ASTContext.cpp revision 9e6c20bae697c908b7d368c0f79f5510d1006a65
1//===--- ASTContext.cpp - Context to hold long-lived AST nodes ------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements the ASTContext interface.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/AST/ASTContext.h"
15#include "clang/AST/DeclCXX.h"
16#include "clang/AST/DeclObjC.h"
17#include "clang/AST/DeclTemplate.h"
18#include "clang/AST/Expr.h"
19#include "clang/AST/ExternalASTSource.h"
20#include "clang/AST/RecordLayout.h"
21#include "clang/AST/ExprObjC.h"
22#include "clang/Basic/SourceManager.h"
23#include "clang/Basic/TargetInfo.h"
24#include "llvm/ADT/StringExtras.h"
25#include "llvm/Bitcode/Serialize.h"
26#include "llvm/Bitcode/Deserialize.h"
27#include "llvm/Support/MathExtras.h"
28#include "llvm/Support/MemoryBuffer.h"
29using namespace clang;
30
31enum FloatingRank {
32  FloatRank, DoubleRank, LongDoubleRank
33};
34
35ASTContext::ASTContext(const LangOptions& LOpts, SourceManager &SM,
36                       TargetInfo &t,
37                       IdentifierTable &idents, SelectorTable &sels,
38                       bool FreeMem, unsigned size_reserve) :
39  GlobalNestedNameSpecifier(0), CFConstantStringTypeDecl(0),
40  ObjCFastEnumerationStateTypeDecl(0), SourceMgr(SM), LangOpts(LOpts),
41  FreeMemory(FreeMem), Target(t), Idents(idents), Selectors(sels),
42  ExternalSource(0) {
43  if (size_reserve > 0) Types.reserve(size_reserve);
44  InitBuiltinTypes();
45  BuiltinInfo.InitializeBuiltins(idents, Target, LangOpts.NoBuiltin);
46  TUDecl = TranslationUnitDecl::Create(*this);
47}
48
49ASTContext::~ASTContext() {
50  // Deallocate all the types.
51  while (!Types.empty()) {
52    Types.back()->Destroy(*this);
53    Types.pop_back();
54  }
55
56  {
57    llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*>::iterator
58      I = ASTRecordLayouts.begin(), E = ASTRecordLayouts.end();
59    while (I != E) {
60      ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second);
61      delete R;
62    }
63  }
64
65  {
66    llvm::DenseMap<const ObjCInterfaceDecl*, const ASTRecordLayout*>::iterator
67      I = ASTObjCInterfaces.begin(), E = ASTObjCInterfaces.end();
68    while (I != E) {
69      ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second);
70      delete R;
71    }
72  }
73
74  {
75    llvm::DenseMap<const ObjCInterfaceDecl*, RecordDecl*>::iterator
76      I = ASTRecordForInterface.begin(), E = ASTRecordForInterface.end();
77    while (I != E) {
78      RecordDecl *R = (I++)->second;
79      R->Destroy(*this);
80    }
81  }
82
83  // Destroy nested-name-specifiers.
84  for (llvm::FoldingSet<NestedNameSpecifier>::iterator
85         NNS = NestedNameSpecifiers.begin(),
86         NNSEnd = NestedNameSpecifiers.end();
87       NNS != NNSEnd;
88       /* Increment in loop */)
89    (*NNS++).Destroy(*this);
90
91  if (GlobalNestedNameSpecifier)
92    GlobalNestedNameSpecifier->Destroy(*this);
93
94  TUDecl->Destroy(*this);
95}
96
97void
98ASTContext::setExternalSource(llvm::OwningPtr<ExternalASTSource> &Source) {
99  ExternalSource.reset(Source.take());
100}
101
102void ASTContext::PrintStats() const {
103  fprintf(stderr, "*** AST Context Stats:\n");
104  fprintf(stderr, "  %d types total.\n", (int)Types.size());
105  unsigned NumBuiltin = 0, NumPointer = 0, NumArray = 0, NumFunctionP = 0;
106  unsigned NumVector = 0, NumComplex = 0, NumBlockPointer = 0;
107  unsigned NumFunctionNP = 0, NumTypeName = 0, NumTagged = 0;
108  unsigned NumLValueReference = 0, NumRValueReference = 0, NumMemberPointer = 0;
109
110  unsigned NumTagStruct = 0, NumTagUnion = 0, NumTagEnum = 0, NumTagClass = 0;
111  unsigned NumObjCInterfaces = 0, NumObjCQualifiedInterfaces = 0;
112  unsigned NumObjCQualifiedIds = 0;
113  unsigned NumTypeOfTypes = 0, NumTypeOfExprTypes = 0;
114  unsigned NumExtQual = 0;
115
116  for (unsigned i = 0, e = Types.size(); i != e; ++i) {
117    Type *T = Types[i];
118    if (isa<BuiltinType>(T))
119      ++NumBuiltin;
120    else if (isa<PointerType>(T))
121      ++NumPointer;
122    else if (isa<BlockPointerType>(T))
123      ++NumBlockPointer;
124    else if (isa<LValueReferenceType>(T))
125      ++NumLValueReference;
126    else if (isa<RValueReferenceType>(T))
127      ++NumRValueReference;
128    else if (isa<MemberPointerType>(T))
129      ++NumMemberPointer;
130    else if (isa<ComplexType>(T))
131      ++NumComplex;
132    else if (isa<ArrayType>(T))
133      ++NumArray;
134    else if (isa<VectorType>(T))
135      ++NumVector;
136    else if (isa<FunctionNoProtoType>(T))
137      ++NumFunctionNP;
138    else if (isa<FunctionProtoType>(T))
139      ++NumFunctionP;
140    else if (isa<TypedefType>(T))
141      ++NumTypeName;
142    else if (TagType *TT = dyn_cast<TagType>(T)) {
143      ++NumTagged;
144      switch (TT->getDecl()->getTagKind()) {
145      default: assert(0 && "Unknown tagged type!");
146      case TagDecl::TK_struct: ++NumTagStruct; break;
147      case TagDecl::TK_union:  ++NumTagUnion; break;
148      case TagDecl::TK_class:  ++NumTagClass; break;
149      case TagDecl::TK_enum:   ++NumTagEnum; break;
150      }
151    } else if (isa<ObjCInterfaceType>(T))
152      ++NumObjCInterfaces;
153    else if (isa<ObjCQualifiedInterfaceType>(T))
154      ++NumObjCQualifiedInterfaces;
155    else if (isa<ObjCQualifiedIdType>(T))
156      ++NumObjCQualifiedIds;
157    else if (isa<TypeOfType>(T))
158      ++NumTypeOfTypes;
159    else if (isa<TypeOfExprType>(T))
160      ++NumTypeOfExprTypes;
161    else if (isa<ExtQualType>(T))
162      ++NumExtQual;
163    else {
164      QualType(T, 0).dump();
165      assert(0 && "Unknown type!");
166    }
167  }
168
169  fprintf(stderr, "    %d builtin types\n", NumBuiltin);
170  fprintf(stderr, "    %d pointer types\n", NumPointer);
171  fprintf(stderr, "    %d block pointer types\n", NumBlockPointer);
172  fprintf(stderr, "    %d lvalue reference types\n", NumLValueReference);
173  fprintf(stderr, "    %d rvalue reference types\n", NumRValueReference);
174  fprintf(stderr, "    %d member pointer types\n", NumMemberPointer);
175  fprintf(stderr, "    %d complex types\n", NumComplex);
176  fprintf(stderr, "    %d array types\n", NumArray);
177  fprintf(stderr, "    %d vector types\n", NumVector);
178  fprintf(stderr, "    %d function types with proto\n", NumFunctionP);
179  fprintf(stderr, "    %d function types with no proto\n", NumFunctionNP);
180  fprintf(stderr, "    %d typename (typedef) types\n", NumTypeName);
181  fprintf(stderr, "    %d tagged types\n", NumTagged);
182  fprintf(stderr, "      %d struct types\n", NumTagStruct);
183  fprintf(stderr, "      %d union types\n", NumTagUnion);
184  fprintf(stderr, "      %d class types\n", NumTagClass);
185  fprintf(stderr, "      %d enum types\n", NumTagEnum);
186  fprintf(stderr, "    %d interface types\n", NumObjCInterfaces);
187  fprintf(stderr, "    %d protocol qualified interface types\n",
188          NumObjCQualifiedInterfaces);
189  fprintf(stderr, "    %d protocol qualified id types\n",
190          NumObjCQualifiedIds);
191  fprintf(stderr, "    %d typeof types\n", NumTypeOfTypes);
192  fprintf(stderr, "    %d typeof exprs\n", NumTypeOfExprTypes);
193  fprintf(stderr, "    %d attribute-qualified types\n", NumExtQual);
194
195  fprintf(stderr, "Total bytes = %d\n", int(NumBuiltin*sizeof(BuiltinType)+
196    NumPointer*sizeof(PointerType)+NumArray*sizeof(ArrayType)+
197    NumComplex*sizeof(ComplexType)+NumVector*sizeof(VectorType)+
198    NumLValueReference*sizeof(LValueReferenceType)+
199    NumRValueReference*sizeof(RValueReferenceType)+
200    NumMemberPointer*sizeof(MemberPointerType)+
201    NumFunctionP*sizeof(FunctionProtoType)+
202    NumFunctionNP*sizeof(FunctionNoProtoType)+
203    NumTypeName*sizeof(TypedefType)+NumTagged*sizeof(TagType)+
204    NumTypeOfTypes*sizeof(TypeOfType)+NumTypeOfExprTypes*sizeof(TypeOfExprType)+
205    NumExtQual*sizeof(ExtQualType)));
206
207  if (ExternalSource.get()) {
208    fprintf(stderr, "\n");
209    ExternalSource->PrintStats();
210  }
211}
212
213
214void ASTContext::InitBuiltinType(QualType &R, BuiltinType::Kind K) {
215  Types.push_back((R = QualType(new (*this,8) BuiltinType(K),0)).getTypePtr());
216}
217
218void ASTContext::InitBuiltinTypes() {
219  assert(VoidTy.isNull() && "Context reinitialized?");
220
221  // C99 6.2.5p19.
222  InitBuiltinType(VoidTy,              BuiltinType::Void);
223
224  // C99 6.2.5p2.
225  InitBuiltinType(BoolTy,              BuiltinType::Bool);
226  // C99 6.2.5p3.
227  if (Target.isCharSigned())
228    InitBuiltinType(CharTy,            BuiltinType::Char_S);
229  else
230    InitBuiltinType(CharTy,            BuiltinType::Char_U);
231  // C99 6.2.5p4.
232  InitBuiltinType(SignedCharTy,        BuiltinType::SChar);
233  InitBuiltinType(ShortTy,             BuiltinType::Short);
234  InitBuiltinType(IntTy,               BuiltinType::Int);
235  InitBuiltinType(LongTy,              BuiltinType::Long);
236  InitBuiltinType(LongLongTy,          BuiltinType::LongLong);
237
238  // C99 6.2.5p6.
239  InitBuiltinType(UnsignedCharTy,      BuiltinType::UChar);
240  InitBuiltinType(UnsignedShortTy,     BuiltinType::UShort);
241  InitBuiltinType(UnsignedIntTy,       BuiltinType::UInt);
242  InitBuiltinType(UnsignedLongTy,      BuiltinType::ULong);
243  InitBuiltinType(UnsignedLongLongTy,  BuiltinType::ULongLong);
244
245  // C99 6.2.5p10.
246  InitBuiltinType(FloatTy,             BuiltinType::Float);
247  InitBuiltinType(DoubleTy,            BuiltinType::Double);
248  InitBuiltinType(LongDoubleTy,        BuiltinType::LongDouble);
249
250  if (LangOpts.CPlusPlus) // C++ 3.9.1p5
251    InitBuiltinType(WCharTy,           BuiltinType::WChar);
252  else // C99
253    WCharTy = getFromTargetType(Target.getWCharType());
254
255  // Placeholder type for functions.
256  InitBuiltinType(OverloadTy,          BuiltinType::Overload);
257
258  // Placeholder type for type-dependent expressions whose type is
259  // completely unknown. No code should ever check a type against
260  // DependentTy and users should never see it; however, it is here to
261  // help diagnose failures to properly check for type-dependent
262  // expressions.
263  InitBuiltinType(DependentTy,         BuiltinType::Dependent);
264
265  // C99 6.2.5p11.
266  FloatComplexTy      = getComplexType(FloatTy);
267  DoubleComplexTy     = getComplexType(DoubleTy);
268  LongDoubleComplexTy = getComplexType(LongDoubleTy);
269
270  BuiltinVaListType = QualType();
271  ObjCIdType = QualType();
272  IdStructType = 0;
273  ObjCClassType = QualType();
274  ClassStructType = 0;
275
276  ObjCConstantStringType = QualType();
277
278  // void * type
279  VoidPtrTy = getPointerType(VoidTy);
280}
281
282//===----------------------------------------------------------------------===//
283//                         Type Sizing and Analysis
284//===----------------------------------------------------------------------===//
285
286/// getFloatTypeSemantics - Return the APFloat 'semantics' for the specified
287/// scalar floating point type.
288const llvm::fltSemantics &ASTContext::getFloatTypeSemantics(QualType T) const {
289  const BuiltinType *BT = T->getAsBuiltinType();
290  assert(BT && "Not a floating point type!");
291  switch (BT->getKind()) {
292  default: assert(0 && "Not a floating point type!");
293  case BuiltinType::Float:      return Target.getFloatFormat();
294  case BuiltinType::Double:     return Target.getDoubleFormat();
295  case BuiltinType::LongDouble: return Target.getLongDoubleFormat();
296  }
297}
298
299/// getDeclAlign - Return a conservative estimate of the alignment of the
300/// specified decl.  Note that bitfields do not have a valid alignment, so
301/// this method will assert on them.
302unsigned ASTContext::getDeclAlignInBytes(const Decl *D) {
303  unsigned Align = Target.getCharWidth();
304
305  if (const AlignedAttr* AA = D->getAttr<AlignedAttr>())
306    Align = std::max(Align, AA->getAlignment());
307
308  if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
309    QualType T = VD->getType();
310    if (const ReferenceType* RT = T->getAsReferenceType()) {
311      unsigned AS = RT->getPointeeType().getAddressSpace();
312      Align = Target.getPointerAlign(AS);
313    } else if (!T->isIncompleteType() && !T->isFunctionType()) {
314      // Incomplete or function types default to 1.
315      while (isa<VariableArrayType>(T) || isa<IncompleteArrayType>(T))
316        T = cast<ArrayType>(T)->getElementType();
317
318      Align = std::max(Align, getPreferredTypeAlign(T.getTypePtr()));
319    }
320  }
321
322  return Align / Target.getCharWidth();
323}
324
325/// getTypeSize - Return the size of the specified type, in bits.  This method
326/// does not work on incomplete types.
327std::pair<uint64_t, unsigned>
328ASTContext::getTypeInfo(const Type *T) {
329  T = getCanonicalType(T);
330  uint64_t Width=0;
331  unsigned Align=8;
332  switch (T->getTypeClass()) {
333#define TYPE(Class, Base)
334#define ABSTRACT_TYPE(Class, Base)
335#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
336#define DEPENDENT_TYPE(Class, Base) case Type::Class:
337#include "clang/AST/TypeNodes.def"
338    assert(false && "Should not see non-canonical or dependent types");
339    break;
340
341  case Type::FunctionNoProto:
342  case Type::FunctionProto:
343  case Type::IncompleteArray:
344    assert(0 && "Incomplete types have no size!");
345  case Type::VariableArray:
346    assert(0 && "VLAs not implemented yet!");
347  case Type::ConstantArray: {
348    const ConstantArrayType *CAT = cast<ConstantArrayType>(T);
349
350    std::pair<uint64_t, unsigned> EltInfo = getTypeInfo(CAT->getElementType());
351    Width = EltInfo.first*CAT->getSize().getZExtValue();
352    Align = EltInfo.second;
353    break;
354  }
355  case Type::ExtVector:
356  case Type::Vector: {
357    std::pair<uint64_t, unsigned> EltInfo =
358      getTypeInfo(cast<VectorType>(T)->getElementType());
359    Width = EltInfo.first*cast<VectorType>(T)->getNumElements();
360    Align = Width;
361    // If the alignment is not a power of 2, round up to the next power of 2.
362    // This happens for non-power-of-2 length vectors.
363    // FIXME: this should probably be a target property.
364    Align = 1 << llvm::Log2_32_Ceil(Align);
365    break;
366  }
367
368  case Type::Builtin:
369    switch (cast<BuiltinType>(T)->getKind()) {
370    default: assert(0 && "Unknown builtin type!");
371    case BuiltinType::Void:
372      assert(0 && "Incomplete types have no size!");
373    case BuiltinType::Bool:
374      Width = Target.getBoolWidth();
375      Align = Target.getBoolAlign();
376      break;
377    case BuiltinType::Char_S:
378    case BuiltinType::Char_U:
379    case BuiltinType::UChar:
380    case BuiltinType::SChar:
381      Width = Target.getCharWidth();
382      Align = Target.getCharAlign();
383      break;
384    case BuiltinType::WChar:
385      Width = Target.getWCharWidth();
386      Align = Target.getWCharAlign();
387      break;
388    case BuiltinType::UShort:
389    case BuiltinType::Short:
390      Width = Target.getShortWidth();
391      Align = Target.getShortAlign();
392      break;
393    case BuiltinType::UInt:
394    case BuiltinType::Int:
395      Width = Target.getIntWidth();
396      Align = Target.getIntAlign();
397      break;
398    case BuiltinType::ULong:
399    case BuiltinType::Long:
400      Width = Target.getLongWidth();
401      Align = Target.getLongAlign();
402      break;
403    case BuiltinType::ULongLong:
404    case BuiltinType::LongLong:
405      Width = Target.getLongLongWidth();
406      Align = Target.getLongLongAlign();
407      break;
408    case BuiltinType::Float:
409      Width = Target.getFloatWidth();
410      Align = Target.getFloatAlign();
411      break;
412    case BuiltinType::Double:
413      Width = Target.getDoubleWidth();
414      Align = Target.getDoubleAlign();
415      break;
416    case BuiltinType::LongDouble:
417      Width = Target.getLongDoubleWidth();
418      Align = Target.getLongDoubleAlign();
419      break;
420    }
421    break;
422  case Type::FixedWidthInt:
423    // FIXME: This isn't precisely correct; the width/alignment should depend
424    // on the available types for the target
425    Width = cast<FixedWidthIntType>(T)->getWidth();
426    Width = std::max(llvm::NextPowerOf2(Width - 1), (uint64_t)8);
427    Align = Width;
428    break;
429  case Type::ExtQual:
430    // FIXME: Pointers into different addr spaces could have different sizes and
431    // alignment requirements: getPointerInfo should take an AddrSpace.
432    return getTypeInfo(QualType(cast<ExtQualType>(T)->getBaseType(), 0));
433  case Type::ObjCQualifiedId:
434  case Type::ObjCQualifiedClass:
435  case Type::ObjCQualifiedInterface:
436    Width = Target.getPointerWidth(0);
437    Align = Target.getPointerAlign(0);
438    break;
439  case Type::BlockPointer: {
440    unsigned AS = cast<BlockPointerType>(T)->getPointeeType().getAddressSpace();
441    Width = Target.getPointerWidth(AS);
442    Align = Target.getPointerAlign(AS);
443    break;
444  }
445  case Type::Pointer: {
446    unsigned AS = cast<PointerType>(T)->getPointeeType().getAddressSpace();
447    Width = Target.getPointerWidth(AS);
448    Align = Target.getPointerAlign(AS);
449    break;
450  }
451  case Type::LValueReference:
452  case Type::RValueReference:
453    // "When applied to a reference or a reference type, the result is the size
454    // of the referenced type." C++98 5.3.3p2: expr.sizeof.
455    // FIXME: This is wrong for struct layout: a reference in a struct has
456    // pointer size.
457    return getTypeInfo(cast<ReferenceType>(T)->getPointeeType());
458  case Type::MemberPointer: {
459    // FIXME: This is not only platform- but also ABI-dependent. We follow
460    // the GCC ABI, where pointers to data are one pointer large, pointers to
461    // functions two pointers. But if we want to support ABI compatibility with
462    // other compilers too, we need to delegate this completely to TargetInfo
463    // or some ABI abstraction layer.
464    QualType Pointee = cast<MemberPointerType>(T)->getPointeeType();
465    unsigned AS = Pointee.getAddressSpace();
466    Width = Target.getPointerWidth(AS);
467    if (Pointee->isFunctionType())
468      Width *= 2;
469    Align = Target.getPointerAlign(AS);
470    // GCC aligns at single pointer width.
471  }
472  case Type::Complex: {
473    // Complex types have the same alignment as their elements, but twice the
474    // size.
475    std::pair<uint64_t, unsigned> EltInfo =
476      getTypeInfo(cast<ComplexType>(T)->getElementType());
477    Width = EltInfo.first*2;
478    Align = EltInfo.second;
479    break;
480  }
481  case Type::ObjCInterface: {
482    const ObjCInterfaceType *ObjCI = cast<ObjCInterfaceType>(T);
483    const ASTRecordLayout &Layout = getASTObjCInterfaceLayout(ObjCI->getDecl());
484    Width = Layout.getSize();
485    Align = Layout.getAlignment();
486    break;
487  }
488  case Type::Record:
489  case Type::Enum: {
490    const TagType *TT = cast<TagType>(T);
491
492    if (TT->getDecl()->isInvalidDecl()) {
493      Width = 1;
494      Align = 1;
495      break;
496    }
497
498    if (const EnumType *ET = dyn_cast<EnumType>(TT))
499      return getTypeInfo(ET->getDecl()->getIntegerType());
500
501    const RecordType *RT = cast<RecordType>(TT);
502    const ASTRecordLayout &Layout = getASTRecordLayout(RT->getDecl());
503    Width = Layout.getSize();
504    Align = Layout.getAlignment();
505    break;
506  }
507
508  case Type::TemplateSpecialization:
509    assert(false && "Dependent types have no size");
510    break;
511  }
512
513  assert(Align && (Align & (Align-1)) == 0 && "Alignment must be power of 2");
514  return std::make_pair(Width, Align);
515}
516
517/// getPreferredTypeAlign - Return the "preferred" alignment of the specified
518/// type for the current target in bits.  This can be different than the ABI
519/// alignment in cases where it is beneficial for performance to overalign
520/// a data type.
521unsigned ASTContext::getPreferredTypeAlign(const Type *T) {
522  unsigned ABIAlign = getTypeAlign(T);
523
524  // Doubles should be naturally aligned if possible.
525  if (T->isSpecificBuiltinType(BuiltinType::Double))
526    return std::max(ABIAlign, 64U);
527
528  return ABIAlign;
529}
530
531
532/// LayoutField - Field layout.
533void ASTRecordLayout::LayoutField(const FieldDecl *FD, unsigned FieldNo,
534                                  bool IsUnion, unsigned StructPacking,
535                                  ASTContext &Context) {
536  unsigned FieldPacking = StructPacking;
537  uint64_t FieldOffset = IsUnion ? 0 : Size;
538  uint64_t FieldSize;
539  unsigned FieldAlign;
540
541  // FIXME: Should this override struct packing? Probably we want to
542  // take the minimum?
543  if (const PackedAttr *PA = FD->getAttr<PackedAttr>())
544    FieldPacking = PA->getAlignment();
545
546  if (const Expr *BitWidthExpr = FD->getBitWidth()) {
547    // TODO: Need to check this algorithm on other targets!
548    //       (tested on Linux-X86)
549    FieldSize =
550      BitWidthExpr->getIntegerConstantExprValue(Context).getZExtValue();
551
552    std::pair<uint64_t, unsigned> FieldInfo =
553      Context.getTypeInfo(FD->getType());
554    uint64_t TypeSize = FieldInfo.first;
555
556    // Determine the alignment of this bitfield. The packing
557    // attributes define a maximum and the alignment attribute defines
558    // a minimum.
559    // FIXME: What is the right behavior when the specified alignment
560    // is smaller than the specified packing?
561    FieldAlign = FieldInfo.second;
562    if (FieldPacking)
563      FieldAlign = std::min(FieldAlign, FieldPacking);
564    if (const AlignedAttr *AA = FD->getAttr<AlignedAttr>())
565      FieldAlign = std::max(FieldAlign, AA->getAlignment());
566
567    // Check if we need to add padding to give the field the correct
568    // alignment.
569    if (FieldSize == 0 || (FieldOffset & (FieldAlign-1)) + FieldSize > TypeSize)
570      FieldOffset = (FieldOffset + (FieldAlign-1)) & ~(FieldAlign-1);
571
572    // Padding members don't affect overall alignment
573    if (!FD->getIdentifier())
574      FieldAlign = 1;
575  } else {
576    if (FD->getType()->isIncompleteArrayType()) {
577      // This is a flexible array member; we can't directly
578      // query getTypeInfo about these, so we figure it out here.
579      // Flexible array members don't have any size, but they
580      // have to be aligned appropriately for their element type.
581      FieldSize = 0;
582      const ArrayType* ATy = Context.getAsArrayType(FD->getType());
583      FieldAlign = Context.getTypeAlign(ATy->getElementType());
584    } else if (const ReferenceType *RT = FD->getType()->getAsReferenceType()) {
585      unsigned AS = RT->getPointeeType().getAddressSpace();
586      FieldSize = Context.Target.getPointerWidth(AS);
587      FieldAlign = Context.Target.getPointerAlign(AS);
588    } else {
589      std::pair<uint64_t, unsigned> FieldInfo =
590        Context.getTypeInfo(FD->getType());
591      FieldSize = FieldInfo.first;
592      FieldAlign = FieldInfo.second;
593    }
594
595    // Determine the alignment of this bitfield. The packing
596    // attributes define a maximum and the alignment attribute defines
597    // a minimum. Additionally, the packing alignment must be at least
598    // a byte for non-bitfields.
599    //
600    // FIXME: What is the right behavior when the specified alignment
601    // is smaller than the specified packing?
602    if (FieldPacking)
603      FieldAlign = std::min(FieldAlign, std::max(8U, FieldPacking));
604    if (const AlignedAttr *AA = FD->getAttr<AlignedAttr>())
605      FieldAlign = std::max(FieldAlign, AA->getAlignment());
606
607    // Round up the current record size to the field's alignment boundary.
608    FieldOffset = (FieldOffset + (FieldAlign-1)) & ~(FieldAlign-1);
609  }
610
611  // Place this field at the current location.
612  FieldOffsets[FieldNo] = FieldOffset;
613
614  // Reserve space for this field.
615  if (IsUnion) {
616    Size = std::max(Size, FieldSize);
617  } else {
618    Size = FieldOffset + FieldSize;
619  }
620
621  // Remember max struct/class alignment.
622  Alignment = std::max(Alignment, FieldAlign);
623}
624
625void ASTContext::CollectObjCIvars(const ObjCInterfaceDecl *OI,
626                             llvm::SmallVectorImpl<FieldDecl*> &Fields) {
627  const ObjCInterfaceDecl *SuperClass = OI->getSuperClass();
628  if (SuperClass)
629    CollectObjCIvars(SuperClass, Fields);
630  for (ObjCInterfaceDecl::ivar_iterator I = OI->ivar_begin(),
631       E = OI->ivar_end(); I != E; ++I) {
632    ObjCIvarDecl *IVDecl = *I;
633    if (!IVDecl->isInvalidDecl())
634      Fields.push_back(cast<FieldDecl>(IVDecl));
635  }
636  // look into properties.
637  for (ObjCInterfaceDecl::prop_iterator I = OI->prop_begin(*this),
638       E = OI->prop_end(*this); I != E; ++I) {
639    if (ObjCIvarDecl *IV = (*I)->getPropertyIvarDecl())
640      Fields.push_back(cast<FieldDecl>(IV));
641  }
642}
643
644/// addRecordToClass - produces record info. for the class for its
645/// ivars and all those inherited.
646///
647const RecordDecl *ASTContext::addRecordToClass(const ObjCInterfaceDecl *D) {
648  RecordDecl *&RD = ASTRecordForInterface[D];
649  if (RD) {
650    // If we have a record decl already and it is either a definition or if 'D'
651    // is still a forward declaration, return it.
652    if (RD->isDefinition() || D->isForwardDecl())
653      return RD;
654  }
655
656  // If D is a forward declaration, then just make a forward struct decl.
657  if (D->isForwardDecl())
658    return RD = RecordDecl::Create(*this, TagDecl::TK_struct, 0,
659                                   D->getLocation(),
660                                   D->getIdentifier());
661
662  llvm::SmallVector<FieldDecl*, 32> RecFields;
663  CollectObjCIvars(D, RecFields);
664
665  if (RD == 0)
666    RD = RecordDecl::Create(*this, TagDecl::TK_struct, 0, D->getLocation(),
667                            D->getIdentifier());
668  /// FIXME! Can do collection of ivars and adding to the record while
669  /// doing it.
670  for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
671    RD->addDecl(*this,
672                FieldDecl::Create(*this, RD,
673                                  RecFields[i]->getLocation(),
674                                  RecFields[i]->getIdentifier(),
675                                  RecFields[i]->getType(),
676                                  RecFields[i]->getBitWidth(), false));
677  }
678
679  RD->completeDefinition(*this);
680  return RD;
681}
682
683/// setFieldDecl - maps a field for the given Ivar reference node.
684//
685void ASTContext::setFieldDecl(const ObjCInterfaceDecl *OI,
686                              const ObjCIvarDecl *Ivar,
687                              const ObjCIvarRefExpr *MRef) {
688  assert(MRef->getDecl() == Ivar);
689  ASTFieldForIvarRef[MRef] = OI->lookupFieldDeclForIvar(*this, Ivar);
690}
691
692/// getASTObjcInterfaceLayout - Get or compute information about the layout of
693/// the specified Objective C, which indicates its size and ivar
694/// position information.
695const ASTRecordLayout &
696ASTContext::getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D) {
697  // Look up this layout, if already laid out, return what we have.
698  const ASTRecordLayout *&Entry = ASTObjCInterfaces[D];
699  if (Entry) return *Entry;
700
701  // Allocate and assign into ASTRecordLayouts here.  The "Entry" reference can
702  // be invalidated (dangle) if the ASTRecordLayouts hashtable is inserted into.
703  ASTRecordLayout *NewEntry = NULL;
704  // FIXME. Add actual count of synthesized ivars, instead of count
705  // of properties which is the upper bound, but is safe.
706  unsigned FieldCount =
707    D->ivar_size() + std::distance(D->prop_begin(*this), D->prop_end(*this));
708  if (ObjCInterfaceDecl *SD = D->getSuperClass()) {
709    FieldCount++;
710    const ASTRecordLayout &SL = getASTObjCInterfaceLayout(SD);
711    unsigned Alignment = SL.getAlignment();
712    uint64_t Size = SL.getSize();
713    NewEntry = new ASTRecordLayout(Size, Alignment);
714    NewEntry->InitializeLayout(FieldCount);
715    // Super class is at the beginning of the layout.
716    NewEntry->SetFieldOffset(0, 0);
717  } else {
718    NewEntry = new ASTRecordLayout();
719    NewEntry->InitializeLayout(FieldCount);
720  }
721  Entry = NewEntry;
722
723  unsigned StructPacking = 0;
724  if (const PackedAttr *PA = D->getAttr<PackedAttr>())
725    StructPacking = PA->getAlignment();
726
727  if (const AlignedAttr *AA = D->getAttr<AlignedAttr>())
728    NewEntry->SetAlignment(std::max(NewEntry->getAlignment(),
729                                    AA->getAlignment()));
730
731  // Layout each ivar sequentially.
732  unsigned i = 0;
733  for (ObjCInterfaceDecl::ivar_iterator IVI = D->ivar_begin(),
734       IVE = D->ivar_end(); IVI != IVE; ++IVI) {
735    const ObjCIvarDecl* Ivar = (*IVI);
736    NewEntry->LayoutField(Ivar, i++, false, StructPacking, *this);
737  }
738  // Also synthesized ivars
739  for (ObjCInterfaceDecl::prop_iterator I = D->prop_begin(*this),
740       E = D->prop_end(*this); I != E; ++I) {
741    if (ObjCIvarDecl *Ivar = (*I)->getPropertyIvarDecl())
742      NewEntry->LayoutField(Ivar, i++, false, StructPacking, *this);
743  }
744
745  // Finally, round the size of the total struct up to the alignment of the
746  // struct itself.
747  NewEntry->FinalizeLayout();
748  return *NewEntry;
749}
750
751/// getASTRecordLayout - Get or compute information about the layout of the
752/// specified record (struct/union/class), which indicates its size and field
753/// position information.
754const ASTRecordLayout &ASTContext::getASTRecordLayout(const RecordDecl *D) {
755  D = D->getDefinition(*this);
756  assert(D && "Cannot get layout of forward declarations!");
757
758  // Look up this layout, if already laid out, return what we have.
759  const ASTRecordLayout *&Entry = ASTRecordLayouts[D];
760  if (Entry) return *Entry;
761
762  // Allocate and assign into ASTRecordLayouts here.  The "Entry" reference can
763  // be invalidated (dangle) if the ASTRecordLayouts hashtable is inserted into.
764  ASTRecordLayout *NewEntry = new ASTRecordLayout();
765  Entry = NewEntry;
766
767  // FIXME: Avoid linear walk through the fields, if possible.
768  NewEntry->InitializeLayout(std::distance(D->field_begin(*this),
769                                           D->field_end(*this)));
770  bool IsUnion = D->isUnion();
771
772  unsigned StructPacking = 0;
773  if (const PackedAttr *PA = D->getAttr<PackedAttr>())
774    StructPacking = PA->getAlignment();
775
776  if (const AlignedAttr *AA = D->getAttr<AlignedAttr>())
777    NewEntry->SetAlignment(std::max(NewEntry->getAlignment(),
778                                    AA->getAlignment()));
779
780  // Layout each field, for now, just sequentially, respecting alignment.  In
781  // the future, this will need to be tweakable by targets.
782  unsigned FieldIdx = 0;
783  for (RecordDecl::field_iterator Field = D->field_begin(*this),
784                               FieldEnd = D->field_end(*this);
785       Field != FieldEnd; (void)++Field, ++FieldIdx)
786    NewEntry->LayoutField(*Field, FieldIdx, IsUnion, StructPacking, *this);
787
788  // Finally, round the size of the total struct up to the alignment of the
789  // struct itself.
790  NewEntry->FinalizeLayout();
791  return *NewEntry;
792}
793
794//===----------------------------------------------------------------------===//
795//                   Type creation/memoization methods
796//===----------------------------------------------------------------------===//
797
798QualType ASTContext::getAddrSpaceQualType(QualType T, unsigned AddressSpace) {
799  QualType CanT = getCanonicalType(T);
800  if (CanT.getAddressSpace() == AddressSpace)
801    return T;
802
803  // If we are composing extended qualifiers together, merge together into one
804  // ExtQualType node.
805  unsigned CVRQuals = T.getCVRQualifiers();
806  QualType::GCAttrTypes GCAttr = QualType::GCNone;
807  Type *TypeNode = T.getTypePtr();
808
809  if (ExtQualType *EQT = dyn_cast<ExtQualType>(TypeNode)) {
810    // If this type already has an address space specified, it cannot get
811    // another one.
812    assert(EQT->getAddressSpace() == 0 &&
813           "Type cannot be in multiple addr spaces!");
814    GCAttr = EQT->getObjCGCAttr();
815    TypeNode = EQT->getBaseType();
816  }
817
818  // Check if we've already instantiated this type.
819  llvm::FoldingSetNodeID ID;
820  ExtQualType::Profile(ID, TypeNode, AddressSpace, GCAttr);
821  void *InsertPos = 0;
822  if (ExtQualType *EXTQy = ExtQualTypes.FindNodeOrInsertPos(ID, InsertPos))
823    return QualType(EXTQy, CVRQuals);
824
825  // If the base type isn't canonical, this won't be a canonical type either,
826  // so fill in the canonical type field.
827  QualType Canonical;
828  if (!TypeNode->isCanonical()) {
829    Canonical = getAddrSpaceQualType(CanT, AddressSpace);
830
831    // Update InsertPos, the previous call could have invalidated it.
832    ExtQualType *NewIP = ExtQualTypes.FindNodeOrInsertPos(ID, InsertPos);
833    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
834  }
835  ExtQualType *New =
836    new (*this, 8) ExtQualType(TypeNode, Canonical, AddressSpace, GCAttr);
837  ExtQualTypes.InsertNode(New, InsertPos);
838  Types.push_back(New);
839  return QualType(New, CVRQuals);
840}
841
842QualType ASTContext::getObjCGCQualType(QualType T,
843                                       QualType::GCAttrTypes GCAttr) {
844  QualType CanT = getCanonicalType(T);
845  if (CanT.getObjCGCAttr() == GCAttr)
846    return T;
847
848  // If we are composing extended qualifiers together, merge together into one
849  // ExtQualType node.
850  unsigned CVRQuals = T.getCVRQualifiers();
851  Type *TypeNode = T.getTypePtr();
852  unsigned AddressSpace = 0;
853
854  if (ExtQualType *EQT = dyn_cast<ExtQualType>(TypeNode)) {
855    // If this type already has an address space specified, it cannot get
856    // another one.
857    assert(EQT->getObjCGCAttr() == QualType::GCNone &&
858           "Type cannot be in multiple addr spaces!");
859    AddressSpace = EQT->getAddressSpace();
860    TypeNode = EQT->getBaseType();
861  }
862
863  // Check if we've already instantiated an gc qual'd type of this type.
864  llvm::FoldingSetNodeID ID;
865  ExtQualType::Profile(ID, TypeNode, AddressSpace, GCAttr);
866  void *InsertPos = 0;
867  if (ExtQualType *EXTQy = ExtQualTypes.FindNodeOrInsertPos(ID, InsertPos))
868    return QualType(EXTQy, CVRQuals);
869
870  // If the base type isn't canonical, this won't be a canonical type either,
871  // so fill in the canonical type field.
872  // FIXME: Isn't this also not canonical if the base type is a array
873  // or pointer type?  I can't find any documentation for objc_gc, though...
874  QualType Canonical;
875  if (!T->isCanonical()) {
876    Canonical = getObjCGCQualType(CanT, GCAttr);
877
878    // Update InsertPos, the previous call could have invalidated it.
879    ExtQualType *NewIP = ExtQualTypes.FindNodeOrInsertPos(ID, InsertPos);
880    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
881  }
882  ExtQualType *New =
883    new (*this, 8) ExtQualType(TypeNode, Canonical, AddressSpace, GCAttr);
884  ExtQualTypes.InsertNode(New, InsertPos);
885  Types.push_back(New);
886  return QualType(New, CVRQuals);
887}
888
889/// getComplexType - Return the uniqued reference to the type for a complex
890/// number with the specified element type.
891QualType ASTContext::getComplexType(QualType T) {
892  // Unique pointers, to guarantee there is only one pointer of a particular
893  // structure.
894  llvm::FoldingSetNodeID ID;
895  ComplexType::Profile(ID, T);
896
897  void *InsertPos = 0;
898  if (ComplexType *CT = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos))
899    return QualType(CT, 0);
900
901  // If the pointee type isn't canonical, this won't be a canonical type either,
902  // so fill in the canonical type field.
903  QualType Canonical;
904  if (!T->isCanonical()) {
905    Canonical = getComplexType(getCanonicalType(T));
906
907    // Get the new insert position for the node we care about.
908    ComplexType *NewIP = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos);
909    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
910  }
911  ComplexType *New = new (*this,8) ComplexType(T, Canonical);
912  Types.push_back(New);
913  ComplexTypes.InsertNode(New, InsertPos);
914  return QualType(New, 0);
915}
916
917QualType ASTContext::getFixedWidthIntType(unsigned Width, bool Signed) {
918  llvm::DenseMap<unsigned, FixedWidthIntType*> &Map = Signed ?
919     SignedFixedWidthIntTypes : UnsignedFixedWidthIntTypes;
920  FixedWidthIntType *&Entry = Map[Width];
921  if (!Entry)
922    Entry = new FixedWidthIntType(Width, Signed);
923  return QualType(Entry, 0);
924}
925
926/// getPointerType - Return the uniqued reference to the type for a pointer to
927/// the specified type.
928QualType ASTContext::getPointerType(QualType T) {
929  // Unique pointers, to guarantee there is only one pointer of a particular
930  // structure.
931  llvm::FoldingSetNodeID ID;
932  PointerType::Profile(ID, T);
933
934  void *InsertPos = 0;
935  if (PointerType *PT = PointerTypes.FindNodeOrInsertPos(ID, InsertPos))
936    return QualType(PT, 0);
937
938  // If the pointee type isn't canonical, this won't be a canonical type either,
939  // so fill in the canonical type field.
940  QualType Canonical;
941  if (!T->isCanonical()) {
942    Canonical = getPointerType(getCanonicalType(T));
943
944    // Get the new insert position for the node we care about.
945    PointerType *NewIP = PointerTypes.FindNodeOrInsertPos(ID, InsertPos);
946    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
947  }
948  PointerType *New = new (*this,8) PointerType(T, Canonical);
949  Types.push_back(New);
950  PointerTypes.InsertNode(New, InsertPos);
951  return QualType(New, 0);
952}
953
954/// getBlockPointerType - Return the uniqued reference to the type for
955/// a pointer to the specified block.
956QualType ASTContext::getBlockPointerType(QualType T) {
957  assert(T->isFunctionType() && "block of function types only");
958  // Unique pointers, to guarantee there is only one block of a particular
959  // structure.
960  llvm::FoldingSetNodeID ID;
961  BlockPointerType::Profile(ID, T);
962
963  void *InsertPos = 0;
964  if (BlockPointerType *PT =
965        BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
966    return QualType(PT, 0);
967
968  // If the block pointee type isn't canonical, this won't be a canonical
969  // type either so fill in the canonical type field.
970  QualType Canonical;
971  if (!T->isCanonical()) {
972    Canonical = getBlockPointerType(getCanonicalType(T));
973
974    // Get the new insert position for the node we care about.
975    BlockPointerType *NewIP =
976      BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
977    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
978  }
979  BlockPointerType *New = new (*this,8) BlockPointerType(T, Canonical);
980  Types.push_back(New);
981  BlockPointerTypes.InsertNode(New, InsertPos);
982  return QualType(New, 0);
983}
984
985/// getLValueReferenceType - Return the uniqued reference to the type for an
986/// lvalue reference to the specified type.
987QualType ASTContext::getLValueReferenceType(QualType T) {
988  // Unique pointers, to guarantee there is only one pointer of a particular
989  // structure.
990  llvm::FoldingSetNodeID ID;
991  ReferenceType::Profile(ID, T);
992
993  void *InsertPos = 0;
994  if (LValueReferenceType *RT =
995        LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
996    return QualType(RT, 0);
997
998  // If the referencee type isn't canonical, this won't be a canonical type
999  // either, so fill in the canonical type field.
1000  QualType Canonical;
1001  if (!T->isCanonical()) {
1002    Canonical = getLValueReferenceType(getCanonicalType(T));
1003
1004    // Get the new insert position for the node we care about.
1005    LValueReferenceType *NewIP =
1006      LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
1007    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1008  }
1009
1010  LValueReferenceType *New = new (*this,8) LValueReferenceType(T, Canonical);
1011  Types.push_back(New);
1012  LValueReferenceTypes.InsertNode(New, InsertPos);
1013  return QualType(New, 0);
1014}
1015
1016/// getRValueReferenceType - Return the uniqued reference to the type for an
1017/// rvalue reference to the specified type.
1018QualType ASTContext::getRValueReferenceType(QualType T) {
1019  // Unique pointers, to guarantee there is only one pointer of a particular
1020  // structure.
1021  llvm::FoldingSetNodeID ID;
1022  ReferenceType::Profile(ID, T);
1023
1024  void *InsertPos = 0;
1025  if (RValueReferenceType *RT =
1026        RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
1027    return QualType(RT, 0);
1028
1029  // If the referencee type isn't canonical, this won't be a canonical type
1030  // either, so fill in the canonical type field.
1031  QualType Canonical;
1032  if (!T->isCanonical()) {
1033    Canonical = getRValueReferenceType(getCanonicalType(T));
1034
1035    // Get the new insert position for the node we care about.
1036    RValueReferenceType *NewIP =
1037      RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
1038    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1039  }
1040
1041  RValueReferenceType *New = new (*this,8) RValueReferenceType(T, Canonical);
1042  Types.push_back(New);
1043  RValueReferenceTypes.InsertNode(New, InsertPos);
1044  return QualType(New, 0);
1045}
1046
1047/// getMemberPointerType - Return the uniqued reference to the type for a
1048/// member pointer to the specified type, in the specified class.
1049QualType ASTContext::getMemberPointerType(QualType T, const Type *Cls)
1050{
1051  // Unique pointers, to guarantee there is only one pointer of a particular
1052  // structure.
1053  llvm::FoldingSetNodeID ID;
1054  MemberPointerType::Profile(ID, T, Cls);
1055
1056  void *InsertPos = 0;
1057  if (MemberPointerType *PT =
1058      MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1059    return QualType(PT, 0);
1060
1061  // If the pointee or class type isn't canonical, this won't be a canonical
1062  // type either, so fill in the canonical type field.
1063  QualType Canonical;
1064  if (!T->isCanonical()) {
1065    Canonical = getMemberPointerType(getCanonicalType(T),getCanonicalType(Cls));
1066
1067    // Get the new insert position for the node we care about.
1068    MemberPointerType *NewIP =
1069      MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1070    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1071  }
1072  MemberPointerType *New = new (*this,8) MemberPointerType(T, Cls, Canonical);
1073  Types.push_back(New);
1074  MemberPointerTypes.InsertNode(New, InsertPos);
1075  return QualType(New, 0);
1076}
1077
1078/// getConstantArrayType - Return the unique reference to the type for an
1079/// array of the specified element type.
1080QualType ASTContext::getConstantArrayType(QualType EltTy,
1081                                          const llvm::APInt &ArySize,
1082                                          ArrayType::ArraySizeModifier ASM,
1083                                          unsigned EltTypeQuals) {
1084  llvm::FoldingSetNodeID ID;
1085  ConstantArrayType::Profile(ID, EltTy, ArySize, ASM, EltTypeQuals);
1086
1087  void *InsertPos = 0;
1088  if (ConstantArrayType *ATP =
1089      ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
1090    return QualType(ATP, 0);
1091
1092  // If the element type isn't canonical, this won't be a canonical type either,
1093  // so fill in the canonical type field.
1094  QualType Canonical;
1095  if (!EltTy->isCanonical()) {
1096    Canonical = getConstantArrayType(getCanonicalType(EltTy), ArySize,
1097                                     ASM, EltTypeQuals);
1098    // Get the new insert position for the node we care about.
1099    ConstantArrayType *NewIP =
1100      ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
1101    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1102  }
1103
1104  ConstantArrayType *New =
1105    new(*this,8)ConstantArrayType(EltTy, Canonical, ArySize, ASM, EltTypeQuals);
1106  ConstantArrayTypes.InsertNode(New, InsertPos);
1107  Types.push_back(New);
1108  return QualType(New, 0);
1109}
1110
1111/// getVariableArrayType - Returns a non-unique reference to the type for a
1112/// variable array of the specified element type.
1113QualType ASTContext::getVariableArrayType(QualType EltTy, Expr *NumElts,
1114                                          ArrayType::ArraySizeModifier ASM,
1115                                          unsigned EltTypeQuals) {
1116  // Since we don't unique expressions, it isn't possible to unique VLA's
1117  // that have an expression provided for their size.
1118
1119  VariableArrayType *New =
1120    new(*this,8)VariableArrayType(EltTy,QualType(), NumElts, ASM, EltTypeQuals);
1121
1122  VariableArrayTypes.push_back(New);
1123  Types.push_back(New);
1124  return QualType(New, 0);
1125}
1126
1127/// getDependentSizedArrayType - Returns a non-unique reference to
1128/// the type for a dependently-sized array of the specified element
1129/// type. FIXME: We will need these to be uniqued, or at least
1130/// comparable, at some point.
1131QualType ASTContext::getDependentSizedArrayType(QualType EltTy, Expr *NumElts,
1132                                                ArrayType::ArraySizeModifier ASM,
1133                                                unsigned EltTypeQuals) {
1134  assert((NumElts->isTypeDependent() || NumElts->isValueDependent()) &&
1135         "Size must be type- or value-dependent!");
1136
1137  // Since we don't unique expressions, it isn't possible to unique
1138  // dependently-sized array types.
1139
1140  DependentSizedArrayType *New =
1141      new (*this,8) DependentSizedArrayType(EltTy, QualType(), NumElts,
1142                                            ASM, EltTypeQuals);
1143
1144  DependentSizedArrayTypes.push_back(New);
1145  Types.push_back(New);
1146  return QualType(New, 0);
1147}
1148
1149QualType ASTContext::getIncompleteArrayType(QualType EltTy,
1150                                            ArrayType::ArraySizeModifier ASM,
1151                                            unsigned EltTypeQuals) {
1152  llvm::FoldingSetNodeID ID;
1153  IncompleteArrayType::Profile(ID, EltTy, ASM, EltTypeQuals);
1154
1155  void *InsertPos = 0;
1156  if (IncompleteArrayType *ATP =
1157       IncompleteArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
1158    return QualType(ATP, 0);
1159
1160  // If the element type isn't canonical, this won't be a canonical type
1161  // either, so fill in the canonical type field.
1162  QualType Canonical;
1163
1164  if (!EltTy->isCanonical()) {
1165    Canonical = getIncompleteArrayType(getCanonicalType(EltTy),
1166                                       ASM, EltTypeQuals);
1167
1168    // Get the new insert position for the node we care about.
1169    IncompleteArrayType *NewIP =
1170      IncompleteArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
1171    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1172  }
1173
1174  IncompleteArrayType *New = new (*this,8) IncompleteArrayType(EltTy, Canonical,
1175                                                           ASM, EltTypeQuals);
1176
1177  IncompleteArrayTypes.InsertNode(New, InsertPos);
1178  Types.push_back(New);
1179  return QualType(New, 0);
1180}
1181
1182/// getVectorType - Return the unique reference to a vector type of
1183/// the specified element type and size. VectorType must be a built-in type.
1184QualType ASTContext::getVectorType(QualType vecType, unsigned NumElts) {
1185  BuiltinType *baseType;
1186
1187  baseType = dyn_cast<BuiltinType>(getCanonicalType(vecType).getTypePtr());
1188  assert(baseType != 0 && "getVectorType(): Expecting a built-in type");
1189
1190  // Check if we've already instantiated a vector of this type.
1191  llvm::FoldingSetNodeID ID;
1192  VectorType::Profile(ID, vecType, NumElts, Type::Vector);
1193  void *InsertPos = 0;
1194  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
1195    return QualType(VTP, 0);
1196
1197  // If the element type isn't canonical, this won't be a canonical type either,
1198  // so fill in the canonical type field.
1199  QualType Canonical;
1200  if (!vecType->isCanonical()) {
1201    Canonical = getVectorType(getCanonicalType(vecType), NumElts);
1202
1203    // Get the new insert position for the node we care about.
1204    VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
1205    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1206  }
1207  VectorType *New = new (*this,8) VectorType(vecType, NumElts, Canonical);
1208  VectorTypes.InsertNode(New, InsertPos);
1209  Types.push_back(New);
1210  return QualType(New, 0);
1211}
1212
1213/// getExtVectorType - Return the unique reference to an extended vector type of
1214/// the specified element type and size. VectorType must be a built-in type.
1215QualType ASTContext::getExtVectorType(QualType vecType, unsigned NumElts) {
1216  BuiltinType *baseType;
1217
1218  baseType = dyn_cast<BuiltinType>(getCanonicalType(vecType).getTypePtr());
1219  assert(baseType != 0 && "getExtVectorType(): Expecting a built-in type");
1220
1221  // Check if we've already instantiated a vector of this type.
1222  llvm::FoldingSetNodeID ID;
1223  VectorType::Profile(ID, vecType, NumElts, Type::ExtVector);
1224  void *InsertPos = 0;
1225  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
1226    return QualType(VTP, 0);
1227
1228  // If the element type isn't canonical, this won't be a canonical type either,
1229  // so fill in the canonical type field.
1230  QualType Canonical;
1231  if (!vecType->isCanonical()) {
1232    Canonical = getExtVectorType(getCanonicalType(vecType), NumElts);
1233
1234    // Get the new insert position for the node we care about.
1235    VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
1236    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1237  }
1238  ExtVectorType *New = new (*this,8) ExtVectorType(vecType, NumElts, Canonical);
1239  VectorTypes.InsertNode(New, InsertPos);
1240  Types.push_back(New);
1241  return QualType(New, 0);
1242}
1243
1244/// getFunctionNoProtoType - Return a K&R style C function type like 'int()'.
1245///
1246QualType ASTContext::getFunctionNoProtoType(QualType ResultTy) {
1247  // Unique functions, to guarantee there is only one function of a particular
1248  // structure.
1249  llvm::FoldingSetNodeID ID;
1250  FunctionNoProtoType::Profile(ID, ResultTy);
1251
1252  void *InsertPos = 0;
1253  if (FunctionNoProtoType *FT =
1254        FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
1255    return QualType(FT, 0);
1256
1257  QualType Canonical;
1258  if (!ResultTy->isCanonical()) {
1259    Canonical = getFunctionNoProtoType(getCanonicalType(ResultTy));
1260
1261    // Get the new insert position for the node we care about.
1262    FunctionNoProtoType *NewIP =
1263      FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
1264    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1265  }
1266
1267  FunctionNoProtoType *New =new(*this,8)FunctionNoProtoType(ResultTy,Canonical);
1268  Types.push_back(New);
1269  FunctionNoProtoTypes.InsertNode(New, InsertPos);
1270  return QualType(New, 0);
1271}
1272
1273/// getFunctionType - Return a normal function type with a typed argument
1274/// list.  isVariadic indicates whether the argument list includes '...'.
1275QualType ASTContext::getFunctionType(QualType ResultTy,const QualType *ArgArray,
1276                                     unsigned NumArgs, bool isVariadic,
1277                                     unsigned TypeQuals) {
1278  // Unique functions, to guarantee there is only one function of a particular
1279  // structure.
1280  llvm::FoldingSetNodeID ID;
1281  FunctionProtoType::Profile(ID, ResultTy, ArgArray, NumArgs, isVariadic,
1282                             TypeQuals);
1283
1284  void *InsertPos = 0;
1285  if (FunctionProtoType *FTP =
1286        FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
1287    return QualType(FTP, 0);
1288
1289  // Determine whether the type being created is already canonical or not.
1290  bool isCanonical = ResultTy->isCanonical();
1291  for (unsigned i = 0; i != NumArgs && isCanonical; ++i)
1292    if (!ArgArray[i]->isCanonical())
1293      isCanonical = false;
1294
1295  // If this type isn't canonical, get the canonical version of it.
1296  QualType Canonical;
1297  if (!isCanonical) {
1298    llvm::SmallVector<QualType, 16> CanonicalArgs;
1299    CanonicalArgs.reserve(NumArgs);
1300    for (unsigned i = 0; i != NumArgs; ++i)
1301      CanonicalArgs.push_back(getCanonicalType(ArgArray[i]));
1302
1303    Canonical = getFunctionType(getCanonicalType(ResultTy),
1304                                &CanonicalArgs[0], NumArgs,
1305                                isVariadic, TypeQuals);
1306
1307    // Get the new insert position for the node we care about.
1308    FunctionProtoType *NewIP =
1309      FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
1310    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1311  }
1312
1313  // FunctionProtoType objects are allocated with extra bytes after them
1314  // for a variable size array (for parameter types) at the end of them.
1315  FunctionProtoType *FTP =
1316    (FunctionProtoType*)Allocate(sizeof(FunctionProtoType) +
1317                                 NumArgs*sizeof(QualType), 8);
1318  new (FTP) FunctionProtoType(ResultTy, ArgArray, NumArgs, isVariadic,
1319                              TypeQuals, Canonical);
1320  Types.push_back(FTP);
1321  FunctionProtoTypes.InsertNode(FTP, InsertPos);
1322  return QualType(FTP, 0);
1323}
1324
1325/// getTypeDeclType - Return the unique reference to the type for the
1326/// specified type declaration.
1327QualType ASTContext::getTypeDeclType(TypeDecl *Decl, TypeDecl* PrevDecl) {
1328  assert(Decl && "Passed null for Decl param");
1329  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
1330
1331  if (TypedefDecl *Typedef = dyn_cast<TypedefDecl>(Decl))
1332    return getTypedefType(Typedef);
1333  else if (isa<TemplateTypeParmDecl>(Decl)) {
1334    assert(false && "Template type parameter types are always available.");
1335  } else if (ObjCInterfaceDecl *ObjCInterface = dyn_cast<ObjCInterfaceDecl>(Decl))
1336    return getObjCInterfaceType(ObjCInterface);
1337
1338  if (RecordDecl *Record = dyn_cast<RecordDecl>(Decl)) {
1339    if (PrevDecl)
1340      Decl->TypeForDecl = PrevDecl->TypeForDecl;
1341    else
1342      Decl->TypeForDecl = new (*this,8) RecordType(Record);
1343  }
1344  else if (EnumDecl *Enum = dyn_cast<EnumDecl>(Decl)) {
1345    if (PrevDecl)
1346      Decl->TypeForDecl = PrevDecl->TypeForDecl;
1347    else
1348      Decl->TypeForDecl = new (*this,8) EnumType(Enum);
1349  }
1350  else
1351    assert(false && "TypeDecl without a type?");
1352
1353  if (!PrevDecl) Types.push_back(Decl->TypeForDecl);
1354  return QualType(Decl->TypeForDecl, 0);
1355}
1356
1357/// getTypedefType - Return the unique reference to the type for the
1358/// specified typename decl.
1359QualType ASTContext::getTypedefType(TypedefDecl *Decl) {
1360  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
1361
1362  QualType Canonical = getCanonicalType(Decl->getUnderlyingType());
1363  Decl->TypeForDecl = new(*this,8) TypedefType(Type::Typedef, Decl, Canonical);
1364  Types.push_back(Decl->TypeForDecl);
1365  return QualType(Decl->TypeForDecl, 0);
1366}
1367
1368/// getObjCInterfaceType - Return the unique reference to the type for the
1369/// specified ObjC interface decl.
1370QualType ASTContext::getObjCInterfaceType(ObjCInterfaceDecl *Decl) {
1371  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
1372
1373  Decl->TypeForDecl = new(*this,8) ObjCInterfaceType(Type::ObjCInterface, Decl);
1374  Types.push_back(Decl->TypeForDecl);
1375  return QualType(Decl->TypeForDecl, 0);
1376}
1377
1378/// \brief Retrieve the template type parameter type for a template
1379/// parameter with the given depth, index, and (optionally) name.
1380QualType ASTContext::getTemplateTypeParmType(unsigned Depth, unsigned Index,
1381                                             IdentifierInfo *Name) {
1382  llvm::FoldingSetNodeID ID;
1383  TemplateTypeParmType::Profile(ID, Depth, Index, Name);
1384  void *InsertPos = 0;
1385  TemplateTypeParmType *TypeParm
1386    = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
1387
1388  if (TypeParm)
1389    return QualType(TypeParm, 0);
1390
1391  if (Name)
1392    TypeParm = new (*this, 8) TemplateTypeParmType(Depth, Index, Name,
1393                                         getTemplateTypeParmType(Depth, Index));
1394  else
1395    TypeParm = new (*this, 8) TemplateTypeParmType(Depth, Index);
1396
1397  Types.push_back(TypeParm);
1398  TemplateTypeParmTypes.InsertNode(TypeParm, InsertPos);
1399
1400  return QualType(TypeParm, 0);
1401}
1402
1403QualType
1404ASTContext::getTemplateSpecializationType(TemplateName Template,
1405                                          const TemplateArgument *Args,
1406                                          unsigned NumArgs,
1407                                          QualType Canon) {
1408  if (!Canon.isNull())
1409    Canon = getCanonicalType(Canon);
1410
1411  llvm::FoldingSetNodeID ID;
1412  TemplateSpecializationType::Profile(ID, Template, Args, NumArgs);
1413
1414  void *InsertPos = 0;
1415  TemplateSpecializationType *Spec
1416    = TemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
1417
1418  if (Spec)
1419    return QualType(Spec, 0);
1420
1421  void *Mem = Allocate((sizeof(TemplateSpecializationType) +
1422                        sizeof(TemplateArgument) * NumArgs),
1423                       8);
1424  Spec = new (Mem) TemplateSpecializationType(Template, Args, NumArgs, Canon);
1425  Types.push_back(Spec);
1426  TemplateSpecializationTypes.InsertNode(Spec, InsertPos);
1427
1428  return QualType(Spec, 0);
1429}
1430
1431QualType
1432ASTContext::getQualifiedNameType(NestedNameSpecifier *NNS,
1433                                 QualType NamedType) {
1434  llvm::FoldingSetNodeID ID;
1435  QualifiedNameType::Profile(ID, NNS, NamedType);
1436
1437  void *InsertPos = 0;
1438  QualifiedNameType *T
1439    = QualifiedNameTypes.FindNodeOrInsertPos(ID, InsertPos);
1440  if (T)
1441    return QualType(T, 0);
1442
1443  T = new (*this) QualifiedNameType(NNS, NamedType,
1444                                    getCanonicalType(NamedType));
1445  Types.push_back(T);
1446  QualifiedNameTypes.InsertNode(T, InsertPos);
1447  return QualType(T, 0);
1448}
1449
1450QualType ASTContext::getTypenameType(NestedNameSpecifier *NNS,
1451                                     const IdentifierInfo *Name,
1452                                     QualType Canon) {
1453  assert(NNS->isDependent() && "nested-name-specifier must be dependent");
1454
1455  if (Canon.isNull()) {
1456    NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
1457    if (CanonNNS != NNS)
1458      Canon = getTypenameType(CanonNNS, Name);
1459  }
1460
1461  llvm::FoldingSetNodeID ID;
1462  TypenameType::Profile(ID, NNS, Name);
1463
1464  void *InsertPos = 0;
1465  TypenameType *T
1466    = TypenameTypes.FindNodeOrInsertPos(ID, InsertPos);
1467  if (T)
1468    return QualType(T, 0);
1469
1470  T = new (*this) TypenameType(NNS, Name, Canon);
1471  Types.push_back(T);
1472  TypenameTypes.InsertNode(T, InsertPos);
1473  return QualType(T, 0);
1474}
1475
1476QualType
1477ASTContext::getTypenameType(NestedNameSpecifier *NNS,
1478                            const TemplateSpecializationType *TemplateId,
1479                            QualType Canon) {
1480  assert(NNS->isDependent() && "nested-name-specifier must be dependent");
1481
1482  if (Canon.isNull()) {
1483    NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
1484    QualType CanonType = getCanonicalType(QualType(TemplateId, 0));
1485    if (CanonNNS != NNS || CanonType != QualType(TemplateId, 0)) {
1486      const TemplateSpecializationType *CanonTemplateId
1487        = CanonType->getAsTemplateSpecializationType();
1488      assert(CanonTemplateId &&
1489             "Canonical type must also be a template specialization type");
1490      Canon = getTypenameType(CanonNNS, CanonTemplateId);
1491    }
1492  }
1493
1494  llvm::FoldingSetNodeID ID;
1495  TypenameType::Profile(ID, NNS, TemplateId);
1496
1497  void *InsertPos = 0;
1498  TypenameType *T
1499    = TypenameTypes.FindNodeOrInsertPos(ID, InsertPos);
1500  if (T)
1501    return QualType(T, 0);
1502
1503  T = new (*this) TypenameType(NNS, TemplateId, Canon);
1504  Types.push_back(T);
1505  TypenameTypes.InsertNode(T, InsertPos);
1506  return QualType(T, 0);
1507}
1508
1509/// CmpProtocolNames - Comparison predicate for sorting protocols
1510/// alphabetically.
1511static bool CmpProtocolNames(const ObjCProtocolDecl *LHS,
1512                            const ObjCProtocolDecl *RHS) {
1513  return LHS->getDeclName() < RHS->getDeclName();
1514}
1515
1516static void SortAndUniqueProtocols(ObjCProtocolDecl **&Protocols,
1517                                   unsigned &NumProtocols) {
1518  ObjCProtocolDecl **ProtocolsEnd = Protocols+NumProtocols;
1519
1520  // Sort protocols, keyed by name.
1521  std::sort(Protocols, Protocols+NumProtocols, CmpProtocolNames);
1522
1523  // Remove duplicates.
1524  ProtocolsEnd = std::unique(Protocols, ProtocolsEnd);
1525  NumProtocols = ProtocolsEnd-Protocols;
1526}
1527
1528
1529/// getObjCQualifiedInterfaceType - Return a ObjCQualifiedInterfaceType type for
1530/// the given interface decl and the conforming protocol list.
1531QualType ASTContext::getObjCQualifiedInterfaceType(ObjCInterfaceDecl *Decl,
1532                       ObjCProtocolDecl **Protocols, unsigned NumProtocols) {
1533  // Sort the protocol list alphabetically to canonicalize it.
1534  SortAndUniqueProtocols(Protocols, NumProtocols);
1535
1536  llvm::FoldingSetNodeID ID;
1537  ObjCQualifiedInterfaceType::Profile(ID, Decl, Protocols, NumProtocols);
1538
1539  void *InsertPos = 0;
1540  if (ObjCQualifiedInterfaceType *QT =
1541      ObjCQualifiedInterfaceTypes.FindNodeOrInsertPos(ID, InsertPos))
1542    return QualType(QT, 0);
1543
1544  // No Match;
1545  ObjCQualifiedInterfaceType *QType =
1546    new (*this,8) ObjCQualifiedInterfaceType(Decl, Protocols, NumProtocols);
1547
1548  Types.push_back(QType);
1549  ObjCQualifiedInterfaceTypes.InsertNode(QType, InsertPos);
1550  return QualType(QType, 0);
1551}
1552
1553/// getObjCQualifiedIdType - Return an ObjCQualifiedIdType for the 'id' decl
1554/// and the conforming protocol list.
1555QualType ASTContext::getObjCQualifiedIdType(ObjCProtocolDecl **Protocols,
1556                                            unsigned NumProtocols) {
1557  // Sort the protocol list alphabetically to canonicalize it.
1558  SortAndUniqueProtocols(Protocols, NumProtocols);
1559
1560  llvm::FoldingSetNodeID ID;
1561  ObjCQualifiedIdType::Profile(ID, Protocols, NumProtocols);
1562
1563  void *InsertPos = 0;
1564  if (ObjCQualifiedIdType *QT =
1565        ObjCQualifiedIdTypes.FindNodeOrInsertPos(ID, InsertPos))
1566    return QualType(QT, 0);
1567
1568  // No Match;
1569  ObjCQualifiedIdType *QType =
1570    new (*this,8) ObjCQualifiedIdType(Protocols, NumProtocols);
1571  Types.push_back(QType);
1572  ObjCQualifiedIdTypes.InsertNode(QType, InsertPos);
1573  return QualType(QType, 0);
1574}
1575
1576/// getTypeOfExprType - Unlike many "get<Type>" functions, we can't unique
1577/// TypeOfExprType AST's (since expression's are never shared). For example,
1578/// multiple declarations that refer to "typeof(x)" all contain different
1579/// DeclRefExpr's. This doesn't effect the type checker, since it operates
1580/// on canonical type's (which are always unique).
1581QualType ASTContext::getTypeOfExprType(Expr *tofExpr) {
1582  QualType Canonical = getCanonicalType(tofExpr->getType());
1583  TypeOfExprType *toe = new (*this,8) TypeOfExprType(tofExpr, Canonical);
1584  Types.push_back(toe);
1585  return QualType(toe, 0);
1586}
1587
1588/// getTypeOfType -  Unlike many "get<Type>" functions, we don't unique
1589/// TypeOfType AST's. The only motivation to unique these nodes would be
1590/// memory savings. Since typeof(t) is fairly uncommon, space shouldn't be
1591/// an issue. This doesn't effect the type checker, since it operates
1592/// on canonical type's (which are always unique).
1593QualType ASTContext::getTypeOfType(QualType tofType) {
1594  QualType Canonical = getCanonicalType(tofType);
1595  TypeOfType *tot = new (*this,8) TypeOfType(tofType, Canonical);
1596  Types.push_back(tot);
1597  return QualType(tot, 0);
1598}
1599
1600/// getTagDeclType - Return the unique reference to the type for the
1601/// specified TagDecl (struct/union/class/enum) decl.
1602QualType ASTContext::getTagDeclType(TagDecl *Decl) {
1603  assert (Decl);
1604  return getTypeDeclType(Decl);
1605}
1606
1607/// getSizeType - Return the unique type for "size_t" (C99 7.17), the result
1608/// of the sizeof operator (C99 6.5.3.4p4). The value is target dependent and
1609/// needs to agree with the definition in <stddef.h>.
1610QualType ASTContext::getSizeType() const {
1611  return getFromTargetType(Target.getSizeType());
1612}
1613
1614/// getSignedWCharType - Return the type of "signed wchar_t".
1615/// Used when in C++, as a GCC extension.
1616QualType ASTContext::getSignedWCharType() const {
1617  // FIXME: derive from "Target" ?
1618  return WCharTy;
1619}
1620
1621/// getUnsignedWCharType - Return the type of "unsigned wchar_t".
1622/// Used when in C++, as a GCC extension.
1623QualType ASTContext::getUnsignedWCharType() const {
1624  // FIXME: derive from "Target" ?
1625  return UnsignedIntTy;
1626}
1627
1628/// getPointerDiffType - Return the unique type for "ptrdiff_t" (ref?)
1629/// defined in <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
1630QualType ASTContext::getPointerDiffType() const {
1631  return getFromTargetType(Target.getPtrDiffType(0));
1632}
1633
1634//===----------------------------------------------------------------------===//
1635//                              Type Operators
1636//===----------------------------------------------------------------------===//
1637
1638/// getCanonicalType - Return the canonical (structural) type corresponding to
1639/// the specified potentially non-canonical type.  The non-canonical version
1640/// of a type may have many "decorated" versions of types.  Decorators can
1641/// include typedefs, 'typeof' operators, etc. The returned type is guaranteed
1642/// to be free of any of these, allowing two canonical types to be compared
1643/// for exact equality with a simple pointer comparison.
1644QualType ASTContext::getCanonicalType(QualType T) {
1645  QualType CanType = T.getTypePtr()->getCanonicalTypeInternal();
1646
1647  // If the result has type qualifiers, make sure to canonicalize them as well.
1648  unsigned TypeQuals = T.getCVRQualifiers() | CanType.getCVRQualifiers();
1649  if (TypeQuals == 0) return CanType;
1650
1651  // If the type qualifiers are on an array type, get the canonical type of the
1652  // array with the qualifiers applied to the element type.
1653  ArrayType *AT = dyn_cast<ArrayType>(CanType);
1654  if (!AT)
1655    return CanType.getQualifiedType(TypeQuals);
1656
1657  // Get the canonical version of the element with the extra qualifiers on it.
1658  // This can recursively sink qualifiers through multiple levels of arrays.
1659  QualType NewEltTy=AT->getElementType().getWithAdditionalQualifiers(TypeQuals);
1660  NewEltTy = getCanonicalType(NewEltTy);
1661
1662  if (ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
1663    return getConstantArrayType(NewEltTy, CAT->getSize(),CAT->getSizeModifier(),
1664                                CAT->getIndexTypeQualifier());
1665  if (IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT))
1666    return getIncompleteArrayType(NewEltTy, IAT->getSizeModifier(),
1667                                  IAT->getIndexTypeQualifier());
1668
1669  if (DependentSizedArrayType *DSAT = dyn_cast<DependentSizedArrayType>(AT))
1670    return getDependentSizedArrayType(NewEltTy, DSAT->getSizeExpr(),
1671                                      DSAT->getSizeModifier(),
1672                                      DSAT->getIndexTypeQualifier());
1673
1674  VariableArrayType *VAT = cast<VariableArrayType>(AT);
1675  return getVariableArrayType(NewEltTy, VAT->getSizeExpr(),
1676                              VAT->getSizeModifier(),
1677                              VAT->getIndexTypeQualifier());
1678}
1679
1680NestedNameSpecifier *
1681ASTContext::getCanonicalNestedNameSpecifier(NestedNameSpecifier *NNS) {
1682  if (!NNS)
1683    return 0;
1684
1685  switch (NNS->getKind()) {
1686  case NestedNameSpecifier::Identifier:
1687    // Canonicalize the prefix but keep the identifier the same.
1688    return NestedNameSpecifier::Create(*this,
1689                         getCanonicalNestedNameSpecifier(NNS->getPrefix()),
1690                                       NNS->getAsIdentifier());
1691
1692  case NestedNameSpecifier::Namespace:
1693    // A namespace is canonical; build a nested-name-specifier with
1694    // this namespace and no prefix.
1695    return NestedNameSpecifier::Create(*this, 0, NNS->getAsNamespace());
1696
1697  case NestedNameSpecifier::TypeSpec:
1698  case NestedNameSpecifier::TypeSpecWithTemplate: {
1699    QualType T = getCanonicalType(QualType(NNS->getAsType(), 0));
1700    NestedNameSpecifier *Prefix = 0;
1701
1702    // FIXME: This isn't the right check!
1703    if (T->isDependentType())
1704      Prefix = getCanonicalNestedNameSpecifier(NNS->getPrefix());
1705
1706    return NestedNameSpecifier::Create(*this, Prefix,
1707                 NNS->getKind() == NestedNameSpecifier::TypeSpecWithTemplate,
1708                                       T.getTypePtr());
1709  }
1710
1711  case NestedNameSpecifier::Global:
1712    // The global specifier is canonical and unique.
1713    return NNS;
1714  }
1715
1716  // Required to silence a GCC warning
1717  return 0;
1718}
1719
1720
1721const ArrayType *ASTContext::getAsArrayType(QualType T) {
1722  // Handle the non-qualified case efficiently.
1723  if (T.getCVRQualifiers() == 0) {
1724    // Handle the common positive case fast.
1725    if (const ArrayType *AT = dyn_cast<ArrayType>(T))
1726      return AT;
1727  }
1728
1729  // Handle the common negative case fast, ignoring CVR qualifiers.
1730  QualType CType = T->getCanonicalTypeInternal();
1731
1732  // Make sure to look through type qualifiers (like ExtQuals) for the negative
1733  // test.
1734  if (!isa<ArrayType>(CType) &&
1735      !isa<ArrayType>(CType.getUnqualifiedType()))
1736    return 0;
1737
1738  // Apply any CVR qualifiers from the array type to the element type.  This
1739  // implements C99 6.7.3p8: "If the specification of an array type includes
1740  // any type qualifiers, the element type is so qualified, not the array type."
1741
1742  // If we get here, we either have type qualifiers on the type, or we have
1743  // sugar such as a typedef in the way.  If we have type qualifiers on the type
1744  // we must propagate them down into the elemeng type.
1745  unsigned CVRQuals = T.getCVRQualifiers();
1746  unsigned AddrSpace = 0;
1747  Type *Ty = T.getTypePtr();
1748
1749  // Rip through ExtQualType's and typedefs to get to a concrete type.
1750  while (1) {
1751    if (const ExtQualType *EXTQT = dyn_cast<ExtQualType>(Ty)) {
1752      AddrSpace = EXTQT->getAddressSpace();
1753      Ty = EXTQT->getBaseType();
1754    } else {
1755      T = Ty->getDesugaredType();
1756      if (T.getTypePtr() == Ty && T.getCVRQualifiers() == 0)
1757        break;
1758      CVRQuals |= T.getCVRQualifiers();
1759      Ty = T.getTypePtr();
1760    }
1761  }
1762
1763  // If we have a simple case, just return now.
1764  const ArrayType *ATy = dyn_cast<ArrayType>(Ty);
1765  if (ATy == 0 || (AddrSpace == 0 && CVRQuals == 0))
1766    return ATy;
1767
1768  // Otherwise, we have an array and we have qualifiers on it.  Push the
1769  // qualifiers into the array element type and return a new array type.
1770  // Get the canonical version of the element with the extra qualifiers on it.
1771  // This can recursively sink qualifiers through multiple levels of arrays.
1772  QualType NewEltTy = ATy->getElementType();
1773  if (AddrSpace)
1774    NewEltTy = getAddrSpaceQualType(NewEltTy, AddrSpace);
1775  NewEltTy = NewEltTy.getWithAdditionalQualifiers(CVRQuals);
1776
1777  if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(ATy))
1778    return cast<ArrayType>(getConstantArrayType(NewEltTy, CAT->getSize(),
1779                                                CAT->getSizeModifier(),
1780                                                CAT->getIndexTypeQualifier()));
1781  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(ATy))
1782    return cast<ArrayType>(getIncompleteArrayType(NewEltTy,
1783                                                  IAT->getSizeModifier(),
1784                                                 IAT->getIndexTypeQualifier()));
1785
1786  if (const DependentSizedArrayType *DSAT
1787        = dyn_cast<DependentSizedArrayType>(ATy))
1788    return cast<ArrayType>(
1789                     getDependentSizedArrayType(NewEltTy,
1790                                                DSAT->getSizeExpr(),
1791                                                DSAT->getSizeModifier(),
1792                                                DSAT->getIndexTypeQualifier()));
1793
1794  const VariableArrayType *VAT = cast<VariableArrayType>(ATy);
1795  return cast<ArrayType>(getVariableArrayType(NewEltTy, VAT->getSizeExpr(),
1796                                              VAT->getSizeModifier(),
1797                                              VAT->getIndexTypeQualifier()));
1798}
1799
1800
1801/// getArrayDecayedType - Return the properly qualified result of decaying the
1802/// specified array type to a pointer.  This operation is non-trivial when
1803/// handling typedefs etc.  The canonical type of "T" must be an array type,
1804/// this returns a pointer to a properly qualified element of the array.
1805///
1806/// See C99 6.7.5.3p7 and C99 6.3.2.1p3.
1807QualType ASTContext::getArrayDecayedType(QualType Ty) {
1808  // Get the element type with 'getAsArrayType' so that we don't lose any
1809  // typedefs in the element type of the array.  This also handles propagation
1810  // of type qualifiers from the array type into the element type if present
1811  // (C99 6.7.3p8).
1812  const ArrayType *PrettyArrayType = getAsArrayType(Ty);
1813  assert(PrettyArrayType && "Not an array type!");
1814
1815  QualType PtrTy = getPointerType(PrettyArrayType->getElementType());
1816
1817  // int x[restrict 4] ->  int *restrict
1818  return PtrTy.getQualifiedType(PrettyArrayType->getIndexTypeQualifier());
1819}
1820
1821QualType ASTContext::getBaseElementType(const VariableArrayType *VAT) {
1822  QualType ElemTy = VAT->getElementType();
1823
1824  if (const VariableArrayType *VAT = getAsVariableArrayType(ElemTy))
1825    return getBaseElementType(VAT);
1826
1827  return ElemTy;
1828}
1829
1830/// getFloatingRank - Return a relative rank for floating point types.
1831/// This routine will assert if passed a built-in type that isn't a float.
1832static FloatingRank getFloatingRank(QualType T) {
1833  if (const ComplexType *CT = T->getAsComplexType())
1834    return getFloatingRank(CT->getElementType());
1835
1836  assert(T->getAsBuiltinType() && "getFloatingRank(): not a floating type");
1837  switch (T->getAsBuiltinType()->getKind()) {
1838  default: assert(0 && "getFloatingRank(): not a floating type");
1839  case BuiltinType::Float:      return FloatRank;
1840  case BuiltinType::Double:     return DoubleRank;
1841  case BuiltinType::LongDouble: return LongDoubleRank;
1842  }
1843}
1844
1845/// getFloatingTypeOfSizeWithinDomain - Returns a real floating
1846/// point or a complex type (based on typeDomain/typeSize).
1847/// 'typeDomain' is a real floating point or complex type.
1848/// 'typeSize' is a real floating point or complex type.
1849QualType ASTContext::getFloatingTypeOfSizeWithinDomain(QualType Size,
1850                                                       QualType Domain) const {
1851  FloatingRank EltRank = getFloatingRank(Size);
1852  if (Domain->isComplexType()) {
1853    switch (EltRank) {
1854    default: assert(0 && "getFloatingRank(): illegal value for rank");
1855    case FloatRank:      return FloatComplexTy;
1856    case DoubleRank:     return DoubleComplexTy;
1857    case LongDoubleRank: return LongDoubleComplexTy;
1858    }
1859  }
1860
1861  assert(Domain->isRealFloatingType() && "Unknown domain!");
1862  switch (EltRank) {
1863  default: assert(0 && "getFloatingRank(): illegal value for rank");
1864  case FloatRank:      return FloatTy;
1865  case DoubleRank:     return DoubleTy;
1866  case LongDoubleRank: return LongDoubleTy;
1867  }
1868}
1869
1870/// getFloatingTypeOrder - Compare the rank of the two specified floating
1871/// point types, ignoring the domain of the type (i.e. 'double' ==
1872/// '_Complex double').  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
1873/// LHS < RHS, return -1.
1874int ASTContext::getFloatingTypeOrder(QualType LHS, QualType RHS) {
1875  FloatingRank LHSR = getFloatingRank(LHS);
1876  FloatingRank RHSR = getFloatingRank(RHS);
1877
1878  if (LHSR == RHSR)
1879    return 0;
1880  if (LHSR > RHSR)
1881    return 1;
1882  return -1;
1883}
1884
1885/// getIntegerRank - Return an integer conversion rank (C99 6.3.1.1p1). This
1886/// routine will assert if passed a built-in type that isn't an integer or enum,
1887/// or if it is not canonicalized.
1888unsigned ASTContext::getIntegerRank(Type *T) {
1889  assert(T->isCanonical() && "T should be canonicalized");
1890  if (EnumType* ET = dyn_cast<EnumType>(T))
1891    T = ET->getDecl()->getIntegerType().getTypePtr();
1892
1893  // There are two things which impact the integer rank: the width, and
1894  // the ordering of builtins.  The builtin ordering is encoded in the
1895  // bottom three bits; the width is encoded in the bits above that.
1896  if (FixedWidthIntType* FWIT = dyn_cast<FixedWidthIntType>(T)) {
1897    return FWIT->getWidth() << 3;
1898  }
1899
1900  switch (cast<BuiltinType>(T)->getKind()) {
1901  default: assert(0 && "getIntegerRank(): not a built-in integer");
1902  case BuiltinType::Bool:
1903    return 1 + (getIntWidth(BoolTy) << 3);
1904  case BuiltinType::Char_S:
1905  case BuiltinType::Char_U:
1906  case BuiltinType::SChar:
1907  case BuiltinType::UChar:
1908    return 2 + (getIntWidth(CharTy) << 3);
1909  case BuiltinType::Short:
1910  case BuiltinType::UShort:
1911    return 3 + (getIntWidth(ShortTy) << 3);
1912  case BuiltinType::Int:
1913  case BuiltinType::UInt:
1914    return 4 + (getIntWidth(IntTy) << 3);
1915  case BuiltinType::Long:
1916  case BuiltinType::ULong:
1917    return 5 + (getIntWidth(LongTy) << 3);
1918  case BuiltinType::LongLong:
1919  case BuiltinType::ULongLong:
1920    return 6 + (getIntWidth(LongLongTy) << 3);
1921  }
1922}
1923
1924/// getIntegerTypeOrder - Returns the highest ranked integer type:
1925/// C99 6.3.1.8p1.  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
1926/// LHS < RHS, return -1.
1927int ASTContext::getIntegerTypeOrder(QualType LHS, QualType RHS) {
1928  Type *LHSC = getCanonicalType(LHS).getTypePtr();
1929  Type *RHSC = getCanonicalType(RHS).getTypePtr();
1930  if (LHSC == RHSC) return 0;
1931
1932  bool LHSUnsigned = LHSC->isUnsignedIntegerType();
1933  bool RHSUnsigned = RHSC->isUnsignedIntegerType();
1934
1935  unsigned LHSRank = getIntegerRank(LHSC);
1936  unsigned RHSRank = getIntegerRank(RHSC);
1937
1938  if (LHSUnsigned == RHSUnsigned) {  // Both signed or both unsigned.
1939    if (LHSRank == RHSRank) return 0;
1940    return LHSRank > RHSRank ? 1 : -1;
1941  }
1942
1943  // Otherwise, the LHS is signed and the RHS is unsigned or visa versa.
1944  if (LHSUnsigned) {
1945    // If the unsigned [LHS] type is larger, return it.
1946    if (LHSRank >= RHSRank)
1947      return 1;
1948
1949    // If the signed type can represent all values of the unsigned type, it
1950    // wins.  Because we are dealing with 2's complement and types that are
1951    // powers of two larger than each other, this is always safe.
1952    return -1;
1953  }
1954
1955  // If the unsigned [RHS] type is larger, return it.
1956  if (RHSRank >= LHSRank)
1957    return -1;
1958
1959  // If the signed type can represent all values of the unsigned type, it
1960  // wins.  Because we are dealing with 2's complement and types that are
1961  // powers of two larger than each other, this is always safe.
1962  return 1;
1963}
1964
1965// getCFConstantStringType - Return the type used for constant CFStrings.
1966QualType ASTContext::getCFConstantStringType() {
1967  if (!CFConstantStringTypeDecl) {
1968    CFConstantStringTypeDecl =
1969      RecordDecl::Create(*this, TagDecl::TK_struct, TUDecl, SourceLocation(),
1970                         &Idents.get("NSConstantString"));
1971    QualType FieldTypes[4];
1972
1973    // const int *isa;
1974    FieldTypes[0] = getPointerType(IntTy.getQualifiedType(QualType::Const));
1975    // int flags;
1976    FieldTypes[1] = IntTy;
1977    // const char *str;
1978    FieldTypes[2] = getPointerType(CharTy.getQualifiedType(QualType::Const));
1979    // long length;
1980    FieldTypes[3] = LongTy;
1981
1982    // Create fields
1983    for (unsigned i = 0; i < 4; ++i) {
1984      FieldDecl *Field = FieldDecl::Create(*this, CFConstantStringTypeDecl,
1985                                           SourceLocation(), 0,
1986                                           FieldTypes[i], /*BitWidth=*/0,
1987                                           /*Mutable=*/false);
1988      CFConstantStringTypeDecl->addDecl(*this, Field);
1989    }
1990
1991    CFConstantStringTypeDecl->completeDefinition(*this);
1992  }
1993
1994  return getTagDeclType(CFConstantStringTypeDecl);
1995}
1996
1997QualType ASTContext::getObjCFastEnumerationStateType()
1998{
1999  if (!ObjCFastEnumerationStateTypeDecl) {
2000    ObjCFastEnumerationStateTypeDecl =
2001      RecordDecl::Create(*this, TagDecl::TK_struct, TUDecl, SourceLocation(),
2002                         &Idents.get("__objcFastEnumerationState"));
2003
2004    QualType FieldTypes[] = {
2005      UnsignedLongTy,
2006      getPointerType(ObjCIdType),
2007      getPointerType(UnsignedLongTy),
2008      getConstantArrayType(UnsignedLongTy,
2009                           llvm::APInt(32, 5), ArrayType::Normal, 0)
2010    };
2011
2012    for (size_t i = 0; i < 4; ++i) {
2013      FieldDecl *Field = FieldDecl::Create(*this,
2014                                           ObjCFastEnumerationStateTypeDecl,
2015                                           SourceLocation(), 0,
2016                                           FieldTypes[i], /*BitWidth=*/0,
2017                                           /*Mutable=*/false);
2018      ObjCFastEnumerationStateTypeDecl->addDecl(*this, Field);
2019    }
2020
2021    ObjCFastEnumerationStateTypeDecl->completeDefinition(*this);
2022  }
2023
2024  return getTagDeclType(ObjCFastEnumerationStateTypeDecl);
2025}
2026
2027// This returns true if a type has been typedefed to BOOL:
2028// typedef <type> BOOL;
2029static bool isTypeTypedefedAsBOOL(QualType T) {
2030  if (const TypedefType *TT = dyn_cast<TypedefType>(T))
2031    if (IdentifierInfo *II = TT->getDecl()->getIdentifier())
2032      return II->isStr("BOOL");
2033
2034  return false;
2035}
2036
2037/// getObjCEncodingTypeSize returns size of type for objective-c encoding
2038/// purpose.
2039int ASTContext::getObjCEncodingTypeSize(QualType type) {
2040  uint64_t sz = getTypeSize(type);
2041
2042  // Make all integer and enum types at least as large as an int
2043  if (sz > 0 && type->isIntegralType())
2044    sz = std::max(sz, getTypeSize(IntTy));
2045  // Treat arrays as pointers, since that's how they're passed in.
2046  else if (type->isArrayType())
2047    sz = getTypeSize(VoidPtrTy);
2048  return sz / getTypeSize(CharTy);
2049}
2050
2051/// getObjCEncodingForMethodDecl - Return the encoded type for this method
2052/// declaration.
2053void ASTContext::getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl,
2054                                              std::string& S) {
2055  // FIXME: This is not very efficient.
2056  // Encode type qualifer, 'in', 'inout', etc. for the return type.
2057  getObjCEncodingForTypeQualifier(Decl->getObjCDeclQualifier(), S);
2058  // Encode result type.
2059  getObjCEncodingForType(Decl->getResultType(), S);
2060  // Compute size of all parameters.
2061  // Start with computing size of a pointer in number of bytes.
2062  // FIXME: There might(should) be a better way of doing this computation!
2063  SourceLocation Loc;
2064  int PtrSize = getTypeSize(VoidPtrTy) / getTypeSize(CharTy);
2065  // The first two arguments (self and _cmd) are pointers; account for
2066  // their size.
2067  int ParmOffset = 2 * PtrSize;
2068  for (ObjCMethodDecl::param_iterator PI = Decl->param_begin(),
2069       E = Decl->param_end(); PI != E; ++PI) {
2070    QualType PType = (*PI)->getType();
2071    int sz = getObjCEncodingTypeSize(PType);
2072    assert (sz > 0 && "getObjCEncodingForMethodDecl - Incomplete param type");
2073    ParmOffset += sz;
2074  }
2075  S += llvm::utostr(ParmOffset);
2076  S += "@0:";
2077  S += llvm::utostr(PtrSize);
2078
2079  // Argument types.
2080  ParmOffset = 2 * PtrSize;
2081  for (ObjCMethodDecl::param_iterator PI = Decl->param_begin(),
2082       E = Decl->param_end(); PI != E; ++PI) {
2083    ParmVarDecl *PVDecl = *PI;
2084    QualType PType = PVDecl->getOriginalType();
2085    if (const ArrayType *AT =
2086          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
2087      // Use array's original type only if it has known number of
2088      // elements.
2089      if (!isa<ConstantArrayType>(AT))
2090        PType = PVDecl->getType();
2091    } else if (PType->isFunctionType())
2092      PType = PVDecl->getType();
2093    // Process argument qualifiers for user supplied arguments; such as,
2094    // 'in', 'inout', etc.
2095    getObjCEncodingForTypeQualifier(PVDecl->getObjCDeclQualifier(), S);
2096    getObjCEncodingForType(PType, S);
2097    S += llvm::utostr(ParmOffset);
2098    ParmOffset += getObjCEncodingTypeSize(PType);
2099  }
2100}
2101
2102/// getObjCEncodingForPropertyDecl - Return the encoded type for this
2103/// property declaration. If non-NULL, Container must be either an
2104/// ObjCCategoryImplDecl or ObjCImplementationDecl; it should only be
2105/// NULL when getting encodings for protocol properties.
2106/// Property attributes are stored as a comma-delimited C string. The simple
2107/// attributes readonly and bycopy are encoded as single characters. The
2108/// parametrized attributes, getter=name, setter=name, and ivar=name, are
2109/// encoded as single characters, followed by an identifier. Property types
2110/// are also encoded as a parametrized attribute. The characters used to encode
2111/// these attributes are defined by the following enumeration:
2112/// @code
2113/// enum PropertyAttributes {
2114/// kPropertyReadOnly = 'R',   // property is read-only.
2115/// kPropertyBycopy = 'C',     // property is a copy of the value last assigned
2116/// kPropertyByref = '&',  // property is a reference to the value last assigned
2117/// kPropertyDynamic = 'D',    // property is dynamic
2118/// kPropertyGetter = 'G',     // followed by getter selector name
2119/// kPropertySetter = 'S',     // followed by setter selector name
2120/// kPropertyInstanceVariable = 'V'  // followed by instance variable  name
2121/// kPropertyType = 't'              // followed by old-style type encoding.
2122/// kPropertyWeak = 'W'              // 'weak' property
2123/// kPropertyStrong = 'P'            // property GC'able
2124/// kPropertyNonAtomic = 'N'         // property non-atomic
2125/// };
2126/// @endcode
2127void ASTContext::getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD,
2128                                                const Decl *Container,
2129                                                std::string& S) {
2130  // Collect information from the property implementation decl(s).
2131  bool Dynamic = false;
2132  ObjCPropertyImplDecl *SynthesizePID = 0;
2133
2134  // FIXME: Duplicated code due to poor abstraction.
2135  if (Container) {
2136    if (const ObjCCategoryImplDecl *CID =
2137        dyn_cast<ObjCCategoryImplDecl>(Container)) {
2138      for (ObjCCategoryImplDecl::propimpl_iterator
2139             i = CID->propimpl_begin(), e = CID->propimpl_end(); i != e; ++i) {
2140        ObjCPropertyImplDecl *PID = *i;
2141        if (PID->getPropertyDecl() == PD) {
2142          if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
2143            Dynamic = true;
2144          } else {
2145            SynthesizePID = PID;
2146          }
2147        }
2148      }
2149    } else {
2150      const ObjCImplementationDecl *OID=cast<ObjCImplementationDecl>(Container);
2151      for (ObjCCategoryImplDecl::propimpl_iterator
2152             i = OID->propimpl_begin(), e = OID->propimpl_end(); i != e; ++i) {
2153        ObjCPropertyImplDecl *PID = *i;
2154        if (PID->getPropertyDecl() == PD) {
2155          if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
2156            Dynamic = true;
2157          } else {
2158            SynthesizePID = PID;
2159          }
2160        }
2161      }
2162    }
2163  }
2164
2165  // FIXME: This is not very efficient.
2166  S = "T";
2167
2168  // Encode result type.
2169  // GCC has some special rules regarding encoding of properties which
2170  // closely resembles encoding of ivars.
2171  getObjCEncodingForTypeImpl(PD->getType(), S, true, true, 0,
2172                             true /* outermost type */,
2173                             true /* encoding for property */);
2174
2175  if (PD->isReadOnly()) {
2176    S += ",R";
2177  } else {
2178    switch (PD->getSetterKind()) {
2179    case ObjCPropertyDecl::Assign: break;
2180    case ObjCPropertyDecl::Copy:   S += ",C"; break;
2181    case ObjCPropertyDecl::Retain: S += ",&"; break;
2182    }
2183  }
2184
2185  // It really isn't clear at all what this means, since properties
2186  // are "dynamic by default".
2187  if (Dynamic)
2188    S += ",D";
2189
2190  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_nonatomic)
2191    S += ",N";
2192
2193  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_getter) {
2194    S += ",G";
2195    S += PD->getGetterName().getAsString();
2196  }
2197
2198  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_setter) {
2199    S += ",S";
2200    S += PD->getSetterName().getAsString();
2201  }
2202
2203  if (SynthesizePID) {
2204    const ObjCIvarDecl *OID = SynthesizePID->getPropertyIvarDecl();
2205    S += ",V";
2206    S += OID->getNameAsString();
2207  }
2208
2209  // FIXME: OBJCGC: weak & strong
2210}
2211
2212/// getLegacyIntegralTypeEncoding -
2213/// Another legacy compatibility encoding: 32-bit longs are encoded as
2214/// 'l' or 'L' , but not always.  For typedefs, we need to use
2215/// 'i' or 'I' instead if encoding a struct field, or a pointer!
2216///
2217void ASTContext::getLegacyIntegralTypeEncoding (QualType &PointeeTy) const {
2218  if (dyn_cast<TypedefType>(PointeeTy.getTypePtr())) {
2219    if (const BuiltinType *BT = PointeeTy->getAsBuiltinType()) {
2220      if (BT->getKind() == BuiltinType::ULong &&
2221          ((const_cast<ASTContext *>(this))->getIntWidth(PointeeTy) == 32))
2222        PointeeTy = UnsignedIntTy;
2223      else
2224        if (BT->getKind() == BuiltinType::Long &&
2225            ((const_cast<ASTContext *>(this))->getIntWidth(PointeeTy) == 32))
2226          PointeeTy = IntTy;
2227    }
2228  }
2229}
2230
2231void ASTContext::getObjCEncodingForType(QualType T, std::string& S,
2232                                        const FieldDecl *Field) {
2233  // We follow the behavior of gcc, expanding structures which are
2234  // directly pointed to, and expanding embedded structures. Note that
2235  // these rules are sufficient to prevent recursive encoding of the
2236  // same type.
2237  getObjCEncodingForTypeImpl(T, S, true, true, Field,
2238                             true /* outermost type */);
2239}
2240
2241static void EncodeBitField(const ASTContext *Context, std::string& S,
2242                           const FieldDecl *FD) {
2243  const Expr *E = FD->getBitWidth();
2244  assert(E && "bitfield width not there - getObjCEncodingForTypeImpl");
2245  ASTContext *Ctx = const_cast<ASTContext*>(Context);
2246  unsigned N = E->getIntegerConstantExprValue(*Ctx).getZExtValue();
2247  S += 'b';
2248  S += llvm::utostr(N);
2249}
2250
2251void ASTContext::getObjCEncodingForTypeImpl(QualType T, std::string& S,
2252                                            bool ExpandPointedToStructures,
2253                                            bool ExpandStructures,
2254                                            const FieldDecl *FD,
2255                                            bool OutermostType,
2256                                            bool EncodingProperty) {
2257  if (const BuiltinType *BT = T->getAsBuiltinType()) {
2258    if (FD && FD->isBitField()) {
2259      EncodeBitField(this, S, FD);
2260    }
2261    else {
2262      char encoding;
2263      switch (BT->getKind()) {
2264      default: assert(0 && "Unhandled builtin type kind");
2265      case BuiltinType::Void:       encoding = 'v'; break;
2266      case BuiltinType::Bool:       encoding = 'B'; break;
2267      case BuiltinType::Char_U:
2268      case BuiltinType::UChar:      encoding = 'C'; break;
2269      case BuiltinType::UShort:     encoding = 'S'; break;
2270      case BuiltinType::UInt:       encoding = 'I'; break;
2271      case BuiltinType::ULong:
2272          encoding =
2273            (const_cast<ASTContext *>(this))->getIntWidth(T) == 32 ? 'L' : 'Q';
2274          break;
2275      case BuiltinType::ULongLong:  encoding = 'Q'; break;
2276      case BuiltinType::Char_S:
2277      case BuiltinType::SChar:      encoding = 'c'; break;
2278      case BuiltinType::Short:      encoding = 's'; break;
2279      case BuiltinType::Int:        encoding = 'i'; break;
2280      case BuiltinType::Long:
2281        encoding =
2282          (const_cast<ASTContext *>(this))->getIntWidth(T) == 32 ? 'l' : 'q';
2283        break;
2284      case BuiltinType::LongLong:   encoding = 'q'; break;
2285      case BuiltinType::Float:      encoding = 'f'; break;
2286      case BuiltinType::Double:     encoding = 'd'; break;
2287      case BuiltinType::LongDouble: encoding = 'd'; break;
2288      }
2289
2290      S += encoding;
2291    }
2292  } else if (const ComplexType *CT = T->getAsComplexType()) {
2293    S += 'j';
2294    getObjCEncodingForTypeImpl(CT->getElementType(), S, false, false, 0, false,
2295                               false);
2296  } else if (T->isObjCQualifiedIdType()) {
2297    getObjCEncodingForTypeImpl(getObjCIdType(), S,
2298                               ExpandPointedToStructures,
2299                               ExpandStructures, FD);
2300    if (FD || EncodingProperty) {
2301      // Note that we do extended encoding of protocol qualifer list
2302      // Only when doing ivar or property encoding.
2303      const ObjCQualifiedIdType *QIDT = T->getAsObjCQualifiedIdType();
2304      S += '"';
2305      for (unsigned i =0; i < QIDT->getNumProtocols(); i++) {
2306        ObjCProtocolDecl *Proto = QIDT->getProtocols(i);
2307        S += '<';
2308        S += Proto->getNameAsString();
2309        S += '>';
2310      }
2311      S += '"';
2312    }
2313    return;
2314  }
2315  else if (const PointerType *PT = T->getAsPointerType()) {
2316    QualType PointeeTy = PT->getPointeeType();
2317    bool isReadOnly = false;
2318    // For historical/compatibility reasons, the read-only qualifier of the
2319    // pointee gets emitted _before_ the '^'.  The read-only qualifier of
2320    // the pointer itself gets ignored, _unless_ we are looking at a typedef!
2321    // Also, do not emit the 'r' for anything but the outermost type!
2322    if (dyn_cast<TypedefType>(T.getTypePtr())) {
2323      if (OutermostType && T.isConstQualified()) {
2324        isReadOnly = true;
2325        S += 'r';
2326      }
2327    }
2328    else if (OutermostType) {
2329      QualType P = PointeeTy;
2330      while (P->getAsPointerType())
2331        P = P->getAsPointerType()->getPointeeType();
2332      if (P.isConstQualified()) {
2333        isReadOnly = true;
2334        S += 'r';
2335      }
2336    }
2337    if (isReadOnly) {
2338      // Another legacy compatibility encoding. Some ObjC qualifier and type
2339      // combinations need to be rearranged.
2340      // Rewrite "in const" from "nr" to "rn"
2341      const char * s = S.c_str();
2342      int len = S.length();
2343      if (len >= 2 && s[len-2] == 'n' && s[len-1] == 'r') {
2344        std::string replace = "rn";
2345        S.replace(S.end()-2, S.end(), replace);
2346      }
2347    }
2348    if (isObjCIdStructType(PointeeTy)) {
2349      S += '@';
2350      return;
2351    }
2352    else if (PointeeTy->isObjCInterfaceType()) {
2353      if (!EncodingProperty &&
2354          isa<TypedefType>(PointeeTy.getTypePtr())) {
2355        // Another historical/compatibility reason.
2356        // We encode the underlying type which comes out as
2357        // {...};
2358        S += '^';
2359        getObjCEncodingForTypeImpl(PointeeTy, S,
2360                                   false, ExpandPointedToStructures,
2361                                   NULL);
2362        return;
2363      }
2364      S += '@';
2365      if (FD || EncodingProperty) {
2366        const ObjCInterfaceType *OIT =
2367                PointeeTy.getUnqualifiedType()->getAsObjCInterfaceType();
2368        ObjCInterfaceDecl *OI = OIT->getDecl();
2369        S += '"';
2370        S += OI->getNameAsCString();
2371        for (unsigned i =0; i < OIT->getNumProtocols(); i++) {
2372          ObjCProtocolDecl *Proto = OIT->getProtocol(i);
2373          S += '<';
2374          S += Proto->getNameAsString();
2375          S += '>';
2376        }
2377        S += '"';
2378      }
2379      return;
2380    } else if (isObjCClassStructType(PointeeTy)) {
2381      S += '#';
2382      return;
2383    } else if (isObjCSelType(PointeeTy)) {
2384      S += ':';
2385      return;
2386    }
2387
2388    if (PointeeTy->isCharType()) {
2389      // char pointer types should be encoded as '*' unless it is a
2390      // type that has been typedef'd to 'BOOL'.
2391      if (!isTypeTypedefedAsBOOL(PointeeTy)) {
2392        S += '*';
2393        return;
2394      }
2395    }
2396
2397    S += '^';
2398    getLegacyIntegralTypeEncoding(PointeeTy);
2399
2400    getObjCEncodingForTypeImpl(PointeeTy, S,
2401                               false, ExpandPointedToStructures,
2402                               NULL);
2403  } else if (const ArrayType *AT =
2404               // Ignore type qualifiers etc.
2405               dyn_cast<ArrayType>(T->getCanonicalTypeInternal())) {
2406    if (isa<IncompleteArrayType>(AT)) {
2407      // Incomplete arrays are encoded as a pointer to the array element.
2408      S += '^';
2409
2410      getObjCEncodingForTypeImpl(AT->getElementType(), S,
2411                                 false, ExpandStructures, FD);
2412    } else {
2413      S += '[';
2414
2415      if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
2416        S += llvm::utostr(CAT->getSize().getZExtValue());
2417      else {
2418        //Variable length arrays are encoded as a regular array with 0 elements.
2419        assert(isa<VariableArrayType>(AT) && "Unknown array type!");
2420        S += '0';
2421      }
2422
2423      getObjCEncodingForTypeImpl(AT->getElementType(), S,
2424                                 false, ExpandStructures, FD);
2425      S += ']';
2426    }
2427  } else if (T->getAsFunctionType()) {
2428    S += '?';
2429  } else if (const RecordType *RTy = T->getAsRecordType()) {
2430    RecordDecl *RDecl = RTy->getDecl();
2431    S += RDecl->isUnion() ? '(' : '{';
2432    // Anonymous structures print as '?'
2433    if (const IdentifierInfo *II = RDecl->getIdentifier()) {
2434      S += II->getName();
2435    } else {
2436      S += '?';
2437    }
2438    if (ExpandStructures) {
2439      S += '=';
2440      for (RecordDecl::field_iterator Field = RDecl->field_begin(*this),
2441                                   FieldEnd = RDecl->field_end(*this);
2442           Field != FieldEnd; ++Field) {
2443        if (FD) {
2444          S += '"';
2445          S += Field->getNameAsString();
2446          S += '"';
2447        }
2448
2449        // Special case bit-fields.
2450        if (Field->isBitField()) {
2451          getObjCEncodingForTypeImpl(Field->getType(), S, false, true,
2452                                     (*Field));
2453        } else {
2454          QualType qt = Field->getType();
2455          getLegacyIntegralTypeEncoding(qt);
2456          getObjCEncodingForTypeImpl(qt, S, false, true,
2457                                     FD);
2458        }
2459      }
2460    }
2461    S += RDecl->isUnion() ? ')' : '}';
2462  } else if (T->isEnumeralType()) {
2463    if (FD && FD->isBitField())
2464      EncodeBitField(this, S, FD);
2465    else
2466      S += 'i';
2467  } else if (T->isBlockPointerType()) {
2468    S += "@?"; // Unlike a pointer-to-function, which is "^?".
2469  } else if (T->isObjCInterfaceType()) {
2470    // @encode(class_name)
2471    ObjCInterfaceDecl *OI = T->getAsObjCInterfaceType()->getDecl();
2472    S += '{';
2473    const IdentifierInfo *II = OI->getIdentifier();
2474    S += II->getName();
2475    S += '=';
2476    llvm::SmallVector<FieldDecl*, 32> RecFields;
2477    CollectObjCIvars(OI, RecFields);
2478    for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
2479      if (RecFields[i]->isBitField())
2480        getObjCEncodingForTypeImpl(RecFields[i]->getType(), S, false, true,
2481                                   RecFields[i]);
2482      else
2483        getObjCEncodingForTypeImpl(RecFields[i]->getType(), S, false, true,
2484                                   FD);
2485    }
2486    S += '}';
2487  }
2488  else
2489    assert(0 && "@encode for type not implemented!");
2490}
2491
2492void ASTContext::getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,
2493                                                 std::string& S) const {
2494  if (QT & Decl::OBJC_TQ_In)
2495    S += 'n';
2496  if (QT & Decl::OBJC_TQ_Inout)
2497    S += 'N';
2498  if (QT & Decl::OBJC_TQ_Out)
2499    S += 'o';
2500  if (QT & Decl::OBJC_TQ_Bycopy)
2501    S += 'O';
2502  if (QT & Decl::OBJC_TQ_Byref)
2503    S += 'R';
2504  if (QT & Decl::OBJC_TQ_Oneway)
2505    S += 'V';
2506}
2507
2508void ASTContext::setBuiltinVaListType(QualType T)
2509{
2510  assert(BuiltinVaListType.isNull() && "__builtin_va_list type already set!");
2511
2512  BuiltinVaListType = T;
2513}
2514
2515void ASTContext::setObjCIdType(TypedefDecl *TD)
2516{
2517  ObjCIdType = getTypedefType(TD);
2518
2519  // typedef struct objc_object *id;
2520  const PointerType *ptr = TD->getUnderlyingType()->getAsPointerType();
2521  // User error - caller will issue diagnostics.
2522  if (!ptr)
2523    return;
2524  const RecordType *rec = ptr->getPointeeType()->getAsStructureType();
2525  // User error - caller will issue diagnostics.
2526  if (!rec)
2527    return;
2528  IdStructType = rec;
2529}
2530
2531void ASTContext::setObjCSelType(TypedefDecl *TD)
2532{
2533  ObjCSelType = getTypedefType(TD);
2534
2535  // typedef struct objc_selector *SEL;
2536  const PointerType *ptr = TD->getUnderlyingType()->getAsPointerType();
2537  if (!ptr)
2538    return;
2539  const RecordType *rec = ptr->getPointeeType()->getAsStructureType();
2540  if (!rec)
2541    return;
2542  SelStructType = rec;
2543}
2544
2545void ASTContext::setObjCProtoType(QualType QT)
2546{
2547  ObjCProtoType = QT;
2548}
2549
2550void ASTContext::setObjCClassType(TypedefDecl *TD)
2551{
2552  ObjCClassType = getTypedefType(TD);
2553
2554  // typedef struct objc_class *Class;
2555  const PointerType *ptr = TD->getUnderlyingType()->getAsPointerType();
2556  assert(ptr && "'Class' incorrectly typed");
2557  const RecordType *rec = ptr->getPointeeType()->getAsStructureType();
2558  assert(rec && "'Class' incorrectly typed");
2559  ClassStructType = rec;
2560}
2561
2562void ASTContext::setObjCConstantStringInterface(ObjCInterfaceDecl *Decl) {
2563  assert(ObjCConstantStringType.isNull() &&
2564         "'NSConstantString' type already set!");
2565
2566  ObjCConstantStringType = getObjCInterfaceType(Decl);
2567}
2568
2569/// \brief Retrieve the template name that represents a qualified
2570/// template name such as \c std::vector.
2571TemplateName ASTContext::getQualifiedTemplateName(NestedNameSpecifier *NNS,
2572                                                  bool TemplateKeyword,
2573                                                  TemplateDecl *Template) {
2574  llvm::FoldingSetNodeID ID;
2575  QualifiedTemplateName::Profile(ID, NNS, TemplateKeyword, Template);
2576
2577  void *InsertPos = 0;
2578  QualifiedTemplateName *QTN =
2579    QualifiedTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
2580  if (!QTN) {
2581    QTN = new (*this,4) QualifiedTemplateName(NNS, TemplateKeyword, Template);
2582    QualifiedTemplateNames.InsertNode(QTN, InsertPos);
2583  }
2584
2585  return TemplateName(QTN);
2586}
2587
2588/// \brief Retrieve the template name that represents a dependent
2589/// template name such as \c MetaFun::template apply.
2590TemplateName ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
2591                                                  const IdentifierInfo *Name) {
2592  assert(NNS->isDependent() && "Nested name specifier must be dependent");
2593
2594  llvm::FoldingSetNodeID ID;
2595  DependentTemplateName::Profile(ID, NNS, Name);
2596
2597  void *InsertPos = 0;
2598  DependentTemplateName *QTN =
2599    DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
2600
2601  if (QTN)
2602    return TemplateName(QTN);
2603
2604  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
2605  if (CanonNNS == NNS) {
2606    QTN = new (*this,4) DependentTemplateName(NNS, Name);
2607  } else {
2608    TemplateName Canon = getDependentTemplateName(CanonNNS, Name);
2609    QTN = new (*this,4) DependentTemplateName(NNS, Name, Canon);
2610  }
2611
2612  DependentTemplateNames.InsertNode(QTN, InsertPos);
2613  return TemplateName(QTN);
2614}
2615
2616/// getFromTargetType - Given one of the integer types provided by
2617/// TargetInfo, produce the corresponding type. The unsigned @p Type
2618/// is actually a value of type @c TargetInfo::IntType.
2619QualType ASTContext::getFromTargetType(unsigned Type) const {
2620  switch (Type) {
2621  case TargetInfo::NoInt: return QualType();
2622  case TargetInfo::SignedShort: return ShortTy;
2623  case TargetInfo::UnsignedShort: return UnsignedShortTy;
2624  case TargetInfo::SignedInt: return IntTy;
2625  case TargetInfo::UnsignedInt: return UnsignedIntTy;
2626  case TargetInfo::SignedLong: return LongTy;
2627  case TargetInfo::UnsignedLong: return UnsignedLongTy;
2628  case TargetInfo::SignedLongLong: return LongLongTy;
2629  case TargetInfo::UnsignedLongLong: return UnsignedLongLongTy;
2630  }
2631
2632  assert(false && "Unhandled TargetInfo::IntType value");
2633  return QualType();
2634}
2635
2636//===----------------------------------------------------------------------===//
2637//                        Type Predicates.
2638//===----------------------------------------------------------------------===//
2639
2640/// isObjCNSObjectType - Return true if this is an NSObject object using
2641/// NSObject attribute on a c-style pointer type.
2642/// FIXME - Make it work directly on types.
2643///
2644bool ASTContext::isObjCNSObjectType(QualType Ty) const {
2645  if (TypedefType *TDT = dyn_cast<TypedefType>(Ty)) {
2646    if (TypedefDecl *TD = TDT->getDecl())
2647      if (TD->getAttr<ObjCNSObjectAttr>())
2648        return true;
2649  }
2650  return false;
2651}
2652
2653/// isObjCObjectPointerType - Returns true if type is an Objective-C pointer
2654/// to an object type.  This includes "id" and "Class" (two 'special' pointers
2655/// to struct), Interface* (pointer to ObjCInterfaceType) and id<P> (qualified
2656/// ID type).
2657bool ASTContext::isObjCObjectPointerType(QualType Ty) const {
2658  if (Ty->isObjCQualifiedIdType())
2659    return true;
2660
2661  // Blocks are objects.
2662  if (Ty->isBlockPointerType())
2663    return true;
2664
2665  // All other object types are pointers.
2666  const PointerType *PT = Ty->getAsPointerType();
2667  if (PT == 0)
2668    return false;
2669
2670  // If this a pointer to an interface (e.g. NSString*), it is ok.
2671  if (PT->getPointeeType()->isObjCInterfaceType() ||
2672      // If is has NSObject attribute, OK as well.
2673      isObjCNSObjectType(Ty))
2674    return true;
2675
2676  // Check to see if this is 'id' or 'Class', both of which are typedefs for
2677  // pointer types.  This looks for the typedef specifically, not for the
2678  // underlying type.  Iteratively strip off typedefs so that we can handle
2679  // typedefs of typedefs.
2680  while (TypedefType *TDT = dyn_cast<TypedefType>(Ty)) {
2681    if (Ty.getUnqualifiedType() == getObjCIdType() ||
2682        Ty.getUnqualifiedType() == getObjCClassType())
2683      return true;
2684
2685    Ty = TDT->getDecl()->getUnderlyingType();
2686  }
2687
2688  return false;
2689}
2690
2691/// getObjCGCAttr - Returns one of GCNone, Weak or Strong objc's
2692/// garbage collection attribute.
2693///
2694QualType::GCAttrTypes ASTContext::getObjCGCAttrKind(const QualType &Ty) const {
2695  QualType::GCAttrTypes GCAttrs = QualType::GCNone;
2696  if (getLangOptions().ObjC1 &&
2697      getLangOptions().getGCMode() != LangOptions::NonGC) {
2698    GCAttrs = Ty.getObjCGCAttr();
2699    // Default behavious under objective-c's gc is for objective-c pointers
2700    // (or pointers to them) be treated as though they were declared
2701    // as __strong.
2702    if (GCAttrs == QualType::GCNone) {
2703      if (isObjCObjectPointerType(Ty))
2704        GCAttrs = QualType::Strong;
2705      else if (Ty->isPointerType())
2706        return getObjCGCAttrKind(Ty->getAsPointerType()->getPointeeType());
2707    }
2708    // Non-pointers have none gc'able attribute regardless of the attribute
2709    // set on them.
2710    else if (!isObjCObjectPointerType(Ty) && !Ty->isPointerType())
2711      return QualType::GCNone;
2712  }
2713  return GCAttrs;
2714}
2715
2716//===----------------------------------------------------------------------===//
2717//                        Type Compatibility Testing
2718//===----------------------------------------------------------------------===//
2719
2720/// typesAreBlockCompatible - This routine is called when comparing two
2721/// block types. Types must be strictly compatible here. For example,
2722/// C unfortunately doesn't produce an error for the following:
2723///
2724///   int (*emptyArgFunc)();
2725///   int (*intArgList)(int) = emptyArgFunc;
2726///
2727/// For blocks, we will produce an error for the following (similar to C++):
2728///
2729///   int (^emptyArgBlock)();
2730///   int (^intArgBlock)(int) = emptyArgBlock;
2731///
2732/// FIXME: When the dust settles on this integration, fold this into mergeTypes.
2733///
2734bool ASTContext::typesAreBlockCompatible(QualType lhs, QualType rhs) {
2735  const FunctionType *lbase = lhs->getAsFunctionType();
2736  const FunctionType *rbase = rhs->getAsFunctionType();
2737  const FunctionProtoType *lproto = dyn_cast<FunctionProtoType>(lbase);
2738  const FunctionProtoType *rproto = dyn_cast<FunctionProtoType>(rbase);
2739  if (lproto && rproto == 0)
2740    return false;
2741  return !mergeTypes(lhs, rhs).isNull();
2742}
2743
2744/// areCompatVectorTypes - Return true if the two specified vector types are
2745/// compatible.
2746static bool areCompatVectorTypes(const VectorType *LHS,
2747                                 const VectorType *RHS) {
2748  assert(LHS->isCanonical() && RHS->isCanonical());
2749  return LHS->getElementType() == RHS->getElementType() &&
2750         LHS->getNumElements() == RHS->getNumElements();
2751}
2752
2753/// canAssignObjCInterfaces - Return true if the two interface types are
2754/// compatible for assignment from RHS to LHS.  This handles validation of any
2755/// protocol qualifiers on the LHS or RHS.
2756///
2757bool ASTContext::canAssignObjCInterfaces(const ObjCInterfaceType *LHS,
2758                                         const ObjCInterfaceType *RHS) {
2759  // Verify that the base decls are compatible: the RHS must be a subclass of
2760  // the LHS.
2761  if (!LHS->getDecl()->isSuperClassOf(RHS->getDecl()))
2762    return false;
2763
2764  // RHS must have a superset of the protocols in the LHS.  If the LHS is not
2765  // protocol qualified at all, then we are good.
2766  if (!isa<ObjCQualifiedInterfaceType>(LHS))
2767    return true;
2768
2769  // Okay, we know the LHS has protocol qualifiers.  If the RHS doesn't, then it
2770  // isn't a superset.
2771  if (!isa<ObjCQualifiedInterfaceType>(RHS))
2772    return true;  // FIXME: should return false!
2773
2774  // Finally, we must have two protocol-qualified interfaces.
2775  const ObjCQualifiedInterfaceType *LHSP =cast<ObjCQualifiedInterfaceType>(LHS);
2776  const ObjCQualifiedInterfaceType *RHSP =cast<ObjCQualifiedInterfaceType>(RHS);
2777
2778  // All LHS protocols must have a presence on the RHS.
2779  assert(LHSP->qual_begin() != LHSP->qual_end() && "Empty LHS protocol list?");
2780
2781  for (ObjCQualifiedInterfaceType::qual_iterator LHSPI = LHSP->qual_begin(),
2782                                                 LHSPE = LHSP->qual_end();
2783       LHSPI != LHSPE; LHSPI++) {
2784    bool RHSImplementsProtocol = false;
2785
2786    // If the RHS doesn't implement the protocol on the left, the types
2787    // are incompatible.
2788    for (ObjCQualifiedInterfaceType::qual_iterator RHSPI = RHSP->qual_begin(),
2789                                                   RHSPE = RHSP->qual_end();
2790         !RHSImplementsProtocol && (RHSPI != RHSPE); RHSPI++) {
2791      if ((*RHSPI)->lookupProtocolNamed((*LHSPI)->getIdentifier()))
2792        RHSImplementsProtocol = true;
2793    }
2794    // FIXME: For better diagnostics, consider passing back the protocol name.
2795    if (!RHSImplementsProtocol)
2796      return false;
2797  }
2798  // The RHS implements all protocols listed on the LHS.
2799  return true;
2800}
2801
2802bool ASTContext::areComparableObjCPointerTypes(QualType LHS, QualType RHS) {
2803  // get the "pointed to" types
2804  const PointerType *LHSPT = LHS->getAsPointerType();
2805  const PointerType *RHSPT = RHS->getAsPointerType();
2806
2807  if (!LHSPT || !RHSPT)
2808    return false;
2809
2810  QualType lhptee = LHSPT->getPointeeType();
2811  QualType rhptee = RHSPT->getPointeeType();
2812  const ObjCInterfaceType* LHSIface = lhptee->getAsObjCInterfaceType();
2813  const ObjCInterfaceType* RHSIface = rhptee->getAsObjCInterfaceType();
2814  // ID acts sort of like void* for ObjC interfaces
2815  if (LHSIface && isObjCIdStructType(rhptee))
2816    return true;
2817  if (RHSIface && isObjCIdStructType(lhptee))
2818    return true;
2819  if (!LHSIface || !RHSIface)
2820    return false;
2821  return canAssignObjCInterfaces(LHSIface, RHSIface) ||
2822         canAssignObjCInterfaces(RHSIface, LHSIface);
2823}
2824
2825/// typesAreCompatible - C99 6.7.3p9: For two qualified types to be compatible,
2826/// both shall have the identically qualified version of a compatible type.
2827/// C99 6.2.7p1: Two types have compatible types if their types are the
2828/// same. See 6.7.[2,3,5] for additional rules.
2829bool ASTContext::typesAreCompatible(QualType LHS, QualType RHS) {
2830  return !mergeTypes(LHS, RHS).isNull();
2831}
2832
2833QualType ASTContext::mergeFunctionTypes(QualType lhs, QualType rhs) {
2834  const FunctionType *lbase = lhs->getAsFunctionType();
2835  const FunctionType *rbase = rhs->getAsFunctionType();
2836  const FunctionProtoType *lproto = dyn_cast<FunctionProtoType>(lbase);
2837  const FunctionProtoType *rproto = dyn_cast<FunctionProtoType>(rbase);
2838  bool allLTypes = true;
2839  bool allRTypes = true;
2840
2841  // Check return type
2842  QualType retType = mergeTypes(lbase->getResultType(), rbase->getResultType());
2843  if (retType.isNull()) return QualType();
2844  if (getCanonicalType(retType) != getCanonicalType(lbase->getResultType()))
2845    allLTypes = false;
2846  if (getCanonicalType(retType) != getCanonicalType(rbase->getResultType()))
2847    allRTypes = false;
2848
2849  if (lproto && rproto) { // two C99 style function prototypes
2850    unsigned lproto_nargs = lproto->getNumArgs();
2851    unsigned rproto_nargs = rproto->getNumArgs();
2852
2853    // Compatible functions must have the same number of arguments
2854    if (lproto_nargs != rproto_nargs)
2855      return QualType();
2856
2857    // Variadic and non-variadic functions aren't compatible
2858    if (lproto->isVariadic() != rproto->isVariadic())
2859      return QualType();
2860
2861    if (lproto->getTypeQuals() != rproto->getTypeQuals())
2862      return QualType();
2863
2864    // Check argument compatibility
2865    llvm::SmallVector<QualType, 10> types;
2866    for (unsigned i = 0; i < lproto_nargs; i++) {
2867      QualType largtype = lproto->getArgType(i).getUnqualifiedType();
2868      QualType rargtype = rproto->getArgType(i).getUnqualifiedType();
2869      QualType argtype = mergeTypes(largtype, rargtype);
2870      if (argtype.isNull()) return QualType();
2871      types.push_back(argtype);
2872      if (getCanonicalType(argtype) != getCanonicalType(largtype))
2873        allLTypes = false;
2874      if (getCanonicalType(argtype) != getCanonicalType(rargtype))
2875        allRTypes = false;
2876    }
2877    if (allLTypes) return lhs;
2878    if (allRTypes) return rhs;
2879    return getFunctionType(retType, types.begin(), types.size(),
2880                           lproto->isVariadic(), lproto->getTypeQuals());
2881  }
2882
2883  if (lproto) allRTypes = false;
2884  if (rproto) allLTypes = false;
2885
2886  const FunctionProtoType *proto = lproto ? lproto : rproto;
2887  if (proto) {
2888    if (proto->isVariadic()) return QualType();
2889    // Check that the types are compatible with the types that
2890    // would result from default argument promotions (C99 6.7.5.3p15).
2891    // The only types actually affected are promotable integer
2892    // types and floats, which would be passed as a different
2893    // type depending on whether the prototype is visible.
2894    unsigned proto_nargs = proto->getNumArgs();
2895    for (unsigned i = 0; i < proto_nargs; ++i) {
2896      QualType argTy = proto->getArgType(i);
2897      if (argTy->isPromotableIntegerType() ||
2898          getCanonicalType(argTy).getUnqualifiedType() == FloatTy)
2899        return QualType();
2900    }
2901
2902    if (allLTypes) return lhs;
2903    if (allRTypes) return rhs;
2904    return getFunctionType(retType, proto->arg_type_begin(),
2905                           proto->getNumArgs(), lproto->isVariadic(),
2906                           lproto->getTypeQuals());
2907  }
2908
2909  if (allLTypes) return lhs;
2910  if (allRTypes) return rhs;
2911  return getFunctionNoProtoType(retType);
2912}
2913
2914QualType ASTContext::mergeTypes(QualType LHS, QualType RHS) {
2915  // C++ [expr]: If an expression initially has the type "reference to T", the
2916  // type is adjusted to "T" prior to any further analysis, the expression
2917  // designates the object or function denoted by the reference, and the
2918  // expression is an lvalue unless the reference is an rvalue reference and
2919  // the expression is a function call (possibly inside parentheses).
2920  // FIXME: C++ shouldn't be going through here!  The rules are different
2921  // enough that they should be handled separately.
2922  // FIXME: Merging of lvalue and rvalue references is incorrect. C++ *really*
2923  // shouldn't be going through here!
2924  if (const ReferenceType *RT = LHS->getAsReferenceType())
2925    LHS = RT->getPointeeType();
2926  if (const ReferenceType *RT = RHS->getAsReferenceType())
2927    RHS = RT->getPointeeType();
2928
2929  QualType LHSCan = getCanonicalType(LHS),
2930           RHSCan = getCanonicalType(RHS);
2931
2932  // If two types are identical, they are compatible.
2933  if (LHSCan == RHSCan)
2934    return LHS;
2935
2936  // If the qualifiers are different, the types aren't compatible
2937  // Note that we handle extended qualifiers later, in the
2938  // case for ExtQualType.
2939  if (LHSCan.getCVRQualifiers() != RHSCan.getCVRQualifiers())
2940    return QualType();
2941
2942  Type::TypeClass LHSClass = LHSCan.getUnqualifiedType()->getTypeClass();
2943  Type::TypeClass RHSClass = RHSCan.getUnqualifiedType()->getTypeClass();
2944
2945  // We want to consider the two function types to be the same for these
2946  // comparisons, just force one to the other.
2947  if (LHSClass == Type::FunctionProto) LHSClass = Type::FunctionNoProto;
2948  if (RHSClass == Type::FunctionProto) RHSClass = Type::FunctionNoProto;
2949
2950  // Same as above for arrays
2951  if (LHSClass == Type::VariableArray || LHSClass == Type::IncompleteArray)
2952    LHSClass = Type::ConstantArray;
2953  if (RHSClass == Type::VariableArray || RHSClass == Type::IncompleteArray)
2954    RHSClass = Type::ConstantArray;
2955
2956  // Canonicalize ExtVector -> Vector.
2957  if (LHSClass == Type::ExtVector) LHSClass = Type::Vector;
2958  if (RHSClass == Type::ExtVector) RHSClass = Type::Vector;
2959
2960  // Consider qualified interfaces and interfaces the same.
2961  if (LHSClass == Type::ObjCQualifiedInterface) LHSClass = Type::ObjCInterface;
2962  if (RHSClass == Type::ObjCQualifiedInterface) RHSClass = Type::ObjCInterface;
2963
2964  // If the canonical type classes don't match.
2965  if (LHSClass != RHSClass) {
2966    const ObjCInterfaceType* LHSIface = LHS->getAsObjCInterfaceType();
2967    const ObjCInterfaceType* RHSIface = RHS->getAsObjCInterfaceType();
2968
2969    // 'id' and 'Class' act sort of like void* for ObjC interfaces
2970    if (LHSIface && (isObjCIdStructType(RHS) || isObjCClassStructType(RHS)))
2971      return LHS;
2972    if (RHSIface && (isObjCIdStructType(LHS) || isObjCClassStructType(LHS)))
2973      return RHS;
2974
2975    // ID is compatible with all qualified id types.
2976    if (LHS->isObjCQualifiedIdType()) {
2977      if (const PointerType *PT = RHS->getAsPointerType()) {
2978        QualType pType = PT->getPointeeType();
2979        if (isObjCIdStructType(pType) || isObjCClassStructType(pType))
2980          return LHS;
2981        // FIXME: need to use ObjCQualifiedIdTypesAreCompatible(LHS, RHS, true).
2982        // Unfortunately, this API is part of Sema (which we don't have access
2983        // to. Need to refactor. The following check is insufficient, since we
2984        // need to make sure the class implements the protocol.
2985        if (pType->isObjCInterfaceType())
2986          return LHS;
2987      }
2988    }
2989    if (RHS->isObjCQualifiedIdType()) {
2990      if (const PointerType *PT = LHS->getAsPointerType()) {
2991        QualType pType = PT->getPointeeType();
2992        if (isObjCIdStructType(pType) || isObjCClassStructType(pType))
2993          return RHS;
2994        // FIXME: need to use ObjCQualifiedIdTypesAreCompatible(LHS, RHS, true).
2995        // Unfortunately, this API is part of Sema (which we don't have access
2996        // to. Need to refactor. The following check is insufficient, since we
2997        // need to make sure the class implements the protocol.
2998        if (pType->isObjCInterfaceType())
2999          return RHS;
3000      }
3001    }
3002    // C99 6.7.2.2p4: Each enumerated type shall be compatible with char,
3003    // a signed integer type, or an unsigned integer type.
3004    if (const EnumType* ETy = LHS->getAsEnumType()) {
3005      if (ETy->getDecl()->getIntegerType() == RHSCan.getUnqualifiedType())
3006        return RHS;
3007    }
3008    if (const EnumType* ETy = RHS->getAsEnumType()) {
3009      if (ETy->getDecl()->getIntegerType() == LHSCan.getUnqualifiedType())
3010        return LHS;
3011    }
3012
3013    return QualType();
3014  }
3015
3016  // The canonical type classes match.
3017  switch (LHSClass) {
3018#define TYPE(Class, Base)
3019#define ABSTRACT_TYPE(Class, Base)
3020#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
3021#define DEPENDENT_TYPE(Class, Base) case Type::Class:
3022#include "clang/AST/TypeNodes.def"
3023    assert(false && "Non-canonical and dependent types shouldn't get here");
3024    return QualType();
3025
3026  case Type::LValueReference:
3027  case Type::RValueReference:
3028  case Type::MemberPointer:
3029    assert(false && "C++ should never be in mergeTypes");
3030    return QualType();
3031
3032  case Type::IncompleteArray:
3033  case Type::VariableArray:
3034  case Type::FunctionProto:
3035  case Type::ExtVector:
3036  case Type::ObjCQualifiedInterface:
3037    assert(false && "Types are eliminated above");
3038    return QualType();
3039
3040  case Type::Pointer:
3041  {
3042    // Merge two pointer types, while trying to preserve typedef info
3043    QualType LHSPointee = LHS->getAsPointerType()->getPointeeType();
3044    QualType RHSPointee = RHS->getAsPointerType()->getPointeeType();
3045    QualType ResultType = mergeTypes(LHSPointee, RHSPointee);
3046    if (ResultType.isNull()) return QualType();
3047    if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
3048      return LHS;
3049    if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
3050      return RHS;
3051    return getPointerType(ResultType);
3052  }
3053  case Type::BlockPointer:
3054  {
3055    // Merge two block pointer types, while trying to preserve typedef info
3056    QualType LHSPointee = LHS->getAsBlockPointerType()->getPointeeType();
3057    QualType RHSPointee = RHS->getAsBlockPointerType()->getPointeeType();
3058    QualType ResultType = mergeTypes(LHSPointee, RHSPointee);
3059    if (ResultType.isNull()) return QualType();
3060    if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
3061      return LHS;
3062    if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
3063      return RHS;
3064    return getBlockPointerType(ResultType);
3065  }
3066  case Type::ConstantArray:
3067  {
3068    const ConstantArrayType* LCAT = getAsConstantArrayType(LHS);
3069    const ConstantArrayType* RCAT = getAsConstantArrayType(RHS);
3070    if (LCAT && RCAT && RCAT->getSize() != LCAT->getSize())
3071      return QualType();
3072
3073    QualType LHSElem = getAsArrayType(LHS)->getElementType();
3074    QualType RHSElem = getAsArrayType(RHS)->getElementType();
3075    QualType ResultType = mergeTypes(LHSElem, RHSElem);
3076    if (ResultType.isNull()) return QualType();
3077    if (LCAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
3078      return LHS;
3079    if (RCAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
3080      return RHS;
3081    if (LCAT) return getConstantArrayType(ResultType, LCAT->getSize(),
3082                                          ArrayType::ArraySizeModifier(), 0);
3083    if (RCAT) return getConstantArrayType(ResultType, RCAT->getSize(),
3084                                          ArrayType::ArraySizeModifier(), 0);
3085    const VariableArrayType* LVAT = getAsVariableArrayType(LHS);
3086    const VariableArrayType* RVAT = getAsVariableArrayType(RHS);
3087    if (LVAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
3088      return LHS;
3089    if (RVAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
3090      return RHS;
3091    if (LVAT) {
3092      // FIXME: This isn't correct! But tricky to implement because
3093      // the array's size has to be the size of LHS, but the type
3094      // has to be different.
3095      return LHS;
3096    }
3097    if (RVAT) {
3098      // FIXME: This isn't correct! But tricky to implement because
3099      // the array's size has to be the size of RHS, but the type
3100      // has to be different.
3101      return RHS;
3102    }
3103    if (getCanonicalType(LHSElem) == getCanonicalType(ResultType)) return LHS;
3104    if (getCanonicalType(RHSElem) == getCanonicalType(ResultType)) return RHS;
3105    return getIncompleteArrayType(ResultType, ArrayType::ArraySizeModifier(),0);
3106  }
3107  case Type::FunctionNoProto:
3108    return mergeFunctionTypes(LHS, RHS);
3109  case Type::Record:
3110  case Type::Enum:
3111    // FIXME: Why are these compatible?
3112    if (isObjCIdStructType(LHS) && isObjCClassStructType(RHS)) return LHS;
3113    if (isObjCClassStructType(LHS) && isObjCIdStructType(RHS)) return LHS;
3114    return QualType();
3115  case Type::Builtin:
3116    // Only exactly equal builtin types are compatible, which is tested above.
3117    return QualType();
3118  case Type::Complex:
3119    // Distinct complex types are incompatible.
3120    return QualType();
3121  case Type::Vector:
3122    // FIXME: The merged type should be an ExtVector!
3123    if (areCompatVectorTypes(LHS->getAsVectorType(), RHS->getAsVectorType()))
3124      return LHS;
3125    return QualType();
3126  case Type::ObjCInterface: {
3127    // Check if the interfaces are assignment compatible.
3128    // FIXME: This should be type compatibility, e.g. whether
3129    // "LHS x; RHS x;" at global scope is legal.
3130    const ObjCInterfaceType* LHSIface = LHS->getAsObjCInterfaceType();
3131    const ObjCInterfaceType* RHSIface = RHS->getAsObjCInterfaceType();
3132    if (LHSIface && RHSIface &&
3133        canAssignObjCInterfaces(LHSIface, RHSIface))
3134      return LHS;
3135
3136    return QualType();
3137  }
3138  case Type::ObjCQualifiedId:
3139    // Distinct qualified id's are not compatible.
3140    return QualType();
3141  case Type::FixedWidthInt:
3142    // Distinct fixed-width integers are not compatible.
3143    return QualType();
3144  case Type::ObjCQualifiedClass:
3145    // Distinct qualified classes are not compatible.
3146    return QualType();
3147  case Type::ExtQual:
3148    // FIXME: ExtQual types can be compatible even if they're not
3149    // identical!
3150    return QualType();
3151    // First attempt at an implementation, but I'm not really sure it's
3152    // right...
3153#if 0
3154    ExtQualType* LQual = cast<ExtQualType>(LHSCan);
3155    ExtQualType* RQual = cast<ExtQualType>(RHSCan);
3156    if (LQual->getAddressSpace() != RQual->getAddressSpace() ||
3157        LQual->getObjCGCAttr() != RQual->getObjCGCAttr())
3158      return QualType();
3159    QualType LHSBase, RHSBase, ResultType, ResCanUnqual;
3160    LHSBase = QualType(LQual->getBaseType(), 0);
3161    RHSBase = QualType(RQual->getBaseType(), 0);
3162    ResultType = mergeTypes(LHSBase, RHSBase);
3163    if (ResultType.isNull()) return QualType();
3164    ResCanUnqual = getCanonicalType(ResultType).getUnqualifiedType();
3165    if (LHSCan.getUnqualifiedType() == ResCanUnqual)
3166      return LHS;
3167    if (RHSCan.getUnqualifiedType() == ResCanUnqual)
3168      return RHS;
3169    ResultType = getAddrSpaceQualType(ResultType, LQual->getAddressSpace());
3170    ResultType = getObjCGCQualType(ResultType, LQual->getObjCGCAttr());
3171    ResultType.setCVRQualifiers(LHSCan.getCVRQualifiers());
3172    return ResultType;
3173#endif
3174
3175  case Type::TemplateSpecialization:
3176    assert(false && "Dependent types have no size");
3177    break;
3178  }
3179
3180  return QualType();
3181}
3182
3183//===----------------------------------------------------------------------===//
3184//                         Integer Predicates
3185//===----------------------------------------------------------------------===//
3186
3187unsigned ASTContext::getIntWidth(QualType T) {
3188  if (T == BoolTy)
3189    return 1;
3190  if (FixedWidthIntType* FWIT = dyn_cast<FixedWidthIntType>(T)) {
3191    return FWIT->getWidth();
3192  }
3193  // For builtin types, just use the standard type sizing method
3194  return (unsigned)getTypeSize(T);
3195}
3196
3197QualType ASTContext::getCorrespondingUnsignedType(QualType T) {
3198  assert(T->isSignedIntegerType() && "Unexpected type");
3199  if (const EnumType* ETy = T->getAsEnumType())
3200    T = ETy->getDecl()->getIntegerType();
3201  const BuiltinType* BTy = T->getAsBuiltinType();
3202  assert (BTy && "Unexpected signed integer type");
3203  switch (BTy->getKind()) {
3204  case BuiltinType::Char_S:
3205  case BuiltinType::SChar:
3206    return UnsignedCharTy;
3207  case BuiltinType::Short:
3208    return UnsignedShortTy;
3209  case BuiltinType::Int:
3210    return UnsignedIntTy;
3211  case BuiltinType::Long:
3212    return UnsignedLongTy;
3213  case BuiltinType::LongLong:
3214    return UnsignedLongLongTy;
3215  default:
3216    assert(0 && "Unexpected signed integer type");
3217    return QualType();
3218  }
3219}
3220
3221
3222//===----------------------------------------------------------------------===//
3223//                         Serialization Support
3224//===----------------------------------------------------------------------===//
3225
3226enum {
3227  BasicMetadataBlock = 1,
3228  ASTContextBlock = 2,
3229  DeclsBlock = 3
3230};
3231
3232void ASTContext::EmitASTBitcodeBuffer(std::vector<unsigned char> &Buffer) const{
3233  // Create bitstream.
3234  llvm::BitstreamWriter Stream(Buffer);
3235
3236  // Emit the preamble.
3237  Stream.Emit((unsigned)'B', 8);
3238  Stream.Emit((unsigned)'C', 8);
3239  Stream.Emit(0xC, 4);
3240  Stream.Emit(0xF, 4);
3241  Stream.Emit(0xE, 4);
3242  Stream.Emit(0x0, 4);
3243
3244  // Create serializer.
3245  llvm::Serializer S(Stream);
3246
3247  // ===---------------------------------------------------===/
3248  //      Serialize the "Translation Unit" metadata.
3249  // ===---------------------------------------------------===/
3250
3251  // Emit ASTContext.
3252  S.EnterBlock(ASTContextBlock);
3253  S.EmitOwnedPtr(this);
3254  S.ExitBlock();      // exit "ASTContextBlock"
3255
3256  S.EnterBlock(BasicMetadataBlock);
3257
3258  // Block for SourceManager and Target.  Allows easy skipping
3259  // around to the block for the Selectors during deserialization.
3260  S.EnterBlock();
3261
3262  // Emit the SourceManager.
3263  S.Emit(getSourceManager());
3264
3265  // Emit the Target.
3266  S.EmitPtr(&Target);
3267  S.EmitCStr(Target.getTargetTriple());
3268
3269  S.ExitBlock(); // exit "SourceManager and Target Block"
3270
3271  // Emit the Selectors.
3272  S.Emit(Selectors);
3273
3274  // Emit the Identifier Table.
3275  S.Emit(Idents);
3276
3277  S.ExitBlock(); // exit "BasicMetadataBlock"
3278}
3279
3280
3281/// Emit - Serialize an ASTContext object to Bitcode.
3282void ASTContext::Emit(llvm::Serializer& S) const {
3283  S.Emit(LangOpts);
3284  S.EmitRef(SourceMgr);
3285  S.EmitRef(Target);
3286  S.EmitRef(Idents);
3287  S.EmitRef(Selectors);
3288
3289  // Emit the size of the type vector so that we can reserve that size
3290  // when we reconstitute the ASTContext object.
3291  S.EmitInt(Types.size());
3292
3293  for (std::vector<Type*>::const_iterator I=Types.begin(), E=Types.end();
3294                                          I!=E;++I)
3295    (*I)->Emit(S);
3296
3297  S.EmitOwnedPtr(TUDecl);
3298
3299  // FIXME: S.EmitOwnedPtr(CFConstantStringTypeDecl);
3300}
3301
3302
3303ASTContext *ASTContext::ReadASTBitcodeBuffer(llvm::MemoryBuffer &Buffer,
3304                                             FileManager &FMgr) {
3305  // Check if the file is of the proper length.
3306  if (Buffer.getBufferSize() & 0x3) {
3307    // FIXME: Provide diagnostic: "Length should be a multiple of 4 bytes."
3308    return 0;
3309  }
3310
3311  // Create the bitstream reader.
3312  unsigned char *BufPtr = (unsigned char *)Buffer.getBufferStart();
3313  llvm::BitstreamReader Stream(BufPtr, BufPtr+Buffer.getBufferSize());
3314
3315  if (Stream.Read(8) != 'B' ||
3316      Stream.Read(8) != 'C' ||
3317      Stream.Read(4) != 0xC ||
3318      Stream.Read(4) != 0xF ||
3319      Stream.Read(4) != 0xE ||
3320      Stream.Read(4) != 0x0) {
3321    // FIXME: Provide diagnostic.
3322    return NULL;
3323  }
3324
3325  // Create the deserializer.
3326  llvm::Deserializer Dezr(Stream);
3327
3328  // ===---------------------------------------------------===/
3329  //      Deserialize the "Translation Unit" metadata.
3330  // ===---------------------------------------------------===/
3331
3332  // Skip to the BasicMetaDataBlock.  First jump to ASTContextBlock
3333  // (which will appear earlier) and record its location.
3334
3335  bool FoundBlock = Dezr.SkipToBlock(ASTContextBlock);
3336  assert (FoundBlock);
3337
3338  llvm::Deserializer::Location ASTContextBlockLoc =
3339  Dezr.getCurrentBlockLocation();
3340
3341  FoundBlock = Dezr.SkipToBlock(BasicMetadataBlock);
3342  assert (FoundBlock);
3343
3344  // Read the SourceManager.
3345  SourceManager::CreateAndRegister(Dezr, FMgr);
3346
3347  { // Read the TargetInfo.
3348    llvm::SerializedPtrID PtrID = Dezr.ReadPtrID();
3349    char* triple = Dezr.ReadCStr(NULL,0,true);
3350    Dezr.RegisterPtr(PtrID, TargetInfo::CreateTargetInfo(std::string(triple)));
3351    delete [] triple;
3352  }
3353
3354  // For Selectors, we must read the identifier table first because the
3355  //  SelectorTable depends on the identifiers being already deserialized.
3356  llvm::Deserializer::Location SelectorBlkLoc = Dezr.getCurrentBlockLocation();
3357  Dezr.SkipBlock();
3358
3359  // Read the identifier table.
3360  IdentifierTable::CreateAndRegister(Dezr);
3361
3362  // Now jump back and read the selectors.
3363  Dezr.JumpTo(SelectorBlkLoc);
3364  SelectorTable::CreateAndRegister(Dezr);
3365
3366  // Now jump back to ASTContextBlock and read the ASTContext.
3367  Dezr.JumpTo(ASTContextBlockLoc);
3368  return Dezr.ReadOwnedPtr<ASTContext>();
3369}
3370
3371ASTContext* ASTContext::Create(llvm::Deserializer& D) {
3372
3373  // Read the language options.
3374  LangOptions LOpts;
3375  LOpts.Read(D);
3376
3377  SourceManager &SM = D.ReadRef<SourceManager>();
3378  TargetInfo &t = D.ReadRef<TargetInfo>();
3379  IdentifierTable &idents = D.ReadRef<IdentifierTable>();
3380  SelectorTable &sels = D.ReadRef<SelectorTable>();
3381
3382  unsigned size_reserve = D.ReadInt();
3383
3384  ASTContext* A = new ASTContext(LOpts, SM, t, idents, sels,
3385                                 size_reserve);
3386
3387  for (unsigned i = 0; i < size_reserve; ++i)
3388    Type::Create(*A,i,D);
3389
3390  A->TUDecl = cast<TranslationUnitDecl>(D.ReadOwnedPtr<Decl>(*A));
3391
3392  // FIXME: A->CFConstantStringTypeDecl = D.ReadOwnedPtr<RecordDecl>();
3393
3394  return A;
3395}
3396
3397ExternalASTSource::~ExternalASTSource() { }
3398
3399void ExternalASTSource::PrintStats() { }
3400