TargetInfo.cpp revision 4b93d660c6326ec79b5e369317d1051cf826c2f3
1//===---- TargetInfo.cpp - Encapsulate target details -----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// These classes wrap the information about a call or function
11// definition used to handle ABI compliancy.
12//
13//===----------------------------------------------------------------------===//
14
15#include "TargetInfo.h"
16#include "ABIInfo.h"
17#include "CodeGenFunction.h"
18#include "clang/AST/RecordLayout.h"
19#include "llvm/Type.h"
20#include "llvm/Target/TargetData.h"
21#include "llvm/ADT/Triple.h"
22#include "llvm/Support/raw_ostream.h"
23using namespace clang;
24using namespace CodeGen;
25
26static void AssignToArrayRange(CodeGen::CGBuilderTy &Builder,
27                               llvm::Value *Array,
28                               llvm::Value *Value,
29                               unsigned FirstIndex,
30                               unsigned LastIndex) {
31  // Alternatively, we could emit this as a loop in the source.
32  for (unsigned I = FirstIndex; I <= LastIndex; ++I) {
33    llvm::Value *Cell = Builder.CreateConstInBoundsGEP1_32(Array, I);
34    Builder.CreateStore(Value, Cell);
35  }
36}
37
38static bool isAggregateTypeForABI(QualType T) {
39  return CodeGenFunction::hasAggregateLLVMType(T) ||
40         T->isMemberFunctionPointerType();
41}
42
43ABIInfo::~ABIInfo() {}
44
45ASTContext &ABIInfo::getContext() const {
46  return CGT.getContext();
47}
48
49llvm::LLVMContext &ABIInfo::getVMContext() const {
50  return CGT.getLLVMContext();
51}
52
53const llvm::TargetData &ABIInfo::getTargetData() const {
54  return CGT.getTargetData();
55}
56
57
58void ABIArgInfo::dump() const {
59  llvm::raw_ostream &OS = llvm::errs();
60  OS << "(ABIArgInfo Kind=";
61  switch (TheKind) {
62  case Direct:
63    OS << "Direct Type=";
64    if (const llvm::Type *Ty = getCoerceToType())
65      Ty->print(OS);
66    else
67      OS << "null";
68    break;
69  case Extend:
70    OS << "Extend";
71    break;
72  case Ignore:
73    OS << "Ignore";
74    break;
75  case Indirect:
76    OS << "Indirect Align=" << getIndirectAlign()
77       << " Byal=" << getIndirectByVal()
78       << " Realign=" << getIndirectRealign();
79    break;
80  case Expand:
81    OS << "Expand";
82    break;
83  }
84  OS << ")\n";
85}
86
87TargetCodeGenInfo::~TargetCodeGenInfo() { delete Info; }
88
89static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays);
90
91/// isEmptyField - Return true iff a the field is "empty", that is it
92/// is an unnamed bit-field or an (array of) empty record(s).
93static bool isEmptyField(ASTContext &Context, const FieldDecl *FD,
94                         bool AllowArrays) {
95  if (FD->isUnnamedBitfield())
96    return true;
97
98  QualType FT = FD->getType();
99
100    // Constant arrays of empty records count as empty, strip them off.
101  if (AllowArrays)
102    while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT))
103      FT = AT->getElementType();
104
105  const RecordType *RT = FT->getAs<RecordType>();
106  if (!RT)
107    return false;
108
109  // C++ record fields are never empty, at least in the Itanium ABI.
110  //
111  // FIXME: We should use a predicate for whether this behavior is true in the
112  // current ABI.
113  if (isa<CXXRecordDecl>(RT->getDecl()))
114    return false;
115
116  return isEmptyRecord(Context, FT, AllowArrays);
117}
118
119/// isEmptyRecord - Return true iff a structure contains only empty
120/// fields. Note that a structure with a flexible array member is not
121/// considered empty.
122static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays) {
123  const RecordType *RT = T->getAs<RecordType>();
124  if (!RT)
125    return 0;
126  const RecordDecl *RD = RT->getDecl();
127  if (RD->hasFlexibleArrayMember())
128    return false;
129
130  // If this is a C++ record, check the bases first.
131  if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
132    for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
133           e = CXXRD->bases_end(); i != e; ++i)
134      if (!isEmptyRecord(Context, i->getType(), true))
135        return false;
136
137  for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
138         i != e; ++i)
139    if (!isEmptyField(Context, *i, AllowArrays))
140      return false;
141  return true;
142}
143
144/// hasNonTrivialDestructorOrCopyConstructor - Determine if a type has either
145/// a non-trivial destructor or a non-trivial copy constructor.
146static bool hasNonTrivialDestructorOrCopyConstructor(const RecordType *RT) {
147  const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
148  if (!RD)
149    return false;
150
151  return !RD->hasTrivialDestructor() || !RD->hasTrivialCopyConstructor();
152}
153
154/// isRecordWithNonTrivialDestructorOrCopyConstructor - Determine if a type is
155/// a record type with either a non-trivial destructor or a non-trivial copy
156/// constructor.
157static bool isRecordWithNonTrivialDestructorOrCopyConstructor(QualType T) {
158  const RecordType *RT = T->getAs<RecordType>();
159  if (!RT)
160    return false;
161
162  return hasNonTrivialDestructorOrCopyConstructor(RT);
163}
164
165/// isSingleElementStruct - Determine if a structure is a "single
166/// element struct", i.e. it has exactly one non-empty field or
167/// exactly one field which is itself a single element
168/// struct. Structures with flexible array members are never
169/// considered single element structs.
170///
171/// \return The field declaration for the single non-empty field, if
172/// it exists.
173static const Type *isSingleElementStruct(QualType T, ASTContext &Context) {
174  const RecordType *RT = T->getAsStructureType();
175  if (!RT)
176    return 0;
177
178  const RecordDecl *RD = RT->getDecl();
179  if (RD->hasFlexibleArrayMember())
180    return 0;
181
182  const Type *Found = 0;
183
184  // If this is a C++ record, check the bases first.
185  if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
186    for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
187           e = CXXRD->bases_end(); i != e; ++i) {
188      // Ignore empty records.
189      if (isEmptyRecord(Context, i->getType(), true))
190        continue;
191
192      // If we already found an element then this isn't a single-element struct.
193      if (Found)
194        return 0;
195
196      // If this is non-empty and not a single element struct, the composite
197      // cannot be a single element struct.
198      Found = isSingleElementStruct(i->getType(), Context);
199      if (!Found)
200        return 0;
201    }
202  }
203
204  // Check for single element.
205  for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
206         i != e; ++i) {
207    const FieldDecl *FD = *i;
208    QualType FT = FD->getType();
209
210    // Ignore empty fields.
211    if (isEmptyField(Context, FD, true))
212      continue;
213
214    // If we already found an element then this isn't a single-element
215    // struct.
216    if (Found)
217      return 0;
218
219    // Treat single element arrays as the element.
220    while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
221      if (AT->getSize().getZExtValue() != 1)
222        break;
223      FT = AT->getElementType();
224    }
225
226    if (!isAggregateTypeForABI(FT)) {
227      Found = FT.getTypePtr();
228    } else {
229      Found = isSingleElementStruct(FT, Context);
230      if (!Found)
231        return 0;
232    }
233  }
234
235  return Found;
236}
237
238static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) {
239  if (!Ty->getAs<BuiltinType>() && !Ty->hasPointerRepresentation() &&
240      !Ty->isAnyComplexType() && !Ty->isEnumeralType() &&
241      !Ty->isBlockPointerType())
242    return false;
243
244  uint64_t Size = Context.getTypeSize(Ty);
245  return Size == 32 || Size == 64;
246}
247
248/// canExpandIndirectArgument - Test whether an argument type which is to be
249/// passed indirectly (on the stack) would have the equivalent layout if it was
250/// expanded into separate arguments. If so, we prefer to do the latter to avoid
251/// inhibiting optimizations.
252///
253// FIXME: This predicate is missing many cases, currently it just follows
254// llvm-gcc (checks that all fields are 32-bit or 64-bit primitive types). We
255// should probably make this smarter, or better yet make the LLVM backend
256// capable of handling it.
257static bool canExpandIndirectArgument(QualType Ty, ASTContext &Context) {
258  // We can only expand structure types.
259  const RecordType *RT = Ty->getAs<RecordType>();
260  if (!RT)
261    return false;
262
263  // We can only expand (C) structures.
264  //
265  // FIXME: This needs to be generalized to handle classes as well.
266  const RecordDecl *RD = RT->getDecl();
267  if (!RD->isStruct() || isa<CXXRecordDecl>(RD))
268    return false;
269
270  for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
271         i != e; ++i) {
272    const FieldDecl *FD = *i;
273
274    if (!is32Or64BitBasicType(FD->getType(), Context))
275      return false;
276
277    // FIXME: Reject bit-fields wholesale; there are two problems, we don't know
278    // how to expand them yet, and the predicate for telling if a bitfield still
279    // counts as "basic" is more complicated than what we were doing previously.
280    if (FD->isBitField())
281      return false;
282  }
283
284  return true;
285}
286
287namespace {
288/// DefaultABIInfo - The default implementation for ABI specific
289/// details. This implementation provides information which results in
290/// self-consistent and sensible LLVM IR generation, but does not
291/// conform to any particular ABI.
292class DefaultABIInfo : public ABIInfo {
293public:
294  DefaultABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
295
296  ABIArgInfo classifyReturnType(QualType RetTy) const;
297  ABIArgInfo classifyArgumentType(QualType RetTy) const;
298
299  virtual void computeInfo(CGFunctionInfo &FI) const {
300    FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
301    for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
302         it != ie; ++it)
303      it->info = classifyArgumentType(it->type);
304  }
305
306  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
307                                 CodeGenFunction &CGF) const;
308};
309
310class DefaultTargetCodeGenInfo : public TargetCodeGenInfo {
311public:
312  DefaultTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
313    : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
314};
315
316llvm::Value *DefaultABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
317                                       CodeGenFunction &CGF) const {
318  return 0;
319}
320
321ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty) const {
322  if (isAggregateTypeForABI(Ty))
323    return ABIArgInfo::getIndirect(0);
324
325  // Treat an enum type as its underlying type.
326  if (const EnumType *EnumTy = Ty->getAs<EnumType>())
327    Ty = EnumTy->getDecl()->getIntegerType();
328
329  return (Ty->isPromotableIntegerType() ?
330          ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
331}
332
333ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy) const {
334  if (RetTy->isVoidType())
335    return ABIArgInfo::getIgnore();
336
337  if (isAggregateTypeForABI(RetTy))
338    return ABIArgInfo::getIndirect(0);
339
340  // Treat an enum type as its underlying type.
341  if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
342    RetTy = EnumTy->getDecl()->getIntegerType();
343
344  return (RetTy->isPromotableIntegerType() ?
345          ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
346}
347
348/// UseX86_MMXType - Return true if this is an MMX type that should use the special
349/// x86_mmx type.
350bool UseX86_MMXType(const llvm::Type *IRType) {
351  // If the type is an MMX type <2 x i32>, <4 x i16>, or <8 x i8>, use the
352  // special x86_mmx type.
353  return IRType->isVectorTy() && IRType->getPrimitiveSizeInBits() == 64 &&
354    cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy() &&
355    IRType->getScalarSizeInBits() != 64;
356}
357
358static const llvm::Type* X86AdjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
359                                                llvm::StringRef Constraint,
360                                                const llvm::Type* Ty) {
361  if (Constraint=="y" && Ty->isVectorTy())
362    return llvm::Type::getX86_MMXTy(CGF.getLLVMContext());
363  return Ty;
364}
365
366//===----------------------------------------------------------------------===//
367// X86-32 ABI Implementation
368//===----------------------------------------------------------------------===//
369
370/// X86_32ABIInfo - The X86-32 ABI information.
371class X86_32ABIInfo : public ABIInfo {
372  static const unsigned MinABIStackAlignInBytes = 4;
373
374  bool IsDarwinVectorABI;
375  bool IsSmallStructInRegABI;
376
377  static bool isRegisterSize(unsigned Size) {
378    return (Size == 8 || Size == 16 || Size == 32 || Size == 64);
379  }
380
381  static bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context);
382
383  /// getIndirectResult - Give a source type \arg Ty, return a suitable result
384  /// such that the argument will be passed in memory.
385  ABIArgInfo getIndirectResult(QualType Ty, bool ByVal = true) const;
386
387  /// \brief Return the alignment to use for the given type on the stack.
388  unsigned getTypeStackAlignInBytes(QualType Ty, unsigned Align) const;
389
390public:
391
392  ABIArgInfo classifyReturnType(QualType RetTy) const;
393  ABIArgInfo classifyArgumentType(QualType RetTy) const;
394
395  virtual void computeInfo(CGFunctionInfo &FI) const {
396    FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
397    for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
398         it != ie; ++it)
399      it->info = classifyArgumentType(it->type);
400  }
401
402  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
403                                 CodeGenFunction &CGF) const;
404
405  X86_32ABIInfo(CodeGen::CodeGenTypes &CGT, bool d, bool p)
406    : ABIInfo(CGT), IsDarwinVectorABI(d), IsSmallStructInRegABI(p) {}
407};
408
409class X86_32TargetCodeGenInfo : public TargetCodeGenInfo {
410public:
411  X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool d, bool p)
412    :TargetCodeGenInfo(new X86_32ABIInfo(CGT, d, p)) {}
413
414  void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
415                           CodeGen::CodeGenModule &CGM) const;
416
417  int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const {
418    // Darwin uses different dwarf register numbers for EH.
419    if (CGM.isTargetDarwin()) return 5;
420
421    return 4;
422  }
423
424  bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
425                               llvm::Value *Address) const;
426
427  const llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
428                                        llvm::StringRef Constraint,
429                                        const llvm::Type* Ty) const {
430    return X86AdjustInlineAsmType(CGF, Constraint, Ty);
431  }
432
433};
434
435}
436
437/// shouldReturnTypeInRegister - Determine if the given type should be
438/// passed in a register (for the Darwin ABI).
439bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty,
440                                               ASTContext &Context) {
441  uint64_t Size = Context.getTypeSize(Ty);
442
443  // Type must be register sized.
444  if (!isRegisterSize(Size))
445    return false;
446
447  if (Ty->isVectorType()) {
448    // 64- and 128- bit vectors inside structures are not returned in
449    // registers.
450    if (Size == 64 || Size == 128)
451      return false;
452
453    return true;
454  }
455
456  // If this is a builtin, pointer, enum, complex type, member pointer, or
457  // member function pointer it is ok.
458  if (Ty->getAs<BuiltinType>() || Ty->hasPointerRepresentation() ||
459      Ty->isAnyComplexType() || Ty->isEnumeralType() ||
460      Ty->isBlockPointerType() || Ty->isMemberPointerType())
461    return true;
462
463  // Arrays are treated like records.
464  if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty))
465    return shouldReturnTypeInRegister(AT->getElementType(), Context);
466
467  // Otherwise, it must be a record type.
468  const RecordType *RT = Ty->getAs<RecordType>();
469  if (!RT) return false;
470
471  // FIXME: Traverse bases here too.
472
473  // Structure types are passed in register if all fields would be
474  // passed in a register.
475  for (RecordDecl::field_iterator i = RT->getDecl()->field_begin(),
476         e = RT->getDecl()->field_end(); i != e; ++i) {
477    const FieldDecl *FD = *i;
478
479    // Empty fields are ignored.
480    if (isEmptyField(Context, FD, true))
481      continue;
482
483    // Check fields recursively.
484    if (!shouldReturnTypeInRegister(FD->getType(), Context))
485      return false;
486  }
487
488  return true;
489}
490
491ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy) const {
492  if (RetTy->isVoidType())
493    return ABIArgInfo::getIgnore();
494
495  if (const VectorType *VT = RetTy->getAs<VectorType>()) {
496    // On Darwin, some vectors are returned in registers.
497    if (IsDarwinVectorABI) {
498      uint64_t Size = getContext().getTypeSize(RetTy);
499
500      // 128-bit vectors are a special case; they are returned in
501      // registers and we need to make sure to pick a type the LLVM
502      // backend will like.
503      if (Size == 128)
504        return ABIArgInfo::getDirect(llvm::VectorType::get(
505                  llvm::Type::getInt64Ty(getVMContext()), 2));
506
507      // Always return in register if it fits in a general purpose
508      // register, or if it is 64 bits and has a single element.
509      if ((Size == 8 || Size == 16 || Size == 32) ||
510          (Size == 64 && VT->getNumElements() == 1))
511        return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
512                                                            Size));
513
514      return ABIArgInfo::getIndirect(0);
515    }
516
517    return ABIArgInfo::getDirect();
518  }
519
520  if (isAggregateTypeForABI(RetTy)) {
521    if (const RecordType *RT = RetTy->getAs<RecordType>()) {
522      // Structures with either a non-trivial destructor or a non-trivial
523      // copy constructor are always indirect.
524      if (hasNonTrivialDestructorOrCopyConstructor(RT))
525        return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
526
527      // Structures with flexible arrays are always indirect.
528      if (RT->getDecl()->hasFlexibleArrayMember())
529        return ABIArgInfo::getIndirect(0);
530    }
531
532    // If specified, structs and unions are always indirect.
533    if (!IsSmallStructInRegABI && !RetTy->isAnyComplexType())
534      return ABIArgInfo::getIndirect(0);
535
536    // Classify "single element" structs as their element type.
537    if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext())) {
538      if (const BuiltinType *BT = SeltTy->getAs<BuiltinType>()) {
539        if (BT->isIntegerType()) {
540          // We need to use the size of the structure, padding
541          // bit-fields can adjust that to be larger than the single
542          // element type.
543          uint64_t Size = getContext().getTypeSize(RetTy);
544          return ABIArgInfo::getDirect(
545            llvm::IntegerType::get(getVMContext(), (unsigned)Size));
546        }
547
548        if (BT->getKind() == BuiltinType::Float) {
549          assert(getContext().getTypeSize(RetTy) ==
550                 getContext().getTypeSize(SeltTy) &&
551                 "Unexpect single element structure size!");
552          return ABIArgInfo::getDirect(llvm::Type::getFloatTy(getVMContext()));
553        }
554
555        if (BT->getKind() == BuiltinType::Double) {
556          assert(getContext().getTypeSize(RetTy) ==
557                 getContext().getTypeSize(SeltTy) &&
558                 "Unexpect single element structure size!");
559          return ABIArgInfo::getDirect(llvm::Type::getDoubleTy(getVMContext()));
560        }
561      } else if (SeltTy->isPointerType()) {
562        // FIXME: It would be really nice if this could come out as the proper
563        // pointer type.
564        const llvm::Type *PtrTy = llvm::Type::getInt8PtrTy(getVMContext());
565        return ABIArgInfo::getDirect(PtrTy);
566      } else if (SeltTy->isVectorType()) {
567        // 64- and 128-bit vectors are never returned in a
568        // register when inside a structure.
569        uint64_t Size = getContext().getTypeSize(RetTy);
570        if (Size == 64 || Size == 128)
571          return ABIArgInfo::getIndirect(0);
572
573        return classifyReturnType(QualType(SeltTy, 0));
574      }
575    }
576
577    // Small structures which are register sized are generally returned
578    // in a register.
579    if (X86_32ABIInfo::shouldReturnTypeInRegister(RetTy, getContext())) {
580      uint64_t Size = getContext().getTypeSize(RetTy);
581      return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),Size));
582    }
583
584    return ABIArgInfo::getIndirect(0);
585  }
586
587  // Treat an enum type as its underlying type.
588  if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
589    RetTy = EnumTy->getDecl()->getIntegerType();
590
591  return (RetTy->isPromotableIntegerType() ?
592          ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
593}
594
595static bool isRecordWithSSEVectorType(ASTContext &Context, QualType Ty) {
596  const RecordType *RT = Ty->getAs<RecordType>();
597  if (!RT)
598    return 0;
599  const RecordDecl *RD = RT->getDecl();
600
601  // If this is a C++ record, check the bases first.
602  if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
603    for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
604           e = CXXRD->bases_end(); i != e; ++i)
605      if (!isRecordWithSSEVectorType(Context, i->getType()))
606        return false;
607
608  for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
609       i != e; ++i) {
610    QualType FT = i->getType();
611
612    if (FT->getAs<VectorType>() && Context.getTypeSize(Ty) == 128)
613      return true;
614
615    if (isRecordWithSSEVectorType(Context, FT))
616      return true;
617  }
618
619  return false;
620}
621
622unsigned X86_32ABIInfo::getTypeStackAlignInBytes(QualType Ty,
623                                                 unsigned Align) const {
624  // Otherwise, if the alignment is less than or equal to the minimum ABI
625  // alignment, just use the default; the backend will handle this.
626  if (Align <= MinABIStackAlignInBytes)
627    return 0; // Use default alignment.
628
629  // On non-Darwin, the stack type alignment is always 4.
630  if (!IsDarwinVectorABI) {
631    // Set explicit alignment, since we may need to realign the top.
632    return MinABIStackAlignInBytes;
633  }
634
635  // Otherwise, if the type contains an SSE vector type, the alignment is 16.
636  if (isRecordWithSSEVectorType(getContext(), Ty))
637    return 16;
638
639  return MinABIStackAlignInBytes;
640}
641
642ABIArgInfo X86_32ABIInfo::getIndirectResult(QualType Ty, bool ByVal) const {
643  if (!ByVal)
644    return ABIArgInfo::getIndirect(0, false);
645
646  // Compute the byval alignment.
647  unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8;
648  unsigned StackAlign = getTypeStackAlignInBytes(Ty, TypeAlign);
649  if (StackAlign == 0)
650    return ABIArgInfo::getIndirect(0);
651
652  // If the stack alignment is less than the type alignment, realign the
653  // argument.
654  if (StackAlign < TypeAlign)
655    return ABIArgInfo::getIndirect(StackAlign, /*ByVal=*/true,
656                                   /*Realign=*/true);
657
658  return ABIArgInfo::getIndirect(StackAlign);
659}
660
661ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty) const {
662  // FIXME: Set alignment on indirect arguments.
663  if (isAggregateTypeForABI(Ty)) {
664    // Structures with flexible arrays are always indirect.
665    if (const RecordType *RT = Ty->getAs<RecordType>()) {
666      // Structures with either a non-trivial destructor or a non-trivial
667      // copy constructor are always indirect.
668      if (hasNonTrivialDestructorOrCopyConstructor(RT))
669        return getIndirectResult(Ty, /*ByVal=*/false);
670
671      if (RT->getDecl()->hasFlexibleArrayMember())
672        return getIndirectResult(Ty);
673    }
674
675    // Ignore empty structs.
676    if (Ty->isStructureType() && getContext().getTypeSize(Ty) == 0)
677      return ABIArgInfo::getIgnore();
678
679    // Expand small (<= 128-bit) record types when we know that the stack layout
680    // of those arguments will match the struct. This is important because the
681    // LLVM backend isn't smart enough to remove byval, which inhibits many
682    // optimizations.
683    if (getContext().getTypeSize(Ty) <= 4*32 &&
684        canExpandIndirectArgument(Ty, getContext()))
685      return ABIArgInfo::getExpand();
686
687    return getIndirectResult(Ty);
688  }
689
690  if (const VectorType *VT = Ty->getAs<VectorType>()) {
691    // On Darwin, some vectors are passed in memory, we handle this by passing
692    // it as an i8/i16/i32/i64.
693    if (IsDarwinVectorABI) {
694      uint64_t Size = getContext().getTypeSize(Ty);
695      if ((Size == 8 || Size == 16 || Size == 32) ||
696          (Size == 64 && VT->getNumElements() == 1))
697        return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
698                                                            Size));
699    }
700
701    const llvm::Type *IRType = CGT.ConvertTypeRecursive(Ty);
702    if (UseX86_MMXType(IRType)) {
703      ABIArgInfo AAI = ABIArgInfo::getDirect(IRType);
704      AAI.setCoerceToType(llvm::Type::getX86_MMXTy(getVMContext()));
705      return AAI;
706    }
707
708    return ABIArgInfo::getDirect();
709  }
710
711
712  if (const EnumType *EnumTy = Ty->getAs<EnumType>())
713    Ty = EnumTy->getDecl()->getIntegerType();
714
715  return (Ty->isPromotableIntegerType() ?
716          ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
717}
718
719llvm::Value *X86_32ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
720                                      CodeGenFunction &CGF) const {
721  const llvm::Type *BP = llvm::Type::getInt8PtrTy(CGF.getLLVMContext());
722  const llvm::Type *BPP = llvm::PointerType::getUnqual(BP);
723
724  CGBuilderTy &Builder = CGF.Builder;
725  llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP,
726                                                       "ap");
727  llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
728  llvm::Type *PTy =
729    llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
730  llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
731
732  uint64_t Offset =
733    llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 4);
734  llvm::Value *NextAddr =
735    Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
736                      "ap.next");
737  Builder.CreateStore(NextAddr, VAListAddrAsBPP);
738
739  return AddrTyped;
740}
741
742void X86_32TargetCodeGenInfo::SetTargetAttributes(const Decl *D,
743                                                  llvm::GlobalValue *GV,
744                                            CodeGen::CodeGenModule &CGM) const {
745  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
746    if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
747      // Get the LLVM function.
748      llvm::Function *Fn = cast<llvm::Function>(GV);
749
750      // Now add the 'alignstack' attribute with a value of 16.
751      Fn->addFnAttr(llvm::Attribute::constructStackAlignmentFromInt(16));
752    }
753  }
754}
755
756bool X86_32TargetCodeGenInfo::initDwarfEHRegSizeTable(
757                                               CodeGen::CodeGenFunction &CGF,
758                                               llvm::Value *Address) const {
759  CodeGen::CGBuilderTy &Builder = CGF.Builder;
760  llvm::LLVMContext &Context = CGF.getLLVMContext();
761
762  const llvm::IntegerType *i8 = llvm::Type::getInt8Ty(Context);
763  llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
764
765  // 0-7 are the eight integer registers;  the order is different
766  //   on Darwin (for EH), but the range is the same.
767  // 8 is %eip.
768  AssignToArrayRange(Builder, Address, Four8, 0, 8);
769
770  if (CGF.CGM.isTargetDarwin()) {
771    // 12-16 are st(0..4).  Not sure why we stop at 4.
772    // These have size 16, which is sizeof(long double) on
773    // platforms with 8-byte alignment for that type.
774    llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16);
775    AssignToArrayRange(Builder, Address, Sixteen8, 12, 16);
776
777  } else {
778    // 9 is %eflags, which doesn't get a size on Darwin for some
779    // reason.
780    Builder.CreateStore(Four8, Builder.CreateConstInBoundsGEP1_32(Address, 9));
781
782    // 11-16 are st(0..5).  Not sure why we stop at 5.
783    // These have size 12, which is sizeof(long double) on
784    // platforms with 4-byte alignment for that type.
785    llvm::Value *Twelve8 = llvm::ConstantInt::get(i8, 12);
786    AssignToArrayRange(Builder, Address, Twelve8, 11, 16);
787  }
788
789  return false;
790}
791
792//===----------------------------------------------------------------------===//
793// X86-64 ABI Implementation
794//===----------------------------------------------------------------------===//
795
796
797namespace {
798/// X86_64ABIInfo - The X86_64 ABI information.
799class X86_64ABIInfo : public ABIInfo {
800  enum Class {
801    Integer = 0,
802    SSE,
803    SSEUp,
804    X87,
805    X87Up,
806    ComplexX87,
807    NoClass,
808    Memory
809  };
810
811  /// merge - Implement the X86_64 ABI merging algorithm.
812  ///
813  /// Merge an accumulating classification \arg Accum with a field
814  /// classification \arg Field.
815  ///
816  /// \param Accum - The accumulating classification. This should
817  /// always be either NoClass or the result of a previous merge
818  /// call. In addition, this should never be Memory (the caller
819  /// should just return Memory for the aggregate).
820  static Class merge(Class Accum, Class Field);
821
822  /// classify - Determine the x86_64 register classes in which the
823  /// given type T should be passed.
824  ///
825  /// \param Lo - The classification for the parts of the type
826  /// residing in the low word of the containing object.
827  ///
828  /// \param Hi - The classification for the parts of the type
829  /// residing in the high word of the containing object.
830  ///
831  /// \param OffsetBase - The bit offset of this type in the
832  /// containing object.  Some parameters are classified different
833  /// depending on whether they straddle an eightbyte boundary.
834  ///
835  /// If a word is unused its result will be NoClass; if a type should
836  /// be passed in Memory then at least the classification of \arg Lo
837  /// will be Memory.
838  ///
839  /// The \arg Lo class will be NoClass iff the argument is ignored.
840  ///
841  /// If the \arg Lo class is ComplexX87, then the \arg Hi class will
842  /// also be ComplexX87.
843  void classify(QualType T, uint64_t OffsetBase, Class &Lo, Class &Hi) const;
844
845  const llvm::Type *Get16ByteVectorType(QualType Ty) const;
846  const llvm::Type *GetSSETypeAtOffset(const llvm::Type *IRType,
847                                       unsigned IROffset, QualType SourceTy,
848                                       unsigned SourceOffset) const;
849  const llvm::Type *GetINTEGERTypeAtOffset(const llvm::Type *IRType,
850                                           unsigned IROffset, QualType SourceTy,
851                                           unsigned SourceOffset) const;
852
853  /// getIndirectResult - Give a source type \arg Ty, return a suitable result
854  /// such that the argument will be returned in memory.
855  ABIArgInfo getIndirectReturnResult(QualType Ty) const;
856
857  /// getIndirectResult - Give a source type \arg Ty, return a suitable result
858  /// such that the argument will be passed in memory.
859  ABIArgInfo getIndirectResult(QualType Ty) const;
860
861  ABIArgInfo classifyReturnType(QualType RetTy) const;
862
863  ABIArgInfo classifyArgumentType(QualType Ty,
864                                  unsigned &neededInt,
865                                  unsigned &neededSSE) const;
866
867public:
868  X86_64ABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
869
870  virtual void computeInfo(CGFunctionInfo &FI) const;
871
872  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
873                                 CodeGenFunction &CGF) const;
874};
875
876/// WinX86_64ABIInfo - The Windows X86_64 ABI information.
877class WinX86_64ABIInfo : public ABIInfo {
878
879  ABIArgInfo classify(QualType Ty) const;
880
881public:
882  WinX86_64ABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
883
884  virtual void computeInfo(CGFunctionInfo &FI) const;
885
886  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
887                                 CodeGenFunction &CGF) const;
888};
889
890class X86_64TargetCodeGenInfo : public TargetCodeGenInfo {
891public:
892  X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
893    : TargetCodeGenInfo(new X86_64ABIInfo(CGT)) {}
894
895  int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const {
896    return 7;
897  }
898
899  bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
900                               llvm::Value *Address) const {
901    CodeGen::CGBuilderTy &Builder = CGF.Builder;
902    llvm::LLVMContext &Context = CGF.getLLVMContext();
903
904    const llvm::IntegerType *i8 = llvm::Type::getInt8Ty(Context);
905    llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
906
907    // 0-15 are the 16 integer registers.
908    // 16 is %rip.
909    AssignToArrayRange(Builder, Address, Eight8, 0, 16);
910
911    return false;
912  }
913
914  const llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
915                                        llvm::StringRef Constraint,
916                                        const llvm::Type* Ty) const {
917    return X86AdjustInlineAsmType(CGF, Constraint, Ty);
918  }
919
920};
921
922class WinX86_64TargetCodeGenInfo : public TargetCodeGenInfo {
923public:
924  WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
925    : TargetCodeGenInfo(new WinX86_64ABIInfo(CGT)) {}
926
927  int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const {
928    return 7;
929  }
930
931  bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
932                               llvm::Value *Address) const {
933    CodeGen::CGBuilderTy &Builder = CGF.Builder;
934    llvm::LLVMContext &Context = CGF.getLLVMContext();
935
936    const llvm::IntegerType *i8 = llvm::Type::getInt8Ty(Context);
937    llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
938
939    // 0-15 are the 16 integer registers.
940    // 16 is %rip.
941    AssignToArrayRange(Builder, Address, Eight8, 0, 16);
942
943    return false;
944  }
945};
946
947}
948
949X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, Class Field) {
950  // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is
951  // classified recursively so that always two fields are
952  // considered. The resulting class is calculated according to
953  // the classes of the fields in the eightbyte:
954  //
955  // (a) If both classes are equal, this is the resulting class.
956  //
957  // (b) If one of the classes is NO_CLASS, the resulting class is
958  // the other class.
959  //
960  // (c) If one of the classes is MEMORY, the result is the MEMORY
961  // class.
962  //
963  // (d) If one of the classes is INTEGER, the result is the
964  // INTEGER.
965  //
966  // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class,
967  // MEMORY is used as class.
968  //
969  // (f) Otherwise class SSE is used.
970
971  // Accum should never be memory (we should have returned) or
972  // ComplexX87 (because this cannot be passed in a structure).
973  assert((Accum != Memory && Accum != ComplexX87) &&
974         "Invalid accumulated classification during merge.");
975  if (Accum == Field || Field == NoClass)
976    return Accum;
977  if (Field == Memory)
978    return Memory;
979  if (Accum == NoClass)
980    return Field;
981  if (Accum == Integer || Field == Integer)
982    return Integer;
983  if (Field == X87 || Field == X87Up || Field == ComplexX87 ||
984      Accum == X87 || Accum == X87Up)
985    return Memory;
986  return SSE;
987}
988
989void X86_64ABIInfo::classify(QualType Ty, uint64_t OffsetBase,
990                             Class &Lo, Class &Hi) const {
991  // FIXME: This code can be simplified by introducing a simple value class for
992  // Class pairs with appropriate constructor methods for the various
993  // situations.
994
995  // FIXME: Some of the split computations are wrong; unaligned vectors
996  // shouldn't be passed in registers for example, so there is no chance they
997  // can straddle an eightbyte. Verify & simplify.
998
999  Lo = Hi = NoClass;
1000
1001  Class &Current = OffsetBase < 64 ? Lo : Hi;
1002  Current = Memory;
1003
1004  if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
1005    BuiltinType::Kind k = BT->getKind();
1006
1007    if (k == BuiltinType::Void) {
1008      Current = NoClass;
1009    } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) {
1010      Lo = Integer;
1011      Hi = Integer;
1012    } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) {
1013      Current = Integer;
1014    } else if (k == BuiltinType::Float || k == BuiltinType::Double) {
1015      Current = SSE;
1016    } else if (k == BuiltinType::LongDouble) {
1017      Lo = X87;
1018      Hi = X87Up;
1019    }
1020    // FIXME: _Decimal32 and _Decimal64 are SSE.
1021    // FIXME: _float128 and _Decimal128 are (SSE, SSEUp).
1022    return;
1023  }
1024
1025  if (const EnumType *ET = Ty->getAs<EnumType>()) {
1026    // Classify the underlying integer type.
1027    classify(ET->getDecl()->getIntegerType(), OffsetBase, Lo, Hi);
1028    return;
1029  }
1030
1031  if (Ty->hasPointerRepresentation()) {
1032    Current = Integer;
1033    return;
1034  }
1035
1036  if (Ty->isMemberPointerType()) {
1037    if (Ty->isMemberFunctionPointerType())
1038      Lo = Hi = Integer;
1039    else
1040      Current = Integer;
1041    return;
1042  }
1043
1044  if (const VectorType *VT = Ty->getAs<VectorType>()) {
1045    uint64_t Size = getContext().getTypeSize(VT);
1046    if (Size == 32) {
1047      // gcc passes all <4 x char>, <2 x short>, <1 x int>, <1 x
1048      // float> as integer.
1049      Current = Integer;
1050
1051      // If this type crosses an eightbyte boundary, it should be
1052      // split.
1053      uint64_t EB_Real = (OffsetBase) / 64;
1054      uint64_t EB_Imag = (OffsetBase + Size - 1) / 64;
1055      if (EB_Real != EB_Imag)
1056        Hi = Lo;
1057    } else if (Size == 64) {
1058      // gcc passes <1 x double> in memory. :(
1059      if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::Double))
1060        return;
1061
1062      // gcc passes <1 x long long> as INTEGER.
1063      if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::LongLong) ||
1064          VT->getElementType()->isSpecificBuiltinType(BuiltinType::ULongLong) ||
1065          VT->getElementType()->isSpecificBuiltinType(BuiltinType::Long) ||
1066          VT->getElementType()->isSpecificBuiltinType(BuiltinType::ULong))
1067        Current = Integer;
1068      else
1069        Current = SSE;
1070
1071      // If this type crosses an eightbyte boundary, it should be
1072      // split.
1073      if (OffsetBase && OffsetBase != 64)
1074        Hi = Lo;
1075    } else if (Size == 128) {
1076      Lo = SSE;
1077      Hi = SSEUp;
1078    }
1079    return;
1080  }
1081
1082  if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
1083    QualType ET = getContext().getCanonicalType(CT->getElementType());
1084
1085    uint64_t Size = getContext().getTypeSize(Ty);
1086    if (ET->isIntegralOrEnumerationType()) {
1087      if (Size <= 64)
1088        Current = Integer;
1089      else if (Size <= 128)
1090        Lo = Hi = Integer;
1091    } else if (ET == getContext().FloatTy)
1092      Current = SSE;
1093    else if (ET == getContext().DoubleTy)
1094      Lo = Hi = SSE;
1095    else if (ET == getContext().LongDoubleTy)
1096      Current = ComplexX87;
1097
1098    // If this complex type crosses an eightbyte boundary then it
1099    // should be split.
1100    uint64_t EB_Real = (OffsetBase) / 64;
1101    uint64_t EB_Imag = (OffsetBase + getContext().getTypeSize(ET)) / 64;
1102    if (Hi == NoClass && EB_Real != EB_Imag)
1103      Hi = Lo;
1104
1105    return;
1106  }
1107
1108  if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
1109    // Arrays are treated like structures.
1110
1111    uint64_t Size = getContext().getTypeSize(Ty);
1112
1113    // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
1114    // than two eightbytes, ..., it has class MEMORY.
1115    if (Size > 128)
1116      return;
1117
1118    // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned
1119    // fields, it has class MEMORY.
1120    //
1121    // Only need to check alignment of array base.
1122    if (OffsetBase % getContext().getTypeAlign(AT->getElementType()))
1123      return;
1124
1125    // Otherwise implement simplified merge. We could be smarter about
1126    // this, but it isn't worth it and would be harder to verify.
1127    Current = NoClass;
1128    uint64_t EltSize = getContext().getTypeSize(AT->getElementType());
1129    uint64_t ArraySize = AT->getSize().getZExtValue();
1130    for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) {
1131      Class FieldLo, FieldHi;
1132      classify(AT->getElementType(), Offset, FieldLo, FieldHi);
1133      Lo = merge(Lo, FieldLo);
1134      Hi = merge(Hi, FieldHi);
1135      if (Lo == Memory || Hi == Memory)
1136        break;
1137    }
1138
1139    // Do post merger cleanup (see below). Only case we worry about is Memory.
1140    if (Hi == Memory)
1141      Lo = Memory;
1142    assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification.");
1143    return;
1144  }
1145
1146  if (const RecordType *RT = Ty->getAs<RecordType>()) {
1147    uint64_t Size = getContext().getTypeSize(Ty);
1148
1149    // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
1150    // than two eightbytes, ..., it has class MEMORY.
1151    if (Size > 128)
1152      return;
1153
1154    // AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial
1155    // copy constructor or a non-trivial destructor, it is passed by invisible
1156    // reference.
1157    if (hasNonTrivialDestructorOrCopyConstructor(RT))
1158      return;
1159
1160    const RecordDecl *RD = RT->getDecl();
1161
1162    // Assume variable sized types are passed in memory.
1163    if (RD->hasFlexibleArrayMember())
1164      return;
1165
1166    const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
1167
1168    // Reset Lo class, this will be recomputed.
1169    Current = NoClass;
1170
1171    // If this is a C++ record, classify the bases first.
1172    if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
1173      for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
1174             e = CXXRD->bases_end(); i != e; ++i) {
1175        assert(!i->isVirtual() && !i->getType()->isDependentType() &&
1176               "Unexpected base class!");
1177        const CXXRecordDecl *Base =
1178          cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
1179
1180        // Classify this field.
1181        //
1182        // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a
1183        // single eightbyte, each is classified separately. Each eightbyte gets
1184        // initialized to class NO_CLASS.
1185        Class FieldLo, FieldHi;
1186        uint64_t Offset = OffsetBase + Layout.getBaseClassOffsetInBits(Base);
1187        classify(i->getType(), Offset, FieldLo, FieldHi);
1188        Lo = merge(Lo, FieldLo);
1189        Hi = merge(Hi, FieldHi);
1190        if (Lo == Memory || Hi == Memory)
1191          break;
1192      }
1193    }
1194
1195    // Classify the fields one at a time, merging the results.
1196    unsigned idx = 0;
1197    for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
1198           i != e; ++i, ++idx) {
1199      uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
1200      bool BitField = i->isBitField();
1201
1202      // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned
1203      // fields, it has class MEMORY.
1204      //
1205      // Note, skip this test for bit-fields, see below.
1206      if (!BitField && Offset % getContext().getTypeAlign(i->getType())) {
1207        Lo = Memory;
1208        return;
1209      }
1210
1211      // Classify this field.
1212      //
1213      // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate
1214      // exceeds a single eightbyte, each is classified
1215      // separately. Each eightbyte gets initialized to class
1216      // NO_CLASS.
1217      Class FieldLo, FieldHi;
1218
1219      // Bit-fields require special handling, they do not force the
1220      // structure to be passed in memory even if unaligned, and
1221      // therefore they can straddle an eightbyte.
1222      if (BitField) {
1223        // Ignore padding bit-fields.
1224        if (i->isUnnamedBitfield())
1225          continue;
1226
1227        uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
1228        uint64_t Size =
1229          i->getBitWidth()->EvaluateAsInt(getContext()).getZExtValue();
1230
1231        uint64_t EB_Lo = Offset / 64;
1232        uint64_t EB_Hi = (Offset + Size - 1) / 64;
1233        FieldLo = FieldHi = NoClass;
1234        if (EB_Lo) {
1235          assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes.");
1236          FieldLo = NoClass;
1237          FieldHi = Integer;
1238        } else {
1239          FieldLo = Integer;
1240          FieldHi = EB_Hi ? Integer : NoClass;
1241        }
1242      } else
1243        classify(i->getType(), Offset, FieldLo, FieldHi);
1244      Lo = merge(Lo, FieldLo);
1245      Hi = merge(Hi, FieldHi);
1246      if (Lo == Memory || Hi == Memory)
1247        break;
1248    }
1249
1250    // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done:
1251    //
1252    // (a) If one of the classes is MEMORY, the whole argument is
1253    // passed in memory.
1254    //
1255    // (b) If SSEUP is not preceeded by SSE, it is converted to SSE.
1256
1257    // The first of these conditions is guaranteed by how we implement
1258    // the merge (just bail).
1259    //
1260    // The second condition occurs in the case of unions; for example
1261    // union { _Complex double; unsigned; }.
1262    if (Hi == Memory)
1263      Lo = Memory;
1264    if (Hi == SSEUp && Lo != SSE)
1265      Hi = SSE;
1266  }
1267}
1268
1269ABIArgInfo X86_64ABIInfo::getIndirectReturnResult(QualType Ty) const {
1270  // If this is a scalar LLVM value then assume LLVM will pass it in the right
1271  // place naturally.
1272  if (!isAggregateTypeForABI(Ty)) {
1273    // Treat an enum type as its underlying type.
1274    if (const EnumType *EnumTy = Ty->getAs<EnumType>())
1275      Ty = EnumTy->getDecl()->getIntegerType();
1276
1277    return (Ty->isPromotableIntegerType() ?
1278            ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
1279  }
1280
1281  return ABIArgInfo::getIndirect(0);
1282}
1283
1284ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty) const {
1285  // If this is a scalar LLVM value then assume LLVM will pass it in the right
1286  // place naturally.
1287  if (!isAggregateTypeForABI(Ty)) {
1288    // Treat an enum type as its underlying type.
1289    if (const EnumType *EnumTy = Ty->getAs<EnumType>())
1290      Ty = EnumTy->getDecl()->getIntegerType();
1291
1292    return (Ty->isPromotableIntegerType() ?
1293            ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
1294  }
1295
1296  if (isRecordWithNonTrivialDestructorOrCopyConstructor(Ty))
1297    return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
1298
1299  // Compute the byval alignment. We trust the back-end to honor the
1300  // minimum ABI alignment for byval, to make cleaner IR.
1301  const unsigned MinABIAlign = 8;
1302  unsigned Align = getContext().getTypeAlign(Ty) / 8;
1303  if (Align > MinABIAlign)
1304    return ABIArgInfo::getIndirect(Align);
1305  return ABIArgInfo::getIndirect(0);
1306}
1307
1308/// Get16ByteVectorType - The ABI specifies that a value should be passed in an
1309/// full vector XMM register.  Pick an LLVM IR type that will be passed as a
1310/// vector register.
1311const llvm::Type *X86_64ABIInfo::Get16ByteVectorType(QualType Ty) const {
1312  const llvm::Type *IRType = CGT.ConvertTypeRecursive(Ty);
1313
1314  // Wrapper structs that just contain vectors are passed just like vectors,
1315  // strip them off if present.
1316  const llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType);
1317  while (STy && STy->getNumElements() == 1) {
1318    IRType = STy->getElementType(0);
1319    STy = dyn_cast<llvm::StructType>(IRType);
1320  }
1321
1322  // If the preferred type is a 16-byte vector, prefer to pass it.
1323  if (const llvm::VectorType *VT = dyn_cast<llvm::VectorType>(IRType)){
1324    const llvm::Type *EltTy = VT->getElementType();
1325    if (VT->getBitWidth() == 128 &&
1326        (EltTy->isFloatTy() || EltTy->isDoubleTy() ||
1327         EltTy->isIntegerTy(8) || EltTy->isIntegerTy(16) ||
1328         EltTy->isIntegerTy(32) || EltTy->isIntegerTy(64) ||
1329         EltTy->isIntegerTy(128)))
1330      return VT;
1331  }
1332
1333  return llvm::VectorType::get(llvm::Type::getDoubleTy(getVMContext()), 2);
1334}
1335
1336/// BitsContainNoUserData - Return true if the specified [start,end) bit range
1337/// is known to either be off the end of the specified type or being in
1338/// alignment padding.  The user type specified is known to be at most 128 bits
1339/// in size, and have passed through X86_64ABIInfo::classify with a successful
1340/// classification that put one of the two halves in the INTEGER class.
1341///
1342/// It is conservatively correct to return false.
1343static bool BitsContainNoUserData(QualType Ty, unsigned StartBit,
1344                                  unsigned EndBit, ASTContext &Context) {
1345  // If the bytes being queried are off the end of the type, there is no user
1346  // data hiding here.  This handles analysis of builtins, vectors and other
1347  // types that don't contain interesting padding.
1348  unsigned TySize = (unsigned)Context.getTypeSize(Ty);
1349  if (TySize <= StartBit)
1350    return true;
1351
1352  if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
1353    unsigned EltSize = (unsigned)Context.getTypeSize(AT->getElementType());
1354    unsigned NumElts = (unsigned)AT->getSize().getZExtValue();
1355
1356    // Check each element to see if the element overlaps with the queried range.
1357    for (unsigned i = 0; i != NumElts; ++i) {
1358      // If the element is after the span we care about, then we're done..
1359      unsigned EltOffset = i*EltSize;
1360      if (EltOffset >= EndBit) break;
1361
1362      unsigned EltStart = EltOffset < StartBit ? StartBit-EltOffset :0;
1363      if (!BitsContainNoUserData(AT->getElementType(), EltStart,
1364                                 EndBit-EltOffset, Context))
1365        return false;
1366    }
1367    // If it overlaps no elements, then it is safe to process as padding.
1368    return true;
1369  }
1370
1371  if (const RecordType *RT = Ty->getAs<RecordType>()) {
1372    const RecordDecl *RD = RT->getDecl();
1373    const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
1374
1375    // If this is a C++ record, check the bases first.
1376    if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
1377      for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
1378           e = CXXRD->bases_end(); i != e; ++i) {
1379        assert(!i->isVirtual() && !i->getType()->isDependentType() &&
1380               "Unexpected base class!");
1381        const CXXRecordDecl *Base =
1382          cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
1383
1384        // If the base is after the span we care about, ignore it.
1385        unsigned BaseOffset = (unsigned)Layout.getBaseClassOffsetInBits(Base);
1386        if (BaseOffset >= EndBit) continue;
1387
1388        unsigned BaseStart = BaseOffset < StartBit ? StartBit-BaseOffset :0;
1389        if (!BitsContainNoUserData(i->getType(), BaseStart,
1390                                   EndBit-BaseOffset, Context))
1391          return false;
1392      }
1393    }
1394
1395    // Verify that no field has data that overlaps the region of interest.  Yes
1396    // this could be sped up a lot by being smarter about queried fields,
1397    // however we're only looking at structs up to 16 bytes, so we don't care
1398    // much.
1399    unsigned idx = 0;
1400    for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
1401         i != e; ++i, ++idx) {
1402      unsigned FieldOffset = (unsigned)Layout.getFieldOffset(idx);
1403
1404      // If we found a field after the region we care about, then we're done.
1405      if (FieldOffset >= EndBit) break;
1406
1407      unsigned FieldStart = FieldOffset < StartBit ? StartBit-FieldOffset :0;
1408      if (!BitsContainNoUserData(i->getType(), FieldStart, EndBit-FieldOffset,
1409                                 Context))
1410        return false;
1411    }
1412
1413    // If nothing in this record overlapped the area of interest, then we're
1414    // clean.
1415    return true;
1416  }
1417
1418  return false;
1419}
1420
1421/// ContainsFloatAtOffset - Return true if the specified LLVM IR type has a
1422/// float member at the specified offset.  For example, {int,{float}} has a
1423/// float at offset 4.  It is conservatively correct for this routine to return
1424/// false.
1425static bool ContainsFloatAtOffset(const llvm::Type *IRType, unsigned IROffset,
1426                                  const llvm::TargetData &TD) {
1427  // Base case if we find a float.
1428  if (IROffset == 0 && IRType->isFloatTy())
1429    return true;
1430
1431  // If this is a struct, recurse into the field at the specified offset.
1432  if (const llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
1433    const llvm::StructLayout *SL = TD.getStructLayout(STy);
1434    unsigned Elt = SL->getElementContainingOffset(IROffset);
1435    IROffset -= SL->getElementOffset(Elt);
1436    return ContainsFloatAtOffset(STy->getElementType(Elt), IROffset, TD);
1437  }
1438
1439  // If this is an array, recurse into the field at the specified offset.
1440  if (const llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
1441    const llvm::Type *EltTy = ATy->getElementType();
1442    unsigned EltSize = TD.getTypeAllocSize(EltTy);
1443    IROffset -= IROffset/EltSize*EltSize;
1444    return ContainsFloatAtOffset(EltTy, IROffset, TD);
1445  }
1446
1447  return false;
1448}
1449
1450
1451/// GetSSETypeAtOffset - Return a type that will be passed by the backend in the
1452/// low 8 bytes of an XMM register, corresponding to the SSE class.
1453const llvm::Type *X86_64ABIInfo::
1454GetSSETypeAtOffset(const llvm::Type *IRType, unsigned IROffset,
1455                   QualType SourceTy, unsigned SourceOffset) const {
1456  // The only three choices we have are either double, <2 x float>, or float. We
1457  // pass as float if the last 4 bytes is just padding.  This happens for
1458  // structs that contain 3 floats.
1459  if (BitsContainNoUserData(SourceTy, SourceOffset*8+32,
1460                            SourceOffset*8+64, getContext()))
1461    return llvm::Type::getFloatTy(getVMContext());
1462
1463  // We want to pass as <2 x float> if the LLVM IR type contains a float at
1464  // offset+0 and offset+4.  Walk the LLVM IR type to find out if this is the
1465  // case.
1466  if (ContainsFloatAtOffset(IRType, IROffset, getTargetData()) &&
1467      ContainsFloatAtOffset(IRType, IROffset+4, getTargetData()))
1468    return llvm::VectorType::get(llvm::Type::getFloatTy(getVMContext()), 2);
1469
1470  return llvm::Type::getDoubleTy(getVMContext());
1471}
1472
1473
1474/// GetINTEGERTypeAtOffset - The ABI specifies that a value should be passed in
1475/// an 8-byte GPR.  This means that we either have a scalar or we are talking
1476/// about the high or low part of an up-to-16-byte struct.  This routine picks
1477/// the best LLVM IR type to represent this, which may be i64 or may be anything
1478/// else that the backend will pass in a GPR that works better (e.g. i8, %foo*,
1479/// etc).
1480///
1481/// PrefType is an LLVM IR type that corresponds to (part of) the IR type for
1482/// the source type.  IROffset is an offset in bytes into the LLVM IR type that
1483/// the 8-byte value references.  PrefType may be null.
1484///
1485/// SourceTy is the source level type for the entire argument.  SourceOffset is
1486/// an offset into this that we're processing (which is always either 0 or 8).
1487///
1488const llvm::Type *X86_64ABIInfo::
1489GetINTEGERTypeAtOffset(const llvm::Type *IRType, unsigned IROffset,
1490                       QualType SourceTy, unsigned SourceOffset) const {
1491  // If we're dealing with an un-offset LLVM IR type, then it means that we're
1492  // returning an 8-byte unit starting with it.  See if we can safely use it.
1493  if (IROffset == 0) {
1494    // Pointers and int64's always fill the 8-byte unit.
1495    if (isa<llvm::PointerType>(IRType) || IRType->isIntegerTy(64))
1496      return IRType;
1497
1498    // If we have a 1/2/4-byte integer, we can use it only if the rest of the
1499    // goodness in the source type is just tail padding.  This is allowed to
1500    // kick in for struct {double,int} on the int, but not on
1501    // struct{double,int,int} because we wouldn't return the second int.  We
1502    // have to do this analysis on the source type because we can't depend on
1503    // unions being lowered a specific way etc.
1504    if (IRType->isIntegerTy(8) || IRType->isIntegerTy(16) ||
1505        IRType->isIntegerTy(32)) {
1506      unsigned BitWidth = cast<llvm::IntegerType>(IRType)->getBitWidth();
1507
1508      if (BitsContainNoUserData(SourceTy, SourceOffset*8+BitWidth,
1509                                SourceOffset*8+64, getContext()))
1510        return IRType;
1511    }
1512  }
1513
1514  if (const llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
1515    // If this is a struct, recurse into the field at the specified offset.
1516    const llvm::StructLayout *SL = getTargetData().getStructLayout(STy);
1517    if (IROffset < SL->getSizeInBytes()) {
1518      unsigned FieldIdx = SL->getElementContainingOffset(IROffset);
1519      IROffset -= SL->getElementOffset(FieldIdx);
1520
1521      return GetINTEGERTypeAtOffset(STy->getElementType(FieldIdx), IROffset,
1522                                    SourceTy, SourceOffset);
1523    }
1524  }
1525
1526  if (const llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
1527    const llvm::Type *EltTy = ATy->getElementType();
1528    unsigned EltSize = getTargetData().getTypeAllocSize(EltTy);
1529    unsigned EltOffset = IROffset/EltSize*EltSize;
1530    return GetINTEGERTypeAtOffset(EltTy, IROffset-EltOffset, SourceTy,
1531                                  SourceOffset);
1532  }
1533
1534  // Okay, we don't have any better idea of what to pass, so we pass this in an
1535  // integer register that isn't too big to fit the rest of the struct.
1536  unsigned TySizeInBytes =
1537    (unsigned)getContext().getTypeSizeInChars(SourceTy).getQuantity();
1538
1539  assert(TySizeInBytes != SourceOffset && "Empty field?");
1540
1541  // It is always safe to classify this as an integer type up to i64 that
1542  // isn't larger than the structure.
1543  return llvm::IntegerType::get(getVMContext(),
1544                                std::min(TySizeInBytes-SourceOffset, 8U)*8);
1545}
1546
1547
1548/// GetX86_64ByValArgumentPair - Given a high and low type that can ideally
1549/// be used as elements of a two register pair to pass or return, return a
1550/// first class aggregate to represent them.  For example, if the low part of
1551/// a by-value argument should be passed as i32* and the high part as float,
1552/// return {i32*, float}.
1553static const llvm::Type *
1554GetX86_64ByValArgumentPair(const llvm::Type *Lo, const llvm::Type *Hi,
1555                           const llvm::TargetData &TD) {
1556  // In order to correctly satisfy the ABI, we need to the high part to start
1557  // at offset 8.  If the high and low parts we inferred are both 4-byte types
1558  // (e.g. i32 and i32) then the resultant struct type ({i32,i32}) won't have
1559  // the second element at offset 8.  Check for this:
1560  unsigned LoSize = (unsigned)TD.getTypeAllocSize(Lo);
1561  unsigned HiAlign = TD.getABITypeAlignment(Hi);
1562  unsigned HiStart = llvm::TargetData::RoundUpAlignment(LoSize, HiAlign);
1563  assert(HiStart != 0 && HiStart <= 8 && "Invalid x86-64 argument pair!");
1564
1565  // To handle this, we have to increase the size of the low part so that the
1566  // second element will start at an 8 byte offset.  We can't increase the size
1567  // of the second element because it might make us access off the end of the
1568  // struct.
1569  if (HiStart != 8) {
1570    // There are only two sorts of types the ABI generation code can produce for
1571    // the low part of a pair that aren't 8 bytes in size: float or i8/i16/i32.
1572    // Promote these to a larger type.
1573    if (Lo->isFloatTy())
1574      Lo = llvm::Type::getDoubleTy(Lo->getContext());
1575    else {
1576      assert(Lo->isIntegerTy() && "Invalid/unknown lo type");
1577      Lo = llvm::Type::getInt64Ty(Lo->getContext());
1578    }
1579  }
1580
1581  const llvm::StructType *Result =
1582    llvm::StructType::get(Lo->getContext(), Lo, Hi, NULL);
1583
1584
1585  // Verify that the second element is at an 8-byte offset.
1586  assert(TD.getStructLayout(Result)->getElementOffset(1) == 8 &&
1587         "Invalid x86-64 argument pair!");
1588  return Result;
1589}
1590
1591ABIArgInfo X86_64ABIInfo::
1592classifyReturnType(QualType RetTy) const {
1593  // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the
1594  // classification algorithm.
1595  X86_64ABIInfo::Class Lo, Hi;
1596  classify(RetTy, 0, Lo, Hi);
1597
1598  // Check some invariants.
1599  assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
1600  assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
1601
1602  const llvm::Type *ResType = 0;
1603  switch (Lo) {
1604  case NoClass:
1605    if (Hi == NoClass)
1606      return ABIArgInfo::getIgnore();
1607    // If the low part is just padding, it takes no register, leave ResType
1608    // null.
1609    assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
1610           "Unknown missing lo part");
1611    break;
1612
1613  case SSEUp:
1614  case X87Up:
1615    assert(0 && "Invalid classification for lo word.");
1616
1617    // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via
1618    // hidden argument.
1619  case Memory:
1620    return getIndirectReturnResult(RetTy);
1621
1622    // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next
1623    // available register of the sequence %rax, %rdx is used.
1624  case Integer:
1625    ResType = GetINTEGERTypeAtOffset(CGT.ConvertTypeRecursive(RetTy), 0,
1626                                     RetTy, 0);
1627
1628    // If we have a sign or zero extended integer, make sure to return Extend
1629    // so that the parameter gets the right LLVM IR attributes.
1630    if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
1631      // Treat an enum type as its underlying type.
1632      if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
1633        RetTy = EnumTy->getDecl()->getIntegerType();
1634
1635      if (RetTy->isIntegralOrEnumerationType() &&
1636          RetTy->isPromotableIntegerType())
1637        return ABIArgInfo::getExtend();
1638    }
1639    break;
1640
1641    // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next
1642    // available SSE register of the sequence %xmm0, %xmm1 is used.
1643  case SSE:
1644    ResType = GetSSETypeAtOffset(CGT.ConvertTypeRecursive(RetTy), 0, RetTy, 0);
1645    break;
1646
1647    // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is
1648    // returned on the X87 stack in %st0 as 80-bit x87 number.
1649  case X87:
1650    ResType = llvm::Type::getX86_FP80Ty(getVMContext());
1651    break;
1652
1653    // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real
1654    // part of the value is returned in %st0 and the imaginary part in
1655    // %st1.
1656  case ComplexX87:
1657    assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification.");
1658    ResType = llvm::StructType::get(getVMContext(),
1659                                    llvm::Type::getX86_FP80Ty(getVMContext()),
1660                                    llvm::Type::getX86_FP80Ty(getVMContext()),
1661                                    NULL);
1662    break;
1663  }
1664
1665  const llvm::Type *HighPart = 0;
1666  switch (Hi) {
1667    // Memory was handled previously and X87 should
1668    // never occur as a hi class.
1669  case Memory:
1670  case X87:
1671    assert(0 && "Invalid classification for hi word.");
1672
1673  case ComplexX87: // Previously handled.
1674  case NoClass:
1675    break;
1676
1677  case Integer:
1678    HighPart = GetINTEGERTypeAtOffset(CGT.ConvertTypeRecursive(RetTy),
1679                                      8, RetTy, 8);
1680    if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
1681      return ABIArgInfo::getDirect(HighPart, 8);
1682    break;
1683  case SSE:
1684    HighPart = GetSSETypeAtOffset(CGT.ConvertTypeRecursive(RetTy), 8, RetTy, 8);
1685    if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
1686      return ABIArgInfo::getDirect(HighPart, 8);
1687    break;
1688
1689    // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte
1690    // is passed in the upper half of the last used SSE register.
1691    //
1692    // SSEUP should always be preceeded by SSE, just widen.
1693  case SSEUp:
1694    assert(Lo == SSE && "Unexpected SSEUp classification.");
1695    ResType = Get16ByteVectorType(RetTy);
1696    break;
1697
1698    // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is
1699    // returned together with the previous X87 value in %st0.
1700  case X87Up:
1701    // If X87Up is preceeded by X87, we don't need to do
1702    // anything. However, in some cases with unions it may not be
1703    // preceeded by X87. In such situations we follow gcc and pass the
1704    // extra bits in an SSE reg.
1705    if (Lo != X87) {
1706      HighPart = GetSSETypeAtOffset(CGT.ConvertTypeRecursive(RetTy),
1707                                    8, RetTy, 8);
1708      if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
1709        return ABIArgInfo::getDirect(HighPart, 8);
1710    }
1711    break;
1712  }
1713
1714  // If a high part was specified, merge it together with the low part.  It is
1715  // known to pass in the high eightbyte of the result.  We do this by forming a
1716  // first class struct aggregate with the high and low part: {low, high}
1717  if (HighPart)
1718    ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getTargetData());
1719
1720  return ABIArgInfo::getDirect(ResType);
1721}
1722
1723ABIArgInfo X86_64ABIInfo::classifyArgumentType(QualType Ty, unsigned &neededInt,
1724                                               unsigned &neededSSE) const {
1725  X86_64ABIInfo::Class Lo, Hi;
1726  classify(Ty, 0, Lo, Hi);
1727
1728  // Check some invariants.
1729  // FIXME: Enforce these by construction.
1730  assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
1731  assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
1732
1733  neededInt = 0;
1734  neededSSE = 0;
1735  const llvm::Type *ResType = 0;
1736  switch (Lo) {
1737  case NoClass:
1738    if (Hi == NoClass)
1739      return ABIArgInfo::getIgnore();
1740    // If the low part is just padding, it takes no register, leave ResType
1741    // null.
1742    assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
1743           "Unknown missing lo part");
1744    break;
1745
1746    // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument
1747    // on the stack.
1748  case Memory:
1749
1750    // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or
1751    // COMPLEX_X87, it is passed in memory.
1752  case X87:
1753  case ComplexX87:
1754    return getIndirectResult(Ty);
1755
1756  case SSEUp:
1757  case X87Up:
1758    assert(0 && "Invalid classification for lo word.");
1759
1760    // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next
1761    // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8
1762    // and %r9 is used.
1763  case Integer:
1764    ++neededInt;
1765
1766    // Pick an 8-byte type based on the preferred type.
1767    ResType = GetINTEGERTypeAtOffset(CGT.ConvertTypeRecursive(Ty), 0, Ty, 0);
1768
1769    // If we have a sign or zero extended integer, make sure to return Extend
1770    // so that the parameter gets the right LLVM IR attributes.
1771    if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
1772      // Treat an enum type as its underlying type.
1773      if (const EnumType *EnumTy = Ty->getAs<EnumType>())
1774        Ty = EnumTy->getDecl()->getIntegerType();
1775
1776      if (Ty->isIntegralOrEnumerationType() &&
1777          Ty->isPromotableIntegerType())
1778        return ABIArgInfo::getExtend();
1779    }
1780
1781    break;
1782
1783    // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next
1784    // available SSE register is used, the registers are taken in the
1785    // order from %xmm0 to %xmm7.
1786  case SSE: {
1787    const llvm::Type *IRType = CGT.ConvertTypeRecursive(Ty);
1788    if (Hi != NoClass || !UseX86_MMXType(IRType))
1789      ResType = GetSSETypeAtOffset(IRType, 0, Ty, 0);
1790    else
1791      // This is an MMX type. Treat it as such.
1792      ResType = llvm::Type::getX86_MMXTy(getVMContext());
1793
1794    ++neededSSE;
1795    break;
1796  }
1797  }
1798
1799  const llvm::Type *HighPart = 0;
1800  switch (Hi) {
1801    // Memory was handled previously, ComplexX87 and X87 should
1802    // never occur as hi classes, and X87Up must be preceed by X87,
1803    // which is passed in memory.
1804  case Memory:
1805  case X87:
1806  case ComplexX87:
1807    assert(0 && "Invalid classification for hi word.");
1808    break;
1809
1810  case NoClass: break;
1811
1812  case Integer:
1813    ++neededInt;
1814    // Pick an 8-byte type based on the preferred type.
1815    HighPart = GetINTEGERTypeAtOffset(CGT.ConvertTypeRecursive(Ty), 8, Ty, 8);
1816
1817    if (Lo == NoClass)  // Pass HighPart at offset 8 in memory.
1818      return ABIArgInfo::getDirect(HighPart, 8);
1819    break;
1820
1821    // X87Up generally doesn't occur here (long double is passed in
1822    // memory), except in situations involving unions.
1823  case X87Up:
1824  case SSE:
1825    HighPart = GetSSETypeAtOffset(CGT.ConvertTypeRecursive(Ty), 8, Ty, 8);
1826
1827    if (Lo == NoClass)  // Pass HighPart at offset 8 in memory.
1828      return ABIArgInfo::getDirect(HighPart, 8);
1829
1830    ++neededSSE;
1831    break;
1832
1833    // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the
1834    // eightbyte is passed in the upper half of the last used SSE
1835    // register.  This only happens when 128-bit vectors are passed.
1836  case SSEUp:
1837    assert(Lo == SSE && "Unexpected SSEUp classification");
1838    ResType = Get16ByteVectorType(Ty);
1839    break;
1840  }
1841
1842  // If a high part was specified, merge it together with the low part.  It is
1843  // known to pass in the high eightbyte of the result.  We do this by forming a
1844  // first class struct aggregate with the high and low part: {low, high}
1845  if (HighPart)
1846    ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getTargetData());
1847
1848  return ABIArgInfo::getDirect(ResType);
1849}
1850
1851void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
1852
1853  FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
1854
1855  // Keep track of the number of assigned registers.
1856  unsigned freeIntRegs = 6, freeSSERegs = 8;
1857
1858  // If the return value is indirect, then the hidden argument is consuming one
1859  // integer register.
1860  if (FI.getReturnInfo().isIndirect())
1861    --freeIntRegs;
1862
1863  // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers
1864  // get assigned (in left-to-right order) for passing as follows...
1865  for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
1866       it != ie; ++it) {
1867    unsigned neededInt, neededSSE;
1868    it->info = classifyArgumentType(it->type, neededInt, neededSSE);
1869
1870    // AMD64-ABI 3.2.3p3: If there are no registers available for any
1871    // eightbyte of an argument, the whole argument is passed on the
1872    // stack. If registers have already been assigned for some
1873    // eightbytes of such an argument, the assignments get reverted.
1874    if (freeIntRegs >= neededInt && freeSSERegs >= neededSSE) {
1875      freeIntRegs -= neededInt;
1876      freeSSERegs -= neededSSE;
1877    } else {
1878      it->info = getIndirectResult(it->type);
1879    }
1880  }
1881}
1882
1883static llvm::Value *EmitVAArgFromMemory(llvm::Value *VAListAddr,
1884                                        QualType Ty,
1885                                        CodeGenFunction &CGF) {
1886  llvm::Value *overflow_arg_area_p =
1887    CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_p");
1888  llvm::Value *overflow_arg_area =
1889    CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area");
1890
1891  // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16
1892  // byte boundary if alignment needed by type exceeds 8 byte boundary.
1893  uint64_t Align = CGF.getContext().getTypeAlign(Ty) / 8;
1894  if (Align > 8) {
1895    // Note that we follow the ABI & gcc here, even though the type
1896    // could in theory have an alignment greater than 16. This case
1897    // shouldn't ever matter in practice.
1898
1899    // overflow_arg_area = (overflow_arg_area + 15) & ~15;
1900    llvm::Value *Offset =
1901      llvm::ConstantInt::get(CGF.Int32Ty, 15);
1902    overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset);
1903    llvm::Value *AsInt = CGF.Builder.CreatePtrToInt(overflow_arg_area,
1904                                                    CGF.Int64Ty);
1905    llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int64Ty, ~15LL);
1906    overflow_arg_area =
1907      CGF.Builder.CreateIntToPtr(CGF.Builder.CreateAnd(AsInt, Mask),
1908                                 overflow_arg_area->getType(),
1909                                 "overflow_arg_area.align");
1910  }
1911
1912  // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area.
1913  const llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
1914  llvm::Value *Res =
1915    CGF.Builder.CreateBitCast(overflow_arg_area,
1916                              llvm::PointerType::getUnqual(LTy));
1917
1918  // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to:
1919  // l->overflow_arg_area + sizeof(type).
1920  // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to
1921  // an 8 byte boundary.
1922
1923  uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8;
1924  llvm::Value *Offset =
1925      llvm::ConstantInt::get(CGF.Int32Ty, (SizeInBytes + 7)  & ~7);
1926  overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset,
1927                                            "overflow_arg_area.next");
1928  CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p);
1929
1930  // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type.
1931  return Res;
1932}
1933
1934llvm::Value *X86_64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
1935                                      CodeGenFunction &CGF) const {
1936  llvm::LLVMContext &VMContext = CGF.getLLVMContext();
1937
1938  // Assume that va_list type is correct; should be pointer to LLVM type:
1939  // struct {
1940  //   i32 gp_offset;
1941  //   i32 fp_offset;
1942  //   i8* overflow_arg_area;
1943  //   i8* reg_save_area;
1944  // };
1945  unsigned neededInt, neededSSE;
1946
1947  Ty = CGF.getContext().getCanonicalType(Ty);
1948  ABIArgInfo AI = classifyArgumentType(Ty, neededInt, neededSSE);
1949
1950  // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed
1951  // in the registers. If not go to step 7.
1952  if (!neededInt && !neededSSE)
1953    return EmitVAArgFromMemory(VAListAddr, Ty, CGF);
1954
1955  // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of
1956  // general purpose registers needed to pass type and num_fp to hold
1957  // the number of floating point registers needed.
1958
1959  // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into
1960  // registers. In the case: l->gp_offset > 48 - num_gp * 8 or
1961  // l->fp_offset > 304 - num_fp * 16 go to step 7.
1962  //
1963  // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of
1964  // register save space).
1965
1966  llvm::Value *InRegs = 0;
1967  llvm::Value *gp_offset_p = 0, *gp_offset = 0;
1968  llvm::Value *fp_offset_p = 0, *fp_offset = 0;
1969  if (neededInt) {
1970    gp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "gp_offset_p");
1971    gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset");
1972    InRegs = llvm::ConstantInt::get(CGF.Int32Ty, 48 - neededInt * 8);
1973    InRegs = CGF.Builder.CreateICmpULE(gp_offset, InRegs, "fits_in_gp");
1974  }
1975
1976  if (neededSSE) {
1977    fp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 1, "fp_offset_p");
1978    fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset");
1979    llvm::Value *FitsInFP =
1980      llvm::ConstantInt::get(CGF.Int32Ty, 176 - neededSSE * 16);
1981    FitsInFP = CGF.Builder.CreateICmpULE(fp_offset, FitsInFP, "fits_in_fp");
1982    InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP;
1983  }
1984
1985  llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
1986  llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
1987  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
1988  CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);
1989
1990  // Emit code to load the value if it was passed in registers.
1991
1992  CGF.EmitBlock(InRegBlock);
1993
1994  // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with
1995  // an offset of l->gp_offset and/or l->fp_offset. This may require
1996  // copying to a temporary location in case the parameter is passed
1997  // in different register classes or requires an alignment greater
1998  // than 8 for general purpose registers and 16 for XMM registers.
1999  //
2000  // FIXME: This really results in shameful code when we end up needing to
2001  // collect arguments from different places; often what should result in a
2002  // simple assembling of a structure from scattered addresses has many more
2003  // loads than necessary. Can we clean this up?
2004  const llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
2005  llvm::Value *RegAddr =
2006    CGF.Builder.CreateLoad(CGF.Builder.CreateStructGEP(VAListAddr, 3),
2007                           "reg_save_area");
2008  if (neededInt && neededSSE) {
2009    // FIXME: Cleanup.
2010    assert(AI.isDirect() && "Unexpected ABI info for mixed regs");
2011    const llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType());
2012    llvm::Value *Tmp = CGF.CreateTempAlloca(ST);
2013    assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs");
2014    const llvm::Type *TyLo = ST->getElementType(0);
2015    const llvm::Type *TyHi = ST->getElementType(1);
2016    assert((TyLo->isFPOrFPVectorTy() ^ TyHi->isFPOrFPVectorTy()) &&
2017           "Unexpected ABI info for mixed regs");
2018    const llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo);
2019    const llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi);
2020    llvm::Value *GPAddr = CGF.Builder.CreateGEP(RegAddr, gp_offset);
2021    llvm::Value *FPAddr = CGF.Builder.CreateGEP(RegAddr, fp_offset);
2022    llvm::Value *RegLoAddr = TyLo->isFloatingPointTy() ? FPAddr : GPAddr;
2023    llvm::Value *RegHiAddr = TyLo->isFloatingPointTy() ? GPAddr : FPAddr;
2024    llvm::Value *V =
2025      CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegLoAddr, PTyLo));
2026    CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0));
2027    V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegHiAddr, PTyHi));
2028    CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1));
2029
2030    RegAddr = CGF.Builder.CreateBitCast(Tmp,
2031                                        llvm::PointerType::getUnqual(LTy));
2032  } else if (neededInt) {
2033    RegAddr = CGF.Builder.CreateGEP(RegAddr, gp_offset);
2034    RegAddr = CGF.Builder.CreateBitCast(RegAddr,
2035                                        llvm::PointerType::getUnqual(LTy));
2036  } else if (neededSSE == 1) {
2037    RegAddr = CGF.Builder.CreateGEP(RegAddr, fp_offset);
2038    RegAddr = CGF.Builder.CreateBitCast(RegAddr,
2039                                        llvm::PointerType::getUnqual(LTy));
2040  } else {
2041    assert(neededSSE == 2 && "Invalid number of needed registers!");
2042    // SSE registers are spaced 16 bytes apart in the register save
2043    // area, we need to collect the two eightbytes together.
2044    llvm::Value *RegAddrLo = CGF.Builder.CreateGEP(RegAddr, fp_offset);
2045    llvm::Value *RegAddrHi = CGF.Builder.CreateConstGEP1_32(RegAddrLo, 16);
2046    const llvm::Type *DoubleTy = llvm::Type::getDoubleTy(VMContext);
2047    const llvm::Type *DblPtrTy =
2048      llvm::PointerType::getUnqual(DoubleTy);
2049    const llvm::StructType *ST = llvm::StructType::get(VMContext, DoubleTy,
2050                                                       DoubleTy, NULL);
2051    llvm::Value *V, *Tmp = CGF.CreateTempAlloca(ST);
2052    V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegAddrLo,
2053                                                         DblPtrTy));
2054    CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0));
2055    V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegAddrHi,
2056                                                         DblPtrTy));
2057    CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1));
2058    RegAddr = CGF.Builder.CreateBitCast(Tmp,
2059                                        llvm::PointerType::getUnqual(LTy));
2060  }
2061
2062  // AMD64-ABI 3.5.7p5: Step 5. Set:
2063  // l->gp_offset = l->gp_offset + num_gp * 8
2064  // l->fp_offset = l->fp_offset + num_fp * 16.
2065  if (neededInt) {
2066    llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededInt * 8);
2067    CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset),
2068                            gp_offset_p);
2069  }
2070  if (neededSSE) {
2071    llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededSSE * 16);
2072    CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset),
2073                            fp_offset_p);
2074  }
2075  CGF.EmitBranch(ContBlock);
2076
2077  // Emit code to load the value if it was passed in memory.
2078
2079  CGF.EmitBlock(InMemBlock);
2080  llvm::Value *MemAddr = EmitVAArgFromMemory(VAListAddr, Ty, CGF);
2081
2082  // Return the appropriate result.
2083
2084  CGF.EmitBlock(ContBlock);
2085  llvm::PHINode *ResAddr = CGF.Builder.CreatePHI(RegAddr->getType(),
2086                                                 "vaarg.addr");
2087  ResAddr->reserveOperandSpace(2);
2088  ResAddr->addIncoming(RegAddr, InRegBlock);
2089  ResAddr->addIncoming(MemAddr, InMemBlock);
2090  return ResAddr;
2091}
2092
2093ABIArgInfo WinX86_64ABIInfo::classify(QualType Ty) const {
2094
2095  if (Ty->isVoidType())
2096    return ABIArgInfo::getIgnore();
2097
2098  if (const EnumType *EnumTy = Ty->getAs<EnumType>())
2099    Ty = EnumTy->getDecl()->getIntegerType();
2100
2101  uint64_t Size = getContext().getTypeSize(Ty);
2102
2103  if (const RecordType *RT = Ty->getAs<RecordType>()) {
2104    if (hasNonTrivialDestructorOrCopyConstructor(RT) ||
2105        RT->getDecl()->hasFlexibleArrayMember())
2106      return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
2107
2108    // FIXME: mingw64-gcc emits 128-bit struct as i128
2109    if (Size <= 128 &&
2110        (Size & (Size - 1)) == 0)
2111      return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
2112                                                          Size));
2113
2114    return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
2115  }
2116
2117  if (Ty->isPromotableIntegerType())
2118    return ABIArgInfo::getExtend();
2119
2120  return ABIArgInfo::getDirect();
2121}
2122
2123void WinX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
2124
2125  QualType RetTy = FI.getReturnType();
2126  FI.getReturnInfo() = classify(RetTy);
2127
2128  for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
2129       it != ie; ++it)
2130    it->info = classify(it->type);
2131}
2132
2133llvm::Value *WinX86_64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2134                                      CodeGenFunction &CGF) const {
2135  const llvm::Type *BP = llvm::Type::getInt8PtrTy(CGF.getLLVMContext());
2136  const llvm::Type *BPP = llvm::PointerType::getUnqual(BP);
2137
2138  CGBuilderTy &Builder = CGF.Builder;
2139  llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP,
2140                                                       "ap");
2141  llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
2142  llvm::Type *PTy =
2143    llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
2144  llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
2145
2146  uint64_t Offset =
2147    llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 8);
2148  llvm::Value *NextAddr =
2149    Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
2150                      "ap.next");
2151  Builder.CreateStore(NextAddr, VAListAddrAsBPP);
2152
2153  return AddrTyped;
2154}
2155
2156// PowerPC-32
2157
2158namespace {
2159class PPC32TargetCodeGenInfo : public DefaultTargetCodeGenInfo {
2160public:
2161  PPC32TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {}
2162
2163  int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const {
2164    // This is recovered from gcc output.
2165    return 1; // r1 is the dedicated stack pointer
2166  }
2167
2168  bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2169                               llvm::Value *Address) const;
2170};
2171
2172}
2173
2174bool
2175PPC32TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2176                                                llvm::Value *Address) const {
2177  // This is calculated from the LLVM and GCC tables and verified
2178  // against gcc output.  AFAIK all ABIs use the same encoding.
2179
2180  CodeGen::CGBuilderTy &Builder = CGF.Builder;
2181  llvm::LLVMContext &Context = CGF.getLLVMContext();
2182
2183  const llvm::IntegerType *i8 = llvm::Type::getInt8Ty(Context);
2184  llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
2185  llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
2186  llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16);
2187
2188  // 0-31: r0-31, the 4-byte general-purpose registers
2189  AssignToArrayRange(Builder, Address, Four8, 0, 31);
2190
2191  // 32-63: fp0-31, the 8-byte floating-point registers
2192  AssignToArrayRange(Builder, Address, Eight8, 32, 63);
2193
2194  // 64-76 are various 4-byte special-purpose registers:
2195  // 64: mq
2196  // 65: lr
2197  // 66: ctr
2198  // 67: ap
2199  // 68-75 cr0-7
2200  // 76: xer
2201  AssignToArrayRange(Builder, Address, Four8, 64, 76);
2202
2203  // 77-108: v0-31, the 16-byte vector registers
2204  AssignToArrayRange(Builder, Address, Sixteen8, 77, 108);
2205
2206  // 109: vrsave
2207  // 110: vscr
2208  // 111: spe_acc
2209  // 112: spefscr
2210  // 113: sfp
2211  AssignToArrayRange(Builder, Address, Four8, 109, 113);
2212
2213  return false;
2214}
2215
2216
2217//===----------------------------------------------------------------------===//
2218// ARM ABI Implementation
2219//===----------------------------------------------------------------------===//
2220
2221namespace {
2222
2223class ARMABIInfo : public ABIInfo {
2224public:
2225  enum ABIKind {
2226    APCS = 0,
2227    AAPCS = 1,
2228    AAPCS_VFP
2229  };
2230
2231private:
2232  ABIKind Kind;
2233
2234public:
2235  ARMABIInfo(CodeGenTypes &CGT, ABIKind _Kind) : ABIInfo(CGT), Kind(_Kind) {}
2236
2237private:
2238  ABIKind getABIKind() const { return Kind; }
2239
2240  ABIArgInfo classifyReturnType(QualType RetTy) const;
2241  ABIArgInfo classifyArgumentType(QualType RetTy) const;
2242
2243  virtual void computeInfo(CGFunctionInfo &FI) const;
2244
2245  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2246                                 CodeGenFunction &CGF) const;
2247};
2248
2249class ARMTargetCodeGenInfo : public TargetCodeGenInfo {
2250public:
2251  ARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K)
2252    :TargetCodeGenInfo(new ARMABIInfo(CGT, K)) {}
2253
2254  int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const {
2255    return 13;
2256  }
2257};
2258
2259}
2260
2261void ARMABIInfo::computeInfo(CGFunctionInfo &FI) const {
2262  FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
2263  for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
2264       it != ie; ++it)
2265    it->info = classifyArgumentType(it->type);
2266
2267  const llvm::Triple &Triple(getContext().Target.getTriple());
2268  llvm::CallingConv::ID DefaultCC;
2269  if (Triple.getEnvironmentName() == "gnueabi" ||
2270      Triple.getEnvironmentName() == "eabi")
2271    DefaultCC = llvm::CallingConv::ARM_AAPCS;
2272  else
2273    DefaultCC = llvm::CallingConv::ARM_APCS;
2274
2275  switch (getABIKind()) {
2276  case APCS:
2277    if (DefaultCC != llvm::CallingConv::ARM_APCS)
2278      FI.setEffectiveCallingConvention(llvm::CallingConv::ARM_APCS);
2279    break;
2280
2281  case AAPCS:
2282    if (DefaultCC != llvm::CallingConv::ARM_AAPCS)
2283      FI.setEffectiveCallingConvention(llvm::CallingConv::ARM_AAPCS);
2284    break;
2285
2286  case AAPCS_VFP:
2287    FI.setEffectiveCallingConvention(llvm::CallingConv::ARM_AAPCS_VFP);
2288    break;
2289  }
2290}
2291
2292ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty) const {
2293  if (!isAggregateTypeForABI(Ty)) {
2294    // Treat an enum type as its underlying type.
2295    if (const EnumType *EnumTy = Ty->getAs<EnumType>())
2296      Ty = EnumTy->getDecl()->getIntegerType();
2297
2298    return (Ty->isPromotableIntegerType() ?
2299            ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
2300  }
2301
2302  // Ignore empty records.
2303  if (isEmptyRecord(getContext(), Ty, true))
2304    return ABIArgInfo::getIgnore();
2305
2306  // Structures with either a non-trivial destructor or a non-trivial
2307  // copy constructor are always indirect.
2308  if (isRecordWithNonTrivialDestructorOrCopyConstructor(Ty))
2309    return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
2310
2311  // Otherwise, pass by coercing to a structure of the appropriate size.
2312  //
2313  // FIXME: This is kind of nasty... but there isn't much choice because the ARM
2314  // backend doesn't support byval.
2315  // FIXME: This doesn't handle alignment > 64 bits.
2316  const llvm::Type* ElemTy;
2317  unsigned SizeRegs;
2318  if (getContext().getTypeAlign(Ty) > 32) {
2319    ElemTy = llvm::Type::getInt64Ty(getVMContext());
2320    SizeRegs = (getContext().getTypeSize(Ty) + 63) / 64;
2321  } else {
2322    ElemTy = llvm::Type::getInt32Ty(getVMContext());
2323    SizeRegs = (getContext().getTypeSize(Ty) + 31) / 32;
2324  }
2325  std::vector<const llvm::Type*> LLVMFields;
2326  LLVMFields.push_back(llvm::ArrayType::get(ElemTy, SizeRegs));
2327  const llvm::Type* STy = llvm::StructType::get(getVMContext(), LLVMFields,
2328                                                true);
2329  return ABIArgInfo::getDirect(STy);
2330}
2331
2332static bool isIntegerLikeType(QualType Ty, ASTContext &Context,
2333                              llvm::LLVMContext &VMContext) {
2334  // APCS, C Language Calling Conventions, Non-Simple Return Values: A structure
2335  // is called integer-like if its size is less than or equal to one word, and
2336  // the offset of each of its addressable sub-fields is zero.
2337
2338  uint64_t Size = Context.getTypeSize(Ty);
2339
2340  // Check that the type fits in a word.
2341  if (Size > 32)
2342    return false;
2343
2344  // FIXME: Handle vector types!
2345  if (Ty->isVectorType())
2346    return false;
2347
2348  // Float types are never treated as "integer like".
2349  if (Ty->isRealFloatingType())
2350    return false;
2351
2352  // If this is a builtin or pointer type then it is ok.
2353  if (Ty->getAs<BuiltinType>() || Ty->isPointerType())
2354    return true;
2355
2356  // Small complex integer types are "integer like".
2357  if (const ComplexType *CT = Ty->getAs<ComplexType>())
2358    return isIntegerLikeType(CT->getElementType(), Context, VMContext);
2359
2360  // Single element and zero sized arrays should be allowed, by the definition
2361  // above, but they are not.
2362
2363  // Otherwise, it must be a record type.
2364  const RecordType *RT = Ty->getAs<RecordType>();
2365  if (!RT) return false;
2366
2367  // Ignore records with flexible arrays.
2368  const RecordDecl *RD = RT->getDecl();
2369  if (RD->hasFlexibleArrayMember())
2370    return false;
2371
2372  // Check that all sub-fields are at offset 0, and are themselves "integer
2373  // like".
2374  const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
2375
2376  bool HadField = false;
2377  unsigned idx = 0;
2378  for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
2379       i != e; ++i, ++idx) {
2380    const FieldDecl *FD = *i;
2381
2382    // Bit-fields are not addressable, we only need to verify they are "integer
2383    // like". We still have to disallow a subsequent non-bitfield, for example:
2384    //   struct { int : 0; int x }
2385    // is non-integer like according to gcc.
2386    if (FD->isBitField()) {
2387      if (!RD->isUnion())
2388        HadField = true;
2389
2390      if (!isIntegerLikeType(FD->getType(), Context, VMContext))
2391        return false;
2392
2393      continue;
2394    }
2395
2396    // Check if this field is at offset 0.
2397    if (Layout.getFieldOffset(idx) != 0)
2398      return false;
2399
2400    if (!isIntegerLikeType(FD->getType(), Context, VMContext))
2401      return false;
2402
2403    // Only allow at most one field in a structure. This doesn't match the
2404    // wording above, but follows gcc in situations with a field following an
2405    // empty structure.
2406    if (!RD->isUnion()) {
2407      if (HadField)
2408        return false;
2409
2410      HadField = true;
2411    }
2412  }
2413
2414  return true;
2415}
2416
2417ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy) const {
2418  if (RetTy->isVoidType())
2419    return ABIArgInfo::getIgnore();
2420
2421  // Large vector types should be returned via memory.
2422  if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128)
2423    return ABIArgInfo::getIndirect(0);
2424
2425  if (!isAggregateTypeForABI(RetTy)) {
2426    // Treat an enum type as its underlying type.
2427    if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
2428      RetTy = EnumTy->getDecl()->getIntegerType();
2429
2430    return (RetTy->isPromotableIntegerType() ?
2431            ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
2432  }
2433
2434  // Structures with either a non-trivial destructor or a non-trivial
2435  // copy constructor are always indirect.
2436  if (isRecordWithNonTrivialDestructorOrCopyConstructor(RetTy))
2437    return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
2438
2439  // Are we following APCS?
2440  if (getABIKind() == APCS) {
2441    if (isEmptyRecord(getContext(), RetTy, false))
2442      return ABIArgInfo::getIgnore();
2443
2444    // Complex types are all returned as packed integers.
2445    //
2446    // FIXME: Consider using 2 x vector types if the back end handles them
2447    // correctly.
2448    if (RetTy->isAnyComplexType())
2449      return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
2450                                              getContext().getTypeSize(RetTy)));
2451
2452    // Integer like structures are returned in r0.
2453    if (isIntegerLikeType(RetTy, getContext(), getVMContext())) {
2454      // Return in the smallest viable integer type.
2455      uint64_t Size = getContext().getTypeSize(RetTy);
2456      if (Size <= 8)
2457        return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
2458      if (Size <= 16)
2459        return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
2460      return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
2461    }
2462
2463    // Otherwise return in memory.
2464    return ABIArgInfo::getIndirect(0);
2465  }
2466
2467  // Otherwise this is an AAPCS variant.
2468
2469  if (isEmptyRecord(getContext(), RetTy, true))
2470    return ABIArgInfo::getIgnore();
2471
2472  // Aggregates <= 4 bytes are returned in r0; other aggregates
2473  // are returned indirectly.
2474  uint64_t Size = getContext().getTypeSize(RetTy);
2475  if (Size <= 32) {
2476    // Return in the smallest viable integer type.
2477    if (Size <= 8)
2478      return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
2479    if (Size <= 16)
2480      return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
2481    return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
2482  }
2483
2484  return ABIArgInfo::getIndirect(0);
2485}
2486
2487llvm::Value *ARMABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2488                                   CodeGenFunction &CGF) const {
2489  // FIXME: Need to handle alignment
2490  const llvm::Type *BP = llvm::Type::getInt8PtrTy(CGF.getLLVMContext());
2491  const llvm::Type *BPP = llvm::PointerType::getUnqual(BP);
2492
2493  CGBuilderTy &Builder = CGF.Builder;
2494  llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP,
2495                                                       "ap");
2496  llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
2497  llvm::Type *PTy =
2498    llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
2499  llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
2500
2501  uint64_t Offset =
2502    llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 4);
2503  llvm::Value *NextAddr =
2504    Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
2505                      "ap.next");
2506  Builder.CreateStore(NextAddr, VAListAddrAsBPP);
2507
2508  return AddrTyped;
2509}
2510
2511//===----------------------------------------------------------------------===//
2512// SystemZ ABI Implementation
2513//===----------------------------------------------------------------------===//
2514
2515namespace {
2516
2517class SystemZABIInfo : public ABIInfo {
2518public:
2519  SystemZABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
2520
2521  bool isPromotableIntegerType(QualType Ty) const;
2522
2523  ABIArgInfo classifyReturnType(QualType RetTy) const;
2524  ABIArgInfo classifyArgumentType(QualType RetTy) const;
2525
2526  virtual void computeInfo(CGFunctionInfo &FI) const {
2527    FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
2528    for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
2529         it != ie; ++it)
2530      it->info = classifyArgumentType(it->type);
2531  }
2532
2533  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2534                                 CodeGenFunction &CGF) const;
2535};
2536
2537class SystemZTargetCodeGenInfo : public TargetCodeGenInfo {
2538public:
2539  SystemZTargetCodeGenInfo(CodeGenTypes &CGT)
2540    : TargetCodeGenInfo(new SystemZABIInfo(CGT)) {}
2541};
2542
2543}
2544
2545bool SystemZABIInfo::isPromotableIntegerType(QualType Ty) const {
2546  // SystemZ ABI requires all 8, 16 and 32 bit quantities to be extended.
2547  if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
2548    switch (BT->getKind()) {
2549    case BuiltinType::Bool:
2550    case BuiltinType::Char_S:
2551    case BuiltinType::Char_U:
2552    case BuiltinType::SChar:
2553    case BuiltinType::UChar:
2554    case BuiltinType::Short:
2555    case BuiltinType::UShort:
2556    case BuiltinType::Int:
2557    case BuiltinType::UInt:
2558      return true;
2559    default:
2560      return false;
2561    }
2562  return false;
2563}
2564
2565llvm::Value *SystemZABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2566                                       CodeGenFunction &CGF) const {
2567  // FIXME: Implement
2568  return 0;
2569}
2570
2571
2572ABIArgInfo SystemZABIInfo::classifyReturnType(QualType RetTy) const {
2573  if (RetTy->isVoidType())
2574    return ABIArgInfo::getIgnore();
2575  if (isAggregateTypeForABI(RetTy))
2576    return ABIArgInfo::getIndirect(0);
2577
2578  return (isPromotableIntegerType(RetTy) ?
2579          ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
2580}
2581
2582ABIArgInfo SystemZABIInfo::classifyArgumentType(QualType Ty) const {
2583  if (isAggregateTypeForABI(Ty))
2584    return ABIArgInfo::getIndirect(0);
2585
2586  return (isPromotableIntegerType(Ty) ?
2587          ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
2588}
2589
2590//===----------------------------------------------------------------------===//
2591// MBlaze ABI Implementation
2592//===----------------------------------------------------------------------===//
2593
2594namespace {
2595
2596class MBlazeABIInfo : public ABIInfo {
2597public:
2598  MBlazeABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
2599
2600  bool isPromotableIntegerType(QualType Ty) const;
2601
2602  ABIArgInfo classifyReturnType(QualType RetTy) const;
2603  ABIArgInfo classifyArgumentType(QualType RetTy) const;
2604
2605  virtual void computeInfo(CGFunctionInfo &FI) const {
2606    FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
2607    for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
2608         it != ie; ++it)
2609      it->info = classifyArgumentType(it->type);
2610  }
2611
2612  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2613                                 CodeGenFunction &CGF) const;
2614};
2615
2616class MBlazeTargetCodeGenInfo : public TargetCodeGenInfo {
2617public:
2618  MBlazeTargetCodeGenInfo(CodeGenTypes &CGT)
2619    : TargetCodeGenInfo(new MBlazeABIInfo(CGT)) {}
2620  void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
2621                           CodeGen::CodeGenModule &M) const;
2622};
2623
2624}
2625
2626bool MBlazeABIInfo::isPromotableIntegerType(QualType Ty) const {
2627  // MBlaze ABI requires all 8 and 16 bit quantities to be extended.
2628  if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
2629    switch (BT->getKind()) {
2630    case BuiltinType::Bool:
2631    case BuiltinType::Char_S:
2632    case BuiltinType::Char_U:
2633    case BuiltinType::SChar:
2634    case BuiltinType::UChar:
2635    case BuiltinType::Short:
2636    case BuiltinType::UShort:
2637      return true;
2638    default:
2639      return false;
2640    }
2641  return false;
2642}
2643
2644llvm::Value *MBlazeABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2645                                      CodeGenFunction &CGF) const {
2646  // FIXME: Implement
2647  return 0;
2648}
2649
2650
2651ABIArgInfo MBlazeABIInfo::classifyReturnType(QualType RetTy) const {
2652  if (RetTy->isVoidType())
2653    return ABIArgInfo::getIgnore();
2654  if (isAggregateTypeForABI(RetTy))
2655    return ABIArgInfo::getIndirect(0);
2656
2657  return (isPromotableIntegerType(RetTy) ?
2658          ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
2659}
2660
2661ABIArgInfo MBlazeABIInfo::classifyArgumentType(QualType Ty) const {
2662  if (isAggregateTypeForABI(Ty))
2663    return ABIArgInfo::getIndirect(0);
2664
2665  return (isPromotableIntegerType(Ty) ?
2666          ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
2667}
2668
2669void MBlazeTargetCodeGenInfo::SetTargetAttributes(const Decl *D,
2670                                                  llvm::GlobalValue *GV,
2671                                                  CodeGen::CodeGenModule &M)
2672                                                  const {
2673  const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
2674  if (!FD) return;
2675
2676  llvm::CallingConv::ID CC = llvm::CallingConv::C;
2677  if (FD->hasAttr<MBlazeInterruptHandlerAttr>())
2678    CC = llvm::CallingConv::MBLAZE_INTR;
2679  else if (FD->hasAttr<MBlazeSaveVolatilesAttr>())
2680    CC = llvm::CallingConv::MBLAZE_SVOL;
2681
2682  if (CC != llvm::CallingConv::C) {
2683      // Handle 'interrupt_handler' attribute:
2684      llvm::Function *F = cast<llvm::Function>(GV);
2685
2686      // Step 1: Set ISR calling convention.
2687      F->setCallingConv(CC);
2688
2689      // Step 2: Add attributes goodness.
2690      F->addFnAttr(llvm::Attribute::NoInline);
2691  }
2692
2693  // Step 3: Emit _interrupt_handler alias.
2694  if (CC == llvm::CallingConv::MBLAZE_INTR)
2695    new llvm::GlobalAlias(GV->getType(), llvm::Function::ExternalLinkage,
2696                          "_interrupt_handler", GV, &M.getModule());
2697}
2698
2699
2700//===----------------------------------------------------------------------===//
2701// MSP430 ABI Implementation
2702//===----------------------------------------------------------------------===//
2703
2704namespace {
2705
2706class MSP430TargetCodeGenInfo : public TargetCodeGenInfo {
2707public:
2708  MSP430TargetCodeGenInfo(CodeGenTypes &CGT)
2709    : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
2710  void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
2711                           CodeGen::CodeGenModule &M) const;
2712};
2713
2714}
2715
2716void MSP430TargetCodeGenInfo::SetTargetAttributes(const Decl *D,
2717                                                  llvm::GlobalValue *GV,
2718                                             CodeGen::CodeGenModule &M) const {
2719  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
2720    if (const MSP430InterruptAttr *attr = FD->getAttr<MSP430InterruptAttr>()) {
2721      // Handle 'interrupt' attribute:
2722      llvm::Function *F = cast<llvm::Function>(GV);
2723
2724      // Step 1: Set ISR calling convention.
2725      F->setCallingConv(llvm::CallingConv::MSP430_INTR);
2726
2727      // Step 2: Add attributes goodness.
2728      F->addFnAttr(llvm::Attribute::NoInline);
2729
2730      // Step 3: Emit ISR vector alias.
2731      unsigned Num = attr->getNumber() + 0xffe0;
2732      new llvm::GlobalAlias(GV->getType(), llvm::Function::ExternalLinkage,
2733                            "vector_" + llvm::Twine::utohexstr(Num),
2734                            GV, &M.getModule());
2735    }
2736  }
2737}
2738
2739//===----------------------------------------------------------------------===//
2740// MIPS ABI Implementation.  This works for both little-endian and
2741// big-endian variants.
2742//===----------------------------------------------------------------------===//
2743
2744namespace {
2745class MIPSTargetCodeGenInfo : public TargetCodeGenInfo {
2746public:
2747  MIPSTargetCodeGenInfo(CodeGenTypes &CGT)
2748    : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
2749
2750  int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const {
2751    return 29;
2752  }
2753
2754  bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2755                               llvm::Value *Address) const;
2756};
2757}
2758
2759bool
2760MIPSTargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2761                                               llvm::Value *Address) const {
2762  // This information comes from gcc's implementation, which seems to
2763  // as canonical as it gets.
2764
2765  CodeGen::CGBuilderTy &Builder = CGF.Builder;
2766  llvm::LLVMContext &Context = CGF.getLLVMContext();
2767
2768  // Everything on MIPS is 4 bytes.  Double-precision FP registers
2769  // are aliased to pairs of single-precision FP registers.
2770  const llvm::IntegerType *i8 = llvm::Type::getInt8Ty(Context);
2771  llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
2772
2773  // 0-31 are the general purpose registers, $0 - $31.
2774  // 32-63 are the floating-point registers, $f0 - $f31.
2775  // 64 and 65 are the multiply/divide registers, $hi and $lo.
2776  // 66 is the (notional, I think) register for signal-handler return.
2777  AssignToArrayRange(Builder, Address, Four8, 0, 65);
2778
2779  // 67-74 are the floating-point status registers, $fcc0 - $fcc7.
2780  // They are one bit wide and ignored here.
2781
2782  // 80-111 are the coprocessor 0 registers, $c0r0 - $c0r31.
2783  // (coprocessor 1 is the FP unit)
2784  // 112-143 are the coprocessor 2 registers, $c2r0 - $c2r31.
2785  // 144-175 are the coprocessor 3 registers, $c3r0 - $c3r31.
2786  // 176-181 are the DSP accumulator registers.
2787  AssignToArrayRange(Builder, Address, Four8, 80, 181);
2788
2789  return false;
2790}
2791
2792
2793const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() {
2794  if (TheTargetCodeGenInfo)
2795    return *TheTargetCodeGenInfo;
2796
2797  // For now we just cache the TargetCodeGenInfo in CodeGenModule and don't
2798  // free it.
2799
2800  const llvm::Triple &Triple = getContext().Target.getTriple();
2801  switch (Triple.getArch()) {
2802  default:
2803    return *(TheTargetCodeGenInfo = new DefaultTargetCodeGenInfo(Types));
2804
2805  case llvm::Triple::mips:
2806  case llvm::Triple::mipsel:
2807    return *(TheTargetCodeGenInfo = new MIPSTargetCodeGenInfo(Types));
2808
2809  case llvm::Triple::arm:
2810  case llvm::Triple::thumb:
2811    // FIXME: We want to know the float calling convention as well.
2812    if (strcmp(getContext().Target.getABI(), "apcs-gnu") == 0)
2813      return *(TheTargetCodeGenInfo =
2814               new ARMTargetCodeGenInfo(Types, ARMABIInfo::APCS));
2815
2816    return *(TheTargetCodeGenInfo =
2817             new ARMTargetCodeGenInfo(Types, ARMABIInfo::AAPCS));
2818
2819  case llvm::Triple::ppc:
2820    return *(TheTargetCodeGenInfo = new PPC32TargetCodeGenInfo(Types));
2821
2822  case llvm::Triple::systemz:
2823    return *(TheTargetCodeGenInfo = new SystemZTargetCodeGenInfo(Types));
2824
2825  case llvm::Triple::mblaze:
2826    return *(TheTargetCodeGenInfo = new MBlazeTargetCodeGenInfo(Types));
2827
2828  case llvm::Triple::msp430:
2829    return *(TheTargetCodeGenInfo = new MSP430TargetCodeGenInfo(Types));
2830
2831  case llvm::Triple::x86:
2832    switch (Triple.getOS()) {
2833    case llvm::Triple::Darwin:
2834      return *(TheTargetCodeGenInfo =
2835               new X86_32TargetCodeGenInfo(Types, true, true));
2836    case llvm::Triple::Cygwin:
2837    case llvm::Triple::MinGW32:
2838    case llvm::Triple::AuroraUX:
2839    case llvm::Triple::DragonFly:
2840    case llvm::Triple::FreeBSD:
2841    case llvm::Triple::OpenBSD:
2842    case llvm::Triple::NetBSD:
2843      return *(TheTargetCodeGenInfo =
2844               new X86_32TargetCodeGenInfo(Types, false, true));
2845
2846    default:
2847      return *(TheTargetCodeGenInfo =
2848               new X86_32TargetCodeGenInfo(Types, false, false));
2849    }
2850
2851  case llvm::Triple::x86_64:
2852    switch (Triple.getOS()) {
2853    case llvm::Triple::Win32:
2854    case llvm::Triple::MinGW32:
2855    case llvm::Triple::Cygwin:
2856      return *(TheTargetCodeGenInfo = new WinX86_64TargetCodeGenInfo(Types));
2857    default:
2858      return *(TheTargetCodeGenInfo = new X86_64TargetCodeGenInfo(Types));
2859    }
2860  }
2861}
2862