ItaniumMangle.cpp revision 0e376a0ca8372c9e809d08a9db2fae98394878b8
1//===--- ItaniumMangle.cpp - Itanium C++ Name Mangling ----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// Implements C++ name mangling according to the Itanium C++ ABI,
11// which is used in GCC 3.2 and newer (and many compilers that are
12// ABI-compatible with GCC):
13//
14//   http://www.codesourcery.com/public/cxx-abi/abi.html
15//
16//===----------------------------------------------------------------------===//
17#include "clang/AST/Mangle.h"
18#include "clang/AST/ASTContext.h"
19#include "clang/AST/Decl.h"
20#include "clang/AST/DeclCXX.h"
21#include "clang/AST/DeclObjC.h"
22#include "clang/AST/DeclTemplate.h"
23#include "clang/AST/ExprCXX.h"
24#include "clang/Basic/ABI.h"
25#include "clang/Basic/SourceManager.h"
26#include "llvm/ADT/StringExtras.h"
27#include "llvm/Support/raw_ostream.h"
28#include "llvm/Support/ErrorHandling.h"
29
30#define MANGLE_CHECKER 0
31
32#if MANGLE_CHECKER
33#include <cxxabi.h>
34#endif
35
36using namespace clang;
37
38namespace {
39
40static const CXXRecordDecl *GetLocalClassDecl(const NamedDecl *ND) {
41  const DeclContext *DC = dyn_cast<DeclContext>(ND);
42  if (!DC)
43    DC = ND->getDeclContext();
44  while (!DC->isNamespace() && !DC->isTranslationUnit()) {
45    if (isa<FunctionDecl>(DC->getParent()))
46      return dyn_cast<CXXRecordDecl>(DC);
47    DC = DC->getParent();
48  }
49  return 0;
50}
51
52static const CXXMethodDecl *getStructor(const CXXMethodDecl *MD) {
53  assert((isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD)) &&
54         "Passed in decl is not a ctor or dtor!");
55
56  if (const TemplateDecl *TD = MD->getPrimaryTemplate()) {
57    MD = cast<CXXMethodDecl>(TD->getTemplatedDecl());
58
59    assert((isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD)) &&
60           "Templated decl is not a ctor or dtor!");
61  }
62
63  return MD;
64}
65
66static const unsigned UnknownArity = ~0U;
67
68class ItaniumMangleContext : public MangleContext {
69  llvm::DenseMap<const TagDecl *, uint64_t> AnonStructIds;
70  unsigned Discriminator;
71  llvm::DenseMap<const NamedDecl*, unsigned> Uniquifier;
72
73public:
74  explicit ItaniumMangleContext(ASTContext &Context,
75                                Diagnostic &Diags)
76    : MangleContext(Context, Diags) { }
77
78  uint64_t getAnonymousStructId(const TagDecl *TD) {
79    std::pair<llvm::DenseMap<const TagDecl *,
80      uint64_t>::iterator, bool> Result =
81      AnonStructIds.insert(std::make_pair(TD, AnonStructIds.size()));
82    return Result.first->second;
83  }
84
85  void startNewFunction() {
86    MangleContext::startNewFunction();
87    mangleInitDiscriminator();
88  }
89
90  /// @name Mangler Entry Points
91  /// @{
92
93  bool shouldMangleDeclName(const NamedDecl *D);
94  void mangleName(const NamedDecl *D, llvm::raw_ostream &);
95  void mangleThunk(const CXXMethodDecl *MD,
96                   const ThunkInfo &Thunk,
97                   llvm::SmallVectorImpl<char> &);
98  void mangleCXXDtorThunk(const CXXDestructorDecl *DD, CXXDtorType Type,
99                          const ThisAdjustment &ThisAdjustment,
100                          llvm::SmallVectorImpl<char> &);
101  void mangleReferenceTemporary(const VarDecl *D,
102                                llvm::SmallVectorImpl<char> &);
103  void mangleCXXVTable(const CXXRecordDecl *RD,
104                       llvm::SmallVectorImpl<char> &);
105  void mangleCXXVTT(const CXXRecordDecl *RD,
106                    llvm::SmallVectorImpl<char> &);
107  void mangleCXXCtorVTable(const CXXRecordDecl *RD, int64_t Offset,
108                           const CXXRecordDecl *Type,
109                           llvm::SmallVectorImpl<char> &);
110  void mangleCXXRTTI(QualType T, llvm::SmallVectorImpl<char> &);
111  void mangleCXXRTTIName(QualType T, llvm::SmallVectorImpl<char> &);
112  void mangleCXXCtor(const CXXConstructorDecl *D, CXXCtorType Type,
113                     llvm::raw_ostream &);
114  void mangleCXXDtor(const CXXDestructorDecl *D, CXXDtorType Type,
115                     llvm::raw_ostream &);
116
117  void mangleItaniumGuardVariable(const VarDecl *D,
118                                  llvm::SmallVectorImpl<char> &);
119
120  void mangleInitDiscriminator() {
121    Discriminator = 0;
122  }
123
124  bool getNextDiscriminator(const NamedDecl *ND, unsigned &disc) {
125    unsigned &discriminator = Uniquifier[ND];
126    if (!discriminator)
127      discriminator = ++Discriminator;
128    if (discriminator == 1)
129      return false;
130    disc = discriminator-2;
131    return true;
132  }
133  /// @}
134};
135
136/// CXXNameMangler - Manage the mangling of a single name.
137class CXXNameMangler {
138  ItaniumMangleContext &Context;
139  llvm::raw_ostream &Out;
140
141  const CXXMethodDecl *Structor;
142  unsigned StructorType;
143
144  /// SeqID - The next subsitution sequence number.
145  unsigned SeqID;
146
147  llvm::DenseMap<uintptr_t, unsigned> Substitutions;
148
149  ASTContext &getASTContext() const { return Context.getASTContext(); }
150
151public:
152  CXXNameMangler(ItaniumMangleContext &C, llvm::raw_ostream &Out_)
153    : Context(C), Out(Out_), Structor(0), StructorType(0), SeqID(0) { }
154  CXXNameMangler(ItaniumMangleContext &C, llvm::raw_ostream &Out_,
155                 const CXXConstructorDecl *D, CXXCtorType Type)
156    : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(Type),
157    SeqID(0) { }
158  CXXNameMangler(ItaniumMangleContext &C, llvm::raw_ostream &Out_,
159                 const CXXDestructorDecl *D, CXXDtorType Type)
160    : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(Type),
161    SeqID(0) { }
162
163#if MANGLE_CHECKER
164  ~CXXNameMangler() {
165    if (Out.str()[0] == '\01')
166      return;
167
168    int status = 0;
169    char *result = abi::__cxa_demangle(Out.str().str().c_str(), 0, 0, &status);
170    assert(status == 0 && "Could not demangle mangled name!");
171    free(result);
172  }
173#endif
174  llvm::raw_ostream &getStream() { return Out; }
175
176  void mangle(const NamedDecl *D, llvm::StringRef Prefix = "_Z");
177  void mangleCallOffset(int64_t NonVirtual, int64_t Virtual);
178  void mangleNumber(const llvm::APSInt &I);
179  void mangleNumber(int64_t Number);
180  void mangleFloat(const llvm::APFloat &F);
181  void mangleFunctionEncoding(const FunctionDecl *FD);
182  void mangleName(const NamedDecl *ND);
183  void mangleType(QualType T);
184  void mangleNameOrStandardSubstitution(const NamedDecl *ND);
185
186private:
187  bool mangleSubstitution(const NamedDecl *ND);
188  bool mangleSubstitution(QualType T);
189  bool mangleSubstitution(TemplateName Template);
190  bool mangleSubstitution(uintptr_t Ptr);
191
192  bool mangleStandardSubstitution(const NamedDecl *ND);
193
194  void addSubstitution(const NamedDecl *ND) {
195    ND = cast<NamedDecl>(ND->getCanonicalDecl());
196
197    addSubstitution(reinterpret_cast<uintptr_t>(ND));
198  }
199  void addSubstitution(QualType T);
200  void addSubstitution(TemplateName Template);
201  void addSubstitution(uintptr_t Ptr);
202
203  void mangleUnresolvedScope(NestedNameSpecifier *Qualifier);
204  void mangleUnresolvedName(NestedNameSpecifier *Qualifier,
205                            DeclarationName Name,
206                            unsigned KnownArity = UnknownArity);
207
208  void mangleName(const TemplateDecl *TD,
209                  const TemplateArgument *TemplateArgs,
210                  unsigned NumTemplateArgs);
211  void mangleUnqualifiedName(const NamedDecl *ND) {
212    mangleUnqualifiedName(ND, ND->getDeclName(), UnknownArity);
213  }
214  void mangleUnqualifiedName(const NamedDecl *ND, DeclarationName Name,
215                             unsigned KnownArity);
216  void mangleUnscopedName(const NamedDecl *ND);
217  void mangleUnscopedTemplateName(const TemplateDecl *ND);
218  void mangleUnscopedTemplateName(TemplateName);
219  void mangleSourceName(const IdentifierInfo *II);
220  void mangleLocalName(const NamedDecl *ND);
221  void mangleNestedName(const NamedDecl *ND, const DeclContext *DC,
222                        bool NoFunction=false);
223  void mangleNestedName(const TemplateDecl *TD,
224                        const TemplateArgument *TemplateArgs,
225                        unsigned NumTemplateArgs);
226  void manglePrefix(const DeclContext *DC, bool NoFunction=false);
227  void mangleTemplatePrefix(const TemplateDecl *ND);
228  void mangleTemplatePrefix(TemplateName Template);
229  void mangleOperatorName(OverloadedOperatorKind OO, unsigned Arity);
230  void mangleQualifiers(Qualifiers Quals);
231  void mangleRefQualifier(RefQualifierKind RefQualifier);
232
233  void mangleObjCMethodName(const ObjCMethodDecl *MD);
234
235  // Declare manglers for every type class.
236#define ABSTRACT_TYPE(CLASS, PARENT)
237#define NON_CANONICAL_TYPE(CLASS, PARENT)
238#define TYPE(CLASS, PARENT) void mangleType(const CLASS##Type *T);
239#include "clang/AST/TypeNodes.def"
240
241  void mangleType(const TagType*);
242  void mangleType(TemplateName);
243  void mangleBareFunctionType(const FunctionType *T,
244                              bool MangleReturnType);
245  void mangleNeonVectorType(const VectorType *T);
246
247  void mangleIntegerLiteral(QualType T, const llvm::APSInt &Value);
248  void mangleMemberExpr(const Expr *Base, bool IsArrow,
249                        NestedNameSpecifier *Qualifier,
250                        DeclarationName Name,
251                        unsigned KnownArity);
252  void mangleExpression(const Expr *E, unsigned Arity = UnknownArity);
253  void mangleCXXCtorType(CXXCtorType T);
254  void mangleCXXDtorType(CXXDtorType T);
255
256  void mangleTemplateArgs(const ExplicitTemplateArgumentList &TemplateArgs);
257  void mangleTemplateArgs(TemplateName Template,
258                          const TemplateArgument *TemplateArgs,
259                          unsigned NumTemplateArgs);
260  void mangleTemplateArgs(const TemplateParameterList &PL,
261                          const TemplateArgument *TemplateArgs,
262                          unsigned NumTemplateArgs);
263  void mangleTemplateArgs(const TemplateParameterList &PL,
264                          const TemplateArgumentList &AL);
265  void mangleTemplateArg(const NamedDecl *P, const TemplateArgument &A);
266
267  void mangleTemplateParameter(unsigned Index);
268};
269
270}
271
272static bool isInCLinkageSpecification(const Decl *D) {
273  D = D->getCanonicalDecl();
274  for (const DeclContext *DC = D->getDeclContext();
275       !DC->isTranslationUnit(); DC = DC->getParent()) {
276    if (const LinkageSpecDecl *Linkage = dyn_cast<LinkageSpecDecl>(DC))
277      return Linkage->getLanguage() == LinkageSpecDecl::lang_c;
278  }
279
280  return false;
281}
282
283bool ItaniumMangleContext::shouldMangleDeclName(const NamedDecl *D) {
284  // In C, functions with no attributes never need to be mangled. Fastpath them.
285  if (!getASTContext().getLangOptions().CPlusPlus && !D->hasAttrs())
286    return false;
287
288  // Any decl can be declared with __asm("foo") on it, and this takes precedence
289  // over all other naming in the .o file.
290  if (D->hasAttr<AsmLabelAttr>())
291    return true;
292
293  // Clang's "overloadable" attribute extension to C/C++ implies name mangling
294  // (always) as does passing a C++ member function and a function
295  // whose name is not a simple identifier.
296  const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
297  if (FD && (FD->hasAttr<OverloadableAttr>() || isa<CXXMethodDecl>(FD) ||
298             !FD->getDeclName().isIdentifier()))
299    return true;
300
301  // Otherwise, no mangling is done outside C++ mode.
302  if (!getASTContext().getLangOptions().CPlusPlus)
303    return false;
304
305  // Variables at global scope with non-internal linkage are not mangled
306  if (!FD) {
307    const DeclContext *DC = D->getDeclContext();
308    // Check for extern variable declared locally.
309    if (DC->isFunctionOrMethod() && D->hasLinkage())
310      while (!DC->isNamespace() && !DC->isTranslationUnit())
311        DC = DC->getParent();
312    if (DC->isTranslationUnit() && D->getLinkage() != InternalLinkage)
313      return false;
314  }
315
316  // Class members are always mangled.
317  if (D->getDeclContext()->isRecord())
318    return true;
319
320  // C functions and "main" are not mangled.
321  if ((FD && FD->isMain()) || isInCLinkageSpecification(D))
322    return false;
323
324  return true;
325}
326
327void CXXNameMangler::mangle(const NamedDecl *D, llvm::StringRef Prefix) {
328  // Any decl can be declared with __asm("foo") on it, and this takes precedence
329  // over all other naming in the .o file.
330  if (const AsmLabelAttr *ALA = D->getAttr<AsmLabelAttr>()) {
331    // If we have an asm name, then we use it as the mangling.
332    Out << '\01';  // LLVM IR Marker for __asm("foo")
333    Out << ALA->getLabel();
334    return;
335  }
336
337  // <mangled-name> ::= _Z <encoding>
338  //            ::= <data name>
339  //            ::= <special-name>
340  Out << Prefix;
341  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
342    mangleFunctionEncoding(FD);
343  else if (const VarDecl *VD = dyn_cast<VarDecl>(D))
344    mangleName(VD);
345  else
346    mangleName(cast<FieldDecl>(D));
347}
348
349void CXXNameMangler::mangleFunctionEncoding(const FunctionDecl *FD) {
350  // <encoding> ::= <function name> <bare-function-type>
351  mangleName(FD);
352
353  // Don't mangle in the type if this isn't a decl we should typically mangle.
354  if (!Context.shouldMangleDeclName(FD))
355    return;
356
357  // Whether the mangling of a function type includes the return type depends on
358  // the context and the nature of the function. The rules for deciding whether
359  // the return type is included are:
360  //
361  //   1. Template functions (names or types) have return types encoded, with
362  //   the exceptions listed below.
363  //   2. Function types not appearing as part of a function name mangling,
364  //   e.g. parameters, pointer types, etc., have return type encoded, with the
365  //   exceptions listed below.
366  //   3. Non-template function names do not have return types encoded.
367  //
368  // The exceptions mentioned in (1) and (2) above, for which the return type is
369  // never included, are
370  //   1. Constructors.
371  //   2. Destructors.
372  //   3. Conversion operator functions, e.g. operator int.
373  bool MangleReturnType = false;
374  if (FunctionTemplateDecl *PrimaryTemplate = FD->getPrimaryTemplate()) {
375    if (!(isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD) ||
376          isa<CXXConversionDecl>(FD)))
377      MangleReturnType = true;
378
379    // Mangle the type of the primary template.
380    FD = PrimaryTemplate->getTemplatedDecl();
381  }
382
383  // Do the canonicalization out here because parameter types can
384  // undergo additional canonicalization (e.g. array decay).
385  const FunctionType *FT
386    = cast<FunctionType>(Context.getASTContext()
387                                          .getCanonicalType(FD->getType()));
388
389  mangleBareFunctionType(FT, MangleReturnType);
390}
391
392static const DeclContext *IgnoreLinkageSpecDecls(const DeclContext *DC) {
393  while (isa<LinkageSpecDecl>(DC)) {
394    DC = DC->getParent();
395  }
396
397  return DC;
398}
399
400/// isStd - Return whether a given namespace is the 'std' namespace.
401static bool isStd(const NamespaceDecl *NS) {
402  if (!IgnoreLinkageSpecDecls(NS->getParent())->isTranslationUnit())
403    return false;
404
405  const IdentifierInfo *II = NS->getOriginalNamespace()->getIdentifier();
406  return II && II->isStr("std");
407}
408
409// isStdNamespace - Return whether a given decl context is a toplevel 'std'
410// namespace.
411static bool isStdNamespace(const DeclContext *DC) {
412  if (!DC->isNamespace())
413    return false;
414
415  return isStd(cast<NamespaceDecl>(DC));
416}
417
418static const TemplateDecl *
419isTemplate(const NamedDecl *ND, const TemplateArgumentList *&TemplateArgs) {
420  // Check if we have a function template.
421  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)){
422    if (const TemplateDecl *TD = FD->getPrimaryTemplate()) {
423      TemplateArgs = FD->getTemplateSpecializationArgs();
424      return TD;
425    }
426  }
427
428  // Check if we have a class template.
429  if (const ClassTemplateSpecializationDecl *Spec =
430        dyn_cast<ClassTemplateSpecializationDecl>(ND)) {
431    TemplateArgs = &Spec->getTemplateArgs();
432    return Spec->getSpecializedTemplate();
433  }
434
435  return 0;
436}
437
438void CXXNameMangler::mangleName(const NamedDecl *ND) {
439  //  <name> ::= <nested-name>
440  //         ::= <unscoped-name>
441  //         ::= <unscoped-template-name> <template-args>
442  //         ::= <local-name>
443  //
444  const DeclContext *DC = ND->getDeclContext();
445
446  // If this is an extern variable declared locally, the relevant DeclContext
447  // is that of the containing namespace, or the translation unit.
448  if (isa<FunctionDecl>(DC) && ND->hasLinkage())
449    while (!DC->isNamespace() && !DC->isTranslationUnit())
450      DC = DC->getParent();
451  else if (GetLocalClassDecl(ND)) {
452    mangleLocalName(ND);
453    return;
454  }
455
456  while (isa<LinkageSpecDecl>(DC))
457    DC = DC->getParent();
458
459  if (DC->isTranslationUnit() || isStdNamespace(DC)) {
460    // Check if we have a template.
461    const TemplateArgumentList *TemplateArgs = 0;
462    if (const TemplateDecl *TD = isTemplate(ND, TemplateArgs)) {
463      mangleUnscopedTemplateName(TD);
464      TemplateParameterList *TemplateParameters = TD->getTemplateParameters();
465      mangleTemplateArgs(*TemplateParameters, *TemplateArgs);
466      return;
467    }
468
469    mangleUnscopedName(ND);
470    return;
471  }
472
473  if (isa<FunctionDecl>(DC) || isa<ObjCMethodDecl>(DC)) {
474    mangleLocalName(ND);
475    return;
476  }
477
478  mangleNestedName(ND, DC);
479}
480void CXXNameMangler::mangleName(const TemplateDecl *TD,
481                                const TemplateArgument *TemplateArgs,
482                                unsigned NumTemplateArgs) {
483  const DeclContext *DC = IgnoreLinkageSpecDecls(TD->getDeclContext());
484
485  if (DC->isTranslationUnit() || isStdNamespace(DC)) {
486    mangleUnscopedTemplateName(TD);
487    TemplateParameterList *TemplateParameters = TD->getTemplateParameters();
488    mangleTemplateArgs(*TemplateParameters, TemplateArgs, NumTemplateArgs);
489  } else {
490    mangleNestedName(TD, TemplateArgs, NumTemplateArgs);
491  }
492}
493
494void CXXNameMangler::mangleUnscopedName(const NamedDecl *ND) {
495  //  <unscoped-name> ::= <unqualified-name>
496  //                  ::= St <unqualified-name>   # ::std::
497  if (isStdNamespace(ND->getDeclContext()))
498    Out << "St";
499
500  mangleUnqualifiedName(ND);
501}
502
503void CXXNameMangler::mangleUnscopedTemplateName(const TemplateDecl *ND) {
504  //     <unscoped-template-name> ::= <unscoped-name>
505  //                              ::= <substitution>
506  if (mangleSubstitution(ND))
507    return;
508
509  // <template-template-param> ::= <template-param>
510  if (const TemplateTemplateParmDecl *TTP
511                                     = dyn_cast<TemplateTemplateParmDecl>(ND)) {
512    mangleTemplateParameter(TTP->getIndex());
513    return;
514  }
515
516  mangleUnscopedName(ND->getTemplatedDecl());
517  addSubstitution(ND);
518}
519
520void CXXNameMangler::mangleUnscopedTemplateName(TemplateName Template) {
521  //     <unscoped-template-name> ::= <unscoped-name>
522  //                              ::= <substitution>
523  if (TemplateDecl *TD = Template.getAsTemplateDecl())
524    return mangleUnscopedTemplateName(TD);
525
526  if (mangleSubstitution(Template))
527    return;
528
529  // FIXME: How to cope with operators here?
530  DependentTemplateName *Dependent = Template.getAsDependentTemplateName();
531  assert(Dependent && "Not a dependent template name?");
532  if (!Dependent->isIdentifier()) {
533    // FIXME: We can't possibly know the arity of the operator here!
534    Diagnostic &Diags = Context.getDiags();
535    unsigned DiagID = Diags.getCustomDiagID(Diagnostic::Error,
536                                      "cannot mangle dependent operator name");
537    Diags.Report(DiagID);
538    return;
539  }
540
541  mangleSourceName(Dependent->getIdentifier());
542  addSubstitution(Template);
543}
544
545void CXXNameMangler::mangleFloat(const llvm::APFloat &F) {
546  // TODO: avoid this copy with careful stream management.
547  llvm::SmallString<20> Buffer;
548  F.bitcastToAPInt().toString(Buffer, 16, false);
549  Out.write(Buffer.data(), Buffer.size());
550}
551
552void CXXNameMangler::mangleNumber(const llvm::APSInt &Value) {
553  if (Value.isSigned() && Value.isNegative()) {
554    Out << 'n';
555    Value.abs().print(Out, true);
556  } else
557    Value.print(Out, Value.isSigned());
558}
559
560void CXXNameMangler::mangleNumber(int64_t Number) {
561  //  <number> ::= [n] <non-negative decimal integer>
562  if (Number < 0) {
563    Out << 'n';
564    Number = -Number;
565  }
566
567  Out << Number;
568}
569
570void CXXNameMangler::mangleCallOffset(int64_t NonVirtual, int64_t Virtual) {
571  //  <call-offset>  ::= h <nv-offset> _
572  //                 ::= v <v-offset> _
573  //  <nv-offset>    ::= <offset number>        # non-virtual base override
574  //  <v-offset>     ::= <offset number> _ <virtual offset number>
575  //                      # virtual base override, with vcall offset
576  if (!Virtual) {
577    Out << 'h';
578    mangleNumber(NonVirtual);
579    Out << '_';
580    return;
581  }
582
583  Out << 'v';
584  mangleNumber(NonVirtual);
585  Out << '_';
586  mangleNumber(Virtual);
587  Out << '_';
588}
589
590void CXXNameMangler::mangleUnresolvedScope(NestedNameSpecifier *Qualifier) {
591  Qualifier = getASTContext().getCanonicalNestedNameSpecifier(Qualifier);
592  switch (Qualifier->getKind()) {
593  case NestedNameSpecifier::Global:
594    // nothing
595    break;
596  case NestedNameSpecifier::Namespace:
597    mangleName(Qualifier->getAsNamespace());
598    break;
599  case NestedNameSpecifier::TypeSpec:
600  case NestedNameSpecifier::TypeSpecWithTemplate: {
601    const Type *QTy = Qualifier->getAsType();
602
603    if (const TemplateSpecializationType *TST =
604        dyn_cast<TemplateSpecializationType>(QTy)) {
605      if (!mangleSubstitution(QualType(TST, 0))) {
606        mangleTemplatePrefix(TST->getTemplateName());
607
608        // FIXME: GCC does not appear to mangle the template arguments when
609        // the template in question is a dependent template name. Should we
610        // emulate that badness?
611        mangleTemplateArgs(TST->getTemplateName(), TST->getArgs(),
612                           TST->getNumArgs());
613        addSubstitution(QualType(TST, 0));
614      }
615    } else {
616      // We use the QualType mangle type variant here because it handles
617      // substitutions.
618      mangleType(QualType(QTy, 0));
619    }
620  }
621    break;
622  case NestedNameSpecifier::Identifier:
623    // Member expressions can have these without prefixes.
624    if (Qualifier->getPrefix())
625      mangleUnresolvedScope(Qualifier->getPrefix());
626    mangleSourceName(Qualifier->getAsIdentifier());
627    break;
628  }
629}
630
631/// Mangles a name which was not resolved to a specific entity.
632void CXXNameMangler::mangleUnresolvedName(NestedNameSpecifier *Qualifier,
633                                          DeclarationName Name,
634                                          unsigned KnownArity) {
635  if (Qualifier)
636    mangleUnresolvedScope(Qualifier);
637  // FIXME: ambiguity of unqualified lookup with ::
638
639  mangleUnqualifiedName(0, Name, KnownArity);
640}
641
642static const FieldDecl *FindFirstNamedDataMember(const RecordDecl *RD) {
643  assert(RD->isAnonymousStructOrUnion() &&
644         "Expected anonymous struct or union!");
645
646  for (RecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end();
647       I != E; ++I) {
648    const FieldDecl *FD = *I;
649
650    if (FD->getIdentifier())
651      return FD;
652
653    if (const RecordType *RT = FD->getType()->getAs<RecordType>()) {
654      if (const FieldDecl *NamedDataMember =
655          FindFirstNamedDataMember(RT->getDecl()))
656        return NamedDataMember;
657    }
658  }
659
660  // We didn't find a named data member.
661  return 0;
662}
663
664void CXXNameMangler::mangleUnqualifiedName(const NamedDecl *ND,
665                                           DeclarationName Name,
666                                           unsigned KnownArity) {
667  //  <unqualified-name> ::= <operator-name>
668  //                     ::= <ctor-dtor-name>
669  //                     ::= <source-name>
670  switch (Name.getNameKind()) {
671  case DeclarationName::Identifier: {
672    if (const IdentifierInfo *II = Name.getAsIdentifierInfo()) {
673      // We must avoid conflicts between internally- and externally-
674      // linked variable declaration names in the same TU.
675      // This naming convention is the same as that followed by GCC, though it
676      // shouldn't actually matter.
677      if (ND && isa<VarDecl>(ND) && ND->getLinkage() == InternalLinkage &&
678          ND->getDeclContext()->isFileContext())
679        Out << 'L';
680
681      mangleSourceName(II);
682      break;
683    }
684
685    // Otherwise, an anonymous entity.  We must have a declaration.
686    assert(ND && "mangling empty name without declaration");
687
688    if (const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ND)) {
689      if (NS->isAnonymousNamespace()) {
690        // This is how gcc mangles these names.
691        Out << "12_GLOBAL__N_1";
692        break;
693      }
694    }
695
696    if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) {
697      // We must have an anonymous union or struct declaration.
698      const RecordDecl *RD =
699        cast<RecordDecl>(VD->getType()->getAs<RecordType>()->getDecl());
700
701      // Itanium C++ ABI 5.1.2:
702      //
703      //   For the purposes of mangling, the name of an anonymous union is
704      //   considered to be the name of the first named data member found by a
705      //   pre-order, depth-first, declaration-order walk of the data members of
706      //   the anonymous union. If there is no such data member (i.e., if all of
707      //   the data members in the union are unnamed), then there is no way for
708      //   a program to refer to the anonymous union, and there is therefore no
709      //   need to mangle its name.
710      const FieldDecl *FD = FindFirstNamedDataMember(RD);
711
712      // It's actually possible for various reasons for us to get here
713      // with an empty anonymous struct / union.  Fortunately, it
714      // doesn't really matter what name we generate.
715      if (!FD) break;
716      assert(FD->getIdentifier() && "Data member name isn't an identifier!");
717
718      mangleSourceName(FD->getIdentifier());
719      break;
720    }
721
722    // We must have an anonymous struct.
723    const TagDecl *TD = cast<TagDecl>(ND);
724    if (const TypedefDecl *D = TD->getTypedefForAnonDecl()) {
725      assert(TD->getDeclContext() == D->getDeclContext() &&
726             "Typedef should not be in another decl context!");
727      assert(D->getDeclName().getAsIdentifierInfo() &&
728             "Typedef was not named!");
729      mangleSourceName(D->getDeclName().getAsIdentifierInfo());
730      break;
731    }
732
733    // Get a unique id for the anonymous struct.
734    uint64_t AnonStructId = Context.getAnonymousStructId(TD);
735
736    // Mangle it as a source name in the form
737    // [n] $_<id>
738    // where n is the length of the string.
739    llvm::SmallString<8> Str;
740    Str += "$_";
741    Str += llvm::utostr(AnonStructId);
742
743    Out << Str.size();
744    Out << Str.str();
745    break;
746  }
747
748  case DeclarationName::ObjCZeroArgSelector:
749  case DeclarationName::ObjCOneArgSelector:
750  case DeclarationName::ObjCMultiArgSelector:
751    assert(false && "Can't mangle Objective-C selector names here!");
752    break;
753
754  case DeclarationName::CXXConstructorName:
755    if (ND == Structor)
756      // If the named decl is the C++ constructor we're mangling, use the type
757      // we were given.
758      mangleCXXCtorType(static_cast<CXXCtorType>(StructorType));
759    else
760      // Otherwise, use the complete constructor name. This is relevant if a
761      // class with a constructor is declared within a constructor.
762      mangleCXXCtorType(Ctor_Complete);
763    break;
764
765  case DeclarationName::CXXDestructorName:
766    if (ND == Structor)
767      // If the named decl is the C++ destructor we're mangling, use the type we
768      // were given.
769      mangleCXXDtorType(static_cast<CXXDtorType>(StructorType));
770    else
771      // Otherwise, use the complete destructor name. This is relevant if a
772      // class with a destructor is declared within a destructor.
773      mangleCXXDtorType(Dtor_Complete);
774    break;
775
776  case DeclarationName::CXXConversionFunctionName:
777    // <operator-name> ::= cv <type>    # (cast)
778    Out << "cv";
779    mangleType(Context.getASTContext().getCanonicalType(Name.getCXXNameType()));
780    break;
781
782  case DeclarationName::CXXOperatorName: {
783    unsigned Arity;
784    if (ND) {
785      Arity = cast<FunctionDecl>(ND)->getNumParams();
786
787      // If we have a C++ member function, we need to include the 'this' pointer.
788      // FIXME: This does not make sense for operators that are static, but their
789      // names stay the same regardless of the arity (operator new for instance).
790      if (isa<CXXMethodDecl>(ND))
791        Arity++;
792    } else
793      Arity = KnownArity;
794
795    mangleOperatorName(Name.getCXXOverloadedOperator(), Arity);
796    break;
797  }
798
799  case DeclarationName::CXXLiteralOperatorName:
800    // FIXME: This mangling is not yet official.
801    Out << "li";
802    mangleSourceName(Name.getCXXLiteralIdentifier());
803    break;
804
805  case DeclarationName::CXXUsingDirective:
806    assert(false && "Can't mangle a using directive name!");
807    break;
808  }
809}
810
811void CXXNameMangler::mangleSourceName(const IdentifierInfo *II) {
812  // <source-name> ::= <positive length number> <identifier>
813  // <number> ::= [n] <non-negative decimal integer>
814  // <identifier> ::= <unqualified source code identifier>
815  Out << II->getLength() << II->getName();
816}
817
818void CXXNameMangler::mangleNestedName(const NamedDecl *ND,
819                                      const DeclContext *DC,
820                                      bool NoFunction) {
821  // <nested-name>
822  //   ::= N [<CV-qualifiers>] [<ref-qualifier>] <prefix> <unqualified-name> E
823  //   ::= N [<CV-qualifiers>] [<ref-qualifier>] <template-prefix>
824  //       <template-args> E
825
826  Out << 'N';
827  if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(ND)) {
828    mangleQualifiers(Qualifiers::fromCVRMask(Method->getTypeQualifiers()));
829    mangleRefQualifier(Method->getRefQualifier());
830  }
831
832  // Check if we have a template.
833  const TemplateArgumentList *TemplateArgs = 0;
834  if (const TemplateDecl *TD = isTemplate(ND, TemplateArgs)) {
835    mangleTemplatePrefix(TD);
836    TemplateParameterList *TemplateParameters = TD->getTemplateParameters();
837    mangleTemplateArgs(*TemplateParameters, *TemplateArgs);
838  }
839  else {
840    manglePrefix(DC, NoFunction);
841    mangleUnqualifiedName(ND);
842  }
843
844  Out << 'E';
845}
846void CXXNameMangler::mangleNestedName(const TemplateDecl *TD,
847                                      const TemplateArgument *TemplateArgs,
848                                      unsigned NumTemplateArgs) {
849  // <nested-name> ::= N [<CV-qualifiers>] <template-prefix> <template-args> E
850
851  Out << 'N';
852
853  mangleTemplatePrefix(TD);
854  TemplateParameterList *TemplateParameters = TD->getTemplateParameters();
855  mangleTemplateArgs(*TemplateParameters, TemplateArgs, NumTemplateArgs);
856
857  Out << 'E';
858}
859
860void CXXNameMangler::mangleLocalName(const NamedDecl *ND) {
861  // <local-name> := Z <function encoding> E <entity name> [<discriminator>]
862  //              := Z <function encoding> E s [<discriminator>]
863  // <discriminator> := _ <non-negative number>
864  const DeclContext *DC = ND->getDeclContext();
865  Out << 'Z';
866
867  if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(DC)) {
868   mangleObjCMethodName(MD);
869  } else if (const CXXRecordDecl *RD = GetLocalClassDecl(ND)) {
870    mangleFunctionEncoding(cast<FunctionDecl>(RD->getDeclContext()));
871    Out << 'E';
872
873    // Mangle the name relative to the closest enclosing function.
874    if (ND == RD) // equality ok because RD derived from ND above
875      mangleUnqualifiedName(ND);
876    else
877      mangleNestedName(ND, DC, true /*NoFunction*/);
878
879    unsigned disc;
880    if (Context.getNextDiscriminator(RD, disc)) {
881      if (disc < 10)
882        Out << '_' << disc;
883      else
884        Out << "__" << disc << '_';
885    }
886
887    return;
888  }
889  else
890    mangleFunctionEncoding(cast<FunctionDecl>(DC));
891
892  Out << 'E';
893  mangleUnqualifiedName(ND);
894}
895
896void CXXNameMangler::manglePrefix(const DeclContext *DC, bool NoFunction) {
897  //  <prefix> ::= <prefix> <unqualified-name>
898  //           ::= <template-prefix> <template-args>
899  //           ::= <template-param>
900  //           ::= # empty
901  //           ::= <substitution>
902
903  while (isa<LinkageSpecDecl>(DC))
904    DC = DC->getParent();
905
906  if (DC->isTranslationUnit())
907    return;
908
909  if (const BlockDecl *Block = dyn_cast<BlockDecl>(DC)) {
910    manglePrefix(DC->getParent(), NoFunction);
911    llvm::SmallString<64> Name;
912    llvm::raw_svector_ostream NameStream(Name);
913    Context.mangleBlock(Block, NameStream);
914    NameStream.flush();
915    Out << Name.size() << Name;
916    return;
917  }
918
919  if (mangleSubstitution(cast<NamedDecl>(DC)))
920    return;
921
922  // Check if we have a template.
923  const TemplateArgumentList *TemplateArgs = 0;
924  if (const TemplateDecl *TD = isTemplate(cast<NamedDecl>(DC), TemplateArgs)) {
925    mangleTemplatePrefix(TD);
926    TemplateParameterList *TemplateParameters = TD->getTemplateParameters();
927    mangleTemplateArgs(*TemplateParameters, *TemplateArgs);
928  }
929  else if(NoFunction && (isa<FunctionDecl>(DC) || isa<ObjCMethodDecl>(DC)))
930    return;
931  else if (const ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(DC))
932    mangleObjCMethodName(Method);
933  else {
934    manglePrefix(DC->getParent(), NoFunction);
935    mangleUnqualifiedName(cast<NamedDecl>(DC));
936  }
937
938  addSubstitution(cast<NamedDecl>(DC));
939}
940
941void CXXNameMangler::mangleTemplatePrefix(TemplateName Template) {
942  // <template-prefix> ::= <prefix> <template unqualified-name>
943  //                   ::= <template-param>
944  //                   ::= <substitution>
945  if (TemplateDecl *TD = Template.getAsTemplateDecl())
946    return mangleTemplatePrefix(TD);
947
948  if (QualifiedTemplateName *Qualified = Template.getAsQualifiedTemplateName())
949    mangleUnresolvedScope(Qualified->getQualifier());
950
951  if (OverloadedTemplateStorage *Overloaded
952                                      = Template.getAsOverloadedTemplate()) {
953    mangleUnqualifiedName(0, (*Overloaded->begin())->getDeclName(),
954                          UnknownArity);
955    return;
956  }
957
958  DependentTemplateName *Dependent = Template.getAsDependentTemplateName();
959  assert(Dependent && "Unknown template name kind?");
960  mangleUnresolvedScope(Dependent->getQualifier());
961  mangleUnscopedTemplateName(Template);
962}
963
964void CXXNameMangler::mangleTemplatePrefix(const TemplateDecl *ND) {
965  // <template-prefix> ::= <prefix> <template unqualified-name>
966  //                   ::= <template-param>
967  //                   ::= <substitution>
968  // <template-template-param> ::= <template-param>
969  //                               <substitution>
970
971  if (mangleSubstitution(ND))
972    return;
973
974  // <template-template-param> ::= <template-param>
975  if (const TemplateTemplateParmDecl *TTP
976                                     = dyn_cast<TemplateTemplateParmDecl>(ND)) {
977    mangleTemplateParameter(TTP->getIndex());
978    return;
979  }
980
981  manglePrefix(ND->getDeclContext());
982  mangleUnqualifiedName(ND->getTemplatedDecl());
983  addSubstitution(ND);
984}
985
986/// Mangles a template name under the production <type>.  Required for
987/// template template arguments.
988///   <type> ::= <class-enum-type>
989///          ::= <template-param>
990///          ::= <substitution>
991void CXXNameMangler::mangleType(TemplateName TN) {
992  if (mangleSubstitution(TN))
993    return;
994
995  TemplateDecl *TD = 0;
996
997  switch (TN.getKind()) {
998  case TemplateName::QualifiedTemplate:
999    TD = TN.getAsQualifiedTemplateName()->getTemplateDecl();
1000    goto HaveDecl;
1001
1002  case TemplateName::Template:
1003    TD = TN.getAsTemplateDecl();
1004    goto HaveDecl;
1005
1006  HaveDecl:
1007    if (isa<TemplateTemplateParmDecl>(TD))
1008      mangleTemplateParameter(cast<TemplateTemplateParmDecl>(TD)->getIndex());
1009    else
1010      mangleName(TD);
1011    break;
1012
1013  case TemplateName::OverloadedTemplate:
1014    llvm_unreachable("can't mangle an overloaded template name as a <type>");
1015    break;
1016
1017  case TemplateName::DependentTemplate: {
1018    const DependentTemplateName *Dependent = TN.getAsDependentTemplateName();
1019    assert(Dependent->isIdentifier());
1020
1021    // <class-enum-type> ::= <name>
1022    // <name> ::= <nested-name>
1023    mangleUnresolvedScope(Dependent->getQualifier());
1024    mangleSourceName(Dependent->getIdentifier());
1025    break;
1026  }
1027
1028  case TemplateName::SubstTemplateTemplateParmPack: {
1029    SubstTemplateTemplateParmPackStorage *SubstPack
1030      = TN.getAsSubstTemplateTemplateParmPack();
1031    mangleTemplateParameter(SubstPack->getParameterPack()->getIndex());
1032    break;
1033  }
1034  }
1035
1036  addSubstitution(TN);
1037}
1038
1039void
1040CXXNameMangler::mangleOperatorName(OverloadedOperatorKind OO, unsigned Arity) {
1041  switch (OO) {
1042  // <operator-name> ::= nw     # new
1043  case OO_New: Out << "nw"; break;
1044  //              ::= na        # new[]
1045  case OO_Array_New: Out << "na"; break;
1046  //              ::= dl        # delete
1047  case OO_Delete: Out << "dl"; break;
1048  //              ::= da        # delete[]
1049  case OO_Array_Delete: Out << "da"; break;
1050  //              ::= ps        # + (unary)
1051  //              ::= pl        # + (binary or unknown)
1052  case OO_Plus:
1053    Out << (Arity == 1? "ps" : "pl"); break;
1054  //              ::= ng        # - (unary)
1055  //              ::= mi        # - (binary or unknown)
1056  case OO_Minus:
1057    Out << (Arity == 1? "ng" : "mi"); break;
1058  //              ::= ad        # & (unary)
1059  //              ::= an        # & (binary or unknown)
1060  case OO_Amp:
1061    Out << (Arity == 1? "ad" : "an"); break;
1062  //              ::= de        # * (unary)
1063  //              ::= ml        # * (binary or unknown)
1064  case OO_Star:
1065    // Use binary when unknown.
1066    Out << (Arity == 1? "de" : "ml"); break;
1067  //              ::= co        # ~
1068  case OO_Tilde: Out << "co"; break;
1069  //              ::= dv        # /
1070  case OO_Slash: Out << "dv"; break;
1071  //              ::= rm        # %
1072  case OO_Percent: Out << "rm"; break;
1073  //              ::= or        # |
1074  case OO_Pipe: Out << "or"; break;
1075  //              ::= eo        # ^
1076  case OO_Caret: Out << "eo"; break;
1077  //              ::= aS        # =
1078  case OO_Equal: Out << "aS"; break;
1079  //              ::= pL        # +=
1080  case OO_PlusEqual: Out << "pL"; break;
1081  //              ::= mI        # -=
1082  case OO_MinusEqual: Out << "mI"; break;
1083  //              ::= mL        # *=
1084  case OO_StarEqual: Out << "mL"; break;
1085  //              ::= dV        # /=
1086  case OO_SlashEqual: Out << "dV"; break;
1087  //              ::= rM        # %=
1088  case OO_PercentEqual: Out << "rM"; break;
1089  //              ::= aN        # &=
1090  case OO_AmpEqual: Out << "aN"; break;
1091  //              ::= oR        # |=
1092  case OO_PipeEqual: Out << "oR"; break;
1093  //              ::= eO        # ^=
1094  case OO_CaretEqual: Out << "eO"; break;
1095  //              ::= ls        # <<
1096  case OO_LessLess: Out << "ls"; break;
1097  //              ::= rs        # >>
1098  case OO_GreaterGreater: Out << "rs"; break;
1099  //              ::= lS        # <<=
1100  case OO_LessLessEqual: Out << "lS"; break;
1101  //              ::= rS        # >>=
1102  case OO_GreaterGreaterEqual: Out << "rS"; break;
1103  //              ::= eq        # ==
1104  case OO_EqualEqual: Out << "eq"; break;
1105  //              ::= ne        # !=
1106  case OO_ExclaimEqual: Out << "ne"; break;
1107  //              ::= lt        # <
1108  case OO_Less: Out << "lt"; break;
1109  //              ::= gt        # >
1110  case OO_Greater: Out << "gt"; break;
1111  //              ::= le        # <=
1112  case OO_LessEqual: Out << "le"; break;
1113  //              ::= ge        # >=
1114  case OO_GreaterEqual: Out << "ge"; break;
1115  //              ::= nt        # !
1116  case OO_Exclaim: Out << "nt"; break;
1117  //              ::= aa        # &&
1118  case OO_AmpAmp: Out << "aa"; break;
1119  //              ::= oo        # ||
1120  case OO_PipePipe: Out << "oo"; break;
1121  //              ::= pp        # ++
1122  case OO_PlusPlus: Out << "pp"; break;
1123  //              ::= mm        # --
1124  case OO_MinusMinus: Out << "mm"; break;
1125  //              ::= cm        # ,
1126  case OO_Comma: Out << "cm"; break;
1127  //              ::= pm        # ->*
1128  case OO_ArrowStar: Out << "pm"; break;
1129  //              ::= pt        # ->
1130  case OO_Arrow: Out << "pt"; break;
1131  //              ::= cl        # ()
1132  case OO_Call: Out << "cl"; break;
1133  //              ::= ix        # []
1134  case OO_Subscript: Out << "ix"; break;
1135
1136  //              ::= qu        # ?
1137  // The conditional operator can't be overloaded, but we still handle it when
1138  // mangling expressions.
1139  case OO_Conditional: Out << "qu"; break;
1140
1141  case OO_None:
1142  case NUM_OVERLOADED_OPERATORS:
1143    assert(false && "Not an overloaded operator");
1144    break;
1145  }
1146}
1147
1148void CXXNameMangler::mangleQualifiers(Qualifiers Quals) {
1149  // <CV-qualifiers> ::= [r] [V] [K]    # restrict (C99), volatile, const
1150  if (Quals.hasRestrict())
1151    Out << 'r';
1152  if (Quals.hasVolatile())
1153    Out << 'V';
1154  if (Quals.hasConst())
1155    Out << 'K';
1156
1157  if (Quals.hasAddressSpace()) {
1158    // Extension:
1159    //
1160    //   <type> ::= U <address-space-number>
1161    //
1162    // where <address-space-number> is a source name consisting of 'AS'
1163    // followed by the address space <number>.
1164    llvm::SmallString<64> ASString;
1165    ASString = "AS" + llvm::utostr_32(Quals.getAddressSpace());
1166    Out << 'U' << ASString.size() << ASString;
1167  }
1168
1169  // FIXME: For now, just drop all extension qualifiers on the floor.
1170}
1171
1172void CXXNameMangler::mangleRefQualifier(RefQualifierKind RefQualifier) {
1173  // <ref-qualifier> ::= R                # lvalue reference
1174  //                 ::= O                # rvalue-reference
1175  // Proposal to Itanium C++ ABI list on 1/26/11
1176  switch (RefQualifier) {
1177  case RQ_None:
1178    break;
1179
1180  case RQ_LValue:
1181    Out << 'R';
1182    break;
1183
1184  case RQ_RValue:
1185    Out << 'O';
1186    break;
1187  }
1188}
1189
1190void CXXNameMangler::mangleObjCMethodName(const ObjCMethodDecl *MD) {
1191  llvm::SmallString<64> Buffer;
1192  Context.mangleObjCMethodName(MD, Buffer);
1193  Out << Buffer;
1194}
1195
1196void CXXNameMangler::mangleType(QualType nonCanon) {
1197  // Only operate on the canonical type!
1198  QualType canon = nonCanon.getCanonicalType();
1199
1200  SplitQualType split = canon.split();
1201  Qualifiers quals = split.second;
1202  const Type *ty = split.first;
1203
1204  bool isSubstitutable = quals || !isa<BuiltinType>(ty);
1205  if (isSubstitutable && mangleSubstitution(canon))
1206    return;
1207
1208  // If we're mangling a qualified array type, push the qualifiers to
1209  // the element type.
1210  if (quals && isa<ArrayType>(ty)) {
1211    ty = Context.getASTContext().getAsArrayType(canon);
1212    quals = Qualifiers();
1213
1214    // Note that we don't update canon: we want to add the
1215    // substitution at the canonical type.
1216  }
1217
1218  if (quals) {
1219    mangleQualifiers(quals);
1220    // Recurse:  even if the qualified type isn't yet substitutable,
1221    // the unqualified type might be.
1222    mangleType(QualType(ty, 0));
1223  } else {
1224    switch (ty->getTypeClass()) {
1225#define ABSTRACT_TYPE(CLASS, PARENT)
1226#define NON_CANONICAL_TYPE(CLASS, PARENT) \
1227    case Type::CLASS: \
1228      llvm_unreachable("can't mangle non-canonical type " #CLASS "Type"); \
1229      return;
1230#define TYPE(CLASS, PARENT) \
1231    case Type::CLASS: \
1232      mangleType(static_cast<const CLASS##Type*>(ty)); \
1233      break;
1234#include "clang/AST/TypeNodes.def"
1235    }
1236  }
1237
1238  // Add the substitution.
1239  if (isSubstitutable)
1240    addSubstitution(canon);
1241}
1242
1243void CXXNameMangler::mangleNameOrStandardSubstitution(const NamedDecl *ND) {
1244  if (!mangleStandardSubstitution(ND))
1245    mangleName(ND);
1246}
1247
1248void CXXNameMangler::mangleType(const BuiltinType *T) {
1249  //  <type>         ::= <builtin-type>
1250  //  <builtin-type> ::= v  # void
1251  //                 ::= w  # wchar_t
1252  //                 ::= b  # bool
1253  //                 ::= c  # char
1254  //                 ::= a  # signed char
1255  //                 ::= h  # unsigned char
1256  //                 ::= s  # short
1257  //                 ::= t  # unsigned short
1258  //                 ::= i  # int
1259  //                 ::= j  # unsigned int
1260  //                 ::= l  # long
1261  //                 ::= m  # unsigned long
1262  //                 ::= x  # long long, __int64
1263  //                 ::= y  # unsigned long long, __int64
1264  //                 ::= n  # __int128
1265  // UNSUPPORTED:    ::= o  # unsigned __int128
1266  //                 ::= f  # float
1267  //                 ::= d  # double
1268  //                 ::= e  # long double, __float80
1269  // UNSUPPORTED:    ::= g  # __float128
1270  // UNSUPPORTED:    ::= Dd # IEEE 754r decimal floating point (64 bits)
1271  // UNSUPPORTED:    ::= De # IEEE 754r decimal floating point (128 bits)
1272  // UNSUPPORTED:    ::= Df # IEEE 754r decimal floating point (32 bits)
1273  // UNSUPPORTED:    ::= Dh # IEEE 754r half-precision floating point (16 bits)
1274  //                 ::= Di # char32_t
1275  //                 ::= Ds # char16_t
1276  //                 ::= Dn # std::nullptr_t (i.e., decltype(nullptr))
1277  //                 ::= u <source-name>    # vendor extended type
1278  switch (T->getKind()) {
1279  case BuiltinType::Void: Out << 'v'; break;
1280  case BuiltinType::Bool: Out << 'b'; break;
1281  case BuiltinType::Char_U: case BuiltinType::Char_S: Out << 'c'; break;
1282  case BuiltinType::UChar: Out << 'h'; break;
1283  case BuiltinType::UShort: Out << 't'; break;
1284  case BuiltinType::UInt: Out << 'j'; break;
1285  case BuiltinType::ULong: Out << 'm'; break;
1286  case BuiltinType::ULongLong: Out << 'y'; break;
1287  case BuiltinType::UInt128: Out << 'o'; break;
1288  case BuiltinType::SChar: Out << 'a'; break;
1289  case BuiltinType::WChar_S:
1290  case BuiltinType::WChar_U: Out << 'w'; break;
1291  case BuiltinType::Char16: Out << "Ds"; break;
1292  case BuiltinType::Char32: Out << "Di"; break;
1293  case BuiltinType::Short: Out << 's'; break;
1294  case BuiltinType::Int: Out << 'i'; break;
1295  case BuiltinType::Long: Out << 'l'; break;
1296  case BuiltinType::LongLong: Out << 'x'; break;
1297  case BuiltinType::Int128: Out << 'n'; break;
1298  case BuiltinType::Float: Out << 'f'; break;
1299  case BuiltinType::Double: Out << 'd'; break;
1300  case BuiltinType::LongDouble: Out << 'e'; break;
1301  case BuiltinType::NullPtr: Out << "Dn"; break;
1302
1303  case BuiltinType::Overload:
1304  case BuiltinType::Dependent:
1305    assert(false &&
1306           "Overloaded and dependent types shouldn't get to name mangling");
1307    break;
1308  case BuiltinType::UndeducedAuto:
1309    assert(0 && "Should not see undeduced auto here");
1310    break;
1311  case BuiltinType::ObjCId: Out << "11objc_object"; break;
1312  case BuiltinType::ObjCClass: Out << "10objc_class"; break;
1313  case BuiltinType::ObjCSel: Out << "13objc_selector"; break;
1314  }
1315}
1316
1317// <type>          ::= <function-type>
1318// <function-type> ::= F [Y] <bare-function-type> E
1319void CXXNameMangler::mangleType(const FunctionProtoType *T) {
1320  Out << 'F';
1321  // FIXME: We don't have enough information in the AST to produce the 'Y'
1322  // encoding for extern "C" function types.
1323  mangleBareFunctionType(T, /*MangleReturnType=*/true);
1324  Out << 'E';
1325}
1326void CXXNameMangler::mangleType(const FunctionNoProtoType *T) {
1327  llvm_unreachable("Can't mangle K&R function prototypes");
1328}
1329void CXXNameMangler::mangleBareFunctionType(const FunctionType *T,
1330                                            bool MangleReturnType) {
1331  // We should never be mangling something without a prototype.
1332  const FunctionProtoType *Proto = cast<FunctionProtoType>(T);
1333
1334  // <bare-function-type> ::= <signature type>+
1335  if (MangleReturnType)
1336    mangleType(Proto->getResultType());
1337
1338  if (Proto->getNumArgs() == 0 && !Proto->isVariadic()) {
1339    //   <builtin-type> ::= v   # void
1340    Out << 'v';
1341    return;
1342  }
1343
1344  for (FunctionProtoType::arg_type_iterator Arg = Proto->arg_type_begin(),
1345                                         ArgEnd = Proto->arg_type_end();
1346       Arg != ArgEnd; ++Arg)
1347    mangleType(*Arg);
1348
1349  // <builtin-type>      ::= z  # ellipsis
1350  if (Proto->isVariadic())
1351    Out << 'z';
1352}
1353
1354// <type>            ::= <class-enum-type>
1355// <class-enum-type> ::= <name>
1356void CXXNameMangler::mangleType(const UnresolvedUsingType *T) {
1357  mangleName(T->getDecl());
1358}
1359
1360// <type>            ::= <class-enum-type>
1361// <class-enum-type> ::= <name>
1362void CXXNameMangler::mangleType(const EnumType *T) {
1363  mangleType(static_cast<const TagType*>(T));
1364}
1365void CXXNameMangler::mangleType(const RecordType *T) {
1366  mangleType(static_cast<const TagType*>(T));
1367}
1368void CXXNameMangler::mangleType(const TagType *T) {
1369  mangleName(T->getDecl());
1370}
1371
1372// <type>       ::= <array-type>
1373// <array-type> ::= A <positive dimension number> _ <element type>
1374//              ::= A [<dimension expression>] _ <element type>
1375void CXXNameMangler::mangleType(const ConstantArrayType *T) {
1376  Out << 'A' << T->getSize() << '_';
1377  mangleType(T->getElementType());
1378}
1379void CXXNameMangler::mangleType(const VariableArrayType *T) {
1380  Out << 'A';
1381  // decayed vla types (size 0) will just be skipped.
1382  if (T->getSizeExpr())
1383    mangleExpression(T->getSizeExpr());
1384  Out << '_';
1385  mangleType(T->getElementType());
1386}
1387void CXXNameMangler::mangleType(const DependentSizedArrayType *T) {
1388  Out << 'A';
1389  mangleExpression(T->getSizeExpr());
1390  Out << '_';
1391  mangleType(T->getElementType());
1392}
1393void CXXNameMangler::mangleType(const IncompleteArrayType *T) {
1394  Out << "A_";
1395  mangleType(T->getElementType());
1396}
1397
1398// <type>                   ::= <pointer-to-member-type>
1399// <pointer-to-member-type> ::= M <class type> <member type>
1400void CXXNameMangler::mangleType(const MemberPointerType *T) {
1401  Out << 'M';
1402  mangleType(QualType(T->getClass(), 0));
1403  QualType PointeeType = T->getPointeeType();
1404  if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(PointeeType)) {
1405    mangleQualifiers(Qualifiers::fromCVRMask(FPT->getTypeQuals()));
1406    mangleRefQualifier(FPT->getRefQualifier());
1407    mangleType(FPT);
1408
1409    // Itanium C++ ABI 5.1.8:
1410    //
1411    //   The type of a non-static member function is considered to be different,
1412    //   for the purposes of substitution, from the type of a namespace-scope or
1413    //   static member function whose type appears similar. The types of two
1414    //   non-static member functions are considered to be different, for the
1415    //   purposes of substitution, if the functions are members of different
1416    //   classes. In other words, for the purposes of substitution, the class of
1417    //   which the function is a member is considered part of the type of
1418    //   function.
1419
1420    // We increment the SeqID here to emulate adding an entry to the
1421    // substitution table. We can't actually add it because we don't want this
1422    // particular function type to be substituted.
1423    ++SeqID;
1424  } else
1425    mangleType(PointeeType);
1426}
1427
1428// <type>           ::= <template-param>
1429void CXXNameMangler::mangleType(const TemplateTypeParmType *T) {
1430  mangleTemplateParameter(T->getIndex());
1431}
1432
1433// <type>           ::= <template-param>
1434void CXXNameMangler::mangleType(const SubstTemplateTypeParmPackType *T) {
1435  mangleTemplateParameter(T->getReplacedParameter()->getIndex());
1436}
1437
1438// <type> ::= P <type>   # pointer-to
1439void CXXNameMangler::mangleType(const PointerType *T) {
1440  Out << 'P';
1441  mangleType(T->getPointeeType());
1442}
1443void CXXNameMangler::mangleType(const ObjCObjectPointerType *T) {
1444  Out << 'P';
1445  mangleType(T->getPointeeType());
1446}
1447
1448// <type> ::= R <type>   # reference-to
1449void CXXNameMangler::mangleType(const LValueReferenceType *T) {
1450  Out << 'R';
1451  mangleType(T->getPointeeType());
1452}
1453
1454// <type> ::= O <type>   # rvalue reference-to (C++0x)
1455void CXXNameMangler::mangleType(const RValueReferenceType *T) {
1456  Out << 'O';
1457  mangleType(T->getPointeeType());
1458}
1459
1460// <type> ::= C <type>   # complex pair (C 2000)
1461void CXXNameMangler::mangleType(const ComplexType *T) {
1462  Out << 'C';
1463  mangleType(T->getElementType());
1464}
1465
1466// ARM's ABI for Neon vector types specifies that they should be mangled as
1467// if they are structs (to match ARM's initial implementation).  The
1468// vector type must be one of the special types predefined by ARM.
1469void CXXNameMangler::mangleNeonVectorType(const VectorType *T) {
1470  QualType EltType = T->getElementType();
1471  assert(EltType->isBuiltinType() && "Neon vector element not a BuiltinType");
1472  const char *EltName = 0;
1473  if (T->getVectorKind() == VectorType::NeonPolyVector) {
1474    switch (cast<BuiltinType>(EltType)->getKind()) {
1475    case BuiltinType::SChar:     EltName = "poly8_t"; break;
1476    case BuiltinType::Short:     EltName = "poly16_t"; break;
1477    default: llvm_unreachable("unexpected Neon polynomial vector element type");
1478    }
1479  } else {
1480    switch (cast<BuiltinType>(EltType)->getKind()) {
1481    case BuiltinType::SChar:     EltName = "int8_t"; break;
1482    case BuiltinType::UChar:     EltName = "uint8_t"; break;
1483    case BuiltinType::Short:     EltName = "int16_t"; break;
1484    case BuiltinType::UShort:    EltName = "uint16_t"; break;
1485    case BuiltinType::Int:       EltName = "int32_t"; break;
1486    case BuiltinType::UInt:      EltName = "uint32_t"; break;
1487    case BuiltinType::LongLong:  EltName = "int64_t"; break;
1488    case BuiltinType::ULongLong: EltName = "uint64_t"; break;
1489    case BuiltinType::Float:     EltName = "float32_t"; break;
1490    default: llvm_unreachable("unexpected Neon vector element type");
1491    }
1492  }
1493  const char *BaseName = 0;
1494  unsigned BitSize = (T->getNumElements() *
1495                      getASTContext().getTypeSize(EltType));
1496  if (BitSize == 64)
1497    BaseName = "__simd64_";
1498  else {
1499    assert(BitSize == 128 && "Neon vector type not 64 or 128 bits");
1500    BaseName = "__simd128_";
1501  }
1502  Out << strlen(BaseName) + strlen(EltName);
1503  Out << BaseName << EltName;
1504}
1505
1506// GNU extension: vector types
1507// <type>                  ::= <vector-type>
1508// <vector-type>           ::= Dv <positive dimension number> _
1509//                                    <extended element type>
1510//                         ::= Dv [<dimension expression>] _ <element type>
1511// <extended element type> ::= <element type>
1512//                         ::= p # AltiVec vector pixel
1513void CXXNameMangler::mangleType(const VectorType *T) {
1514  if ((T->getVectorKind() == VectorType::NeonVector ||
1515       T->getVectorKind() == VectorType::NeonPolyVector)) {
1516    mangleNeonVectorType(T);
1517    return;
1518  }
1519  Out << "Dv" << T->getNumElements() << '_';
1520  if (T->getVectorKind() == VectorType::AltiVecPixel)
1521    Out << 'p';
1522  else if (T->getVectorKind() == VectorType::AltiVecBool)
1523    Out << 'b';
1524  else
1525    mangleType(T->getElementType());
1526}
1527void CXXNameMangler::mangleType(const ExtVectorType *T) {
1528  mangleType(static_cast<const VectorType*>(T));
1529}
1530void CXXNameMangler::mangleType(const DependentSizedExtVectorType *T) {
1531  Out << "Dv";
1532  mangleExpression(T->getSizeExpr());
1533  Out << '_';
1534  mangleType(T->getElementType());
1535}
1536
1537void CXXNameMangler::mangleType(const PackExpansionType *T) {
1538  // <type>  ::= Dp <type>          # pack expansion (C++0x)
1539  Out << "Dp";
1540  mangleType(T->getPattern());
1541}
1542
1543void CXXNameMangler::mangleType(const ObjCInterfaceType *T) {
1544  mangleSourceName(T->getDecl()->getIdentifier());
1545}
1546
1547void CXXNameMangler::mangleType(const ObjCObjectType *T) {
1548  // We don't allow overloading by different protocol qualification,
1549  // so mangling them isn't necessary.
1550  mangleType(T->getBaseType());
1551}
1552
1553void CXXNameMangler::mangleType(const BlockPointerType *T) {
1554  Out << "U13block_pointer";
1555  mangleType(T->getPointeeType());
1556}
1557
1558void CXXNameMangler::mangleType(const InjectedClassNameType *T) {
1559  // Mangle injected class name types as if the user had written the
1560  // specialization out fully.  It may not actually be possible to see
1561  // this mangling, though.
1562  mangleType(T->getInjectedSpecializationType());
1563}
1564
1565void CXXNameMangler::mangleType(const TemplateSpecializationType *T) {
1566  if (TemplateDecl *TD = T->getTemplateName().getAsTemplateDecl()) {
1567    mangleName(TD, T->getArgs(), T->getNumArgs());
1568  } else {
1569    if (mangleSubstitution(QualType(T, 0)))
1570      return;
1571
1572    mangleTemplatePrefix(T->getTemplateName());
1573
1574    // FIXME: GCC does not appear to mangle the template arguments when
1575    // the template in question is a dependent template name. Should we
1576    // emulate that badness?
1577    mangleTemplateArgs(T->getTemplateName(), T->getArgs(), T->getNumArgs());
1578    addSubstitution(QualType(T, 0));
1579  }
1580}
1581
1582void CXXNameMangler::mangleType(const DependentNameType *T) {
1583  // Typename types are always nested
1584  Out << 'N';
1585  mangleUnresolvedScope(T->getQualifier());
1586  mangleSourceName(T->getIdentifier());
1587  Out << 'E';
1588}
1589
1590void CXXNameMangler::mangleType(const DependentTemplateSpecializationType *T) {
1591  // Dependently-scoped template types are always nested
1592  Out << 'N';
1593
1594  // TODO: avoid making this TemplateName.
1595  TemplateName Prefix =
1596    getASTContext().getDependentTemplateName(T->getQualifier(),
1597                                             T->getIdentifier());
1598  mangleTemplatePrefix(Prefix);
1599
1600  // FIXME: GCC does not appear to mangle the template arguments when
1601  // the template in question is a dependent template name. Should we
1602  // emulate that badness?
1603  mangleTemplateArgs(Prefix, T->getArgs(), T->getNumArgs());
1604  Out << 'E';
1605}
1606
1607void CXXNameMangler::mangleType(const TypeOfType *T) {
1608  // FIXME: this is pretty unsatisfactory, but there isn't an obvious
1609  // "extension with parameters" mangling.
1610  Out << "u6typeof";
1611}
1612
1613void CXXNameMangler::mangleType(const TypeOfExprType *T) {
1614  // FIXME: this is pretty unsatisfactory, but there isn't an obvious
1615  // "extension with parameters" mangling.
1616  Out << "u6typeof";
1617}
1618
1619void CXXNameMangler::mangleType(const DecltypeType *T) {
1620  Expr *E = T->getUnderlyingExpr();
1621
1622  // type ::= Dt <expression> E  # decltype of an id-expression
1623  //                             #   or class member access
1624  //      ::= DT <expression> E  # decltype of an expression
1625
1626  // This purports to be an exhaustive list of id-expressions and
1627  // class member accesses.  Note that we do not ignore parentheses;
1628  // parentheses change the semantics of decltype for these
1629  // expressions (and cause the mangler to use the other form).
1630  if (isa<DeclRefExpr>(E) ||
1631      isa<MemberExpr>(E) ||
1632      isa<UnresolvedLookupExpr>(E) ||
1633      isa<DependentScopeDeclRefExpr>(E) ||
1634      isa<CXXDependentScopeMemberExpr>(E) ||
1635      isa<UnresolvedMemberExpr>(E))
1636    Out << "Dt";
1637  else
1638    Out << "DT";
1639  mangleExpression(E);
1640  Out << 'E';
1641}
1642
1643void CXXNameMangler::mangleIntegerLiteral(QualType T,
1644                                          const llvm::APSInt &Value) {
1645  //  <expr-primary> ::= L <type> <value number> E # integer literal
1646  Out << 'L';
1647
1648  mangleType(T);
1649  if (T->isBooleanType()) {
1650    // Boolean values are encoded as 0/1.
1651    Out << (Value.getBoolValue() ? '1' : '0');
1652  } else {
1653    mangleNumber(Value);
1654  }
1655  Out << 'E';
1656
1657}
1658
1659/// Mangles a member expression.  Implicit accesses are not handled,
1660/// but that should be okay, because you shouldn't be able to
1661/// make an implicit access in a function template declaration.
1662void CXXNameMangler::mangleMemberExpr(const Expr *Base,
1663                                      bool IsArrow,
1664                                      NestedNameSpecifier *Qualifier,
1665                                      DeclarationName Member,
1666                                      unsigned Arity) {
1667  // gcc-4.4 uses 'dt' for dot expressions, which is reasonable.
1668  // OTOH, gcc also mangles the name as an expression.
1669  Out << (IsArrow ? "pt" : "dt");
1670  mangleExpression(Base);
1671  mangleUnresolvedName(Qualifier, Member, Arity);
1672}
1673
1674void CXXNameMangler::mangleExpression(const Expr *E, unsigned Arity) {
1675  // <expression> ::= <unary operator-name> <expression>
1676  //              ::= <binary operator-name> <expression> <expression>
1677  //              ::= <trinary operator-name> <expression> <expression> <expression>
1678  //              ::= cl <expression>* E             # call
1679  //              ::= cv <type> expression           # conversion with one argument
1680  //              ::= cv <type> _ <expression>* E # conversion with a different number of arguments
1681  //              ::= st <type>                      # sizeof (a type)
1682  //              ::= at <type>                      # alignof (a type)
1683  //              ::= <template-param>
1684  //              ::= <function-param>
1685  //              ::= sr <type> <unqualified-name>                   # dependent name
1686  //              ::= sr <type> <unqualified-name> <template-args>   # dependent template-id
1687  //              ::= sZ <template-param>                            # size of a parameter pack
1688  //              ::= sZ <function-param>    # size of a function parameter pack
1689  //              ::= <expr-primary>
1690  // <expr-primary> ::= L <type> <value number> E    # integer literal
1691  //                ::= L <type <value float> E      # floating literal
1692  //                ::= L <mangled-name> E           # external name
1693  switch (E->getStmtClass()) {
1694  case Expr::NoStmtClass:
1695#define ABSTRACT_STMT(Type)
1696#define EXPR(Type, Base)
1697#define STMT(Type, Base) \
1698  case Expr::Type##Class:
1699#include "clang/AST/StmtNodes.inc"
1700    // fallthrough
1701
1702  // These all can only appear in local or variable-initialization
1703  // contexts and so should never appear in a mangling.
1704  case Expr::AddrLabelExprClass:
1705  case Expr::BlockDeclRefExprClass:
1706  case Expr::CXXThisExprClass:
1707  case Expr::DesignatedInitExprClass:
1708  case Expr::ImplicitValueInitExprClass:
1709  case Expr::InitListExprClass:
1710  case Expr::ParenListExprClass:
1711  case Expr::CXXScalarValueInitExprClass:
1712    llvm_unreachable("unexpected statement kind");
1713    break;
1714
1715  // FIXME: invent manglings for all these.
1716  case Expr::BlockExprClass:
1717  case Expr::CXXPseudoDestructorExprClass:
1718  case Expr::ChooseExprClass:
1719  case Expr::CompoundLiteralExprClass:
1720  case Expr::ExtVectorElementExprClass:
1721  case Expr::ObjCEncodeExprClass:
1722  case Expr::ObjCIsaExprClass:
1723  case Expr::ObjCIvarRefExprClass:
1724  case Expr::ObjCMessageExprClass:
1725  case Expr::ObjCPropertyRefExprClass:
1726  case Expr::ObjCProtocolExprClass:
1727  case Expr::ObjCSelectorExprClass:
1728  case Expr::ObjCStringLiteralClass:
1729  case Expr::OffsetOfExprClass:
1730  case Expr::PredefinedExprClass:
1731  case Expr::ShuffleVectorExprClass:
1732  case Expr::StmtExprClass:
1733  case Expr::UnaryTypeTraitExprClass:
1734  case Expr::BinaryTypeTraitExprClass:
1735  case Expr::VAArgExprClass:
1736  case Expr::CXXUuidofExprClass:
1737  case Expr::CXXNoexceptExprClass:
1738  case Expr::CUDAKernelCallExprClass: {
1739    // As bad as this diagnostic is, it's better than crashing.
1740    Diagnostic &Diags = Context.getDiags();
1741    unsigned DiagID = Diags.getCustomDiagID(Diagnostic::Error,
1742                                     "cannot yet mangle expression type %0");
1743    Diags.Report(E->getExprLoc(), DiagID)
1744      << E->getStmtClassName() << E->getSourceRange();
1745    break;
1746  }
1747
1748  case Expr::OpaqueValueExprClass:
1749    llvm_unreachable("cannot mangle opaque value; mangling wrong thing?");
1750
1751  case Expr::CXXDefaultArgExprClass:
1752    mangleExpression(cast<CXXDefaultArgExpr>(E)->getExpr(), Arity);
1753    break;
1754
1755  case Expr::CXXMemberCallExprClass: // fallthrough
1756  case Expr::CallExprClass: {
1757    const CallExpr *CE = cast<CallExpr>(E);
1758    Out << "cl";
1759    mangleExpression(CE->getCallee(), CE->getNumArgs());
1760    for (unsigned I = 0, N = CE->getNumArgs(); I != N; ++I)
1761      mangleExpression(CE->getArg(I));
1762    Out << 'E';
1763    break;
1764  }
1765
1766  case Expr::CXXNewExprClass: {
1767    // Proposal from David Vandervoorde, 2010.06.30
1768    const CXXNewExpr *New = cast<CXXNewExpr>(E);
1769    if (New->isGlobalNew()) Out << "gs";
1770    Out << (New->isArray() ? "na" : "nw");
1771    for (CXXNewExpr::const_arg_iterator I = New->placement_arg_begin(),
1772           E = New->placement_arg_end(); I != E; ++I)
1773      mangleExpression(*I);
1774    Out << '_';
1775    mangleType(New->getAllocatedType());
1776    if (New->hasInitializer()) {
1777      Out << "pi";
1778      for (CXXNewExpr::const_arg_iterator I = New->constructor_arg_begin(),
1779             E = New->constructor_arg_end(); I != E; ++I)
1780        mangleExpression(*I);
1781    }
1782    Out << 'E';
1783    break;
1784  }
1785
1786  case Expr::MemberExprClass: {
1787    const MemberExpr *ME = cast<MemberExpr>(E);
1788    mangleMemberExpr(ME->getBase(), ME->isArrow(),
1789                     ME->getQualifier(), ME->getMemberDecl()->getDeclName(),
1790                     Arity);
1791    break;
1792  }
1793
1794  case Expr::UnresolvedMemberExprClass: {
1795    const UnresolvedMemberExpr *ME = cast<UnresolvedMemberExpr>(E);
1796    mangleMemberExpr(ME->getBase(), ME->isArrow(),
1797                     ME->getQualifier(), ME->getMemberName(),
1798                     Arity);
1799    if (ME->hasExplicitTemplateArgs())
1800      mangleTemplateArgs(ME->getExplicitTemplateArgs());
1801    break;
1802  }
1803
1804  case Expr::CXXDependentScopeMemberExprClass: {
1805    const CXXDependentScopeMemberExpr *ME
1806      = cast<CXXDependentScopeMemberExpr>(E);
1807    mangleMemberExpr(ME->getBase(), ME->isArrow(),
1808                     ME->getQualifier(), ME->getMember(),
1809                     Arity);
1810    if (ME->hasExplicitTemplateArgs())
1811      mangleTemplateArgs(ME->getExplicitTemplateArgs());
1812    break;
1813  }
1814
1815  case Expr::UnresolvedLookupExprClass: {
1816    // The ABI doesn't cover how to mangle overload sets, so we mangle
1817    // using something as close as possible to the original lookup
1818    // expression.
1819    const UnresolvedLookupExpr *ULE = cast<UnresolvedLookupExpr>(E);
1820    mangleUnresolvedName(ULE->getQualifier(), ULE->getName(), Arity);
1821    if (ULE->hasExplicitTemplateArgs())
1822      mangleTemplateArgs(ULE->getExplicitTemplateArgs());
1823    break;
1824  }
1825
1826  case Expr::CXXUnresolvedConstructExprClass: {
1827    const CXXUnresolvedConstructExpr *CE = cast<CXXUnresolvedConstructExpr>(E);
1828    unsigned N = CE->arg_size();
1829
1830    Out << "cv";
1831    mangleType(CE->getType());
1832    if (N != 1) Out << '_';
1833    for (unsigned I = 0; I != N; ++I) mangleExpression(CE->getArg(I));
1834    if (N != 1) Out << 'E';
1835    break;
1836  }
1837
1838  case Expr::CXXTemporaryObjectExprClass:
1839  case Expr::CXXConstructExprClass: {
1840    const CXXConstructExpr *CE = cast<CXXConstructExpr>(E);
1841    unsigned N = CE->getNumArgs();
1842
1843    Out << "cv";
1844    mangleType(CE->getType());
1845    if (N != 1) Out << '_';
1846    for (unsigned I = 0; I != N; ++I) mangleExpression(CE->getArg(I));
1847    if (N != 1) Out << 'E';
1848    break;
1849  }
1850
1851  case Expr::SizeOfAlignOfExprClass: {
1852    const SizeOfAlignOfExpr *SAE = cast<SizeOfAlignOfExpr>(E);
1853    if (SAE->isSizeOf()) Out << 's';
1854    else Out << 'a';
1855    if (SAE->isArgumentType()) {
1856      Out << 't';
1857      mangleType(SAE->getArgumentType());
1858    } else {
1859      Out << 'z';
1860      mangleExpression(SAE->getArgumentExpr());
1861    }
1862    break;
1863  }
1864
1865  case Expr::CXXThrowExprClass: {
1866    const CXXThrowExpr *TE = cast<CXXThrowExpr>(E);
1867
1868    // Proposal from David Vandervoorde, 2010.06.30
1869    if (TE->getSubExpr()) {
1870      Out << "tw";
1871      mangleExpression(TE->getSubExpr());
1872    } else {
1873      Out << "tr";
1874    }
1875    break;
1876  }
1877
1878  case Expr::CXXTypeidExprClass: {
1879    const CXXTypeidExpr *TIE = cast<CXXTypeidExpr>(E);
1880
1881    // Proposal from David Vandervoorde, 2010.06.30
1882    if (TIE->isTypeOperand()) {
1883      Out << "ti";
1884      mangleType(TIE->getTypeOperand());
1885    } else {
1886      Out << "te";
1887      mangleExpression(TIE->getExprOperand());
1888    }
1889    break;
1890  }
1891
1892  case Expr::CXXDeleteExprClass: {
1893    const CXXDeleteExpr *DE = cast<CXXDeleteExpr>(E);
1894
1895    // Proposal from David Vandervoorde, 2010.06.30
1896    if (DE->isGlobalDelete()) Out << "gs";
1897    Out << (DE->isArrayForm() ? "da" : "dl");
1898    mangleExpression(DE->getArgument());
1899    break;
1900  }
1901
1902  case Expr::UnaryOperatorClass: {
1903    const UnaryOperator *UO = cast<UnaryOperator>(E);
1904    mangleOperatorName(UnaryOperator::getOverloadedOperator(UO->getOpcode()),
1905                       /*Arity=*/1);
1906    mangleExpression(UO->getSubExpr());
1907    break;
1908  }
1909
1910  case Expr::ArraySubscriptExprClass: {
1911    const ArraySubscriptExpr *AE = cast<ArraySubscriptExpr>(E);
1912
1913    // Array subscript is treated as a syntactically wierd form of
1914    // binary operator.
1915    Out << "ix";
1916    mangleExpression(AE->getLHS());
1917    mangleExpression(AE->getRHS());
1918    break;
1919  }
1920
1921  case Expr::CompoundAssignOperatorClass: // fallthrough
1922  case Expr::BinaryOperatorClass: {
1923    const BinaryOperator *BO = cast<BinaryOperator>(E);
1924    mangleOperatorName(BinaryOperator::getOverloadedOperator(BO->getOpcode()),
1925                       /*Arity=*/2);
1926    mangleExpression(BO->getLHS());
1927    mangleExpression(BO->getRHS());
1928    break;
1929  }
1930
1931  case Expr::ConditionalOperatorClass: {
1932    const ConditionalOperator *CO = cast<ConditionalOperator>(E);
1933    mangleOperatorName(OO_Conditional, /*Arity=*/3);
1934    mangleExpression(CO->getCond());
1935    mangleExpression(CO->getLHS(), Arity);
1936    mangleExpression(CO->getRHS(), Arity);
1937    break;
1938  }
1939
1940  case Expr::ImplicitCastExprClass: {
1941    mangleExpression(cast<ImplicitCastExpr>(E)->getSubExpr(), Arity);
1942    break;
1943  }
1944
1945  case Expr::CStyleCastExprClass:
1946  case Expr::CXXStaticCastExprClass:
1947  case Expr::CXXDynamicCastExprClass:
1948  case Expr::CXXReinterpretCastExprClass:
1949  case Expr::CXXConstCastExprClass:
1950  case Expr::CXXFunctionalCastExprClass: {
1951    const ExplicitCastExpr *ECE = cast<ExplicitCastExpr>(E);
1952    Out << "cv";
1953    mangleType(ECE->getType());
1954    mangleExpression(ECE->getSubExpr());
1955    break;
1956  }
1957
1958  case Expr::CXXOperatorCallExprClass: {
1959    const CXXOperatorCallExpr *CE = cast<CXXOperatorCallExpr>(E);
1960    unsigned NumArgs = CE->getNumArgs();
1961    mangleOperatorName(CE->getOperator(), /*Arity=*/NumArgs);
1962    // Mangle the arguments.
1963    for (unsigned i = 0; i != NumArgs; ++i)
1964      mangleExpression(CE->getArg(i));
1965    break;
1966  }
1967
1968  case Expr::ParenExprClass:
1969    mangleExpression(cast<ParenExpr>(E)->getSubExpr(), Arity);
1970    break;
1971
1972  case Expr::DeclRefExprClass: {
1973    const NamedDecl *D = cast<DeclRefExpr>(E)->getDecl();
1974
1975    switch (D->getKind()) {
1976    default:
1977      //  <expr-primary> ::= L <mangled-name> E # external name
1978      Out << 'L';
1979      mangle(D, "_Z");
1980      Out << 'E';
1981      break;
1982
1983    case Decl::EnumConstant: {
1984      const EnumConstantDecl *ED = cast<EnumConstantDecl>(D);
1985      mangleIntegerLiteral(ED->getType(), ED->getInitVal());
1986      break;
1987    }
1988
1989    case Decl::NonTypeTemplateParm: {
1990      const NonTypeTemplateParmDecl *PD = cast<NonTypeTemplateParmDecl>(D);
1991      mangleTemplateParameter(PD->getIndex());
1992      break;
1993    }
1994
1995    }
1996
1997    break;
1998  }
1999
2000  case Expr::SubstNonTypeTemplateParmPackExprClass:
2001    mangleTemplateParameter(
2002     cast<SubstNonTypeTemplateParmPackExpr>(E)->getParameterPack()->getIndex());
2003    break;
2004
2005  case Expr::DependentScopeDeclRefExprClass: {
2006    const DependentScopeDeclRefExpr *DRE = cast<DependentScopeDeclRefExpr>(E);
2007    NestedNameSpecifier *NNS = DRE->getQualifier();
2008    const Type *QTy = NNS->getAsType();
2009
2010    // When we're dealing with a nested-name-specifier that has just a
2011    // dependent identifier in it, mangle that as a typename.  FIXME:
2012    // It isn't clear that we ever actually want to have such a
2013    // nested-name-specifier; why not just represent it as a typename type?
2014    if (!QTy && NNS->getAsIdentifier() && NNS->getPrefix()) {
2015      QTy = getASTContext().getDependentNameType(ETK_Typename,
2016                                                 NNS->getPrefix(),
2017                                                 NNS->getAsIdentifier())
2018              .getTypePtr();
2019    }
2020    assert(QTy && "Qualifier was not type!");
2021
2022    // ::= sr <type> <unqualified-name>                  # dependent name
2023    // ::= sr <type> <unqualified-name> <template-args>  # dependent template-id
2024    Out << "sr";
2025    mangleType(QualType(QTy, 0));
2026    mangleUnqualifiedName(0, DRE->getDeclName(), Arity);
2027    if (DRE->hasExplicitTemplateArgs())
2028      mangleTemplateArgs(DRE->getExplicitTemplateArgs());
2029
2030    break;
2031  }
2032
2033  case Expr::CXXBindTemporaryExprClass:
2034    mangleExpression(cast<CXXBindTemporaryExpr>(E)->getSubExpr());
2035    break;
2036
2037  case Expr::ExprWithCleanupsClass:
2038    mangleExpression(cast<ExprWithCleanups>(E)->getSubExpr(), Arity);
2039    break;
2040
2041  case Expr::FloatingLiteralClass: {
2042    const FloatingLiteral *FL = cast<FloatingLiteral>(E);
2043    Out << 'L';
2044    mangleType(FL->getType());
2045    mangleFloat(FL->getValue());
2046    Out << 'E';
2047    break;
2048  }
2049
2050  case Expr::CharacterLiteralClass:
2051    Out << 'L';
2052    mangleType(E->getType());
2053    Out << cast<CharacterLiteral>(E)->getValue();
2054    Out << 'E';
2055    break;
2056
2057  case Expr::CXXBoolLiteralExprClass:
2058    Out << "Lb";
2059    Out << (cast<CXXBoolLiteralExpr>(E)->getValue() ? '1' : '0');
2060    Out << 'E';
2061    break;
2062
2063  case Expr::IntegerLiteralClass: {
2064    llvm::APSInt Value(cast<IntegerLiteral>(E)->getValue());
2065    if (E->getType()->isSignedIntegerType())
2066      Value.setIsSigned(true);
2067    mangleIntegerLiteral(E->getType(), Value);
2068    break;
2069  }
2070
2071  case Expr::ImaginaryLiteralClass: {
2072    const ImaginaryLiteral *IE = cast<ImaginaryLiteral>(E);
2073    // Mangle as if a complex literal.
2074    // Proposal from David Vandevoorde, 2010.06.30.
2075    Out << 'L';
2076    mangleType(E->getType());
2077    if (const FloatingLiteral *Imag =
2078          dyn_cast<FloatingLiteral>(IE->getSubExpr())) {
2079      // Mangle a floating-point zero of the appropriate type.
2080      mangleFloat(llvm::APFloat(Imag->getValue().getSemantics()));
2081      Out << '_';
2082      mangleFloat(Imag->getValue());
2083    } else {
2084      Out << "0_";
2085      llvm::APSInt Value(cast<IntegerLiteral>(IE->getSubExpr())->getValue());
2086      if (IE->getSubExpr()->getType()->isSignedIntegerType())
2087        Value.setIsSigned(true);
2088      mangleNumber(Value);
2089    }
2090    Out << 'E';
2091    break;
2092  }
2093
2094  case Expr::StringLiteralClass: {
2095    // Revised proposal from David Vandervoorde, 2010.07.15.
2096    Out << 'L';
2097    assert(isa<ConstantArrayType>(E->getType()));
2098    mangleType(E->getType());
2099    Out << 'E';
2100    break;
2101  }
2102
2103  case Expr::GNUNullExprClass:
2104    // FIXME: should this really be mangled the same as nullptr?
2105    // fallthrough
2106
2107  case Expr::CXXNullPtrLiteralExprClass: {
2108    // Proposal from David Vandervoorde, 2010.06.30, as
2109    // modified by ABI list discussion.
2110    Out << "LDnE";
2111    break;
2112  }
2113
2114  case Expr::PackExpansionExprClass:
2115    Out << "sp";
2116    mangleExpression(cast<PackExpansionExpr>(E)->getPattern());
2117    break;
2118
2119  case Expr::SizeOfPackExprClass: {
2120    Out << "sZ";
2121    const NamedDecl *Pack = cast<SizeOfPackExpr>(E)->getPack();
2122    if (const TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Pack))
2123      mangleTemplateParameter(TTP->getIndex());
2124    else if (const NonTypeTemplateParmDecl *NTTP
2125                = dyn_cast<NonTypeTemplateParmDecl>(Pack))
2126      mangleTemplateParameter(NTTP->getIndex());
2127    else if (const TemplateTemplateParmDecl *TempTP
2128                                    = dyn_cast<TemplateTemplateParmDecl>(Pack))
2129      mangleTemplateParameter(TempTP->getIndex());
2130    else {
2131      // Note: proposed by Mike Herrick on 11/30/10
2132      // <expression> ::= sZ <function-param>  # size of function parameter pack
2133      Diagnostic &Diags = Context.getDiags();
2134      unsigned DiagID = Diags.getCustomDiagID(Diagnostic::Error,
2135                            "cannot mangle sizeof...(function parameter pack)");
2136      Diags.Report(DiagID);
2137      return;
2138    }
2139  }
2140  }
2141}
2142
2143void CXXNameMangler::mangleCXXCtorType(CXXCtorType T) {
2144  // <ctor-dtor-name> ::= C1  # complete object constructor
2145  //                  ::= C2  # base object constructor
2146  //                  ::= C3  # complete object allocating constructor
2147  //
2148  switch (T) {
2149  case Ctor_Complete:
2150    Out << "C1";
2151    break;
2152  case Ctor_Base:
2153    Out << "C2";
2154    break;
2155  case Ctor_CompleteAllocating:
2156    Out << "C3";
2157    break;
2158  }
2159}
2160
2161void CXXNameMangler::mangleCXXDtorType(CXXDtorType T) {
2162  // <ctor-dtor-name> ::= D0  # deleting destructor
2163  //                  ::= D1  # complete object destructor
2164  //                  ::= D2  # base object destructor
2165  //
2166  switch (T) {
2167  case Dtor_Deleting:
2168    Out << "D0";
2169    break;
2170  case Dtor_Complete:
2171    Out << "D1";
2172    break;
2173  case Dtor_Base:
2174    Out << "D2";
2175    break;
2176  }
2177}
2178
2179void CXXNameMangler::mangleTemplateArgs(
2180                          const ExplicitTemplateArgumentList &TemplateArgs) {
2181  // <template-args> ::= I <template-arg>+ E
2182  Out << 'I';
2183  for (unsigned I = 0, E = TemplateArgs.NumTemplateArgs; I != E; ++I)
2184    mangleTemplateArg(0, TemplateArgs.getTemplateArgs()[I].getArgument());
2185  Out << 'E';
2186}
2187
2188void CXXNameMangler::mangleTemplateArgs(TemplateName Template,
2189                                        const TemplateArgument *TemplateArgs,
2190                                        unsigned NumTemplateArgs) {
2191  if (TemplateDecl *TD = Template.getAsTemplateDecl())
2192    return mangleTemplateArgs(*TD->getTemplateParameters(), TemplateArgs,
2193                              NumTemplateArgs);
2194
2195  // <template-args> ::= I <template-arg>+ E
2196  Out << 'I';
2197  for (unsigned i = 0; i != NumTemplateArgs; ++i)
2198    mangleTemplateArg(0, TemplateArgs[i]);
2199  Out << 'E';
2200}
2201
2202void CXXNameMangler::mangleTemplateArgs(const TemplateParameterList &PL,
2203                                        const TemplateArgumentList &AL) {
2204  // <template-args> ::= I <template-arg>+ E
2205  Out << 'I';
2206  for (unsigned i = 0, e = AL.size(); i != e; ++i)
2207    mangleTemplateArg(PL.getParam(i), AL[i]);
2208  Out << 'E';
2209}
2210
2211void CXXNameMangler::mangleTemplateArgs(const TemplateParameterList &PL,
2212                                        const TemplateArgument *TemplateArgs,
2213                                        unsigned NumTemplateArgs) {
2214  // <template-args> ::= I <template-arg>+ E
2215  Out << 'I';
2216  for (unsigned i = 0; i != NumTemplateArgs; ++i)
2217    mangleTemplateArg(PL.getParam(i), TemplateArgs[i]);
2218  Out << 'E';
2219}
2220
2221void CXXNameMangler::mangleTemplateArg(const NamedDecl *P,
2222                                       const TemplateArgument &A) {
2223  // <template-arg> ::= <type>              # type or template
2224  //                ::= X <expression> E    # expression
2225  //                ::= <expr-primary>      # simple expressions
2226  //                ::= J <template-arg>* E # argument pack
2227  //                ::= sp <expression>     # pack expansion of (C++0x)
2228  switch (A.getKind()) {
2229  case TemplateArgument::Null:
2230    llvm_unreachable("Cannot mangle NULL template argument");
2231
2232  case TemplateArgument::Type:
2233    mangleType(A.getAsType());
2234    break;
2235  case TemplateArgument::Template:
2236    // This is mangled as <type>.
2237    mangleType(A.getAsTemplate());
2238    break;
2239  case TemplateArgument::TemplateExpansion:
2240    // <type>  ::= Dp <type>          # pack expansion (C++0x)
2241    Out << "Dp";
2242    mangleType(A.getAsTemplateOrTemplatePattern());
2243    break;
2244  case TemplateArgument::Expression:
2245    Out << 'X';
2246    mangleExpression(A.getAsExpr());
2247    Out << 'E';
2248    break;
2249  case TemplateArgument::Integral:
2250    mangleIntegerLiteral(A.getIntegralType(), *A.getAsIntegral());
2251    break;
2252  case TemplateArgument::Declaration: {
2253    assert(P && "Missing template parameter for declaration argument");
2254    //  <expr-primary> ::= L <mangled-name> E # external name
2255
2256    // Clang produces AST's where pointer-to-member-function expressions
2257    // and pointer-to-function expressions are represented as a declaration not
2258    // an expression. We compensate for it here to produce the correct mangling.
2259    NamedDecl *D = cast<NamedDecl>(A.getAsDecl());
2260    const NonTypeTemplateParmDecl *Parameter = cast<NonTypeTemplateParmDecl>(P);
2261    bool compensateMangling = D->isCXXClassMember() &&
2262      !Parameter->getType()->isReferenceType();
2263    if (compensateMangling) {
2264      Out << 'X';
2265      mangleOperatorName(OO_Amp, 1);
2266    }
2267
2268    Out << 'L';
2269    // References to external entities use the mangled name; if the name would
2270    // not normally be manged then mangle it as unqualified.
2271    //
2272    // FIXME: The ABI specifies that external names here should have _Z, but
2273    // gcc leaves this off.
2274    if (compensateMangling)
2275      mangle(D, "_Z");
2276    else
2277      mangle(D, "Z");
2278    Out << 'E';
2279
2280    if (compensateMangling)
2281      Out << 'E';
2282
2283    break;
2284  }
2285
2286  case TemplateArgument::Pack: {
2287    // Note: proposal by Mike Herrick on 12/20/10
2288    Out << 'J';
2289    for (TemplateArgument::pack_iterator PA = A.pack_begin(),
2290                                      PAEnd = A.pack_end();
2291         PA != PAEnd; ++PA)
2292      mangleTemplateArg(P, *PA);
2293    Out << 'E';
2294  }
2295  }
2296}
2297
2298void CXXNameMangler::mangleTemplateParameter(unsigned Index) {
2299  // <template-param> ::= T_    # first template parameter
2300  //                  ::= T <parameter-2 non-negative number> _
2301  if (Index == 0)
2302    Out << "T_";
2303  else
2304    Out << 'T' << (Index - 1) << '_';
2305}
2306
2307// <substitution> ::= S <seq-id> _
2308//                ::= S_
2309bool CXXNameMangler::mangleSubstitution(const NamedDecl *ND) {
2310  // Try one of the standard substitutions first.
2311  if (mangleStandardSubstitution(ND))
2312    return true;
2313
2314  ND = cast<NamedDecl>(ND->getCanonicalDecl());
2315  return mangleSubstitution(reinterpret_cast<uintptr_t>(ND));
2316}
2317
2318bool CXXNameMangler::mangleSubstitution(QualType T) {
2319  if (!T.getCVRQualifiers()) {
2320    if (const RecordType *RT = T->getAs<RecordType>())
2321      return mangleSubstitution(RT->getDecl());
2322  }
2323
2324  uintptr_t TypePtr = reinterpret_cast<uintptr_t>(T.getAsOpaquePtr());
2325
2326  return mangleSubstitution(TypePtr);
2327}
2328
2329bool CXXNameMangler::mangleSubstitution(TemplateName Template) {
2330  if (TemplateDecl *TD = Template.getAsTemplateDecl())
2331    return mangleSubstitution(TD);
2332
2333  Template = Context.getASTContext().getCanonicalTemplateName(Template);
2334  return mangleSubstitution(
2335                      reinterpret_cast<uintptr_t>(Template.getAsVoidPointer()));
2336}
2337
2338bool CXXNameMangler::mangleSubstitution(uintptr_t Ptr) {
2339  llvm::DenseMap<uintptr_t, unsigned>::iterator I = Substitutions.find(Ptr);
2340  if (I == Substitutions.end())
2341    return false;
2342
2343  unsigned SeqID = I->second;
2344  if (SeqID == 0)
2345    Out << "S_";
2346  else {
2347    SeqID--;
2348
2349    // <seq-id> is encoded in base-36, using digits and upper case letters.
2350    char Buffer[10];
2351    char *BufferPtr = llvm::array_endof(Buffer);
2352
2353    if (SeqID == 0) *--BufferPtr = '0';
2354
2355    while (SeqID) {
2356      assert(BufferPtr > Buffer && "Buffer overflow!");
2357
2358      char c = static_cast<char>(SeqID % 36);
2359
2360      *--BufferPtr =  (c < 10 ? '0' + c : 'A' + c - 10);
2361      SeqID /= 36;
2362    }
2363
2364    Out << 'S'
2365        << llvm::StringRef(BufferPtr, llvm::array_endof(Buffer)-BufferPtr)
2366        << '_';
2367  }
2368
2369  return true;
2370}
2371
2372static bool isCharType(QualType T) {
2373  if (T.isNull())
2374    return false;
2375
2376  return T->isSpecificBuiltinType(BuiltinType::Char_S) ||
2377    T->isSpecificBuiltinType(BuiltinType::Char_U);
2378}
2379
2380/// isCharSpecialization - Returns whether a given type is a template
2381/// specialization of a given name with a single argument of type char.
2382static bool isCharSpecialization(QualType T, const char *Name) {
2383  if (T.isNull())
2384    return false;
2385
2386  const RecordType *RT = T->getAs<RecordType>();
2387  if (!RT)
2388    return false;
2389
2390  const ClassTemplateSpecializationDecl *SD =
2391    dyn_cast<ClassTemplateSpecializationDecl>(RT->getDecl());
2392  if (!SD)
2393    return false;
2394
2395  if (!isStdNamespace(SD->getDeclContext()))
2396    return false;
2397
2398  const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs();
2399  if (TemplateArgs.size() != 1)
2400    return false;
2401
2402  if (!isCharType(TemplateArgs[0].getAsType()))
2403    return false;
2404
2405  return SD->getIdentifier()->getName() == Name;
2406}
2407
2408template <std::size_t StrLen>
2409static bool isStreamCharSpecialization(const ClassTemplateSpecializationDecl*SD,
2410                                       const char (&Str)[StrLen]) {
2411  if (!SD->getIdentifier()->isStr(Str))
2412    return false;
2413
2414  const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs();
2415  if (TemplateArgs.size() != 2)
2416    return false;
2417
2418  if (!isCharType(TemplateArgs[0].getAsType()))
2419    return false;
2420
2421  if (!isCharSpecialization(TemplateArgs[1].getAsType(), "char_traits"))
2422    return false;
2423
2424  return true;
2425}
2426
2427bool CXXNameMangler::mangleStandardSubstitution(const NamedDecl *ND) {
2428  // <substitution> ::= St # ::std::
2429  if (const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ND)) {
2430    if (isStd(NS)) {
2431      Out << "St";
2432      return true;
2433    }
2434  }
2435
2436  if (const ClassTemplateDecl *TD = dyn_cast<ClassTemplateDecl>(ND)) {
2437    if (!isStdNamespace(TD->getDeclContext()))
2438      return false;
2439
2440    // <substitution> ::= Sa # ::std::allocator
2441    if (TD->getIdentifier()->isStr("allocator")) {
2442      Out << "Sa";
2443      return true;
2444    }
2445
2446    // <<substitution> ::= Sb # ::std::basic_string
2447    if (TD->getIdentifier()->isStr("basic_string")) {
2448      Out << "Sb";
2449      return true;
2450    }
2451  }
2452
2453  if (const ClassTemplateSpecializationDecl *SD =
2454        dyn_cast<ClassTemplateSpecializationDecl>(ND)) {
2455    if (!isStdNamespace(SD->getDeclContext()))
2456      return false;
2457
2458    //    <substitution> ::= Ss # ::std::basic_string<char,
2459    //                            ::std::char_traits<char>,
2460    //                            ::std::allocator<char> >
2461    if (SD->getIdentifier()->isStr("basic_string")) {
2462      const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs();
2463
2464      if (TemplateArgs.size() != 3)
2465        return false;
2466
2467      if (!isCharType(TemplateArgs[0].getAsType()))
2468        return false;
2469
2470      if (!isCharSpecialization(TemplateArgs[1].getAsType(), "char_traits"))
2471        return false;
2472
2473      if (!isCharSpecialization(TemplateArgs[2].getAsType(), "allocator"))
2474        return false;
2475
2476      Out << "Ss";
2477      return true;
2478    }
2479
2480    //    <substitution> ::= Si # ::std::basic_istream<char,
2481    //                            ::std::char_traits<char> >
2482    if (isStreamCharSpecialization(SD, "basic_istream")) {
2483      Out << "Si";
2484      return true;
2485    }
2486
2487    //    <substitution> ::= So # ::std::basic_ostream<char,
2488    //                            ::std::char_traits<char> >
2489    if (isStreamCharSpecialization(SD, "basic_ostream")) {
2490      Out << "So";
2491      return true;
2492    }
2493
2494    //    <substitution> ::= Sd # ::std::basic_iostream<char,
2495    //                            ::std::char_traits<char> >
2496    if (isStreamCharSpecialization(SD, "basic_iostream")) {
2497      Out << "Sd";
2498      return true;
2499    }
2500  }
2501  return false;
2502}
2503
2504void CXXNameMangler::addSubstitution(QualType T) {
2505  if (!T.getCVRQualifiers()) {
2506    if (const RecordType *RT = T->getAs<RecordType>()) {
2507      addSubstitution(RT->getDecl());
2508      return;
2509    }
2510  }
2511
2512  uintptr_t TypePtr = reinterpret_cast<uintptr_t>(T.getAsOpaquePtr());
2513  addSubstitution(TypePtr);
2514}
2515
2516void CXXNameMangler::addSubstitution(TemplateName Template) {
2517  if (TemplateDecl *TD = Template.getAsTemplateDecl())
2518    return addSubstitution(TD);
2519
2520  Template = Context.getASTContext().getCanonicalTemplateName(Template);
2521  addSubstitution(reinterpret_cast<uintptr_t>(Template.getAsVoidPointer()));
2522}
2523
2524void CXXNameMangler::addSubstitution(uintptr_t Ptr) {
2525  assert(!Substitutions.count(Ptr) && "Substitution already exists!");
2526  Substitutions[Ptr] = SeqID++;
2527}
2528
2529//
2530
2531/// \brief Mangles the name of the declaration D and emits that name to the
2532/// given output stream.
2533///
2534/// If the declaration D requires a mangled name, this routine will emit that
2535/// mangled name to \p os and return true. Otherwise, \p os will be unchanged
2536/// and this routine will return false. In this case, the caller should just
2537/// emit the identifier of the declaration (\c D->getIdentifier()) as its
2538/// name.
2539void ItaniumMangleContext::mangleName(const NamedDecl *D,
2540                                      llvm::raw_ostream &Out) {
2541  assert((isa<FunctionDecl>(D) || isa<VarDecl>(D)) &&
2542          "Invalid mangleName() call, argument is not a variable or function!");
2543  assert(!isa<CXXConstructorDecl>(D) && !isa<CXXDestructorDecl>(D) &&
2544         "Invalid mangleName() call on 'structor decl!");
2545
2546  PrettyStackTraceDecl CrashInfo(D, SourceLocation(),
2547                                 getASTContext().getSourceManager(),
2548                                 "Mangling declaration");
2549
2550  CXXNameMangler Mangler(*this, Out);
2551  return Mangler.mangle(D);
2552}
2553
2554void ItaniumMangleContext::mangleCXXCtor(const CXXConstructorDecl *D,
2555                                         CXXCtorType Type,
2556                                         llvm::raw_ostream &Out) {
2557  CXXNameMangler Mangler(*this, Out, D, Type);
2558  Mangler.mangle(D);
2559}
2560
2561void ItaniumMangleContext::mangleCXXDtor(const CXXDestructorDecl *D,
2562                                         CXXDtorType Type,
2563                                         llvm::raw_ostream &Out) {
2564  CXXNameMangler Mangler(*this, Out, D, Type);
2565  Mangler.mangle(D);
2566}
2567
2568void ItaniumMangleContext::mangleThunk(const CXXMethodDecl *MD,
2569                                       const ThunkInfo &Thunk,
2570                                       llvm::SmallVectorImpl<char> &Res) {
2571  //  <special-name> ::= T <call-offset> <base encoding>
2572  //                      # base is the nominal target function of thunk
2573  //  <special-name> ::= Tc <call-offset> <call-offset> <base encoding>
2574  //                      # base is the nominal target function of thunk
2575  //                      # first call-offset is 'this' adjustment
2576  //                      # second call-offset is result adjustment
2577
2578  assert(!isa<CXXDestructorDecl>(MD) &&
2579         "Use mangleCXXDtor for destructor decls!");
2580  llvm::raw_svector_ostream Out(Res);
2581  CXXNameMangler Mangler(*this, Out);
2582  Mangler.getStream() << "_ZT";
2583  if (!Thunk.Return.isEmpty())
2584    Mangler.getStream() << 'c';
2585
2586  // Mangle the 'this' pointer adjustment.
2587  Mangler.mangleCallOffset(Thunk.This.NonVirtual, Thunk.This.VCallOffsetOffset);
2588
2589  // Mangle the return pointer adjustment if there is one.
2590  if (!Thunk.Return.isEmpty())
2591    Mangler.mangleCallOffset(Thunk.Return.NonVirtual,
2592                             Thunk.Return.VBaseOffsetOffset);
2593
2594  Mangler.mangleFunctionEncoding(MD);
2595}
2596
2597void
2598ItaniumMangleContext::mangleCXXDtorThunk(const CXXDestructorDecl *DD,
2599                                         CXXDtorType Type,
2600                                         const ThisAdjustment &ThisAdjustment,
2601                                         llvm::SmallVectorImpl<char> &Res) {
2602  //  <special-name> ::= T <call-offset> <base encoding>
2603  //                      # base is the nominal target function of thunk
2604
2605  llvm::raw_svector_ostream Out(Res);
2606  CXXNameMangler Mangler(*this, Out, DD, Type);
2607  Mangler.getStream() << "_ZT";
2608
2609  // Mangle the 'this' pointer adjustment.
2610  Mangler.mangleCallOffset(ThisAdjustment.NonVirtual,
2611                           ThisAdjustment.VCallOffsetOffset);
2612
2613  Mangler.mangleFunctionEncoding(DD);
2614}
2615
2616/// mangleGuardVariable - Returns the mangled name for a guard variable
2617/// for the passed in VarDecl.
2618void ItaniumMangleContext::mangleItaniumGuardVariable(const VarDecl *D,
2619                                             llvm::SmallVectorImpl<char> &Res) {
2620  //  <special-name> ::= GV <object name>       # Guard variable for one-time
2621  //                                            # initialization
2622  llvm::raw_svector_ostream Out(Res);
2623  CXXNameMangler Mangler(*this, Out);
2624  Mangler.getStream() << "_ZGV";
2625  Mangler.mangleName(D);
2626}
2627
2628void ItaniumMangleContext::mangleReferenceTemporary(const VarDecl *D,
2629                                             llvm::SmallVectorImpl<char> &Res) {
2630  // We match the GCC mangling here.
2631  //  <special-name> ::= GR <object name>
2632  llvm::raw_svector_ostream Out(Res);
2633  CXXNameMangler Mangler(*this, Out);
2634  Mangler.getStream() << "_ZGR";
2635  Mangler.mangleName(D);
2636}
2637
2638void ItaniumMangleContext::mangleCXXVTable(const CXXRecordDecl *RD,
2639                                           llvm::SmallVectorImpl<char> &Res) {
2640  // <special-name> ::= TV <type>  # virtual table
2641  llvm::raw_svector_ostream Out(Res);
2642  CXXNameMangler Mangler(*this, Out);
2643  Mangler.getStream() << "_ZTV";
2644  Mangler.mangleNameOrStandardSubstitution(RD);
2645}
2646
2647void ItaniumMangleContext::mangleCXXVTT(const CXXRecordDecl *RD,
2648                                        llvm::SmallVectorImpl<char> &Res) {
2649  // <special-name> ::= TT <type>  # VTT structure
2650  llvm::raw_svector_ostream Out(Res);
2651  CXXNameMangler Mangler(*this, Out);
2652  Mangler.getStream() << "_ZTT";
2653  Mangler.mangleNameOrStandardSubstitution(RD);
2654}
2655
2656void ItaniumMangleContext::mangleCXXCtorVTable(const CXXRecordDecl *RD,
2657                                               int64_t Offset,
2658                                               const CXXRecordDecl *Type,
2659                                             llvm::SmallVectorImpl<char> &Res) {
2660  // <special-name> ::= TC <type> <offset number> _ <base type>
2661  llvm::raw_svector_ostream Out(Res);
2662  CXXNameMangler Mangler(*this, Out);
2663  Mangler.getStream() << "_ZTC";
2664  Mangler.mangleNameOrStandardSubstitution(RD);
2665  Mangler.getStream() << Offset;
2666  Mangler.getStream() << '_';
2667  Mangler.mangleNameOrStandardSubstitution(Type);
2668}
2669
2670void ItaniumMangleContext::mangleCXXRTTI(QualType Ty,
2671                                         llvm::SmallVectorImpl<char> &Res) {
2672  // <special-name> ::= TI <type>  # typeinfo structure
2673  assert(!Ty.hasQualifiers() && "RTTI info cannot have top-level qualifiers");
2674  llvm::raw_svector_ostream Out(Res);
2675  CXXNameMangler Mangler(*this, Out);
2676  Mangler.getStream() << "_ZTI";
2677  Mangler.mangleType(Ty);
2678}
2679
2680void ItaniumMangleContext::mangleCXXRTTIName(QualType Ty,
2681                                             llvm::SmallVectorImpl<char> &Res) {
2682  // <special-name> ::= TS <type>  # typeinfo name (null terminated byte string)
2683  llvm::raw_svector_ostream Out(Res);
2684  CXXNameMangler Mangler(*this, Out);
2685  Mangler.getStream() << "_ZTS";
2686  Mangler.mangleType(Ty);
2687}
2688
2689MangleContext *clang::createItaniumMangleContext(ASTContext &Context,
2690                                                 Diagnostic &Diags) {
2691  return new ItaniumMangleContext(Context, Diags);
2692}
2693