DeclCXX.cpp revision b7e9589bce9852b4db9575f55ac9137572147eb5
1//===--- DeclCXX.cpp - C++ Declaration AST Node Implementation ------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the C++ related Decl classes.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/AST/DeclCXX.h"
15#include "clang/AST/DeclTemplate.h"
16#include "clang/AST/ASTContext.h"
17#include "clang/AST/ASTMutationListener.h"
18#include "clang/AST/CXXInheritance.h"
19#include "clang/AST/Expr.h"
20#include "clang/AST/TypeLoc.h"
21#include "clang/Basic/IdentifierTable.h"
22#include "llvm/ADT/STLExtras.h"
23#include "llvm/ADT/SmallPtrSet.h"
24using namespace clang;
25
26//===----------------------------------------------------------------------===//
27// Decl Allocation/Deallocation Method Implementations
28//===----------------------------------------------------------------------===//
29
30CXXRecordDecl::DefinitionData::DefinitionData(CXXRecordDecl *D)
31  : UserDeclaredConstructor(false), UserDeclaredCopyConstructor(false),
32    UserDeclaredCopyAssignment(false), UserDeclaredDestructor(false),
33    Aggregate(true), PlainOldData(true), Empty(true), Polymorphic(false),
34    Abstract(false), HasTrivialConstructor(true),
35    HasTrivialCopyConstructor(true), HasTrivialCopyAssignment(true),
36    HasTrivialDestructor(true), ComputedVisibleConversions(false),
37    DeclaredDefaultConstructor(false), DeclaredCopyConstructor(false),
38    DeclaredCopyAssignment(false), DeclaredDestructor(false),
39    NumBases(0), NumVBases(0), Bases(), VBases(),
40  Definition(D), FirstFriend(0) {
41}
42
43CXXRecordDecl::CXXRecordDecl(Kind K, TagKind TK, DeclContext *DC,
44                             SourceLocation StartLoc, SourceLocation IdLoc,
45                             IdentifierInfo *Id, CXXRecordDecl *PrevDecl)
46  : RecordDecl(K, TK, DC, StartLoc, IdLoc, Id, PrevDecl),
47    DefinitionData(PrevDecl ? PrevDecl->DefinitionData : 0),
48    TemplateOrInstantiation() { }
49
50CXXRecordDecl *CXXRecordDecl::Create(const ASTContext &C, TagKind TK,
51                                     DeclContext *DC, SourceLocation StartLoc,
52                                     SourceLocation IdLoc, IdentifierInfo *Id,
53                                     CXXRecordDecl* PrevDecl,
54                                     bool DelayTypeCreation) {
55  CXXRecordDecl* R = new (C) CXXRecordDecl(CXXRecord, TK, DC, StartLoc, IdLoc,
56                                           Id, PrevDecl);
57
58  // FIXME: DelayTypeCreation seems like such a hack
59  if (!DelayTypeCreation)
60    C.getTypeDeclType(R, PrevDecl);
61  return R;
62}
63
64CXXRecordDecl *CXXRecordDecl::Create(const ASTContext &C, EmptyShell Empty) {
65  return new (C) CXXRecordDecl(CXXRecord, TTK_Struct, 0, SourceLocation(),
66                               SourceLocation(), 0, 0);
67}
68
69void
70CXXRecordDecl::setBases(CXXBaseSpecifier const * const *Bases,
71                        unsigned NumBases) {
72  ASTContext &C = getASTContext();
73
74  // C++ [dcl.init.aggr]p1:
75  //   An aggregate is an array or a class (clause 9) with [...]
76  //   no base classes [...].
77  data().Aggregate = false;
78
79  if (!data().Bases.isOffset() && data().NumBases > 0)
80    C.Deallocate(data().getBases());
81
82  // The set of seen virtual base types.
83  llvm::SmallPtrSet<CanQualType, 8> SeenVBaseTypes;
84
85  // The virtual bases of this class.
86  llvm::SmallVector<const CXXBaseSpecifier *, 8> VBases;
87
88  data().Bases = new(C) CXXBaseSpecifier [NumBases];
89  data().NumBases = NumBases;
90  for (unsigned i = 0; i < NumBases; ++i) {
91    data().getBases()[i] = *Bases[i];
92    // Keep track of inherited vbases for this base class.
93    const CXXBaseSpecifier *Base = Bases[i];
94    QualType BaseType = Base->getType();
95    // Skip dependent types; we can't do any checking on them now.
96    if (BaseType->isDependentType())
97      continue;
98    CXXRecordDecl *BaseClassDecl
99      = cast<CXXRecordDecl>(BaseType->getAs<RecordType>()->getDecl());
100
101    // C++ [dcl.init.aggr]p1:
102    //   An aggregate is [...] a class with [...] no base classes [...].
103    data().Aggregate = false;
104
105    // C++ [class]p4:
106    //   A POD-struct is an aggregate class...
107    data().PlainOldData = false;
108
109    // A class with a non-empty base class is not empty.
110    // FIXME: Standard ref?
111    if (!BaseClassDecl->isEmpty())
112      data().Empty = false;
113
114    // C++ [class.virtual]p1:
115    //   A class that declares or inherits a virtual function is called a
116    //   polymorphic class.
117    if (BaseClassDecl->isPolymorphic())
118      data().Polymorphic = true;
119
120    // Now go through all virtual bases of this base and add them.
121    for (CXXRecordDecl::base_class_iterator VBase =
122          BaseClassDecl->vbases_begin(),
123         E = BaseClassDecl->vbases_end(); VBase != E; ++VBase) {
124      // Add this base if it's not already in the list.
125      if (SeenVBaseTypes.insert(C.getCanonicalType(VBase->getType())))
126        VBases.push_back(VBase);
127    }
128
129    if (Base->isVirtual()) {
130      // Add this base if it's not already in the list.
131      if (SeenVBaseTypes.insert(C.getCanonicalType(BaseType)))
132          VBases.push_back(Base);
133
134      // C++0x [meta.unary.prop] is_empty:
135      //    T is a class type, but not a union type, with ... no virtual base
136      //    classes
137      data().Empty = false;
138
139      // C++ [class.ctor]p5:
140      //   A constructor is trivial if its class has no virtual base classes.
141      data().HasTrivialConstructor = false;
142
143      // C++ [class.copy]p6:
144      //   A copy constructor is trivial if its class has no virtual base
145      //   classes.
146      data().HasTrivialCopyConstructor = false;
147
148      // C++ [class.copy]p11:
149      //   A copy assignment operator is trivial if its class has no virtual
150      //   base classes.
151      data().HasTrivialCopyAssignment = false;
152    } else {
153      // C++ [class.ctor]p5:
154      //   A constructor is trivial if all the direct base classes of its
155      //   class have trivial constructors.
156      if (!BaseClassDecl->hasTrivialConstructor())
157        data().HasTrivialConstructor = false;
158
159      // C++ [class.copy]p6:
160      //   A copy constructor is trivial if all the direct base classes of its
161      //   class have trivial copy constructors.
162      if (!BaseClassDecl->hasTrivialCopyConstructor())
163        data().HasTrivialCopyConstructor = false;
164
165      // C++ [class.copy]p11:
166      //   A copy assignment operator is trivial if all the direct base classes
167      //   of its class have trivial copy assignment operators.
168      if (!BaseClassDecl->hasTrivialCopyAssignment())
169        data().HasTrivialCopyAssignment = false;
170    }
171
172    // C++ [class.ctor]p3:
173    //   A destructor is trivial if all the direct base classes of its class
174    //   have trivial destructors.
175    if (!BaseClassDecl->hasTrivialDestructor())
176      data().HasTrivialDestructor = false;
177  }
178
179  if (VBases.empty())
180    return;
181
182  // Create base specifier for any direct or indirect virtual bases.
183  data().VBases = new (C) CXXBaseSpecifier[VBases.size()];
184  data().NumVBases = VBases.size();
185  for (int I = 0, E = VBases.size(); I != E; ++I) {
186    TypeSourceInfo *VBaseTypeInfo = VBases[I]->getTypeSourceInfo();
187
188    // Skip dependent types; we can't do any checking on them now.
189    if (VBaseTypeInfo->getType()->isDependentType())
190      continue;
191
192    CXXRecordDecl *VBaseClassDecl = cast<CXXRecordDecl>(
193      VBaseTypeInfo->getType()->getAs<RecordType>()->getDecl());
194
195    data().getVBases()[I] =
196      CXXBaseSpecifier(VBaseClassDecl->getSourceRange(), true,
197                       VBaseClassDecl->getTagKind() == TTK_Class,
198                       VBases[I]->getAccessSpecifier(), VBaseTypeInfo,
199                       SourceLocation());
200  }
201}
202
203/// Callback function for CXXRecordDecl::forallBases that acknowledges
204/// that it saw a base class.
205static bool SawBase(const CXXRecordDecl *, void *) {
206  return true;
207}
208
209bool CXXRecordDecl::hasAnyDependentBases() const {
210  if (!isDependentContext())
211    return false;
212
213  return !forallBases(SawBase, 0);
214}
215
216bool CXXRecordDecl::hasConstCopyConstructor(const ASTContext &Context) const {
217  return getCopyConstructor(Context, Qualifiers::Const) != 0;
218}
219
220bool CXXRecordDecl::isTriviallyCopyable() const {
221  // C++0x [class]p5:
222  //   A trivially copyable class is a class that:
223  //   -- has no non-trivial copy constructors,
224  if (!hasTrivialCopyConstructor()) return false;
225  //   -- has no non-trivial move constructors,
226  // FIXME: C++0x: Track and check trivial move constructors.
227  //   -- has no non-trivial copy assignment operators,
228  if (!hasTrivialCopyAssignment()) return false;
229  //   -- has no non-trivial move assignment operators, and
230  // FIXME: C++0x: Track and check trivial move assignment operators.
231  //   -- has a trivial destructor.
232  if (!hasTrivialDestructor()) return false;
233
234  return true;
235}
236
237/// \brief Perform a simplistic form of overload resolution that only considers
238/// cv-qualifiers on a single parameter, and return the best overload candidate
239/// (if there is one).
240static CXXMethodDecl *
241GetBestOverloadCandidateSimple(
242  const llvm::SmallVectorImpl<std::pair<CXXMethodDecl *, Qualifiers> > &Cands) {
243  if (Cands.empty())
244    return 0;
245  if (Cands.size() == 1)
246    return Cands[0].first;
247
248  unsigned Best = 0, N = Cands.size();
249  for (unsigned I = 1; I != N; ++I)
250    if (Cands[Best].second.isSupersetOf(Cands[I].second))
251      Best = I;
252
253  for (unsigned I = 1; I != N; ++I)
254    if (Cands[Best].second.isSupersetOf(Cands[I].second))
255      return 0;
256
257  return Cands[Best].first;
258}
259
260CXXConstructorDecl *CXXRecordDecl::getCopyConstructor(const ASTContext &Context,
261                                                      unsigned TypeQuals) const{
262  QualType ClassType
263    = Context.getTypeDeclType(const_cast<CXXRecordDecl*>(this));
264  DeclarationName ConstructorName
265    = Context.DeclarationNames.getCXXConstructorName(
266                                          Context.getCanonicalType(ClassType));
267  unsigned FoundTQs;
268  llvm::SmallVector<std::pair<CXXMethodDecl *, Qualifiers>, 4> Found;
269  DeclContext::lookup_const_iterator Con, ConEnd;
270  for (llvm::tie(Con, ConEnd) = this->lookup(ConstructorName);
271       Con != ConEnd; ++Con) {
272    // C++ [class.copy]p2:
273    //   A non-template constructor for class X is a copy constructor if [...]
274    if (isa<FunctionTemplateDecl>(*Con))
275      continue;
276
277    CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
278    if (Constructor->isCopyConstructor(FoundTQs)) {
279      if (((TypeQuals & Qualifiers::Const) == (FoundTQs & Qualifiers::Const)) ||
280          (!(TypeQuals & Qualifiers::Const) && (FoundTQs & Qualifiers::Const)))
281        Found.push_back(std::make_pair(
282                                 const_cast<CXXConstructorDecl *>(Constructor),
283                                       Qualifiers::fromCVRMask(FoundTQs)));
284    }
285  }
286
287  return cast_or_null<CXXConstructorDecl>(
288                                        GetBestOverloadCandidateSimple(Found));
289}
290
291CXXMethodDecl *CXXRecordDecl::getCopyAssignmentOperator(bool ArgIsConst) const {
292  ASTContext &Context = getASTContext();
293  QualType Class = Context.getTypeDeclType(const_cast<CXXRecordDecl *>(this));
294  DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
295
296  llvm::SmallVector<std::pair<CXXMethodDecl *, Qualifiers>, 4> Found;
297  DeclContext::lookup_const_iterator Op, OpEnd;
298  for (llvm::tie(Op, OpEnd) = this->lookup(Name); Op != OpEnd; ++Op) {
299    // C++ [class.copy]p9:
300    //   A user-declared copy assignment operator is a non-static non-template
301    //   member function of class X with exactly one parameter of type X, X&,
302    //   const X&, volatile X& or const volatile X&.
303    const CXXMethodDecl* Method = dyn_cast<CXXMethodDecl>(*Op);
304    if (!Method || Method->isStatic() || Method->getPrimaryTemplate())
305      continue;
306
307    const FunctionProtoType *FnType
308      = Method->getType()->getAs<FunctionProtoType>();
309    assert(FnType && "Overloaded operator has no prototype.");
310    // Don't assert on this; an invalid decl might have been left in the AST.
311    if (FnType->getNumArgs() != 1 || FnType->isVariadic())
312      continue;
313
314    QualType ArgType = FnType->getArgType(0);
315    Qualifiers Quals;
316    if (const LValueReferenceType *Ref = ArgType->getAs<LValueReferenceType>()) {
317      ArgType = Ref->getPointeeType();
318      // If we have a const argument and we have a reference to a non-const,
319      // this function does not match.
320      if (ArgIsConst && !ArgType.isConstQualified())
321        continue;
322
323      Quals = ArgType.getQualifiers();
324    } else {
325      // By-value copy-assignment operators are treated like const X&
326      // copy-assignment operators.
327      Quals = Qualifiers::fromCVRMask(Qualifiers::Const);
328    }
329
330    if (!Context.hasSameUnqualifiedType(ArgType, Class))
331      continue;
332
333    // Save this copy-assignment operator. It might be "the one".
334    Found.push_back(std::make_pair(const_cast<CXXMethodDecl *>(Method), Quals));
335  }
336
337  // Use a simplistic form of overload resolution to find the candidate.
338  return GetBestOverloadCandidateSimple(Found);
339}
340
341void CXXRecordDecl::markedVirtualFunctionPure() {
342  // C++ [class.abstract]p2:
343  //   A class is abstract if it has at least one pure virtual function.
344  data().Abstract = true;
345}
346
347void CXXRecordDecl::addedMember(Decl *D) {
348  // Ignore friends and invalid declarations.
349  if (D->getFriendObjectKind() || D->isInvalidDecl())
350    return;
351
352  FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D);
353  if (FunTmpl)
354    D = FunTmpl->getTemplatedDecl();
355
356  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
357    if (Method->isVirtual()) {
358      // C++ [dcl.init.aggr]p1:
359      //   An aggregate is an array or a class with [...] no virtual functions.
360      data().Aggregate = false;
361
362      // C++ [class]p4:
363      //   A POD-struct is an aggregate class...
364      data().PlainOldData = false;
365
366      // Virtual functions make the class non-empty.
367      // FIXME: Standard ref?
368      data().Empty = false;
369
370      // C++ [class.virtual]p1:
371      //   A class that declares or inherits a virtual function is called a
372      //   polymorphic class.
373      data().Polymorphic = true;
374
375      // None of the special member functions are trivial.
376      data().HasTrivialConstructor = false;
377      data().HasTrivialCopyConstructor = false;
378      data().HasTrivialCopyAssignment = false;
379      // FIXME: Destructor?
380    }
381  }
382
383  if (D->isImplicit()) {
384    // Notify that an implicit member was added after the definition
385    // was completed.
386    if (!isBeingDefined())
387      if (ASTMutationListener *L = getASTMutationListener())
388        L->AddedCXXImplicitMember(data().Definition, D);
389
390    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(D)) {
391      // If this is the implicit default constructor, note that we have now
392      // declared it.
393      if (Constructor->isDefaultConstructor())
394        data().DeclaredDefaultConstructor = true;
395      // If this is the implicit copy constructor, note that we have now
396      // declared it.
397      else if (Constructor->isCopyConstructor())
398        data().DeclaredCopyConstructor = true;
399      return;
400    }
401
402    if (isa<CXXDestructorDecl>(D)) {
403      data().DeclaredDestructor = true;
404      return;
405    }
406
407    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
408      // If this is the implicit copy constructor, note that we have now
409      // declared it.
410      // FIXME: Move constructors
411      if (Method->getOverloadedOperator() == OO_Equal)
412        data().DeclaredCopyAssignment = true;
413      return;
414    }
415
416    // Any other implicit declarations are handled like normal declarations.
417  }
418
419  // Handle (user-declared) constructors.
420  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(D)) {
421    // Note that we have a user-declared constructor.
422    data().UserDeclaredConstructor = true;
423
424    // Note that we have no need of an implicitly-declared default constructor.
425    data().DeclaredDefaultConstructor = true;
426
427    // C++ [dcl.init.aggr]p1:
428    //   An aggregate is an array or a class (clause 9) with no
429    //   user-declared constructors (12.1) [...].
430    data().Aggregate = false;
431
432    // C++ [class]p4:
433    //   A POD-struct is an aggregate class [...]
434    data().PlainOldData = false;
435
436    // C++ [class.ctor]p5:
437    //   A constructor is trivial if it is an implicitly-declared default
438    //   constructor.
439    // FIXME: C++0x: don't do this for "= default" default constructors.
440    data().HasTrivialConstructor = false;
441
442    // Note when we have a user-declared copy constructor, which will
443    // suppress the implicit declaration of a copy constructor.
444    if (!FunTmpl && Constructor->isCopyConstructor()) {
445      data().UserDeclaredCopyConstructor = true;
446      data().DeclaredCopyConstructor = true;
447
448      // C++ [class.copy]p6:
449      //   A copy constructor is trivial if it is implicitly declared.
450      // FIXME: C++0x: don't do this for "= default" copy constructors.
451      data().HasTrivialCopyConstructor = false;
452    }
453
454    return;
455  }
456
457  // Handle (user-declared) destructors.
458  if (isa<CXXDestructorDecl>(D)) {
459    data().DeclaredDestructor = true;
460    data().UserDeclaredDestructor = true;
461
462    // C++ [class]p4:
463    //   A POD-struct is an aggregate class that has [...] no user-defined
464    //   destructor.
465    data().PlainOldData = false;
466
467    // C++ [class.dtor]p3:
468    //   A destructor is trivial if it is an implicitly-declared destructor and
469    //   [...].
470    //
471    // FIXME: C++0x: don't do this for "= default" destructors
472    data().HasTrivialDestructor = false;
473
474    return;
475  }
476
477  // Handle (user-declared) member functions.
478  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
479    if (Method->getOverloadedOperator() == OO_Equal) {
480      // We're interested specifically in copy assignment operators.
481      const FunctionProtoType *FnType
482        = Method->getType()->getAs<FunctionProtoType>();
483      assert(FnType && "Overloaded operator has no proto function type.");
484      assert(FnType->getNumArgs() == 1 && !FnType->isVariadic());
485
486      // Copy assignment operators must be non-templates.
487      if (Method->getPrimaryTemplate() || FunTmpl)
488        return;
489
490      ASTContext &Context = getASTContext();
491      QualType ArgType = FnType->getArgType(0);
492      if (const LValueReferenceType *Ref =ArgType->getAs<LValueReferenceType>())
493        ArgType = Ref->getPointeeType();
494
495      ArgType = ArgType.getUnqualifiedType();
496      QualType ClassType = Context.getCanonicalType(Context.getTypeDeclType(
497                                             const_cast<CXXRecordDecl*>(this)));
498
499      if (!Context.hasSameUnqualifiedType(ClassType, ArgType))
500        return;
501
502      // This is a copy assignment operator.
503      // FIXME: Move assignment operators.
504
505      // Suppress the implicit declaration of a copy constructor.
506      data().UserDeclaredCopyAssignment = true;
507      data().DeclaredCopyAssignment = true;
508
509      // C++ [class.copy]p11:
510      //   A copy assignment operator is trivial if it is implicitly declared.
511      // FIXME: C++0x: don't do this for "= default" copy operators.
512      data().HasTrivialCopyAssignment = false;
513
514      // C++ [class]p4:
515      //   A POD-struct is an aggregate class that [...] has no user-defined copy
516      //   assignment operator [...].
517      data().PlainOldData = false;
518    }
519
520    // Keep the list of conversion functions up-to-date.
521    if (CXXConversionDecl *Conversion = dyn_cast<CXXConversionDecl>(D)) {
522      // We don't record specializations.
523      if (Conversion->getPrimaryTemplate())
524        return;
525
526      // FIXME: We intentionally don't use the decl's access here because it
527      // hasn't been set yet.  That's really just a misdesign in Sema.
528
529      if (FunTmpl) {
530        if (FunTmpl->getPreviousDeclaration())
531          data().Conversions.replace(FunTmpl->getPreviousDeclaration(),
532                                     FunTmpl);
533        else
534          data().Conversions.addDecl(FunTmpl);
535      } else {
536        if (Conversion->getPreviousDeclaration())
537          data().Conversions.replace(Conversion->getPreviousDeclaration(),
538                                     Conversion);
539        else
540          data().Conversions.addDecl(Conversion);
541      }
542    }
543
544    return;
545  }
546
547  // Handle non-static data members.
548  if (FieldDecl *Field = dyn_cast<FieldDecl>(D)) {
549    // C++ [dcl.init.aggr]p1:
550    //   An aggregate is an array or a class (clause 9) with [...] no
551    //   private or protected non-static data members (clause 11).
552    //
553    // A POD must be an aggregate.
554    if (D->getAccess() == AS_private || D->getAccess() == AS_protected) {
555      data().Aggregate = false;
556      data().PlainOldData = false;
557    }
558
559    // C++ [class]p9:
560    //   A POD struct is a class that is both a trivial class and a
561    //   standard-layout class, and has no non-static data members of type
562    //   non-POD struct, non-POD union (or array of such types).
563    ASTContext &Context = getASTContext();
564    QualType T = Context.getBaseElementType(Field->getType());
565    if (!T->isPODType())
566      data().PlainOldData = false;
567    if (T->isReferenceType())
568      data().HasTrivialConstructor = false;
569
570    if (const RecordType *RecordTy = T->getAs<RecordType>()) {
571      CXXRecordDecl* FieldRec = cast<CXXRecordDecl>(RecordTy->getDecl());
572      if (FieldRec->getDefinition()) {
573        if (!FieldRec->hasTrivialConstructor())
574          data().HasTrivialConstructor = false;
575        if (!FieldRec->hasTrivialCopyConstructor())
576          data().HasTrivialCopyConstructor = false;
577        if (!FieldRec->hasTrivialCopyAssignment())
578          data().HasTrivialCopyAssignment = false;
579        if (!FieldRec->hasTrivialDestructor())
580          data().HasTrivialDestructor = false;
581      }
582    }
583
584    // If this is not a zero-length bit-field, then the class is not empty.
585    if (data().Empty) {
586      if (!Field->getBitWidth())
587        data().Empty = false;
588      else if (!Field->getBitWidth()->isTypeDependent() &&
589               !Field->getBitWidth()->isValueDependent()) {
590        llvm::APSInt Bits;
591        if (Field->getBitWidth()->isIntegerConstantExpr(Bits, Context))
592          if (!!Bits)
593            data().Empty = false;
594      }
595    }
596  }
597
598  // Handle using declarations of conversion functions.
599  if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(D))
600    if (Shadow->getDeclName().getNameKind()
601          == DeclarationName::CXXConversionFunctionName)
602      data().Conversions.addDecl(Shadow, Shadow->getAccess());
603}
604
605static CanQualType GetConversionType(ASTContext &Context, NamedDecl *Conv) {
606  QualType T;
607  if (isa<UsingShadowDecl>(Conv))
608    Conv = cast<UsingShadowDecl>(Conv)->getTargetDecl();
609  if (FunctionTemplateDecl *ConvTemp = dyn_cast<FunctionTemplateDecl>(Conv))
610    T = ConvTemp->getTemplatedDecl()->getResultType();
611  else
612    T = cast<CXXConversionDecl>(Conv)->getConversionType();
613  return Context.getCanonicalType(T);
614}
615
616/// Collect the visible conversions of a base class.
617///
618/// \param Base a base class of the class we're considering
619/// \param InVirtual whether this base class is a virtual base (or a base
620///   of a virtual base)
621/// \param Access the access along the inheritance path to this base
622/// \param ParentHiddenTypes the conversions provided by the inheritors
623///   of this base
624/// \param Output the set to which to add conversions from non-virtual bases
625/// \param VOutput the set to which to add conversions from virtual bases
626/// \param HiddenVBaseCs the set of conversions which were hidden in a
627///   virtual base along some inheritance path
628static void CollectVisibleConversions(ASTContext &Context,
629                                      CXXRecordDecl *Record,
630                                      bool InVirtual,
631                                      AccessSpecifier Access,
632                  const llvm::SmallPtrSet<CanQualType, 8> &ParentHiddenTypes,
633                                      UnresolvedSetImpl &Output,
634                                      UnresolvedSetImpl &VOutput,
635                           llvm::SmallPtrSet<NamedDecl*, 8> &HiddenVBaseCs) {
636  // The set of types which have conversions in this class or its
637  // subclasses.  As an optimization, we don't copy the derived set
638  // unless it might change.
639  const llvm::SmallPtrSet<CanQualType, 8> *HiddenTypes = &ParentHiddenTypes;
640  llvm::SmallPtrSet<CanQualType, 8> HiddenTypesBuffer;
641
642  // Collect the direct conversions and figure out which conversions
643  // will be hidden in the subclasses.
644  UnresolvedSetImpl &Cs = *Record->getConversionFunctions();
645  if (!Cs.empty()) {
646    HiddenTypesBuffer = ParentHiddenTypes;
647    HiddenTypes = &HiddenTypesBuffer;
648
649    for (UnresolvedSetIterator I = Cs.begin(), E = Cs.end(); I != E; ++I) {
650      bool Hidden =
651        !HiddenTypesBuffer.insert(GetConversionType(Context, I.getDecl()));
652
653      // If this conversion is hidden and we're in a virtual base,
654      // remember that it's hidden along some inheritance path.
655      if (Hidden && InVirtual)
656        HiddenVBaseCs.insert(cast<NamedDecl>(I.getDecl()->getCanonicalDecl()));
657
658      // If this conversion isn't hidden, add it to the appropriate output.
659      else if (!Hidden) {
660        AccessSpecifier IAccess
661          = CXXRecordDecl::MergeAccess(Access, I.getAccess());
662
663        if (InVirtual)
664          VOutput.addDecl(I.getDecl(), IAccess);
665        else
666          Output.addDecl(I.getDecl(), IAccess);
667      }
668    }
669  }
670
671  // Collect information recursively from any base classes.
672  for (CXXRecordDecl::base_class_iterator
673         I = Record->bases_begin(), E = Record->bases_end(); I != E; ++I) {
674    const RecordType *RT = I->getType()->getAs<RecordType>();
675    if (!RT) continue;
676
677    AccessSpecifier BaseAccess
678      = CXXRecordDecl::MergeAccess(Access, I->getAccessSpecifier());
679    bool BaseInVirtual = InVirtual || I->isVirtual();
680
681    CXXRecordDecl *Base = cast<CXXRecordDecl>(RT->getDecl());
682    CollectVisibleConversions(Context, Base, BaseInVirtual, BaseAccess,
683                              *HiddenTypes, Output, VOutput, HiddenVBaseCs);
684  }
685}
686
687/// Collect the visible conversions of a class.
688///
689/// This would be extremely straightforward if it weren't for virtual
690/// bases.  It might be worth special-casing that, really.
691static void CollectVisibleConversions(ASTContext &Context,
692                                      CXXRecordDecl *Record,
693                                      UnresolvedSetImpl &Output) {
694  // The collection of all conversions in virtual bases that we've
695  // found.  These will be added to the output as long as they don't
696  // appear in the hidden-conversions set.
697  UnresolvedSet<8> VBaseCs;
698
699  // The set of conversions in virtual bases that we've determined to
700  // be hidden.
701  llvm::SmallPtrSet<NamedDecl*, 8> HiddenVBaseCs;
702
703  // The set of types hidden by classes derived from this one.
704  llvm::SmallPtrSet<CanQualType, 8> HiddenTypes;
705
706  // Go ahead and collect the direct conversions and add them to the
707  // hidden-types set.
708  UnresolvedSetImpl &Cs = *Record->getConversionFunctions();
709  Output.append(Cs.begin(), Cs.end());
710  for (UnresolvedSetIterator I = Cs.begin(), E = Cs.end(); I != E; ++I)
711    HiddenTypes.insert(GetConversionType(Context, I.getDecl()));
712
713  // Recursively collect conversions from base classes.
714  for (CXXRecordDecl::base_class_iterator
715         I = Record->bases_begin(), E = Record->bases_end(); I != E; ++I) {
716    const RecordType *RT = I->getType()->getAs<RecordType>();
717    if (!RT) continue;
718
719    CollectVisibleConversions(Context, cast<CXXRecordDecl>(RT->getDecl()),
720                              I->isVirtual(), I->getAccessSpecifier(),
721                              HiddenTypes, Output, VBaseCs, HiddenVBaseCs);
722  }
723
724  // Add any unhidden conversions provided by virtual bases.
725  for (UnresolvedSetIterator I = VBaseCs.begin(), E = VBaseCs.end();
726         I != E; ++I) {
727    if (!HiddenVBaseCs.count(cast<NamedDecl>(I.getDecl()->getCanonicalDecl())))
728      Output.addDecl(I.getDecl(), I.getAccess());
729  }
730}
731
732/// getVisibleConversionFunctions - get all conversion functions visible
733/// in current class; including conversion function templates.
734const UnresolvedSetImpl *CXXRecordDecl::getVisibleConversionFunctions() {
735  // If root class, all conversions are visible.
736  if (bases_begin() == bases_end())
737    return &data().Conversions;
738  // If visible conversion list is already evaluated, return it.
739  if (data().ComputedVisibleConversions)
740    return &data().VisibleConversions;
741  CollectVisibleConversions(getASTContext(), this, data().VisibleConversions);
742  data().ComputedVisibleConversions = true;
743  return &data().VisibleConversions;
744}
745
746void CXXRecordDecl::removeConversion(const NamedDecl *ConvDecl) {
747  // This operation is O(N) but extremely rare.  Sema only uses it to
748  // remove UsingShadowDecls in a class that were followed by a direct
749  // declaration, e.g.:
750  //   class A : B {
751  //     using B::operator int;
752  //     operator int();
753  //   };
754  // This is uncommon by itself and even more uncommon in conjunction
755  // with sufficiently large numbers of directly-declared conversions
756  // that asymptotic behavior matters.
757
758  UnresolvedSetImpl &Convs = *getConversionFunctions();
759  for (unsigned I = 0, E = Convs.size(); I != E; ++I) {
760    if (Convs[I].getDecl() == ConvDecl) {
761      Convs.erase(I);
762      assert(std::find(Convs.begin(), Convs.end(), ConvDecl) == Convs.end()
763             && "conversion was found multiple times in unresolved set");
764      return;
765    }
766  }
767
768  llvm_unreachable("conversion not found in set!");
769}
770
771CXXRecordDecl *CXXRecordDecl::getInstantiatedFromMemberClass() const {
772  if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo())
773    return cast<CXXRecordDecl>(MSInfo->getInstantiatedFrom());
774
775  return 0;
776}
777
778MemberSpecializationInfo *CXXRecordDecl::getMemberSpecializationInfo() const {
779  return TemplateOrInstantiation.dyn_cast<MemberSpecializationInfo *>();
780}
781
782void
783CXXRecordDecl::setInstantiationOfMemberClass(CXXRecordDecl *RD,
784                                             TemplateSpecializationKind TSK) {
785  assert(TemplateOrInstantiation.isNull() &&
786         "Previous template or instantiation?");
787  assert(!isa<ClassTemplateSpecializationDecl>(this));
788  TemplateOrInstantiation
789    = new (getASTContext()) MemberSpecializationInfo(RD, TSK);
790}
791
792TemplateSpecializationKind CXXRecordDecl::getTemplateSpecializationKind() const{
793  if (const ClassTemplateSpecializationDecl *Spec
794        = dyn_cast<ClassTemplateSpecializationDecl>(this))
795    return Spec->getSpecializationKind();
796
797  if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo())
798    return MSInfo->getTemplateSpecializationKind();
799
800  return TSK_Undeclared;
801}
802
803void
804CXXRecordDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK) {
805  if (ClassTemplateSpecializationDecl *Spec
806      = dyn_cast<ClassTemplateSpecializationDecl>(this)) {
807    Spec->setSpecializationKind(TSK);
808    return;
809  }
810
811  if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo()) {
812    MSInfo->setTemplateSpecializationKind(TSK);
813    return;
814  }
815
816  assert(false && "Not a class template or member class specialization");
817}
818
819CXXDestructorDecl *CXXRecordDecl::getDestructor() const {
820  ASTContext &Context = getASTContext();
821  QualType ClassType = Context.getTypeDeclType(this);
822
823  DeclarationName Name
824    = Context.DeclarationNames.getCXXDestructorName(
825                                          Context.getCanonicalType(ClassType));
826
827  DeclContext::lookup_const_iterator I, E;
828  llvm::tie(I, E) = lookup(Name);
829  if (I == E)
830    return 0;
831
832  CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(*I);
833  return Dtor;
834}
835
836void CXXRecordDecl::completeDefinition() {
837  completeDefinition(0);
838}
839
840void CXXRecordDecl::completeDefinition(CXXFinalOverriderMap *FinalOverriders) {
841  RecordDecl::completeDefinition();
842
843  // If the class may be abstract (but hasn't been marked as such), check for
844  // any pure final overriders.
845  if (mayBeAbstract()) {
846    CXXFinalOverriderMap MyFinalOverriders;
847    if (!FinalOverriders) {
848      getFinalOverriders(MyFinalOverriders);
849      FinalOverriders = &MyFinalOverriders;
850    }
851
852    bool Done = false;
853    for (CXXFinalOverriderMap::iterator M = FinalOverriders->begin(),
854                                     MEnd = FinalOverriders->end();
855         M != MEnd && !Done; ++M) {
856      for (OverridingMethods::iterator SO = M->second.begin(),
857                                    SOEnd = M->second.end();
858           SO != SOEnd && !Done; ++SO) {
859        assert(SO->second.size() > 0 &&
860               "All virtual functions have overridding virtual functions");
861
862        // C++ [class.abstract]p4:
863        //   A class is abstract if it contains or inherits at least one
864        //   pure virtual function for which the final overrider is pure
865        //   virtual.
866        if (SO->second.front().Method->isPure()) {
867          data().Abstract = true;
868          Done = true;
869          break;
870        }
871      }
872    }
873  }
874
875  // Set access bits correctly on the directly-declared conversions.
876  for (UnresolvedSetIterator I = data().Conversions.begin(),
877                             E = data().Conversions.end();
878       I != E; ++I)
879    data().Conversions.setAccess(I, (*I)->getAccess());
880}
881
882bool CXXRecordDecl::mayBeAbstract() const {
883  if (data().Abstract || isInvalidDecl() || !data().Polymorphic ||
884      isDependentContext())
885    return false;
886
887  for (CXXRecordDecl::base_class_const_iterator B = bases_begin(),
888                                             BEnd = bases_end();
889       B != BEnd; ++B) {
890    CXXRecordDecl *BaseDecl
891      = cast<CXXRecordDecl>(B->getType()->getAs<RecordType>()->getDecl());
892    if (BaseDecl->isAbstract())
893      return true;
894  }
895
896  return false;
897}
898
899CXXMethodDecl *
900CXXMethodDecl::Create(ASTContext &C, CXXRecordDecl *RD,
901                      SourceLocation StartLoc,
902                      const DeclarationNameInfo &NameInfo,
903                      QualType T, TypeSourceInfo *TInfo,
904                      bool isStatic, StorageClass SCAsWritten, bool isInline,
905                      SourceLocation EndLocation) {
906  return new (C) CXXMethodDecl(CXXMethod, RD, StartLoc, NameInfo, T, TInfo,
907                               isStatic, SCAsWritten, isInline, EndLocation);
908}
909
910bool CXXMethodDecl::isUsualDeallocationFunction() const {
911  if (getOverloadedOperator() != OO_Delete &&
912      getOverloadedOperator() != OO_Array_Delete)
913    return false;
914
915  // C++ [basic.stc.dynamic.deallocation]p2:
916  //   A template instance is never a usual deallocation function,
917  //   regardless of its signature.
918  if (getPrimaryTemplate())
919    return false;
920
921  // C++ [basic.stc.dynamic.deallocation]p2:
922  //   If a class T has a member deallocation function named operator delete
923  //   with exactly one parameter, then that function is a usual (non-placement)
924  //   deallocation function. [...]
925  if (getNumParams() == 1)
926    return true;
927
928  // C++ [basic.stc.dynamic.deallocation]p2:
929  //   [...] If class T does not declare such an operator delete but does
930  //   declare a member deallocation function named operator delete with
931  //   exactly two parameters, the second of which has type std::size_t (18.1),
932  //   then this function is a usual deallocation function.
933  ASTContext &Context = getASTContext();
934  if (getNumParams() != 2 ||
935      !Context.hasSameUnqualifiedType(getParamDecl(1)->getType(),
936                                      Context.getSizeType()))
937    return false;
938
939  // This function is a usual deallocation function if there are no
940  // single-parameter deallocation functions of the same kind.
941  for (DeclContext::lookup_const_result R = getDeclContext()->lookup(getDeclName());
942       R.first != R.second; ++R.first) {
943    if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(*R.first))
944      if (FD->getNumParams() == 1)
945        return false;
946  }
947
948  return true;
949}
950
951bool CXXMethodDecl::isCopyAssignmentOperator() const {
952  // C++0x [class.copy]p19:
953  //  A user-declared copy assignment operator X::operator= is a non-static
954  //  non-template member function of class X with exactly one parameter of
955  //  type X, X&, const X&, volatile X& or const volatile X&.
956  if (/*operator=*/getOverloadedOperator() != OO_Equal ||
957      /*non-static*/ isStatic() ||
958      /*non-template*/getPrimaryTemplate() || getDescribedFunctionTemplate() ||
959      /*exactly one parameter*/getNumParams() != 1)
960    return false;
961
962  QualType ParamType = getParamDecl(0)->getType();
963  if (const LValueReferenceType *Ref = ParamType->getAs<LValueReferenceType>())
964    ParamType = Ref->getPointeeType();
965
966  ASTContext &Context = getASTContext();
967  QualType ClassType
968    = Context.getCanonicalType(Context.getTypeDeclType(getParent()));
969  return Context.hasSameUnqualifiedType(ClassType, ParamType);
970}
971
972void CXXMethodDecl::addOverriddenMethod(const CXXMethodDecl *MD) {
973  assert(MD->isCanonicalDecl() && "Method is not canonical!");
974  assert(!MD->getParent()->isDependentContext() &&
975         "Can't add an overridden method to a class template!");
976
977  getASTContext().addOverriddenMethod(this, MD);
978}
979
980CXXMethodDecl::method_iterator CXXMethodDecl::begin_overridden_methods() const {
981  return getASTContext().overridden_methods_begin(this);
982}
983
984CXXMethodDecl::method_iterator CXXMethodDecl::end_overridden_methods() const {
985  return getASTContext().overridden_methods_end(this);
986}
987
988unsigned CXXMethodDecl::size_overridden_methods() const {
989  return getASTContext().overridden_methods_size(this);
990}
991
992QualType CXXMethodDecl::getThisType(ASTContext &C) const {
993  // C++ 9.3.2p1: The type of this in a member function of a class X is X*.
994  // If the member function is declared const, the type of this is const X*,
995  // if the member function is declared volatile, the type of this is
996  // volatile X*, and if the member function is declared const volatile,
997  // the type of this is const volatile X*.
998
999  assert(isInstance() && "No 'this' for static methods!");
1000
1001  QualType ClassTy = C.getTypeDeclType(getParent());
1002  ClassTy = C.getQualifiedType(ClassTy,
1003                               Qualifiers::fromCVRMask(getTypeQualifiers()));
1004  return C.getPointerType(ClassTy);
1005}
1006
1007bool CXXMethodDecl::hasInlineBody() const {
1008  // If this function is a template instantiation, look at the template from
1009  // which it was instantiated.
1010  const FunctionDecl *CheckFn = getTemplateInstantiationPattern();
1011  if (!CheckFn)
1012    CheckFn = this;
1013
1014  const FunctionDecl *fn;
1015  return CheckFn->hasBody(fn) && !fn->isOutOfLine();
1016}
1017
1018CXXCtorInitializer::CXXCtorInitializer(ASTContext &Context,
1019                                       TypeSourceInfo *TInfo, bool IsVirtual,
1020                                       SourceLocation L, Expr *Init,
1021                                       SourceLocation R,
1022                                       SourceLocation EllipsisLoc)
1023  : Initializee(TInfo), MemberOrEllipsisLocation(EllipsisLoc), Init(Init),
1024    LParenLoc(L), RParenLoc(R), IsVirtual(IsVirtual), IsWritten(false),
1025    SourceOrderOrNumArrayIndices(0)
1026{
1027}
1028
1029CXXCtorInitializer::CXXCtorInitializer(ASTContext &Context,
1030                                       FieldDecl *Member,
1031                                       SourceLocation MemberLoc,
1032                                       SourceLocation L, Expr *Init,
1033                                       SourceLocation R)
1034  : Initializee(Member), MemberOrEllipsisLocation(MemberLoc), Init(Init),
1035    LParenLoc(L), RParenLoc(R), IsVirtual(false),
1036    IsWritten(false), SourceOrderOrNumArrayIndices(0)
1037{
1038}
1039
1040CXXCtorInitializer::CXXCtorInitializer(ASTContext &Context,
1041                                       IndirectFieldDecl *Member,
1042                                       SourceLocation MemberLoc,
1043                                       SourceLocation L, Expr *Init,
1044                                       SourceLocation R)
1045  : Initializee(Member), MemberOrEllipsisLocation(MemberLoc), Init(Init),
1046    LParenLoc(L), RParenLoc(R), IsVirtual(false),
1047    IsWritten(false), SourceOrderOrNumArrayIndices(0)
1048{
1049}
1050
1051CXXCtorInitializer::CXXCtorInitializer(ASTContext &Context,
1052                                       SourceLocation D, SourceLocation L,
1053                                       CXXConstructorDecl *Target, Expr *Init,
1054                                       SourceLocation R)
1055  : Initializee(Target), MemberOrEllipsisLocation(D), Init(Init),
1056    LParenLoc(L), RParenLoc(R), IsVirtual(false),
1057    IsWritten(false), SourceOrderOrNumArrayIndices(0)
1058{
1059}
1060
1061CXXCtorInitializer::CXXCtorInitializer(ASTContext &Context,
1062                                       FieldDecl *Member,
1063                                       SourceLocation MemberLoc,
1064                                       SourceLocation L, Expr *Init,
1065                                       SourceLocation R,
1066                                       VarDecl **Indices,
1067                                       unsigned NumIndices)
1068  : Initializee(Member), MemberOrEllipsisLocation(MemberLoc), Init(Init),
1069    LParenLoc(L), RParenLoc(R), IsVirtual(false),
1070    IsWritten(false), SourceOrderOrNumArrayIndices(NumIndices)
1071{
1072  VarDecl **MyIndices = reinterpret_cast<VarDecl **> (this + 1);
1073  memcpy(MyIndices, Indices, NumIndices * sizeof(VarDecl *));
1074}
1075
1076CXXCtorInitializer *CXXCtorInitializer::Create(ASTContext &Context,
1077                                               FieldDecl *Member,
1078                                               SourceLocation MemberLoc,
1079                                               SourceLocation L, Expr *Init,
1080                                               SourceLocation R,
1081                                               VarDecl **Indices,
1082                                               unsigned NumIndices) {
1083  void *Mem = Context.Allocate(sizeof(CXXCtorInitializer) +
1084                               sizeof(VarDecl *) * NumIndices,
1085                               llvm::alignOf<CXXCtorInitializer>());
1086  return new (Mem) CXXCtorInitializer(Context, Member, MemberLoc, L, Init, R,
1087                                      Indices, NumIndices);
1088}
1089
1090TypeLoc CXXCtorInitializer::getBaseClassLoc() const {
1091  if (isBaseInitializer())
1092    return Initializee.get<TypeSourceInfo*>()->getTypeLoc();
1093  else
1094    return TypeLoc();
1095}
1096
1097const Type *CXXCtorInitializer::getBaseClass() const {
1098  if (isBaseInitializer())
1099    return Initializee.get<TypeSourceInfo*>()->getType().getTypePtr();
1100  else
1101    return 0;
1102}
1103
1104SourceLocation CXXCtorInitializer::getSourceLocation() const {
1105  if (isAnyMemberInitializer() || isDelegatingInitializer())
1106    return getMemberLocation();
1107
1108  return getBaseClassLoc().getLocalSourceRange().getBegin();
1109}
1110
1111SourceRange CXXCtorInitializer::getSourceRange() const {
1112  return SourceRange(getSourceLocation(), getRParenLoc());
1113}
1114
1115CXXConstructorDecl *
1116CXXConstructorDecl::Create(ASTContext &C, EmptyShell Empty) {
1117  return new (C) CXXConstructorDecl(0, SourceLocation(), DeclarationNameInfo(),
1118                                    QualType(), 0, false, false, false);
1119}
1120
1121CXXConstructorDecl *
1122CXXConstructorDecl::Create(ASTContext &C, CXXRecordDecl *RD,
1123                           SourceLocation StartLoc,
1124                           const DeclarationNameInfo &NameInfo,
1125                           QualType T, TypeSourceInfo *TInfo,
1126                           bool isExplicit,
1127                           bool isInline,
1128                           bool isImplicitlyDeclared) {
1129  assert(NameInfo.getName().getNameKind()
1130         == DeclarationName::CXXConstructorName &&
1131         "Name must refer to a constructor");
1132  return new (C) CXXConstructorDecl(RD, StartLoc, NameInfo, T, TInfo,
1133                                    isExplicit, isInline, isImplicitlyDeclared);
1134}
1135
1136bool CXXConstructorDecl::isDefaultConstructor() const {
1137  // C++ [class.ctor]p5:
1138  //   A default constructor for a class X is a constructor of class
1139  //   X that can be called without an argument.
1140  return (getNumParams() == 0) ||
1141         (getNumParams() > 0 && getParamDecl(0)->hasDefaultArg());
1142}
1143
1144bool
1145CXXConstructorDecl::isCopyConstructor(unsigned &TypeQuals) const {
1146  return isCopyOrMoveConstructor(TypeQuals) &&
1147         getParamDecl(0)->getType()->isLValueReferenceType();
1148}
1149
1150bool CXXConstructorDecl::isMoveConstructor(unsigned &TypeQuals) const {
1151  return isCopyOrMoveConstructor(TypeQuals) &&
1152    getParamDecl(0)->getType()->isRValueReferenceType();
1153}
1154
1155/// \brief Determine whether this is a copy or move constructor.
1156bool CXXConstructorDecl::isCopyOrMoveConstructor(unsigned &TypeQuals) const {
1157  // C++ [class.copy]p2:
1158  //   A non-template constructor for class X is a copy constructor
1159  //   if its first parameter is of type X&, const X&, volatile X& or
1160  //   const volatile X&, and either there are no other parameters
1161  //   or else all other parameters have default arguments (8.3.6).
1162  // C++0x [class.copy]p3:
1163  //   A non-template constructor for class X is a move constructor if its
1164  //   first parameter is of type X&&, const X&&, volatile X&&, or
1165  //   const volatile X&&, and either there are no other parameters or else
1166  //   all other parameters have default arguments.
1167  if ((getNumParams() < 1) ||
1168      (getNumParams() > 1 && !getParamDecl(1)->hasDefaultArg()) ||
1169      (getPrimaryTemplate() != 0) ||
1170      (getDescribedFunctionTemplate() != 0))
1171    return false;
1172
1173  const ParmVarDecl *Param = getParamDecl(0);
1174
1175  // Do we have a reference type?
1176  const ReferenceType *ParamRefType = Param->getType()->getAs<ReferenceType>();
1177  if (!ParamRefType)
1178    return false;
1179
1180  // Is it a reference to our class type?
1181  ASTContext &Context = getASTContext();
1182
1183  CanQualType PointeeType
1184    = Context.getCanonicalType(ParamRefType->getPointeeType());
1185  CanQualType ClassTy
1186    = Context.getCanonicalType(Context.getTagDeclType(getParent()));
1187  if (PointeeType.getUnqualifiedType() != ClassTy)
1188    return false;
1189
1190  // FIXME: other qualifiers?
1191
1192  // We have a copy or move constructor.
1193  TypeQuals = PointeeType.getCVRQualifiers();
1194  return true;
1195}
1196
1197bool CXXConstructorDecl::isConvertingConstructor(bool AllowExplicit) const {
1198  // C++ [class.conv.ctor]p1:
1199  //   A constructor declared without the function-specifier explicit
1200  //   that can be called with a single parameter specifies a
1201  //   conversion from the type of its first parameter to the type of
1202  //   its class. Such a constructor is called a converting
1203  //   constructor.
1204  if (isExplicit() && !AllowExplicit)
1205    return false;
1206
1207  return (getNumParams() == 0 &&
1208          getType()->getAs<FunctionProtoType>()->isVariadic()) ||
1209         (getNumParams() == 1) ||
1210         (getNumParams() > 1 && getParamDecl(1)->hasDefaultArg());
1211}
1212
1213bool CXXConstructorDecl::isSpecializationCopyingObject() const {
1214  if ((getNumParams() < 1) ||
1215      (getNumParams() > 1 && !getParamDecl(1)->hasDefaultArg()) ||
1216      (getPrimaryTemplate() == 0) ||
1217      (getDescribedFunctionTemplate() != 0))
1218    return false;
1219
1220  const ParmVarDecl *Param = getParamDecl(0);
1221
1222  ASTContext &Context = getASTContext();
1223  CanQualType ParamType = Context.getCanonicalType(Param->getType());
1224
1225  // Is it the same as our our class type?
1226  CanQualType ClassTy
1227    = Context.getCanonicalType(Context.getTagDeclType(getParent()));
1228  if (ParamType.getUnqualifiedType() != ClassTy)
1229    return false;
1230
1231  return true;
1232}
1233
1234const CXXConstructorDecl *CXXConstructorDecl::getInheritedConstructor() const {
1235  // Hack: we store the inherited constructor in the overridden method table
1236  method_iterator It = begin_overridden_methods();
1237  if (It == end_overridden_methods())
1238    return 0;
1239
1240  return cast<CXXConstructorDecl>(*It);
1241}
1242
1243void
1244CXXConstructorDecl::setInheritedConstructor(const CXXConstructorDecl *BaseCtor){
1245  // Hack: we store the inherited constructor in the overridden method table
1246  assert(size_overridden_methods() == 0 && "Base ctor already set.");
1247  addOverriddenMethod(BaseCtor);
1248}
1249
1250CXXDestructorDecl *
1251CXXDestructorDecl::Create(ASTContext &C, EmptyShell Empty) {
1252  return new (C) CXXDestructorDecl(0, SourceLocation(), DeclarationNameInfo(),
1253                                   QualType(), 0, false, false);
1254}
1255
1256CXXDestructorDecl *
1257CXXDestructorDecl::Create(ASTContext &C, CXXRecordDecl *RD,
1258                          SourceLocation StartLoc,
1259                          const DeclarationNameInfo &NameInfo,
1260                          QualType T, TypeSourceInfo *TInfo,
1261                          bool isInline,
1262                          bool isImplicitlyDeclared) {
1263  assert(NameInfo.getName().getNameKind()
1264         == DeclarationName::CXXDestructorName &&
1265         "Name must refer to a destructor");
1266  return new (C) CXXDestructorDecl(RD, StartLoc, NameInfo, T, TInfo, isInline,
1267                                   isImplicitlyDeclared);
1268}
1269
1270CXXConversionDecl *
1271CXXConversionDecl::Create(ASTContext &C, EmptyShell Empty) {
1272  return new (C) CXXConversionDecl(0, SourceLocation(), DeclarationNameInfo(),
1273                                   QualType(), 0, false, false,
1274                                   SourceLocation());
1275}
1276
1277CXXConversionDecl *
1278CXXConversionDecl::Create(ASTContext &C, CXXRecordDecl *RD,
1279                          SourceLocation StartLoc,
1280                          const DeclarationNameInfo &NameInfo,
1281                          QualType T, TypeSourceInfo *TInfo,
1282                          bool isInline, bool isExplicit,
1283                          SourceLocation EndLocation) {
1284  assert(NameInfo.getName().getNameKind()
1285         == DeclarationName::CXXConversionFunctionName &&
1286         "Name must refer to a conversion function");
1287  return new (C) CXXConversionDecl(RD, StartLoc, NameInfo, T, TInfo,
1288                                   isInline, isExplicit, EndLocation);
1289}
1290
1291LinkageSpecDecl *LinkageSpecDecl::Create(ASTContext &C,
1292                                         DeclContext *DC,
1293                                         SourceLocation ExternLoc,
1294                                         SourceLocation LangLoc,
1295                                         LanguageIDs Lang,
1296                                         SourceLocation RBraceLoc) {
1297  return new (C) LinkageSpecDecl(DC, ExternLoc, LangLoc, Lang, RBraceLoc);
1298}
1299
1300UsingDirectiveDecl *UsingDirectiveDecl::Create(ASTContext &C, DeclContext *DC,
1301                                               SourceLocation L,
1302                                               SourceLocation NamespaceLoc,
1303                                           NestedNameSpecifierLoc QualifierLoc,
1304                                               SourceLocation IdentLoc,
1305                                               NamedDecl *Used,
1306                                               DeclContext *CommonAncestor) {
1307  if (NamespaceDecl *NS = dyn_cast_or_null<NamespaceDecl>(Used))
1308    Used = NS->getOriginalNamespace();
1309  return new (C) UsingDirectiveDecl(DC, L, NamespaceLoc, QualifierLoc,
1310                                    IdentLoc, Used, CommonAncestor);
1311}
1312
1313NamespaceDecl *UsingDirectiveDecl::getNominatedNamespace() {
1314  if (NamespaceAliasDecl *NA =
1315        dyn_cast_or_null<NamespaceAliasDecl>(NominatedNamespace))
1316    return NA->getNamespace();
1317  return cast_or_null<NamespaceDecl>(NominatedNamespace);
1318}
1319
1320NamespaceAliasDecl *NamespaceAliasDecl::Create(ASTContext &C, DeclContext *DC,
1321                                               SourceLocation UsingLoc,
1322                                               SourceLocation AliasLoc,
1323                                               IdentifierInfo *Alias,
1324                                           NestedNameSpecifierLoc QualifierLoc,
1325                                               SourceLocation IdentLoc,
1326                                               NamedDecl *Namespace) {
1327  if (NamespaceDecl *NS = dyn_cast_or_null<NamespaceDecl>(Namespace))
1328    Namespace = NS->getOriginalNamespace();
1329  return new (C) NamespaceAliasDecl(DC, UsingLoc, AliasLoc, Alias,
1330                                    QualifierLoc, IdentLoc, Namespace);
1331}
1332
1333UsingDecl *UsingShadowDecl::getUsingDecl() const {
1334  const UsingShadowDecl *Shadow = this;
1335  while (const UsingShadowDecl *NextShadow =
1336         dyn_cast<UsingShadowDecl>(Shadow->UsingOrNextShadow))
1337    Shadow = NextShadow;
1338  return cast<UsingDecl>(Shadow->UsingOrNextShadow);
1339}
1340
1341void UsingDecl::addShadowDecl(UsingShadowDecl *S) {
1342  assert(std::find(shadow_begin(), shadow_end(), S) == shadow_end() &&
1343         "declaration already in set");
1344  assert(S->getUsingDecl() == this);
1345
1346  if (FirstUsingShadow)
1347    S->UsingOrNextShadow = FirstUsingShadow;
1348  FirstUsingShadow = S;
1349}
1350
1351void UsingDecl::removeShadowDecl(UsingShadowDecl *S) {
1352  assert(std::find(shadow_begin(), shadow_end(), S) != shadow_end() &&
1353         "declaration not in set");
1354  assert(S->getUsingDecl() == this);
1355
1356  // Remove S from the shadow decl chain. This is O(n) but hopefully rare.
1357
1358  if (FirstUsingShadow == S) {
1359    FirstUsingShadow = dyn_cast<UsingShadowDecl>(S->UsingOrNextShadow);
1360    S->UsingOrNextShadow = this;
1361    return;
1362  }
1363
1364  UsingShadowDecl *Prev = FirstUsingShadow;
1365  while (Prev->UsingOrNextShadow != S)
1366    Prev = cast<UsingShadowDecl>(Prev->UsingOrNextShadow);
1367  Prev->UsingOrNextShadow = S->UsingOrNextShadow;
1368  S->UsingOrNextShadow = this;
1369}
1370
1371UsingDecl *UsingDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation UL,
1372                             NestedNameSpecifierLoc QualifierLoc,
1373                             const DeclarationNameInfo &NameInfo,
1374                             bool IsTypeNameArg) {
1375  return new (C) UsingDecl(DC, UL, QualifierLoc, NameInfo, IsTypeNameArg);
1376}
1377
1378UnresolvedUsingValueDecl *
1379UnresolvedUsingValueDecl::Create(ASTContext &C, DeclContext *DC,
1380                                 SourceLocation UsingLoc,
1381                                 NestedNameSpecifierLoc QualifierLoc,
1382                                 const DeclarationNameInfo &NameInfo) {
1383  return new (C) UnresolvedUsingValueDecl(DC, C.DependentTy, UsingLoc,
1384                                          QualifierLoc, NameInfo);
1385}
1386
1387UnresolvedUsingTypenameDecl *
1388UnresolvedUsingTypenameDecl::Create(ASTContext &C, DeclContext *DC,
1389                                    SourceLocation UsingLoc,
1390                                    SourceLocation TypenameLoc,
1391                                    NestedNameSpecifierLoc QualifierLoc,
1392                                    SourceLocation TargetNameLoc,
1393                                    DeclarationName TargetName) {
1394  return new (C) UnresolvedUsingTypenameDecl(DC, UsingLoc, TypenameLoc,
1395                                             QualifierLoc, TargetNameLoc,
1396                                             TargetName.getAsIdentifierInfo());
1397}
1398
1399StaticAssertDecl *StaticAssertDecl::Create(ASTContext &C, DeclContext *DC,
1400                                           SourceLocation StaticAssertLoc,
1401                                           Expr *AssertExpr,
1402                                           StringLiteral *Message,
1403                                           SourceLocation RParenLoc) {
1404  return new (C) StaticAssertDecl(DC, StaticAssertLoc, AssertExpr, Message,
1405                                  RParenLoc);
1406}
1407
1408static const char *getAccessName(AccessSpecifier AS) {
1409  switch (AS) {
1410    default:
1411    case AS_none:
1412      assert("Invalid access specifier!");
1413      return 0;
1414    case AS_public:
1415      return "public";
1416    case AS_private:
1417      return "private";
1418    case AS_protected:
1419      return "protected";
1420  }
1421}
1422
1423const DiagnosticBuilder &clang::operator<<(const DiagnosticBuilder &DB,
1424                                           AccessSpecifier AS) {
1425  return DB << getAccessName(AS);
1426}
1427