ItaniumMangle.cpp revision 66cff7257698d5528632917d38f9a3037bb1506d
1//===--- ItaniumMangle.cpp - Itanium C++ Name Mangling ----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// Implements C++ name mangling according to the Itanium C++ ABI,
11// which is used in GCC 3.2 and newer (and many compilers that are
12// ABI-compatible with GCC):
13//
14//   http://www.codesourcery.com/public/cxx-abi/abi.html
15//
16//===----------------------------------------------------------------------===//
17#include "clang/AST/Mangle.h"
18#include "clang/AST/ASTContext.h"
19#include "clang/AST/Decl.h"
20#include "clang/AST/DeclCXX.h"
21#include "clang/AST/DeclObjC.h"
22#include "clang/AST/DeclTemplate.h"
23#include "clang/AST/ExprCXX.h"
24#include "clang/AST/ExprObjC.h"
25#include "clang/AST/TypeLoc.h"
26#include "clang/Basic/ABI.h"
27#include "clang/Basic/SourceManager.h"
28#include "clang/Basic/TargetInfo.h"
29#include "llvm/ADT/StringExtras.h"
30#include "llvm/Support/raw_ostream.h"
31#include "llvm/Support/ErrorHandling.h"
32
33#define MANGLE_CHECKER 0
34
35#if MANGLE_CHECKER
36#include <cxxabi.h>
37#endif
38
39using namespace clang;
40
41namespace {
42
43/// \brief Retrieve the declaration context that should be used when mangling
44/// the given declaration.
45static const DeclContext *getEffectiveDeclContext(const Decl *D) {
46  // The ABI assumes that lambda closure types that occur within
47  // default arguments live in the context of the function. However, due to
48  // the way in which Clang parses and creates function declarations, this is
49  // not the case: the lambda closure type ends up living in the context
50  // where the function itself resides, because the function declaration itself
51  // had not yet been created. Fix the context here.
52  if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D)) {
53    if (RD->isLambda())
54      if (ParmVarDecl *ContextParam
55            = dyn_cast_or_null<ParmVarDecl>(RD->getLambdaContextDecl()))
56        return ContextParam->getDeclContext();
57  }
58
59  return D->getDeclContext();
60}
61
62static const DeclContext *getEffectiveParentContext(const DeclContext *DC) {
63  return getEffectiveDeclContext(cast<Decl>(DC));
64}
65
66static const CXXRecordDecl *GetLocalClassDecl(const NamedDecl *ND) {
67  const DeclContext *DC = dyn_cast<DeclContext>(ND);
68  if (!DC)
69    DC = getEffectiveDeclContext(ND);
70  while (!DC->isNamespace() && !DC->isTranslationUnit()) {
71    const DeclContext *Parent = getEffectiveDeclContext(cast<Decl>(DC));
72    if (isa<FunctionDecl>(Parent))
73      return dyn_cast<CXXRecordDecl>(DC);
74    DC = Parent;
75  }
76  return 0;
77}
78
79static const FunctionDecl *getStructor(const FunctionDecl *fn) {
80  if (const FunctionTemplateDecl *ftd = fn->getPrimaryTemplate())
81    return ftd->getTemplatedDecl();
82
83  return fn;
84}
85
86static const NamedDecl *getStructor(const NamedDecl *decl) {
87  const FunctionDecl *fn = dyn_cast_or_null<FunctionDecl>(decl);
88  return (fn ? getStructor(fn) : decl);
89}
90
91static const unsigned UnknownArity = ~0U;
92
93class ItaniumMangleContext : public MangleContext {
94  llvm::DenseMap<const TagDecl *, uint64_t> AnonStructIds;
95  unsigned Discriminator;
96  llvm::DenseMap<const NamedDecl*, unsigned> Uniquifier;
97
98public:
99  explicit ItaniumMangleContext(ASTContext &Context,
100                                DiagnosticsEngine &Diags)
101    : MangleContext(Context, Diags) { }
102
103  uint64_t getAnonymousStructId(const TagDecl *TD) {
104    std::pair<llvm::DenseMap<const TagDecl *,
105      uint64_t>::iterator, bool> Result =
106      AnonStructIds.insert(std::make_pair(TD, AnonStructIds.size()));
107    return Result.first->second;
108  }
109
110  void startNewFunction() {
111    MangleContext::startNewFunction();
112    mangleInitDiscriminator();
113  }
114
115  /// @name Mangler Entry Points
116  /// @{
117
118  bool shouldMangleDeclName(const NamedDecl *D);
119  void mangleName(const NamedDecl *D, raw_ostream &);
120  void mangleThunk(const CXXMethodDecl *MD,
121                   const ThunkInfo &Thunk,
122                   raw_ostream &);
123  void mangleCXXDtorThunk(const CXXDestructorDecl *DD, CXXDtorType Type,
124                          const ThisAdjustment &ThisAdjustment,
125                          raw_ostream &);
126  void mangleReferenceTemporary(const VarDecl *D,
127                                raw_ostream &);
128  void mangleCXXVTable(const CXXRecordDecl *RD,
129                       raw_ostream &);
130  void mangleCXXVTT(const CXXRecordDecl *RD,
131                    raw_ostream &);
132  void mangleCXXCtorVTable(const CXXRecordDecl *RD, int64_t Offset,
133                           const CXXRecordDecl *Type,
134                           raw_ostream &);
135  void mangleCXXRTTI(QualType T, raw_ostream &);
136  void mangleCXXRTTIName(QualType T, raw_ostream &);
137  void mangleCXXCtor(const CXXConstructorDecl *D, CXXCtorType Type,
138                     raw_ostream &);
139  void mangleCXXDtor(const CXXDestructorDecl *D, CXXDtorType Type,
140                     raw_ostream &);
141
142  void mangleItaniumGuardVariable(const VarDecl *D, raw_ostream &);
143
144  void mangleInitDiscriminator() {
145    Discriminator = 0;
146  }
147
148  bool getNextDiscriminator(const NamedDecl *ND, unsigned &disc) {
149    // Lambda closure types with external linkage (indicated by a
150    // non-zero lambda mangling number) have their own numbering scheme, so
151    // they do not need a discriminator.
152    if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(ND))
153      if (RD->isLambda() && RD->getLambdaManglingNumber() > 0)
154        return false;
155
156    unsigned &discriminator = Uniquifier[ND];
157    if (!discriminator)
158      discriminator = ++Discriminator;
159    if (discriminator == 1)
160      return false;
161    disc = discriminator-2;
162    return true;
163  }
164  /// @}
165};
166
167/// CXXNameMangler - Manage the mangling of a single name.
168class CXXNameMangler {
169  ItaniumMangleContext &Context;
170  raw_ostream &Out;
171
172  /// The "structor" is the top-level declaration being mangled, if
173  /// that's not a template specialization; otherwise it's the pattern
174  /// for that specialization.
175  const NamedDecl *Structor;
176  unsigned StructorType;
177
178  /// SeqID - The next subsitution sequence number.
179  unsigned SeqID;
180
181  class FunctionTypeDepthState {
182    unsigned Bits;
183
184    enum { InResultTypeMask = 1 };
185
186  public:
187    FunctionTypeDepthState() : Bits(0) {}
188
189    /// The number of function types we're inside.
190    unsigned getDepth() const {
191      return Bits >> 1;
192    }
193
194    /// True if we're in the return type of the innermost function type.
195    bool isInResultType() const {
196      return Bits & InResultTypeMask;
197    }
198
199    FunctionTypeDepthState push() {
200      FunctionTypeDepthState tmp = *this;
201      Bits = (Bits & ~InResultTypeMask) + 2;
202      return tmp;
203    }
204
205    void enterResultType() {
206      Bits |= InResultTypeMask;
207    }
208
209    void leaveResultType() {
210      Bits &= ~InResultTypeMask;
211    }
212
213    void pop(FunctionTypeDepthState saved) {
214      assert(getDepth() == saved.getDepth() + 1);
215      Bits = saved.Bits;
216    }
217
218  } FunctionTypeDepth;
219
220  llvm::DenseMap<uintptr_t, unsigned> Substitutions;
221
222  ASTContext &getASTContext() const { return Context.getASTContext(); }
223
224public:
225  CXXNameMangler(ItaniumMangleContext &C, raw_ostream &Out_,
226                 const NamedDecl *D = 0)
227    : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(0),
228      SeqID(0) {
229    // These can't be mangled without a ctor type or dtor type.
230    assert(!D || (!isa<CXXDestructorDecl>(D) &&
231                  !isa<CXXConstructorDecl>(D)));
232  }
233  CXXNameMangler(ItaniumMangleContext &C, raw_ostream &Out_,
234                 const CXXConstructorDecl *D, CXXCtorType Type)
235    : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(Type),
236      SeqID(0) { }
237  CXXNameMangler(ItaniumMangleContext &C, raw_ostream &Out_,
238                 const CXXDestructorDecl *D, CXXDtorType Type)
239    : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(Type),
240      SeqID(0) { }
241
242#if MANGLE_CHECKER
243  ~CXXNameMangler() {
244    if (Out.str()[0] == '\01')
245      return;
246
247    int status = 0;
248    char *result = abi::__cxa_demangle(Out.str().str().c_str(), 0, 0, &status);
249    assert(status == 0 && "Could not demangle mangled name!");
250    free(result);
251  }
252#endif
253  raw_ostream &getStream() { return Out; }
254
255  void mangle(const NamedDecl *D, StringRef Prefix = "_Z");
256  void mangleCallOffset(int64_t NonVirtual, int64_t Virtual);
257  void mangleNumber(const llvm::APSInt &I);
258  void mangleNumber(int64_t Number);
259  void mangleFloat(const llvm::APFloat &F);
260  void mangleFunctionEncoding(const FunctionDecl *FD);
261  void mangleName(const NamedDecl *ND);
262  void mangleType(QualType T);
263  void mangleNameOrStandardSubstitution(const NamedDecl *ND);
264
265private:
266  bool mangleSubstitution(const NamedDecl *ND);
267  bool mangleSubstitution(QualType T);
268  bool mangleSubstitution(TemplateName Template);
269  bool mangleSubstitution(uintptr_t Ptr);
270
271  void mangleExistingSubstitution(QualType type);
272  void mangleExistingSubstitution(TemplateName name);
273
274  bool mangleStandardSubstitution(const NamedDecl *ND);
275
276  void addSubstitution(const NamedDecl *ND) {
277    ND = cast<NamedDecl>(ND->getCanonicalDecl());
278
279    addSubstitution(reinterpret_cast<uintptr_t>(ND));
280  }
281  void addSubstitution(QualType T);
282  void addSubstitution(TemplateName Template);
283  void addSubstitution(uintptr_t Ptr);
284
285  void mangleUnresolvedPrefix(NestedNameSpecifier *qualifier,
286                              NamedDecl *firstQualifierLookup,
287                              bool recursive = false);
288  void mangleUnresolvedName(NestedNameSpecifier *qualifier,
289                            NamedDecl *firstQualifierLookup,
290                            DeclarationName name,
291                            unsigned KnownArity = UnknownArity);
292
293  void mangleName(const TemplateDecl *TD,
294                  const TemplateArgument *TemplateArgs,
295                  unsigned NumTemplateArgs);
296  void mangleUnqualifiedName(const NamedDecl *ND) {
297    mangleUnqualifiedName(ND, ND->getDeclName(), UnknownArity);
298  }
299  void mangleUnqualifiedName(const NamedDecl *ND, DeclarationName Name,
300                             unsigned KnownArity);
301  void mangleUnscopedName(const NamedDecl *ND);
302  void mangleUnscopedTemplateName(const TemplateDecl *ND);
303  void mangleUnscopedTemplateName(TemplateName);
304  void mangleSourceName(const IdentifierInfo *II);
305  void mangleLocalName(const NamedDecl *ND);
306  void mangleLambda(const CXXRecordDecl *Lambda);
307  void mangleNestedName(const NamedDecl *ND, const DeclContext *DC,
308                        bool NoFunction=false);
309  void mangleNestedName(const TemplateDecl *TD,
310                        const TemplateArgument *TemplateArgs,
311                        unsigned NumTemplateArgs);
312  void manglePrefix(NestedNameSpecifier *qualifier);
313  void manglePrefix(const DeclContext *DC, bool NoFunction=false);
314  void manglePrefix(QualType type);
315  void mangleTemplatePrefix(const TemplateDecl *ND);
316  void mangleTemplatePrefix(TemplateName Template);
317  void mangleOperatorName(OverloadedOperatorKind OO, unsigned Arity);
318  void mangleQualifiers(Qualifiers Quals);
319  void mangleRefQualifier(RefQualifierKind RefQualifier);
320
321  void mangleObjCMethodName(const ObjCMethodDecl *MD);
322
323  // Declare manglers for every type class.
324#define ABSTRACT_TYPE(CLASS, PARENT)
325#define NON_CANONICAL_TYPE(CLASS, PARENT)
326#define TYPE(CLASS, PARENT) void mangleType(const CLASS##Type *T);
327#include "clang/AST/TypeNodes.def"
328
329  void mangleType(const TagType*);
330  void mangleType(TemplateName);
331  void mangleBareFunctionType(const FunctionType *T,
332                              bool MangleReturnType);
333  void mangleNeonVectorType(const VectorType *T);
334
335  void mangleIntegerLiteral(QualType T, const llvm::APSInt &Value);
336  void mangleMemberExpr(const Expr *base, bool isArrow,
337                        NestedNameSpecifier *qualifier,
338                        NamedDecl *firstQualifierLookup,
339                        DeclarationName name,
340                        unsigned knownArity);
341  void mangleExpression(const Expr *E, unsigned Arity = UnknownArity);
342  void mangleCXXCtorType(CXXCtorType T);
343  void mangleCXXDtorType(CXXDtorType T);
344
345  void mangleTemplateArgs(const ASTTemplateArgumentListInfo &TemplateArgs);
346  void mangleTemplateArgs(const TemplateArgument *TemplateArgs,
347                          unsigned NumTemplateArgs);
348  void mangleTemplateArgs(const TemplateArgumentList &AL);
349  void mangleTemplateArg(TemplateArgument A);
350
351  void mangleTemplateParameter(unsigned Index);
352
353  void mangleFunctionParam(const ParmVarDecl *parm);
354};
355
356}
357
358static bool isInCLinkageSpecification(const Decl *D) {
359  D = D->getCanonicalDecl();
360  for (const DeclContext *DC = getEffectiveDeclContext(D);
361       !DC->isTranslationUnit(); DC = getEffectiveParentContext(DC)) {
362    if (const LinkageSpecDecl *Linkage = dyn_cast<LinkageSpecDecl>(DC))
363      return Linkage->getLanguage() == LinkageSpecDecl::lang_c;
364  }
365
366  return false;
367}
368
369bool ItaniumMangleContext::shouldMangleDeclName(const NamedDecl *D) {
370  // In C, functions with no attributes never need to be mangled. Fastpath them.
371  if (!getASTContext().getLangOpts().CPlusPlus && !D->hasAttrs())
372    return false;
373
374  // Any decl can be declared with __asm("foo") on it, and this takes precedence
375  // over all other naming in the .o file.
376  if (D->hasAttr<AsmLabelAttr>())
377    return true;
378
379  // Clang's "overloadable" attribute extension to C/C++ implies name mangling
380  // (always) as does passing a C++ member function and a function
381  // whose name is not a simple identifier.
382  const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
383  if (FD && (FD->hasAttr<OverloadableAttr>() || isa<CXXMethodDecl>(FD) ||
384             !FD->getDeclName().isIdentifier()))
385    return true;
386
387  // Otherwise, no mangling is done outside C++ mode.
388  if (!getASTContext().getLangOpts().CPlusPlus)
389    return false;
390
391  // Variables at global scope with non-internal linkage are not mangled
392  if (!FD) {
393    const DeclContext *DC = getEffectiveDeclContext(D);
394    // Check for extern variable declared locally.
395    if (DC->isFunctionOrMethod() && D->hasLinkage())
396      while (!DC->isNamespace() && !DC->isTranslationUnit())
397        DC = getEffectiveParentContext(DC);
398    if (DC->isTranslationUnit() && D->getLinkage() != InternalLinkage)
399      return false;
400  }
401
402  // Class members are always mangled.
403  if (getEffectiveDeclContext(D)->isRecord())
404    return true;
405
406  // C functions and "main" are not mangled.
407  if ((FD && FD->isMain()) || isInCLinkageSpecification(D))
408    return false;
409
410  return true;
411}
412
413void CXXNameMangler::mangle(const NamedDecl *D, StringRef Prefix) {
414  // Any decl can be declared with __asm("foo") on it, and this takes precedence
415  // over all other naming in the .o file.
416  if (const AsmLabelAttr *ALA = D->getAttr<AsmLabelAttr>()) {
417    // If we have an asm name, then we use it as the mangling.
418
419    // Adding the prefix can cause problems when one file has a "foo" and
420    // another has a "\01foo". That is known to happen on ELF with the
421    // tricks normally used for producing aliases (PR9177). Fortunately the
422    // llvm mangler on ELF is a nop, so we can just avoid adding the \01
423    // marker.  We also avoid adding the marker if this is an alias for an
424    // LLVM intrinsic.
425    StringRef UserLabelPrefix =
426      getASTContext().getTargetInfo().getUserLabelPrefix();
427    if (!UserLabelPrefix.empty() && !ALA->getLabel().startswith("llvm."))
428      Out << '\01';  // LLVM IR Marker for __asm("foo")
429
430    Out << ALA->getLabel();
431    return;
432  }
433
434  // <mangled-name> ::= _Z <encoding>
435  //            ::= <data name>
436  //            ::= <special-name>
437  Out << Prefix;
438  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
439    mangleFunctionEncoding(FD);
440  else if (const VarDecl *VD = dyn_cast<VarDecl>(D))
441    mangleName(VD);
442  else
443    mangleName(cast<FieldDecl>(D));
444}
445
446void CXXNameMangler::mangleFunctionEncoding(const FunctionDecl *FD) {
447  // <encoding> ::= <function name> <bare-function-type>
448  mangleName(FD);
449
450  // Don't mangle in the type if this isn't a decl we should typically mangle.
451  if (!Context.shouldMangleDeclName(FD))
452    return;
453
454  // Whether the mangling of a function type includes the return type depends on
455  // the context and the nature of the function. The rules for deciding whether
456  // the return type is included are:
457  //
458  //   1. Template functions (names or types) have return types encoded, with
459  //   the exceptions listed below.
460  //   2. Function types not appearing as part of a function name mangling,
461  //   e.g. parameters, pointer types, etc., have return type encoded, with the
462  //   exceptions listed below.
463  //   3. Non-template function names do not have return types encoded.
464  //
465  // The exceptions mentioned in (1) and (2) above, for which the return type is
466  // never included, are
467  //   1. Constructors.
468  //   2. Destructors.
469  //   3. Conversion operator functions, e.g. operator int.
470  bool MangleReturnType = false;
471  if (FunctionTemplateDecl *PrimaryTemplate = FD->getPrimaryTemplate()) {
472    if (!(isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD) ||
473          isa<CXXConversionDecl>(FD)))
474      MangleReturnType = true;
475
476    // Mangle the type of the primary template.
477    FD = PrimaryTemplate->getTemplatedDecl();
478  }
479
480  mangleBareFunctionType(FD->getType()->getAs<FunctionType>(),
481                         MangleReturnType);
482}
483
484static const DeclContext *IgnoreLinkageSpecDecls(const DeclContext *DC) {
485  while (isa<LinkageSpecDecl>(DC)) {
486    DC = getEffectiveParentContext(DC);
487  }
488
489  return DC;
490}
491
492/// isStd - Return whether a given namespace is the 'std' namespace.
493static bool isStd(const NamespaceDecl *NS) {
494  if (!IgnoreLinkageSpecDecls(getEffectiveParentContext(NS))
495                                ->isTranslationUnit())
496    return false;
497
498  const IdentifierInfo *II = NS->getOriginalNamespace()->getIdentifier();
499  return II && II->isStr("std");
500}
501
502// isStdNamespace - Return whether a given decl context is a toplevel 'std'
503// namespace.
504static bool isStdNamespace(const DeclContext *DC) {
505  if (!DC->isNamespace())
506    return false;
507
508  return isStd(cast<NamespaceDecl>(DC));
509}
510
511static const TemplateDecl *
512isTemplate(const NamedDecl *ND, const TemplateArgumentList *&TemplateArgs) {
513  // Check if we have a function template.
514  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)){
515    if (const TemplateDecl *TD = FD->getPrimaryTemplate()) {
516      TemplateArgs = FD->getTemplateSpecializationArgs();
517      return TD;
518    }
519  }
520
521  // Check if we have a class template.
522  if (const ClassTemplateSpecializationDecl *Spec =
523        dyn_cast<ClassTemplateSpecializationDecl>(ND)) {
524    TemplateArgs = &Spec->getTemplateArgs();
525    return Spec->getSpecializedTemplate();
526  }
527
528  return 0;
529}
530
531static bool isLambda(const NamedDecl *ND) {
532  const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(ND);
533  if (!Record)
534    return false;
535
536  return Record->isLambda();
537}
538
539void CXXNameMangler::mangleName(const NamedDecl *ND) {
540  //  <name> ::= <nested-name>
541  //         ::= <unscoped-name>
542  //         ::= <unscoped-template-name> <template-args>
543  //         ::= <local-name>
544  //
545  const DeclContext *DC = getEffectiveDeclContext(ND);
546
547  // If this is an extern variable declared locally, the relevant DeclContext
548  // is that of the containing namespace, or the translation unit.
549  // FIXME: This is a hack; extern variables declared locally should have
550  // a proper semantic declaration context!
551  if (isa<FunctionDecl>(DC) && ND->hasLinkage() && !isLambda(ND))
552    while (!DC->isNamespace() && !DC->isTranslationUnit())
553      DC = getEffectiveParentContext(DC);
554  else if (GetLocalClassDecl(ND)) {
555    mangleLocalName(ND);
556    return;
557  }
558
559  DC = IgnoreLinkageSpecDecls(DC);
560
561  if (DC->isTranslationUnit() || isStdNamespace(DC)) {
562    // Check if we have a template.
563    const TemplateArgumentList *TemplateArgs = 0;
564    if (const TemplateDecl *TD = isTemplate(ND, TemplateArgs)) {
565      mangleUnscopedTemplateName(TD);
566      mangleTemplateArgs(*TemplateArgs);
567      return;
568    }
569
570    mangleUnscopedName(ND);
571    return;
572  }
573
574  if (isa<FunctionDecl>(DC) || isa<ObjCMethodDecl>(DC)) {
575    mangleLocalName(ND);
576    return;
577  }
578
579  mangleNestedName(ND, DC);
580}
581void CXXNameMangler::mangleName(const TemplateDecl *TD,
582                                const TemplateArgument *TemplateArgs,
583                                unsigned NumTemplateArgs) {
584  const DeclContext *DC = IgnoreLinkageSpecDecls(getEffectiveDeclContext(TD));
585
586  if (DC->isTranslationUnit() || isStdNamespace(DC)) {
587    mangleUnscopedTemplateName(TD);
588    mangleTemplateArgs(TemplateArgs, NumTemplateArgs);
589  } else {
590    mangleNestedName(TD, TemplateArgs, NumTemplateArgs);
591  }
592}
593
594void CXXNameMangler::mangleUnscopedName(const NamedDecl *ND) {
595  //  <unscoped-name> ::= <unqualified-name>
596  //                  ::= St <unqualified-name>   # ::std::
597
598  if (isStdNamespace(IgnoreLinkageSpecDecls(getEffectiveDeclContext(ND))))
599    Out << "St";
600
601  mangleUnqualifiedName(ND);
602}
603
604void CXXNameMangler::mangleUnscopedTemplateName(const TemplateDecl *ND) {
605  //     <unscoped-template-name> ::= <unscoped-name>
606  //                              ::= <substitution>
607  if (mangleSubstitution(ND))
608    return;
609
610  // <template-template-param> ::= <template-param>
611  if (const TemplateTemplateParmDecl *TTP
612                                     = dyn_cast<TemplateTemplateParmDecl>(ND)) {
613    mangleTemplateParameter(TTP->getIndex());
614    return;
615  }
616
617  mangleUnscopedName(ND->getTemplatedDecl());
618  addSubstitution(ND);
619}
620
621void CXXNameMangler::mangleUnscopedTemplateName(TemplateName Template) {
622  //     <unscoped-template-name> ::= <unscoped-name>
623  //                              ::= <substitution>
624  if (TemplateDecl *TD = Template.getAsTemplateDecl())
625    return mangleUnscopedTemplateName(TD);
626
627  if (mangleSubstitution(Template))
628    return;
629
630  DependentTemplateName *Dependent = Template.getAsDependentTemplateName();
631  assert(Dependent && "Not a dependent template name?");
632  if (const IdentifierInfo *Id = Dependent->getIdentifier())
633    mangleSourceName(Id);
634  else
635    mangleOperatorName(Dependent->getOperator(), UnknownArity);
636
637  addSubstitution(Template);
638}
639
640void CXXNameMangler::mangleFloat(const llvm::APFloat &f) {
641  // ABI:
642  //   Floating-point literals are encoded using a fixed-length
643  //   lowercase hexadecimal string corresponding to the internal
644  //   representation (IEEE on Itanium), high-order bytes first,
645  //   without leading zeroes. For example: "Lf bf800000 E" is -1.0f
646  //   on Itanium.
647  // The 'without leading zeroes' thing seems to be an editorial
648  // mistake; see the discussion on cxx-abi-dev beginning on
649  // 2012-01-16.
650
651  // Our requirements here are just barely weird enough to justify
652  // using a custom algorithm instead of post-processing APInt::toString().
653
654  llvm::APInt valueBits = f.bitcastToAPInt();
655  unsigned numCharacters = (valueBits.getBitWidth() + 3) / 4;
656  assert(numCharacters != 0);
657
658  // Allocate a buffer of the right number of characters.
659  llvm::SmallVector<char, 20> buffer;
660  buffer.set_size(numCharacters);
661
662  // Fill the buffer left-to-right.
663  for (unsigned stringIndex = 0; stringIndex != numCharacters; ++stringIndex) {
664    // The bit-index of the next hex digit.
665    unsigned digitBitIndex = 4 * (numCharacters - stringIndex - 1);
666
667    // Project out 4 bits starting at 'digitIndex'.
668    llvm::integerPart hexDigit
669      = valueBits.getRawData()[digitBitIndex / llvm::integerPartWidth];
670    hexDigit >>= (digitBitIndex % llvm::integerPartWidth);
671    hexDigit &= 0xF;
672
673    // Map that over to a lowercase hex digit.
674    static const char charForHex[16] = {
675      '0', '1', '2', '3', '4', '5', '6', '7',
676      '8', '9', 'a', 'b', 'c', 'd', 'e', 'f'
677    };
678    buffer[stringIndex] = charForHex[hexDigit];
679  }
680
681  Out.write(buffer.data(), numCharacters);
682}
683
684void CXXNameMangler::mangleNumber(const llvm::APSInt &Value) {
685  if (Value.isSigned() && Value.isNegative()) {
686    Out << 'n';
687    Value.abs().print(Out, /*signed*/ false);
688  } else {
689    Value.print(Out, /*signed*/ false);
690  }
691}
692
693void CXXNameMangler::mangleNumber(int64_t Number) {
694  //  <number> ::= [n] <non-negative decimal integer>
695  if (Number < 0) {
696    Out << 'n';
697    Number = -Number;
698  }
699
700  Out << Number;
701}
702
703void CXXNameMangler::mangleCallOffset(int64_t NonVirtual, int64_t Virtual) {
704  //  <call-offset>  ::= h <nv-offset> _
705  //                 ::= v <v-offset> _
706  //  <nv-offset>    ::= <offset number>        # non-virtual base override
707  //  <v-offset>     ::= <offset number> _ <virtual offset number>
708  //                      # virtual base override, with vcall offset
709  if (!Virtual) {
710    Out << 'h';
711    mangleNumber(NonVirtual);
712    Out << '_';
713    return;
714  }
715
716  Out << 'v';
717  mangleNumber(NonVirtual);
718  Out << '_';
719  mangleNumber(Virtual);
720  Out << '_';
721}
722
723void CXXNameMangler::manglePrefix(QualType type) {
724  if (const TemplateSpecializationType *TST =
725        type->getAs<TemplateSpecializationType>()) {
726    if (!mangleSubstitution(QualType(TST, 0))) {
727      mangleTemplatePrefix(TST->getTemplateName());
728
729      // FIXME: GCC does not appear to mangle the template arguments when
730      // the template in question is a dependent template name. Should we
731      // emulate that badness?
732      mangleTemplateArgs(TST->getArgs(), TST->getNumArgs());
733      addSubstitution(QualType(TST, 0));
734    }
735  } else if (const DependentTemplateSpecializationType *DTST
736               = type->getAs<DependentTemplateSpecializationType>()) {
737    TemplateName Template
738      = getASTContext().getDependentTemplateName(DTST->getQualifier(),
739                                                 DTST->getIdentifier());
740    mangleTemplatePrefix(Template);
741
742    // FIXME: GCC does not appear to mangle the template arguments when
743    // the template in question is a dependent template name. Should we
744    // emulate that badness?
745    mangleTemplateArgs(DTST->getArgs(), DTST->getNumArgs());
746  } else {
747    // We use the QualType mangle type variant here because it handles
748    // substitutions.
749    mangleType(type);
750  }
751}
752
753/// Mangle everything prior to the base-unresolved-name in an unresolved-name.
754///
755/// \param firstQualifierLookup - the entity found by unqualified lookup
756///   for the first name in the qualifier, if this is for a member expression
757/// \param recursive - true if this is being called recursively,
758///   i.e. if there is more prefix "to the right".
759void CXXNameMangler::mangleUnresolvedPrefix(NestedNameSpecifier *qualifier,
760                                            NamedDecl *firstQualifierLookup,
761                                            bool recursive) {
762
763  // x, ::x
764  // <unresolved-name> ::= [gs] <base-unresolved-name>
765
766  // T::x / decltype(p)::x
767  // <unresolved-name> ::= sr <unresolved-type> <base-unresolved-name>
768
769  // T::N::x /decltype(p)::N::x
770  // <unresolved-name> ::= srN <unresolved-type> <unresolved-qualifier-level>+ E
771  //                       <base-unresolved-name>
772
773  // A::x, N::y, A<T>::z; "gs" means leading "::"
774  // <unresolved-name> ::= [gs] sr <unresolved-qualifier-level>+ E
775  //                       <base-unresolved-name>
776
777  switch (qualifier->getKind()) {
778  case NestedNameSpecifier::Global:
779    Out << "gs";
780
781    // We want an 'sr' unless this is the entire NNS.
782    if (recursive)
783      Out << "sr";
784
785    // We never want an 'E' here.
786    return;
787
788  case NestedNameSpecifier::Namespace:
789    if (qualifier->getPrefix())
790      mangleUnresolvedPrefix(qualifier->getPrefix(), firstQualifierLookup,
791                             /*recursive*/ true);
792    else
793      Out << "sr";
794    mangleSourceName(qualifier->getAsNamespace()->getIdentifier());
795    break;
796  case NestedNameSpecifier::NamespaceAlias:
797    if (qualifier->getPrefix())
798      mangleUnresolvedPrefix(qualifier->getPrefix(), firstQualifierLookup,
799                             /*recursive*/ true);
800    else
801      Out << "sr";
802    mangleSourceName(qualifier->getAsNamespaceAlias()->getIdentifier());
803    break;
804
805  case NestedNameSpecifier::TypeSpec:
806  case NestedNameSpecifier::TypeSpecWithTemplate: {
807    const Type *type = qualifier->getAsType();
808
809    // We only want to use an unresolved-type encoding if this is one of:
810    //   - a decltype
811    //   - a template type parameter
812    //   - a template template parameter with arguments
813    // In all of these cases, we should have no prefix.
814    if (qualifier->getPrefix()) {
815      mangleUnresolvedPrefix(qualifier->getPrefix(), firstQualifierLookup,
816                             /*recursive*/ true);
817    } else {
818      // Otherwise, all the cases want this.
819      Out << "sr";
820    }
821
822    // Only certain other types are valid as prefixes;  enumerate them.
823    switch (type->getTypeClass()) {
824    case Type::Builtin:
825    case Type::Complex:
826    case Type::Pointer:
827    case Type::BlockPointer:
828    case Type::LValueReference:
829    case Type::RValueReference:
830    case Type::MemberPointer:
831    case Type::ConstantArray:
832    case Type::IncompleteArray:
833    case Type::VariableArray:
834    case Type::DependentSizedArray:
835    case Type::DependentSizedExtVector:
836    case Type::Vector:
837    case Type::ExtVector:
838    case Type::FunctionProto:
839    case Type::FunctionNoProto:
840    case Type::Enum:
841    case Type::Paren:
842    case Type::Elaborated:
843    case Type::Attributed:
844    case Type::Auto:
845    case Type::PackExpansion:
846    case Type::ObjCObject:
847    case Type::ObjCInterface:
848    case Type::ObjCObjectPointer:
849    case Type::Atomic:
850      llvm_unreachable("type is illegal as a nested name specifier");
851
852    case Type::SubstTemplateTypeParmPack:
853      // FIXME: not clear how to mangle this!
854      // template <class T...> class A {
855      //   template <class U...> void foo(decltype(T::foo(U())) x...);
856      // };
857      Out << "_SUBSTPACK_";
858      break;
859
860    // <unresolved-type> ::= <template-param>
861    //                   ::= <decltype>
862    //                   ::= <template-template-param> <template-args>
863    // (this last is not official yet)
864    case Type::TypeOfExpr:
865    case Type::TypeOf:
866    case Type::Decltype:
867    case Type::TemplateTypeParm:
868    case Type::UnaryTransform:
869    case Type::SubstTemplateTypeParm:
870    unresolvedType:
871      assert(!qualifier->getPrefix());
872
873      // We only get here recursively if we're followed by identifiers.
874      if (recursive) Out << 'N';
875
876      // This seems to do everything we want.  It's not really
877      // sanctioned for a substituted template parameter, though.
878      mangleType(QualType(type, 0));
879
880      // We never want to print 'E' directly after an unresolved-type,
881      // so we return directly.
882      return;
883
884    case Type::Typedef:
885      mangleSourceName(cast<TypedefType>(type)->getDecl()->getIdentifier());
886      break;
887
888    case Type::UnresolvedUsing:
889      mangleSourceName(cast<UnresolvedUsingType>(type)->getDecl()
890                         ->getIdentifier());
891      break;
892
893    case Type::Record:
894      mangleSourceName(cast<RecordType>(type)->getDecl()->getIdentifier());
895      break;
896
897    case Type::TemplateSpecialization: {
898      const TemplateSpecializationType *tst
899        = cast<TemplateSpecializationType>(type);
900      TemplateName name = tst->getTemplateName();
901      switch (name.getKind()) {
902      case TemplateName::Template:
903      case TemplateName::QualifiedTemplate: {
904        TemplateDecl *temp = name.getAsTemplateDecl();
905
906        // If the base is a template template parameter, this is an
907        // unresolved type.
908        assert(temp && "no template for template specialization type");
909        if (isa<TemplateTemplateParmDecl>(temp)) goto unresolvedType;
910
911        mangleSourceName(temp->getIdentifier());
912        break;
913      }
914
915      case TemplateName::OverloadedTemplate:
916      case TemplateName::DependentTemplate:
917        llvm_unreachable("invalid base for a template specialization type");
918
919      case TemplateName::SubstTemplateTemplateParm: {
920        SubstTemplateTemplateParmStorage *subst
921          = name.getAsSubstTemplateTemplateParm();
922        mangleExistingSubstitution(subst->getReplacement());
923        break;
924      }
925
926      case TemplateName::SubstTemplateTemplateParmPack: {
927        // FIXME: not clear how to mangle this!
928        // template <template <class U> class T...> class A {
929        //   template <class U...> void foo(decltype(T<U>::foo) x...);
930        // };
931        Out << "_SUBSTPACK_";
932        break;
933      }
934      }
935
936      mangleTemplateArgs(tst->getArgs(), tst->getNumArgs());
937      break;
938    }
939
940    case Type::InjectedClassName:
941      mangleSourceName(cast<InjectedClassNameType>(type)->getDecl()
942                         ->getIdentifier());
943      break;
944
945    case Type::DependentName:
946      mangleSourceName(cast<DependentNameType>(type)->getIdentifier());
947      break;
948
949    case Type::DependentTemplateSpecialization: {
950      const DependentTemplateSpecializationType *tst
951        = cast<DependentTemplateSpecializationType>(type);
952      mangleSourceName(tst->getIdentifier());
953      mangleTemplateArgs(tst->getArgs(), tst->getNumArgs());
954      break;
955    }
956    }
957    break;
958  }
959
960  case NestedNameSpecifier::Identifier:
961    // Member expressions can have these without prefixes.
962    if (qualifier->getPrefix()) {
963      mangleUnresolvedPrefix(qualifier->getPrefix(), firstQualifierLookup,
964                             /*recursive*/ true);
965    } else if (firstQualifierLookup) {
966
967      // Try to make a proper qualifier out of the lookup result, and
968      // then just recurse on that.
969      NestedNameSpecifier *newQualifier;
970      if (TypeDecl *typeDecl = dyn_cast<TypeDecl>(firstQualifierLookup)) {
971        QualType type = getASTContext().getTypeDeclType(typeDecl);
972
973        // Pretend we had a different nested name specifier.
974        newQualifier = NestedNameSpecifier::Create(getASTContext(),
975                                                   /*prefix*/ 0,
976                                                   /*template*/ false,
977                                                   type.getTypePtr());
978      } else if (NamespaceDecl *nspace =
979                   dyn_cast<NamespaceDecl>(firstQualifierLookup)) {
980        newQualifier = NestedNameSpecifier::Create(getASTContext(),
981                                                   /*prefix*/ 0,
982                                                   nspace);
983      } else if (NamespaceAliasDecl *alias =
984                   dyn_cast<NamespaceAliasDecl>(firstQualifierLookup)) {
985        newQualifier = NestedNameSpecifier::Create(getASTContext(),
986                                                   /*prefix*/ 0,
987                                                   alias);
988      } else {
989        // No sensible mangling to do here.
990        newQualifier = 0;
991      }
992
993      if (newQualifier)
994        return mangleUnresolvedPrefix(newQualifier, /*lookup*/ 0, recursive);
995
996    } else {
997      Out << "sr";
998    }
999
1000    mangleSourceName(qualifier->getAsIdentifier());
1001    break;
1002  }
1003
1004  // If this was the innermost part of the NNS, and we fell out to
1005  // here, append an 'E'.
1006  if (!recursive)
1007    Out << 'E';
1008}
1009
1010/// Mangle an unresolved-name, which is generally used for names which
1011/// weren't resolved to specific entities.
1012void CXXNameMangler::mangleUnresolvedName(NestedNameSpecifier *qualifier,
1013                                          NamedDecl *firstQualifierLookup,
1014                                          DeclarationName name,
1015                                          unsigned knownArity) {
1016  if (qualifier) mangleUnresolvedPrefix(qualifier, firstQualifierLookup);
1017  mangleUnqualifiedName(0, name, knownArity);
1018}
1019
1020static const FieldDecl *FindFirstNamedDataMember(const RecordDecl *RD) {
1021  assert(RD->isAnonymousStructOrUnion() &&
1022         "Expected anonymous struct or union!");
1023
1024  for (RecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end();
1025       I != E; ++I) {
1026    if (I->getIdentifier())
1027      return *I;
1028
1029    if (const RecordType *RT = I->getType()->getAs<RecordType>())
1030      if (const FieldDecl *NamedDataMember =
1031          FindFirstNamedDataMember(RT->getDecl()))
1032        return NamedDataMember;
1033    }
1034
1035  // We didn't find a named data member.
1036  return 0;
1037}
1038
1039void CXXNameMangler::mangleUnqualifiedName(const NamedDecl *ND,
1040                                           DeclarationName Name,
1041                                           unsigned KnownArity) {
1042  //  <unqualified-name> ::= <operator-name>
1043  //                     ::= <ctor-dtor-name>
1044  //                     ::= <source-name>
1045  switch (Name.getNameKind()) {
1046  case DeclarationName::Identifier: {
1047    if (const IdentifierInfo *II = Name.getAsIdentifierInfo()) {
1048      // We must avoid conflicts between internally- and externally-
1049      // linked variable and function declaration names in the same TU:
1050      //   void test() { extern void foo(); }
1051      //   static void foo();
1052      // This naming convention is the same as that followed by GCC,
1053      // though it shouldn't actually matter.
1054      if (ND && ND->getLinkage() == InternalLinkage &&
1055          getEffectiveDeclContext(ND)->isFileContext())
1056        Out << 'L';
1057
1058      mangleSourceName(II);
1059      break;
1060    }
1061
1062    // Otherwise, an anonymous entity.  We must have a declaration.
1063    assert(ND && "mangling empty name without declaration");
1064
1065    if (const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ND)) {
1066      if (NS->isAnonymousNamespace()) {
1067        // This is how gcc mangles these names.
1068        Out << "12_GLOBAL__N_1";
1069        break;
1070      }
1071    }
1072
1073    if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) {
1074      // We must have an anonymous union or struct declaration.
1075      const RecordDecl *RD =
1076        cast<RecordDecl>(VD->getType()->getAs<RecordType>()->getDecl());
1077
1078      // Itanium C++ ABI 5.1.2:
1079      //
1080      //   For the purposes of mangling, the name of an anonymous union is
1081      //   considered to be the name of the first named data member found by a
1082      //   pre-order, depth-first, declaration-order walk of the data members of
1083      //   the anonymous union. If there is no such data member (i.e., if all of
1084      //   the data members in the union are unnamed), then there is no way for
1085      //   a program to refer to the anonymous union, and there is therefore no
1086      //   need to mangle its name.
1087      const FieldDecl *FD = FindFirstNamedDataMember(RD);
1088
1089      // It's actually possible for various reasons for us to get here
1090      // with an empty anonymous struct / union.  Fortunately, it
1091      // doesn't really matter what name we generate.
1092      if (!FD) break;
1093      assert(FD->getIdentifier() && "Data member name isn't an identifier!");
1094
1095      mangleSourceName(FD->getIdentifier());
1096      break;
1097    }
1098
1099    // We must have an anonymous struct.
1100    const TagDecl *TD = cast<TagDecl>(ND);
1101    if (const TypedefNameDecl *D = TD->getTypedefNameForAnonDecl()) {
1102      assert(TD->getDeclContext() == D->getDeclContext() &&
1103             "Typedef should not be in another decl context!");
1104      assert(D->getDeclName().getAsIdentifierInfo() &&
1105             "Typedef was not named!");
1106      mangleSourceName(D->getDeclName().getAsIdentifierInfo());
1107      break;
1108    }
1109
1110    // <unnamed-type-name> ::= <closure-type-name>
1111    //
1112    // <closure-type-name> ::= Ul <lambda-sig> E [ <nonnegative number> ] _
1113    // <lambda-sig> ::= <parameter-type>+   # Parameter types or 'v' for 'void'.
1114    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(TD)) {
1115      if (Record->isLambda() && Record->getLambdaManglingNumber()) {
1116        mangleLambda(Record);
1117        break;
1118      }
1119    }
1120
1121    int UnnamedMangle = Context.getASTContext().getUnnamedTagManglingNumber(TD);
1122    if (UnnamedMangle != -1) {
1123      Out << "Ut";
1124      if (UnnamedMangle != 0)
1125        Out << llvm::utostr(UnnamedMangle - 1);
1126      Out << '_';
1127      break;
1128    }
1129
1130    //assert(cast<RecordDecl>(RD)->isAnonymousStructOrUnion() && "Don't mangle unnamed things as "
1131    //  "anonymous things");
1132
1133    // Get a unique id for the anonymous struct.
1134    uint64_t AnonStructId = Context.getAnonymousStructId(TD);
1135
1136    // Mangle it as a source name in the form
1137    // [n] $_<id>
1138    // where n is the length of the string.
1139    SmallString<8> Str;
1140    Str += "$_";
1141    Str += llvm::utostr(AnonStructId);
1142
1143    Out << Str.size();
1144    Out << Str.str();
1145    break;
1146  }
1147
1148  case DeclarationName::ObjCZeroArgSelector:
1149  case DeclarationName::ObjCOneArgSelector:
1150  case DeclarationName::ObjCMultiArgSelector:
1151    llvm_unreachable("Can't mangle Objective-C selector names here!");
1152
1153  case DeclarationName::CXXConstructorName:
1154    if (ND == Structor)
1155      // If the named decl is the C++ constructor we're mangling, use the type
1156      // we were given.
1157      mangleCXXCtorType(static_cast<CXXCtorType>(StructorType));
1158    else
1159      // Otherwise, use the complete constructor name. This is relevant if a
1160      // class with a constructor is declared within a constructor.
1161      mangleCXXCtorType(Ctor_Complete);
1162    break;
1163
1164  case DeclarationName::CXXDestructorName:
1165    if (ND == Structor)
1166      // If the named decl is the C++ destructor we're mangling, use the type we
1167      // were given.
1168      mangleCXXDtorType(static_cast<CXXDtorType>(StructorType));
1169    else
1170      // Otherwise, use the complete destructor name. This is relevant if a
1171      // class with a destructor is declared within a destructor.
1172      mangleCXXDtorType(Dtor_Complete);
1173    break;
1174
1175  case DeclarationName::CXXConversionFunctionName:
1176    // <operator-name> ::= cv <type>    # (cast)
1177    Out << "cv";
1178    mangleType(Name.getCXXNameType());
1179    break;
1180
1181  case DeclarationName::CXXOperatorName: {
1182    unsigned Arity;
1183    if (ND) {
1184      Arity = cast<FunctionDecl>(ND)->getNumParams();
1185
1186      // If we have a C++ member function, we need to include the 'this' pointer.
1187      // FIXME: This does not make sense for operators that are static, but their
1188      // names stay the same regardless of the arity (operator new for instance).
1189      if (isa<CXXMethodDecl>(ND))
1190        Arity++;
1191    } else
1192      Arity = KnownArity;
1193
1194    mangleOperatorName(Name.getCXXOverloadedOperator(), Arity);
1195    break;
1196  }
1197
1198  case DeclarationName::CXXLiteralOperatorName:
1199    // FIXME: This mangling is not yet official.
1200    Out << "li";
1201    mangleSourceName(Name.getCXXLiteralIdentifier());
1202    break;
1203
1204  case DeclarationName::CXXUsingDirective:
1205    llvm_unreachable("Can't mangle a using directive name!");
1206  }
1207}
1208
1209void CXXNameMangler::mangleSourceName(const IdentifierInfo *II) {
1210  // <source-name> ::= <positive length number> <identifier>
1211  // <number> ::= [n] <non-negative decimal integer>
1212  // <identifier> ::= <unqualified source code identifier>
1213  Out << II->getLength() << II->getName();
1214}
1215
1216void CXXNameMangler::mangleNestedName(const NamedDecl *ND,
1217                                      const DeclContext *DC,
1218                                      bool NoFunction) {
1219  // <nested-name>
1220  //   ::= N [<CV-qualifiers>] [<ref-qualifier>] <prefix> <unqualified-name> E
1221  //   ::= N [<CV-qualifiers>] [<ref-qualifier>] <template-prefix>
1222  //       <template-args> E
1223
1224  Out << 'N';
1225  if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(ND)) {
1226    mangleQualifiers(Qualifiers::fromCVRMask(Method->getTypeQualifiers()));
1227    mangleRefQualifier(Method->getRefQualifier());
1228  }
1229
1230  // Check if we have a template.
1231  const TemplateArgumentList *TemplateArgs = 0;
1232  if (const TemplateDecl *TD = isTemplate(ND, TemplateArgs)) {
1233    mangleTemplatePrefix(TD);
1234    mangleTemplateArgs(*TemplateArgs);
1235  }
1236  else {
1237    manglePrefix(DC, NoFunction);
1238    mangleUnqualifiedName(ND);
1239  }
1240
1241  Out << 'E';
1242}
1243void CXXNameMangler::mangleNestedName(const TemplateDecl *TD,
1244                                      const TemplateArgument *TemplateArgs,
1245                                      unsigned NumTemplateArgs) {
1246  // <nested-name> ::= N [<CV-qualifiers>] <template-prefix> <template-args> E
1247
1248  Out << 'N';
1249
1250  mangleTemplatePrefix(TD);
1251  mangleTemplateArgs(TemplateArgs, NumTemplateArgs);
1252
1253  Out << 'E';
1254}
1255
1256void CXXNameMangler::mangleLocalName(const NamedDecl *ND) {
1257  // <local-name> := Z <function encoding> E <entity name> [<discriminator>]
1258  //              := Z <function encoding> E s [<discriminator>]
1259  // <local-name> := Z <function encoding> E d [ <parameter number> ]
1260  //                 _ <entity name>
1261  // <discriminator> := _ <non-negative number>
1262  const DeclContext *DC = getEffectiveDeclContext(ND);
1263  if (isa<ObjCMethodDecl>(DC) && isa<FunctionDecl>(ND)) {
1264    // Don't add objc method name mangling to locally declared function
1265    mangleUnqualifiedName(ND);
1266    return;
1267  }
1268
1269  Out << 'Z';
1270
1271  if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(DC)) {
1272   mangleObjCMethodName(MD);
1273  } else if (const CXXRecordDecl *RD = GetLocalClassDecl(ND)) {
1274    mangleFunctionEncoding(cast<FunctionDecl>(getEffectiveDeclContext(RD)));
1275    Out << 'E';
1276
1277    // The parameter number is omitted for the last parameter, 0 for the
1278    // second-to-last parameter, 1 for the third-to-last parameter, etc. The
1279    // <entity name> will of course contain a <closure-type-name>: Its
1280    // numbering will be local to the particular argument in which it appears
1281    // -- other default arguments do not affect its encoding.
1282    bool SkipDiscriminator = false;
1283    if (RD->isLambda()) {
1284      if (const ParmVarDecl *Parm
1285                 = dyn_cast_or_null<ParmVarDecl>(RD->getLambdaContextDecl())) {
1286        if (const FunctionDecl *Func
1287              = dyn_cast<FunctionDecl>(Parm->getDeclContext())) {
1288          Out << 'd';
1289          unsigned Num = Func->getNumParams() - Parm->getFunctionScopeIndex();
1290          if (Num > 1)
1291            mangleNumber(Num - 2);
1292          Out << '_';
1293          SkipDiscriminator = true;
1294        }
1295      }
1296    }
1297
1298    // Mangle the name relative to the closest enclosing function.
1299    if (ND == RD) // equality ok because RD derived from ND above
1300      mangleUnqualifiedName(ND);
1301    else
1302      mangleNestedName(ND, DC, true /*NoFunction*/);
1303
1304    if (!SkipDiscriminator) {
1305      unsigned disc;
1306      if (Context.getNextDiscriminator(RD, disc)) {
1307        if (disc < 10)
1308          Out << '_' << disc;
1309        else
1310          Out << "__" << disc << '_';
1311      }
1312    }
1313
1314    return;
1315  }
1316  else
1317    mangleFunctionEncoding(cast<FunctionDecl>(DC));
1318
1319  Out << 'E';
1320  mangleUnqualifiedName(ND);
1321}
1322
1323void CXXNameMangler::mangleLambda(const CXXRecordDecl *Lambda) {
1324  // If the context of a closure type is an initializer for a class member
1325  // (static or nonstatic), it is encoded in a qualified name with a final
1326  // <prefix> of the form:
1327  //
1328  //   <data-member-prefix> := <member source-name> M
1329  //
1330  // Technically, the data-member-prefix is part of the <prefix>. However,
1331  // since a closure type will always be mangled with a prefix, it's easier
1332  // to emit that last part of the prefix here.
1333  if (Decl *Context = Lambda->getLambdaContextDecl()) {
1334    if ((isa<VarDecl>(Context) || isa<FieldDecl>(Context)) &&
1335        Context->getDeclContext()->isRecord()) {
1336      if (const IdentifierInfo *Name
1337            = cast<NamedDecl>(Context)->getIdentifier()) {
1338        mangleSourceName(Name);
1339        Out << 'M';
1340      }
1341    }
1342  }
1343
1344  Out << "Ul";
1345  const FunctionProtoType *Proto = Lambda->getLambdaTypeInfo()->getType()->
1346                                   getAs<FunctionProtoType>();
1347  mangleBareFunctionType(Proto, /*MangleReturnType=*/false);
1348  Out << "E";
1349
1350  // The number is omitted for the first closure type with a given
1351  // <lambda-sig> in a given context; it is n-2 for the nth closure type
1352  // (in lexical order) with that same <lambda-sig> and context.
1353  //
1354  // The AST keeps track of the number for us.
1355  unsigned Number = Lambda->getLambdaManglingNumber();
1356  assert(Number > 0 && "Lambda should be mangled as an unnamed class");
1357  if (Number > 1)
1358    mangleNumber(Number - 2);
1359  Out << '_';
1360}
1361
1362void CXXNameMangler::manglePrefix(NestedNameSpecifier *qualifier) {
1363  switch (qualifier->getKind()) {
1364  case NestedNameSpecifier::Global:
1365    // nothing
1366    return;
1367
1368  case NestedNameSpecifier::Namespace:
1369    mangleName(qualifier->getAsNamespace());
1370    return;
1371
1372  case NestedNameSpecifier::NamespaceAlias:
1373    mangleName(qualifier->getAsNamespaceAlias()->getNamespace());
1374    return;
1375
1376  case NestedNameSpecifier::TypeSpec:
1377  case NestedNameSpecifier::TypeSpecWithTemplate:
1378    manglePrefix(QualType(qualifier->getAsType(), 0));
1379    return;
1380
1381  case NestedNameSpecifier::Identifier:
1382    // Member expressions can have these without prefixes, but that
1383    // should end up in mangleUnresolvedPrefix instead.
1384    assert(qualifier->getPrefix());
1385    manglePrefix(qualifier->getPrefix());
1386
1387    mangleSourceName(qualifier->getAsIdentifier());
1388    return;
1389  }
1390
1391  llvm_unreachable("unexpected nested name specifier");
1392}
1393
1394void CXXNameMangler::manglePrefix(const DeclContext *DC, bool NoFunction) {
1395  //  <prefix> ::= <prefix> <unqualified-name>
1396  //           ::= <template-prefix> <template-args>
1397  //           ::= <template-param>
1398  //           ::= # empty
1399  //           ::= <substitution>
1400
1401  DC = IgnoreLinkageSpecDecls(DC);
1402
1403  if (DC->isTranslationUnit())
1404    return;
1405
1406  if (const BlockDecl *Block = dyn_cast<BlockDecl>(DC)) {
1407    manglePrefix(getEffectiveParentContext(DC), NoFunction);
1408    SmallString<64> Name;
1409    llvm::raw_svector_ostream NameStream(Name);
1410    Context.mangleBlock(Block, NameStream);
1411    NameStream.flush();
1412    Out << Name.size() << Name;
1413    return;
1414  }
1415
1416  const NamedDecl *ND = cast<NamedDecl>(DC);
1417  if (mangleSubstitution(ND))
1418    return;
1419
1420  // Check if we have a template.
1421  const TemplateArgumentList *TemplateArgs = 0;
1422  if (const TemplateDecl *TD = isTemplate(ND, TemplateArgs)) {
1423    mangleTemplatePrefix(TD);
1424    mangleTemplateArgs(*TemplateArgs);
1425  }
1426  else if(NoFunction && (isa<FunctionDecl>(ND) || isa<ObjCMethodDecl>(ND)))
1427    return;
1428  else if (const ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(ND))
1429    mangleObjCMethodName(Method);
1430  else {
1431    manglePrefix(getEffectiveDeclContext(ND), NoFunction);
1432    mangleUnqualifiedName(ND);
1433  }
1434
1435  addSubstitution(ND);
1436}
1437
1438void CXXNameMangler::mangleTemplatePrefix(TemplateName Template) {
1439  // <template-prefix> ::= <prefix> <template unqualified-name>
1440  //                   ::= <template-param>
1441  //                   ::= <substitution>
1442  if (TemplateDecl *TD = Template.getAsTemplateDecl())
1443    return mangleTemplatePrefix(TD);
1444
1445  if (QualifiedTemplateName *Qualified = Template.getAsQualifiedTemplateName())
1446    manglePrefix(Qualified->getQualifier());
1447
1448  if (OverloadedTemplateStorage *Overloaded
1449                                      = Template.getAsOverloadedTemplate()) {
1450    mangleUnqualifiedName(0, (*Overloaded->begin())->getDeclName(),
1451                          UnknownArity);
1452    return;
1453  }
1454
1455  DependentTemplateName *Dependent = Template.getAsDependentTemplateName();
1456  assert(Dependent && "Unknown template name kind?");
1457  manglePrefix(Dependent->getQualifier());
1458  mangleUnscopedTemplateName(Template);
1459}
1460
1461void CXXNameMangler::mangleTemplatePrefix(const TemplateDecl *ND) {
1462  // <template-prefix> ::= <prefix> <template unqualified-name>
1463  //                   ::= <template-param>
1464  //                   ::= <substitution>
1465  // <template-template-param> ::= <template-param>
1466  //                               <substitution>
1467
1468  if (mangleSubstitution(ND))
1469    return;
1470
1471  // <template-template-param> ::= <template-param>
1472  if (const TemplateTemplateParmDecl *TTP
1473                                     = dyn_cast<TemplateTemplateParmDecl>(ND)) {
1474    mangleTemplateParameter(TTP->getIndex());
1475    return;
1476  }
1477
1478  manglePrefix(getEffectiveDeclContext(ND));
1479  mangleUnqualifiedName(ND->getTemplatedDecl());
1480  addSubstitution(ND);
1481}
1482
1483/// Mangles a template name under the production <type>.  Required for
1484/// template template arguments.
1485///   <type> ::= <class-enum-type>
1486///          ::= <template-param>
1487///          ::= <substitution>
1488void CXXNameMangler::mangleType(TemplateName TN) {
1489  if (mangleSubstitution(TN))
1490    return;
1491
1492  TemplateDecl *TD = 0;
1493
1494  switch (TN.getKind()) {
1495  case TemplateName::QualifiedTemplate:
1496    TD = TN.getAsQualifiedTemplateName()->getTemplateDecl();
1497    goto HaveDecl;
1498
1499  case TemplateName::Template:
1500    TD = TN.getAsTemplateDecl();
1501    goto HaveDecl;
1502
1503  HaveDecl:
1504    if (isa<TemplateTemplateParmDecl>(TD))
1505      mangleTemplateParameter(cast<TemplateTemplateParmDecl>(TD)->getIndex());
1506    else
1507      mangleName(TD);
1508    break;
1509
1510  case TemplateName::OverloadedTemplate:
1511    llvm_unreachable("can't mangle an overloaded template name as a <type>");
1512
1513  case TemplateName::DependentTemplate: {
1514    const DependentTemplateName *Dependent = TN.getAsDependentTemplateName();
1515    assert(Dependent->isIdentifier());
1516
1517    // <class-enum-type> ::= <name>
1518    // <name> ::= <nested-name>
1519    mangleUnresolvedPrefix(Dependent->getQualifier(), 0);
1520    mangleSourceName(Dependent->getIdentifier());
1521    break;
1522  }
1523
1524  case TemplateName::SubstTemplateTemplateParm: {
1525    // Substituted template parameters are mangled as the substituted
1526    // template.  This will check for the substitution twice, which is
1527    // fine, but we have to return early so that we don't try to *add*
1528    // the substitution twice.
1529    SubstTemplateTemplateParmStorage *subst
1530      = TN.getAsSubstTemplateTemplateParm();
1531    mangleType(subst->getReplacement());
1532    return;
1533  }
1534
1535  case TemplateName::SubstTemplateTemplateParmPack: {
1536    // FIXME: not clear how to mangle this!
1537    // template <template <class> class T...> class A {
1538    //   template <template <class> class U...> void foo(B<T,U> x...);
1539    // };
1540    Out << "_SUBSTPACK_";
1541    break;
1542  }
1543  }
1544
1545  addSubstitution(TN);
1546}
1547
1548void
1549CXXNameMangler::mangleOperatorName(OverloadedOperatorKind OO, unsigned Arity) {
1550  switch (OO) {
1551  // <operator-name> ::= nw     # new
1552  case OO_New: Out << "nw"; break;
1553  //              ::= na        # new[]
1554  case OO_Array_New: Out << "na"; break;
1555  //              ::= dl        # delete
1556  case OO_Delete: Out << "dl"; break;
1557  //              ::= da        # delete[]
1558  case OO_Array_Delete: Out << "da"; break;
1559  //              ::= ps        # + (unary)
1560  //              ::= pl        # + (binary or unknown)
1561  case OO_Plus:
1562    Out << (Arity == 1? "ps" : "pl"); break;
1563  //              ::= ng        # - (unary)
1564  //              ::= mi        # - (binary or unknown)
1565  case OO_Minus:
1566    Out << (Arity == 1? "ng" : "mi"); break;
1567  //              ::= ad        # & (unary)
1568  //              ::= an        # & (binary or unknown)
1569  case OO_Amp:
1570    Out << (Arity == 1? "ad" : "an"); break;
1571  //              ::= de        # * (unary)
1572  //              ::= ml        # * (binary or unknown)
1573  case OO_Star:
1574    // Use binary when unknown.
1575    Out << (Arity == 1? "de" : "ml"); break;
1576  //              ::= co        # ~
1577  case OO_Tilde: Out << "co"; break;
1578  //              ::= dv        # /
1579  case OO_Slash: Out << "dv"; break;
1580  //              ::= rm        # %
1581  case OO_Percent: Out << "rm"; break;
1582  //              ::= or        # |
1583  case OO_Pipe: Out << "or"; break;
1584  //              ::= eo        # ^
1585  case OO_Caret: Out << "eo"; break;
1586  //              ::= aS        # =
1587  case OO_Equal: Out << "aS"; break;
1588  //              ::= pL        # +=
1589  case OO_PlusEqual: Out << "pL"; break;
1590  //              ::= mI        # -=
1591  case OO_MinusEqual: Out << "mI"; break;
1592  //              ::= mL        # *=
1593  case OO_StarEqual: Out << "mL"; break;
1594  //              ::= dV        # /=
1595  case OO_SlashEqual: Out << "dV"; break;
1596  //              ::= rM        # %=
1597  case OO_PercentEqual: Out << "rM"; break;
1598  //              ::= aN        # &=
1599  case OO_AmpEqual: Out << "aN"; break;
1600  //              ::= oR        # |=
1601  case OO_PipeEqual: Out << "oR"; break;
1602  //              ::= eO        # ^=
1603  case OO_CaretEqual: Out << "eO"; break;
1604  //              ::= ls        # <<
1605  case OO_LessLess: Out << "ls"; break;
1606  //              ::= rs        # >>
1607  case OO_GreaterGreater: Out << "rs"; break;
1608  //              ::= lS        # <<=
1609  case OO_LessLessEqual: Out << "lS"; break;
1610  //              ::= rS        # >>=
1611  case OO_GreaterGreaterEqual: Out << "rS"; break;
1612  //              ::= eq        # ==
1613  case OO_EqualEqual: Out << "eq"; break;
1614  //              ::= ne        # !=
1615  case OO_ExclaimEqual: Out << "ne"; break;
1616  //              ::= lt        # <
1617  case OO_Less: Out << "lt"; break;
1618  //              ::= gt        # >
1619  case OO_Greater: Out << "gt"; break;
1620  //              ::= le        # <=
1621  case OO_LessEqual: Out << "le"; break;
1622  //              ::= ge        # >=
1623  case OO_GreaterEqual: Out << "ge"; break;
1624  //              ::= nt        # !
1625  case OO_Exclaim: Out << "nt"; break;
1626  //              ::= aa        # &&
1627  case OO_AmpAmp: Out << "aa"; break;
1628  //              ::= oo        # ||
1629  case OO_PipePipe: Out << "oo"; break;
1630  //              ::= pp        # ++
1631  case OO_PlusPlus: Out << "pp"; break;
1632  //              ::= mm        # --
1633  case OO_MinusMinus: Out << "mm"; break;
1634  //              ::= cm        # ,
1635  case OO_Comma: Out << "cm"; break;
1636  //              ::= pm        # ->*
1637  case OO_ArrowStar: Out << "pm"; break;
1638  //              ::= pt        # ->
1639  case OO_Arrow: Out << "pt"; break;
1640  //              ::= cl        # ()
1641  case OO_Call: Out << "cl"; break;
1642  //              ::= ix        # []
1643  case OO_Subscript: Out << "ix"; break;
1644
1645  //              ::= qu        # ?
1646  // The conditional operator can't be overloaded, but we still handle it when
1647  // mangling expressions.
1648  case OO_Conditional: Out << "qu"; break;
1649
1650  case OO_None:
1651  case NUM_OVERLOADED_OPERATORS:
1652    llvm_unreachable("Not an overloaded operator");
1653  }
1654}
1655
1656void CXXNameMangler::mangleQualifiers(Qualifiers Quals) {
1657  // <CV-qualifiers> ::= [r] [V] [K]    # restrict (C99), volatile, const
1658  if (Quals.hasRestrict())
1659    Out << 'r';
1660  if (Quals.hasVolatile())
1661    Out << 'V';
1662  if (Quals.hasConst())
1663    Out << 'K';
1664
1665  if (Quals.hasAddressSpace()) {
1666    // Extension:
1667    //
1668    //   <type> ::= U <address-space-number>
1669    //
1670    // where <address-space-number> is a source name consisting of 'AS'
1671    // followed by the address space <number>.
1672    SmallString<64> ASString;
1673    ASString = "AS" + llvm::utostr_32(Quals.getAddressSpace());
1674    Out << 'U' << ASString.size() << ASString;
1675  }
1676
1677  StringRef LifetimeName;
1678  switch (Quals.getObjCLifetime()) {
1679  // Objective-C ARC Extension:
1680  //
1681  //   <type> ::= U "__strong"
1682  //   <type> ::= U "__weak"
1683  //   <type> ::= U "__autoreleasing"
1684  case Qualifiers::OCL_None:
1685    break;
1686
1687  case Qualifiers::OCL_Weak:
1688    LifetimeName = "__weak";
1689    break;
1690
1691  case Qualifiers::OCL_Strong:
1692    LifetimeName = "__strong";
1693    break;
1694
1695  case Qualifiers::OCL_Autoreleasing:
1696    LifetimeName = "__autoreleasing";
1697    break;
1698
1699  case Qualifiers::OCL_ExplicitNone:
1700    // The __unsafe_unretained qualifier is *not* mangled, so that
1701    // __unsafe_unretained types in ARC produce the same manglings as the
1702    // equivalent (but, naturally, unqualified) types in non-ARC, providing
1703    // better ABI compatibility.
1704    //
1705    // It's safe to do this because unqualified 'id' won't show up
1706    // in any type signatures that need to be mangled.
1707    break;
1708  }
1709  if (!LifetimeName.empty())
1710    Out << 'U' << LifetimeName.size() << LifetimeName;
1711}
1712
1713void CXXNameMangler::mangleRefQualifier(RefQualifierKind RefQualifier) {
1714  // <ref-qualifier> ::= R                # lvalue reference
1715  //                 ::= O                # rvalue-reference
1716  // Proposal to Itanium C++ ABI list on 1/26/11
1717  switch (RefQualifier) {
1718  case RQ_None:
1719    break;
1720
1721  case RQ_LValue:
1722    Out << 'R';
1723    break;
1724
1725  case RQ_RValue:
1726    Out << 'O';
1727    break;
1728  }
1729}
1730
1731void CXXNameMangler::mangleObjCMethodName(const ObjCMethodDecl *MD) {
1732  Context.mangleObjCMethodName(MD, Out);
1733}
1734
1735void CXXNameMangler::mangleType(QualType T) {
1736  // If our type is instantiation-dependent but not dependent, we mangle
1737  // it as it was written in the source, removing any top-level sugar.
1738  // Otherwise, use the canonical type.
1739  //
1740  // FIXME: This is an approximation of the instantiation-dependent name
1741  // mangling rules, since we should really be using the type as written and
1742  // augmented via semantic analysis (i.e., with implicit conversions and
1743  // default template arguments) for any instantiation-dependent type.
1744  // Unfortunately, that requires several changes to our AST:
1745  //   - Instantiation-dependent TemplateSpecializationTypes will need to be
1746  //     uniqued, so that we can handle substitutions properly
1747  //   - Default template arguments will need to be represented in the
1748  //     TemplateSpecializationType, since they need to be mangled even though
1749  //     they aren't written.
1750  //   - Conversions on non-type template arguments need to be expressed, since
1751  //     they can affect the mangling of sizeof/alignof.
1752  if (!T->isInstantiationDependentType() || T->isDependentType())
1753    T = T.getCanonicalType();
1754  else {
1755    // Desugar any types that are purely sugar.
1756    do {
1757      // Don't desugar through template specialization types that aren't
1758      // type aliases. We need to mangle the template arguments as written.
1759      if (const TemplateSpecializationType *TST
1760                                      = dyn_cast<TemplateSpecializationType>(T))
1761        if (!TST->isTypeAlias())
1762          break;
1763
1764      QualType Desugared
1765        = T.getSingleStepDesugaredType(Context.getASTContext());
1766      if (Desugared == T)
1767        break;
1768
1769      T = Desugared;
1770    } while (true);
1771  }
1772  SplitQualType split = T.split();
1773  Qualifiers quals = split.Quals;
1774  const Type *ty = split.Ty;
1775
1776  bool isSubstitutable = quals || !isa<BuiltinType>(T);
1777  if (isSubstitutable && mangleSubstitution(T))
1778    return;
1779
1780  // If we're mangling a qualified array type, push the qualifiers to
1781  // the element type.
1782  if (quals && isa<ArrayType>(T)) {
1783    ty = Context.getASTContext().getAsArrayType(T);
1784    quals = Qualifiers();
1785
1786    // Note that we don't update T: we want to add the
1787    // substitution at the original type.
1788  }
1789
1790  if (quals) {
1791    mangleQualifiers(quals);
1792    // Recurse:  even if the qualified type isn't yet substitutable,
1793    // the unqualified type might be.
1794    mangleType(QualType(ty, 0));
1795  } else {
1796    switch (ty->getTypeClass()) {
1797#define ABSTRACT_TYPE(CLASS, PARENT)
1798#define NON_CANONICAL_TYPE(CLASS, PARENT) \
1799    case Type::CLASS: \
1800      llvm_unreachable("can't mangle non-canonical type " #CLASS "Type"); \
1801      return;
1802#define TYPE(CLASS, PARENT) \
1803    case Type::CLASS: \
1804      mangleType(static_cast<const CLASS##Type*>(ty)); \
1805      break;
1806#include "clang/AST/TypeNodes.def"
1807    }
1808  }
1809
1810  // Add the substitution.
1811  if (isSubstitutable)
1812    addSubstitution(T);
1813}
1814
1815void CXXNameMangler::mangleNameOrStandardSubstitution(const NamedDecl *ND) {
1816  if (!mangleStandardSubstitution(ND))
1817    mangleName(ND);
1818}
1819
1820void CXXNameMangler::mangleType(const BuiltinType *T) {
1821  //  <type>         ::= <builtin-type>
1822  //  <builtin-type> ::= v  # void
1823  //                 ::= w  # wchar_t
1824  //                 ::= b  # bool
1825  //                 ::= c  # char
1826  //                 ::= a  # signed char
1827  //                 ::= h  # unsigned char
1828  //                 ::= s  # short
1829  //                 ::= t  # unsigned short
1830  //                 ::= i  # int
1831  //                 ::= j  # unsigned int
1832  //                 ::= l  # long
1833  //                 ::= m  # unsigned long
1834  //                 ::= x  # long long, __int64
1835  //                 ::= y  # unsigned long long, __int64
1836  //                 ::= n  # __int128
1837  // UNSUPPORTED:    ::= o  # unsigned __int128
1838  //                 ::= f  # float
1839  //                 ::= d  # double
1840  //                 ::= e  # long double, __float80
1841  // UNSUPPORTED:    ::= g  # __float128
1842  // UNSUPPORTED:    ::= Dd # IEEE 754r decimal floating point (64 bits)
1843  // UNSUPPORTED:    ::= De # IEEE 754r decimal floating point (128 bits)
1844  // UNSUPPORTED:    ::= Df # IEEE 754r decimal floating point (32 bits)
1845  //                 ::= Dh # IEEE 754r half-precision floating point (16 bits)
1846  //                 ::= Di # char32_t
1847  //                 ::= Ds # char16_t
1848  //                 ::= Dn # std::nullptr_t (i.e., decltype(nullptr))
1849  //                 ::= u <source-name>    # vendor extended type
1850  switch (T->getKind()) {
1851  case BuiltinType::Void: Out << 'v'; break;
1852  case BuiltinType::Bool: Out << 'b'; break;
1853  case BuiltinType::Char_U: case BuiltinType::Char_S: Out << 'c'; break;
1854  case BuiltinType::UChar: Out << 'h'; break;
1855  case BuiltinType::UShort: Out << 't'; break;
1856  case BuiltinType::UInt: Out << 'j'; break;
1857  case BuiltinType::ULong: Out << 'm'; break;
1858  case BuiltinType::ULongLong: Out << 'y'; break;
1859  case BuiltinType::UInt128: Out << 'o'; break;
1860  case BuiltinType::SChar: Out << 'a'; break;
1861  case BuiltinType::WChar_S:
1862  case BuiltinType::WChar_U: Out << 'w'; break;
1863  case BuiltinType::Char16: Out << "Ds"; break;
1864  case BuiltinType::Char32: Out << "Di"; break;
1865  case BuiltinType::Short: Out << 's'; break;
1866  case BuiltinType::Int: Out << 'i'; break;
1867  case BuiltinType::Long: Out << 'l'; break;
1868  case BuiltinType::LongLong: Out << 'x'; break;
1869  case BuiltinType::Int128: Out << 'n'; break;
1870  case BuiltinType::Half: Out << "Dh"; break;
1871  case BuiltinType::Float: Out << 'f'; break;
1872  case BuiltinType::Double: Out << 'd'; break;
1873  case BuiltinType::LongDouble: Out << 'e'; break;
1874  case BuiltinType::NullPtr: Out << "Dn"; break;
1875
1876#define BUILTIN_TYPE(Id, SingletonId)
1877#define PLACEHOLDER_TYPE(Id, SingletonId) \
1878  case BuiltinType::Id:
1879#include "clang/AST/BuiltinTypes.def"
1880  case BuiltinType::Dependent:
1881    llvm_unreachable("mangling a placeholder type");
1882  case BuiltinType::ObjCId: Out << "11objc_object"; break;
1883  case BuiltinType::ObjCClass: Out << "10objc_class"; break;
1884  case BuiltinType::ObjCSel: Out << "13objc_selector"; break;
1885  }
1886}
1887
1888// <type>          ::= <function-type>
1889// <function-type> ::= [<CV-qualifiers>] F [Y]
1890//                      <bare-function-type> [<ref-qualifier>] E
1891// (Proposal to cxx-abi-dev, 2012-05-11)
1892void CXXNameMangler::mangleType(const FunctionProtoType *T) {
1893  // Mangle CV-qualifiers, if present.  These are 'this' qualifiers,
1894  // e.g. "const" in "int (A::*)() const".
1895  mangleQualifiers(Qualifiers::fromCVRMask(T->getTypeQuals()));
1896
1897  Out << 'F';
1898
1899  // FIXME: We don't have enough information in the AST to produce the 'Y'
1900  // encoding for extern "C" function types.
1901  mangleBareFunctionType(T, /*MangleReturnType=*/true);
1902
1903  // Mangle the ref-qualifier, if present.
1904  mangleRefQualifier(T->getRefQualifier());
1905
1906  Out << 'E';
1907}
1908void CXXNameMangler::mangleType(const FunctionNoProtoType *T) {
1909  llvm_unreachable("Can't mangle K&R function prototypes");
1910}
1911void CXXNameMangler::mangleBareFunctionType(const FunctionType *T,
1912                                            bool MangleReturnType) {
1913  // We should never be mangling something without a prototype.
1914  const FunctionProtoType *Proto = cast<FunctionProtoType>(T);
1915
1916  // Record that we're in a function type.  See mangleFunctionParam
1917  // for details on what we're trying to achieve here.
1918  FunctionTypeDepthState saved = FunctionTypeDepth.push();
1919
1920  // <bare-function-type> ::= <signature type>+
1921  if (MangleReturnType) {
1922    FunctionTypeDepth.enterResultType();
1923    mangleType(Proto->getResultType());
1924    FunctionTypeDepth.leaveResultType();
1925  }
1926
1927  if (Proto->getNumArgs() == 0 && !Proto->isVariadic()) {
1928    //   <builtin-type> ::= v   # void
1929    Out << 'v';
1930
1931    FunctionTypeDepth.pop(saved);
1932    return;
1933  }
1934
1935  for (FunctionProtoType::arg_type_iterator Arg = Proto->arg_type_begin(),
1936                                         ArgEnd = Proto->arg_type_end();
1937       Arg != ArgEnd; ++Arg)
1938    mangleType(Context.getASTContext().getSignatureParameterType(*Arg));
1939
1940  FunctionTypeDepth.pop(saved);
1941
1942  // <builtin-type>      ::= z  # ellipsis
1943  if (Proto->isVariadic())
1944    Out << 'z';
1945}
1946
1947// <type>            ::= <class-enum-type>
1948// <class-enum-type> ::= <name>
1949void CXXNameMangler::mangleType(const UnresolvedUsingType *T) {
1950  mangleName(T->getDecl());
1951}
1952
1953// <type>            ::= <class-enum-type>
1954// <class-enum-type> ::= <name>
1955void CXXNameMangler::mangleType(const EnumType *T) {
1956  mangleType(static_cast<const TagType*>(T));
1957}
1958void CXXNameMangler::mangleType(const RecordType *T) {
1959  mangleType(static_cast<const TagType*>(T));
1960}
1961void CXXNameMangler::mangleType(const TagType *T) {
1962  mangleName(T->getDecl());
1963}
1964
1965// <type>       ::= <array-type>
1966// <array-type> ::= A <positive dimension number> _ <element type>
1967//              ::= A [<dimension expression>] _ <element type>
1968void CXXNameMangler::mangleType(const ConstantArrayType *T) {
1969  Out << 'A' << T->getSize() << '_';
1970  mangleType(T->getElementType());
1971}
1972void CXXNameMangler::mangleType(const VariableArrayType *T) {
1973  Out << 'A';
1974  // decayed vla types (size 0) will just be skipped.
1975  if (T->getSizeExpr())
1976    mangleExpression(T->getSizeExpr());
1977  Out << '_';
1978  mangleType(T->getElementType());
1979}
1980void CXXNameMangler::mangleType(const DependentSizedArrayType *T) {
1981  Out << 'A';
1982  mangleExpression(T->getSizeExpr());
1983  Out << '_';
1984  mangleType(T->getElementType());
1985}
1986void CXXNameMangler::mangleType(const IncompleteArrayType *T) {
1987  Out << "A_";
1988  mangleType(T->getElementType());
1989}
1990
1991// <type>                   ::= <pointer-to-member-type>
1992// <pointer-to-member-type> ::= M <class type> <member type>
1993void CXXNameMangler::mangleType(const MemberPointerType *T) {
1994  Out << 'M';
1995  mangleType(QualType(T->getClass(), 0));
1996  QualType PointeeType = T->getPointeeType();
1997  if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(PointeeType)) {
1998    mangleType(FPT);
1999
2000    // Itanium C++ ABI 5.1.8:
2001    //
2002    //   The type of a non-static member function is considered to be different,
2003    //   for the purposes of substitution, from the type of a namespace-scope or
2004    //   static member function whose type appears similar. The types of two
2005    //   non-static member functions are considered to be different, for the
2006    //   purposes of substitution, if the functions are members of different
2007    //   classes. In other words, for the purposes of substitution, the class of
2008    //   which the function is a member is considered part of the type of
2009    //   function.
2010
2011    // Given that we already substitute member function pointers as a
2012    // whole, the net effect of this rule is just to unconditionally
2013    // suppress substitution on the function type in a member pointer.
2014    // We increment the SeqID here to emulate adding an entry to the
2015    // substitution table.
2016    ++SeqID;
2017  } else
2018    mangleType(PointeeType);
2019}
2020
2021// <type>           ::= <template-param>
2022void CXXNameMangler::mangleType(const TemplateTypeParmType *T) {
2023  mangleTemplateParameter(T->getIndex());
2024}
2025
2026// <type>           ::= <template-param>
2027void CXXNameMangler::mangleType(const SubstTemplateTypeParmPackType *T) {
2028  // FIXME: not clear how to mangle this!
2029  // template <class T...> class A {
2030  //   template <class U...> void foo(T(*)(U) x...);
2031  // };
2032  Out << "_SUBSTPACK_";
2033}
2034
2035// <type> ::= P <type>   # pointer-to
2036void CXXNameMangler::mangleType(const PointerType *T) {
2037  Out << 'P';
2038  mangleType(T->getPointeeType());
2039}
2040void CXXNameMangler::mangleType(const ObjCObjectPointerType *T) {
2041  Out << 'P';
2042  mangleType(T->getPointeeType());
2043}
2044
2045// <type> ::= R <type>   # reference-to
2046void CXXNameMangler::mangleType(const LValueReferenceType *T) {
2047  Out << 'R';
2048  mangleType(T->getPointeeType());
2049}
2050
2051// <type> ::= O <type>   # rvalue reference-to (C++0x)
2052void CXXNameMangler::mangleType(const RValueReferenceType *T) {
2053  Out << 'O';
2054  mangleType(T->getPointeeType());
2055}
2056
2057// <type> ::= C <type>   # complex pair (C 2000)
2058void CXXNameMangler::mangleType(const ComplexType *T) {
2059  Out << 'C';
2060  mangleType(T->getElementType());
2061}
2062
2063// ARM's ABI for Neon vector types specifies that they should be mangled as
2064// if they are structs (to match ARM's initial implementation).  The
2065// vector type must be one of the special types predefined by ARM.
2066void CXXNameMangler::mangleNeonVectorType(const VectorType *T) {
2067  QualType EltType = T->getElementType();
2068  assert(EltType->isBuiltinType() && "Neon vector element not a BuiltinType");
2069  const char *EltName = 0;
2070  if (T->getVectorKind() == VectorType::NeonPolyVector) {
2071    switch (cast<BuiltinType>(EltType)->getKind()) {
2072    case BuiltinType::SChar:     EltName = "poly8_t"; break;
2073    case BuiltinType::Short:     EltName = "poly16_t"; break;
2074    default: llvm_unreachable("unexpected Neon polynomial vector element type");
2075    }
2076  } else {
2077    switch (cast<BuiltinType>(EltType)->getKind()) {
2078    case BuiltinType::SChar:     EltName = "int8_t"; break;
2079    case BuiltinType::UChar:     EltName = "uint8_t"; break;
2080    case BuiltinType::Short:     EltName = "int16_t"; break;
2081    case BuiltinType::UShort:    EltName = "uint16_t"; break;
2082    case BuiltinType::Int:       EltName = "int32_t"; break;
2083    case BuiltinType::UInt:      EltName = "uint32_t"; break;
2084    case BuiltinType::LongLong:  EltName = "int64_t"; break;
2085    case BuiltinType::ULongLong: EltName = "uint64_t"; break;
2086    case BuiltinType::Float:     EltName = "float32_t"; break;
2087    default: llvm_unreachable("unexpected Neon vector element type");
2088    }
2089  }
2090  const char *BaseName = 0;
2091  unsigned BitSize = (T->getNumElements() *
2092                      getASTContext().getTypeSize(EltType));
2093  if (BitSize == 64)
2094    BaseName = "__simd64_";
2095  else {
2096    assert(BitSize == 128 && "Neon vector type not 64 or 128 bits");
2097    BaseName = "__simd128_";
2098  }
2099  Out << strlen(BaseName) + strlen(EltName);
2100  Out << BaseName << EltName;
2101}
2102
2103// GNU extension: vector types
2104// <type>                  ::= <vector-type>
2105// <vector-type>           ::= Dv <positive dimension number> _
2106//                                    <extended element type>
2107//                         ::= Dv [<dimension expression>] _ <element type>
2108// <extended element type> ::= <element type>
2109//                         ::= p # AltiVec vector pixel
2110//                         ::= b # Altivec vector bool
2111void CXXNameMangler::mangleType(const VectorType *T) {
2112  if ((T->getVectorKind() == VectorType::NeonVector ||
2113       T->getVectorKind() == VectorType::NeonPolyVector)) {
2114    mangleNeonVectorType(T);
2115    return;
2116  }
2117  Out << "Dv" << T->getNumElements() << '_';
2118  if (T->getVectorKind() == VectorType::AltiVecPixel)
2119    Out << 'p';
2120  else if (T->getVectorKind() == VectorType::AltiVecBool)
2121    Out << 'b';
2122  else
2123    mangleType(T->getElementType());
2124}
2125void CXXNameMangler::mangleType(const ExtVectorType *T) {
2126  mangleType(static_cast<const VectorType*>(T));
2127}
2128void CXXNameMangler::mangleType(const DependentSizedExtVectorType *T) {
2129  Out << "Dv";
2130  mangleExpression(T->getSizeExpr());
2131  Out << '_';
2132  mangleType(T->getElementType());
2133}
2134
2135void CXXNameMangler::mangleType(const PackExpansionType *T) {
2136  // <type>  ::= Dp <type>          # pack expansion (C++0x)
2137  Out << "Dp";
2138  mangleType(T->getPattern());
2139}
2140
2141void CXXNameMangler::mangleType(const ObjCInterfaceType *T) {
2142  mangleSourceName(T->getDecl()->getIdentifier());
2143}
2144
2145void CXXNameMangler::mangleType(const ObjCObjectType *T) {
2146  // We don't allow overloading by different protocol qualification,
2147  // so mangling them isn't necessary.
2148  mangleType(T->getBaseType());
2149}
2150
2151void CXXNameMangler::mangleType(const BlockPointerType *T) {
2152  Out << "U13block_pointer";
2153  mangleType(T->getPointeeType());
2154}
2155
2156void CXXNameMangler::mangleType(const InjectedClassNameType *T) {
2157  // Mangle injected class name types as if the user had written the
2158  // specialization out fully.  It may not actually be possible to see
2159  // this mangling, though.
2160  mangleType(T->getInjectedSpecializationType());
2161}
2162
2163void CXXNameMangler::mangleType(const TemplateSpecializationType *T) {
2164  if (TemplateDecl *TD = T->getTemplateName().getAsTemplateDecl()) {
2165    mangleName(TD, T->getArgs(), T->getNumArgs());
2166  } else {
2167    if (mangleSubstitution(QualType(T, 0)))
2168      return;
2169
2170    mangleTemplatePrefix(T->getTemplateName());
2171
2172    // FIXME: GCC does not appear to mangle the template arguments when
2173    // the template in question is a dependent template name. Should we
2174    // emulate that badness?
2175    mangleTemplateArgs(T->getArgs(), T->getNumArgs());
2176    addSubstitution(QualType(T, 0));
2177  }
2178}
2179
2180void CXXNameMangler::mangleType(const DependentNameType *T) {
2181  // Typename types are always nested
2182  Out << 'N';
2183  manglePrefix(T->getQualifier());
2184  mangleSourceName(T->getIdentifier());
2185  Out << 'E';
2186}
2187
2188void CXXNameMangler::mangleType(const DependentTemplateSpecializationType *T) {
2189  // Dependently-scoped template types are nested if they have a prefix.
2190  Out << 'N';
2191
2192  // TODO: avoid making this TemplateName.
2193  TemplateName Prefix =
2194    getASTContext().getDependentTemplateName(T->getQualifier(),
2195                                             T->getIdentifier());
2196  mangleTemplatePrefix(Prefix);
2197
2198  // FIXME: GCC does not appear to mangle the template arguments when
2199  // the template in question is a dependent template name. Should we
2200  // emulate that badness?
2201  mangleTemplateArgs(T->getArgs(), T->getNumArgs());
2202  Out << 'E';
2203}
2204
2205void CXXNameMangler::mangleType(const TypeOfType *T) {
2206  // FIXME: this is pretty unsatisfactory, but there isn't an obvious
2207  // "extension with parameters" mangling.
2208  Out << "u6typeof";
2209}
2210
2211void CXXNameMangler::mangleType(const TypeOfExprType *T) {
2212  // FIXME: this is pretty unsatisfactory, but there isn't an obvious
2213  // "extension with parameters" mangling.
2214  Out << "u6typeof";
2215}
2216
2217void CXXNameMangler::mangleType(const DecltypeType *T) {
2218  Expr *E = T->getUnderlyingExpr();
2219
2220  // type ::= Dt <expression> E  # decltype of an id-expression
2221  //                             #   or class member access
2222  //      ::= DT <expression> E  # decltype of an expression
2223
2224  // This purports to be an exhaustive list of id-expressions and
2225  // class member accesses.  Note that we do not ignore parentheses;
2226  // parentheses change the semantics of decltype for these
2227  // expressions (and cause the mangler to use the other form).
2228  if (isa<DeclRefExpr>(E) ||
2229      isa<MemberExpr>(E) ||
2230      isa<UnresolvedLookupExpr>(E) ||
2231      isa<DependentScopeDeclRefExpr>(E) ||
2232      isa<CXXDependentScopeMemberExpr>(E) ||
2233      isa<UnresolvedMemberExpr>(E))
2234    Out << "Dt";
2235  else
2236    Out << "DT";
2237  mangleExpression(E);
2238  Out << 'E';
2239}
2240
2241void CXXNameMangler::mangleType(const UnaryTransformType *T) {
2242  // If this is dependent, we need to record that. If not, we simply
2243  // mangle it as the underlying type since they are equivalent.
2244  if (T->isDependentType()) {
2245    Out << 'U';
2246
2247    switch (T->getUTTKind()) {
2248      case UnaryTransformType::EnumUnderlyingType:
2249        Out << "3eut";
2250        break;
2251    }
2252  }
2253
2254  mangleType(T->getUnderlyingType());
2255}
2256
2257void CXXNameMangler::mangleType(const AutoType *T) {
2258  QualType D = T->getDeducedType();
2259  // <builtin-type> ::= Da  # dependent auto
2260  if (D.isNull())
2261    Out << "Da";
2262  else
2263    mangleType(D);
2264}
2265
2266void CXXNameMangler::mangleType(const AtomicType *T) {
2267  // <type> ::= U <source-name> <type>	# vendor extended type qualifier
2268  // (Until there's a standardized mangling...)
2269  Out << "U7_Atomic";
2270  mangleType(T->getValueType());
2271}
2272
2273void CXXNameMangler::mangleIntegerLiteral(QualType T,
2274                                          const llvm::APSInt &Value) {
2275  //  <expr-primary> ::= L <type> <value number> E # integer literal
2276  Out << 'L';
2277
2278  mangleType(T);
2279  if (T->isBooleanType()) {
2280    // Boolean values are encoded as 0/1.
2281    Out << (Value.getBoolValue() ? '1' : '0');
2282  } else {
2283    mangleNumber(Value);
2284  }
2285  Out << 'E';
2286
2287}
2288
2289/// Mangles a member expression.
2290void CXXNameMangler::mangleMemberExpr(const Expr *base,
2291                                      bool isArrow,
2292                                      NestedNameSpecifier *qualifier,
2293                                      NamedDecl *firstQualifierLookup,
2294                                      DeclarationName member,
2295                                      unsigned arity) {
2296  // <expression> ::= dt <expression> <unresolved-name>
2297  //              ::= pt <expression> <unresolved-name>
2298  if (base) {
2299    if (base->isImplicitCXXThis()) {
2300      // Note: GCC mangles member expressions to the implicit 'this' as
2301      // *this., whereas we represent them as this->. The Itanium C++ ABI
2302      // does not specify anything here, so we follow GCC.
2303      Out << "dtdefpT";
2304    } else {
2305      Out << (isArrow ? "pt" : "dt");
2306      mangleExpression(base);
2307    }
2308  }
2309  mangleUnresolvedName(qualifier, firstQualifierLookup, member, arity);
2310}
2311
2312/// Look at the callee of the given call expression and determine if
2313/// it's a parenthesized id-expression which would have triggered ADL
2314/// otherwise.
2315static bool isParenthesizedADLCallee(const CallExpr *call) {
2316  const Expr *callee = call->getCallee();
2317  const Expr *fn = callee->IgnoreParens();
2318
2319  // Must be parenthesized.  IgnoreParens() skips __extension__ nodes,
2320  // too, but for those to appear in the callee, it would have to be
2321  // parenthesized.
2322  if (callee == fn) return false;
2323
2324  // Must be an unresolved lookup.
2325  const UnresolvedLookupExpr *lookup = dyn_cast<UnresolvedLookupExpr>(fn);
2326  if (!lookup) return false;
2327
2328  assert(!lookup->requiresADL());
2329
2330  // Must be an unqualified lookup.
2331  if (lookup->getQualifier()) return false;
2332
2333  // Must not have found a class member.  Note that if one is a class
2334  // member, they're all class members.
2335  if (lookup->getNumDecls() > 0 &&
2336      (*lookup->decls_begin())->isCXXClassMember())
2337    return false;
2338
2339  // Otherwise, ADL would have been triggered.
2340  return true;
2341}
2342
2343void CXXNameMangler::mangleExpression(const Expr *E, unsigned Arity) {
2344  // <expression> ::= <unary operator-name> <expression>
2345  //              ::= <binary operator-name> <expression> <expression>
2346  //              ::= <trinary operator-name> <expression> <expression> <expression>
2347  //              ::= cv <type> expression           # conversion with one argument
2348  //              ::= cv <type> _ <expression>* E # conversion with a different number of arguments
2349  //              ::= st <type>                      # sizeof (a type)
2350  //              ::= at <type>                      # alignof (a type)
2351  //              ::= <template-param>
2352  //              ::= <function-param>
2353  //              ::= sr <type> <unqualified-name>                   # dependent name
2354  //              ::= sr <type> <unqualified-name> <template-args>   # dependent template-id
2355  //              ::= ds <expression> <expression>                   # expr.*expr
2356  //              ::= sZ <template-param>                            # size of a parameter pack
2357  //              ::= sZ <function-param>    # size of a function parameter pack
2358  //              ::= <expr-primary>
2359  // <expr-primary> ::= L <type> <value number> E    # integer literal
2360  //                ::= L <type <value float> E      # floating literal
2361  //                ::= L <mangled-name> E           # external name
2362  //                ::= fpT                          # 'this' expression
2363  QualType ImplicitlyConvertedToType;
2364
2365recurse:
2366  switch (E->getStmtClass()) {
2367  case Expr::NoStmtClass:
2368#define ABSTRACT_STMT(Type)
2369#define EXPR(Type, Base)
2370#define STMT(Type, Base) \
2371  case Expr::Type##Class:
2372#include "clang/AST/StmtNodes.inc"
2373    // fallthrough
2374
2375  // These all can only appear in local or variable-initialization
2376  // contexts and so should never appear in a mangling.
2377  case Expr::AddrLabelExprClass:
2378  case Expr::DesignatedInitExprClass:
2379  case Expr::ImplicitValueInitExprClass:
2380  case Expr::ParenListExprClass:
2381  case Expr::LambdaExprClass:
2382    llvm_unreachable("unexpected statement kind");
2383
2384  // FIXME: invent manglings for all these.
2385  case Expr::BlockExprClass:
2386  case Expr::CXXPseudoDestructorExprClass:
2387  case Expr::ChooseExprClass:
2388  case Expr::CompoundLiteralExprClass:
2389  case Expr::ExtVectorElementExprClass:
2390  case Expr::GenericSelectionExprClass:
2391  case Expr::ObjCEncodeExprClass:
2392  case Expr::ObjCIsaExprClass:
2393  case Expr::ObjCIvarRefExprClass:
2394  case Expr::ObjCMessageExprClass:
2395  case Expr::ObjCPropertyRefExprClass:
2396  case Expr::ObjCProtocolExprClass:
2397  case Expr::ObjCSelectorExprClass:
2398  case Expr::ObjCStringLiteralClass:
2399  case Expr::ObjCBoxedExprClass:
2400  case Expr::ObjCArrayLiteralClass:
2401  case Expr::ObjCDictionaryLiteralClass:
2402  case Expr::ObjCSubscriptRefExprClass:
2403  case Expr::ObjCIndirectCopyRestoreExprClass:
2404  case Expr::OffsetOfExprClass:
2405  case Expr::PredefinedExprClass:
2406  case Expr::ShuffleVectorExprClass:
2407  case Expr::StmtExprClass:
2408  case Expr::UnaryTypeTraitExprClass:
2409  case Expr::BinaryTypeTraitExprClass:
2410  case Expr::TypeTraitExprClass:
2411  case Expr::ArrayTypeTraitExprClass:
2412  case Expr::ExpressionTraitExprClass:
2413  case Expr::VAArgExprClass:
2414  case Expr::CXXUuidofExprClass:
2415  case Expr::CUDAKernelCallExprClass:
2416  case Expr::AsTypeExprClass:
2417  case Expr::PseudoObjectExprClass:
2418  case Expr::AtomicExprClass:
2419  {
2420    // As bad as this diagnostic is, it's better than crashing.
2421    DiagnosticsEngine &Diags = Context.getDiags();
2422    unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
2423                                     "cannot yet mangle expression type %0");
2424    Diags.Report(E->getExprLoc(), DiagID)
2425      << E->getStmtClassName() << E->getSourceRange();
2426    break;
2427  }
2428
2429  // Even gcc-4.5 doesn't mangle this.
2430  case Expr::BinaryConditionalOperatorClass: {
2431    DiagnosticsEngine &Diags = Context.getDiags();
2432    unsigned DiagID =
2433      Diags.getCustomDiagID(DiagnosticsEngine::Error,
2434                "?: operator with omitted middle operand cannot be mangled");
2435    Diags.Report(E->getExprLoc(), DiagID)
2436      << E->getStmtClassName() << E->getSourceRange();
2437    break;
2438  }
2439
2440  // These are used for internal purposes and cannot be meaningfully mangled.
2441  case Expr::OpaqueValueExprClass:
2442    llvm_unreachable("cannot mangle opaque value; mangling wrong thing?");
2443
2444  case Expr::InitListExprClass: {
2445    // Proposal by Jason Merrill, 2012-01-03
2446    Out << "il";
2447    const InitListExpr *InitList = cast<InitListExpr>(E);
2448    for (unsigned i = 0, e = InitList->getNumInits(); i != e; ++i)
2449      mangleExpression(InitList->getInit(i));
2450    Out << "E";
2451    break;
2452  }
2453
2454  case Expr::CXXDefaultArgExprClass:
2455    mangleExpression(cast<CXXDefaultArgExpr>(E)->getExpr(), Arity);
2456    break;
2457
2458  case Expr::SubstNonTypeTemplateParmExprClass:
2459    mangleExpression(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement(),
2460                     Arity);
2461    break;
2462
2463  case Expr::UserDefinedLiteralClass:
2464    // We follow g++'s approach of mangling a UDL as a call to the literal
2465    // operator.
2466  case Expr::CXXMemberCallExprClass: // fallthrough
2467  case Expr::CallExprClass: {
2468    const CallExpr *CE = cast<CallExpr>(E);
2469
2470    // <expression> ::= cp <simple-id> <expression>* E
2471    // We use this mangling only when the call would use ADL except
2472    // for being parenthesized.  Per discussion with David
2473    // Vandervoorde, 2011.04.25.
2474    if (isParenthesizedADLCallee(CE)) {
2475      Out << "cp";
2476      // The callee here is a parenthesized UnresolvedLookupExpr with
2477      // no qualifier and should always get mangled as a <simple-id>
2478      // anyway.
2479
2480    // <expression> ::= cl <expression>* E
2481    } else {
2482      Out << "cl";
2483    }
2484
2485    mangleExpression(CE->getCallee(), CE->getNumArgs());
2486    for (unsigned I = 0, N = CE->getNumArgs(); I != N; ++I)
2487      mangleExpression(CE->getArg(I));
2488    Out << 'E';
2489    break;
2490  }
2491
2492  case Expr::CXXNewExprClass: {
2493    const CXXNewExpr *New = cast<CXXNewExpr>(E);
2494    if (New->isGlobalNew()) Out << "gs";
2495    Out << (New->isArray() ? "na" : "nw");
2496    for (CXXNewExpr::const_arg_iterator I = New->placement_arg_begin(),
2497           E = New->placement_arg_end(); I != E; ++I)
2498      mangleExpression(*I);
2499    Out << '_';
2500    mangleType(New->getAllocatedType());
2501    if (New->hasInitializer()) {
2502      // Proposal by Jason Merrill, 2012-01-03
2503      if (New->getInitializationStyle() == CXXNewExpr::ListInit)
2504        Out << "il";
2505      else
2506        Out << "pi";
2507      const Expr *Init = New->getInitializer();
2508      if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init)) {
2509        // Directly inline the initializers.
2510        for (CXXConstructExpr::const_arg_iterator I = CCE->arg_begin(),
2511                                                  E = CCE->arg_end();
2512             I != E; ++I)
2513          mangleExpression(*I);
2514      } else if (const ParenListExpr *PLE = dyn_cast<ParenListExpr>(Init)) {
2515        for (unsigned i = 0, e = PLE->getNumExprs(); i != e; ++i)
2516          mangleExpression(PLE->getExpr(i));
2517      } else if (New->getInitializationStyle() == CXXNewExpr::ListInit &&
2518                 isa<InitListExpr>(Init)) {
2519        // Only take InitListExprs apart for list-initialization.
2520        const InitListExpr *InitList = cast<InitListExpr>(Init);
2521        for (unsigned i = 0, e = InitList->getNumInits(); i != e; ++i)
2522          mangleExpression(InitList->getInit(i));
2523      } else
2524        mangleExpression(Init);
2525    }
2526    Out << 'E';
2527    break;
2528  }
2529
2530  case Expr::MemberExprClass: {
2531    const MemberExpr *ME = cast<MemberExpr>(E);
2532    mangleMemberExpr(ME->getBase(), ME->isArrow(),
2533                     ME->getQualifier(), 0, ME->getMemberDecl()->getDeclName(),
2534                     Arity);
2535    break;
2536  }
2537
2538  case Expr::UnresolvedMemberExprClass: {
2539    const UnresolvedMemberExpr *ME = cast<UnresolvedMemberExpr>(E);
2540    mangleMemberExpr(ME->getBase(), ME->isArrow(),
2541                     ME->getQualifier(), 0, ME->getMemberName(),
2542                     Arity);
2543    if (ME->hasExplicitTemplateArgs())
2544      mangleTemplateArgs(ME->getExplicitTemplateArgs());
2545    break;
2546  }
2547
2548  case Expr::CXXDependentScopeMemberExprClass: {
2549    const CXXDependentScopeMemberExpr *ME
2550      = cast<CXXDependentScopeMemberExpr>(E);
2551    mangleMemberExpr(ME->getBase(), ME->isArrow(),
2552                     ME->getQualifier(), ME->getFirstQualifierFoundInScope(),
2553                     ME->getMember(), Arity);
2554    if (ME->hasExplicitTemplateArgs())
2555      mangleTemplateArgs(ME->getExplicitTemplateArgs());
2556    break;
2557  }
2558
2559  case Expr::UnresolvedLookupExprClass: {
2560    const UnresolvedLookupExpr *ULE = cast<UnresolvedLookupExpr>(E);
2561    mangleUnresolvedName(ULE->getQualifier(), 0, ULE->getName(), Arity);
2562
2563    // All the <unresolved-name> productions end in a
2564    // base-unresolved-name, where <template-args> are just tacked
2565    // onto the end.
2566    if (ULE->hasExplicitTemplateArgs())
2567      mangleTemplateArgs(ULE->getExplicitTemplateArgs());
2568    break;
2569  }
2570
2571  case Expr::CXXUnresolvedConstructExprClass: {
2572    const CXXUnresolvedConstructExpr *CE = cast<CXXUnresolvedConstructExpr>(E);
2573    unsigned N = CE->arg_size();
2574
2575    Out << "cv";
2576    mangleType(CE->getType());
2577    if (N != 1) Out << '_';
2578    for (unsigned I = 0; I != N; ++I) mangleExpression(CE->getArg(I));
2579    if (N != 1) Out << 'E';
2580    break;
2581  }
2582
2583  case Expr::CXXTemporaryObjectExprClass:
2584  case Expr::CXXConstructExprClass: {
2585    const CXXConstructExpr *CE = cast<CXXConstructExpr>(E);
2586    unsigned N = CE->getNumArgs();
2587
2588    // Proposal by Jason Merrill, 2012-01-03
2589    if (CE->isListInitialization())
2590      Out << "tl";
2591    else
2592      Out << "cv";
2593    mangleType(CE->getType());
2594    if (N != 1) Out << '_';
2595    for (unsigned I = 0; I != N; ++I) mangleExpression(CE->getArg(I));
2596    if (N != 1) Out << 'E';
2597    break;
2598  }
2599
2600  case Expr::CXXScalarValueInitExprClass:
2601    Out <<"cv";
2602    mangleType(E->getType());
2603    Out <<"_E";
2604    break;
2605
2606  case Expr::CXXNoexceptExprClass:
2607    Out << "nx";
2608    mangleExpression(cast<CXXNoexceptExpr>(E)->getOperand());
2609    break;
2610
2611  case Expr::UnaryExprOrTypeTraitExprClass: {
2612    const UnaryExprOrTypeTraitExpr *SAE = cast<UnaryExprOrTypeTraitExpr>(E);
2613
2614    if (!SAE->isInstantiationDependent()) {
2615      // Itanium C++ ABI:
2616      //   If the operand of a sizeof or alignof operator is not
2617      //   instantiation-dependent it is encoded as an integer literal
2618      //   reflecting the result of the operator.
2619      //
2620      //   If the result of the operator is implicitly converted to a known
2621      //   integer type, that type is used for the literal; otherwise, the type
2622      //   of std::size_t or std::ptrdiff_t is used.
2623      QualType T = (ImplicitlyConvertedToType.isNull() ||
2624                    !ImplicitlyConvertedToType->isIntegerType())? SAE->getType()
2625                                                    : ImplicitlyConvertedToType;
2626      llvm::APSInt V = SAE->EvaluateKnownConstInt(Context.getASTContext());
2627      mangleIntegerLiteral(T, V);
2628      break;
2629    }
2630
2631    switch(SAE->getKind()) {
2632    case UETT_SizeOf:
2633      Out << 's';
2634      break;
2635    case UETT_AlignOf:
2636      Out << 'a';
2637      break;
2638    case UETT_VecStep:
2639      DiagnosticsEngine &Diags = Context.getDiags();
2640      unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
2641                                     "cannot yet mangle vec_step expression");
2642      Diags.Report(DiagID);
2643      return;
2644    }
2645    if (SAE->isArgumentType()) {
2646      Out << 't';
2647      mangleType(SAE->getArgumentType());
2648    } else {
2649      Out << 'z';
2650      mangleExpression(SAE->getArgumentExpr());
2651    }
2652    break;
2653  }
2654
2655  case Expr::CXXThrowExprClass: {
2656    const CXXThrowExpr *TE = cast<CXXThrowExpr>(E);
2657
2658    // Proposal from David Vandervoorde, 2010.06.30
2659    if (TE->getSubExpr()) {
2660      Out << "tw";
2661      mangleExpression(TE->getSubExpr());
2662    } else {
2663      Out << "tr";
2664    }
2665    break;
2666  }
2667
2668  case Expr::CXXTypeidExprClass: {
2669    const CXXTypeidExpr *TIE = cast<CXXTypeidExpr>(E);
2670
2671    // Proposal from David Vandervoorde, 2010.06.30
2672    if (TIE->isTypeOperand()) {
2673      Out << "ti";
2674      mangleType(TIE->getTypeOperand());
2675    } else {
2676      Out << "te";
2677      mangleExpression(TIE->getExprOperand());
2678    }
2679    break;
2680  }
2681
2682  case Expr::CXXDeleteExprClass: {
2683    const CXXDeleteExpr *DE = cast<CXXDeleteExpr>(E);
2684
2685    // Proposal from David Vandervoorde, 2010.06.30
2686    if (DE->isGlobalDelete()) Out << "gs";
2687    Out << (DE->isArrayForm() ? "da" : "dl");
2688    mangleExpression(DE->getArgument());
2689    break;
2690  }
2691
2692  case Expr::UnaryOperatorClass: {
2693    const UnaryOperator *UO = cast<UnaryOperator>(E);
2694    mangleOperatorName(UnaryOperator::getOverloadedOperator(UO->getOpcode()),
2695                       /*Arity=*/1);
2696    mangleExpression(UO->getSubExpr());
2697    break;
2698  }
2699
2700  case Expr::ArraySubscriptExprClass: {
2701    const ArraySubscriptExpr *AE = cast<ArraySubscriptExpr>(E);
2702
2703    // Array subscript is treated as a syntactically weird form of
2704    // binary operator.
2705    Out << "ix";
2706    mangleExpression(AE->getLHS());
2707    mangleExpression(AE->getRHS());
2708    break;
2709  }
2710
2711  case Expr::CompoundAssignOperatorClass: // fallthrough
2712  case Expr::BinaryOperatorClass: {
2713    const BinaryOperator *BO = cast<BinaryOperator>(E);
2714    if (BO->getOpcode() == BO_PtrMemD)
2715      Out << "ds";
2716    else
2717      mangleOperatorName(BinaryOperator::getOverloadedOperator(BO->getOpcode()),
2718                         /*Arity=*/2);
2719    mangleExpression(BO->getLHS());
2720    mangleExpression(BO->getRHS());
2721    break;
2722  }
2723
2724  case Expr::ConditionalOperatorClass: {
2725    const ConditionalOperator *CO = cast<ConditionalOperator>(E);
2726    mangleOperatorName(OO_Conditional, /*Arity=*/3);
2727    mangleExpression(CO->getCond());
2728    mangleExpression(CO->getLHS(), Arity);
2729    mangleExpression(CO->getRHS(), Arity);
2730    break;
2731  }
2732
2733  case Expr::ImplicitCastExprClass: {
2734    ImplicitlyConvertedToType = E->getType();
2735    E = cast<ImplicitCastExpr>(E)->getSubExpr();
2736    goto recurse;
2737  }
2738
2739  case Expr::ObjCBridgedCastExprClass: {
2740    // Mangle ownership casts as a vendor extended operator __bridge,
2741    // __bridge_transfer, or __bridge_retain.
2742    StringRef Kind = cast<ObjCBridgedCastExpr>(E)->getBridgeKindName();
2743    Out << "v1U" << Kind.size() << Kind;
2744  }
2745  // Fall through to mangle the cast itself.
2746
2747  case Expr::CStyleCastExprClass:
2748  case Expr::CXXStaticCastExprClass:
2749  case Expr::CXXDynamicCastExprClass:
2750  case Expr::CXXReinterpretCastExprClass:
2751  case Expr::CXXConstCastExprClass:
2752  case Expr::CXXFunctionalCastExprClass: {
2753    const ExplicitCastExpr *ECE = cast<ExplicitCastExpr>(E);
2754    Out << "cv";
2755    mangleType(ECE->getType());
2756    mangleExpression(ECE->getSubExpr());
2757    break;
2758  }
2759
2760  case Expr::CXXOperatorCallExprClass: {
2761    const CXXOperatorCallExpr *CE = cast<CXXOperatorCallExpr>(E);
2762    unsigned NumArgs = CE->getNumArgs();
2763    mangleOperatorName(CE->getOperator(), /*Arity=*/NumArgs);
2764    // Mangle the arguments.
2765    for (unsigned i = 0; i != NumArgs; ++i)
2766      mangleExpression(CE->getArg(i));
2767    break;
2768  }
2769
2770  case Expr::ParenExprClass:
2771    mangleExpression(cast<ParenExpr>(E)->getSubExpr(), Arity);
2772    break;
2773
2774  case Expr::DeclRefExprClass: {
2775    const NamedDecl *D = cast<DeclRefExpr>(E)->getDecl();
2776
2777    switch (D->getKind()) {
2778    default:
2779      //  <expr-primary> ::= L <mangled-name> E # external name
2780      Out << 'L';
2781      mangle(D, "_Z");
2782      Out << 'E';
2783      break;
2784
2785    case Decl::ParmVar:
2786      mangleFunctionParam(cast<ParmVarDecl>(D));
2787      break;
2788
2789    case Decl::EnumConstant: {
2790      const EnumConstantDecl *ED = cast<EnumConstantDecl>(D);
2791      mangleIntegerLiteral(ED->getType(), ED->getInitVal());
2792      break;
2793    }
2794
2795    case Decl::NonTypeTemplateParm: {
2796      const NonTypeTemplateParmDecl *PD = cast<NonTypeTemplateParmDecl>(D);
2797      mangleTemplateParameter(PD->getIndex());
2798      break;
2799    }
2800
2801    }
2802
2803    break;
2804  }
2805
2806  case Expr::SubstNonTypeTemplateParmPackExprClass:
2807    // FIXME: not clear how to mangle this!
2808    // template <unsigned N...> class A {
2809    //   template <class U...> void foo(U (&x)[N]...);
2810    // };
2811    Out << "_SUBSTPACK_";
2812    break;
2813
2814  case Expr::FunctionParmPackExprClass: {
2815    // FIXME: not clear how to mangle this!
2816    const FunctionParmPackExpr *FPPE = cast<FunctionParmPackExpr>(E);
2817    Out << "v110_SUBSTPACK";
2818    mangleFunctionParam(FPPE->getParameterPack());
2819    break;
2820  }
2821
2822  case Expr::DependentScopeDeclRefExprClass: {
2823    const DependentScopeDeclRefExpr *DRE = cast<DependentScopeDeclRefExpr>(E);
2824    mangleUnresolvedName(DRE->getQualifier(), 0, DRE->getDeclName(), Arity);
2825
2826    // All the <unresolved-name> productions end in a
2827    // base-unresolved-name, where <template-args> are just tacked
2828    // onto the end.
2829    if (DRE->hasExplicitTemplateArgs())
2830      mangleTemplateArgs(DRE->getExplicitTemplateArgs());
2831    break;
2832  }
2833
2834  case Expr::CXXBindTemporaryExprClass:
2835    mangleExpression(cast<CXXBindTemporaryExpr>(E)->getSubExpr());
2836    break;
2837
2838  case Expr::ExprWithCleanupsClass:
2839    mangleExpression(cast<ExprWithCleanups>(E)->getSubExpr(), Arity);
2840    break;
2841
2842  case Expr::FloatingLiteralClass: {
2843    const FloatingLiteral *FL = cast<FloatingLiteral>(E);
2844    Out << 'L';
2845    mangleType(FL->getType());
2846    mangleFloat(FL->getValue());
2847    Out << 'E';
2848    break;
2849  }
2850
2851  case Expr::CharacterLiteralClass:
2852    Out << 'L';
2853    mangleType(E->getType());
2854    Out << cast<CharacterLiteral>(E)->getValue();
2855    Out << 'E';
2856    break;
2857
2858  // FIXME. __objc_yes/__objc_no are mangled same as true/false
2859  case Expr::ObjCBoolLiteralExprClass:
2860    Out << "Lb";
2861    Out << (cast<ObjCBoolLiteralExpr>(E)->getValue() ? '1' : '0');
2862    Out << 'E';
2863    break;
2864
2865  case Expr::CXXBoolLiteralExprClass:
2866    Out << "Lb";
2867    Out << (cast<CXXBoolLiteralExpr>(E)->getValue() ? '1' : '0');
2868    Out << 'E';
2869    break;
2870
2871  case Expr::IntegerLiteralClass: {
2872    llvm::APSInt Value(cast<IntegerLiteral>(E)->getValue());
2873    if (E->getType()->isSignedIntegerType())
2874      Value.setIsSigned(true);
2875    mangleIntegerLiteral(E->getType(), Value);
2876    break;
2877  }
2878
2879  case Expr::ImaginaryLiteralClass: {
2880    const ImaginaryLiteral *IE = cast<ImaginaryLiteral>(E);
2881    // Mangle as if a complex literal.
2882    // Proposal from David Vandevoorde, 2010.06.30.
2883    Out << 'L';
2884    mangleType(E->getType());
2885    if (const FloatingLiteral *Imag =
2886          dyn_cast<FloatingLiteral>(IE->getSubExpr())) {
2887      // Mangle a floating-point zero of the appropriate type.
2888      mangleFloat(llvm::APFloat(Imag->getValue().getSemantics()));
2889      Out << '_';
2890      mangleFloat(Imag->getValue());
2891    } else {
2892      Out << "0_";
2893      llvm::APSInt Value(cast<IntegerLiteral>(IE->getSubExpr())->getValue());
2894      if (IE->getSubExpr()->getType()->isSignedIntegerType())
2895        Value.setIsSigned(true);
2896      mangleNumber(Value);
2897    }
2898    Out << 'E';
2899    break;
2900  }
2901
2902  case Expr::StringLiteralClass: {
2903    // Revised proposal from David Vandervoorde, 2010.07.15.
2904    Out << 'L';
2905    assert(isa<ConstantArrayType>(E->getType()));
2906    mangleType(E->getType());
2907    Out << 'E';
2908    break;
2909  }
2910
2911  case Expr::GNUNullExprClass:
2912    // FIXME: should this really be mangled the same as nullptr?
2913    // fallthrough
2914
2915  case Expr::CXXNullPtrLiteralExprClass: {
2916    // Proposal from David Vandervoorde, 2010.06.30, as
2917    // modified by ABI list discussion.
2918    Out << "LDnE";
2919    break;
2920  }
2921
2922  case Expr::PackExpansionExprClass:
2923    Out << "sp";
2924    mangleExpression(cast<PackExpansionExpr>(E)->getPattern());
2925    break;
2926
2927  case Expr::SizeOfPackExprClass: {
2928    Out << "sZ";
2929    const NamedDecl *Pack = cast<SizeOfPackExpr>(E)->getPack();
2930    if (const TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Pack))
2931      mangleTemplateParameter(TTP->getIndex());
2932    else if (const NonTypeTemplateParmDecl *NTTP
2933                = dyn_cast<NonTypeTemplateParmDecl>(Pack))
2934      mangleTemplateParameter(NTTP->getIndex());
2935    else if (const TemplateTemplateParmDecl *TempTP
2936                                    = dyn_cast<TemplateTemplateParmDecl>(Pack))
2937      mangleTemplateParameter(TempTP->getIndex());
2938    else
2939      mangleFunctionParam(cast<ParmVarDecl>(Pack));
2940    break;
2941  }
2942
2943  case Expr::MaterializeTemporaryExprClass: {
2944    mangleExpression(cast<MaterializeTemporaryExpr>(E)->GetTemporaryExpr());
2945    break;
2946  }
2947
2948  case Expr::CXXThisExprClass:
2949    Out << "fpT";
2950    break;
2951  }
2952}
2953
2954/// Mangle an expression which refers to a parameter variable.
2955///
2956/// <expression>     ::= <function-param>
2957/// <function-param> ::= fp <top-level CV-qualifiers> _      # L == 0, I == 0
2958/// <function-param> ::= fp <top-level CV-qualifiers>
2959///                      <parameter-2 non-negative number> _ # L == 0, I > 0
2960/// <function-param> ::= fL <L-1 non-negative number>
2961///                      p <top-level CV-qualifiers> _       # L > 0, I == 0
2962/// <function-param> ::= fL <L-1 non-negative number>
2963///                      p <top-level CV-qualifiers>
2964///                      <I-1 non-negative number> _         # L > 0, I > 0
2965///
2966/// L is the nesting depth of the parameter, defined as 1 if the
2967/// parameter comes from the innermost function prototype scope
2968/// enclosing the current context, 2 if from the next enclosing
2969/// function prototype scope, and so on, with one special case: if
2970/// we've processed the full parameter clause for the innermost
2971/// function type, then L is one less.  This definition conveniently
2972/// makes it irrelevant whether a function's result type was written
2973/// trailing or leading, but is otherwise overly complicated; the
2974/// numbering was first designed without considering references to
2975/// parameter in locations other than return types, and then the
2976/// mangling had to be generalized without changing the existing
2977/// manglings.
2978///
2979/// I is the zero-based index of the parameter within its parameter
2980/// declaration clause.  Note that the original ABI document describes
2981/// this using 1-based ordinals.
2982void CXXNameMangler::mangleFunctionParam(const ParmVarDecl *parm) {
2983  unsigned parmDepth = parm->getFunctionScopeDepth();
2984  unsigned parmIndex = parm->getFunctionScopeIndex();
2985
2986  // Compute 'L'.
2987  // parmDepth does not include the declaring function prototype.
2988  // FunctionTypeDepth does account for that.
2989  assert(parmDepth < FunctionTypeDepth.getDepth());
2990  unsigned nestingDepth = FunctionTypeDepth.getDepth() - parmDepth;
2991  if (FunctionTypeDepth.isInResultType())
2992    nestingDepth--;
2993
2994  if (nestingDepth == 0) {
2995    Out << "fp";
2996  } else {
2997    Out << "fL" << (nestingDepth - 1) << 'p';
2998  }
2999
3000  // Top-level qualifiers.  We don't have to worry about arrays here,
3001  // because parameters declared as arrays should already have been
3002  // transformed to have pointer type. FIXME: apparently these don't
3003  // get mangled if used as an rvalue of a known non-class type?
3004  assert(!parm->getType()->isArrayType()
3005         && "parameter's type is still an array type?");
3006  mangleQualifiers(parm->getType().getQualifiers());
3007
3008  // Parameter index.
3009  if (parmIndex != 0) {
3010    Out << (parmIndex - 1);
3011  }
3012  Out << '_';
3013}
3014
3015void CXXNameMangler::mangleCXXCtorType(CXXCtorType T) {
3016  // <ctor-dtor-name> ::= C1  # complete object constructor
3017  //                  ::= C2  # base object constructor
3018  //                  ::= C3  # complete object allocating constructor
3019  //
3020  switch (T) {
3021  case Ctor_Complete:
3022    Out << "C1";
3023    break;
3024  case Ctor_Base:
3025    Out << "C2";
3026    break;
3027  case Ctor_CompleteAllocating:
3028    Out << "C3";
3029    break;
3030  }
3031}
3032
3033void CXXNameMangler::mangleCXXDtorType(CXXDtorType T) {
3034  // <ctor-dtor-name> ::= D0  # deleting destructor
3035  //                  ::= D1  # complete object destructor
3036  //                  ::= D2  # base object destructor
3037  //
3038  switch (T) {
3039  case Dtor_Deleting:
3040    Out << "D0";
3041    break;
3042  case Dtor_Complete:
3043    Out << "D1";
3044    break;
3045  case Dtor_Base:
3046    Out << "D2";
3047    break;
3048  }
3049}
3050
3051void CXXNameMangler::mangleTemplateArgs(
3052                          const ASTTemplateArgumentListInfo &TemplateArgs) {
3053  // <template-args> ::= I <template-arg>+ E
3054  Out << 'I';
3055  for (unsigned i = 0, e = TemplateArgs.NumTemplateArgs; i != e; ++i)
3056    mangleTemplateArg(TemplateArgs.getTemplateArgs()[i].getArgument());
3057  Out << 'E';
3058}
3059
3060void CXXNameMangler::mangleTemplateArgs(const TemplateArgumentList &AL) {
3061  // <template-args> ::= I <template-arg>+ E
3062  Out << 'I';
3063  for (unsigned i = 0, e = AL.size(); i != e; ++i)
3064    mangleTemplateArg(AL[i]);
3065  Out << 'E';
3066}
3067
3068void CXXNameMangler::mangleTemplateArgs(const TemplateArgument *TemplateArgs,
3069                                        unsigned NumTemplateArgs) {
3070  // <template-args> ::= I <template-arg>+ E
3071  Out << 'I';
3072  for (unsigned i = 0; i != NumTemplateArgs; ++i)
3073    mangleTemplateArg(TemplateArgs[i]);
3074  Out << 'E';
3075}
3076
3077void CXXNameMangler::mangleTemplateArg(TemplateArgument A) {
3078  // <template-arg> ::= <type>              # type or template
3079  //                ::= X <expression> E    # expression
3080  //                ::= <expr-primary>      # simple expressions
3081  //                ::= J <template-arg>* E # argument pack
3082  //                ::= sp <expression>     # pack expansion of (C++0x)
3083  if (!A.isInstantiationDependent() || A.isDependent())
3084    A = Context.getASTContext().getCanonicalTemplateArgument(A);
3085
3086  switch (A.getKind()) {
3087  case TemplateArgument::Null:
3088    llvm_unreachable("Cannot mangle NULL template argument");
3089
3090  case TemplateArgument::Type:
3091    mangleType(A.getAsType());
3092    break;
3093  case TemplateArgument::Template:
3094    // This is mangled as <type>.
3095    mangleType(A.getAsTemplate());
3096    break;
3097  case TemplateArgument::TemplateExpansion:
3098    // <type>  ::= Dp <type>          # pack expansion (C++0x)
3099    Out << "Dp";
3100    mangleType(A.getAsTemplateOrTemplatePattern());
3101    break;
3102  case TemplateArgument::Expression: {
3103    // It's possible to end up with a DeclRefExpr here in certain
3104    // dependent cases, in which case we should mangle as a
3105    // declaration.
3106    const Expr *E = A.getAsExpr()->IgnoreParens();
3107    if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
3108      const ValueDecl *D = DRE->getDecl();
3109      if (isa<VarDecl>(D) || isa<FunctionDecl>(D)) {
3110        Out << "L";
3111        mangle(D, "_Z");
3112        Out << 'E';
3113        break;
3114      }
3115    }
3116
3117    Out << 'X';
3118    mangleExpression(E);
3119    Out << 'E';
3120    break;
3121  }
3122  case TemplateArgument::Integral:
3123    mangleIntegerLiteral(A.getIntegralType(), A.getAsIntegral());
3124    break;
3125  case TemplateArgument::Declaration: {
3126    //  <expr-primary> ::= L <mangled-name> E # external name
3127    // Clang produces AST's where pointer-to-member-function expressions
3128    // and pointer-to-function expressions are represented as a declaration not
3129    // an expression. We compensate for it here to produce the correct mangling.
3130    ValueDecl *D = A.getAsDecl();
3131    bool compensateMangling = !A.isDeclForReferenceParam();
3132    if (compensateMangling) {
3133      Out << 'X';
3134      mangleOperatorName(OO_Amp, 1);
3135    }
3136
3137    Out << 'L';
3138    // References to external entities use the mangled name; if the name would
3139    // not normally be manged then mangle it as unqualified.
3140    //
3141    // FIXME: The ABI specifies that external names here should have _Z, but
3142    // gcc leaves this off.
3143    if (compensateMangling)
3144      mangle(D, "_Z");
3145    else
3146      mangle(D, "Z");
3147    Out << 'E';
3148
3149    if (compensateMangling)
3150      Out << 'E';
3151
3152    break;
3153  }
3154  case TemplateArgument::NullPtr: {
3155    //  <expr-primary> ::= L <type> 0 E
3156    Out << 'L';
3157    mangleType(A.getNullPtrType());
3158    Out << "0E";
3159    break;
3160  }
3161  case TemplateArgument::Pack: {
3162    // Note: proposal by Mike Herrick on 12/20/10
3163    Out << 'J';
3164    for (TemplateArgument::pack_iterator PA = A.pack_begin(),
3165                                      PAEnd = A.pack_end();
3166         PA != PAEnd; ++PA)
3167      mangleTemplateArg(*PA);
3168    Out << 'E';
3169  }
3170  }
3171}
3172
3173void CXXNameMangler::mangleTemplateParameter(unsigned Index) {
3174  // <template-param> ::= T_    # first template parameter
3175  //                  ::= T <parameter-2 non-negative number> _
3176  if (Index == 0)
3177    Out << "T_";
3178  else
3179    Out << 'T' << (Index - 1) << '_';
3180}
3181
3182void CXXNameMangler::mangleExistingSubstitution(QualType type) {
3183  bool result = mangleSubstitution(type);
3184  assert(result && "no existing substitution for type");
3185  (void) result;
3186}
3187
3188void CXXNameMangler::mangleExistingSubstitution(TemplateName tname) {
3189  bool result = mangleSubstitution(tname);
3190  assert(result && "no existing substitution for template name");
3191  (void) result;
3192}
3193
3194// <substitution> ::= S <seq-id> _
3195//                ::= S_
3196bool CXXNameMangler::mangleSubstitution(const NamedDecl *ND) {
3197  // Try one of the standard substitutions first.
3198  if (mangleStandardSubstitution(ND))
3199    return true;
3200
3201  ND = cast<NamedDecl>(ND->getCanonicalDecl());
3202  return mangleSubstitution(reinterpret_cast<uintptr_t>(ND));
3203}
3204
3205/// \brief Determine whether the given type has any qualifiers that are
3206/// relevant for substitutions.
3207static bool hasMangledSubstitutionQualifiers(QualType T) {
3208  Qualifiers Qs = T.getQualifiers();
3209  return Qs.getCVRQualifiers() || Qs.hasAddressSpace();
3210}
3211
3212bool CXXNameMangler::mangleSubstitution(QualType T) {
3213  if (!hasMangledSubstitutionQualifiers(T)) {
3214    if (const RecordType *RT = T->getAs<RecordType>())
3215      return mangleSubstitution(RT->getDecl());
3216  }
3217
3218  uintptr_t TypePtr = reinterpret_cast<uintptr_t>(T.getAsOpaquePtr());
3219
3220  return mangleSubstitution(TypePtr);
3221}
3222
3223bool CXXNameMangler::mangleSubstitution(TemplateName Template) {
3224  if (TemplateDecl *TD = Template.getAsTemplateDecl())
3225    return mangleSubstitution(TD);
3226
3227  Template = Context.getASTContext().getCanonicalTemplateName(Template);
3228  return mangleSubstitution(
3229                      reinterpret_cast<uintptr_t>(Template.getAsVoidPointer()));
3230}
3231
3232bool CXXNameMangler::mangleSubstitution(uintptr_t Ptr) {
3233  llvm::DenseMap<uintptr_t, unsigned>::iterator I = Substitutions.find(Ptr);
3234  if (I == Substitutions.end())
3235    return false;
3236
3237  unsigned SeqID = I->second;
3238  if (SeqID == 0)
3239    Out << "S_";
3240  else {
3241    SeqID--;
3242
3243    // <seq-id> is encoded in base-36, using digits and upper case letters.
3244    char Buffer[10];
3245    char *BufferPtr = llvm::array_endof(Buffer);
3246
3247    if (SeqID == 0) *--BufferPtr = '0';
3248
3249    while (SeqID) {
3250      assert(BufferPtr > Buffer && "Buffer overflow!");
3251
3252      char c = static_cast<char>(SeqID % 36);
3253
3254      *--BufferPtr =  (c < 10 ? '0' + c : 'A' + c - 10);
3255      SeqID /= 36;
3256    }
3257
3258    Out << 'S'
3259        << StringRef(BufferPtr, llvm::array_endof(Buffer)-BufferPtr)
3260        << '_';
3261  }
3262
3263  return true;
3264}
3265
3266static bool isCharType(QualType T) {
3267  if (T.isNull())
3268    return false;
3269
3270  return T->isSpecificBuiltinType(BuiltinType::Char_S) ||
3271    T->isSpecificBuiltinType(BuiltinType::Char_U);
3272}
3273
3274/// isCharSpecialization - Returns whether a given type is a template
3275/// specialization of a given name with a single argument of type char.
3276static bool isCharSpecialization(QualType T, const char *Name) {
3277  if (T.isNull())
3278    return false;
3279
3280  const RecordType *RT = T->getAs<RecordType>();
3281  if (!RT)
3282    return false;
3283
3284  const ClassTemplateSpecializationDecl *SD =
3285    dyn_cast<ClassTemplateSpecializationDecl>(RT->getDecl());
3286  if (!SD)
3287    return false;
3288
3289  if (!isStdNamespace(getEffectiveDeclContext(SD)))
3290    return false;
3291
3292  const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs();
3293  if (TemplateArgs.size() != 1)
3294    return false;
3295
3296  if (!isCharType(TemplateArgs[0].getAsType()))
3297    return false;
3298
3299  return SD->getIdentifier()->getName() == Name;
3300}
3301
3302template <std::size_t StrLen>
3303static bool isStreamCharSpecialization(const ClassTemplateSpecializationDecl*SD,
3304                                       const char (&Str)[StrLen]) {
3305  if (!SD->getIdentifier()->isStr(Str))
3306    return false;
3307
3308  const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs();
3309  if (TemplateArgs.size() != 2)
3310    return false;
3311
3312  if (!isCharType(TemplateArgs[0].getAsType()))
3313    return false;
3314
3315  if (!isCharSpecialization(TemplateArgs[1].getAsType(), "char_traits"))
3316    return false;
3317
3318  return true;
3319}
3320
3321bool CXXNameMangler::mangleStandardSubstitution(const NamedDecl *ND) {
3322  // <substitution> ::= St # ::std::
3323  if (const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ND)) {
3324    if (isStd(NS)) {
3325      Out << "St";
3326      return true;
3327    }
3328  }
3329
3330  if (const ClassTemplateDecl *TD = dyn_cast<ClassTemplateDecl>(ND)) {
3331    if (!isStdNamespace(getEffectiveDeclContext(TD)))
3332      return false;
3333
3334    // <substitution> ::= Sa # ::std::allocator
3335    if (TD->getIdentifier()->isStr("allocator")) {
3336      Out << "Sa";
3337      return true;
3338    }
3339
3340    // <<substitution> ::= Sb # ::std::basic_string
3341    if (TD->getIdentifier()->isStr("basic_string")) {
3342      Out << "Sb";
3343      return true;
3344    }
3345  }
3346
3347  if (const ClassTemplateSpecializationDecl *SD =
3348        dyn_cast<ClassTemplateSpecializationDecl>(ND)) {
3349    if (!isStdNamespace(getEffectiveDeclContext(SD)))
3350      return false;
3351
3352    //    <substitution> ::= Ss # ::std::basic_string<char,
3353    //                            ::std::char_traits<char>,
3354    //                            ::std::allocator<char> >
3355    if (SD->getIdentifier()->isStr("basic_string")) {
3356      const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs();
3357
3358      if (TemplateArgs.size() != 3)
3359        return false;
3360
3361      if (!isCharType(TemplateArgs[0].getAsType()))
3362        return false;
3363
3364      if (!isCharSpecialization(TemplateArgs[1].getAsType(), "char_traits"))
3365        return false;
3366
3367      if (!isCharSpecialization(TemplateArgs[2].getAsType(), "allocator"))
3368        return false;
3369
3370      Out << "Ss";
3371      return true;
3372    }
3373
3374    //    <substitution> ::= Si # ::std::basic_istream<char,
3375    //                            ::std::char_traits<char> >
3376    if (isStreamCharSpecialization(SD, "basic_istream")) {
3377      Out << "Si";
3378      return true;
3379    }
3380
3381    //    <substitution> ::= So # ::std::basic_ostream<char,
3382    //                            ::std::char_traits<char> >
3383    if (isStreamCharSpecialization(SD, "basic_ostream")) {
3384      Out << "So";
3385      return true;
3386    }
3387
3388    //    <substitution> ::= Sd # ::std::basic_iostream<char,
3389    //                            ::std::char_traits<char> >
3390    if (isStreamCharSpecialization(SD, "basic_iostream")) {
3391      Out << "Sd";
3392      return true;
3393    }
3394  }
3395  return false;
3396}
3397
3398void CXXNameMangler::addSubstitution(QualType T) {
3399  if (!hasMangledSubstitutionQualifiers(T)) {
3400    if (const RecordType *RT = T->getAs<RecordType>()) {
3401      addSubstitution(RT->getDecl());
3402      return;
3403    }
3404  }
3405
3406  uintptr_t TypePtr = reinterpret_cast<uintptr_t>(T.getAsOpaquePtr());
3407  addSubstitution(TypePtr);
3408}
3409
3410void CXXNameMangler::addSubstitution(TemplateName Template) {
3411  if (TemplateDecl *TD = Template.getAsTemplateDecl())
3412    return addSubstitution(TD);
3413
3414  Template = Context.getASTContext().getCanonicalTemplateName(Template);
3415  addSubstitution(reinterpret_cast<uintptr_t>(Template.getAsVoidPointer()));
3416}
3417
3418void CXXNameMangler::addSubstitution(uintptr_t Ptr) {
3419  assert(!Substitutions.count(Ptr) && "Substitution already exists!");
3420  Substitutions[Ptr] = SeqID++;
3421}
3422
3423//
3424
3425/// \brief Mangles the name of the declaration D and emits that name to the
3426/// given output stream.
3427///
3428/// If the declaration D requires a mangled name, this routine will emit that
3429/// mangled name to \p os and return true. Otherwise, \p os will be unchanged
3430/// and this routine will return false. In this case, the caller should just
3431/// emit the identifier of the declaration (\c D->getIdentifier()) as its
3432/// name.
3433void ItaniumMangleContext::mangleName(const NamedDecl *D,
3434                                      raw_ostream &Out) {
3435  assert((isa<FunctionDecl>(D) || isa<VarDecl>(D)) &&
3436          "Invalid mangleName() call, argument is not a variable or function!");
3437  assert(!isa<CXXConstructorDecl>(D) && !isa<CXXDestructorDecl>(D) &&
3438         "Invalid mangleName() call on 'structor decl!");
3439
3440  PrettyStackTraceDecl CrashInfo(D, SourceLocation(),
3441                                 getASTContext().getSourceManager(),
3442                                 "Mangling declaration");
3443
3444  CXXNameMangler Mangler(*this, Out, D);
3445  return Mangler.mangle(D);
3446}
3447
3448void ItaniumMangleContext::mangleCXXCtor(const CXXConstructorDecl *D,
3449                                         CXXCtorType Type,
3450                                         raw_ostream &Out) {
3451  CXXNameMangler Mangler(*this, Out, D, Type);
3452  Mangler.mangle(D);
3453}
3454
3455void ItaniumMangleContext::mangleCXXDtor(const CXXDestructorDecl *D,
3456                                         CXXDtorType Type,
3457                                         raw_ostream &Out) {
3458  CXXNameMangler Mangler(*this, Out, D, Type);
3459  Mangler.mangle(D);
3460}
3461
3462void ItaniumMangleContext::mangleThunk(const CXXMethodDecl *MD,
3463                                       const ThunkInfo &Thunk,
3464                                       raw_ostream &Out) {
3465  //  <special-name> ::= T <call-offset> <base encoding>
3466  //                      # base is the nominal target function of thunk
3467  //  <special-name> ::= Tc <call-offset> <call-offset> <base encoding>
3468  //                      # base is the nominal target function of thunk
3469  //                      # first call-offset is 'this' adjustment
3470  //                      # second call-offset is result adjustment
3471
3472  assert(!isa<CXXDestructorDecl>(MD) &&
3473         "Use mangleCXXDtor for destructor decls!");
3474  CXXNameMangler Mangler(*this, Out);
3475  Mangler.getStream() << "_ZT";
3476  if (!Thunk.Return.isEmpty())
3477    Mangler.getStream() << 'c';
3478
3479  // Mangle the 'this' pointer adjustment.
3480  Mangler.mangleCallOffset(Thunk.This.NonVirtual, Thunk.This.VCallOffsetOffset);
3481
3482  // Mangle the return pointer adjustment if there is one.
3483  if (!Thunk.Return.isEmpty())
3484    Mangler.mangleCallOffset(Thunk.Return.NonVirtual,
3485                             Thunk.Return.VBaseOffsetOffset);
3486
3487  Mangler.mangleFunctionEncoding(MD);
3488}
3489
3490void
3491ItaniumMangleContext::mangleCXXDtorThunk(const CXXDestructorDecl *DD,
3492                                         CXXDtorType Type,
3493                                         const ThisAdjustment &ThisAdjustment,
3494                                         raw_ostream &Out) {
3495  //  <special-name> ::= T <call-offset> <base encoding>
3496  //                      # base is the nominal target function of thunk
3497  CXXNameMangler Mangler(*this, Out, DD, Type);
3498  Mangler.getStream() << "_ZT";
3499
3500  // Mangle the 'this' pointer adjustment.
3501  Mangler.mangleCallOffset(ThisAdjustment.NonVirtual,
3502                           ThisAdjustment.VCallOffsetOffset);
3503
3504  Mangler.mangleFunctionEncoding(DD);
3505}
3506
3507/// mangleGuardVariable - Returns the mangled name for a guard variable
3508/// for the passed in VarDecl.
3509void ItaniumMangleContext::mangleItaniumGuardVariable(const VarDecl *D,
3510                                                      raw_ostream &Out) {
3511  //  <special-name> ::= GV <object name>       # Guard variable for one-time
3512  //                                            # initialization
3513  CXXNameMangler Mangler(*this, Out);
3514  Mangler.getStream() << "_ZGV";
3515  Mangler.mangleName(D);
3516}
3517
3518void ItaniumMangleContext::mangleReferenceTemporary(const VarDecl *D,
3519                                                    raw_ostream &Out) {
3520  // We match the GCC mangling here.
3521  //  <special-name> ::= GR <object name>
3522  CXXNameMangler Mangler(*this, Out);
3523  Mangler.getStream() << "_ZGR";
3524  Mangler.mangleName(D);
3525}
3526
3527void ItaniumMangleContext::mangleCXXVTable(const CXXRecordDecl *RD,
3528                                           raw_ostream &Out) {
3529  // <special-name> ::= TV <type>  # virtual table
3530  CXXNameMangler Mangler(*this, Out);
3531  Mangler.getStream() << "_ZTV";
3532  Mangler.mangleNameOrStandardSubstitution(RD);
3533}
3534
3535void ItaniumMangleContext::mangleCXXVTT(const CXXRecordDecl *RD,
3536                                        raw_ostream &Out) {
3537  // <special-name> ::= TT <type>  # VTT structure
3538  CXXNameMangler Mangler(*this, Out);
3539  Mangler.getStream() << "_ZTT";
3540  Mangler.mangleNameOrStandardSubstitution(RD);
3541}
3542
3543void ItaniumMangleContext::mangleCXXCtorVTable(const CXXRecordDecl *RD,
3544                                               int64_t Offset,
3545                                               const CXXRecordDecl *Type,
3546                                               raw_ostream &Out) {
3547  // <special-name> ::= TC <type> <offset number> _ <base type>
3548  CXXNameMangler Mangler(*this, Out);
3549  Mangler.getStream() << "_ZTC";
3550  Mangler.mangleNameOrStandardSubstitution(RD);
3551  Mangler.getStream() << Offset;
3552  Mangler.getStream() << '_';
3553  Mangler.mangleNameOrStandardSubstitution(Type);
3554}
3555
3556void ItaniumMangleContext::mangleCXXRTTI(QualType Ty,
3557                                         raw_ostream &Out) {
3558  // <special-name> ::= TI <type>  # typeinfo structure
3559  assert(!Ty.hasQualifiers() && "RTTI info cannot have top-level qualifiers");
3560  CXXNameMangler Mangler(*this, Out);
3561  Mangler.getStream() << "_ZTI";
3562  Mangler.mangleType(Ty);
3563}
3564
3565void ItaniumMangleContext::mangleCXXRTTIName(QualType Ty,
3566                                             raw_ostream &Out) {
3567  // <special-name> ::= TS <type>  # typeinfo name (null terminated byte string)
3568  CXXNameMangler Mangler(*this, Out);
3569  Mangler.getStream() << "_ZTS";
3570  Mangler.mangleType(Ty);
3571}
3572
3573MangleContext *clang::createItaniumMangleContext(ASTContext &Context,
3574                                                 DiagnosticsEngine &Diags) {
3575  return new ItaniumMangleContext(Context, Diags);
3576}
3577