ItaniumMangle.cpp revision 76da55d3a49e1805f51b1ced7c5da5bcd7f759d8
1//===--- ItaniumMangle.cpp - Itanium C++ Name Mangling ----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// Implements C++ name mangling according to the Itanium C++ ABI,
11// which is used in GCC 3.2 and newer (and many compilers that are
12// ABI-compatible with GCC):
13//
14//   http://www.codesourcery.com/public/cxx-abi/abi.html
15//
16//===----------------------------------------------------------------------===//
17#include "clang/AST/Mangle.h"
18#include "clang/AST/ASTContext.h"
19#include "clang/AST/Attr.h"
20#include "clang/AST/Decl.h"
21#include "clang/AST/DeclCXX.h"
22#include "clang/AST/DeclObjC.h"
23#include "clang/AST/DeclTemplate.h"
24#include "clang/AST/ExprCXX.h"
25#include "clang/AST/ExprObjC.h"
26#include "clang/AST/TypeLoc.h"
27#include "clang/Basic/ABI.h"
28#include "clang/Basic/SourceManager.h"
29#include "clang/Basic/TargetInfo.h"
30#include "llvm/ADT/StringExtras.h"
31#include "llvm/Support/ErrorHandling.h"
32#include "llvm/Support/raw_ostream.h"
33
34#define MANGLE_CHECKER 0
35
36#if MANGLE_CHECKER
37#include <cxxabi.h>
38#endif
39
40using namespace clang;
41
42namespace {
43
44/// \brief Retrieve the declaration context that should be used when mangling
45/// the given declaration.
46static const DeclContext *getEffectiveDeclContext(const Decl *D) {
47  // The ABI assumes that lambda closure types that occur within
48  // default arguments live in the context of the function. However, due to
49  // the way in which Clang parses and creates function declarations, this is
50  // not the case: the lambda closure type ends up living in the context
51  // where the function itself resides, because the function declaration itself
52  // had not yet been created. Fix the context here.
53  if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D)) {
54    if (RD->isLambda())
55      if (ParmVarDecl *ContextParam
56            = dyn_cast_or_null<ParmVarDecl>(RD->getLambdaContextDecl()))
57        return ContextParam->getDeclContext();
58  }
59
60  return D->getDeclContext();
61}
62
63static const DeclContext *getEffectiveParentContext(const DeclContext *DC) {
64  return getEffectiveDeclContext(cast<Decl>(DC));
65}
66
67static const CXXRecordDecl *GetLocalClassDecl(const NamedDecl *ND) {
68  const DeclContext *DC = dyn_cast<DeclContext>(ND);
69  if (!DC)
70    DC = getEffectiveDeclContext(ND);
71  while (!DC->isNamespace() && !DC->isTranslationUnit()) {
72    const DeclContext *Parent = getEffectiveDeclContext(cast<Decl>(DC));
73    if (isa<FunctionDecl>(Parent))
74      return dyn_cast<CXXRecordDecl>(DC);
75    DC = Parent;
76  }
77  return 0;
78}
79
80static const FunctionDecl *getStructor(const FunctionDecl *fn) {
81  if (const FunctionTemplateDecl *ftd = fn->getPrimaryTemplate())
82    return ftd->getTemplatedDecl();
83
84  return fn;
85}
86
87static const NamedDecl *getStructor(const NamedDecl *decl) {
88  const FunctionDecl *fn = dyn_cast_or_null<FunctionDecl>(decl);
89  return (fn ? getStructor(fn) : decl);
90}
91
92static const unsigned UnknownArity = ~0U;
93
94class ItaniumMangleContext : public MangleContext {
95  llvm::DenseMap<const TagDecl *, uint64_t> AnonStructIds;
96  unsigned Discriminator;
97  llvm::DenseMap<const NamedDecl*, unsigned> Uniquifier;
98
99public:
100  explicit ItaniumMangleContext(ASTContext &Context,
101                                DiagnosticsEngine &Diags)
102    : MangleContext(Context, Diags) { }
103
104  uint64_t getAnonymousStructId(const TagDecl *TD) {
105    std::pair<llvm::DenseMap<const TagDecl *,
106      uint64_t>::iterator, bool> Result =
107      AnonStructIds.insert(std::make_pair(TD, AnonStructIds.size()));
108    return Result.first->second;
109  }
110
111  void startNewFunction() {
112    MangleContext::startNewFunction();
113    mangleInitDiscriminator();
114  }
115
116  /// @name Mangler Entry Points
117  /// @{
118
119  bool shouldMangleDeclName(const NamedDecl *D);
120  void mangleName(const NamedDecl *D, raw_ostream &);
121  void mangleThunk(const CXXMethodDecl *MD,
122                   const ThunkInfo &Thunk,
123                   raw_ostream &);
124  void mangleCXXDtorThunk(const CXXDestructorDecl *DD, CXXDtorType Type,
125                          const ThisAdjustment &ThisAdjustment,
126                          raw_ostream &);
127  void mangleReferenceTemporary(const VarDecl *D,
128                                raw_ostream &);
129  void mangleCXXVTable(const CXXRecordDecl *RD,
130                       raw_ostream &);
131  void mangleCXXVTT(const CXXRecordDecl *RD,
132                    raw_ostream &);
133  void mangleCXXCtorVTable(const CXXRecordDecl *RD, int64_t Offset,
134                           const CXXRecordDecl *Type,
135                           raw_ostream &);
136  void mangleCXXRTTI(QualType T, raw_ostream &);
137  void mangleCXXRTTIName(QualType T, raw_ostream &);
138  void mangleCXXCtor(const CXXConstructorDecl *D, CXXCtorType Type,
139                     raw_ostream &);
140  void mangleCXXDtor(const CXXDestructorDecl *D, CXXDtorType Type,
141                     raw_ostream &);
142
143  void mangleItaniumGuardVariable(const VarDecl *D, raw_ostream &);
144
145  void mangleInitDiscriminator() {
146    Discriminator = 0;
147  }
148
149  bool getNextDiscriminator(const NamedDecl *ND, unsigned &disc) {
150    // Lambda closure types with external linkage (indicated by a
151    // non-zero lambda mangling number) have their own numbering scheme, so
152    // they do not need a discriminator.
153    if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(ND))
154      if (RD->isLambda() && RD->getLambdaManglingNumber() > 0)
155        return false;
156
157    unsigned &discriminator = Uniquifier[ND];
158    if (!discriminator)
159      discriminator = ++Discriminator;
160    if (discriminator == 1)
161      return false;
162    disc = discriminator-2;
163    return true;
164  }
165  /// @}
166};
167
168/// CXXNameMangler - Manage the mangling of a single name.
169class CXXNameMangler {
170  ItaniumMangleContext &Context;
171  raw_ostream &Out;
172
173  /// The "structor" is the top-level declaration being mangled, if
174  /// that's not a template specialization; otherwise it's the pattern
175  /// for that specialization.
176  const NamedDecl *Structor;
177  unsigned StructorType;
178
179  /// SeqID - The next subsitution sequence number.
180  unsigned SeqID;
181
182  class FunctionTypeDepthState {
183    unsigned Bits;
184
185    enum { InResultTypeMask = 1 };
186
187  public:
188    FunctionTypeDepthState() : Bits(0) {}
189
190    /// The number of function types we're inside.
191    unsigned getDepth() const {
192      return Bits >> 1;
193    }
194
195    /// True if we're in the return type of the innermost function type.
196    bool isInResultType() const {
197      return Bits & InResultTypeMask;
198    }
199
200    FunctionTypeDepthState push() {
201      FunctionTypeDepthState tmp = *this;
202      Bits = (Bits & ~InResultTypeMask) + 2;
203      return tmp;
204    }
205
206    void enterResultType() {
207      Bits |= InResultTypeMask;
208    }
209
210    void leaveResultType() {
211      Bits &= ~InResultTypeMask;
212    }
213
214    void pop(FunctionTypeDepthState saved) {
215      assert(getDepth() == saved.getDepth() + 1);
216      Bits = saved.Bits;
217    }
218
219  } FunctionTypeDepth;
220
221  llvm::DenseMap<uintptr_t, unsigned> Substitutions;
222
223  ASTContext &getASTContext() const { return Context.getASTContext(); }
224
225public:
226  CXXNameMangler(ItaniumMangleContext &C, raw_ostream &Out_,
227                 const NamedDecl *D = 0)
228    : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(0),
229      SeqID(0) {
230    // These can't be mangled without a ctor type or dtor type.
231    assert(!D || (!isa<CXXDestructorDecl>(D) &&
232                  !isa<CXXConstructorDecl>(D)));
233  }
234  CXXNameMangler(ItaniumMangleContext &C, raw_ostream &Out_,
235                 const CXXConstructorDecl *D, CXXCtorType Type)
236    : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(Type),
237      SeqID(0) { }
238  CXXNameMangler(ItaniumMangleContext &C, raw_ostream &Out_,
239                 const CXXDestructorDecl *D, CXXDtorType Type)
240    : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(Type),
241      SeqID(0) { }
242
243#if MANGLE_CHECKER
244  ~CXXNameMangler() {
245    if (Out.str()[0] == '\01')
246      return;
247
248    int status = 0;
249    char *result = abi::__cxa_demangle(Out.str().str().c_str(), 0, 0, &status);
250    assert(status == 0 && "Could not demangle mangled name!");
251    free(result);
252  }
253#endif
254  raw_ostream &getStream() { return Out; }
255
256  void mangle(const NamedDecl *D, StringRef Prefix = "_Z");
257  void mangleCallOffset(int64_t NonVirtual, int64_t Virtual);
258  void mangleNumber(const llvm::APSInt &I);
259  void mangleNumber(int64_t Number);
260  void mangleFloat(const llvm::APFloat &F);
261  void mangleFunctionEncoding(const FunctionDecl *FD);
262  void mangleName(const NamedDecl *ND);
263  void mangleType(QualType T);
264  void mangleNameOrStandardSubstitution(const NamedDecl *ND);
265
266private:
267  bool mangleSubstitution(const NamedDecl *ND);
268  bool mangleSubstitution(QualType T);
269  bool mangleSubstitution(TemplateName Template);
270  bool mangleSubstitution(uintptr_t Ptr);
271
272  void mangleExistingSubstitution(QualType type);
273  void mangleExistingSubstitution(TemplateName name);
274
275  bool mangleStandardSubstitution(const NamedDecl *ND);
276
277  void addSubstitution(const NamedDecl *ND) {
278    ND = cast<NamedDecl>(ND->getCanonicalDecl());
279
280    addSubstitution(reinterpret_cast<uintptr_t>(ND));
281  }
282  void addSubstitution(QualType T);
283  void addSubstitution(TemplateName Template);
284  void addSubstitution(uintptr_t Ptr);
285
286  void mangleUnresolvedPrefix(NestedNameSpecifier *qualifier,
287                              NamedDecl *firstQualifierLookup,
288                              bool recursive = false);
289  void mangleUnresolvedName(NestedNameSpecifier *qualifier,
290                            NamedDecl *firstQualifierLookup,
291                            DeclarationName name,
292                            unsigned KnownArity = UnknownArity);
293
294  void mangleName(const TemplateDecl *TD,
295                  const TemplateArgument *TemplateArgs,
296                  unsigned NumTemplateArgs);
297  void mangleUnqualifiedName(const NamedDecl *ND) {
298    mangleUnqualifiedName(ND, ND->getDeclName(), UnknownArity);
299  }
300  void mangleUnqualifiedName(const NamedDecl *ND, DeclarationName Name,
301                             unsigned KnownArity);
302  void mangleUnscopedName(const NamedDecl *ND);
303  void mangleUnscopedTemplateName(const TemplateDecl *ND);
304  void mangleUnscopedTemplateName(TemplateName);
305  void mangleSourceName(const IdentifierInfo *II);
306  void mangleLocalName(const NamedDecl *ND);
307  void mangleLambda(const CXXRecordDecl *Lambda);
308  void mangleNestedName(const NamedDecl *ND, const DeclContext *DC,
309                        bool NoFunction=false);
310  void mangleNestedName(const TemplateDecl *TD,
311                        const TemplateArgument *TemplateArgs,
312                        unsigned NumTemplateArgs);
313  void manglePrefix(NestedNameSpecifier *qualifier);
314  void manglePrefix(const DeclContext *DC, bool NoFunction=false);
315  void manglePrefix(QualType type);
316  void mangleTemplatePrefix(const TemplateDecl *ND);
317  void mangleTemplatePrefix(TemplateName Template);
318  void mangleOperatorName(OverloadedOperatorKind OO, unsigned Arity);
319  void mangleQualifiers(Qualifiers Quals);
320  void mangleRefQualifier(RefQualifierKind RefQualifier);
321
322  void mangleObjCMethodName(const ObjCMethodDecl *MD);
323
324  // Declare manglers for every type class.
325#define ABSTRACT_TYPE(CLASS, PARENT)
326#define NON_CANONICAL_TYPE(CLASS, PARENT)
327#define TYPE(CLASS, PARENT) void mangleType(const CLASS##Type *T);
328#include "clang/AST/TypeNodes.def"
329
330  void mangleType(const TagType*);
331  void mangleType(TemplateName);
332  void mangleBareFunctionType(const FunctionType *T,
333                              bool MangleReturnType);
334  void mangleNeonVectorType(const VectorType *T);
335
336  void mangleIntegerLiteral(QualType T, const llvm::APSInt &Value);
337  void mangleMemberExpr(const Expr *base, bool isArrow,
338                        NestedNameSpecifier *qualifier,
339                        NamedDecl *firstQualifierLookup,
340                        DeclarationName name,
341                        unsigned knownArity);
342  void mangleExpression(const Expr *E, unsigned Arity = UnknownArity);
343  void mangleCXXCtorType(CXXCtorType T);
344  void mangleCXXDtorType(CXXDtorType T);
345
346  void mangleTemplateArgs(const ASTTemplateArgumentListInfo &TemplateArgs);
347  void mangleTemplateArgs(const TemplateArgument *TemplateArgs,
348                          unsigned NumTemplateArgs);
349  void mangleTemplateArgs(const TemplateArgumentList &AL);
350  void mangleTemplateArg(TemplateArgument A);
351
352  void mangleTemplateParameter(unsigned Index);
353
354  void mangleFunctionParam(const ParmVarDecl *parm);
355};
356
357}
358
359bool ItaniumMangleContext::shouldMangleDeclName(const NamedDecl *D) {
360  // In C, functions with no attributes never need to be mangled. Fastpath them.
361  if (!getASTContext().getLangOpts().CPlusPlus && !D->hasAttrs())
362    return false;
363
364  // Any decl can be declared with __asm("foo") on it, and this takes precedence
365  // over all other naming in the .o file.
366  if (D->hasAttr<AsmLabelAttr>())
367    return true;
368
369  const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
370  if (FD) {
371    LanguageLinkage L = FD->getLanguageLinkage();
372    // Overloadable functions need mangling.
373    if (FD->hasAttr<OverloadableAttr>())
374      return true;
375
376    // "main" is not mangled.
377    if (FD->isMain())
378      return false;
379
380    // C++ functions and those whose names are not a simple identifier need
381    // mangling.
382    if (!FD->getDeclName().isIdentifier() || L == CXXLanguageLinkage)
383      return true;
384
385    // C functions are not mangled.
386    if (L == CLanguageLinkage)
387      return false;
388  }
389
390  // Otherwise, no mangling is done outside C++ mode.
391  if (!getASTContext().getLangOpts().CPlusPlus)
392    return false;
393
394  const VarDecl *VD = dyn_cast<VarDecl>(D);
395  if (VD) {
396    // C variables are not mangled.
397    if (VD->isExternC())
398      return false;
399
400    // Variables at global scope with non-internal linkage are not mangled
401    const DeclContext *DC = getEffectiveDeclContext(D);
402    // Check for extern variable declared locally.
403    if (DC->isFunctionOrMethod() && D->hasLinkage())
404      while (!DC->isNamespace() && !DC->isTranslationUnit())
405        DC = getEffectiveParentContext(DC);
406    if (DC->isTranslationUnit() && D->getLinkage() != InternalLinkage)
407      return false;
408  }
409
410  return true;
411}
412
413void CXXNameMangler::mangle(const NamedDecl *D, StringRef Prefix) {
414  // Any decl can be declared with __asm("foo") on it, and this takes precedence
415  // over all other naming in the .o file.
416  if (const AsmLabelAttr *ALA = D->getAttr<AsmLabelAttr>()) {
417    // If we have an asm name, then we use it as the mangling.
418
419    // Adding the prefix can cause problems when one file has a "foo" and
420    // another has a "\01foo". That is known to happen on ELF with the
421    // tricks normally used for producing aliases (PR9177). Fortunately the
422    // llvm mangler on ELF is a nop, so we can just avoid adding the \01
423    // marker.  We also avoid adding the marker if this is an alias for an
424    // LLVM intrinsic.
425    StringRef UserLabelPrefix =
426      getASTContext().getTargetInfo().getUserLabelPrefix();
427    if (!UserLabelPrefix.empty() && !ALA->getLabel().startswith("llvm."))
428      Out << '\01';  // LLVM IR Marker for __asm("foo")
429
430    Out << ALA->getLabel();
431    return;
432  }
433
434  // <mangled-name> ::= _Z <encoding>
435  //            ::= <data name>
436  //            ::= <special-name>
437  Out << Prefix;
438  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
439    mangleFunctionEncoding(FD);
440  else if (const VarDecl *VD = dyn_cast<VarDecl>(D))
441    mangleName(VD);
442  else
443    mangleName(cast<FieldDecl>(D));
444}
445
446void CXXNameMangler::mangleFunctionEncoding(const FunctionDecl *FD) {
447  // <encoding> ::= <function name> <bare-function-type>
448  mangleName(FD);
449
450  // Don't mangle in the type if this isn't a decl we should typically mangle.
451  if (!Context.shouldMangleDeclName(FD))
452    return;
453
454  // Whether the mangling of a function type includes the return type depends on
455  // the context and the nature of the function. The rules for deciding whether
456  // the return type is included are:
457  //
458  //   1. Template functions (names or types) have return types encoded, with
459  //   the exceptions listed below.
460  //   2. Function types not appearing as part of a function name mangling,
461  //   e.g. parameters, pointer types, etc., have return type encoded, with the
462  //   exceptions listed below.
463  //   3. Non-template function names do not have return types encoded.
464  //
465  // The exceptions mentioned in (1) and (2) above, for which the return type is
466  // never included, are
467  //   1. Constructors.
468  //   2. Destructors.
469  //   3. Conversion operator functions, e.g. operator int.
470  bool MangleReturnType = false;
471  if (FunctionTemplateDecl *PrimaryTemplate = FD->getPrimaryTemplate()) {
472    if (!(isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD) ||
473          isa<CXXConversionDecl>(FD)))
474      MangleReturnType = true;
475
476    // Mangle the type of the primary template.
477    FD = PrimaryTemplate->getTemplatedDecl();
478  }
479
480  mangleBareFunctionType(FD->getType()->getAs<FunctionType>(),
481                         MangleReturnType);
482}
483
484static const DeclContext *IgnoreLinkageSpecDecls(const DeclContext *DC) {
485  while (isa<LinkageSpecDecl>(DC)) {
486    DC = getEffectiveParentContext(DC);
487  }
488
489  return DC;
490}
491
492/// isStd - Return whether a given namespace is the 'std' namespace.
493static bool isStd(const NamespaceDecl *NS) {
494  if (!IgnoreLinkageSpecDecls(getEffectiveParentContext(NS))
495                                ->isTranslationUnit())
496    return false;
497
498  const IdentifierInfo *II = NS->getOriginalNamespace()->getIdentifier();
499  return II && II->isStr("std");
500}
501
502// isStdNamespace - Return whether a given decl context is a toplevel 'std'
503// namespace.
504static bool isStdNamespace(const DeclContext *DC) {
505  if (!DC->isNamespace())
506    return false;
507
508  return isStd(cast<NamespaceDecl>(DC));
509}
510
511static const TemplateDecl *
512isTemplate(const NamedDecl *ND, const TemplateArgumentList *&TemplateArgs) {
513  // Check if we have a function template.
514  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)){
515    if (const TemplateDecl *TD = FD->getPrimaryTemplate()) {
516      TemplateArgs = FD->getTemplateSpecializationArgs();
517      return TD;
518    }
519  }
520
521  // Check if we have a class template.
522  if (const ClassTemplateSpecializationDecl *Spec =
523        dyn_cast<ClassTemplateSpecializationDecl>(ND)) {
524    TemplateArgs = &Spec->getTemplateArgs();
525    return Spec->getSpecializedTemplate();
526  }
527
528  return 0;
529}
530
531static bool isLambda(const NamedDecl *ND) {
532  const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(ND);
533  if (!Record)
534    return false;
535
536  return Record->isLambda();
537}
538
539void CXXNameMangler::mangleName(const NamedDecl *ND) {
540  //  <name> ::= <nested-name>
541  //         ::= <unscoped-name>
542  //         ::= <unscoped-template-name> <template-args>
543  //         ::= <local-name>
544  //
545  const DeclContext *DC = getEffectiveDeclContext(ND);
546
547  // If this is an extern variable declared locally, the relevant DeclContext
548  // is that of the containing namespace, or the translation unit.
549  // FIXME: This is a hack; extern variables declared locally should have
550  // a proper semantic declaration context!
551  if (isa<FunctionDecl>(DC) && ND->hasLinkage() && !isLambda(ND))
552    while (!DC->isNamespace() && !DC->isTranslationUnit())
553      DC = getEffectiveParentContext(DC);
554  else if (GetLocalClassDecl(ND)) {
555    mangleLocalName(ND);
556    return;
557  }
558
559  DC = IgnoreLinkageSpecDecls(DC);
560
561  if (DC->isTranslationUnit() || isStdNamespace(DC)) {
562    // Check if we have a template.
563    const TemplateArgumentList *TemplateArgs = 0;
564    if (const TemplateDecl *TD = isTemplate(ND, TemplateArgs)) {
565      mangleUnscopedTemplateName(TD);
566      mangleTemplateArgs(*TemplateArgs);
567      return;
568    }
569
570    mangleUnscopedName(ND);
571    return;
572  }
573
574  if (isa<FunctionDecl>(DC) || isa<ObjCMethodDecl>(DC)) {
575    mangleLocalName(ND);
576    return;
577  }
578
579  mangleNestedName(ND, DC);
580}
581void CXXNameMangler::mangleName(const TemplateDecl *TD,
582                                const TemplateArgument *TemplateArgs,
583                                unsigned NumTemplateArgs) {
584  const DeclContext *DC = IgnoreLinkageSpecDecls(getEffectiveDeclContext(TD));
585
586  if (DC->isTranslationUnit() || isStdNamespace(DC)) {
587    mangleUnscopedTemplateName(TD);
588    mangleTemplateArgs(TemplateArgs, NumTemplateArgs);
589  } else {
590    mangleNestedName(TD, TemplateArgs, NumTemplateArgs);
591  }
592}
593
594void CXXNameMangler::mangleUnscopedName(const NamedDecl *ND) {
595  //  <unscoped-name> ::= <unqualified-name>
596  //                  ::= St <unqualified-name>   # ::std::
597
598  if (isStdNamespace(IgnoreLinkageSpecDecls(getEffectiveDeclContext(ND))))
599    Out << "St";
600
601  mangleUnqualifiedName(ND);
602}
603
604void CXXNameMangler::mangleUnscopedTemplateName(const TemplateDecl *ND) {
605  //     <unscoped-template-name> ::= <unscoped-name>
606  //                              ::= <substitution>
607  if (mangleSubstitution(ND))
608    return;
609
610  // <template-template-param> ::= <template-param>
611  if (const TemplateTemplateParmDecl *TTP
612                                     = dyn_cast<TemplateTemplateParmDecl>(ND)) {
613    mangleTemplateParameter(TTP->getIndex());
614    return;
615  }
616
617  mangleUnscopedName(ND->getTemplatedDecl());
618  addSubstitution(ND);
619}
620
621void CXXNameMangler::mangleUnscopedTemplateName(TemplateName Template) {
622  //     <unscoped-template-name> ::= <unscoped-name>
623  //                              ::= <substitution>
624  if (TemplateDecl *TD = Template.getAsTemplateDecl())
625    return mangleUnscopedTemplateName(TD);
626
627  if (mangleSubstitution(Template))
628    return;
629
630  DependentTemplateName *Dependent = Template.getAsDependentTemplateName();
631  assert(Dependent && "Not a dependent template name?");
632  if (const IdentifierInfo *Id = Dependent->getIdentifier())
633    mangleSourceName(Id);
634  else
635    mangleOperatorName(Dependent->getOperator(), UnknownArity);
636
637  addSubstitution(Template);
638}
639
640void CXXNameMangler::mangleFloat(const llvm::APFloat &f) {
641  // ABI:
642  //   Floating-point literals are encoded using a fixed-length
643  //   lowercase hexadecimal string corresponding to the internal
644  //   representation (IEEE on Itanium), high-order bytes first,
645  //   without leading zeroes. For example: "Lf bf800000 E" is -1.0f
646  //   on Itanium.
647  // The 'without leading zeroes' thing seems to be an editorial
648  // mistake; see the discussion on cxx-abi-dev beginning on
649  // 2012-01-16.
650
651  // Our requirements here are just barely weird enough to justify
652  // using a custom algorithm instead of post-processing APInt::toString().
653
654  llvm::APInt valueBits = f.bitcastToAPInt();
655  unsigned numCharacters = (valueBits.getBitWidth() + 3) / 4;
656  assert(numCharacters != 0);
657
658  // Allocate a buffer of the right number of characters.
659  SmallVector<char, 20> buffer;
660  buffer.set_size(numCharacters);
661
662  // Fill the buffer left-to-right.
663  for (unsigned stringIndex = 0; stringIndex != numCharacters; ++stringIndex) {
664    // The bit-index of the next hex digit.
665    unsigned digitBitIndex = 4 * (numCharacters - stringIndex - 1);
666
667    // Project out 4 bits starting at 'digitIndex'.
668    llvm::integerPart hexDigit
669      = valueBits.getRawData()[digitBitIndex / llvm::integerPartWidth];
670    hexDigit >>= (digitBitIndex % llvm::integerPartWidth);
671    hexDigit &= 0xF;
672
673    // Map that over to a lowercase hex digit.
674    static const char charForHex[16] = {
675      '0', '1', '2', '3', '4', '5', '6', '7',
676      '8', '9', 'a', 'b', 'c', 'd', 'e', 'f'
677    };
678    buffer[stringIndex] = charForHex[hexDigit];
679  }
680
681  Out.write(buffer.data(), numCharacters);
682}
683
684void CXXNameMangler::mangleNumber(const llvm::APSInt &Value) {
685  if (Value.isSigned() && Value.isNegative()) {
686    Out << 'n';
687    Value.abs().print(Out, /*signed*/ false);
688  } else {
689    Value.print(Out, /*signed*/ false);
690  }
691}
692
693void CXXNameMangler::mangleNumber(int64_t Number) {
694  //  <number> ::= [n] <non-negative decimal integer>
695  if (Number < 0) {
696    Out << 'n';
697    Number = -Number;
698  }
699
700  Out << Number;
701}
702
703void CXXNameMangler::mangleCallOffset(int64_t NonVirtual, int64_t Virtual) {
704  //  <call-offset>  ::= h <nv-offset> _
705  //                 ::= v <v-offset> _
706  //  <nv-offset>    ::= <offset number>        # non-virtual base override
707  //  <v-offset>     ::= <offset number> _ <virtual offset number>
708  //                      # virtual base override, with vcall offset
709  if (!Virtual) {
710    Out << 'h';
711    mangleNumber(NonVirtual);
712    Out << '_';
713    return;
714  }
715
716  Out << 'v';
717  mangleNumber(NonVirtual);
718  Out << '_';
719  mangleNumber(Virtual);
720  Out << '_';
721}
722
723void CXXNameMangler::manglePrefix(QualType type) {
724  if (const TemplateSpecializationType *TST =
725        type->getAs<TemplateSpecializationType>()) {
726    if (!mangleSubstitution(QualType(TST, 0))) {
727      mangleTemplatePrefix(TST->getTemplateName());
728
729      // FIXME: GCC does not appear to mangle the template arguments when
730      // the template in question is a dependent template name. Should we
731      // emulate that badness?
732      mangleTemplateArgs(TST->getArgs(), TST->getNumArgs());
733      addSubstitution(QualType(TST, 0));
734    }
735  } else if (const DependentTemplateSpecializationType *DTST
736               = type->getAs<DependentTemplateSpecializationType>()) {
737    TemplateName Template
738      = getASTContext().getDependentTemplateName(DTST->getQualifier(),
739                                                 DTST->getIdentifier());
740    mangleTemplatePrefix(Template);
741
742    // FIXME: GCC does not appear to mangle the template arguments when
743    // the template in question is a dependent template name. Should we
744    // emulate that badness?
745    mangleTemplateArgs(DTST->getArgs(), DTST->getNumArgs());
746  } else {
747    // We use the QualType mangle type variant here because it handles
748    // substitutions.
749    mangleType(type);
750  }
751}
752
753/// Mangle everything prior to the base-unresolved-name in an unresolved-name.
754///
755/// \param firstQualifierLookup - the entity found by unqualified lookup
756///   for the first name in the qualifier, if this is for a member expression
757/// \param recursive - true if this is being called recursively,
758///   i.e. if there is more prefix "to the right".
759void CXXNameMangler::mangleUnresolvedPrefix(NestedNameSpecifier *qualifier,
760                                            NamedDecl *firstQualifierLookup,
761                                            bool recursive) {
762
763  // x, ::x
764  // <unresolved-name> ::= [gs] <base-unresolved-name>
765
766  // T::x / decltype(p)::x
767  // <unresolved-name> ::= sr <unresolved-type> <base-unresolved-name>
768
769  // T::N::x /decltype(p)::N::x
770  // <unresolved-name> ::= srN <unresolved-type> <unresolved-qualifier-level>+ E
771  //                       <base-unresolved-name>
772
773  // A::x, N::y, A<T>::z; "gs" means leading "::"
774  // <unresolved-name> ::= [gs] sr <unresolved-qualifier-level>+ E
775  //                       <base-unresolved-name>
776
777  switch (qualifier->getKind()) {
778  case NestedNameSpecifier::Global:
779    Out << "gs";
780
781    // We want an 'sr' unless this is the entire NNS.
782    if (recursive)
783      Out << "sr";
784
785    // We never want an 'E' here.
786    return;
787
788  case NestedNameSpecifier::Namespace:
789    if (qualifier->getPrefix())
790      mangleUnresolvedPrefix(qualifier->getPrefix(), firstQualifierLookup,
791                             /*recursive*/ true);
792    else
793      Out << "sr";
794    mangleSourceName(qualifier->getAsNamespace()->getIdentifier());
795    break;
796  case NestedNameSpecifier::NamespaceAlias:
797    if (qualifier->getPrefix())
798      mangleUnresolvedPrefix(qualifier->getPrefix(), firstQualifierLookup,
799                             /*recursive*/ true);
800    else
801      Out << "sr";
802    mangleSourceName(qualifier->getAsNamespaceAlias()->getIdentifier());
803    break;
804
805  case NestedNameSpecifier::TypeSpec:
806  case NestedNameSpecifier::TypeSpecWithTemplate: {
807    const Type *type = qualifier->getAsType();
808
809    // We only want to use an unresolved-type encoding if this is one of:
810    //   - a decltype
811    //   - a template type parameter
812    //   - a template template parameter with arguments
813    // In all of these cases, we should have no prefix.
814    if (qualifier->getPrefix()) {
815      mangleUnresolvedPrefix(qualifier->getPrefix(), firstQualifierLookup,
816                             /*recursive*/ true);
817    } else {
818      // Otherwise, all the cases want this.
819      Out << "sr";
820    }
821
822    // Only certain other types are valid as prefixes;  enumerate them.
823    switch (type->getTypeClass()) {
824    case Type::Builtin:
825    case Type::Complex:
826    case Type::Pointer:
827    case Type::BlockPointer:
828    case Type::LValueReference:
829    case Type::RValueReference:
830    case Type::MemberPointer:
831    case Type::ConstantArray:
832    case Type::IncompleteArray:
833    case Type::VariableArray:
834    case Type::DependentSizedArray:
835    case Type::DependentSizedExtVector:
836    case Type::Vector:
837    case Type::ExtVector:
838    case Type::FunctionProto:
839    case Type::FunctionNoProto:
840    case Type::Enum:
841    case Type::Paren:
842    case Type::Elaborated:
843    case Type::Attributed:
844    case Type::Auto:
845    case Type::PackExpansion:
846    case Type::ObjCObject:
847    case Type::ObjCInterface:
848    case Type::ObjCObjectPointer:
849    case Type::Atomic:
850      llvm_unreachable("type is illegal as a nested name specifier");
851
852    case Type::SubstTemplateTypeParmPack:
853      // FIXME: not clear how to mangle this!
854      // template <class T...> class A {
855      //   template <class U...> void foo(decltype(T::foo(U())) x...);
856      // };
857      Out << "_SUBSTPACK_";
858      break;
859
860    // <unresolved-type> ::= <template-param>
861    //                   ::= <decltype>
862    //                   ::= <template-template-param> <template-args>
863    // (this last is not official yet)
864    case Type::TypeOfExpr:
865    case Type::TypeOf:
866    case Type::Decltype:
867    case Type::TemplateTypeParm:
868    case Type::UnaryTransform:
869    case Type::SubstTemplateTypeParm:
870    unresolvedType:
871      assert(!qualifier->getPrefix());
872
873      // We only get here recursively if we're followed by identifiers.
874      if (recursive) Out << 'N';
875
876      // This seems to do everything we want.  It's not really
877      // sanctioned for a substituted template parameter, though.
878      mangleType(QualType(type, 0));
879
880      // We never want to print 'E' directly after an unresolved-type,
881      // so we return directly.
882      return;
883
884    case Type::Typedef:
885      mangleSourceName(cast<TypedefType>(type)->getDecl()->getIdentifier());
886      break;
887
888    case Type::UnresolvedUsing:
889      mangleSourceName(cast<UnresolvedUsingType>(type)->getDecl()
890                         ->getIdentifier());
891      break;
892
893    case Type::Record:
894      mangleSourceName(cast<RecordType>(type)->getDecl()->getIdentifier());
895      break;
896
897    case Type::TemplateSpecialization: {
898      const TemplateSpecializationType *tst
899        = cast<TemplateSpecializationType>(type);
900      TemplateName name = tst->getTemplateName();
901      switch (name.getKind()) {
902      case TemplateName::Template:
903      case TemplateName::QualifiedTemplate: {
904        TemplateDecl *temp = name.getAsTemplateDecl();
905
906        // If the base is a template template parameter, this is an
907        // unresolved type.
908        assert(temp && "no template for template specialization type");
909        if (isa<TemplateTemplateParmDecl>(temp)) goto unresolvedType;
910
911        mangleSourceName(temp->getIdentifier());
912        break;
913      }
914
915      case TemplateName::OverloadedTemplate:
916      case TemplateName::DependentTemplate:
917        llvm_unreachable("invalid base for a template specialization type");
918
919      case TemplateName::SubstTemplateTemplateParm: {
920        SubstTemplateTemplateParmStorage *subst
921          = name.getAsSubstTemplateTemplateParm();
922        mangleExistingSubstitution(subst->getReplacement());
923        break;
924      }
925
926      case TemplateName::SubstTemplateTemplateParmPack: {
927        // FIXME: not clear how to mangle this!
928        // template <template <class U> class T...> class A {
929        //   template <class U...> void foo(decltype(T<U>::foo) x...);
930        // };
931        Out << "_SUBSTPACK_";
932        break;
933      }
934      }
935
936      mangleTemplateArgs(tst->getArgs(), tst->getNumArgs());
937      break;
938    }
939
940    case Type::InjectedClassName:
941      mangleSourceName(cast<InjectedClassNameType>(type)->getDecl()
942                         ->getIdentifier());
943      break;
944
945    case Type::DependentName:
946      mangleSourceName(cast<DependentNameType>(type)->getIdentifier());
947      break;
948
949    case Type::DependentTemplateSpecialization: {
950      const DependentTemplateSpecializationType *tst
951        = cast<DependentTemplateSpecializationType>(type);
952      mangleSourceName(tst->getIdentifier());
953      mangleTemplateArgs(tst->getArgs(), tst->getNumArgs());
954      break;
955    }
956    }
957    break;
958  }
959
960  case NestedNameSpecifier::Identifier:
961    // Member expressions can have these without prefixes.
962    if (qualifier->getPrefix()) {
963      mangleUnresolvedPrefix(qualifier->getPrefix(), firstQualifierLookup,
964                             /*recursive*/ true);
965    } else if (firstQualifierLookup) {
966
967      // Try to make a proper qualifier out of the lookup result, and
968      // then just recurse on that.
969      NestedNameSpecifier *newQualifier;
970      if (TypeDecl *typeDecl = dyn_cast<TypeDecl>(firstQualifierLookup)) {
971        QualType type = getASTContext().getTypeDeclType(typeDecl);
972
973        // Pretend we had a different nested name specifier.
974        newQualifier = NestedNameSpecifier::Create(getASTContext(),
975                                                   /*prefix*/ 0,
976                                                   /*template*/ false,
977                                                   type.getTypePtr());
978      } else if (NamespaceDecl *nspace =
979                   dyn_cast<NamespaceDecl>(firstQualifierLookup)) {
980        newQualifier = NestedNameSpecifier::Create(getASTContext(),
981                                                   /*prefix*/ 0,
982                                                   nspace);
983      } else if (NamespaceAliasDecl *alias =
984                   dyn_cast<NamespaceAliasDecl>(firstQualifierLookup)) {
985        newQualifier = NestedNameSpecifier::Create(getASTContext(),
986                                                   /*prefix*/ 0,
987                                                   alias);
988      } else {
989        // No sensible mangling to do here.
990        newQualifier = 0;
991      }
992
993      if (newQualifier)
994        return mangleUnresolvedPrefix(newQualifier, /*lookup*/ 0, recursive);
995
996    } else {
997      Out << "sr";
998    }
999
1000    mangleSourceName(qualifier->getAsIdentifier());
1001    break;
1002  }
1003
1004  // If this was the innermost part of the NNS, and we fell out to
1005  // here, append an 'E'.
1006  if (!recursive)
1007    Out << 'E';
1008}
1009
1010/// Mangle an unresolved-name, which is generally used for names which
1011/// weren't resolved to specific entities.
1012void CXXNameMangler::mangleUnresolvedName(NestedNameSpecifier *qualifier,
1013                                          NamedDecl *firstQualifierLookup,
1014                                          DeclarationName name,
1015                                          unsigned knownArity) {
1016  if (qualifier) mangleUnresolvedPrefix(qualifier, firstQualifierLookup);
1017  mangleUnqualifiedName(0, name, knownArity);
1018}
1019
1020static const FieldDecl *FindFirstNamedDataMember(const RecordDecl *RD) {
1021  assert(RD->isAnonymousStructOrUnion() &&
1022         "Expected anonymous struct or union!");
1023
1024  for (RecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end();
1025       I != E; ++I) {
1026    if (I->getIdentifier())
1027      return *I;
1028
1029    if (const RecordType *RT = I->getType()->getAs<RecordType>())
1030      if (const FieldDecl *NamedDataMember =
1031          FindFirstNamedDataMember(RT->getDecl()))
1032        return NamedDataMember;
1033    }
1034
1035  // We didn't find a named data member.
1036  return 0;
1037}
1038
1039void CXXNameMangler::mangleUnqualifiedName(const NamedDecl *ND,
1040                                           DeclarationName Name,
1041                                           unsigned KnownArity) {
1042  //  <unqualified-name> ::= <operator-name>
1043  //                     ::= <ctor-dtor-name>
1044  //                     ::= <source-name>
1045  switch (Name.getNameKind()) {
1046  case DeclarationName::Identifier: {
1047    if (const IdentifierInfo *II = Name.getAsIdentifierInfo()) {
1048      // We must avoid conflicts between internally- and externally-
1049      // linked variable and function declaration names in the same TU:
1050      //   void test() { extern void foo(); }
1051      //   static void foo();
1052      // This naming convention is the same as that followed by GCC,
1053      // though it shouldn't actually matter.
1054      if (ND && ND->getLinkage() == InternalLinkage &&
1055          getEffectiveDeclContext(ND)->isFileContext())
1056        Out << 'L';
1057
1058      mangleSourceName(II);
1059      break;
1060    }
1061
1062    // Otherwise, an anonymous entity.  We must have a declaration.
1063    assert(ND && "mangling empty name without declaration");
1064
1065    if (const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ND)) {
1066      if (NS->isAnonymousNamespace()) {
1067        // This is how gcc mangles these names.
1068        Out << "12_GLOBAL__N_1";
1069        break;
1070      }
1071    }
1072
1073    if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) {
1074      // We must have an anonymous union or struct declaration.
1075      const RecordDecl *RD =
1076        cast<RecordDecl>(VD->getType()->getAs<RecordType>()->getDecl());
1077
1078      // Itanium C++ ABI 5.1.2:
1079      //
1080      //   For the purposes of mangling, the name of an anonymous union is
1081      //   considered to be the name of the first named data member found by a
1082      //   pre-order, depth-first, declaration-order walk of the data members of
1083      //   the anonymous union. If there is no such data member (i.e., if all of
1084      //   the data members in the union are unnamed), then there is no way for
1085      //   a program to refer to the anonymous union, and there is therefore no
1086      //   need to mangle its name.
1087      const FieldDecl *FD = FindFirstNamedDataMember(RD);
1088
1089      // It's actually possible for various reasons for us to get here
1090      // with an empty anonymous struct / union.  Fortunately, it
1091      // doesn't really matter what name we generate.
1092      if (!FD) break;
1093      assert(FD->getIdentifier() && "Data member name isn't an identifier!");
1094
1095      mangleSourceName(FD->getIdentifier());
1096      break;
1097    }
1098
1099    // Class extensions have no name as a category, and it's possible
1100    // for them to be the semantic parent of certain declarations
1101    // (primarily, tag decls defined within declarations).  Such
1102    // declarations will always have internal linkage, so the name
1103    // doesn't really matter, but we shouldn't crash on them.  For
1104    // safety, just handle all ObjC containers here.
1105    if (isa<ObjCContainerDecl>(ND))
1106      break;
1107
1108    // We must have an anonymous struct.
1109    const TagDecl *TD = cast<TagDecl>(ND);
1110    if (const TypedefNameDecl *D = TD->getTypedefNameForAnonDecl()) {
1111      assert(TD->getDeclContext() == D->getDeclContext() &&
1112             "Typedef should not be in another decl context!");
1113      assert(D->getDeclName().getAsIdentifierInfo() &&
1114             "Typedef was not named!");
1115      mangleSourceName(D->getDeclName().getAsIdentifierInfo());
1116      break;
1117    }
1118
1119    // <unnamed-type-name> ::= <closure-type-name>
1120    //
1121    // <closure-type-name> ::= Ul <lambda-sig> E [ <nonnegative number> ] _
1122    // <lambda-sig> ::= <parameter-type>+   # Parameter types or 'v' for 'void'.
1123    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(TD)) {
1124      if (Record->isLambda() && Record->getLambdaManglingNumber()) {
1125        mangleLambda(Record);
1126        break;
1127      }
1128    }
1129
1130    int UnnamedMangle = Context.getASTContext().getUnnamedTagManglingNumber(TD);
1131    if (UnnamedMangle != -1) {
1132      Out << "Ut";
1133      if (UnnamedMangle != 0)
1134        Out << llvm::utostr(UnnamedMangle - 1);
1135      Out << '_';
1136      break;
1137    }
1138
1139    // Get a unique id for the anonymous struct.
1140    uint64_t AnonStructId = Context.getAnonymousStructId(TD);
1141
1142    // Mangle it as a source name in the form
1143    // [n] $_<id>
1144    // where n is the length of the string.
1145    SmallString<8> Str;
1146    Str += "$_";
1147    Str += llvm::utostr(AnonStructId);
1148
1149    Out << Str.size();
1150    Out << Str.str();
1151    break;
1152  }
1153
1154  case DeclarationName::ObjCZeroArgSelector:
1155  case DeclarationName::ObjCOneArgSelector:
1156  case DeclarationName::ObjCMultiArgSelector:
1157    llvm_unreachable("Can't mangle Objective-C selector names here!");
1158
1159  case DeclarationName::CXXConstructorName:
1160    if (ND == Structor)
1161      // If the named decl is the C++ constructor we're mangling, use the type
1162      // we were given.
1163      mangleCXXCtorType(static_cast<CXXCtorType>(StructorType));
1164    else
1165      // Otherwise, use the complete constructor name. This is relevant if a
1166      // class with a constructor is declared within a constructor.
1167      mangleCXXCtorType(Ctor_Complete);
1168    break;
1169
1170  case DeclarationName::CXXDestructorName:
1171    if (ND == Structor)
1172      // If the named decl is the C++ destructor we're mangling, use the type we
1173      // were given.
1174      mangleCXXDtorType(static_cast<CXXDtorType>(StructorType));
1175    else
1176      // Otherwise, use the complete destructor name. This is relevant if a
1177      // class with a destructor is declared within a destructor.
1178      mangleCXXDtorType(Dtor_Complete);
1179    break;
1180
1181  case DeclarationName::CXXConversionFunctionName:
1182    // <operator-name> ::= cv <type>    # (cast)
1183    Out << "cv";
1184    mangleType(Name.getCXXNameType());
1185    break;
1186
1187  case DeclarationName::CXXOperatorName: {
1188    unsigned Arity;
1189    if (ND) {
1190      Arity = cast<FunctionDecl>(ND)->getNumParams();
1191
1192      // If we have a C++ member function, we need to include the 'this' pointer.
1193      // FIXME: This does not make sense for operators that are static, but their
1194      // names stay the same regardless of the arity (operator new for instance).
1195      if (isa<CXXMethodDecl>(ND))
1196        Arity++;
1197    } else
1198      Arity = KnownArity;
1199
1200    mangleOperatorName(Name.getCXXOverloadedOperator(), Arity);
1201    break;
1202  }
1203
1204  case DeclarationName::CXXLiteralOperatorName:
1205    // FIXME: This mangling is not yet official.
1206    Out << "li";
1207    mangleSourceName(Name.getCXXLiteralIdentifier());
1208    break;
1209
1210  case DeclarationName::CXXUsingDirective:
1211    llvm_unreachable("Can't mangle a using directive name!");
1212  }
1213}
1214
1215void CXXNameMangler::mangleSourceName(const IdentifierInfo *II) {
1216  // <source-name> ::= <positive length number> <identifier>
1217  // <number> ::= [n] <non-negative decimal integer>
1218  // <identifier> ::= <unqualified source code identifier>
1219  Out << II->getLength() << II->getName();
1220}
1221
1222void CXXNameMangler::mangleNestedName(const NamedDecl *ND,
1223                                      const DeclContext *DC,
1224                                      bool NoFunction) {
1225  // <nested-name>
1226  //   ::= N [<CV-qualifiers>] [<ref-qualifier>] <prefix> <unqualified-name> E
1227  //   ::= N [<CV-qualifiers>] [<ref-qualifier>] <template-prefix>
1228  //       <template-args> E
1229
1230  Out << 'N';
1231  if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(ND)) {
1232    mangleQualifiers(Qualifiers::fromCVRMask(Method->getTypeQualifiers()));
1233    mangleRefQualifier(Method->getRefQualifier());
1234  }
1235
1236  // Check if we have a template.
1237  const TemplateArgumentList *TemplateArgs = 0;
1238  if (const TemplateDecl *TD = isTemplate(ND, TemplateArgs)) {
1239    mangleTemplatePrefix(TD);
1240    mangleTemplateArgs(*TemplateArgs);
1241  }
1242  else {
1243    manglePrefix(DC, NoFunction);
1244    mangleUnqualifiedName(ND);
1245  }
1246
1247  Out << 'E';
1248}
1249void CXXNameMangler::mangleNestedName(const TemplateDecl *TD,
1250                                      const TemplateArgument *TemplateArgs,
1251                                      unsigned NumTemplateArgs) {
1252  // <nested-name> ::= N [<CV-qualifiers>] <template-prefix> <template-args> E
1253
1254  Out << 'N';
1255
1256  mangleTemplatePrefix(TD);
1257  mangleTemplateArgs(TemplateArgs, NumTemplateArgs);
1258
1259  Out << 'E';
1260}
1261
1262void CXXNameMangler::mangleLocalName(const NamedDecl *ND) {
1263  // <local-name> := Z <function encoding> E <entity name> [<discriminator>]
1264  //              := Z <function encoding> E s [<discriminator>]
1265  // <local-name> := Z <function encoding> E d [ <parameter number> ]
1266  //                 _ <entity name>
1267  // <discriminator> := _ <non-negative number>
1268  const DeclContext *DC = getEffectiveDeclContext(ND);
1269  if (isa<ObjCMethodDecl>(DC) && isa<FunctionDecl>(ND)) {
1270    // Don't add objc method name mangling to locally declared function
1271    mangleUnqualifiedName(ND);
1272    return;
1273  }
1274
1275  Out << 'Z';
1276
1277  if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(DC)) {
1278   mangleObjCMethodName(MD);
1279  } else if (const CXXRecordDecl *RD = GetLocalClassDecl(ND)) {
1280    mangleFunctionEncoding(cast<FunctionDecl>(getEffectiveDeclContext(RD)));
1281    Out << 'E';
1282
1283    // The parameter number is omitted for the last parameter, 0 for the
1284    // second-to-last parameter, 1 for the third-to-last parameter, etc. The
1285    // <entity name> will of course contain a <closure-type-name>: Its
1286    // numbering will be local to the particular argument in which it appears
1287    // -- other default arguments do not affect its encoding.
1288    bool SkipDiscriminator = false;
1289    if (RD->isLambda()) {
1290      if (const ParmVarDecl *Parm
1291                 = dyn_cast_or_null<ParmVarDecl>(RD->getLambdaContextDecl())) {
1292        if (const FunctionDecl *Func
1293              = dyn_cast<FunctionDecl>(Parm->getDeclContext())) {
1294          Out << 'd';
1295          unsigned Num = Func->getNumParams() - Parm->getFunctionScopeIndex();
1296          if (Num > 1)
1297            mangleNumber(Num - 2);
1298          Out << '_';
1299          SkipDiscriminator = true;
1300        }
1301      }
1302    }
1303
1304    // Mangle the name relative to the closest enclosing function.
1305    if (ND == RD) // equality ok because RD derived from ND above
1306      mangleUnqualifiedName(ND);
1307    else
1308      mangleNestedName(ND, DC, true /*NoFunction*/);
1309
1310    if (!SkipDiscriminator) {
1311      unsigned disc;
1312      if (Context.getNextDiscriminator(RD, disc)) {
1313        if (disc < 10)
1314          Out << '_' << disc;
1315        else
1316          Out << "__" << disc << '_';
1317      }
1318    }
1319
1320    return;
1321  }
1322  else
1323    mangleFunctionEncoding(cast<FunctionDecl>(DC));
1324
1325  Out << 'E';
1326  mangleUnqualifiedName(ND);
1327}
1328
1329void CXXNameMangler::mangleLambda(const CXXRecordDecl *Lambda) {
1330  // If the context of a closure type is an initializer for a class member
1331  // (static or nonstatic), it is encoded in a qualified name with a final
1332  // <prefix> of the form:
1333  //
1334  //   <data-member-prefix> := <member source-name> M
1335  //
1336  // Technically, the data-member-prefix is part of the <prefix>. However,
1337  // since a closure type will always be mangled with a prefix, it's easier
1338  // to emit that last part of the prefix here.
1339  if (Decl *Context = Lambda->getLambdaContextDecl()) {
1340    if ((isa<VarDecl>(Context) || isa<FieldDecl>(Context)) &&
1341        Context->getDeclContext()->isRecord()) {
1342      if (const IdentifierInfo *Name
1343            = cast<NamedDecl>(Context)->getIdentifier()) {
1344        mangleSourceName(Name);
1345        Out << 'M';
1346      }
1347    }
1348  }
1349
1350  Out << "Ul";
1351  const FunctionProtoType *Proto = Lambda->getLambdaTypeInfo()->getType()->
1352                                   getAs<FunctionProtoType>();
1353  mangleBareFunctionType(Proto, /*MangleReturnType=*/false);
1354  Out << "E";
1355
1356  // The number is omitted for the first closure type with a given
1357  // <lambda-sig> in a given context; it is n-2 for the nth closure type
1358  // (in lexical order) with that same <lambda-sig> and context.
1359  //
1360  // The AST keeps track of the number for us.
1361  unsigned Number = Lambda->getLambdaManglingNumber();
1362  assert(Number > 0 && "Lambda should be mangled as an unnamed class");
1363  if (Number > 1)
1364    mangleNumber(Number - 2);
1365  Out << '_';
1366}
1367
1368void CXXNameMangler::manglePrefix(NestedNameSpecifier *qualifier) {
1369  switch (qualifier->getKind()) {
1370  case NestedNameSpecifier::Global:
1371    // nothing
1372    return;
1373
1374  case NestedNameSpecifier::Namespace:
1375    mangleName(qualifier->getAsNamespace());
1376    return;
1377
1378  case NestedNameSpecifier::NamespaceAlias:
1379    mangleName(qualifier->getAsNamespaceAlias()->getNamespace());
1380    return;
1381
1382  case NestedNameSpecifier::TypeSpec:
1383  case NestedNameSpecifier::TypeSpecWithTemplate:
1384    manglePrefix(QualType(qualifier->getAsType(), 0));
1385    return;
1386
1387  case NestedNameSpecifier::Identifier:
1388    // Member expressions can have these without prefixes, but that
1389    // should end up in mangleUnresolvedPrefix instead.
1390    assert(qualifier->getPrefix());
1391    manglePrefix(qualifier->getPrefix());
1392
1393    mangleSourceName(qualifier->getAsIdentifier());
1394    return;
1395  }
1396
1397  llvm_unreachable("unexpected nested name specifier");
1398}
1399
1400void CXXNameMangler::manglePrefix(const DeclContext *DC, bool NoFunction) {
1401  //  <prefix> ::= <prefix> <unqualified-name>
1402  //           ::= <template-prefix> <template-args>
1403  //           ::= <template-param>
1404  //           ::= # empty
1405  //           ::= <substitution>
1406
1407  DC = IgnoreLinkageSpecDecls(DC);
1408
1409  if (DC->isTranslationUnit())
1410    return;
1411
1412  if (const BlockDecl *Block = dyn_cast<BlockDecl>(DC)) {
1413    manglePrefix(getEffectiveParentContext(DC), NoFunction);
1414    SmallString<64> Name;
1415    llvm::raw_svector_ostream NameStream(Name);
1416    Context.mangleBlock(Block, NameStream);
1417    NameStream.flush();
1418    Out << Name.size() << Name;
1419    return;
1420  }
1421
1422  const NamedDecl *ND = cast<NamedDecl>(DC);
1423  if (mangleSubstitution(ND))
1424    return;
1425
1426  // Check if we have a template.
1427  const TemplateArgumentList *TemplateArgs = 0;
1428  if (const TemplateDecl *TD = isTemplate(ND, TemplateArgs)) {
1429    mangleTemplatePrefix(TD);
1430    mangleTemplateArgs(*TemplateArgs);
1431  }
1432  else if(NoFunction && (isa<FunctionDecl>(ND) || isa<ObjCMethodDecl>(ND)))
1433    return;
1434  else if (const ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(ND))
1435    mangleObjCMethodName(Method);
1436  else {
1437    manglePrefix(getEffectiveDeclContext(ND), NoFunction);
1438    mangleUnqualifiedName(ND);
1439  }
1440
1441  addSubstitution(ND);
1442}
1443
1444void CXXNameMangler::mangleTemplatePrefix(TemplateName Template) {
1445  // <template-prefix> ::= <prefix> <template unqualified-name>
1446  //                   ::= <template-param>
1447  //                   ::= <substitution>
1448  if (TemplateDecl *TD = Template.getAsTemplateDecl())
1449    return mangleTemplatePrefix(TD);
1450
1451  if (QualifiedTemplateName *Qualified = Template.getAsQualifiedTemplateName())
1452    manglePrefix(Qualified->getQualifier());
1453
1454  if (OverloadedTemplateStorage *Overloaded
1455                                      = Template.getAsOverloadedTemplate()) {
1456    mangleUnqualifiedName(0, (*Overloaded->begin())->getDeclName(),
1457                          UnknownArity);
1458    return;
1459  }
1460
1461  DependentTemplateName *Dependent = Template.getAsDependentTemplateName();
1462  assert(Dependent && "Unknown template name kind?");
1463  manglePrefix(Dependent->getQualifier());
1464  mangleUnscopedTemplateName(Template);
1465}
1466
1467void CXXNameMangler::mangleTemplatePrefix(const TemplateDecl *ND) {
1468  // <template-prefix> ::= <prefix> <template unqualified-name>
1469  //                   ::= <template-param>
1470  //                   ::= <substitution>
1471  // <template-template-param> ::= <template-param>
1472  //                               <substitution>
1473
1474  if (mangleSubstitution(ND))
1475    return;
1476
1477  // <template-template-param> ::= <template-param>
1478  if (const TemplateTemplateParmDecl *TTP
1479                                     = dyn_cast<TemplateTemplateParmDecl>(ND)) {
1480    mangleTemplateParameter(TTP->getIndex());
1481    return;
1482  }
1483
1484  manglePrefix(getEffectiveDeclContext(ND));
1485  mangleUnqualifiedName(ND->getTemplatedDecl());
1486  addSubstitution(ND);
1487}
1488
1489/// Mangles a template name under the production <type>.  Required for
1490/// template template arguments.
1491///   <type> ::= <class-enum-type>
1492///          ::= <template-param>
1493///          ::= <substitution>
1494void CXXNameMangler::mangleType(TemplateName TN) {
1495  if (mangleSubstitution(TN))
1496    return;
1497
1498  TemplateDecl *TD = 0;
1499
1500  switch (TN.getKind()) {
1501  case TemplateName::QualifiedTemplate:
1502    TD = TN.getAsQualifiedTemplateName()->getTemplateDecl();
1503    goto HaveDecl;
1504
1505  case TemplateName::Template:
1506    TD = TN.getAsTemplateDecl();
1507    goto HaveDecl;
1508
1509  HaveDecl:
1510    if (isa<TemplateTemplateParmDecl>(TD))
1511      mangleTemplateParameter(cast<TemplateTemplateParmDecl>(TD)->getIndex());
1512    else
1513      mangleName(TD);
1514    break;
1515
1516  case TemplateName::OverloadedTemplate:
1517    llvm_unreachable("can't mangle an overloaded template name as a <type>");
1518
1519  case TemplateName::DependentTemplate: {
1520    const DependentTemplateName *Dependent = TN.getAsDependentTemplateName();
1521    assert(Dependent->isIdentifier());
1522
1523    // <class-enum-type> ::= <name>
1524    // <name> ::= <nested-name>
1525    mangleUnresolvedPrefix(Dependent->getQualifier(), 0);
1526    mangleSourceName(Dependent->getIdentifier());
1527    break;
1528  }
1529
1530  case TemplateName::SubstTemplateTemplateParm: {
1531    // Substituted template parameters are mangled as the substituted
1532    // template.  This will check for the substitution twice, which is
1533    // fine, but we have to return early so that we don't try to *add*
1534    // the substitution twice.
1535    SubstTemplateTemplateParmStorage *subst
1536      = TN.getAsSubstTemplateTemplateParm();
1537    mangleType(subst->getReplacement());
1538    return;
1539  }
1540
1541  case TemplateName::SubstTemplateTemplateParmPack: {
1542    // FIXME: not clear how to mangle this!
1543    // template <template <class> class T...> class A {
1544    //   template <template <class> class U...> void foo(B<T,U> x...);
1545    // };
1546    Out << "_SUBSTPACK_";
1547    break;
1548  }
1549  }
1550
1551  addSubstitution(TN);
1552}
1553
1554void
1555CXXNameMangler::mangleOperatorName(OverloadedOperatorKind OO, unsigned Arity) {
1556  switch (OO) {
1557  // <operator-name> ::= nw     # new
1558  case OO_New: Out << "nw"; break;
1559  //              ::= na        # new[]
1560  case OO_Array_New: Out << "na"; break;
1561  //              ::= dl        # delete
1562  case OO_Delete: Out << "dl"; break;
1563  //              ::= da        # delete[]
1564  case OO_Array_Delete: Out << "da"; break;
1565  //              ::= ps        # + (unary)
1566  //              ::= pl        # + (binary or unknown)
1567  case OO_Plus:
1568    Out << (Arity == 1? "ps" : "pl"); break;
1569  //              ::= ng        # - (unary)
1570  //              ::= mi        # - (binary or unknown)
1571  case OO_Minus:
1572    Out << (Arity == 1? "ng" : "mi"); break;
1573  //              ::= ad        # & (unary)
1574  //              ::= an        # & (binary or unknown)
1575  case OO_Amp:
1576    Out << (Arity == 1? "ad" : "an"); break;
1577  //              ::= de        # * (unary)
1578  //              ::= ml        # * (binary or unknown)
1579  case OO_Star:
1580    // Use binary when unknown.
1581    Out << (Arity == 1? "de" : "ml"); break;
1582  //              ::= co        # ~
1583  case OO_Tilde: Out << "co"; break;
1584  //              ::= dv        # /
1585  case OO_Slash: Out << "dv"; break;
1586  //              ::= rm        # %
1587  case OO_Percent: Out << "rm"; break;
1588  //              ::= or        # |
1589  case OO_Pipe: Out << "or"; break;
1590  //              ::= eo        # ^
1591  case OO_Caret: Out << "eo"; break;
1592  //              ::= aS        # =
1593  case OO_Equal: Out << "aS"; break;
1594  //              ::= pL        # +=
1595  case OO_PlusEqual: Out << "pL"; break;
1596  //              ::= mI        # -=
1597  case OO_MinusEqual: Out << "mI"; break;
1598  //              ::= mL        # *=
1599  case OO_StarEqual: Out << "mL"; break;
1600  //              ::= dV        # /=
1601  case OO_SlashEqual: Out << "dV"; break;
1602  //              ::= rM        # %=
1603  case OO_PercentEqual: Out << "rM"; break;
1604  //              ::= aN        # &=
1605  case OO_AmpEqual: Out << "aN"; break;
1606  //              ::= oR        # |=
1607  case OO_PipeEqual: Out << "oR"; break;
1608  //              ::= eO        # ^=
1609  case OO_CaretEqual: Out << "eO"; break;
1610  //              ::= ls        # <<
1611  case OO_LessLess: Out << "ls"; break;
1612  //              ::= rs        # >>
1613  case OO_GreaterGreater: Out << "rs"; break;
1614  //              ::= lS        # <<=
1615  case OO_LessLessEqual: Out << "lS"; break;
1616  //              ::= rS        # >>=
1617  case OO_GreaterGreaterEqual: Out << "rS"; break;
1618  //              ::= eq        # ==
1619  case OO_EqualEqual: Out << "eq"; break;
1620  //              ::= ne        # !=
1621  case OO_ExclaimEqual: Out << "ne"; break;
1622  //              ::= lt        # <
1623  case OO_Less: Out << "lt"; break;
1624  //              ::= gt        # >
1625  case OO_Greater: Out << "gt"; break;
1626  //              ::= le        # <=
1627  case OO_LessEqual: Out << "le"; break;
1628  //              ::= ge        # >=
1629  case OO_GreaterEqual: Out << "ge"; break;
1630  //              ::= nt        # !
1631  case OO_Exclaim: Out << "nt"; break;
1632  //              ::= aa        # &&
1633  case OO_AmpAmp: Out << "aa"; break;
1634  //              ::= oo        # ||
1635  case OO_PipePipe: Out << "oo"; break;
1636  //              ::= pp        # ++
1637  case OO_PlusPlus: Out << "pp"; break;
1638  //              ::= mm        # --
1639  case OO_MinusMinus: Out << "mm"; break;
1640  //              ::= cm        # ,
1641  case OO_Comma: Out << "cm"; break;
1642  //              ::= pm        # ->*
1643  case OO_ArrowStar: Out << "pm"; break;
1644  //              ::= pt        # ->
1645  case OO_Arrow: Out << "pt"; break;
1646  //              ::= cl        # ()
1647  case OO_Call: Out << "cl"; break;
1648  //              ::= ix        # []
1649  case OO_Subscript: Out << "ix"; break;
1650
1651  //              ::= qu        # ?
1652  // The conditional operator can't be overloaded, but we still handle it when
1653  // mangling expressions.
1654  case OO_Conditional: Out << "qu"; break;
1655
1656  case OO_None:
1657  case NUM_OVERLOADED_OPERATORS:
1658    llvm_unreachable("Not an overloaded operator");
1659  }
1660}
1661
1662void CXXNameMangler::mangleQualifiers(Qualifiers Quals) {
1663  // <CV-qualifiers> ::= [r] [V] [K]    # restrict (C99), volatile, const
1664  if (Quals.hasRestrict())
1665    Out << 'r';
1666  if (Quals.hasVolatile())
1667    Out << 'V';
1668  if (Quals.hasConst())
1669    Out << 'K';
1670
1671  if (Quals.hasAddressSpace()) {
1672    // Extension:
1673    //
1674    //   <type> ::= U <address-space-number>
1675    //
1676    // where <address-space-number> is a source name consisting of 'AS'
1677    // followed by the address space <number>.
1678    SmallString<64> ASString;
1679    ASString = "AS" + llvm::utostr_32(
1680        Context.getASTContext().getTargetAddressSpace(Quals.getAddressSpace()));
1681    Out << 'U' << ASString.size() << ASString;
1682  }
1683
1684  StringRef LifetimeName;
1685  switch (Quals.getObjCLifetime()) {
1686  // Objective-C ARC Extension:
1687  //
1688  //   <type> ::= U "__strong"
1689  //   <type> ::= U "__weak"
1690  //   <type> ::= U "__autoreleasing"
1691  case Qualifiers::OCL_None:
1692    break;
1693
1694  case Qualifiers::OCL_Weak:
1695    LifetimeName = "__weak";
1696    break;
1697
1698  case Qualifiers::OCL_Strong:
1699    LifetimeName = "__strong";
1700    break;
1701
1702  case Qualifiers::OCL_Autoreleasing:
1703    LifetimeName = "__autoreleasing";
1704    break;
1705
1706  case Qualifiers::OCL_ExplicitNone:
1707    // The __unsafe_unretained qualifier is *not* mangled, so that
1708    // __unsafe_unretained types in ARC produce the same manglings as the
1709    // equivalent (but, naturally, unqualified) types in non-ARC, providing
1710    // better ABI compatibility.
1711    //
1712    // It's safe to do this because unqualified 'id' won't show up
1713    // in any type signatures that need to be mangled.
1714    break;
1715  }
1716  if (!LifetimeName.empty())
1717    Out << 'U' << LifetimeName.size() << LifetimeName;
1718}
1719
1720void CXXNameMangler::mangleRefQualifier(RefQualifierKind RefQualifier) {
1721  // <ref-qualifier> ::= R                # lvalue reference
1722  //                 ::= O                # rvalue-reference
1723  // Proposal to Itanium C++ ABI list on 1/26/11
1724  switch (RefQualifier) {
1725  case RQ_None:
1726    break;
1727
1728  case RQ_LValue:
1729    Out << 'R';
1730    break;
1731
1732  case RQ_RValue:
1733    Out << 'O';
1734    break;
1735  }
1736}
1737
1738void CXXNameMangler::mangleObjCMethodName(const ObjCMethodDecl *MD) {
1739  Context.mangleObjCMethodName(MD, Out);
1740}
1741
1742void CXXNameMangler::mangleType(QualType T) {
1743  // If our type is instantiation-dependent but not dependent, we mangle
1744  // it as it was written in the source, removing any top-level sugar.
1745  // Otherwise, use the canonical type.
1746  //
1747  // FIXME: This is an approximation of the instantiation-dependent name
1748  // mangling rules, since we should really be using the type as written and
1749  // augmented via semantic analysis (i.e., with implicit conversions and
1750  // default template arguments) for any instantiation-dependent type.
1751  // Unfortunately, that requires several changes to our AST:
1752  //   - Instantiation-dependent TemplateSpecializationTypes will need to be
1753  //     uniqued, so that we can handle substitutions properly
1754  //   - Default template arguments will need to be represented in the
1755  //     TemplateSpecializationType, since they need to be mangled even though
1756  //     they aren't written.
1757  //   - Conversions on non-type template arguments need to be expressed, since
1758  //     they can affect the mangling of sizeof/alignof.
1759  if (!T->isInstantiationDependentType() || T->isDependentType())
1760    T = T.getCanonicalType();
1761  else {
1762    // Desugar any types that are purely sugar.
1763    do {
1764      // Don't desugar through template specialization types that aren't
1765      // type aliases. We need to mangle the template arguments as written.
1766      if (const TemplateSpecializationType *TST
1767                                      = dyn_cast<TemplateSpecializationType>(T))
1768        if (!TST->isTypeAlias())
1769          break;
1770
1771      QualType Desugared
1772        = T.getSingleStepDesugaredType(Context.getASTContext());
1773      if (Desugared == T)
1774        break;
1775
1776      T = Desugared;
1777    } while (true);
1778  }
1779  SplitQualType split = T.split();
1780  Qualifiers quals = split.Quals;
1781  const Type *ty = split.Ty;
1782
1783  bool isSubstitutable = quals || !isa<BuiltinType>(T);
1784  if (isSubstitutable && mangleSubstitution(T))
1785    return;
1786
1787  // If we're mangling a qualified array type, push the qualifiers to
1788  // the element type.
1789  if (quals && isa<ArrayType>(T)) {
1790    ty = Context.getASTContext().getAsArrayType(T);
1791    quals = Qualifiers();
1792
1793    // Note that we don't update T: we want to add the
1794    // substitution at the original type.
1795  }
1796
1797  if (quals) {
1798    mangleQualifiers(quals);
1799    // Recurse:  even if the qualified type isn't yet substitutable,
1800    // the unqualified type might be.
1801    mangleType(QualType(ty, 0));
1802  } else {
1803    switch (ty->getTypeClass()) {
1804#define ABSTRACT_TYPE(CLASS, PARENT)
1805#define NON_CANONICAL_TYPE(CLASS, PARENT) \
1806    case Type::CLASS: \
1807      llvm_unreachable("can't mangle non-canonical type " #CLASS "Type"); \
1808      return;
1809#define TYPE(CLASS, PARENT) \
1810    case Type::CLASS: \
1811      mangleType(static_cast<const CLASS##Type*>(ty)); \
1812      break;
1813#include "clang/AST/TypeNodes.def"
1814    }
1815  }
1816
1817  // Add the substitution.
1818  if (isSubstitutable)
1819    addSubstitution(T);
1820}
1821
1822void CXXNameMangler::mangleNameOrStandardSubstitution(const NamedDecl *ND) {
1823  if (!mangleStandardSubstitution(ND))
1824    mangleName(ND);
1825}
1826
1827void CXXNameMangler::mangleType(const BuiltinType *T) {
1828  //  <type>         ::= <builtin-type>
1829  //  <builtin-type> ::= v  # void
1830  //                 ::= w  # wchar_t
1831  //                 ::= b  # bool
1832  //                 ::= c  # char
1833  //                 ::= a  # signed char
1834  //                 ::= h  # unsigned char
1835  //                 ::= s  # short
1836  //                 ::= t  # unsigned short
1837  //                 ::= i  # int
1838  //                 ::= j  # unsigned int
1839  //                 ::= l  # long
1840  //                 ::= m  # unsigned long
1841  //                 ::= x  # long long, __int64
1842  //                 ::= y  # unsigned long long, __int64
1843  //                 ::= n  # __int128
1844  // UNSUPPORTED:    ::= o  # unsigned __int128
1845  //                 ::= f  # float
1846  //                 ::= d  # double
1847  //                 ::= e  # long double, __float80
1848  // UNSUPPORTED:    ::= g  # __float128
1849  // UNSUPPORTED:    ::= Dd # IEEE 754r decimal floating point (64 bits)
1850  // UNSUPPORTED:    ::= De # IEEE 754r decimal floating point (128 bits)
1851  // UNSUPPORTED:    ::= Df # IEEE 754r decimal floating point (32 bits)
1852  //                 ::= Dh # IEEE 754r half-precision floating point (16 bits)
1853  //                 ::= Di # char32_t
1854  //                 ::= Ds # char16_t
1855  //                 ::= Dn # std::nullptr_t (i.e., decltype(nullptr))
1856  //                 ::= u <source-name>    # vendor extended type
1857  switch (T->getKind()) {
1858  case BuiltinType::Void: Out << 'v'; break;
1859  case BuiltinType::Bool: Out << 'b'; break;
1860  case BuiltinType::Char_U: case BuiltinType::Char_S: Out << 'c'; break;
1861  case BuiltinType::UChar: Out << 'h'; break;
1862  case BuiltinType::UShort: Out << 't'; break;
1863  case BuiltinType::UInt: Out << 'j'; break;
1864  case BuiltinType::ULong: Out << 'm'; break;
1865  case BuiltinType::ULongLong: Out << 'y'; break;
1866  case BuiltinType::UInt128: Out << 'o'; break;
1867  case BuiltinType::SChar: Out << 'a'; break;
1868  case BuiltinType::WChar_S:
1869  case BuiltinType::WChar_U: Out << 'w'; break;
1870  case BuiltinType::Char16: Out << "Ds"; break;
1871  case BuiltinType::Char32: Out << "Di"; break;
1872  case BuiltinType::Short: Out << 's'; break;
1873  case BuiltinType::Int: Out << 'i'; break;
1874  case BuiltinType::Long: Out << 'l'; break;
1875  case BuiltinType::LongLong: Out << 'x'; break;
1876  case BuiltinType::Int128: Out << 'n'; break;
1877  case BuiltinType::Half: Out << "Dh"; break;
1878  case BuiltinType::Float: Out << 'f'; break;
1879  case BuiltinType::Double: Out << 'd'; break;
1880  case BuiltinType::LongDouble: Out << 'e'; break;
1881  case BuiltinType::NullPtr: Out << "Dn"; break;
1882
1883#define BUILTIN_TYPE(Id, SingletonId)
1884#define PLACEHOLDER_TYPE(Id, SingletonId) \
1885  case BuiltinType::Id:
1886#include "clang/AST/BuiltinTypes.def"
1887  case BuiltinType::Dependent:
1888    llvm_unreachable("mangling a placeholder type");
1889  case BuiltinType::ObjCId: Out << "11objc_object"; break;
1890  case BuiltinType::ObjCClass: Out << "10objc_class"; break;
1891  case BuiltinType::ObjCSel: Out << "13objc_selector"; break;
1892  case BuiltinType::OCLImage1d: Out << "11ocl_image1d"; break;
1893  case BuiltinType::OCLImage1dArray: Out << "16ocl_image1darray"; break;
1894  case BuiltinType::OCLImage1dBuffer: Out << "17ocl_image1dbuffer"; break;
1895  case BuiltinType::OCLImage2d: Out << "11ocl_image2d"; break;
1896  case BuiltinType::OCLImage2dArray: Out << "16ocl_image2darray"; break;
1897  case BuiltinType::OCLImage3d: Out << "11ocl_image3d"; break;
1898  case BuiltinType::OCLSampler: Out << "11ocl_sampler"; break;
1899  case BuiltinType::OCLEvent: Out << "9ocl_event"; break;
1900  }
1901}
1902
1903// <type>          ::= <function-type>
1904// <function-type> ::= [<CV-qualifiers>] F [Y]
1905//                      <bare-function-type> [<ref-qualifier>] E
1906// (Proposal to cxx-abi-dev, 2012-05-11)
1907void CXXNameMangler::mangleType(const FunctionProtoType *T) {
1908  // Mangle CV-qualifiers, if present.  These are 'this' qualifiers,
1909  // e.g. "const" in "int (A::*)() const".
1910  mangleQualifiers(Qualifiers::fromCVRMask(T->getTypeQuals()));
1911
1912  Out << 'F';
1913
1914  // FIXME: We don't have enough information in the AST to produce the 'Y'
1915  // encoding for extern "C" function types.
1916  mangleBareFunctionType(T, /*MangleReturnType=*/true);
1917
1918  // Mangle the ref-qualifier, if present.
1919  mangleRefQualifier(T->getRefQualifier());
1920
1921  Out << 'E';
1922}
1923void CXXNameMangler::mangleType(const FunctionNoProtoType *T) {
1924  llvm_unreachable("Can't mangle K&R function prototypes");
1925}
1926void CXXNameMangler::mangleBareFunctionType(const FunctionType *T,
1927                                            bool MangleReturnType) {
1928  // We should never be mangling something without a prototype.
1929  const FunctionProtoType *Proto = cast<FunctionProtoType>(T);
1930
1931  // Record that we're in a function type.  See mangleFunctionParam
1932  // for details on what we're trying to achieve here.
1933  FunctionTypeDepthState saved = FunctionTypeDepth.push();
1934
1935  // <bare-function-type> ::= <signature type>+
1936  if (MangleReturnType) {
1937    FunctionTypeDepth.enterResultType();
1938    mangleType(Proto->getResultType());
1939    FunctionTypeDepth.leaveResultType();
1940  }
1941
1942  if (Proto->getNumArgs() == 0 && !Proto->isVariadic()) {
1943    //   <builtin-type> ::= v   # void
1944    Out << 'v';
1945
1946    FunctionTypeDepth.pop(saved);
1947    return;
1948  }
1949
1950  for (FunctionProtoType::arg_type_iterator Arg = Proto->arg_type_begin(),
1951                                         ArgEnd = Proto->arg_type_end();
1952       Arg != ArgEnd; ++Arg)
1953    mangleType(Context.getASTContext().getSignatureParameterType(*Arg));
1954
1955  FunctionTypeDepth.pop(saved);
1956
1957  // <builtin-type>      ::= z  # ellipsis
1958  if (Proto->isVariadic())
1959    Out << 'z';
1960}
1961
1962// <type>            ::= <class-enum-type>
1963// <class-enum-type> ::= <name>
1964void CXXNameMangler::mangleType(const UnresolvedUsingType *T) {
1965  mangleName(T->getDecl());
1966}
1967
1968// <type>            ::= <class-enum-type>
1969// <class-enum-type> ::= <name>
1970void CXXNameMangler::mangleType(const EnumType *T) {
1971  mangleType(static_cast<const TagType*>(T));
1972}
1973void CXXNameMangler::mangleType(const RecordType *T) {
1974  mangleType(static_cast<const TagType*>(T));
1975}
1976void CXXNameMangler::mangleType(const TagType *T) {
1977  mangleName(T->getDecl());
1978}
1979
1980// <type>       ::= <array-type>
1981// <array-type> ::= A <positive dimension number> _ <element type>
1982//              ::= A [<dimension expression>] _ <element type>
1983void CXXNameMangler::mangleType(const ConstantArrayType *T) {
1984  Out << 'A' << T->getSize() << '_';
1985  mangleType(T->getElementType());
1986}
1987void CXXNameMangler::mangleType(const VariableArrayType *T) {
1988  Out << 'A';
1989  // decayed vla types (size 0) will just be skipped.
1990  if (T->getSizeExpr())
1991    mangleExpression(T->getSizeExpr());
1992  Out << '_';
1993  mangleType(T->getElementType());
1994}
1995void CXXNameMangler::mangleType(const DependentSizedArrayType *T) {
1996  Out << 'A';
1997  mangleExpression(T->getSizeExpr());
1998  Out << '_';
1999  mangleType(T->getElementType());
2000}
2001void CXXNameMangler::mangleType(const IncompleteArrayType *T) {
2002  Out << "A_";
2003  mangleType(T->getElementType());
2004}
2005
2006// <type>                   ::= <pointer-to-member-type>
2007// <pointer-to-member-type> ::= M <class type> <member type>
2008void CXXNameMangler::mangleType(const MemberPointerType *T) {
2009  Out << 'M';
2010  mangleType(QualType(T->getClass(), 0));
2011  QualType PointeeType = T->getPointeeType();
2012  if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(PointeeType)) {
2013    mangleType(FPT);
2014
2015    // Itanium C++ ABI 5.1.8:
2016    //
2017    //   The type of a non-static member function is considered to be different,
2018    //   for the purposes of substitution, from the type of a namespace-scope or
2019    //   static member function whose type appears similar. The types of two
2020    //   non-static member functions are considered to be different, for the
2021    //   purposes of substitution, if the functions are members of different
2022    //   classes. In other words, for the purposes of substitution, the class of
2023    //   which the function is a member is considered part of the type of
2024    //   function.
2025
2026    // Given that we already substitute member function pointers as a
2027    // whole, the net effect of this rule is just to unconditionally
2028    // suppress substitution on the function type in a member pointer.
2029    // We increment the SeqID here to emulate adding an entry to the
2030    // substitution table.
2031    ++SeqID;
2032  } else
2033    mangleType(PointeeType);
2034}
2035
2036// <type>           ::= <template-param>
2037void CXXNameMangler::mangleType(const TemplateTypeParmType *T) {
2038  mangleTemplateParameter(T->getIndex());
2039}
2040
2041// <type>           ::= <template-param>
2042void CXXNameMangler::mangleType(const SubstTemplateTypeParmPackType *T) {
2043  // FIXME: not clear how to mangle this!
2044  // template <class T...> class A {
2045  //   template <class U...> void foo(T(*)(U) x...);
2046  // };
2047  Out << "_SUBSTPACK_";
2048}
2049
2050// <type> ::= P <type>   # pointer-to
2051void CXXNameMangler::mangleType(const PointerType *T) {
2052  Out << 'P';
2053  mangleType(T->getPointeeType());
2054}
2055void CXXNameMangler::mangleType(const ObjCObjectPointerType *T) {
2056  Out << 'P';
2057  mangleType(T->getPointeeType());
2058}
2059
2060// <type> ::= R <type>   # reference-to
2061void CXXNameMangler::mangleType(const LValueReferenceType *T) {
2062  Out << 'R';
2063  mangleType(T->getPointeeType());
2064}
2065
2066// <type> ::= O <type>   # rvalue reference-to (C++0x)
2067void CXXNameMangler::mangleType(const RValueReferenceType *T) {
2068  Out << 'O';
2069  mangleType(T->getPointeeType());
2070}
2071
2072// <type> ::= C <type>   # complex pair (C 2000)
2073void CXXNameMangler::mangleType(const ComplexType *T) {
2074  Out << 'C';
2075  mangleType(T->getElementType());
2076}
2077
2078// ARM's ABI for Neon vector types specifies that they should be mangled as
2079// if they are structs (to match ARM's initial implementation).  The
2080// vector type must be one of the special types predefined by ARM.
2081void CXXNameMangler::mangleNeonVectorType(const VectorType *T) {
2082  QualType EltType = T->getElementType();
2083  assert(EltType->isBuiltinType() && "Neon vector element not a BuiltinType");
2084  const char *EltName = 0;
2085  if (T->getVectorKind() == VectorType::NeonPolyVector) {
2086    switch (cast<BuiltinType>(EltType)->getKind()) {
2087    case BuiltinType::SChar:     EltName = "poly8_t"; break;
2088    case BuiltinType::Short:     EltName = "poly16_t"; break;
2089    default: llvm_unreachable("unexpected Neon polynomial vector element type");
2090    }
2091  } else {
2092    switch (cast<BuiltinType>(EltType)->getKind()) {
2093    case BuiltinType::SChar:     EltName = "int8_t"; break;
2094    case BuiltinType::UChar:     EltName = "uint8_t"; break;
2095    case BuiltinType::Short:     EltName = "int16_t"; break;
2096    case BuiltinType::UShort:    EltName = "uint16_t"; break;
2097    case BuiltinType::Int:       EltName = "int32_t"; break;
2098    case BuiltinType::UInt:      EltName = "uint32_t"; break;
2099    case BuiltinType::LongLong:  EltName = "int64_t"; break;
2100    case BuiltinType::ULongLong: EltName = "uint64_t"; break;
2101    case BuiltinType::Float:     EltName = "float32_t"; break;
2102    default: llvm_unreachable("unexpected Neon vector element type");
2103    }
2104  }
2105  const char *BaseName = 0;
2106  unsigned BitSize = (T->getNumElements() *
2107                      getASTContext().getTypeSize(EltType));
2108  if (BitSize == 64)
2109    BaseName = "__simd64_";
2110  else {
2111    assert(BitSize == 128 && "Neon vector type not 64 or 128 bits");
2112    BaseName = "__simd128_";
2113  }
2114  Out << strlen(BaseName) + strlen(EltName);
2115  Out << BaseName << EltName;
2116}
2117
2118// GNU extension: vector types
2119// <type>                  ::= <vector-type>
2120// <vector-type>           ::= Dv <positive dimension number> _
2121//                                    <extended element type>
2122//                         ::= Dv [<dimension expression>] _ <element type>
2123// <extended element type> ::= <element type>
2124//                         ::= p # AltiVec vector pixel
2125//                         ::= b # Altivec vector bool
2126void CXXNameMangler::mangleType(const VectorType *T) {
2127  if ((T->getVectorKind() == VectorType::NeonVector ||
2128       T->getVectorKind() == VectorType::NeonPolyVector)) {
2129    mangleNeonVectorType(T);
2130    return;
2131  }
2132  Out << "Dv" << T->getNumElements() << '_';
2133  if (T->getVectorKind() == VectorType::AltiVecPixel)
2134    Out << 'p';
2135  else if (T->getVectorKind() == VectorType::AltiVecBool)
2136    Out << 'b';
2137  else
2138    mangleType(T->getElementType());
2139}
2140void CXXNameMangler::mangleType(const ExtVectorType *T) {
2141  mangleType(static_cast<const VectorType*>(T));
2142}
2143void CXXNameMangler::mangleType(const DependentSizedExtVectorType *T) {
2144  Out << "Dv";
2145  mangleExpression(T->getSizeExpr());
2146  Out << '_';
2147  mangleType(T->getElementType());
2148}
2149
2150void CXXNameMangler::mangleType(const PackExpansionType *T) {
2151  // <type>  ::= Dp <type>          # pack expansion (C++0x)
2152  Out << "Dp";
2153  mangleType(T->getPattern());
2154}
2155
2156void CXXNameMangler::mangleType(const ObjCInterfaceType *T) {
2157  mangleSourceName(T->getDecl()->getIdentifier());
2158}
2159
2160void CXXNameMangler::mangleType(const ObjCObjectType *T) {
2161  // We don't allow overloading by different protocol qualification,
2162  // so mangling them isn't necessary.
2163  mangleType(T->getBaseType());
2164}
2165
2166void CXXNameMangler::mangleType(const BlockPointerType *T) {
2167  Out << "U13block_pointer";
2168  mangleType(T->getPointeeType());
2169}
2170
2171void CXXNameMangler::mangleType(const InjectedClassNameType *T) {
2172  // Mangle injected class name types as if the user had written the
2173  // specialization out fully.  It may not actually be possible to see
2174  // this mangling, though.
2175  mangleType(T->getInjectedSpecializationType());
2176}
2177
2178void CXXNameMangler::mangleType(const TemplateSpecializationType *T) {
2179  if (TemplateDecl *TD = T->getTemplateName().getAsTemplateDecl()) {
2180    mangleName(TD, T->getArgs(), T->getNumArgs());
2181  } else {
2182    if (mangleSubstitution(QualType(T, 0)))
2183      return;
2184
2185    mangleTemplatePrefix(T->getTemplateName());
2186
2187    // FIXME: GCC does not appear to mangle the template arguments when
2188    // the template in question is a dependent template name. Should we
2189    // emulate that badness?
2190    mangleTemplateArgs(T->getArgs(), T->getNumArgs());
2191    addSubstitution(QualType(T, 0));
2192  }
2193}
2194
2195void CXXNameMangler::mangleType(const DependentNameType *T) {
2196  // Typename types are always nested
2197  Out << 'N';
2198  manglePrefix(T->getQualifier());
2199  mangleSourceName(T->getIdentifier());
2200  Out << 'E';
2201}
2202
2203void CXXNameMangler::mangleType(const DependentTemplateSpecializationType *T) {
2204  // Dependently-scoped template types are nested if they have a prefix.
2205  Out << 'N';
2206
2207  // TODO: avoid making this TemplateName.
2208  TemplateName Prefix =
2209    getASTContext().getDependentTemplateName(T->getQualifier(),
2210                                             T->getIdentifier());
2211  mangleTemplatePrefix(Prefix);
2212
2213  // FIXME: GCC does not appear to mangle the template arguments when
2214  // the template in question is a dependent template name. Should we
2215  // emulate that badness?
2216  mangleTemplateArgs(T->getArgs(), T->getNumArgs());
2217  Out << 'E';
2218}
2219
2220void CXXNameMangler::mangleType(const TypeOfType *T) {
2221  // FIXME: this is pretty unsatisfactory, but there isn't an obvious
2222  // "extension with parameters" mangling.
2223  Out << "u6typeof";
2224}
2225
2226void CXXNameMangler::mangleType(const TypeOfExprType *T) {
2227  // FIXME: this is pretty unsatisfactory, but there isn't an obvious
2228  // "extension with parameters" mangling.
2229  Out << "u6typeof";
2230}
2231
2232void CXXNameMangler::mangleType(const DecltypeType *T) {
2233  Expr *E = T->getUnderlyingExpr();
2234
2235  // type ::= Dt <expression> E  # decltype of an id-expression
2236  //                             #   or class member access
2237  //      ::= DT <expression> E  # decltype of an expression
2238
2239  // This purports to be an exhaustive list of id-expressions and
2240  // class member accesses.  Note that we do not ignore parentheses;
2241  // parentheses change the semantics of decltype for these
2242  // expressions (and cause the mangler to use the other form).
2243  if (isa<DeclRefExpr>(E) ||
2244      isa<MemberExpr>(E) ||
2245      isa<UnresolvedLookupExpr>(E) ||
2246      isa<DependentScopeDeclRefExpr>(E) ||
2247      isa<CXXDependentScopeMemberExpr>(E) ||
2248      isa<UnresolvedMemberExpr>(E))
2249    Out << "Dt";
2250  else
2251    Out << "DT";
2252  mangleExpression(E);
2253  Out << 'E';
2254}
2255
2256void CXXNameMangler::mangleType(const UnaryTransformType *T) {
2257  // If this is dependent, we need to record that. If not, we simply
2258  // mangle it as the underlying type since they are equivalent.
2259  if (T->isDependentType()) {
2260    Out << 'U';
2261
2262    switch (T->getUTTKind()) {
2263      case UnaryTransformType::EnumUnderlyingType:
2264        Out << "3eut";
2265        break;
2266    }
2267  }
2268
2269  mangleType(T->getUnderlyingType());
2270}
2271
2272void CXXNameMangler::mangleType(const AutoType *T) {
2273  QualType D = T->getDeducedType();
2274  // <builtin-type> ::= Da  # dependent auto
2275  if (D.isNull())
2276    Out << "Da";
2277  else
2278    mangleType(D);
2279}
2280
2281void CXXNameMangler::mangleType(const AtomicType *T) {
2282  // <type> ::= U <source-name> <type>	# vendor extended type qualifier
2283  // (Until there's a standardized mangling...)
2284  Out << "U7_Atomic";
2285  mangleType(T->getValueType());
2286}
2287
2288void CXXNameMangler::mangleIntegerLiteral(QualType T,
2289                                          const llvm::APSInt &Value) {
2290  //  <expr-primary> ::= L <type> <value number> E # integer literal
2291  Out << 'L';
2292
2293  mangleType(T);
2294  if (T->isBooleanType()) {
2295    // Boolean values are encoded as 0/1.
2296    Out << (Value.getBoolValue() ? '1' : '0');
2297  } else {
2298    mangleNumber(Value);
2299  }
2300  Out << 'E';
2301
2302}
2303
2304/// Mangles a member expression.
2305void CXXNameMangler::mangleMemberExpr(const Expr *base,
2306                                      bool isArrow,
2307                                      NestedNameSpecifier *qualifier,
2308                                      NamedDecl *firstQualifierLookup,
2309                                      DeclarationName member,
2310                                      unsigned arity) {
2311  // <expression> ::= dt <expression> <unresolved-name>
2312  //              ::= pt <expression> <unresolved-name>
2313  if (base) {
2314    if (base->isImplicitCXXThis()) {
2315      // Note: GCC mangles member expressions to the implicit 'this' as
2316      // *this., whereas we represent them as this->. The Itanium C++ ABI
2317      // does not specify anything here, so we follow GCC.
2318      Out << "dtdefpT";
2319    } else {
2320      Out << (isArrow ? "pt" : "dt");
2321      mangleExpression(base);
2322    }
2323  }
2324  mangleUnresolvedName(qualifier, firstQualifierLookup, member, arity);
2325}
2326
2327/// Look at the callee of the given call expression and determine if
2328/// it's a parenthesized id-expression which would have triggered ADL
2329/// otherwise.
2330static bool isParenthesizedADLCallee(const CallExpr *call) {
2331  const Expr *callee = call->getCallee();
2332  const Expr *fn = callee->IgnoreParens();
2333
2334  // Must be parenthesized.  IgnoreParens() skips __extension__ nodes,
2335  // too, but for those to appear in the callee, it would have to be
2336  // parenthesized.
2337  if (callee == fn) return false;
2338
2339  // Must be an unresolved lookup.
2340  const UnresolvedLookupExpr *lookup = dyn_cast<UnresolvedLookupExpr>(fn);
2341  if (!lookup) return false;
2342
2343  assert(!lookup->requiresADL());
2344
2345  // Must be an unqualified lookup.
2346  if (lookup->getQualifier()) return false;
2347
2348  // Must not have found a class member.  Note that if one is a class
2349  // member, they're all class members.
2350  if (lookup->getNumDecls() > 0 &&
2351      (*lookup->decls_begin())->isCXXClassMember())
2352    return false;
2353
2354  // Otherwise, ADL would have been triggered.
2355  return true;
2356}
2357
2358void CXXNameMangler::mangleExpression(const Expr *E, unsigned Arity) {
2359  // <expression> ::= <unary operator-name> <expression>
2360  //              ::= <binary operator-name> <expression> <expression>
2361  //              ::= <trinary operator-name> <expression> <expression> <expression>
2362  //              ::= cv <type> expression           # conversion with one argument
2363  //              ::= cv <type> _ <expression>* E # conversion with a different number of arguments
2364  //              ::= st <type>                      # sizeof (a type)
2365  //              ::= at <type>                      # alignof (a type)
2366  //              ::= <template-param>
2367  //              ::= <function-param>
2368  //              ::= sr <type> <unqualified-name>                   # dependent name
2369  //              ::= sr <type> <unqualified-name> <template-args>   # dependent template-id
2370  //              ::= ds <expression> <expression>                   # expr.*expr
2371  //              ::= sZ <template-param>                            # size of a parameter pack
2372  //              ::= sZ <function-param>    # size of a function parameter pack
2373  //              ::= <expr-primary>
2374  // <expr-primary> ::= L <type> <value number> E    # integer literal
2375  //                ::= L <type <value float> E      # floating literal
2376  //                ::= L <mangled-name> E           # external name
2377  //                ::= fpT                          # 'this' expression
2378  QualType ImplicitlyConvertedToType;
2379
2380recurse:
2381  switch (E->getStmtClass()) {
2382  case Expr::NoStmtClass:
2383#define ABSTRACT_STMT(Type)
2384#define EXPR(Type, Base)
2385#define STMT(Type, Base) \
2386  case Expr::Type##Class:
2387#include "clang/AST/StmtNodes.inc"
2388    // fallthrough
2389
2390  // These all can only appear in local or variable-initialization
2391  // contexts and so should never appear in a mangling.
2392  case Expr::AddrLabelExprClass:
2393  case Expr::DesignatedInitExprClass:
2394  case Expr::ImplicitValueInitExprClass:
2395  case Expr::ParenListExprClass:
2396  case Expr::LambdaExprClass:
2397  case Expr::MSPropertyRefExprClass:
2398    llvm_unreachable("unexpected statement kind");
2399
2400  // FIXME: invent manglings for all these.
2401  case Expr::BlockExprClass:
2402  case Expr::CXXPseudoDestructorExprClass:
2403  case Expr::ChooseExprClass:
2404  case Expr::CompoundLiteralExprClass:
2405  case Expr::ExtVectorElementExprClass:
2406  case Expr::GenericSelectionExprClass:
2407  case Expr::ObjCEncodeExprClass:
2408  case Expr::ObjCIsaExprClass:
2409  case Expr::ObjCIvarRefExprClass:
2410  case Expr::ObjCMessageExprClass:
2411  case Expr::ObjCPropertyRefExprClass:
2412  case Expr::ObjCProtocolExprClass:
2413  case Expr::ObjCSelectorExprClass:
2414  case Expr::ObjCStringLiteralClass:
2415  case Expr::ObjCBoxedExprClass:
2416  case Expr::ObjCArrayLiteralClass:
2417  case Expr::ObjCDictionaryLiteralClass:
2418  case Expr::ObjCSubscriptRefExprClass:
2419  case Expr::ObjCIndirectCopyRestoreExprClass:
2420  case Expr::OffsetOfExprClass:
2421  case Expr::PredefinedExprClass:
2422  case Expr::ShuffleVectorExprClass:
2423  case Expr::StmtExprClass:
2424  case Expr::UnaryTypeTraitExprClass:
2425  case Expr::BinaryTypeTraitExprClass:
2426  case Expr::TypeTraitExprClass:
2427  case Expr::ArrayTypeTraitExprClass:
2428  case Expr::ExpressionTraitExprClass:
2429  case Expr::VAArgExprClass:
2430  case Expr::CXXUuidofExprClass:
2431  case Expr::CUDAKernelCallExprClass:
2432  case Expr::AsTypeExprClass:
2433  case Expr::PseudoObjectExprClass:
2434  case Expr::AtomicExprClass:
2435  {
2436    // As bad as this diagnostic is, it's better than crashing.
2437    DiagnosticsEngine &Diags = Context.getDiags();
2438    unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
2439                                     "cannot yet mangle expression type %0");
2440    Diags.Report(E->getExprLoc(), DiagID)
2441      << E->getStmtClassName() << E->getSourceRange();
2442    break;
2443  }
2444
2445  // Even gcc-4.5 doesn't mangle this.
2446  case Expr::BinaryConditionalOperatorClass: {
2447    DiagnosticsEngine &Diags = Context.getDiags();
2448    unsigned DiagID =
2449      Diags.getCustomDiagID(DiagnosticsEngine::Error,
2450                "?: operator with omitted middle operand cannot be mangled");
2451    Diags.Report(E->getExprLoc(), DiagID)
2452      << E->getStmtClassName() << E->getSourceRange();
2453    break;
2454  }
2455
2456  // These are used for internal purposes and cannot be meaningfully mangled.
2457  case Expr::OpaqueValueExprClass:
2458    llvm_unreachable("cannot mangle opaque value; mangling wrong thing?");
2459
2460  case Expr::InitListExprClass: {
2461    // Proposal by Jason Merrill, 2012-01-03
2462    Out << "il";
2463    const InitListExpr *InitList = cast<InitListExpr>(E);
2464    for (unsigned i = 0, e = InitList->getNumInits(); i != e; ++i)
2465      mangleExpression(InitList->getInit(i));
2466    Out << "E";
2467    break;
2468  }
2469
2470  case Expr::CXXDefaultArgExprClass:
2471    mangleExpression(cast<CXXDefaultArgExpr>(E)->getExpr(), Arity);
2472    break;
2473
2474  case Expr::SubstNonTypeTemplateParmExprClass:
2475    mangleExpression(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement(),
2476                     Arity);
2477    break;
2478
2479  case Expr::UserDefinedLiteralClass:
2480    // We follow g++'s approach of mangling a UDL as a call to the literal
2481    // operator.
2482  case Expr::CXXMemberCallExprClass: // fallthrough
2483  case Expr::CallExprClass: {
2484    const CallExpr *CE = cast<CallExpr>(E);
2485
2486    // <expression> ::= cp <simple-id> <expression>* E
2487    // We use this mangling only when the call would use ADL except
2488    // for being parenthesized.  Per discussion with David
2489    // Vandervoorde, 2011.04.25.
2490    if (isParenthesizedADLCallee(CE)) {
2491      Out << "cp";
2492      // The callee here is a parenthesized UnresolvedLookupExpr with
2493      // no qualifier and should always get mangled as a <simple-id>
2494      // anyway.
2495
2496    // <expression> ::= cl <expression>* E
2497    } else {
2498      Out << "cl";
2499    }
2500
2501    mangleExpression(CE->getCallee(), CE->getNumArgs());
2502    for (unsigned I = 0, N = CE->getNumArgs(); I != N; ++I)
2503      mangleExpression(CE->getArg(I));
2504    Out << 'E';
2505    break;
2506  }
2507
2508  case Expr::CXXNewExprClass: {
2509    const CXXNewExpr *New = cast<CXXNewExpr>(E);
2510    if (New->isGlobalNew()) Out << "gs";
2511    Out << (New->isArray() ? "na" : "nw");
2512    for (CXXNewExpr::const_arg_iterator I = New->placement_arg_begin(),
2513           E = New->placement_arg_end(); I != E; ++I)
2514      mangleExpression(*I);
2515    Out << '_';
2516    mangleType(New->getAllocatedType());
2517    if (New->hasInitializer()) {
2518      // Proposal by Jason Merrill, 2012-01-03
2519      if (New->getInitializationStyle() == CXXNewExpr::ListInit)
2520        Out << "il";
2521      else
2522        Out << "pi";
2523      const Expr *Init = New->getInitializer();
2524      if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init)) {
2525        // Directly inline the initializers.
2526        for (CXXConstructExpr::const_arg_iterator I = CCE->arg_begin(),
2527                                                  E = CCE->arg_end();
2528             I != E; ++I)
2529          mangleExpression(*I);
2530      } else if (const ParenListExpr *PLE = dyn_cast<ParenListExpr>(Init)) {
2531        for (unsigned i = 0, e = PLE->getNumExprs(); i != e; ++i)
2532          mangleExpression(PLE->getExpr(i));
2533      } else if (New->getInitializationStyle() == CXXNewExpr::ListInit &&
2534                 isa<InitListExpr>(Init)) {
2535        // Only take InitListExprs apart for list-initialization.
2536        const InitListExpr *InitList = cast<InitListExpr>(Init);
2537        for (unsigned i = 0, e = InitList->getNumInits(); i != e; ++i)
2538          mangleExpression(InitList->getInit(i));
2539      } else
2540        mangleExpression(Init);
2541    }
2542    Out << 'E';
2543    break;
2544  }
2545
2546  case Expr::MemberExprClass: {
2547    const MemberExpr *ME = cast<MemberExpr>(E);
2548    mangleMemberExpr(ME->getBase(), ME->isArrow(),
2549                     ME->getQualifier(), 0, ME->getMemberDecl()->getDeclName(),
2550                     Arity);
2551    break;
2552  }
2553
2554  case Expr::UnresolvedMemberExprClass: {
2555    const UnresolvedMemberExpr *ME = cast<UnresolvedMemberExpr>(E);
2556    mangleMemberExpr(ME->getBase(), ME->isArrow(),
2557                     ME->getQualifier(), 0, ME->getMemberName(),
2558                     Arity);
2559    if (ME->hasExplicitTemplateArgs())
2560      mangleTemplateArgs(ME->getExplicitTemplateArgs());
2561    break;
2562  }
2563
2564  case Expr::CXXDependentScopeMemberExprClass: {
2565    const CXXDependentScopeMemberExpr *ME
2566      = cast<CXXDependentScopeMemberExpr>(E);
2567    mangleMemberExpr(ME->getBase(), ME->isArrow(),
2568                     ME->getQualifier(), ME->getFirstQualifierFoundInScope(),
2569                     ME->getMember(), Arity);
2570    if (ME->hasExplicitTemplateArgs())
2571      mangleTemplateArgs(ME->getExplicitTemplateArgs());
2572    break;
2573  }
2574
2575  case Expr::UnresolvedLookupExprClass: {
2576    const UnresolvedLookupExpr *ULE = cast<UnresolvedLookupExpr>(E);
2577    mangleUnresolvedName(ULE->getQualifier(), 0, ULE->getName(), Arity);
2578
2579    // All the <unresolved-name> productions end in a
2580    // base-unresolved-name, where <template-args> are just tacked
2581    // onto the end.
2582    if (ULE->hasExplicitTemplateArgs())
2583      mangleTemplateArgs(ULE->getExplicitTemplateArgs());
2584    break;
2585  }
2586
2587  case Expr::CXXUnresolvedConstructExprClass: {
2588    const CXXUnresolvedConstructExpr *CE = cast<CXXUnresolvedConstructExpr>(E);
2589    unsigned N = CE->arg_size();
2590
2591    Out << "cv";
2592    mangleType(CE->getType());
2593    if (N != 1) Out << '_';
2594    for (unsigned I = 0; I != N; ++I) mangleExpression(CE->getArg(I));
2595    if (N != 1) Out << 'E';
2596    break;
2597  }
2598
2599  case Expr::CXXTemporaryObjectExprClass:
2600  case Expr::CXXConstructExprClass: {
2601    const CXXConstructExpr *CE = cast<CXXConstructExpr>(E);
2602    unsigned N = CE->getNumArgs();
2603
2604    // Proposal by Jason Merrill, 2012-01-03
2605    if (CE->isListInitialization())
2606      Out << "tl";
2607    else
2608      Out << "cv";
2609    mangleType(CE->getType());
2610    if (N != 1) Out << '_';
2611    for (unsigned I = 0; I != N; ++I) mangleExpression(CE->getArg(I));
2612    if (N != 1) Out << 'E';
2613    break;
2614  }
2615
2616  case Expr::CXXScalarValueInitExprClass:
2617    Out <<"cv";
2618    mangleType(E->getType());
2619    Out <<"_E";
2620    break;
2621
2622  case Expr::CXXNoexceptExprClass:
2623    Out << "nx";
2624    mangleExpression(cast<CXXNoexceptExpr>(E)->getOperand());
2625    break;
2626
2627  case Expr::UnaryExprOrTypeTraitExprClass: {
2628    const UnaryExprOrTypeTraitExpr *SAE = cast<UnaryExprOrTypeTraitExpr>(E);
2629
2630    if (!SAE->isInstantiationDependent()) {
2631      // Itanium C++ ABI:
2632      //   If the operand of a sizeof or alignof operator is not
2633      //   instantiation-dependent it is encoded as an integer literal
2634      //   reflecting the result of the operator.
2635      //
2636      //   If the result of the operator is implicitly converted to a known
2637      //   integer type, that type is used for the literal; otherwise, the type
2638      //   of std::size_t or std::ptrdiff_t is used.
2639      QualType T = (ImplicitlyConvertedToType.isNull() ||
2640                    !ImplicitlyConvertedToType->isIntegerType())? SAE->getType()
2641                                                    : ImplicitlyConvertedToType;
2642      llvm::APSInt V = SAE->EvaluateKnownConstInt(Context.getASTContext());
2643      mangleIntegerLiteral(T, V);
2644      break;
2645    }
2646
2647    switch(SAE->getKind()) {
2648    case UETT_SizeOf:
2649      Out << 's';
2650      break;
2651    case UETT_AlignOf:
2652      Out << 'a';
2653      break;
2654    case UETT_VecStep:
2655      DiagnosticsEngine &Diags = Context.getDiags();
2656      unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
2657                                     "cannot yet mangle vec_step expression");
2658      Diags.Report(DiagID);
2659      return;
2660    }
2661    if (SAE->isArgumentType()) {
2662      Out << 't';
2663      mangleType(SAE->getArgumentType());
2664    } else {
2665      Out << 'z';
2666      mangleExpression(SAE->getArgumentExpr());
2667    }
2668    break;
2669  }
2670
2671  case Expr::CXXThrowExprClass: {
2672    const CXXThrowExpr *TE = cast<CXXThrowExpr>(E);
2673
2674    // Proposal from David Vandervoorde, 2010.06.30
2675    if (TE->getSubExpr()) {
2676      Out << "tw";
2677      mangleExpression(TE->getSubExpr());
2678    } else {
2679      Out << "tr";
2680    }
2681    break;
2682  }
2683
2684  case Expr::CXXTypeidExprClass: {
2685    const CXXTypeidExpr *TIE = cast<CXXTypeidExpr>(E);
2686
2687    // Proposal from David Vandervoorde, 2010.06.30
2688    if (TIE->isTypeOperand()) {
2689      Out << "ti";
2690      mangleType(TIE->getTypeOperand());
2691    } else {
2692      Out << "te";
2693      mangleExpression(TIE->getExprOperand());
2694    }
2695    break;
2696  }
2697
2698  case Expr::CXXDeleteExprClass: {
2699    const CXXDeleteExpr *DE = cast<CXXDeleteExpr>(E);
2700
2701    // Proposal from David Vandervoorde, 2010.06.30
2702    if (DE->isGlobalDelete()) Out << "gs";
2703    Out << (DE->isArrayForm() ? "da" : "dl");
2704    mangleExpression(DE->getArgument());
2705    break;
2706  }
2707
2708  case Expr::UnaryOperatorClass: {
2709    const UnaryOperator *UO = cast<UnaryOperator>(E);
2710    mangleOperatorName(UnaryOperator::getOverloadedOperator(UO->getOpcode()),
2711                       /*Arity=*/1);
2712    mangleExpression(UO->getSubExpr());
2713    break;
2714  }
2715
2716  case Expr::ArraySubscriptExprClass: {
2717    const ArraySubscriptExpr *AE = cast<ArraySubscriptExpr>(E);
2718
2719    // Array subscript is treated as a syntactically weird form of
2720    // binary operator.
2721    Out << "ix";
2722    mangleExpression(AE->getLHS());
2723    mangleExpression(AE->getRHS());
2724    break;
2725  }
2726
2727  case Expr::CompoundAssignOperatorClass: // fallthrough
2728  case Expr::BinaryOperatorClass: {
2729    const BinaryOperator *BO = cast<BinaryOperator>(E);
2730    if (BO->getOpcode() == BO_PtrMemD)
2731      Out << "ds";
2732    else
2733      mangleOperatorName(BinaryOperator::getOverloadedOperator(BO->getOpcode()),
2734                         /*Arity=*/2);
2735    mangleExpression(BO->getLHS());
2736    mangleExpression(BO->getRHS());
2737    break;
2738  }
2739
2740  case Expr::ConditionalOperatorClass: {
2741    const ConditionalOperator *CO = cast<ConditionalOperator>(E);
2742    mangleOperatorName(OO_Conditional, /*Arity=*/3);
2743    mangleExpression(CO->getCond());
2744    mangleExpression(CO->getLHS(), Arity);
2745    mangleExpression(CO->getRHS(), Arity);
2746    break;
2747  }
2748
2749  case Expr::ImplicitCastExprClass: {
2750    ImplicitlyConvertedToType = E->getType();
2751    E = cast<ImplicitCastExpr>(E)->getSubExpr();
2752    goto recurse;
2753  }
2754
2755  case Expr::ObjCBridgedCastExprClass: {
2756    // Mangle ownership casts as a vendor extended operator __bridge,
2757    // __bridge_transfer, or __bridge_retain.
2758    StringRef Kind = cast<ObjCBridgedCastExpr>(E)->getBridgeKindName();
2759    Out << "v1U" << Kind.size() << Kind;
2760  }
2761  // Fall through to mangle the cast itself.
2762
2763  case Expr::CStyleCastExprClass:
2764  case Expr::CXXStaticCastExprClass:
2765  case Expr::CXXDynamicCastExprClass:
2766  case Expr::CXXReinterpretCastExprClass:
2767  case Expr::CXXConstCastExprClass:
2768  case Expr::CXXFunctionalCastExprClass: {
2769    const ExplicitCastExpr *ECE = cast<ExplicitCastExpr>(E);
2770    Out << "cv";
2771    mangleType(ECE->getType());
2772    mangleExpression(ECE->getSubExpr());
2773    break;
2774  }
2775
2776  case Expr::CXXOperatorCallExprClass: {
2777    const CXXOperatorCallExpr *CE = cast<CXXOperatorCallExpr>(E);
2778    unsigned NumArgs = CE->getNumArgs();
2779    mangleOperatorName(CE->getOperator(), /*Arity=*/NumArgs);
2780    // Mangle the arguments.
2781    for (unsigned i = 0; i != NumArgs; ++i)
2782      mangleExpression(CE->getArg(i));
2783    break;
2784  }
2785
2786  case Expr::ParenExprClass:
2787    mangleExpression(cast<ParenExpr>(E)->getSubExpr(), Arity);
2788    break;
2789
2790  case Expr::DeclRefExprClass: {
2791    const NamedDecl *D = cast<DeclRefExpr>(E)->getDecl();
2792
2793    switch (D->getKind()) {
2794    default:
2795      //  <expr-primary> ::= L <mangled-name> E # external name
2796      Out << 'L';
2797      mangle(D, "_Z");
2798      Out << 'E';
2799      break;
2800
2801    case Decl::ParmVar:
2802      mangleFunctionParam(cast<ParmVarDecl>(D));
2803      break;
2804
2805    case Decl::EnumConstant: {
2806      const EnumConstantDecl *ED = cast<EnumConstantDecl>(D);
2807      mangleIntegerLiteral(ED->getType(), ED->getInitVal());
2808      break;
2809    }
2810
2811    case Decl::NonTypeTemplateParm: {
2812      const NonTypeTemplateParmDecl *PD = cast<NonTypeTemplateParmDecl>(D);
2813      mangleTemplateParameter(PD->getIndex());
2814      break;
2815    }
2816
2817    }
2818
2819    break;
2820  }
2821
2822  case Expr::SubstNonTypeTemplateParmPackExprClass:
2823    // FIXME: not clear how to mangle this!
2824    // template <unsigned N...> class A {
2825    //   template <class U...> void foo(U (&x)[N]...);
2826    // };
2827    Out << "_SUBSTPACK_";
2828    break;
2829
2830  case Expr::FunctionParmPackExprClass: {
2831    // FIXME: not clear how to mangle this!
2832    const FunctionParmPackExpr *FPPE = cast<FunctionParmPackExpr>(E);
2833    Out << "v110_SUBSTPACK";
2834    mangleFunctionParam(FPPE->getParameterPack());
2835    break;
2836  }
2837
2838  case Expr::DependentScopeDeclRefExprClass: {
2839    const DependentScopeDeclRefExpr *DRE = cast<DependentScopeDeclRefExpr>(E);
2840    mangleUnresolvedName(DRE->getQualifier(), 0, DRE->getDeclName(), Arity);
2841
2842    // All the <unresolved-name> productions end in a
2843    // base-unresolved-name, where <template-args> are just tacked
2844    // onto the end.
2845    if (DRE->hasExplicitTemplateArgs())
2846      mangleTemplateArgs(DRE->getExplicitTemplateArgs());
2847    break;
2848  }
2849
2850  case Expr::CXXBindTemporaryExprClass:
2851    mangleExpression(cast<CXXBindTemporaryExpr>(E)->getSubExpr());
2852    break;
2853
2854  case Expr::ExprWithCleanupsClass:
2855    mangleExpression(cast<ExprWithCleanups>(E)->getSubExpr(), Arity);
2856    break;
2857
2858  case Expr::FloatingLiteralClass: {
2859    const FloatingLiteral *FL = cast<FloatingLiteral>(E);
2860    Out << 'L';
2861    mangleType(FL->getType());
2862    mangleFloat(FL->getValue());
2863    Out << 'E';
2864    break;
2865  }
2866
2867  case Expr::CharacterLiteralClass:
2868    Out << 'L';
2869    mangleType(E->getType());
2870    Out << cast<CharacterLiteral>(E)->getValue();
2871    Out << 'E';
2872    break;
2873
2874  // FIXME. __objc_yes/__objc_no are mangled same as true/false
2875  case Expr::ObjCBoolLiteralExprClass:
2876    Out << "Lb";
2877    Out << (cast<ObjCBoolLiteralExpr>(E)->getValue() ? '1' : '0');
2878    Out << 'E';
2879    break;
2880
2881  case Expr::CXXBoolLiteralExprClass:
2882    Out << "Lb";
2883    Out << (cast<CXXBoolLiteralExpr>(E)->getValue() ? '1' : '0');
2884    Out << 'E';
2885    break;
2886
2887  case Expr::IntegerLiteralClass: {
2888    llvm::APSInt Value(cast<IntegerLiteral>(E)->getValue());
2889    if (E->getType()->isSignedIntegerType())
2890      Value.setIsSigned(true);
2891    mangleIntegerLiteral(E->getType(), Value);
2892    break;
2893  }
2894
2895  case Expr::ImaginaryLiteralClass: {
2896    const ImaginaryLiteral *IE = cast<ImaginaryLiteral>(E);
2897    // Mangle as if a complex literal.
2898    // Proposal from David Vandevoorde, 2010.06.30.
2899    Out << 'L';
2900    mangleType(E->getType());
2901    if (const FloatingLiteral *Imag =
2902          dyn_cast<FloatingLiteral>(IE->getSubExpr())) {
2903      // Mangle a floating-point zero of the appropriate type.
2904      mangleFloat(llvm::APFloat(Imag->getValue().getSemantics()));
2905      Out << '_';
2906      mangleFloat(Imag->getValue());
2907    } else {
2908      Out << "0_";
2909      llvm::APSInt Value(cast<IntegerLiteral>(IE->getSubExpr())->getValue());
2910      if (IE->getSubExpr()->getType()->isSignedIntegerType())
2911        Value.setIsSigned(true);
2912      mangleNumber(Value);
2913    }
2914    Out << 'E';
2915    break;
2916  }
2917
2918  case Expr::StringLiteralClass: {
2919    // Revised proposal from David Vandervoorde, 2010.07.15.
2920    Out << 'L';
2921    assert(isa<ConstantArrayType>(E->getType()));
2922    mangleType(E->getType());
2923    Out << 'E';
2924    break;
2925  }
2926
2927  case Expr::GNUNullExprClass:
2928    // FIXME: should this really be mangled the same as nullptr?
2929    // fallthrough
2930
2931  case Expr::CXXNullPtrLiteralExprClass: {
2932    // Proposal from David Vandervoorde, 2010.06.30, as
2933    // modified by ABI list discussion.
2934    Out << "LDnE";
2935    break;
2936  }
2937
2938  case Expr::PackExpansionExprClass:
2939    Out << "sp";
2940    mangleExpression(cast<PackExpansionExpr>(E)->getPattern());
2941    break;
2942
2943  case Expr::SizeOfPackExprClass: {
2944    Out << "sZ";
2945    const NamedDecl *Pack = cast<SizeOfPackExpr>(E)->getPack();
2946    if (const TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Pack))
2947      mangleTemplateParameter(TTP->getIndex());
2948    else if (const NonTypeTemplateParmDecl *NTTP
2949                = dyn_cast<NonTypeTemplateParmDecl>(Pack))
2950      mangleTemplateParameter(NTTP->getIndex());
2951    else if (const TemplateTemplateParmDecl *TempTP
2952                                    = dyn_cast<TemplateTemplateParmDecl>(Pack))
2953      mangleTemplateParameter(TempTP->getIndex());
2954    else
2955      mangleFunctionParam(cast<ParmVarDecl>(Pack));
2956    break;
2957  }
2958
2959  case Expr::MaterializeTemporaryExprClass: {
2960    mangleExpression(cast<MaterializeTemporaryExpr>(E)->GetTemporaryExpr());
2961    break;
2962  }
2963
2964  case Expr::CXXThisExprClass:
2965    Out << "fpT";
2966    break;
2967  }
2968}
2969
2970/// Mangle an expression which refers to a parameter variable.
2971///
2972/// <expression>     ::= <function-param>
2973/// <function-param> ::= fp <top-level CV-qualifiers> _      # L == 0, I == 0
2974/// <function-param> ::= fp <top-level CV-qualifiers>
2975///                      <parameter-2 non-negative number> _ # L == 0, I > 0
2976/// <function-param> ::= fL <L-1 non-negative number>
2977///                      p <top-level CV-qualifiers> _       # L > 0, I == 0
2978/// <function-param> ::= fL <L-1 non-negative number>
2979///                      p <top-level CV-qualifiers>
2980///                      <I-1 non-negative number> _         # L > 0, I > 0
2981///
2982/// L is the nesting depth of the parameter, defined as 1 if the
2983/// parameter comes from the innermost function prototype scope
2984/// enclosing the current context, 2 if from the next enclosing
2985/// function prototype scope, and so on, with one special case: if
2986/// we've processed the full parameter clause for the innermost
2987/// function type, then L is one less.  This definition conveniently
2988/// makes it irrelevant whether a function's result type was written
2989/// trailing or leading, but is otherwise overly complicated; the
2990/// numbering was first designed without considering references to
2991/// parameter in locations other than return types, and then the
2992/// mangling had to be generalized without changing the existing
2993/// manglings.
2994///
2995/// I is the zero-based index of the parameter within its parameter
2996/// declaration clause.  Note that the original ABI document describes
2997/// this using 1-based ordinals.
2998void CXXNameMangler::mangleFunctionParam(const ParmVarDecl *parm) {
2999  unsigned parmDepth = parm->getFunctionScopeDepth();
3000  unsigned parmIndex = parm->getFunctionScopeIndex();
3001
3002  // Compute 'L'.
3003  // parmDepth does not include the declaring function prototype.
3004  // FunctionTypeDepth does account for that.
3005  assert(parmDepth < FunctionTypeDepth.getDepth());
3006  unsigned nestingDepth = FunctionTypeDepth.getDepth() - parmDepth;
3007  if (FunctionTypeDepth.isInResultType())
3008    nestingDepth--;
3009
3010  if (nestingDepth == 0) {
3011    Out << "fp";
3012  } else {
3013    Out << "fL" << (nestingDepth - 1) << 'p';
3014  }
3015
3016  // Top-level qualifiers.  We don't have to worry about arrays here,
3017  // because parameters declared as arrays should already have been
3018  // transformed to have pointer type. FIXME: apparently these don't
3019  // get mangled if used as an rvalue of a known non-class type?
3020  assert(!parm->getType()->isArrayType()
3021         && "parameter's type is still an array type?");
3022  mangleQualifiers(parm->getType().getQualifiers());
3023
3024  // Parameter index.
3025  if (parmIndex != 0) {
3026    Out << (parmIndex - 1);
3027  }
3028  Out << '_';
3029}
3030
3031void CXXNameMangler::mangleCXXCtorType(CXXCtorType T) {
3032  // <ctor-dtor-name> ::= C1  # complete object constructor
3033  //                  ::= C2  # base object constructor
3034  //                  ::= C3  # complete object allocating constructor
3035  //
3036  switch (T) {
3037  case Ctor_Complete:
3038    Out << "C1";
3039    break;
3040  case Ctor_Base:
3041    Out << "C2";
3042    break;
3043  case Ctor_CompleteAllocating:
3044    Out << "C3";
3045    break;
3046  }
3047}
3048
3049void CXXNameMangler::mangleCXXDtorType(CXXDtorType T) {
3050  // <ctor-dtor-name> ::= D0  # deleting destructor
3051  //                  ::= D1  # complete object destructor
3052  //                  ::= D2  # base object destructor
3053  //
3054  switch (T) {
3055  case Dtor_Deleting:
3056    Out << "D0";
3057    break;
3058  case Dtor_Complete:
3059    Out << "D1";
3060    break;
3061  case Dtor_Base:
3062    Out << "D2";
3063    break;
3064  }
3065}
3066
3067void CXXNameMangler::mangleTemplateArgs(
3068                          const ASTTemplateArgumentListInfo &TemplateArgs) {
3069  // <template-args> ::= I <template-arg>+ E
3070  Out << 'I';
3071  for (unsigned i = 0, e = TemplateArgs.NumTemplateArgs; i != e; ++i)
3072    mangleTemplateArg(TemplateArgs.getTemplateArgs()[i].getArgument());
3073  Out << 'E';
3074}
3075
3076void CXXNameMangler::mangleTemplateArgs(const TemplateArgumentList &AL) {
3077  // <template-args> ::= I <template-arg>+ E
3078  Out << 'I';
3079  for (unsigned i = 0, e = AL.size(); i != e; ++i)
3080    mangleTemplateArg(AL[i]);
3081  Out << 'E';
3082}
3083
3084void CXXNameMangler::mangleTemplateArgs(const TemplateArgument *TemplateArgs,
3085                                        unsigned NumTemplateArgs) {
3086  // <template-args> ::= I <template-arg>+ E
3087  Out << 'I';
3088  for (unsigned i = 0; i != NumTemplateArgs; ++i)
3089    mangleTemplateArg(TemplateArgs[i]);
3090  Out << 'E';
3091}
3092
3093void CXXNameMangler::mangleTemplateArg(TemplateArgument A) {
3094  // <template-arg> ::= <type>              # type or template
3095  //                ::= X <expression> E    # expression
3096  //                ::= <expr-primary>      # simple expressions
3097  //                ::= J <template-arg>* E # argument pack
3098  //                ::= sp <expression>     # pack expansion of (C++0x)
3099  if (!A.isInstantiationDependent() || A.isDependent())
3100    A = Context.getASTContext().getCanonicalTemplateArgument(A);
3101
3102  switch (A.getKind()) {
3103  case TemplateArgument::Null:
3104    llvm_unreachable("Cannot mangle NULL template argument");
3105
3106  case TemplateArgument::Type:
3107    mangleType(A.getAsType());
3108    break;
3109  case TemplateArgument::Template:
3110    // This is mangled as <type>.
3111    mangleType(A.getAsTemplate());
3112    break;
3113  case TemplateArgument::TemplateExpansion:
3114    // <type>  ::= Dp <type>          # pack expansion (C++0x)
3115    Out << "Dp";
3116    mangleType(A.getAsTemplateOrTemplatePattern());
3117    break;
3118  case TemplateArgument::Expression: {
3119    // It's possible to end up with a DeclRefExpr here in certain
3120    // dependent cases, in which case we should mangle as a
3121    // declaration.
3122    const Expr *E = A.getAsExpr()->IgnoreParens();
3123    if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
3124      const ValueDecl *D = DRE->getDecl();
3125      if (isa<VarDecl>(D) || isa<FunctionDecl>(D)) {
3126        Out << "L";
3127        mangle(D, "_Z");
3128        Out << 'E';
3129        break;
3130      }
3131    }
3132
3133    Out << 'X';
3134    mangleExpression(E);
3135    Out << 'E';
3136    break;
3137  }
3138  case TemplateArgument::Integral:
3139    mangleIntegerLiteral(A.getIntegralType(), A.getAsIntegral());
3140    break;
3141  case TemplateArgument::Declaration: {
3142    //  <expr-primary> ::= L <mangled-name> E # external name
3143    // Clang produces AST's where pointer-to-member-function expressions
3144    // and pointer-to-function expressions are represented as a declaration not
3145    // an expression. We compensate for it here to produce the correct mangling.
3146    ValueDecl *D = A.getAsDecl();
3147    bool compensateMangling = !A.isDeclForReferenceParam();
3148    if (compensateMangling) {
3149      Out << 'X';
3150      mangleOperatorName(OO_Amp, 1);
3151    }
3152
3153    Out << 'L';
3154    // References to external entities use the mangled name; if the name would
3155    // not normally be manged then mangle it as unqualified.
3156    //
3157    // FIXME: The ABI specifies that external names here should have _Z, but
3158    // gcc leaves this off.
3159    if (compensateMangling)
3160      mangle(D, "_Z");
3161    else
3162      mangle(D, "Z");
3163    Out << 'E';
3164
3165    if (compensateMangling)
3166      Out << 'E';
3167
3168    break;
3169  }
3170  case TemplateArgument::NullPtr: {
3171    //  <expr-primary> ::= L <type> 0 E
3172    Out << 'L';
3173    mangleType(A.getNullPtrType());
3174    Out << "0E";
3175    break;
3176  }
3177  case TemplateArgument::Pack: {
3178    // Note: proposal by Mike Herrick on 12/20/10
3179    Out << 'J';
3180    for (TemplateArgument::pack_iterator PA = A.pack_begin(),
3181                                      PAEnd = A.pack_end();
3182         PA != PAEnd; ++PA)
3183      mangleTemplateArg(*PA);
3184    Out << 'E';
3185  }
3186  }
3187}
3188
3189void CXXNameMangler::mangleTemplateParameter(unsigned Index) {
3190  // <template-param> ::= T_    # first template parameter
3191  //                  ::= T <parameter-2 non-negative number> _
3192  if (Index == 0)
3193    Out << "T_";
3194  else
3195    Out << 'T' << (Index - 1) << '_';
3196}
3197
3198void CXXNameMangler::mangleExistingSubstitution(QualType type) {
3199  bool result = mangleSubstitution(type);
3200  assert(result && "no existing substitution for type");
3201  (void) result;
3202}
3203
3204void CXXNameMangler::mangleExistingSubstitution(TemplateName tname) {
3205  bool result = mangleSubstitution(tname);
3206  assert(result && "no existing substitution for template name");
3207  (void) result;
3208}
3209
3210// <substitution> ::= S <seq-id> _
3211//                ::= S_
3212bool CXXNameMangler::mangleSubstitution(const NamedDecl *ND) {
3213  // Try one of the standard substitutions first.
3214  if (mangleStandardSubstitution(ND))
3215    return true;
3216
3217  ND = cast<NamedDecl>(ND->getCanonicalDecl());
3218  return mangleSubstitution(reinterpret_cast<uintptr_t>(ND));
3219}
3220
3221/// \brief Determine whether the given type has any qualifiers that are
3222/// relevant for substitutions.
3223static bool hasMangledSubstitutionQualifiers(QualType T) {
3224  Qualifiers Qs = T.getQualifiers();
3225  return Qs.getCVRQualifiers() || Qs.hasAddressSpace();
3226}
3227
3228bool CXXNameMangler::mangleSubstitution(QualType T) {
3229  if (!hasMangledSubstitutionQualifiers(T)) {
3230    if (const RecordType *RT = T->getAs<RecordType>())
3231      return mangleSubstitution(RT->getDecl());
3232  }
3233
3234  uintptr_t TypePtr = reinterpret_cast<uintptr_t>(T.getAsOpaquePtr());
3235
3236  return mangleSubstitution(TypePtr);
3237}
3238
3239bool CXXNameMangler::mangleSubstitution(TemplateName Template) {
3240  if (TemplateDecl *TD = Template.getAsTemplateDecl())
3241    return mangleSubstitution(TD);
3242
3243  Template = Context.getASTContext().getCanonicalTemplateName(Template);
3244  return mangleSubstitution(
3245                      reinterpret_cast<uintptr_t>(Template.getAsVoidPointer()));
3246}
3247
3248bool CXXNameMangler::mangleSubstitution(uintptr_t Ptr) {
3249  llvm::DenseMap<uintptr_t, unsigned>::iterator I = Substitutions.find(Ptr);
3250  if (I == Substitutions.end())
3251    return false;
3252
3253  unsigned SeqID = I->second;
3254  if (SeqID == 0)
3255    Out << "S_";
3256  else {
3257    SeqID--;
3258
3259    // <seq-id> is encoded in base-36, using digits and upper case letters.
3260    char Buffer[10];
3261    char *BufferPtr = llvm::array_endof(Buffer);
3262
3263    if (SeqID == 0) *--BufferPtr = '0';
3264
3265    while (SeqID) {
3266      assert(BufferPtr > Buffer && "Buffer overflow!");
3267
3268      char c = static_cast<char>(SeqID % 36);
3269
3270      *--BufferPtr =  (c < 10 ? '0' + c : 'A' + c - 10);
3271      SeqID /= 36;
3272    }
3273
3274    Out << 'S'
3275        << StringRef(BufferPtr, llvm::array_endof(Buffer)-BufferPtr)
3276        << '_';
3277  }
3278
3279  return true;
3280}
3281
3282static bool isCharType(QualType T) {
3283  if (T.isNull())
3284    return false;
3285
3286  return T->isSpecificBuiltinType(BuiltinType::Char_S) ||
3287    T->isSpecificBuiltinType(BuiltinType::Char_U);
3288}
3289
3290/// isCharSpecialization - Returns whether a given type is a template
3291/// specialization of a given name with a single argument of type char.
3292static bool isCharSpecialization(QualType T, const char *Name) {
3293  if (T.isNull())
3294    return false;
3295
3296  const RecordType *RT = T->getAs<RecordType>();
3297  if (!RT)
3298    return false;
3299
3300  const ClassTemplateSpecializationDecl *SD =
3301    dyn_cast<ClassTemplateSpecializationDecl>(RT->getDecl());
3302  if (!SD)
3303    return false;
3304
3305  if (!isStdNamespace(getEffectiveDeclContext(SD)))
3306    return false;
3307
3308  const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs();
3309  if (TemplateArgs.size() != 1)
3310    return false;
3311
3312  if (!isCharType(TemplateArgs[0].getAsType()))
3313    return false;
3314
3315  return SD->getIdentifier()->getName() == Name;
3316}
3317
3318template <std::size_t StrLen>
3319static bool isStreamCharSpecialization(const ClassTemplateSpecializationDecl*SD,
3320                                       const char (&Str)[StrLen]) {
3321  if (!SD->getIdentifier()->isStr(Str))
3322    return false;
3323
3324  const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs();
3325  if (TemplateArgs.size() != 2)
3326    return false;
3327
3328  if (!isCharType(TemplateArgs[0].getAsType()))
3329    return false;
3330
3331  if (!isCharSpecialization(TemplateArgs[1].getAsType(), "char_traits"))
3332    return false;
3333
3334  return true;
3335}
3336
3337bool CXXNameMangler::mangleStandardSubstitution(const NamedDecl *ND) {
3338  // <substitution> ::= St # ::std::
3339  if (const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ND)) {
3340    if (isStd(NS)) {
3341      Out << "St";
3342      return true;
3343    }
3344  }
3345
3346  if (const ClassTemplateDecl *TD = dyn_cast<ClassTemplateDecl>(ND)) {
3347    if (!isStdNamespace(getEffectiveDeclContext(TD)))
3348      return false;
3349
3350    // <substitution> ::= Sa # ::std::allocator
3351    if (TD->getIdentifier()->isStr("allocator")) {
3352      Out << "Sa";
3353      return true;
3354    }
3355
3356    // <<substitution> ::= Sb # ::std::basic_string
3357    if (TD->getIdentifier()->isStr("basic_string")) {
3358      Out << "Sb";
3359      return true;
3360    }
3361  }
3362
3363  if (const ClassTemplateSpecializationDecl *SD =
3364        dyn_cast<ClassTemplateSpecializationDecl>(ND)) {
3365    if (!isStdNamespace(getEffectiveDeclContext(SD)))
3366      return false;
3367
3368    //    <substitution> ::= Ss # ::std::basic_string<char,
3369    //                            ::std::char_traits<char>,
3370    //                            ::std::allocator<char> >
3371    if (SD->getIdentifier()->isStr("basic_string")) {
3372      const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs();
3373
3374      if (TemplateArgs.size() != 3)
3375        return false;
3376
3377      if (!isCharType(TemplateArgs[0].getAsType()))
3378        return false;
3379
3380      if (!isCharSpecialization(TemplateArgs[1].getAsType(), "char_traits"))
3381        return false;
3382
3383      if (!isCharSpecialization(TemplateArgs[2].getAsType(), "allocator"))
3384        return false;
3385
3386      Out << "Ss";
3387      return true;
3388    }
3389
3390    //    <substitution> ::= Si # ::std::basic_istream<char,
3391    //                            ::std::char_traits<char> >
3392    if (isStreamCharSpecialization(SD, "basic_istream")) {
3393      Out << "Si";
3394      return true;
3395    }
3396
3397    //    <substitution> ::= So # ::std::basic_ostream<char,
3398    //                            ::std::char_traits<char> >
3399    if (isStreamCharSpecialization(SD, "basic_ostream")) {
3400      Out << "So";
3401      return true;
3402    }
3403
3404    //    <substitution> ::= Sd # ::std::basic_iostream<char,
3405    //                            ::std::char_traits<char> >
3406    if (isStreamCharSpecialization(SD, "basic_iostream")) {
3407      Out << "Sd";
3408      return true;
3409    }
3410  }
3411  return false;
3412}
3413
3414void CXXNameMangler::addSubstitution(QualType T) {
3415  if (!hasMangledSubstitutionQualifiers(T)) {
3416    if (const RecordType *RT = T->getAs<RecordType>()) {
3417      addSubstitution(RT->getDecl());
3418      return;
3419    }
3420  }
3421
3422  uintptr_t TypePtr = reinterpret_cast<uintptr_t>(T.getAsOpaquePtr());
3423  addSubstitution(TypePtr);
3424}
3425
3426void CXXNameMangler::addSubstitution(TemplateName Template) {
3427  if (TemplateDecl *TD = Template.getAsTemplateDecl())
3428    return addSubstitution(TD);
3429
3430  Template = Context.getASTContext().getCanonicalTemplateName(Template);
3431  addSubstitution(reinterpret_cast<uintptr_t>(Template.getAsVoidPointer()));
3432}
3433
3434void CXXNameMangler::addSubstitution(uintptr_t Ptr) {
3435  assert(!Substitutions.count(Ptr) && "Substitution already exists!");
3436  Substitutions[Ptr] = SeqID++;
3437}
3438
3439//
3440
3441/// \brief Mangles the name of the declaration D and emits that name to the
3442/// given output stream.
3443///
3444/// If the declaration D requires a mangled name, this routine will emit that
3445/// mangled name to \p os and return true. Otherwise, \p os will be unchanged
3446/// and this routine will return false. In this case, the caller should just
3447/// emit the identifier of the declaration (\c D->getIdentifier()) as its
3448/// name.
3449void ItaniumMangleContext::mangleName(const NamedDecl *D,
3450                                      raw_ostream &Out) {
3451  assert((isa<FunctionDecl>(D) || isa<VarDecl>(D)) &&
3452          "Invalid mangleName() call, argument is not a variable or function!");
3453  assert(!isa<CXXConstructorDecl>(D) && !isa<CXXDestructorDecl>(D) &&
3454         "Invalid mangleName() call on 'structor decl!");
3455
3456  PrettyStackTraceDecl CrashInfo(D, SourceLocation(),
3457                                 getASTContext().getSourceManager(),
3458                                 "Mangling declaration");
3459
3460  CXXNameMangler Mangler(*this, Out, D);
3461  return Mangler.mangle(D);
3462}
3463
3464void ItaniumMangleContext::mangleCXXCtor(const CXXConstructorDecl *D,
3465                                         CXXCtorType Type,
3466                                         raw_ostream &Out) {
3467  CXXNameMangler Mangler(*this, Out, D, Type);
3468  Mangler.mangle(D);
3469}
3470
3471void ItaniumMangleContext::mangleCXXDtor(const CXXDestructorDecl *D,
3472                                         CXXDtorType Type,
3473                                         raw_ostream &Out) {
3474  CXXNameMangler Mangler(*this, Out, D, Type);
3475  Mangler.mangle(D);
3476}
3477
3478void ItaniumMangleContext::mangleThunk(const CXXMethodDecl *MD,
3479                                       const ThunkInfo &Thunk,
3480                                       raw_ostream &Out) {
3481  //  <special-name> ::= T <call-offset> <base encoding>
3482  //                      # base is the nominal target function of thunk
3483  //  <special-name> ::= Tc <call-offset> <call-offset> <base encoding>
3484  //                      # base is the nominal target function of thunk
3485  //                      # first call-offset is 'this' adjustment
3486  //                      # second call-offset is result adjustment
3487
3488  assert(!isa<CXXDestructorDecl>(MD) &&
3489         "Use mangleCXXDtor for destructor decls!");
3490  CXXNameMangler Mangler(*this, Out);
3491  Mangler.getStream() << "_ZT";
3492  if (!Thunk.Return.isEmpty())
3493    Mangler.getStream() << 'c';
3494
3495  // Mangle the 'this' pointer adjustment.
3496  Mangler.mangleCallOffset(Thunk.This.NonVirtual, Thunk.This.VCallOffsetOffset);
3497
3498  // Mangle the return pointer adjustment if there is one.
3499  if (!Thunk.Return.isEmpty())
3500    Mangler.mangleCallOffset(Thunk.Return.NonVirtual,
3501                             Thunk.Return.VBaseOffsetOffset);
3502
3503  Mangler.mangleFunctionEncoding(MD);
3504}
3505
3506void
3507ItaniumMangleContext::mangleCXXDtorThunk(const CXXDestructorDecl *DD,
3508                                         CXXDtorType Type,
3509                                         const ThisAdjustment &ThisAdjustment,
3510                                         raw_ostream &Out) {
3511  //  <special-name> ::= T <call-offset> <base encoding>
3512  //                      # base is the nominal target function of thunk
3513  CXXNameMangler Mangler(*this, Out, DD, Type);
3514  Mangler.getStream() << "_ZT";
3515
3516  // Mangle the 'this' pointer adjustment.
3517  Mangler.mangleCallOffset(ThisAdjustment.NonVirtual,
3518                           ThisAdjustment.VCallOffsetOffset);
3519
3520  Mangler.mangleFunctionEncoding(DD);
3521}
3522
3523/// mangleGuardVariable - Returns the mangled name for a guard variable
3524/// for the passed in VarDecl.
3525void ItaniumMangleContext::mangleItaniumGuardVariable(const VarDecl *D,
3526                                                      raw_ostream &Out) {
3527  //  <special-name> ::= GV <object name>       # Guard variable for one-time
3528  //                                            # initialization
3529  CXXNameMangler Mangler(*this, Out);
3530  Mangler.getStream() << "_ZGV";
3531  Mangler.mangleName(D);
3532}
3533
3534void ItaniumMangleContext::mangleReferenceTemporary(const VarDecl *D,
3535                                                    raw_ostream &Out) {
3536  // We match the GCC mangling here.
3537  //  <special-name> ::= GR <object name>
3538  CXXNameMangler Mangler(*this, Out);
3539  Mangler.getStream() << "_ZGR";
3540  Mangler.mangleName(D);
3541}
3542
3543void ItaniumMangleContext::mangleCXXVTable(const CXXRecordDecl *RD,
3544                                           raw_ostream &Out) {
3545  // <special-name> ::= TV <type>  # virtual table
3546  CXXNameMangler Mangler(*this, Out);
3547  Mangler.getStream() << "_ZTV";
3548  Mangler.mangleNameOrStandardSubstitution(RD);
3549}
3550
3551void ItaniumMangleContext::mangleCXXVTT(const CXXRecordDecl *RD,
3552                                        raw_ostream &Out) {
3553  // <special-name> ::= TT <type>  # VTT structure
3554  CXXNameMangler Mangler(*this, Out);
3555  Mangler.getStream() << "_ZTT";
3556  Mangler.mangleNameOrStandardSubstitution(RD);
3557}
3558
3559void ItaniumMangleContext::mangleCXXCtorVTable(const CXXRecordDecl *RD,
3560                                               int64_t Offset,
3561                                               const CXXRecordDecl *Type,
3562                                               raw_ostream &Out) {
3563  // <special-name> ::= TC <type> <offset number> _ <base type>
3564  CXXNameMangler Mangler(*this, Out);
3565  Mangler.getStream() << "_ZTC";
3566  Mangler.mangleNameOrStandardSubstitution(RD);
3567  Mangler.getStream() << Offset;
3568  Mangler.getStream() << '_';
3569  Mangler.mangleNameOrStandardSubstitution(Type);
3570}
3571
3572void ItaniumMangleContext::mangleCXXRTTI(QualType Ty,
3573                                         raw_ostream &Out) {
3574  // <special-name> ::= TI <type>  # typeinfo structure
3575  assert(!Ty.hasQualifiers() && "RTTI info cannot have top-level qualifiers");
3576  CXXNameMangler Mangler(*this, Out);
3577  Mangler.getStream() << "_ZTI";
3578  Mangler.mangleType(Ty);
3579}
3580
3581void ItaniumMangleContext::mangleCXXRTTIName(QualType Ty,
3582                                             raw_ostream &Out) {
3583  // <special-name> ::= TS <type>  # typeinfo name (null terminated byte string)
3584  CXXNameMangler Mangler(*this, Out);
3585  Mangler.getStream() << "_ZTS";
3586  Mangler.mangleType(Ty);
3587}
3588
3589MangleContext *clang::createItaniumMangleContext(ASTContext &Context,
3590                                                 DiagnosticsEngine &Diags) {
3591  return new ItaniumMangleContext(Context, Diags);
3592}
3593