ItaniumMangle.cpp revision eb2d1f1c88836bd5382e5d7aa8f6b85148a88b27
1//===--- ItaniumMangle.cpp - Itanium C++ Name Mangling ----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// Implements C++ name mangling according to the Itanium C++ ABI,
11// which is used in GCC 3.2 and newer (and many compilers that are
12// ABI-compatible with GCC):
13//
14//   http://www.codesourcery.com/public/cxx-abi/abi.html
15//
16//===----------------------------------------------------------------------===//
17#include "clang/AST/Mangle.h"
18#include "clang/AST/ASTContext.h"
19#include "clang/AST/Decl.h"
20#include "clang/AST/DeclCXX.h"
21#include "clang/AST/DeclObjC.h"
22#include "clang/AST/DeclTemplate.h"
23#include "clang/AST/ExprCXX.h"
24#include "clang/AST/ExprObjC.h"
25#include "clang/AST/TypeLoc.h"
26#include "clang/Basic/ABI.h"
27#include "clang/Basic/SourceManager.h"
28#include "clang/Basic/TargetInfo.h"
29#include "llvm/ADT/StringExtras.h"
30#include "llvm/Support/raw_ostream.h"
31#include "llvm/Support/ErrorHandling.h"
32
33#define MANGLE_CHECKER 0
34
35#if MANGLE_CHECKER
36#include <cxxabi.h>
37#endif
38
39using namespace clang;
40
41namespace {
42
43static const CXXRecordDecl *GetLocalClassDecl(const NamedDecl *ND) {
44  const DeclContext *DC = dyn_cast<DeclContext>(ND);
45  if (!DC)
46    DC = ND->getDeclContext();
47  while (!DC->isNamespace() && !DC->isTranslationUnit()) {
48    if (isa<FunctionDecl>(DC->getParent()))
49      return dyn_cast<CXXRecordDecl>(DC);
50    DC = DC->getParent();
51  }
52  return 0;
53}
54
55static const FunctionDecl *getStructor(const FunctionDecl *fn) {
56  if (const FunctionTemplateDecl *ftd = fn->getPrimaryTemplate())
57    return ftd->getTemplatedDecl();
58
59  return fn;
60}
61
62static const NamedDecl *getStructor(const NamedDecl *decl) {
63  const FunctionDecl *fn = dyn_cast_or_null<FunctionDecl>(decl);
64  return (fn ? getStructor(fn) : decl);
65}
66
67static const unsigned UnknownArity = ~0U;
68
69class ItaniumMangleContext : public MangleContext {
70  llvm::DenseMap<const TagDecl *, uint64_t> AnonStructIds;
71  unsigned Discriminator;
72  llvm::DenseMap<const NamedDecl*, unsigned> Uniquifier;
73
74public:
75  explicit ItaniumMangleContext(ASTContext &Context,
76                                Diagnostic &Diags)
77    : MangleContext(Context, Diags) { }
78
79  uint64_t getAnonymousStructId(const TagDecl *TD) {
80    std::pair<llvm::DenseMap<const TagDecl *,
81      uint64_t>::iterator, bool> Result =
82      AnonStructIds.insert(std::make_pair(TD, AnonStructIds.size()));
83    return Result.first->second;
84  }
85
86  void startNewFunction() {
87    MangleContext::startNewFunction();
88    mangleInitDiscriminator();
89  }
90
91  /// @name Mangler Entry Points
92  /// @{
93
94  bool shouldMangleDeclName(const NamedDecl *D);
95  void mangleName(const NamedDecl *D, raw_ostream &);
96  void mangleThunk(const CXXMethodDecl *MD,
97                   const ThunkInfo &Thunk,
98                   raw_ostream &);
99  void mangleCXXDtorThunk(const CXXDestructorDecl *DD, CXXDtorType Type,
100                          const ThisAdjustment &ThisAdjustment,
101                          raw_ostream &);
102  void mangleReferenceTemporary(const VarDecl *D,
103                                raw_ostream &);
104  void mangleCXXVTable(const CXXRecordDecl *RD,
105                       raw_ostream &);
106  void mangleCXXVTT(const CXXRecordDecl *RD,
107                    raw_ostream &);
108  void mangleCXXCtorVTable(const CXXRecordDecl *RD, int64_t Offset,
109                           const CXXRecordDecl *Type,
110                           raw_ostream &);
111  void mangleCXXRTTI(QualType T, raw_ostream &);
112  void mangleCXXRTTIName(QualType T, raw_ostream &);
113  void mangleCXXCtor(const CXXConstructorDecl *D, CXXCtorType Type,
114                     raw_ostream &);
115  void mangleCXXDtor(const CXXDestructorDecl *D, CXXDtorType Type,
116                     raw_ostream &);
117
118  void mangleItaniumGuardVariable(const VarDecl *D, raw_ostream &);
119
120  void mangleInitDiscriminator() {
121    Discriminator = 0;
122  }
123
124  bool getNextDiscriminator(const NamedDecl *ND, unsigned &disc) {
125    unsigned &discriminator = Uniquifier[ND];
126    if (!discriminator)
127      discriminator = ++Discriminator;
128    if (discriminator == 1)
129      return false;
130    disc = discriminator-2;
131    return true;
132  }
133  /// @}
134};
135
136/// CXXNameMangler - Manage the mangling of a single name.
137class CXXNameMangler {
138  ItaniumMangleContext &Context;
139  raw_ostream &Out;
140
141  /// The "structor" is the top-level declaration being mangled, if
142  /// that's not a template specialization; otherwise it's the pattern
143  /// for that specialization.
144  const NamedDecl *Structor;
145  unsigned StructorType;
146
147  /// SeqID - The next subsitution sequence number.
148  unsigned SeqID;
149
150  class FunctionTypeDepthState {
151    unsigned Bits;
152
153    enum { InResultTypeMask = 1 };
154
155  public:
156    FunctionTypeDepthState() : Bits(0) {}
157
158    /// The number of function types we're inside.
159    unsigned getDepth() const {
160      return Bits >> 1;
161    }
162
163    /// True if we're in the return type of the innermost function type.
164    bool isInResultType() const {
165      return Bits & InResultTypeMask;
166    }
167
168    FunctionTypeDepthState push() {
169      FunctionTypeDepthState tmp = *this;
170      Bits = (Bits & ~InResultTypeMask) + 2;
171      return tmp;
172    }
173
174    void enterResultType() {
175      Bits |= InResultTypeMask;
176    }
177
178    void leaveResultType() {
179      Bits &= ~InResultTypeMask;
180    }
181
182    void pop(FunctionTypeDepthState saved) {
183      assert(getDepth() == saved.getDepth() + 1);
184      Bits = saved.Bits;
185    }
186
187  } FunctionTypeDepth;
188
189  llvm::DenseMap<uintptr_t, unsigned> Substitutions;
190
191  ASTContext &getASTContext() const { return Context.getASTContext(); }
192
193public:
194  CXXNameMangler(ItaniumMangleContext &C, raw_ostream &Out_,
195                 const NamedDecl *D = 0)
196    : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(0),
197      SeqID(0) {
198    // These can't be mangled without a ctor type or dtor type.
199    assert(!D || (!isa<CXXDestructorDecl>(D) &&
200                  !isa<CXXConstructorDecl>(D)));
201  }
202  CXXNameMangler(ItaniumMangleContext &C, raw_ostream &Out_,
203                 const CXXConstructorDecl *D, CXXCtorType Type)
204    : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(Type),
205      SeqID(0) { }
206  CXXNameMangler(ItaniumMangleContext &C, raw_ostream &Out_,
207                 const CXXDestructorDecl *D, CXXDtorType Type)
208    : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(Type),
209      SeqID(0) { }
210
211#if MANGLE_CHECKER
212  ~CXXNameMangler() {
213    if (Out.str()[0] == '\01')
214      return;
215
216    int status = 0;
217    char *result = abi::__cxa_demangle(Out.str().str().c_str(), 0, 0, &status);
218    assert(status == 0 && "Could not demangle mangled name!");
219    free(result);
220  }
221#endif
222  raw_ostream &getStream() { return Out; }
223
224  void mangle(const NamedDecl *D, StringRef Prefix = "_Z");
225  void mangleCallOffset(int64_t NonVirtual, int64_t Virtual);
226  void mangleNumber(const llvm::APSInt &I);
227  void mangleNumber(int64_t Number);
228  void mangleFloat(const llvm::APFloat &F);
229  void mangleFunctionEncoding(const FunctionDecl *FD);
230  void mangleName(const NamedDecl *ND);
231  void mangleType(QualType T);
232  void mangleNameOrStandardSubstitution(const NamedDecl *ND);
233
234private:
235  bool mangleSubstitution(const NamedDecl *ND);
236  bool mangleSubstitution(QualType T);
237  bool mangleSubstitution(TemplateName Template);
238  bool mangleSubstitution(uintptr_t Ptr);
239
240  void mangleExistingSubstitution(QualType type);
241  void mangleExistingSubstitution(TemplateName name);
242
243  bool mangleStandardSubstitution(const NamedDecl *ND);
244
245  void addSubstitution(const NamedDecl *ND) {
246    ND = cast<NamedDecl>(ND->getCanonicalDecl());
247
248    addSubstitution(reinterpret_cast<uintptr_t>(ND));
249  }
250  void addSubstitution(QualType T);
251  void addSubstitution(TemplateName Template);
252  void addSubstitution(uintptr_t Ptr);
253
254  void mangleUnresolvedPrefix(NestedNameSpecifier *qualifier,
255                              NamedDecl *firstQualifierLookup,
256                              bool recursive = false);
257  void mangleUnresolvedName(NestedNameSpecifier *qualifier,
258                            NamedDecl *firstQualifierLookup,
259                            DeclarationName name,
260                            unsigned KnownArity = UnknownArity);
261
262  void mangleName(const TemplateDecl *TD,
263                  const TemplateArgument *TemplateArgs,
264                  unsigned NumTemplateArgs);
265  void mangleUnqualifiedName(const NamedDecl *ND) {
266    mangleUnqualifiedName(ND, ND->getDeclName(), UnknownArity);
267  }
268  void mangleUnqualifiedName(const NamedDecl *ND, DeclarationName Name,
269                             unsigned KnownArity);
270  void mangleUnscopedName(const NamedDecl *ND);
271  void mangleUnscopedTemplateName(const TemplateDecl *ND);
272  void mangleUnscopedTemplateName(TemplateName);
273  void mangleSourceName(const IdentifierInfo *II);
274  void mangleLocalName(const NamedDecl *ND);
275  void mangleNestedName(const NamedDecl *ND, const DeclContext *DC,
276                        bool NoFunction=false);
277  void mangleNestedName(const TemplateDecl *TD,
278                        const TemplateArgument *TemplateArgs,
279                        unsigned NumTemplateArgs);
280  void manglePrefix(NestedNameSpecifier *qualifier);
281  void manglePrefix(const DeclContext *DC, bool NoFunction=false);
282  void manglePrefix(QualType type);
283  void mangleTemplatePrefix(const TemplateDecl *ND);
284  void mangleTemplatePrefix(TemplateName Template);
285  void mangleOperatorName(OverloadedOperatorKind OO, unsigned Arity);
286  void mangleQualifiers(Qualifiers Quals);
287  void mangleRefQualifier(RefQualifierKind RefQualifier);
288
289  void mangleObjCMethodName(const ObjCMethodDecl *MD);
290
291  // Declare manglers for every type class.
292#define ABSTRACT_TYPE(CLASS, PARENT)
293#define NON_CANONICAL_TYPE(CLASS, PARENT)
294#define TYPE(CLASS, PARENT) void mangleType(const CLASS##Type *T);
295#include "clang/AST/TypeNodes.def"
296
297  void mangleType(const TagType*);
298  void mangleType(TemplateName);
299  void mangleBareFunctionType(const FunctionType *T,
300                              bool MangleReturnType);
301  void mangleNeonVectorType(const VectorType *T);
302
303  void mangleIntegerLiteral(QualType T, const llvm::APSInt &Value);
304  void mangleMemberExpr(const Expr *base, bool isArrow,
305                        NestedNameSpecifier *qualifier,
306                        NamedDecl *firstQualifierLookup,
307                        DeclarationName name,
308                        unsigned knownArity);
309  void mangleExpression(const Expr *E, unsigned Arity = UnknownArity);
310  void mangleCXXCtorType(CXXCtorType T);
311  void mangleCXXDtorType(CXXDtorType T);
312
313  void mangleTemplateArgs(const ASTTemplateArgumentListInfo &TemplateArgs);
314  void mangleTemplateArgs(TemplateName Template,
315                          const TemplateArgument *TemplateArgs,
316                          unsigned NumTemplateArgs);
317  void mangleTemplateArgs(const TemplateParameterList &PL,
318                          const TemplateArgument *TemplateArgs,
319                          unsigned NumTemplateArgs);
320  void mangleTemplateArgs(const TemplateParameterList &PL,
321                          const TemplateArgumentList &AL);
322  void mangleTemplateArg(const NamedDecl *P, TemplateArgument A);
323  void mangleUnresolvedTemplateArgs(const TemplateArgument *args,
324                                    unsigned numArgs);
325
326  void mangleTemplateParameter(unsigned Index);
327
328  void mangleFunctionParam(const ParmVarDecl *parm);
329};
330
331}
332
333static bool isInCLinkageSpecification(const Decl *D) {
334  D = D->getCanonicalDecl();
335  for (const DeclContext *DC = D->getDeclContext();
336       !DC->isTranslationUnit(); DC = DC->getParent()) {
337    if (const LinkageSpecDecl *Linkage = dyn_cast<LinkageSpecDecl>(DC))
338      return Linkage->getLanguage() == LinkageSpecDecl::lang_c;
339  }
340
341  return false;
342}
343
344bool ItaniumMangleContext::shouldMangleDeclName(const NamedDecl *D) {
345  // In C, functions with no attributes never need to be mangled. Fastpath them.
346  if (!getASTContext().getLangOptions().CPlusPlus && !D->hasAttrs())
347    return false;
348
349  // Any decl can be declared with __asm("foo") on it, and this takes precedence
350  // over all other naming in the .o file.
351  if (D->hasAttr<AsmLabelAttr>())
352    return true;
353
354  // Clang's "overloadable" attribute extension to C/C++ implies name mangling
355  // (always) as does passing a C++ member function and a function
356  // whose name is not a simple identifier.
357  const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
358  if (FD && (FD->hasAttr<OverloadableAttr>() || isa<CXXMethodDecl>(FD) ||
359             !FD->getDeclName().isIdentifier()))
360    return true;
361
362  // Otherwise, no mangling is done outside C++ mode.
363  if (!getASTContext().getLangOptions().CPlusPlus)
364    return false;
365
366  // Variables at global scope with non-internal linkage are not mangled
367  if (!FD) {
368    const DeclContext *DC = D->getDeclContext();
369    // Check for extern variable declared locally.
370    if (DC->isFunctionOrMethod() && D->hasLinkage())
371      while (!DC->isNamespace() && !DC->isTranslationUnit())
372        DC = DC->getParent();
373    if (DC->isTranslationUnit() && D->getLinkage() != InternalLinkage)
374      return false;
375  }
376
377  // Class members are always mangled.
378  if (D->getDeclContext()->isRecord())
379    return true;
380
381  // C functions and "main" are not mangled.
382  if ((FD && FD->isMain()) || isInCLinkageSpecification(D))
383    return false;
384
385  return true;
386}
387
388void CXXNameMangler::mangle(const NamedDecl *D, StringRef Prefix) {
389  // Any decl can be declared with __asm("foo") on it, and this takes precedence
390  // over all other naming in the .o file.
391  if (const AsmLabelAttr *ALA = D->getAttr<AsmLabelAttr>()) {
392    // If we have an asm name, then we use it as the mangling.
393
394    // Adding the prefix can cause problems when one file has a "foo" and
395    // another has a "\01foo". That is known to happen on ELF with the
396    // tricks normally used for producing aliases (PR9177). Fortunately the
397    // llvm mangler on ELF is a nop, so we can just avoid adding the \01
398    // marker.  We also avoid adding the marker if this is an alias for an
399    // LLVM intrinsic.
400    StringRef UserLabelPrefix =
401      getASTContext().getTargetInfo().getUserLabelPrefix();
402    if (!UserLabelPrefix.empty() && !ALA->getLabel().startswith("llvm."))
403      Out << '\01';  // LLVM IR Marker for __asm("foo")
404
405    Out << ALA->getLabel();
406    return;
407  }
408
409  // <mangled-name> ::= _Z <encoding>
410  //            ::= <data name>
411  //            ::= <special-name>
412  Out << Prefix;
413  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
414    mangleFunctionEncoding(FD);
415  else if (const VarDecl *VD = dyn_cast<VarDecl>(D))
416    mangleName(VD);
417  else
418    mangleName(cast<FieldDecl>(D));
419}
420
421void CXXNameMangler::mangleFunctionEncoding(const FunctionDecl *FD) {
422  // <encoding> ::= <function name> <bare-function-type>
423  mangleName(FD);
424
425  // Don't mangle in the type if this isn't a decl we should typically mangle.
426  if (!Context.shouldMangleDeclName(FD))
427    return;
428
429  // Whether the mangling of a function type includes the return type depends on
430  // the context and the nature of the function. The rules for deciding whether
431  // the return type is included are:
432  //
433  //   1. Template functions (names or types) have return types encoded, with
434  //   the exceptions listed below.
435  //   2. Function types not appearing as part of a function name mangling,
436  //   e.g. parameters, pointer types, etc., have return type encoded, with the
437  //   exceptions listed below.
438  //   3. Non-template function names do not have return types encoded.
439  //
440  // The exceptions mentioned in (1) and (2) above, for which the return type is
441  // never included, are
442  //   1. Constructors.
443  //   2. Destructors.
444  //   3. Conversion operator functions, e.g. operator int.
445  bool MangleReturnType = false;
446  if (FunctionTemplateDecl *PrimaryTemplate = FD->getPrimaryTemplate()) {
447    if (!(isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD) ||
448          isa<CXXConversionDecl>(FD)))
449      MangleReturnType = true;
450
451    // Mangle the type of the primary template.
452    FD = PrimaryTemplate->getTemplatedDecl();
453  }
454
455  mangleBareFunctionType(FD->getType()->getAs<FunctionType>(),
456                         MangleReturnType);
457}
458
459static const DeclContext *IgnoreLinkageSpecDecls(const DeclContext *DC) {
460  while (isa<LinkageSpecDecl>(DC)) {
461    DC = DC->getParent();
462  }
463
464  return DC;
465}
466
467/// isStd - Return whether a given namespace is the 'std' namespace.
468static bool isStd(const NamespaceDecl *NS) {
469  if (!IgnoreLinkageSpecDecls(NS->getParent())->isTranslationUnit())
470    return false;
471
472  const IdentifierInfo *II = NS->getOriginalNamespace()->getIdentifier();
473  return II && II->isStr("std");
474}
475
476// isStdNamespace - Return whether a given decl context is a toplevel 'std'
477// namespace.
478static bool isStdNamespace(const DeclContext *DC) {
479  if (!DC->isNamespace())
480    return false;
481
482  return isStd(cast<NamespaceDecl>(DC));
483}
484
485static const TemplateDecl *
486isTemplate(const NamedDecl *ND, const TemplateArgumentList *&TemplateArgs) {
487  // Check if we have a function template.
488  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)){
489    if (const TemplateDecl *TD = FD->getPrimaryTemplate()) {
490      TemplateArgs = FD->getTemplateSpecializationArgs();
491      return TD;
492    }
493  }
494
495  // Check if we have a class template.
496  if (const ClassTemplateSpecializationDecl *Spec =
497        dyn_cast<ClassTemplateSpecializationDecl>(ND)) {
498    TemplateArgs = &Spec->getTemplateArgs();
499    return Spec->getSpecializedTemplate();
500  }
501
502  return 0;
503}
504
505void CXXNameMangler::mangleName(const NamedDecl *ND) {
506  //  <name> ::= <nested-name>
507  //         ::= <unscoped-name>
508  //         ::= <unscoped-template-name> <template-args>
509  //         ::= <local-name>
510  //
511  const DeclContext *DC = ND->getDeclContext();
512
513  // If this is an extern variable declared locally, the relevant DeclContext
514  // is that of the containing namespace, or the translation unit.
515  if (isa<FunctionDecl>(DC) && ND->hasLinkage())
516    while (!DC->isNamespace() && !DC->isTranslationUnit())
517      DC = DC->getParent();
518  else if (GetLocalClassDecl(ND)) {
519    mangleLocalName(ND);
520    return;
521  }
522
523  while (isa<LinkageSpecDecl>(DC))
524    DC = DC->getParent();
525
526  if (DC->isTranslationUnit() || isStdNamespace(DC)) {
527    // Check if we have a template.
528    const TemplateArgumentList *TemplateArgs = 0;
529    if (const TemplateDecl *TD = isTemplate(ND, TemplateArgs)) {
530      mangleUnscopedTemplateName(TD);
531      TemplateParameterList *TemplateParameters = TD->getTemplateParameters();
532      mangleTemplateArgs(*TemplateParameters, *TemplateArgs);
533      return;
534    }
535
536    mangleUnscopedName(ND);
537    return;
538  }
539
540  if (isa<FunctionDecl>(DC) || isa<ObjCMethodDecl>(DC)) {
541    mangleLocalName(ND);
542    return;
543  }
544
545  mangleNestedName(ND, DC);
546}
547void CXXNameMangler::mangleName(const TemplateDecl *TD,
548                                const TemplateArgument *TemplateArgs,
549                                unsigned NumTemplateArgs) {
550  const DeclContext *DC = IgnoreLinkageSpecDecls(TD->getDeclContext());
551
552  if (DC->isTranslationUnit() || isStdNamespace(DC)) {
553    mangleUnscopedTemplateName(TD);
554    TemplateParameterList *TemplateParameters = TD->getTemplateParameters();
555    mangleTemplateArgs(*TemplateParameters, TemplateArgs, NumTemplateArgs);
556  } else {
557    mangleNestedName(TD, TemplateArgs, NumTemplateArgs);
558  }
559}
560
561void CXXNameMangler::mangleUnscopedName(const NamedDecl *ND) {
562  //  <unscoped-name> ::= <unqualified-name>
563  //                  ::= St <unqualified-name>   # ::std::
564  if (isStdNamespace(ND->getDeclContext()))
565    Out << "St";
566
567  mangleUnqualifiedName(ND);
568}
569
570void CXXNameMangler::mangleUnscopedTemplateName(const TemplateDecl *ND) {
571  //     <unscoped-template-name> ::= <unscoped-name>
572  //                              ::= <substitution>
573  if (mangleSubstitution(ND))
574    return;
575
576  // <template-template-param> ::= <template-param>
577  if (const TemplateTemplateParmDecl *TTP
578                                     = dyn_cast<TemplateTemplateParmDecl>(ND)) {
579    mangleTemplateParameter(TTP->getIndex());
580    return;
581  }
582
583  mangleUnscopedName(ND->getTemplatedDecl());
584  addSubstitution(ND);
585}
586
587void CXXNameMangler::mangleUnscopedTemplateName(TemplateName Template) {
588  //     <unscoped-template-name> ::= <unscoped-name>
589  //                              ::= <substitution>
590  if (TemplateDecl *TD = Template.getAsTemplateDecl())
591    return mangleUnscopedTemplateName(TD);
592
593  if (mangleSubstitution(Template))
594    return;
595
596  DependentTemplateName *Dependent = Template.getAsDependentTemplateName();
597  assert(Dependent && "Not a dependent template name?");
598  if (const IdentifierInfo *Id = Dependent->getIdentifier())
599    mangleSourceName(Id);
600  else
601    mangleOperatorName(Dependent->getOperator(), UnknownArity);
602
603  addSubstitution(Template);
604}
605
606void CXXNameMangler::mangleFloat(const llvm::APFloat &f) {
607  // ABI:
608  //   Floating-point literals are encoded using a fixed-length
609  //   lowercase hexadecimal string corresponding to the internal
610  //   representation (IEEE on Itanium), high-order bytes first,
611  //   without leading zeroes. For example: "Lf bf800000 E" is -1.0f
612  //   on Itanium.
613  // APInt::toString uses uppercase hexadecimal, and it's not really
614  // worth embellishing that interface for this use case, so we just
615  // do a second pass to lowercase things.
616  typedef llvm::SmallString<20> buffer_t;
617  buffer_t buffer;
618  f.bitcastToAPInt().toString(buffer, 16, false);
619
620  for (buffer_t::iterator i = buffer.begin(), e = buffer.end(); i != e; ++i)
621    if (isupper(*i)) *i = tolower(*i);
622
623  Out.write(buffer.data(), buffer.size());
624}
625
626void CXXNameMangler::mangleNumber(const llvm::APSInt &Value) {
627  if (Value.isSigned() && Value.isNegative()) {
628    Out << 'n';
629    Value.abs().print(Out, true);
630  } else
631    Value.print(Out, Value.isSigned());
632}
633
634void CXXNameMangler::mangleNumber(int64_t Number) {
635  //  <number> ::= [n] <non-negative decimal integer>
636  if (Number < 0) {
637    Out << 'n';
638    Number = -Number;
639  }
640
641  Out << Number;
642}
643
644void CXXNameMangler::mangleCallOffset(int64_t NonVirtual, int64_t Virtual) {
645  //  <call-offset>  ::= h <nv-offset> _
646  //                 ::= v <v-offset> _
647  //  <nv-offset>    ::= <offset number>        # non-virtual base override
648  //  <v-offset>     ::= <offset number> _ <virtual offset number>
649  //                      # virtual base override, with vcall offset
650  if (!Virtual) {
651    Out << 'h';
652    mangleNumber(NonVirtual);
653    Out << '_';
654    return;
655  }
656
657  Out << 'v';
658  mangleNumber(NonVirtual);
659  Out << '_';
660  mangleNumber(Virtual);
661  Out << '_';
662}
663
664void CXXNameMangler::manglePrefix(QualType type) {
665  if (const TemplateSpecializationType *TST =
666        type->getAs<TemplateSpecializationType>()) {
667    if (!mangleSubstitution(QualType(TST, 0))) {
668      mangleTemplatePrefix(TST->getTemplateName());
669
670      // FIXME: GCC does not appear to mangle the template arguments when
671      // the template in question is a dependent template name. Should we
672      // emulate that badness?
673      mangleTemplateArgs(TST->getTemplateName(), TST->getArgs(),
674                         TST->getNumArgs());
675      addSubstitution(QualType(TST, 0));
676    }
677  } else if (const DependentTemplateSpecializationType *DTST
678               = type->getAs<DependentTemplateSpecializationType>()) {
679    TemplateName Template
680      = getASTContext().getDependentTemplateName(DTST->getQualifier(),
681                                                 DTST->getIdentifier());
682    mangleTemplatePrefix(Template);
683
684    // FIXME: GCC does not appear to mangle the template arguments when
685    // the template in question is a dependent template name. Should we
686    // emulate that badness?
687    mangleTemplateArgs(Template, DTST->getArgs(), DTST->getNumArgs());
688  } else {
689    // We use the QualType mangle type variant here because it handles
690    // substitutions.
691    mangleType(type);
692  }
693}
694
695/// Mangle everything prior to the base-unresolved-name in an unresolved-name.
696///
697/// \param firstQualifierLookup - the entity found by unqualified lookup
698///   for the first name in the qualifier, if this is for a member expression
699/// \param recursive - true if this is being called recursively,
700///   i.e. if there is more prefix "to the right".
701void CXXNameMangler::mangleUnresolvedPrefix(NestedNameSpecifier *qualifier,
702                                            NamedDecl *firstQualifierLookup,
703                                            bool recursive) {
704
705  // x, ::x
706  // <unresolved-name> ::= [gs] <base-unresolved-name>
707
708  // T::x / decltype(p)::x
709  // <unresolved-name> ::= sr <unresolved-type> <base-unresolved-name>
710
711  // T::N::x /decltype(p)::N::x
712  // <unresolved-name> ::= srN <unresolved-type> <unresolved-qualifier-level>+ E
713  //                       <base-unresolved-name>
714
715  // A::x, N::y, A<T>::z; "gs" means leading "::"
716  // <unresolved-name> ::= [gs] sr <unresolved-qualifier-level>+ E
717  //                       <base-unresolved-name>
718
719  switch (qualifier->getKind()) {
720  case NestedNameSpecifier::Global:
721    Out << "gs";
722
723    // We want an 'sr' unless this is the entire NNS.
724    if (recursive)
725      Out << "sr";
726
727    // We never want an 'E' here.
728    return;
729
730  case NestedNameSpecifier::Namespace:
731    if (qualifier->getPrefix())
732      mangleUnresolvedPrefix(qualifier->getPrefix(), firstQualifierLookup,
733                             /*recursive*/ true);
734    else
735      Out << "sr";
736    mangleSourceName(qualifier->getAsNamespace()->getIdentifier());
737    break;
738  case NestedNameSpecifier::NamespaceAlias:
739    if (qualifier->getPrefix())
740      mangleUnresolvedPrefix(qualifier->getPrefix(), firstQualifierLookup,
741                             /*recursive*/ true);
742    else
743      Out << "sr";
744    mangleSourceName(qualifier->getAsNamespaceAlias()->getIdentifier());
745    break;
746
747  case NestedNameSpecifier::TypeSpec:
748  case NestedNameSpecifier::TypeSpecWithTemplate: {
749    const Type *type = qualifier->getAsType();
750
751    // We only want to use an unresolved-type encoding if this is one of:
752    //   - a decltype
753    //   - a template type parameter
754    //   - a template template parameter with arguments
755    // In all of these cases, we should have no prefix.
756    if (qualifier->getPrefix()) {
757      mangleUnresolvedPrefix(qualifier->getPrefix(), firstQualifierLookup,
758                             /*recursive*/ true);
759    } else {
760      // Otherwise, all the cases want this.
761      Out << "sr";
762    }
763
764    // Only certain other types are valid as prefixes;  enumerate them.
765    switch (type->getTypeClass()) {
766    case Type::Builtin:
767    case Type::Complex:
768    case Type::Pointer:
769    case Type::BlockPointer:
770    case Type::LValueReference:
771    case Type::RValueReference:
772    case Type::MemberPointer:
773    case Type::ConstantArray:
774    case Type::IncompleteArray:
775    case Type::VariableArray:
776    case Type::DependentSizedArray:
777    case Type::DependentSizedExtVector:
778    case Type::Vector:
779    case Type::ExtVector:
780    case Type::FunctionProto:
781    case Type::FunctionNoProto:
782    case Type::Enum:
783    case Type::Paren:
784    case Type::Elaborated:
785    case Type::Attributed:
786    case Type::Auto:
787    case Type::PackExpansion:
788    case Type::ObjCObject:
789    case Type::ObjCInterface:
790    case Type::ObjCObjectPointer:
791      llvm_unreachable("type is illegal as a nested name specifier");
792
793    case Type::SubstTemplateTypeParmPack:
794      // FIXME: not clear how to mangle this!
795      // template <class T...> class A {
796      //   template <class U...> void foo(decltype(T::foo(U())) x...);
797      // };
798      Out << "_SUBSTPACK_";
799      break;
800
801    // <unresolved-type> ::= <template-param>
802    //                   ::= <decltype>
803    //                   ::= <template-template-param> <template-args>
804    // (this last is not official yet)
805    case Type::TypeOfExpr:
806    case Type::TypeOf:
807    case Type::Decltype:
808    case Type::TemplateTypeParm:
809    case Type::UnaryTransform:
810    case Type::SubstTemplateTypeParm:
811    unresolvedType:
812      assert(!qualifier->getPrefix());
813
814      // We only get here recursively if we're followed by identifiers.
815      if (recursive) Out << 'N';
816
817      // This seems to do everything we want.  It's not really
818      // sanctioned for a substituted template parameter, though.
819      mangleType(QualType(type, 0));
820
821      // We never want to print 'E' directly after an unresolved-type,
822      // so we return directly.
823      return;
824
825    case Type::Typedef:
826      mangleSourceName(cast<TypedefType>(type)->getDecl()->getIdentifier());
827      break;
828
829    case Type::UnresolvedUsing:
830      mangleSourceName(cast<UnresolvedUsingType>(type)->getDecl()
831                         ->getIdentifier());
832      break;
833
834    case Type::Record:
835      mangleSourceName(cast<RecordType>(type)->getDecl()->getIdentifier());
836      break;
837
838    case Type::TemplateSpecialization: {
839      const TemplateSpecializationType *tst
840        = cast<TemplateSpecializationType>(type);
841      TemplateName name = tst->getTemplateName();
842      switch (name.getKind()) {
843      case TemplateName::Template:
844      case TemplateName::QualifiedTemplate: {
845        TemplateDecl *temp = name.getAsTemplateDecl();
846
847        // If the base is a template template parameter, this is an
848        // unresolved type.
849        assert(temp && "no template for template specialization type");
850        if (isa<TemplateTemplateParmDecl>(temp)) goto unresolvedType;
851
852        mangleSourceName(temp->getIdentifier());
853        break;
854      }
855
856      case TemplateName::OverloadedTemplate:
857      case TemplateName::DependentTemplate:
858        llvm_unreachable("invalid base for a template specialization type");
859
860      case TemplateName::SubstTemplateTemplateParm: {
861        SubstTemplateTemplateParmStorage *subst
862          = name.getAsSubstTemplateTemplateParm();
863        mangleExistingSubstitution(subst->getReplacement());
864        break;
865      }
866
867      case TemplateName::SubstTemplateTemplateParmPack: {
868        // FIXME: not clear how to mangle this!
869        // template <template <class U> class T...> class A {
870        //   template <class U...> void foo(decltype(T<U>::foo) x...);
871        // };
872        Out << "_SUBSTPACK_";
873        break;
874      }
875      }
876
877      mangleUnresolvedTemplateArgs(tst->getArgs(), tst->getNumArgs());
878      break;
879    }
880
881    case Type::InjectedClassName:
882      mangleSourceName(cast<InjectedClassNameType>(type)->getDecl()
883                         ->getIdentifier());
884      break;
885
886    case Type::DependentName:
887      mangleSourceName(cast<DependentNameType>(type)->getIdentifier());
888      break;
889
890    case Type::DependentTemplateSpecialization: {
891      const DependentTemplateSpecializationType *tst
892        = cast<DependentTemplateSpecializationType>(type);
893      mangleSourceName(tst->getIdentifier());
894      mangleUnresolvedTemplateArgs(tst->getArgs(), tst->getNumArgs());
895      break;
896    }
897    }
898    break;
899  }
900
901  case NestedNameSpecifier::Identifier:
902    // Member expressions can have these without prefixes.
903    if (qualifier->getPrefix()) {
904      mangleUnresolvedPrefix(qualifier->getPrefix(), firstQualifierLookup,
905                             /*recursive*/ true);
906    } else if (firstQualifierLookup) {
907
908      // Try to make a proper qualifier out of the lookup result, and
909      // then just recurse on that.
910      NestedNameSpecifier *newQualifier;
911      if (TypeDecl *typeDecl = dyn_cast<TypeDecl>(firstQualifierLookup)) {
912        QualType type = getASTContext().getTypeDeclType(typeDecl);
913
914        // Pretend we had a different nested name specifier.
915        newQualifier = NestedNameSpecifier::Create(getASTContext(),
916                                                   /*prefix*/ 0,
917                                                   /*template*/ false,
918                                                   type.getTypePtr());
919      } else if (NamespaceDecl *nspace =
920                   dyn_cast<NamespaceDecl>(firstQualifierLookup)) {
921        newQualifier = NestedNameSpecifier::Create(getASTContext(),
922                                                   /*prefix*/ 0,
923                                                   nspace);
924      } else if (NamespaceAliasDecl *alias =
925                   dyn_cast<NamespaceAliasDecl>(firstQualifierLookup)) {
926        newQualifier = NestedNameSpecifier::Create(getASTContext(),
927                                                   /*prefix*/ 0,
928                                                   alias);
929      } else {
930        // No sensible mangling to do here.
931        newQualifier = 0;
932      }
933
934      if (newQualifier)
935        return mangleUnresolvedPrefix(newQualifier, /*lookup*/ 0, recursive);
936
937    } else {
938      Out << "sr";
939    }
940
941    mangleSourceName(qualifier->getAsIdentifier());
942    break;
943  }
944
945  // If this was the innermost part of the NNS, and we fell out to
946  // here, append an 'E'.
947  if (!recursive)
948    Out << 'E';
949}
950
951/// Mangle an unresolved-name, which is generally used for names which
952/// weren't resolved to specific entities.
953void CXXNameMangler::mangleUnresolvedName(NestedNameSpecifier *qualifier,
954                                          NamedDecl *firstQualifierLookup,
955                                          DeclarationName name,
956                                          unsigned knownArity) {
957  if (qualifier) mangleUnresolvedPrefix(qualifier, firstQualifierLookup);
958  mangleUnqualifiedName(0, name, knownArity);
959}
960
961static const FieldDecl *FindFirstNamedDataMember(const RecordDecl *RD) {
962  assert(RD->isAnonymousStructOrUnion() &&
963         "Expected anonymous struct or union!");
964
965  for (RecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end();
966       I != E; ++I) {
967    const FieldDecl *FD = *I;
968
969    if (FD->getIdentifier())
970      return FD;
971
972    if (const RecordType *RT = FD->getType()->getAs<RecordType>()) {
973      if (const FieldDecl *NamedDataMember =
974          FindFirstNamedDataMember(RT->getDecl()))
975        return NamedDataMember;
976    }
977  }
978
979  // We didn't find a named data member.
980  return 0;
981}
982
983void CXXNameMangler::mangleUnqualifiedName(const NamedDecl *ND,
984                                           DeclarationName Name,
985                                           unsigned KnownArity) {
986  //  <unqualified-name> ::= <operator-name>
987  //                     ::= <ctor-dtor-name>
988  //                     ::= <source-name>
989  switch (Name.getNameKind()) {
990  case DeclarationName::Identifier: {
991    if (const IdentifierInfo *II = Name.getAsIdentifierInfo()) {
992      // We must avoid conflicts between internally- and externally-
993      // linked variable and function declaration names in the same TU:
994      //   void test() { extern void foo(); }
995      //   static void foo();
996      // This naming convention is the same as that followed by GCC,
997      // though it shouldn't actually matter.
998      if (ND && ND->getLinkage() == InternalLinkage &&
999          ND->getDeclContext()->isFileContext())
1000        Out << 'L';
1001
1002      mangleSourceName(II);
1003      break;
1004    }
1005
1006    // Otherwise, an anonymous entity.  We must have a declaration.
1007    assert(ND && "mangling empty name without declaration");
1008
1009    if (const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ND)) {
1010      if (NS->isAnonymousNamespace()) {
1011        // This is how gcc mangles these names.
1012        Out << "12_GLOBAL__N_1";
1013        break;
1014      }
1015    }
1016
1017    if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) {
1018      // We must have an anonymous union or struct declaration.
1019      const RecordDecl *RD =
1020        cast<RecordDecl>(VD->getType()->getAs<RecordType>()->getDecl());
1021
1022      // Itanium C++ ABI 5.1.2:
1023      //
1024      //   For the purposes of mangling, the name of an anonymous union is
1025      //   considered to be the name of the first named data member found by a
1026      //   pre-order, depth-first, declaration-order walk of the data members of
1027      //   the anonymous union. If there is no such data member (i.e., if all of
1028      //   the data members in the union are unnamed), then there is no way for
1029      //   a program to refer to the anonymous union, and there is therefore no
1030      //   need to mangle its name.
1031      const FieldDecl *FD = FindFirstNamedDataMember(RD);
1032
1033      // It's actually possible for various reasons for us to get here
1034      // with an empty anonymous struct / union.  Fortunately, it
1035      // doesn't really matter what name we generate.
1036      if (!FD) break;
1037      assert(FD->getIdentifier() && "Data member name isn't an identifier!");
1038
1039      mangleSourceName(FD->getIdentifier());
1040      break;
1041    }
1042
1043    // We must have an anonymous struct.
1044    const TagDecl *TD = cast<TagDecl>(ND);
1045    if (const TypedefNameDecl *D = TD->getTypedefNameForAnonDecl()) {
1046      assert(TD->getDeclContext() == D->getDeclContext() &&
1047             "Typedef should not be in another decl context!");
1048      assert(D->getDeclName().getAsIdentifierInfo() &&
1049             "Typedef was not named!");
1050      mangleSourceName(D->getDeclName().getAsIdentifierInfo());
1051      break;
1052    }
1053
1054    // Get a unique id for the anonymous struct.
1055    uint64_t AnonStructId = Context.getAnonymousStructId(TD);
1056
1057    // Mangle it as a source name in the form
1058    // [n] $_<id>
1059    // where n is the length of the string.
1060    llvm::SmallString<8> Str;
1061    Str += "$_";
1062    Str += llvm::utostr(AnonStructId);
1063
1064    Out << Str.size();
1065    Out << Str.str();
1066    break;
1067  }
1068
1069  case DeclarationName::ObjCZeroArgSelector:
1070  case DeclarationName::ObjCOneArgSelector:
1071  case DeclarationName::ObjCMultiArgSelector:
1072    llvm_unreachable("Can't mangle Objective-C selector names here!");
1073
1074  case DeclarationName::CXXConstructorName:
1075    if (ND == Structor)
1076      // If the named decl is the C++ constructor we're mangling, use the type
1077      // we were given.
1078      mangleCXXCtorType(static_cast<CXXCtorType>(StructorType));
1079    else
1080      // Otherwise, use the complete constructor name. This is relevant if a
1081      // class with a constructor is declared within a constructor.
1082      mangleCXXCtorType(Ctor_Complete);
1083    break;
1084
1085  case DeclarationName::CXXDestructorName:
1086    if (ND == Structor)
1087      // If the named decl is the C++ destructor we're mangling, use the type we
1088      // were given.
1089      mangleCXXDtorType(static_cast<CXXDtorType>(StructorType));
1090    else
1091      // Otherwise, use the complete destructor name. This is relevant if a
1092      // class with a destructor is declared within a destructor.
1093      mangleCXXDtorType(Dtor_Complete);
1094    break;
1095
1096  case DeclarationName::CXXConversionFunctionName:
1097    // <operator-name> ::= cv <type>    # (cast)
1098    Out << "cv";
1099    mangleType(Name.getCXXNameType());
1100    break;
1101
1102  case DeclarationName::CXXOperatorName: {
1103    unsigned Arity;
1104    if (ND) {
1105      Arity = cast<FunctionDecl>(ND)->getNumParams();
1106
1107      // If we have a C++ member function, we need to include the 'this' pointer.
1108      // FIXME: This does not make sense for operators that are static, but their
1109      // names stay the same regardless of the arity (operator new for instance).
1110      if (isa<CXXMethodDecl>(ND))
1111        Arity++;
1112    } else
1113      Arity = KnownArity;
1114
1115    mangleOperatorName(Name.getCXXOverloadedOperator(), Arity);
1116    break;
1117  }
1118
1119  case DeclarationName::CXXLiteralOperatorName:
1120    // FIXME: This mangling is not yet official.
1121    Out << "li";
1122    mangleSourceName(Name.getCXXLiteralIdentifier());
1123    break;
1124
1125  case DeclarationName::CXXUsingDirective:
1126    llvm_unreachable("Can't mangle a using directive name!");
1127  }
1128}
1129
1130void CXXNameMangler::mangleSourceName(const IdentifierInfo *II) {
1131  // <source-name> ::= <positive length number> <identifier>
1132  // <number> ::= [n] <non-negative decimal integer>
1133  // <identifier> ::= <unqualified source code identifier>
1134  Out << II->getLength() << II->getName();
1135}
1136
1137void CXXNameMangler::mangleNestedName(const NamedDecl *ND,
1138                                      const DeclContext *DC,
1139                                      bool NoFunction) {
1140  // <nested-name>
1141  //   ::= N [<CV-qualifiers>] [<ref-qualifier>] <prefix> <unqualified-name> E
1142  //   ::= N [<CV-qualifiers>] [<ref-qualifier>] <template-prefix>
1143  //       <template-args> E
1144
1145  Out << 'N';
1146  if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(ND)) {
1147    mangleQualifiers(Qualifiers::fromCVRMask(Method->getTypeQualifiers()));
1148    mangleRefQualifier(Method->getRefQualifier());
1149  }
1150
1151  // Check if we have a template.
1152  const TemplateArgumentList *TemplateArgs = 0;
1153  if (const TemplateDecl *TD = isTemplate(ND, TemplateArgs)) {
1154    mangleTemplatePrefix(TD);
1155    TemplateParameterList *TemplateParameters = TD->getTemplateParameters();
1156    mangleTemplateArgs(*TemplateParameters, *TemplateArgs);
1157  }
1158  else {
1159    manglePrefix(DC, NoFunction);
1160    mangleUnqualifiedName(ND);
1161  }
1162
1163  Out << 'E';
1164}
1165void CXXNameMangler::mangleNestedName(const TemplateDecl *TD,
1166                                      const TemplateArgument *TemplateArgs,
1167                                      unsigned NumTemplateArgs) {
1168  // <nested-name> ::= N [<CV-qualifiers>] <template-prefix> <template-args> E
1169
1170  Out << 'N';
1171
1172  mangleTemplatePrefix(TD);
1173  TemplateParameterList *TemplateParameters = TD->getTemplateParameters();
1174  mangleTemplateArgs(*TemplateParameters, TemplateArgs, NumTemplateArgs);
1175
1176  Out << 'E';
1177}
1178
1179void CXXNameMangler::mangleLocalName(const NamedDecl *ND) {
1180  // <local-name> := Z <function encoding> E <entity name> [<discriminator>]
1181  //              := Z <function encoding> E s [<discriminator>]
1182  // <discriminator> := _ <non-negative number>
1183  const DeclContext *DC = ND->getDeclContext();
1184  if (isa<ObjCMethodDecl>(DC) && isa<FunctionDecl>(ND)) {
1185    // Don't add objc method name mangling to locally declared function
1186    mangleUnqualifiedName(ND);
1187    return;
1188  }
1189
1190  Out << 'Z';
1191
1192  if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(DC)) {
1193   mangleObjCMethodName(MD);
1194  } else if (const CXXRecordDecl *RD = GetLocalClassDecl(ND)) {
1195    mangleFunctionEncoding(cast<FunctionDecl>(RD->getDeclContext()));
1196    Out << 'E';
1197
1198    // Mangle the name relative to the closest enclosing function.
1199    if (ND == RD) // equality ok because RD derived from ND above
1200      mangleUnqualifiedName(ND);
1201    else
1202      mangleNestedName(ND, DC, true /*NoFunction*/);
1203
1204    unsigned disc;
1205    if (Context.getNextDiscriminator(RD, disc)) {
1206      if (disc < 10)
1207        Out << '_' << disc;
1208      else
1209        Out << "__" << disc << '_';
1210    }
1211
1212    return;
1213  }
1214  else
1215    mangleFunctionEncoding(cast<FunctionDecl>(DC));
1216
1217  Out << 'E';
1218  mangleUnqualifiedName(ND);
1219}
1220
1221void CXXNameMangler::manglePrefix(NestedNameSpecifier *qualifier) {
1222  switch (qualifier->getKind()) {
1223  case NestedNameSpecifier::Global:
1224    // nothing
1225    return;
1226
1227  case NestedNameSpecifier::Namespace:
1228    mangleName(qualifier->getAsNamespace());
1229    return;
1230
1231  case NestedNameSpecifier::NamespaceAlias:
1232    mangleName(qualifier->getAsNamespaceAlias()->getNamespace());
1233    return;
1234
1235  case NestedNameSpecifier::TypeSpec:
1236  case NestedNameSpecifier::TypeSpecWithTemplate:
1237    manglePrefix(QualType(qualifier->getAsType(), 0));
1238    return;
1239
1240  case NestedNameSpecifier::Identifier:
1241    // Member expressions can have these without prefixes, but that
1242    // should end up in mangleUnresolvedPrefix instead.
1243    assert(qualifier->getPrefix());
1244    manglePrefix(qualifier->getPrefix());
1245
1246    mangleSourceName(qualifier->getAsIdentifier());
1247    return;
1248  }
1249
1250  llvm_unreachable("unexpected nested name specifier");
1251}
1252
1253void CXXNameMangler::manglePrefix(const DeclContext *DC, bool NoFunction) {
1254  //  <prefix> ::= <prefix> <unqualified-name>
1255  //           ::= <template-prefix> <template-args>
1256  //           ::= <template-param>
1257  //           ::= # empty
1258  //           ::= <substitution>
1259
1260  while (isa<LinkageSpecDecl>(DC))
1261    DC = DC->getParent();
1262
1263  if (DC->isTranslationUnit())
1264    return;
1265
1266  if (const BlockDecl *Block = dyn_cast<BlockDecl>(DC)) {
1267    manglePrefix(DC->getParent(), NoFunction);
1268    llvm::SmallString<64> Name;
1269    llvm::raw_svector_ostream NameStream(Name);
1270    Context.mangleBlock(Block, NameStream);
1271    NameStream.flush();
1272    Out << Name.size() << Name;
1273    return;
1274  }
1275
1276  if (mangleSubstitution(cast<NamedDecl>(DC)))
1277    return;
1278
1279  // Check if we have a template.
1280  const TemplateArgumentList *TemplateArgs = 0;
1281  if (const TemplateDecl *TD = isTemplate(cast<NamedDecl>(DC), TemplateArgs)) {
1282    mangleTemplatePrefix(TD);
1283    TemplateParameterList *TemplateParameters = TD->getTemplateParameters();
1284    mangleTemplateArgs(*TemplateParameters, *TemplateArgs);
1285  }
1286  else if(NoFunction && (isa<FunctionDecl>(DC) || isa<ObjCMethodDecl>(DC)))
1287    return;
1288  else if (const ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(DC))
1289    mangleObjCMethodName(Method);
1290  else {
1291    manglePrefix(DC->getParent(), NoFunction);
1292    mangleUnqualifiedName(cast<NamedDecl>(DC));
1293  }
1294
1295  addSubstitution(cast<NamedDecl>(DC));
1296}
1297
1298void CXXNameMangler::mangleTemplatePrefix(TemplateName Template) {
1299  // <template-prefix> ::= <prefix> <template unqualified-name>
1300  //                   ::= <template-param>
1301  //                   ::= <substitution>
1302  if (TemplateDecl *TD = Template.getAsTemplateDecl())
1303    return mangleTemplatePrefix(TD);
1304
1305  if (QualifiedTemplateName *Qualified = Template.getAsQualifiedTemplateName())
1306    manglePrefix(Qualified->getQualifier());
1307
1308  if (OverloadedTemplateStorage *Overloaded
1309                                      = Template.getAsOverloadedTemplate()) {
1310    mangleUnqualifiedName(0, (*Overloaded->begin())->getDeclName(),
1311                          UnknownArity);
1312    return;
1313  }
1314
1315  DependentTemplateName *Dependent = Template.getAsDependentTemplateName();
1316  assert(Dependent && "Unknown template name kind?");
1317  manglePrefix(Dependent->getQualifier());
1318  mangleUnscopedTemplateName(Template);
1319}
1320
1321void CXXNameMangler::mangleTemplatePrefix(const TemplateDecl *ND) {
1322  // <template-prefix> ::= <prefix> <template unqualified-name>
1323  //                   ::= <template-param>
1324  //                   ::= <substitution>
1325  // <template-template-param> ::= <template-param>
1326  //                               <substitution>
1327
1328  if (mangleSubstitution(ND))
1329    return;
1330
1331  // <template-template-param> ::= <template-param>
1332  if (const TemplateTemplateParmDecl *TTP
1333                                     = dyn_cast<TemplateTemplateParmDecl>(ND)) {
1334    mangleTemplateParameter(TTP->getIndex());
1335    return;
1336  }
1337
1338  manglePrefix(ND->getDeclContext());
1339  mangleUnqualifiedName(ND->getTemplatedDecl());
1340  addSubstitution(ND);
1341}
1342
1343/// Mangles a template name under the production <type>.  Required for
1344/// template template arguments.
1345///   <type> ::= <class-enum-type>
1346///          ::= <template-param>
1347///          ::= <substitution>
1348void CXXNameMangler::mangleType(TemplateName TN) {
1349  if (mangleSubstitution(TN))
1350    return;
1351
1352  TemplateDecl *TD = 0;
1353
1354  switch (TN.getKind()) {
1355  case TemplateName::QualifiedTemplate:
1356    TD = TN.getAsQualifiedTemplateName()->getTemplateDecl();
1357    goto HaveDecl;
1358
1359  case TemplateName::Template:
1360    TD = TN.getAsTemplateDecl();
1361    goto HaveDecl;
1362
1363  HaveDecl:
1364    if (isa<TemplateTemplateParmDecl>(TD))
1365      mangleTemplateParameter(cast<TemplateTemplateParmDecl>(TD)->getIndex());
1366    else
1367      mangleName(TD);
1368    break;
1369
1370  case TemplateName::OverloadedTemplate:
1371    llvm_unreachable("can't mangle an overloaded template name as a <type>");
1372    break;
1373
1374  case TemplateName::DependentTemplate: {
1375    const DependentTemplateName *Dependent = TN.getAsDependentTemplateName();
1376    assert(Dependent->isIdentifier());
1377
1378    // <class-enum-type> ::= <name>
1379    // <name> ::= <nested-name>
1380    mangleUnresolvedPrefix(Dependent->getQualifier(), 0);
1381    mangleSourceName(Dependent->getIdentifier());
1382    break;
1383  }
1384
1385  case TemplateName::SubstTemplateTemplateParm: {
1386    // Substituted template parameters are mangled as the substituted
1387    // template.  This will check for the substitution twice, which is
1388    // fine, but we have to return early so that we don't try to *add*
1389    // the substitution twice.
1390    SubstTemplateTemplateParmStorage *subst
1391      = TN.getAsSubstTemplateTemplateParm();
1392    mangleType(subst->getReplacement());
1393    return;
1394  }
1395
1396  case TemplateName::SubstTemplateTemplateParmPack: {
1397    // FIXME: not clear how to mangle this!
1398    // template <template <class> class T...> class A {
1399    //   template <template <class> class U...> void foo(B<T,U> x...);
1400    // };
1401    Out << "_SUBSTPACK_";
1402    break;
1403  }
1404  }
1405
1406  addSubstitution(TN);
1407}
1408
1409void
1410CXXNameMangler::mangleOperatorName(OverloadedOperatorKind OO, unsigned Arity) {
1411  switch (OO) {
1412  // <operator-name> ::= nw     # new
1413  case OO_New: Out << "nw"; break;
1414  //              ::= na        # new[]
1415  case OO_Array_New: Out << "na"; break;
1416  //              ::= dl        # delete
1417  case OO_Delete: Out << "dl"; break;
1418  //              ::= da        # delete[]
1419  case OO_Array_Delete: Out << "da"; break;
1420  //              ::= ps        # + (unary)
1421  //              ::= pl        # + (binary or unknown)
1422  case OO_Plus:
1423    Out << (Arity == 1? "ps" : "pl"); break;
1424  //              ::= ng        # - (unary)
1425  //              ::= mi        # - (binary or unknown)
1426  case OO_Minus:
1427    Out << (Arity == 1? "ng" : "mi"); break;
1428  //              ::= ad        # & (unary)
1429  //              ::= an        # & (binary or unknown)
1430  case OO_Amp:
1431    Out << (Arity == 1? "ad" : "an"); break;
1432  //              ::= de        # * (unary)
1433  //              ::= ml        # * (binary or unknown)
1434  case OO_Star:
1435    // Use binary when unknown.
1436    Out << (Arity == 1? "de" : "ml"); break;
1437  //              ::= co        # ~
1438  case OO_Tilde: Out << "co"; break;
1439  //              ::= dv        # /
1440  case OO_Slash: Out << "dv"; break;
1441  //              ::= rm        # %
1442  case OO_Percent: Out << "rm"; break;
1443  //              ::= or        # |
1444  case OO_Pipe: Out << "or"; break;
1445  //              ::= eo        # ^
1446  case OO_Caret: Out << "eo"; break;
1447  //              ::= aS        # =
1448  case OO_Equal: Out << "aS"; break;
1449  //              ::= pL        # +=
1450  case OO_PlusEqual: Out << "pL"; break;
1451  //              ::= mI        # -=
1452  case OO_MinusEqual: Out << "mI"; break;
1453  //              ::= mL        # *=
1454  case OO_StarEqual: Out << "mL"; break;
1455  //              ::= dV        # /=
1456  case OO_SlashEqual: Out << "dV"; break;
1457  //              ::= rM        # %=
1458  case OO_PercentEqual: Out << "rM"; break;
1459  //              ::= aN        # &=
1460  case OO_AmpEqual: Out << "aN"; break;
1461  //              ::= oR        # |=
1462  case OO_PipeEqual: Out << "oR"; break;
1463  //              ::= eO        # ^=
1464  case OO_CaretEqual: Out << "eO"; break;
1465  //              ::= ls        # <<
1466  case OO_LessLess: Out << "ls"; break;
1467  //              ::= rs        # >>
1468  case OO_GreaterGreater: Out << "rs"; break;
1469  //              ::= lS        # <<=
1470  case OO_LessLessEqual: Out << "lS"; break;
1471  //              ::= rS        # >>=
1472  case OO_GreaterGreaterEqual: Out << "rS"; break;
1473  //              ::= eq        # ==
1474  case OO_EqualEqual: Out << "eq"; break;
1475  //              ::= ne        # !=
1476  case OO_ExclaimEqual: Out << "ne"; break;
1477  //              ::= lt        # <
1478  case OO_Less: Out << "lt"; break;
1479  //              ::= gt        # >
1480  case OO_Greater: Out << "gt"; break;
1481  //              ::= le        # <=
1482  case OO_LessEqual: Out << "le"; break;
1483  //              ::= ge        # >=
1484  case OO_GreaterEqual: Out << "ge"; break;
1485  //              ::= nt        # !
1486  case OO_Exclaim: Out << "nt"; break;
1487  //              ::= aa        # &&
1488  case OO_AmpAmp: Out << "aa"; break;
1489  //              ::= oo        # ||
1490  case OO_PipePipe: Out << "oo"; break;
1491  //              ::= pp        # ++
1492  case OO_PlusPlus: Out << "pp"; break;
1493  //              ::= mm        # --
1494  case OO_MinusMinus: Out << "mm"; break;
1495  //              ::= cm        # ,
1496  case OO_Comma: Out << "cm"; break;
1497  //              ::= pm        # ->*
1498  case OO_ArrowStar: Out << "pm"; break;
1499  //              ::= pt        # ->
1500  case OO_Arrow: Out << "pt"; break;
1501  //              ::= cl        # ()
1502  case OO_Call: Out << "cl"; break;
1503  //              ::= ix        # []
1504  case OO_Subscript: Out << "ix"; break;
1505
1506  //              ::= qu        # ?
1507  // The conditional operator can't be overloaded, but we still handle it when
1508  // mangling expressions.
1509  case OO_Conditional: Out << "qu"; break;
1510
1511  case OO_None:
1512  case NUM_OVERLOADED_OPERATORS:
1513    llvm_unreachable("Not an overloaded operator");
1514  }
1515}
1516
1517void CXXNameMangler::mangleQualifiers(Qualifiers Quals) {
1518  // <CV-qualifiers> ::= [r] [V] [K]    # restrict (C99), volatile, const
1519  if (Quals.hasRestrict())
1520    Out << 'r';
1521  if (Quals.hasVolatile())
1522    Out << 'V';
1523  if (Quals.hasConst())
1524    Out << 'K';
1525
1526  if (Quals.hasAddressSpace()) {
1527    // Extension:
1528    //
1529    //   <type> ::= U <address-space-number>
1530    //
1531    // where <address-space-number> is a source name consisting of 'AS'
1532    // followed by the address space <number>.
1533    llvm::SmallString<64> ASString;
1534    ASString = "AS" + llvm::utostr_32(Quals.getAddressSpace());
1535    Out << 'U' << ASString.size() << ASString;
1536  }
1537
1538  StringRef LifetimeName;
1539  switch (Quals.getObjCLifetime()) {
1540  // Objective-C ARC Extension:
1541  //
1542  //   <type> ::= U "__strong"
1543  //   <type> ::= U "__weak"
1544  //   <type> ::= U "__autoreleasing"
1545  case Qualifiers::OCL_None:
1546    break;
1547
1548  case Qualifiers::OCL_Weak:
1549    LifetimeName = "__weak";
1550    break;
1551
1552  case Qualifiers::OCL_Strong:
1553    LifetimeName = "__strong";
1554    break;
1555
1556  case Qualifiers::OCL_Autoreleasing:
1557    LifetimeName = "__autoreleasing";
1558    break;
1559
1560  case Qualifiers::OCL_ExplicitNone:
1561    // The __unsafe_unretained qualifier is *not* mangled, so that
1562    // __unsafe_unretained types in ARC produce the same manglings as the
1563    // equivalent (but, naturally, unqualified) types in non-ARC, providing
1564    // better ABI compatibility.
1565    //
1566    // It's safe to do this because unqualified 'id' won't show up
1567    // in any type signatures that need to be mangled.
1568    break;
1569  }
1570  if (!LifetimeName.empty())
1571    Out << 'U' << LifetimeName.size() << LifetimeName;
1572}
1573
1574void CXXNameMangler::mangleRefQualifier(RefQualifierKind RefQualifier) {
1575  // <ref-qualifier> ::= R                # lvalue reference
1576  //                 ::= O                # rvalue-reference
1577  // Proposal to Itanium C++ ABI list on 1/26/11
1578  switch (RefQualifier) {
1579  case RQ_None:
1580    break;
1581
1582  case RQ_LValue:
1583    Out << 'R';
1584    break;
1585
1586  case RQ_RValue:
1587    Out << 'O';
1588    break;
1589  }
1590}
1591
1592void CXXNameMangler::mangleObjCMethodName(const ObjCMethodDecl *MD) {
1593  Context.mangleObjCMethodName(MD, Out);
1594}
1595
1596void CXXNameMangler::mangleType(QualType T) {
1597  // If our type is instantiation-dependent but not dependent, we mangle
1598  // it as it was written in the source, removing any top-level sugar.
1599  // Otherwise, use the canonical type.
1600  //
1601  // FIXME: This is an approximation of the instantiation-dependent name
1602  // mangling rules, since we should really be using the type as written and
1603  // augmented via semantic analysis (i.e., with implicit conversions and
1604  // default template arguments) for any instantiation-dependent type.
1605  // Unfortunately, that requires several changes to our AST:
1606  //   - Instantiation-dependent TemplateSpecializationTypes will need to be
1607  //     uniqued, so that we can handle substitutions properly
1608  //   - Default template arguments will need to be represented in the
1609  //     TemplateSpecializationType, since they need to be mangled even though
1610  //     they aren't written.
1611  //   - Conversions on non-type template arguments need to be expressed, since
1612  //     they can affect the mangling of sizeof/alignof.
1613  if (!T->isInstantiationDependentType() || T->isDependentType())
1614    T = T.getCanonicalType();
1615  else {
1616    // Desugar any types that are purely sugar.
1617    do {
1618      // Don't desugar through template specialization types that aren't
1619      // type aliases. We need to mangle the template arguments as written.
1620      if (const TemplateSpecializationType *TST
1621                                      = dyn_cast<TemplateSpecializationType>(T))
1622        if (!TST->isTypeAlias())
1623          break;
1624
1625      QualType Desugared
1626        = T.getSingleStepDesugaredType(Context.getASTContext());
1627      if (Desugared == T)
1628        break;
1629
1630      T = Desugared;
1631    } while (true);
1632  }
1633  SplitQualType split = T.split();
1634  Qualifiers quals = split.second;
1635  const Type *ty = split.first;
1636
1637  bool isSubstitutable = quals || !isa<BuiltinType>(T);
1638  if (isSubstitutable && mangleSubstitution(T))
1639    return;
1640
1641  // If we're mangling a qualified array type, push the qualifiers to
1642  // the element type.
1643  if (quals && isa<ArrayType>(T)) {
1644    ty = Context.getASTContext().getAsArrayType(T);
1645    quals = Qualifiers();
1646
1647    // Note that we don't update T: we want to add the
1648    // substitution at the original type.
1649  }
1650
1651  if (quals) {
1652    mangleQualifiers(quals);
1653    // Recurse:  even if the qualified type isn't yet substitutable,
1654    // the unqualified type might be.
1655    mangleType(QualType(ty, 0));
1656  } else {
1657    switch (ty->getTypeClass()) {
1658#define ABSTRACT_TYPE(CLASS, PARENT)
1659#define NON_CANONICAL_TYPE(CLASS, PARENT) \
1660    case Type::CLASS: \
1661      llvm_unreachable("can't mangle non-canonical type " #CLASS "Type"); \
1662      return;
1663#define TYPE(CLASS, PARENT) \
1664    case Type::CLASS: \
1665      mangleType(static_cast<const CLASS##Type*>(ty)); \
1666      break;
1667#include "clang/AST/TypeNodes.def"
1668    }
1669  }
1670
1671  // Add the substitution.
1672  if (isSubstitutable)
1673    addSubstitution(T);
1674}
1675
1676void CXXNameMangler::mangleNameOrStandardSubstitution(const NamedDecl *ND) {
1677  if (!mangleStandardSubstitution(ND))
1678    mangleName(ND);
1679}
1680
1681void CXXNameMangler::mangleType(const BuiltinType *T) {
1682  //  <type>         ::= <builtin-type>
1683  //  <builtin-type> ::= v  # void
1684  //                 ::= w  # wchar_t
1685  //                 ::= b  # bool
1686  //                 ::= c  # char
1687  //                 ::= a  # signed char
1688  //                 ::= h  # unsigned char
1689  //                 ::= s  # short
1690  //                 ::= t  # unsigned short
1691  //                 ::= i  # int
1692  //                 ::= j  # unsigned int
1693  //                 ::= l  # long
1694  //                 ::= m  # unsigned long
1695  //                 ::= x  # long long, __int64
1696  //                 ::= y  # unsigned long long, __int64
1697  //                 ::= n  # __int128
1698  // UNSUPPORTED:    ::= o  # unsigned __int128
1699  //                 ::= f  # float
1700  //                 ::= d  # double
1701  //                 ::= e  # long double, __float80
1702  // UNSUPPORTED:    ::= g  # __float128
1703  // UNSUPPORTED:    ::= Dd # IEEE 754r decimal floating point (64 bits)
1704  // UNSUPPORTED:    ::= De # IEEE 754r decimal floating point (128 bits)
1705  // UNSUPPORTED:    ::= Df # IEEE 754r decimal floating point (32 bits)
1706  // UNSUPPORTED:    ::= Dh # IEEE 754r half-precision floating point (16 bits)
1707  //                 ::= Di # char32_t
1708  //                 ::= Ds # char16_t
1709  //                 ::= Dn # std::nullptr_t (i.e., decltype(nullptr))
1710  //                 ::= u <source-name>    # vendor extended type
1711  switch (T->getKind()) {
1712  case BuiltinType::Void: Out << 'v'; break;
1713  case BuiltinType::Bool: Out << 'b'; break;
1714  case BuiltinType::Char_U: case BuiltinType::Char_S: Out << 'c'; break;
1715  case BuiltinType::UChar: Out << 'h'; break;
1716  case BuiltinType::UShort: Out << 't'; break;
1717  case BuiltinType::UInt: Out << 'j'; break;
1718  case BuiltinType::ULong: Out << 'm'; break;
1719  case BuiltinType::ULongLong: Out << 'y'; break;
1720  case BuiltinType::UInt128: Out << 'o'; break;
1721  case BuiltinType::SChar: Out << 'a'; break;
1722  case BuiltinType::WChar_S:
1723  case BuiltinType::WChar_U: Out << 'w'; break;
1724  case BuiltinType::Char16: Out << "Ds"; break;
1725  case BuiltinType::Char32: Out << "Di"; break;
1726  case BuiltinType::Short: Out << 's'; break;
1727  case BuiltinType::Int: Out << 'i'; break;
1728  case BuiltinType::Long: Out << 'l'; break;
1729  case BuiltinType::LongLong: Out << 'x'; break;
1730  case BuiltinType::Int128: Out << 'n'; break;
1731  case BuiltinType::Float: Out << 'f'; break;
1732  case BuiltinType::Double: Out << 'd'; break;
1733  case BuiltinType::LongDouble: Out << 'e'; break;
1734  case BuiltinType::NullPtr: Out << "Dn"; break;
1735
1736  case BuiltinType::Overload:
1737  case BuiltinType::Dependent:
1738  case BuiltinType::BoundMember:
1739  case BuiltinType::UnknownAny:
1740    llvm_unreachable("mangling a placeholder type");
1741    break;
1742  case BuiltinType::ObjCId: Out << "11objc_object"; break;
1743  case BuiltinType::ObjCClass: Out << "10objc_class"; break;
1744  case BuiltinType::ObjCSel: Out << "13objc_selector"; break;
1745  }
1746}
1747
1748// <type>          ::= <function-type>
1749// <function-type> ::= F [Y] <bare-function-type> E
1750void CXXNameMangler::mangleType(const FunctionProtoType *T) {
1751  Out << 'F';
1752  // FIXME: We don't have enough information in the AST to produce the 'Y'
1753  // encoding for extern "C" function types.
1754  mangleBareFunctionType(T, /*MangleReturnType=*/true);
1755  Out << 'E';
1756}
1757void CXXNameMangler::mangleType(const FunctionNoProtoType *T) {
1758  llvm_unreachable("Can't mangle K&R function prototypes");
1759}
1760void CXXNameMangler::mangleBareFunctionType(const FunctionType *T,
1761                                            bool MangleReturnType) {
1762  // We should never be mangling something without a prototype.
1763  const FunctionProtoType *Proto = cast<FunctionProtoType>(T);
1764
1765  // Record that we're in a function type.  See mangleFunctionParam
1766  // for details on what we're trying to achieve here.
1767  FunctionTypeDepthState saved = FunctionTypeDepth.push();
1768
1769  // <bare-function-type> ::= <signature type>+
1770  if (MangleReturnType) {
1771    FunctionTypeDepth.enterResultType();
1772    mangleType(Proto->getResultType());
1773    FunctionTypeDepth.leaveResultType();
1774  }
1775
1776  if (Proto->getNumArgs() == 0 && !Proto->isVariadic()) {
1777    //   <builtin-type> ::= v   # void
1778    Out << 'v';
1779
1780    FunctionTypeDepth.pop(saved);
1781    return;
1782  }
1783
1784  for (FunctionProtoType::arg_type_iterator Arg = Proto->arg_type_begin(),
1785                                         ArgEnd = Proto->arg_type_end();
1786       Arg != ArgEnd; ++Arg)
1787    mangleType(Context.getASTContext().getSignatureParameterType(*Arg));
1788
1789  FunctionTypeDepth.pop(saved);
1790
1791  // <builtin-type>      ::= z  # ellipsis
1792  if (Proto->isVariadic())
1793    Out << 'z';
1794}
1795
1796// <type>            ::= <class-enum-type>
1797// <class-enum-type> ::= <name>
1798void CXXNameMangler::mangleType(const UnresolvedUsingType *T) {
1799  mangleName(T->getDecl());
1800}
1801
1802// <type>            ::= <class-enum-type>
1803// <class-enum-type> ::= <name>
1804void CXXNameMangler::mangleType(const EnumType *T) {
1805  mangleType(static_cast<const TagType*>(T));
1806}
1807void CXXNameMangler::mangleType(const RecordType *T) {
1808  mangleType(static_cast<const TagType*>(T));
1809}
1810void CXXNameMangler::mangleType(const TagType *T) {
1811  mangleName(T->getDecl());
1812}
1813
1814// <type>       ::= <array-type>
1815// <array-type> ::= A <positive dimension number> _ <element type>
1816//              ::= A [<dimension expression>] _ <element type>
1817void CXXNameMangler::mangleType(const ConstantArrayType *T) {
1818  Out << 'A' << T->getSize() << '_';
1819  mangleType(T->getElementType());
1820}
1821void CXXNameMangler::mangleType(const VariableArrayType *T) {
1822  Out << 'A';
1823  // decayed vla types (size 0) will just be skipped.
1824  if (T->getSizeExpr())
1825    mangleExpression(T->getSizeExpr());
1826  Out << '_';
1827  mangleType(T->getElementType());
1828}
1829void CXXNameMangler::mangleType(const DependentSizedArrayType *T) {
1830  Out << 'A';
1831  mangleExpression(T->getSizeExpr());
1832  Out << '_';
1833  mangleType(T->getElementType());
1834}
1835void CXXNameMangler::mangleType(const IncompleteArrayType *T) {
1836  Out << "A_";
1837  mangleType(T->getElementType());
1838}
1839
1840// <type>                   ::= <pointer-to-member-type>
1841// <pointer-to-member-type> ::= M <class type> <member type>
1842void CXXNameMangler::mangleType(const MemberPointerType *T) {
1843  Out << 'M';
1844  mangleType(QualType(T->getClass(), 0));
1845  QualType PointeeType = T->getPointeeType();
1846  if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(PointeeType)) {
1847    mangleQualifiers(Qualifiers::fromCVRMask(FPT->getTypeQuals()));
1848    mangleRefQualifier(FPT->getRefQualifier());
1849    mangleType(FPT);
1850
1851    // Itanium C++ ABI 5.1.8:
1852    //
1853    //   The type of a non-static member function is considered to be different,
1854    //   for the purposes of substitution, from the type of a namespace-scope or
1855    //   static member function whose type appears similar. The types of two
1856    //   non-static member functions are considered to be different, for the
1857    //   purposes of substitution, if the functions are members of different
1858    //   classes. In other words, for the purposes of substitution, the class of
1859    //   which the function is a member is considered part of the type of
1860    //   function.
1861
1862    // We increment the SeqID here to emulate adding an entry to the
1863    // substitution table. We can't actually add it because we don't want this
1864    // particular function type to be substituted.
1865    ++SeqID;
1866  } else
1867    mangleType(PointeeType);
1868}
1869
1870// <type>           ::= <template-param>
1871void CXXNameMangler::mangleType(const TemplateTypeParmType *T) {
1872  mangleTemplateParameter(T->getIndex());
1873}
1874
1875// <type>           ::= <template-param>
1876void CXXNameMangler::mangleType(const SubstTemplateTypeParmPackType *T) {
1877  // FIXME: not clear how to mangle this!
1878  // template <class T...> class A {
1879  //   template <class U...> void foo(T(*)(U) x...);
1880  // };
1881  Out << "_SUBSTPACK_";
1882}
1883
1884// <type> ::= P <type>   # pointer-to
1885void CXXNameMangler::mangleType(const PointerType *T) {
1886  Out << 'P';
1887  mangleType(T->getPointeeType());
1888}
1889void CXXNameMangler::mangleType(const ObjCObjectPointerType *T) {
1890  Out << 'P';
1891  mangleType(T->getPointeeType());
1892}
1893
1894// <type> ::= R <type>   # reference-to
1895void CXXNameMangler::mangleType(const LValueReferenceType *T) {
1896  Out << 'R';
1897  mangleType(T->getPointeeType());
1898}
1899
1900// <type> ::= O <type>   # rvalue reference-to (C++0x)
1901void CXXNameMangler::mangleType(const RValueReferenceType *T) {
1902  Out << 'O';
1903  mangleType(T->getPointeeType());
1904}
1905
1906// <type> ::= C <type>   # complex pair (C 2000)
1907void CXXNameMangler::mangleType(const ComplexType *T) {
1908  Out << 'C';
1909  mangleType(T->getElementType());
1910}
1911
1912// ARM's ABI for Neon vector types specifies that they should be mangled as
1913// if they are structs (to match ARM's initial implementation).  The
1914// vector type must be one of the special types predefined by ARM.
1915void CXXNameMangler::mangleNeonVectorType(const VectorType *T) {
1916  QualType EltType = T->getElementType();
1917  assert(EltType->isBuiltinType() && "Neon vector element not a BuiltinType");
1918  const char *EltName = 0;
1919  if (T->getVectorKind() == VectorType::NeonPolyVector) {
1920    switch (cast<BuiltinType>(EltType)->getKind()) {
1921    case BuiltinType::SChar:     EltName = "poly8_t"; break;
1922    case BuiltinType::Short:     EltName = "poly16_t"; break;
1923    default: llvm_unreachable("unexpected Neon polynomial vector element type");
1924    }
1925  } else {
1926    switch (cast<BuiltinType>(EltType)->getKind()) {
1927    case BuiltinType::SChar:     EltName = "int8_t"; break;
1928    case BuiltinType::UChar:     EltName = "uint8_t"; break;
1929    case BuiltinType::Short:     EltName = "int16_t"; break;
1930    case BuiltinType::UShort:    EltName = "uint16_t"; break;
1931    case BuiltinType::Int:       EltName = "int32_t"; break;
1932    case BuiltinType::UInt:      EltName = "uint32_t"; break;
1933    case BuiltinType::LongLong:  EltName = "int64_t"; break;
1934    case BuiltinType::ULongLong: EltName = "uint64_t"; break;
1935    case BuiltinType::Float:     EltName = "float32_t"; break;
1936    default: llvm_unreachable("unexpected Neon vector element type");
1937    }
1938  }
1939  const char *BaseName = 0;
1940  unsigned BitSize = (T->getNumElements() *
1941                      getASTContext().getTypeSize(EltType));
1942  if (BitSize == 64)
1943    BaseName = "__simd64_";
1944  else {
1945    assert(BitSize == 128 && "Neon vector type not 64 or 128 bits");
1946    BaseName = "__simd128_";
1947  }
1948  Out << strlen(BaseName) + strlen(EltName);
1949  Out << BaseName << EltName;
1950}
1951
1952// GNU extension: vector types
1953// <type>                  ::= <vector-type>
1954// <vector-type>           ::= Dv <positive dimension number> _
1955//                                    <extended element type>
1956//                         ::= Dv [<dimension expression>] _ <element type>
1957// <extended element type> ::= <element type>
1958//                         ::= p # AltiVec vector pixel
1959void CXXNameMangler::mangleType(const VectorType *T) {
1960  if ((T->getVectorKind() == VectorType::NeonVector ||
1961       T->getVectorKind() == VectorType::NeonPolyVector)) {
1962    mangleNeonVectorType(T);
1963    return;
1964  }
1965  Out << "Dv" << T->getNumElements() << '_';
1966  if (T->getVectorKind() == VectorType::AltiVecPixel)
1967    Out << 'p';
1968  else if (T->getVectorKind() == VectorType::AltiVecBool)
1969    Out << 'b';
1970  else
1971    mangleType(T->getElementType());
1972}
1973void CXXNameMangler::mangleType(const ExtVectorType *T) {
1974  mangleType(static_cast<const VectorType*>(T));
1975}
1976void CXXNameMangler::mangleType(const DependentSizedExtVectorType *T) {
1977  Out << "Dv";
1978  mangleExpression(T->getSizeExpr());
1979  Out << '_';
1980  mangleType(T->getElementType());
1981}
1982
1983void CXXNameMangler::mangleType(const PackExpansionType *T) {
1984  // <type>  ::= Dp <type>          # pack expansion (C++0x)
1985  Out << "Dp";
1986  mangleType(T->getPattern());
1987}
1988
1989void CXXNameMangler::mangleType(const ObjCInterfaceType *T) {
1990  mangleSourceName(T->getDecl()->getIdentifier());
1991}
1992
1993void CXXNameMangler::mangleType(const ObjCObjectType *T) {
1994  // We don't allow overloading by different protocol qualification,
1995  // so mangling them isn't necessary.
1996  mangleType(T->getBaseType());
1997}
1998
1999void CXXNameMangler::mangleType(const BlockPointerType *T) {
2000  Out << "U13block_pointer";
2001  mangleType(T->getPointeeType());
2002}
2003
2004void CXXNameMangler::mangleType(const InjectedClassNameType *T) {
2005  // Mangle injected class name types as if the user had written the
2006  // specialization out fully.  It may not actually be possible to see
2007  // this mangling, though.
2008  mangleType(T->getInjectedSpecializationType());
2009}
2010
2011void CXXNameMangler::mangleType(const TemplateSpecializationType *T) {
2012  if (TemplateDecl *TD = T->getTemplateName().getAsTemplateDecl()) {
2013    mangleName(TD, T->getArgs(), T->getNumArgs());
2014  } else {
2015    if (mangleSubstitution(QualType(T, 0)))
2016      return;
2017
2018    mangleTemplatePrefix(T->getTemplateName());
2019
2020    // FIXME: GCC does not appear to mangle the template arguments when
2021    // the template in question is a dependent template name. Should we
2022    // emulate that badness?
2023    mangleTemplateArgs(T->getTemplateName(), T->getArgs(), T->getNumArgs());
2024    addSubstitution(QualType(T, 0));
2025  }
2026}
2027
2028void CXXNameMangler::mangleType(const DependentNameType *T) {
2029  // Typename types are always nested
2030  Out << 'N';
2031  manglePrefix(T->getQualifier());
2032  mangleSourceName(T->getIdentifier());
2033  Out << 'E';
2034}
2035
2036void CXXNameMangler::mangleType(const DependentTemplateSpecializationType *T) {
2037  // Dependently-scoped template types are nested if they have a prefix.
2038  Out << 'N';
2039
2040  // TODO: avoid making this TemplateName.
2041  TemplateName Prefix =
2042    getASTContext().getDependentTemplateName(T->getQualifier(),
2043                                             T->getIdentifier());
2044  mangleTemplatePrefix(Prefix);
2045
2046  // FIXME: GCC does not appear to mangle the template arguments when
2047  // the template in question is a dependent template name. Should we
2048  // emulate that badness?
2049  mangleTemplateArgs(Prefix, T->getArgs(), T->getNumArgs());
2050  Out << 'E';
2051}
2052
2053void CXXNameMangler::mangleType(const TypeOfType *T) {
2054  // FIXME: this is pretty unsatisfactory, but there isn't an obvious
2055  // "extension with parameters" mangling.
2056  Out << "u6typeof";
2057}
2058
2059void CXXNameMangler::mangleType(const TypeOfExprType *T) {
2060  // FIXME: this is pretty unsatisfactory, but there isn't an obvious
2061  // "extension with parameters" mangling.
2062  Out << "u6typeof";
2063}
2064
2065void CXXNameMangler::mangleType(const DecltypeType *T) {
2066  Expr *E = T->getUnderlyingExpr();
2067
2068  // type ::= Dt <expression> E  # decltype of an id-expression
2069  //                             #   or class member access
2070  //      ::= DT <expression> E  # decltype of an expression
2071
2072  // This purports to be an exhaustive list of id-expressions and
2073  // class member accesses.  Note that we do not ignore parentheses;
2074  // parentheses change the semantics of decltype for these
2075  // expressions (and cause the mangler to use the other form).
2076  if (isa<DeclRefExpr>(E) ||
2077      isa<MemberExpr>(E) ||
2078      isa<UnresolvedLookupExpr>(E) ||
2079      isa<DependentScopeDeclRefExpr>(E) ||
2080      isa<CXXDependentScopeMemberExpr>(E) ||
2081      isa<UnresolvedMemberExpr>(E))
2082    Out << "Dt";
2083  else
2084    Out << "DT";
2085  mangleExpression(E);
2086  Out << 'E';
2087}
2088
2089void CXXNameMangler::mangleType(const UnaryTransformType *T) {
2090  // If this is dependent, we need to record that. If not, we simply
2091  // mangle it as the underlying type since they are equivalent.
2092  if (T->isDependentType()) {
2093    Out << 'U';
2094
2095    switch (T->getUTTKind()) {
2096      case UnaryTransformType::EnumUnderlyingType:
2097        Out << "3eut";
2098        break;
2099    }
2100  }
2101
2102  mangleType(T->getUnderlyingType());
2103}
2104
2105void CXXNameMangler::mangleType(const AutoType *T) {
2106  QualType D = T->getDeducedType();
2107  // <builtin-type> ::= Da  # dependent auto
2108  if (D.isNull())
2109    Out << "Da";
2110  else
2111    mangleType(D);
2112}
2113
2114void CXXNameMangler::mangleIntegerLiteral(QualType T,
2115                                          const llvm::APSInt &Value) {
2116  //  <expr-primary> ::= L <type> <value number> E # integer literal
2117  Out << 'L';
2118
2119  mangleType(T);
2120  if (T->isBooleanType()) {
2121    // Boolean values are encoded as 0/1.
2122    Out << (Value.getBoolValue() ? '1' : '0');
2123  } else {
2124    mangleNumber(Value);
2125  }
2126  Out << 'E';
2127
2128}
2129
2130/// Mangles a member expression.  Implicit accesses are not handled,
2131/// but that should be okay, because you shouldn't be able to
2132/// make an implicit access in a function template declaration.
2133void CXXNameMangler::mangleMemberExpr(const Expr *base,
2134                                      bool isArrow,
2135                                      NestedNameSpecifier *qualifier,
2136                                      NamedDecl *firstQualifierLookup,
2137                                      DeclarationName member,
2138                                      unsigned arity) {
2139  // <expression> ::= dt <expression> <unresolved-name>
2140  //              ::= pt <expression> <unresolved-name>
2141  Out << (isArrow ? "pt" : "dt");
2142  mangleExpression(base);
2143  mangleUnresolvedName(qualifier, firstQualifierLookup, member, arity);
2144}
2145
2146/// Look at the callee of the given call expression and determine if
2147/// it's a parenthesized id-expression which would have triggered ADL
2148/// otherwise.
2149static bool isParenthesizedADLCallee(const CallExpr *call) {
2150  const Expr *callee = call->getCallee();
2151  const Expr *fn = callee->IgnoreParens();
2152
2153  // Must be parenthesized.  IgnoreParens() skips __extension__ nodes,
2154  // too, but for those to appear in the callee, it would have to be
2155  // parenthesized.
2156  if (callee == fn) return false;
2157
2158  // Must be an unresolved lookup.
2159  const UnresolvedLookupExpr *lookup = dyn_cast<UnresolvedLookupExpr>(fn);
2160  if (!lookup) return false;
2161
2162  assert(!lookup->requiresADL());
2163
2164  // Must be an unqualified lookup.
2165  if (lookup->getQualifier()) return false;
2166
2167  // Must not have found a class member.  Note that if one is a class
2168  // member, they're all class members.
2169  if (lookup->getNumDecls() > 0 &&
2170      (*lookup->decls_begin())->isCXXClassMember())
2171    return false;
2172
2173  // Otherwise, ADL would have been triggered.
2174  return true;
2175}
2176
2177void CXXNameMangler::mangleExpression(const Expr *E, unsigned Arity) {
2178  // <expression> ::= <unary operator-name> <expression>
2179  //              ::= <binary operator-name> <expression> <expression>
2180  //              ::= <trinary operator-name> <expression> <expression> <expression>
2181  //              ::= cv <type> expression           # conversion with one argument
2182  //              ::= cv <type> _ <expression>* E # conversion with a different number of arguments
2183  //              ::= st <type>                      # sizeof (a type)
2184  //              ::= at <type>                      # alignof (a type)
2185  //              ::= <template-param>
2186  //              ::= <function-param>
2187  //              ::= sr <type> <unqualified-name>                   # dependent name
2188  //              ::= sr <type> <unqualified-name> <template-args>   # dependent template-id
2189  //              ::= ds <expression> <expression>                   # expr.*expr
2190  //              ::= sZ <template-param>                            # size of a parameter pack
2191  //              ::= sZ <function-param>    # size of a function parameter pack
2192  //              ::= <expr-primary>
2193  // <expr-primary> ::= L <type> <value number> E    # integer literal
2194  //                ::= L <type <value float> E      # floating literal
2195  //                ::= L <mangled-name> E           # external name
2196  QualType ImplicitlyConvertedToType;
2197
2198recurse:
2199  switch (E->getStmtClass()) {
2200  case Expr::NoStmtClass:
2201#define ABSTRACT_STMT(Type)
2202#define EXPR(Type, Base)
2203#define STMT(Type, Base) \
2204  case Expr::Type##Class:
2205#include "clang/AST/StmtNodes.inc"
2206    // fallthrough
2207
2208  // These all can only appear in local or variable-initialization
2209  // contexts and so should never appear in a mangling.
2210  case Expr::AddrLabelExprClass:
2211  case Expr::BlockDeclRefExprClass:
2212  case Expr::CXXThisExprClass:
2213  case Expr::DesignatedInitExprClass:
2214  case Expr::ImplicitValueInitExprClass:
2215  case Expr::InitListExprClass:
2216  case Expr::ParenListExprClass:
2217  case Expr::CXXScalarValueInitExprClass:
2218    llvm_unreachable("unexpected statement kind");
2219    break;
2220
2221  // FIXME: invent manglings for all these.
2222  case Expr::BlockExprClass:
2223  case Expr::CXXPseudoDestructorExprClass:
2224  case Expr::ChooseExprClass:
2225  case Expr::CompoundLiteralExprClass:
2226  case Expr::ExtVectorElementExprClass:
2227  case Expr::GenericSelectionExprClass:
2228  case Expr::ObjCEncodeExprClass:
2229  case Expr::ObjCIsaExprClass:
2230  case Expr::ObjCIvarRefExprClass:
2231  case Expr::ObjCMessageExprClass:
2232  case Expr::ObjCPropertyRefExprClass:
2233  case Expr::ObjCProtocolExprClass:
2234  case Expr::ObjCSelectorExprClass:
2235  case Expr::ObjCStringLiteralClass:
2236  case Expr::ObjCIndirectCopyRestoreExprClass:
2237  case Expr::OffsetOfExprClass:
2238  case Expr::PredefinedExprClass:
2239  case Expr::ShuffleVectorExprClass:
2240  case Expr::StmtExprClass:
2241  case Expr::UnaryTypeTraitExprClass:
2242  case Expr::BinaryTypeTraitExprClass:
2243  case Expr::ArrayTypeTraitExprClass:
2244  case Expr::ExpressionTraitExprClass:
2245  case Expr::VAArgExprClass:
2246  case Expr::CXXUuidofExprClass:
2247  case Expr::CXXNoexceptExprClass:
2248  case Expr::CUDAKernelCallExprClass:
2249  case Expr::AsTypeExprClass:
2250  {
2251    // As bad as this diagnostic is, it's better than crashing.
2252    Diagnostic &Diags = Context.getDiags();
2253    unsigned DiagID = Diags.getCustomDiagID(Diagnostic::Error,
2254                                     "cannot yet mangle expression type %0");
2255    Diags.Report(E->getExprLoc(), DiagID)
2256      << E->getStmtClassName() << E->getSourceRange();
2257    break;
2258  }
2259
2260  // Even gcc-4.5 doesn't mangle this.
2261  case Expr::BinaryConditionalOperatorClass: {
2262    Diagnostic &Diags = Context.getDiags();
2263    unsigned DiagID =
2264      Diags.getCustomDiagID(Diagnostic::Error,
2265                "?: operator with omitted middle operand cannot be mangled");
2266    Diags.Report(E->getExprLoc(), DiagID)
2267      << E->getStmtClassName() << E->getSourceRange();
2268    break;
2269  }
2270
2271  // These are used for internal purposes and cannot be meaningfully mangled.
2272  case Expr::OpaqueValueExprClass:
2273    llvm_unreachable("cannot mangle opaque value; mangling wrong thing?");
2274
2275  case Expr::CXXDefaultArgExprClass:
2276    mangleExpression(cast<CXXDefaultArgExpr>(E)->getExpr(), Arity);
2277    break;
2278
2279  case Expr::SubstNonTypeTemplateParmExprClass:
2280    mangleExpression(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement(),
2281                     Arity);
2282    break;
2283
2284  case Expr::CXXMemberCallExprClass: // fallthrough
2285  case Expr::CallExprClass: {
2286    const CallExpr *CE = cast<CallExpr>(E);
2287
2288    // <expression> ::= cp <simple-id> <expression>* E
2289    // We use this mangling only when the call would use ADL except
2290    // for being parenthesized.  Per discussion with David
2291    // Vandervoorde, 2011.04.25.
2292    if (isParenthesizedADLCallee(CE)) {
2293      Out << "cp";
2294      // The callee here is a parenthesized UnresolvedLookupExpr with
2295      // no qualifier and should always get mangled as a <simple-id>
2296      // anyway.
2297
2298    // <expression> ::= cl <expression>* E
2299    } else {
2300      Out << "cl";
2301    }
2302
2303    mangleExpression(CE->getCallee(), CE->getNumArgs());
2304    for (unsigned I = 0, N = CE->getNumArgs(); I != N; ++I)
2305      mangleExpression(CE->getArg(I));
2306    Out << 'E';
2307    break;
2308  }
2309
2310  case Expr::CXXNewExprClass: {
2311    // Proposal from David Vandervoorde, 2010.06.30
2312    const CXXNewExpr *New = cast<CXXNewExpr>(E);
2313    if (New->isGlobalNew()) Out << "gs";
2314    Out << (New->isArray() ? "na" : "nw");
2315    for (CXXNewExpr::const_arg_iterator I = New->placement_arg_begin(),
2316           E = New->placement_arg_end(); I != E; ++I)
2317      mangleExpression(*I);
2318    Out << '_';
2319    mangleType(New->getAllocatedType());
2320    if (New->hasInitializer()) {
2321      Out << "pi";
2322      for (CXXNewExpr::const_arg_iterator I = New->constructor_arg_begin(),
2323             E = New->constructor_arg_end(); I != E; ++I)
2324        mangleExpression(*I);
2325    }
2326    Out << 'E';
2327    break;
2328  }
2329
2330  case Expr::MemberExprClass: {
2331    const MemberExpr *ME = cast<MemberExpr>(E);
2332    mangleMemberExpr(ME->getBase(), ME->isArrow(),
2333                     ME->getQualifier(), 0, ME->getMemberDecl()->getDeclName(),
2334                     Arity);
2335    break;
2336  }
2337
2338  case Expr::UnresolvedMemberExprClass: {
2339    const UnresolvedMemberExpr *ME = cast<UnresolvedMemberExpr>(E);
2340    mangleMemberExpr(ME->getBase(), ME->isArrow(),
2341                     ME->getQualifier(), 0, ME->getMemberName(),
2342                     Arity);
2343    if (ME->hasExplicitTemplateArgs())
2344      mangleTemplateArgs(ME->getExplicitTemplateArgs());
2345    break;
2346  }
2347
2348  case Expr::CXXDependentScopeMemberExprClass: {
2349    const CXXDependentScopeMemberExpr *ME
2350      = cast<CXXDependentScopeMemberExpr>(E);
2351    mangleMemberExpr(ME->getBase(), ME->isArrow(),
2352                     ME->getQualifier(), ME->getFirstQualifierFoundInScope(),
2353                     ME->getMember(), Arity);
2354    if (ME->hasExplicitTemplateArgs())
2355      mangleTemplateArgs(ME->getExplicitTemplateArgs());
2356    break;
2357  }
2358
2359  case Expr::UnresolvedLookupExprClass: {
2360    const UnresolvedLookupExpr *ULE = cast<UnresolvedLookupExpr>(E);
2361    mangleUnresolvedName(ULE->getQualifier(), 0, ULE->getName(), Arity);
2362
2363    // All the <unresolved-name> productions end in a
2364    // base-unresolved-name, where <template-args> are just tacked
2365    // onto the end.
2366    if (ULE->hasExplicitTemplateArgs())
2367      mangleTemplateArgs(ULE->getExplicitTemplateArgs());
2368    break;
2369  }
2370
2371  case Expr::CXXUnresolvedConstructExprClass: {
2372    const CXXUnresolvedConstructExpr *CE = cast<CXXUnresolvedConstructExpr>(E);
2373    unsigned N = CE->arg_size();
2374
2375    Out << "cv";
2376    mangleType(CE->getType());
2377    if (N != 1) Out << '_';
2378    for (unsigned I = 0; I != N; ++I) mangleExpression(CE->getArg(I));
2379    if (N != 1) Out << 'E';
2380    break;
2381  }
2382
2383  case Expr::CXXTemporaryObjectExprClass:
2384  case Expr::CXXConstructExprClass: {
2385    const CXXConstructExpr *CE = cast<CXXConstructExpr>(E);
2386    unsigned N = CE->getNumArgs();
2387
2388    Out << "cv";
2389    mangleType(CE->getType());
2390    if (N != 1) Out << '_';
2391    for (unsigned I = 0; I != N; ++I) mangleExpression(CE->getArg(I));
2392    if (N != 1) Out << 'E';
2393    break;
2394  }
2395
2396  case Expr::UnaryExprOrTypeTraitExprClass: {
2397    const UnaryExprOrTypeTraitExpr *SAE = cast<UnaryExprOrTypeTraitExpr>(E);
2398
2399    if (!SAE->isInstantiationDependent()) {
2400      // Itanium C++ ABI:
2401      //   If the operand of a sizeof or alignof operator is not
2402      //   instantiation-dependent it is encoded as an integer literal
2403      //   reflecting the result of the operator.
2404      //
2405      //   If the result of the operator is implicitly converted to a known
2406      //   integer type, that type is used for the literal; otherwise, the type
2407      //   of std::size_t or std::ptrdiff_t is used.
2408      QualType T = (ImplicitlyConvertedToType.isNull() ||
2409                    !ImplicitlyConvertedToType->isIntegerType())? SAE->getType()
2410                                                    : ImplicitlyConvertedToType;
2411      mangleIntegerLiteral(T, SAE->EvaluateAsInt(Context.getASTContext()));
2412      break;
2413    }
2414
2415    switch(SAE->getKind()) {
2416    case UETT_SizeOf:
2417      Out << 's';
2418      break;
2419    case UETT_AlignOf:
2420      Out << 'a';
2421      break;
2422    case UETT_VecStep:
2423      Diagnostic &Diags = Context.getDiags();
2424      unsigned DiagID = Diags.getCustomDiagID(Diagnostic::Error,
2425                                     "cannot yet mangle vec_step expression");
2426      Diags.Report(DiagID);
2427      return;
2428    }
2429    if (SAE->isArgumentType()) {
2430      Out << 't';
2431      mangleType(SAE->getArgumentType());
2432    } else {
2433      Out << 'z';
2434      mangleExpression(SAE->getArgumentExpr());
2435    }
2436    break;
2437  }
2438
2439  case Expr::CXXThrowExprClass: {
2440    const CXXThrowExpr *TE = cast<CXXThrowExpr>(E);
2441
2442    // Proposal from David Vandervoorde, 2010.06.30
2443    if (TE->getSubExpr()) {
2444      Out << "tw";
2445      mangleExpression(TE->getSubExpr());
2446    } else {
2447      Out << "tr";
2448    }
2449    break;
2450  }
2451
2452  case Expr::CXXTypeidExprClass: {
2453    const CXXTypeidExpr *TIE = cast<CXXTypeidExpr>(E);
2454
2455    // Proposal from David Vandervoorde, 2010.06.30
2456    if (TIE->isTypeOperand()) {
2457      Out << "ti";
2458      mangleType(TIE->getTypeOperand());
2459    } else {
2460      Out << "te";
2461      mangleExpression(TIE->getExprOperand());
2462    }
2463    break;
2464  }
2465
2466  case Expr::CXXDeleteExprClass: {
2467    const CXXDeleteExpr *DE = cast<CXXDeleteExpr>(E);
2468
2469    // Proposal from David Vandervoorde, 2010.06.30
2470    if (DE->isGlobalDelete()) Out << "gs";
2471    Out << (DE->isArrayForm() ? "da" : "dl");
2472    mangleExpression(DE->getArgument());
2473    break;
2474  }
2475
2476  case Expr::UnaryOperatorClass: {
2477    const UnaryOperator *UO = cast<UnaryOperator>(E);
2478    mangleOperatorName(UnaryOperator::getOverloadedOperator(UO->getOpcode()),
2479                       /*Arity=*/1);
2480    mangleExpression(UO->getSubExpr());
2481    break;
2482  }
2483
2484  case Expr::ArraySubscriptExprClass: {
2485    const ArraySubscriptExpr *AE = cast<ArraySubscriptExpr>(E);
2486
2487    // Array subscript is treated as a syntactically weird form of
2488    // binary operator.
2489    Out << "ix";
2490    mangleExpression(AE->getLHS());
2491    mangleExpression(AE->getRHS());
2492    break;
2493  }
2494
2495  case Expr::CompoundAssignOperatorClass: // fallthrough
2496  case Expr::BinaryOperatorClass: {
2497    const BinaryOperator *BO = cast<BinaryOperator>(E);
2498    if (BO->getOpcode() == BO_PtrMemD)
2499      Out << "ds";
2500    else
2501      mangleOperatorName(BinaryOperator::getOverloadedOperator(BO->getOpcode()),
2502                         /*Arity=*/2);
2503    mangleExpression(BO->getLHS());
2504    mangleExpression(BO->getRHS());
2505    break;
2506  }
2507
2508  case Expr::ConditionalOperatorClass: {
2509    const ConditionalOperator *CO = cast<ConditionalOperator>(E);
2510    mangleOperatorName(OO_Conditional, /*Arity=*/3);
2511    mangleExpression(CO->getCond());
2512    mangleExpression(CO->getLHS(), Arity);
2513    mangleExpression(CO->getRHS(), Arity);
2514    break;
2515  }
2516
2517  case Expr::ImplicitCastExprClass: {
2518    ImplicitlyConvertedToType = E->getType();
2519    E = cast<ImplicitCastExpr>(E)->getSubExpr();
2520    goto recurse;
2521  }
2522
2523  case Expr::ObjCBridgedCastExprClass: {
2524    // Mangle ownership casts as a vendor extended operator __bridge,
2525    // __bridge_transfer, or __bridge_retain.
2526    StringRef Kind = cast<ObjCBridgedCastExpr>(E)->getBridgeKindName();
2527    Out << "v1U" << Kind.size() << Kind;
2528  }
2529  // Fall through to mangle the cast itself.
2530
2531  case Expr::CStyleCastExprClass:
2532  case Expr::CXXStaticCastExprClass:
2533  case Expr::CXXDynamicCastExprClass:
2534  case Expr::CXXReinterpretCastExprClass:
2535  case Expr::CXXConstCastExprClass:
2536  case Expr::CXXFunctionalCastExprClass: {
2537    const ExplicitCastExpr *ECE = cast<ExplicitCastExpr>(E);
2538    Out << "cv";
2539    mangleType(ECE->getType());
2540    mangleExpression(ECE->getSubExpr());
2541    break;
2542  }
2543
2544  case Expr::CXXOperatorCallExprClass: {
2545    const CXXOperatorCallExpr *CE = cast<CXXOperatorCallExpr>(E);
2546    unsigned NumArgs = CE->getNumArgs();
2547    mangleOperatorName(CE->getOperator(), /*Arity=*/NumArgs);
2548    // Mangle the arguments.
2549    for (unsigned i = 0; i != NumArgs; ++i)
2550      mangleExpression(CE->getArg(i));
2551    break;
2552  }
2553
2554  case Expr::ParenExprClass:
2555    mangleExpression(cast<ParenExpr>(E)->getSubExpr(), Arity);
2556    break;
2557
2558  case Expr::DeclRefExprClass: {
2559    const NamedDecl *D = cast<DeclRefExpr>(E)->getDecl();
2560
2561    switch (D->getKind()) {
2562    default:
2563      //  <expr-primary> ::= L <mangled-name> E # external name
2564      Out << 'L';
2565      mangle(D, "_Z");
2566      Out << 'E';
2567      break;
2568
2569    case Decl::ParmVar:
2570      mangleFunctionParam(cast<ParmVarDecl>(D));
2571      break;
2572
2573    case Decl::EnumConstant: {
2574      const EnumConstantDecl *ED = cast<EnumConstantDecl>(D);
2575      mangleIntegerLiteral(ED->getType(), ED->getInitVal());
2576      break;
2577    }
2578
2579    case Decl::NonTypeTemplateParm: {
2580      const NonTypeTemplateParmDecl *PD = cast<NonTypeTemplateParmDecl>(D);
2581      mangleTemplateParameter(PD->getIndex());
2582      break;
2583    }
2584
2585    }
2586
2587    break;
2588  }
2589
2590  case Expr::SubstNonTypeTemplateParmPackExprClass:
2591    // FIXME: not clear how to mangle this!
2592    // template <unsigned N...> class A {
2593    //   template <class U...> void foo(U (&x)[N]...);
2594    // };
2595    Out << "_SUBSTPACK_";
2596    break;
2597
2598  case Expr::DependentScopeDeclRefExprClass: {
2599    const DependentScopeDeclRefExpr *DRE = cast<DependentScopeDeclRefExpr>(E);
2600    mangleUnresolvedName(DRE->getQualifier(), 0, DRE->getDeclName(), Arity);
2601
2602    // All the <unresolved-name> productions end in a
2603    // base-unresolved-name, where <template-args> are just tacked
2604    // onto the end.
2605    if (DRE->hasExplicitTemplateArgs())
2606      mangleTemplateArgs(DRE->getExplicitTemplateArgs());
2607    break;
2608  }
2609
2610  case Expr::CXXBindTemporaryExprClass:
2611    mangleExpression(cast<CXXBindTemporaryExpr>(E)->getSubExpr());
2612    break;
2613
2614  case Expr::ExprWithCleanupsClass:
2615    mangleExpression(cast<ExprWithCleanups>(E)->getSubExpr(), Arity);
2616    break;
2617
2618  case Expr::FloatingLiteralClass: {
2619    const FloatingLiteral *FL = cast<FloatingLiteral>(E);
2620    Out << 'L';
2621    mangleType(FL->getType());
2622    mangleFloat(FL->getValue());
2623    Out << 'E';
2624    break;
2625  }
2626
2627  case Expr::CharacterLiteralClass:
2628    Out << 'L';
2629    mangleType(E->getType());
2630    Out << cast<CharacterLiteral>(E)->getValue();
2631    Out << 'E';
2632    break;
2633
2634  case Expr::CXXBoolLiteralExprClass:
2635    Out << "Lb";
2636    Out << (cast<CXXBoolLiteralExpr>(E)->getValue() ? '1' : '0');
2637    Out << 'E';
2638    break;
2639
2640  case Expr::IntegerLiteralClass: {
2641    llvm::APSInt Value(cast<IntegerLiteral>(E)->getValue());
2642    if (E->getType()->isSignedIntegerType())
2643      Value.setIsSigned(true);
2644    mangleIntegerLiteral(E->getType(), Value);
2645    break;
2646  }
2647
2648  case Expr::ImaginaryLiteralClass: {
2649    const ImaginaryLiteral *IE = cast<ImaginaryLiteral>(E);
2650    // Mangle as if a complex literal.
2651    // Proposal from David Vandevoorde, 2010.06.30.
2652    Out << 'L';
2653    mangleType(E->getType());
2654    if (const FloatingLiteral *Imag =
2655          dyn_cast<FloatingLiteral>(IE->getSubExpr())) {
2656      // Mangle a floating-point zero of the appropriate type.
2657      mangleFloat(llvm::APFloat(Imag->getValue().getSemantics()));
2658      Out << '_';
2659      mangleFloat(Imag->getValue());
2660    } else {
2661      Out << "0_";
2662      llvm::APSInt Value(cast<IntegerLiteral>(IE->getSubExpr())->getValue());
2663      if (IE->getSubExpr()->getType()->isSignedIntegerType())
2664        Value.setIsSigned(true);
2665      mangleNumber(Value);
2666    }
2667    Out << 'E';
2668    break;
2669  }
2670
2671  case Expr::StringLiteralClass: {
2672    // Revised proposal from David Vandervoorde, 2010.07.15.
2673    Out << 'L';
2674    assert(isa<ConstantArrayType>(E->getType()));
2675    mangleType(E->getType());
2676    Out << 'E';
2677    break;
2678  }
2679
2680  case Expr::GNUNullExprClass:
2681    // FIXME: should this really be mangled the same as nullptr?
2682    // fallthrough
2683
2684  case Expr::CXXNullPtrLiteralExprClass: {
2685    // Proposal from David Vandervoorde, 2010.06.30, as
2686    // modified by ABI list discussion.
2687    Out << "LDnE";
2688    break;
2689  }
2690
2691  case Expr::PackExpansionExprClass:
2692    Out << "sp";
2693    mangleExpression(cast<PackExpansionExpr>(E)->getPattern());
2694    break;
2695
2696  case Expr::SizeOfPackExprClass: {
2697    Out << "sZ";
2698    const NamedDecl *Pack = cast<SizeOfPackExpr>(E)->getPack();
2699    if (const TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Pack))
2700      mangleTemplateParameter(TTP->getIndex());
2701    else if (const NonTypeTemplateParmDecl *NTTP
2702                = dyn_cast<NonTypeTemplateParmDecl>(Pack))
2703      mangleTemplateParameter(NTTP->getIndex());
2704    else if (const TemplateTemplateParmDecl *TempTP
2705                                    = dyn_cast<TemplateTemplateParmDecl>(Pack))
2706      mangleTemplateParameter(TempTP->getIndex());
2707    else
2708      mangleFunctionParam(cast<ParmVarDecl>(Pack));
2709    break;
2710  }
2711
2712  case Expr::MaterializeTemporaryExprClass: {
2713    mangleExpression(cast<MaterializeTemporaryExpr>(E)->GetTemporaryExpr());
2714    break;
2715  }
2716  }
2717}
2718
2719/// Mangle an expression which refers to a parameter variable.
2720///
2721/// <expression>     ::= <function-param>
2722/// <function-param> ::= fp <top-level CV-qualifiers> _      # L == 0, I == 0
2723/// <function-param> ::= fp <top-level CV-qualifiers>
2724///                      <parameter-2 non-negative number> _ # L == 0, I > 0
2725/// <function-param> ::= fL <L-1 non-negative number>
2726///                      p <top-level CV-qualifiers> _       # L > 0, I == 0
2727/// <function-param> ::= fL <L-1 non-negative number>
2728///                      p <top-level CV-qualifiers>
2729///                      <I-1 non-negative number> _         # L > 0, I > 0
2730///
2731/// L is the nesting depth of the parameter, defined as 1 if the
2732/// parameter comes from the innermost function prototype scope
2733/// enclosing the current context, 2 if from the next enclosing
2734/// function prototype scope, and so on, with one special case: if
2735/// we've processed the full parameter clause for the innermost
2736/// function type, then L is one less.  This definition conveniently
2737/// makes it irrelevant whether a function's result type was written
2738/// trailing or leading, but is otherwise overly complicated; the
2739/// numbering was first designed without considering references to
2740/// parameter in locations other than return types, and then the
2741/// mangling had to be generalized without changing the existing
2742/// manglings.
2743///
2744/// I is the zero-based index of the parameter within its parameter
2745/// declaration clause.  Note that the original ABI document describes
2746/// this using 1-based ordinals.
2747void CXXNameMangler::mangleFunctionParam(const ParmVarDecl *parm) {
2748  unsigned parmDepth = parm->getFunctionScopeDepth();
2749  unsigned parmIndex = parm->getFunctionScopeIndex();
2750
2751  // Compute 'L'.
2752  // parmDepth does not include the declaring function prototype.
2753  // FunctionTypeDepth does account for that.
2754  assert(parmDepth < FunctionTypeDepth.getDepth());
2755  unsigned nestingDepth = FunctionTypeDepth.getDepth() - parmDepth;
2756  if (FunctionTypeDepth.isInResultType())
2757    nestingDepth--;
2758
2759  if (nestingDepth == 0) {
2760    Out << "fp";
2761  } else {
2762    Out << "fL" << (nestingDepth - 1) << 'p';
2763  }
2764
2765  // Top-level qualifiers.  We don't have to worry about arrays here,
2766  // because parameters declared as arrays should already have been
2767  // tranformed to have pointer type. FIXME: apparently these don't
2768  // get mangled if used as an rvalue of a known non-class type?
2769  assert(!parm->getType()->isArrayType()
2770         && "parameter's type is still an array type?");
2771  mangleQualifiers(parm->getType().getQualifiers());
2772
2773  // Parameter index.
2774  if (parmIndex != 0) {
2775    Out << (parmIndex - 1);
2776  }
2777  Out << '_';
2778}
2779
2780void CXXNameMangler::mangleCXXCtorType(CXXCtorType T) {
2781  // <ctor-dtor-name> ::= C1  # complete object constructor
2782  //                  ::= C2  # base object constructor
2783  //                  ::= C3  # complete object allocating constructor
2784  //
2785  switch (T) {
2786  case Ctor_Complete:
2787    Out << "C1";
2788    break;
2789  case Ctor_Base:
2790    Out << "C2";
2791    break;
2792  case Ctor_CompleteAllocating:
2793    Out << "C3";
2794    break;
2795  }
2796}
2797
2798void CXXNameMangler::mangleCXXDtorType(CXXDtorType T) {
2799  // <ctor-dtor-name> ::= D0  # deleting destructor
2800  //                  ::= D1  # complete object destructor
2801  //                  ::= D2  # base object destructor
2802  //
2803  switch (T) {
2804  case Dtor_Deleting:
2805    Out << "D0";
2806    break;
2807  case Dtor_Complete:
2808    Out << "D1";
2809    break;
2810  case Dtor_Base:
2811    Out << "D2";
2812    break;
2813  }
2814}
2815
2816void CXXNameMangler::mangleTemplateArgs(
2817                          const ASTTemplateArgumentListInfo &TemplateArgs) {
2818  // <template-args> ::= I <template-arg>+ E
2819  Out << 'I';
2820  for (unsigned i = 0, e = TemplateArgs.NumTemplateArgs; i != e; ++i)
2821    mangleTemplateArg(0, TemplateArgs.getTemplateArgs()[i].getArgument());
2822  Out << 'E';
2823}
2824
2825void CXXNameMangler::mangleTemplateArgs(TemplateName Template,
2826                                        const TemplateArgument *TemplateArgs,
2827                                        unsigned NumTemplateArgs) {
2828  if (TemplateDecl *TD = Template.getAsTemplateDecl())
2829    return mangleTemplateArgs(*TD->getTemplateParameters(), TemplateArgs,
2830                              NumTemplateArgs);
2831
2832  mangleUnresolvedTemplateArgs(TemplateArgs, NumTemplateArgs);
2833}
2834
2835void CXXNameMangler::mangleUnresolvedTemplateArgs(const TemplateArgument *args,
2836                                                  unsigned numArgs) {
2837  // <template-args> ::= I <template-arg>+ E
2838  Out << 'I';
2839  for (unsigned i = 0; i != numArgs; ++i)
2840    mangleTemplateArg(0, args[i]);
2841  Out << 'E';
2842}
2843
2844void CXXNameMangler::mangleTemplateArgs(const TemplateParameterList &PL,
2845                                        const TemplateArgumentList &AL) {
2846  // <template-args> ::= I <template-arg>+ E
2847  Out << 'I';
2848  for (unsigned i = 0, e = AL.size(); i != e; ++i)
2849    mangleTemplateArg(PL.getParam(i), AL[i]);
2850  Out << 'E';
2851}
2852
2853void CXXNameMangler::mangleTemplateArgs(const TemplateParameterList &PL,
2854                                        const TemplateArgument *TemplateArgs,
2855                                        unsigned NumTemplateArgs) {
2856  // <template-args> ::= I <template-arg>+ E
2857  Out << 'I';
2858  for (unsigned i = 0; i != NumTemplateArgs; ++i)
2859    mangleTemplateArg(PL.getParam(i), TemplateArgs[i]);
2860  Out << 'E';
2861}
2862
2863void CXXNameMangler::mangleTemplateArg(const NamedDecl *P,
2864                                       TemplateArgument A) {
2865  // <template-arg> ::= <type>              # type or template
2866  //                ::= X <expression> E    # expression
2867  //                ::= <expr-primary>      # simple expressions
2868  //                ::= J <template-arg>* E # argument pack
2869  //                ::= sp <expression>     # pack expansion of (C++0x)
2870  if (!A.isInstantiationDependent() || A.isDependent())
2871    A = Context.getASTContext().getCanonicalTemplateArgument(A);
2872
2873  switch (A.getKind()) {
2874  case TemplateArgument::Null:
2875    llvm_unreachable("Cannot mangle NULL template argument");
2876
2877  case TemplateArgument::Type:
2878    mangleType(A.getAsType());
2879    break;
2880  case TemplateArgument::Template:
2881    // This is mangled as <type>.
2882    mangleType(A.getAsTemplate());
2883    break;
2884  case TemplateArgument::TemplateExpansion:
2885    // <type>  ::= Dp <type>          # pack expansion (C++0x)
2886    Out << "Dp";
2887    mangleType(A.getAsTemplateOrTemplatePattern());
2888    break;
2889  case TemplateArgument::Expression:
2890    Out << 'X';
2891    mangleExpression(A.getAsExpr());
2892    Out << 'E';
2893    break;
2894  case TemplateArgument::Integral:
2895    mangleIntegerLiteral(A.getIntegralType(), *A.getAsIntegral());
2896    break;
2897  case TemplateArgument::Declaration: {
2898    assert(P && "Missing template parameter for declaration argument");
2899    //  <expr-primary> ::= L <mangled-name> E # external name
2900
2901    // Clang produces AST's where pointer-to-member-function expressions
2902    // and pointer-to-function expressions are represented as a declaration not
2903    // an expression. We compensate for it here to produce the correct mangling.
2904    NamedDecl *D = cast<NamedDecl>(A.getAsDecl());
2905    const NonTypeTemplateParmDecl *Parameter = cast<NonTypeTemplateParmDecl>(P);
2906    bool compensateMangling = !Parameter->getType()->isReferenceType();
2907    if (compensateMangling) {
2908      Out << 'X';
2909      mangleOperatorName(OO_Amp, 1);
2910    }
2911
2912    Out << 'L';
2913    // References to external entities use the mangled name; if the name would
2914    // not normally be manged then mangle it as unqualified.
2915    //
2916    // FIXME: The ABI specifies that external names here should have _Z, but
2917    // gcc leaves this off.
2918    if (compensateMangling)
2919      mangle(D, "_Z");
2920    else
2921      mangle(D, "Z");
2922    Out << 'E';
2923
2924    if (compensateMangling)
2925      Out << 'E';
2926
2927    break;
2928  }
2929
2930  case TemplateArgument::Pack: {
2931    // Note: proposal by Mike Herrick on 12/20/10
2932    Out << 'J';
2933    for (TemplateArgument::pack_iterator PA = A.pack_begin(),
2934                                      PAEnd = A.pack_end();
2935         PA != PAEnd; ++PA)
2936      mangleTemplateArg(P, *PA);
2937    Out << 'E';
2938  }
2939  }
2940}
2941
2942void CXXNameMangler::mangleTemplateParameter(unsigned Index) {
2943  // <template-param> ::= T_    # first template parameter
2944  //                  ::= T <parameter-2 non-negative number> _
2945  if (Index == 0)
2946    Out << "T_";
2947  else
2948    Out << 'T' << (Index - 1) << '_';
2949}
2950
2951void CXXNameMangler::mangleExistingSubstitution(QualType type) {
2952  bool result = mangleSubstitution(type);
2953  assert(result && "no existing substitution for type");
2954  (void) result;
2955}
2956
2957void CXXNameMangler::mangleExistingSubstitution(TemplateName tname) {
2958  bool result = mangleSubstitution(tname);
2959  assert(result && "no existing substitution for template name");
2960  (void) result;
2961}
2962
2963// <substitution> ::= S <seq-id> _
2964//                ::= S_
2965bool CXXNameMangler::mangleSubstitution(const NamedDecl *ND) {
2966  // Try one of the standard substitutions first.
2967  if (mangleStandardSubstitution(ND))
2968    return true;
2969
2970  ND = cast<NamedDecl>(ND->getCanonicalDecl());
2971  return mangleSubstitution(reinterpret_cast<uintptr_t>(ND));
2972}
2973
2974bool CXXNameMangler::mangleSubstitution(QualType T) {
2975  if (!T.getCVRQualifiers()) {
2976    if (const RecordType *RT = T->getAs<RecordType>())
2977      return mangleSubstitution(RT->getDecl());
2978  }
2979
2980  uintptr_t TypePtr = reinterpret_cast<uintptr_t>(T.getAsOpaquePtr());
2981
2982  return mangleSubstitution(TypePtr);
2983}
2984
2985bool CXXNameMangler::mangleSubstitution(TemplateName Template) {
2986  if (TemplateDecl *TD = Template.getAsTemplateDecl())
2987    return mangleSubstitution(TD);
2988
2989  Template = Context.getASTContext().getCanonicalTemplateName(Template);
2990  return mangleSubstitution(
2991                      reinterpret_cast<uintptr_t>(Template.getAsVoidPointer()));
2992}
2993
2994bool CXXNameMangler::mangleSubstitution(uintptr_t Ptr) {
2995  llvm::DenseMap<uintptr_t, unsigned>::iterator I = Substitutions.find(Ptr);
2996  if (I == Substitutions.end())
2997    return false;
2998
2999  unsigned SeqID = I->second;
3000  if (SeqID == 0)
3001    Out << "S_";
3002  else {
3003    SeqID--;
3004
3005    // <seq-id> is encoded in base-36, using digits and upper case letters.
3006    char Buffer[10];
3007    char *BufferPtr = llvm::array_endof(Buffer);
3008
3009    if (SeqID == 0) *--BufferPtr = '0';
3010
3011    while (SeqID) {
3012      assert(BufferPtr > Buffer && "Buffer overflow!");
3013
3014      char c = static_cast<char>(SeqID % 36);
3015
3016      *--BufferPtr =  (c < 10 ? '0' + c : 'A' + c - 10);
3017      SeqID /= 36;
3018    }
3019
3020    Out << 'S'
3021        << StringRef(BufferPtr, llvm::array_endof(Buffer)-BufferPtr)
3022        << '_';
3023  }
3024
3025  return true;
3026}
3027
3028static bool isCharType(QualType T) {
3029  if (T.isNull())
3030    return false;
3031
3032  return T->isSpecificBuiltinType(BuiltinType::Char_S) ||
3033    T->isSpecificBuiltinType(BuiltinType::Char_U);
3034}
3035
3036/// isCharSpecialization - Returns whether a given type is a template
3037/// specialization of a given name with a single argument of type char.
3038static bool isCharSpecialization(QualType T, const char *Name) {
3039  if (T.isNull())
3040    return false;
3041
3042  const RecordType *RT = T->getAs<RecordType>();
3043  if (!RT)
3044    return false;
3045
3046  const ClassTemplateSpecializationDecl *SD =
3047    dyn_cast<ClassTemplateSpecializationDecl>(RT->getDecl());
3048  if (!SD)
3049    return false;
3050
3051  if (!isStdNamespace(SD->getDeclContext()))
3052    return false;
3053
3054  const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs();
3055  if (TemplateArgs.size() != 1)
3056    return false;
3057
3058  if (!isCharType(TemplateArgs[0].getAsType()))
3059    return false;
3060
3061  return SD->getIdentifier()->getName() == Name;
3062}
3063
3064template <std::size_t StrLen>
3065static bool isStreamCharSpecialization(const ClassTemplateSpecializationDecl*SD,
3066                                       const char (&Str)[StrLen]) {
3067  if (!SD->getIdentifier()->isStr(Str))
3068    return false;
3069
3070  const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs();
3071  if (TemplateArgs.size() != 2)
3072    return false;
3073
3074  if (!isCharType(TemplateArgs[0].getAsType()))
3075    return false;
3076
3077  if (!isCharSpecialization(TemplateArgs[1].getAsType(), "char_traits"))
3078    return false;
3079
3080  return true;
3081}
3082
3083bool CXXNameMangler::mangleStandardSubstitution(const NamedDecl *ND) {
3084  // <substitution> ::= St # ::std::
3085  if (const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ND)) {
3086    if (isStd(NS)) {
3087      Out << "St";
3088      return true;
3089    }
3090  }
3091
3092  if (const ClassTemplateDecl *TD = dyn_cast<ClassTemplateDecl>(ND)) {
3093    if (!isStdNamespace(TD->getDeclContext()))
3094      return false;
3095
3096    // <substitution> ::= Sa # ::std::allocator
3097    if (TD->getIdentifier()->isStr("allocator")) {
3098      Out << "Sa";
3099      return true;
3100    }
3101
3102    // <<substitution> ::= Sb # ::std::basic_string
3103    if (TD->getIdentifier()->isStr("basic_string")) {
3104      Out << "Sb";
3105      return true;
3106    }
3107  }
3108
3109  if (const ClassTemplateSpecializationDecl *SD =
3110        dyn_cast<ClassTemplateSpecializationDecl>(ND)) {
3111    if (!isStdNamespace(SD->getDeclContext()))
3112      return false;
3113
3114    //    <substitution> ::= Ss # ::std::basic_string<char,
3115    //                            ::std::char_traits<char>,
3116    //                            ::std::allocator<char> >
3117    if (SD->getIdentifier()->isStr("basic_string")) {
3118      const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs();
3119
3120      if (TemplateArgs.size() != 3)
3121        return false;
3122
3123      if (!isCharType(TemplateArgs[0].getAsType()))
3124        return false;
3125
3126      if (!isCharSpecialization(TemplateArgs[1].getAsType(), "char_traits"))
3127        return false;
3128
3129      if (!isCharSpecialization(TemplateArgs[2].getAsType(), "allocator"))
3130        return false;
3131
3132      Out << "Ss";
3133      return true;
3134    }
3135
3136    //    <substitution> ::= Si # ::std::basic_istream<char,
3137    //                            ::std::char_traits<char> >
3138    if (isStreamCharSpecialization(SD, "basic_istream")) {
3139      Out << "Si";
3140      return true;
3141    }
3142
3143    //    <substitution> ::= So # ::std::basic_ostream<char,
3144    //                            ::std::char_traits<char> >
3145    if (isStreamCharSpecialization(SD, "basic_ostream")) {
3146      Out << "So";
3147      return true;
3148    }
3149
3150    //    <substitution> ::= Sd # ::std::basic_iostream<char,
3151    //                            ::std::char_traits<char> >
3152    if (isStreamCharSpecialization(SD, "basic_iostream")) {
3153      Out << "Sd";
3154      return true;
3155    }
3156  }
3157  return false;
3158}
3159
3160void CXXNameMangler::addSubstitution(QualType T) {
3161  if (!T.getCVRQualifiers()) {
3162    if (const RecordType *RT = T->getAs<RecordType>()) {
3163      addSubstitution(RT->getDecl());
3164      return;
3165    }
3166  }
3167
3168  uintptr_t TypePtr = reinterpret_cast<uintptr_t>(T.getAsOpaquePtr());
3169  addSubstitution(TypePtr);
3170}
3171
3172void CXXNameMangler::addSubstitution(TemplateName Template) {
3173  if (TemplateDecl *TD = Template.getAsTemplateDecl())
3174    return addSubstitution(TD);
3175
3176  Template = Context.getASTContext().getCanonicalTemplateName(Template);
3177  addSubstitution(reinterpret_cast<uintptr_t>(Template.getAsVoidPointer()));
3178}
3179
3180void CXXNameMangler::addSubstitution(uintptr_t Ptr) {
3181  assert(!Substitutions.count(Ptr) && "Substitution already exists!");
3182  Substitutions[Ptr] = SeqID++;
3183}
3184
3185//
3186
3187/// \brief Mangles the name of the declaration D and emits that name to the
3188/// given output stream.
3189///
3190/// If the declaration D requires a mangled name, this routine will emit that
3191/// mangled name to \p os and return true. Otherwise, \p os will be unchanged
3192/// and this routine will return false. In this case, the caller should just
3193/// emit the identifier of the declaration (\c D->getIdentifier()) as its
3194/// name.
3195void ItaniumMangleContext::mangleName(const NamedDecl *D,
3196                                      raw_ostream &Out) {
3197  assert((isa<FunctionDecl>(D) || isa<VarDecl>(D)) &&
3198          "Invalid mangleName() call, argument is not a variable or function!");
3199  assert(!isa<CXXConstructorDecl>(D) && !isa<CXXDestructorDecl>(D) &&
3200         "Invalid mangleName() call on 'structor decl!");
3201
3202  PrettyStackTraceDecl CrashInfo(D, SourceLocation(),
3203                                 getASTContext().getSourceManager(),
3204                                 "Mangling declaration");
3205
3206  CXXNameMangler Mangler(*this, Out, D);
3207  return Mangler.mangle(D);
3208}
3209
3210void ItaniumMangleContext::mangleCXXCtor(const CXXConstructorDecl *D,
3211                                         CXXCtorType Type,
3212                                         raw_ostream &Out) {
3213  CXXNameMangler Mangler(*this, Out, D, Type);
3214  Mangler.mangle(D);
3215}
3216
3217void ItaniumMangleContext::mangleCXXDtor(const CXXDestructorDecl *D,
3218                                         CXXDtorType Type,
3219                                         raw_ostream &Out) {
3220  CXXNameMangler Mangler(*this, Out, D, Type);
3221  Mangler.mangle(D);
3222}
3223
3224void ItaniumMangleContext::mangleThunk(const CXXMethodDecl *MD,
3225                                       const ThunkInfo &Thunk,
3226                                       raw_ostream &Out) {
3227  //  <special-name> ::= T <call-offset> <base encoding>
3228  //                      # base is the nominal target function of thunk
3229  //  <special-name> ::= Tc <call-offset> <call-offset> <base encoding>
3230  //                      # base is the nominal target function of thunk
3231  //                      # first call-offset is 'this' adjustment
3232  //                      # second call-offset is result adjustment
3233
3234  assert(!isa<CXXDestructorDecl>(MD) &&
3235         "Use mangleCXXDtor for destructor decls!");
3236  CXXNameMangler Mangler(*this, Out);
3237  Mangler.getStream() << "_ZT";
3238  if (!Thunk.Return.isEmpty())
3239    Mangler.getStream() << 'c';
3240
3241  // Mangle the 'this' pointer adjustment.
3242  Mangler.mangleCallOffset(Thunk.This.NonVirtual, Thunk.This.VCallOffsetOffset);
3243
3244  // Mangle the return pointer adjustment if there is one.
3245  if (!Thunk.Return.isEmpty())
3246    Mangler.mangleCallOffset(Thunk.Return.NonVirtual,
3247                             Thunk.Return.VBaseOffsetOffset);
3248
3249  Mangler.mangleFunctionEncoding(MD);
3250}
3251
3252void
3253ItaniumMangleContext::mangleCXXDtorThunk(const CXXDestructorDecl *DD,
3254                                         CXXDtorType Type,
3255                                         const ThisAdjustment &ThisAdjustment,
3256                                         raw_ostream &Out) {
3257  //  <special-name> ::= T <call-offset> <base encoding>
3258  //                      # base is the nominal target function of thunk
3259  CXXNameMangler Mangler(*this, Out, DD, Type);
3260  Mangler.getStream() << "_ZT";
3261
3262  // Mangle the 'this' pointer adjustment.
3263  Mangler.mangleCallOffset(ThisAdjustment.NonVirtual,
3264                           ThisAdjustment.VCallOffsetOffset);
3265
3266  Mangler.mangleFunctionEncoding(DD);
3267}
3268
3269/// mangleGuardVariable - Returns the mangled name for a guard variable
3270/// for the passed in VarDecl.
3271void ItaniumMangleContext::mangleItaniumGuardVariable(const VarDecl *D,
3272                                                      raw_ostream &Out) {
3273  //  <special-name> ::= GV <object name>       # Guard variable for one-time
3274  //                                            # initialization
3275  CXXNameMangler Mangler(*this, Out);
3276  Mangler.getStream() << "_ZGV";
3277  Mangler.mangleName(D);
3278}
3279
3280void ItaniumMangleContext::mangleReferenceTemporary(const VarDecl *D,
3281                                                    raw_ostream &Out) {
3282  // We match the GCC mangling here.
3283  //  <special-name> ::= GR <object name>
3284  CXXNameMangler Mangler(*this, Out);
3285  Mangler.getStream() << "_ZGR";
3286  Mangler.mangleName(D);
3287}
3288
3289void ItaniumMangleContext::mangleCXXVTable(const CXXRecordDecl *RD,
3290                                           raw_ostream &Out) {
3291  // <special-name> ::= TV <type>  # virtual table
3292  CXXNameMangler Mangler(*this, Out);
3293  Mangler.getStream() << "_ZTV";
3294  Mangler.mangleNameOrStandardSubstitution(RD);
3295}
3296
3297void ItaniumMangleContext::mangleCXXVTT(const CXXRecordDecl *RD,
3298                                        raw_ostream &Out) {
3299  // <special-name> ::= TT <type>  # VTT structure
3300  CXXNameMangler Mangler(*this, Out);
3301  Mangler.getStream() << "_ZTT";
3302  Mangler.mangleNameOrStandardSubstitution(RD);
3303}
3304
3305void ItaniumMangleContext::mangleCXXCtorVTable(const CXXRecordDecl *RD,
3306                                               int64_t Offset,
3307                                               const CXXRecordDecl *Type,
3308                                               raw_ostream &Out) {
3309  // <special-name> ::= TC <type> <offset number> _ <base type>
3310  CXXNameMangler Mangler(*this, Out);
3311  Mangler.getStream() << "_ZTC";
3312  Mangler.mangleNameOrStandardSubstitution(RD);
3313  Mangler.getStream() << Offset;
3314  Mangler.getStream() << '_';
3315  Mangler.mangleNameOrStandardSubstitution(Type);
3316}
3317
3318void ItaniumMangleContext::mangleCXXRTTI(QualType Ty,
3319                                         raw_ostream &Out) {
3320  // <special-name> ::= TI <type>  # typeinfo structure
3321  assert(!Ty.hasQualifiers() && "RTTI info cannot have top-level qualifiers");
3322  CXXNameMangler Mangler(*this, Out);
3323  Mangler.getStream() << "_ZTI";
3324  Mangler.mangleType(Ty);
3325}
3326
3327void ItaniumMangleContext::mangleCXXRTTIName(QualType Ty,
3328                                             raw_ostream &Out) {
3329  // <special-name> ::= TS <type>  # typeinfo name (null terminated byte string)
3330  CXXNameMangler Mangler(*this, Out);
3331  Mangler.getStream() << "_ZTS";
3332  Mangler.mangleType(Ty);
3333}
3334
3335MangleContext *clang::createItaniumMangleContext(ASTContext &Context,
3336                                                 Diagnostic &Diags) {
3337  return new ItaniumMangleContext(Context, Diags);
3338}
3339