ASTContext.cpp revision 828e226ab7ed08b3eb766549e9d3306432137460
1//===--- ASTContext.cpp - Context to hold long-lived AST nodes ------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements the ASTContext interface.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/AST/ASTContext.h"
15#include "clang/AST/DeclCXX.h"
16#include "clang/AST/DeclObjC.h"
17#include "clang/AST/DeclTemplate.h"
18#include "clang/AST/Expr.h"
19#include "clang/AST/ExternalASTSource.h"
20#include "clang/AST/RecordLayout.h"
21#include "clang/Basic/Builtins.h"
22#include "clang/Basic/SourceManager.h"
23#include "clang/Basic/TargetInfo.h"
24#include "llvm/ADT/StringExtras.h"
25#include "llvm/Support/MathExtras.h"
26#include "llvm/Support/MemoryBuffer.h"
27#include "RecordLayoutBuilder.h"
28
29using namespace clang;
30
31enum FloatingRank {
32  FloatRank, DoubleRank, LongDoubleRank
33};
34
35ASTContext::ASTContext(const LangOptions& LOpts, SourceManager &SM,
36                       TargetInfo &t,
37                       IdentifierTable &idents, SelectorTable &sels,
38                       Builtin::Context &builtins,
39                       bool FreeMem, unsigned size_reserve) :
40  GlobalNestedNameSpecifier(0), CFConstantStringTypeDecl(0),
41  ObjCFastEnumerationStateTypeDecl(0), FILEDecl(0), jmp_bufDecl(0),
42  sigjmp_bufDecl(0), SourceMgr(SM), LangOpts(LOpts),
43  LoadedExternalComments(false), FreeMemory(FreeMem), Target(t),
44  Idents(idents), Selectors(sels),
45  BuiltinInfo(builtins), ExternalSource(0), PrintingPolicy(LOpts) {
46  if (size_reserve > 0) Types.reserve(size_reserve);
47  TUDecl = TranslationUnitDecl::Create(*this);
48  InitBuiltinTypes();
49}
50
51ASTContext::~ASTContext() {
52  // Deallocate all the types.
53  while (!Types.empty()) {
54    Types.back()->Destroy(*this);
55    Types.pop_back();
56  }
57
58  {
59    llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*>::iterator
60      I = ASTRecordLayouts.begin(), E = ASTRecordLayouts.end();
61    while (I != E) {
62      ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second);
63      delete R;
64    }
65  }
66
67  {
68    llvm::DenseMap<const ObjCContainerDecl*, const ASTRecordLayout*>::iterator
69      I = ObjCLayouts.begin(), E = ObjCLayouts.end();
70    while (I != E) {
71      ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second);
72      delete R;
73    }
74  }
75
76  // Destroy nested-name-specifiers.
77  for (llvm::FoldingSet<NestedNameSpecifier>::iterator
78         NNS = NestedNameSpecifiers.begin(),
79         NNSEnd = NestedNameSpecifiers.end();
80       NNS != NNSEnd;
81       /* Increment in loop */)
82    (*NNS++).Destroy(*this);
83
84  if (GlobalNestedNameSpecifier)
85    GlobalNestedNameSpecifier->Destroy(*this);
86
87  TUDecl->Destroy(*this);
88}
89
90void
91ASTContext::setExternalSource(llvm::OwningPtr<ExternalASTSource> &Source) {
92  ExternalSource.reset(Source.take());
93}
94
95void ASTContext::PrintStats() const {
96  fprintf(stderr, "*** AST Context Stats:\n");
97  fprintf(stderr, "  %d types total.\n", (int)Types.size());
98
99  unsigned counts[] = {
100#define TYPE(Name, Parent) 0,
101#define ABSTRACT_TYPE(Name, Parent)
102#include "clang/AST/TypeNodes.def"
103    0 // Extra
104  };
105
106  for (unsigned i = 0, e = Types.size(); i != e; ++i) {
107    Type *T = Types[i];
108    counts[(unsigned)T->getTypeClass()]++;
109  }
110
111  unsigned Idx = 0;
112  unsigned TotalBytes = 0;
113#define TYPE(Name, Parent)                                              \
114  if (counts[Idx])                                                      \
115    fprintf(stderr, "    %d %s types\n", (int)counts[Idx], #Name);      \
116  TotalBytes += counts[Idx] * sizeof(Name##Type);                       \
117  ++Idx;
118#define ABSTRACT_TYPE(Name, Parent)
119#include "clang/AST/TypeNodes.def"
120
121  fprintf(stderr, "Total bytes = %d\n", int(TotalBytes));
122
123  if (ExternalSource.get()) {
124    fprintf(stderr, "\n");
125    ExternalSource->PrintStats();
126  }
127}
128
129
130void ASTContext::InitBuiltinType(QualType &R, BuiltinType::Kind K) {
131  Types.push_back((R = QualType(new (*this,8) BuiltinType(K),0)).getTypePtr());
132}
133
134void ASTContext::InitBuiltinTypes() {
135  assert(VoidTy.isNull() && "Context reinitialized?");
136
137  // C99 6.2.5p19.
138  InitBuiltinType(VoidTy,              BuiltinType::Void);
139
140  // C99 6.2.5p2.
141  InitBuiltinType(BoolTy,              BuiltinType::Bool);
142  // C99 6.2.5p3.
143  if (LangOpts.CharIsSigned)
144    InitBuiltinType(CharTy,            BuiltinType::Char_S);
145  else
146    InitBuiltinType(CharTy,            BuiltinType::Char_U);
147  // C99 6.2.5p4.
148  InitBuiltinType(SignedCharTy,        BuiltinType::SChar);
149  InitBuiltinType(ShortTy,             BuiltinType::Short);
150  InitBuiltinType(IntTy,               BuiltinType::Int);
151  InitBuiltinType(LongTy,              BuiltinType::Long);
152  InitBuiltinType(LongLongTy,          BuiltinType::LongLong);
153
154  // C99 6.2.5p6.
155  InitBuiltinType(UnsignedCharTy,      BuiltinType::UChar);
156  InitBuiltinType(UnsignedShortTy,     BuiltinType::UShort);
157  InitBuiltinType(UnsignedIntTy,       BuiltinType::UInt);
158  InitBuiltinType(UnsignedLongTy,      BuiltinType::ULong);
159  InitBuiltinType(UnsignedLongLongTy,  BuiltinType::ULongLong);
160
161  // C99 6.2.5p10.
162  InitBuiltinType(FloatTy,             BuiltinType::Float);
163  InitBuiltinType(DoubleTy,            BuiltinType::Double);
164  InitBuiltinType(LongDoubleTy,        BuiltinType::LongDouble);
165
166  // GNU extension, 128-bit integers.
167  InitBuiltinType(Int128Ty,            BuiltinType::Int128);
168  InitBuiltinType(UnsignedInt128Ty,    BuiltinType::UInt128);
169
170  if (LangOpts.CPlusPlus) // C++ 3.9.1p5
171    InitBuiltinType(WCharTy,           BuiltinType::WChar);
172  else // C99
173    WCharTy = getFromTargetType(Target.getWCharType());
174
175  if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
176    InitBuiltinType(Char16Ty,           BuiltinType::Char16);
177  else // C99
178    Char16Ty = getFromTargetType(Target.getChar16Type());
179
180  if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
181    InitBuiltinType(Char32Ty,           BuiltinType::Char32);
182  else // C99
183    Char32Ty = getFromTargetType(Target.getChar32Type());
184
185  // Placeholder type for functions.
186  InitBuiltinType(OverloadTy,          BuiltinType::Overload);
187
188  // Placeholder type for type-dependent expressions whose type is
189  // completely unknown. No code should ever check a type against
190  // DependentTy and users should never see it; however, it is here to
191  // help diagnose failures to properly check for type-dependent
192  // expressions.
193  InitBuiltinType(DependentTy,         BuiltinType::Dependent);
194
195  // Placeholder type for C++0x auto declarations whose real type has
196  // not yet been deduced.
197  InitBuiltinType(UndeducedAutoTy, BuiltinType::UndeducedAuto);
198
199  // C99 6.2.5p11.
200  FloatComplexTy      = getComplexType(FloatTy);
201  DoubleComplexTy     = getComplexType(DoubleTy);
202  LongDoubleComplexTy = getComplexType(LongDoubleTy);
203
204  BuiltinVaListType = QualType();
205
206  // "Builtin" typedefs set by Sema::ActOnTranslationUnitScope().
207  ObjCIdTypedefType = QualType();
208  ObjCClassTypedefType = QualType();
209
210  // Builtin types for 'id' and 'Class'.
211  InitBuiltinType(ObjCBuiltinIdTy, BuiltinType::ObjCId);
212  InitBuiltinType(ObjCBuiltinClassTy, BuiltinType::ObjCClass);
213
214  ObjCConstantStringType = QualType();
215
216  // void * type
217  VoidPtrTy = getPointerType(VoidTy);
218
219  // nullptr type (C++0x 2.14.7)
220  InitBuiltinType(NullPtrTy,           BuiltinType::NullPtr);
221}
222
223VarDecl *ASTContext::getInstantiatedFromStaticDataMember(VarDecl *Var) {
224  assert(Var->isStaticDataMember() && "Not a static data member");
225  llvm::DenseMap<VarDecl *, VarDecl *>::iterator Pos
226    = InstantiatedFromStaticDataMember.find(Var);
227  if (Pos == InstantiatedFromStaticDataMember.end())
228    return 0;
229
230  return Pos->second;
231}
232
233void
234ASTContext::setInstantiatedFromStaticDataMember(VarDecl *Inst, VarDecl *Tmpl) {
235  assert(Inst->isStaticDataMember() && "Not a static data member");
236  assert(Tmpl->isStaticDataMember() && "Not a static data member");
237  assert(!InstantiatedFromStaticDataMember[Inst] &&
238         "Already noted what static data member was instantiated from");
239  InstantiatedFromStaticDataMember[Inst] = Tmpl;
240}
241
242namespace {
243  class BeforeInTranslationUnit
244    : std::binary_function<SourceRange, SourceRange, bool> {
245    SourceManager *SourceMgr;
246
247  public:
248    explicit BeforeInTranslationUnit(SourceManager *SM) : SourceMgr(SM) { }
249
250    bool operator()(SourceRange X, SourceRange Y) {
251      return SourceMgr->isBeforeInTranslationUnit(X.getBegin(), Y.getBegin());
252    }
253  };
254}
255
256/// \brief Determine whether the given comment is a Doxygen-style comment.
257///
258/// \param Start the start of the comment text.
259///
260/// \param End the end of the comment text.
261///
262/// \param Member whether we want to check whether this is a member comment
263/// (which requires a < after the Doxygen-comment delimiter). Otherwise,
264/// we only return true when we find a non-member comment.
265static bool
266isDoxygenComment(SourceManager &SourceMgr, SourceRange Comment,
267                 bool Member = false) {
268  const char *BufferStart
269    = SourceMgr.getBufferData(SourceMgr.getFileID(Comment.getBegin())).first;
270  const char *Start = BufferStart + SourceMgr.getFileOffset(Comment.getBegin());
271  const char* End = BufferStart + SourceMgr.getFileOffset(Comment.getEnd());
272
273  if (End - Start < 4)
274    return false;
275
276  assert(Start[0] == '/' && "Not a comment?");
277  if (Start[1] == '*' && !(Start[2] == '!' || Start[2] == '*'))
278    return false;
279  if (Start[1] == '/' && !(Start[2] == '!' || Start[2] == '/'))
280    return false;
281
282  return (Start[3] == '<') == Member;
283}
284
285/// \brief Retrieve the comment associated with the given declaration, if
286/// it has one.
287const char *ASTContext::getCommentForDecl(const Decl *D) {
288  if (!D)
289    return 0;
290
291  // Check whether we have cached a comment string for this declaration
292  // already.
293  llvm::DenseMap<const Decl *, std::string>::iterator Pos
294    = DeclComments.find(D);
295  if (Pos != DeclComments.end())
296    return Pos->second.c_str();
297
298  // If we have an external AST source and have not yet loaded comments from
299  // that source, do so now.
300  if (ExternalSource && !LoadedExternalComments) {
301    std::vector<SourceRange> LoadedComments;
302    ExternalSource->ReadComments(LoadedComments);
303
304    if (!LoadedComments.empty())
305      Comments.insert(Comments.begin(), LoadedComments.begin(),
306                      LoadedComments.end());
307
308    LoadedExternalComments = true;
309  }
310
311  // If there are no comments anywhere, we won't find anything.
312  if (Comments.empty())
313    return 0;
314
315  // If the declaration doesn't map directly to a location in a file, we
316  // can't find the comment.
317  SourceLocation DeclStartLoc = D->getLocStart();
318  if (DeclStartLoc.isInvalid() || !DeclStartLoc.isFileID())
319    return 0;
320
321  // Find the comment that occurs just before this declaration.
322  std::vector<SourceRange>::iterator LastComment
323    = std::lower_bound(Comments.begin(), Comments.end(),
324                       SourceRange(DeclStartLoc),
325                       BeforeInTranslationUnit(&SourceMgr));
326
327  // Decompose the location for the start of the declaration and find the
328  // beginning of the file buffer.
329  std::pair<FileID, unsigned> DeclStartDecomp
330    = SourceMgr.getDecomposedLoc(DeclStartLoc);
331  const char *FileBufferStart
332    = SourceMgr.getBufferData(DeclStartDecomp.first).first;
333
334  // First check whether we have a comment for a member.
335  if (LastComment != Comments.end() &&
336      !isa<TagDecl>(D) && !isa<NamespaceDecl>(D) &&
337      isDoxygenComment(SourceMgr, *LastComment, true)) {
338    std::pair<FileID, unsigned> LastCommentEndDecomp
339      = SourceMgr.getDecomposedLoc(LastComment->getEnd());
340    if (DeclStartDecomp.first == LastCommentEndDecomp.first &&
341        SourceMgr.getLineNumber(DeclStartDecomp.first, DeclStartDecomp.second)
342          == SourceMgr.getLineNumber(LastCommentEndDecomp.first,
343                                     LastCommentEndDecomp.second)) {
344      // The Doxygen member comment comes after the declaration starts and
345      // is on the same line and in the same file as the declaration. This
346      // is the comment we want.
347      std::string &Result = DeclComments[D];
348      Result.append(FileBufferStart +
349                      SourceMgr.getFileOffset(LastComment->getBegin()),
350                    FileBufferStart + LastCommentEndDecomp.second + 1);
351      return Result.c_str();
352    }
353  }
354
355  if (LastComment == Comments.begin())
356    return 0;
357  --LastComment;
358
359  // Decompose the end of the comment.
360  std::pair<FileID, unsigned> LastCommentEndDecomp
361    = SourceMgr.getDecomposedLoc(LastComment->getEnd());
362
363  // If the comment and the declaration aren't in the same file, then they
364  // aren't related.
365  if (DeclStartDecomp.first != LastCommentEndDecomp.first)
366    return 0;
367
368  // Check that we actually have a Doxygen comment.
369  if (!isDoxygenComment(SourceMgr, *LastComment))
370    return 0;
371
372  // Compute the starting line for the declaration and for the end of the
373  // comment (this is expensive).
374  unsigned DeclStartLine
375    = SourceMgr.getLineNumber(DeclStartDecomp.first, DeclStartDecomp.second);
376  unsigned CommentEndLine
377    = SourceMgr.getLineNumber(LastCommentEndDecomp.first,
378                              LastCommentEndDecomp.second);
379
380  // If the comment does not end on the line prior to the declaration, then
381  // the comment is not associated with the declaration at all.
382  if (CommentEndLine + 1 != DeclStartLine)
383    return 0;
384
385  // We have a comment, but there may be more comments on the previous lines.
386  // Keep looking so long as the comments are still Doxygen comments and are
387  // still adjacent.
388  unsigned ExpectedLine
389    = SourceMgr.getSpellingLineNumber(LastComment->getBegin()) - 1;
390  std::vector<SourceRange>::iterator FirstComment = LastComment;
391  while (FirstComment != Comments.begin()) {
392    // Look at the previous comment
393    --FirstComment;
394    std::pair<FileID, unsigned> Decomp
395      = SourceMgr.getDecomposedLoc(FirstComment->getEnd());
396
397    // If this previous comment is in a different file, we're done.
398    if (Decomp.first != DeclStartDecomp.first) {
399      ++FirstComment;
400      break;
401    }
402
403    // If this comment is not a Doxygen comment, we're done.
404    if (!isDoxygenComment(SourceMgr, *FirstComment)) {
405      ++FirstComment;
406      break;
407    }
408
409    // If the line number is not what we expected, we're done.
410    unsigned Line = SourceMgr.getLineNumber(Decomp.first, Decomp.second);
411    if (Line != ExpectedLine) {
412      ++FirstComment;
413      break;
414    }
415
416    // Set the next expected line number.
417    ExpectedLine
418      = SourceMgr.getSpellingLineNumber(FirstComment->getBegin()) - 1;
419  }
420
421  // The iterator range [FirstComment, LastComment] contains all of the
422  // BCPL comments that, together, are associated with this declaration.
423  // Form a single comment block string for this declaration that concatenates
424  // all of these comments.
425  std::string &Result = DeclComments[D];
426  while (FirstComment != LastComment) {
427    std::pair<FileID, unsigned> DecompStart
428      = SourceMgr.getDecomposedLoc(FirstComment->getBegin());
429    std::pair<FileID, unsigned> DecompEnd
430      = SourceMgr.getDecomposedLoc(FirstComment->getEnd());
431    Result.append(FileBufferStart + DecompStart.second,
432                  FileBufferStart + DecompEnd.second + 1);
433    ++FirstComment;
434  }
435
436  // Append the last comment line.
437  Result.append(FileBufferStart +
438                  SourceMgr.getFileOffset(LastComment->getBegin()),
439                FileBufferStart + LastCommentEndDecomp.second + 1);
440  return Result.c_str();
441}
442
443//===----------------------------------------------------------------------===//
444//                         Type Sizing and Analysis
445//===----------------------------------------------------------------------===//
446
447/// getFloatTypeSemantics - Return the APFloat 'semantics' for the specified
448/// scalar floating point type.
449const llvm::fltSemantics &ASTContext::getFloatTypeSemantics(QualType T) const {
450  const BuiltinType *BT = T->getAsBuiltinType();
451  assert(BT && "Not a floating point type!");
452  switch (BT->getKind()) {
453  default: assert(0 && "Not a floating point type!");
454  case BuiltinType::Float:      return Target.getFloatFormat();
455  case BuiltinType::Double:     return Target.getDoubleFormat();
456  case BuiltinType::LongDouble: return Target.getLongDoubleFormat();
457  }
458}
459
460/// getDeclAlign - Return a conservative estimate of the alignment of the
461/// specified decl.  Note that bitfields do not have a valid alignment, so
462/// this method will assert on them.
463unsigned ASTContext::getDeclAlignInBytes(const Decl *D) {
464  unsigned Align = Target.getCharWidth();
465
466  if (const AlignedAttr* AA = D->getAttr<AlignedAttr>())
467    Align = std::max(Align, AA->getAlignment());
468
469  if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
470    QualType T = VD->getType();
471    if (const ReferenceType* RT = T->getAsReferenceType()) {
472      unsigned AS = RT->getPointeeType().getAddressSpace();
473      Align = Target.getPointerAlign(AS);
474    } else if (!T->isIncompleteType() && !T->isFunctionType()) {
475      // Incomplete or function types default to 1.
476      while (isa<VariableArrayType>(T) || isa<IncompleteArrayType>(T))
477        T = cast<ArrayType>(T)->getElementType();
478
479      Align = std::max(Align, getPreferredTypeAlign(T.getTypePtr()));
480    }
481  }
482
483  return Align / Target.getCharWidth();
484}
485
486/// getTypeSize - Return the size of the specified type, in bits.  This method
487/// does not work on incomplete types.
488std::pair<uint64_t, unsigned>
489ASTContext::getTypeInfo(const Type *T) {
490  uint64_t Width=0;
491  unsigned Align=8;
492  switch (T->getTypeClass()) {
493#define TYPE(Class, Base)
494#define ABSTRACT_TYPE(Class, Base)
495#define NON_CANONICAL_TYPE(Class, Base)
496#define DEPENDENT_TYPE(Class, Base) case Type::Class:
497#include "clang/AST/TypeNodes.def"
498    assert(false && "Should not see dependent types");
499    break;
500
501  case Type::FunctionNoProto:
502  case Type::FunctionProto:
503    // GCC extension: alignof(function) = 32 bits
504    Width = 0;
505    Align = 32;
506    break;
507
508  case Type::IncompleteArray:
509  case Type::VariableArray:
510    Width = 0;
511    Align = getTypeAlign(cast<ArrayType>(T)->getElementType());
512    break;
513
514  case Type::ConstantArrayWithExpr:
515  case Type::ConstantArrayWithoutExpr:
516  case Type::ConstantArray: {
517    const ConstantArrayType *CAT = cast<ConstantArrayType>(T);
518
519    std::pair<uint64_t, unsigned> EltInfo = getTypeInfo(CAT->getElementType());
520    Width = EltInfo.first*CAT->getSize().getZExtValue();
521    Align = EltInfo.second;
522    break;
523  }
524  case Type::ExtVector:
525  case Type::Vector: {
526    std::pair<uint64_t, unsigned> EltInfo =
527      getTypeInfo(cast<VectorType>(T)->getElementType());
528    Width = EltInfo.first*cast<VectorType>(T)->getNumElements();
529    Align = Width;
530    // If the alignment is not a power of 2, round up to the next power of 2.
531    // This happens for non-power-of-2 length vectors.
532    // FIXME: this should probably be a target property.
533    Align = 1 << llvm::Log2_32_Ceil(Align);
534    break;
535  }
536
537  case Type::Builtin:
538    switch (cast<BuiltinType>(T)->getKind()) {
539    default: assert(0 && "Unknown builtin type!");
540    case BuiltinType::Void:
541      // GCC extension: alignof(void) = 8 bits.
542      Width = 0;
543      Align = 8;
544      break;
545
546    case BuiltinType::Bool:
547      Width = Target.getBoolWidth();
548      Align = Target.getBoolAlign();
549      break;
550    case BuiltinType::Char_S:
551    case BuiltinType::Char_U:
552    case BuiltinType::UChar:
553    case BuiltinType::SChar:
554      Width = Target.getCharWidth();
555      Align = Target.getCharAlign();
556      break;
557    case BuiltinType::WChar:
558      Width = Target.getWCharWidth();
559      Align = Target.getWCharAlign();
560      break;
561    case BuiltinType::Char16:
562      Width = Target.getChar16Width();
563      Align = Target.getChar16Align();
564      break;
565    case BuiltinType::Char32:
566      Width = Target.getChar32Width();
567      Align = Target.getChar32Align();
568      break;
569    case BuiltinType::UShort:
570    case BuiltinType::Short:
571      Width = Target.getShortWidth();
572      Align = Target.getShortAlign();
573      break;
574    case BuiltinType::UInt:
575    case BuiltinType::Int:
576      Width = Target.getIntWidth();
577      Align = Target.getIntAlign();
578      break;
579    case BuiltinType::ULong:
580    case BuiltinType::Long:
581      Width = Target.getLongWidth();
582      Align = Target.getLongAlign();
583      break;
584    case BuiltinType::ULongLong:
585    case BuiltinType::LongLong:
586      Width = Target.getLongLongWidth();
587      Align = Target.getLongLongAlign();
588      break;
589    case BuiltinType::Int128:
590    case BuiltinType::UInt128:
591      Width = 128;
592      Align = 128; // int128_t is 128-bit aligned on all targets.
593      break;
594    case BuiltinType::Float:
595      Width = Target.getFloatWidth();
596      Align = Target.getFloatAlign();
597      break;
598    case BuiltinType::Double:
599      Width = Target.getDoubleWidth();
600      Align = Target.getDoubleAlign();
601      break;
602    case BuiltinType::LongDouble:
603      Width = Target.getLongDoubleWidth();
604      Align = Target.getLongDoubleAlign();
605      break;
606    case BuiltinType::NullPtr:
607      Width = Target.getPointerWidth(0); // C++ 3.9.1p11: sizeof(nullptr_t)
608      Align = Target.getPointerAlign(0); //   == sizeof(void*)
609      break;
610    }
611    break;
612  case Type::FixedWidthInt:
613    // FIXME: This isn't precisely correct; the width/alignment should depend
614    // on the available types for the target
615    Width = cast<FixedWidthIntType>(T)->getWidth();
616    Width = std::max(llvm::NextPowerOf2(Width - 1), (uint64_t)8);
617    Align = Width;
618    break;
619  case Type::ExtQual:
620    // FIXME: Pointers into different addr spaces could have different sizes and
621    // alignment requirements: getPointerInfo should take an AddrSpace.
622    return getTypeInfo(QualType(cast<ExtQualType>(T)->getBaseType(), 0));
623  case Type::ObjCObjectPointer:
624    Width = Target.getPointerWidth(0);
625    Align = Target.getPointerAlign(0);
626    break;
627  case Type::BlockPointer: {
628    unsigned AS = cast<BlockPointerType>(T)->getPointeeType().getAddressSpace();
629    Width = Target.getPointerWidth(AS);
630    Align = Target.getPointerAlign(AS);
631    break;
632  }
633  case Type::Pointer: {
634    unsigned AS = cast<PointerType>(T)->getPointeeType().getAddressSpace();
635    Width = Target.getPointerWidth(AS);
636    Align = Target.getPointerAlign(AS);
637    break;
638  }
639  case Type::LValueReference:
640  case Type::RValueReference:
641    // "When applied to a reference or a reference type, the result is the size
642    // of the referenced type." C++98 5.3.3p2: expr.sizeof.
643    // FIXME: This is wrong for struct layout: a reference in a struct has
644    // pointer size.
645    return getTypeInfo(cast<ReferenceType>(T)->getPointeeType());
646  case Type::MemberPointer: {
647    // FIXME: This is ABI dependent. We use the Itanium C++ ABI.
648    // http://www.codesourcery.com/public/cxx-abi/abi.html#member-pointers
649    // If we ever want to support other ABIs this needs to be abstracted.
650
651    QualType Pointee = cast<MemberPointerType>(T)->getPointeeType();
652    std::pair<uint64_t, unsigned> PtrDiffInfo =
653      getTypeInfo(getPointerDiffType());
654    Width = PtrDiffInfo.first;
655    if (Pointee->isFunctionType())
656      Width *= 2;
657    Align = PtrDiffInfo.second;
658    break;
659  }
660  case Type::Complex: {
661    // Complex types have the same alignment as their elements, but twice the
662    // size.
663    std::pair<uint64_t, unsigned> EltInfo =
664      getTypeInfo(cast<ComplexType>(T)->getElementType());
665    Width = EltInfo.first*2;
666    Align = EltInfo.second;
667    break;
668  }
669  case Type::ObjCInterface: {
670    const ObjCInterfaceType *ObjCI = cast<ObjCInterfaceType>(T);
671    const ASTRecordLayout &Layout = getASTObjCInterfaceLayout(ObjCI->getDecl());
672    Width = Layout.getSize();
673    Align = Layout.getAlignment();
674    break;
675  }
676  case Type::Record:
677  case Type::Enum: {
678    const TagType *TT = cast<TagType>(T);
679
680    if (TT->getDecl()->isInvalidDecl()) {
681      Width = 1;
682      Align = 1;
683      break;
684    }
685
686    if (const EnumType *ET = dyn_cast<EnumType>(TT))
687      return getTypeInfo(ET->getDecl()->getIntegerType());
688
689    const RecordType *RT = cast<RecordType>(TT);
690    const ASTRecordLayout &Layout = getASTRecordLayout(RT->getDecl());
691    Width = Layout.getSize();
692    Align = Layout.getAlignment();
693    break;
694  }
695
696  case Type::Typedef: {
697    const TypedefDecl *Typedef = cast<TypedefType>(T)->getDecl();
698    if (const AlignedAttr *Aligned = Typedef->getAttr<AlignedAttr>()) {
699      Align = Aligned->getAlignment();
700      Width = getTypeSize(Typedef->getUnderlyingType().getTypePtr());
701    } else
702      return getTypeInfo(Typedef->getUnderlyingType().getTypePtr());
703    break;
704  }
705
706  case Type::TypeOfExpr:
707    return getTypeInfo(cast<TypeOfExprType>(T)->getUnderlyingExpr()->getType()
708                         .getTypePtr());
709
710  case Type::TypeOf:
711    return getTypeInfo(cast<TypeOfType>(T)->getUnderlyingType().getTypePtr());
712
713  case Type::Decltype:
714    return getTypeInfo(cast<DecltypeType>(T)->getUnderlyingExpr()->getType()
715                        .getTypePtr());
716
717  case Type::QualifiedName:
718    return getTypeInfo(cast<QualifiedNameType>(T)->getNamedType().getTypePtr());
719
720  case Type::TemplateSpecialization:
721    assert(getCanonicalType(T) != T &&
722           "Cannot request the size of a dependent type");
723    // FIXME: this is likely to be wrong once we support template
724    // aliases, since a template alias could refer to a typedef that
725    // has an __aligned__ attribute on it.
726    return getTypeInfo(getCanonicalType(T));
727  }
728
729  assert(Align && (Align & (Align-1)) == 0 && "Alignment must be power of 2");
730  return std::make_pair(Width, Align);
731}
732
733/// getPreferredTypeAlign - Return the "preferred" alignment of the specified
734/// type for the current target in bits.  This can be different than the ABI
735/// alignment in cases where it is beneficial for performance to overalign
736/// a data type.
737unsigned ASTContext::getPreferredTypeAlign(const Type *T) {
738  unsigned ABIAlign = getTypeAlign(T);
739
740  // Double and long long should be naturally aligned if possible.
741  if (const ComplexType* CT = T->getAsComplexType())
742    T = CT->getElementType().getTypePtr();
743  if (T->isSpecificBuiltinType(BuiltinType::Double) ||
744      T->isSpecificBuiltinType(BuiltinType::LongLong))
745    return std::max(ABIAlign, (unsigned)getTypeSize(T));
746
747  return ABIAlign;
748}
749
750static void CollectLocalObjCIvars(ASTContext *Ctx,
751                                  const ObjCInterfaceDecl *OI,
752                                  llvm::SmallVectorImpl<FieldDecl*> &Fields) {
753  for (ObjCInterfaceDecl::ivar_iterator I = OI->ivar_begin(),
754       E = OI->ivar_end(); I != E; ++I) {
755    ObjCIvarDecl *IVDecl = *I;
756    if (!IVDecl->isInvalidDecl())
757      Fields.push_back(cast<FieldDecl>(IVDecl));
758  }
759}
760
761void ASTContext::CollectObjCIvars(const ObjCInterfaceDecl *OI,
762                             llvm::SmallVectorImpl<FieldDecl*> &Fields) {
763  if (const ObjCInterfaceDecl *SuperClass = OI->getSuperClass())
764    CollectObjCIvars(SuperClass, Fields);
765  CollectLocalObjCIvars(this, OI, Fields);
766}
767
768/// ShallowCollectObjCIvars -
769/// Collect all ivars, including those synthesized, in the current class.
770///
771void ASTContext::ShallowCollectObjCIvars(const ObjCInterfaceDecl *OI,
772                                 llvm::SmallVectorImpl<ObjCIvarDecl*> &Ivars,
773                                 bool CollectSynthesized) {
774  for (ObjCInterfaceDecl::ivar_iterator I = OI->ivar_begin(),
775         E = OI->ivar_end(); I != E; ++I) {
776     Ivars.push_back(*I);
777  }
778  if (CollectSynthesized)
779    CollectSynthesizedIvars(OI, Ivars);
780}
781
782void ASTContext::CollectProtocolSynthesizedIvars(const ObjCProtocolDecl *PD,
783                                llvm::SmallVectorImpl<ObjCIvarDecl*> &Ivars) {
784  for (ObjCContainerDecl::prop_iterator I = PD->prop_begin(),
785       E = PD->prop_end(); I != E; ++I)
786    if (ObjCIvarDecl *Ivar = (*I)->getPropertyIvarDecl())
787      Ivars.push_back(Ivar);
788
789  // Also look into nested protocols.
790  for (ObjCProtocolDecl::protocol_iterator P = PD->protocol_begin(),
791       E = PD->protocol_end(); P != E; ++P)
792    CollectProtocolSynthesizedIvars(*P, Ivars);
793}
794
795/// CollectSynthesizedIvars -
796/// This routine collect synthesized ivars for the designated class.
797///
798void ASTContext::CollectSynthesizedIvars(const ObjCInterfaceDecl *OI,
799                                llvm::SmallVectorImpl<ObjCIvarDecl*> &Ivars) {
800  for (ObjCInterfaceDecl::prop_iterator I = OI->prop_begin(),
801       E = OI->prop_end(); I != E; ++I) {
802    if (ObjCIvarDecl *Ivar = (*I)->getPropertyIvarDecl())
803      Ivars.push_back(Ivar);
804  }
805  // Also look into interface's protocol list for properties declared
806  // in the protocol and whose ivars are synthesized.
807  for (ObjCInterfaceDecl::protocol_iterator P = OI->protocol_begin(),
808       PE = OI->protocol_end(); P != PE; ++P) {
809    ObjCProtocolDecl *PD = (*P);
810    CollectProtocolSynthesizedIvars(PD, Ivars);
811  }
812}
813
814unsigned ASTContext::CountProtocolSynthesizedIvars(const ObjCProtocolDecl *PD) {
815  unsigned count = 0;
816  for (ObjCContainerDecl::prop_iterator I = PD->prop_begin(),
817       E = PD->prop_end(); I != E; ++I)
818    if ((*I)->getPropertyIvarDecl())
819      ++count;
820
821  // Also look into nested protocols.
822  for (ObjCProtocolDecl::protocol_iterator P = PD->protocol_begin(),
823       E = PD->protocol_end(); P != E; ++P)
824    count += CountProtocolSynthesizedIvars(*P);
825  return count;
826}
827
828unsigned ASTContext::CountSynthesizedIvars(const ObjCInterfaceDecl *OI)
829{
830  unsigned count = 0;
831  for (ObjCInterfaceDecl::prop_iterator I = OI->prop_begin(),
832       E = OI->prop_end(); I != E; ++I) {
833    if ((*I)->getPropertyIvarDecl())
834      ++count;
835  }
836  // Also look into interface's protocol list for properties declared
837  // in the protocol and whose ivars are synthesized.
838  for (ObjCInterfaceDecl::protocol_iterator P = OI->protocol_begin(),
839       PE = OI->protocol_end(); P != PE; ++P) {
840    ObjCProtocolDecl *PD = (*P);
841    count += CountProtocolSynthesizedIvars(PD);
842  }
843  return count;
844}
845
846/// \brief Get the implementation of ObjCInterfaceDecl,or NULL if none exists.
847ObjCImplementationDecl *ASTContext::getObjCImplementation(ObjCInterfaceDecl *D) {
848  llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
849    I = ObjCImpls.find(D);
850  if (I != ObjCImpls.end())
851    return cast<ObjCImplementationDecl>(I->second);
852  return 0;
853}
854/// \brief Get the implementation of ObjCCategoryDecl, or NULL if none exists.
855ObjCCategoryImplDecl *ASTContext::getObjCImplementation(ObjCCategoryDecl *D) {
856  llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
857    I = ObjCImpls.find(D);
858  if (I != ObjCImpls.end())
859    return cast<ObjCCategoryImplDecl>(I->second);
860  return 0;
861}
862
863/// \brief Set the implementation of ObjCInterfaceDecl.
864void ASTContext::setObjCImplementation(ObjCInterfaceDecl *IFaceD,
865                           ObjCImplementationDecl *ImplD) {
866  assert(IFaceD && ImplD && "Passed null params");
867  ObjCImpls[IFaceD] = ImplD;
868}
869/// \brief Set the implementation of ObjCCategoryDecl.
870void ASTContext::setObjCImplementation(ObjCCategoryDecl *CatD,
871                           ObjCCategoryImplDecl *ImplD) {
872  assert(CatD && ImplD && "Passed null params");
873  ObjCImpls[CatD] = ImplD;
874}
875
876/// getInterfaceLayoutImpl - Get or compute information about the
877/// layout of the given interface.
878///
879/// \param Impl - If given, also include the layout of the interface's
880/// implementation. This may differ by including synthesized ivars.
881const ASTRecordLayout &
882ASTContext::getObjCLayout(const ObjCInterfaceDecl *D,
883                          const ObjCImplementationDecl *Impl) {
884  assert(!D->isForwardDecl() && "Invalid interface decl!");
885
886  // Look up this layout, if already laid out, return what we have.
887  ObjCContainerDecl *Key =
888    Impl ? (ObjCContainerDecl*) Impl : (ObjCContainerDecl*) D;
889  if (const ASTRecordLayout *Entry = ObjCLayouts[Key])
890    return *Entry;
891
892  // Add in synthesized ivar count if laying out an implementation.
893  if (Impl) {
894    unsigned FieldCount = D->ivar_size();
895    unsigned SynthCount = CountSynthesizedIvars(D);
896    FieldCount += SynthCount;
897    // If there aren't any sythesized ivars then reuse the interface
898    // entry. Note we can't cache this because we simply free all
899    // entries later; however we shouldn't look up implementations
900    // frequently.
901    if (SynthCount == 0)
902      return getObjCLayout(D, 0);
903  }
904
905  const ASTRecordLayout *NewEntry =
906    ASTRecordLayoutBuilder::ComputeLayout(*this, D, Impl);
907  ObjCLayouts[Key] = NewEntry;
908
909  return *NewEntry;
910}
911
912const ASTRecordLayout &
913ASTContext::getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D) {
914  return getObjCLayout(D, 0);
915}
916
917const ASTRecordLayout &
918ASTContext::getASTObjCImplementationLayout(const ObjCImplementationDecl *D) {
919  return getObjCLayout(D->getClassInterface(), D);
920}
921
922/// getASTRecordLayout - Get or compute information about the layout of the
923/// specified record (struct/union/class), which indicates its size and field
924/// position information.
925const ASTRecordLayout &ASTContext::getASTRecordLayout(const RecordDecl *D) {
926  D = D->getDefinition(*this);
927  assert(D && "Cannot get layout of forward declarations!");
928
929  // Look up this layout, if already laid out, return what we have.
930  // Note that we can't save a reference to the entry because this function
931  // is recursive.
932  const ASTRecordLayout *Entry = ASTRecordLayouts[D];
933  if (Entry) return *Entry;
934
935  const ASTRecordLayout *NewEntry =
936    ASTRecordLayoutBuilder::ComputeLayout(*this, D);
937  ASTRecordLayouts[D] = NewEntry;
938
939  return *NewEntry;
940}
941
942//===----------------------------------------------------------------------===//
943//                   Type creation/memoization methods
944//===----------------------------------------------------------------------===//
945
946QualType ASTContext::getAddrSpaceQualType(QualType T, unsigned AddressSpace) {
947  QualType CanT = getCanonicalType(T);
948  if (CanT.getAddressSpace() == AddressSpace)
949    return T;
950
951  // If we are composing extended qualifiers together, merge together into one
952  // ExtQualType node.
953  unsigned CVRQuals = T.getCVRQualifiers();
954  QualType::GCAttrTypes GCAttr = QualType::GCNone;
955  Type *TypeNode = T.getTypePtr();
956
957  if (ExtQualType *EQT = dyn_cast<ExtQualType>(TypeNode)) {
958    // If this type already has an address space specified, it cannot get
959    // another one.
960    assert(EQT->getAddressSpace() == 0 &&
961           "Type cannot be in multiple addr spaces!");
962    GCAttr = EQT->getObjCGCAttr();
963    TypeNode = EQT->getBaseType();
964  }
965
966  // Check if we've already instantiated this type.
967  llvm::FoldingSetNodeID ID;
968  ExtQualType::Profile(ID, TypeNode, AddressSpace, GCAttr);
969  void *InsertPos = 0;
970  if (ExtQualType *EXTQy = ExtQualTypes.FindNodeOrInsertPos(ID, InsertPos))
971    return QualType(EXTQy, CVRQuals);
972
973  // If the base type isn't canonical, this won't be a canonical type either,
974  // so fill in the canonical type field.
975  QualType Canonical;
976  if (!TypeNode->isCanonical()) {
977    Canonical = getAddrSpaceQualType(CanT, AddressSpace);
978
979    // Update InsertPos, the previous call could have invalidated it.
980    ExtQualType *NewIP = ExtQualTypes.FindNodeOrInsertPos(ID, InsertPos);
981    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
982  }
983  ExtQualType *New =
984    new (*this, 8) ExtQualType(TypeNode, Canonical, AddressSpace, GCAttr);
985  ExtQualTypes.InsertNode(New, InsertPos);
986  Types.push_back(New);
987  return QualType(New, CVRQuals);
988}
989
990QualType ASTContext::getObjCGCQualType(QualType T,
991                                       QualType::GCAttrTypes GCAttr) {
992  QualType CanT = getCanonicalType(T);
993  if (CanT.getObjCGCAttr() == GCAttr)
994    return T;
995
996  if (T->isPointerType()) {
997    QualType Pointee = T->getAsPointerType()->getPointeeType();
998    if (Pointee->isAnyPointerType()) {
999      QualType ResultType = getObjCGCQualType(Pointee, GCAttr);
1000      return getPointerType(ResultType);
1001    }
1002  }
1003  // If we are composing extended qualifiers together, merge together into one
1004  // ExtQualType node.
1005  unsigned CVRQuals = T.getCVRQualifiers();
1006  Type *TypeNode = T.getTypePtr();
1007  unsigned AddressSpace = 0;
1008
1009  if (ExtQualType *EQT = dyn_cast<ExtQualType>(TypeNode)) {
1010    // If this type already has an ObjCGC specified, it cannot get
1011    // another one.
1012    assert(EQT->getObjCGCAttr() == QualType::GCNone &&
1013           "Type cannot have multiple ObjCGCs!");
1014    AddressSpace = EQT->getAddressSpace();
1015    TypeNode = EQT->getBaseType();
1016  }
1017
1018  // Check if we've already instantiated an gc qual'd type of this type.
1019  llvm::FoldingSetNodeID ID;
1020  ExtQualType::Profile(ID, TypeNode, AddressSpace, GCAttr);
1021  void *InsertPos = 0;
1022  if (ExtQualType *EXTQy = ExtQualTypes.FindNodeOrInsertPos(ID, InsertPos))
1023    return QualType(EXTQy, CVRQuals);
1024
1025  // If the base type isn't canonical, this won't be a canonical type either,
1026  // so fill in the canonical type field.
1027  // FIXME: Isn't this also not canonical if the base type is a array
1028  // or pointer type?  I can't find any documentation for objc_gc, though...
1029  QualType Canonical;
1030  if (!T->isCanonical()) {
1031    Canonical = getObjCGCQualType(CanT, GCAttr);
1032
1033    // Update InsertPos, the previous call could have invalidated it.
1034    ExtQualType *NewIP = ExtQualTypes.FindNodeOrInsertPos(ID, InsertPos);
1035    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1036  }
1037  ExtQualType *New =
1038    new (*this, 8) ExtQualType(TypeNode, Canonical, AddressSpace, GCAttr);
1039  ExtQualTypes.InsertNode(New, InsertPos);
1040  Types.push_back(New);
1041  return QualType(New, CVRQuals);
1042}
1043
1044QualType ASTContext::getNoReturnType(QualType T) {
1045  QualifierSet qs;
1046  qs.strip(T);
1047  if (T->isPointerType()) {
1048    QualType Pointee = T->getAsPointerType()->getPointeeType();
1049    QualType ResultType = getNoReturnType(Pointee);
1050    ResultType = getPointerType(ResultType);
1051    ResultType.setCVRQualifiers(T.getCVRQualifiers());
1052    return qs.apply(ResultType, *this);
1053  }
1054  if (T->isBlockPointerType()) {
1055    QualType Pointee = T->getAsBlockPointerType()->getPointeeType();
1056    QualType ResultType = getNoReturnType(Pointee);
1057    ResultType = getBlockPointerType(ResultType);
1058    ResultType.setCVRQualifiers(T.getCVRQualifiers());
1059    return qs.apply(ResultType, *this);
1060  }
1061  if (!T->isFunctionType())
1062    assert(0 && "can't noreturn qualify non-pointer to function or block type");
1063
1064  if (const FunctionNoProtoType *F = T->getAsFunctionNoProtoType()) {
1065    return getFunctionNoProtoType(F->getResultType(), true);
1066  }
1067  const FunctionProtoType *F = T->getAsFunctionProtoType();
1068  return getFunctionType(F->getResultType(), F->arg_type_begin(),
1069                         F->getNumArgs(), F->isVariadic(), F->getTypeQuals(),
1070                         F->hasExceptionSpec(), F->hasAnyExceptionSpec(),
1071                         F->getNumExceptions(), F->exception_begin(), true);
1072}
1073
1074/// getComplexType - Return the uniqued reference to the type for a complex
1075/// number with the specified element type.
1076QualType ASTContext::getComplexType(QualType T) {
1077  // Unique pointers, to guarantee there is only one pointer of a particular
1078  // structure.
1079  llvm::FoldingSetNodeID ID;
1080  ComplexType::Profile(ID, T);
1081
1082  void *InsertPos = 0;
1083  if (ComplexType *CT = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos))
1084    return QualType(CT, 0);
1085
1086  // If the pointee type isn't canonical, this won't be a canonical type either,
1087  // so fill in the canonical type field.
1088  QualType Canonical;
1089  if (!T->isCanonical()) {
1090    Canonical = getComplexType(getCanonicalType(T));
1091
1092    // Get the new insert position for the node we care about.
1093    ComplexType *NewIP = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos);
1094    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1095  }
1096  ComplexType *New = new (*this,8) ComplexType(T, Canonical);
1097  Types.push_back(New);
1098  ComplexTypes.InsertNode(New, InsertPos);
1099  return QualType(New, 0);
1100}
1101
1102QualType ASTContext::getFixedWidthIntType(unsigned Width, bool Signed) {
1103  llvm::DenseMap<unsigned, FixedWidthIntType*> &Map = Signed ?
1104     SignedFixedWidthIntTypes : UnsignedFixedWidthIntTypes;
1105  FixedWidthIntType *&Entry = Map[Width];
1106  if (!Entry)
1107    Entry = new FixedWidthIntType(Width, Signed);
1108  return QualType(Entry, 0);
1109}
1110
1111/// getPointerType - Return the uniqued reference to the type for a pointer to
1112/// the specified type.
1113QualType ASTContext::getPointerType(QualType T) {
1114  // Unique pointers, to guarantee there is only one pointer of a particular
1115  // structure.
1116  llvm::FoldingSetNodeID ID;
1117  PointerType::Profile(ID, T);
1118
1119  void *InsertPos = 0;
1120  if (PointerType *PT = PointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1121    return QualType(PT, 0);
1122
1123  // If the pointee type isn't canonical, this won't be a canonical type either,
1124  // so fill in the canonical type field.
1125  QualType Canonical;
1126  if (!T->isCanonical()) {
1127    Canonical = getPointerType(getCanonicalType(T));
1128
1129    // Get the new insert position for the node we care about.
1130    PointerType *NewIP = PointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1131    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1132  }
1133  PointerType *New = new (*this,8) PointerType(T, Canonical);
1134  Types.push_back(New);
1135  PointerTypes.InsertNode(New, InsertPos);
1136  return QualType(New, 0);
1137}
1138
1139/// getBlockPointerType - Return the uniqued reference to the type for
1140/// a pointer to the specified block.
1141QualType ASTContext::getBlockPointerType(QualType T) {
1142  assert(T->isFunctionType() && "block of function types only");
1143  // Unique pointers, to guarantee there is only one block of a particular
1144  // structure.
1145  llvm::FoldingSetNodeID ID;
1146  BlockPointerType::Profile(ID, T);
1147
1148  void *InsertPos = 0;
1149  if (BlockPointerType *PT =
1150        BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1151    return QualType(PT, 0);
1152
1153  // If the block pointee type isn't canonical, this won't be a canonical
1154  // type either so fill in the canonical type field.
1155  QualType Canonical;
1156  if (!T->isCanonical()) {
1157    Canonical = getBlockPointerType(getCanonicalType(T));
1158
1159    // Get the new insert position for the node we care about.
1160    BlockPointerType *NewIP =
1161      BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1162    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1163  }
1164  BlockPointerType *New = new (*this,8) BlockPointerType(T, Canonical);
1165  Types.push_back(New);
1166  BlockPointerTypes.InsertNode(New, InsertPos);
1167  return QualType(New, 0);
1168}
1169
1170/// getLValueReferenceType - Return the uniqued reference to the type for an
1171/// lvalue reference to the specified type.
1172QualType ASTContext::getLValueReferenceType(QualType T) {
1173  // Unique pointers, to guarantee there is only one pointer of a particular
1174  // structure.
1175  llvm::FoldingSetNodeID ID;
1176  ReferenceType::Profile(ID, T);
1177
1178  void *InsertPos = 0;
1179  if (LValueReferenceType *RT =
1180        LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
1181    return QualType(RT, 0);
1182
1183  // If the referencee type isn't canonical, this won't be a canonical type
1184  // either, so fill in the canonical type field.
1185  QualType Canonical;
1186  if (!T->isCanonical()) {
1187    Canonical = getLValueReferenceType(getCanonicalType(T));
1188
1189    // Get the new insert position for the node we care about.
1190    LValueReferenceType *NewIP =
1191      LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
1192    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1193  }
1194
1195  LValueReferenceType *New = new (*this,8) LValueReferenceType(T, Canonical);
1196  Types.push_back(New);
1197  LValueReferenceTypes.InsertNode(New, InsertPos);
1198  return QualType(New, 0);
1199}
1200
1201/// getRValueReferenceType - Return the uniqued reference to the type for an
1202/// rvalue reference to the specified type.
1203QualType ASTContext::getRValueReferenceType(QualType T) {
1204  // Unique pointers, to guarantee there is only one pointer of a particular
1205  // structure.
1206  llvm::FoldingSetNodeID ID;
1207  ReferenceType::Profile(ID, T);
1208
1209  void *InsertPos = 0;
1210  if (RValueReferenceType *RT =
1211        RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
1212    return QualType(RT, 0);
1213
1214  // If the referencee type isn't canonical, this won't be a canonical type
1215  // either, so fill in the canonical type field.
1216  QualType Canonical;
1217  if (!T->isCanonical()) {
1218    Canonical = getRValueReferenceType(getCanonicalType(T));
1219
1220    // Get the new insert position for the node we care about.
1221    RValueReferenceType *NewIP =
1222      RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
1223    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1224  }
1225
1226  RValueReferenceType *New = new (*this,8) RValueReferenceType(T, Canonical);
1227  Types.push_back(New);
1228  RValueReferenceTypes.InsertNode(New, InsertPos);
1229  return QualType(New, 0);
1230}
1231
1232/// getMemberPointerType - Return the uniqued reference to the type for a
1233/// member pointer to the specified type, in the specified class.
1234QualType ASTContext::getMemberPointerType(QualType T, const Type *Cls)
1235{
1236  // Unique pointers, to guarantee there is only one pointer of a particular
1237  // structure.
1238  llvm::FoldingSetNodeID ID;
1239  MemberPointerType::Profile(ID, T, Cls);
1240
1241  void *InsertPos = 0;
1242  if (MemberPointerType *PT =
1243      MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1244    return QualType(PT, 0);
1245
1246  // If the pointee or class type isn't canonical, this won't be a canonical
1247  // type either, so fill in the canonical type field.
1248  QualType Canonical;
1249  if (!T->isCanonical()) {
1250    Canonical = getMemberPointerType(getCanonicalType(T),getCanonicalType(Cls));
1251
1252    // Get the new insert position for the node we care about.
1253    MemberPointerType *NewIP =
1254      MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1255    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1256  }
1257  MemberPointerType *New = new (*this,8) MemberPointerType(T, Cls, Canonical);
1258  Types.push_back(New);
1259  MemberPointerTypes.InsertNode(New, InsertPos);
1260  return QualType(New, 0);
1261}
1262
1263/// getConstantArrayType - Return the unique reference to the type for an
1264/// array of the specified element type.
1265QualType ASTContext::getConstantArrayType(QualType EltTy,
1266                                          const llvm::APInt &ArySizeIn,
1267                                          ArrayType::ArraySizeModifier ASM,
1268                                          unsigned EltTypeQuals) {
1269  assert((EltTy->isDependentType() || EltTy->isConstantSizeType()) &&
1270         "Constant array of VLAs is illegal!");
1271
1272  // Convert the array size into a canonical width matching the pointer size for
1273  // the target.
1274  llvm::APInt ArySize(ArySizeIn);
1275  ArySize.zextOrTrunc(Target.getPointerWidth(EltTy.getAddressSpace()));
1276
1277  llvm::FoldingSetNodeID ID;
1278  ConstantArrayType::Profile(ID, EltTy, ArySize, ASM, EltTypeQuals);
1279
1280  void *InsertPos = 0;
1281  if (ConstantArrayType *ATP =
1282      ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
1283    return QualType(ATP, 0);
1284
1285  // If the element type isn't canonical, this won't be a canonical type either,
1286  // so fill in the canonical type field.
1287  QualType Canonical;
1288  if (!EltTy->isCanonical()) {
1289    Canonical = getConstantArrayType(getCanonicalType(EltTy), ArySize,
1290                                     ASM, EltTypeQuals);
1291    // Get the new insert position for the node we care about.
1292    ConstantArrayType *NewIP =
1293      ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
1294    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1295  }
1296
1297  ConstantArrayType *New =
1298    new(*this,8)ConstantArrayType(EltTy, Canonical, ArySize, ASM, EltTypeQuals);
1299  ConstantArrayTypes.InsertNode(New, InsertPos);
1300  Types.push_back(New);
1301  return QualType(New, 0);
1302}
1303
1304/// getConstantArrayWithExprType - Return a reference to the type for
1305/// an array of the specified element type.
1306QualType
1307ASTContext::getConstantArrayWithExprType(QualType EltTy,
1308                                         const llvm::APInt &ArySizeIn,
1309                                         Expr *ArySizeExpr,
1310                                         ArrayType::ArraySizeModifier ASM,
1311                                         unsigned EltTypeQuals,
1312                                         SourceRange Brackets) {
1313  // Convert the array size into a canonical width matching the pointer
1314  // size for the target.
1315  llvm::APInt ArySize(ArySizeIn);
1316  ArySize.zextOrTrunc(Target.getPointerWidth(EltTy.getAddressSpace()));
1317
1318  // Compute the canonical ConstantArrayType.
1319  QualType Canonical = getConstantArrayType(getCanonicalType(EltTy),
1320                                            ArySize, ASM, EltTypeQuals);
1321  // Since we don't unique expressions, it isn't possible to unique VLA's
1322  // that have an expression provided for their size.
1323  ConstantArrayWithExprType *New =
1324    new(*this,8)ConstantArrayWithExprType(EltTy, Canonical,
1325                                          ArySize, ArySizeExpr,
1326                                          ASM, EltTypeQuals, Brackets);
1327  Types.push_back(New);
1328  return QualType(New, 0);
1329}
1330
1331/// getConstantArrayWithoutExprType - Return a reference to the type for
1332/// an array of the specified element type.
1333QualType
1334ASTContext::getConstantArrayWithoutExprType(QualType EltTy,
1335                                            const llvm::APInt &ArySizeIn,
1336                                            ArrayType::ArraySizeModifier ASM,
1337                                            unsigned EltTypeQuals) {
1338  // Convert the array size into a canonical width matching the pointer
1339  // size for the target.
1340  llvm::APInt ArySize(ArySizeIn);
1341  ArySize.zextOrTrunc(Target.getPointerWidth(EltTy.getAddressSpace()));
1342
1343  // Compute the canonical ConstantArrayType.
1344  QualType Canonical = getConstantArrayType(getCanonicalType(EltTy),
1345                                            ArySize, ASM, EltTypeQuals);
1346  ConstantArrayWithoutExprType *New =
1347    new(*this,8)ConstantArrayWithoutExprType(EltTy, Canonical,
1348                                             ArySize, ASM, EltTypeQuals);
1349  Types.push_back(New);
1350  return QualType(New, 0);
1351}
1352
1353/// getVariableArrayType - Returns a non-unique reference to the type for a
1354/// variable array of the specified element type.
1355QualType ASTContext::getVariableArrayType(QualType EltTy,
1356                                          Expr *NumElts,
1357                                          ArrayType::ArraySizeModifier ASM,
1358                                          unsigned EltTypeQuals,
1359                                          SourceRange Brackets) {
1360  // Since we don't unique expressions, it isn't possible to unique VLA's
1361  // that have an expression provided for their size.
1362
1363  VariableArrayType *New =
1364    new(*this,8)VariableArrayType(EltTy, QualType(),
1365                                  NumElts, ASM, EltTypeQuals, Brackets);
1366
1367  VariableArrayTypes.push_back(New);
1368  Types.push_back(New);
1369  return QualType(New, 0);
1370}
1371
1372/// getDependentSizedArrayType - Returns a non-unique reference to
1373/// the type for a dependently-sized array of the specified element
1374/// type. FIXME: We will need these to be uniqued, or at least
1375/// comparable, at some point.
1376QualType ASTContext::getDependentSizedArrayType(QualType EltTy,
1377                                                Expr *NumElts,
1378                                                ArrayType::ArraySizeModifier ASM,
1379                                                unsigned EltTypeQuals,
1380                                                SourceRange Brackets) {
1381  assert((NumElts->isTypeDependent() || NumElts->isValueDependent()) &&
1382         "Size must be type- or value-dependent!");
1383
1384  // Since we don't unique expressions, it isn't possible to unique
1385  // dependently-sized array types.
1386
1387  DependentSizedArrayType *New =
1388    new (*this,8) DependentSizedArrayType(EltTy, QualType(),
1389                                          NumElts, ASM, EltTypeQuals,
1390                                          Brackets);
1391
1392  DependentSizedArrayTypes.push_back(New);
1393  Types.push_back(New);
1394  return QualType(New, 0);
1395}
1396
1397QualType ASTContext::getIncompleteArrayType(QualType EltTy,
1398                                            ArrayType::ArraySizeModifier ASM,
1399                                            unsigned EltTypeQuals) {
1400  llvm::FoldingSetNodeID ID;
1401  IncompleteArrayType::Profile(ID, EltTy, ASM, EltTypeQuals);
1402
1403  void *InsertPos = 0;
1404  if (IncompleteArrayType *ATP =
1405       IncompleteArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
1406    return QualType(ATP, 0);
1407
1408  // If the element type isn't canonical, this won't be a canonical type
1409  // either, so fill in the canonical type field.
1410  QualType Canonical;
1411
1412  if (!EltTy->isCanonical()) {
1413    Canonical = getIncompleteArrayType(getCanonicalType(EltTy),
1414                                       ASM, EltTypeQuals);
1415
1416    // Get the new insert position for the node we care about.
1417    IncompleteArrayType *NewIP =
1418      IncompleteArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
1419    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1420  }
1421
1422  IncompleteArrayType *New
1423    = new (*this,8) IncompleteArrayType(EltTy, Canonical,
1424                                        ASM, EltTypeQuals);
1425
1426  IncompleteArrayTypes.InsertNode(New, InsertPos);
1427  Types.push_back(New);
1428  return QualType(New, 0);
1429}
1430
1431/// getVectorType - Return the unique reference to a vector type of
1432/// the specified element type and size. VectorType must be a built-in type.
1433QualType ASTContext::getVectorType(QualType vecType, unsigned NumElts) {
1434  BuiltinType *baseType;
1435
1436  baseType = dyn_cast<BuiltinType>(getCanonicalType(vecType).getTypePtr());
1437  assert(baseType != 0 && "getVectorType(): Expecting a built-in type");
1438
1439  // Check if we've already instantiated a vector of this type.
1440  llvm::FoldingSetNodeID ID;
1441  VectorType::Profile(ID, vecType, NumElts, Type::Vector);
1442  void *InsertPos = 0;
1443  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
1444    return QualType(VTP, 0);
1445
1446  // If the element type isn't canonical, this won't be a canonical type either,
1447  // so fill in the canonical type field.
1448  QualType Canonical;
1449  if (!vecType->isCanonical()) {
1450    Canonical = getVectorType(getCanonicalType(vecType), NumElts);
1451
1452    // Get the new insert position for the node we care about.
1453    VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
1454    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1455  }
1456  VectorType *New = new (*this,8) VectorType(vecType, NumElts, Canonical);
1457  VectorTypes.InsertNode(New, InsertPos);
1458  Types.push_back(New);
1459  return QualType(New, 0);
1460}
1461
1462/// getExtVectorType - Return the unique reference to an extended vector type of
1463/// the specified element type and size. VectorType must be a built-in type.
1464QualType ASTContext::getExtVectorType(QualType vecType, unsigned NumElts) {
1465  BuiltinType *baseType;
1466
1467  baseType = dyn_cast<BuiltinType>(getCanonicalType(vecType).getTypePtr());
1468  assert(baseType != 0 && "getExtVectorType(): Expecting a built-in type");
1469
1470  // Check if we've already instantiated a vector of this type.
1471  llvm::FoldingSetNodeID ID;
1472  VectorType::Profile(ID, vecType, NumElts, Type::ExtVector);
1473  void *InsertPos = 0;
1474  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
1475    return QualType(VTP, 0);
1476
1477  // If the element type isn't canonical, this won't be a canonical type either,
1478  // so fill in the canonical type field.
1479  QualType Canonical;
1480  if (!vecType->isCanonical()) {
1481    Canonical = getExtVectorType(getCanonicalType(vecType), NumElts);
1482
1483    // Get the new insert position for the node we care about.
1484    VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
1485    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1486  }
1487  ExtVectorType *New = new (*this,8) ExtVectorType(vecType, NumElts, Canonical);
1488  VectorTypes.InsertNode(New, InsertPos);
1489  Types.push_back(New);
1490  return QualType(New, 0);
1491}
1492
1493QualType ASTContext::getDependentSizedExtVectorType(QualType vecType,
1494                                                    Expr *SizeExpr,
1495                                                    SourceLocation AttrLoc) {
1496  DependentSizedExtVectorType *New =
1497      new (*this,8) DependentSizedExtVectorType(vecType, QualType(),
1498                                                SizeExpr, AttrLoc);
1499
1500  DependentSizedExtVectorTypes.push_back(New);
1501  Types.push_back(New);
1502  return QualType(New, 0);
1503}
1504
1505/// getFunctionNoProtoType - Return a K&R style C function type like 'int()'.
1506///
1507QualType ASTContext::getFunctionNoProtoType(QualType ResultTy, bool NoReturn) {
1508  // Unique functions, to guarantee there is only one function of a particular
1509  // structure.
1510  llvm::FoldingSetNodeID ID;
1511  FunctionNoProtoType::Profile(ID, ResultTy, NoReturn);
1512
1513  void *InsertPos = 0;
1514  if (FunctionNoProtoType *FT =
1515        FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
1516    return QualType(FT, 0);
1517
1518  QualType Canonical;
1519  if (!ResultTy->isCanonical()) {
1520    Canonical = getFunctionNoProtoType(getCanonicalType(ResultTy), NoReturn);
1521
1522    // Get the new insert position for the node we care about.
1523    FunctionNoProtoType *NewIP =
1524      FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
1525    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1526  }
1527
1528  FunctionNoProtoType *New
1529    = new (*this,8) FunctionNoProtoType(ResultTy, Canonical, NoReturn);
1530  Types.push_back(New);
1531  FunctionNoProtoTypes.InsertNode(New, InsertPos);
1532  return QualType(New, 0);
1533}
1534
1535/// getFunctionType - Return a normal function type with a typed argument
1536/// list.  isVariadic indicates whether the argument list includes '...'.
1537QualType ASTContext::getFunctionType(QualType ResultTy,const QualType *ArgArray,
1538                                     unsigned NumArgs, bool isVariadic,
1539                                     unsigned TypeQuals, bool hasExceptionSpec,
1540                                     bool hasAnyExceptionSpec, unsigned NumExs,
1541                                     const QualType *ExArray, bool NoReturn) {
1542  // Unique functions, to guarantee there is only one function of a particular
1543  // structure.
1544  llvm::FoldingSetNodeID ID;
1545  FunctionProtoType::Profile(ID, ResultTy, ArgArray, NumArgs, isVariadic,
1546                             TypeQuals, hasExceptionSpec, hasAnyExceptionSpec,
1547                             NumExs, ExArray, NoReturn);
1548
1549  void *InsertPos = 0;
1550  if (FunctionProtoType *FTP =
1551        FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
1552    return QualType(FTP, 0);
1553
1554  // Determine whether the type being created is already canonical or not.
1555  bool isCanonical = ResultTy->isCanonical();
1556  if (hasExceptionSpec)
1557    isCanonical = false;
1558  for (unsigned i = 0; i != NumArgs && isCanonical; ++i)
1559    if (!ArgArray[i]->isCanonical())
1560      isCanonical = false;
1561
1562  // If this type isn't canonical, get the canonical version of it.
1563  // The exception spec is not part of the canonical type.
1564  QualType Canonical;
1565  if (!isCanonical) {
1566    llvm::SmallVector<QualType, 16> CanonicalArgs;
1567    CanonicalArgs.reserve(NumArgs);
1568    for (unsigned i = 0; i != NumArgs; ++i)
1569      CanonicalArgs.push_back(getCanonicalType(ArgArray[i]));
1570
1571    Canonical = getFunctionType(getCanonicalType(ResultTy),
1572                                CanonicalArgs.data(), NumArgs,
1573                                isVariadic, TypeQuals, NoReturn);
1574
1575    // Get the new insert position for the node we care about.
1576    FunctionProtoType *NewIP =
1577      FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
1578    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1579  }
1580
1581  // FunctionProtoType objects are allocated with extra bytes after them
1582  // for two variable size arrays (for parameter and exception types) at the
1583  // end of them.
1584  FunctionProtoType *FTP =
1585    (FunctionProtoType*)Allocate(sizeof(FunctionProtoType) +
1586                                 NumArgs*sizeof(QualType) +
1587                                 NumExs*sizeof(QualType), 8);
1588  new (FTP) FunctionProtoType(ResultTy, ArgArray, NumArgs, isVariadic,
1589                              TypeQuals, hasExceptionSpec, hasAnyExceptionSpec,
1590                              ExArray, NumExs, Canonical, NoReturn);
1591  Types.push_back(FTP);
1592  FunctionProtoTypes.InsertNode(FTP, InsertPos);
1593  return QualType(FTP, 0);
1594}
1595
1596/// getTypeDeclType - Return the unique reference to the type for the
1597/// specified type declaration.
1598QualType ASTContext::getTypeDeclType(TypeDecl *Decl, TypeDecl* PrevDecl) {
1599  assert(Decl && "Passed null for Decl param");
1600  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
1601
1602  if (TypedefDecl *Typedef = dyn_cast<TypedefDecl>(Decl))
1603    return getTypedefType(Typedef);
1604  else if (isa<TemplateTypeParmDecl>(Decl)) {
1605    assert(false && "Template type parameter types are always available.");
1606  } else if (ObjCInterfaceDecl *ObjCInterface = dyn_cast<ObjCInterfaceDecl>(Decl))
1607    return getObjCInterfaceType(ObjCInterface);
1608
1609  if (RecordDecl *Record = dyn_cast<RecordDecl>(Decl)) {
1610    if (PrevDecl)
1611      Decl->TypeForDecl = PrevDecl->TypeForDecl;
1612    else
1613      Decl->TypeForDecl = new (*this,8) RecordType(Record);
1614  }
1615  else if (EnumDecl *Enum = dyn_cast<EnumDecl>(Decl)) {
1616    if (PrevDecl)
1617      Decl->TypeForDecl = PrevDecl->TypeForDecl;
1618    else
1619      Decl->TypeForDecl = new (*this,8) EnumType(Enum);
1620  }
1621  else
1622    assert(false && "TypeDecl without a type?");
1623
1624  if (!PrevDecl) Types.push_back(Decl->TypeForDecl);
1625  return QualType(Decl->TypeForDecl, 0);
1626}
1627
1628/// getTypedefType - Return the unique reference to the type for the
1629/// specified typename decl.
1630QualType ASTContext::getTypedefType(TypedefDecl *Decl) {
1631  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
1632
1633  QualType Canonical = getCanonicalType(Decl->getUnderlyingType());
1634  Decl->TypeForDecl = new(*this,8) TypedefType(Type::Typedef, Decl, Canonical);
1635  Types.push_back(Decl->TypeForDecl);
1636  return QualType(Decl->TypeForDecl, 0);
1637}
1638
1639/// \brief Retrieve the template type parameter type for a template
1640/// parameter or parameter pack with the given depth, index, and (optionally)
1641/// name.
1642QualType ASTContext::getTemplateTypeParmType(unsigned Depth, unsigned Index,
1643                                             bool ParameterPack,
1644                                             IdentifierInfo *Name) {
1645  llvm::FoldingSetNodeID ID;
1646  TemplateTypeParmType::Profile(ID, Depth, Index, ParameterPack, Name);
1647  void *InsertPos = 0;
1648  TemplateTypeParmType *TypeParm
1649    = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
1650
1651  if (TypeParm)
1652    return QualType(TypeParm, 0);
1653
1654  if (Name) {
1655    QualType Canon = getTemplateTypeParmType(Depth, Index, ParameterPack);
1656    TypeParm = new (*this, 8) TemplateTypeParmType(Depth, Index, ParameterPack,
1657                                                   Name, Canon);
1658  } else
1659    TypeParm = new (*this, 8) TemplateTypeParmType(Depth, Index, ParameterPack);
1660
1661  Types.push_back(TypeParm);
1662  TemplateTypeParmTypes.InsertNode(TypeParm, InsertPos);
1663
1664  return QualType(TypeParm, 0);
1665}
1666
1667QualType
1668ASTContext::getTemplateSpecializationType(TemplateName Template,
1669                                          const TemplateArgument *Args,
1670                                          unsigned NumArgs,
1671                                          QualType Canon) {
1672  if (Canon.isNull()) {
1673    // Build the canonical template specialization type, since no type
1674    // was provided.
1675    TemplateName CanonTemplate = getCanonicalTemplateName(Template);
1676    llvm::SmallVector<TemplateArgument, 4> CanonArgs;
1677    CanonArgs.reserve(NumArgs);
1678    for (unsigned I = 0; I != NumArgs; ++I)
1679      CanonArgs.push_back(getCanonicalTemplateArgument(Args[I]));
1680
1681    // Determine whether this canonical template specialization type already
1682    // exists.
1683    llvm::FoldingSetNodeID ID;
1684    TemplateSpecializationType::Profile(ID, CanonTemplate,
1685                                        CanonArgs.data(), NumArgs, *this);
1686
1687    void *InsertPos = 0;
1688    TemplateSpecializationType *Spec
1689      = TemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
1690
1691    if (!Spec) {
1692      // Allocate a new canonical template specialization type.
1693      void *Mem = Allocate((sizeof(TemplateSpecializationType) +
1694                            sizeof(TemplateArgument) * NumArgs),
1695                           8);
1696      Spec = new (Mem) TemplateSpecializationType(*this, CanonTemplate,
1697                                                  CanonArgs.data(), NumArgs,
1698                                                  QualType());
1699      Types.push_back(Spec);
1700      TemplateSpecializationTypes.InsertNode(Spec, InsertPos);
1701    }
1702
1703    Canon = QualType(Spec, 0);
1704    assert(Canon->isDependentType() &&
1705           "Non-dependent template-id type must have a canonical type");
1706  } else
1707    Canon = getCanonicalType(Canon);
1708
1709  // Allocate the (non-canonical) template specialization type, but don't
1710  // try to unique it: these types typically have location information that
1711  // we don't unique and don't want to lose.
1712  void *Mem = Allocate((sizeof(TemplateSpecializationType) +
1713                        sizeof(TemplateArgument) * NumArgs),
1714                       8);
1715  TemplateSpecializationType *Spec
1716    = new (Mem) TemplateSpecializationType(*this, Template, Args, NumArgs,
1717                                           Canon);
1718
1719  Types.push_back(Spec);
1720  return QualType(Spec, 0);
1721}
1722
1723QualType
1724ASTContext::getQualifiedNameType(NestedNameSpecifier *NNS,
1725                                 QualType NamedType) {
1726  llvm::FoldingSetNodeID ID;
1727  QualifiedNameType::Profile(ID, NNS, NamedType);
1728
1729  void *InsertPos = 0;
1730  QualifiedNameType *T
1731    = QualifiedNameTypes.FindNodeOrInsertPos(ID, InsertPos);
1732  if (T)
1733    return QualType(T, 0);
1734
1735  T = new (*this) QualifiedNameType(NNS, NamedType,
1736                                    getCanonicalType(NamedType));
1737  Types.push_back(T);
1738  QualifiedNameTypes.InsertNode(T, InsertPos);
1739  return QualType(T, 0);
1740}
1741
1742QualType ASTContext::getTypenameType(NestedNameSpecifier *NNS,
1743                                     const IdentifierInfo *Name,
1744                                     QualType Canon) {
1745  assert(NNS->isDependent() && "nested-name-specifier must be dependent");
1746
1747  if (Canon.isNull()) {
1748    NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
1749    if (CanonNNS != NNS)
1750      Canon = getTypenameType(CanonNNS, Name);
1751  }
1752
1753  llvm::FoldingSetNodeID ID;
1754  TypenameType::Profile(ID, NNS, Name);
1755
1756  void *InsertPos = 0;
1757  TypenameType *T
1758    = TypenameTypes.FindNodeOrInsertPos(ID, InsertPos);
1759  if (T)
1760    return QualType(T, 0);
1761
1762  T = new (*this) TypenameType(NNS, Name, Canon);
1763  Types.push_back(T);
1764  TypenameTypes.InsertNode(T, InsertPos);
1765  return QualType(T, 0);
1766}
1767
1768QualType
1769ASTContext::getTypenameType(NestedNameSpecifier *NNS,
1770                            const TemplateSpecializationType *TemplateId,
1771                            QualType Canon) {
1772  assert(NNS->isDependent() && "nested-name-specifier must be dependent");
1773
1774  if (Canon.isNull()) {
1775    NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
1776    QualType CanonType = getCanonicalType(QualType(TemplateId, 0));
1777    if (CanonNNS != NNS || CanonType != QualType(TemplateId, 0)) {
1778      const TemplateSpecializationType *CanonTemplateId
1779        = CanonType->getAsTemplateSpecializationType();
1780      assert(CanonTemplateId &&
1781             "Canonical type must also be a template specialization type");
1782      Canon = getTypenameType(CanonNNS, CanonTemplateId);
1783    }
1784  }
1785
1786  llvm::FoldingSetNodeID ID;
1787  TypenameType::Profile(ID, NNS, TemplateId);
1788
1789  void *InsertPos = 0;
1790  TypenameType *T
1791    = TypenameTypes.FindNodeOrInsertPos(ID, InsertPos);
1792  if (T)
1793    return QualType(T, 0);
1794
1795  T = new (*this) TypenameType(NNS, TemplateId, Canon);
1796  Types.push_back(T);
1797  TypenameTypes.InsertNode(T, InsertPos);
1798  return QualType(T, 0);
1799}
1800
1801/// CmpProtocolNames - Comparison predicate for sorting protocols
1802/// alphabetically.
1803static bool CmpProtocolNames(const ObjCProtocolDecl *LHS,
1804                            const ObjCProtocolDecl *RHS) {
1805  return LHS->getDeclName() < RHS->getDeclName();
1806}
1807
1808static void SortAndUniqueProtocols(ObjCProtocolDecl **&Protocols,
1809                                   unsigned &NumProtocols) {
1810  ObjCProtocolDecl **ProtocolsEnd = Protocols+NumProtocols;
1811
1812  // Sort protocols, keyed by name.
1813  std::sort(Protocols, Protocols+NumProtocols, CmpProtocolNames);
1814
1815  // Remove duplicates.
1816  ProtocolsEnd = std::unique(Protocols, ProtocolsEnd);
1817  NumProtocols = ProtocolsEnd-Protocols;
1818}
1819
1820/// getObjCObjectPointerType - Return a ObjCObjectPointerType type for
1821/// the given interface decl and the conforming protocol list.
1822QualType ASTContext::getObjCObjectPointerType(QualType InterfaceT,
1823                                              ObjCProtocolDecl **Protocols,
1824                                              unsigned NumProtocols) {
1825  // Sort the protocol list alphabetically to canonicalize it.
1826  if (NumProtocols)
1827    SortAndUniqueProtocols(Protocols, NumProtocols);
1828
1829  llvm::FoldingSetNodeID ID;
1830  ObjCObjectPointerType::Profile(ID, InterfaceT, Protocols, NumProtocols);
1831
1832  void *InsertPos = 0;
1833  if (ObjCObjectPointerType *QT =
1834              ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1835    return QualType(QT, 0);
1836
1837  // No Match;
1838  ObjCObjectPointerType *QType =
1839    new (*this,8) ObjCObjectPointerType(InterfaceT, Protocols, NumProtocols);
1840
1841  Types.push_back(QType);
1842  ObjCObjectPointerTypes.InsertNode(QType, InsertPos);
1843  return QualType(QType, 0);
1844}
1845
1846/// getObjCInterfaceType - Return the unique reference to the type for the
1847/// specified ObjC interface decl. The list of protocols is optional.
1848QualType ASTContext::getObjCInterfaceType(const ObjCInterfaceDecl *Decl,
1849                       ObjCProtocolDecl **Protocols, unsigned NumProtocols) {
1850  if (NumProtocols)
1851    // Sort the protocol list alphabetically to canonicalize it.
1852    SortAndUniqueProtocols(Protocols, NumProtocols);
1853
1854  llvm::FoldingSetNodeID ID;
1855  ObjCInterfaceType::Profile(ID, Decl, Protocols, NumProtocols);
1856
1857  void *InsertPos = 0;
1858  if (ObjCInterfaceType *QT =
1859      ObjCInterfaceTypes.FindNodeOrInsertPos(ID, InsertPos))
1860    return QualType(QT, 0);
1861
1862  // No Match;
1863  ObjCInterfaceType *QType =
1864    new (*this,8) ObjCInterfaceType(const_cast<ObjCInterfaceDecl*>(Decl),
1865                                    Protocols, NumProtocols);
1866  Types.push_back(QType);
1867  ObjCInterfaceTypes.InsertNode(QType, InsertPos);
1868  return QualType(QType, 0);
1869}
1870
1871/// getTypeOfExprType - Unlike many "get<Type>" functions, we can't unique
1872/// TypeOfExprType AST's (since expression's are never shared). For example,
1873/// multiple declarations that refer to "typeof(x)" all contain different
1874/// DeclRefExpr's. This doesn't effect the type checker, since it operates
1875/// on canonical type's (which are always unique).
1876QualType ASTContext::getTypeOfExprType(Expr *tofExpr) {
1877  TypeOfExprType *toe;
1878  if (tofExpr->isTypeDependent())
1879    toe = new (*this, 8) TypeOfExprType(tofExpr);
1880  else {
1881    QualType Canonical = getCanonicalType(tofExpr->getType());
1882    toe = new (*this,8) TypeOfExprType(tofExpr, Canonical);
1883  }
1884  Types.push_back(toe);
1885  return QualType(toe, 0);
1886}
1887
1888/// getTypeOfType -  Unlike many "get<Type>" functions, we don't unique
1889/// TypeOfType AST's. The only motivation to unique these nodes would be
1890/// memory savings. Since typeof(t) is fairly uncommon, space shouldn't be
1891/// an issue. This doesn't effect the type checker, since it operates
1892/// on canonical type's (which are always unique).
1893QualType ASTContext::getTypeOfType(QualType tofType) {
1894  QualType Canonical = getCanonicalType(tofType);
1895  TypeOfType *tot = new (*this,8) TypeOfType(tofType, Canonical);
1896  Types.push_back(tot);
1897  return QualType(tot, 0);
1898}
1899
1900/// getDecltypeForExpr - Given an expr, will return the decltype for that
1901/// expression, according to the rules in C++0x [dcl.type.simple]p4
1902static QualType getDecltypeForExpr(const Expr *e, ASTContext &Context) {
1903  if (e->isTypeDependent())
1904    return Context.DependentTy;
1905
1906  // If e is an id expression or a class member access, decltype(e) is defined
1907  // as the type of the entity named by e.
1908  if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(e)) {
1909    if (const ValueDecl *VD = dyn_cast<ValueDecl>(DRE->getDecl()))
1910      return VD->getType();
1911  }
1912  if (const MemberExpr *ME = dyn_cast<MemberExpr>(e)) {
1913    if (const FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl()))
1914      return FD->getType();
1915  }
1916  // If e is a function call or an invocation of an overloaded operator,
1917  // (parentheses around e are ignored), decltype(e) is defined as the
1918  // return type of that function.
1919  if (const CallExpr *CE = dyn_cast<CallExpr>(e->IgnoreParens()))
1920    return CE->getCallReturnType();
1921
1922  QualType T = e->getType();
1923
1924  // Otherwise, where T is the type of e, if e is an lvalue, decltype(e) is
1925  // defined as T&, otherwise decltype(e) is defined as T.
1926  if (e->isLvalue(Context) == Expr::LV_Valid)
1927    T = Context.getLValueReferenceType(T);
1928
1929  return T;
1930}
1931
1932/// getDecltypeType -  Unlike many "get<Type>" functions, we don't unique
1933/// DecltypeType AST's. The only motivation to unique these nodes would be
1934/// memory savings. Since decltype(t) is fairly uncommon, space shouldn't be
1935/// an issue. This doesn't effect the type checker, since it operates
1936/// on canonical type's (which are always unique).
1937QualType ASTContext::getDecltypeType(Expr *e) {
1938  DecltypeType *dt;
1939  if (e->isTypeDependent()) // FIXME: canonicalize the expression
1940    dt = new (*this, 8) DecltypeType(e, DependentTy);
1941  else {
1942    QualType T = getDecltypeForExpr(e, *this);
1943    dt = new (*this, 8) DecltypeType(e, T, getCanonicalType(T));
1944  }
1945  Types.push_back(dt);
1946  return QualType(dt, 0);
1947}
1948
1949/// getTagDeclType - Return the unique reference to the type for the
1950/// specified TagDecl (struct/union/class/enum) decl.
1951QualType ASTContext::getTagDeclType(TagDecl *Decl) {
1952  assert (Decl);
1953  return getTypeDeclType(Decl);
1954}
1955
1956/// getSizeType - Return the unique type for "size_t" (C99 7.17), the result
1957/// of the sizeof operator (C99 6.5.3.4p4). The value is target dependent and
1958/// needs to agree with the definition in <stddef.h>.
1959QualType ASTContext::getSizeType() const {
1960  return getFromTargetType(Target.getSizeType());
1961}
1962
1963/// getSignedWCharType - Return the type of "signed wchar_t".
1964/// Used when in C++, as a GCC extension.
1965QualType ASTContext::getSignedWCharType() const {
1966  // FIXME: derive from "Target" ?
1967  return WCharTy;
1968}
1969
1970/// getUnsignedWCharType - Return the type of "unsigned wchar_t".
1971/// Used when in C++, as a GCC extension.
1972QualType ASTContext::getUnsignedWCharType() const {
1973  // FIXME: derive from "Target" ?
1974  return UnsignedIntTy;
1975}
1976
1977/// getPointerDiffType - Return the unique type for "ptrdiff_t" (ref?)
1978/// defined in <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
1979QualType ASTContext::getPointerDiffType() const {
1980  return getFromTargetType(Target.getPtrDiffType(0));
1981}
1982
1983//===----------------------------------------------------------------------===//
1984//                              Type Operators
1985//===----------------------------------------------------------------------===//
1986
1987/// getCanonicalType - Return the canonical (structural) type corresponding to
1988/// the specified potentially non-canonical type.  The non-canonical version
1989/// of a type may have many "decorated" versions of types.  Decorators can
1990/// include typedefs, 'typeof' operators, etc. The returned type is guaranteed
1991/// to be free of any of these, allowing two canonical types to be compared
1992/// for exact equality with a simple pointer comparison.
1993QualType ASTContext::getCanonicalType(QualType T) {
1994  QualType CanType = T.getTypePtr()->getCanonicalTypeInternal();
1995
1996  // If the result has type qualifiers, make sure to canonicalize them as well.
1997  unsigned TypeQuals = T.getCVRQualifiers() | CanType.getCVRQualifiers();
1998  if (TypeQuals == 0) return CanType;
1999
2000  // If the type qualifiers are on an array type, get the canonical type of the
2001  // array with the qualifiers applied to the element type.
2002  ArrayType *AT = dyn_cast<ArrayType>(CanType);
2003  if (!AT)
2004    return CanType.getQualifiedType(TypeQuals);
2005
2006  // Get the canonical version of the element with the extra qualifiers on it.
2007  // This can recursively sink qualifiers through multiple levels of arrays.
2008  QualType NewEltTy=AT->getElementType().getWithAdditionalQualifiers(TypeQuals);
2009  NewEltTy = getCanonicalType(NewEltTy);
2010
2011  if (ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
2012    return getConstantArrayType(NewEltTy, CAT->getSize(),CAT->getSizeModifier(),
2013                                CAT->getIndexTypeQualifier());
2014  if (IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT))
2015    return getIncompleteArrayType(NewEltTy, IAT->getSizeModifier(),
2016                                  IAT->getIndexTypeQualifier());
2017
2018  if (DependentSizedArrayType *DSAT = dyn_cast<DependentSizedArrayType>(AT))
2019    return getDependentSizedArrayType(NewEltTy,
2020                                      DSAT->getSizeExpr(),
2021                                      DSAT->getSizeModifier(),
2022                                      DSAT->getIndexTypeQualifier(),
2023                                      DSAT->getBracketsRange());
2024
2025  VariableArrayType *VAT = cast<VariableArrayType>(AT);
2026  return getVariableArrayType(NewEltTy,
2027                              VAT->getSizeExpr(),
2028                              VAT->getSizeModifier(),
2029                              VAT->getIndexTypeQualifier(),
2030                              VAT->getBracketsRange());
2031}
2032
2033TemplateName ASTContext::getCanonicalTemplateName(TemplateName Name) {
2034  // If this template name refers to a template, the canonical
2035  // template name merely stores the template itself.
2036  if (TemplateDecl *Template = Name.getAsTemplateDecl())
2037    return TemplateName(cast<TemplateDecl>(Template->getCanonicalDecl()));
2038
2039  DependentTemplateName *DTN = Name.getAsDependentTemplateName();
2040  assert(DTN && "Non-dependent template names must refer to template decls.");
2041  return DTN->CanonicalTemplateName;
2042}
2043
2044TemplateArgument
2045ASTContext::getCanonicalTemplateArgument(const TemplateArgument &Arg) {
2046  switch (Arg.getKind()) {
2047    case TemplateArgument::Null:
2048      return Arg;
2049
2050    case TemplateArgument::Expression:
2051      // FIXME: Build canonical expression?
2052      return Arg;
2053
2054    case TemplateArgument::Declaration:
2055      return TemplateArgument(SourceLocation(),
2056                              Arg.getAsDecl()->getCanonicalDecl());
2057
2058    case TemplateArgument::Integral:
2059      return TemplateArgument(SourceLocation(),
2060                              *Arg.getAsIntegral(),
2061                              getCanonicalType(Arg.getIntegralType()));
2062
2063    case TemplateArgument::Type:
2064      return TemplateArgument(SourceLocation(),
2065                              getCanonicalType(Arg.getAsType()));
2066
2067    case TemplateArgument::Pack: {
2068      // FIXME: Allocate in ASTContext
2069      TemplateArgument *CanonArgs = new TemplateArgument[Arg.pack_size()];
2070      unsigned Idx = 0;
2071      for (TemplateArgument::pack_iterator A = Arg.pack_begin(),
2072                                        AEnd = Arg.pack_end();
2073           A != AEnd; (void)++A, ++Idx)
2074        CanonArgs[Idx] = getCanonicalTemplateArgument(*A);
2075
2076      TemplateArgument Result;
2077      Result.setArgumentPack(CanonArgs, Arg.pack_size(), false);
2078      return Result;
2079    }
2080  }
2081
2082  // Silence GCC warning
2083  assert(false && "Unhandled template argument kind");
2084  return TemplateArgument();
2085}
2086
2087NestedNameSpecifier *
2088ASTContext::getCanonicalNestedNameSpecifier(NestedNameSpecifier *NNS) {
2089  if (!NNS)
2090    return 0;
2091
2092  switch (NNS->getKind()) {
2093  case NestedNameSpecifier::Identifier:
2094    // Canonicalize the prefix but keep the identifier the same.
2095    return NestedNameSpecifier::Create(*this,
2096                         getCanonicalNestedNameSpecifier(NNS->getPrefix()),
2097                                       NNS->getAsIdentifier());
2098
2099  case NestedNameSpecifier::Namespace:
2100    // A namespace is canonical; build a nested-name-specifier with
2101    // this namespace and no prefix.
2102    return NestedNameSpecifier::Create(*this, 0, NNS->getAsNamespace());
2103
2104  case NestedNameSpecifier::TypeSpec:
2105  case NestedNameSpecifier::TypeSpecWithTemplate: {
2106    QualType T = getCanonicalType(QualType(NNS->getAsType(), 0));
2107    NestedNameSpecifier *Prefix = 0;
2108
2109    // FIXME: This isn't the right check!
2110    if (T->isDependentType())
2111      Prefix = getCanonicalNestedNameSpecifier(NNS->getPrefix());
2112
2113    return NestedNameSpecifier::Create(*this, Prefix,
2114                 NNS->getKind() == NestedNameSpecifier::TypeSpecWithTemplate,
2115                                       T.getTypePtr());
2116  }
2117
2118  case NestedNameSpecifier::Global:
2119    // The global specifier is canonical and unique.
2120    return NNS;
2121  }
2122
2123  // Required to silence a GCC warning
2124  return 0;
2125}
2126
2127
2128const ArrayType *ASTContext::getAsArrayType(QualType T) {
2129  // Handle the non-qualified case efficiently.
2130  if (T.getCVRQualifiers() == 0) {
2131    // Handle the common positive case fast.
2132    if (const ArrayType *AT = dyn_cast<ArrayType>(T))
2133      return AT;
2134  }
2135
2136  // Handle the common negative case fast, ignoring CVR qualifiers.
2137  QualType CType = T->getCanonicalTypeInternal();
2138
2139  // Make sure to look through type qualifiers (like ExtQuals) for the negative
2140  // test.
2141  if (!isa<ArrayType>(CType) &&
2142      !isa<ArrayType>(CType.getUnqualifiedType()))
2143    return 0;
2144
2145  // Apply any CVR qualifiers from the array type to the element type.  This
2146  // implements C99 6.7.3p8: "If the specification of an array type includes
2147  // any type qualifiers, the element type is so qualified, not the array type."
2148
2149  // If we get here, we either have type qualifiers on the type, or we have
2150  // sugar such as a typedef in the way.  If we have type qualifiers on the type
2151  // we must propagate them down into the elemeng type.
2152  unsigned CVRQuals = T.getCVRQualifiers();
2153  unsigned AddrSpace = 0;
2154  Type *Ty = T.getTypePtr();
2155
2156  // Rip through ExtQualType's and typedefs to get to a concrete type.
2157  while (1) {
2158    if (const ExtQualType *EXTQT = dyn_cast<ExtQualType>(Ty)) {
2159      AddrSpace = EXTQT->getAddressSpace();
2160      Ty = EXTQT->getBaseType();
2161    } else {
2162      T = Ty->getDesugaredType();
2163      if (T.getTypePtr() == Ty && T.getCVRQualifiers() == 0)
2164        break;
2165      CVRQuals |= T.getCVRQualifiers();
2166      Ty = T.getTypePtr();
2167    }
2168  }
2169
2170  // If we have a simple case, just return now.
2171  const ArrayType *ATy = dyn_cast<ArrayType>(Ty);
2172  if (ATy == 0 || (AddrSpace == 0 && CVRQuals == 0))
2173    return ATy;
2174
2175  // Otherwise, we have an array and we have qualifiers on it.  Push the
2176  // qualifiers into the array element type and return a new array type.
2177  // Get the canonical version of the element with the extra qualifiers on it.
2178  // This can recursively sink qualifiers through multiple levels of arrays.
2179  QualType NewEltTy = ATy->getElementType();
2180  if (AddrSpace)
2181    NewEltTy = getAddrSpaceQualType(NewEltTy, AddrSpace);
2182  NewEltTy = NewEltTy.getWithAdditionalQualifiers(CVRQuals);
2183
2184  if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(ATy))
2185    return cast<ArrayType>(getConstantArrayType(NewEltTy, CAT->getSize(),
2186                                                CAT->getSizeModifier(),
2187                                                CAT->getIndexTypeQualifier()));
2188  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(ATy))
2189    return cast<ArrayType>(getIncompleteArrayType(NewEltTy,
2190                                                  IAT->getSizeModifier(),
2191                                                  IAT->getIndexTypeQualifier()));
2192
2193  if (const DependentSizedArrayType *DSAT
2194        = dyn_cast<DependentSizedArrayType>(ATy))
2195    return cast<ArrayType>(
2196                     getDependentSizedArrayType(NewEltTy,
2197                                                DSAT->getSizeExpr(),
2198                                                DSAT->getSizeModifier(),
2199                                                DSAT->getIndexTypeQualifier(),
2200                                                DSAT->getBracketsRange()));
2201
2202  const VariableArrayType *VAT = cast<VariableArrayType>(ATy);
2203  return cast<ArrayType>(getVariableArrayType(NewEltTy,
2204                                              VAT->getSizeExpr(),
2205                                              VAT->getSizeModifier(),
2206                                              VAT->getIndexTypeQualifier(),
2207                                              VAT->getBracketsRange()));
2208}
2209
2210
2211/// getArrayDecayedType - Return the properly qualified result of decaying the
2212/// specified array type to a pointer.  This operation is non-trivial when
2213/// handling typedefs etc.  The canonical type of "T" must be an array type,
2214/// this returns a pointer to a properly qualified element of the array.
2215///
2216/// See C99 6.7.5.3p7 and C99 6.3.2.1p3.
2217QualType ASTContext::getArrayDecayedType(QualType Ty) {
2218  // Get the element type with 'getAsArrayType' so that we don't lose any
2219  // typedefs in the element type of the array.  This also handles propagation
2220  // of type qualifiers from the array type into the element type if present
2221  // (C99 6.7.3p8).
2222  const ArrayType *PrettyArrayType = getAsArrayType(Ty);
2223  assert(PrettyArrayType && "Not an array type!");
2224
2225  QualType PtrTy = getPointerType(PrettyArrayType->getElementType());
2226
2227  // int x[restrict 4] ->  int *restrict
2228  return PtrTy.getQualifiedType(PrettyArrayType->getIndexTypeQualifier());
2229}
2230
2231QualType ASTContext::getBaseElementType(QualType QT) {
2232  QualifierSet qualifiers;
2233  while (true) {
2234    const Type *UT = qualifiers.strip(QT);
2235    if (const ArrayType *AT = getAsArrayType(QualType(UT,0))) {
2236      QT = AT->getElementType();
2237    } else {
2238      return qualifiers.apply(QT, *this);
2239    }
2240  }
2241}
2242
2243QualType ASTContext::getBaseElementType(const VariableArrayType *VAT) {
2244  QualType ElemTy = VAT->getElementType();
2245
2246  if (const VariableArrayType *VAT = getAsVariableArrayType(ElemTy))
2247    return getBaseElementType(VAT);
2248
2249  return ElemTy;
2250}
2251
2252/// getFloatingRank - Return a relative rank for floating point types.
2253/// This routine will assert if passed a built-in type that isn't a float.
2254static FloatingRank getFloatingRank(QualType T) {
2255  if (const ComplexType *CT = T->getAsComplexType())
2256    return getFloatingRank(CT->getElementType());
2257
2258  assert(T->getAsBuiltinType() && "getFloatingRank(): not a floating type");
2259  switch (T->getAsBuiltinType()->getKind()) {
2260  default: assert(0 && "getFloatingRank(): not a floating type");
2261  case BuiltinType::Float:      return FloatRank;
2262  case BuiltinType::Double:     return DoubleRank;
2263  case BuiltinType::LongDouble: return LongDoubleRank;
2264  }
2265}
2266
2267/// getFloatingTypeOfSizeWithinDomain - Returns a real floating
2268/// point or a complex type (based on typeDomain/typeSize).
2269/// 'typeDomain' is a real floating point or complex type.
2270/// 'typeSize' is a real floating point or complex type.
2271QualType ASTContext::getFloatingTypeOfSizeWithinDomain(QualType Size,
2272                                                       QualType Domain) const {
2273  FloatingRank EltRank = getFloatingRank(Size);
2274  if (Domain->isComplexType()) {
2275    switch (EltRank) {
2276    default: assert(0 && "getFloatingRank(): illegal value for rank");
2277    case FloatRank:      return FloatComplexTy;
2278    case DoubleRank:     return DoubleComplexTy;
2279    case LongDoubleRank: return LongDoubleComplexTy;
2280    }
2281  }
2282
2283  assert(Domain->isRealFloatingType() && "Unknown domain!");
2284  switch (EltRank) {
2285  default: assert(0 && "getFloatingRank(): illegal value for rank");
2286  case FloatRank:      return FloatTy;
2287  case DoubleRank:     return DoubleTy;
2288  case LongDoubleRank: return LongDoubleTy;
2289  }
2290}
2291
2292/// getFloatingTypeOrder - Compare the rank of the two specified floating
2293/// point types, ignoring the domain of the type (i.e. 'double' ==
2294/// '_Complex double').  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
2295/// LHS < RHS, return -1.
2296int ASTContext::getFloatingTypeOrder(QualType LHS, QualType RHS) {
2297  FloatingRank LHSR = getFloatingRank(LHS);
2298  FloatingRank RHSR = getFloatingRank(RHS);
2299
2300  if (LHSR == RHSR)
2301    return 0;
2302  if (LHSR > RHSR)
2303    return 1;
2304  return -1;
2305}
2306
2307/// getIntegerRank - Return an integer conversion rank (C99 6.3.1.1p1). This
2308/// routine will assert if passed a built-in type that isn't an integer or enum,
2309/// or if it is not canonicalized.
2310unsigned ASTContext::getIntegerRank(Type *T) {
2311  assert(T->isCanonical() && "T should be canonicalized");
2312  if (EnumType* ET = dyn_cast<EnumType>(T))
2313    T = ET->getDecl()->getIntegerType().getTypePtr();
2314
2315  if (T->isSpecificBuiltinType(BuiltinType::WChar))
2316    T = getFromTargetType(Target.getWCharType()).getTypePtr();
2317
2318  if (T->isSpecificBuiltinType(BuiltinType::Char16))
2319    T = getFromTargetType(Target.getChar16Type()).getTypePtr();
2320
2321  if (T->isSpecificBuiltinType(BuiltinType::Char32))
2322    T = getFromTargetType(Target.getChar32Type()).getTypePtr();
2323
2324  // There are two things which impact the integer rank: the width, and
2325  // the ordering of builtins.  The builtin ordering is encoded in the
2326  // bottom three bits; the width is encoded in the bits above that.
2327  if (FixedWidthIntType* FWIT = dyn_cast<FixedWidthIntType>(T))
2328    return FWIT->getWidth() << 3;
2329
2330  switch (cast<BuiltinType>(T)->getKind()) {
2331  default: assert(0 && "getIntegerRank(): not a built-in integer");
2332  case BuiltinType::Bool:
2333    return 1 + (getIntWidth(BoolTy) << 3);
2334  case BuiltinType::Char_S:
2335  case BuiltinType::Char_U:
2336  case BuiltinType::SChar:
2337  case BuiltinType::UChar:
2338    return 2 + (getIntWidth(CharTy) << 3);
2339  case BuiltinType::Short:
2340  case BuiltinType::UShort:
2341    return 3 + (getIntWidth(ShortTy) << 3);
2342  case BuiltinType::Int:
2343  case BuiltinType::UInt:
2344    return 4 + (getIntWidth(IntTy) << 3);
2345  case BuiltinType::Long:
2346  case BuiltinType::ULong:
2347    return 5 + (getIntWidth(LongTy) << 3);
2348  case BuiltinType::LongLong:
2349  case BuiltinType::ULongLong:
2350    return 6 + (getIntWidth(LongLongTy) << 3);
2351  case BuiltinType::Int128:
2352  case BuiltinType::UInt128:
2353    return 7 + (getIntWidth(Int128Ty) << 3);
2354  }
2355}
2356
2357/// getIntegerTypeOrder - Returns the highest ranked integer type:
2358/// C99 6.3.1.8p1.  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
2359/// LHS < RHS, return -1.
2360int ASTContext::getIntegerTypeOrder(QualType LHS, QualType RHS) {
2361  Type *LHSC = getCanonicalType(LHS).getTypePtr();
2362  Type *RHSC = getCanonicalType(RHS).getTypePtr();
2363  if (LHSC == RHSC) return 0;
2364
2365  bool LHSUnsigned = LHSC->isUnsignedIntegerType();
2366  bool RHSUnsigned = RHSC->isUnsignedIntegerType();
2367
2368  unsigned LHSRank = getIntegerRank(LHSC);
2369  unsigned RHSRank = getIntegerRank(RHSC);
2370
2371  if (LHSUnsigned == RHSUnsigned) {  // Both signed or both unsigned.
2372    if (LHSRank == RHSRank) return 0;
2373    return LHSRank > RHSRank ? 1 : -1;
2374  }
2375
2376  // Otherwise, the LHS is signed and the RHS is unsigned or visa versa.
2377  if (LHSUnsigned) {
2378    // If the unsigned [LHS] type is larger, return it.
2379    if (LHSRank >= RHSRank)
2380      return 1;
2381
2382    // If the signed type can represent all values of the unsigned type, it
2383    // wins.  Because we are dealing with 2's complement and types that are
2384    // powers of two larger than each other, this is always safe.
2385    return -1;
2386  }
2387
2388  // If the unsigned [RHS] type is larger, return it.
2389  if (RHSRank >= LHSRank)
2390    return -1;
2391
2392  // If the signed type can represent all values of the unsigned type, it
2393  // wins.  Because we are dealing with 2's complement and types that are
2394  // powers of two larger than each other, this is always safe.
2395  return 1;
2396}
2397
2398// getCFConstantStringType - Return the type used for constant CFStrings.
2399QualType ASTContext::getCFConstantStringType() {
2400  if (!CFConstantStringTypeDecl) {
2401    CFConstantStringTypeDecl =
2402      RecordDecl::Create(*this, TagDecl::TK_struct, TUDecl, SourceLocation(),
2403                         &Idents.get("NSConstantString"));
2404    QualType FieldTypes[4];
2405
2406    // const int *isa;
2407    FieldTypes[0] = getPointerType(IntTy.getQualifiedType(QualType::Const));
2408    // int flags;
2409    FieldTypes[1] = IntTy;
2410    // const char *str;
2411    FieldTypes[2] = getPointerType(CharTy.getQualifiedType(QualType::Const));
2412    // long length;
2413    FieldTypes[3] = LongTy;
2414
2415    // Create fields
2416    for (unsigned i = 0; i < 4; ++i) {
2417      FieldDecl *Field = FieldDecl::Create(*this, CFConstantStringTypeDecl,
2418                                           SourceLocation(), 0,
2419                                           FieldTypes[i], /*BitWidth=*/0,
2420                                           /*Mutable=*/false);
2421      CFConstantStringTypeDecl->addDecl(Field);
2422    }
2423
2424    CFConstantStringTypeDecl->completeDefinition(*this);
2425  }
2426
2427  return getTagDeclType(CFConstantStringTypeDecl);
2428}
2429
2430void ASTContext::setCFConstantStringType(QualType T) {
2431  const RecordType *Rec = T->getAsRecordType();
2432  assert(Rec && "Invalid CFConstantStringType");
2433  CFConstantStringTypeDecl = Rec->getDecl();
2434}
2435
2436QualType ASTContext::getObjCFastEnumerationStateType()
2437{
2438  if (!ObjCFastEnumerationStateTypeDecl) {
2439    ObjCFastEnumerationStateTypeDecl =
2440      RecordDecl::Create(*this, TagDecl::TK_struct, TUDecl, SourceLocation(),
2441                         &Idents.get("__objcFastEnumerationState"));
2442
2443    QualType FieldTypes[] = {
2444      UnsignedLongTy,
2445      getPointerType(ObjCIdTypedefType),
2446      getPointerType(UnsignedLongTy),
2447      getConstantArrayType(UnsignedLongTy,
2448                           llvm::APInt(32, 5), ArrayType::Normal, 0)
2449    };
2450
2451    for (size_t i = 0; i < 4; ++i) {
2452      FieldDecl *Field = FieldDecl::Create(*this,
2453                                           ObjCFastEnumerationStateTypeDecl,
2454                                           SourceLocation(), 0,
2455                                           FieldTypes[i], /*BitWidth=*/0,
2456                                           /*Mutable=*/false);
2457      ObjCFastEnumerationStateTypeDecl->addDecl(Field);
2458    }
2459
2460    ObjCFastEnumerationStateTypeDecl->completeDefinition(*this);
2461  }
2462
2463  return getTagDeclType(ObjCFastEnumerationStateTypeDecl);
2464}
2465
2466void ASTContext::setObjCFastEnumerationStateType(QualType T) {
2467  const RecordType *Rec = T->getAsRecordType();
2468  assert(Rec && "Invalid ObjCFAstEnumerationStateType");
2469  ObjCFastEnumerationStateTypeDecl = Rec->getDecl();
2470}
2471
2472// This returns true if a type has been typedefed to BOOL:
2473// typedef <type> BOOL;
2474static bool isTypeTypedefedAsBOOL(QualType T) {
2475  if (const TypedefType *TT = dyn_cast<TypedefType>(T))
2476    if (IdentifierInfo *II = TT->getDecl()->getIdentifier())
2477      return II->isStr("BOOL");
2478
2479  return false;
2480}
2481
2482/// getObjCEncodingTypeSize returns size of type for objective-c encoding
2483/// purpose.
2484int ASTContext::getObjCEncodingTypeSize(QualType type) {
2485  uint64_t sz = getTypeSize(type);
2486
2487  // Make all integer and enum types at least as large as an int
2488  if (sz > 0 && type->isIntegralType())
2489    sz = std::max(sz, getTypeSize(IntTy));
2490  // Treat arrays as pointers, since that's how they're passed in.
2491  else if (type->isArrayType())
2492    sz = getTypeSize(VoidPtrTy);
2493  return sz / getTypeSize(CharTy);
2494}
2495
2496/// getObjCEncodingForMethodDecl - Return the encoded type for this method
2497/// declaration.
2498void ASTContext::getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl,
2499                                              std::string& S) {
2500  // FIXME: This is not very efficient.
2501  // Encode type qualifer, 'in', 'inout', etc. for the return type.
2502  getObjCEncodingForTypeQualifier(Decl->getObjCDeclQualifier(), S);
2503  // Encode result type.
2504  getObjCEncodingForType(Decl->getResultType(), S);
2505  // Compute size of all parameters.
2506  // Start with computing size of a pointer in number of bytes.
2507  // FIXME: There might(should) be a better way of doing this computation!
2508  SourceLocation Loc;
2509  int PtrSize = getTypeSize(VoidPtrTy) / getTypeSize(CharTy);
2510  // The first two arguments (self and _cmd) are pointers; account for
2511  // their size.
2512  int ParmOffset = 2 * PtrSize;
2513  for (ObjCMethodDecl::param_iterator PI = Decl->param_begin(),
2514       E = Decl->param_end(); PI != E; ++PI) {
2515    QualType PType = (*PI)->getType();
2516    int sz = getObjCEncodingTypeSize(PType);
2517    assert (sz > 0 && "getObjCEncodingForMethodDecl - Incomplete param type");
2518    ParmOffset += sz;
2519  }
2520  S += llvm::utostr(ParmOffset);
2521  S += "@0:";
2522  S += llvm::utostr(PtrSize);
2523
2524  // Argument types.
2525  ParmOffset = 2 * PtrSize;
2526  for (ObjCMethodDecl::param_iterator PI = Decl->param_begin(),
2527       E = Decl->param_end(); PI != E; ++PI) {
2528    ParmVarDecl *PVDecl = *PI;
2529    QualType PType = PVDecl->getOriginalType();
2530    if (const ArrayType *AT =
2531          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
2532      // Use array's original type only if it has known number of
2533      // elements.
2534      if (!isa<ConstantArrayType>(AT))
2535        PType = PVDecl->getType();
2536    } else if (PType->isFunctionType())
2537      PType = PVDecl->getType();
2538    // Process argument qualifiers for user supplied arguments; such as,
2539    // 'in', 'inout', etc.
2540    getObjCEncodingForTypeQualifier(PVDecl->getObjCDeclQualifier(), S);
2541    getObjCEncodingForType(PType, S);
2542    S += llvm::utostr(ParmOffset);
2543    ParmOffset += getObjCEncodingTypeSize(PType);
2544  }
2545}
2546
2547/// getObjCEncodingForPropertyDecl - Return the encoded type for this
2548/// property declaration. If non-NULL, Container must be either an
2549/// ObjCCategoryImplDecl or ObjCImplementationDecl; it should only be
2550/// NULL when getting encodings for protocol properties.
2551/// Property attributes are stored as a comma-delimited C string. The simple
2552/// attributes readonly and bycopy are encoded as single characters. The
2553/// parametrized attributes, getter=name, setter=name, and ivar=name, are
2554/// encoded as single characters, followed by an identifier. Property types
2555/// are also encoded as a parametrized attribute. The characters used to encode
2556/// these attributes are defined by the following enumeration:
2557/// @code
2558/// enum PropertyAttributes {
2559/// kPropertyReadOnly = 'R',   // property is read-only.
2560/// kPropertyBycopy = 'C',     // property is a copy of the value last assigned
2561/// kPropertyByref = '&',  // property is a reference to the value last assigned
2562/// kPropertyDynamic = 'D',    // property is dynamic
2563/// kPropertyGetter = 'G',     // followed by getter selector name
2564/// kPropertySetter = 'S',     // followed by setter selector name
2565/// kPropertyInstanceVariable = 'V'  // followed by instance variable  name
2566/// kPropertyType = 't'              // followed by old-style type encoding.
2567/// kPropertyWeak = 'W'              // 'weak' property
2568/// kPropertyStrong = 'P'            // property GC'able
2569/// kPropertyNonAtomic = 'N'         // property non-atomic
2570/// };
2571/// @endcode
2572void ASTContext::getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD,
2573                                                const Decl *Container,
2574                                                std::string& S) {
2575  // Collect information from the property implementation decl(s).
2576  bool Dynamic = false;
2577  ObjCPropertyImplDecl *SynthesizePID = 0;
2578
2579  // FIXME: Duplicated code due to poor abstraction.
2580  if (Container) {
2581    if (const ObjCCategoryImplDecl *CID =
2582        dyn_cast<ObjCCategoryImplDecl>(Container)) {
2583      for (ObjCCategoryImplDecl::propimpl_iterator
2584             i = CID->propimpl_begin(), e = CID->propimpl_end();
2585           i != e; ++i) {
2586        ObjCPropertyImplDecl *PID = *i;
2587        if (PID->getPropertyDecl() == PD) {
2588          if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
2589            Dynamic = true;
2590          } else {
2591            SynthesizePID = PID;
2592          }
2593        }
2594      }
2595    } else {
2596      const ObjCImplementationDecl *OID=cast<ObjCImplementationDecl>(Container);
2597      for (ObjCCategoryImplDecl::propimpl_iterator
2598             i = OID->propimpl_begin(), e = OID->propimpl_end();
2599           i != e; ++i) {
2600        ObjCPropertyImplDecl *PID = *i;
2601        if (PID->getPropertyDecl() == PD) {
2602          if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
2603            Dynamic = true;
2604          } else {
2605            SynthesizePID = PID;
2606          }
2607        }
2608      }
2609    }
2610  }
2611
2612  // FIXME: This is not very efficient.
2613  S = "T";
2614
2615  // Encode result type.
2616  // GCC has some special rules regarding encoding of properties which
2617  // closely resembles encoding of ivars.
2618  getObjCEncodingForTypeImpl(PD->getType(), S, true, true, 0,
2619                             true /* outermost type */,
2620                             true /* encoding for property */);
2621
2622  if (PD->isReadOnly()) {
2623    S += ",R";
2624  } else {
2625    switch (PD->getSetterKind()) {
2626    case ObjCPropertyDecl::Assign: break;
2627    case ObjCPropertyDecl::Copy:   S += ",C"; break;
2628    case ObjCPropertyDecl::Retain: S += ",&"; break;
2629    }
2630  }
2631
2632  // It really isn't clear at all what this means, since properties
2633  // are "dynamic by default".
2634  if (Dynamic)
2635    S += ",D";
2636
2637  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_nonatomic)
2638    S += ",N";
2639
2640  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_getter) {
2641    S += ",G";
2642    S += PD->getGetterName().getAsString();
2643  }
2644
2645  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_setter) {
2646    S += ",S";
2647    S += PD->getSetterName().getAsString();
2648  }
2649
2650  if (SynthesizePID) {
2651    const ObjCIvarDecl *OID = SynthesizePID->getPropertyIvarDecl();
2652    S += ",V";
2653    S += OID->getNameAsString();
2654  }
2655
2656  // FIXME: OBJCGC: weak & strong
2657}
2658
2659/// getLegacyIntegralTypeEncoding -
2660/// Another legacy compatibility encoding: 32-bit longs are encoded as
2661/// 'l' or 'L' , but not always.  For typedefs, we need to use
2662/// 'i' or 'I' instead if encoding a struct field, or a pointer!
2663///
2664void ASTContext::getLegacyIntegralTypeEncoding (QualType &PointeeTy) const {
2665  if (isa<TypedefType>(PointeeTy.getTypePtr())) {
2666    if (const BuiltinType *BT = PointeeTy->getAsBuiltinType()) {
2667      if (BT->getKind() == BuiltinType::ULong &&
2668          ((const_cast<ASTContext *>(this))->getIntWidth(PointeeTy) == 32))
2669        PointeeTy = UnsignedIntTy;
2670      else
2671        if (BT->getKind() == BuiltinType::Long &&
2672            ((const_cast<ASTContext *>(this))->getIntWidth(PointeeTy) == 32))
2673          PointeeTy = IntTy;
2674    }
2675  }
2676}
2677
2678void ASTContext::getObjCEncodingForType(QualType T, std::string& S,
2679                                        const FieldDecl *Field) {
2680  // We follow the behavior of gcc, expanding structures which are
2681  // directly pointed to, and expanding embedded structures. Note that
2682  // these rules are sufficient to prevent recursive encoding of the
2683  // same type.
2684  getObjCEncodingForTypeImpl(T, S, true, true, Field,
2685                             true /* outermost type */);
2686}
2687
2688static void EncodeBitField(const ASTContext *Context, std::string& S,
2689                           const FieldDecl *FD) {
2690  const Expr *E = FD->getBitWidth();
2691  assert(E && "bitfield width not there - getObjCEncodingForTypeImpl");
2692  ASTContext *Ctx = const_cast<ASTContext*>(Context);
2693  unsigned N = E->EvaluateAsInt(*Ctx).getZExtValue();
2694  S += 'b';
2695  S += llvm::utostr(N);
2696}
2697
2698void ASTContext::getObjCEncodingForTypeImpl(QualType T, std::string& S,
2699                                            bool ExpandPointedToStructures,
2700                                            bool ExpandStructures,
2701                                            const FieldDecl *FD,
2702                                            bool OutermostType,
2703                                            bool EncodingProperty) {
2704  if (const BuiltinType *BT = T->getAsBuiltinType()) {
2705    if (FD && FD->isBitField())
2706      return EncodeBitField(this, S, FD);
2707    char encoding;
2708    switch (BT->getKind()) {
2709    default: assert(0 && "Unhandled builtin type kind");
2710    case BuiltinType::Void:       encoding = 'v'; break;
2711    case BuiltinType::Bool:       encoding = 'B'; break;
2712    case BuiltinType::Char_U:
2713    case BuiltinType::UChar:      encoding = 'C'; break;
2714    case BuiltinType::UShort:     encoding = 'S'; break;
2715    case BuiltinType::UInt:       encoding = 'I'; break;
2716    case BuiltinType::ULong:
2717        encoding =
2718          (const_cast<ASTContext *>(this))->getIntWidth(T) == 32 ? 'L' : 'Q';
2719        break;
2720    case BuiltinType::UInt128:    encoding = 'T'; break;
2721    case BuiltinType::ULongLong:  encoding = 'Q'; break;
2722    case BuiltinType::Char_S:
2723    case BuiltinType::SChar:      encoding = 'c'; break;
2724    case BuiltinType::Short:      encoding = 's'; break;
2725    case BuiltinType::Int:        encoding = 'i'; break;
2726    case BuiltinType::Long:
2727      encoding =
2728        (const_cast<ASTContext *>(this))->getIntWidth(T) == 32 ? 'l' : 'q';
2729      break;
2730    case BuiltinType::LongLong:   encoding = 'q'; break;
2731    case BuiltinType::Int128:     encoding = 't'; break;
2732    case BuiltinType::Float:      encoding = 'f'; break;
2733    case BuiltinType::Double:     encoding = 'd'; break;
2734    case BuiltinType::LongDouble: encoding = 'd'; break;
2735    }
2736
2737    S += encoding;
2738    return;
2739  }
2740
2741  if (const ComplexType *CT = T->getAsComplexType()) {
2742    S += 'j';
2743    getObjCEncodingForTypeImpl(CT->getElementType(), S, false, false, 0, false,
2744                               false);
2745    return;
2746  }
2747
2748  if (const PointerType *PT = T->getAsPointerType()) {
2749    QualType PointeeTy = PT->getPointeeType();
2750    bool isReadOnly = false;
2751    // For historical/compatibility reasons, the read-only qualifier of the
2752    // pointee gets emitted _before_ the '^'.  The read-only qualifier of
2753    // the pointer itself gets ignored, _unless_ we are looking at a typedef!
2754    // Also, do not emit the 'r' for anything but the outermost type!
2755    if (isa<TypedefType>(T.getTypePtr())) {
2756      if (OutermostType && T.isConstQualified()) {
2757        isReadOnly = true;
2758        S += 'r';
2759      }
2760    }
2761    else if (OutermostType) {
2762      QualType P = PointeeTy;
2763      while (P->getAsPointerType())
2764        P = P->getAsPointerType()->getPointeeType();
2765      if (P.isConstQualified()) {
2766        isReadOnly = true;
2767        S += 'r';
2768      }
2769    }
2770    if (isReadOnly) {
2771      // Another legacy compatibility encoding. Some ObjC qualifier and type
2772      // combinations need to be rearranged.
2773      // Rewrite "in const" from "nr" to "rn"
2774      const char * s = S.c_str();
2775      int len = S.length();
2776      if (len >= 2 && s[len-2] == 'n' && s[len-1] == 'r') {
2777        std::string replace = "rn";
2778        S.replace(S.end()-2, S.end(), replace);
2779      }
2780    }
2781    if (isObjCSelType(PointeeTy)) {
2782      S += ':';
2783      return;
2784    }
2785
2786    if (PointeeTy->isCharType()) {
2787      // char pointer types should be encoded as '*' unless it is a
2788      // type that has been typedef'd to 'BOOL'.
2789      if (!isTypeTypedefedAsBOOL(PointeeTy)) {
2790        S += '*';
2791        return;
2792      }
2793    } else if (const RecordType *RTy = PointeeTy->getAsRecordType()) {
2794      // GCC binary compat: Need to convert "struct objc_class *" to "#".
2795      if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_class")) {
2796        S += '#';
2797        return;
2798      }
2799      // GCC binary compat: Need to convert "struct objc_object *" to "@".
2800      if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_object")) {
2801        S += '@';
2802        return;
2803      }
2804      // fall through...
2805    }
2806    S += '^';
2807    getLegacyIntegralTypeEncoding(PointeeTy);
2808
2809    getObjCEncodingForTypeImpl(PointeeTy, S, false, ExpandPointedToStructures,
2810                               NULL);
2811    return;
2812  }
2813
2814  if (const ArrayType *AT =
2815      // Ignore type qualifiers etc.
2816        dyn_cast<ArrayType>(T->getCanonicalTypeInternal())) {
2817    if (isa<IncompleteArrayType>(AT)) {
2818      // Incomplete arrays are encoded as a pointer to the array element.
2819      S += '^';
2820
2821      getObjCEncodingForTypeImpl(AT->getElementType(), S,
2822                                 false, ExpandStructures, FD);
2823    } else {
2824      S += '[';
2825
2826      if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
2827        S += llvm::utostr(CAT->getSize().getZExtValue());
2828      else {
2829        //Variable length arrays are encoded as a regular array with 0 elements.
2830        assert(isa<VariableArrayType>(AT) && "Unknown array type!");
2831        S += '0';
2832      }
2833
2834      getObjCEncodingForTypeImpl(AT->getElementType(), S,
2835                                 false, ExpandStructures, FD);
2836      S += ']';
2837    }
2838    return;
2839  }
2840
2841  if (T->getAsFunctionType()) {
2842    S += '?';
2843    return;
2844  }
2845
2846  if (const RecordType *RTy = T->getAsRecordType()) {
2847    RecordDecl *RDecl = RTy->getDecl();
2848    S += RDecl->isUnion() ? '(' : '{';
2849    // Anonymous structures print as '?'
2850    if (const IdentifierInfo *II = RDecl->getIdentifier()) {
2851      S += II->getName();
2852    } else {
2853      S += '?';
2854    }
2855    if (ExpandStructures) {
2856      S += '=';
2857      for (RecordDecl::field_iterator Field = RDecl->field_begin(),
2858                                   FieldEnd = RDecl->field_end();
2859           Field != FieldEnd; ++Field) {
2860        if (FD) {
2861          S += '"';
2862          S += Field->getNameAsString();
2863          S += '"';
2864        }
2865
2866        // Special case bit-fields.
2867        if (Field->isBitField()) {
2868          getObjCEncodingForTypeImpl(Field->getType(), S, false, true,
2869                                     (*Field));
2870        } else {
2871          QualType qt = Field->getType();
2872          getLegacyIntegralTypeEncoding(qt);
2873          getObjCEncodingForTypeImpl(qt, S, false, true,
2874                                     FD);
2875        }
2876      }
2877    }
2878    S += RDecl->isUnion() ? ')' : '}';
2879    return;
2880  }
2881
2882  if (T->isEnumeralType()) {
2883    if (FD && FD->isBitField())
2884      EncodeBitField(this, S, FD);
2885    else
2886      S += 'i';
2887    return;
2888  }
2889
2890  if (T->isBlockPointerType()) {
2891    S += "@?"; // Unlike a pointer-to-function, which is "^?".
2892    return;
2893  }
2894
2895  if (T->isObjCInterfaceType()) {
2896    // @encode(class_name)
2897    ObjCInterfaceDecl *OI = T->getAsObjCInterfaceType()->getDecl();
2898    S += '{';
2899    const IdentifierInfo *II = OI->getIdentifier();
2900    S += II->getName();
2901    S += '=';
2902    llvm::SmallVector<FieldDecl*, 32> RecFields;
2903    CollectObjCIvars(OI, RecFields);
2904    for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
2905      if (RecFields[i]->isBitField())
2906        getObjCEncodingForTypeImpl(RecFields[i]->getType(), S, false, true,
2907                                   RecFields[i]);
2908      else
2909        getObjCEncodingForTypeImpl(RecFields[i]->getType(), S, false, true,
2910                                   FD);
2911    }
2912    S += '}';
2913    return;
2914  }
2915
2916  if (const ObjCObjectPointerType *OPT = T->getAsObjCObjectPointerType()) {
2917    if (OPT->isObjCIdType()) {
2918      S += '@';
2919      return;
2920    }
2921
2922    if (OPT->isObjCClassType()) {
2923      S += '#';
2924      return;
2925    }
2926
2927    if (OPT->isObjCQualifiedIdType()) {
2928      getObjCEncodingForTypeImpl(getObjCIdType(), S,
2929                                 ExpandPointedToStructures,
2930                                 ExpandStructures, FD);
2931      if (FD || EncodingProperty) {
2932        // Note that we do extended encoding of protocol qualifer list
2933        // Only when doing ivar or property encoding.
2934        S += '"';
2935        for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(),
2936             E = OPT->qual_end(); I != E; ++I) {
2937          S += '<';
2938          S += (*I)->getNameAsString();
2939          S += '>';
2940        }
2941        S += '"';
2942      }
2943      return;
2944    }
2945
2946    QualType PointeeTy = OPT->getPointeeType();
2947    if (!EncodingProperty &&
2948        isa<TypedefType>(PointeeTy.getTypePtr())) {
2949      // Another historical/compatibility reason.
2950      // We encode the underlying type which comes out as
2951      // {...};
2952      S += '^';
2953      getObjCEncodingForTypeImpl(PointeeTy, S,
2954                                 false, ExpandPointedToStructures,
2955                                 NULL);
2956      return;
2957    }
2958
2959    S += '@';
2960    if (FD || EncodingProperty) {
2961      S += '"';
2962      S += OPT->getInterfaceDecl()->getNameAsCString();
2963      for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(),
2964           E = OPT->qual_end(); I != E; ++I) {
2965        S += '<';
2966        S += (*I)->getNameAsString();
2967        S += '>';
2968      }
2969      S += '"';
2970    }
2971    return;
2972  }
2973
2974  assert(0 && "@encode for type not implemented!");
2975}
2976
2977void ASTContext::getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,
2978                                                 std::string& S) const {
2979  if (QT & Decl::OBJC_TQ_In)
2980    S += 'n';
2981  if (QT & Decl::OBJC_TQ_Inout)
2982    S += 'N';
2983  if (QT & Decl::OBJC_TQ_Out)
2984    S += 'o';
2985  if (QT & Decl::OBJC_TQ_Bycopy)
2986    S += 'O';
2987  if (QT & Decl::OBJC_TQ_Byref)
2988    S += 'R';
2989  if (QT & Decl::OBJC_TQ_Oneway)
2990    S += 'V';
2991}
2992
2993void ASTContext::setBuiltinVaListType(QualType T) {
2994  assert(BuiltinVaListType.isNull() && "__builtin_va_list type already set!");
2995
2996  BuiltinVaListType = T;
2997}
2998
2999void ASTContext::setObjCIdType(QualType T) {
3000  ObjCIdTypedefType = T;
3001}
3002
3003void ASTContext::setObjCSelType(QualType T) {
3004  ObjCSelType = T;
3005
3006  const TypedefType *TT = T->getAsTypedefType();
3007  if (!TT)
3008    return;
3009  TypedefDecl *TD = TT->getDecl();
3010
3011  // typedef struct objc_selector *SEL;
3012  const PointerType *ptr = TD->getUnderlyingType()->getAsPointerType();
3013  if (!ptr)
3014    return;
3015  const RecordType *rec = ptr->getPointeeType()->getAsStructureType();
3016  if (!rec)
3017    return;
3018  SelStructType = rec;
3019}
3020
3021void ASTContext::setObjCProtoType(QualType QT) {
3022  ObjCProtoType = QT;
3023}
3024
3025void ASTContext::setObjCClassType(QualType T) {
3026  ObjCClassTypedefType = T;
3027}
3028
3029void ASTContext::setObjCConstantStringInterface(ObjCInterfaceDecl *Decl) {
3030  assert(ObjCConstantStringType.isNull() &&
3031         "'NSConstantString' type already set!");
3032
3033  ObjCConstantStringType = getObjCInterfaceType(Decl);
3034}
3035
3036/// \brief Retrieve the template name that represents a qualified
3037/// template name such as \c std::vector.
3038TemplateName ASTContext::getQualifiedTemplateName(NestedNameSpecifier *NNS,
3039                                                  bool TemplateKeyword,
3040                                                  TemplateDecl *Template) {
3041  llvm::FoldingSetNodeID ID;
3042  QualifiedTemplateName::Profile(ID, NNS, TemplateKeyword, Template);
3043
3044  void *InsertPos = 0;
3045  QualifiedTemplateName *QTN =
3046    QualifiedTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
3047  if (!QTN) {
3048    QTN = new (*this,4) QualifiedTemplateName(NNS, TemplateKeyword, Template);
3049    QualifiedTemplateNames.InsertNode(QTN, InsertPos);
3050  }
3051
3052  return TemplateName(QTN);
3053}
3054
3055/// \brief Retrieve the template name that represents a dependent
3056/// template name such as \c MetaFun::template apply.
3057TemplateName ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
3058                                                  const IdentifierInfo *Name) {
3059  assert(NNS->isDependent() && "Nested name specifier must be dependent");
3060
3061  llvm::FoldingSetNodeID ID;
3062  DependentTemplateName::Profile(ID, NNS, Name);
3063
3064  void *InsertPos = 0;
3065  DependentTemplateName *QTN =
3066    DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
3067
3068  if (QTN)
3069    return TemplateName(QTN);
3070
3071  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
3072  if (CanonNNS == NNS) {
3073    QTN = new (*this,4) DependentTemplateName(NNS, Name);
3074  } else {
3075    TemplateName Canon = getDependentTemplateName(CanonNNS, Name);
3076    QTN = new (*this,4) DependentTemplateName(NNS, Name, Canon);
3077  }
3078
3079  DependentTemplateNames.InsertNode(QTN, InsertPos);
3080  return TemplateName(QTN);
3081}
3082
3083/// getFromTargetType - Given one of the integer types provided by
3084/// TargetInfo, produce the corresponding type. The unsigned @p Type
3085/// is actually a value of type @c TargetInfo::IntType.
3086QualType ASTContext::getFromTargetType(unsigned Type) const {
3087  switch (Type) {
3088  case TargetInfo::NoInt: return QualType();
3089  case TargetInfo::SignedShort: return ShortTy;
3090  case TargetInfo::UnsignedShort: return UnsignedShortTy;
3091  case TargetInfo::SignedInt: return IntTy;
3092  case TargetInfo::UnsignedInt: return UnsignedIntTy;
3093  case TargetInfo::SignedLong: return LongTy;
3094  case TargetInfo::UnsignedLong: return UnsignedLongTy;
3095  case TargetInfo::SignedLongLong: return LongLongTy;
3096  case TargetInfo::UnsignedLongLong: return UnsignedLongLongTy;
3097  }
3098
3099  assert(false && "Unhandled TargetInfo::IntType value");
3100  return QualType();
3101}
3102
3103//===----------------------------------------------------------------------===//
3104//                        Type Predicates.
3105//===----------------------------------------------------------------------===//
3106
3107/// isObjCNSObjectType - Return true if this is an NSObject object using
3108/// NSObject attribute on a c-style pointer type.
3109/// FIXME - Make it work directly on types.
3110/// FIXME: Move to Type.
3111///
3112bool ASTContext::isObjCNSObjectType(QualType Ty) const {
3113  if (TypedefType *TDT = dyn_cast<TypedefType>(Ty)) {
3114    if (TypedefDecl *TD = TDT->getDecl())
3115      if (TD->getAttr<ObjCNSObjectAttr>())
3116        return true;
3117  }
3118  return false;
3119}
3120
3121/// getObjCGCAttr - Returns one of GCNone, Weak or Strong objc's
3122/// garbage collection attribute.
3123///
3124QualType::GCAttrTypes ASTContext::getObjCGCAttrKind(const QualType &Ty) const {
3125  QualType::GCAttrTypes GCAttrs = QualType::GCNone;
3126  if (getLangOptions().ObjC1 &&
3127      getLangOptions().getGCMode() != LangOptions::NonGC) {
3128    GCAttrs = Ty.getObjCGCAttr();
3129    // Default behavious under objective-c's gc is for objective-c pointers
3130    // (or pointers to them) be treated as though they were declared
3131    // as __strong.
3132    if (GCAttrs == QualType::GCNone) {
3133      if (Ty->isObjCObjectPointerType())
3134        GCAttrs = QualType::Strong;
3135      else if (Ty->isPointerType())
3136        return getObjCGCAttrKind(Ty->getAsPointerType()->getPointeeType());
3137    }
3138    // Non-pointers have none gc'able attribute regardless of the attribute
3139    // set on them.
3140    else if (!Ty->isAnyPointerType() && !Ty->isBlockPointerType())
3141      return QualType::GCNone;
3142  }
3143  return GCAttrs;
3144}
3145
3146//===----------------------------------------------------------------------===//
3147//                        Type Compatibility Testing
3148//===----------------------------------------------------------------------===//
3149
3150/// areCompatVectorTypes - Return true if the two specified vector types are
3151/// compatible.
3152static bool areCompatVectorTypes(const VectorType *LHS,
3153                                 const VectorType *RHS) {
3154  assert(LHS->isCanonical() && RHS->isCanonical());
3155  return LHS->getElementType() == RHS->getElementType() &&
3156         LHS->getNumElements() == RHS->getNumElements();
3157}
3158
3159//===----------------------------------------------------------------------===//
3160// ObjCQualifiedIdTypesAreCompatible - Compatibility testing for qualified id's.
3161//===----------------------------------------------------------------------===//
3162
3163/// ProtocolCompatibleWithProtocol - return 'true' if 'lProto' is in the
3164/// inheritance hierarchy of 'rProto'.
3165static bool ProtocolCompatibleWithProtocol(ObjCProtocolDecl *lProto,
3166                                           ObjCProtocolDecl *rProto) {
3167  if (lProto == rProto)
3168    return true;
3169  for (ObjCProtocolDecl::protocol_iterator PI = rProto->protocol_begin(),
3170       E = rProto->protocol_end(); PI != E; ++PI)
3171    if (ProtocolCompatibleWithProtocol(lProto, *PI))
3172      return true;
3173  return false;
3174}
3175
3176/// ClassImplementsProtocol - Checks that 'lProto' protocol
3177/// has been implemented in IDecl class, its super class or categories (if
3178/// lookupCategory is true).
3179static bool ClassImplementsProtocol(ObjCProtocolDecl *lProto,
3180                                    ObjCInterfaceDecl *IDecl,
3181                                    bool lookupCategory,
3182                                    bool RHSIsQualifiedID = false) {
3183
3184  // 1st, look up the class.
3185  const ObjCList<ObjCProtocolDecl> &Protocols =
3186    IDecl->getReferencedProtocols();
3187
3188  for (ObjCList<ObjCProtocolDecl>::iterator PI = Protocols.begin(),
3189       E = Protocols.end(); PI != E; ++PI) {
3190    if (ProtocolCompatibleWithProtocol(lProto, *PI))
3191      return true;
3192    // This is dubious and is added to be compatible with gcc.  In gcc, it is
3193    // also allowed assigning a protocol-qualified 'id' type to a LHS object
3194    // when protocol in qualified LHS is in list of protocols in the rhs 'id'
3195    // object. This IMO, should be a bug.
3196    // FIXME: Treat this as an extension, and flag this as an error when GCC
3197    // extensions are not enabled.
3198    if (RHSIsQualifiedID && ProtocolCompatibleWithProtocol(*PI, lProto))
3199      return true;
3200  }
3201
3202  // 2nd, look up the category.
3203  if (lookupCategory)
3204    for (ObjCCategoryDecl *CDecl = IDecl->getCategoryList(); CDecl;
3205         CDecl = CDecl->getNextClassCategory()) {
3206      for (ObjCCategoryDecl::protocol_iterator PI = CDecl->protocol_begin(),
3207           E = CDecl->protocol_end(); PI != E; ++PI)
3208        if (ProtocolCompatibleWithProtocol(lProto, *PI))
3209          return true;
3210    }
3211
3212  // 3rd, look up the super class(s)
3213  if (IDecl->getSuperClass())
3214    return
3215      ClassImplementsProtocol(lProto, IDecl->getSuperClass(), lookupCategory,
3216                              RHSIsQualifiedID);
3217
3218  return false;
3219}
3220
3221/// QualifiedIdConformsQualifiedId - compare id<p,...> with id<p1,...>
3222/// return true if lhs's protocols conform to rhs's protocol; false
3223/// otherwise.
3224bool ASTContext::QualifiedIdConformsQualifiedId(QualType lhs, QualType rhs) {
3225  if (lhs->isObjCQualifiedIdType() && rhs->isObjCQualifiedIdType())
3226    return ObjCQualifiedIdTypesAreCompatible(lhs, rhs, false);
3227  return false;
3228}
3229
3230/// ObjCQualifiedIdTypesAreCompatible - We know that one of lhs/rhs is an
3231/// ObjCQualifiedIDType.
3232bool ASTContext::ObjCQualifiedIdTypesAreCompatible(QualType lhs, QualType rhs,
3233                                                   bool compare) {
3234  // Allow id<P..> and an 'id' or void* type in all cases.
3235  if (lhs->isVoidPointerType() ||
3236      lhs->isObjCIdType() || lhs->isObjCClassType())
3237    return true;
3238  else if (rhs->isVoidPointerType() ||
3239           rhs->isObjCIdType() || rhs->isObjCClassType())
3240    return true;
3241
3242  if (const ObjCObjectPointerType *lhsQID = lhs->getAsObjCQualifiedIdType()) {
3243    const ObjCObjectPointerType *rhsOPT = rhs->getAsObjCObjectPointerType();
3244
3245    if (!rhsOPT) return false;
3246
3247    if (rhsOPT->qual_empty()) {
3248      // If the RHS is a unqualified interface pointer "NSString*",
3249      // make sure we check the class hierarchy.
3250      if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) {
3251        for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
3252             E = lhsQID->qual_end(); I != E; ++I) {
3253          // when comparing an id<P> on lhs with a static type on rhs,
3254          // see if static class implements all of id's protocols, directly or
3255          // through its super class and categories.
3256          if (!ClassImplementsProtocol(*I, rhsID, true))
3257            return false;
3258        }
3259      }
3260      // If there are no qualifiers and no interface, we have an 'id'.
3261      return true;
3262    }
3263    // Both the right and left sides have qualifiers.
3264    for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
3265         E = lhsQID->qual_end(); I != E; ++I) {
3266      ObjCProtocolDecl *lhsProto = *I;
3267      bool match = false;
3268
3269      // when comparing an id<P> on lhs with a static type on rhs,
3270      // see if static class implements all of id's protocols, directly or
3271      // through its super class and categories.
3272      for (ObjCObjectPointerType::qual_iterator J = rhsOPT->qual_begin(),
3273           E = rhsOPT->qual_end(); J != E; ++J) {
3274        ObjCProtocolDecl *rhsProto = *J;
3275        if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
3276            (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
3277          match = true;
3278          break;
3279        }
3280      }
3281      // If the RHS is a qualified interface pointer "NSString<P>*",
3282      // make sure we check the class hierarchy.
3283      if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) {
3284        for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
3285             E = lhsQID->qual_end(); I != E; ++I) {
3286          // when comparing an id<P> on lhs with a static type on rhs,
3287          // see if static class implements all of id's protocols, directly or
3288          // through its super class and categories.
3289          if (ClassImplementsProtocol(*I, rhsID, true)) {
3290            match = true;
3291            break;
3292          }
3293        }
3294      }
3295      if (!match)
3296        return false;
3297    }
3298
3299    return true;
3300  }
3301
3302  const ObjCObjectPointerType *rhsQID = rhs->getAsObjCQualifiedIdType();
3303  assert(rhsQID && "One of the LHS/RHS should be id<x>");
3304
3305  if (const ObjCObjectPointerType *lhsOPT =
3306        lhs->getAsObjCInterfacePointerType()) {
3307    if (lhsOPT->qual_empty()) {
3308      bool match = false;
3309      if (ObjCInterfaceDecl *lhsID = lhsOPT->getInterfaceDecl()) {
3310        for (ObjCObjectPointerType::qual_iterator I = rhsQID->qual_begin(),
3311             E = rhsQID->qual_end(); I != E; ++I) {
3312          // when comparing an id<P> on lhs with a static type on rhs,
3313          // see if static class implements all of id's protocols, directly or
3314          // through its super class and categories.
3315          if (ClassImplementsProtocol(*I, lhsID, true)) {
3316            match = true;
3317            break;
3318          }
3319        }
3320        if (!match)
3321          return false;
3322      }
3323      return true;
3324    }
3325    // Both the right and left sides have qualifiers.
3326    for (ObjCObjectPointerType::qual_iterator I = lhsOPT->qual_begin(),
3327         E = lhsOPT->qual_end(); I != E; ++I) {
3328      ObjCProtocolDecl *lhsProto = *I;
3329      bool match = false;
3330
3331      // when comparing an id<P> on lhs with a static type on rhs,
3332      // see if static class implements all of id's protocols, directly or
3333      // through its super class and categories.
3334      for (ObjCObjectPointerType::qual_iterator J = rhsQID->qual_begin(),
3335           E = rhsQID->qual_end(); J != E; ++J) {
3336        ObjCProtocolDecl *rhsProto = *J;
3337        if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
3338            (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
3339          match = true;
3340          break;
3341        }
3342      }
3343      if (!match)
3344        return false;
3345    }
3346    return true;
3347  }
3348  return false;
3349}
3350
3351/// canAssignObjCInterfaces - Return true if the two interface types are
3352/// compatible for assignment from RHS to LHS.  This handles validation of any
3353/// protocol qualifiers on the LHS or RHS.
3354///
3355bool ASTContext::canAssignObjCInterfaces(const ObjCObjectPointerType *LHSOPT,
3356                                         const ObjCObjectPointerType *RHSOPT) {
3357  // If either type represents the built-in 'id' or 'Class' types, return true.
3358  if (LHSOPT->isObjCBuiltinType() || RHSOPT->isObjCBuiltinType())
3359    return true;
3360
3361  if (LHSOPT->isObjCQualifiedIdType() || RHSOPT->isObjCQualifiedIdType())
3362    return ObjCQualifiedIdTypesAreCompatible(QualType(LHSOPT,0),
3363                                             QualType(RHSOPT,0),
3364                                             false);
3365
3366  const ObjCInterfaceType* LHS = LHSOPT->getInterfaceType();
3367  const ObjCInterfaceType* RHS = RHSOPT->getInterfaceType();
3368  if (LHS && RHS) // We have 2 user-defined types.
3369    return canAssignObjCInterfaces(LHS, RHS);
3370
3371  return false;
3372}
3373
3374bool ASTContext::canAssignObjCInterfaces(const ObjCInterfaceType *LHS,
3375                                         const ObjCInterfaceType *RHS) {
3376  // Verify that the base decls are compatible: the RHS must be a subclass of
3377  // the LHS.
3378  if (!LHS->getDecl()->isSuperClassOf(RHS->getDecl()))
3379    return false;
3380
3381  // RHS must have a superset of the protocols in the LHS.  If the LHS is not
3382  // protocol qualified at all, then we are good.
3383  if (LHS->getNumProtocols() == 0)
3384    return true;
3385
3386  // Okay, we know the LHS has protocol qualifiers.  If the RHS doesn't, then it
3387  // isn't a superset.
3388  if (RHS->getNumProtocols() == 0)
3389    return true;  // FIXME: should return false!
3390
3391  for (ObjCInterfaceType::qual_iterator LHSPI = LHS->qual_begin(),
3392                                        LHSPE = LHS->qual_end();
3393       LHSPI != LHSPE; LHSPI++) {
3394    bool RHSImplementsProtocol = false;
3395
3396    // If the RHS doesn't implement the protocol on the left, the types
3397    // are incompatible.
3398    for (ObjCInterfaceType::qual_iterator RHSPI = RHS->qual_begin(),
3399                                          RHSPE = RHS->qual_end();
3400         RHSPI != RHSPE; RHSPI++) {
3401      if ((*RHSPI)->lookupProtocolNamed((*LHSPI)->getIdentifier())) {
3402        RHSImplementsProtocol = true;
3403        break;
3404      }
3405    }
3406    // FIXME: For better diagnostics, consider passing back the protocol name.
3407    if (!RHSImplementsProtocol)
3408      return false;
3409  }
3410  // The RHS implements all protocols listed on the LHS.
3411  return true;
3412}
3413
3414bool ASTContext::areComparableObjCPointerTypes(QualType LHS, QualType RHS) {
3415  // get the "pointed to" types
3416  const ObjCObjectPointerType *LHSOPT = LHS->getAsObjCObjectPointerType();
3417  const ObjCObjectPointerType *RHSOPT = RHS->getAsObjCObjectPointerType();
3418
3419  if (!LHSOPT || !RHSOPT)
3420    return false;
3421
3422  return canAssignObjCInterfaces(LHSOPT, RHSOPT) ||
3423         canAssignObjCInterfaces(RHSOPT, LHSOPT);
3424}
3425
3426/// typesAreCompatible - C99 6.7.3p9: For two qualified types to be compatible,
3427/// both shall have the identically qualified version of a compatible type.
3428/// C99 6.2.7p1: Two types have compatible types if their types are the
3429/// same. See 6.7.[2,3,5] for additional rules.
3430bool ASTContext::typesAreCompatible(QualType LHS, QualType RHS) {
3431  return !mergeTypes(LHS, RHS).isNull();
3432}
3433
3434QualType ASTContext::mergeFunctionTypes(QualType lhs, QualType rhs) {
3435  const FunctionType *lbase = lhs->getAsFunctionType();
3436  const FunctionType *rbase = rhs->getAsFunctionType();
3437  const FunctionProtoType *lproto = dyn_cast<FunctionProtoType>(lbase);
3438  const FunctionProtoType *rproto = dyn_cast<FunctionProtoType>(rbase);
3439  bool allLTypes = true;
3440  bool allRTypes = true;
3441
3442  // Check return type
3443  QualType retType = mergeTypes(lbase->getResultType(), rbase->getResultType());
3444  if (retType.isNull()) return QualType();
3445  if (getCanonicalType(retType) != getCanonicalType(lbase->getResultType()))
3446    allLTypes = false;
3447  if (getCanonicalType(retType) != getCanonicalType(rbase->getResultType()))
3448    allRTypes = false;
3449  // FIXME: double check this
3450  bool NoReturn = lbase->getNoReturnAttr() || rbase->getNoReturnAttr();
3451  if (NoReturn != lbase->getNoReturnAttr())
3452    allLTypes = false;
3453  if (NoReturn != rbase->getNoReturnAttr())
3454    allRTypes = false;
3455
3456  if (lproto && rproto) { // two C99 style function prototypes
3457    assert(!lproto->hasExceptionSpec() && !rproto->hasExceptionSpec() &&
3458           "C++ shouldn't be here");
3459    unsigned lproto_nargs = lproto->getNumArgs();
3460    unsigned rproto_nargs = rproto->getNumArgs();
3461
3462    // Compatible functions must have the same number of arguments
3463    if (lproto_nargs != rproto_nargs)
3464      return QualType();
3465
3466    // Variadic and non-variadic functions aren't compatible
3467    if (lproto->isVariadic() != rproto->isVariadic())
3468      return QualType();
3469
3470    if (lproto->getTypeQuals() != rproto->getTypeQuals())
3471      return QualType();
3472
3473    // Check argument compatibility
3474    llvm::SmallVector<QualType, 10> types;
3475    for (unsigned i = 0; i < lproto_nargs; i++) {
3476      QualType largtype = lproto->getArgType(i).getUnqualifiedType();
3477      QualType rargtype = rproto->getArgType(i).getUnqualifiedType();
3478      QualType argtype = mergeTypes(largtype, rargtype);
3479      if (argtype.isNull()) return QualType();
3480      types.push_back(argtype);
3481      if (getCanonicalType(argtype) != getCanonicalType(largtype))
3482        allLTypes = false;
3483      if (getCanonicalType(argtype) != getCanonicalType(rargtype))
3484        allRTypes = false;
3485    }
3486    if (allLTypes) return lhs;
3487    if (allRTypes) return rhs;
3488    return getFunctionType(retType, types.begin(), types.size(),
3489                           lproto->isVariadic(), lproto->getTypeQuals(),
3490                           NoReturn);
3491  }
3492
3493  if (lproto) allRTypes = false;
3494  if (rproto) allLTypes = false;
3495
3496  const FunctionProtoType *proto = lproto ? lproto : rproto;
3497  if (proto) {
3498    assert(!proto->hasExceptionSpec() && "C++ shouldn't be here");
3499    if (proto->isVariadic()) return QualType();
3500    // Check that the types are compatible with the types that
3501    // would result from default argument promotions (C99 6.7.5.3p15).
3502    // The only types actually affected are promotable integer
3503    // types and floats, which would be passed as a different
3504    // type depending on whether the prototype is visible.
3505    unsigned proto_nargs = proto->getNumArgs();
3506    for (unsigned i = 0; i < proto_nargs; ++i) {
3507      QualType argTy = proto->getArgType(i);
3508      if (argTy->isPromotableIntegerType() ||
3509          getCanonicalType(argTy).getUnqualifiedType() == FloatTy)
3510        return QualType();
3511    }
3512
3513    if (allLTypes) return lhs;
3514    if (allRTypes) return rhs;
3515    return getFunctionType(retType, proto->arg_type_begin(),
3516                           proto->getNumArgs(), proto->isVariadic(),
3517                           proto->getTypeQuals(), NoReturn);
3518  }
3519
3520  if (allLTypes) return lhs;
3521  if (allRTypes) return rhs;
3522  return getFunctionNoProtoType(retType, NoReturn);
3523}
3524
3525QualType ASTContext::mergeTypes(QualType LHS, QualType RHS) {
3526  // C++ [expr]: If an expression initially has the type "reference to T", the
3527  // type is adjusted to "T" prior to any further analysis, the expression
3528  // designates the object or function denoted by the reference, and the
3529  // expression is an lvalue unless the reference is an rvalue reference and
3530  // the expression is a function call (possibly inside parentheses).
3531  // FIXME: C++ shouldn't be going through here!  The rules are different
3532  // enough that they should be handled separately.
3533  // FIXME: Merging of lvalue and rvalue references is incorrect. C++ *really*
3534  // shouldn't be going through here!
3535  if (const ReferenceType *RT = LHS->getAsReferenceType())
3536    LHS = RT->getPointeeType();
3537  if (const ReferenceType *RT = RHS->getAsReferenceType())
3538    RHS = RT->getPointeeType();
3539
3540  QualType LHSCan = getCanonicalType(LHS),
3541           RHSCan = getCanonicalType(RHS);
3542
3543  // If two types are identical, they are compatible.
3544  if (LHSCan == RHSCan)
3545    return LHS;
3546
3547  // If the qualifiers are different, the types aren't compatible
3548  // Note that we handle extended qualifiers later, in the
3549  // case for ExtQualType.
3550  if (LHSCan.getCVRQualifiers() != RHSCan.getCVRQualifiers())
3551    return QualType();
3552
3553  Type::TypeClass LHSClass = LHSCan->getTypeClass();
3554  Type::TypeClass RHSClass = RHSCan->getTypeClass();
3555
3556  // We want to consider the two function types to be the same for these
3557  // comparisons, just force one to the other.
3558  if (LHSClass == Type::FunctionProto) LHSClass = Type::FunctionNoProto;
3559  if (RHSClass == Type::FunctionProto) RHSClass = Type::FunctionNoProto;
3560
3561  // Strip off objc_gc attributes off the top level so they can be merged.
3562  // This is a complete mess, but the attribute itself doesn't make much sense.
3563  if (RHSClass == Type::ExtQual) {
3564    QualType::GCAttrTypes GCAttr = RHSCan.getObjCGCAttr();
3565    if (GCAttr != QualType::GCNone) {
3566      QualType::GCAttrTypes GCLHSAttr = LHSCan.getObjCGCAttr();
3567      // __weak attribute must appear on both declarations.
3568      // __strong attribue is redundant if other decl is an objective-c
3569      // object pointer (or decorated with __strong attribute); otherwise
3570      // issue error.
3571      if ((GCAttr == QualType::Weak && GCLHSAttr != GCAttr) ||
3572          (GCAttr == QualType::Strong && GCLHSAttr != GCAttr &&
3573           !LHSCan->isObjCObjectPointerType()))
3574        return QualType();
3575
3576      RHS = QualType(cast<ExtQualType>(RHS.getDesugaredType())->getBaseType(),
3577                     RHS.getCVRQualifiers());
3578      QualType Result = mergeTypes(LHS, RHS);
3579      if (!Result.isNull()) {
3580        if (Result.getObjCGCAttr() == QualType::GCNone)
3581          Result = getObjCGCQualType(Result, GCAttr);
3582        else if (Result.getObjCGCAttr() != GCAttr)
3583          Result = QualType();
3584      }
3585      return Result;
3586    }
3587  }
3588  if (LHSClass == Type::ExtQual) {
3589    QualType::GCAttrTypes GCAttr = LHSCan.getObjCGCAttr();
3590    if (GCAttr != QualType::GCNone) {
3591      QualType::GCAttrTypes GCRHSAttr = RHSCan.getObjCGCAttr();
3592      // __weak attribute must appear on both declarations. __strong
3593      // __strong attribue is redundant if other decl is an objective-c
3594      // object pointer (or decorated with __strong attribute); otherwise
3595      // issue error.
3596      if ((GCAttr == QualType::Weak && GCRHSAttr != GCAttr) ||
3597          (GCAttr == QualType::Strong && GCRHSAttr != GCAttr &&
3598           !RHSCan->isObjCObjectPointerType()))
3599        return QualType();
3600
3601      LHS = QualType(cast<ExtQualType>(LHS.getDesugaredType())->getBaseType(),
3602                     LHS.getCVRQualifiers());
3603      QualType Result = mergeTypes(LHS, RHS);
3604      if (!Result.isNull()) {
3605        if (Result.getObjCGCAttr() == QualType::GCNone)
3606          Result = getObjCGCQualType(Result, GCAttr);
3607        else if (Result.getObjCGCAttr() != GCAttr)
3608          Result = QualType();
3609      }
3610      return Result;
3611    }
3612  }
3613
3614  // Same as above for arrays
3615  if (LHSClass == Type::VariableArray || LHSClass == Type::IncompleteArray)
3616    LHSClass = Type::ConstantArray;
3617  if (RHSClass == Type::VariableArray || RHSClass == Type::IncompleteArray)
3618    RHSClass = Type::ConstantArray;
3619
3620  // Canonicalize ExtVector -> Vector.
3621  if (LHSClass == Type::ExtVector) LHSClass = Type::Vector;
3622  if (RHSClass == Type::ExtVector) RHSClass = Type::Vector;
3623
3624  // If the canonical type classes don't match.
3625  if (LHSClass != RHSClass) {
3626    // C99 6.7.2.2p4: Each enumerated type shall be compatible with char,
3627    // a signed integer type, or an unsigned integer type.
3628    if (const EnumType* ETy = LHS->getAsEnumType()) {
3629      if (ETy->getDecl()->getIntegerType() == RHSCan.getUnqualifiedType())
3630        return RHS;
3631    }
3632    if (const EnumType* ETy = RHS->getAsEnumType()) {
3633      if (ETy->getDecl()->getIntegerType() == LHSCan.getUnqualifiedType())
3634        return LHS;
3635    }
3636
3637    return QualType();
3638  }
3639
3640  // The canonical type classes match.
3641  switch (LHSClass) {
3642#define TYPE(Class, Base)
3643#define ABSTRACT_TYPE(Class, Base)
3644#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
3645#define DEPENDENT_TYPE(Class, Base) case Type::Class:
3646#include "clang/AST/TypeNodes.def"
3647    assert(false && "Non-canonical and dependent types shouldn't get here");
3648    return QualType();
3649
3650  case Type::LValueReference:
3651  case Type::RValueReference:
3652  case Type::MemberPointer:
3653    assert(false && "C++ should never be in mergeTypes");
3654    return QualType();
3655
3656  case Type::IncompleteArray:
3657  case Type::VariableArray:
3658  case Type::FunctionProto:
3659  case Type::ExtVector:
3660    assert(false && "Types are eliminated above");
3661    return QualType();
3662
3663  case Type::Pointer:
3664  {
3665    // Merge two pointer types, while trying to preserve typedef info
3666    QualType LHSPointee = LHS->getAsPointerType()->getPointeeType();
3667    QualType RHSPointee = RHS->getAsPointerType()->getPointeeType();
3668    QualType ResultType = mergeTypes(LHSPointee, RHSPointee);
3669    if (ResultType.isNull()) return QualType();
3670    if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
3671      return LHS;
3672    if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
3673      return RHS;
3674    return getPointerType(ResultType);
3675  }
3676  case Type::BlockPointer:
3677  {
3678    // Merge two block pointer types, while trying to preserve typedef info
3679    QualType LHSPointee = LHS->getAsBlockPointerType()->getPointeeType();
3680    QualType RHSPointee = RHS->getAsBlockPointerType()->getPointeeType();
3681    QualType ResultType = mergeTypes(LHSPointee, RHSPointee);
3682    if (ResultType.isNull()) return QualType();
3683    if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
3684      return LHS;
3685    if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
3686      return RHS;
3687    return getBlockPointerType(ResultType);
3688  }
3689  case Type::ConstantArray:
3690  {
3691    const ConstantArrayType* LCAT = getAsConstantArrayType(LHS);
3692    const ConstantArrayType* RCAT = getAsConstantArrayType(RHS);
3693    if (LCAT && RCAT && RCAT->getSize() != LCAT->getSize())
3694      return QualType();
3695
3696    QualType LHSElem = getAsArrayType(LHS)->getElementType();
3697    QualType RHSElem = getAsArrayType(RHS)->getElementType();
3698    QualType ResultType = mergeTypes(LHSElem, RHSElem);
3699    if (ResultType.isNull()) return QualType();
3700    if (LCAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
3701      return LHS;
3702    if (RCAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
3703      return RHS;
3704    if (LCAT) return getConstantArrayType(ResultType, LCAT->getSize(),
3705                                          ArrayType::ArraySizeModifier(), 0);
3706    if (RCAT) return getConstantArrayType(ResultType, RCAT->getSize(),
3707                                          ArrayType::ArraySizeModifier(), 0);
3708    const VariableArrayType* LVAT = getAsVariableArrayType(LHS);
3709    const VariableArrayType* RVAT = getAsVariableArrayType(RHS);
3710    if (LVAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
3711      return LHS;
3712    if (RVAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
3713      return RHS;
3714    if (LVAT) {
3715      // FIXME: This isn't correct! But tricky to implement because
3716      // the array's size has to be the size of LHS, but the type
3717      // has to be different.
3718      return LHS;
3719    }
3720    if (RVAT) {
3721      // FIXME: This isn't correct! But tricky to implement because
3722      // the array's size has to be the size of RHS, but the type
3723      // has to be different.
3724      return RHS;
3725    }
3726    if (getCanonicalType(LHSElem) == getCanonicalType(ResultType)) return LHS;
3727    if (getCanonicalType(RHSElem) == getCanonicalType(ResultType)) return RHS;
3728    return getIncompleteArrayType(ResultType,
3729                                  ArrayType::ArraySizeModifier(), 0);
3730  }
3731  case Type::FunctionNoProto:
3732    return mergeFunctionTypes(LHS, RHS);
3733  case Type::Record:
3734  case Type::Enum:
3735    return QualType();
3736  case Type::Builtin:
3737    // Only exactly equal builtin types are compatible, which is tested above.
3738    return QualType();
3739  case Type::Complex:
3740    // Distinct complex types are incompatible.
3741    return QualType();
3742  case Type::Vector:
3743    // FIXME: The merged type should be an ExtVector!
3744    if (areCompatVectorTypes(LHS->getAsVectorType(), RHS->getAsVectorType()))
3745      return LHS;
3746    return QualType();
3747  case Type::ObjCInterface: {
3748    // Check if the interfaces are assignment compatible.
3749    // FIXME: This should be type compatibility, e.g. whether
3750    // "LHS x; RHS x;" at global scope is legal.
3751    const ObjCInterfaceType* LHSIface = LHS->getAsObjCInterfaceType();
3752    const ObjCInterfaceType* RHSIface = RHS->getAsObjCInterfaceType();
3753    if (LHSIface && RHSIface &&
3754        canAssignObjCInterfaces(LHSIface, RHSIface))
3755      return LHS;
3756
3757    return QualType();
3758  }
3759  case Type::ObjCObjectPointer: {
3760    if (canAssignObjCInterfaces(LHS->getAsObjCObjectPointerType(),
3761                                RHS->getAsObjCObjectPointerType()))
3762      return LHS;
3763
3764    return QualType();
3765  }
3766  case Type::FixedWidthInt:
3767    // Distinct fixed-width integers are not compatible.
3768    return QualType();
3769  case Type::ExtQual:
3770    // FIXME: ExtQual types can be compatible even if they're not
3771    // identical!
3772    return QualType();
3773    // First attempt at an implementation, but I'm not really sure it's
3774    // right...
3775#if 0
3776    ExtQualType* LQual = cast<ExtQualType>(LHSCan);
3777    ExtQualType* RQual = cast<ExtQualType>(RHSCan);
3778    if (LQual->getAddressSpace() != RQual->getAddressSpace() ||
3779        LQual->getObjCGCAttr() != RQual->getObjCGCAttr())
3780      return QualType();
3781    QualType LHSBase, RHSBase, ResultType, ResCanUnqual;
3782    LHSBase = QualType(LQual->getBaseType(), 0);
3783    RHSBase = QualType(RQual->getBaseType(), 0);
3784    ResultType = mergeTypes(LHSBase, RHSBase);
3785    if (ResultType.isNull()) return QualType();
3786    ResCanUnqual = getCanonicalType(ResultType).getUnqualifiedType();
3787    if (LHSCan.getUnqualifiedType() == ResCanUnqual)
3788      return LHS;
3789    if (RHSCan.getUnqualifiedType() == ResCanUnqual)
3790      return RHS;
3791    ResultType = getAddrSpaceQualType(ResultType, LQual->getAddressSpace());
3792    ResultType = getObjCGCQualType(ResultType, LQual->getObjCGCAttr());
3793    ResultType.setCVRQualifiers(LHSCan.getCVRQualifiers());
3794    return ResultType;
3795#endif
3796
3797  case Type::TemplateSpecialization:
3798    assert(false && "Dependent types have no size");
3799    break;
3800  }
3801
3802  return QualType();
3803}
3804
3805//===----------------------------------------------------------------------===//
3806//                         Integer Predicates
3807//===----------------------------------------------------------------------===//
3808
3809unsigned ASTContext::getIntWidth(QualType T) {
3810  if (T == BoolTy)
3811    return 1;
3812  if (FixedWidthIntType* FWIT = dyn_cast<FixedWidthIntType>(T)) {
3813    return FWIT->getWidth();
3814  }
3815  // For builtin types, just use the standard type sizing method
3816  return (unsigned)getTypeSize(T);
3817}
3818
3819QualType ASTContext::getCorrespondingUnsignedType(QualType T) {
3820  assert(T->isSignedIntegerType() && "Unexpected type");
3821  if (const EnumType* ETy = T->getAsEnumType())
3822    T = ETy->getDecl()->getIntegerType();
3823  const BuiltinType* BTy = T->getAsBuiltinType();
3824  assert (BTy && "Unexpected signed integer type");
3825  switch (BTy->getKind()) {
3826  case BuiltinType::Char_S:
3827  case BuiltinType::SChar:
3828    return UnsignedCharTy;
3829  case BuiltinType::Short:
3830    return UnsignedShortTy;
3831  case BuiltinType::Int:
3832    return UnsignedIntTy;
3833  case BuiltinType::Long:
3834    return UnsignedLongTy;
3835  case BuiltinType::LongLong:
3836    return UnsignedLongLongTy;
3837  case BuiltinType::Int128:
3838    return UnsignedInt128Ty;
3839  default:
3840    assert(0 && "Unexpected signed integer type");
3841    return QualType();
3842  }
3843}
3844
3845ExternalASTSource::~ExternalASTSource() { }
3846
3847void ExternalASTSource::PrintStats() { }
3848
3849
3850//===----------------------------------------------------------------------===//
3851//                          Builtin Type Computation
3852//===----------------------------------------------------------------------===//
3853
3854/// DecodeTypeFromStr - This decodes one type descriptor from Str, advancing the
3855/// pointer over the consumed characters.  This returns the resultant type.
3856static QualType DecodeTypeFromStr(const char *&Str, ASTContext &Context,
3857                                  ASTContext::GetBuiltinTypeError &Error,
3858                                  bool AllowTypeModifiers = true) {
3859  // Modifiers.
3860  int HowLong = 0;
3861  bool Signed = false, Unsigned = false;
3862
3863  // Read the modifiers first.
3864  bool Done = false;
3865  while (!Done) {
3866    switch (*Str++) {
3867    default: Done = true; --Str; break;
3868    case 'S':
3869      assert(!Unsigned && "Can't use both 'S' and 'U' modifiers!");
3870      assert(!Signed && "Can't use 'S' modifier multiple times!");
3871      Signed = true;
3872      break;
3873    case 'U':
3874      assert(!Signed && "Can't use both 'S' and 'U' modifiers!");
3875      assert(!Unsigned && "Can't use 'S' modifier multiple times!");
3876      Unsigned = true;
3877      break;
3878    case 'L':
3879      assert(HowLong <= 2 && "Can't have LLLL modifier");
3880      ++HowLong;
3881      break;
3882    }
3883  }
3884
3885  QualType Type;
3886
3887  // Read the base type.
3888  switch (*Str++) {
3889  default: assert(0 && "Unknown builtin type letter!");
3890  case 'v':
3891    assert(HowLong == 0 && !Signed && !Unsigned &&
3892           "Bad modifiers used with 'v'!");
3893    Type = Context.VoidTy;
3894    break;
3895  case 'f':
3896    assert(HowLong == 0 && !Signed && !Unsigned &&
3897           "Bad modifiers used with 'f'!");
3898    Type = Context.FloatTy;
3899    break;
3900  case 'd':
3901    assert(HowLong < 2 && !Signed && !Unsigned &&
3902           "Bad modifiers used with 'd'!");
3903    if (HowLong)
3904      Type = Context.LongDoubleTy;
3905    else
3906      Type = Context.DoubleTy;
3907    break;
3908  case 's':
3909    assert(HowLong == 0 && "Bad modifiers used with 's'!");
3910    if (Unsigned)
3911      Type = Context.UnsignedShortTy;
3912    else
3913      Type = Context.ShortTy;
3914    break;
3915  case 'i':
3916    if (HowLong == 3)
3917      Type = Unsigned ? Context.UnsignedInt128Ty : Context.Int128Ty;
3918    else if (HowLong == 2)
3919      Type = Unsigned ? Context.UnsignedLongLongTy : Context.LongLongTy;
3920    else if (HowLong == 1)
3921      Type = Unsigned ? Context.UnsignedLongTy : Context.LongTy;
3922    else
3923      Type = Unsigned ? Context.UnsignedIntTy : Context.IntTy;
3924    break;
3925  case 'c':
3926    assert(HowLong == 0 && "Bad modifiers used with 'c'!");
3927    if (Signed)
3928      Type = Context.SignedCharTy;
3929    else if (Unsigned)
3930      Type = Context.UnsignedCharTy;
3931    else
3932      Type = Context.CharTy;
3933    break;
3934  case 'b': // boolean
3935    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'b'!");
3936    Type = Context.BoolTy;
3937    break;
3938  case 'z':  // size_t.
3939    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'z'!");
3940    Type = Context.getSizeType();
3941    break;
3942  case 'F':
3943    Type = Context.getCFConstantStringType();
3944    break;
3945  case 'a':
3946    Type = Context.getBuiltinVaListType();
3947    assert(!Type.isNull() && "builtin va list type not initialized!");
3948    break;
3949  case 'A':
3950    // This is a "reference" to a va_list; however, what exactly
3951    // this means depends on how va_list is defined. There are two
3952    // different kinds of va_list: ones passed by value, and ones
3953    // passed by reference.  An example of a by-value va_list is
3954    // x86, where va_list is a char*. An example of by-ref va_list
3955    // is x86-64, where va_list is a __va_list_tag[1]. For x86,
3956    // we want this argument to be a char*&; for x86-64, we want
3957    // it to be a __va_list_tag*.
3958    Type = Context.getBuiltinVaListType();
3959    assert(!Type.isNull() && "builtin va list type not initialized!");
3960    if (Type->isArrayType()) {
3961      Type = Context.getArrayDecayedType(Type);
3962    } else {
3963      Type = Context.getLValueReferenceType(Type);
3964    }
3965    break;
3966  case 'V': {
3967    char *End;
3968    unsigned NumElements = strtoul(Str, &End, 10);
3969    assert(End != Str && "Missing vector size");
3970
3971    Str = End;
3972
3973    QualType ElementType = DecodeTypeFromStr(Str, Context, Error, false);
3974    Type = Context.getVectorType(ElementType, NumElements);
3975    break;
3976  }
3977  case 'P':
3978    Type = Context.getFILEType();
3979    if (Type.isNull()) {
3980      Error = ASTContext::GE_Missing_stdio;
3981      return QualType();
3982    }
3983    break;
3984  case 'J':
3985    if (Signed)
3986      Type = Context.getsigjmp_bufType();
3987    else
3988      Type = Context.getjmp_bufType();
3989
3990    if (Type.isNull()) {
3991      Error = ASTContext::GE_Missing_setjmp;
3992      return QualType();
3993    }
3994    break;
3995  }
3996
3997  if (!AllowTypeModifiers)
3998    return Type;
3999
4000  Done = false;
4001  while (!Done) {
4002    switch (*Str++) {
4003      default: Done = true; --Str; break;
4004      case '*':
4005        Type = Context.getPointerType(Type);
4006        break;
4007      case '&':
4008        Type = Context.getLValueReferenceType(Type);
4009        break;
4010      // FIXME: There's no way to have a built-in with an rvalue ref arg.
4011      case 'C':
4012        Type = Type.getQualifiedType(QualType::Const);
4013        break;
4014    }
4015  }
4016
4017  return Type;
4018}
4019
4020/// GetBuiltinType - Return the type for the specified builtin.
4021QualType ASTContext::GetBuiltinType(unsigned id,
4022                                    GetBuiltinTypeError &Error) {
4023  const char *TypeStr = BuiltinInfo.GetTypeString(id);
4024
4025  llvm::SmallVector<QualType, 8> ArgTypes;
4026
4027  Error = GE_None;
4028  QualType ResType = DecodeTypeFromStr(TypeStr, *this, Error);
4029  if (Error != GE_None)
4030    return QualType();
4031  while (TypeStr[0] && TypeStr[0] != '.') {
4032    QualType Ty = DecodeTypeFromStr(TypeStr, *this, Error);
4033    if (Error != GE_None)
4034      return QualType();
4035
4036    // Do array -> pointer decay.  The builtin should use the decayed type.
4037    if (Ty->isArrayType())
4038      Ty = getArrayDecayedType(Ty);
4039
4040    ArgTypes.push_back(Ty);
4041  }
4042
4043  assert((TypeStr[0] != '.' || TypeStr[1] == 0) &&
4044         "'.' should only occur at end of builtin type list!");
4045
4046  // handle untyped/variadic arguments "T c99Style();" or "T cppStyle(...);".
4047  if (ArgTypes.size() == 0 && TypeStr[0] == '.')
4048    return getFunctionNoProtoType(ResType);
4049  return getFunctionType(ResType, ArgTypes.data(), ArgTypes.size(),
4050                         TypeStr[0] == '.', 0);
4051}
4052