ItaniumMangle.cpp revision 1aee05d08b2184acadeb36de300e216390780d6c
1//===--- ItaniumMangle.cpp - Itanium C++ Name Mangling ----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// Implements C++ name mangling according to the Itanium C++ ABI,
11// which is used in GCC 3.2 and newer (and many compilers that are
12// ABI-compatible with GCC):
13//
14//   http://www.codesourcery.com/public/cxx-abi/abi.html
15//
16//===----------------------------------------------------------------------===//
17#include "clang/AST/Mangle.h"
18#include "clang/AST/ASTContext.h"
19#include "clang/AST/Decl.h"
20#include "clang/AST/DeclCXX.h"
21#include "clang/AST/DeclObjC.h"
22#include "clang/AST/DeclTemplate.h"
23#include "clang/AST/ExprCXX.h"
24#include "clang/Basic/ABI.h"
25#include "clang/Basic/SourceManager.h"
26#include "llvm/ADT/StringExtras.h"
27#include "llvm/Support/raw_ostream.h"
28#include "llvm/Support/ErrorHandling.h"
29
30#define MANGLE_CHECKER 0
31
32#if MANGLE_CHECKER
33#include <cxxabi.h>
34#endif
35
36using namespace clang;
37
38namespace {
39
40static const CXXRecordDecl *GetLocalClassDecl(const NamedDecl *ND) {
41  const DeclContext *DC = dyn_cast<DeclContext>(ND);
42  if (!DC)
43    DC = ND->getDeclContext();
44  while (!DC->isNamespace() && !DC->isTranslationUnit()) {
45    if (isa<FunctionDecl>(DC->getParent()))
46      return dyn_cast<CXXRecordDecl>(DC);
47    DC = DC->getParent();
48  }
49  return 0;
50}
51
52static const CXXMethodDecl *getStructor(const CXXMethodDecl *MD) {
53  assert((isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD)) &&
54         "Passed in decl is not a ctor or dtor!");
55
56  if (const TemplateDecl *TD = MD->getPrimaryTemplate()) {
57    MD = cast<CXXMethodDecl>(TD->getTemplatedDecl());
58
59    assert((isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD)) &&
60           "Templated decl is not a ctor or dtor!");
61  }
62
63  return MD;
64}
65
66static const unsigned UnknownArity = ~0U;
67
68class ItaniumMangleContext : public MangleContext {
69  llvm::DenseMap<const TagDecl *, uint64_t> AnonStructIds;
70  unsigned Discriminator;
71  llvm::DenseMap<const NamedDecl*, unsigned> Uniquifier;
72
73public:
74  explicit ItaniumMangleContext(ASTContext &Context,
75                                Diagnostic &Diags)
76    : MangleContext(Context, Diags) { }
77
78  uint64_t getAnonymousStructId(const TagDecl *TD) {
79    std::pair<llvm::DenseMap<const TagDecl *,
80      uint64_t>::iterator, bool> Result =
81      AnonStructIds.insert(std::make_pair(TD, AnonStructIds.size()));
82    return Result.first->second;
83  }
84
85  void startNewFunction() {
86    MangleContext::startNewFunction();
87    mangleInitDiscriminator();
88  }
89
90  /// @name Mangler Entry Points
91  /// @{
92
93  bool shouldMangleDeclName(const NamedDecl *D);
94  void mangleName(const NamedDecl *D, llvm::SmallVectorImpl<char> &);
95  void mangleThunk(const CXXMethodDecl *MD,
96                   const ThunkInfo &Thunk,
97                   llvm::SmallVectorImpl<char> &);
98  void mangleCXXDtorThunk(const CXXDestructorDecl *DD, CXXDtorType Type,
99                          const ThisAdjustment &ThisAdjustment,
100                          llvm::SmallVectorImpl<char> &);
101  void mangleReferenceTemporary(const VarDecl *D,
102                                llvm::SmallVectorImpl<char> &);
103  void mangleCXXVTable(const CXXRecordDecl *RD,
104                       llvm::SmallVectorImpl<char> &);
105  void mangleCXXVTT(const CXXRecordDecl *RD,
106                    llvm::SmallVectorImpl<char> &);
107  void mangleCXXCtorVTable(const CXXRecordDecl *RD, int64_t Offset,
108                           const CXXRecordDecl *Type,
109                           llvm::SmallVectorImpl<char> &);
110  void mangleCXXRTTI(QualType T, llvm::SmallVectorImpl<char> &);
111  void mangleCXXRTTIName(QualType T, llvm::SmallVectorImpl<char> &);
112  void mangleCXXCtor(const CXXConstructorDecl *D, CXXCtorType Type,
113                     llvm::SmallVectorImpl<char> &);
114  void mangleCXXDtor(const CXXDestructorDecl *D, CXXDtorType Type,
115                     llvm::SmallVectorImpl<char> &);
116
117  void mangleItaniumGuardVariable(const VarDecl *D,
118                                  llvm::SmallVectorImpl<char> &);
119
120  void mangleInitDiscriminator() {
121    Discriminator = 0;
122  }
123
124  bool getNextDiscriminator(const NamedDecl *ND, unsigned &disc) {
125    unsigned &discriminator = Uniquifier[ND];
126    if (!discriminator)
127      discriminator = ++Discriminator;
128    if (discriminator == 1)
129      return false;
130    disc = discriminator-2;
131    return true;
132  }
133  /// @}
134};
135
136/// CXXNameMangler - Manage the mangling of a single name.
137class CXXNameMangler {
138  ItaniumMangleContext &Context;
139  llvm::raw_svector_ostream Out;
140
141  const CXXMethodDecl *Structor;
142  unsigned StructorType;
143
144  /// SeqID - The next subsitution sequence number.
145  unsigned SeqID;
146
147  llvm::DenseMap<uintptr_t, unsigned> Substitutions;
148
149  ASTContext &getASTContext() const { return Context.getASTContext(); }
150
151public:
152  CXXNameMangler(ItaniumMangleContext &C, llvm::SmallVectorImpl<char> &Res)
153    : Context(C), Out(Res), Structor(0), StructorType(0), SeqID(0) { }
154  CXXNameMangler(ItaniumMangleContext &C, llvm::SmallVectorImpl<char> &Res,
155                 const CXXConstructorDecl *D, CXXCtorType Type)
156    : Context(C), Out(Res), Structor(getStructor(D)), StructorType(Type),
157    SeqID(0) { }
158  CXXNameMangler(ItaniumMangleContext &C, llvm::SmallVectorImpl<char> &Res,
159                 const CXXDestructorDecl *D, CXXDtorType Type)
160    : Context(C), Out(Res), Structor(getStructor(D)), StructorType(Type),
161    SeqID(0) { }
162
163#if MANGLE_CHECKER
164  ~CXXNameMangler() {
165    if (Out.str()[0] == '\01')
166      return;
167
168    int status = 0;
169    char *result = abi::__cxa_demangle(Out.str().str().c_str(), 0, 0, &status);
170    assert(status == 0 && "Could not demangle mangled name!");
171    free(result);
172  }
173#endif
174  llvm::raw_svector_ostream &getStream() { return Out; }
175
176  void mangle(const NamedDecl *D, llvm::StringRef Prefix = "_Z");
177  void mangleCallOffset(int64_t NonVirtual, int64_t Virtual);
178  void mangleNumber(const llvm::APSInt &I);
179  void mangleNumber(int64_t Number);
180  void mangleFloat(const llvm::APFloat &F);
181  void mangleFunctionEncoding(const FunctionDecl *FD);
182  void mangleName(const NamedDecl *ND);
183  void mangleType(QualType T);
184  void mangleNameOrStandardSubstitution(const NamedDecl *ND);
185
186private:
187  bool mangleSubstitution(const NamedDecl *ND);
188  bool mangleSubstitution(QualType T);
189  bool mangleSubstitution(TemplateName Template);
190  bool mangleSubstitution(uintptr_t Ptr);
191
192  bool mangleStandardSubstitution(const NamedDecl *ND);
193
194  void addSubstitution(const NamedDecl *ND) {
195    ND = cast<NamedDecl>(ND->getCanonicalDecl());
196
197    addSubstitution(reinterpret_cast<uintptr_t>(ND));
198  }
199  void addSubstitution(QualType T);
200  void addSubstitution(TemplateName Template);
201  void addSubstitution(uintptr_t Ptr);
202
203  void mangleUnresolvedScope(NestedNameSpecifier *Qualifier);
204  void mangleUnresolvedName(NestedNameSpecifier *Qualifier,
205                            DeclarationName Name,
206                            unsigned KnownArity = UnknownArity);
207
208  void mangleName(const TemplateDecl *TD,
209                  const TemplateArgument *TemplateArgs,
210                  unsigned NumTemplateArgs);
211  void mangleUnqualifiedName(const NamedDecl *ND) {
212    mangleUnqualifiedName(ND, ND->getDeclName(), UnknownArity);
213  }
214  void mangleUnqualifiedName(const NamedDecl *ND, DeclarationName Name,
215                             unsigned KnownArity);
216  void mangleUnscopedName(const NamedDecl *ND);
217  void mangleUnscopedTemplateName(const TemplateDecl *ND);
218  void mangleUnscopedTemplateName(TemplateName);
219  void mangleSourceName(const IdentifierInfo *II);
220  void mangleLocalName(const NamedDecl *ND);
221  void mangleNestedName(const NamedDecl *ND, const DeclContext *DC,
222                        bool NoFunction=false);
223  void mangleNestedName(const TemplateDecl *TD,
224                        const TemplateArgument *TemplateArgs,
225                        unsigned NumTemplateArgs);
226  void manglePrefix(const DeclContext *DC, bool NoFunction=false);
227  void mangleTemplatePrefix(const TemplateDecl *ND);
228  void mangleTemplatePrefix(TemplateName Template);
229  void mangleOperatorName(OverloadedOperatorKind OO, unsigned Arity);
230  void mangleQualifiers(Qualifiers Quals);
231
232  void mangleObjCMethodName(const ObjCMethodDecl *MD);
233
234  // Declare manglers for every type class.
235#define ABSTRACT_TYPE(CLASS, PARENT)
236#define NON_CANONICAL_TYPE(CLASS, PARENT)
237#define TYPE(CLASS, PARENT) void mangleType(const CLASS##Type *T);
238#include "clang/AST/TypeNodes.def"
239
240  void mangleType(const TagType*);
241  void mangleType(TemplateName);
242  void mangleBareFunctionType(const FunctionType *T,
243                              bool MangleReturnType);
244  void mangleNeonVectorType(const VectorType *T);
245
246  void mangleIntegerLiteral(QualType T, const llvm::APSInt &Value);
247  void mangleMemberExpr(const Expr *Base, bool IsArrow,
248                        NestedNameSpecifier *Qualifier,
249                        DeclarationName Name,
250                        unsigned KnownArity);
251  void mangleExpression(const Expr *E, unsigned Arity = UnknownArity);
252  void mangleCXXCtorType(CXXCtorType T);
253  void mangleCXXDtorType(CXXDtorType T);
254
255  void mangleTemplateArgs(const ExplicitTemplateArgumentList &TemplateArgs);
256  void mangleTemplateArgs(TemplateName Template,
257                          const TemplateArgument *TemplateArgs,
258                          unsigned NumTemplateArgs);
259  void mangleTemplateArgs(const TemplateParameterList &PL,
260                          const TemplateArgument *TemplateArgs,
261                          unsigned NumTemplateArgs);
262  void mangleTemplateArgs(const TemplateParameterList &PL,
263                          const TemplateArgumentList &AL);
264  void mangleTemplateArg(const NamedDecl *P, const TemplateArgument &A);
265
266  void mangleTemplateParameter(unsigned Index);
267};
268
269}
270
271static bool isInCLinkageSpecification(const Decl *D) {
272  D = D->getCanonicalDecl();
273  for (const DeclContext *DC = D->getDeclContext();
274       !DC->isTranslationUnit(); DC = DC->getParent()) {
275    if (const LinkageSpecDecl *Linkage = dyn_cast<LinkageSpecDecl>(DC))
276      return Linkage->getLanguage() == LinkageSpecDecl::lang_c;
277  }
278
279  return false;
280}
281
282bool ItaniumMangleContext::shouldMangleDeclName(const NamedDecl *D) {
283  // In C, functions with no attributes never need to be mangled. Fastpath them.
284  if (!getASTContext().getLangOptions().CPlusPlus && !D->hasAttrs())
285    return false;
286
287  // Any decl can be declared with __asm("foo") on it, and this takes precedence
288  // over all other naming in the .o file.
289  if (D->hasAttr<AsmLabelAttr>())
290    return true;
291
292  // Clang's "overloadable" attribute extension to C/C++ implies name mangling
293  // (always) as does passing a C++ member function and a function
294  // whose name is not a simple identifier.
295  const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
296  if (FD && (FD->hasAttr<OverloadableAttr>() || isa<CXXMethodDecl>(FD) ||
297             !FD->getDeclName().isIdentifier()))
298    return true;
299
300  // Otherwise, no mangling is done outside C++ mode.
301  if (!getASTContext().getLangOptions().CPlusPlus)
302    return false;
303
304  // Variables at global scope with non-internal linkage are not mangled
305  if (!FD) {
306    const DeclContext *DC = D->getDeclContext();
307    // Check for extern variable declared locally.
308    if (DC->isFunctionOrMethod() && D->hasLinkage())
309      while (!DC->isNamespace() && !DC->isTranslationUnit())
310        DC = DC->getParent();
311    if (DC->isTranslationUnit() && D->getLinkage() != InternalLinkage)
312      return false;
313  }
314
315  // Class members are always mangled.
316  if (D->getDeclContext()->isRecord())
317    return true;
318
319  // C functions and "main" are not mangled.
320  if ((FD && FD->isMain()) || isInCLinkageSpecification(D))
321    return false;
322
323  return true;
324}
325
326void CXXNameMangler::mangle(const NamedDecl *D, llvm::StringRef Prefix) {
327  // Any decl can be declared with __asm("foo") on it, and this takes precedence
328  // over all other naming in the .o file.
329  if (const AsmLabelAttr *ALA = D->getAttr<AsmLabelAttr>()) {
330    // If we have an asm name, then we use it as the mangling.
331    Out << '\01';  // LLVM IR Marker for __asm("foo")
332    Out << ALA->getLabel();
333    return;
334  }
335
336  // <mangled-name> ::= _Z <encoding>
337  //            ::= <data name>
338  //            ::= <special-name>
339  Out << Prefix;
340  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
341    mangleFunctionEncoding(FD);
342  else if (const VarDecl *VD = dyn_cast<VarDecl>(D))
343    mangleName(VD);
344  else
345    mangleName(cast<FieldDecl>(D));
346}
347
348void CXXNameMangler::mangleFunctionEncoding(const FunctionDecl *FD) {
349  // <encoding> ::= <function name> <bare-function-type>
350  mangleName(FD);
351
352  // Don't mangle in the type if this isn't a decl we should typically mangle.
353  if (!Context.shouldMangleDeclName(FD))
354    return;
355
356  // Whether the mangling of a function type includes the return type depends on
357  // the context and the nature of the function. The rules for deciding whether
358  // the return type is included are:
359  //
360  //   1. Template functions (names or types) have return types encoded, with
361  //   the exceptions listed below.
362  //   2. Function types not appearing as part of a function name mangling,
363  //   e.g. parameters, pointer types, etc., have return type encoded, with the
364  //   exceptions listed below.
365  //   3. Non-template function names do not have return types encoded.
366  //
367  // The exceptions mentioned in (1) and (2) above, for which the return type is
368  // never included, are
369  //   1. Constructors.
370  //   2. Destructors.
371  //   3. Conversion operator functions, e.g. operator int.
372  bool MangleReturnType = false;
373  if (FunctionTemplateDecl *PrimaryTemplate = FD->getPrimaryTemplate()) {
374    if (!(isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD) ||
375          isa<CXXConversionDecl>(FD)))
376      MangleReturnType = true;
377
378    // Mangle the type of the primary template.
379    FD = PrimaryTemplate->getTemplatedDecl();
380  }
381
382  // Do the canonicalization out here because parameter types can
383  // undergo additional canonicalization (e.g. array decay).
384  FunctionType *FT = cast<FunctionType>(Context.getASTContext()
385                                          .getCanonicalType(FD->getType()));
386
387  mangleBareFunctionType(FT, MangleReturnType);
388}
389
390static const DeclContext *IgnoreLinkageSpecDecls(const DeclContext *DC) {
391  while (isa<LinkageSpecDecl>(DC)) {
392    DC = DC->getParent();
393  }
394
395  return DC;
396}
397
398/// isStd - Return whether a given namespace is the 'std' namespace.
399static bool isStd(const NamespaceDecl *NS) {
400  if (!IgnoreLinkageSpecDecls(NS->getParent())->isTranslationUnit())
401    return false;
402
403  const IdentifierInfo *II = NS->getOriginalNamespace()->getIdentifier();
404  return II && II->isStr("std");
405}
406
407// isStdNamespace - Return whether a given decl context is a toplevel 'std'
408// namespace.
409static bool isStdNamespace(const DeclContext *DC) {
410  if (!DC->isNamespace())
411    return false;
412
413  return isStd(cast<NamespaceDecl>(DC));
414}
415
416static const TemplateDecl *
417isTemplate(const NamedDecl *ND, const TemplateArgumentList *&TemplateArgs) {
418  // Check if we have a function template.
419  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)){
420    if (const TemplateDecl *TD = FD->getPrimaryTemplate()) {
421      TemplateArgs = FD->getTemplateSpecializationArgs();
422      return TD;
423    }
424  }
425
426  // Check if we have a class template.
427  if (const ClassTemplateSpecializationDecl *Spec =
428        dyn_cast<ClassTemplateSpecializationDecl>(ND)) {
429    TemplateArgs = &Spec->getTemplateArgs();
430    return Spec->getSpecializedTemplate();
431  }
432
433  return 0;
434}
435
436void CXXNameMangler::mangleName(const NamedDecl *ND) {
437  //  <name> ::= <nested-name>
438  //         ::= <unscoped-name>
439  //         ::= <unscoped-template-name> <template-args>
440  //         ::= <local-name>
441  //
442  const DeclContext *DC = ND->getDeclContext();
443
444  // If this is an extern variable declared locally, the relevant DeclContext
445  // is that of the containing namespace, or the translation unit.
446  if (isa<FunctionDecl>(DC) && ND->hasLinkage())
447    while (!DC->isNamespace() && !DC->isTranslationUnit())
448      DC = DC->getParent();
449  else if (GetLocalClassDecl(ND)) {
450    mangleLocalName(ND);
451    return;
452  }
453
454  while (isa<LinkageSpecDecl>(DC))
455    DC = DC->getParent();
456
457  if (DC->isTranslationUnit() || isStdNamespace(DC)) {
458    // Check if we have a template.
459    const TemplateArgumentList *TemplateArgs = 0;
460    if (const TemplateDecl *TD = isTemplate(ND, TemplateArgs)) {
461      mangleUnscopedTemplateName(TD);
462      TemplateParameterList *TemplateParameters = TD->getTemplateParameters();
463      mangleTemplateArgs(*TemplateParameters, *TemplateArgs);
464      return;
465    }
466
467    mangleUnscopedName(ND);
468    return;
469  }
470
471  if (isa<FunctionDecl>(DC) || isa<ObjCMethodDecl>(DC)) {
472    mangleLocalName(ND);
473    return;
474  }
475
476  mangleNestedName(ND, DC);
477}
478void CXXNameMangler::mangleName(const TemplateDecl *TD,
479                                const TemplateArgument *TemplateArgs,
480                                unsigned NumTemplateArgs) {
481  const DeclContext *DC = IgnoreLinkageSpecDecls(TD->getDeclContext());
482
483  if (DC->isTranslationUnit() || isStdNamespace(DC)) {
484    mangleUnscopedTemplateName(TD);
485    TemplateParameterList *TemplateParameters = TD->getTemplateParameters();
486    mangleTemplateArgs(*TemplateParameters, TemplateArgs, NumTemplateArgs);
487  } else {
488    mangleNestedName(TD, TemplateArgs, NumTemplateArgs);
489  }
490}
491
492void CXXNameMangler::mangleUnscopedName(const NamedDecl *ND) {
493  //  <unscoped-name> ::= <unqualified-name>
494  //                  ::= St <unqualified-name>   # ::std::
495  if (isStdNamespace(ND->getDeclContext()))
496    Out << "St";
497
498  mangleUnqualifiedName(ND);
499}
500
501void CXXNameMangler::mangleUnscopedTemplateName(const TemplateDecl *ND) {
502  //     <unscoped-template-name> ::= <unscoped-name>
503  //                              ::= <substitution>
504  if (mangleSubstitution(ND))
505    return;
506
507  // <template-template-param> ::= <template-param>
508  if (const TemplateTemplateParmDecl *TTP
509                                     = dyn_cast<TemplateTemplateParmDecl>(ND)) {
510    mangleTemplateParameter(TTP->getIndex());
511    return;
512  }
513
514  mangleUnscopedName(ND->getTemplatedDecl());
515  addSubstitution(ND);
516}
517
518void CXXNameMangler::mangleUnscopedTemplateName(TemplateName Template) {
519  //     <unscoped-template-name> ::= <unscoped-name>
520  //                              ::= <substitution>
521  if (TemplateDecl *TD = Template.getAsTemplateDecl())
522    return mangleUnscopedTemplateName(TD);
523
524  if (mangleSubstitution(Template))
525    return;
526
527  // FIXME: How to cope with operators here?
528  DependentTemplateName *Dependent = Template.getAsDependentTemplateName();
529  assert(Dependent && "Not a dependent template name?");
530  if (!Dependent->isIdentifier()) {
531    // FIXME: We can't possibly know the arity of the operator here!
532    Diagnostic &Diags = Context.getDiags();
533    unsigned DiagID = Diags.getCustomDiagID(Diagnostic::Error,
534                                      "cannot mangle dependent operator name");
535    Diags.Report(DiagID);
536    return;
537  }
538
539  mangleSourceName(Dependent->getIdentifier());
540  addSubstitution(Template);
541}
542
543void CXXNameMangler::mangleFloat(const llvm::APFloat &F) {
544  // TODO: avoid this copy with careful stream management.
545  llvm::SmallString<20> Buffer;
546  F.bitcastToAPInt().toString(Buffer, 16, false);
547  Out.write(Buffer.data(), Buffer.size());
548}
549
550void CXXNameMangler::mangleNumber(const llvm::APSInt &Value) {
551  if (Value.isSigned() && Value.isNegative()) {
552    Out << 'n';
553    Value.abs().print(Out, true);
554  } else
555    Value.print(Out, Value.isSigned());
556}
557
558void CXXNameMangler::mangleNumber(int64_t Number) {
559  //  <number> ::= [n] <non-negative decimal integer>
560  if (Number < 0) {
561    Out << 'n';
562    Number = -Number;
563  }
564
565  Out << Number;
566}
567
568void CXXNameMangler::mangleCallOffset(int64_t NonVirtual, int64_t Virtual) {
569  //  <call-offset>  ::= h <nv-offset> _
570  //                 ::= v <v-offset> _
571  //  <nv-offset>    ::= <offset number>        # non-virtual base override
572  //  <v-offset>     ::= <offset number> _ <virtual offset number>
573  //                      # virtual base override, with vcall offset
574  if (!Virtual) {
575    Out << 'h';
576    mangleNumber(NonVirtual);
577    Out << '_';
578    return;
579  }
580
581  Out << 'v';
582  mangleNumber(NonVirtual);
583  Out << '_';
584  mangleNumber(Virtual);
585  Out << '_';
586}
587
588void CXXNameMangler::mangleUnresolvedScope(NestedNameSpecifier *Qualifier) {
589  Qualifier = getASTContext().getCanonicalNestedNameSpecifier(Qualifier);
590  switch (Qualifier->getKind()) {
591  case NestedNameSpecifier::Global:
592    // nothing
593    break;
594  case NestedNameSpecifier::Namespace:
595    mangleName(Qualifier->getAsNamespace());
596    break;
597  case NestedNameSpecifier::TypeSpec:
598  case NestedNameSpecifier::TypeSpecWithTemplate: {
599    const Type *QTy = Qualifier->getAsType();
600
601    if (const TemplateSpecializationType *TST =
602        dyn_cast<TemplateSpecializationType>(QTy)) {
603      if (!mangleSubstitution(QualType(TST, 0))) {
604        mangleTemplatePrefix(TST->getTemplateName());
605
606        // FIXME: GCC does not appear to mangle the template arguments when
607        // the template in question is a dependent template name. Should we
608        // emulate that badness?
609        mangleTemplateArgs(TST->getTemplateName(), TST->getArgs(),
610                           TST->getNumArgs());
611        addSubstitution(QualType(TST, 0));
612      }
613    } else {
614      // We use the QualType mangle type variant here because it handles
615      // substitutions.
616      mangleType(QualType(QTy, 0));
617    }
618  }
619    break;
620  case NestedNameSpecifier::Identifier:
621    // Member expressions can have these without prefixes.
622    if (Qualifier->getPrefix())
623      mangleUnresolvedScope(Qualifier->getPrefix());
624    mangleSourceName(Qualifier->getAsIdentifier());
625    break;
626  }
627}
628
629/// Mangles a name which was not resolved to a specific entity.
630void CXXNameMangler::mangleUnresolvedName(NestedNameSpecifier *Qualifier,
631                                          DeclarationName Name,
632                                          unsigned KnownArity) {
633  if (Qualifier)
634    mangleUnresolvedScope(Qualifier);
635  // FIXME: ambiguity of unqualified lookup with ::
636
637  mangleUnqualifiedName(0, Name, KnownArity);
638}
639
640static const FieldDecl *FindFirstNamedDataMember(const RecordDecl *RD) {
641  assert(RD->isAnonymousStructOrUnion() &&
642         "Expected anonymous struct or union!");
643
644  for (RecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end();
645       I != E; ++I) {
646    const FieldDecl *FD = *I;
647
648    if (FD->getIdentifier())
649      return FD;
650
651    if (const RecordType *RT = FD->getType()->getAs<RecordType>()) {
652      if (const FieldDecl *NamedDataMember =
653          FindFirstNamedDataMember(RT->getDecl()))
654        return NamedDataMember;
655    }
656  }
657
658  // We didn't find a named data member.
659  return 0;
660}
661
662void CXXNameMangler::mangleUnqualifiedName(const NamedDecl *ND,
663                                           DeclarationName Name,
664                                           unsigned KnownArity) {
665  //  <unqualified-name> ::= <operator-name>
666  //                     ::= <ctor-dtor-name>
667  //                     ::= <source-name>
668  switch (Name.getNameKind()) {
669  case DeclarationName::Identifier: {
670    if (const IdentifierInfo *II = Name.getAsIdentifierInfo()) {
671      // We must avoid conflicts between internally- and externally-
672      // linked variable declaration names in the same TU.
673      // This naming convention is the same as that followed by GCC, though it
674      // shouldn't actually matter.
675      if (ND && isa<VarDecl>(ND) && ND->getLinkage() == InternalLinkage &&
676          ND->getDeclContext()->isFileContext())
677        Out << 'L';
678
679      mangleSourceName(II);
680      break;
681    }
682
683    // Otherwise, an anonymous entity.  We must have a declaration.
684    assert(ND && "mangling empty name without declaration");
685
686    if (const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ND)) {
687      if (NS->isAnonymousNamespace()) {
688        // This is how gcc mangles these names.
689        Out << "12_GLOBAL__N_1";
690        break;
691      }
692    }
693
694    if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) {
695      // We must have an anonymous union or struct declaration.
696      const RecordDecl *RD =
697        cast<RecordDecl>(VD->getType()->getAs<RecordType>()->getDecl());
698
699      // Itanium C++ ABI 5.1.2:
700      //
701      //   For the purposes of mangling, the name of an anonymous union is
702      //   considered to be the name of the first named data member found by a
703      //   pre-order, depth-first, declaration-order walk of the data members of
704      //   the anonymous union. If there is no such data member (i.e., if all of
705      //   the data members in the union are unnamed), then there is no way for
706      //   a program to refer to the anonymous union, and there is therefore no
707      //   need to mangle its name.
708      const FieldDecl *FD = FindFirstNamedDataMember(RD);
709
710      // It's actually possible for various reasons for us to get here
711      // with an empty anonymous struct / union.  Fortunately, it
712      // doesn't really matter what name we generate.
713      if (!FD) break;
714      assert(FD->getIdentifier() && "Data member name isn't an identifier!");
715
716      mangleSourceName(FD->getIdentifier());
717      break;
718    }
719
720    // We must have an anonymous struct.
721    const TagDecl *TD = cast<TagDecl>(ND);
722    if (const TypedefDecl *D = TD->getTypedefForAnonDecl()) {
723      assert(TD->getDeclContext() == D->getDeclContext() &&
724             "Typedef should not be in another decl context!");
725      assert(D->getDeclName().getAsIdentifierInfo() &&
726             "Typedef was not named!");
727      mangleSourceName(D->getDeclName().getAsIdentifierInfo());
728      break;
729    }
730
731    // Get a unique id for the anonymous struct.
732    uint64_t AnonStructId = Context.getAnonymousStructId(TD);
733
734    // Mangle it as a source name in the form
735    // [n] $_<id>
736    // where n is the length of the string.
737    llvm::SmallString<8> Str;
738    Str += "$_";
739    Str += llvm::utostr(AnonStructId);
740
741    Out << Str.size();
742    Out << Str.str();
743    break;
744  }
745
746  case DeclarationName::ObjCZeroArgSelector:
747  case DeclarationName::ObjCOneArgSelector:
748  case DeclarationName::ObjCMultiArgSelector:
749    assert(false && "Can't mangle Objective-C selector names here!");
750    break;
751
752  case DeclarationName::CXXConstructorName:
753    if (ND == Structor)
754      // If the named decl is the C++ constructor we're mangling, use the type
755      // we were given.
756      mangleCXXCtorType(static_cast<CXXCtorType>(StructorType));
757    else
758      // Otherwise, use the complete constructor name. This is relevant if a
759      // class with a constructor is declared within a constructor.
760      mangleCXXCtorType(Ctor_Complete);
761    break;
762
763  case DeclarationName::CXXDestructorName:
764    if (ND == Structor)
765      // If the named decl is the C++ destructor we're mangling, use the type we
766      // were given.
767      mangleCXXDtorType(static_cast<CXXDtorType>(StructorType));
768    else
769      // Otherwise, use the complete destructor name. This is relevant if a
770      // class with a destructor is declared within a destructor.
771      mangleCXXDtorType(Dtor_Complete);
772    break;
773
774  case DeclarationName::CXXConversionFunctionName:
775    // <operator-name> ::= cv <type>    # (cast)
776    Out << "cv";
777    mangleType(Context.getASTContext().getCanonicalType(Name.getCXXNameType()));
778    break;
779
780  case DeclarationName::CXXOperatorName: {
781    unsigned Arity;
782    if (ND) {
783      Arity = cast<FunctionDecl>(ND)->getNumParams();
784
785      // If we have a C++ member function, we need to include the 'this' pointer.
786      // FIXME: This does not make sense for operators that are static, but their
787      // names stay the same regardless of the arity (operator new for instance).
788      if (isa<CXXMethodDecl>(ND))
789        Arity++;
790    } else
791      Arity = KnownArity;
792
793    mangleOperatorName(Name.getCXXOverloadedOperator(), Arity);
794    break;
795  }
796
797  case DeclarationName::CXXLiteralOperatorName:
798    // FIXME: This mangling is not yet official.
799    Out << "li";
800    mangleSourceName(Name.getCXXLiteralIdentifier());
801    break;
802
803  case DeclarationName::CXXUsingDirective:
804    assert(false && "Can't mangle a using directive name!");
805    break;
806  }
807}
808
809void CXXNameMangler::mangleSourceName(const IdentifierInfo *II) {
810  // <source-name> ::= <positive length number> <identifier>
811  // <number> ::= [n] <non-negative decimal integer>
812  // <identifier> ::= <unqualified source code identifier>
813  Out << II->getLength() << II->getName();
814}
815
816void CXXNameMangler::mangleNestedName(const NamedDecl *ND,
817                                      const DeclContext *DC,
818                                      bool NoFunction) {
819  // <nested-name> ::= N [<CV-qualifiers>] <prefix> <unqualified-name> E
820  //               ::= N [<CV-qualifiers>] <template-prefix> <template-args> E
821
822  Out << 'N';
823  if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(ND))
824    mangleQualifiers(Qualifiers::fromCVRMask(Method->getTypeQualifiers()));
825
826  // Check if we have a template.
827  const TemplateArgumentList *TemplateArgs = 0;
828  if (const TemplateDecl *TD = isTemplate(ND, TemplateArgs)) {
829    mangleTemplatePrefix(TD);
830    TemplateParameterList *TemplateParameters = TD->getTemplateParameters();
831    mangleTemplateArgs(*TemplateParameters, *TemplateArgs);
832  }
833  else {
834    manglePrefix(DC, NoFunction);
835    mangleUnqualifiedName(ND);
836  }
837
838  Out << 'E';
839}
840void CXXNameMangler::mangleNestedName(const TemplateDecl *TD,
841                                      const TemplateArgument *TemplateArgs,
842                                      unsigned NumTemplateArgs) {
843  // <nested-name> ::= N [<CV-qualifiers>] <template-prefix> <template-args> E
844
845  Out << 'N';
846
847  mangleTemplatePrefix(TD);
848  TemplateParameterList *TemplateParameters = TD->getTemplateParameters();
849  mangleTemplateArgs(*TemplateParameters, TemplateArgs, NumTemplateArgs);
850
851  Out << 'E';
852}
853
854void CXXNameMangler::mangleLocalName(const NamedDecl *ND) {
855  // <local-name> := Z <function encoding> E <entity name> [<discriminator>]
856  //              := Z <function encoding> E s [<discriminator>]
857  // <discriminator> := _ <non-negative number>
858  const DeclContext *DC = ND->getDeclContext();
859  Out << 'Z';
860
861  if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(DC)) {
862   mangleObjCMethodName(MD);
863  } else if (const CXXRecordDecl *RD = GetLocalClassDecl(ND)) {
864    mangleFunctionEncoding(cast<FunctionDecl>(RD->getDeclContext()));
865    Out << 'E';
866
867    // Mangle the name relative to the closest enclosing function.
868    if (ND == RD) // equality ok because RD derived from ND above
869      mangleUnqualifiedName(ND);
870    else
871      mangleNestedName(ND, DC, true /*NoFunction*/);
872
873    unsigned disc;
874    if (Context.getNextDiscriminator(RD, disc)) {
875      if (disc < 10)
876        Out << '_' << disc;
877      else
878        Out << "__" << disc << '_';
879    }
880
881    return;
882  }
883  else
884    mangleFunctionEncoding(cast<FunctionDecl>(DC));
885
886  Out << 'E';
887  mangleUnqualifiedName(ND);
888}
889
890void CXXNameMangler::manglePrefix(const DeclContext *DC, bool NoFunction) {
891  //  <prefix> ::= <prefix> <unqualified-name>
892  //           ::= <template-prefix> <template-args>
893  //           ::= <template-param>
894  //           ::= # empty
895  //           ::= <substitution>
896
897  while (isa<LinkageSpecDecl>(DC))
898    DC = DC->getParent();
899
900  if (DC->isTranslationUnit())
901    return;
902
903  if (const BlockDecl *Block = dyn_cast<BlockDecl>(DC)) {
904    manglePrefix(DC->getParent(), NoFunction);
905    llvm::SmallString<64> Name;
906    Context.mangleBlock(Block, Name);
907    Out << Name.size() << Name;
908    return;
909  }
910
911  if (mangleSubstitution(cast<NamedDecl>(DC)))
912    return;
913
914  // Check if we have a template.
915  const TemplateArgumentList *TemplateArgs = 0;
916  if (const TemplateDecl *TD = isTemplate(cast<NamedDecl>(DC), TemplateArgs)) {
917    mangleTemplatePrefix(TD);
918    TemplateParameterList *TemplateParameters = TD->getTemplateParameters();
919    mangleTemplateArgs(*TemplateParameters, *TemplateArgs);
920  }
921  else if(NoFunction && (isa<FunctionDecl>(DC) || isa<ObjCMethodDecl>(DC)))
922    return;
923  else if (const ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(DC))
924    mangleObjCMethodName(Method);
925  else {
926    manglePrefix(DC->getParent(), NoFunction);
927    mangleUnqualifiedName(cast<NamedDecl>(DC));
928  }
929
930  addSubstitution(cast<NamedDecl>(DC));
931}
932
933void CXXNameMangler::mangleTemplatePrefix(TemplateName Template) {
934  // <template-prefix> ::= <prefix> <template unqualified-name>
935  //                   ::= <template-param>
936  //                   ::= <substitution>
937  if (TemplateDecl *TD = Template.getAsTemplateDecl())
938    return mangleTemplatePrefix(TD);
939
940  if (QualifiedTemplateName *Qualified = Template.getAsQualifiedTemplateName())
941    mangleUnresolvedScope(Qualified->getQualifier());
942
943  if (OverloadedTemplateStorage *Overloaded
944                                      = Template.getAsOverloadedTemplate()) {
945    mangleUnqualifiedName(0, (*Overloaded->begin())->getDeclName(),
946                          UnknownArity);
947    return;
948  }
949
950  DependentTemplateName *Dependent = Template.getAsDependentTemplateName();
951  assert(Dependent && "Unknown template name kind?");
952  mangleUnresolvedScope(Dependent->getQualifier());
953  mangleUnscopedTemplateName(Template);
954}
955
956void CXXNameMangler::mangleTemplatePrefix(const TemplateDecl *ND) {
957  // <template-prefix> ::= <prefix> <template unqualified-name>
958  //                   ::= <template-param>
959  //                   ::= <substitution>
960  // <template-template-param> ::= <template-param>
961  //                               <substitution>
962
963  if (mangleSubstitution(ND))
964    return;
965
966  // <template-template-param> ::= <template-param>
967  if (const TemplateTemplateParmDecl *TTP
968                                     = dyn_cast<TemplateTemplateParmDecl>(ND)) {
969    mangleTemplateParameter(TTP->getIndex());
970    return;
971  }
972
973  manglePrefix(ND->getDeclContext());
974  mangleUnqualifiedName(ND->getTemplatedDecl());
975  addSubstitution(ND);
976}
977
978/// Mangles a template name under the production <type>.  Required for
979/// template template arguments.
980///   <type> ::= <class-enum-type>
981///          ::= <template-param>
982///          ::= <substitution>
983void CXXNameMangler::mangleType(TemplateName TN) {
984  if (mangleSubstitution(TN))
985    return;
986
987  TemplateDecl *TD = 0;
988
989  switch (TN.getKind()) {
990  case TemplateName::QualifiedTemplate:
991    TD = TN.getAsQualifiedTemplateName()->getTemplateDecl();
992    goto HaveDecl;
993
994  case TemplateName::Template:
995    TD = TN.getAsTemplateDecl();
996    goto HaveDecl;
997
998  HaveDecl:
999    if (isa<TemplateTemplateParmDecl>(TD))
1000      mangleTemplateParameter(cast<TemplateTemplateParmDecl>(TD)->getIndex());
1001    else
1002      mangleName(TD);
1003    break;
1004
1005  case TemplateName::OverloadedTemplate:
1006    llvm_unreachable("can't mangle an overloaded template name as a <type>");
1007    break;
1008
1009  case TemplateName::DependentTemplate: {
1010    const DependentTemplateName *Dependent = TN.getAsDependentTemplateName();
1011    assert(Dependent->isIdentifier());
1012
1013    // <class-enum-type> ::= <name>
1014    // <name> ::= <nested-name>
1015    mangleUnresolvedScope(Dependent->getQualifier());
1016    mangleSourceName(Dependent->getIdentifier());
1017    break;
1018  }
1019
1020  case TemplateName::SubstTemplateTemplateParmPack: {
1021    SubstTemplateTemplateParmPackStorage *SubstPack
1022      = TN.getAsSubstTemplateTemplateParmPack();
1023    mangleTemplateParameter(SubstPack->getParameterPack()->getIndex());
1024    break;
1025  }
1026  }
1027
1028  addSubstitution(TN);
1029}
1030
1031void
1032CXXNameMangler::mangleOperatorName(OverloadedOperatorKind OO, unsigned Arity) {
1033  switch (OO) {
1034  // <operator-name> ::= nw     # new
1035  case OO_New: Out << "nw"; break;
1036  //              ::= na        # new[]
1037  case OO_Array_New: Out << "na"; break;
1038  //              ::= dl        # delete
1039  case OO_Delete: Out << "dl"; break;
1040  //              ::= da        # delete[]
1041  case OO_Array_Delete: Out << "da"; break;
1042  //              ::= ps        # + (unary)
1043  //              ::= pl        # + (binary or unknown)
1044  case OO_Plus:
1045    Out << (Arity == 1? "ps" : "pl"); break;
1046  //              ::= ng        # - (unary)
1047  //              ::= mi        # - (binary or unknown)
1048  case OO_Minus:
1049    Out << (Arity == 1? "ng" : "mi"); break;
1050  //              ::= ad        # & (unary)
1051  //              ::= an        # & (binary or unknown)
1052  case OO_Amp:
1053    Out << (Arity == 1? "ad" : "an"); break;
1054  //              ::= de        # * (unary)
1055  //              ::= ml        # * (binary or unknown)
1056  case OO_Star:
1057    // Use binary when unknown.
1058    Out << (Arity == 1? "de" : "ml"); break;
1059  //              ::= co        # ~
1060  case OO_Tilde: Out << "co"; break;
1061  //              ::= dv        # /
1062  case OO_Slash: Out << "dv"; break;
1063  //              ::= rm        # %
1064  case OO_Percent: Out << "rm"; break;
1065  //              ::= or        # |
1066  case OO_Pipe: Out << "or"; break;
1067  //              ::= eo        # ^
1068  case OO_Caret: Out << "eo"; break;
1069  //              ::= aS        # =
1070  case OO_Equal: Out << "aS"; break;
1071  //              ::= pL        # +=
1072  case OO_PlusEqual: Out << "pL"; break;
1073  //              ::= mI        # -=
1074  case OO_MinusEqual: Out << "mI"; break;
1075  //              ::= mL        # *=
1076  case OO_StarEqual: Out << "mL"; break;
1077  //              ::= dV        # /=
1078  case OO_SlashEqual: Out << "dV"; break;
1079  //              ::= rM        # %=
1080  case OO_PercentEqual: Out << "rM"; break;
1081  //              ::= aN        # &=
1082  case OO_AmpEqual: Out << "aN"; break;
1083  //              ::= oR        # |=
1084  case OO_PipeEqual: Out << "oR"; break;
1085  //              ::= eO        # ^=
1086  case OO_CaretEqual: Out << "eO"; break;
1087  //              ::= ls        # <<
1088  case OO_LessLess: Out << "ls"; break;
1089  //              ::= rs        # >>
1090  case OO_GreaterGreater: Out << "rs"; break;
1091  //              ::= lS        # <<=
1092  case OO_LessLessEqual: Out << "lS"; break;
1093  //              ::= rS        # >>=
1094  case OO_GreaterGreaterEqual: Out << "rS"; break;
1095  //              ::= eq        # ==
1096  case OO_EqualEqual: Out << "eq"; break;
1097  //              ::= ne        # !=
1098  case OO_ExclaimEqual: Out << "ne"; break;
1099  //              ::= lt        # <
1100  case OO_Less: Out << "lt"; break;
1101  //              ::= gt        # >
1102  case OO_Greater: Out << "gt"; break;
1103  //              ::= le        # <=
1104  case OO_LessEqual: Out << "le"; break;
1105  //              ::= ge        # >=
1106  case OO_GreaterEqual: Out << "ge"; break;
1107  //              ::= nt        # !
1108  case OO_Exclaim: Out << "nt"; break;
1109  //              ::= aa        # &&
1110  case OO_AmpAmp: Out << "aa"; break;
1111  //              ::= oo        # ||
1112  case OO_PipePipe: Out << "oo"; break;
1113  //              ::= pp        # ++
1114  case OO_PlusPlus: Out << "pp"; break;
1115  //              ::= mm        # --
1116  case OO_MinusMinus: Out << "mm"; break;
1117  //              ::= cm        # ,
1118  case OO_Comma: Out << "cm"; break;
1119  //              ::= pm        # ->*
1120  case OO_ArrowStar: Out << "pm"; break;
1121  //              ::= pt        # ->
1122  case OO_Arrow: Out << "pt"; break;
1123  //              ::= cl        # ()
1124  case OO_Call: Out << "cl"; break;
1125  //              ::= ix        # []
1126  case OO_Subscript: Out << "ix"; break;
1127
1128  //              ::= qu        # ?
1129  // The conditional operator can't be overloaded, but we still handle it when
1130  // mangling expressions.
1131  case OO_Conditional: Out << "qu"; break;
1132
1133  case OO_None:
1134  case NUM_OVERLOADED_OPERATORS:
1135    assert(false && "Not an overloaded operator");
1136    break;
1137  }
1138}
1139
1140void CXXNameMangler::mangleQualifiers(Qualifiers Quals) {
1141  // <CV-qualifiers> ::= [r] [V] [K]    # restrict (C99), volatile, const
1142  if (Quals.hasRestrict())
1143    Out << 'r';
1144  if (Quals.hasVolatile())
1145    Out << 'V';
1146  if (Quals.hasConst())
1147    Out << 'K';
1148
1149  if (Quals.hasAddressSpace()) {
1150    // Extension:
1151    //
1152    //   <type> ::= U <address-space-number>
1153    //
1154    // where <address-space-number> is a source name consisting of 'AS'
1155    // followed by the address space <number>.
1156    llvm::SmallString<64> ASString;
1157    ASString = "AS" + llvm::utostr_32(Quals.getAddressSpace());
1158    Out << 'U' << ASString.size() << ASString;
1159  }
1160
1161  // FIXME: For now, just drop all extension qualifiers on the floor.
1162}
1163
1164void CXXNameMangler::mangleObjCMethodName(const ObjCMethodDecl *MD) {
1165  llvm::SmallString<64> Buffer;
1166  Context.mangleObjCMethodName(MD, Buffer);
1167  Out << Buffer;
1168}
1169
1170void CXXNameMangler::mangleType(QualType T) {
1171  // Only operate on the canonical type!
1172  T = Context.getASTContext().getCanonicalType(T);
1173
1174  bool IsSubstitutable = T.hasLocalQualifiers() || !isa<BuiltinType>(T);
1175  if (IsSubstitutable && mangleSubstitution(T))
1176    return;
1177
1178  if (Qualifiers Quals = T.getLocalQualifiers()) {
1179    mangleQualifiers(Quals);
1180    // Recurse:  even if the qualified type isn't yet substitutable,
1181    // the unqualified type might be.
1182    mangleType(T.getLocalUnqualifiedType());
1183  } else {
1184    switch (T->getTypeClass()) {
1185#define ABSTRACT_TYPE(CLASS, PARENT)
1186#define NON_CANONICAL_TYPE(CLASS, PARENT) \
1187    case Type::CLASS: \
1188      llvm_unreachable("can't mangle non-canonical type " #CLASS "Type"); \
1189      return;
1190#define TYPE(CLASS, PARENT) \
1191    case Type::CLASS: \
1192      mangleType(static_cast<const CLASS##Type*>(T.getTypePtr())); \
1193      break;
1194#include "clang/AST/TypeNodes.def"
1195    }
1196  }
1197
1198  // Add the substitution.
1199  if (IsSubstitutable)
1200    addSubstitution(T);
1201}
1202
1203void CXXNameMangler::mangleNameOrStandardSubstitution(const NamedDecl *ND) {
1204  if (!mangleStandardSubstitution(ND))
1205    mangleName(ND);
1206}
1207
1208void CXXNameMangler::mangleType(const BuiltinType *T) {
1209  //  <type>         ::= <builtin-type>
1210  //  <builtin-type> ::= v  # void
1211  //                 ::= w  # wchar_t
1212  //                 ::= b  # bool
1213  //                 ::= c  # char
1214  //                 ::= a  # signed char
1215  //                 ::= h  # unsigned char
1216  //                 ::= s  # short
1217  //                 ::= t  # unsigned short
1218  //                 ::= i  # int
1219  //                 ::= j  # unsigned int
1220  //                 ::= l  # long
1221  //                 ::= m  # unsigned long
1222  //                 ::= x  # long long, __int64
1223  //                 ::= y  # unsigned long long, __int64
1224  //                 ::= n  # __int128
1225  // UNSUPPORTED:    ::= o  # unsigned __int128
1226  //                 ::= f  # float
1227  //                 ::= d  # double
1228  //                 ::= e  # long double, __float80
1229  // UNSUPPORTED:    ::= g  # __float128
1230  // UNSUPPORTED:    ::= Dd # IEEE 754r decimal floating point (64 bits)
1231  // UNSUPPORTED:    ::= De # IEEE 754r decimal floating point (128 bits)
1232  // UNSUPPORTED:    ::= Df # IEEE 754r decimal floating point (32 bits)
1233  // UNSUPPORTED:    ::= Dh # IEEE 754r half-precision floating point (16 bits)
1234  //                 ::= Di # char32_t
1235  //                 ::= Ds # char16_t
1236  //                 ::= Dn # std::nullptr_t (i.e., decltype(nullptr))
1237  //                 ::= u <source-name>    # vendor extended type
1238  switch (T->getKind()) {
1239  case BuiltinType::Void: Out << 'v'; break;
1240  case BuiltinType::Bool: Out << 'b'; break;
1241  case BuiltinType::Char_U: case BuiltinType::Char_S: Out << 'c'; break;
1242  case BuiltinType::UChar: Out << 'h'; break;
1243  case BuiltinType::UShort: Out << 't'; break;
1244  case BuiltinType::UInt: Out << 'j'; break;
1245  case BuiltinType::ULong: Out << 'm'; break;
1246  case BuiltinType::ULongLong: Out << 'y'; break;
1247  case BuiltinType::UInt128: Out << 'o'; break;
1248  case BuiltinType::SChar: Out << 'a'; break;
1249  case BuiltinType::WChar_S:
1250  case BuiltinType::WChar_U: Out << 'w'; break;
1251  case BuiltinType::Char16: Out << "Ds"; break;
1252  case BuiltinType::Char32: Out << "Di"; break;
1253  case BuiltinType::Short: Out << 's'; break;
1254  case BuiltinType::Int: Out << 'i'; break;
1255  case BuiltinType::Long: Out << 'l'; break;
1256  case BuiltinType::LongLong: Out << 'x'; break;
1257  case BuiltinType::Int128: Out << 'n'; break;
1258  case BuiltinType::Float: Out << 'f'; break;
1259  case BuiltinType::Double: Out << 'd'; break;
1260  case BuiltinType::LongDouble: Out << 'e'; break;
1261  case BuiltinType::NullPtr: Out << "Dn"; break;
1262
1263  case BuiltinType::Overload:
1264  case BuiltinType::Dependent:
1265    assert(false &&
1266           "Overloaded and dependent types shouldn't get to name mangling");
1267    break;
1268  case BuiltinType::UndeducedAuto:
1269    assert(0 && "Should not see undeduced auto here");
1270    break;
1271  case BuiltinType::ObjCId: Out << "11objc_object"; break;
1272  case BuiltinType::ObjCClass: Out << "10objc_class"; break;
1273  case BuiltinType::ObjCSel: Out << "13objc_selector"; break;
1274  }
1275}
1276
1277// <type>          ::= <function-type>
1278// <function-type> ::= F [Y] <bare-function-type> E
1279void CXXNameMangler::mangleType(const FunctionProtoType *T) {
1280  Out << 'F';
1281  // FIXME: We don't have enough information in the AST to produce the 'Y'
1282  // encoding for extern "C" function types.
1283  mangleBareFunctionType(T, /*MangleReturnType=*/true);
1284  Out << 'E';
1285}
1286void CXXNameMangler::mangleType(const FunctionNoProtoType *T) {
1287  llvm_unreachable("Can't mangle K&R function prototypes");
1288}
1289void CXXNameMangler::mangleBareFunctionType(const FunctionType *T,
1290                                            bool MangleReturnType) {
1291  // We should never be mangling something without a prototype.
1292  const FunctionProtoType *Proto = cast<FunctionProtoType>(T);
1293
1294  // <bare-function-type> ::= <signature type>+
1295  if (MangleReturnType)
1296    mangleType(Proto->getResultType());
1297
1298  if (Proto->getNumArgs() == 0 && !Proto->isVariadic()) {
1299    //   <builtin-type> ::= v   # void
1300    Out << 'v';
1301    return;
1302  }
1303
1304  for (FunctionProtoType::arg_type_iterator Arg = Proto->arg_type_begin(),
1305                                         ArgEnd = Proto->arg_type_end();
1306       Arg != ArgEnd; ++Arg)
1307    mangleType(*Arg);
1308
1309  // <builtin-type>      ::= z  # ellipsis
1310  if (Proto->isVariadic())
1311    Out << 'z';
1312}
1313
1314// <type>            ::= <class-enum-type>
1315// <class-enum-type> ::= <name>
1316void CXXNameMangler::mangleType(const UnresolvedUsingType *T) {
1317  mangleName(T->getDecl());
1318}
1319
1320// <type>            ::= <class-enum-type>
1321// <class-enum-type> ::= <name>
1322void CXXNameMangler::mangleType(const EnumType *T) {
1323  mangleType(static_cast<const TagType*>(T));
1324}
1325void CXXNameMangler::mangleType(const RecordType *T) {
1326  mangleType(static_cast<const TagType*>(T));
1327}
1328void CXXNameMangler::mangleType(const TagType *T) {
1329  mangleName(T->getDecl());
1330}
1331
1332// <type>       ::= <array-type>
1333// <array-type> ::= A <positive dimension number> _ <element type>
1334//              ::= A [<dimension expression>] _ <element type>
1335void CXXNameMangler::mangleType(const ConstantArrayType *T) {
1336  Out << 'A' << T->getSize() << '_';
1337  mangleType(T->getElementType());
1338}
1339void CXXNameMangler::mangleType(const VariableArrayType *T) {
1340  Out << 'A';
1341  // decayed vla types (size 0) will just be skipped.
1342  if (T->getSizeExpr())
1343    mangleExpression(T->getSizeExpr());
1344  Out << '_';
1345  mangleType(T->getElementType());
1346}
1347void CXXNameMangler::mangleType(const DependentSizedArrayType *T) {
1348  Out << 'A';
1349  mangleExpression(T->getSizeExpr());
1350  Out << '_';
1351  mangleType(T->getElementType());
1352}
1353void CXXNameMangler::mangleType(const IncompleteArrayType *T) {
1354  Out << "A_";
1355  mangleType(T->getElementType());
1356}
1357
1358// <type>                   ::= <pointer-to-member-type>
1359// <pointer-to-member-type> ::= M <class type> <member type>
1360void CXXNameMangler::mangleType(const MemberPointerType *T) {
1361  Out << 'M';
1362  mangleType(QualType(T->getClass(), 0));
1363  QualType PointeeType = T->getPointeeType();
1364  if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(PointeeType)) {
1365    mangleQualifiers(Qualifiers::fromCVRMask(FPT->getTypeQuals()));
1366    mangleType(FPT);
1367
1368    // Itanium C++ ABI 5.1.8:
1369    //
1370    //   The type of a non-static member function is considered to be different,
1371    //   for the purposes of substitution, from the type of a namespace-scope or
1372    //   static member function whose type appears similar. The types of two
1373    //   non-static member functions are considered to be different, for the
1374    //   purposes of substitution, if the functions are members of different
1375    //   classes. In other words, for the purposes of substitution, the class of
1376    //   which the function is a member is considered part of the type of
1377    //   function.
1378
1379    // We increment the SeqID here to emulate adding an entry to the
1380    // substitution table. We can't actually add it because we don't want this
1381    // particular function type to be substituted.
1382    ++SeqID;
1383  } else
1384    mangleType(PointeeType);
1385}
1386
1387// <type>           ::= <template-param>
1388void CXXNameMangler::mangleType(const TemplateTypeParmType *T) {
1389  mangleTemplateParameter(T->getIndex());
1390}
1391
1392// <type>           ::= <template-param>
1393void CXXNameMangler::mangleType(const SubstTemplateTypeParmPackType *T) {
1394  mangleTemplateParameter(T->getReplacedParameter()->getIndex());
1395}
1396
1397// <type> ::= P <type>   # pointer-to
1398void CXXNameMangler::mangleType(const PointerType *T) {
1399  Out << 'P';
1400  mangleType(T->getPointeeType());
1401}
1402void CXXNameMangler::mangleType(const ObjCObjectPointerType *T) {
1403  Out << 'P';
1404  mangleType(T->getPointeeType());
1405}
1406
1407// <type> ::= R <type>   # reference-to
1408void CXXNameMangler::mangleType(const LValueReferenceType *T) {
1409  Out << 'R';
1410  mangleType(T->getPointeeType());
1411}
1412
1413// <type> ::= O <type>   # rvalue reference-to (C++0x)
1414void CXXNameMangler::mangleType(const RValueReferenceType *T) {
1415  Out << 'O';
1416  mangleType(T->getPointeeType());
1417}
1418
1419// <type> ::= C <type>   # complex pair (C 2000)
1420void CXXNameMangler::mangleType(const ComplexType *T) {
1421  Out << 'C';
1422  mangleType(T->getElementType());
1423}
1424
1425// ARM's ABI for Neon vector types specifies that they should be mangled as
1426// if they are structs (to match ARM's initial implementation).  The
1427// vector type must be one of the special types predefined by ARM.
1428void CXXNameMangler::mangleNeonVectorType(const VectorType *T) {
1429  QualType EltType = T->getElementType();
1430  assert(EltType->isBuiltinType() && "Neon vector element not a BuiltinType");
1431  const char *EltName = 0;
1432  if (T->getVectorKind() == VectorType::NeonPolyVector) {
1433    switch (cast<BuiltinType>(EltType)->getKind()) {
1434    case BuiltinType::SChar:     EltName = "poly8_t"; break;
1435    case BuiltinType::Short:     EltName = "poly16_t"; break;
1436    default: llvm_unreachable("unexpected Neon polynomial vector element type");
1437    }
1438  } else {
1439    switch (cast<BuiltinType>(EltType)->getKind()) {
1440    case BuiltinType::SChar:     EltName = "int8_t"; break;
1441    case BuiltinType::UChar:     EltName = "uint8_t"; break;
1442    case BuiltinType::Short:     EltName = "int16_t"; break;
1443    case BuiltinType::UShort:    EltName = "uint16_t"; break;
1444    case BuiltinType::Int:       EltName = "int32_t"; break;
1445    case BuiltinType::UInt:      EltName = "uint32_t"; break;
1446    case BuiltinType::LongLong:  EltName = "int64_t"; break;
1447    case BuiltinType::ULongLong: EltName = "uint64_t"; break;
1448    case BuiltinType::Float:     EltName = "float32_t"; break;
1449    default: llvm_unreachable("unexpected Neon vector element type");
1450    }
1451  }
1452  const char *BaseName = 0;
1453  unsigned BitSize = (T->getNumElements() *
1454                      getASTContext().getTypeSize(EltType));
1455  if (BitSize == 64)
1456    BaseName = "__simd64_";
1457  else {
1458    assert(BitSize == 128 && "Neon vector type not 64 or 128 bits");
1459    BaseName = "__simd128_";
1460  }
1461  Out << strlen(BaseName) + strlen(EltName);
1462  Out << BaseName << EltName;
1463}
1464
1465// GNU extension: vector types
1466// <type>                  ::= <vector-type>
1467// <vector-type>           ::= Dv <positive dimension number> _
1468//                                    <extended element type>
1469//                         ::= Dv [<dimension expression>] _ <element type>
1470// <extended element type> ::= <element type>
1471//                         ::= p # AltiVec vector pixel
1472void CXXNameMangler::mangleType(const VectorType *T) {
1473  if ((T->getVectorKind() == VectorType::NeonVector ||
1474       T->getVectorKind() == VectorType::NeonPolyVector)) {
1475    mangleNeonVectorType(T);
1476    return;
1477  }
1478  Out << "Dv" << T->getNumElements() << '_';
1479  if (T->getVectorKind() == VectorType::AltiVecPixel)
1480    Out << 'p';
1481  else if (T->getVectorKind() == VectorType::AltiVecBool)
1482    Out << 'b';
1483  else
1484    mangleType(T->getElementType());
1485}
1486void CXXNameMangler::mangleType(const ExtVectorType *T) {
1487  mangleType(static_cast<const VectorType*>(T));
1488}
1489void CXXNameMangler::mangleType(const DependentSizedExtVectorType *T) {
1490  Out << "Dv";
1491  mangleExpression(T->getSizeExpr());
1492  Out << '_';
1493  mangleType(T->getElementType());
1494}
1495
1496void CXXNameMangler::mangleType(const PackExpansionType *T) {
1497  // <type>  ::= Dp <type>          # pack expansion (C++0x)
1498  Out << "Dp";
1499  mangleType(T->getPattern());
1500}
1501
1502void CXXNameMangler::mangleType(const ObjCInterfaceType *T) {
1503  mangleSourceName(T->getDecl()->getIdentifier());
1504}
1505
1506void CXXNameMangler::mangleType(const ObjCObjectType *T) {
1507  // We don't allow overloading by different protocol qualification,
1508  // so mangling them isn't necessary.
1509  mangleType(T->getBaseType());
1510}
1511
1512void CXXNameMangler::mangleType(const BlockPointerType *T) {
1513  Out << "U13block_pointer";
1514  mangleType(T->getPointeeType());
1515}
1516
1517void CXXNameMangler::mangleType(const InjectedClassNameType *T) {
1518  // Mangle injected class name types as if the user had written the
1519  // specialization out fully.  It may not actually be possible to see
1520  // this mangling, though.
1521  mangleType(T->getInjectedSpecializationType());
1522}
1523
1524void CXXNameMangler::mangleType(const TemplateSpecializationType *T) {
1525  if (TemplateDecl *TD = T->getTemplateName().getAsTemplateDecl()) {
1526    mangleName(TD, T->getArgs(), T->getNumArgs());
1527  } else {
1528    if (mangleSubstitution(QualType(T, 0)))
1529      return;
1530
1531    mangleTemplatePrefix(T->getTemplateName());
1532
1533    // FIXME: GCC does not appear to mangle the template arguments when
1534    // the template in question is a dependent template name. Should we
1535    // emulate that badness?
1536    mangleTemplateArgs(T->getTemplateName(), T->getArgs(), T->getNumArgs());
1537    addSubstitution(QualType(T, 0));
1538  }
1539}
1540
1541void CXXNameMangler::mangleType(const DependentNameType *T) {
1542  // Typename types are always nested
1543  Out << 'N';
1544  mangleUnresolvedScope(T->getQualifier());
1545  mangleSourceName(T->getIdentifier());
1546  Out << 'E';
1547}
1548
1549void CXXNameMangler::mangleType(const DependentTemplateSpecializationType *T) {
1550  // Dependently-scoped template types are always nested
1551  Out << 'N';
1552
1553  // TODO: avoid making this TemplateName.
1554  TemplateName Prefix =
1555    getASTContext().getDependentTemplateName(T->getQualifier(),
1556                                             T->getIdentifier());
1557  mangleTemplatePrefix(Prefix);
1558
1559  // FIXME: GCC does not appear to mangle the template arguments when
1560  // the template in question is a dependent template name. Should we
1561  // emulate that badness?
1562  mangleTemplateArgs(Prefix, T->getArgs(), T->getNumArgs());
1563  Out << 'E';
1564}
1565
1566void CXXNameMangler::mangleType(const TypeOfType *T) {
1567  // FIXME: this is pretty unsatisfactory, but there isn't an obvious
1568  // "extension with parameters" mangling.
1569  Out << "u6typeof";
1570}
1571
1572void CXXNameMangler::mangleType(const TypeOfExprType *T) {
1573  // FIXME: this is pretty unsatisfactory, but there isn't an obvious
1574  // "extension with parameters" mangling.
1575  Out << "u6typeof";
1576}
1577
1578void CXXNameMangler::mangleType(const DecltypeType *T) {
1579  Expr *E = T->getUnderlyingExpr();
1580
1581  // type ::= Dt <expression> E  # decltype of an id-expression
1582  //                             #   or class member access
1583  //      ::= DT <expression> E  # decltype of an expression
1584
1585  // This purports to be an exhaustive list of id-expressions and
1586  // class member accesses.  Note that we do not ignore parentheses;
1587  // parentheses change the semantics of decltype for these
1588  // expressions (and cause the mangler to use the other form).
1589  if (isa<DeclRefExpr>(E) ||
1590      isa<MemberExpr>(E) ||
1591      isa<UnresolvedLookupExpr>(E) ||
1592      isa<DependentScopeDeclRefExpr>(E) ||
1593      isa<CXXDependentScopeMemberExpr>(E) ||
1594      isa<UnresolvedMemberExpr>(E))
1595    Out << "Dt";
1596  else
1597    Out << "DT";
1598  mangleExpression(E);
1599  Out << 'E';
1600}
1601
1602void CXXNameMangler::mangleIntegerLiteral(QualType T,
1603                                          const llvm::APSInt &Value) {
1604  //  <expr-primary> ::= L <type> <value number> E # integer literal
1605  Out << 'L';
1606
1607  mangleType(T);
1608  if (T->isBooleanType()) {
1609    // Boolean values are encoded as 0/1.
1610    Out << (Value.getBoolValue() ? '1' : '0');
1611  } else {
1612    mangleNumber(Value);
1613  }
1614  Out << 'E';
1615
1616}
1617
1618/// Mangles a member expression.  Implicit accesses are not handled,
1619/// but that should be okay, because you shouldn't be able to
1620/// make an implicit access in a function template declaration.
1621void CXXNameMangler::mangleMemberExpr(const Expr *Base,
1622                                      bool IsArrow,
1623                                      NestedNameSpecifier *Qualifier,
1624                                      DeclarationName Member,
1625                                      unsigned Arity) {
1626  // gcc-4.4 uses 'dt' for dot expressions, which is reasonable.
1627  // OTOH, gcc also mangles the name as an expression.
1628  Out << (IsArrow ? "pt" : "dt");
1629  mangleExpression(Base);
1630  mangleUnresolvedName(Qualifier, Member, Arity);
1631}
1632
1633void CXXNameMangler::mangleExpression(const Expr *E, unsigned Arity) {
1634  // <expression> ::= <unary operator-name> <expression>
1635  //              ::= <binary operator-name> <expression> <expression>
1636  //              ::= <trinary operator-name> <expression> <expression> <expression>
1637  //              ::= cl <expression>* E             # call
1638  //              ::= cv <type> expression           # conversion with one argument
1639  //              ::= cv <type> _ <expression>* E # conversion with a different number of arguments
1640  //              ::= st <type>                      # sizeof (a type)
1641  //              ::= at <type>                      # alignof (a type)
1642  //              ::= <template-param>
1643  //              ::= <function-param>
1644  //              ::= sr <type> <unqualified-name>                   # dependent name
1645  //              ::= sr <type> <unqualified-name> <template-args>   # dependent template-id
1646  //              ::= sZ <template-param>                            # size of a parameter pack
1647  //              ::= sZ <function-param>    # size of a function parameter pack
1648  //              ::= <expr-primary>
1649  // <expr-primary> ::= L <type> <value number> E    # integer literal
1650  //                ::= L <type <value float> E      # floating literal
1651  //                ::= L <mangled-name> E           # external name
1652  switch (E->getStmtClass()) {
1653  case Expr::NoStmtClass:
1654#define EXPR(Type, Base)
1655#define STMT(Type, Base) \
1656  case Expr::Type##Class:
1657#include "clang/AST/StmtNodes.inc"
1658    // fallthrough
1659
1660  // These all can only appear in local or variable-initialization
1661  // contexts and so should never appear in a mangling.
1662  case Expr::AddrLabelExprClass:
1663  case Expr::BlockDeclRefExprClass:
1664  case Expr::CXXThisExprClass:
1665  case Expr::DesignatedInitExprClass:
1666  case Expr::ImplicitValueInitExprClass:
1667  case Expr::InitListExprClass:
1668  case Expr::ParenListExprClass:
1669  case Expr::CXXScalarValueInitExprClass:
1670    llvm_unreachable("unexpected statement kind");
1671    break;
1672
1673  // FIXME: invent manglings for all these.
1674  case Expr::BlockExprClass:
1675  case Expr::CXXPseudoDestructorExprClass:
1676  case Expr::ChooseExprClass:
1677  case Expr::CompoundLiteralExprClass:
1678  case Expr::ExtVectorElementExprClass:
1679  case Expr::ObjCEncodeExprClass:
1680  case Expr::ObjCIsaExprClass:
1681  case Expr::ObjCIvarRefExprClass:
1682  case Expr::ObjCMessageExprClass:
1683  case Expr::ObjCPropertyRefExprClass:
1684  case Expr::ObjCProtocolExprClass:
1685  case Expr::ObjCSelectorExprClass:
1686  case Expr::ObjCStringLiteralClass:
1687  case Expr::OffsetOfExprClass:
1688  case Expr::PredefinedExprClass:
1689  case Expr::ShuffleVectorExprClass:
1690  case Expr::StmtExprClass:
1691  case Expr::UnaryTypeTraitExprClass:
1692  case Expr::BinaryTypeTraitExprClass:
1693  case Expr::VAArgExprClass:
1694  case Expr::CXXUuidofExprClass:
1695  case Expr::CXXNoexceptExprClass: {
1696    // As bad as this diagnostic is, it's better than crashing.
1697    Diagnostic &Diags = Context.getDiags();
1698    unsigned DiagID = Diags.getCustomDiagID(Diagnostic::Error,
1699                                     "cannot yet mangle expression type %0");
1700    Diags.Report(E->getExprLoc(), DiagID)
1701      << E->getStmtClassName() << E->getSourceRange();
1702    break;
1703  }
1704
1705  case Expr::OpaqueValueExprClass:
1706    llvm_unreachable("cannot mangle opaque value; mangling wrong thing?");
1707
1708  case Expr::CXXDefaultArgExprClass:
1709    mangleExpression(cast<CXXDefaultArgExpr>(E)->getExpr(), Arity);
1710    break;
1711
1712  case Expr::CXXMemberCallExprClass: // fallthrough
1713  case Expr::CallExprClass: {
1714    const CallExpr *CE = cast<CallExpr>(E);
1715    Out << "cl";
1716    mangleExpression(CE->getCallee(), CE->getNumArgs());
1717    for (unsigned I = 0, N = CE->getNumArgs(); I != N; ++I)
1718      mangleExpression(CE->getArg(I));
1719    Out << 'E';
1720    break;
1721  }
1722
1723  case Expr::CXXNewExprClass: {
1724    // Proposal from David Vandervoorde, 2010.06.30
1725    const CXXNewExpr *New = cast<CXXNewExpr>(E);
1726    if (New->isGlobalNew()) Out << "gs";
1727    Out << (New->isArray() ? "na" : "nw");
1728    for (CXXNewExpr::const_arg_iterator I = New->placement_arg_begin(),
1729           E = New->placement_arg_end(); I != E; ++I)
1730      mangleExpression(*I);
1731    Out << '_';
1732    mangleType(New->getAllocatedType());
1733    if (New->hasInitializer()) {
1734      Out << "pi";
1735      for (CXXNewExpr::const_arg_iterator I = New->constructor_arg_begin(),
1736             E = New->constructor_arg_end(); I != E; ++I)
1737        mangleExpression(*I);
1738    }
1739    Out << 'E';
1740    break;
1741  }
1742
1743  case Expr::MemberExprClass: {
1744    const MemberExpr *ME = cast<MemberExpr>(E);
1745    mangleMemberExpr(ME->getBase(), ME->isArrow(),
1746                     ME->getQualifier(), ME->getMemberDecl()->getDeclName(),
1747                     Arity);
1748    break;
1749  }
1750
1751  case Expr::UnresolvedMemberExprClass: {
1752    const UnresolvedMemberExpr *ME = cast<UnresolvedMemberExpr>(E);
1753    mangleMemberExpr(ME->getBase(), ME->isArrow(),
1754                     ME->getQualifier(), ME->getMemberName(),
1755                     Arity);
1756    if (ME->hasExplicitTemplateArgs())
1757      mangleTemplateArgs(ME->getExplicitTemplateArgs());
1758    break;
1759  }
1760
1761  case Expr::CXXDependentScopeMemberExprClass: {
1762    const CXXDependentScopeMemberExpr *ME
1763      = cast<CXXDependentScopeMemberExpr>(E);
1764    mangleMemberExpr(ME->getBase(), ME->isArrow(),
1765                     ME->getQualifier(), ME->getMember(),
1766                     Arity);
1767    if (ME->hasExplicitTemplateArgs())
1768      mangleTemplateArgs(ME->getExplicitTemplateArgs());
1769    break;
1770  }
1771
1772  case Expr::UnresolvedLookupExprClass: {
1773    // The ABI doesn't cover how to mangle overload sets, so we mangle
1774    // using something as close as possible to the original lookup
1775    // expression.
1776    const UnresolvedLookupExpr *ULE = cast<UnresolvedLookupExpr>(E);
1777    mangleUnresolvedName(ULE->getQualifier(), ULE->getName(), Arity);
1778    if (ULE->hasExplicitTemplateArgs())
1779      mangleTemplateArgs(ULE->getExplicitTemplateArgs());
1780    break;
1781  }
1782
1783  case Expr::CXXUnresolvedConstructExprClass: {
1784    const CXXUnresolvedConstructExpr *CE = cast<CXXUnresolvedConstructExpr>(E);
1785    unsigned N = CE->arg_size();
1786
1787    Out << "cv";
1788    mangleType(CE->getType());
1789    if (N != 1) Out << '_';
1790    for (unsigned I = 0; I != N; ++I) mangleExpression(CE->getArg(I));
1791    if (N != 1) Out << 'E';
1792    break;
1793  }
1794
1795  case Expr::CXXTemporaryObjectExprClass:
1796  case Expr::CXXConstructExprClass: {
1797    const CXXConstructExpr *CE = cast<CXXConstructExpr>(E);
1798    unsigned N = CE->getNumArgs();
1799
1800    Out << "cv";
1801    mangleType(CE->getType());
1802    if (N != 1) Out << '_';
1803    for (unsigned I = 0; I != N; ++I) mangleExpression(CE->getArg(I));
1804    if (N != 1) Out << 'E';
1805    break;
1806  }
1807
1808  case Expr::SizeOfAlignOfExprClass: {
1809    const SizeOfAlignOfExpr *SAE = cast<SizeOfAlignOfExpr>(E);
1810    if (SAE->isSizeOf()) Out << 's';
1811    else Out << 'a';
1812    if (SAE->isArgumentType()) {
1813      Out << 't';
1814      mangleType(SAE->getArgumentType());
1815    } else {
1816      Out << 'z';
1817      mangleExpression(SAE->getArgumentExpr());
1818    }
1819    break;
1820  }
1821
1822  case Expr::CXXThrowExprClass: {
1823    const CXXThrowExpr *TE = cast<CXXThrowExpr>(E);
1824
1825    // Proposal from David Vandervoorde, 2010.06.30
1826    if (TE->getSubExpr()) {
1827      Out << "tw";
1828      mangleExpression(TE->getSubExpr());
1829    } else {
1830      Out << "tr";
1831    }
1832    break;
1833  }
1834
1835  case Expr::CXXTypeidExprClass: {
1836    const CXXTypeidExpr *TIE = cast<CXXTypeidExpr>(E);
1837
1838    // Proposal from David Vandervoorde, 2010.06.30
1839    if (TIE->isTypeOperand()) {
1840      Out << "ti";
1841      mangleType(TIE->getTypeOperand());
1842    } else {
1843      Out << "te";
1844      mangleExpression(TIE->getExprOperand());
1845    }
1846    break;
1847  }
1848
1849  case Expr::CXXDeleteExprClass: {
1850    const CXXDeleteExpr *DE = cast<CXXDeleteExpr>(E);
1851
1852    // Proposal from David Vandervoorde, 2010.06.30
1853    if (DE->isGlobalDelete()) Out << "gs";
1854    Out << (DE->isArrayForm() ? "da" : "dl");
1855    mangleExpression(DE->getArgument());
1856    break;
1857  }
1858
1859  case Expr::UnaryOperatorClass: {
1860    const UnaryOperator *UO = cast<UnaryOperator>(E);
1861    mangleOperatorName(UnaryOperator::getOverloadedOperator(UO->getOpcode()),
1862                       /*Arity=*/1);
1863    mangleExpression(UO->getSubExpr());
1864    break;
1865  }
1866
1867  case Expr::ArraySubscriptExprClass: {
1868    const ArraySubscriptExpr *AE = cast<ArraySubscriptExpr>(E);
1869
1870    // Array subscript is treated as a syntactically wierd form of
1871    // binary operator.
1872    Out << "ix";
1873    mangleExpression(AE->getLHS());
1874    mangleExpression(AE->getRHS());
1875    break;
1876  }
1877
1878  case Expr::CompoundAssignOperatorClass: // fallthrough
1879  case Expr::BinaryOperatorClass: {
1880    const BinaryOperator *BO = cast<BinaryOperator>(E);
1881    mangleOperatorName(BinaryOperator::getOverloadedOperator(BO->getOpcode()),
1882                       /*Arity=*/2);
1883    mangleExpression(BO->getLHS());
1884    mangleExpression(BO->getRHS());
1885    break;
1886  }
1887
1888  case Expr::ConditionalOperatorClass: {
1889    const ConditionalOperator *CO = cast<ConditionalOperator>(E);
1890    mangleOperatorName(OO_Conditional, /*Arity=*/3);
1891    mangleExpression(CO->getCond());
1892    mangleExpression(CO->getLHS(), Arity);
1893    mangleExpression(CO->getRHS(), Arity);
1894    break;
1895  }
1896
1897  case Expr::ImplicitCastExprClass: {
1898    mangleExpression(cast<ImplicitCastExpr>(E)->getSubExpr(), Arity);
1899    break;
1900  }
1901
1902  case Expr::CStyleCastExprClass:
1903  case Expr::CXXStaticCastExprClass:
1904  case Expr::CXXDynamicCastExprClass:
1905  case Expr::CXXReinterpretCastExprClass:
1906  case Expr::CXXConstCastExprClass:
1907  case Expr::CXXFunctionalCastExprClass: {
1908    const ExplicitCastExpr *ECE = cast<ExplicitCastExpr>(E);
1909    Out << "cv";
1910    mangleType(ECE->getType());
1911    mangleExpression(ECE->getSubExpr());
1912    break;
1913  }
1914
1915  case Expr::CXXOperatorCallExprClass: {
1916    const CXXOperatorCallExpr *CE = cast<CXXOperatorCallExpr>(E);
1917    unsigned NumArgs = CE->getNumArgs();
1918    mangleOperatorName(CE->getOperator(), /*Arity=*/NumArgs);
1919    // Mangle the arguments.
1920    for (unsigned i = 0; i != NumArgs; ++i)
1921      mangleExpression(CE->getArg(i));
1922    break;
1923  }
1924
1925  case Expr::ParenExprClass:
1926    mangleExpression(cast<ParenExpr>(E)->getSubExpr(), Arity);
1927    break;
1928
1929  case Expr::DeclRefExprClass: {
1930    const NamedDecl *D = cast<DeclRefExpr>(E)->getDecl();
1931
1932    switch (D->getKind()) {
1933    default:
1934      //  <expr-primary> ::= L <mangled-name> E # external name
1935      Out << 'L';
1936      mangle(D, "_Z");
1937      Out << 'E';
1938      break;
1939
1940    case Decl::EnumConstant: {
1941      const EnumConstantDecl *ED = cast<EnumConstantDecl>(D);
1942      mangleIntegerLiteral(ED->getType(), ED->getInitVal());
1943      break;
1944    }
1945
1946    case Decl::NonTypeTemplateParm: {
1947      const NonTypeTemplateParmDecl *PD = cast<NonTypeTemplateParmDecl>(D);
1948      mangleTemplateParameter(PD->getIndex());
1949      break;
1950    }
1951
1952    }
1953
1954    break;
1955  }
1956
1957  case Expr::SubstNonTypeTemplateParmPackExprClass:
1958    mangleTemplateParameter(
1959     cast<SubstNonTypeTemplateParmPackExpr>(E)->getParameterPack()->getIndex());
1960    break;
1961
1962  case Expr::DependentScopeDeclRefExprClass: {
1963    const DependentScopeDeclRefExpr *DRE = cast<DependentScopeDeclRefExpr>(E);
1964    NestedNameSpecifier *NNS = DRE->getQualifier();
1965    const Type *QTy = NNS->getAsType();
1966
1967    // When we're dealing with a nested-name-specifier that has just a
1968    // dependent identifier in it, mangle that as a typename.  FIXME:
1969    // It isn't clear that we ever actually want to have such a
1970    // nested-name-specifier; why not just represent it as a typename type?
1971    if (!QTy && NNS->getAsIdentifier() && NNS->getPrefix()) {
1972      QTy = getASTContext().getDependentNameType(ETK_Typename,
1973                                                 NNS->getPrefix(),
1974                                                 NNS->getAsIdentifier())
1975              .getTypePtr();
1976    }
1977    assert(QTy && "Qualifier was not type!");
1978
1979    // ::= sr <type> <unqualified-name>                  # dependent name
1980    // ::= sr <type> <unqualified-name> <template-args>  # dependent template-id
1981    Out << "sr";
1982    mangleType(QualType(QTy, 0));
1983    mangleUnqualifiedName(0, DRE->getDeclName(), Arity);
1984    if (DRE->hasExplicitTemplateArgs())
1985      mangleTemplateArgs(DRE->getExplicitTemplateArgs());
1986
1987    break;
1988  }
1989
1990  case Expr::CXXBindTemporaryExprClass:
1991    mangleExpression(cast<CXXBindTemporaryExpr>(E)->getSubExpr());
1992    break;
1993
1994  case Expr::ExprWithCleanupsClass:
1995    mangleExpression(cast<ExprWithCleanups>(E)->getSubExpr(), Arity);
1996    break;
1997
1998  case Expr::FloatingLiteralClass: {
1999    const FloatingLiteral *FL = cast<FloatingLiteral>(E);
2000    Out << 'L';
2001    mangleType(FL->getType());
2002    mangleFloat(FL->getValue());
2003    Out << 'E';
2004    break;
2005  }
2006
2007  case Expr::CharacterLiteralClass:
2008    Out << 'L';
2009    mangleType(E->getType());
2010    Out << cast<CharacterLiteral>(E)->getValue();
2011    Out << 'E';
2012    break;
2013
2014  case Expr::CXXBoolLiteralExprClass:
2015    Out << "Lb";
2016    Out << (cast<CXXBoolLiteralExpr>(E)->getValue() ? '1' : '0');
2017    Out << 'E';
2018    break;
2019
2020  case Expr::IntegerLiteralClass: {
2021    llvm::APSInt Value(cast<IntegerLiteral>(E)->getValue());
2022    if (E->getType()->isSignedIntegerType())
2023      Value.setIsSigned(true);
2024    mangleIntegerLiteral(E->getType(), Value);
2025    break;
2026  }
2027
2028  case Expr::ImaginaryLiteralClass: {
2029    const ImaginaryLiteral *IE = cast<ImaginaryLiteral>(E);
2030    // Mangle as if a complex literal.
2031    // Proposal from David Vandevoorde, 2010.06.30.
2032    Out << 'L';
2033    mangleType(E->getType());
2034    if (const FloatingLiteral *Imag =
2035          dyn_cast<FloatingLiteral>(IE->getSubExpr())) {
2036      // Mangle a floating-point zero of the appropriate type.
2037      mangleFloat(llvm::APFloat(Imag->getValue().getSemantics()));
2038      Out << '_';
2039      mangleFloat(Imag->getValue());
2040    } else {
2041      Out << "0_";
2042      llvm::APSInt Value(cast<IntegerLiteral>(IE->getSubExpr())->getValue());
2043      if (IE->getSubExpr()->getType()->isSignedIntegerType())
2044        Value.setIsSigned(true);
2045      mangleNumber(Value);
2046    }
2047    Out << 'E';
2048    break;
2049  }
2050
2051  case Expr::StringLiteralClass: {
2052    // Revised proposal from David Vandervoorde, 2010.07.15.
2053    Out << 'L';
2054    assert(isa<ConstantArrayType>(E->getType()));
2055    mangleType(E->getType());
2056    Out << 'E';
2057    break;
2058  }
2059
2060  case Expr::GNUNullExprClass:
2061    // FIXME: should this really be mangled the same as nullptr?
2062    // fallthrough
2063
2064  case Expr::CXXNullPtrLiteralExprClass: {
2065    // Proposal from David Vandervoorde, 2010.06.30, as
2066    // modified by ABI list discussion.
2067    Out << "LDnE";
2068    break;
2069  }
2070
2071  case Expr::PackExpansionExprClass:
2072    Out << "sp";
2073    mangleExpression(cast<PackExpansionExpr>(E)->getPattern());
2074    break;
2075
2076  case Expr::SizeOfPackExprClass: {
2077    Out << "sZ";
2078    const NamedDecl *Pack = cast<SizeOfPackExpr>(E)->getPack();
2079    if (const TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Pack))
2080      mangleTemplateParameter(TTP->getIndex());
2081    else if (const NonTypeTemplateParmDecl *NTTP
2082                = dyn_cast<NonTypeTemplateParmDecl>(Pack))
2083      mangleTemplateParameter(NTTP->getIndex());
2084    else if (const TemplateTemplateParmDecl *TempTP
2085                                    = dyn_cast<TemplateTemplateParmDecl>(Pack))
2086      mangleTemplateParameter(TempTP->getIndex());
2087    else {
2088      // Note: proposed by Mike Herrick on 11/30/10
2089      // <expression> ::= sZ <function-param>  # size of function parameter pack
2090      Diagnostic &Diags = Context.getDiags();
2091      unsigned DiagID = Diags.getCustomDiagID(Diagnostic::Error,
2092                            "cannot mangle sizeof...(function parameter pack)");
2093      Diags.Report(DiagID);
2094      return;
2095    }
2096  }
2097  }
2098}
2099
2100void CXXNameMangler::mangleCXXCtorType(CXXCtorType T) {
2101  // <ctor-dtor-name> ::= C1  # complete object constructor
2102  //                  ::= C2  # base object constructor
2103  //                  ::= C3  # complete object allocating constructor
2104  //
2105  switch (T) {
2106  case Ctor_Complete:
2107    Out << "C1";
2108    break;
2109  case Ctor_Base:
2110    Out << "C2";
2111    break;
2112  case Ctor_CompleteAllocating:
2113    Out << "C3";
2114    break;
2115  }
2116}
2117
2118void CXXNameMangler::mangleCXXDtorType(CXXDtorType T) {
2119  // <ctor-dtor-name> ::= D0  # deleting destructor
2120  //                  ::= D1  # complete object destructor
2121  //                  ::= D2  # base object destructor
2122  //
2123  switch (T) {
2124  case Dtor_Deleting:
2125    Out << "D0";
2126    break;
2127  case Dtor_Complete:
2128    Out << "D1";
2129    break;
2130  case Dtor_Base:
2131    Out << "D2";
2132    break;
2133  }
2134}
2135
2136void CXXNameMangler::mangleTemplateArgs(
2137                          const ExplicitTemplateArgumentList &TemplateArgs) {
2138  // <template-args> ::= I <template-arg>+ E
2139  Out << 'I';
2140  for (unsigned I = 0, E = TemplateArgs.NumTemplateArgs; I != E; ++I)
2141    mangleTemplateArg(0, TemplateArgs.getTemplateArgs()[I].getArgument());
2142  Out << 'E';
2143}
2144
2145void CXXNameMangler::mangleTemplateArgs(TemplateName Template,
2146                                        const TemplateArgument *TemplateArgs,
2147                                        unsigned NumTemplateArgs) {
2148  if (TemplateDecl *TD = Template.getAsTemplateDecl())
2149    return mangleTemplateArgs(*TD->getTemplateParameters(), TemplateArgs,
2150                              NumTemplateArgs);
2151
2152  // <template-args> ::= I <template-arg>+ E
2153  Out << 'I';
2154  for (unsigned i = 0; i != NumTemplateArgs; ++i)
2155    mangleTemplateArg(0, TemplateArgs[i]);
2156  Out << 'E';
2157}
2158
2159void CXXNameMangler::mangleTemplateArgs(const TemplateParameterList &PL,
2160                                        const TemplateArgumentList &AL) {
2161  // <template-args> ::= I <template-arg>+ E
2162  Out << 'I';
2163  for (unsigned i = 0, e = AL.size(); i != e; ++i)
2164    mangleTemplateArg(PL.getParam(i), AL[i]);
2165  Out << 'E';
2166}
2167
2168void CXXNameMangler::mangleTemplateArgs(const TemplateParameterList &PL,
2169                                        const TemplateArgument *TemplateArgs,
2170                                        unsigned NumTemplateArgs) {
2171  // <template-args> ::= I <template-arg>+ E
2172  Out << 'I';
2173  for (unsigned i = 0; i != NumTemplateArgs; ++i)
2174    mangleTemplateArg(PL.getParam(i), TemplateArgs[i]);
2175  Out << 'E';
2176}
2177
2178void CXXNameMangler::mangleTemplateArg(const NamedDecl *P,
2179                                       const TemplateArgument &A) {
2180  // <template-arg> ::= <type>              # type or template
2181  //                ::= X <expression> E    # expression
2182  //                ::= <expr-primary>      # simple expressions
2183  //                ::= J <template-arg>* E # argument pack
2184  //                ::= sp <expression>     # pack expansion of (C++0x)
2185  switch (A.getKind()) {
2186  case TemplateArgument::Null:
2187    llvm_unreachable("Cannot mangle NULL template argument");
2188
2189  case TemplateArgument::Type:
2190    mangleType(A.getAsType());
2191    break;
2192  case TemplateArgument::Template:
2193    // This is mangled as <type>.
2194    mangleType(A.getAsTemplate());
2195    break;
2196  case TemplateArgument::TemplateExpansion:
2197    // <type>  ::= Dp <type>          # pack expansion (C++0x)
2198    Out << "Dp";
2199    mangleType(A.getAsTemplateOrTemplatePattern());
2200    break;
2201  case TemplateArgument::Expression:
2202    Out << 'X';
2203    mangleExpression(A.getAsExpr());
2204    Out << 'E';
2205    break;
2206  case TemplateArgument::Integral:
2207    mangleIntegerLiteral(A.getIntegralType(), *A.getAsIntegral());
2208    break;
2209  case TemplateArgument::Declaration: {
2210    assert(P && "Missing template parameter for declaration argument");
2211    //  <expr-primary> ::= L <mangled-name> E # external name
2212
2213    // Clang produces AST's where pointer-to-member-function expressions
2214    // and pointer-to-function expressions are represented as a declaration not
2215    // an expression. We compensate for it here to produce the correct mangling.
2216    NamedDecl *D = cast<NamedDecl>(A.getAsDecl());
2217    const NonTypeTemplateParmDecl *Parameter = cast<NonTypeTemplateParmDecl>(P);
2218    bool compensateMangling = D->isCXXClassMember() &&
2219      !Parameter->getType()->isReferenceType();
2220    if (compensateMangling) {
2221      Out << 'X';
2222      mangleOperatorName(OO_Amp, 1);
2223    }
2224
2225    Out << 'L';
2226    // References to external entities use the mangled name; if the name would
2227    // not normally be manged then mangle it as unqualified.
2228    //
2229    // FIXME: The ABI specifies that external names here should have _Z, but
2230    // gcc leaves this off.
2231    if (compensateMangling)
2232      mangle(D, "_Z");
2233    else
2234      mangle(D, "Z");
2235    Out << 'E';
2236
2237    if (compensateMangling)
2238      Out << 'E';
2239
2240    break;
2241  }
2242
2243  case TemplateArgument::Pack: {
2244    // Note: proposal by Mike Herrick on 12/20/10
2245    Out << 'J';
2246    for (TemplateArgument::pack_iterator PA = A.pack_begin(),
2247                                      PAEnd = A.pack_end();
2248         PA != PAEnd; ++PA)
2249      mangleTemplateArg(P, *PA);
2250    Out << 'E';
2251  }
2252  }
2253}
2254
2255void CXXNameMangler::mangleTemplateParameter(unsigned Index) {
2256  // <template-param> ::= T_    # first template parameter
2257  //                  ::= T <parameter-2 non-negative number> _
2258  if (Index == 0)
2259    Out << "T_";
2260  else
2261    Out << 'T' << (Index - 1) << '_';
2262}
2263
2264// <substitution> ::= S <seq-id> _
2265//                ::= S_
2266bool CXXNameMangler::mangleSubstitution(const NamedDecl *ND) {
2267  // Try one of the standard substitutions first.
2268  if (mangleStandardSubstitution(ND))
2269    return true;
2270
2271  ND = cast<NamedDecl>(ND->getCanonicalDecl());
2272  return mangleSubstitution(reinterpret_cast<uintptr_t>(ND));
2273}
2274
2275bool CXXNameMangler::mangleSubstitution(QualType T) {
2276  if (!T.getCVRQualifiers()) {
2277    if (const RecordType *RT = T->getAs<RecordType>())
2278      return mangleSubstitution(RT->getDecl());
2279  }
2280
2281  uintptr_t TypePtr = reinterpret_cast<uintptr_t>(T.getAsOpaquePtr());
2282
2283  return mangleSubstitution(TypePtr);
2284}
2285
2286bool CXXNameMangler::mangleSubstitution(TemplateName Template) {
2287  if (TemplateDecl *TD = Template.getAsTemplateDecl())
2288    return mangleSubstitution(TD);
2289
2290  Template = Context.getASTContext().getCanonicalTemplateName(Template);
2291  return mangleSubstitution(
2292                      reinterpret_cast<uintptr_t>(Template.getAsVoidPointer()));
2293}
2294
2295bool CXXNameMangler::mangleSubstitution(uintptr_t Ptr) {
2296  llvm::DenseMap<uintptr_t, unsigned>::iterator I = Substitutions.find(Ptr);
2297  if (I == Substitutions.end())
2298    return false;
2299
2300  unsigned SeqID = I->second;
2301  if (SeqID == 0)
2302    Out << "S_";
2303  else {
2304    SeqID--;
2305
2306    // <seq-id> is encoded in base-36, using digits and upper case letters.
2307    char Buffer[10];
2308    char *BufferPtr = llvm::array_endof(Buffer);
2309
2310    if (SeqID == 0) *--BufferPtr = '0';
2311
2312    while (SeqID) {
2313      assert(BufferPtr > Buffer && "Buffer overflow!");
2314
2315      char c = static_cast<char>(SeqID % 36);
2316
2317      *--BufferPtr =  (c < 10 ? '0' + c : 'A' + c - 10);
2318      SeqID /= 36;
2319    }
2320
2321    Out << 'S'
2322        << llvm::StringRef(BufferPtr, llvm::array_endof(Buffer)-BufferPtr)
2323        << '_';
2324  }
2325
2326  return true;
2327}
2328
2329static bool isCharType(QualType T) {
2330  if (T.isNull())
2331    return false;
2332
2333  return T->isSpecificBuiltinType(BuiltinType::Char_S) ||
2334    T->isSpecificBuiltinType(BuiltinType::Char_U);
2335}
2336
2337/// isCharSpecialization - Returns whether a given type is a template
2338/// specialization of a given name with a single argument of type char.
2339static bool isCharSpecialization(QualType T, const char *Name) {
2340  if (T.isNull())
2341    return false;
2342
2343  const RecordType *RT = T->getAs<RecordType>();
2344  if (!RT)
2345    return false;
2346
2347  const ClassTemplateSpecializationDecl *SD =
2348    dyn_cast<ClassTemplateSpecializationDecl>(RT->getDecl());
2349  if (!SD)
2350    return false;
2351
2352  if (!isStdNamespace(SD->getDeclContext()))
2353    return false;
2354
2355  const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs();
2356  if (TemplateArgs.size() != 1)
2357    return false;
2358
2359  if (!isCharType(TemplateArgs[0].getAsType()))
2360    return false;
2361
2362  return SD->getIdentifier()->getName() == Name;
2363}
2364
2365template <std::size_t StrLen>
2366static bool isStreamCharSpecialization(const ClassTemplateSpecializationDecl*SD,
2367                                       const char (&Str)[StrLen]) {
2368  if (!SD->getIdentifier()->isStr(Str))
2369    return false;
2370
2371  const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs();
2372  if (TemplateArgs.size() != 2)
2373    return false;
2374
2375  if (!isCharType(TemplateArgs[0].getAsType()))
2376    return false;
2377
2378  if (!isCharSpecialization(TemplateArgs[1].getAsType(), "char_traits"))
2379    return false;
2380
2381  return true;
2382}
2383
2384bool CXXNameMangler::mangleStandardSubstitution(const NamedDecl *ND) {
2385  // <substitution> ::= St # ::std::
2386  if (const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ND)) {
2387    if (isStd(NS)) {
2388      Out << "St";
2389      return true;
2390    }
2391  }
2392
2393  if (const ClassTemplateDecl *TD = dyn_cast<ClassTemplateDecl>(ND)) {
2394    if (!isStdNamespace(TD->getDeclContext()))
2395      return false;
2396
2397    // <substitution> ::= Sa # ::std::allocator
2398    if (TD->getIdentifier()->isStr("allocator")) {
2399      Out << "Sa";
2400      return true;
2401    }
2402
2403    // <<substitution> ::= Sb # ::std::basic_string
2404    if (TD->getIdentifier()->isStr("basic_string")) {
2405      Out << "Sb";
2406      return true;
2407    }
2408  }
2409
2410  if (const ClassTemplateSpecializationDecl *SD =
2411        dyn_cast<ClassTemplateSpecializationDecl>(ND)) {
2412    if (!isStdNamespace(SD->getDeclContext()))
2413      return false;
2414
2415    //    <substitution> ::= Ss # ::std::basic_string<char,
2416    //                            ::std::char_traits<char>,
2417    //                            ::std::allocator<char> >
2418    if (SD->getIdentifier()->isStr("basic_string")) {
2419      const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs();
2420
2421      if (TemplateArgs.size() != 3)
2422        return false;
2423
2424      if (!isCharType(TemplateArgs[0].getAsType()))
2425        return false;
2426
2427      if (!isCharSpecialization(TemplateArgs[1].getAsType(), "char_traits"))
2428        return false;
2429
2430      if (!isCharSpecialization(TemplateArgs[2].getAsType(), "allocator"))
2431        return false;
2432
2433      Out << "Ss";
2434      return true;
2435    }
2436
2437    //    <substitution> ::= Si # ::std::basic_istream<char,
2438    //                            ::std::char_traits<char> >
2439    if (isStreamCharSpecialization(SD, "basic_istream")) {
2440      Out << "Si";
2441      return true;
2442    }
2443
2444    //    <substitution> ::= So # ::std::basic_ostream<char,
2445    //                            ::std::char_traits<char> >
2446    if (isStreamCharSpecialization(SD, "basic_ostream")) {
2447      Out << "So";
2448      return true;
2449    }
2450
2451    //    <substitution> ::= Sd # ::std::basic_iostream<char,
2452    //                            ::std::char_traits<char> >
2453    if (isStreamCharSpecialization(SD, "basic_iostream")) {
2454      Out << "Sd";
2455      return true;
2456    }
2457  }
2458  return false;
2459}
2460
2461void CXXNameMangler::addSubstitution(QualType T) {
2462  if (!T.getCVRQualifiers()) {
2463    if (const RecordType *RT = T->getAs<RecordType>()) {
2464      addSubstitution(RT->getDecl());
2465      return;
2466    }
2467  }
2468
2469  uintptr_t TypePtr = reinterpret_cast<uintptr_t>(T.getAsOpaquePtr());
2470  addSubstitution(TypePtr);
2471}
2472
2473void CXXNameMangler::addSubstitution(TemplateName Template) {
2474  if (TemplateDecl *TD = Template.getAsTemplateDecl())
2475    return addSubstitution(TD);
2476
2477  Template = Context.getASTContext().getCanonicalTemplateName(Template);
2478  addSubstitution(reinterpret_cast<uintptr_t>(Template.getAsVoidPointer()));
2479}
2480
2481void CXXNameMangler::addSubstitution(uintptr_t Ptr) {
2482  assert(!Substitutions.count(Ptr) && "Substitution already exists!");
2483  Substitutions[Ptr] = SeqID++;
2484}
2485
2486//
2487
2488/// \brief Mangles the name of the declaration D and emits that name to the
2489/// given output stream.
2490///
2491/// If the declaration D requires a mangled name, this routine will emit that
2492/// mangled name to \p os and return true. Otherwise, \p os will be unchanged
2493/// and this routine will return false. In this case, the caller should just
2494/// emit the identifier of the declaration (\c D->getIdentifier()) as its
2495/// name.
2496void ItaniumMangleContext::mangleName(const NamedDecl *D,
2497                                      llvm::SmallVectorImpl<char> &Res) {
2498  assert((isa<FunctionDecl>(D) || isa<VarDecl>(D)) &&
2499          "Invalid mangleName() call, argument is not a variable or function!");
2500  assert(!isa<CXXConstructorDecl>(D) && !isa<CXXDestructorDecl>(D) &&
2501         "Invalid mangleName() call on 'structor decl!");
2502
2503  PrettyStackTraceDecl CrashInfo(D, SourceLocation(),
2504                                 getASTContext().getSourceManager(),
2505                                 "Mangling declaration");
2506
2507  CXXNameMangler Mangler(*this, Res);
2508  return Mangler.mangle(D);
2509}
2510
2511void ItaniumMangleContext::mangleCXXCtor(const CXXConstructorDecl *D,
2512                                         CXXCtorType Type,
2513                                         llvm::SmallVectorImpl<char> &Res) {
2514  CXXNameMangler Mangler(*this, Res, D, Type);
2515  Mangler.mangle(D);
2516}
2517
2518void ItaniumMangleContext::mangleCXXDtor(const CXXDestructorDecl *D,
2519                                         CXXDtorType Type,
2520                                         llvm::SmallVectorImpl<char> &Res) {
2521  CXXNameMangler Mangler(*this, Res, D, Type);
2522  Mangler.mangle(D);
2523}
2524
2525void ItaniumMangleContext::mangleThunk(const CXXMethodDecl *MD,
2526                                       const ThunkInfo &Thunk,
2527                                       llvm::SmallVectorImpl<char> &Res) {
2528  //  <special-name> ::= T <call-offset> <base encoding>
2529  //                      # base is the nominal target function of thunk
2530  //  <special-name> ::= Tc <call-offset> <call-offset> <base encoding>
2531  //                      # base is the nominal target function of thunk
2532  //                      # first call-offset is 'this' adjustment
2533  //                      # second call-offset is result adjustment
2534
2535  assert(!isa<CXXDestructorDecl>(MD) &&
2536         "Use mangleCXXDtor for destructor decls!");
2537
2538  CXXNameMangler Mangler(*this, Res);
2539  Mangler.getStream() << "_ZT";
2540  if (!Thunk.Return.isEmpty())
2541    Mangler.getStream() << 'c';
2542
2543  // Mangle the 'this' pointer adjustment.
2544  Mangler.mangleCallOffset(Thunk.This.NonVirtual, Thunk.This.VCallOffsetOffset);
2545
2546  // Mangle the return pointer adjustment if there is one.
2547  if (!Thunk.Return.isEmpty())
2548    Mangler.mangleCallOffset(Thunk.Return.NonVirtual,
2549                             Thunk.Return.VBaseOffsetOffset);
2550
2551  Mangler.mangleFunctionEncoding(MD);
2552}
2553
2554void
2555ItaniumMangleContext::mangleCXXDtorThunk(const CXXDestructorDecl *DD,
2556                                         CXXDtorType Type,
2557                                         const ThisAdjustment &ThisAdjustment,
2558                                         llvm::SmallVectorImpl<char> &Res) {
2559  //  <special-name> ::= T <call-offset> <base encoding>
2560  //                      # base is the nominal target function of thunk
2561
2562  CXXNameMangler Mangler(*this, Res, DD, Type);
2563  Mangler.getStream() << "_ZT";
2564
2565  // Mangle the 'this' pointer adjustment.
2566  Mangler.mangleCallOffset(ThisAdjustment.NonVirtual,
2567                           ThisAdjustment.VCallOffsetOffset);
2568
2569  Mangler.mangleFunctionEncoding(DD);
2570}
2571
2572/// mangleGuardVariable - Returns the mangled name for a guard variable
2573/// for the passed in VarDecl.
2574void ItaniumMangleContext::mangleItaniumGuardVariable(const VarDecl *D,
2575                                             llvm::SmallVectorImpl<char> &Res) {
2576  //  <special-name> ::= GV <object name>       # Guard variable for one-time
2577  //                                            # initialization
2578  CXXNameMangler Mangler(*this, Res);
2579  Mangler.getStream() << "_ZGV";
2580  Mangler.mangleName(D);
2581}
2582
2583void ItaniumMangleContext::mangleReferenceTemporary(const VarDecl *D,
2584                                             llvm::SmallVectorImpl<char> &Res) {
2585  // We match the GCC mangling here.
2586  //  <special-name> ::= GR <object name>
2587  CXXNameMangler Mangler(*this, Res);
2588  Mangler.getStream() << "_ZGR";
2589  Mangler.mangleName(D);
2590}
2591
2592void ItaniumMangleContext::mangleCXXVTable(const CXXRecordDecl *RD,
2593                                           llvm::SmallVectorImpl<char> &Res) {
2594  // <special-name> ::= TV <type>  # virtual table
2595  CXXNameMangler Mangler(*this, Res);
2596  Mangler.getStream() << "_ZTV";
2597  Mangler.mangleNameOrStandardSubstitution(RD);
2598}
2599
2600void ItaniumMangleContext::mangleCXXVTT(const CXXRecordDecl *RD,
2601                                        llvm::SmallVectorImpl<char> &Res) {
2602  // <special-name> ::= TT <type>  # VTT structure
2603  CXXNameMangler Mangler(*this, Res);
2604  Mangler.getStream() << "_ZTT";
2605  Mangler.mangleNameOrStandardSubstitution(RD);
2606}
2607
2608void ItaniumMangleContext::mangleCXXCtorVTable(const CXXRecordDecl *RD,
2609                                               int64_t Offset,
2610                                               const CXXRecordDecl *Type,
2611                                             llvm::SmallVectorImpl<char> &Res) {
2612  // <special-name> ::= TC <type> <offset number> _ <base type>
2613  CXXNameMangler Mangler(*this, Res);
2614  Mangler.getStream() << "_ZTC";
2615  Mangler.mangleNameOrStandardSubstitution(RD);
2616  Mangler.getStream() << Offset;
2617  Mangler.getStream() << '_';
2618  Mangler.mangleNameOrStandardSubstitution(Type);
2619}
2620
2621void ItaniumMangleContext::mangleCXXRTTI(QualType Ty,
2622                                         llvm::SmallVectorImpl<char> &Res) {
2623  // <special-name> ::= TI <type>  # typeinfo structure
2624  assert(!Ty.hasQualifiers() && "RTTI info cannot have top-level qualifiers");
2625  CXXNameMangler Mangler(*this, Res);
2626  Mangler.getStream() << "_ZTI";
2627  Mangler.mangleType(Ty);
2628}
2629
2630void ItaniumMangleContext::mangleCXXRTTIName(QualType Ty,
2631                                             llvm::SmallVectorImpl<char> &Res) {
2632  // <special-name> ::= TS <type>  # typeinfo name (null terminated byte string)
2633  CXXNameMangler Mangler(*this, Res);
2634  Mangler.getStream() << "_ZTS";
2635  Mangler.mangleType(Ty);
2636}
2637
2638MangleContext *clang::createItaniumMangleContext(ASTContext &Context,
2639                                                 Diagnostic &Diags) {
2640  return new ItaniumMangleContext(Context, Diags);
2641}
2642