TargetInfo.cpp revision 77b89b87c3b9220fea1bc80f6d6598d2003cc8a8
1//===---- TargetInfo.cpp - Encapsulate target details -----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// These classes wrap the information about a call or function
11// definition used to handle ABI compliancy.
12//
13//===----------------------------------------------------------------------===//
14
15#include "TargetInfo.h"
16#include "ABIInfo.h"
17#include "CodeGenFunction.h"
18#include "clang/AST/RecordLayout.h"
19#include "llvm/Type.h"
20#include "llvm/ADT/StringExtras.h"
21#include "llvm/ADT/Triple.h"
22#include "llvm/Support/raw_ostream.h"
23using namespace clang;
24using namespace CodeGen;
25
26static void AssignToArrayRange(CodeGen::CGBuilderTy &Builder,
27                               llvm::Value *Array,
28                               llvm::Value *Value,
29                               unsigned FirstIndex,
30                               unsigned LastIndex) {
31  // Alternatively, we could emit this as a loop in the source.
32  for (unsigned I = FirstIndex; I <= LastIndex; ++I) {
33    llvm::Value *Cell = Builder.CreateConstInBoundsGEP1_32(Array, I);
34    Builder.CreateStore(Value, Cell);
35  }
36}
37
38ABIInfo::~ABIInfo() {}
39
40void ABIArgInfo::dump() const {
41  llvm::raw_ostream &OS = llvm::errs();
42  OS << "(ABIArgInfo Kind=";
43  switch (TheKind) {
44  case Direct:
45    OS << "Direct";
46    break;
47  case Extend:
48    OS << "Extend";
49    break;
50  case Ignore:
51    OS << "Ignore";
52    break;
53  case Coerce:
54    OS << "Coerce Type=";
55    getCoerceToType()->print(OS);
56    break;
57  case Indirect:
58    OS << "Indirect Align=" << getIndirectAlign()
59       << " Byal=" << getIndirectByVal();
60    break;
61  case Expand:
62    OS << "Expand";
63    break;
64  }
65  OS << ")\n";
66}
67
68TargetCodeGenInfo::~TargetCodeGenInfo() { delete Info; }
69
70static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays);
71
72/// isEmptyField - Return true iff a the field is "empty", that is it
73/// is an unnamed bit-field or an (array of) empty record(s).
74static bool isEmptyField(ASTContext &Context, const FieldDecl *FD,
75                         bool AllowArrays) {
76  if (FD->isUnnamedBitfield())
77    return true;
78
79  QualType FT = FD->getType();
80
81    // Constant arrays of empty records count as empty, strip them off.
82  if (AllowArrays)
83    while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT))
84      FT = AT->getElementType();
85
86  const RecordType *RT = FT->getAs<RecordType>();
87  if (!RT)
88    return false;
89
90  // C++ record fields are never empty, at least in the Itanium ABI.
91  //
92  // FIXME: We should use a predicate for whether this behavior is true in the
93  // current ABI.
94  if (isa<CXXRecordDecl>(RT->getDecl()))
95    return false;
96
97  return isEmptyRecord(Context, FT, AllowArrays);
98}
99
100/// isEmptyRecord - Return true iff a structure contains only empty
101/// fields. Note that a structure with a flexible array member is not
102/// considered empty.
103static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays) {
104  const RecordType *RT = T->getAs<RecordType>();
105  if (!RT)
106    return 0;
107  const RecordDecl *RD = RT->getDecl();
108  if (RD->hasFlexibleArrayMember())
109    return false;
110
111  // If this is a C++ record, check the bases first.
112  if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
113    for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
114           e = CXXRD->bases_end(); i != e; ++i)
115      if (!isEmptyRecord(Context, i->getType(), true))
116        return false;
117
118  for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
119         i != e; ++i)
120    if (!isEmptyField(Context, *i, AllowArrays))
121      return false;
122  return true;
123}
124
125/// hasNonTrivialDestructorOrCopyConstructor - Determine if a type has either
126/// a non-trivial destructor or a non-trivial copy constructor.
127static bool hasNonTrivialDestructorOrCopyConstructor(const RecordType *RT) {
128  const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
129  if (!RD)
130    return false;
131
132  return !RD->hasTrivialDestructor() || !RD->hasTrivialCopyConstructor();
133}
134
135/// isRecordWithNonTrivialDestructorOrCopyConstructor - Determine if a type is
136/// a record type with either a non-trivial destructor or a non-trivial copy
137/// constructor.
138static bool isRecordWithNonTrivialDestructorOrCopyConstructor(QualType T) {
139  const RecordType *RT = T->getAs<RecordType>();
140  if (!RT)
141    return false;
142
143  return hasNonTrivialDestructorOrCopyConstructor(RT);
144}
145
146/// isSingleElementStruct - Determine if a structure is a "single
147/// element struct", i.e. it has exactly one non-empty field or
148/// exactly one field which is itself a single element
149/// struct. Structures with flexible array members are never
150/// considered single element structs.
151///
152/// \return The field declaration for the single non-empty field, if
153/// it exists.
154static const Type *isSingleElementStruct(QualType T, ASTContext &Context) {
155  const RecordType *RT = T->getAsStructureType();
156  if (!RT)
157    return 0;
158
159  const RecordDecl *RD = RT->getDecl();
160  if (RD->hasFlexibleArrayMember())
161    return 0;
162
163  const Type *Found = 0;
164
165  // If this is a C++ record, check the bases first.
166  if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
167    for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
168           e = CXXRD->bases_end(); i != e; ++i) {
169      // Ignore empty records.
170      if (isEmptyRecord(Context, i->getType(), true))
171        continue;
172
173      // If we already found an element then this isn't a single-element struct.
174      if (Found)
175        return 0;
176
177      // If this is non-empty and not a single element struct, the composite
178      // cannot be a single element struct.
179      Found = isSingleElementStruct(i->getType(), Context);
180      if (!Found)
181        return 0;
182    }
183  }
184
185  // Check for single element.
186  for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
187         i != e; ++i) {
188    const FieldDecl *FD = *i;
189    QualType FT = FD->getType();
190
191    // Ignore empty fields.
192    if (isEmptyField(Context, FD, true))
193      continue;
194
195    // If we already found an element then this isn't a single-element
196    // struct.
197    if (Found)
198      return 0;
199
200    // Treat single element arrays as the element.
201    while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
202      if (AT->getSize().getZExtValue() != 1)
203        break;
204      FT = AT->getElementType();
205    }
206
207    if (!CodeGenFunction::hasAggregateLLVMType(FT)) {
208      Found = FT.getTypePtr();
209    } else {
210      Found = isSingleElementStruct(FT, Context);
211      if (!Found)
212        return 0;
213    }
214  }
215
216  return Found;
217}
218
219static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) {
220  if (!Ty->getAs<BuiltinType>() && !Ty->hasPointerRepresentation() &&
221      !Ty->isAnyComplexType() && !Ty->isEnumeralType() &&
222      !Ty->isBlockPointerType())
223    return false;
224
225  uint64_t Size = Context.getTypeSize(Ty);
226  return Size == 32 || Size == 64;
227}
228
229/// canExpandIndirectArgument - Test whether an argument type which is to be
230/// passed indirectly (on the stack) would have the equivalent layout if it was
231/// expanded into separate arguments. If so, we prefer to do the latter to avoid
232/// inhibiting optimizations.
233///
234// FIXME: This predicate is missing many cases, currently it just follows
235// llvm-gcc (checks that all fields are 32-bit or 64-bit primitive types). We
236// should probably make this smarter, or better yet make the LLVM backend
237// capable of handling it.
238static bool canExpandIndirectArgument(QualType Ty, ASTContext &Context) {
239  // We can only expand structure types.
240  const RecordType *RT = Ty->getAs<RecordType>();
241  if (!RT)
242    return false;
243
244  // We can only expand (C) structures.
245  //
246  // FIXME: This needs to be generalized to handle classes as well.
247  const RecordDecl *RD = RT->getDecl();
248  if (!RD->isStruct() || isa<CXXRecordDecl>(RD))
249    return false;
250
251  for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
252         i != e; ++i) {
253    const FieldDecl *FD = *i;
254
255    if (!is32Or64BitBasicType(FD->getType(), Context))
256      return false;
257
258    // FIXME: Reject bit-fields wholesale; there are two problems, we don't know
259    // how to expand them yet, and the predicate for telling if a bitfield still
260    // counts as "basic" is more complicated than what we were doing previously.
261    if (FD->isBitField())
262      return false;
263  }
264
265  return true;
266}
267
268namespace {
269/// DefaultABIInfo - The default implementation for ABI specific
270/// details. This implementation provides information which results in
271/// self-consistent and sensible LLVM IR generation, but does not
272/// conform to any particular ABI.
273class DefaultABIInfo : public ABIInfo {
274  ABIArgInfo classifyReturnType(QualType RetTy,
275                                ASTContext &Context,
276                                llvm::LLVMContext &VMContext) const;
277
278  ABIArgInfo classifyArgumentType(QualType RetTy,
279                                  ASTContext &Context,
280                                  llvm::LLVMContext &VMContext) const;
281
282  virtual void computeInfo(CGFunctionInfo &FI, ASTContext &Context,
283                           llvm::LLVMContext &VMContext) const {
284    FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), Context,
285                                            VMContext);
286    for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
287         it != ie; ++it)
288      it->info = classifyArgumentType(it->type, Context, VMContext);
289  }
290
291  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
292                                 CodeGenFunction &CGF) const;
293};
294
295class DefaultTargetCodeGenInfo : public TargetCodeGenInfo {
296public:
297  DefaultTargetCodeGenInfo():TargetCodeGenInfo(new DefaultABIInfo()) {}
298};
299
300llvm::Value *DefaultABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
301                                       CodeGenFunction &CGF) const {
302  return 0;
303}
304
305ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty,
306                                                ASTContext &Context,
307                                          llvm::LLVMContext &VMContext) const {
308  if (CodeGenFunction::hasAggregateLLVMType(Ty))
309    return ABIArgInfo::getIndirect(0);
310
311  // Treat an enum type as its underlying type.
312  if (const EnumType *EnumTy = Ty->getAs<EnumType>())
313    Ty = EnumTy->getDecl()->getIntegerType();
314
315  return (Ty->isPromotableIntegerType() ?
316          ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
317}
318
319/// X86_32ABIInfo - The X86-32 ABI information.
320class X86_32ABIInfo : public ABIInfo {
321  ASTContext &Context;
322  bool IsDarwinVectorABI;
323  bool IsSmallStructInRegABI;
324
325  static bool isRegisterSize(unsigned Size) {
326    return (Size == 8 || Size == 16 || Size == 32 || Size == 64);
327  }
328
329  static bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context);
330
331  /// getIndirectResult - Give a source type \arg Ty, return a suitable result
332  /// such that the argument will be passed in memory.
333  ABIArgInfo getIndirectResult(QualType Ty, ASTContext &Context,
334                               bool ByVal = true) const;
335
336public:
337  ABIArgInfo classifyReturnType(QualType RetTy,
338                                ASTContext &Context,
339                                llvm::LLVMContext &VMContext) const;
340
341  ABIArgInfo classifyArgumentType(QualType RetTy,
342                                  ASTContext &Context,
343                                  llvm::LLVMContext &VMContext) const;
344
345  virtual void computeInfo(CGFunctionInfo &FI, ASTContext &Context,
346                           llvm::LLVMContext &VMContext) const {
347    FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), Context,
348                                            VMContext);
349    for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
350         it != ie; ++it)
351      it->info = classifyArgumentType(it->type, Context, VMContext);
352  }
353
354  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
355                                 CodeGenFunction &CGF) const;
356
357  X86_32ABIInfo(ASTContext &Context, bool d, bool p)
358    : ABIInfo(), Context(Context), IsDarwinVectorABI(d),
359      IsSmallStructInRegABI(p) {}
360};
361
362class X86_32TargetCodeGenInfo : public TargetCodeGenInfo {
363public:
364  X86_32TargetCodeGenInfo(ASTContext &Context, bool d, bool p)
365    :TargetCodeGenInfo(new X86_32ABIInfo(Context, d, p)) {}
366
367  void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
368                           CodeGen::CodeGenModule &CGM) const;
369
370  int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const {
371    // Darwin uses different dwarf register numbers for EH.
372    if (CGM.isTargetDarwin()) return 5;
373
374    return 4;
375  }
376
377  bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
378                               llvm::Value *Address) const;
379};
380
381}
382
383/// shouldReturnTypeInRegister - Determine if the given type should be
384/// passed in a register (for the Darwin ABI).
385bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty,
386                                               ASTContext &Context) {
387  uint64_t Size = Context.getTypeSize(Ty);
388
389  // Type must be register sized.
390  if (!isRegisterSize(Size))
391    return false;
392
393  if (Ty->isVectorType()) {
394    // 64- and 128- bit vectors inside structures are not returned in
395    // registers.
396    if (Size == 64 || Size == 128)
397      return false;
398
399    return true;
400  }
401
402  // If this is a builtin, pointer, enum, complex type, member pointer, or
403  // member function pointer it is ok.
404  if (Ty->getAs<BuiltinType>() || Ty->hasPointerRepresentation() ||
405      Ty->isAnyComplexType() || Ty->isEnumeralType() ||
406      Ty->isBlockPointerType() || Ty->isMemberPointerType())
407    return true;
408
409  // Arrays are treated like records.
410  if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty))
411    return shouldReturnTypeInRegister(AT->getElementType(), Context);
412
413  // Otherwise, it must be a record type.
414  const RecordType *RT = Ty->getAs<RecordType>();
415  if (!RT) return false;
416
417  // FIXME: Traverse bases here too.
418
419  // Structure types are passed in register if all fields would be
420  // passed in a register.
421  for (RecordDecl::field_iterator i = RT->getDecl()->field_begin(),
422         e = RT->getDecl()->field_end(); i != e; ++i) {
423    const FieldDecl *FD = *i;
424
425    // Empty fields are ignored.
426    if (isEmptyField(Context, FD, true))
427      continue;
428
429    // Check fields recursively.
430    if (!shouldReturnTypeInRegister(FD->getType(), Context))
431      return false;
432  }
433
434  return true;
435}
436
437ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy,
438                                            ASTContext &Context,
439                                          llvm::LLVMContext &VMContext) const {
440  if (RetTy->isVoidType()) {
441    return ABIArgInfo::getIgnore();
442  } else if (const VectorType *VT = RetTy->getAs<VectorType>()) {
443    // On Darwin, some vectors are returned in registers.
444    if (IsDarwinVectorABI) {
445      uint64_t Size = Context.getTypeSize(RetTy);
446
447      // 128-bit vectors are a special case; they are returned in
448      // registers and we need to make sure to pick a type the LLVM
449      // backend will like.
450      if (Size == 128)
451        return ABIArgInfo::getCoerce(llvm::VectorType::get(
452                  llvm::Type::getInt64Ty(VMContext), 2));
453
454      // Always return in register if it fits in a general purpose
455      // register, or if it is 64 bits and has a single element.
456      if ((Size == 8 || Size == 16 || Size == 32) ||
457          (Size == 64 && VT->getNumElements() == 1))
458        return ABIArgInfo::getCoerce(llvm::IntegerType::get(VMContext, Size));
459
460      return ABIArgInfo::getIndirect(0);
461    }
462
463    return ABIArgInfo::getDirect();
464  } else if (CodeGenFunction::hasAggregateLLVMType(RetTy)) {
465    if (const RecordType *RT = RetTy->getAs<RecordType>()) {
466      // Structures with either a non-trivial destructor or a non-trivial
467      // copy constructor are always indirect.
468      if (hasNonTrivialDestructorOrCopyConstructor(RT))
469        return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
470
471      // Structures with flexible arrays are always indirect.
472      if (RT->getDecl()->hasFlexibleArrayMember())
473        return ABIArgInfo::getIndirect(0);
474    }
475
476    // If specified, structs and unions are always indirect.
477    if (!IsSmallStructInRegABI && !RetTy->isAnyComplexType())
478      return ABIArgInfo::getIndirect(0);
479
480    // Classify "single element" structs as their element type.
481    if (const Type *SeltTy = isSingleElementStruct(RetTy, Context)) {
482      if (const BuiltinType *BT = SeltTy->getAs<BuiltinType>()) {
483        if (BT->isIntegerType()) {
484          // We need to use the size of the structure, padding
485          // bit-fields can adjust that to be larger than the single
486          // element type.
487          uint64_t Size = Context.getTypeSize(RetTy);
488          return ABIArgInfo::getCoerce(
489            llvm::IntegerType::get(VMContext, (unsigned) Size));
490        } else if (BT->getKind() == BuiltinType::Float) {
491          assert(Context.getTypeSize(RetTy) == Context.getTypeSize(SeltTy) &&
492                 "Unexpect single element structure size!");
493          return ABIArgInfo::getCoerce(llvm::Type::getFloatTy(VMContext));
494        } else if (BT->getKind() == BuiltinType::Double) {
495          assert(Context.getTypeSize(RetTy) == Context.getTypeSize(SeltTy) &&
496                 "Unexpect single element structure size!");
497          return ABIArgInfo::getCoerce(llvm::Type::getDoubleTy(VMContext));
498        }
499      } else if (SeltTy->isPointerType()) {
500        // FIXME: It would be really nice if this could come out as the proper
501        // pointer type.
502        const llvm::Type *PtrTy = llvm::Type::getInt8PtrTy(VMContext);
503        return ABIArgInfo::getCoerce(PtrTy);
504      } else if (SeltTy->isVectorType()) {
505        // 64- and 128-bit vectors are never returned in a
506        // register when inside a structure.
507        uint64_t Size = Context.getTypeSize(RetTy);
508        if (Size == 64 || Size == 128)
509          return ABIArgInfo::getIndirect(0);
510
511        return classifyReturnType(QualType(SeltTy, 0), Context, VMContext);
512      }
513    }
514
515    // Small structures which are register sized are generally returned
516    // in a register.
517    if (X86_32ABIInfo::shouldReturnTypeInRegister(RetTy, Context)) {
518      uint64_t Size = Context.getTypeSize(RetTy);
519      return ABIArgInfo::getCoerce(llvm::IntegerType::get(VMContext, Size));
520    }
521
522    return ABIArgInfo::getIndirect(0);
523  } else {
524    // Treat an enum type as its underlying type.
525    if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
526      RetTy = EnumTy->getDecl()->getIntegerType();
527
528    return (RetTy->isPromotableIntegerType() ?
529            ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
530  }
531}
532
533ABIArgInfo X86_32ABIInfo::getIndirectResult(QualType Ty,
534                                            ASTContext &Context,
535                                            bool ByVal) const {
536  if (!ByVal)
537    return ABIArgInfo::getIndirect(0, false);
538
539  // Compute the byval alignment. We trust the back-end to honor the
540  // minimum ABI alignment for byval, to make cleaner IR.
541  const unsigned MinABIAlign = 4;
542  unsigned Align = Context.getTypeAlign(Ty) / 8;
543  if (Align > MinABIAlign)
544    return ABIArgInfo::getIndirect(Align);
545  return ABIArgInfo::getIndirect(0);
546}
547
548ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty,
549                                               ASTContext &Context,
550                                           llvm::LLVMContext &VMContext) const {
551  // FIXME: Set alignment on indirect arguments.
552  if (CodeGenFunction::hasAggregateLLVMType(Ty)) {
553    // Structures with flexible arrays are always indirect.
554    if (const RecordType *RT = Ty->getAs<RecordType>()) {
555      // Structures with either a non-trivial destructor or a non-trivial
556      // copy constructor are always indirect.
557      if (hasNonTrivialDestructorOrCopyConstructor(RT))
558        return getIndirectResult(Ty, Context, /*ByVal=*/false);
559
560      if (RT->getDecl()->hasFlexibleArrayMember())
561        return getIndirectResult(Ty, Context);
562    }
563
564    // Ignore empty structs.
565    if (Ty->isStructureType() && Context.getTypeSize(Ty) == 0)
566      return ABIArgInfo::getIgnore();
567
568    // Expand small (<= 128-bit) record types when we know that the stack layout
569    // of those arguments will match the struct. This is important because the
570    // LLVM backend isn't smart enough to remove byval, which inhibits many
571    // optimizations.
572    if (Context.getTypeSize(Ty) <= 4*32 &&
573        canExpandIndirectArgument(Ty, Context))
574      return ABIArgInfo::getExpand();
575
576    return getIndirectResult(Ty, Context);
577  } else {
578    if (const EnumType *EnumTy = Ty->getAs<EnumType>())
579      Ty = EnumTy->getDecl()->getIntegerType();
580
581    return (Ty->isPromotableIntegerType() ?
582            ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
583  }
584}
585
586llvm::Value *X86_32ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
587                                      CodeGenFunction &CGF) const {
588  const llvm::Type *BP = llvm::Type::getInt8PtrTy(CGF.getLLVMContext());
589  const llvm::Type *BPP = llvm::PointerType::getUnqual(BP);
590
591  CGBuilderTy &Builder = CGF.Builder;
592  llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP,
593                                                       "ap");
594  llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
595  llvm::Type *PTy =
596    llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
597  llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
598
599  uint64_t Offset =
600    llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 4);
601  llvm::Value *NextAddr =
602    Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
603                      "ap.next");
604  Builder.CreateStore(NextAddr, VAListAddrAsBPP);
605
606  return AddrTyped;
607}
608
609void X86_32TargetCodeGenInfo::SetTargetAttributes(const Decl *D,
610                                                  llvm::GlobalValue *GV,
611                                            CodeGen::CodeGenModule &CGM) const {
612  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
613    if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
614      // Get the LLVM function.
615      llvm::Function *Fn = cast<llvm::Function>(GV);
616
617      // Now add the 'alignstack' attribute with a value of 16.
618      Fn->addFnAttr(llvm::Attribute::constructStackAlignmentFromInt(16));
619    }
620  }
621}
622
623bool X86_32TargetCodeGenInfo::initDwarfEHRegSizeTable(
624                                               CodeGen::CodeGenFunction &CGF,
625                                               llvm::Value *Address) const {
626  CodeGen::CGBuilderTy &Builder = CGF.Builder;
627  llvm::LLVMContext &Context = CGF.getLLVMContext();
628
629  const llvm::IntegerType *i8 = llvm::Type::getInt8Ty(Context);
630  llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
631
632  // 0-7 are the eight integer registers;  the order is different
633  //   on Darwin (for EH), but the range is the same.
634  // 8 is %eip.
635  AssignToArrayRange(Builder, Address, Four8, 0, 8);
636
637  if (CGF.CGM.isTargetDarwin()) {
638    // 12-16 are st(0..4).  Not sure why we stop at 4.
639    // These have size 16, which is sizeof(long double) on
640    // platforms with 8-byte alignment for that type.
641    llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16);
642    AssignToArrayRange(Builder, Address, Sixteen8, 12, 16);
643
644  } else {
645    // 9 is %eflags, which doesn't get a size on Darwin for some
646    // reason.
647    Builder.CreateStore(Four8, Builder.CreateConstInBoundsGEP1_32(Address, 9));
648
649    // 11-16 are st(0..5).  Not sure why we stop at 5.
650    // These have size 12, which is sizeof(long double) on
651    // platforms with 4-byte alignment for that type.
652    llvm::Value *Twelve8 = llvm::ConstantInt::get(i8, 12);
653    AssignToArrayRange(Builder, Address, Twelve8, 11, 16);
654  }
655
656  return false;
657}
658
659namespace {
660/// X86_64ABIInfo - The X86_64 ABI information.
661class X86_64ABIInfo : public ABIInfo {
662  enum Class {
663    Integer = 0,
664    SSE,
665    SSEUp,
666    X87,
667    X87Up,
668    ComplexX87,
669    NoClass,
670    Memory
671  };
672
673  /// merge - Implement the X86_64 ABI merging algorithm.
674  ///
675  /// Merge an accumulating classification \arg Accum with a field
676  /// classification \arg Field.
677  ///
678  /// \param Accum - The accumulating classification. This should
679  /// always be either NoClass or the result of a previous merge
680  /// call. In addition, this should never be Memory (the caller
681  /// should just return Memory for the aggregate).
682  Class merge(Class Accum, Class Field) const;
683
684  /// classify - Determine the x86_64 register classes in which the
685  /// given type T should be passed.
686  ///
687  /// \param Lo - The classification for the parts of the type
688  /// residing in the low word of the containing object.
689  ///
690  /// \param Hi - The classification for the parts of the type
691  /// residing in the high word of the containing object.
692  ///
693  /// \param OffsetBase - The bit offset of this type in the
694  /// containing object.  Some parameters are classified different
695  /// depending on whether they straddle an eightbyte boundary.
696  ///
697  /// If a word is unused its result will be NoClass; if a type should
698  /// be passed in Memory then at least the classification of \arg Lo
699  /// will be Memory.
700  ///
701  /// The \arg Lo class will be NoClass iff the argument is ignored.
702  ///
703  /// If the \arg Lo class is ComplexX87, then the \arg Hi class will
704  /// also be ComplexX87.
705  void classify(QualType T, ASTContext &Context, uint64_t OffsetBase,
706                Class &Lo, Class &Hi) const;
707
708  /// getCoerceResult - Given a source type \arg Ty and an LLVM type
709  /// to coerce to, chose the best way to pass Ty in the same place
710  /// that \arg CoerceTo would be passed, but while keeping the
711  /// emitted code as simple as possible.
712  ///
713  /// FIXME: Note, this should be cleaned up to just take an enumeration of all
714  /// the ways we might want to pass things, instead of constructing an LLVM
715  /// type. This makes this code more explicit, and it makes it clearer that we
716  /// are also doing this for correctness in the case of passing scalar types.
717  ABIArgInfo getCoerceResult(QualType Ty,
718                             const llvm::Type *CoerceTo,
719                             ASTContext &Context) const;
720
721  /// getIndirectResult - Give a source type \arg Ty, return a suitable result
722  /// such that the argument will be returned in memory.
723  ABIArgInfo getIndirectReturnResult(QualType Ty, ASTContext &Context) const;
724
725  /// getIndirectResult - Give a source type \arg Ty, return a suitable result
726  /// such that the argument will be passed in memory.
727  ABIArgInfo getIndirectResult(QualType Ty, ASTContext &Context) const;
728
729  ABIArgInfo classifyReturnType(QualType RetTy,
730                                ASTContext &Context,
731                                llvm::LLVMContext &VMContext) const;
732
733  ABIArgInfo classifyArgumentType(QualType Ty,
734                                  ASTContext &Context,
735                                  llvm::LLVMContext &VMContext,
736                                  unsigned &neededInt,
737                                  unsigned &neededSSE) const;
738
739public:
740  virtual void computeInfo(CGFunctionInfo &FI, ASTContext &Context,
741                           llvm::LLVMContext &VMContext) const;
742
743  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
744                                 CodeGenFunction &CGF) const;
745};
746
747class X86_64TargetCodeGenInfo : public TargetCodeGenInfo {
748public:
749  X86_64TargetCodeGenInfo():TargetCodeGenInfo(new X86_64ABIInfo()) {}
750
751  int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const {
752    return 7;
753  }
754
755  bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
756                               llvm::Value *Address) const {
757    CodeGen::CGBuilderTy &Builder = CGF.Builder;
758    llvm::LLVMContext &Context = CGF.getLLVMContext();
759
760    const llvm::IntegerType *i8 = llvm::Type::getInt8Ty(Context);
761    llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
762
763    // 0-15 are the 16 integer registers.
764    // 16 is %rip.
765    AssignToArrayRange(Builder, Address, Eight8, 0, 16);
766
767    return false;
768  }
769};
770
771}
772
773X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum,
774                                          Class Field) const {
775  // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is
776  // classified recursively so that always two fields are
777  // considered. The resulting class is calculated according to
778  // the classes of the fields in the eightbyte:
779  //
780  // (a) If both classes are equal, this is the resulting class.
781  //
782  // (b) If one of the classes is NO_CLASS, the resulting class is
783  // the other class.
784  //
785  // (c) If one of the classes is MEMORY, the result is the MEMORY
786  // class.
787  //
788  // (d) If one of the classes is INTEGER, the result is the
789  // INTEGER.
790  //
791  // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class,
792  // MEMORY is used as class.
793  //
794  // (f) Otherwise class SSE is used.
795
796  // Accum should never be memory (we should have returned) or
797  // ComplexX87 (because this cannot be passed in a structure).
798  assert((Accum != Memory && Accum != ComplexX87) &&
799         "Invalid accumulated classification during merge.");
800  if (Accum == Field || Field == NoClass)
801    return Accum;
802  else if (Field == Memory)
803    return Memory;
804  else if (Accum == NoClass)
805    return Field;
806  else if (Accum == Integer || Field == Integer)
807    return Integer;
808  else if (Field == X87 || Field == X87Up || Field == ComplexX87 ||
809           Accum == X87 || Accum == X87Up)
810    return Memory;
811  else
812    return SSE;
813}
814
815void X86_64ABIInfo::classify(QualType Ty,
816                             ASTContext &Context,
817                             uint64_t OffsetBase,
818                             Class &Lo, Class &Hi) const {
819  // FIXME: This code can be simplified by introducing a simple value class for
820  // Class pairs with appropriate constructor methods for the various
821  // situations.
822
823  // FIXME: Some of the split computations are wrong; unaligned vectors
824  // shouldn't be passed in registers for example, so there is no chance they
825  // can straddle an eightbyte. Verify & simplify.
826
827  Lo = Hi = NoClass;
828
829  Class &Current = OffsetBase < 64 ? Lo : Hi;
830  Current = Memory;
831
832  if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
833    BuiltinType::Kind k = BT->getKind();
834
835    if (k == BuiltinType::Void) {
836      Current = NoClass;
837    } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) {
838      Lo = Integer;
839      Hi = Integer;
840    } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) {
841      Current = Integer;
842    } else if (k == BuiltinType::Float || k == BuiltinType::Double) {
843      Current = SSE;
844    } else if (k == BuiltinType::LongDouble) {
845      Lo = X87;
846      Hi = X87Up;
847    }
848    // FIXME: _Decimal32 and _Decimal64 are SSE.
849    // FIXME: _float128 and _Decimal128 are (SSE, SSEUp).
850  } else if (const EnumType *ET = Ty->getAs<EnumType>()) {
851    // Classify the underlying integer type.
852    classify(ET->getDecl()->getIntegerType(), Context, OffsetBase, Lo, Hi);
853  } else if (Ty->hasPointerRepresentation()) {
854    Current = Integer;
855  } else if (Ty->isMemberPointerType()) {
856    if (Ty->isMemberFunctionPointerType())
857      Lo = Hi = Integer;
858    else
859      Current = Integer;
860  } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
861    uint64_t Size = Context.getTypeSize(VT);
862    if (Size == 32) {
863      // gcc passes all <4 x char>, <2 x short>, <1 x int>, <1 x
864      // float> as integer.
865      Current = Integer;
866
867      // If this type crosses an eightbyte boundary, it should be
868      // split.
869      uint64_t EB_Real = (OffsetBase) / 64;
870      uint64_t EB_Imag = (OffsetBase + Size - 1) / 64;
871      if (EB_Real != EB_Imag)
872        Hi = Lo;
873    } else if (Size == 64) {
874      // gcc passes <1 x double> in memory. :(
875      if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::Double))
876        return;
877
878      // gcc passes <1 x long long> as INTEGER.
879      if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::LongLong))
880        Current = Integer;
881      else
882        Current = SSE;
883
884      // If this type crosses an eightbyte boundary, it should be
885      // split.
886      if (OffsetBase && OffsetBase != 64)
887        Hi = Lo;
888    } else if (Size == 128) {
889      Lo = SSE;
890      Hi = SSEUp;
891    }
892  } else if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
893    QualType ET = Context.getCanonicalType(CT->getElementType());
894
895    uint64_t Size = Context.getTypeSize(Ty);
896    if (ET->isIntegralOrEnumerationType()) {
897      if (Size <= 64)
898        Current = Integer;
899      else if (Size <= 128)
900        Lo = Hi = Integer;
901    } else if (ET == Context.FloatTy)
902      Current = SSE;
903    else if (ET == Context.DoubleTy)
904      Lo = Hi = SSE;
905    else if (ET == Context.LongDoubleTy)
906      Current = ComplexX87;
907
908    // If this complex type crosses an eightbyte boundary then it
909    // should be split.
910    uint64_t EB_Real = (OffsetBase) / 64;
911    uint64_t EB_Imag = (OffsetBase + Context.getTypeSize(ET)) / 64;
912    if (Hi == NoClass && EB_Real != EB_Imag)
913      Hi = Lo;
914  } else if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
915    // Arrays are treated like structures.
916
917    uint64_t Size = Context.getTypeSize(Ty);
918
919    // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
920    // than two eightbytes, ..., it has class MEMORY.
921    if (Size > 128)
922      return;
923
924    // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned
925    // fields, it has class MEMORY.
926    //
927    // Only need to check alignment of array base.
928    if (OffsetBase % Context.getTypeAlign(AT->getElementType()))
929      return;
930
931    // Otherwise implement simplified merge. We could be smarter about
932    // this, but it isn't worth it and would be harder to verify.
933    Current = NoClass;
934    uint64_t EltSize = Context.getTypeSize(AT->getElementType());
935    uint64_t ArraySize = AT->getSize().getZExtValue();
936    for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) {
937      Class FieldLo, FieldHi;
938      classify(AT->getElementType(), Context, Offset, FieldLo, FieldHi);
939      Lo = merge(Lo, FieldLo);
940      Hi = merge(Hi, FieldHi);
941      if (Lo == Memory || Hi == Memory)
942        break;
943    }
944
945    // Do post merger cleanup (see below). Only case we worry about is Memory.
946    if (Hi == Memory)
947      Lo = Memory;
948    assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification.");
949  } else if (const RecordType *RT = Ty->getAs<RecordType>()) {
950    uint64_t Size = Context.getTypeSize(Ty);
951
952    // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
953    // than two eightbytes, ..., it has class MEMORY.
954    if (Size > 128)
955      return;
956
957    // AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial
958    // copy constructor or a non-trivial destructor, it is passed by invisible
959    // reference.
960    if (hasNonTrivialDestructorOrCopyConstructor(RT))
961      return;
962
963    const RecordDecl *RD = RT->getDecl();
964
965    // Assume variable sized types are passed in memory.
966    if (RD->hasFlexibleArrayMember())
967      return;
968
969    const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
970
971    // Reset Lo class, this will be recomputed.
972    Current = NoClass;
973
974    // If this is a C++ record, classify the bases first.
975    if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
976      for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
977             e = CXXRD->bases_end(); i != e; ++i) {
978        assert(!i->isVirtual() && !i->getType()->isDependentType() &&
979               "Unexpected base class!");
980        const CXXRecordDecl *Base =
981          cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
982
983        // Classify this field.
984        //
985        // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a
986        // single eightbyte, each is classified separately. Each eightbyte gets
987        // initialized to class NO_CLASS.
988        Class FieldLo, FieldHi;
989        uint64_t Offset = OffsetBase + Layout.getBaseClassOffset(Base);
990        classify(i->getType(), Context, Offset, FieldLo, FieldHi);
991        Lo = merge(Lo, FieldLo);
992        Hi = merge(Hi, FieldHi);
993        if (Lo == Memory || Hi == Memory)
994          break;
995      }
996
997      // If this record has no fields but isn't empty, classify as INTEGER.
998      if (RD->field_empty() && Size)
999        Current = Integer;
1000    }
1001
1002    // Classify the fields one at a time, merging the results.
1003    unsigned idx = 0;
1004    for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
1005           i != e; ++i, ++idx) {
1006      uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
1007      bool BitField = i->isBitField();
1008
1009      // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned
1010      // fields, it has class MEMORY.
1011      //
1012      // Note, skip this test for bit-fields, see below.
1013      if (!BitField && Offset % Context.getTypeAlign(i->getType())) {
1014        Lo = Memory;
1015        return;
1016      }
1017
1018      // Classify this field.
1019      //
1020      // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate
1021      // exceeds a single eightbyte, each is classified
1022      // separately. Each eightbyte gets initialized to class
1023      // NO_CLASS.
1024      Class FieldLo, FieldHi;
1025
1026      // Bit-fields require special handling, they do not force the
1027      // structure to be passed in memory even if unaligned, and
1028      // therefore they can straddle an eightbyte.
1029      if (BitField) {
1030        // Ignore padding bit-fields.
1031        if (i->isUnnamedBitfield())
1032          continue;
1033
1034        uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
1035        uint64_t Size = i->getBitWidth()->EvaluateAsInt(Context).getZExtValue();
1036
1037        uint64_t EB_Lo = Offset / 64;
1038        uint64_t EB_Hi = (Offset + Size - 1) / 64;
1039        FieldLo = FieldHi = NoClass;
1040        if (EB_Lo) {
1041          assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes.");
1042          FieldLo = NoClass;
1043          FieldHi = Integer;
1044        } else {
1045          FieldLo = Integer;
1046          FieldHi = EB_Hi ? Integer : NoClass;
1047        }
1048      } else
1049        classify(i->getType(), Context, Offset, FieldLo, FieldHi);
1050      Lo = merge(Lo, FieldLo);
1051      Hi = merge(Hi, FieldHi);
1052      if (Lo == Memory || Hi == Memory)
1053        break;
1054    }
1055
1056    // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done:
1057    //
1058    // (a) If one of the classes is MEMORY, the whole argument is
1059    // passed in memory.
1060    //
1061    // (b) If SSEUP is not preceeded by SSE, it is converted to SSE.
1062
1063    // The first of these conditions is guaranteed by how we implement
1064    // the merge (just bail).
1065    //
1066    // The second condition occurs in the case of unions; for example
1067    // union { _Complex double; unsigned; }.
1068    if (Hi == Memory)
1069      Lo = Memory;
1070    if (Hi == SSEUp && Lo != SSE)
1071      Hi = SSE;
1072  }
1073}
1074
1075ABIArgInfo X86_64ABIInfo::getCoerceResult(QualType Ty,
1076                                          const llvm::Type *CoerceTo,
1077                                          ASTContext &Context) const {
1078  if (CoerceTo->isIntegerTy(64)) {
1079    // Integer and pointer types will end up in a general purpose
1080    // register.
1081
1082    // Treat an enum type as its underlying type.
1083    if (const EnumType *EnumTy = Ty->getAs<EnumType>())
1084      Ty = EnumTy->getDecl()->getIntegerType();
1085
1086    if (Ty->isIntegralOrEnumerationType() || Ty->hasPointerRepresentation())
1087      return (Ty->isPromotableIntegerType() ?
1088              ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
1089  } else if (CoerceTo->isDoubleTy()) {
1090    assert(Ty.isCanonical() && "should always have a canonical type here");
1091    assert(!Ty.hasQualifiers() && "should never have a qualified type here");
1092
1093    // Float and double end up in a single SSE reg.
1094    if (Ty == Context.FloatTy || Ty == Context.DoubleTy)
1095      return ABIArgInfo::getDirect();
1096
1097  }
1098
1099  return ABIArgInfo::getCoerce(CoerceTo);
1100}
1101
1102ABIArgInfo X86_64ABIInfo::getIndirectReturnResult(QualType Ty,
1103                                                  ASTContext &Context) const {
1104  // If this is a scalar LLVM value then assume LLVM will pass it in the right
1105  // place naturally.
1106  if (!CodeGenFunction::hasAggregateLLVMType(Ty)) {
1107    // Treat an enum type as its underlying type.
1108    if (const EnumType *EnumTy = Ty->getAs<EnumType>())
1109      Ty = EnumTy->getDecl()->getIntegerType();
1110
1111    return (Ty->isPromotableIntegerType() ?
1112            ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
1113  }
1114
1115  return ABIArgInfo::getIndirect(0);
1116}
1117
1118ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty,
1119                                            ASTContext &Context) const {
1120  // If this is a scalar LLVM value then assume LLVM will pass it in the right
1121  // place naturally.
1122  if (!CodeGenFunction::hasAggregateLLVMType(Ty)) {
1123    // Treat an enum type as its underlying type.
1124    if (const EnumType *EnumTy = Ty->getAs<EnumType>())
1125      Ty = EnumTy->getDecl()->getIntegerType();
1126
1127    return (Ty->isPromotableIntegerType() ?
1128            ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
1129  }
1130
1131  if (isRecordWithNonTrivialDestructorOrCopyConstructor(Ty))
1132    return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
1133
1134  // Compute the byval alignment. We trust the back-end to honor the
1135  // minimum ABI alignment for byval, to make cleaner IR.
1136  const unsigned MinABIAlign = 8;
1137  unsigned Align = Context.getTypeAlign(Ty) / 8;
1138  if (Align > MinABIAlign)
1139    return ABIArgInfo::getIndirect(Align);
1140  return ABIArgInfo::getIndirect(0);
1141}
1142
1143ABIArgInfo X86_64ABIInfo::classifyReturnType(QualType RetTy,
1144                                            ASTContext &Context,
1145                                          llvm::LLVMContext &VMContext) const {
1146  // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the
1147  // classification algorithm.
1148  X86_64ABIInfo::Class Lo, Hi;
1149  classify(RetTy, Context, 0, Lo, Hi);
1150
1151  // Check some invariants.
1152  assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
1153  assert((Lo != NoClass || Hi == NoClass) && "Invalid null classification.");
1154  assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
1155
1156  const llvm::Type *ResType = 0;
1157  switch (Lo) {
1158  case NoClass:
1159    return ABIArgInfo::getIgnore();
1160
1161  case SSEUp:
1162  case X87Up:
1163    assert(0 && "Invalid classification for lo word.");
1164
1165    // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via
1166    // hidden argument.
1167  case Memory:
1168    return getIndirectReturnResult(RetTy, Context);
1169
1170    // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next
1171    // available register of the sequence %rax, %rdx is used.
1172  case Integer:
1173    ResType = llvm::Type::getInt64Ty(VMContext); break;
1174
1175    // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next
1176    // available SSE register of the sequence %xmm0, %xmm1 is used.
1177  case SSE:
1178    ResType = llvm::Type::getDoubleTy(VMContext); break;
1179
1180    // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is
1181    // returned on the X87 stack in %st0 as 80-bit x87 number.
1182  case X87:
1183    ResType = llvm::Type::getX86_FP80Ty(VMContext); break;
1184
1185    // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real
1186    // part of the value is returned in %st0 and the imaginary part in
1187    // %st1.
1188  case ComplexX87:
1189    assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification.");
1190    ResType = llvm::StructType::get(VMContext,
1191                                    llvm::Type::getX86_FP80Ty(VMContext),
1192                                    llvm::Type::getX86_FP80Ty(VMContext),
1193                                    NULL);
1194    break;
1195  }
1196
1197  switch (Hi) {
1198    // Memory was handled previously and X87 should
1199    // never occur as a hi class.
1200  case Memory:
1201  case X87:
1202    assert(0 && "Invalid classification for hi word.");
1203
1204  case ComplexX87: // Previously handled.
1205  case NoClass: break;
1206
1207  case Integer:
1208    ResType = llvm::StructType::get(VMContext, ResType,
1209                                    llvm::Type::getInt64Ty(VMContext), NULL);
1210    break;
1211  case SSE:
1212    ResType = llvm::StructType::get(VMContext, ResType,
1213                                    llvm::Type::getDoubleTy(VMContext), NULL);
1214    break;
1215
1216    // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte
1217    // is passed in the upper half of the last used SSE register.
1218    //
1219    // SSEUP should always be preceeded by SSE, just widen.
1220  case SSEUp:
1221    assert(Lo == SSE && "Unexpected SSEUp classification.");
1222    ResType = llvm::VectorType::get(llvm::Type::getDoubleTy(VMContext), 2);
1223    break;
1224
1225    // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is
1226    // returned together with the previous X87 value in %st0.
1227  case X87Up:
1228    // If X87Up is preceeded by X87, we don't need to do
1229    // anything. However, in some cases with unions it may not be
1230    // preceeded by X87. In such situations we follow gcc and pass the
1231    // extra bits in an SSE reg.
1232    if (Lo != X87)
1233      ResType = llvm::StructType::get(VMContext, ResType,
1234                                      llvm::Type::getDoubleTy(VMContext), NULL);
1235    break;
1236  }
1237
1238  return getCoerceResult(RetTy, ResType, Context);
1239}
1240
1241ABIArgInfo X86_64ABIInfo::classifyArgumentType(QualType Ty, ASTContext &Context,
1242                                               llvm::LLVMContext &VMContext,
1243                                               unsigned &neededInt,
1244                                               unsigned &neededSSE) const {
1245  X86_64ABIInfo::Class Lo, Hi;
1246  classify(Ty, Context, 0, Lo, Hi);
1247
1248  // Check some invariants.
1249  // FIXME: Enforce these by construction.
1250  assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
1251  assert((Lo != NoClass || Hi == NoClass) && "Invalid null classification.");
1252  assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
1253
1254  neededInt = 0;
1255  neededSSE = 0;
1256  const llvm::Type *ResType = 0;
1257  switch (Lo) {
1258  case NoClass:
1259    return ABIArgInfo::getIgnore();
1260
1261    // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument
1262    // on the stack.
1263  case Memory:
1264
1265    // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or
1266    // COMPLEX_X87, it is passed in memory.
1267  case X87:
1268  case ComplexX87:
1269    return getIndirectResult(Ty, Context);
1270
1271  case SSEUp:
1272  case X87Up:
1273    assert(0 && "Invalid classification for lo word.");
1274
1275    // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next
1276    // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8
1277    // and %r9 is used.
1278  case Integer:
1279    ++neededInt;
1280    ResType = llvm::Type::getInt64Ty(VMContext);
1281    break;
1282
1283    // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next
1284    // available SSE register is used, the registers are taken in the
1285    // order from %xmm0 to %xmm7.
1286  case SSE:
1287    ++neededSSE;
1288    ResType = llvm::Type::getDoubleTy(VMContext);
1289    break;
1290  }
1291
1292  switch (Hi) {
1293    // Memory was handled previously, ComplexX87 and X87 should
1294    // never occur as hi classes, and X87Up must be preceed by X87,
1295    // which is passed in memory.
1296  case Memory:
1297  case X87:
1298  case ComplexX87:
1299    assert(0 && "Invalid classification for hi word.");
1300    break;
1301
1302  case NoClass: break;
1303  case Integer:
1304    ResType = llvm::StructType::get(VMContext, ResType,
1305                                    llvm::Type::getInt64Ty(VMContext), NULL);
1306    ++neededInt;
1307    break;
1308
1309    // X87Up generally doesn't occur here (long double is passed in
1310    // memory), except in situations involving unions.
1311  case X87Up:
1312  case SSE:
1313    ResType = llvm::StructType::get(VMContext, ResType,
1314                                    llvm::Type::getDoubleTy(VMContext), NULL);
1315    ++neededSSE;
1316    break;
1317
1318    // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the
1319    // eightbyte is passed in the upper half of the last used SSE
1320    // register.
1321  case SSEUp:
1322    assert(Lo == SSE && "Unexpected SSEUp classification.");
1323    ResType = llvm::VectorType::get(llvm::Type::getDoubleTy(VMContext), 2);
1324    break;
1325  }
1326
1327  return getCoerceResult(Ty, ResType, Context);
1328}
1329
1330void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI, ASTContext &Context,
1331                                llvm::LLVMContext &VMContext) const {
1332  FI.getReturnInfo() = classifyReturnType(FI.getReturnType(),
1333                                          Context, VMContext);
1334
1335  // Keep track of the number of assigned registers.
1336  unsigned freeIntRegs = 6, freeSSERegs = 8;
1337
1338  // If the return value is indirect, then the hidden argument is consuming one
1339  // integer register.
1340  if (FI.getReturnInfo().isIndirect())
1341    --freeIntRegs;
1342
1343  // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers
1344  // get assigned (in left-to-right order) for passing as follows...
1345  for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
1346       it != ie; ++it) {
1347    unsigned neededInt, neededSSE;
1348    it->info = classifyArgumentType(it->type, Context, VMContext,
1349                                    neededInt, neededSSE);
1350
1351    // AMD64-ABI 3.2.3p3: If there are no registers available for any
1352    // eightbyte of an argument, the whole argument is passed on the
1353    // stack. If registers have already been assigned for some
1354    // eightbytes of such an argument, the assignments get reverted.
1355    if (freeIntRegs >= neededInt && freeSSERegs >= neededSSE) {
1356      freeIntRegs -= neededInt;
1357      freeSSERegs -= neededSSE;
1358    } else {
1359      it->info = getIndirectResult(it->type, Context);
1360    }
1361  }
1362}
1363
1364static llvm::Value *EmitVAArgFromMemory(llvm::Value *VAListAddr,
1365                                        QualType Ty,
1366                                        CodeGenFunction &CGF) {
1367  llvm::Value *overflow_arg_area_p =
1368    CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_p");
1369  llvm::Value *overflow_arg_area =
1370    CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area");
1371
1372  // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16
1373  // byte boundary if alignment needed by type exceeds 8 byte boundary.
1374  uint64_t Align = CGF.getContext().getTypeAlign(Ty) / 8;
1375  if (Align > 8) {
1376    // Note that we follow the ABI & gcc here, even though the type
1377    // could in theory have an alignment greater than 16. This case
1378    // shouldn't ever matter in practice.
1379
1380    // overflow_arg_area = (overflow_arg_area + 15) & ~15;
1381    llvm::Value *Offset =
1382      llvm::ConstantInt::get(CGF.Int32Ty, 15);
1383    overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset);
1384    llvm::Value *AsInt = CGF.Builder.CreatePtrToInt(overflow_arg_area,
1385                                                    CGF.Int64Ty);
1386    llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int64Ty, ~15LL);
1387    overflow_arg_area =
1388      CGF.Builder.CreateIntToPtr(CGF.Builder.CreateAnd(AsInt, Mask),
1389                                 overflow_arg_area->getType(),
1390                                 "overflow_arg_area.align");
1391  }
1392
1393  // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area.
1394  const llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
1395  llvm::Value *Res =
1396    CGF.Builder.CreateBitCast(overflow_arg_area,
1397                              llvm::PointerType::getUnqual(LTy));
1398
1399  // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to:
1400  // l->overflow_arg_area + sizeof(type).
1401  // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to
1402  // an 8 byte boundary.
1403
1404  uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8;
1405  llvm::Value *Offset =
1406      llvm::ConstantInt::get(CGF.Int32Ty, (SizeInBytes + 7)  & ~7);
1407  overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset,
1408                                            "overflow_arg_area.next");
1409  CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p);
1410
1411  // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type.
1412  return Res;
1413}
1414
1415llvm::Value *X86_64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
1416                                      CodeGenFunction &CGF) const {
1417  llvm::LLVMContext &VMContext = CGF.getLLVMContext();
1418  const llvm::Type *DoubleTy = llvm::Type::getDoubleTy(VMContext);
1419
1420  // Assume that va_list type is correct; should be pointer to LLVM type:
1421  // struct {
1422  //   i32 gp_offset;
1423  //   i32 fp_offset;
1424  //   i8* overflow_arg_area;
1425  //   i8* reg_save_area;
1426  // };
1427  unsigned neededInt, neededSSE;
1428
1429  Ty = CGF.getContext().getCanonicalType(Ty);
1430  ABIArgInfo AI = classifyArgumentType(Ty, CGF.getContext(), VMContext,
1431                                       neededInt, neededSSE);
1432
1433  // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed
1434  // in the registers. If not go to step 7.
1435  if (!neededInt && !neededSSE)
1436    return EmitVAArgFromMemory(VAListAddr, Ty, CGF);
1437
1438  // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of
1439  // general purpose registers needed to pass type and num_fp to hold
1440  // the number of floating point registers needed.
1441
1442  // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into
1443  // registers. In the case: l->gp_offset > 48 - num_gp * 8 or
1444  // l->fp_offset > 304 - num_fp * 16 go to step 7.
1445  //
1446  // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of
1447  // register save space).
1448
1449  llvm::Value *InRegs = 0;
1450  llvm::Value *gp_offset_p = 0, *gp_offset = 0;
1451  llvm::Value *fp_offset_p = 0, *fp_offset = 0;
1452  if (neededInt) {
1453    gp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "gp_offset_p");
1454    gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset");
1455    InRegs =
1456      CGF.Builder.CreateICmpULE(gp_offset,
1457                                llvm::ConstantInt::get(CGF.Int32Ty,
1458                                                       48 - neededInt * 8),
1459                                "fits_in_gp");
1460  }
1461
1462  if (neededSSE) {
1463    fp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 1, "fp_offset_p");
1464    fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset");
1465    llvm::Value *FitsInFP =
1466      CGF.Builder.CreateICmpULE(fp_offset,
1467                                llvm::ConstantInt::get(CGF.Int32Ty,
1468                                                       176 - neededSSE * 16),
1469                                "fits_in_fp");
1470    InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP;
1471  }
1472
1473  llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
1474  llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
1475  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
1476  CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);
1477
1478  // Emit code to load the value if it was passed in registers.
1479
1480  CGF.EmitBlock(InRegBlock);
1481
1482  // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with
1483  // an offset of l->gp_offset and/or l->fp_offset. This may require
1484  // copying to a temporary location in case the parameter is passed
1485  // in different register classes or requires an alignment greater
1486  // than 8 for general purpose registers and 16 for XMM registers.
1487  //
1488  // FIXME: This really results in shameful code when we end up needing to
1489  // collect arguments from different places; often what should result in a
1490  // simple assembling of a structure from scattered addresses has many more
1491  // loads than necessary. Can we clean this up?
1492  const llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
1493  llvm::Value *RegAddr =
1494    CGF.Builder.CreateLoad(CGF.Builder.CreateStructGEP(VAListAddr, 3),
1495                           "reg_save_area");
1496  if (neededInt && neededSSE) {
1497    // FIXME: Cleanup.
1498    assert(AI.isCoerce() && "Unexpected ABI info for mixed regs");
1499    const llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType());
1500    llvm::Value *Tmp = CGF.CreateTempAlloca(ST);
1501    assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs");
1502    const llvm::Type *TyLo = ST->getElementType(0);
1503    const llvm::Type *TyHi = ST->getElementType(1);
1504    assert((TyLo->isFloatingPointTy() ^ TyHi->isFloatingPointTy()) &&
1505           "Unexpected ABI info for mixed regs");
1506    const llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo);
1507    const llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi);
1508    llvm::Value *GPAddr = CGF.Builder.CreateGEP(RegAddr, gp_offset);
1509    llvm::Value *FPAddr = CGF.Builder.CreateGEP(RegAddr, fp_offset);
1510    llvm::Value *RegLoAddr = TyLo->isFloatingPointTy() ? FPAddr : GPAddr;
1511    llvm::Value *RegHiAddr = TyLo->isFloatingPointTy() ? GPAddr : FPAddr;
1512    llvm::Value *V =
1513      CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegLoAddr, PTyLo));
1514    CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0));
1515    V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegHiAddr, PTyHi));
1516    CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1));
1517
1518    RegAddr = CGF.Builder.CreateBitCast(Tmp,
1519                                        llvm::PointerType::getUnqual(LTy));
1520  } else if (neededInt) {
1521    RegAddr = CGF.Builder.CreateGEP(RegAddr, gp_offset);
1522    RegAddr = CGF.Builder.CreateBitCast(RegAddr,
1523                                        llvm::PointerType::getUnqual(LTy));
1524  } else {
1525    if (neededSSE == 1) {
1526      RegAddr = CGF.Builder.CreateGEP(RegAddr, fp_offset);
1527      RegAddr = CGF.Builder.CreateBitCast(RegAddr,
1528                                          llvm::PointerType::getUnqual(LTy));
1529    } else {
1530      assert(neededSSE == 2 && "Invalid number of needed registers!");
1531      // SSE registers are spaced 16 bytes apart in the register save
1532      // area, we need to collect the two eightbytes together.
1533      llvm::Value *RegAddrLo = CGF.Builder.CreateGEP(RegAddr, fp_offset);
1534      llvm::Value *RegAddrHi =
1535        CGF.Builder.CreateGEP(RegAddrLo,
1536                            llvm::ConstantInt::get(CGF.Int32Ty, 16));
1537      const llvm::Type *DblPtrTy =
1538        llvm::PointerType::getUnqual(DoubleTy);
1539      const llvm::StructType *ST = llvm::StructType::get(VMContext, DoubleTy,
1540                                                         DoubleTy, NULL);
1541      llvm::Value *V, *Tmp = CGF.CreateTempAlloca(ST);
1542      V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegAddrLo,
1543                                                           DblPtrTy));
1544      CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0));
1545      V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegAddrHi,
1546                                                           DblPtrTy));
1547      CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1));
1548      RegAddr = CGF.Builder.CreateBitCast(Tmp,
1549                                          llvm::PointerType::getUnqual(LTy));
1550    }
1551  }
1552
1553  // AMD64-ABI 3.5.7p5: Step 5. Set:
1554  // l->gp_offset = l->gp_offset + num_gp * 8
1555  // l->fp_offset = l->fp_offset + num_fp * 16.
1556  if (neededInt) {
1557    llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededInt * 8);
1558    CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset),
1559                            gp_offset_p);
1560  }
1561  if (neededSSE) {
1562    llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededSSE * 16);
1563    CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset),
1564                            fp_offset_p);
1565  }
1566  CGF.EmitBranch(ContBlock);
1567
1568  // Emit code to load the value if it was passed in memory.
1569
1570  CGF.EmitBlock(InMemBlock);
1571  llvm::Value *MemAddr = EmitVAArgFromMemory(VAListAddr, Ty, CGF);
1572
1573  // Return the appropriate result.
1574
1575  CGF.EmitBlock(ContBlock);
1576  llvm::PHINode *ResAddr = CGF.Builder.CreatePHI(RegAddr->getType(),
1577                                                 "vaarg.addr");
1578  ResAddr->reserveOperandSpace(2);
1579  ResAddr->addIncoming(RegAddr, InRegBlock);
1580  ResAddr->addIncoming(MemAddr, InMemBlock);
1581
1582  return ResAddr;
1583}
1584
1585// PIC16 ABI Implementation
1586
1587namespace {
1588
1589class PIC16ABIInfo : public ABIInfo {
1590  ABIArgInfo classifyReturnType(QualType RetTy,
1591                                ASTContext &Context,
1592                                llvm::LLVMContext &VMContext) const;
1593
1594  ABIArgInfo classifyArgumentType(QualType RetTy,
1595                                  ASTContext &Context,
1596                                  llvm::LLVMContext &VMContext) const;
1597
1598  virtual void computeInfo(CGFunctionInfo &FI, ASTContext &Context,
1599                           llvm::LLVMContext &VMContext) const {
1600    FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), Context,
1601                                            VMContext);
1602    for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
1603         it != ie; ++it)
1604      it->info = classifyArgumentType(it->type, Context, VMContext);
1605  }
1606
1607  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
1608                                 CodeGenFunction &CGF) const;
1609};
1610
1611class PIC16TargetCodeGenInfo : public TargetCodeGenInfo {
1612public:
1613  PIC16TargetCodeGenInfo():TargetCodeGenInfo(new PIC16ABIInfo()) {}
1614};
1615
1616}
1617
1618ABIArgInfo PIC16ABIInfo::classifyReturnType(QualType RetTy,
1619                                            ASTContext &Context,
1620                                          llvm::LLVMContext &VMContext) const {
1621  if (RetTy->isVoidType()) {
1622    return ABIArgInfo::getIgnore();
1623  } else {
1624    return ABIArgInfo::getDirect();
1625  }
1626}
1627
1628ABIArgInfo PIC16ABIInfo::classifyArgumentType(QualType Ty,
1629                                              ASTContext &Context,
1630                                          llvm::LLVMContext &VMContext) const {
1631  return ABIArgInfo::getDirect();
1632}
1633
1634llvm::Value *PIC16ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
1635                                     CodeGenFunction &CGF) const {
1636  const llvm::Type *BP = llvm::Type::getInt8PtrTy(CGF.getLLVMContext());
1637  const llvm::Type *BPP = llvm::PointerType::getUnqual(BP);
1638
1639  CGBuilderTy &Builder = CGF.Builder;
1640  llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP,
1641                                                       "ap");
1642  llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
1643  llvm::Type *PTy =
1644    llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
1645  llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
1646
1647  uint64_t Offset = CGF.getContext().getTypeSize(Ty) / 8;
1648
1649  llvm::Value *NextAddr =
1650    Builder.CreateGEP(Addr, llvm::ConstantInt::get(
1651                          llvm::Type::getInt32Ty(CGF.getLLVMContext()), Offset),
1652                      "ap.next");
1653  Builder.CreateStore(NextAddr, VAListAddrAsBPP);
1654
1655  return AddrTyped;
1656}
1657
1658
1659// PowerPC-32
1660
1661namespace {
1662class PPC32TargetCodeGenInfo : public DefaultTargetCodeGenInfo {
1663public:
1664  int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const {
1665    // This is recovered from gcc output.
1666    return 1; // r1 is the dedicated stack pointer
1667  }
1668
1669  bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
1670                               llvm::Value *Address) const;
1671};
1672
1673}
1674
1675bool
1676PPC32TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
1677                                                llvm::Value *Address) const {
1678  // This is calculated from the LLVM and GCC tables and verified
1679  // against gcc output.  AFAIK all ABIs use the same encoding.
1680
1681  CodeGen::CGBuilderTy &Builder = CGF.Builder;
1682  llvm::LLVMContext &Context = CGF.getLLVMContext();
1683
1684  const llvm::IntegerType *i8 = llvm::Type::getInt8Ty(Context);
1685  llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
1686  llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
1687  llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16);
1688
1689  // 0-31: r0-31, the 4-byte general-purpose registers
1690  AssignToArrayRange(Builder, Address, Four8, 0, 31);
1691
1692  // 32-63: fp0-31, the 8-byte floating-point registers
1693  AssignToArrayRange(Builder, Address, Eight8, 32, 63);
1694
1695  // 64-76 are various 4-byte special-purpose registers:
1696  // 64: mq
1697  // 65: lr
1698  // 66: ctr
1699  // 67: ap
1700  // 68-75 cr0-7
1701  // 76: xer
1702  AssignToArrayRange(Builder, Address, Four8, 64, 76);
1703
1704  // 77-108: v0-31, the 16-byte vector registers
1705  AssignToArrayRange(Builder, Address, Sixteen8, 77, 108);
1706
1707  // 109: vrsave
1708  // 110: vscr
1709  // 111: spe_acc
1710  // 112: spefscr
1711  // 113: sfp
1712  AssignToArrayRange(Builder, Address, Four8, 109, 113);
1713
1714  return false;
1715}
1716
1717
1718// ARM ABI Implementation
1719
1720namespace {
1721
1722class ARMABIInfo : public ABIInfo {
1723public:
1724  enum ABIKind {
1725    APCS = 0,
1726    AAPCS = 1,
1727    AAPCS_VFP
1728  };
1729
1730private:
1731  ABIKind Kind;
1732
1733public:
1734  ARMABIInfo(ABIKind _Kind) : Kind(_Kind) {}
1735
1736private:
1737  ABIKind getABIKind() const { return Kind; }
1738
1739  ABIArgInfo classifyReturnType(QualType RetTy,
1740                                ASTContext &Context,
1741                                llvm::LLVMContext &VMCOntext) const;
1742
1743  ABIArgInfo classifyArgumentType(QualType RetTy,
1744                                  ASTContext &Context,
1745                                  llvm::LLVMContext &VMContext) const;
1746
1747  virtual void computeInfo(CGFunctionInfo &FI, ASTContext &Context,
1748                           llvm::LLVMContext &VMContext) const;
1749
1750  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
1751                                 CodeGenFunction &CGF) const;
1752};
1753
1754class ARMTargetCodeGenInfo : public TargetCodeGenInfo {
1755public:
1756  ARMTargetCodeGenInfo(ARMABIInfo::ABIKind K)
1757    :TargetCodeGenInfo(new ARMABIInfo(K)) {}
1758
1759  int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const {
1760    return 13;
1761  }
1762};
1763
1764}
1765
1766void ARMABIInfo::computeInfo(CGFunctionInfo &FI, ASTContext &Context,
1767                             llvm::LLVMContext &VMContext) const {
1768  FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), Context,
1769                                          VMContext);
1770  for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
1771       it != ie; ++it) {
1772    it->info = classifyArgumentType(it->type, Context, VMContext);
1773  }
1774
1775  const llvm::Triple &Triple(Context.Target.getTriple());
1776  llvm::CallingConv::ID DefaultCC;
1777  if (Triple.getEnvironmentName() == "gnueabi" ||
1778      Triple.getEnvironmentName() == "eabi")
1779    DefaultCC = llvm::CallingConv::ARM_AAPCS;
1780  else
1781    DefaultCC = llvm::CallingConv::ARM_APCS;
1782
1783  switch (getABIKind()) {
1784  case APCS:
1785    if (DefaultCC != llvm::CallingConv::ARM_APCS)
1786      FI.setEffectiveCallingConvention(llvm::CallingConv::ARM_APCS);
1787    break;
1788
1789  case AAPCS:
1790    if (DefaultCC != llvm::CallingConv::ARM_AAPCS)
1791      FI.setEffectiveCallingConvention(llvm::CallingConv::ARM_AAPCS);
1792    break;
1793
1794  case AAPCS_VFP:
1795    FI.setEffectiveCallingConvention(llvm::CallingConv::ARM_AAPCS_VFP);
1796    break;
1797  }
1798}
1799
1800ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty,
1801                                            ASTContext &Context,
1802                                          llvm::LLVMContext &VMContext) const {
1803  if (!CodeGenFunction::hasAggregateLLVMType(Ty)) {
1804    // Treat an enum type as its underlying type.
1805    if (const EnumType *EnumTy = Ty->getAs<EnumType>())
1806      Ty = EnumTy->getDecl()->getIntegerType();
1807
1808    return (Ty->isPromotableIntegerType() ?
1809            ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
1810  }
1811
1812  // Ignore empty records.
1813  if (isEmptyRecord(Context, Ty, true))
1814    return ABIArgInfo::getIgnore();
1815
1816  // Structures with either a non-trivial destructor or a non-trivial
1817  // copy constructor are always indirect.
1818  if (isRecordWithNonTrivialDestructorOrCopyConstructor(Ty))
1819    return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
1820
1821  // FIXME: This is kind of nasty... but there isn't much choice because the ARM
1822  // backend doesn't support byval.
1823  // FIXME: This doesn't handle alignment > 64 bits.
1824  const llvm::Type* ElemTy;
1825  unsigned SizeRegs;
1826  if (Context.getTypeAlign(Ty) > 32) {
1827    ElemTy = llvm::Type::getInt64Ty(VMContext);
1828    SizeRegs = (Context.getTypeSize(Ty) + 63) / 64;
1829  } else {
1830    ElemTy = llvm::Type::getInt32Ty(VMContext);
1831    SizeRegs = (Context.getTypeSize(Ty) + 31) / 32;
1832  }
1833  std::vector<const llvm::Type*> LLVMFields;
1834  LLVMFields.push_back(llvm::ArrayType::get(ElemTy, SizeRegs));
1835  const llvm::Type* STy = llvm::StructType::get(VMContext, LLVMFields, true);
1836  return ABIArgInfo::getCoerce(STy);
1837}
1838
1839static bool isIntegerLikeType(QualType Ty,
1840                              ASTContext &Context,
1841                              llvm::LLVMContext &VMContext) {
1842  // APCS, C Language Calling Conventions, Non-Simple Return Values: A structure
1843  // is called integer-like if its size is less than or equal to one word, and
1844  // the offset of each of its addressable sub-fields is zero.
1845
1846  uint64_t Size = Context.getTypeSize(Ty);
1847
1848  // Check that the type fits in a word.
1849  if (Size > 32)
1850    return false;
1851
1852  // FIXME: Handle vector types!
1853  if (Ty->isVectorType())
1854    return false;
1855
1856  // Float types are never treated as "integer like".
1857  if (Ty->isRealFloatingType())
1858    return false;
1859
1860  // If this is a builtin or pointer type then it is ok.
1861  if (Ty->getAs<BuiltinType>() || Ty->isPointerType())
1862    return true;
1863
1864  // Small complex integer types are "integer like".
1865  if (const ComplexType *CT = Ty->getAs<ComplexType>())
1866    return isIntegerLikeType(CT->getElementType(), Context, VMContext);
1867
1868  // Single element and zero sized arrays should be allowed, by the definition
1869  // above, but they are not.
1870
1871  // Otherwise, it must be a record type.
1872  const RecordType *RT = Ty->getAs<RecordType>();
1873  if (!RT) return false;
1874
1875  // Ignore records with flexible arrays.
1876  const RecordDecl *RD = RT->getDecl();
1877  if (RD->hasFlexibleArrayMember())
1878    return false;
1879
1880  // Check that all sub-fields are at offset 0, and are themselves "integer
1881  // like".
1882  const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
1883
1884  bool HadField = false;
1885  unsigned idx = 0;
1886  for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
1887       i != e; ++i, ++idx) {
1888    const FieldDecl *FD = *i;
1889
1890    // Bit-fields are not addressable, we only need to verify they are "integer
1891    // like". We still have to disallow a subsequent non-bitfield, for example:
1892    //   struct { int : 0; int x }
1893    // is non-integer like according to gcc.
1894    if (FD->isBitField()) {
1895      if (!RD->isUnion())
1896        HadField = true;
1897
1898      if (!isIntegerLikeType(FD->getType(), Context, VMContext))
1899        return false;
1900
1901      continue;
1902    }
1903
1904    // Check if this field is at offset 0.
1905    if (Layout.getFieldOffset(idx) != 0)
1906      return false;
1907
1908    if (!isIntegerLikeType(FD->getType(), Context, VMContext))
1909      return false;
1910
1911    // Only allow at most one field in a structure. This doesn't match the
1912    // wording above, but follows gcc in situations with a field following an
1913    // empty structure.
1914    if (!RD->isUnion()) {
1915      if (HadField)
1916        return false;
1917
1918      HadField = true;
1919    }
1920  }
1921
1922  return true;
1923}
1924
1925ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy,
1926                                          ASTContext &Context,
1927                                          llvm::LLVMContext &VMContext) const {
1928  if (RetTy->isVoidType())
1929    return ABIArgInfo::getIgnore();
1930
1931  if (!CodeGenFunction::hasAggregateLLVMType(RetTy)) {
1932    // Treat an enum type as its underlying type.
1933    if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
1934      RetTy = EnumTy->getDecl()->getIntegerType();
1935
1936    return (RetTy->isPromotableIntegerType() ?
1937            ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
1938  }
1939
1940  // Structures with either a non-trivial destructor or a non-trivial
1941  // copy constructor are always indirect.
1942  if (isRecordWithNonTrivialDestructorOrCopyConstructor(RetTy))
1943    return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
1944
1945  // Are we following APCS?
1946  if (getABIKind() == APCS) {
1947    if (isEmptyRecord(Context, RetTy, false))
1948      return ABIArgInfo::getIgnore();
1949
1950    // Complex types are all returned as packed integers.
1951    //
1952    // FIXME: Consider using 2 x vector types if the back end handles them
1953    // correctly.
1954    if (RetTy->isAnyComplexType())
1955      return ABIArgInfo::getCoerce(llvm::IntegerType::get(
1956                                     VMContext, Context.getTypeSize(RetTy)));
1957
1958    // Integer like structures are returned in r0.
1959    if (isIntegerLikeType(RetTy, Context, VMContext)) {
1960      // Return in the smallest viable integer type.
1961      uint64_t Size = Context.getTypeSize(RetTy);
1962      if (Size <= 8)
1963        return ABIArgInfo::getCoerce(llvm::Type::getInt8Ty(VMContext));
1964      if (Size <= 16)
1965        return ABIArgInfo::getCoerce(llvm::Type::getInt16Ty(VMContext));
1966      return ABIArgInfo::getCoerce(llvm::Type::getInt32Ty(VMContext));
1967    }
1968
1969    // Otherwise return in memory.
1970    return ABIArgInfo::getIndirect(0);
1971  }
1972
1973  // Otherwise this is an AAPCS variant.
1974
1975  if (isEmptyRecord(Context, RetTy, true))
1976    return ABIArgInfo::getIgnore();
1977
1978  // Aggregates <= 4 bytes are returned in r0; other aggregates
1979  // are returned indirectly.
1980  uint64_t Size = Context.getTypeSize(RetTy);
1981  if (Size <= 32) {
1982    // Return in the smallest viable integer type.
1983    if (Size <= 8)
1984      return ABIArgInfo::getCoerce(llvm::Type::getInt8Ty(VMContext));
1985    if (Size <= 16)
1986      return ABIArgInfo::getCoerce(llvm::Type::getInt16Ty(VMContext));
1987    return ABIArgInfo::getCoerce(llvm::Type::getInt32Ty(VMContext));
1988  }
1989
1990  return ABIArgInfo::getIndirect(0);
1991}
1992
1993llvm::Value *ARMABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
1994                                   CodeGenFunction &CGF) const {
1995  // FIXME: Need to handle alignment
1996  const llvm::Type *BP = llvm::Type::getInt8PtrTy(CGF.getLLVMContext());
1997  const llvm::Type *BPP = llvm::PointerType::getUnqual(BP);
1998
1999  CGBuilderTy &Builder = CGF.Builder;
2000  llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP,
2001                                                       "ap");
2002  llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
2003  llvm::Type *PTy =
2004    llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
2005  llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
2006
2007  uint64_t Offset =
2008    llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 4);
2009  llvm::Value *NextAddr =
2010    Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
2011                      "ap.next");
2012  Builder.CreateStore(NextAddr, VAListAddrAsBPP);
2013
2014  return AddrTyped;
2015}
2016
2017ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy,
2018                                              ASTContext &Context,
2019                                          llvm::LLVMContext &VMContext) const {
2020  if (RetTy->isVoidType()) {
2021    return ABIArgInfo::getIgnore();
2022  } else if (CodeGenFunction::hasAggregateLLVMType(RetTy)) {
2023    return ABIArgInfo::getIndirect(0);
2024  } else {
2025    // Treat an enum type as its underlying type.
2026    if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
2027      RetTy = EnumTy->getDecl()->getIntegerType();
2028
2029    return (RetTy->isPromotableIntegerType() ?
2030            ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
2031  }
2032}
2033
2034// SystemZ ABI Implementation
2035
2036namespace {
2037
2038class SystemZABIInfo : public ABIInfo {
2039  bool isPromotableIntegerType(QualType Ty) const;
2040
2041  ABIArgInfo classifyReturnType(QualType RetTy, ASTContext &Context,
2042                                llvm::LLVMContext &VMContext) const;
2043
2044  ABIArgInfo classifyArgumentType(QualType RetTy, ASTContext &Context,
2045                                  llvm::LLVMContext &VMContext) const;
2046
2047  virtual void computeInfo(CGFunctionInfo &FI, ASTContext &Context,
2048                          llvm::LLVMContext &VMContext) const {
2049    FI.getReturnInfo() = classifyReturnType(FI.getReturnType(),
2050                                            Context, VMContext);
2051    for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
2052         it != ie; ++it)
2053      it->info = classifyArgumentType(it->type, Context, VMContext);
2054  }
2055
2056  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2057                                 CodeGenFunction &CGF) const;
2058};
2059
2060class SystemZTargetCodeGenInfo : public TargetCodeGenInfo {
2061public:
2062  SystemZTargetCodeGenInfo():TargetCodeGenInfo(new SystemZABIInfo()) {}
2063};
2064
2065}
2066
2067bool SystemZABIInfo::isPromotableIntegerType(QualType Ty) const {
2068  // SystemZ ABI requires all 8, 16 and 32 bit quantities to be extended.
2069  if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
2070    switch (BT->getKind()) {
2071    case BuiltinType::Bool:
2072    case BuiltinType::Char_S:
2073    case BuiltinType::Char_U:
2074    case BuiltinType::SChar:
2075    case BuiltinType::UChar:
2076    case BuiltinType::Short:
2077    case BuiltinType::UShort:
2078    case BuiltinType::Int:
2079    case BuiltinType::UInt:
2080      return true;
2081    default:
2082      return false;
2083    }
2084  return false;
2085}
2086
2087llvm::Value *SystemZABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2088                                       CodeGenFunction &CGF) const {
2089  // FIXME: Implement
2090  return 0;
2091}
2092
2093
2094ABIArgInfo SystemZABIInfo::classifyReturnType(QualType RetTy,
2095                                              ASTContext &Context,
2096                                           llvm::LLVMContext &VMContext) const {
2097  if (RetTy->isVoidType()) {
2098    return ABIArgInfo::getIgnore();
2099  } else if (CodeGenFunction::hasAggregateLLVMType(RetTy)) {
2100    return ABIArgInfo::getIndirect(0);
2101  } else {
2102    return (isPromotableIntegerType(RetTy) ?
2103            ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
2104  }
2105}
2106
2107ABIArgInfo SystemZABIInfo::classifyArgumentType(QualType Ty,
2108                                                ASTContext &Context,
2109                                           llvm::LLVMContext &VMContext) const {
2110  if (CodeGenFunction::hasAggregateLLVMType(Ty)) {
2111    return ABIArgInfo::getIndirect(0);
2112  } else {
2113    return (isPromotableIntegerType(Ty) ?
2114            ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
2115  }
2116}
2117
2118// MSP430 ABI Implementation
2119
2120namespace {
2121
2122class MSP430TargetCodeGenInfo : public TargetCodeGenInfo {
2123public:
2124  MSP430TargetCodeGenInfo():TargetCodeGenInfo(new DefaultABIInfo()) {}
2125  void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
2126                           CodeGen::CodeGenModule &M) const;
2127};
2128
2129}
2130
2131void MSP430TargetCodeGenInfo::SetTargetAttributes(const Decl *D,
2132                                                  llvm::GlobalValue *GV,
2133                                             CodeGen::CodeGenModule &M) const {
2134  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
2135    if (const MSP430InterruptAttr *attr = FD->getAttr<MSP430InterruptAttr>()) {
2136      // Handle 'interrupt' attribute:
2137      llvm::Function *F = cast<llvm::Function>(GV);
2138
2139      // Step 1: Set ISR calling convention.
2140      F->setCallingConv(llvm::CallingConv::MSP430_INTR);
2141
2142      // Step 2: Add attributes goodness.
2143      F->addFnAttr(llvm::Attribute::NoInline);
2144
2145      // Step 3: Emit ISR vector alias.
2146      unsigned Num = attr->getNumber() + 0xffe0;
2147      new llvm::GlobalAlias(GV->getType(), llvm::Function::ExternalLinkage,
2148                            "vector_" +
2149                            llvm::LowercaseString(llvm::utohexstr(Num)),
2150                            GV, &M.getModule());
2151    }
2152  }
2153}
2154
2155// MIPS ABI Implementation.  This works for both little-endian and
2156// big-endian variants.
2157namespace {
2158class MIPSTargetCodeGenInfo : public TargetCodeGenInfo {
2159public:
2160  MIPSTargetCodeGenInfo(): TargetCodeGenInfo(new DefaultABIInfo()) {}
2161
2162  int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const {
2163    return 29;
2164  }
2165
2166  bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2167                               llvm::Value *Address) const;
2168};
2169}
2170
2171bool
2172MIPSTargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2173                                               llvm::Value *Address) const {
2174  // This information comes from gcc's implementation, which seems to
2175  // as canonical as it gets.
2176
2177  CodeGen::CGBuilderTy &Builder = CGF.Builder;
2178  llvm::LLVMContext &Context = CGF.getLLVMContext();
2179
2180  // Everything on MIPS is 4 bytes.  Double-precision FP registers
2181  // are aliased to pairs of single-precision FP registers.
2182  const llvm::IntegerType *i8 = llvm::Type::getInt8Ty(Context);
2183  llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
2184
2185  // 0-31 are the general purpose registers, $0 - $31.
2186  // 32-63 are the floating-point registers, $f0 - $f31.
2187  // 64 and 65 are the multiply/divide registers, $hi and $lo.
2188  // 66 is the (notional, I think) register for signal-handler return.
2189  AssignToArrayRange(Builder, Address, Four8, 0, 65);
2190
2191  // 67-74 are the floating-point status registers, $fcc0 - $fcc7.
2192  // They are one bit wide and ignored here.
2193
2194  // 80-111 are the coprocessor 0 registers, $c0r0 - $c0r31.
2195  // (coprocessor 1 is the FP unit)
2196  // 112-143 are the coprocessor 2 registers, $c2r0 - $c2r31.
2197  // 144-175 are the coprocessor 3 registers, $c3r0 - $c3r31.
2198  // 176-181 are the DSP accumulator registers.
2199  AssignToArrayRange(Builder, Address, Four8, 80, 181);
2200
2201  return false;
2202}
2203
2204
2205const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() const {
2206  if (TheTargetCodeGenInfo)
2207    return *TheTargetCodeGenInfo;
2208
2209  // For now we just cache the TargetCodeGenInfo in CodeGenModule and don't
2210  // free it.
2211
2212  const llvm::Triple &Triple(getContext().Target.getTriple());
2213  switch (Triple.getArch()) {
2214  default:
2215    return *(TheTargetCodeGenInfo = new DefaultTargetCodeGenInfo);
2216
2217  case llvm::Triple::mips:
2218  case llvm::Triple::mipsel:
2219    return *(TheTargetCodeGenInfo = new MIPSTargetCodeGenInfo());
2220
2221  case llvm::Triple::arm:
2222  case llvm::Triple::thumb:
2223    // FIXME: We want to know the float calling convention as well.
2224    if (strcmp(getContext().Target.getABI(), "apcs-gnu") == 0)
2225      return *(TheTargetCodeGenInfo =
2226               new ARMTargetCodeGenInfo(ARMABIInfo::APCS));
2227
2228    return *(TheTargetCodeGenInfo =
2229             new ARMTargetCodeGenInfo(ARMABIInfo::AAPCS));
2230
2231  case llvm::Triple::pic16:
2232    return *(TheTargetCodeGenInfo = new PIC16TargetCodeGenInfo());
2233
2234  case llvm::Triple::ppc:
2235    return *(TheTargetCodeGenInfo = new PPC32TargetCodeGenInfo());
2236
2237  case llvm::Triple::systemz:
2238    return *(TheTargetCodeGenInfo = new SystemZTargetCodeGenInfo());
2239
2240  case llvm::Triple::msp430:
2241    return *(TheTargetCodeGenInfo = new MSP430TargetCodeGenInfo());
2242
2243  case llvm::Triple::x86:
2244    switch (Triple.getOS()) {
2245    case llvm::Triple::Darwin:
2246      return *(TheTargetCodeGenInfo =
2247               new X86_32TargetCodeGenInfo(Context, true, true));
2248    case llvm::Triple::Cygwin:
2249    case llvm::Triple::MinGW32:
2250    case llvm::Triple::MinGW64:
2251    case llvm::Triple::AuroraUX:
2252    case llvm::Triple::DragonFly:
2253    case llvm::Triple::FreeBSD:
2254    case llvm::Triple::OpenBSD:
2255      return *(TheTargetCodeGenInfo =
2256               new X86_32TargetCodeGenInfo(Context, false, true));
2257
2258    default:
2259      return *(TheTargetCodeGenInfo =
2260               new X86_32TargetCodeGenInfo(Context, false, false));
2261    }
2262
2263  case llvm::Triple::x86_64:
2264    return *(TheTargetCodeGenInfo = new X86_64TargetCodeGenInfo());
2265  }
2266}
2267