ItaniumMangle.cpp revision 56ca35d396d8692c384c785f9aeebcf22563fe1e
1//===--- ItaniumMangle.cpp - Itanium C++ Name Mangling ----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// Implements C++ name mangling according to the Itanium C++ ABI,
11// which is used in GCC 3.2 and newer (and many compilers that are
12// ABI-compatible with GCC):
13//
14//   http://www.codesourcery.com/public/cxx-abi/abi.html
15//
16//===----------------------------------------------------------------------===//
17#include "clang/AST/Mangle.h"
18#include "clang/AST/ASTContext.h"
19#include "clang/AST/Decl.h"
20#include "clang/AST/DeclCXX.h"
21#include "clang/AST/DeclObjC.h"
22#include "clang/AST/DeclTemplate.h"
23#include "clang/AST/ExprCXX.h"
24#include "clang/Basic/ABI.h"
25#include "clang/Basic/SourceManager.h"
26#include "clang/Basic/TargetInfo.h"
27#include "llvm/ADT/StringExtras.h"
28#include "llvm/Support/raw_ostream.h"
29#include "llvm/Support/ErrorHandling.h"
30
31#define MANGLE_CHECKER 0
32
33#if MANGLE_CHECKER
34#include <cxxabi.h>
35#endif
36
37using namespace clang;
38
39namespace {
40
41static const CXXRecordDecl *GetLocalClassDecl(const NamedDecl *ND) {
42  const DeclContext *DC = dyn_cast<DeclContext>(ND);
43  if (!DC)
44    DC = ND->getDeclContext();
45  while (!DC->isNamespace() && !DC->isTranslationUnit()) {
46    if (isa<FunctionDecl>(DC->getParent()))
47      return dyn_cast<CXXRecordDecl>(DC);
48    DC = DC->getParent();
49  }
50  return 0;
51}
52
53static const CXXMethodDecl *getStructor(const CXXMethodDecl *MD) {
54  assert((isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD)) &&
55         "Passed in decl is not a ctor or dtor!");
56
57  if (const TemplateDecl *TD = MD->getPrimaryTemplate()) {
58    MD = cast<CXXMethodDecl>(TD->getTemplatedDecl());
59
60    assert((isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD)) &&
61           "Templated decl is not a ctor or dtor!");
62  }
63
64  return MD;
65}
66
67static const unsigned UnknownArity = ~0U;
68
69class ItaniumMangleContext : public MangleContext {
70  llvm::DenseMap<const TagDecl *, uint64_t> AnonStructIds;
71  unsigned Discriminator;
72  llvm::DenseMap<const NamedDecl*, unsigned> Uniquifier;
73
74public:
75  explicit ItaniumMangleContext(ASTContext &Context,
76                                Diagnostic &Diags)
77    : MangleContext(Context, Diags) { }
78
79  uint64_t getAnonymousStructId(const TagDecl *TD) {
80    std::pair<llvm::DenseMap<const TagDecl *,
81      uint64_t>::iterator, bool> Result =
82      AnonStructIds.insert(std::make_pair(TD, AnonStructIds.size()));
83    return Result.first->second;
84  }
85
86  void startNewFunction() {
87    MangleContext::startNewFunction();
88    mangleInitDiscriminator();
89  }
90
91  /// @name Mangler Entry Points
92  /// @{
93
94  bool shouldMangleDeclName(const NamedDecl *D);
95  void mangleName(const NamedDecl *D, llvm::raw_ostream &);
96  void mangleThunk(const CXXMethodDecl *MD,
97                   const ThunkInfo &Thunk,
98                   llvm::raw_ostream &);
99  void mangleCXXDtorThunk(const CXXDestructorDecl *DD, CXXDtorType Type,
100                          const ThisAdjustment &ThisAdjustment,
101                          llvm::raw_ostream &);
102  void mangleReferenceTemporary(const VarDecl *D,
103                                llvm::raw_ostream &);
104  void mangleCXXVTable(const CXXRecordDecl *RD,
105                       llvm::raw_ostream &);
106  void mangleCXXVTT(const CXXRecordDecl *RD,
107                    llvm::raw_ostream &);
108  void mangleCXXCtorVTable(const CXXRecordDecl *RD, int64_t Offset,
109                           const CXXRecordDecl *Type,
110                           llvm::raw_ostream &);
111  void mangleCXXRTTI(QualType T, llvm::raw_ostream &);
112  void mangleCXXRTTIName(QualType T, llvm::raw_ostream &);
113  void mangleCXXCtor(const CXXConstructorDecl *D, CXXCtorType Type,
114                     llvm::raw_ostream &);
115  void mangleCXXDtor(const CXXDestructorDecl *D, CXXDtorType Type,
116                     llvm::raw_ostream &);
117
118  void mangleItaniumGuardVariable(const VarDecl *D, llvm::raw_ostream &);
119
120  void mangleInitDiscriminator() {
121    Discriminator = 0;
122  }
123
124  bool getNextDiscriminator(const NamedDecl *ND, unsigned &disc) {
125    unsigned &discriminator = Uniquifier[ND];
126    if (!discriminator)
127      discriminator = ++Discriminator;
128    if (discriminator == 1)
129      return false;
130    disc = discriminator-2;
131    return true;
132  }
133  /// @}
134};
135
136/// CXXNameMangler - Manage the mangling of a single name.
137class CXXNameMangler {
138  ItaniumMangleContext &Context;
139  llvm::raw_ostream &Out;
140
141  const CXXMethodDecl *Structor;
142  unsigned StructorType;
143
144  /// SeqID - The next subsitution sequence number.
145  unsigned SeqID;
146
147  llvm::DenseMap<uintptr_t, unsigned> Substitutions;
148
149  ASTContext &getASTContext() const { return Context.getASTContext(); }
150
151public:
152  CXXNameMangler(ItaniumMangleContext &C, llvm::raw_ostream &Out_)
153    : Context(C), Out(Out_), Structor(0), StructorType(0), SeqID(0) { }
154  CXXNameMangler(ItaniumMangleContext &C, llvm::raw_ostream &Out_,
155                 const CXXConstructorDecl *D, CXXCtorType Type)
156    : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(Type),
157    SeqID(0) { }
158  CXXNameMangler(ItaniumMangleContext &C, llvm::raw_ostream &Out_,
159                 const CXXDestructorDecl *D, CXXDtorType Type)
160    : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(Type),
161    SeqID(0) { }
162
163#if MANGLE_CHECKER
164  ~CXXNameMangler() {
165    if (Out.str()[0] == '\01')
166      return;
167
168    int status = 0;
169    char *result = abi::__cxa_demangle(Out.str().str().c_str(), 0, 0, &status);
170    assert(status == 0 && "Could not demangle mangled name!");
171    free(result);
172  }
173#endif
174  llvm::raw_ostream &getStream() { return Out; }
175
176  void mangle(const NamedDecl *D, llvm::StringRef Prefix = "_Z");
177  void mangleCallOffset(int64_t NonVirtual, int64_t Virtual);
178  void mangleNumber(const llvm::APSInt &I);
179  void mangleNumber(int64_t Number);
180  void mangleFloat(const llvm::APFloat &F);
181  void mangleFunctionEncoding(const FunctionDecl *FD);
182  void mangleName(const NamedDecl *ND);
183  void mangleType(QualType T);
184  void mangleNameOrStandardSubstitution(const NamedDecl *ND);
185
186private:
187  bool mangleSubstitution(const NamedDecl *ND);
188  bool mangleSubstitution(QualType T);
189  bool mangleSubstitution(TemplateName Template);
190  bool mangleSubstitution(uintptr_t Ptr);
191
192  bool mangleStandardSubstitution(const NamedDecl *ND);
193
194  void addSubstitution(const NamedDecl *ND) {
195    ND = cast<NamedDecl>(ND->getCanonicalDecl());
196
197    addSubstitution(reinterpret_cast<uintptr_t>(ND));
198  }
199  void addSubstitution(QualType T);
200  void addSubstitution(TemplateName Template);
201  void addSubstitution(uintptr_t Ptr);
202
203  void mangleUnresolvedScope(NestedNameSpecifier *Qualifier);
204  void mangleUnresolvedName(NestedNameSpecifier *Qualifier,
205                            DeclarationName Name,
206                            unsigned KnownArity = UnknownArity);
207
208  void mangleName(const TemplateDecl *TD,
209                  const TemplateArgument *TemplateArgs,
210                  unsigned NumTemplateArgs);
211  void mangleUnqualifiedName(const NamedDecl *ND) {
212    mangleUnqualifiedName(ND, ND->getDeclName(), UnknownArity);
213  }
214  void mangleUnqualifiedName(const NamedDecl *ND, DeclarationName Name,
215                             unsigned KnownArity);
216  void mangleUnscopedName(const NamedDecl *ND);
217  void mangleUnscopedTemplateName(const TemplateDecl *ND);
218  void mangleUnscopedTemplateName(TemplateName);
219  void mangleSourceName(const IdentifierInfo *II);
220  void mangleLocalName(const NamedDecl *ND);
221  void mangleNestedName(const NamedDecl *ND, const DeclContext *DC,
222                        bool NoFunction=false);
223  void mangleNestedName(const TemplateDecl *TD,
224                        const TemplateArgument *TemplateArgs,
225                        unsigned NumTemplateArgs);
226  void manglePrefix(const DeclContext *DC, bool NoFunction=false);
227  void mangleTemplatePrefix(const TemplateDecl *ND);
228  void mangleTemplatePrefix(TemplateName Template);
229  void mangleOperatorName(OverloadedOperatorKind OO, unsigned Arity);
230  void mangleQualifiers(Qualifiers Quals);
231  void mangleRefQualifier(RefQualifierKind RefQualifier);
232
233  void mangleObjCMethodName(const ObjCMethodDecl *MD);
234
235  // Declare manglers for every type class.
236#define ABSTRACT_TYPE(CLASS, PARENT)
237#define NON_CANONICAL_TYPE(CLASS, PARENT)
238#define TYPE(CLASS, PARENT) void mangleType(const CLASS##Type *T);
239#include "clang/AST/TypeNodes.def"
240
241  void mangleType(const TagType*);
242  void mangleType(TemplateName);
243  void mangleBareFunctionType(const FunctionType *T,
244                              bool MangleReturnType);
245  void mangleNeonVectorType(const VectorType *T);
246
247  void mangleIntegerLiteral(QualType T, const llvm::APSInt &Value);
248  void mangleMemberExpr(const Expr *Base, bool IsArrow,
249                        NestedNameSpecifier *Qualifier,
250                        DeclarationName Name,
251                        unsigned KnownArity);
252  void mangleExpression(const Expr *E, unsigned Arity = UnknownArity);
253  void mangleCXXCtorType(CXXCtorType T);
254  void mangleCXXDtorType(CXXDtorType T);
255
256  void mangleTemplateArgs(const ExplicitTemplateArgumentList &TemplateArgs);
257  void mangleTemplateArgs(TemplateName Template,
258                          const TemplateArgument *TemplateArgs,
259                          unsigned NumTemplateArgs);
260  void mangleTemplateArgs(const TemplateParameterList &PL,
261                          const TemplateArgument *TemplateArgs,
262                          unsigned NumTemplateArgs);
263  void mangleTemplateArgs(const TemplateParameterList &PL,
264                          const TemplateArgumentList &AL);
265  void mangleTemplateArg(const NamedDecl *P, const TemplateArgument &A);
266
267  void mangleTemplateParameter(unsigned Index);
268};
269
270}
271
272static bool isInCLinkageSpecification(const Decl *D) {
273  D = D->getCanonicalDecl();
274  for (const DeclContext *DC = D->getDeclContext();
275       !DC->isTranslationUnit(); DC = DC->getParent()) {
276    if (const LinkageSpecDecl *Linkage = dyn_cast<LinkageSpecDecl>(DC))
277      return Linkage->getLanguage() == LinkageSpecDecl::lang_c;
278  }
279
280  return false;
281}
282
283bool ItaniumMangleContext::shouldMangleDeclName(const NamedDecl *D) {
284  // In C, functions with no attributes never need to be mangled. Fastpath them.
285  if (!getASTContext().getLangOptions().CPlusPlus && !D->hasAttrs())
286    return false;
287
288  // Any decl can be declared with __asm("foo") on it, and this takes precedence
289  // over all other naming in the .o file.
290  if (D->hasAttr<AsmLabelAttr>())
291    return true;
292
293  // Clang's "overloadable" attribute extension to C/C++ implies name mangling
294  // (always) as does passing a C++ member function and a function
295  // whose name is not a simple identifier.
296  const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
297  if (FD && (FD->hasAttr<OverloadableAttr>() || isa<CXXMethodDecl>(FD) ||
298             !FD->getDeclName().isIdentifier()))
299    return true;
300
301  // Otherwise, no mangling is done outside C++ mode.
302  if (!getASTContext().getLangOptions().CPlusPlus)
303    return false;
304
305  // Variables at global scope with non-internal linkage are not mangled
306  if (!FD) {
307    const DeclContext *DC = D->getDeclContext();
308    // Check for extern variable declared locally.
309    if (DC->isFunctionOrMethod() && D->hasLinkage())
310      while (!DC->isNamespace() && !DC->isTranslationUnit())
311        DC = DC->getParent();
312    if (DC->isTranslationUnit() && D->getLinkage() != InternalLinkage)
313      return false;
314  }
315
316  // Class members are always mangled.
317  if (D->getDeclContext()->isRecord())
318    return true;
319
320  // C functions and "main" are not mangled.
321  if ((FD && FD->isMain()) || isInCLinkageSpecification(D))
322    return false;
323
324  return true;
325}
326
327void CXXNameMangler::mangle(const NamedDecl *D, llvm::StringRef Prefix) {
328  // Any decl can be declared with __asm("foo") on it, and this takes precedence
329  // over all other naming in the .o file.
330  if (const AsmLabelAttr *ALA = D->getAttr<AsmLabelAttr>()) {
331    // If we have an asm name, then we use it as the mangling.
332
333    // Adding the prefix can cause problems when one file has a "foo" and
334    // another has a "\01foo". That is known to happen on ELF with the
335    // tricks normally used for producing aliases (PR9177). Fortunately the
336    // llvm mangler on ELF is a nop, so we can just avoid adding the \01
337    // marker.
338    llvm::StringRef UserLabelPrefix =
339      getASTContext().Target.getUserLabelPrefix();
340    if (!UserLabelPrefix.empty())
341      Out << '\01';  // LLVM IR Marker for __asm("foo")
342
343    Out << ALA->getLabel();
344    return;
345  }
346
347  // <mangled-name> ::= _Z <encoding>
348  //            ::= <data name>
349  //            ::= <special-name>
350  Out << Prefix;
351  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
352    mangleFunctionEncoding(FD);
353  else if (const VarDecl *VD = dyn_cast<VarDecl>(D))
354    mangleName(VD);
355  else
356    mangleName(cast<FieldDecl>(D));
357}
358
359void CXXNameMangler::mangleFunctionEncoding(const FunctionDecl *FD) {
360  // <encoding> ::= <function name> <bare-function-type>
361  mangleName(FD);
362
363  // Don't mangle in the type if this isn't a decl we should typically mangle.
364  if (!Context.shouldMangleDeclName(FD))
365    return;
366
367  // Whether the mangling of a function type includes the return type depends on
368  // the context and the nature of the function. The rules for deciding whether
369  // the return type is included are:
370  //
371  //   1. Template functions (names or types) have return types encoded, with
372  //   the exceptions listed below.
373  //   2. Function types not appearing as part of a function name mangling,
374  //   e.g. parameters, pointer types, etc., have return type encoded, with the
375  //   exceptions listed below.
376  //   3. Non-template function names do not have return types encoded.
377  //
378  // The exceptions mentioned in (1) and (2) above, for which the return type is
379  // never included, are
380  //   1. Constructors.
381  //   2. Destructors.
382  //   3. Conversion operator functions, e.g. operator int.
383  bool MangleReturnType = false;
384  if (FunctionTemplateDecl *PrimaryTemplate = FD->getPrimaryTemplate()) {
385    if (!(isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD) ||
386          isa<CXXConversionDecl>(FD)))
387      MangleReturnType = true;
388
389    // Mangle the type of the primary template.
390    FD = PrimaryTemplate->getTemplatedDecl();
391  }
392
393  // Do the canonicalization out here because parameter types can
394  // undergo additional canonicalization (e.g. array decay).
395  const FunctionType *FT
396    = cast<FunctionType>(Context.getASTContext()
397                                          .getCanonicalType(FD->getType()));
398
399  mangleBareFunctionType(FT, MangleReturnType);
400}
401
402static const DeclContext *IgnoreLinkageSpecDecls(const DeclContext *DC) {
403  while (isa<LinkageSpecDecl>(DC)) {
404    DC = DC->getParent();
405  }
406
407  return DC;
408}
409
410/// isStd - Return whether a given namespace is the 'std' namespace.
411static bool isStd(const NamespaceDecl *NS) {
412  if (!IgnoreLinkageSpecDecls(NS->getParent())->isTranslationUnit())
413    return false;
414
415  const IdentifierInfo *II = NS->getOriginalNamespace()->getIdentifier();
416  return II && II->isStr("std");
417}
418
419// isStdNamespace - Return whether a given decl context is a toplevel 'std'
420// namespace.
421static bool isStdNamespace(const DeclContext *DC) {
422  if (!DC->isNamespace())
423    return false;
424
425  return isStd(cast<NamespaceDecl>(DC));
426}
427
428static const TemplateDecl *
429isTemplate(const NamedDecl *ND, const TemplateArgumentList *&TemplateArgs) {
430  // Check if we have a function template.
431  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)){
432    if (const TemplateDecl *TD = FD->getPrimaryTemplate()) {
433      TemplateArgs = FD->getTemplateSpecializationArgs();
434      return TD;
435    }
436  }
437
438  // Check if we have a class template.
439  if (const ClassTemplateSpecializationDecl *Spec =
440        dyn_cast<ClassTemplateSpecializationDecl>(ND)) {
441    TemplateArgs = &Spec->getTemplateArgs();
442    return Spec->getSpecializedTemplate();
443  }
444
445  return 0;
446}
447
448void CXXNameMangler::mangleName(const NamedDecl *ND) {
449  //  <name> ::= <nested-name>
450  //         ::= <unscoped-name>
451  //         ::= <unscoped-template-name> <template-args>
452  //         ::= <local-name>
453  //
454  const DeclContext *DC = ND->getDeclContext();
455
456  // If this is an extern variable declared locally, the relevant DeclContext
457  // is that of the containing namespace, or the translation unit.
458  if (isa<FunctionDecl>(DC) && ND->hasLinkage())
459    while (!DC->isNamespace() && !DC->isTranslationUnit())
460      DC = DC->getParent();
461  else if (GetLocalClassDecl(ND)) {
462    mangleLocalName(ND);
463    return;
464  }
465
466  while (isa<LinkageSpecDecl>(DC))
467    DC = DC->getParent();
468
469  if (DC->isTranslationUnit() || isStdNamespace(DC)) {
470    // Check if we have a template.
471    const TemplateArgumentList *TemplateArgs = 0;
472    if (const TemplateDecl *TD = isTemplate(ND, TemplateArgs)) {
473      mangleUnscopedTemplateName(TD);
474      TemplateParameterList *TemplateParameters = TD->getTemplateParameters();
475      mangleTemplateArgs(*TemplateParameters, *TemplateArgs);
476      return;
477    }
478
479    mangleUnscopedName(ND);
480    return;
481  }
482
483  if (isa<FunctionDecl>(DC) || isa<ObjCMethodDecl>(DC)) {
484    mangleLocalName(ND);
485    return;
486  }
487
488  mangleNestedName(ND, DC);
489}
490void CXXNameMangler::mangleName(const TemplateDecl *TD,
491                                const TemplateArgument *TemplateArgs,
492                                unsigned NumTemplateArgs) {
493  const DeclContext *DC = IgnoreLinkageSpecDecls(TD->getDeclContext());
494
495  if (DC->isTranslationUnit() || isStdNamespace(DC)) {
496    mangleUnscopedTemplateName(TD);
497    TemplateParameterList *TemplateParameters = TD->getTemplateParameters();
498    mangleTemplateArgs(*TemplateParameters, TemplateArgs, NumTemplateArgs);
499  } else {
500    mangleNestedName(TD, TemplateArgs, NumTemplateArgs);
501  }
502}
503
504void CXXNameMangler::mangleUnscopedName(const NamedDecl *ND) {
505  //  <unscoped-name> ::= <unqualified-name>
506  //                  ::= St <unqualified-name>   # ::std::
507  if (isStdNamespace(ND->getDeclContext()))
508    Out << "St";
509
510  mangleUnqualifiedName(ND);
511}
512
513void CXXNameMangler::mangleUnscopedTemplateName(const TemplateDecl *ND) {
514  //     <unscoped-template-name> ::= <unscoped-name>
515  //                              ::= <substitution>
516  if (mangleSubstitution(ND))
517    return;
518
519  // <template-template-param> ::= <template-param>
520  if (const TemplateTemplateParmDecl *TTP
521                                     = dyn_cast<TemplateTemplateParmDecl>(ND)) {
522    mangleTemplateParameter(TTP->getIndex());
523    return;
524  }
525
526  mangleUnscopedName(ND->getTemplatedDecl());
527  addSubstitution(ND);
528}
529
530void CXXNameMangler::mangleUnscopedTemplateName(TemplateName Template) {
531  //     <unscoped-template-name> ::= <unscoped-name>
532  //                              ::= <substitution>
533  if (TemplateDecl *TD = Template.getAsTemplateDecl())
534    return mangleUnscopedTemplateName(TD);
535
536  if (mangleSubstitution(Template))
537    return;
538
539  // FIXME: How to cope with operators here?
540  DependentTemplateName *Dependent = Template.getAsDependentTemplateName();
541  assert(Dependent && "Not a dependent template name?");
542  if (!Dependent->isIdentifier()) {
543    // FIXME: We can't possibly know the arity of the operator here!
544    Diagnostic &Diags = Context.getDiags();
545    unsigned DiagID = Diags.getCustomDiagID(Diagnostic::Error,
546                                      "cannot mangle dependent operator name");
547    Diags.Report(DiagID);
548    return;
549  }
550
551  mangleSourceName(Dependent->getIdentifier());
552  addSubstitution(Template);
553}
554
555void CXXNameMangler::mangleFloat(const llvm::APFloat &F) {
556  // TODO: avoid this copy with careful stream management.
557  llvm::SmallString<20> Buffer;
558  F.bitcastToAPInt().toString(Buffer, 16, false);
559  Out.write(Buffer.data(), Buffer.size());
560}
561
562void CXXNameMangler::mangleNumber(const llvm::APSInt &Value) {
563  if (Value.isSigned() && Value.isNegative()) {
564    Out << 'n';
565    Value.abs().print(Out, true);
566  } else
567    Value.print(Out, Value.isSigned());
568}
569
570void CXXNameMangler::mangleNumber(int64_t Number) {
571  //  <number> ::= [n] <non-negative decimal integer>
572  if (Number < 0) {
573    Out << 'n';
574    Number = -Number;
575  }
576
577  Out << Number;
578}
579
580void CXXNameMangler::mangleCallOffset(int64_t NonVirtual, int64_t Virtual) {
581  //  <call-offset>  ::= h <nv-offset> _
582  //                 ::= v <v-offset> _
583  //  <nv-offset>    ::= <offset number>        # non-virtual base override
584  //  <v-offset>     ::= <offset number> _ <virtual offset number>
585  //                      # virtual base override, with vcall offset
586  if (!Virtual) {
587    Out << 'h';
588    mangleNumber(NonVirtual);
589    Out << '_';
590    return;
591  }
592
593  Out << 'v';
594  mangleNumber(NonVirtual);
595  Out << '_';
596  mangleNumber(Virtual);
597  Out << '_';
598}
599
600void CXXNameMangler::mangleUnresolvedScope(NestedNameSpecifier *Qualifier) {
601  Qualifier = getASTContext().getCanonicalNestedNameSpecifier(Qualifier);
602  switch (Qualifier->getKind()) {
603  case NestedNameSpecifier::Global:
604    // nothing
605    break;
606  case NestedNameSpecifier::Namespace:
607    mangleName(Qualifier->getAsNamespace());
608    break;
609  case NestedNameSpecifier::TypeSpec:
610  case NestedNameSpecifier::TypeSpecWithTemplate: {
611    const Type *QTy = Qualifier->getAsType();
612
613    if (const TemplateSpecializationType *TST =
614        dyn_cast<TemplateSpecializationType>(QTy)) {
615      if (!mangleSubstitution(QualType(TST, 0))) {
616        mangleTemplatePrefix(TST->getTemplateName());
617
618        // FIXME: GCC does not appear to mangle the template arguments when
619        // the template in question is a dependent template name. Should we
620        // emulate that badness?
621        mangleTemplateArgs(TST->getTemplateName(), TST->getArgs(),
622                           TST->getNumArgs());
623        addSubstitution(QualType(TST, 0));
624      }
625    } else {
626      // We use the QualType mangle type variant here because it handles
627      // substitutions.
628      mangleType(QualType(QTy, 0));
629    }
630  }
631    break;
632  case NestedNameSpecifier::Identifier:
633    // Member expressions can have these without prefixes.
634    if (Qualifier->getPrefix())
635      mangleUnresolvedScope(Qualifier->getPrefix());
636    mangleSourceName(Qualifier->getAsIdentifier());
637    break;
638  }
639}
640
641/// Mangles a name which was not resolved to a specific entity.
642void CXXNameMangler::mangleUnresolvedName(NestedNameSpecifier *Qualifier,
643                                          DeclarationName Name,
644                                          unsigned KnownArity) {
645  if (Qualifier)
646    mangleUnresolvedScope(Qualifier);
647  // FIXME: ambiguity of unqualified lookup with ::
648
649  mangleUnqualifiedName(0, Name, KnownArity);
650}
651
652static const FieldDecl *FindFirstNamedDataMember(const RecordDecl *RD) {
653  assert(RD->isAnonymousStructOrUnion() &&
654         "Expected anonymous struct or union!");
655
656  for (RecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end();
657       I != E; ++I) {
658    const FieldDecl *FD = *I;
659
660    if (FD->getIdentifier())
661      return FD;
662
663    if (const RecordType *RT = FD->getType()->getAs<RecordType>()) {
664      if (const FieldDecl *NamedDataMember =
665          FindFirstNamedDataMember(RT->getDecl()))
666        return NamedDataMember;
667    }
668  }
669
670  // We didn't find a named data member.
671  return 0;
672}
673
674void CXXNameMangler::mangleUnqualifiedName(const NamedDecl *ND,
675                                           DeclarationName Name,
676                                           unsigned KnownArity) {
677  //  <unqualified-name> ::= <operator-name>
678  //                     ::= <ctor-dtor-name>
679  //                     ::= <source-name>
680  switch (Name.getNameKind()) {
681  case DeclarationName::Identifier: {
682    if (const IdentifierInfo *II = Name.getAsIdentifierInfo()) {
683      // We must avoid conflicts between internally- and externally-
684      // linked variable declaration names in the same TU.
685      // This naming convention is the same as that followed by GCC, though it
686      // shouldn't actually matter.
687      if (ND && isa<VarDecl>(ND) && ND->getLinkage() == InternalLinkage &&
688          ND->getDeclContext()->isFileContext())
689        Out << 'L';
690
691      mangleSourceName(II);
692      break;
693    }
694
695    // Otherwise, an anonymous entity.  We must have a declaration.
696    assert(ND && "mangling empty name without declaration");
697
698    if (const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ND)) {
699      if (NS->isAnonymousNamespace()) {
700        // This is how gcc mangles these names.
701        Out << "12_GLOBAL__N_1";
702        break;
703      }
704    }
705
706    if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) {
707      // We must have an anonymous union or struct declaration.
708      const RecordDecl *RD =
709        cast<RecordDecl>(VD->getType()->getAs<RecordType>()->getDecl());
710
711      // Itanium C++ ABI 5.1.2:
712      //
713      //   For the purposes of mangling, the name of an anonymous union is
714      //   considered to be the name of the first named data member found by a
715      //   pre-order, depth-first, declaration-order walk of the data members of
716      //   the anonymous union. If there is no such data member (i.e., if all of
717      //   the data members in the union are unnamed), then there is no way for
718      //   a program to refer to the anonymous union, and there is therefore no
719      //   need to mangle its name.
720      const FieldDecl *FD = FindFirstNamedDataMember(RD);
721
722      // It's actually possible for various reasons for us to get here
723      // with an empty anonymous struct / union.  Fortunately, it
724      // doesn't really matter what name we generate.
725      if (!FD) break;
726      assert(FD->getIdentifier() && "Data member name isn't an identifier!");
727
728      mangleSourceName(FD->getIdentifier());
729      break;
730    }
731
732    // We must have an anonymous struct.
733    const TagDecl *TD = cast<TagDecl>(ND);
734    if (const TypedefDecl *D = TD->getTypedefForAnonDecl()) {
735      assert(TD->getDeclContext() == D->getDeclContext() &&
736             "Typedef should not be in another decl context!");
737      assert(D->getDeclName().getAsIdentifierInfo() &&
738             "Typedef was not named!");
739      mangleSourceName(D->getDeclName().getAsIdentifierInfo());
740      break;
741    }
742
743    // Get a unique id for the anonymous struct.
744    uint64_t AnonStructId = Context.getAnonymousStructId(TD);
745
746    // Mangle it as a source name in the form
747    // [n] $_<id>
748    // where n is the length of the string.
749    llvm::SmallString<8> Str;
750    Str += "$_";
751    Str += llvm::utostr(AnonStructId);
752
753    Out << Str.size();
754    Out << Str.str();
755    break;
756  }
757
758  case DeclarationName::ObjCZeroArgSelector:
759  case DeclarationName::ObjCOneArgSelector:
760  case DeclarationName::ObjCMultiArgSelector:
761    assert(false && "Can't mangle Objective-C selector names here!");
762    break;
763
764  case DeclarationName::CXXConstructorName:
765    if (ND == Structor)
766      // If the named decl is the C++ constructor we're mangling, use the type
767      // we were given.
768      mangleCXXCtorType(static_cast<CXXCtorType>(StructorType));
769    else
770      // Otherwise, use the complete constructor name. This is relevant if a
771      // class with a constructor is declared within a constructor.
772      mangleCXXCtorType(Ctor_Complete);
773    break;
774
775  case DeclarationName::CXXDestructorName:
776    if (ND == Structor)
777      // If the named decl is the C++ destructor we're mangling, use the type we
778      // were given.
779      mangleCXXDtorType(static_cast<CXXDtorType>(StructorType));
780    else
781      // Otherwise, use the complete destructor name. This is relevant if a
782      // class with a destructor is declared within a destructor.
783      mangleCXXDtorType(Dtor_Complete);
784    break;
785
786  case DeclarationName::CXXConversionFunctionName:
787    // <operator-name> ::= cv <type>    # (cast)
788    Out << "cv";
789    mangleType(Context.getASTContext().getCanonicalType(Name.getCXXNameType()));
790    break;
791
792  case DeclarationName::CXXOperatorName: {
793    unsigned Arity;
794    if (ND) {
795      Arity = cast<FunctionDecl>(ND)->getNumParams();
796
797      // If we have a C++ member function, we need to include the 'this' pointer.
798      // FIXME: This does not make sense for operators that are static, but their
799      // names stay the same regardless of the arity (operator new for instance).
800      if (isa<CXXMethodDecl>(ND))
801        Arity++;
802    } else
803      Arity = KnownArity;
804
805    mangleOperatorName(Name.getCXXOverloadedOperator(), Arity);
806    break;
807  }
808
809  case DeclarationName::CXXLiteralOperatorName:
810    // FIXME: This mangling is not yet official.
811    Out << "li";
812    mangleSourceName(Name.getCXXLiteralIdentifier());
813    break;
814
815  case DeclarationName::CXXUsingDirective:
816    assert(false && "Can't mangle a using directive name!");
817    break;
818  }
819}
820
821void CXXNameMangler::mangleSourceName(const IdentifierInfo *II) {
822  // <source-name> ::= <positive length number> <identifier>
823  // <number> ::= [n] <non-negative decimal integer>
824  // <identifier> ::= <unqualified source code identifier>
825  Out << II->getLength() << II->getName();
826}
827
828void CXXNameMangler::mangleNestedName(const NamedDecl *ND,
829                                      const DeclContext *DC,
830                                      bool NoFunction) {
831  // <nested-name>
832  //   ::= N [<CV-qualifiers>] [<ref-qualifier>] <prefix> <unqualified-name> E
833  //   ::= N [<CV-qualifiers>] [<ref-qualifier>] <template-prefix>
834  //       <template-args> E
835
836  Out << 'N';
837  if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(ND)) {
838    mangleQualifiers(Qualifiers::fromCVRMask(Method->getTypeQualifiers()));
839    mangleRefQualifier(Method->getRefQualifier());
840  }
841
842  // Check if we have a template.
843  const TemplateArgumentList *TemplateArgs = 0;
844  if (const TemplateDecl *TD = isTemplate(ND, TemplateArgs)) {
845    mangleTemplatePrefix(TD);
846    TemplateParameterList *TemplateParameters = TD->getTemplateParameters();
847    mangleTemplateArgs(*TemplateParameters, *TemplateArgs);
848  }
849  else {
850    manglePrefix(DC, NoFunction);
851    mangleUnqualifiedName(ND);
852  }
853
854  Out << 'E';
855}
856void CXXNameMangler::mangleNestedName(const TemplateDecl *TD,
857                                      const TemplateArgument *TemplateArgs,
858                                      unsigned NumTemplateArgs) {
859  // <nested-name> ::= N [<CV-qualifiers>] <template-prefix> <template-args> E
860
861  Out << 'N';
862
863  mangleTemplatePrefix(TD);
864  TemplateParameterList *TemplateParameters = TD->getTemplateParameters();
865  mangleTemplateArgs(*TemplateParameters, TemplateArgs, NumTemplateArgs);
866
867  Out << 'E';
868}
869
870void CXXNameMangler::mangleLocalName(const NamedDecl *ND) {
871  // <local-name> := Z <function encoding> E <entity name> [<discriminator>]
872  //              := Z <function encoding> E s [<discriminator>]
873  // <discriminator> := _ <non-negative number>
874  const DeclContext *DC = ND->getDeclContext();
875  Out << 'Z';
876
877  if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(DC)) {
878   mangleObjCMethodName(MD);
879  } else if (const CXXRecordDecl *RD = GetLocalClassDecl(ND)) {
880    mangleFunctionEncoding(cast<FunctionDecl>(RD->getDeclContext()));
881    Out << 'E';
882
883    // Mangle the name relative to the closest enclosing function.
884    if (ND == RD) // equality ok because RD derived from ND above
885      mangleUnqualifiedName(ND);
886    else
887      mangleNestedName(ND, DC, true /*NoFunction*/);
888
889    unsigned disc;
890    if (Context.getNextDiscriminator(RD, disc)) {
891      if (disc < 10)
892        Out << '_' << disc;
893      else
894        Out << "__" << disc << '_';
895    }
896
897    return;
898  }
899  else
900    mangleFunctionEncoding(cast<FunctionDecl>(DC));
901
902  Out << 'E';
903  mangleUnqualifiedName(ND);
904}
905
906void CXXNameMangler::manglePrefix(const DeclContext *DC, bool NoFunction) {
907  //  <prefix> ::= <prefix> <unqualified-name>
908  //           ::= <template-prefix> <template-args>
909  //           ::= <template-param>
910  //           ::= # empty
911  //           ::= <substitution>
912
913  while (isa<LinkageSpecDecl>(DC))
914    DC = DC->getParent();
915
916  if (DC->isTranslationUnit())
917    return;
918
919  if (const BlockDecl *Block = dyn_cast<BlockDecl>(DC)) {
920    manglePrefix(DC->getParent(), NoFunction);
921    llvm::SmallString<64> Name;
922    llvm::raw_svector_ostream NameStream(Name);
923    Context.mangleBlock(Block, NameStream);
924    NameStream.flush();
925    Out << Name.size() << Name;
926    return;
927  }
928
929  if (mangleSubstitution(cast<NamedDecl>(DC)))
930    return;
931
932  // Check if we have a template.
933  const TemplateArgumentList *TemplateArgs = 0;
934  if (const TemplateDecl *TD = isTemplate(cast<NamedDecl>(DC), TemplateArgs)) {
935    mangleTemplatePrefix(TD);
936    TemplateParameterList *TemplateParameters = TD->getTemplateParameters();
937    mangleTemplateArgs(*TemplateParameters, *TemplateArgs);
938  }
939  else if(NoFunction && (isa<FunctionDecl>(DC) || isa<ObjCMethodDecl>(DC)))
940    return;
941  else if (const ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(DC))
942    mangleObjCMethodName(Method);
943  else {
944    manglePrefix(DC->getParent(), NoFunction);
945    mangleUnqualifiedName(cast<NamedDecl>(DC));
946  }
947
948  addSubstitution(cast<NamedDecl>(DC));
949}
950
951void CXXNameMangler::mangleTemplatePrefix(TemplateName Template) {
952  // <template-prefix> ::= <prefix> <template unqualified-name>
953  //                   ::= <template-param>
954  //                   ::= <substitution>
955  if (TemplateDecl *TD = Template.getAsTemplateDecl())
956    return mangleTemplatePrefix(TD);
957
958  if (QualifiedTemplateName *Qualified = Template.getAsQualifiedTemplateName())
959    mangleUnresolvedScope(Qualified->getQualifier());
960
961  if (OverloadedTemplateStorage *Overloaded
962                                      = Template.getAsOverloadedTemplate()) {
963    mangleUnqualifiedName(0, (*Overloaded->begin())->getDeclName(),
964                          UnknownArity);
965    return;
966  }
967
968  DependentTemplateName *Dependent = Template.getAsDependentTemplateName();
969  assert(Dependent && "Unknown template name kind?");
970  mangleUnresolvedScope(Dependent->getQualifier());
971  mangleUnscopedTemplateName(Template);
972}
973
974void CXXNameMangler::mangleTemplatePrefix(const TemplateDecl *ND) {
975  // <template-prefix> ::= <prefix> <template unqualified-name>
976  //                   ::= <template-param>
977  //                   ::= <substitution>
978  // <template-template-param> ::= <template-param>
979  //                               <substitution>
980
981  if (mangleSubstitution(ND))
982    return;
983
984  // <template-template-param> ::= <template-param>
985  if (const TemplateTemplateParmDecl *TTP
986                                     = dyn_cast<TemplateTemplateParmDecl>(ND)) {
987    mangleTemplateParameter(TTP->getIndex());
988    return;
989  }
990
991  manglePrefix(ND->getDeclContext());
992  mangleUnqualifiedName(ND->getTemplatedDecl());
993  addSubstitution(ND);
994}
995
996/// Mangles a template name under the production <type>.  Required for
997/// template template arguments.
998///   <type> ::= <class-enum-type>
999///          ::= <template-param>
1000///          ::= <substitution>
1001void CXXNameMangler::mangleType(TemplateName TN) {
1002  if (mangleSubstitution(TN))
1003    return;
1004
1005  TemplateDecl *TD = 0;
1006
1007  switch (TN.getKind()) {
1008  case TemplateName::QualifiedTemplate:
1009    TD = TN.getAsQualifiedTemplateName()->getTemplateDecl();
1010    goto HaveDecl;
1011
1012  case TemplateName::Template:
1013    TD = TN.getAsTemplateDecl();
1014    goto HaveDecl;
1015
1016  HaveDecl:
1017    if (isa<TemplateTemplateParmDecl>(TD))
1018      mangleTemplateParameter(cast<TemplateTemplateParmDecl>(TD)->getIndex());
1019    else
1020      mangleName(TD);
1021    break;
1022
1023  case TemplateName::OverloadedTemplate:
1024    llvm_unreachable("can't mangle an overloaded template name as a <type>");
1025    break;
1026
1027  case TemplateName::DependentTemplate: {
1028    const DependentTemplateName *Dependent = TN.getAsDependentTemplateName();
1029    assert(Dependent->isIdentifier());
1030
1031    // <class-enum-type> ::= <name>
1032    // <name> ::= <nested-name>
1033    mangleUnresolvedScope(Dependent->getQualifier());
1034    mangleSourceName(Dependent->getIdentifier());
1035    break;
1036  }
1037
1038  case TemplateName::SubstTemplateTemplateParmPack: {
1039    SubstTemplateTemplateParmPackStorage *SubstPack
1040      = TN.getAsSubstTemplateTemplateParmPack();
1041    mangleTemplateParameter(SubstPack->getParameterPack()->getIndex());
1042    break;
1043  }
1044  }
1045
1046  addSubstitution(TN);
1047}
1048
1049void
1050CXXNameMangler::mangleOperatorName(OverloadedOperatorKind OO, unsigned Arity) {
1051  switch (OO) {
1052  // <operator-name> ::= nw     # new
1053  case OO_New: Out << "nw"; break;
1054  //              ::= na        # new[]
1055  case OO_Array_New: Out << "na"; break;
1056  //              ::= dl        # delete
1057  case OO_Delete: Out << "dl"; break;
1058  //              ::= da        # delete[]
1059  case OO_Array_Delete: Out << "da"; break;
1060  //              ::= ps        # + (unary)
1061  //              ::= pl        # + (binary or unknown)
1062  case OO_Plus:
1063    Out << (Arity == 1? "ps" : "pl"); break;
1064  //              ::= ng        # - (unary)
1065  //              ::= mi        # - (binary or unknown)
1066  case OO_Minus:
1067    Out << (Arity == 1? "ng" : "mi"); break;
1068  //              ::= ad        # & (unary)
1069  //              ::= an        # & (binary or unknown)
1070  case OO_Amp:
1071    Out << (Arity == 1? "ad" : "an"); break;
1072  //              ::= de        # * (unary)
1073  //              ::= ml        # * (binary or unknown)
1074  case OO_Star:
1075    // Use binary when unknown.
1076    Out << (Arity == 1? "de" : "ml"); break;
1077  //              ::= co        # ~
1078  case OO_Tilde: Out << "co"; break;
1079  //              ::= dv        # /
1080  case OO_Slash: Out << "dv"; break;
1081  //              ::= rm        # %
1082  case OO_Percent: Out << "rm"; break;
1083  //              ::= or        # |
1084  case OO_Pipe: Out << "or"; break;
1085  //              ::= eo        # ^
1086  case OO_Caret: Out << "eo"; break;
1087  //              ::= aS        # =
1088  case OO_Equal: Out << "aS"; break;
1089  //              ::= pL        # +=
1090  case OO_PlusEqual: Out << "pL"; break;
1091  //              ::= mI        # -=
1092  case OO_MinusEqual: Out << "mI"; break;
1093  //              ::= mL        # *=
1094  case OO_StarEqual: Out << "mL"; break;
1095  //              ::= dV        # /=
1096  case OO_SlashEqual: Out << "dV"; break;
1097  //              ::= rM        # %=
1098  case OO_PercentEqual: Out << "rM"; break;
1099  //              ::= aN        # &=
1100  case OO_AmpEqual: Out << "aN"; break;
1101  //              ::= oR        # |=
1102  case OO_PipeEqual: Out << "oR"; break;
1103  //              ::= eO        # ^=
1104  case OO_CaretEqual: Out << "eO"; break;
1105  //              ::= ls        # <<
1106  case OO_LessLess: Out << "ls"; break;
1107  //              ::= rs        # >>
1108  case OO_GreaterGreater: Out << "rs"; break;
1109  //              ::= lS        # <<=
1110  case OO_LessLessEqual: Out << "lS"; break;
1111  //              ::= rS        # >>=
1112  case OO_GreaterGreaterEqual: Out << "rS"; break;
1113  //              ::= eq        # ==
1114  case OO_EqualEqual: Out << "eq"; break;
1115  //              ::= ne        # !=
1116  case OO_ExclaimEqual: Out << "ne"; break;
1117  //              ::= lt        # <
1118  case OO_Less: Out << "lt"; break;
1119  //              ::= gt        # >
1120  case OO_Greater: Out << "gt"; break;
1121  //              ::= le        # <=
1122  case OO_LessEqual: Out << "le"; break;
1123  //              ::= ge        # >=
1124  case OO_GreaterEqual: Out << "ge"; break;
1125  //              ::= nt        # !
1126  case OO_Exclaim: Out << "nt"; break;
1127  //              ::= aa        # &&
1128  case OO_AmpAmp: Out << "aa"; break;
1129  //              ::= oo        # ||
1130  case OO_PipePipe: Out << "oo"; break;
1131  //              ::= pp        # ++
1132  case OO_PlusPlus: Out << "pp"; break;
1133  //              ::= mm        # --
1134  case OO_MinusMinus: Out << "mm"; break;
1135  //              ::= cm        # ,
1136  case OO_Comma: Out << "cm"; break;
1137  //              ::= pm        # ->*
1138  case OO_ArrowStar: Out << "pm"; break;
1139  //              ::= pt        # ->
1140  case OO_Arrow: Out << "pt"; break;
1141  //              ::= cl        # ()
1142  case OO_Call: Out << "cl"; break;
1143  //              ::= ix        # []
1144  case OO_Subscript: Out << "ix"; break;
1145
1146  //              ::= qu        # ?
1147  // The conditional operator can't be overloaded, but we still handle it when
1148  // mangling expressions.
1149  case OO_Conditional: Out << "qu"; break;
1150
1151  case OO_None:
1152  case NUM_OVERLOADED_OPERATORS:
1153    assert(false && "Not an overloaded operator");
1154    break;
1155  }
1156}
1157
1158void CXXNameMangler::mangleQualifiers(Qualifiers Quals) {
1159  // <CV-qualifiers> ::= [r] [V] [K]    # restrict (C99), volatile, const
1160  if (Quals.hasRestrict())
1161    Out << 'r';
1162  if (Quals.hasVolatile())
1163    Out << 'V';
1164  if (Quals.hasConst())
1165    Out << 'K';
1166
1167  if (Quals.hasAddressSpace()) {
1168    // Extension:
1169    //
1170    //   <type> ::= U <address-space-number>
1171    //
1172    // where <address-space-number> is a source name consisting of 'AS'
1173    // followed by the address space <number>.
1174    llvm::SmallString<64> ASString;
1175    ASString = "AS" + llvm::utostr_32(Quals.getAddressSpace());
1176    Out << 'U' << ASString.size() << ASString;
1177  }
1178
1179  // FIXME: For now, just drop all extension qualifiers on the floor.
1180}
1181
1182void CXXNameMangler::mangleRefQualifier(RefQualifierKind RefQualifier) {
1183  // <ref-qualifier> ::= R                # lvalue reference
1184  //                 ::= O                # rvalue-reference
1185  // Proposal to Itanium C++ ABI list on 1/26/11
1186  switch (RefQualifier) {
1187  case RQ_None:
1188    break;
1189
1190  case RQ_LValue:
1191    Out << 'R';
1192    break;
1193
1194  case RQ_RValue:
1195    Out << 'O';
1196    break;
1197  }
1198}
1199
1200void CXXNameMangler::mangleObjCMethodName(const ObjCMethodDecl *MD) {
1201  Context.mangleObjCMethodName(MD, Out);
1202}
1203
1204void CXXNameMangler::mangleType(QualType nonCanon) {
1205  // Only operate on the canonical type!
1206  QualType canon = nonCanon.getCanonicalType();
1207
1208  SplitQualType split = canon.split();
1209  Qualifiers quals = split.second;
1210  const Type *ty = split.first;
1211
1212  bool isSubstitutable = quals || !isa<BuiltinType>(ty);
1213  if (isSubstitutable && mangleSubstitution(canon))
1214    return;
1215
1216  // If we're mangling a qualified array type, push the qualifiers to
1217  // the element type.
1218  if (quals && isa<ArrayType>(ty)) {
1219    ty = Context.getASTContext().getAsArrayType(canon);
1220    quals = Qualifiers();
1221
1222    // Note that we don't update canon: we want to add the
1223    // substitution at the canonical type.
1224  }
1225
1226  if (quals) {
1227    mangleQualifiers(quals);
1228    // Recurse:  even if the qualified type isn't yet substitutable,
1229    // the unqualified type might be.
1230    mangleType(QualType(ty, 0));
1231  } else {
1232    switch (ty->getTypeClass()) {
1233#define ABSTRACT_TYPE(CLASS, PARENT)
1234#define NON_CANONICAL_TYPE(CLASS, PARENT) \
1235    case Type::CLASS: \
1236      llvm_unreachable("can't mangle non-canonical type " #CLASS "Type"); \
1237      return;
1238#define TYPE(CLASS, PARENT) \
1239    case Type::CLASS: \
1240      mangleType(static_cast<const CLASS##Type*>(ty)); \
1241      break;
1242#include "clang/AST/TypeNodes.def"
1243    }
1244  }
1245
1246  // Add the substitution.
1247  if (isSubstitutable)
1248    addSubstitution(canon);
1249}
1250
1251void CXXNameMangler::mangleNameOrStandardSubstitution(const NamedDecl *ND) {
1252  if (!mangleStandardSubstitution(ND))
1253    mangleName(ND);
1254}
1255
1256void CXXNameMangler::mangleType(const BuiltinType *T) {
1257  //  <type>         ::= <builtin-type>
1258  //  <builtin-type> ::= v  # void
1259  //                 ::= w  # wchar_t
1260  //                 ::= b  # bool
1261  //                 ::= c  # char
1262  //                 ::= a  # signed char
1263  //                 ::= h  # unsigned char
1264  //                 ::= s  # short
1265  //                 ::= t  # unsigned short
1266  //                 ::= i  # int
1267  //                 ::= j  # unsigned int
1268  //                 ::= l  # long
1269  //                 ::= m  # unsigned long
1270  //                 ::= x  # long long, __int64
1271  //                 ::= y  # unsigned long long, __int64
1272  //                 ::= n  # __int128
1273  // UNSUPPORTED:    ::= o  # unsigned __int128
1274  //                 ::= f  # float
1275  //                 ::= d  # double
1276  //                 ::= e  # long double, __float80
1277  // UNSUPPORTED:    ::= g  # __float128
1278  // UNSUPPORTED:    ::= Dd # IEEE 754r decimal floating point (64 bits)
1279  // UNSUPPORTED:    ::= De # IEEE 754r decimal floating point (128 bits)
1280  // UNSUPPORTED:    ::= Df # IEEE 754r decimal floating point (32 bits)
1281  // UNSUPPORTED:    ::= Dh # IEEE 754r half-precision floating point (16 bits)
1282  //                 ::= Di # char32_t
1283  //                 ::= Ds # char16_t
1284  //                 ::= Dn # std::nullptr_t (i.e., decltype(nullptr))
1285  //                 ::= u <source-name>    # vendor extended type
1286  switch (T->getKind()) {
1287  case BuiltinType::Void: Out << 'v'; break;
1288  case BuiltinType::Bool: Out << 'b'; break;
1289  case BuiltinType::Char_U: case BuiltinType::Char_S: Out << 'c'; break;
1290  case BuiltinType::UChar: Out << 'h'; break;
1291  case BuiltinType::UShort: Out << 't'; break;
1292  case BuiltinType::UInt: Out << 'j'; break;
1293  case BuiltinType::ULong: Out << 'm'; break;
1294  case BuiltinType::ULongLong: Out << 'y'; break;
1295  case BuiltinType::UInt128: Out << 'o'; break;
1296  case BuiltinType::SChar: Out << 'a'; break;
1297  case BuiltinType::WChar_S:
1298  case BuiltinType::WChar_U: Out << 'w'; break;
1299  case BuiltinType::Char16: Out << "Ds"; break;
1300  case BuiltinType::Char32: Out << "Di"; break;
1301  case BuiltinType::Short: Out << 's'; break;
1302  case BuiltinType::Int: Out << 'i'; break;
1303  case BuiltinType::Long: Out << 'l'; break;
1304  case BuiltinType::LongLong: Out << 'x'; break;
1305  case BuiltinType::Int128: Out << 'n'; break;
1306  case BuiltinType::Float: Out << 'f'; break;
1307  case BuiltinType::Double: Out << 'd'; break;
1308  case BuiltinType::LongDouble: Out << 'e'; break;
1309  case BuiltinType::NullPtr: Out << "Dn"; break;
1310
1311  case BuiltinType::Overload:
1312  case BuiltinType::Dependent:
1313    assert(false &&
1314           "Overloaded and dependent types shouldn't get to name mangling");
1315    break;
1316  case BuiltinType::UndeducedAuto:
1317    assert(0 && "Should not see undeduced auto here");
1318    break;
1319  case BuiltinType::ObjCId: Out << "11objc_object"; break;
1320  case BuiltinType::ObjCClass: Out << "10objc_class"; break;
1321  case BuiltinType::ObjCSel: Out << "13objc_selector"; break;
1322  }
1323}
1324
1325// <type>          ::= <function-type>
1326// <function-type> ::= F [Y] <bare-function-type> E
1327void CXXNameMangler::mangleType(const FunctionProtoType *T) {
1328  Out << 'F';
1329  // FIXME: We don't have enough information in the AST to produce the 'Y'
1330  // encoding for extern "C" function types.
1331  mangleBareFunctionType(T, /*MangleReturnType=*/true);
1332  Out << 'E';
1333}
1334void CXXNameMangler::mangleType(const FunctionNoProtoType *T) {
1335  llvm_unreachable("Can't mangle K&R function prototypes");
1336}
1337void CXXNameMangler::mangleBareFunctionType(const FunctionType *T,
1338                                            bool MangleReturnType) {
1339  // We should never be mangling something without a prototype.
1340  const FunctionProtoType *Proto = cast<FunctionProtoType>(T);
1341
1342  // <bare-function-type> ::= <signature type>+
1343  if (MangleReturnType)
1344    mangleType(Proto->getResultType());
1345
1346  if (Proto->getNumArgs() == 0 && !Proto->isVariadic()) {
1347    //   <builtin-type> ::= v   # void
1348    Out << 'v';
1349    return;
1350  }
1351
1352  for (FunctionProtoType::arg_type_iterator Arg = Proto->arg_type_begin(),
1353                                         ArgEnd = Proto->arg_type_end();
1354       Arg != ArgEnd; ++Arg)
1355    mangleType(*Arg);
1356
1357  // <builtin-type>      ::= z  # ellipsis
1358  if (Proto->isVariadic())
1359    Out << 'z';
1360}
1361
1362// <type>            ::= <class-enum-type>
1363// <class-enum-type> ::= <name>
1364void CXXNameMangler::mangleType(const UnresolvedUsingType *T) {
1365  mangleName(T->getDecl());
1366}
1367
1368// <type>            ::= <class-enum-type>
1369// <class-enum-type> ::= <name>
1370void CXXNameMangler::mangleType(const EnumType *T) {
1371  mangleType(static_cast<const TagType*>(T));
1372}
1373void CXXNameMangler::mangleType(const RecordType *T) {
1374  mangleType(static_cast<const TagType*>(T));
1375}
1376void CXXNameMangler::mangleType(const TagType *T) {
1377  mangleName(T->getDecl());
1378}
1379
1380// <type>       ::= <array-type>
1381// <array-type> ::= A <positive dimension number> _ <element type>
1382//              ::= A [<dimension expression>] _ <element type>
1383void CXXNameMangler::mangleType(const ConstantArrayType *T) {
1384  Out << 'A' << T->getSize() << '_';
1385  mangleType(T->getElementType());
1386}
1387void CXXNameMangler::mangleType(const VariableArrayType *T) {
1388  Out << 'A';
1389  // decayed vla types (size 0) will just be skipped.
1390  if (T->getSizeExpr())
1391    mangleExpression(T->getSizeExpr());
1392  Out << '_';
1393  mangleType(T->getElementType());
1394}
1395void CXXNameMangler::mangleType(const DependentSizedArrayType *T) {
1396  Out << 'A';
1397  mangleExpression(T->getSizeExpr());
1398  Out << '_';
1399  mangleType(T->getElementType());
1400}
1401void CXXNameMangler::mangleType(const IncompleteArrayType *T) {
1402  Out << "A_";
1403  mangleType(T->getElementType());
1404}
1405
1406// <type>                   ::= <pointer-to-member-type>
1407// <pointer-to-member-type> ::= M <class type> <member type>
1408void CXXNameMangler::mangleType(const MemberPointerType *T) {
1409  Out << 'M';
1410  mangleType(QualType(T->getClass(), 0));
1411  QualType PointeeType = T->getPointeeType();
1412  if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(PointeeType)) {
1413    mangleQualifiers(Qualifiers::fromCVRMask(FPT->getTypeQuals()));
1414    mangleRefQualifier(FPT->getRefQualifier());
1415    mangleType(FPT);
1416
1417    // Itanium C++ ABI 5.1.8:
1418    //
1419    //   The type of a non-static member function is considered to be different,
1420    //   for the purposes of substitution, from the type of a namespace-scope or
1421    //   static member function whose type appears similar. The types of two
1422    //   non-static member functions are considered to be different, for the
1423    //   purposes of substitution, if the functions are members of different
1424    //   classes. In other words, for the purposes of substitution, the class of
1425    //   which the function is a member is considered part of the type of
1426    //   function.
1427
1428    // We increment the SeqID here to emulate adding an entry to the
1429    // substitution table. We can't actually add it because we don't want this
1430    // particular function type to be substituted.
1431    ++SeqID;
1432  } else
1433    mangleType(PointeeType);
1434}
1435
1436// <type>           ::= <template-param>
1437void CXXNameMangler::mangleType(const TemplateTypeParmType *T) {
1438  mangleTemplateParameter(T->getIndex());
1439}
1440
1441// <type>           ::= <template-param>
1442void CXXNameMangler::mangleType(const SubstTemplateTypeParmPackType *T) {
1443  mangleTemplateParameter(T->getReplacedParameter()->getIndex());
1444}
1445
1446// <type> ::= P <type>   # pointer-to
1447void CXXNameMangler::mangleType(const PointerType *T) {
1448  Out << 'P';
1449  mangleType(T->getPointeeType());
1450}
1451void CXXNameMangler::mangleType(const ObjCObjectPointerType *T) {
1452  Out << 'P';
1453  mangleType(T->getPointeeType());
1454}
1455
1456// <type> ::= R <type>   # reference-to
1457void CXXNameMangler::mangleType(const LValueReferenceType *T) {
1458  Out << 'R';
1459  mangleType(T->getPointeeType());
1460}
1461
1462// <type> ::= O <type>   # rvalue reference-to (C++0x)
1463void CXXNameMangler::mangleType(const RValueReferenceType *T) {
1464  Out << 'O';
1465  mangleType(T->getPointeeType());
1466}
1467
1468// <type> ::= C <type>   # complex pair (C 2000)
1469void CXXNameMangler::mangleType(const ComplexType *T) {
1470  Out << 'C';
1471  mangleType(T->getElementType());
1472}
1473
1474// ARM's ABI for Neon vector types specifies that they should be mangled as
1475// if they are structs (to match ARM's initial implementation).  The
1476// vector type must be one of the special types predefined by ARM.
1477void CXXNameMangler::mangleNeonVectorType(const VectorType *T) {
1478  QualType EltType = T->getElementType();
1479  assert(EltType->isBuiltinType() && "Neon vector element not a BuiltinType");
1480  const char *EltName = 0;
1481  if (T->getVectorKind() == VectorType::NeonPolyVector) {
1482    switch (cast<BuiltinType>(EltType)->getKind()) {
1483    case BuiltinType::SChar:     EltName = "poly8_t"; break;
1484    case BuiltinType::Short:     EltName = "poly16_t"; break;
1485    default: llvm_unreachable("unexpected Neon polynomial vector element type");
1486    }
1487  } else {
1488    switch (cast<BuiltinType>(EltType)->getKind()) {
1489    case BuiltinType::SChar:     EltName = "int8_t"; break;
1490    case BuiltinType::UChar:     EltName = "uint8_t"; break;
1491    case BuiltinType::Short:     EltName = "int16_t"; break;
1492    case BuiltinType::UShort:    EltName = "uint16_t"; break;
1493    case BuiltinType::Int:       EltName = "int32_t"; break;
1494    case BuiltinType::UInt:      EltName = "uint32_t"; break;
1495    case BuiltinType::LongLong:  EltName = "int64_t"; break;
1496    case BuiltinType::ULongLong: EltName = "uint64_t"; break;
1497    case BuiltinType::Float:     EltName = "float32_t"; break;
1498    default: llvm_unreachable("unexpected Neon vector element type");
1499    }
1500  }
1501  const char *BaseName = 0;
1502  unsigned BitSize = (T->getNumElements() *
1503                      getASTContext().getTypeSize(EltType));
1504  if (BitSize == 64)
1505    BaseName = "__simd64_";
1506  else {
1507    assert(BitSize == 128 && "Neon vector type not 64 or 128 bits");
1508    BaseName = "__simd128_";
1509  }
1510  Out << strlen(BaseName) + strlen(EltName);
1511  Out << BaseName << EltName;
1512}
1513
1514// GNU extension: vector types
1515// <type>                  ::= <vector-type>
1516// <vector-type>           ::= Dv <positive dimension number> _
1517//                                    <extended element type>
1518//                         ::= Dv [<dimension expression>] _ <element type>
1519// <extended element type> ::= <element type>
1520//                         ::= p # AltiVec vector pixel
1521void CXXNameMangler::mangleType(const VectorType *T) {
1522  if ((T->getVectorKind() == VectorType::NeonVector ||
1523       T->getVectorKind() == VectorType::NeonPolyVector)) {
1524    mangleNeonVectorType(T);
1525    return;
1526  }
1527  Out << "Dv" << T->getNumElements() << '_';
1528  if (T->getVectorKind() == VectorType::AltiVecPixel)
1529    Out << 'p';
1530  else if (T->getVectorKind() == VectorType::AltiVecBool)
1531    Out << 'b';
1532  else
1533    mangleType(T->getElementType());
1534}
1535void CXXNameMangler::mangleType(const ExtVectorType *T) {
1536  mangleType(static_cast<const VectorType*>(T));
1537}
1538void CXXNameMangler::mangleType(const DependentSizedExtVectorType *T) {
1539  Out << "Dv";
1540  mangleExpression(T->getSizeExpr());
1541  Out << '_';
1542  mangleType(T->getElementType());
1543}
1544
1545void CXXNameMangler::mangleType(const PackExpansionType *T) {
1546  // <type>  ::= Dp <type>          # pack expansion (C++0x)
1547  Out << "Dp";
1548  mangleType(T->getPattern());
1549}
1550
1551void CXXNameMangler::mangleType(const ObjCInterfaceType *T) {
1552  mangleSourceName(T->getDecl()->getIdentifier());
1553}
1554
1555void CXXNameMangler::mangleType(const ObjCObjectType *T) {
1556  // We don't allow overloading by different protocol qualification,
1557  // so mangling them isn't necessary.
1558  mangleType(T->getBaseType());
1559}
1560
1561void CXXNameMangler::mangleType(const BlockPointerType *T) {
1562  Out << "U13block_pointer";
1563  mangleType(T->getPointeeType());
1564}
1565
1566void CXXNameMangler::mangleType(const InjectedClassNameType *T) {
1567  // Mangle injected class name types as if the user had written the
1568  // specialization out fully.  It may not actually be possible to see
1569  // this mangling, though.
1570  mangleType(T->getInjectedSpecializationType());
1571}
1572
1573void CXXNameMangler::mangleType(const TemplateSpecializationType *T) {
1574  if (TemplateDecl *TD = T->getTemplateName().getAsTemplateDecl()) {
1575    mangleName(TD, T->getArgs(), T->getNumArgs());
1576  } else {
1577    if (mangleSubstitution(QualType(T, 0)))
1578      return;
1579
1580    mangleTemplatePrefix(T->getTemplateName());
1581
1582    // FIXME: GCC does not appear to mangle the template arguments when
1583    // the template in question is a dependent template name. Should we
1584    // emulate that badness?
1585    mangleTemplateArgs(T->getTemplateName(), T->getArgs(), T->getNumArgs());
1586    addSubstitution(QualType(T, 0));
1587  }
1588}
1589
1590void CXXNameMangler::mangleType(const DependentNameType *T) {
1591  // Typename types are always nested
1592  Out << 'N';
1593  mangleUnresolvedScope(T->getQualifier());
1594  mangleSourceName(T->getIdentifier());
1595  Out << 'E';
1596}
1597
1598void CXXNameMangler::mangleType(const DependentTemplateSpecializationType *T) {
1599  // Dependently-scoped template types are always nested
1600  Out << 'N';
1601
1602  // TODO: avoid making this TemplateName.
1603  TemplateName Prefix =
1604    getASTContext().getDependentTemplateName(T->getQualifier(),
1605                                             T->getIdentifier());
1606  mangleTemplatePrefix(Prefix);
1607
1608  // FIXME: GCC does not appear to mangle the template arguments when
1609  // the template in question is a dependent template name. Should we
1610  // emulate that badness?
1611  mangleTemplateArgs(Prefix, T->getArgs(), T->getNumArgs());
1612  Out << 'E';
1613}
1614
1615void CXXNameMangler::mangleType(const TypeOfType *T) {
1616  // FIXME: this is pretty unsatisfactory, but there isn't an obvious
1617  // "extension with parameters" mangling.
1618  Out << "u6typeof";
1619}
1620
1621void CXXNameMangler::mangleType(const TypeOfExprType *T) {
1622  // FIXME: this is pretty unsatisfactory, but there isn't an obvious
1623  // "extension with parameters" mangling.
1624  Out << "u6typeof";
1625}
1626
1627void CXXNameMangler::mangleType(const DecltypeType *T) {
1628  Expr *E = T->getUnderlyingExpr();
1629
1630  // type ::= Dt <expression> E  # decltype of an id-expression
1631  //                             #   or class member access
1632  //      ::= DT <expression> E  # decltype of an expression
1633
1634  // This purports to be an exhaustive list of id-expressions and
1635  // class member accesses.  Note that we do not ignore parentheses;
1636  // parentheses change the semantics of decltype for these
1637  // expressions (and cause the mangler to use the other form).
1638  if (isa<DeclRefExpr>(E) ||
1639      isa<MemberExpr>(E) ||
1640      isa<UnresolvedLookupExpr>(E) ||
1641      isa<DependentScopeDeclRefExpr>(E) ||
1642      isa<CXXDependentScopeMemberExpr>(E) ||
1643      isa<UnresolvedMemberExpr>(E))
1644    Out << "Dt";
1645  else
1646    Out << "DT";
1647  mangleExpression(E);
1648  Out << 'E';
1649}
1650
1651void CXXNameMangler::mangleIntegerLiteral(QualType T,
1652                                          const llvm::APSInt &Value) {
1653  //  <expr-primary> ::= L <type> <value number> E # integer literal
1654  Out << 'L';
1655
1656  mangleType(T);
1657  if (T->isBooleanType()) {
1658    // Boolean values are encoded as 0/1.
1659    Out << (Value.getBoolValue() ? '1' : '0');
1660  } else {
1661    mangleNumber(Value);
1662  }
1663  Out << 'E';
1664
1665}
1666
1667/// Mangles a member expression.  Implicit accesses are not handled,
1668/// but that should be okay, because you shouldn't be able to
1669/// make an implicit access in a function template declaration.
1670void CXXNameMangler::mangleMemberExpr(const Expr *Base,
1671                                      bool IsArrow,
1672                                      NestedNameSpecifier *Qualifier,
1673                                      DeclarationName Member,
1674                                      unsigned Arity) {
1675  // gcc-4.4 uses 'dt' for dot expressions, which is reasonable.
1676  // OTOH, gcc also mangles the name as an expression.
1677  Out << (IsArrow ? "pt" : "dt");
1678  mangleExpression(Base);
1679  mangleUnresolvedName(Qualifier, Member, Arity);
1680}
1681
1682void CXXNameMangler::mangleExpression(const Expr *E, unsigned Arity) {
1683  // <expression> ::= <unary operator-name> <expression>
1684  //              ::= <binary operator-name> <expression> <expression>
1685  //              ::= <trinary operator-name> <expression> <expression> <expression>
1686  //              ::= cl <expression>* E             # call
1687  //              ::= cv <type> expression           # conversion with one argument
1688  //              ::= cv <type> _ <expression>* E # conversion with a different number of arguments
1689  //              ::= st <type>                      # sizeof (a type)
1690  //              ::= at <type>                      # alignof (a type)
1691  //              ::= <template-param>
1692  //              ::= <function-param>
1693  //              ::= sr <type> <unqualified-name>                   # dependent name
1694  //              ::= sr <type> <unqualified-name> <template-args>   # dependent template-id
1695  //              ::= sZ <template-param>                            # size of a parameter pack
1696  //              ::= sZ <function-param>    # size of a function parameter pack
1697  //              ::= <expr-primary>
1698  // <expr-primary> ::= L <type> <value number> E    # integer literal
1699  //                ::= L <type <value float> E      # floating literal
1700  //                ::= L <mangled-name> E           # external name
1701  switch (E->getStmtClass()) {
1702  case Expr::NoStmtClass:
1703#define ABSTRACT_STMT(Type)
1704#define EXPR(Type, Base)
1705#define STMT(Type, Base) \
1706  case Expr::Type##Class:
1707#include "clang/AST/StmtNodes.inc"
1708    // fallthrough
1709
1710  // These all can only appear in local or variable-initialization
1711  // contexts and so should never appear in a mangling.
1712  case Expr::AddrLabelExprClass:
1713  case Expr::BlockDeclRefExprClass:
1714  case Expr::CXXThisExprClass:
1715  case Expr::DesignatedInitExprClass:
1716  case Expr::ImplicitValueInitExprClass:
1717  case Expr::InitListExprClass:
1718  case Expr::ParenListExprClass:
1719  case Expr::CXXScalarValueInitExprClass:
1720    llvm_unreachable("unexpected statement kind");
1721    break;
1722
1723  // FIXME: invent manglings for all these.
1724  case Expr::BlockExprClass:
1725  case Expr::CXXPseudoDestructorExprClass:
1726  case Expr::ChooseExprClass:
1727  case Expr::CompoundLiteralExprClass:
1728  case Expr::ExtVectorElementExprClass:
1729  case Expr::ObjCEncodeExprClass:
1730  case Expr::ObjCIsaExprClass:
1731  case Expr::ObjCIvarRefExprClass:
1732  case Expr::ObjCMessageExprClass:
1733  case Expr::ObjCPropertyRefExprClass:
1734  case Expr::ObjCProtocolExprClass:
1735  case Expr::ObjCSelectorExprClass:
1736  case Expr::ObjCStringLiteralClass:
1737  case Expr::OffsetOfExprClass:
1738  case Expr::PredefinedExprClass:
1739  case Expr::ShuffleVectorExprClass:
1740  case Expr::StmtExprClass:
1741  case Expr::UnaryTypeTraitExprClass:
1742  case Expr::BinaryTypeTraitExprClass:
1743  case Expr::VAArgExprClass:
1744  case Expr::CXXUuidofExprClass:
1745  case Expr::CXXNoexceptExprClass:
1746  case Expr::CUDAKernelCallExprClass: {
1747    // As bad as this diagnostic is, it's better than crashing.
1748    Diagnostic &Diags = Context.getDiags();
1749    unsigned DiagID = Diags.getCustomDiagID(Diagnostic::Error,
1750                                     "cannot yet mangle expression type %0");
1751    Diags.Report(E->getExprLoc(), DiagID)
1752      << E->getStmtClassName() << E->getSourceRange();
1753    break;
1754  }
1755
1756  // Even gcc-4.5 doesn't mangle this.
1757  case Expr::BinaryConditionalOperatorClass: {
1758    Diagnostic &Diags = Context.getDiags();
1759    unsigned DiagID =
1760      Diags.getCustomDiagID(Diagnostic::Error,
1761                "?: operator with omitted middle operand cannot be mangled");
1762    Diags.Report(E->getExprLoc(), DiagID)
1763      << E->getStmtClassName() << E->getSourceRange();
1764    break;
1765  }
1766
1767  // These are used for internal purposes and cannot be meaningfully mangled.
1768  case Expr::OpaqueValueExprClass:
1769    llvm_unreachable("cannot mangle opaque value; mangling wrong thing?");
1770
1771  case Expr::CXXDefaultArgExprClass:
1772    mangleExpression(cast<CXXDefaultArgExpr>(E)->getExpr(), Arity);
1773    break;
1774
1775  case Expr::CXXMemberCallExprClass: // fallthrough
1776  case Expr::CallExprClass: {
1777    const CallExpr *CE = cast<CallExpr>(E);
1778    Out << "cl";
1779    mangleExpression(CE->getCallee(), CE->getNumArgs());
1780    for (unsigned I = 0, N = CE->getNumArgs(); I != N; ++I)
1781      mangleExpression(CE->getArg(I));
1782    Out << 'E';
1783    break;
1784  }
1785
1786  case Expr::CXXNewExprClass: {
1787    // Proposal from David Vandervoorde, 2010.06.30
1788    const CXXNewExpr *New = cast<CXXNewExpr>(E);
1789    if (New->isGlobalNew()) Out << "gs";
1790    Out << (New->isArray() ? "na" : "nw");
1791    for (CXXNewExpr::const_arg_iterator I = New->placement_arg_begin(),
1792           E = New->placement_arg_end(); I != E; ++I)
1793      mangleExpression(*I);
1794    Out << '_';
1795    mangleType(New->getAllocatedType());
1796    if (New->hasInitializer()) {
1797      Out << "pi";
1798      for (CXXNewExpr::const_arg_iterator I = New->constructor_arg_begin(),
1799             E = New->constructor_arg_end(); I != E; ++I)
1800        mangleExpression(*I);
1801    }
1802    Out << 'E';
1803    break;
1804  }
1805
1806  case Expr::MemberExprClass: {
1807    const MemberExpr *ME = cast<MemberExpr>(E);
1808    mangleMemberExpr(ME->getBase(), ME->isArrow(),
1809                     ME->getQualifier(), ME->getMemberDecl()->getDeclName(),
1810                     Arity);
1811    break;
1812  }
1813
1814  case Expr::UnresolvedMemberExprClass: {
1815    const UnresolvedMemberExpr *ME = cast<UnresolvedMemberExpr>(E);
1816    mangleMemberExpr(ME->getBase(), ME->isArrow(),
1817                     ME->getQualifier(), ME->getMemberName(),
1818                     Arity);
1819    if (ME->hasExplicitTemplateArgs())
1820      mangleTemplateArgs(ME->getExplicitTemplateArgs());
1821    break;
1822  }
1823
1824  case Expr::CXXDependentScopeMemberExprClass: {
1825    const CXXDependentScopeMemberExpr *ME
1826      = cast<CXXDependentScopeMemberExpr>(E);
1827    mangleMemberExpr(ME->getBase(), ME->isArrow(),
1828                     ME->getQualifier(), ME->getMember(),
1829                     Arity);
1830    if (ME->hasExplicitTemplateArgs())
1831      mangleTemplateArgs(ME->getExplicitTemplateArgs());
1832    break;
1833  }
1834
1835  case Expr::UnresolvedLookupExprClass: {
1836    // The ABI doesn't cover how to mangle overload sets, so we mangle
1837    // using something as close as possible to the original lookup
1838    // expression.
1839    const UnresolvedLookupExpr *ULE = cast<UnresolvedLookupExpr>(E);
1840    mangleUnresolvedName(ULE->getQualifier(), ULE->getName(), Arity);
1841    if (ULE->hasExplicitTemplateArgs())
1842      mangleTemplateArgs(ULE->getExplicitTemplateArgs());
1843    break;
1844  }
1845
1846  case Expr::CXXUnresolvedConstructExprClass: {
1847    const CXXUnresolvedConstructExpr *CE = cast<CXXUnresolvedConstructExpr>(E);
1848    unsigned N = CE->arg_size();
1849
1850    Out << "cv";
1851    mangleType(CE->getType());
1852    if (N != 1) Out << '_';
1853    for (unsigned I = 0; I != N; ++I) mangleExpression(CE->getArg(I));
1854    if (N != 1) Out << 'E';
1855    break;
1856  }
1857
1858  case Expr::CXXTemporaryObjectExprClass:
1859  case Expr::CXXConstructExprClass: {
1860    const CXXConstructExpr *CE = cast<CXXConstructExpr>(E);
1861    unsigned N = CE->getNumArgs();
1862
1863    Out << "cv";
1864    mangleType(CE->getType());
1865    if (N != 1) Out << '_';
1866    for (unsigned I = 0; I != N; ++I) mangleExpression(CE->getArg(I));
1867    if (N != 1) Out << 'E';
1868    break;
1869  }
1870
1871  case Expr::SizeOfAlignOfExprClass: {
1872    const SizeOfAlignOfExpr *SAE = cast<SizeOfAlignOfExpr>(E);
1873    if (SAE->isSizeOf()) Out << 's';
1874    else Out << 'a';
1875    if (SAE->isArgumentType()) {
1876      Out << 't';
1877      mangleType(SAE->getArgumentType());
1878    } else {
1879      Out << 'z';
1880      mangleExpression(SAE->getArgumentExpr());
1881    }
1882    break;
1883  }
1884
1885  case Expr::CXXThrowExprClass: {
1886    const CXXThrowExpr *TE = cast<CXXThrowExpr>(E);
1887
1888    // Proposal from David Vandervoorde, 2010.06.30
1889    if (TE->getSubExpr()) {
1890      Out << "tw";
1891      mangleExpression(TE->getSubExpr());
1892    } else {
1893      Out << "tr";
1894    }
1895    break;
1896  }
1897
1898  case Expr::CXXTypeidExprClass: {
1899    const CXXTypeidExpr *TIE = cast<CXXTypeidExpr>(E);
1900
1901    // Proposal from David Vandervoorde, 2010.06.30
1902    if (TIE->isTypeOperand()) {
1903      Out << "ti";
1904      mangleType(TIE->getTypeOperand());
1905    } else {
1906      Out << "te";
1907      mangleExpression(TIE->getExprOperand());
1908    }
1909    break;
1910  }
1911
1912  case Expr::CXXDeleteExprClass: {
1913    const CXXDeleteExpr *DE = cast<CXXDeleteExpr>(E);
1914
1915    // Proposal from David Vandervoorde, 2010.06.30
1916    if (DE->isGlobalDelete()) Out << "gs";
1917    Out << (DE->isArrayForm() ? "da" : "dl");
1918    mangleExpression(DE->getArgument());
1919    break;
1920  }
1921
1922  case Expr::UnaryOperatorClass: {
1923    const UnaryOperator *UO = cast<UnaryOperator>(E);
1924    mangleOperatorName(UnaryOperator::getOverloadedOperator(UO->getOpcode()),
1925                       /*Arity=*/1);
1926    mangleExpression(UO->getSubExpr());
1927    break;
1928  }
1929
1930  case Expr::ArraySubscriptExprClass: {
1931    const ArraySubscriptExpr *AE = cast<ArraySubscriptExpr>(E);
1932
1933    // Array subscript is treated as a syntactically wierd form of
1934    // binary operator.
1935    Out << "ix";
1936    mangleExpression(AE->getLHS());
1937    mangleExpression(AE->getRHS());
1938    break;
1939  }
1940
1941  case Expr::CompoundAssignOperatorClass: // fallthrough
1942  case Expr::BinaryOperatorClass: {
1943    const BinaryOperator *BO = cast<BinaryOperator>(E);
1944    mangleOperatorName(BinaryOperator::getOverloadedOperator(BO->getOpcode()),
1945                       /*Arity=*/2);
1946    mangleExpression(BO->getLHS());
1947    mangleExpression(BO->getRHS());
1948    break;
1949  }
1950
1951  case Expr::ConditionalOperatorClass: {
1952    const ConditionalOperator *CO = cast<ConditionalOperator>(E);
1953    mangleOperatorName(OO_Conditional, /*Arity=*/3);
1954    mangleExpression(CO->getCond());
1955    mangleExpression(CO->getLHS(), Arity);
1956    mangleExpression(CO->getRHS(), Arity);
1957    break;
1958  }
1959
1960  case Expr::ImplicitCastExprClass: {
1961    mangleExpression(cast<ImplicitCastExpr>(E)->getSubExpr(), Arity);
1962    break;
1963  }
1964
1965  case Expr::CStyleCastExprClass:
1966  case Expr::CXXStaticCastExprClass:
1967  case Expr::CXXDynamicCastExprClass:
1968  case Expr::CXXReinterpretCastExprClass:
1969  case Expr::CXXConstCastExprClass:
1970  case Expr::CXXFunctionalCastExprClass: {
1971    const ExplicitCastExpr *ECE = cast<ExplicitCastExpr>(E);
1972    Out << "cv";
1973    mangleType(ECE->getType());
1974    mangleExpression(ECE->getSubExpr());
1975    break;
1976  }
1977
1978  case Expr::CXXOperatorCallExprClass: {
1979    const CXXOperatorCallExpr *CE = cast<CXXOperatorCallExpr>(E);
1980    unsigned NumArgs = CE->getNumArgs();
1981    mangleOperatorName(CE->getOperator(), /*Arity=*/NumArgs);
1982    // Mangle the arguments.
1983    for (unsigned i = 0; i != NumArgs; ++i)
1984      mangleExpression(CE->getArg(i));
1985    break;
1986  }
1987
1988  case Expr::ParenExprClass:
1989    mangleExpression(cast<ParenExpr>(E)->getSubExpr(), Arity);
1990    break;
1991
1992  case Expr::DeclRefExprClass: {
1993    const NamedDecl *D = cast<DeclRefExpr>(E)->getDecl();
1994
1995    switch (D->getKind()) {
1996    default:
1997      //  <expr-primary> ::= L <mangled-name> E # external name
1998      Out << 'L';
1999      mangle(D, "_Z");
2000      Out << 'E';
2001      break;
2002
2003    case Decl::EnumConstant: {
2004      const EnumConstantDecl *ED = cast<EnumConstantDecl>(D);
2005      mangleIntegerLiteral(ED->getType(), ED->getInitVal());
2006      break;
2007    }
2008
2009    case Decl::NonTypeTemplateParm: {
2010      const NonTypeTemplateParmDecl *PD = cast<NonTypeTemplateParmDecl>(D);
2011      mangleTemplateParameter(PD->getIndex());
2012      break;
2013    }
2014
2015    }
2016
2017    break;
2018  }
2019
2020  case Expr::SubstNonTypeTemplateParmPackExprClass:
2021    mangleTemplateParameter(
2022     cast<SubstNonTypeTemplateParmPackExpr>(E)->getParameterPack()->getIndex());
2023    break;
2024
2025  case Expr::DependentScopeDeclRefExprClass: {
2026    const DependentScopeDeclRefExpr *DRE = cast<DependentScopeDeclRefExpr>(E);
2027    NestedNameSpecifier *NNS = DRE->getQualifier();
2028    const Type *QTy = NNS->getAsType();
2029
2030    // When we're dealing with a nested-name-specifier that has just a
2031    // dependent identifier in it, mangle that as a typename.  FIXME:
2032    // It isn't clear that we ever actually want to have such a
2033    // nested-name-specifier; why not just represent it as a typename type?
2034    if (!QTy && NNS->getAsIdentifier() && NNS->getPrefix()) {
2035      QTy = getASTContext().getDependentNameType(ETK_Typename,
2036                                                 NNS->getPrefix(),
2037                                                 NNS->getAsIdentifier())
2038              .getTypePtr();
2039    }
2040    assert(QTy && "Qualifier was not type!");
2041
2042    // ::= sr <type> <unqualified-name>                  # dependent name
2043    // ::= sr <type> <unqualified-name> <template-args>  # dependent template-id
2044    Out << "sr";
2045    mangleType(QualType(QTy, 0));
2046    mangleUnqualifiedName(0, DRE->getDeclName(), Arity);
2047    if (DRE->hasExplicitTemplateArgs())
2048      mangleTemplateArgs(DRE->getExplicitTemplateArgs());
2049
2050    break;
2051  }
2052
2053  case Expr::CXXBindTemporaryExprClass:
2054    mangleExpression(cast<CXXBindTemporaryExpr>(E)->getSubExpr());
2055    break;
2056
2057  case Expr::ExprWithCleanupsClass:
2058    mangleExpression(cast<ExprWithCleanups>(E)->getSubExpr(), Arity);
2059    break;
2060
2061  case Expr::FloatingLiteralClass: {
2062    const FloatingLiteral *FL = cast<FloatingLiteral>(E);
2063    Out << 'L';
2064    mangleType(FL->getType());
2065    mangleFloat(FL->getValue());
2066    Out << 'E';
2067    break;
2068  }
2069
2070  case Expr::CharacterLiteralClass:
2071    Out << 'L';
2072    mangleType(E->getType());
2073    Out << cast<CharacterLiteral>(E)->getValue();
2074    Out << 'E';
2075    break;
2076
2077  case Expr::CXXBoolLiteralExprClass:
2078    Out << "Lb";
2079    Out << (cast<CXXBoolLiteralExpr>(E)->getValue() ? '1' : '0');
2080    Out << 'E';
2081    break;
2082
2083  case Expr::IntegerLiteralClass: {
2084    llvm::APSInt Value(cast<IntegerLiteral>(E)->getValue());
2085    if (E->getType()->isSignedIntegerType())
2086      Value.setIsSigned(true);
2087    mangleIntegerLiteral(E->getType(), Value);
2088    break;
2089  }
2090
2091  case Expr::ImaginaryLiteralClass: {
2092    const ImaginaryLiteral *IE = cast<ImaginaryLiteral>(E);
2093    // Mangle as if a complex literal.
2094    // Proposal from David Vandevoorde, 2010.06.30.
2095    Out << 'L';
2096    mangleType(E->getType());
2097    if (const FloatingLiteral *Imag =
2098          dyn_cast<FloatingLiteral>(IE->getSubExpr())) {
2099      // Mangle a floating-point zero of the appropriate type.
2100      mangleFloat(llvm::APFloat(Imag->getValue().getSemantics()));
2101      Out << '_';
2102      mangleFloat(Imag->getValue());
2103    } else {
2104      Out << "0_";
2105      llvm::APSInt Value(cast<IntegerLiteral>(IE->getSubExpr())->getValue());
2106      if (IE->getSubExpr()->getType()->isSignedIntegerType())
2107        Value.setIsSigned(true);
2108      mangleNumber(Value);
2109    }
2110    Out << 'E';
2111    break;
2112  }
2113
2114  case Expr::StringLiteralClass: {
2115    // Revised proposal from David Vandervoorde, 2010.07.15.
2116    Out << 'L';
2117    assert(isa<ConstantArrayType>(E->getType()));
2118    mangleType(E->getType());
2119    Out << 'E';
2120    break;
2121  }
2122
2123  case Expr::GNUNullExprClass:
2124    // FIXME: should this really be mangled the same as nullptr?
2125    // fallthrough
2126
2127  case Expr::CXXNullPtrLiteralExprClass: {
2128    // Proposal from David Vandervoorde, 2010.06.30, as
2129    // modified by ABI list discussion.
2130    Out << "LDnE";
2131    break;
2132  }
2133
2134  case Expr::PackExpansionExprClass:
2135    Out << "sp";
2136    mangleExpression(cast<PackExpansionExpr>(E)->getPattern());
2137    break;
2138
2139  case Expr::SizeOfPackExprClass: {
2140    Out << "sZ";
2141    const NamedDecl *Pack = cast<SizeOfPackExpr>(E)->getPack();
2142    if (const TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Pack))
2143      mangleTemplateParameter(TTP->getIndex());
2144    else if (const NonTypeTemplateParmDecl *NTTP
2145                = dyn_cast<NonTypeTemplateParmDecl>(Pack))
2146      mangleTemplateParameter(NTTP->getIndex());
2147    else if (const TemplateTemplateParmDecl *TempTP
2148                                    = dyn_cast<TemplateTemplateParmDecl>(Pack))
2149      mangleTemplateParameter(TempTP->getIndex());
2150    else {
2151      // Note: proposed by Mike Herrick on 11/30/10
2152      // <expression> ::= sZ <function-param>  # size of function parameter pack
2153      Diagnostic &Diags = Context.getDiags();
2154      unsigned DiagID = Diags.getCustomDiagID(Diagnostic::Error,
2155                            "cannot mangle sizeof...(function parameter pack)");
2156      Diags.Report(DiagID);
2157      return;
2158    }
2159  }
2160  }
2161}
2162
2163void CXXNameMangler::mangleCXXCtorType(CXXCtorType T) {
2164  // <ctor-dtor-name> ::= C1  # complete object constructor
2165  //                  ::= C2  # base object constructor
2166  //                  ::= C3  # complete object allocating constructor
2167  //
2168  switch (T) {
2169  case Ctor_Complete:
2170    Out << "C1";
2171    break;
2172  case Ctor_Base:
2173    Out << "C2";
2174    break;
2175  case Ctor_CompleteAllocating:
2176    Out << "C3";
2177    break;
2178  }
2179}
2180
2181void CXXNameMangler::mangleCXXDtorType(CXXDtorType T) {
2182  // <ctor-dtor-name> ::= D0  # deleting destructor
2183  //                  ::= D1  # complete object destructor
2184  //                  ::= D2  # base object destructor
2185  //
2186  switch (T) {
2187  case Dtor_Deleting:
2188    Out << "D0";
2189    break;
2190  case Dtor_Complete:
2191    Out << "D1";
2192    break;
2193  case Dtor_Base:
2194    Out << "D2";
2195    break;
2196  }
2197}
2198
2199void CXXNameMangler::mangleTemplateArgs(
2200                          const ExplicitTemplateArgumentList &TemplateArgs) {
2201  // <template-args> ::= I <template-arg>+ E
2202  Out << 'I';
2203  for (unsigned I = 0, E = TemplateArgs.NumTemplateArgs; I != E; ++I)
2204    mangleTemplateArg(0, TemplateArgs.getTemplateArgs()[I].getArgument());
2205  Out << 'E';
2206}
2207
2208void CXXNameMangler::mangleTemplateArgs(TemplateName Template,
2209                                        const TemplateArgument *TemplateArgs,
2210                                        unsigned NumTemplateArgs) {
2211  if (TemplateDecl *TD = Template.getAsTemplateDecl())
2212    return mangleTemplateArgs(*TD->getTemplateParameters(), TemplateArgs,
2213                              NumTemplateArgs);
2214
2215  // <template-args> ::= I <template-arg>+ E
2216  Out << 'I';
2217  for (unsigned i = 0; i != NumTemplateArgs; ++i)
2218    mangleTemplateArg(0, TemplateArgs[i]);
2219  Out << 'E';
2220}
2221
2222void CXXNameMangler::mangleTemplateArgs(const TemplateParameterList &PL,
2223                                        const TemplateArgumentList &AL) {
2224  // <template-args> ::= I <template-arg>+ E
2225  Out << 'I';
2226  for (unsigned i = 0, e = AL.size(); i != e; ++i)
2227    mangleTemplateArg(PL.getParam(i), AL[i]);
2228  Out << 'E';
2229}
2230
2231void CXXNameMangler::mangleTemplateArgs(const TemplateParameterList &PL,
2232                                        const TemplateArgument *TemplateArgs,
2233                                        unsigned NumTemplateArgs) {
2234  // <template-args> ::= I <template-arg>+ E
2235  Out << 'I';
2236  for (unsigned i = 0; i != NumTemplateArgs; ++i)
2237    mangleTemplateArg(PL.getParam(i), TemplateArgs[i]);
2238  Out << 'E';
2239}
2240
2241void CXXNameMangler::mangleTemplateArg(const NamedDecl *P,
2242                                       const TemplateArgument &A) {
2243  // <template-arg> ::= <type>              # type or template
2244  //                ::= X <expression> E    # expression
2245  //                ::= <expr-primary>      # simple expressions
2246  //                ::= J <template-arg>* E # argument pack
2247  //                ::= sp <expression>     # pack expansion of (C++0x)
2248  switch (A.getKind()) {
2249  case TemplateArgument::Null:
2250    llvm_unreachable("Cannot mangle NULL template argument");
2251
2252  case TemplateArgument::Type:
2253    mangleType(A.getAsType());
2254    break;
2255  case TemplateArgument::Template:
2256    // This is mangled as <type>.
2257    mangleType(A.getAsTemplate());
2258    break;
2259  case TemplateArgument::TemplateExpansion:
2260    // <type>  ::= Dp <type>          # pack expansion (C++0x)
2261    Out << "Dp";
2262    mangleType(A.getAsTemplateOrTemplatePattern());
2263    break;
2264  case TemplateArgument::Expression:
2265    Out << 'X';
2266    mangleExpression(A.getAsExpr());
2267    Out << 'E';
2268    break;
2269  case TemplateArgument::Integral:
2270    mangleIntegerLiteral(A.getIntegralType(), *A.getAsIntegral());
2271    break;
2272  case TemplateArgument::Declaration: {
2273    assert(P && "Missing template parameter for declaration argument");
2274    //  <expr-primary> ::= L <mangled-name> E # external name
2275
2276    // Clang produces AST's where pointer-to-member-function expressions
2277    // and pointer-to-function expressions are represented as a declaration not
2278    // an expression. We compensate for it here to produce the correct mangling.
2279    NamedDecl *D = cast<NamedDecl>(A.getAsDecl());
2280    const NonTypeTemplateParmDecl *Parameter = cast<NonTypeTemplateParmDecl>(P);
2281    bool compensateMangling = D->isCXXClassMember() &&
2282      !Parameter->getType()->isReferenceType();
2283    if (compensateMangling) {
2284      Out << 'X';
2285      mangleOperatorName(OO_Amp, 1);
2286    }
2287
2288    Out << 'L';
2289    // References to external entities use the mangled name; if the name would
2290    // not normally be manged then mangle it as unqualified.
2291    //
2292    // FIXME: The ABI specifies that external names here should have _Z, but
2293    // gcc leaves this off.
2294    if (compensateMangling)
2295      mangle(D, "_Z");
2296    else
2297      mangle(D, "Z");
2298    Out << 'E';
2299
2300    if (compensateMangling)
2301      Out << 'E';
2302
2303    break;
2304  }
2305
2306  case TemplateArgument::Pack: {
2307    // Note: proposal by Mike Herrick on 12/20/10
2308    Out << 'J';
2309    for (TemplateArgument::pack_iterator PA = A.pack_begin(),
2310                                      PAEnd = A.pack_end();
2311         PA != PAEnd; ++PA)
2312      mangleTemplateArg(P, *PA);
2313    Out << 'E';
2314  }
2315  }
2316}
2317
2318void CXXNameMangler::mangleTemplateParameter(unsigned Index) {
2319  // <template-param> ::= T_    # first template parameter
2320  //                  ::= T <parameter-2 non-negative number> _
2321  if (Index == 0)
2322    Out << "T_";
2323  else
2324    Out << 'T' << (Index - 1) << '_';
2325}
2326
2327// <substitution> ::= S <seq-id> _
2328//                ::= S_
2329bool CXXNameMangler::mangleSubstitution(const NamedDecl *ND) {
2330  // Try one of the standard substitutions first.
2331  if (mangleStandardSubstitution(ND))
2332    return true;
2333
2334  ND = cast<NamedDecl>(ND->getCanonicalDecl());
2335  return mangleSubstitution(reinterpret_cast<uintptr_t>(ND));
2336}
2337
2338bool CXXNameMangler::mangleSubstitution(QualType T) {
2339  if (!T.getCVRQualifiers()) {
2340    if (const RecordType *RT = T->getAs<RecordType>())
2341      return mangleSubstitution(RT->getDecl());
2342  }
2343
2344  uintptr_t TypePtr = reinterpret_cast<uintptr_t>(T.getAsOpaquePtr());
2345
2346  return mangleSubstitution(TypePtr);
2347}
2348
2349bool CXXNameMangler::mangleSubstitution(TemplateName Template) {
2350  if (TemplateDecl *TD = Template.getAsTemplateDecl())
2351    return mangleSubstitution(TD);
2352
2353  Template = Context.getASTContext().getCanonicalTemplateName(Template);
2354  return mangleSubstitution(
2355                      reinterpret_cast<uintptr_t>(Template.getAsVoidPointer()));
2356}
2357
2358bool CXXNameMangler::mangleSubstitution(uintptr_t Ptr) {
2359  llvm::DenseMap<uintptr_t, unsigned>::iterator I = Substitutions.find(Ptr);
2360  if (I == Substitutions.end())
2361    return false;
2362
2363  unsigned SeqID = I->second;
2364  if (SeqID == 0)
2365    Out << "S_";
2366  else {
2367    SeqID--;
2368
2369    // <seq-id> is encoded in base-36, using digits and upper case letters.
2370    char Buffer[10];
2371    char *BufferPtr = llvm::array_endof(Buffer);
2372
2373    if (SeqID == 0) *--BufferPtr = '0';
2374
2375    while (SeqID) {
2376      assert(BufferPtr > Buffer && "Buffer overflow!");
2377
2378      char c = static_cast<char>(SeqID % 36);
2379
2380      *--BufferPtr =  (c < 10 ? '0' + c : 'A' + c - 10);
2381      SeqID /= 36;
2382    }
2383
2384    Out << 'S'
2385        << llvm::StringRef(BufferPtr, llvm::array_endof(Buffer)-BufferPtr)
2386        << '_';
2387  }
2388
2389  return true;
2390}
2391
2392static bool isCharType(QualType T) {
2393  if (T.isNull())
2394    return false;
2395
2396  return T->isSpecificBuiltinType(BuiltinType::Char_S) ||
2397    T->isSpecificBuiltinType(BuiltinType::Char_U);
2398}
2399
2400/// isCharSpecialization - Returns whether a given type is a template
2401/// specialization of a given name with a single argument of type char.
2402static bool isCharSpecialization(QualType T, const char *Name) {
2403  if (T.isNull())
2404    return false;
2405
2406  const RecordType *RT = T->getAs<RecordType>();
2407  if (!RT)
2408    return false;
2409
2410  const ClassTemplateSpecializationDecl *SD =
2411    dyn_cast<ClassTemplateSpecializationDecl>(RT->getDecl());
2412  if (!SD)
2413    return false;
2414
2415  if (!isStdNamespace(SD->getDeclContext()))
2416    return false;
2417
2418  const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs();
2419  if (TemplateArgs.size() != 1)
2420    return false;
2421
2422  if (!isCharType(TemplateArgs[0].getAsType()))
2423    return false;
2424
2425  return SD->getIdentifier()->getName() == Name;
2426}
2427
2428template <std::size_t StrLen>
2429static bool isStreamCharSpecialization(const ClassTemplateSpecializationDecl*SD,
2430                                       const char (&Str)[StrLen]) {
2431  if (!SD->getIdentifier()->isStr(Str))
2432    return false;
2433
2434  const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs();
2435  if (TemplateArgs.size() != 2)
2436    return false;
2437
2438  if (!isCharType(TemplateArgs[0].getAsType()))
2439    return false;
2440
2441  if (!isCharSpecialization(TemplateArgs[1].getAsType(), "char_traits"))
2442    return false;
2443
2444  return true;
2445}
2446
2447bool CXXNameMangler::mangleStandardSubstitution(const NamedDecl *ND) {
2448  // <substitution> ::= St # ::std::
2449  if (const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ND)) {
2450    if (isStd(NS)) {
2451      Out << "St";
2452      return true;
2453    }
2454  }
2455
2456  if (const ClassTemplateDecl *TD = dyn_cast<ClassTemplateDecl>(ND)) {
2457    if (!isStdNamespace(TD->getDeclContext()))
2458      return false;
2459
2460    // <substitution> ::= Sa # ::std::allocator
2461    if (TD->getIdentifier()->isStr("allocator")) {
2462      Out << "Sa";
2463      return true;
2464    }
2465
2466    // <<substitution> ::= Sb # ::std::basic_string
2467    if (TD->getIdentifier()->isStr("basic_string")) {
2468      Out << "Sb";
2469      return true;
2470    }
2471  }
2472
2473  if (const ClassTemplateSpecializationDecl *SD =
2474        dyn_cast<ClassTemplateSpecializationDecl>(ND)) {
2475    if (!isStdNamespace(SD->getDeclContext()))
2476      return false;
2477
2478    //    <substitution> ::= Ss # ::std::basic_string<char,
2479    //                            ::std::char_traits<char>,
2480    //                            ::std::allocator<char> >
2481    if (SD->getIdentifier()->isStr("basic_string")) {
2482      const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs();
2483
2484      if (TemplateArgs.size() != 3)
2485        return false;
2486
2487      if (!isCharType(TemplateArgs[0].getAsType()))
2488        return false;
2489
2490      if (!isCharSpecialization(TemplateArgs[1].getAsType(), "char_traits"))
2491        return false;
2492
2493      if (!isCharSpecialization(TemplateArgs[2].getAsType(), "allocator"))
2494        return false;
2495
2496      Out << "Ss";
2497      return true;
2498    }
2499
2500    //    <substitution> ::= Si # ::std::basic_istream<char,
2501    //                            ::std::char_traits<char> >
2502    if (isStreamCharSpecialization(SD, "basic_istream")) {
2503      Out << "Si";
2504      return true;
2505    }
2506
2507    //    <substitution> ::= So # ::std::basic_ostream<char,
2508    //                            ::std::char_traits<char> >
2509    if (isStreamCharSpecialization(SD, "basic_ostream")) {
2510      Out << "So";
2511      return true;
2512    }
2513
2514    //    <substitution> ::= Sd # ::std::basic_iostream<char,
2515    //                            ::std::char_traits<char> >
2516    if (isStreamCharSpecialization(SD, "basic_iostream")) {
2517      Out << "Sd";
2518      return true;
2519    }
2520  }
2521  return false;
2522}
2523
2524void CXXNameMangler::addSubstitution(QualType T) {
2525  if (!T.getCVRQualifiers()) {
2526    if (const RecordType *RT = T->getAs<RecordType>()) {
2527      addSubstitution(RT->getDecl());
2528      return;
2529    }
2530  }
2531
2532  uintptr_t TypePtr = reinterpret_cast<uintptr_t>(T.getAsOpaquePtr());
2533  addSubstitution(TypePtr);
2534}
2535
2536void CXXNameMangler::addSubstitution(TemplateName Template) {
2537  if (TemplateDecl *TD = Template.getAsTemplateDecl())
2538    return addSubstitution(TD);
2539
2540  Template = Context.getASTContext().getCanonicalTemplateName(Template);
2541  addSubstitution(reinterpret_cast<uintptr_t>(Template.getAsVoidPointer()));
2542}
2543
2544void CXXNameMangler::addSubstitution(uintptr_t Ptr) {
2545  assert(!Substitutions.count(Ptr) && "Substitution already exists!");
2546  Substitutions[Ptr] = SeqID++;
2547}
2548
2549//
2550
2551/// \brief Mangles the name of the declaration D and emits that name to the
2552/// given output stream.
2553///
2554/// If the declaration D requires a mangled name, this routine will emit that
2555/// mangled name to \p os and return true. Otherwise, \p os will be unchanged
2556/// and this routine will return false. In this case, the caller should just
2557/// emit the identifier of the declaration (\c D->getIdentifier()) as its
2558/// name.
2559void ItaniumMangleContext::mangleName(const NamedDecl *D,
2560                                      llvm::raw_ostream &Out) {
2561  assert((isa<FunctionDecl>(D) || isa<VarDecl>(D)) &&
2562          "Invalid mangleName() call, argument is not a variable or function!");
2563  assert(!isa<CXXConstructorDecl>(D) && !isa<CXXDestructorDecl>(D) &&
2564         "Invalid mangleName() call on 'structor decl!");
2565
2566  PrettyStackTraceDecl CrashInfo(D, SourceLocation(),
2567                                 getASTContext().getSourceManager(),
2568                                 "Mangling declaration");
2569
2570  CXXNameMangler Mangler(*this, Out);
2571  return Mangler.mangle(D);
2572}
2573
2574void ItaniumMangleContext::mangleCXXCtor(const CXXConstructorDecl *D,
2575                                         CXXCtorType Type,
2576                                         llvm::raw_ostream &Out) {
2577  CXXNameMangler Mangler(*this, Out, D, Type);
2578  Mangler.mangle(D);
2579}
2580
2581void ItaniumMangleContext::mangleCXXDtor(const CXXDestructorDecl *D,
2582                                         CXXDtorType Type,
2583                                         llvm::raw_ostream &Out) {
2584  CXXNameMangler Mangler(*this, Out, D, Type);
2585  Mangler.mangle(D);
2586}
2587
2588void ItaniumMangleContext::mangleThunk(const CXXMethodDecl *MD,
2589                                       const ThunkInfo &Thunk,
2590                                       llvm::raw_ostream &Out) {
2591  //  <special-name> ::= T <call-offset> <base encoding>
2592  //                      # base is the nominal target function of thunk
2593  //  <special-name> ::= Tc <call-offset> <call-offset> <base encoding>
2594  //                      # base is the nominal target function of thunk
2595  //                      # first call-offset is 'this' adjustment
2596  //                      # second call-offset is result adjustment
2597
2598  assert(!isa<CXXDestructorDecl>(MD) &&
2599         "Use mangleCXXDtor for destructor decls!");
2600  CXXNameMangler Mangler(*this, Out);
2601  Mangler.getStream() << "_ZT";
2602  if (!Thunk.Return.isEmpty())
2603    Mangler.getStream() << 'c';
2604
2605  // Mangle the 'this' pointer adjustment.
2606  Mangler.mangleCallOffset(Thunk.This.NonVirtual, Thunk.This.VCallOffsetOffset);
2607
2608  // Mangle the return pointer adjustment if there is one.
2609  if (!Thunk.Return.isEmpty())
2610    Mangler.mangleCallOffset(Thunk.Return.NonVirtual,
2611                             Thunk.Return.VBaseOffsetOffset);
2612
2613  Mangler.mangleFunctionEncoding(MD);
2614}
2615
2616void
2617ItaniumMangleContext::mangleCXXDtorThunk(const CXXDestructorDecl *DD,
2618                                         CXXDtorType Type,
2619                                         const ThisAdjustment &ThisAdjustment,
2620                                         llvm::raw_ostream &Out) {
2621  //  <special-name> ::= T <call-offset> <base encoding>
2622  //                      # base is the nominal target function of thunk
2623  CXXNameMangler Mangler(*this, Out, DD, Type);
2624  Mangler.getStream() << "_ZT";
2625
2626  // Mangle the 'this' pointer adjustment.
2627  Mangler.mangleCallOffset(ThisAdjustment.NonVirtual,
2628                           ThisAdjustment.VCallOffsetOffset);
2629
2630  Mangler.mangleFunctionEncoding(DD);
2631}
2632
2633/// mangleGuardVariable - Returns the mangled name for a guard variable
2634/// for the passed in VarDecl.
2635void ItaniumMangleContext::mangleItaniumGuardVariable(const VarDecl *D,
2636                                                      llvm::raw_ostream &Out) {
2637  //  <special-name> ::= GV <object name>       # Guard variable for one-time
2638  //                                            # initialization
2639  CXXNameMangler Mangler(*this, Out);
2640  Mangler.getStream() << "_ZGV";
2641  Mangler.mangleName(D);
2642}
2643
2644void ItaniumMangleContext::mangleReferenceTemporary(const VarDecl *D,
2645                                                    llvm::raw_ostream &Out) {
2646  // We match the GCC mangling here.
2647  //  <special-name> ::= GR <object name>
2648  CXXNameMangler Mangler(*this, Out);
2649  Mangler.getStream() << "_ZGR";
2650  Mangler.mangleName(D);
2651}
2652
2653void ItaniumMangleContext::mangleCXXVTable(const CXXRecordDecl *RD,
2654                                           llvm::raw_ostream &Out) {
2655  // <special-name> ::= TV <type>  # virtual table
2656  CXXNameMangler Mangler(*this, Out);
2657  Mangler.getStream() << "_ZTV";
2658  Mangler.mangleNameOrStandardSubstitution(RD);
2659}
2660
2661void ItaniumMangleContext::mangleCXXVTT(const CXXRecordDecl *RD,
2662                                        llvm::raw_ostream &Out) {
2663  // <special-name> ::= TT <type>  # VTT structure
2664  CXXNameMangler Mangler(*this, Out);
2665  Mangler.getStream() << "_ZTT";
2666  Mangler.mangleNameOrStandardSubstitution(RD);
2667}
2668
2669void ItaniumMangleContext::mangleCXXCtorVTable(const CXXRecordDecl *RD,
2670                                               int64_t Offset,
2671                                               const CXXRecordDecl *Type,
2672                                               llvm::raw_ostream &Out) {
2673  // <special-name> ::= TC <type> <offset number> _ <base type>
2674  CXXNameMangler Mangler(*this, Out);
2675  Mangler.getStream() << "_ZTC";
2676  Mangler.mangleNameOrStandardSubstitution(RD);
2677  Mangler.getStream() << Offset;
2678  Mangler.getStream() << '_';
2679  Mangler.mangleNameOrStandardSubstitution(Type);
2680}
2681
2682void ItaniumMangleContext::mangleCXXRTTI(QualType Ty,
2683                                         llvm::raw_ostream &Out) {
2684  // <special-name> ::= TI <type>  # typeinfo structure
2685  assert(!Ty.hasQualifiers() && "RTTI info cannot have top-level qualifiers");
2686  CXXNameMangler Mangler(*this, Out);
2687  Mangler.getStream() << "_ZTI";
2688  Mangler.mangleType(Ty);
2689}
2690
2691void ItaniumMangleContext::mangleCXXRTTIName(QualType Ty,
2692                                             llvm::raw_ostream &Out) {
2693  // <special-name> ::= TS <type>  # typeinfo name (null terminated byte string)
2694  CXXNameMangler Mangler(*this, Out);
2695  Mangler.getStream() << "_ZTS";
2696  Mangler.mangleType(Ty);
2697}
2698
2699MangleContext *clang::createItaniumMangleContext(ASTContext &Context,
2700                                                 Diagnostic &Diags) {
2701  return new ItaniumMangleContext(Context, Diags);
2702}
2703