsBOOL(PointeeTy)) {
2177        S += '*';
2178        return;
2179      }
2180    }
2181
2182    S += '^';
2183    getLegacyIntegralTypeEncoding(PointeeTy);
2184
2185    getObjCEncodingForTypeImpl(PointeeTy, S,
2186                               false, ExpandPointedToStructures,
2187                               NULL);
2188  } else if (const ArrayType *AT =
2189               // Ignore type qualifiers etc.
2190               dyn_cast<ArrayType>(T->getCanonicalTypeInternal())) {
2191    if (isa<IncompleteArrayType>(AT)) {
2192      // Incomplete arrays are encoded as a pointer to the array element.
2193      S += '^';
2194
2195      getObjCEncodingForTypeImpl(AT->getElementType(), S,
2196                                 false, ExpandStructures, FD);
2197    } else {
2198      S += '[';
2199
2200      if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
2201        S += llvm::utostr(CAT->getSize().getZExtValue());
2202      else {
2203        //Variable length arrays are encoded as a regular array with 0 elements.
2204        assert(isa<VariableArrayType>(AT) && "Unknown array type!");
2205        S += '0';
2206      }
2207
2208      getObjCEncodingForTypeImpl(AT->getElementType(), S,
2209                                 false, ExpandStructures, FD);
2210      S += ']';
2211    }
2212  } else if (T->getAsFunctionType()) {
2213    S += '?';
2214  } else if (const RecordType *RTy = T->getAsRecordType()) {
2215    RecordDecl *RDecl = RTy->getDecl();
2216    S += RDecl->isUnion() ? '(' : '{';
2217    // Anonymous structures print as '?'
2218    if (const IdentifierInfo *II = RDecl->getIdentifier()) {
2219      S += II->getName();
2220    } else {
2221      S += '?';
2222    }
2223    if (ExpandStructures) {
2224      S += '=';
2225      for (RecordDecl::field_iterator Field = RDecl->field_begin(),
2226                                   FieldEnd = RDecl->field_end();
2227           Field != FieldEnd; ++Field) {
2228        if (FD) {
2229          S += '"';
2230          S += Field->getNameAsString();
2231          S += '"';
2232        }
2233
2234        // Special case bit-fields.
2235        if (Field->isBitField()) {
2236          getObjCEncodingForTypeImpl(Field->getType(), S, false, true,
2237                                     (*Field));
2238        } else {
2239          QualType qt = Field->getType();
2240          getLegacyIntegralTypeEncoding(qt);
2241          getObjCEncodingForTypeImpl(qt, S, false, true,
2242                                     FD);
2243        }
2244      }
2245    }
2246    S += RDecl->isUnion() ? ')' : '}';
2247  } else if (T->isEnumeralType()) {
2248    if (FD && FD->isBitField())
2249      EncodeBitField(this, S, FD);
2250    else
2251      S += 'i';
2252  } else if (T->isBlockPointerType()) {
2253    S += "@?"; // Unlike a pointer-to-function, which is "^?".
2254  } else if (T->isObjCInterfaceType()) {
2255    // @encode(class_name)
2256    ObjCInterfaceDecl *OI = T->getAsObjCInterfaceType()->getDecl();
2257    S += '{';
2258    const IdentifierInfo *II = OI->getIdentifier();
2259    S += II->getName();
2260    S += '=';
2261    std::vector<FieldDecl*> RecFields;
2262    CollectObjCIvars(OI, RecFields);
2263    for (unsigned int i = 0; i != RecFields.size(); i++) {
2264      if (RecFields[i]->isBitField())
2265        getObjCEncodingForTypeImpl(RecFields[i]->getType(), S, false, true,
2266                                   RecFields[i]);
2267      else
2268        getObjCEncodingForTypeImpl(RecFields[i]->getType(), S, false, true,
2269                                   FD);
2270    }
2271    S += '}';
2272  }
2273  else
2274    assert(0 && "@encode for type not implemented!");
2275}
2276
2277void ASTContext::getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,
2278                                                 std::string& S) const {
2279  if (QT & Decl::OBJC_TQ_In)
2280    S += 'n';
2281  if (QT & Decl::OBJC_TQ_Inout)
2282    S += 'N';
2283  if (QT & Decl::OBJC_TQ_Out)
2284    S += 'o';
2285  if (QT & Decl::OBJC_TQ_Bycopy)
2286    S += 'O';
2287  if (QT & Decl::OBJC_TQ_Byref)
2288    S += 'R';
2289  if (QT & Decl::OBJC_TQ_Oneway)
2290    S += 'V';
2291}
2292
2293void ASTContext::setBuiltinVaListType(QualType T)
2294{
2295  assert(BuiltinVaListType.isNull() && "__builtin_va_list type already set!");
2296
2297  BuiltinVaListType = T;
2298}
2299
2300void ASTContext::setObjCIdType(TypedefDecl *TD)
2301{
2302  ObjCIdType = getTypedefType(TD);
2303
2304  // typedef struct objc_object *id;
2305  const PointerType *ptr = TD->getUnderlyingType()->getAsPointerType();
2306  // User error - caller will issue diagnostics.
2307  if (!ptr)
2308    return;
2309  const RecordType *rec = ptr->getPointeeType()->getAsStructureType();
2310  // User error - caller will issue diagnostics.
2311  if (!rec)
2312    return;
2313  IdStructType = rec;
2314}
2315
2316void ASTContext::setObjCSelType(TypedefDecl *TD)
2317{
2318  ObjCSelType = getTypedefType(TD);
2319
2320  // typedef struct objc_selector *SEL;
2321  const PointerType *ptr = TD->getUnderlyingType()->getAsPointerType();
2322  if (!ptr)
2323    return;
2324  const RecordType *rec = ptr->getPointeeType()->getAsStructureType();
2325  if (!rec)
2326    return;
2327  SelStructType = rec;
2328}
2329
2330void ASTContext::setObjCProtoType(QualType QT)
2331{
2332  ObjCProtoType = QT;
2333}
2334
2335void ASTContext::setObjCClassType(TypedefDecl *TD)
2336{
2337  ObjCClassType = getTypedefType(TD);
2338
2339  // typedef struct objc_class *Class;
2340  const PointerType *ptr = TD->getUnderlyingType()->getAsPointerType();
2341  assert(ptr && "'Class' incorrectly typed");
2342  const RecordType *rec = ptr->getPointeeType()->getAsStructureType();
2343  assert(rec && "'Class' incorrectly typed");
2344  ClassStructType = rec;
2345}
2346
2347void ASTContext::setObjCConstantStringInterface(ObjCInterfaceDecl *Decl) {
2348  assert(ObjCConstantStringType.isNull() &&
2349         "'NSConstantString' type already set!");
2350
2351  ObjCConstantStringType = getObjCInterfaceType(Decl);
2352}
2353
2354/// getFromTargetType - Given one of the integer types provided by
2355/// TargetInfo, produce the corresponding type. The unsigned @p Type
2356/// is actually a value of type @c TargetInfo::IntType.
2357QualType ASTContext::getFromTargetType(unsigned Type) const {
2358  switch (Type) {
2359  case TargetInfo::NoInt: return QualType();
2360  case TargetInfo::SignedShort: return ShortTy;
2361  case TargetInfo::UnsignedShort: return UnsignedShortTy;
2362  case TargetInfo::SignedInt: return IntTy;
2363  case TargetInfo::UnsignedInt: return UnsignedIntTy;
2364  case TargetInfo::SignedLong: return LongTy;
2365  case TargetInfo::UnsignedLong: return UnsignedLongTy;
2366  case TargetInfo::SignedLongLong: return LongLongTy;
2367  case TargetInfo::UnsignedLongLong: return UnsignedLongLongTy;
2368  }
2369
2370  assert(false && "Unhandled TargetInfo::IntType value");
2371  return QualType();
2372}
2373
2374//===----------------------------------------------------------------------===//
2375//                        Type Predicates.
2376//===----------------------------------------------------------------------===//
2377
2378/// isObjCNSObjectType - Return true if this is an NSObject object using
2379/// NSObject attribute on a c-style pointer type.
2380/// FIXME - Make it work directly on types.
2381///
2382bool ASTContext::isObjCNSObjectType(QualType Ty) const {
2383  if (TypedefType *TDT = dyn_cast<TypedefType>(Ty)) {
2384    if (TypedefDecl *TD = TDT->getDecl())
2385      if (TD->getAttr<ObjCNSObjectAttr>())
2386        return true;
2387  }
2388  return false;
2389}
2390
2391/// isObjCObjectPointerType - Returns true if type is an Objective-C pointer
2392/// to an object type.  This includes "id" and "Class" (two 'special' pointers
2393/// to struct), Interface* (pointer to ObjCInterfaceType) and id<P> (qualified
2394/// ID type).
2395bool ASTContext::isObjCObjectPointerType(QualType Ty) const {
2396  if (Ty->isObjCQualifiedIdType())
2397    return true;
2398
2399  // Blocks are objects.
2400  if (Ty->isBlockPointerType())
2401    return true;
2402
2403  // All other object types are pointers.
2404  if (!Ty->isPointerType())
2405    return false;
2406
2407  // Check to see if this is 'id' or 'Class', both of which are typedefs for
2408  // pointer types.  This looks for the typedef specifically, not for the
2409  // underlying type.
2410  if (Ty == getObjCIdType() || Ty == getObjCClassType())
2411    return true;
2412
2413  // If this a pointer to an interface (e.g. NSString*), it is ok.
2414  if (Ty->getAsPointerType()->getPointeeType()->isObjCInterfaceType())
2415    return true;
2416
2417  // If is has NSObject attribute, OK as well.
2418  return isObjCNSObjectType(Ty);
2419}
2420
2421/// getObjCGCAttr - Returns one of GCNone, Weak or Strong objc's
2422/// garbage collection attribute.
2423///
2424QualType::GCAttrTypes ASTContext::getObjCGCAttrKind(const QualType &Ty) const {
2425  QualType::GCAttrTypes GCAttrs = QualType::GCNone;
2426  if (getLangOptions().ObjC1 &&
2427      getLangOptions().getGCMode() != LangOptions::NonGC) {
2428    GCAttrs = Ty.getObjCGCAttr();
2429    // Default behavious under objective-c's gc is for objective-c pointers
2430    // (or pointers to them) be treated as though they were declared
2431    // as __strong.
2432    if (GCAttrs == QualType::GCNone) {
2433      if (isObjCObjectPointerType(Ty))
2434        GCAttrs = QualType::Strong;
2435      else if (Ty->isPointerType())
2436        return getObjCGCAttrKind(Ty->getAsPointerType()->getPointeeType());
2437    }
2438  }
2439  return GCAttrs;
2440}
2441
2442//===----------------------------------------------------------------------===//
2443//                        Type Compatibility Testing
2444//===----------------------------------------------------------------------===//
2445
2446/// typesAreBlockCompatible - This routine is called when comparing two
2447/// block types. Types must be strictly compatible here. For example,
2448/// C unfortunately doesn't produce an error for the following:
2449///
2450///   int (*emptyArgFunc)();
2451///   int (*intArgList)(int) = emptyArgFunc;
2452///
2453/// For blocks, we will produce an error for the following (similar to C++):
2454///
2455///   int (^emptyArgBlock)();
2456///   int (^intArgBlock)(int) = emptyArgBlock;
2457///
2458/// FIXME: When the dust settles on this integration, fold this into mergeTypes.
2459///
2460bool ASTContext::typesAreBlockCompatible(QualType lhs, QualType rhs) {
2461  const FunctionType *lbase = lhs->getAsFunctionType();
2462  const FunctionType *rbase = rhs->getAsFunctionType();
2463  const FunctionProtoType *lproto = dyn_cast<FunctionProtoType>(lbase);
2464  const FunctionProtoType *rproto = dyn_cast<FunctionProtoType>(rbase);
2465  if (lproto && rproto)
2466    return !mergeTypes(lhs, rhs).isNull();
2467  return false;
2468}
2469
2470/// areCompatVectorTypes - Return true if the two specified vector types are
2471/// compatible.
2472static bool areCompatVectorTypes(const VectorType *LHS,
2473                                 const VectorType *RHS) {
2474  assert(LHS->isCanonical() && RHS->isCanonical());
2475  return LHS->getElementType() == RHS->getElementType() &&
2476         LHS->getNumElements() == RHS->getNumElements();
2477}
2478
2479/// canAssignObjCInterfaces - Return true if the two interface types are
2480/// compatible for assignment from RHS to LHS.  This handles validation of any
2481/// protocol qualifiers on the LHS or RHS.
2482///
2483bool ASTContext::canAssignObjCInterfaces(const ObjCInterfaceType *LHS,
2484                                         const ObjCInterfaceType *RHS) {
2485  // Verify that the base decls are compatible: the RHS must be a subclass of
2486  // the LHS.
2487  if (!LHS->getDecl()->isSuperClassOf(RHS->getDecl()))
2488    return false;
2489
2490  // RHS must have a superset of the protocols in the LHS.  If the LHS is not
2491  // protocol qualified at all, then we are good.
2492  if (!isa<ObjCQualifiedInterfaceType>(LHS))
2493    return true;
2494
2495  // Okay, we know the LHS has protocol qualifiers.  If the RHS doesn't, then it
2496  // isn't a superset.
2497  if (!isa<ObjCQualifiedInterfaceType>(RHS))
2498    return true;  // FIXME: should return false!
2499
2500  // Finally, we must have two protocol-qualified interfaces.
2501  const ObjCQualifiedInterfaceType *LHSP =cast<ObjCQualifiedInterfaceType>(LHS);
2502  const ObjCQualifiedInterfaceType *RHSP =cast<ObjCQualifiedInterfaceType>(RHS);
2503
2504  // All LHS protocols must have a presence on the RHS.
2505  assert(LHSP->qual_begin() != LHSP->qual_end() && "Empty LHS protocol list?");
2506
2507  for (ObjCQualifiedInterfaceType::qual_iterator LHSPI = LHSP->qual_begin(),
2508                                                 LHSPE = LHSP->qual_end();
2509       LHSPI != LHSPE; LHSPI++) {
2510    bool RHSImplementsProtocol = false;
2511
2512    // If the RHS doesn't implement the protocol on the left, the types
2513    // are incompatible.
2514    for (ObjCQualifiedInterfaceType::qual_iterator RHSPI = RHSP->qual_begin(),
2515                                                   RHSPE = RHSP->qual_end();
2516         !RHSImplementsProtocol && (RHSPI != RHSPE); RHSPI++) {
2517      if ((*RHSPI)->lookupProtocolNamed((*LHSPI)->getIdentifier()))
2518        RHSImplementsProtocol = true;
2519    }
2520    // FIXME: For better diagnostics, consider passing back the protocol name.
2521    if (!RHSImplementsProtocol)
2522      return false;
2523  }
2524  // The RHS implements all protocols listed on the LHS.
2525  return true;
2526}
2527
2528bool ASTContext::areComparableObjCPointerTypes(QualType LHS, QualType RHS) {
2529  // get the "pointed to" types
2530  const PointerType *LHSPT = LHS->getAsPointerType();
2531  const PointerType *RHSPT = RHS->getAsPointerType();
2532
2533  if (!LHSPT || !RHSPT)
2534    return false;
2535
2536  QualType lhptee = LHSPT->getPointeeType();
2537  QualType rhptee = RHSPT->getPointeeType();
2538  const ObjCInterfaceType* LHSIface = lhptee->getAsObjCInterfaceType();
2539  const ObjCInterfaceType* RHSIface = rhptee->getAsObjCInterfaceType();
2540  // ID acts sort of like void* for ObjC interfaces
2541  if (LHSIface && isObjCIdStructType(rhptee))
2542    return true;
2543  if (RHSIface && isObjCIdStructType(lhptee))
2544    return true;
2545  if (!LHSIface || !RHSIface)
2546    return false;
2547  return canAssignObjCInterfaces(LHSIface, RHSIface) ||
2548         canAssignObjCInterfaces(RHSIface, LHSIface);
2549}
2550
2551/// typesAreCompatible - C99 6.7.3p9: For two qualified types to be compatible,
2552/// both shall have the identically qualified version of a compatible type.
2553/// C99 6.2.7p1: Two types have compatible types if their types are the
2554/// same. See 6.7.[2,3,5] for additional rules.
2555bool ASTContext::typesAreCompatible(QualType LHS, QualType RHS) {
2556  return !mergeTypes(LHS, RHS).isNull();
2557}
2558
2559QualType ASTContext::mergeFunctionTypes(QualType lhs, QualType rhs) {
2560  const FunctionType *lbase = lhs->getAsFunctionType();
2561  const FunctionType *rbase = rhs->getAsFunctionType();
2562  const FunctionProtoType *lproto = dyn_cast<FunctionProtoType>(lbase);
2563  const FunctionProtoType *rproto = dyn_cast<FunctionProtoType>(rbase);
2564  bool allLTypes = true;
2565  bool allRTypes = true;
2566
2567  // Check return type
2568  QualType retType = mergeTypes(lbase->getResultType(), rbase->getResultType());
2569  if (retType.isNull()) return QualType();
2570  if (getCanonicalType(retType) != getCanonicalType(lbase->getResultType()))
2571    allLTypes = false;
2572  if (getCanonicalType(retType) != getCanonicalType(rbase->getResultType()))
2573    allRTypes = false;
2574
2575  if (lproto && rproto) { // two C99 style function prototypes
2576    unsigned lproto_nargs = lproto->getNumArgs();
2577    unsigned rproto_nargs = rproto->getNumArgs();
2578
2579    // Compatible functions must have the same number of arguments
2580    if (lproto_nargs != rproto_nargs)
2581      return QualType();
2582
2583    // Variadic and non-variadic functions aren't compatible
2584    if (lproto->isVariadic() != rproto->isVariadic())
2585      return QualType();
2586
2587    if (lproto->getTypeQuals() != rproto->getTypeQuals())
2588      return QualType();
2589
2590    // Check argument compatibility
2591    llvm::SmallVector<QualType, 10> types;
2592    for (unsigned i = 0; i < lproto_nargs; i++) {
2593      QualType largtype = lproto->getArgType(i).getUnqualifiedType();
2594      QualType rargtype = rproto->getArgType(i).getUnqualifiedType();
2595      QualType argtype = mergeTypes(largtype, rargtype);
2596      if (argtype.isNull()) return QualType();
2597      types.push_back(argtype);
2598      if (getCanonicalType(argtype) != getCanonicalType(largtype))
2599        allLTypes = false;
2600      if (getCanonicalType(argtype) != getCanonicalType(rargtype))
2601        allRTypes = false;
2602    }
2603    if (allLTypes) return lhs;
2604    if (allRTypes) return rhs;
2605    return getFunctionType(retType, types.begin(), types.size(),
2606                           lproto->isVariadic(), lproto->getTypeQuals());
2607  }
2608
2609  if (lproto) allRTypes = false;
2610  if (rproto) allLTypes = false;
2611
2612  const FunctionProtoType *proto = lproto ? lproto : rproto;
2613  if (proto) {
2614    if (proto->isVariadic()) return QualType();
2615    // Check that the types are compatible with the types that
2616    // would result from default argument promotions (C99 6.7.5.3p15).
2617    // The only types actually affected are promotable integer
2618    // types and floats, which would be passed as a different
2619    // type depending on whether the prototype is visible.
2620    unsigned proto_nargs = proto->getNumArgs();
2621    for (unsigned i = 0; i < proto_nargs; ++i) {
2622      QualType argTy = proto->getArgType(i);
2623      if (argTy->isPromotableIntegerType() ||
2624          getCanonicalType(argTy).getUnqualifiedType() == FloatTy)
2625        return QualType();
2626    }
2627
2628    if (allLTypes) return lhs;
2629    if (allRTypes) return rhs;
2630    return getFunctionType(retType, proto->arg_type_begin(),
2631                           proto->getNumArgs(), lproto->isVariadic(),
2632                           lproto->getTypeQuals());
2633  }
2634
2635  if (allLTypes) return lhs;
2636  if (allRTypes) return rhs;
2637  return getFunctionNoProtoType(retType);
2638}
2639
2640QualType ASTContext::mergeTypes(QualType LHS, QualType RHS) {
2641  // C++ [expr]: If an expression initially has the type "reference to T", the
2642  // type is adjusted to "T" prior to any further analysis, the expression
2643  // designates the object or function denoted by the reference, and the
2644  // expression is an lvalue.
2645  // FIXME: C++ shouldn't be going through here!  The rules are different
2646  // enough that they should be handled separately.
2647  if (const ReferenceType *RT = LHS->getAsReferenceType())
2648    LHS = RT->getPointeeType();
2649  if (const ReferenceType *RT = RHS->getAsReferenceType())
2650    RHS = RT->getPointeeType();
2651
2652  QualType LHSCan = getCanonicalType(LHS),
2653           RHSCan = getCanonicalType(RHS);
2654
2655  // If two types are identical, they are compatible.
2656  if (LHSCan == RHSCan)
2657    return LHS;
2658
2659  // If the qualifiers are different, the types aren't compatible
2660  // Note that we handle extended qualifiers later, in the
2661  // case for ExtQualType.
2662  if (LHSCan.getCVRQualifiers() != RHSCan.getCVRQualifiers())
2663    return QualType();
2664
2665  Type::TypeClass LHSClass = LHSCan->getTypeClass();
2666  Type::TypeClass RHSClass = RHSCan->getTypeClass();
2667
2668  // We want to consider the two function types to be the same for these
2669  // comparisons, just force one to the other.
2670  if (LHSClass == Type::FunctionProto) LHSClass = Type::FunctionNoProto;
2671  if (RHSClass == Type::FunctionProto) RHSClass = Type::FunctionNoProto;
2672
2673  // Same as above for arrays
2674  if (LHSClass == Type::VariableArray || LHSClass == Type::IncompleteArray)
2675    LHSClass = Type::ConstantArray;
2676  if (RHSClass == Type::VariableArray || RHSClass == Type::IncompleteArray)
2677    RHSClass = Type::ConstantArray;
2678
2679  // Canonicalize ExtVector -> Vector.
2680  if (LHSClass == Type::ExtVector) LHSClass = Type::Vector;
2681  if (RHSClass == Type::ExtVector) RHSClass = Type::Vector;
2682
2683  // Consider qualified interfaces and interfaces the same.
2684  if (LHSClass == Type::ObjCQualifiedInterface) LHSClass = Type::ObjCInterface;
2685  if (RHSClass == Type::ObjCQualifiedInterface) RHSClass = Type::ObjCInterface;
2686
2687  // If the canonical type classes don't match.
2688  if (LHSClass != RHSClass) {
2689    const ObjCInterfaceType* LHSIface = LHS->getAsObjCInterfaceType();
2690    const ObjCInterfaceType* RHSIface = RHS->getAsObjCInterfaceType();
2691
2692    // ID acts sort of like void* for ObjC interfaces
2693    if (LHSIface && isObjCIdStructType(RHS))
2694      return LHS;
2695    if (RHSIface && isObjCIdStructType(LHS))
2696      return RHS;
2697
2698    // ID is compatible with all qualified id types.
2699    if (LHS->isObjCQualifiedIdType()) {
2700      if (const PointerType *PT = RHS->getAsPointerType()) {
2701        QualType pType = PT->getPointeeType();
2702        if (isObjCIdStructType(pType))
2703          return LHS;
2704        // FIXME: need to use ObjCQualifiedIdTypesAreCompatible(LHS, RHS, true).
2705        // Unfortunately, this API is part of Sema (which we don't have access
2706        // to. Need to refactor. The following check is insufficient, since we
2707        // need to make sure the class implements the protocol.
2708        if (pType->isObjCInterfaceType())
2709          return LHS;
2710      }
2711    }
2712    if (RHS->isObjCQualifiedIdType()) {
2713      if (const PointerType *PT = LHS->getAsPointerType()) {
2714        QualType pType = PT->getPointeeType();
2715        if (isObjCIdStructType(pType))
2716          return RHS;
2717        // FIXME: need to use ObjCQualifiedIdTypesAreCompatible(LHS, RHS, true).
2718        // Unfortunately, this API is part of Sema (which we don't have access
2719        // to. Need to refactor. The following check is insufficient, since we
2720        // need to make sure the class implements the protocol.
2721        if (pType->isObjCInterfaceType())
2722          return RHS;
2723      }
2724    }
2725    // C99 6.7.2.2p4: Each enumerated type shall be compatible with char,
2726    // a signed integer type, or an unsigned integer type.
2727    if (const EnumType* ETy = LHS->getAsEnumType()) {
2728      if (ETy->getDecl()->getIntegerType() == RHSCan.getUnqualifiedType())
2729        return RHS;
2730    }
2731    if (const EnumType* ETy = RHS->getAsEnumType()) {
2732      if (ETy->getDecl()->getIntegerType() == LHSCan.getUnqualifiedType())
2733        return LHS;
2734    }
2735
2736    return QualType();
2737  }
2738
2739  // The canonical type classes match.
2740  switch (LHSClass) {
2741#define TYPE(Class, Base)
2742#define ABSTRACT_TYPE(Class, Base)
2743#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
2744#define DEPENDENT_TYPE(Class, Base) case Type::Class:
2745#include "clang/AST/TypeNodes.def"
2746    assert(false && "Non-canonical and dependent types shouldn't get here");
2747    return QualType();
2748
2749  case Type::Reference:
2750  case Type::MemberPointer:
2751    assert(false && "C++ should never be in mergeTypes");
2752    return QualType();
2753
2754  case Type::IncompleteArray:
2755  case Type::VariableArray:
2756  case Type::FunctionProto:
2757  case Type::ExtVector:
2758  case Type::ObjCQualifiedInterface:
2759    assert(false && "Types are eliminated above");
2760    return QualType();
2761
2762  case Type::Pointer:
2763  {
2764    // Merge two pointer types, while trying to preserve typedef info
2765    QualType LHSPointee = LHS->getAsPointerType()->getPointeeType();
2766    QualType RHSPointee = RHS->getAsPointerType()->getPointeeType();
2767    QualType ResultType = mergeTypes(LHSPointee, RHSPointee);
2768    if (ResultType.isNull()) return QualType();
2769    if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
2770      return LHS;
2771    if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
2772      return RHS;
2773    return getPointerType(ResultType);
2774  }
2775  case Type::BlockPointer:
2776  {
2777    // Merge two block pointer types, while trying to preserve typedef info
2778    QualType LHSPointee = LHS->getAsBlockPointerType()->getPointeeType();
2779    QualType RHSPointee = RHS->getAsBlockPointerType()->getPointeeType();
2780    QualType ResultType = mergeTypes(LHSPointee, RHSPointee);
2781    if (ResultType.isNull()) return QualType();
2782    if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
2783      return LHS;
2784    if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
2785      return RHS;
2786    return getBlockPointerType(ResultType);
2787  }
2788  case Type::ConstantArray:
2789  {
2790    const ConstantArrayType* LCAT = getAsConstantArrayType(LHS);
2791    const ConstantArrayType* RCAT = getAsConstantArrayType(RHS);
2792    if (LCAT && RCAT && RCAT->getSize() != LCAT->getSize())
2793      return QualType();
2794
2795    QualType LHSElem = getAsArrayType(LHS)->getElementType();
2796    QualType RHSElem = getAsArrayType(RHS)->getElementType();
2797    QualType ResultType = mergeTypes(LHSElem, RHSElem);
2798    if (ResultType.isNull()) return QualType();
2799    if (LCAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
2800      return LHS;
2801    if (RCAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
2802      return RHS;
2803    if (LCAT) return getConstantArrayType(ResultType, LCAT->getSize(),
2804                                          ArrayType::ArraySizeModifier(), 0);
2805    if (RCAT) return getConstantArrayType(ResultType, RCAT->getSize(),
2806                                          ArrayType::ArraySizeModifier(), 0);
2807    const VariableArrayType* LVAT = getAsVariableArrayType(LHS);
2808    const VariableArrayType* RVAT = getAsVariableArrayType(RHS);
2809    if (LVAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
2810      return LHS;
2811    if (RVAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
2812      return RHS;
2813    if (LVAT) {
2814      // FIXME: This isn't correct! But tricky to implement because
2815      // the array's size has to be the size of LHS, but the type
2816      // has to be different.
2817      return LHS;
2818    }
2819    if (RVAT) {
2820      // FIXME: This isn't correct! But tricky to implement because
2821      // the array's size has to be the size of RHS, but the type
2822      // has to be different.
2823      return RHS;
2824    }
2825    if (getCanonicalType(LHSElem) == getCanonicalType(ResultType)) return LHS;
2826    if (getCanonicalType(RHSElem) == getCanonicalType(ResultType)) return RHS;
2827    return getIncompleteArrayType(ResultType, ArrayType::ArraySizeModifier(),0);
2828  }
2829  case Type::FunctionNoProto:
2830    return mergeFunctionTypes(LHS, RHS);
2831  case Type::Record:
2832  case Type::Enum:
2833    // FIXME: Why are these compatible?
2834    if (isObjCIdStructType(LHS) && isObjCClassStructType(RHS)) return LHS;
2835    if (isObjCClassStructType(LHS) && isObjCIdStructType(RHS)) return LHS;
2836    return QualType();
2837  case Type::Builtin:
2838    // Only exactly equal builtin types are compatible, which is tested above.
2839    return QualType();
2840  case Type::Complex:
2841    // Distinct complex types are incompatible.
2842    return QualType();
2843  case Type::Vector:
2844    // FIXME: The merged type should be an ExtVector!
2845    if (areCompatVectorTypes(LHS->getAsVectorType(), RHS->getAsVectorType()))
2846      return LHS;
2847    return QualType();
2848  case Type::ObjCInterface: {
2849    // Check if the interfaces are assignment compatible.
2850    // FIXME: This should be type compatibility, e.g. whether
2851    // "LHS x; RHS x;" at global scope is legal.
2852    const ObjCInterfaceType* LHSIface = LHS->getAsObjCInterfaceType();
2853    const ObjCInterfaceType* RHSIface = RHS->getAsObjCInterfaceType();
2854    if (LHSIface && RHSIface &&
2855        canAssignObjCInterfaces(LHSIface, RHSIface))
2856      return LHS;
2857
2858    return QualType();
2859  }
2860  case Type::ObjCQualifiedId:
2861    // Distinct qualified id's are not compatible.
2862    return QualType();
2863  case Type::FixedWidthInt:
2864    // Distinct fixed-width integers are not compatible.
2865    return QualType();
2866  case Type::ObjCQualifiedClass:
2867    // Distinct qualified classes are not compatible.
2868    return QualType();
2869  case Type::ExtQual:
2870    // FIXME: ExtQual types can be compatible even if they're not
2871    // identical!
2872    return QualType();
2873    // First attempt at an implementation, but I'm not really sure it's
2874    // right...
2875#if 0
2876    ExtQualType* LQual = cast<ExtQualType>(LHSCan);
2877    ExtQualType* RQual = cast<ExtQualType>(RHSCan);
2878    if (LQual->getAddressSpace() != RQual->getAddressSpace() ||
2879        LQual->getObjCGCAttr() != RQual->getObjCGCAttr())
2880      return QualType();
2881    QualType LHSBase, RHSBase, ResultType, ResCanUnqual;
2882    LHSBase = QualType(LQual->getBaseType(), 0);
2883    RHSBase = QualType(RQual->getBaseType(), 0);
2884    ResultType = mergeTypes(LHSBase, RHSBase);
2885    if (ResultType.isNull()) return QualType();
2886    ResCanUnqual = getCanonicalType(ResultType).getUnqualifiedType();
2887    if (LHSCan.getUnqualifiedType() == ResCanUnqual)
2888      return LHS;
2889    if (RHSCan.getUnqualifiedType() == ResCanUnqual)
2890      return RHS;
2891    ResultType = getAddrSpaceQualType(ResultType, LQual->getAddressSpace());
2892    ResultType = getObjCGCQualType(ResultType, LQual->getObjCGCAttr());
2893    ResultType.setCVRQualifiers(LHSCan.getCVRQualifiers());
2894    return ResultType;
2895#endif
2896  }
2897
2898  return QualType();
2899}
2900
2901//===----------------------------------------------------------------------===//
2902//                         Integer Predicates
2903//===----------------------------------------------------------------------===//
2904
2905unsigned ASTContext::getIntWidth(QualType T) {
2906  if (T == BoolTy)
2907    return 1;
2908  if (FixedWidthIntType* FWIT = dyn_cast<FixedWidthIntType>(T)) {
2909    return FWIT->getWidth();
2910  }
2911  // For builtin types, just use the standard type sizing method
2912  return (unsigned)getTypeSize(T);
2913}
2914
2915QualType ASTContext::getCorrespondingUnsignedType(QualType T) {
2916  assert(T->isSignedIntegerType() && "Unexpected type");
2917  if (const EnumType* ETy = T->getAsEnumType())
2918    T = ETy->getDecl()->getIntegerType();
2919  const BuiltinType* BTy = T->getAsBuiltinType();
2920  assert (BTy && "Unexpected signed integer type");
2921  switch (BTy->getKind()) {
2922  case BuiltinType::Char_S:
2923  case BuiltinType::SChar:
2924    return UnsignedCharTy;
2925  case BuiltinType::Short:
2926    return UnsignedShortTy;
2927  case BuiltinType::Int:
2928    return UnsignedIntTy;
2929  case BuiltinType::Long:
2930    return UnsignedLongTy;
2931  case BuiltinType::LongLong:
2932    return UnsignedLongLongTy;
2933  default:
2934    assert(0 && "Unexpected signed integer type");
2935    return QualType();
2936  }
2937}
2938
2939
2940//===----------------------------------------------------------------------===//
2941//                         Serialization Support
2942//===----------------------------------------------------------------------===//
2943
2944/// Emit - Serialize an ASTContext object to Bitcode.
2945void ASTContext::Emit(llvm::Serializer& S) const {
2946  S.Emit(LangOpts);
2947  S.EmitRef(SourceMgr);
2948  S.EmitRef(Target);
2949  S.EmitRef(Idents);
2950  S.EmitRef(Selectors);
2951
2952  // Emit the size of the type vector so that we can reserve that size
2953  // when we reconstitute the ASTContext object.
2954  S.EmitInt(Types.size());
2955
2956  for (std::vector<Type*>::const_iterator I=Types.begin(), E=Types.end();
2957                                          I!=E;++I)
2958    (*I)->Emit(S);
2959
2960  S.EmitOwnedPtr(TUDecl);
2961
2962  // FIXME: S.EmitOwnedPtr(CFConstantStringTypeDecl);
2963}
2964
2965ASTContext* ASTContext::Create(llvm::Deserializer& D) {
2966
2967  // Read the language options.
2968  LangOptions LOpts;
2969  LOpts.Read(D);
2970
2971  SourceManager &SM = D.ReadRef<SourceManager>();
2972  TargetInfo &t = D.ReadRef<TargetInfo>();
2973  IdentifierTable &idents = D.ReadRef<IdentifierTable>();
2974  SelectorTable &sels = D.ReadRef<SelectorTable>();
2975
2976  unsigned size_reserve = D.ReadInt();
2977
2978  ASTContext* A = new ASTContext(LOpts, SM, t, idents, sels,
2979                                 size_reserve);
2980
2981  for (unsigned i = 0; i < size_reserve; ++i)
2982    Type::Create(*A,i,D);
2983
2984  A->TUDecl = cast<TranslationUnitDecl>(D.ReadOwnedPtr<Decl>(*A));
2985
2986  // FIXME: A->CFConstantStringTypeDecl = D.ReadOwnedPtr<RecordDecl>();
2987
2988  return A;
2989}
2990