TargetInfo.cpp revision 9631939f82c0eaa6fb3936a0ce58a41adfbc9011
1//===---- TargetInfo.cpp - Encapsulate target details -----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// These classes wrap the information about a call or function
11// definition used to handle ABI compliancy.
12//
13//===----------------------------------------------------------------------===//
14
15#include "TargetInfo.h"
16#include "ABIInfo.h"
17#include "CodeGenFunction.h"
18#include "clang/AST/RecordLayout.h"
19#include "clang/Frontend/CodeGenOptions.h"
20#include "llvm/Type.h"
21#include "llvm/Target/TargetData.h"
22#include "llvm/ADT/Triple.h"
23#include "llvm/Support/raw_ostream.h"
24using namespace clang;
25using namespace CodeGen;
26
27static void AssignToArrayRange(CodeGen::CGBuilderTy &Builder,
28                               llvm::Value *Array,
29                               llvm::Value *Value,
30                               unsigned FirstIndex,
31                               unsigned LastIndex) {
32  // Alternatively, we could emit this as a loop in the source.
33  for (unsigned I = FirstIndex; I <= LastIndex; ++I) {
34    llvm::Value *Cell = Builder.CreateConstInBoundsGEP1_32(Array, I);
35    Builder.CreateStore(Value, Cell);
36  }
37}
38
39static bool isAggregateTypeForABI(QualType T) {
40  return CodeGenFunction::hasAggregateLLVMType(T) ||
41         T->isMemberFunctionPointerType();
42}
43
44ABIInfo::~ABIInfo() {}
45
46ASTContext &ABIInfo::getContext() const {
47  return CGT.getContext();
48}
49
50llvm::LLVMContext &ABIInfo::getVMContext() const {
51  return CGT.getLLVMContext();
52}
53
54const llvm::TargetData &ABIInfo::getTargetData() const {
55  return CGT.getTargetData();
56}
57
58
59void ABIArgInfo::dump() const {
60  raw_ostream &OS = llvm::errs();
61  OS << "(ABIArgInfo Kind=";
62  switch (TheKind) {
63  case Direct:
64    OS << "Direct Type=";
65    if (llvm::Type *Ty = getCoerceToType())
66      Ty->print(OS);
67    else
68      OS << "null";
69    break;
70  case Extend:
71    OS << "Extend";
72    break;
73  case Ignore:
74    OS << "Ignore";
75    break;
76  case Indirect:
77    OS << "Indirect Align=" << getIndirectAlign()
78       << " ByVal=" << getIndirectByVal()
79       << " Realign=" << getIndirectRealign();
80    break;
81  case Expand:
82    OS << "Expand";
83    break;
84  }
85  OS << ")\n";
86}
87
88TargetCodeGenInfo::~TargetCodeGenInfo() { delete Info; }
89
90// If someone can figure out a general rule for this, that would be great.
91// It's probably just doomed to be platform-dependent, though.
92unsigned TargetCodeGenInfo::getSizeOfUnwindException() const {
93  // Verified for:
94  //   x86-64     FreeBSD, Linux, Darwin
95  //   x86-32     FreeBSD, Linux, Darwin
96  //   PowerPC    Linux, Darwin
97  //   ARM        Darwin (*not* EABI)
98  return 32;
99}
100
101bool TargetCodeGenInfo::isNoProtoCallVariadic(
102                                       const CodeGen::CGFunctionInfo &) const {
103  // The following conventions are known to require this to be false:
104  //   x86_stdcall
105  //   MIPS
106  // For everything else, we just prefer false unless we opt out.
107  return false;
108}
109
110static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays);
111
112/// isEmptyField - Return true iff a the field is "empty", that is it
113/// is an unnamed bit-field or an (array of) empty record(s).
114static bool isEmptyField(ASTContext &Context, const FieldDecl *FD,
115                         bool AllowArrays) {
116  if (FD->isUnnamedBitfield())
117    return true;
118
119  QualType FT = FD->getType();
120
121  // Constant arrays of empty records count as empty, strip them off.
122  // Constant arrays of zero length always count as empty.
123  if (AllowArrays)
124    while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
125      if (AT->getSize() == 0)
126        return true;
127      FT = AT->getElementType();
128    }
129
130  const RecordType *RT = FT->getAs<RecordType>();
131  if (!RT)
132    return false;
133
134  // C++ record fields are never empty, at least in the Itanium ABI.
135  //
136  // FIXME: We should use a predicate for whether this behavior is true in the
137  // current ABI.
138  if (isa<CXXRecordDecl>(RT->getDecl()))
139    return false;
140
141  return isEmptyRecord(Context, FT, AllowArrays);
142}
143
144/// isEmptyRecord - Return true iff a structure contains only empty
145/// fields. Note that a structure with a flexible array member is not
146/// considered empty.
147static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays) {
148  const RecordType *RT = T->getAs<RecordType>();
149  if (!RT)
150    return 0;
151  const RecordDecl *RD = RT->getDecl();
152  if (RD->hasFlexibleArrayMember())
153    return false;
154
155  // If this is a C++ record, check the bases first.
156  if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
157    for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
158           e = CXXRD->bases_end(); i != e; ++i)
159      if (!isEmptyRecord(Context, i->getType(), true))
160        return false;
161
162  for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
163         i != e; ++i)
164    if (!isEmptyField(Context, *i, AllowArrays))
165      return false;
166  return true;
167}
168
169/// hasNonTrivialDestructorOrCopyConstructor - Determine if a type has either
170/// a non-trivial destructor or a non-trivial copy constructor.
171static bool hasNonTrivialDestructorOrCopyConstructor(const RecordType *RT) {
172  const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
173  if (!RD)
174    return false;
175
176  return !RD->hasTrivialDestructor() || !RD->hasTrivialCopyConstructor();
177}
178
179/// isRecordWithNonTrivialDestructorOrCopyConstructor - Determine if a type is
180/// a record type with either a non-trivial destructor or a non-trivial copy
181/// constructor.
182static bool isRecordWithNonTrivialDestructorOrCopyConstructor(QualType T) {
183  const RecordType *RT = T->getAs<RecordType>();
184  if (!RT)
185    return false;
186
187  return hasNonTrivialDestructorOrCopyConstructor(RT);
188}
189
190/// isSingleElementStruct - Determine if a structure is a "single
191/// element struct", i.e. it has exactly one non-empty field or
192/// exactly one field which is itself a single element
193/// struct. Structures with flexible array members are never
194/// considered single element structs.
195///
196/// \return The field declaration for the single non-empty field, if
197/// it exists.
198static const Type *isSingleElementStruct(QualType T, ASTContext &Context) {
199  const RecordType *RT = T->getAsStructureType();
200  if (!RT)
201    return 0;
202
203  const RecordDecl *RD = RT->getDecl();
204  if (RD->hasFlexibleArrayMember())
205    return 0;
206
207  const Type *Found = 0;
208
209  // If this is a C++ record, check the bases first.
210  if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
211    for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
212           e = CXXRD->bases_end(); i != e; ++i) {
213      // Ignore empty records.
214      if (isEmptyRecord(Context, i->getType(), true))
215        continue;
216
217      // If we already found an element then this isn't a single-element struct.
218      if (Found)
219        return 0;
220
221      // If this is non-empty and not a single element struct, the composite
222      // cannot be a single element struct.
223      Found = isSingleElementStruct(i->getType(), Context);
224      if (!Found)
225        return 0;
226    }
227  }
228
229  // Check for single element.
230  for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
231         i != e; ++i) {
232    const FieldDecl *FD = *i;
233    QualType FT = FD->getType();
234
235    // Ignore empty fields.
236    if (isEmptyField(Context, FD, true))
237      continue;
238
239    // If we already found an element then this isn't a single-element
240    // struct.
241    if (Found)
242      return 0;
243
244    // Treat single element arrays as the element.
245    while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
246      if (AT->getSize().getZExtValue() != 1)
247        break;
248      FT = AT->getElementType();
249    }
250
251    if (!isAggregateTypeForABI(FT)) {
252      Found = FT.getTypePtr();
253    } else {
254      Found = isSingleElementStruct(FT, Context);
255      if (!Found)
256        return 0;
257    }
258  }
259
260  // We don't consider a struct a single-element struct if it has
261  // padding beyond the element type.
262  if (Found && Context.getTypeSize(Found) != Context.getTypeSize(T))
263    return 0;
264
265  return Found;
266}
267
268static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) {
269  if (!Ty->getAs<BuiltinType>() && !Ty->hasPointerRepresentation() &&
270      !Ty->isAnyComplexType() && !Ty->isEnumeralType() &&
271      !Ty->isBlockPointerType())
272    return false;
273
274  uint64_t Size = Context.getTypeSize(Ty);
275  return Size == 32 || Size == 64;
276}
277
278/// canExpandIndirectArgument - Test whether an argument type which is to be
279/// passed indirectly (on the stack) would have the equivalent layout if it was
280/// expanded into separate arguments. If so, we prefer to do the latter to avoid
281/// inhibiting optimizations.
282///
283// FIXME: This predicate is missing many cases, currently it just follows
284// llvm-gcc (checks that all fields are 32-bit or 64-bit primitive types). We
285// should probably make this smarter, or better yet make the LLVM backend
286// capable of handling it.
287static bool canExpandIndirectArgument(QualType Ty, ASTContext &Context) {
288  // We can only expand structure types.
289  const RecordType *RT = Ty->getAs<RecordType>();
290  if (!RT)
291    return false;
292
293  // We can only expand (C) structures.
294  //
295  // FIXME: This needs to be generalized to handle classes as well.
296  const RecordDecl *RD = RT->getDecl();
297  if (!RD->isStruct() || isa<CXXRecordDecl>(RD))
298    return false;
299
300  uint64_t Size = 0;
301
302  for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
303         i != e; ++i) {
304    const FieldDecl *FD = *i;
305
306    if (!is32Or64BitBasicType(FD->getType(), Context))
307      return false;
308
309    // FIXME: Reject bit-fields wholesale; there are two problems, we don't know
310    // how to expand them yet, and the predicate for telling if a bitfield still
311    // counts as "basic" is more complicated than what we were doing previously.
312    if (FD->isBitField())
313      return false;
314
315    Size += Context.getTypeSize(FD->getType());
316  }
317
318  // Make sure there are not any holes in the struct.
319  if (Size != Context.getTypeSize(Ty))
320    return false;
321
322  return true;
323}
324
325namespace {
326/// DefaultABIInfo - The default implementation for ABI specific
327/// details. This implementation provides information which results in
328/// self-consistent and sensible LLVM IR generation, but does not
329/// conform to any particular ABI.
330class DefaultABIInfo : public ABIInfo {
331public:
332  DefaultABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
333
334  ABIArgInfo classifyReturnType(QualType RetTy) const;
335  ABIArgInfo classifyArgumentType(QualType RetTy) const;
336
337  virtual void computeInfo(CGFunctionInfo &FI) const {
338    FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
339    for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
340         it != ie; ++it)
341      it->info = classifyArgumentType(it->type);
342  }
343
344  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
345                                 CodeGenFunction &CGF) const;
346};
347
348class DefaultTargetCodeGenInfo : public TargetCodeGenInfo {
349public:
350  DefaultTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
351    : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
352};
353
354llvm::Value *DefaultABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
355                                       CodeGenFunction &CGF) const {
356  return 0;
357}
358
359ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty) const {
360  if (isAggregateTypeForABI(Ty)) {
361    // Records with non trivial destructors/constructors should not be passed
362    // by value.
363    if (isRecordWithNonTrivialDestructorOrCopyConstructor(Ty))
364      return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
365
366    return ABIArgInfo::getIndirect(0);
367  }
368
369  // Treat an enum type as its underlying type.
370  if (const EnumType *EnumTy = Ty->getAs<EnumType>())
371    Ty = EnumTy->getDecl()->getIntegerType();
372
373  return (Ty->isPromotableIntegerType() ?
374          ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
375}
376
377ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy) const {
378  if (RetTy->isVoidType())
379    return ABIArgInfo::getIgnore();
380
381  if (isAggregateTypeForABI(RetTy))
382    return ABIArgInfo::getIndirect(0);
383
384  // Treat an enum type as its underlying type.
385  if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
386    RetTy = EnumTy->getDecl()->getIntegerType();
387
388  return (RetTy->isPromotableIntegerType() ?
389          ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
390}
391
392/// UseX86_MMXType - Return true if this is an MMX type that should use the special
393/// x86_mmx type.
394bool UseX86_MMXType(llvm::Type *IRType) {
395  // If the type is an MMX type <2 x i32>, <4 x i16>, or <8 x i8>, use the
396  // special x86_mmx type.
397  return IRType->isVectorTy() && IRType->getPrimitiveSizeInBits() == 64 &&
398    cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy() &&
399    IRType->getScalarSizeInBits() != 64;
400}
401
402static llvm::Type* X86AdjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
403                                          StringRef Constraint,
404                                          llvm::Type* Ty) {
405  if ((Constraint == "y" || Constraint == "&y") && Ty->isVectorTy())
406    return llvm::Type::getX86_MMXTy(CGF.getLLVMContext());
407  return Ty;
408}
409
410//===----------------------------------------------------------------------===//
411// X86-32 ABI Implementation
412//===----------------------------------------------------------------------===//
413
414/// X86_32ABIInfo - The X86-32 ABI information.
415class X86_32ABIInfo : public ABIInfo {
416  static const unsigned MinABIStackAlignInBytes = 4;
417
418  bool IsDarwinVectorABI;
419  bool IsSmallStructInRegABI;
420  bool IsMMXDisabled;
421
422  static bool isRegisterSize(unsigned Size) {
423    return (Size == 8 || Size == 16 || Size == 32 || Size == 64);
424  }
425
426  static bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context);
427
428  /// getIndirectResult - Give a source type \arg Ty, return a suitable result
429  /// such that the argument will be passed in memory.
430  ABIArgInfo getIndirectResult(QualType Ty, bool ByVal = true) const;
431
432  /// \brief Return the alignment to use for the given type on the stack.
433  unsigned getTypeStackAlignInBytes(QualType Ty, unsigned Align) const;
434
435public:
436
437  ABIArgInfo classifyReturnType(QualType RetTy) const;
438  ABIArgInfo classifyArgumentType(QualType RetTy) const;
439
440  virtual void computeInfo(CGFunctionInfo &FI) const {
441    FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
442    for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
443         it != ie; ++it)
444      it->info = classifyArgumentType(it->type);
445  }
446
447  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
448                                 CodeGenFunction &CGF) const;
449
450  X86_32ABIInfo(CodeGen::CodeGenTypes &CGT, bool d, bool p, bool m)
451    : ABIInfo(CGT), IsDarwinVectorABI(d), IsSmallStructInRegABI(p),
452      IsMMXDisabled(m) {}
453};
454
455class X86_32TargetCodeGenInfo : public TargetCodeGenInfo {
456public:
457  X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool d, bool p, bool m)
458    :TargetCodeGenInfo(new X86_32ABIInfo(CGT, d, p, m)) {}
459
460  void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
461                           CodeGen::CodeGenModule &CGM) const;
462
463  int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const {
464    // Darwin uses different dwarf register numbers for EH.
465    if (CGM.isTargetDarwin()) return 5;
466
467    return 4;
468  }
469
470  bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
471                               llvm::Value *Address) const;
472
473  llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
474                                  StringRef Constraint,
475                                  llvm::Type* Ty) const {
476    return X86AdjustInlineAsmType(CGF, Constraint, Ty);
477  }
478
479};
480
481}
482
483/// shouldReturnTypeInRegister - Determine if the given type should be
484/// passed in a register (for the Darwin ABI).
485bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty,
486                                               ASTContext &Context) {
487  uint64_t Size = Context.getTypeSize(Ty);
488
489  // Type must be register sized.
490  if (!isRegisterSize(Size))
491    return false;
492
493  if (Ty->isVectorType()) {
494    // 64- and 128- bit vectors inside structures are not returned in
495    // registers.
496    if (Size == 64 || Size == 128)
497      return false;
498
499    return true;
500  }
501
502  // If this is a builtin, pointer, enum, complex type, member pointer, or
503  // member function pointer it is ok.
504  if (Ty->getAs<BuiltinType>() || Ty->hasPointerRepresentation() ||
505      Ty->isAnyComplexType() || Ty->isEnumeralType() ||
506      Ty->isBlockPointerType() || Ty->isMemberPointerType())
507    return true;
508
509  // Arrays are treated like records.
510  if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty))
511    return shouldReturnTypeInRegister(AT->getElementType(), Context);
512
513  // Otherwise, it must be a record type.
514  const RecordType *RT = Ty->getAs<RecordType>();
515  if (!RT) return false;
516
517  // FIXME: Traverse bases here too.
518
519  // Structure types are passed in register if all fields would be
520  // passed in a register.
521  for (RecordDecl::field_iterator i = RT->getDecl()->field_begin(),
522         e = RT->getDecl()->field_end(); i != e; ++i) {
523    const FieldDecl *FD = *i;
524
525    // Empty fields are ignored.
526    if (isEmptyField(Context, FD, true))
527      continue;
528
529    // Check fields recursively.
530    if (!shouldReturnTypeInRegister(FD->getType(), Context))
531      return false;
532  }
533
534  return true;
535}
536
537ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy) const {
538  if (RetTy->isVoidType())
539    return ABIArgInfo::getIgnore();
540
541  if (const VectorType *VT = RetTy->getAs<VectorType>()) {
542    // On Darwin, some vectors are returned in registers.
543    if (IsDarwinVectorABI) {
544      uint64_t Size = getContext().getTypeSize(RetTy);
545
546      // 128-bit vectors are a special case; they are returned in
547      // registers and we need to make sure to pick a type the LLVM
548      // backend will like.
549      if (Size == 128)
550        return ABIArgInfo::getDirect(llvm::VectorType::get(
551                  llvm::Type::getInt64Ty(getVMContext()), 2));
552
553      // Always return in register if it fits in a general purpose
554      // register, or if it is 64 bits and has a single element.
555      if ((Size == 8 || Size == 16 || Size == 32) ||
556          (Size == 64 && VT->getNumElements() == 1))
557        return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
558                                                            Size));
559
560      return ABIArgInfo::getIndirect(0);
561    }
562
563    return ABIArgInfo::getDirect();
564  }
565
566  if (isAggregateTypeForABI(RetTy)) {
567    if (const RecordType *RT = RetTy->getAs<RecordType>()) {
568      // Structures with either a non-trivial destructor or a non-trivial
569      // copy constructor are always indirect.
570      if (hasNonTrivialDestructorOrCopyConstructor(RT))
571        return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
572
573      // Structures with flexible arrays are always indirect.
574      if (RT->getDecl()->hasFlexibleArrayMember())
575        return ABIArgInfo::getIndirect(0);
576    }
577
578    // If specified, structs and unions are always indirect.
579    if (!IsSmallStructInRegABI && !RetTy->isAnyComplexType())
580      return ABIArgInfo::getIndirect(0);
581
582    // Small structures which are register sized are generally returned
583    // in a register.
584    if (X86_32ABIInfo::shouldReturnTypeInRegister(RetTy, getContext())) {
585      uint64_t Size = getContext().getTypeSize(RetTy);
586
587      // As a special-case, if the struct is a "single-element" struct, and
588      // the field is of type "float" or "double", return it in a
589      // floating-point register.  We apply a similar transformation for
590      // pointer types to improve the quality of the generated IR.
591      if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext()))
592        if (SeltTy->isRealFloatingType() || SeltTy->hasPointerRepresentation())
593          return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
594
595      // FIXME: We should be able to narrow this integer in cases with dead
596      // padding.
597      return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),Size));
598    }
599
600    return ABIArgInfo::getIndirect(0);
601  }
602
603  // Treat an enum type as its underlying type.
604  if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
605    RetTy = EnumTy->getDecl()->getIntegerType();
606
607  return (RetTy->isPromotableIntegerType() ?
608          ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
609}
610
611static bool isRecordWithSSEVectorType(ASTContext &Context, QualType Ty) {
612  const RecordType *RT = Ty->getAs<RecordType>();
613  if (!RT)
614    return 0;
615  const RecordDecl *RD = RT->getDecl();
616
617  // If this is a C++ record, check the bases first.
618  if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
619    for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
620           e = CXXRD->bases_end(); i != e; ++i)
621      if (!isRecordWithSSEVectorType(Context, i->getType()))
622        return false;
623
624  for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
625       i != e; ++i) {
626    QualType FT = i->getType();
627
628    if (FT->getAs<VectorType>() && Context.getTypeSize(FT) == 128)
629      return true;
630
631    if (isRecordWithSSEVectorType(Context, FT))
632      return true;
633  }
634
635  return false;
636}
637
638unsigned X86_32ABIInfo::getTypeStackAlignInBytes(QualType Ty,
639                                                 unsigned Align) const {
640  // Otherwise, if the alignment is less than or equal to the minimum ABI
641  // alignment, just use the default; the backend will handle this.
642  if (Align <= MinABIStackAlignInBytes)
643    return 0; // Use default alignment.
644
645  // On non-Darwin, the stack type alignment is always 4.
646  if (!IsDarwinVectorABI) {
647    // Set explicit alignment, since we may need to realign the top.
648    return MinABIStackAlignInBytes;
649  }
650
651  // Otherwise, if the type contains an SSE vector type, the alignment is 16.
652  if (Align >= 16 && isRecordWithSSEVectorType(getContext(), Ty))
653    return 16;
654
655  return MinABIStackAlignInBytes;
656}
657
658ABIArgInfo X86_32ABIInfo::getIndirectResult(QualType Ty, bool ByVal) const {
659  if (!ByVal)
660    return ABIArgInfo::getIndirect(0, false);
661
662  // Compute the byval alignment.
663  unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8;
664  unsigned StackAlign = getTypeStackAlignInBytes(Ty, TypeAlign);
665  if (StackAlign == 0)
666    return ABIArgInfo::getIndirect(4);
667
668  // If the stack alignment is less than the type alignment, realign the
669  // argument.
670  if (StackAlign < TypeAlign)
671    return ABIArgInfo::getIndirect(StackAlign, /*ByVal=*/true,
672                                   /*Realign=*/true);
673
674  return ABIArgInfo::getIndirect(StackAlign);
675}
676
677ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty) const {
678  // FIXME: Set alignment on indirect arguments.
679  if (isAggregateTypeForABI(Ty)) {
680    // Structures with flexible arrays are always indirect.
681    if (const RecordType *RT = Ty->getAs<RecordType>()) {
682      // Structures with either a non-trivial destructor or a non-trivial
683      // copy constructor are always indirect.
684      if (hasNonTrivialDestructorOrCopyConstructor(RT))
685        return getIndirectResult(Ty, /*ByVal=*/false);
686
687      if (RT->getDecl()->hasFlexibleArrayMember())
688        return getIndirectResult(Ty);
689    }
690
691    // Ignore empty structs/unions.
692    if (isEmptyRecord(getContext(), Ty, true))
693      return ABIArgInfo::getIgnore();
694
695    // Expand small (<= 128-bit) record types when we know that the stack layout
696    // of those arguments will match the struct. This is important because the
697    // LLVM backend isn't smart enough to remove byval, which inhibits many
698    // optimizations.
699    if (getContext().getTypeSize(Ty) <= 4*32 &&
700        canExpandIndirectArgument(Ty, getContext()))
701      return ABIArgInfo::getExpand();
702
703    return getIndirectResult(Ty);
704  }
705
706  if (const VectorType *VT = Ty->getAs<VectorType>()) {
707    // On Darwin, some vectors are passed in memory, we handle this by passing
708    // it as an i8/i16/i32/i64.
709    if (IsDarwinVectorABI) {
710      uint64_t Size = getContext().getTypeSize(Ty);
711      if ((Size == 8 || Size == 16 || Size == 32) ||
712          (Size == 64 && VT->getNumElements() == 1))
713        return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
714                                                            Size));
715    }
716
717    llvm::Type *IRType = CGT.ConvertType(Ty);
718    if (UseX86_MMXType(IRType)) {
719      if (IsMMXDisabled)
720        return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
721                                                            64));
722      ABIArgInfo AAI = ABIArgInfo::getDirect(IRType);
723      AAI.setCoerceToType(llvm::Type::getX86_MMXTy(getVMContext()));
724      return AAI;
725    }
726
727    return ABIArgInfo::getDirect();
728  }
729
730
731  if (const EnumType *EnumTy = Ty->getAs<EnumType>())
732    Ty = EnumTy->getDecl()->getIntegerType();
733
734  return (Ty->isPromotableIntegerType() ?
735          ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
736}
737
738llvm::Value *X86_32ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
739                                      CodeGenFunction &CGF) const {
740  llvm::Type *BP = llvm::Type::getInt8PtrTy(CGF.getLLVMContext());
741  llvm::Type *BPP = llvm::PointerType::getUnqual(BP);
742
743  CGBuilderTy &Builder = CGF.Builder;
744  llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP,
745                                                       "ap");
746  llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
747
748  // Compute if the address needs to be aligned
749  unsigned Align = CGF.getContext().getTypeAlignInChars(Ty).getQuantity();
750  Align = getTypeStackAlignInBytes(Ty, Align);
751  Align = std::max(Align, 4U);
752  if (Align > 4) {
753    // addr = (addr + align - 1) & -align;
754    llvm::Value *Offset =
755      llvm::ConstantInt::get(CGF.Int32Ty, Align - 1);
756    Addr = CGF.Builder.CreateGEP(Addr, Offset);
757    llvm::Value *AsInt = CGF.Builder.CreatePtrToInt(Addr,
758                                                    CGF.Int32Ty);
759    llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int32Ty, -Align);
760    Addr = CGF.Builder.CreateIntToPtr(CGF.Builder.CreateAnd(AsInt, Mask),
761                                      Addr->getType(),
762                                      "ap.cur.aligned");
763  }
764
765  llvm::Type *PTy =
766    llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
767  llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
768
769  uint64_t Offset =
770    llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, Align);
771  llvm::Value *NextAddr =
772    Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
773                      "ap.next");
774  Builder.CreateStore(NextAddr, VAListAddrAsBPP);
775
776  return AddrTyped;
777}
778
779void X86_32TargetCodeGenInfo::SetTargetAttributes(const Decl *D,
780                                                  llvm::GlobalValue *GV,
781                                            CodeGen::CodeGenModule &CGM) const {
782  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
783    if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
784      // Get the LLVM function.
785      llvm::Function *Fn = cast<llvm::Function>(GV);
786
787      // Now add the 'alignstack' attribute with a value of 16.
788      Fn->addFnAttr(llvm::Attribute::constructStackAlignmentFromInt(16));
789    }
790  }
791}
792
793bool X86_32TargetCodeGenInfo::initDwarfEHRegSizeTable(
794                                               CodeGen::CodeGenFunction &CGF,
795                                               llvm::Value *Address) const {
796  CodeGen::CGBuilderTy &Builder = CGF.Builder;
797  llvm::LLVMContext &Context = CGF.getLLVMContext();
798
799  llvm::IntegerType *i8 = llvm::Type::getInt8Ty(Context);
800  llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
801
802  // 0-7 are the eight integer registers;  the order is different
803  //   on Darwin (for EH), but the range is the same.
804  // 8 is %eip.
805  AssignToArrayRange(Builder, Address, Four8, 0, 8);
806
807  if (CGF.CGM.isTargetDarwin()) {
808    // 12-16 are st(0..4).  Not sure why we stop at 4.
809    // These have size 16, which is sizeof(long double) on
810    // platforms with 8-byte alignment for that type.
811    llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16);
812    AssignToArrayRange(Builder, Address, Sixteen8, 12, 16);
813
814  } else {
815    // 9 is %eflags, which doesn't get a size on Darwin for some
816    // reason.
817    Builder.CreateStore(Four8, Builder.CreateConstInBoundsGEP1_32(Address, 9));
818
819    // 11-16 are st(0..5).  Not sure why we stop at 5.
820    // These have size 12, which is sizeof(long double) on
821    // platforms with 4-byte alignment for that type.
822    llvm::Value *Twelve8 = llvm::ConstantInt::get(i8, 12);
823    AssignToArrayRange(Builder, Address, Twelve8, 11, 16);
824  }
825
826  return false;
827}
828
829//===----------------------------------------------------------------------===//
830// X86-64 ABI Implementation
831//===----------------------------------------------------------------------===//
832
833
834namespace {
835/// X86_64ABIInfo - The X86_64 ABI information.
836class X86_64ABIInfo : public ABIInfo {
837  enum Class {
838    Integer = 0,
839    SSE,
840    SSEUp,
841    X87,
842    X87Up,
843    ComplexX87,
844    NoClass,
845    Memory
846  };
847
848  /// merge - Implement the X86_64 ABI merging algorithm.
849  ///
850  /// Merge an accumulating classification \arg Accum with a field
851  /// classification \arg Field.
852  ///
853  /// \param Accum - The accumulating classification. This should
854  /// always be either NoClass or the result of a previous merge
855  /// call. In addition, this should never be Memory (the caller
856  /// should just return Memory for the aggregate).
857  static Class merge(Class Accum, Class Field);
858
859  /// postMerge - Implement the X86_64 ABI post merging algorithm.
860  ///
861  /// Post merger cleanup, reduces a malformed Hi and Lo pair to
862  /// final MEMORY or SSE classes when necessary.
863  ///
864  /// \param AggregateSize - The size of the current aggregate in
865  /// the classification process.
866  ///
867  /// \param Lo - The classification for the parts of the type
868  /// residing in the low word of the containing object.
869  ///
870  /// \param Hi - The classification for the parts of the type
871  /// residing in the higher words of the containing object.
872  ///
873  void postMerge(unsigned AggregateSize, Class &Lo, Class &Hi) const;
874
875  /// classify - Determine the x86_64 register classes in which the
876  /// given type T should be passed.
877  ///
878  /// \param Lo - The classification for the parts of the type
879  /// residing in the low word of the containing object.
880  ///
881  /// \param Hi - The classification for the parts of the type
882  /// residing in the high word of the containing object.
883  ///
884  /// \param OffsetBase - The bit offset of this type in the
885  /// containing object.  Some parameters are classified different
886  /// depending on whether they straddle an eightbyte boundary.
887  ///
888  /// If a word is unused its result will be NoClass; if a type should
889  /// be passed in Memory then at least the classification of \arg Lo
890  /// will be Memory.
891  ///
892  /// The \arg Lo class will be NoClass iff the argument is ignored.
893  ///
894  /// If the \arg Lo class is ComplexX87, then the \arg Hi class will
895  /// also be ComplexX87.
896  void classify(QualType T, uint64_t OffsetBase, Class &Lo, Class &Hi) const;
897
898  llvm::Type *GetByteVectorType(QualType Ty) const;
899  llvm::Type *GetSSETypeAtOffset(llvm::Type *IRType,
900                                 unsigned IROffset, QualType SourceTy,
901                                 unsigned SourceOffset) const;
902  llvm::Type *GetINTEGERTypeAtOffset(llvm::Type *IRType,
903                                     unsigned IROffset, QualType SourceTy,
904                                     unsigned SourceOffset) const;
905
906  /// getIndirectResult - Give a source type \arg Ty, return a suitable result
907  /// such that the argument will be returned in memory.
908  ABIArgInfo getIndirectReturnResult(QualType Ty) const;
909
910  /// getIndirectResult - Give a source type \arg Ty, return a suitable result
911  /// such that the argument will be passed in memory.
912  ABIArgInfo getIndirectResult(QualType Ty) const;
913
914  ABIArgInfo classifyReturnType(QualType RetTy) const;
915
916  ABIArgInfo classifyArgumentType(QualType Ty,
917                                  unsigned &neededInt,
918                                  unsigned &neededSSE) const;
919
920  bool IsIllegalVectorType(QualType Ty) const;
921
922  /// The 0.98 ABI revision clarified a lot of ambiguities,
923  /// unfortunately in ways that were not always consistent with
924  /// certain previous compilers.  In particular, platforms which
925  /// required strict binary compatibility with older versions of GCC
926  /// may need to exempt themselves.
927  bool honorsRevision0_98() const {
928    return !getContext().getTargetInfo().getTriple().isOSDarwin();
929  }
930
931  bool HasAVX;
932
933public:
934  X86_64ABIInfo(CodeGen::CodeGenTypes &CGT, bool hasavx) :
935      ABIInfo(CGT), HasAVX(hasavx) {}
936
937  virtual void computeInfo(CGFunctionInfo &FI) const;
938
939  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
940                                 CodeGenFunction &CGF) const;
941};
942
943/// WinX86_64ABIInfo - The Windows X86_64 ABI information.
944class WinX86_64ABIInfo : public ABIInfo {
945
946  ABIArgInfo classify(QualType Ty) const;
947
948public:
949  WinX86_64ABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
950
951  virtual void computeInfo(CGFunctionInfo &FI) const;
952
953  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
954                                 CodeGenFunction &CGF) const;
955};
956
957class X86_64TargetCodeGenInfo : public TargetCodeGenInfo {
958public:
959  X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool HasAVX)
960    : TargetCodeGenInfo(new X86_64ABIInfo(CGT, HasAVX)) {}
961
962  int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const {
963    return 7;
964  }
965
966  bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
967                               llvm::Value *Address) const {
968    CodeGen::CGBuilderTy &Builder = CGF.Builder;
969    llvm::LLVMContext &Context = CGF.getLLVMContext();
970
971    llvm::IntegerType *i8 = llvm::Type::getInt8Ty(Context);
972    llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
973
974    // 0-15 are the 16 integer registers.
975    // 16 is %rip.
976    AssignToArrayRange(Builder, Address, Eight8, 0, 16);
977
978    return false;
979  }
980
981  llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
982                                  StringRef Constraint,
983                                  llvm::Type* Ty) const {
984    return X86AdjustInlineAsmType(CGF, Constraint, Ty);
985  }
986
987  bool isNoProtoCallVariadic(const CodeGen::CGFunctionInfo &FI) const {
988    // The default CC on x86-64 sets %al to the number of SSA
989    // registers used, and GCC sets this when calling an unprototyped
990    // function, so we override the default behavior.  However, don't do
991    // that when AVX types are involved: the ABI explicitly states it is
992    // undefined, and it doesn't work in practice because of how the ABI
993    // defines varargs anyway.
994    if (FI.getCallingConvention() == llvm::CallingConv::C) {
995      bool HasAVXType = false;
996      for (CGFunctionInfo::const_arg_iterator it = FI.arg_begin(),
997                                              ie = FI.arg_end();
998           it != ie; ++it) {
999        if (it->info.isDirect()) {
1000          llvm::Type *Ty = it->info.getCoerceToType();
1001          if (llvm::VectorType *VTy = dyn_cast_or_null<llvm::VectorType>(Ty)) {
1002            if (VTy->getBitWidth() > 128) {
1003              HasAVXType = true;
1004              break;
1005            }
1006          }
1007        }
1008      }
1009      if (!HasAVXType)
1010        return true;
1011    }
1012
1013    return TargetCodeGenInfo::isNoProtoCallVariadic(FI);
1014  }
1015
1016};
1017
1018class WinX86_64TargetCodeGenInfo : public TargetCodeGenInfo {
1019public:
1020  WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
1021    : TargetCodeGenInfo(new WinX86_64ABIInfo(CGT)) {}
1022
1023  int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const {
1024    return 7;
1025  }
1026
1027  bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
1028                               llvm::Value *Address) const {
1029    CodeGen::CGBuilderTy &Builder = CGF.Builder;
1030    llvm::LLVMContext &Context = CGF.getLLVMContext();
1031
1032    llvm::IntegerType *i8 = llvm::Type::getInt8Ty(Context);
1033    llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
1034
1035    // 0-15 are the 16 integer registers.
1036    // 16 is %rip.
1037    AssignToArrayRange(Builder, Address, Eight8, 0, 16);
1038
1039    return false;
1040  }
1041};
1042
1043}
1044
1045void X86_64ABIInfo::postMerge(unsigned AggregateSize, Class &Lo,
1046                              Class &Hi) const {
1047  // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done:
1048  //
1049  // (a) If one of the classes is Memory, the whole argument is passed in
1050  //     memory.
1051  //
1052  // (b) If X87UP is not preceded by X87, the whole argument is passed in
1053  //     memory.
1054  //
1055  // (c) If the size of the aggregate exceeds two eightbytes and the first
1056  //     eightbyte isn't SSE or any other eightbyte isn't SSEUP, the whole
1057  //     argument is passed in memory. NOTE: This is necessary to keep the
1058  //     ABI working for processors that don't support the __m256 type.
1059  //
1060  // (d) If SSEUP is not preceded by SSE or SSEUP, it is converted to SSE.
1061  //
1062  // Some of these are enforced by the merging logic.  Others can arise
1063  // only with unions; for example:
1064  //   union { _Complex double; unsigned; }
1065  //
1066  // Note that clauses (b) and (c) were added in 0.98.
1067  //
1068  if (Hi == Memory)
1069    Lo = Memory;
1070  if (Hi == X87Up && Lo != X87 && honorsRevision0_98())
1071    Lo = Memory;
1072  if (AggregateSize > 128 && (Lo != SSE || Hi != SSEUp))
1073    Lo = Memory;
1074  if (Hi == SSEUp && Lo != SSE)
1075    Hi = SSE;
1076}
1077
1078X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, Class Field) {
1079  // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is
1080  // classified recursively so that always two fields are
1081  // considered. The resulting class is calculated according to
1082  // the classes of the fields in the eightbyte:
1083  //
1084  // (a) If both classes are equal, this is the resulting class.
1085  //
1086  // (b) If one of the classes is NO_CLASS, the resulting class is
1087  // the other class.
1088  //
1089  // (c) If one of the classes is MEMORY, the result is the MEMORY
1090  // class.
1091  //
1092  // (d) If one of the classes is INTEGER, the result is the
1093  // INTEGER.
1094  //
1095  // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class,
1096  // MEMORY is used as class.
1097  //
1098  // (f) Otherwise class SSE is used.
1099
1100  // Accum should never be memory (we should have returned) or
1101  // ComplexX87 (because this cannot be passed in a structure).
1102  assert((Accum != Memory && Accum != ComplexX87) &&
1103         "Invalid accumulated classification during merge.");
1104  if (Accum == Field || Field == NoClass)
1105    return Accum;
1106  if (Field == Memory)
1107    return Memory;
1108  if (Accum == NoClass)
1109    return Field;
1110  if (Accum == Integer || Field == Integer)
1111    return Integer;
1112  if (Field == X87 || Field == X87Up || Field == ComplexX87 ||
1113      Accum == X87 || Accum == X87Up)
1114    return Memory;
1115  return SSE;
1116}
1117
1118void X86_64ABIInfo::classify(QualType Ty, uint64_t OffsetBase,
1119                             Class &Lo, Class &Hi) const {
1120  // FIXME: This code can be simplified by introducing a simple value class for
1121  // Class pairs with appropriate constructor methods for the various
1122  // situations.
1123
1124  // FIXME: Some of the split computations are wrong; unaligned vectors
1125  // shouldn't be passed in registers for example, so there is no chance they
1126  // can straddle an eightbyte. Verify & simplify.
1127
1128  Lo = Hi = NoClass;
1129
1130  Class &Current = OffsetBase < 64 ? Lo : Hi;
1131  Current = Memory;
1132
1133  if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
1134    BuiltinType::Kind k = BT->getKind();
1135
1136    if (k == BuiltinType::Void) {
1137      Current = NoClass;
1138    } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) {
1139      Lo = Integer;
1140      Hi = Integer;
1141    } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) {
1142      Current = Integer;
1143    } else if (k == BuiltinType::Float || k == BuiltinType::Double) {
1144      Current = SSE;
1145    } else if (k == BuiltinType::LongDouble) {
1146      Lo = X87;
1147      Hi = X87Up;
1148    }
1149    // FIXME: _Decimal32 and _Decimal64 are SSE.
1150    // FIXME: _float128 and _Decimal128 are (SSE, SSEUp).
1151    return;
1152  }
1153
1154  if (const EnumType *ET = Ty->getAs<EnumType>()) {
1155    // Classify the underlying integer type.
1156    classify(ET->getDecl()->getIntegerType(), OffsetBase, Lo, Hi);
1157    return;
1158  }
1159
1160  if (Ty->hasPointerRepresentation()) {
1161    Current = Integer;
1162    return;
1163  }
1164
1165  if (Ty->isMemberPointerType()) {
1166    if (Ty->isMemberFunctionPointerType())
1167      Lo = Hi = Integer;
1168    else
1169      Current = Integer;
1170    return;
1171  }
1172
1173  if (const VectorType *VT = Ty->getAs<VectorType>()) {
1174    uint64_t Size = getContext().getTypeSize(VT);
1175    if (Size == 32) {
1176      // gcc passes all <4 x char>, <2 x short>, <1 x int>, <1 x
1177      // float> as integer.
1178      Current = Integer;
1179
1180      // If this type crosses an eightbyte boundary, it should be
1181      // split.
1182      uint64_t EB_Real = (OffsetBase) / 64;
1183      uint64_t EB_Imag = (OffsetBase + Size - 1) / 64;
1184      if (EB_Real != EB_Imag)
1185        Hi = Lo;
1186    } else if (Size == 64) {
1187      // gcc passes <1 x double> in memory. :(
1188      if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::Double))
1189        return;
1190
1191      // gcc passes <1 x long long> as INTEGER.
1192      if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::LongLong) ||
1193          VT->getElementType()->isSpecificBuiltinType(BuiltinType::ULongLong) ||
1194          VT->getElementType()->isSpecificBuiltinType(BuiltinType::Long) ||
1195          VT->getElementType()->isSpecificBuiltinType(BuiltinType::ULong))
1196        Current = Integer;
1197      else
1198        Current = SSE;
1199
1200      // If this type crosses an eightbyte boundary, it should be
1201      // split.
1202      if (OffsetBase && OffsetBase != 64)
1203        Hi = Lo;
1204    } else if (Size == 128 || (HasAVX && Size == 256)) {
1205      // Arguments of 256-bits are split into four eightbyte chunks. The
1206      // least significant one belongs to class SSE and all the others to class
1207      // SSEUP. The original Lo and Hi design considers that types can't be
1208      // greater than 128-bits, so a 64-bit split in Hi and Lo makes sense.
1209      // This design isn't correct for 256-bits, but since there're no cases
1210      // where the upper parts would need to be inspected, avoid adding
1211      // complexity and just consider Hi to match the 64-256 part.
1212      Lo = SSE;
1213      Hi = SSEUp;
1214    }
1215    return;
1216  }
1217
1218  if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
1219    QualType ET = getContext().getCanonicalType(CT->getElementType());
1220
1221    uint64_t Size = getContext().getTypeSize(Ty);
1222    if (ET->isIntegralOrEnumerationType()) {
1223      if (Size <= 64)
1224        Current = Integer;
1225      else if (Size <= 128)
1226        Lo = Hi = Integer;
1227    } else if (ET == getContext().FloatTy)
1228      Current = SSE;
1229    else if (ET == getContext().DoubleTy)
1230      Lo = Hi = SSE;
1231    else if (ET == getContext().LongDoubleTy)
1232      Current = ComplexX87;
1233
1234    // If this complex type crosses an eightbyte boundary then it
1235    // should be split.
1236    uint64_t EB_Real = (OffsetBase) / 64;
1237    uint64_t EB_Imag = (OffsetBase + getContext().getTypeSize(ET)) / 64;
1238    if (Hi == NoClass && EB_Real != EB_Imag)
1239      Hi = Lo;
1240
1241    return;
1242  }
1243
1244  if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
1245    // Arrays are treated like structures.
1246
1247    uint64_t Size = getContext().getTypeSize(Ty);
1248
1249    // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
1250    // than four eightbytes, ..., it has class MEMORY.
1251    if (Size > 256)
1252      return;
1253
1254    // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned
1255    // fields, it has class MEMORY.
1256    //
1257    // Only need to check alignment of array base.
1258    if (OffsetBase % getContext().getTypeAlign(AT->getElementType()))
1259      return;
1260
1261    // Otherwise implement simplified merge. We could be smarter about
1262    // this, but it isn't worth it and would be harder to verify.
1263    Current = NoClass;
1264    uint64_t EltSize = getContext().getTypeSize(AT->getElementType());
1265    uint64_t ArraySize = AT->getSize().getZExtValue();
1266
1267    // The only case a 256-bit wide vector could be used is when the array
1268    // contains a single 256-bit element. Since Lo and Hi logic isn't extended
1269    // to work for sizes wider than 128, early check and fallback to memory.
1270    if (Size > 128 && EltSize != 256)
1271      return;
1272
1273    for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) {
1274      Class FieldLo, FieldHi;
1275      classify(AT->getElementType(), Offset, FieldLo, FieldHi);
1276      Lo = merge(Lo, FieldLo);
1277      Hi = merge(Hi, FieldHi);
1278      if (Lo == Memory || Hi == Memory)
1279        break;
1280    }
1281
1282    postMerge(Size, Lo, Hi);
1283    assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification.");
1284    return;
1285  }
1286
1287  if (const RecordType *RT = Ty->getAs<RecordType>()) {
1288    uint64_t Size = getContext().getTypeSize(Ty);
1289
1290    // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
1291    // than four eightbytes, ..., it has class MEMORY.
1292    if (Size > 256)
1293      return;
1294
1295    // AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial
1296    // copy constructor or a non-trivial destructor, it is passed by invisible
1297    // reference.
1298    if (hasNonTrivialDestructorOrCopyConstructor(RT))
1299      return;
1300
1301    const RecordDecl *RD = RT->getDecl();
1302
1303    // Assume variable sized types are passed in memory.
1304    if (RD->hasFlexibleArrayMember())
1305      return;
1306
1307    const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
1308
1309    // Reset Lo class, this will be recomputed.
1310    Current = NoClass;
1311
1312    // If this is a C++ record, classify the bases first.
1313    if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
1314      for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
1315             e = CXXRD->bases_end(); i != e; ++i) {
1316        assert(!i->isVirtual() && !i->getType()->isDependentType() &&
1317               "Unexpected base class!");
1318        const CXXRecordDecl *Base =
1319          cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
1320
1321        // Classify this field.
1322        //
1323        // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a
1324        // single eightbyte, each is classified separately. Each eightbyte gets
1325        // initialized to class NO_CLASS.
1326        Class FieldLo, FieldHi;
1327        uint64_t Offset = OffsetBase + Layout.getBaseClassOffsetInBits(Base);
1328        classify(i->getType(), Offset, FieldLo, FieldHi);
1329        Lo = merge(Lo, FieldLo);
1330        Hi = merge(Hi, FieldHi);
1331        if (Lo == Memory || Hi == Memory)
1332          break;
1333      }
1334    }
1335
1336    // Classify the fields one at a time, merging the results.
1337    unsigned idx = 0;
1338    for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
1339           i != e; ++i, ++idx) {
1340      uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
1341      bool BitField = i->isBitField();
1342
1343      // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger than
1344      // four eightbytes, or it contains unaligned fields, it has class MEMORY.
1345      //
1346      // The only case a 256-bit wide vector could be used is when the struct
1347      // contains a single 256-bit element. Since Lo and Hi logic isn't extended
1348      // to work for sizes wider than 128, early check and fallback to memory.
1349      //
1350      if (Size > 128 && getContext().getTypeSize(i->getType()) != 256) {
1351        Lo = Memory;
1352        return;
1353      }
1354      // Note, skip this test for bit-fields, see below.
1355      if (!BitField && Offset % getContext().getTypeAlign(i->getType())) {
1356        Lo = Memory;
1357        return;
1358      }
1359
1360      // Classify this field.
1361      //
1362      // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate
1363      // exceeds a single eightbyte, each is classified
1364      // separately. Each eightbyte gets initialized to class
1365      // NO_CLASS.
1366      Class FieldLo, FieldHi;
1367
1368      // Bit-fields require special handling, they do not force the
1369      // structure to be passed in memory even if unaligned, and
1370      // therefore they can straddle an eightbyte.
1371      if (BitField) {
1372        // Ignore padding bit-fields.
1373        if (i->isUnnamedBitfield())
1374          continue;
1375
1376        uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
1377        uint64_t Size = i->getBitWidthValue(getContext());
1378
1379        uint64_t EB_Lo = Offset / 64;
1380        uint64_t EB_Hi = (Offset + Size - 1) / 64;
1381        FieldLo = FieldHi = NoClass;
1382        if (EB_Lo) {
1383          assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes.");
1384          FieldLo = NoClass;
1385          FieldHi = Integer;
1386        } else {
1387          FieldLo = Integer;
1388          FieldHi = EB_Hi ? Integer : NoClass;
1389        }
1390      } else
1391        classify(i->getType(), Offset, FieldLo, FieldHi);
1392      Lo = merge(Lo, FieldLo);
1393      Hi = merge(Hi, FieldHi);
1394      if (Lo == Memory || Hi == Memory)
1395        break;
1396    }
1397
1398    postMerge(Size, Lo, Hi);
1399  }
1400}
1401
1402ABIArgInfo X86_64ABIInfo::getIndirectReturnResult(QualType Ty) const {
1403  // If this is a scalar LLVM value then assume LLVM will pass it in the right
1404  // place naturally.
1405  if (!isAggregateTypeForABI(Ty)) {
1406    // Treat an enum type as its underlying type.
1407    if (const EnumType *EnumTy = Ty->getAs<EnumType>())
1408      Ty = EnumTy->getDecl()->getIntegerType();
1409
1410    return (Ty->isPromotableIntegerType() ?
1411            ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
1412  }
1413
1414  return ABIArgInfo::getIndirect(0);
1415}
1416
1417bool X86_64ABIInfo::IsIllegalVectorType(QualType Ty) const {
1418  if (const VectorType *VecTy = Ty->getAs<VectorType>()) {
1419    uint64_t Size = getContext().getTypeSize(VecTy);
1420    unsigned LargestVector = HasAVX ? 256 : 128;
1421    if (Size <= 64 || Size > LargestVector)
1422      return true;
1423  }
1424
1425  return false;
1426}
1427
1428ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty) const {
1429  // If this is a scalar LLVM value then assume LLVM will pass it in the right
1430  // place naturally.
1431  if (!isAggregateTypeForABI(Ty) && !IsIllegalVectorType(Ty)) {
1432    // Treat an enum type as its underlying type.
1433    if (const EnumType *EnumTy = Ty->getAs<EnumType>())
1434      Ty = EnumTy->getDecl()->getIntegerType();
1435
1436    return (Ty->isPromotableIntegerType() ?
1437            ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
1438  }
1439
1440  if (isRecordWithNonTrivialDestructorOrCopyConstructor(Ty))
1441    return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
1442
1443  // Compute the byval alignment. We specify the alignment of the byval in all
1444  // cases so that the mid-level optimizer knows the alignment of the byval.
1445  unsigned Align = std::max(getContext().getTypeAlign(Ty) / 8, 8U);
1446  return ABIArgInfo::getIndirect(Align);
1447}
1448
1449/// GetByteVectorType - The ABI specifies that a value should be passed in an
1450/// full vector XMM/YMM register.  Pick an LLVM IR type that will be passed as a
1451/// vector register.
1452llvm::Type *X86_64ABIInfo::GetByteVectorType(QualType Ty) const {
1453  llvm::Type *IRType = CGT.ConvertType(Ty);
1454
1455  // Wrapper structs that just contain vectors are passed just like vectors,
1456  // strip them off if present.
1457  llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType);
1458  while (STy && STy->getNumElements() == 1) {
1459    IRType = STy->getElementType(0);
1460    STy = dyn_cast<llvm::StructType>(IRType);
1461  }
1462
1463  // If the preferred type is a 16-byte vector, prefer to pass it.
1464  if (llvm::VectorType *VT = dyn_cast<llvm::VectorType>(IRType)){
1465    llvm::Type *EltTy = VT->getElementType();
1466    unsigned BitWidth = VT->getBitWidth();
1467    if ((BitWidth >= 128 && BitWidth <= 256) &&
1468        (EltTy->isFloatTy() || EltTy->isDoubleTy() ||
1469         EltTy->isIntegerTy(8) || EltTy->isIntegerTy(16) ||
1470         EltTy->isIntegerTy(32) || EltTy->isIntegerTy(64) ||
1471         EltTy->isIntegerTy(128)))
1472      return VT;
1473  }
1474
1475  return llvm::VectorType::get(llvm::Type::getDoubleTy(getVMContext()), 2);
1476}
1477
1478/// BitsContainNoUserData - Return true if the specified [start,end) bit range
1479/// is known to either be off the end of the specified type or being in
1480/// alignment padding.  The user type specified is known to be at most 128 bits
1481/// in size, and have passed through X86_64ABIInfo::classify with a successful
1482/// classification that put one of the two halves in the INTEGER class.
1483///
1484/// It is conservatively correct to return false.
1485static bool BitsContainNoUserData(QualType Ty, unsigned StartBit,
1486                                  unsigned EndBit, ASTContext &Context) {
1487  // If the bytes being queried are off the end of the type, there is no user
1488  // data hiding here.  This handles analysis of builtins, vectors and other
1489  // types that don't contain interesting padding.
1490  unsigned TySize = (unsigned)Context.getTypeSize(Ty);
1491  if (TySize <= StartBit)
1492    return true;
1493
1494  if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
1495    unsigned EltSize = (unsigned)Context.getTypeSize(AT->getElementType());
1496    unsigned NumElts = (unsigned)AT->getSize().getZExtValue();
1497
1498    // Check each element to see if the element overlaps with the queried range.
1499    for (unsigned i = 0; i != NumElts; ++i) {
1500      // If the element is after the span we care about, then we're done..
1501      unsigned EltOffset = i*EltSize;
1502      if (EltOffset >= EndBit) break;
1503
1504      unsigned EltStart = EltOffset < StartBit ? StartBit-EltOffset :0;
1505      if (!BitsContainNoUserData(AT->getElementType(), EltStart,
1506                                 EndBit-EltOffset, Context))
1507        return false;
1508    }
1509    // If it overlaps no elements, then it is safe to process as padding.
1510    return true;
1511  }
1512
1513  if (const RecordType *RT = Ty->getAs<RecordType>()) {
1514    const RecordDecl *RD = RT->getDecl();
1515    const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
1516
1517    // If this is a C++ record, check the bases first.
1518    if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
1519      for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
1520           e = CXXRD->bases_end(); i != e; ++i) {
1521        assert(!i->isVirtual() && !i->getType()->isDependentType() &&
1522               "Unexpected base class!");
1523        const CXXRecordDecl *Base =
1524          cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
1525
1526        // If the base is after the span we care about, ignore it.
1527        unsigned BaseOffset = (unsigned)Layout.getBaseClassOffsetInBits(Base);
1528        if (BaseOffset >= EndBit) continue;
1529
1530        unsigned BaseStart = BaseOffset < StartBit ? StartBit-BaseOffset :0;
1531        if (!BitsContainNoUserData(i->getType(), BaseStart,
1532                                   EndBit-BaseOffset, Context))
1533          return false;
1534      }
1535    }
1536
1537    // Verify that no field has data that overlaps the region of interest.  Yes
1538    // this could be sped up a lot by being smarter about queried fields,
1539    // however we're only looking at structs up to 16 bytes, so we don't care
1540    // much.
1541    unsigned idx = 0;
1542    for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
1543         i != e; ++i, ++idx) {
1544      unsigned FieldOffset = (unsigned)Layout.getFieldOffset(idx);
1545
1546      // If we found a field after the region we care about, then we're done.
1547      if (FieldOffset >= EndBit) break;
1548
1549      unsigned FieldStart = FieldOffset < StartBit ? StartBit-FieldOffset :0;
1550      if (!BitsContainNoUserData(i->getType(), FieldStart, EndBit-FieldOffset,
1551                                 Context))
1552        return false;
1553    }
1554
1555    // If nothing in this record overlapped the area of interest, then we're
1556    // clean.
1557    return true;
1558  }
1559
1560  return false;
1561}
1562
1563/// ContainsFloatAtOffset - Return true if the specified LLVM IR type has a
1564/// float member at the specified offset.  For example, {int,{float}} has a
1565/// float at offset 4.  It is conservatively correct for this routine to return
1566/// false.
1567static bool ContainsFloatAtOffset(llvm::Type *IRType, unsigned IROffset,
1568                                  const llvm::TargetData &TD) {
1569  // Base case if we find a float.
1570  if (IROffset == 0 && IRType->isFloatTy())
1571    return true;
1572
1573  // If this is a struct, recurse into the field at the specified offset.
1574  if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
1575    const llvm::StructLayout *SL = TD.getStructLayout(STy);
1576    unsigned Elt = SL->getElementContainingOffset(IROffset);
1577    IROffset -= SL->getElementOffset(Elt);
1578    return ContainsFloatAtOffset(STy->getElementType(Elt), IROffset, TD);
1579  }
1580
1581  // If this is an array, recurse into the field at the specified offset.
1582  if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
1583    llvm::Type *EltTy = ATy->getElementType();
1584    unsigned EltSize = TD.getTypeAllocSize(EltTy);
1585    IROffset -= IROffset/EltSize*EltSize;
1586    return ContainsFloatAtOffset(EltTy, IROffset, TD);
1587  }
1588
1589  return false;
1590}
1591
1592
1593/// GetSSETypeAtOffset - Return a type that will be passed by the backend in the
1594/// low 8 bytes of an XMM register, corresponding to the SSE class.
1595llvm::Type *X86_64ABIInfo::
1596GetSSETypeAtOffset(llvm::Type *IRType, unsigned IROffset,
1597                   QualType SourceTy, unsigned SourceOffset) const {
1598  // The only three choices we have are either double, <2 x float>, or float. We
1599  // pass as float if the last 4 bytes is just padding.  This happens for
1600  // structs that contain 3 floats.
1601  if (BitsContainNoUserData(SourceTy, SourceOffset*8+32,
1602                            SourceOffset*8+64, getContext()))
1603    return llvm::Type::getFloatTy(getVMContext());
1604
1605  // We want to pass as <2 x float> if the LLVM IR type contains a float at
1606  // offset+0 and offset+4.  Walk the LLVM IR type to find out if this is the
1607  // case.
1608  if (ContainsFloatAtOffset(IRType, IROffset, getTargetData()) &&
1609      ContainsFloatAtOffset(IRType, IROffset+4, getTargetData()))
1610    return llvm::VectorType::get(llvm::Type::getFloatTy(getVMContext()), 2);
1611
1612  return llvm::Type::getDoubleTy(getVMContext());
1613}
1614
1615
1616/// GetINTEGERTypeAtOffset - The ABI specifies that a value should be passed in
1617/// an 8-byte GPR.  This means that we either have a scalar or we are talking
1618/// about the high or low part of an up-to-16-byte struct.  This routine picks
1619/// the best LLVM IR type to represent this, which may be i64 or may be anything
1620/// else that the backend will pass in a GPR that works better (e.g. i8, %foo*,
1621/// etc).
1622///
1623/// PrefType is an LLVM IR type that corresponds to (part of) the IR type for
1624/// the source type.  IROffset is an offset in bytes into the LLVM IR type that
1625/// the 8-byte value references.  PrefType may be null.
1626///
1627/// SourceTy is the source level type for the entire argument.  SourceOffset is
1628/// an offset into this that we're processing (which is always either 0 or 8).
1629///
1630llvm::Type *X86_64ABIInfo::
1631GetINTEGERTypeAtOffset(llvm::Type *IRType, unsigned IROffset,
1632                       QualType SourceTy, unsigned SourceOffset) const {
1633  // If we're dealing with an un-offset LLVM IR type, then it means that we're
1634  // returning an 8-byte unit starting with it.  See if we can safely use it.
1635  if (IROffset == 0) {
1636    // Pointers and int64's always fill the 8-byte unit.
1637    if (isa<llvm::PointerType>(IRType) || IRType->isIntegerTy(64))
1638      return IRType;
1639
1640    // If we have a 1/2/4-byte integer, we can use it only if the rest of the
1641    // goodness in the source type is just tail padding.  This is allowed to
1642    // kick in for struct {double,int} on the int, but not on
1643    // struct{double,int,int} because we wouldn't return the second int.  We
1644    // have to do this analysis on the source type because we can't depend on
1645    // unions being lowered a specific way etc.
1646    if (IRType->isIntegerTy(8) || IRType->isIntegerTy(16) ||
1647        IRType->isIntegerTy(32)) {
1648      unsigned BitWidth = cast<llvm::IntegerType>(IRType)->getBitWidth();
1649
1650      if (BitsContainNoUserData(SourceTy, SourceOffset*8+BitWidth,
1651                                SourceOffset*8+64, getContext()))
1652        return IRType;
1653    }
1654  }
1655
1656  if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
1657    // If this is a struct, recurse into the field at the specified offset.
1658    const llvm::StructLayout *SL = getTargetData().getStructLayout(STy);
1659    if (IROffset < SL->getSizeInBytes()) {
1660      unsigned FieldIdx = SL->getElementContainingOffset(IROffset);
1661      IROffset -= SL->getElementOffset(FieldIdx);
1662
1663      return GetINTEGERTypeAtOffset(STy->getElementType(FieldIdx), IROffset,
1664                                    SourceTy, SourceOffset);
1665    }
1666  }
1667
1668  if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
1669    llvm::Type *EltTy = ATy->getElementType();
1670    unsigned EltSize = getTargetData().getTypeAllocSize(EltTy);
1671    unsigned EltOffset = IROffset/EltSize*EltSize;
1672    return GetINTEGERTypeAtOffset(EltTy, IROffset-EltOffset, SourceTy,
1673                                  SourceOffset);
1674  }
1675
1676  // Okay, we don't have any better idea of what to pass, so we pass this in an
1677  // integer register that isn't too big to fit the rest of the struct.
1678  unsigned TySizeInBytes =
1679    (unsigned)getContext().getTypeSizeInChars(SourceTy).getQuantity();
1680
1681  assert(TySizeInBytes != SourceOffset && "Empty field?");
1682
1683  // It is always safe to classify this as an integer type up to i64 that
1684  // isn't larger than the structure.
1685  return llvm::IntegerType::get(getVMContext(),
1686                                std::min(TySizeInBytes-SourceOffset, 8U)*8);
1687}
1688
1689
1690/// GetX86_64ByValArgumentPair - Given a high and low type that can ideally
1691/// be used as elements of a two register pair to pass or return, return a
1692/// first class aggregate to represent them.  For example, if the low part of
1693/// a by-value argument should be passed as i32* and the high part as float,
1694/// return {i32*, float}.
1695static llvm::Type *
1696GetX86_64ByValArgumentPair(llvm::Type *Lo, llvm::Type *Hi,
1697                           const llvm::TargetData &TD) {
1698  // In order to correctly satisfy the ABI, we need to the high part to start
1699  // at offset 8.  If the high and low parts we inferred are both 4-byte types
1700  // (e.g. i32 and i32) then the resultant struct type ({i32,i32}) won't have
1701  // the second element at offset 8.  Check for this:
1702  unsigned LoSize = (unsigned)TD.getTypeAllocSize(Lo);
1703  unsigned HiAlign = TD.getABITypeAlignment(Hi);
1704  unsigned HiStart = llvm::TargetData::RoundUpAlignment(LoSize, HiAlign);
1705  assert(HiStart != 0 && HiStart <= 8 && "Invalid x86-64 argument pair!");
1706
1707  // To handle this, we have to increase the size of the low part so that the
1708  // second element will start at an 8 byte offset.  We can't increase the size
1709  // of the second element because it might make us access off the end of the
1710  // struct.
1711  if (HiStart != 8) {
1712    // There are only two sorts of types the ABI generation code can produce for
1713    // the low part of a pair that aren't 8 bytes in size: float or i8/i16/i32.
1714    // Promote these to a larger type.
1715    if (Lo->isFloatTy())
1716      Lo = llvm::Type::getDoubleTy(Lo->getContext());
1717    else {
1718      assert(Lo->isIntegerTy() && "Invalid/unknown lo type");
1719      Lo = llvm::Type::getInt64Ty(Lo->getContext());
1720    }
1721  }
1722
1723  llvm::StructType *Result = llvm::StructType::get(Lo, Hi, NULL);
1724
1725
1726  // Verify that the second element is at an 8-byte offset.
1727  assert(TD.getStructLayout(Result)->getElementOffset(1) == 8 &&
1728         "Invalid x86-64 argument pair!");
1729  return Result;
1730}
1731
1732ABIArgInfo X86_64ABIInfo::
1733classifyReturnType(QualType RetTy) const {
1734  // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the
1735  // classification algorithm.
1736  X86_64ABIInfo::Class Lo, Hi;
1737  classify(RetTy, 0, Lo, Hi);
1738
1739  // Check some invariants.
1740  assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
1741  assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
1742
1743  llvm::Type *ResType = 0;
1744  switch (Lo) {
1745  case NoClass:
1746    if (Hi == NoClass)
1747      return ABIArgInfo::getIgnore();
1748    // If the low part is just padding, it takes no register, leave ResType
1749    // null.
1750    assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
1751           "Unknown missing lo part");
1752    break;
1753
1754  case SSEUp:
1755  case X87Up:
1756    llvm_unreachable("Invalid classification for lo word.");
1757
1758    // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via
1759    // hidden argument.
1760  case Memory:
1761    return getIndirectReturnResult(RetTy);
1762
1763    // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next
1764    // available register of the sequence %rax, %rdx is used.
1765  case Integer:
1766    ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0);
1767
1768    // If we have a sign or zero extended integer, make sure to return Extend
1769    // so that the parameter gets the right LLVM IR attributes.
1770    if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
1771      // Treat an enum type as its underlying type.
1772      if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
1773        RetTy = EnumTy->getDecl()->getIntegerType();
1774
1775      if (RetTy->isIntegralOrEnumerationType() &&
1776          RetTy->isPromotableIntegerType())
1777        return ABIArgInfo::getExtend();
1778    }
1779    break;
1780
1781    // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next
1782    // available SSE register of the sequence %xmm0, %xmm1 is used.
1783  case SSE:
1784    ResType = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0);
1785    break;
1786
1787    // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is
1788    // returned on the X87 stack in %st0 as 80-bit x87 number.
1789  case X87:
1790    ResType = llvm::Type::getX86_FP80Ty(getVMContext());
1791    break;
1792
1793    // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real
1794    // part of the value is returned in %st0 and the imaginary part in
1795    // %st1.
1796  case ComplexX87:
1797    assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification.");
1798    ResType = llvm::StructType::get(llvm::Type::getX86_FP80Ty(getVMContext()),
1799                                    llvm::Type::getX86_FP80Ty(getVMContext()),
1800                                    NULL);
1801    break;
1802  }
1803
1804  llvm::Type *HighPart = 0;
1805  switch (Hi) {
1806    // Memory was handled previously and X87 should
1807    // never occur as a hi class.
1808  case Memory:
1809  case X87:
1810    llvm_unreachable("Invalid classification for hi word.");
1811
1812  case ComplexX87: // Previously handled.
1813  case NoClass:
1814    break;
1815
1816  case Integer:
1817    HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
1818    if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
1819      return ABIArgInfo::getDirect(HighPart, 8);
1820    break;
1821  case SSE:
1822    HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
1823    if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
1824      return ABIArgInfo::getDirect(HighPart, 8);
1825    break;
1826
1827    // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte
1828    // is passed in the next available eightbyte chunk if the last used
1829    // vector register.
1830    //
1831    // SSEUP should always be preceded by SSE, just widen.
1832  case SSEUp:
1833    assert(Lo == SSE && "Unexpected SSEUp classification.");
1834    ResType = GetByteVectorType(RetTy);
1835    break;
1836
1837    // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is
1838    // returned together with the previous X87 value in %st0.
1839  case X87Up:
1840    // If X87Up is preceded by X87, we don't need to do
1841    // anything. However, in some cases with unions it may not be
1842    // preceded by X87. In such situations we follow gcc and pass the
1843    // extra bits in an SSE reg.
1844    if (Lo != X87) {
1845      HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
1846      if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
1847        return ABIArgInfo::getDirect(HighPart, 8);
1848    }
1849    break;
1850  }
1851
1852  // If a high part was specified, merge it together with the low part.  It is
1853  // known to pass in the high eightbyte of the result.  We do this by forming a
1854  // first class struct aggregate with the high and low part: {low, high}
1855  if (HighPart)
1856    ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getTargetData());
1857
1858  return ABIArgInfo::getDirect(ResType);
1859}
1860
1861ABIArgInfo X86_64ABIInfo::classifyArgumentType(QualType Ty, unsigned &neededInt,
1862                                               unsigned &neededSSE) const {
1863  X86_64ABIInfo::Class Lo, Hi;
1864  classify(Ty, 0, Lo, Hi);
1865
1866  // Check some invariants.
1867  // FIXME: Enforce these by construction.
1868  assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
1869  assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
1870
1871  neededInt = 0;
1872  neededSSE = 0;
1873  llvm::Type *ResType = 0;
1874  switch (Lo) {
1875  case NoClass:
1876    if (Hi == NoClass)
1877      return ABIArgInfo::getIgnore();
1878    // If the low part is just padding, it takes no register, leave ResType
1879    // null.
1880    assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
1881           "Unknown missing lo part");
1882    break;
1883
1884    // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument
1885    // on the stack.
1886  case Memory:
1887
1888    // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or
1889    // COMPLEX_X87, it is passed in memory.
1890  case X87:
1891  case ComplexX87:
1892    if (isRecordWithNonTrivialDestructorOrCopyConstructor(Ty))
1893      ++neededInt;
1894    return getIndirectResult(Ty);
1895
1896  case SSEUp:
1897  case X87Up:
1898    llvm_unreachable("Invalid classification for lo word.");
1899
1900    // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next
1901    // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8
1902    // and %r9 is used.
1903  case Integer:
1904    ++neededInt;
1905
1906    // Pick an 8-byte type based on the preferred type.
1907    ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 0, Ty, 0);
1908
1909    // If we have a sign or zero extended integer, make sure to return Extend
1910    // so that the parameter gets the right LLVM IR attributes.
1911    if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
1912      // Treat an enum type as its underlying type.
1913      if (const EnumType *EnumTy = Ty->getAs<EnumType>())
1914        Ty = EnumTy->getDecl()->getIntegerType();
1915
1916      if (Ty->isIntegralOrEnumerationType() &&
1917          Ty->isPromotableIntegerType())
1918        return ABIArgInfo::getExtend();
1919    }
1920
1921    break;
1922
1923    // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next
1924    // available SSE register is used, the registers are taken in the
1925    // order from %xmm0 to %xmm7.
1926  case SSE: {
1927    llvm::Type *IRType = CGT.ConvertType(Ty);
1928    ResType = GetSSETypeAtOffset(IRType, 0, Ty, 0);
1929    ++neededSSE;
1930    break;
1931  }
1932  }
1933
1934  llvm::Type *HighPart = 0;
1935  switch (Hi) {
1936    // Memory was handled previously, ComplexX87 and X87 should
1937    // never occur as hi classes, and X87Up must be preceded by X87,
1938    // which is passed in memory.
1939  case Memory:
1940  case X87:
1941  case ComplexX87:
1942    llvm_unreachable("Invalid classification for hi word.");
1943
1944  case NoClass: break;
1945
1946  case Integer:
1947    ++neededInt;
1948    // Pick an 8-byte type based on the preferred type.
1949    HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8);
1950
1951    if (Lo == NoClass)  // Pass HighPart at offset 8 in memory.
1952      return ABIArgInfo::getDirect(HighPart, 8);
1953    break;
1954
1955    // X87Up generally doesn't occur here (long double is passed in
1956    // memory), except in situations involving unions.
1957  case X87Up:
1958  case SSE:
1959    HighPart = GetSSETypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8);
1960
1961    if (Lo == NoClass)  // Pass HighPart at offset 8 in memory.
1962      return ABIArgInfo::getDirect(HighPart, 8);
1963
1964    ++neededSSE;
1965    break;
1966
1967    // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the
1968    // eightbyte is passed in the upper half of the last used SSE
1969    // register.  This only happens when 128-bit vectors are passed.
1970  case SSEUp:
1971    assert(Lo == SSE && "Unexpected SSEUp classification");
1972    ResType = GetByteVectorType(Ty);
1973    break;
1974  }
1975
1976  // If a high part was specified, merge it together with the low part.  It is
1977  // known to pass in the high eightbyte of the result.  We do this by forming a
1978  // first class struct aggregate with the high and low part: {low, high}
1979  if (HighPart)
1980    ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getTargetData());
1981
1982  return ABIArgInfo::getDirect(ResType);
1983}
1984
1985void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
1986
1987  FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
1988
1989  // Keep track of the number of assigned registers.
1990  unsigned freeIntRegs = 6, freeSSERegs = 8;
1991
1992  // If the return value is indirect, then the hidden argument is consuming one
1993  // integer register.
1994  if (FI.getReturnInfo().isIndirect())
1995    --freeIntRegs;
1996
1997  // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers
1998  // get assigned (in left-to-right order) for passing as follows...
1999  for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
2000       it != ie; ++it) {
2001    unsigned neededInt, neededSSE;
2002    it->info = classifyArgumentType(it->type, neededInt, neededSSE);
2003
2004    // AMD64-ABI 3.2.3p3: If there are no registers available for any
2005    // eightbyte of an argument, the whole argument is passed on the
2006    // stack. If registers have already been assigned for some
2007    // eightbytes of such an argument, the assignments get reverted.
2008    if (freeIntRegs >= neededInt && freeSSERegs >= neededSSE) {
2009      freeIntRegs -= neededInt;
2010      freeSSERegs -= neededSSE;
2011    } else {
2012      it->info = getIndirectResult(it->type);
2013    }
2014  }
2015}
2016
2017static llvm::Value *EmitVAArgFromMemory(llvm::Value *VAListAddr,
2018                                        QualType Ty,
2019                                        CodeGenFunction &CGF) {
2020  llvm::Value *overflow_arg_area_p =
2021    CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_p");
2022  llvm::Value *overflow_arg_area =
2023    CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area");
2024
2025  // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16
2026  // byte boundary if alignment needed by type exceeds 8 byte boundary.
2027  // It isn't stated explicitly in the standard, but in practice we use
2028  // alignment greater than 16 where necessary.
2029  uint64_t Align = CGF.getContext().getTypeAlign(Ty) / 8;
2030  if (Align > 8) {
2031    // overflow_arg_area = (overflow_arg_area + align - 1) & -align;
2032    llvm::Value *Offset =
2033      llvm::ConstantInt::get(CGF.Int64Ty, Align - 1);
2034    overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset);
2035    llvm::Value *AsInt = CGF.Builder.CreatePtrToInt(overflow_arg_area,
2036                                                    CGF.Int64Ty);
2037    llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int64Ty, -(uint64_t)Align);
2038    overflow_arg_area =
2039      CGF.Builder.CreateIntToPtr(CGF.Builder.CreateAnd(AsInt, Mask),
2040                                 overflow_arg_area->getType(),
2041                                 "overflow_arg_area.align");
2042  }
2043
2044  // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area.
2045  llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
2046  llvm::Value *Res =
2047    CGF.Builder.CreateBitCast(overflow_arg_area,
2048                              llvm::PointerType::getUnqual(LTy));
2049
2050  // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to:
2051  // l->overflow_arg_area + sizeof(type).
2052  // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to
2053  // an 8 byte boundary.
2054
2055  uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8;
2056  llvm::Value *Offset =
2057      llvm::ConstantInt::get(CGF.Int32Ty, (SizeInBytes + 7)  & ~7);
2058  overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset,
2059                                            "overflow_arg_area.next");
2060  CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p);
2061
2062  // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type.
2063  return Res;
2064}
2065
2066llvm::Value *X86_64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2067                                      CodeGenFunction &CGF) const {
2068  llvm::LLVMContext &VMContext = CGF.getLLVMContext();
2069
2070  // Assume that va_list type is correct; should be pointer to LLVM type:
2071  // struct {
2072  //   i32 gp_offset;
2073  //   i32 fp_offset;
2074  //   i8* overflow_arg_area;
2075  //   i8* reg_save_area;
2076  // };
2077  unsigned neededInt, neededSSE;
2078
2079  Ty = CGF.getContext().getCanonicalType(Ty);
2080  ABIArgInfo AI = classifyArgumentType(Ty, neededInt, neededSSE);
2081
2082  // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed
2083  // in the registers. If not go to step 7.
2084  if (!neededInt && !neededSSE)
2085    return EmitVAArgFromMemory(VAListAddr, Ty, CGF);
2086
2087  // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of
2088  // general purpose registers needed to pass type and num_fp to hold
2089  // the number of floating point registers needed.
2090
2091  // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into
2092  // registers. In the case: l->gp_offset > 48 - num_gp * 8 or
2093  // l->fp_offset > 304 - num_fp * 16 go to step 7.
2094  //
2095  // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of
2096  // register save space).
2097
2098  llvm::Value *InRegs = 0;
2099  llvm::Value *gp_offset_p = 0, *gp_offset = 0;
2100  llvm::Value *fp_offset_p = 0, *fp_offset = 0;
2101  if (neededInt) {
2102    gp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "gp_offset_p");
2103    gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset");
2104    InRegs = llvm::ConstantInt::get(CGF.Int32Ty, 48 - neededInt * 8);
2105    InRegs = CGF.Builder.CreateICmpULE(gp_offset, InRegs, "fits_in_gp");
2106  }
2107
2108  if (neededSSE) {
2109    fp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 1, "fp_offset_p");
2110    fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset");
2111    llvm::Value *FitsInFP =
2112      llvm::ConstantInt::get(CGF.Int32Ty, 176 - neededSSE * 16);
2113    FitsInFP = CGF.Builder.CreateICmpULE(fp_offset, FitsInFP, "fits_in_fp");
2114    InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP;
2115  }
2116
2117  llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
2118  llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
2119  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
2120  CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);
2121
2122  // Emit code to load the value if it was passed in registers.
2123
2124  CGF.EmitBlock(InRegBlock);
2125
2126  // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with
2127  // an offset of l->gp_offset and/or l->fp_offset. This may require
2128  // copying to a temporary location in case the parameter is passed
2129  // in different register classes or requires an alignment greater
2130  // than 8 for general purpose registers and 16 for XMM registers.
2131  //
2132  // FIXME: This really results in shameful code when we end up needing to
2133  // collect arguments from different places; often what should result in a
2134  // simple assembling of a structure from scattered addresses has many more
2135  // loads than necessary. Can we clean this up?
2136  llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
2137  llvm::Value *RegAddr =
2138    CGF.Builder.CreateLoad(CGF.Builder.CreateStructGEP(VAListAddr, 3),
2139                           "reg_save_area");
2140  if (neededInt && neededSSE) {
2141    // FIXME: Cleanup.
2142    assert(AI.isDirect() && "Unexpected ABI info for mixed regs");
2143    llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType());
2144    llvm::Value *Tmp = CGF.CreateTempAlloca(ST);
2145    assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs");
2146    llvm::Type *TyLo = ST->getElementType(0);
2147    llvm::Type *TyHi = ST->getElementType(1);
2148    assert((TyLo->isFPOrFPVectorTy() ^ TyHi->isFPOrFPVectorTy()) &&
2149           "Unexpected ABI info for mixed regs");
2150    llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo);
2151    llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi);
2152    llvm::Value *GPAddr = CGF.Builder.CreateGEP(RegAddr, gp_offset);
2153    llvm::Value *FPAddr = CGF.Builder.CreateGEP(RegAddr, fp_offset);
2154    llvm::Value *RegLoAddr = TyLo->isFloatingPointTy() ? FPAddr : GPAddr;
2155    llvm::Value *RegHiAddr = TyLo->isFloatingPointTy() ? GPAddr : FPAddr;
2156    llvm::Value *V =
2157      CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegLoAddr, PTyLo));
2158    CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0));
2159    V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegHiAddr, PTyHi));
2160    CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1));
2161
2162    RegAddr = CGF.Builder.CreateBitCast(Tmp,
2163                                        llvm::PointerType::getUnqual(LTy));
2164  } else if (neededInt) {
2165    RegAddr = CGF.Builder.CreateGEP(RegAddr, gp_offset);
2166    RegAddr = CGF.Builder.CreateBitCast(RegAddr,
2167                                        llvm::PointerType::getUnqual(LTy));
2168  } else if (neededSSE == 1) {
2169    RegAddr = CGF.Builder.CreateGEP(RegAddr, fp_offset);
2170    RegAddr = CGF.Builder.CreateBitCast(RegAddr,
2171                                        llvm::PointerType::getUnqual(LTy));
2172  } else {
2173    assert(neededSSE == 2 && "Invalid number of needed registers!");
2174    // SSE registers are spaced 16 bytes apart in the register save
2175    // area, we need to collect the two eightbytes together.
2176    llvm::Value *RegAddrLo = CGF.Builder.CreateGEP(RegAddr, fp_offset);
2177    llvm::Value *RegAddrHi = CGF.Builder.CreateConstGEP1_32(RegAddrLo, 16);
2178    llvm::Type *DoubleTy = llvm::Type::getDoubleTy(VMContext);
2179    llvm::Type *DblPtrTy =
2180      llvm::PointerType::getUnqual(DoubleTy);
2181    llvm::StructType *ST = llvm::StructType::get(DoubleTy,
2182                                                       DoubleTy, NULL);
2183    llvm::Value *V, *Tmp = CGF.CreateTempAlloca(ST);
2184    V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegAddrLo,
2185                                                         DblPtrTy));
2186    CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0));
2187    V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegAddrHi,
2188                                                         DblPtrTy));
2189    CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1));
2190    RegAddr = CGF.Builder.CreateBitCast(Tmp,
2191                                        llvm::PointerType::getUnqual(LTy));
2192  }
2193
2194  // AMD64-ABI 3.5.7p5: Step 5. Set:
2195  // l->gp_offset = l->gp_offset + num_gp * 8
2196  // l->fp_offset = l->fp_offset + num_fp * 16.
2197  if (neededInt) {
2198    llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededInt * 8);
2199    CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset),
2200                            gp_offset_p);
2201  }
2202  if (neededSSE) {
2203    llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededSSE * 16);
2204    CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset),
2205                            fp_offset_p);
2206  }
2207  CGF.EmitBranch(ContBlock);
2208
2209  // Emit code to load the value if it was passed in memory.
2210
2211  CGF.EmitBlock(InMemBlock);
2212  llvm::Value *MemAddr = EmitVAArgFromMemory(VAListAddr, Ty, CGF);
2213
2214  // Return the appropriate result.
2215
2216  CGF.EmitBlock(ContBlock);
2217  llvm::PHINode *ResAddr = CGF.Builder.CreatePHI(RegAddr->getType(), 2,
2218                                                 "vaarg.addr");
2219  ResAddr->addIncoming(RegAddr, InRegBlock);
2220  ResAddr->addIncoming(MemAddr, InMemBlock);
2221  return ResAddr;
2222}
2223
2224ABIArgInfo WinX86_64ABIInfo::classify(QualType Ty) const {
2225
2226  if (Ty->isVoidType())
2227    return ABIArgInfo::getIgnore();
2228
2229  if (const EnumType *EnumTy = Ty->getAs<EnumType>())
2230    Ty = EnumTy->getDecl()->getIntegerType();
2231
2232  uint64_t Size = getContext().getTypeSize(Ty);
2233
2234  if (const RecordType *RT = Ty->getAs<RecordType>()) {
2235    if (hasNonTrivialDestructorOrCopyConstructor(RT) ||
2236        RT->getDecl()->hasFlexibleArrayMember())
2237      return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
2238
2239    // FIXME: mingw-w64-gcc emits 128-bit struct as i128
2240    if (Size == 128 &&
2241        getContext().getTargetInfo().getTriple().getOS() == llvm::Triple::MinGW32)
2242      return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
2243                                                          Size));
2244
2245    // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is
2246    // not 1, 2, 4, or 8 bytes, must be passed by reference."
2247    if (Size <= 64 &&
2248        (Size & (Size - 1)) == 0)
2249      return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
2250                                                          Size));
2251
2252    return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
2253  }
2254
2255  if (Ty->isPromotableIntegerType())
2256    return ABIArgInfo::getExtend();
2257
2258  return ABIArgInfo::getDirect();
2259}
2260
2261void WinX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
2262
2263  QualType RetTy = FI.getReturnType();
2264  FI.getReturnInfo() = classify(RetTy);
2265
2266  for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
2267       it != ie; ++it)
2268    it->info = classify(it->type);
2269}
2270
2271llvm::Value *WinX86_64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2272                                      CodeGenFunction &CGF) const {
2273  llvm::Type *BP = llvm::Type::getInt8PtrTy(CGF.getLLVMContext());
2274  llvm::Type *BPP = llvm::PointerType::getUnqual(BP);
2275
2276  CGBuilderTy &Builder = CGF.Builder;
2277  llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP,
2278                                                       "ap");
2279  llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
2280  llvm::Type *PTy =
2281    llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
2282  llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
2283
2284  uint64_t Offset =
2285    llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 8);
2286  llvm::Value *NextAddr =
2287    Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
2288                      "ap.next");
2289  Builder.CreateStore(NextAddr, VAListAddrAsBPP);
2290
2291  return AddrTyped;
2292}
2293
2294// PowerPC-32
2295
2296namespace {
2297class PPC32TargetCodeGenInfo : public DefaultTargetCodeGenInfo {
2298public:
2299  PPC32TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {}
2300
2301  int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const {
2302    // This is recovered from gcc output.
2303    return 1; // r1 is the dedicated stack pointer
2304  }
2305
2306  bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2307                               llvm::Value *Address) const;
2308};
2309
2310}
2311
2312bool
2313PPC32TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2314                                                llvm::Value *Address) const {
2315  // This is calculated from the LLVM and GCC tables and verified
2316  // against gcc output.  AFAIK all ABIs use the same encoding.
2317
2318  CodeGen::CGBuilderTy &Builder = CGF.Builder;
2319  llvm::LLVMContext &Context = CGF.getLLVMContext();
2320
2321  llvm::IntegerType *i8 = llvm::Type::getInt8Ty(Context);
2322  llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
2323  llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
2324  llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16);
2325
2326  // 0-31: r0-31, the 4-byte general-purpose registers
2327  AssignToArrayRange(Builder, Address, Four8, 0, 31);
2328
2329  // 32-63: fp0-31, the 8-byte floating-point registers
2330  AssignToArrayRange(Builder, Address, Eight8, 32, 63);
2331
2332  // 64-76 are various 4-byte special-purpose registers:
2333  // 64: mq
2334  // 65: lr
2335  // 66: ctr
2336  // 67: ap
2337  // 68-75 cr0-7
2338  // 76: xer
2339  AssignToArrayRange(Builder, Address, Four8, 64, 76);
2340
2341  // 77-108: v0-31, the 16-byte vector registers
2342  AssignToArrayRange(Builder, Address, Sixteen8, 77, 108);
2343
2344  // 109: vrsave
2345  // 110: vscr
2346  // 111: spe_acc
2347  // 112: spefscr
2348  // 113: sfp
2349  AssignToArrayRange(Builder, Address, Four8, 109, 113);
2350
2351  return false;
2352}
2353
2354
2355//===----------------------------------------------------------------------===//
2356// ARM ABI Implementation
2357//===----------------------------------------------------------------------===//
2358
2359namespace {
2360
2361class ARMABIInfo : public ABIInfo {
2362public:
2363  enum ABIKind {
2364    APCS = 0,
2365    AAPCS = 1,
2366    AAPCS_VFP
2367  };
2368
2369private:
2370  ABIKind Kind;
2371
2372public:
2373  ARMABIInfo(CodeGenTypes &CGT, ABIKind _Kind) : ABIInfo(CGT), Kind(_Kind) {}
2374
2375  bool isEABI() const {
2376    StringRef Env = getContext().getTargetInfo().getTriple().getEnvironmentName();
2377    return (Env == "gnueabi" || Env == "eabi");
2378  }
2379
2380private:
2381  ABIKind getABIKind() const { return Kind; }
2382
2383  ABIArgInfo classifyReturnType(QualType RetTy) const;
2384  ABIArgInfo classifyArgumentType(QualType RetTy) const;
2385
2386  virtual void computeInfo(CGFunctionInfo &FI) const;
2387
2388  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2389                                 CodeGenFunction &CGF) const;
2390};
2391
2392class ARMTargetCodeGenInfo : public TargetCodeGenInfo {
2393public:
2394  ARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K)
2395    :TargetCodeGenInfo(new ARMABIInfo(CGT, K)) {}
2396
2397  const ARMABIInfo &getABIInfo() const {
2398    return static_cast<const ARMABIInfo&>(TargetCodeGenInfo::getABIInfo());
2399  }
2400
2401  int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const {
2402    return 13;
2403  }
2404
2405  StringRef getARCRetainAutoreleasedReturnValueMarker() const {
2406    return "mov\tr7, r7\t\t@ marker for objc_retainAutoreleaseReturnValue";
2407  }
2408
2409  bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2410                               llvm::Value *Address) const {
2411    CodeGen::CGBuilderTy &Builder = CGF.Builder;
2412    llvm::LLVMContext &Context = CGF.getLLVMContext();
2413
2414    llvm::IntegerType *i8 = llvm::Type::getInt8Ty(Context);
2415    llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
2416
2417    // 0-15 are the 16 integer registers.
2418    AssignToArrayRange(Builder, Address, Four8, 0, 15);
2419
2420    return false;
2421  }
2422
2423  unsigned getSizeOfUnwindException() const {
2424    if (getABIInfo().isEABI()) return 88;
2425    return TargetCodeGenInfo::getSizeOfUnwindException();
2426  }
2427};
2428
2429}
2430
2431void ARMABIInfo::computeInfo(CGFunctionInfo &FI) const {
2432  FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
2433  for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
2434       it != ie; ++it)
2435    it->info = classifyArgumentType(it->type);
2436
2437  // Always honor user-specified calling convention.
2438  if (FI.getCallingConvention() != llvm::CallingConv::C)
2439    return;
2440
2441  // Calling convention as default by an ABI.
2442  llvm::CallingConv::ID DefaultCC;
2443  if (isEABI())
2444    DefaultCC = llvm::CallingConv::ARM_AAPCS;
2445  else
2446    DefaultCC = llvm::CallingConv::ARM_APCS;
2447
2448  // If user did not ask for specific calling convention explicitly (e.g. via
2449  // pcs attribute), set effective calling convention if it's different than ABI
2450  // default.
2451  switch (getABIKind()) {
2452  case APCS:
2453    if (DefaultCC != llvm::CallingConv::ARM_APCS)
2454      FI.setEffectiveCallingConvention(llvm::CallingConv::ARM_APCS);
2455    break;
2456  case AAPCS:
2457    if (DefaultCC != llvm::CallingConv::ARM_AAPCS)
2458      FI.setEffectiveCallingConvention(llvm::CallingConv::ARM_AAPCS);
2459    break;
2460  case AAPCS_VFP:
2461    if (DefaultCC != llvm::CallingConv::ARM_AAPCS_VFP)
2462      FI.setEffectiveCallingConvention(llvm::CallingConv::ARM_AAPCS_VFP);
2463    break;
2464  }
2465}
2466
2467/// isHomogeneousAggregate - Return true if a type is an AAPCS-VFP homogeneous
2468/// aggregate.  If HAMembers is non-null, the number of base elements
2469/// contained in the type is returned through it; this is used for the
2470/// recursive calls that check aggregate component types.
2471static bool isHomogeneousAggregate(QualType Ty, const Type *&Base,
2472                                   ASTContext &Context,
2473                                   uint64_t *HAMembers = 0) {
2474  uint64_t Members;
2475  if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
2476    if (!isHomogeneousAggregate(AT->getElementType(), Base, Context, &Members))
2477      return false;
2478    Members *= AT->getSize().getZExtValue();
2479  } else if (const RecordType *RT = Ty->getAs<RecordType>()) {
2480    const RecordDecl *RD = RT->getDecl();
2481    if (RD->isUnion() || RD->hasFlexibleArrayMember())
2482      return false;
2483    if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
2484      if (!CXXRD->isAggregate())
2485        return false;
2486    }
2487    Members = 0;
2488    for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
2489         i != e; ++i) {
2490      const FieldDecl *FD = *i;
2491      uint64_t FldMembers;
2492      if (!isHomogeneousAggregate(FD->getType(), Base, Context, &FldMembers))
2493        return false;
2494      Members += FldMembers;
2495    }
2496  } else {
2497    Members = 1;
2498    if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
2499      Members = 2;
2500      Ty = CT->getElementType();
2501    }
2502
2503    // Homogeneous aggregates for AAPCS-VFP must have base types of float,
2504    // double, or 64-bit or 128-bit vectors.
2505    if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
2506      if (BT->getKind() != BuiltinType::Float &&
2507          BT->getKind() != BuiltinType::Double)
2508        return false;
2509    } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
2510      unsigned VecSize = Context.getTypeSize(VT);
2511      if (VecSize != 64 && VecSize != 128)
2512        return false;
2513    } else {
2514      return false;
2515    }
2516
2517    // The base type must be the same for all members.  Vector types of the
2518    // same total size are treated as being equivalent here.
2519    const Type *TyPtr = Ty.getTypePtr();
2520    if (!Base)
2521      Base = TyPtr;
2522    if (Base != TyPtr &&
2523        (!Base->isVectorType() || !TyPtr->isVectorType() ||
2524         Context.getTypeSize(Base) != Context.getTypeSize(TyPtr)))
2525      return false;
2526  }
2527
2528  // Homogeneous Aggregates can have at most 4 members of the base type.
2529  if (HAMembers)
2530    *HAMembers = Members;
2531  return (Members <= 4);
2532}
2533
2534ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty) const {
2535  if (!isAggregateTypeForABI(Ty)) {
2536    // Treat an enum type as its underlying type.
2537    if (const EnumType *EnumTy = Ty->getAs<EnumType>())
2538      Ty = EnumTy->getDecl()->getIntegerType();
2539
2540    return (Ty->isPromotableIntegerType() ?
2541            ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
2542  }
2543
2544  // Ignore empty records.
2545  if (isEmptyRecord(getContext(), Ty, true))
2546    return ABIArgInfo::getIgnore();
2547
2548  // Structures with either a non-trivial destructor or a non-trivial
2549  // copy constructor are always indirect.
2550  if (isRecordWithNonTrivialDestructorOrCopyConstructor(Ty))
2551    return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
2552
2553  if (getABIKind() == ARMABIInfo::AAPCS_VFP) {
2554    // Homogeneous Aggregates need to be expanded.
2555    const Type *Base = 0;
2556    if (isHomogeneousAggregate(Ty, Base, getContext()))
2557      return ABIArgInfo::getExpand();
2558  }
2559
2560  // Otherwise, pass by coercing to a structure of the appropriate size.
2561  //
2562  // FIXME: This is kind of nasty... but there isn't much choice because the ARM
2563  // backend doesn't support byval.
2564  // FIXME: This doesn't handle alignment > 64 bits.
2565  llvm::Type* ElemTy;
2566  unsigned SizeRegs;
2567  if (getContext().getTypeAlign(Ty) > 32) {
2568    ElemTy = llvm::Type::getInt64Ty(getVMContext());
2569    SizeRegs = (getContext().getTypeSize(Ty) + 63) / 64;
2570  } else {
2571    ElemTy = llvm::Type::getInt32Ty(getVMContext());
2572    SizeRegs = (getContext().getTypeSize(Ty) + 31) / 32;
2573  }
2574
2575  llvm::Type *STy =
2576    llvm::StructType::get(llvm::ArrayType::get(ElemTy, SizeRegs), NULL);
2577  return ABIArgInfo::getDirect(STy);
2578}
2579
2580static bool isIntegerLikeType(QualType Ty, ASTContext &Context,
2581                              llvm::LLVMContext &VMContext) {
2582  // APCS, C Language Calling Conventions, Non-Simple Return Values: A structure
2583  // is called integer-like if its size is less than or equal to one word, and
2584  // the offset of each of its addressable sub-fields is zero.
2585
2586  uint64_t Size = Context.getTypeSize(Ty);
2587
2588  // Check that the type fits in a word.
2589  if (Size > 32)
2590    return false;
2591
2592  // FIXME: Handle vector types!
2593  if (Ty->isVectorType())
2594    return false;
2595
2596  // Float types are never treated as "integer like".
2597  if (Ty->isRealFloatingType())
2598    return false;
2599
2600  // If this is a builtin or pointer type then it is ok.
2601  if (Ty->getAs<BuiltinType>() || Ty->isPointerType())
2602    return true;
2603
2604  // Small complex integer types are "integer like".
2605  if (const ComplexType *CT = Ty->getAs<ComplexType>())
2606    return isIntegerLikeType(CT->getElementType(), Context, VMContext);
2607
2608  // Single element and zero sized arrays should be allowed, by the definition
2609  // above, but they are not.
2610
2611  // Otherwise, it must be a record type.
2612  const RecordType *RT = Ty->getAs<RecordType>();
2613  if (!RT) return false;
2614
2615  // Ignore records with flexible arrays.
2616  const RecordDecl *RD = RT->getDecl();
2617  if (RD->hasFlexibleArrayMember())
2618    return false;
2619
2620  // Check that all sub-fields are at offset 0, and are themselves "integer
2621  // like".
2622  const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
2623
2624  bool HadField = false;
2625  unsigned idx = 0;
2626  for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
2627       i != e; ++i, ++idx) {
2628    const FieldDecl *FD = *i;
2629
2630    // Bit-fields are not addressable, we only need to verify they are "integer
2631    // like". We still have to disallow a subsequent non-bitfield, for example:
2632    //   struct { int : 0; int x }
2633    // is non-integer like according to gcc.
2634    if (FD->isBitField()) {
2635      if (!RD->isUnion())
2636        HadField = true;
2637
2638      if (!isIntegerLikeType(FD->getType(), Context, VMContext))
2639        return false;
2640
2641      continue;
2642    }
2643
2644    // Check if this field is at offset 0.
2645    if (Layout.getFieldOffset(idx) != 0)
2646      return false;
2647
2648    if (!isIntegerLikeType(FD->getType(), Context, VMContext))
2649      return false;
2650
2651    // Only allow at most one field in a structure. This doesn't match the
2652    // wording above, but follows gcc in situations with a field following an
2653    // empty structure.
2654    if (!RD->isUnion()) {
2655      if (HadField)
2656        return false;
2657
2658      HadField = true;
2659    }
2660  }
2661
2662  return true;
2663}
2664
2665ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy) const {
2666  if (RetTy->isVoidType())
2667    return ABIArgInfo::getIgnore();
2668
2669  // Large vector types should be returned via memory.
2670  if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128)
2671    return ABIArgInfo::getIndirect(0);
2672
2673  if (!isAggregateTypeForABI(RetTy)) {
2674    // Treat an enum type as its underlying type.
2675    if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
2676      RetTy = EnumTy->getDecl()->getIntegerType();
2677
2678    return (RetTy->isPromotableIntegerType() ?
2679            ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
2680  }
2681
2682  // Structures with either a non-trivial destructor or a non-trivial
2683  // copy constructor are always indirect.
2684  if (isRecordWithNonTrivialDestructorOrCopyConstructor(RetTy))
2685    return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
2686
2687  // Are we following APCS?
2688  if (getABIKind() == APCS) {
2689    if (isEmptyRecord(getContext(), RetTy, false))
2690      return ABIArgInfo::getIgnore();
2691
2692    // Complex types are all returned as packed integers.
2693    //
2694    // FIXME: Consider using 2 x vector types if the back end handles them
2695    // correctly.
2696    if (RetTy->isAnyComplexType())
2697      return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
2698                                              getContext().getTypeSize(RetTy)));
2699
2700    // Integer like structures are returned in r0.
2701    if (isIntegerLikeType(RetTy, getContext(), getVMContext())) {
2702      // Return in the smallest viable integer type.
2703      uint64_t Size = getContext().getTypeSize(RetTy);
2704      if (Size <= 8)
2705        return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
2706      if (Size <= 16)
2707        return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
2708      return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
2709    }
2710
2711    // Otherwise return in memory.
2712    return ABIArgInfo::getIndirect(0);
2713  }
2714
2715  // Otherwise this is an AAPCS variant.
2716
2717  if (isEmptyRecord(getContext(), RetTy, true))
2718    return ABIArgInfo::getIgnore();
2719
2720  // Check for homogeneous aggregates with AAPCS-VFP.
2721  if (getABIKind() == AAPCS_VFP) {
2722    const Type *Base = 0;
2723    if (isHomogeneousAggregate(RetTy, Base, getContext()))
2724      // Homogeneous Aggregates are returned directly.
2725      return ABIArgInfo::getDirect();
2726  }
2727
2728  // Aggregates <= 4 bytes are returned in r0; other aggregates
2729  // are returned indirectly.
2730  uint64_t Size = getContext().getTypeSize(RetTy);
2731  if (Size <= 32) {
2732    // Return in the smallest viable integer type.
2733    if (Size <= 8)
2734      return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
2735    if (Size <= 16)
2736      return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
2737    return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
2738  }
2739
2740  return ABIArgInfo::getIndirect(0);
2741}
2742
2743llvm::Value *ARMABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2744                                   CodeGenFunction &CGF) const {
2745  llvm::Type *BP = llvm::Type::getInt8PtrTy(CGF.getLLVMContext());
2746  llvm::Type *BPP = llvm::PointerType::getUnqual(BP);
2747
2748  CGBuilderTy &Builder = CGF.Builder;
2749  llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP,
2750                                                       "ap");
2751  llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
2752  // Handle address alignment for type alignment > 32 bits
2753  uint64_t TyAlign = CGF.getContext().getTypeAlign(Ty) / 8;
2754  if (TyAlign > 4) {
2755    assert((TyAlign & (TyAlign - 1)) == 0 &&
2756           "Alignment is not power of 2!");
2757    llvm::Value *AddrAsInt = Builder.CreatePtrToInt(Addr, CGF.Int32Ty);
2758    AddrAsInt = Builder.CreateAdd(AddrAsInt, Builder.getInt32(TyAlign - 1));
2759    AddrAsInt = Builder.CreateAnd(AddrAsInt, Builder.getInt32(~(TyAlign - 1)));
2760    Addr = Builder.CreateIntToPtr(AddrAsInt, BP);
2761  }
2762  llvm::Type *PTy =
2763    llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
2764  llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
2765
2766  uint64_t Offset =
2767    llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 4);
2768  llvm::Value *NextAddr =
2769    Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
2770                      "ap.next");
2771  Builder.CreateStore(NextAddr, VAListAddrAsBPP);
2772
2773  return AddrTyped;
2774}
2775
2776//===----------------------------------------------------------------------===//
2777// PTX ABI Implementation
2778//===----------------------------------------------------------------------===//
2779
2780namespace {
2781
2782class PTXABIInfo : public ABIInfo {
2783public:
2784  PTXABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
2785
2786  ABIArgInfo classifyReturnType(QualType RetTy) const;
2787  ABIArgInfo classifyArgumentType(QualType Ty) const;
2788
2789  virtual void computeInfo(CGFunctionInfo &FI) const;
2790  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2791                                 CodeGenFunction &CFG) const;
2792};
2793
2794class PTXTargetCodeGenInfo : public TargetCodeGenInfo {
2795public:
2796  PTXTargetCodeGenInfo(CodeGenTypes &CGT)
2797    : TargetCodeGenInfo(new PTXABIInfo(CGT)) {}
2798
2799  virtual void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
2800                                   CodeGen::CodeGenModule &M) const;
2801};
2802
2803ABIArgInfo PTXABIInfo::classifyReturnType(QualType RetTy) const {
2804  if (RetTy->isVoidType())
2805    return ABIArgInfo::getIgnore();
2806  if (isAggregateTypeForABI(RetTy))
2807    return ABIArgInfo::getIndirect(0);
2808  return ABIArgInfo::getDirect();
2809}
2810
2811ABIArgInfo PTXABIInfo::classifyArgumentType(QualType Ty) const {
2812  if (isAggregateTypeForABI(Ty))
2813    return ABIArgInfo::getIndirect(0);
2814
2815  return ABIArgInfo::getDirect();
2816}
2817
2818void PTXABIInfo::computeInfo(CGFunctionInfo &FI) const {
2819  FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
2820  for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
2821       it != ie; ++it)
2822    it->info = classifyArgumentType(it->type);
2823
2824  // Always honor user-specified calling convention.
2825  if (FI.getCallingConvention() != llvm::CallingConv::C)
2826    return;
2827
2828  // Calling convention as default by an ABI.
2829  llvm::CallingConv::ID DefaultCC;
2830  const LangOptions &LangOpts = getContext().getLangOptions();
2831  if (LangOpts.OpenCL || LangOpts.CUDA) {
2832    // If we are in OpenCL or CUDA mode, then default to device functions
2833    DefaultCC = llvm::CallingConv::PTX_Device;
2834  } else {
2835    // If we are in standard C/C++ mode, use the triple to decide on the default
2836    StringRef Env =
2837      getContext().getTargetInfo().getTriple().getEnvironmentName();
2838    if (Env == "device")
2839      DefaultCC = llvm::CallingConv::PTX_Device;
2840    else
2841      DefaultCC = llvm::CallingConv::PTX_Kernel;
2842  }
2843  FI.setEffectiveCallingConvention(DefaultCC);
2844
2845}
2846
2847llvm::Value *PTXABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2848                                   CodeGenFunction &CFG) const {
2849  llvm_unreachable("PTX does not support varargs");
2850  return 0;
2851}
2852
2853void PTXTargetCodeGenInfo::SetTargetAttributes(const Decl *D,
2854                                               llvm::GlobalValue *GV,
2855                                               CodeGen::CodeGenModule &M) const{
2856  const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
2857  if (!FD) return;
2858
2859  llvm::Function *F = cast<llvm::Function>(GV);
2860
2861  // Perform special handling in OpenCL mode
2862  if (M.getLangOptions().OpenCL) {
2863    // Use OpenCL function attributes to set proper calling conventions
2864    // By default, all functions are device functions
2865    if (FD->hasAttr<OpenCLKernelAttr>()) {
2866      // OpenCL __kernel functions get a kernel calling convention
2867      F->setCallingConv(llvm::CallingConv::PTX_Kernel);
2868      // And kernel functions are not subject to inlining
2869      F->addFnAttr(llvm::Attribute::NoInline);
2870    }
2871  }
2872
2873  // Perform special handling in CUDA mode.
2874  if (M.getLangOptions().CUDA) {
2875    // CUDA __global__ functions get a kernel calling convention.  Since
2876    // __global__ functions cannot be called from the device, we do not
2877    // need to set the noinline attribute.
2878    if (FD->getAttr<CUDAGlobalAttr>())
2879      F->setCallingConv(llvm::CallingConv::PTX_Kernel);
2880  }
2881}
2882
2883}
2884
2885//===----------------------------------------------------------------------===//
2886// MBlaze ABI Implementation
2887//===----------------------------------------------------------------------===//
2888
2889namespace {
2890
2891class MBlazeABIInfo : public ABIInfo {
2892public:
2893  MBlazeABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
2894
2895  bool isPromotableIntegerType(QualType Ty) const;
2896
2897  ABIArgInfo classifyReturnType(QualType RetTy) const;
2898  ABIArgInfo classifyArgumentType(QualType RetTy) const;
2899
2900  virtual void computeInfo(CGFunctionInfo &FI) const {
2901    FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
2902    for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
2903         it != ie; ++it)
2904      it->info = classifyArgumentType(it->type);
2905  }
2906
2907  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2908                                 CodeGenFunction &CGF) const;
2909};
2910
2911class MBlazeTargetCodeGenInfo : public TargetCodeGenInfo {
2912public:
2913  MBlazeTargetCodeGenInfo(CodeGenTypes &CGT)
2914    : TargetCodeGenInfo(new MBlazeABIInfo(CGT)) {}
2915  void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
2916                           CodeGen::CodeGenModule &M) const;
2917};
2918
2919}
2920
2921bool MBlazeABIInfo::isPromotableIntegerType(QualType Ty) const {
2922  // MBlaze ABI requires all 8 and 16 bit quantities to be extended.
2923  if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
2924    switch (BT->getKind()) {
2925    case BuiltinType::Bool:
2926    case BuiltinType::Char_S:
2927    case BuiltinType::Char_U:
2928    case BuiltinType::SChar:
2929    case BuiltinType::UChar:
2930    case BuiltinType::Short:
2931    case BuiltinType::UShort:
2932      return true;
2933    default:
2934      return false;
2935    }
2936  return false;
2937}
2938
2939llvm::Value *MBlazeABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2940                                      CodeGenFunction &CGF) const {
2941  // FIXME: Implement
2942  return 0;
2943}
2944
2945
2946ABIArgInfo MBlazeABIInfo::classifyReturnType(QualType RetTy) const {
2947  if (RetTy->isVoidType())
2948    return ABIArgInfo::getIgnore();
2949  if (isAggregateTypeForABI(RetTy))
2950    return ABIArgInfo::getIndirect(0);
2951
2952  return (isPromotableIntegerType(RetTy) ?
2953          ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
2954}
2955
2956ABIArgInfo MBlazeABIInfo::classifyArgumentType(QualType Ty) const {
2957  if (isAggregateTypeForABI(Ty))
2958    return ABIArgInfo::getIndirect(0);
2959
2960  return (isPromotableIntegerType(Ty) ?
2961          ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
2962}
2963
2964void MBlazeTargetCodeGenInfo::SetTargetAttributes(const Decl *D,
2965                                                  llvm::GlobalValue *GV,
2966                                                  CodeGen::CodeGenModule &M)
2967                                                  const {
2968  const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
2969  if (!FD) return;
2970
2971  llvm::CallingConv::ID CC = llvm::CallingConv::C;
2972  if (FD->hasAttr<MBlazeInterruptHandlerAttr>())
2973    CC = llvm::CallingConv::MBLAZE_INTR;
2974  else if (FD->hasAttr<MBlazeSaveVolatilesAttr>())
2975    CC = llvm::CallingConv::MBLAZE_SVOL;
2976
2977  if (CC != llvm::CallingConv::C) {
2978      // Handle 'interrupt_handler' attribute:
2979      llvm::Function *F = cast<llvm::Function>(GV);
2980
2981      // Step 1: Set ISR calling convention.
2982      F->setCallingConv(CC);
2983
2984      // Step 2: Add attributes goodness.
2985      F->addFnAttr(llvm::Attribute::NoInline);
2986  }
2987
2988  // Step 3: Emit _interrupt_handler alias.
2989  if (CC == llvm::CallingConv::MBLAZE_INTR)
2990    new llvm::GlobalAlias(GV->getType(), llvm::Function::ExternalLinkage,
2991                          "_interrupt_handler", GV, &M.getModule());
2992}
2993
2994
2995//===----------------------------------------------------------------------===//
2996// MSP430 ABI Implementation
2997//===----------------------------------------------------------------------===//
2998
2999namespace {
3000
3001class MSP430TargetCodeGenInfo : public TargetCodeGenInfo {
3002public:
3003  MSP430TargetCodeGenInfo(CodeGenTypes &CGT)
3004    : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
3005  void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
3006                           CodeGen::CodeGenModule &M) const;
3007};
3008
3009}
3010
3011void MSP430TargetCodeGenInfo::SetTargetAttributes(const Decl *D,
3012                                                  llvm::GlobalValue *GV,
3013                                             CodeGen::CodeGenModule &M) const {
3014  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
3015    if (const MSP430InterruptAttr *attr = FD->getAttr<MSP430InterruptAttr>()) {
3016      // Handle 'interrupt' attribute:
3017      llvm::Function *F = cast<llvm::Function>(GV);
3018
3019      // Step 1: Set ISR calling convention.
3020      F->setCallingConv(llvm::CallingConv::MSP430_INTR);
3021
3022      // Step 2: Add attributes goodness.
3023      F->addFnAttr(llvm::Attribute::NoInline);
3024
3025      // Step 3: Emit ISR vector alias.
3026      unsigned Num = attr->getNumber() + 0xffe0;
3027      new llvm::GlobalAlias(GV->getType(), llvm::Function::ExternalLinkage,
3028                            "vector_" + Twine::utohexstr(Num),
3029                            GV, &M.getModule());
3030    }
3031  }
3032}
3033
3034//===----------------------------------------------------------------------===//
3035// MIPS ABI Implementation.  This works for both little-endian and
3036// big-endian variants.
3037//===----------------------------------------------------------------------===//
3038
3039namespace {
3040class MipsABIInfo : public ABIInfo {
3041  bool IsO32;
3042  unsigned MinABIStackAlignInBytes;
3043  llvm::Type* HandleStructTy(QualType Ty) const;
3044public:
3045  MipsABIInfo(CodeGenTypes &CGT, bool _IsO32) :
3046    ABIInfo(CGT), IsO32(_IsO32), MinABIStackAlignInBytes(IsO32 ? 4 : 8) {}
3047
3048  ABIArgInfo classifyReturnType(QualType RetTy) const;
3049  ABIArgInfo classifyArgumentType(QualType RetTy) const;
3050  virtual void computeInfo(CGFunctionInfo &FI) const;
3051  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
3052                                 CodeGenFunction &CGF) const;
3053};
3054
3055class MIPSTargetCodeGenInfo : public TargetCodeGenInfo {
3056  unsigned SizeOfUnwindException;
3057public:
3058  MIPSTargetCodeGenInfo(CodeGenTypes &CGT, bool IsO32)
3059    : TargetCodeGenInfo(new MipsABIInfo(CGT, IsO32)),
3060      SizeOfUnwindException(IsO32 ? 24 : 32) {}
3061
3062  int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const {
3063    return 29;
3064  }
3065
3066  bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
3067                               llvm::Value *Address) const;
3068
3069  unsigned getSizeOfUnwindException() const {
3070    return SizeOfUnwindException;
3071  }
3072};
3073}
3074
3075// In N32/64, an aligned double precision floating point field is passed in
3076// a register.
3077llvm::Type* MipsABIInfo::HandleStructTy(QualType Ty) const {
3078  if (IsO32)
3079    return 0;
3080
3081  const RecordType *RT = Ty->getAsStructureType();
3082
3083  if (!RT)
3084    return 0;
3085
3086  const RecordDecl *RD = RT->getDecl();
3087  const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
3088  uint64_t StructSize = getContext().getTypeSize(Ty);
3089  assert(!(StructSize % 8) && "Size of structure must be multiple of 8.");
3090
3091  SmallVector<llvm::Type*, 8> ArgList;
3092  uint64_t LastOffset = 0;
3093  unsigned idx = 0;
3094  llvm::IntegerType *I64 = llvm::IntegerType::get(getVMContext(), 64);
3095
3096  for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
3097       i != e; ++i, ++idx) {
3098    const QualType Ty = (*i)->getType();
3099    const BuiltinType *BT = Ty->getAs<BuiltinType>();
3100
3101    if (!BT || BT->getKind() != BuiltinType::Double)
3102      continue;
3103
3104    uint64_t Offset = Layout.getFieldOffset(idx);
3105    if (Offset % 64) // Ignore doubles that are not aligned.
3106      continue;
3107
3108    // Add ((Offset - LastOffset) / 64) args of type i64.
3109    for (unsigned j = (Offset - LastOffset) / 64; j > 0; --j)
3110      ArgList.push_back(I64);
3111
3112    // Add double type.
3113    ArgList.push_back(llvm::Type::getDoubleTy(getVMContext()));
3114    LastOffset = Offset + 64;
3115  }
3116
3117  // This structure doesn't have an aligned double field.
3118  if (!LastOffset)
3119    return 0;
3120
3121  // Add ((StructSize - LastOffset) / 64) args of type i64.
3122  for (unsigned N = (StructSize - LastOffset) / 64; N; --N)
3123    ArgList.push_back(I64);
3124
3125  // If the size of the remainder is not zero, add one more integer type to
3126  // ArgList.
3127  unsigned R = (StructSize - LastOffset) % 64;
3128  if (R)
3129    ArgList.push_back(llvm::IntegerType::get(getVMContext(), R));
3130
3131  return llvm::StructType::get(getVMContext(), ArgList);
3132}
3133
3134ABIArgInfo MipsABIInfo::classifyArgumentType(QualType Ty) const {
3135  if (isAggregateTypeForABI(Ty)) {
3136    // Ignore empty aggregates.
3137    if (getContext().getTypeSize(Ty) == 0)
3138      return ABIArgInfo::getIgnore();
3139
3140    // Records with non trivial destructors/constructors should not be passed
3141    // by value.
3142    if (isRecordWithNonTrivialDestructorOrCopyConstructor(Ty))
3143      return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
3144
3145    llvm::Type *ResType;
3146    if ((ResType = HandleStructTy(Ty)))
3147      return ABIArgInfo::getDirect(ResType);
3148
3149    return ABIArgInfo::getIndirect(0);
3150  }
3151
3152  // Treat an enum type as its underlying type.
3153  if (const EnumType *EnumTy = Ty->getAs<EnumType>())
3154    Ty = EnumTy->getDecl()->getIntegerType();
3155
3156  return (Ty->isPromotableIntegerType() ?
3157          ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
3158}
3159
3160ABIArgInfo MipsABIInfo::classifyReturnType(QualType RetTy) const {
3161  if (RetTy->isVoidType())
3162    return ABIArgInfo::getIgnore();
3163
3164  if (isAggregateTypeForABI(RetTy)) {
3165    if ((IsO32 && RetTy->isAnyComplexType()) ||
3166        (!IsO32 && (getContext().getTypeSize(RetTy) <= 128)))
3167      return ABIArgInfo::getDirect();
3168
3169    return ABIArgInfo::getIndirect(0);
3170  }
3171
3172  // Treat an enum type as its underlying type.
3173  if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
3174    RetTy = EnumTy->getDecl()->getIntegerType();
3175
3176  return (RetTy->isPromotableIntegerType() ?
3177          ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
3178}
3179
3180void MipsABIInfo::computeInfo(CGFunctionInfo &FI) const {
3181  FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
3182  for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
3183       it != ie; ++it)
3184    it->info = classifyArgumentType(it->type);
3185}
3186
3187llvm::Value* MipsABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
3188                                    CodeGenFunction &CGF) const {
3189  llvm::Type *BP = llvm::Type::getInt8PtrTy(CGF.getLLVMContext());
3190  llvm::Type *BPP = llvm::PointerType::getUnqual(BP);
3191
3192  CGBuilderTy &Builder = CGF.Builder;
3193  llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap");
3194  llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
3195  unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8;
3196  llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
3197  llvm::Value *AddrTyped;
3198
3199  if (TypeAlign > MinABIStackAlignInBytes) {
3200    llvm::Value *AddrAsInt32 = CGF.Builder.CreatePtrToInt(Addr, CGF.Int32Ty);
3201    llvm::Value *Inc = llvm::ConstantInt::get(CGF.Int32Ty, TypeAlign - 1);
3202    llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int32Ty, -TypeAlign);
3203    llvm::Value *Add = CGF.Builder.CreateAdd(AddrAsInt32, Inc);
3204    llvm::Value *And = CGF.Builder.CreateAnd(Add, Mask);
3205    AddrTyped = CGF.Builder.CreateIntToPtr(And, PTy);
3206  }
3207  else
3208    AddrTyped = Builder.CreateBitCast(Addr, PTy);
3209
3210  llvm::Value *AlignedAddr = Builder.CreateBitCast(AddrTyped, BP);
3211  TypeAlign = std::max(TypeAlign, MinABIStackAlignInBytes);
3212  uint64_t Offset =
3213    llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, TypeAlign);
3214  llvm::Value *NextAddr =
3215    Builder.CreateGEP(AlignedAddr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
3216                      "ap.next");
3217  Builder.CreateStore(NextAddr, VAListAddrAsBPP);
3218
3219  return AddrTyped;
3220}
3221
3222bool
3223MIPSTargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
3224                                               llvm::Value *Address) const {
3225  // This information comes from gcc's implementation, which seems to
3226  // as canonical as it gets.
3227
3228  CodeGen::CGBuilderTy &Builder = CGF.Builder;
3229  llvm::LLVMContext &Context = CGF.getLLVMContext();
3230
3231  // Everything on MIPS is 4 bytes.  Double-precision FP registers
3232  // are aliased to pairs of single-precision FP registers.
3233  llvm::IntegerType *i8 = llvm::Type::getInt8Ty(Context);
3234  llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
3235
3236  // 0-31 are the general purpose registers, $0 - $31.
3237  // 32-63 are the floating-point registers, $f0 - $f31.
3238  // 64 and 65 are the multiply/divide registers, $hi and $lo.
3239  // 66 is the (notional, I think) register for signal-handler return.
3240  AssignToArrayRange(Builder, Address, Four8, 0, 65);
3241
3242  // 67-74 are the floating-point status registers, $fcc0 - $fcc7.
3243  // They are one bit wide and ignored here.
3244
3245  // 80-111 are the coprocessor 0 registers, $c0r0 - $c0r31.
3246  // (coprocessor 1 is the FP unit)
3247  // 112-143 are the coprocessor 2 registers, $c2r0 - $c2r31.
3248  // 144-175 are the coprocessor 3 registers, $c3r0 - $c3r31.
3249  // 176-181 are the DSP accumulator registers.
3250  AssignToArrayRange(Builder, Address, Four8, 80, 181);
3251
3252  return false;
3253}
3254
3255//===----------------------------------------------------------------------===//
3256// TCE ABI Implementation (see http://tce.cs.tut.fi). Uses mostly the defaults.
3257// Currently subclassed only to implement custom OpenCL C function attribute
3258// handling.
3259//===----------------------------------------------------------------------===//
3260
3261namespace {
3262
3263class TCETargetCodeGenInfo : public DefaultTargetCodeGenInfo {
3264public:
3265  TCETargetCodeGenInfo(CodeGenTypes &CGT)
3266    : DefaultTargetCodeGenInfo(CGT) {}
3267
3268  virtual void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
3269                                   CodeGen::CodeGenModule &M) const;
3270};
3271
3272void TCETargetCodeGenInfo::SetTargetAttributes(const Decl *D,
3273                                               llvm::GlobalValue *GV,
3274                                               CodeGen::CodeGenModule &M) const {
3275  const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
3276  if (!FD) return;
3277
3278  llvm::Function *F = cast<llvm::Function>(GV);
3279
3280  if (M.getLangOptions().OpenCL) {
3281    if (FD->hasAttr<OpenCLKernelAttr>()) {
3282      // OpenCL C Kernel functions are not subject to inlining
3283      F->addFnAttr(llvm::Attribute::NoInline);
3284
3285      if (FD->hasAttr<ReqdWorkGroupSizeAttr>()) {
3286
3287        // Convert the reqd_work_group_size() attributes to metadata.
3288        llvm::LLVMContext &Context = F->getContext();
3289        llvm::NamedMDNode *OpenCLMetadata =
3290            M.getModule().getOrInsertNamedMetadata("opencl.kernel_wg_size_info");
3291
3292        SmallVector<llvm::Value*, 5> Operands;
3293        Operands.push_back(F);
3294
3295        Operands.push_back(llvm::Constant::getIntegerValue(
3296                             llvm::Type::getInt32Ty(Context),
3297                             llvm::APInt(
3298                               32,
3299                               FD->getAttr<ReqdWorkGroupSizeAttr>()->getXDim())));
3300        Operands.push_back(llvm::Constant::getIntegerValue(
3301                             llvm::Type::getInt32Ty(Context),
3302                             llvm::APInt(
3303                               32,
3304                               FD->getAttr<ReqdWorkGroupSizeAttr>()->getYDim())));
3305        Operands.push_back(llvm::Constant::getIntegerValue(
3306                             llvm::Type::getInt32Ty(Context),
3307                             llvm::APInt(
3308                               32,
3309                               FD->getAttr<ReqdWorkGroupSizeAttr>()->getZDim())));
3310
3311        // Add a boolean constant operand for "required" (true) or "hint" (false)
3312        // for implementing the work_group_size_hint attr later. Currently
3313        // always true as the hint is not yet implemented.
3314        Operands.push_back(llvm::ConstantInt::getTrue(llvm::Type::getInt1Ty(Context)));
3315
3316        OpenCLMetadata->addOperand(llvm::MDNode::get(Context, Operands));
3317      }
3318    }
3319  }
3320}
3321
3322}
3323
3324//===----------------------------------------------------------------------===//
3325// Hexagon ABI Implementation
3326//===----------------------------------------------------------------------===//
3327
3328namespace {
3329
3330class HexagonABIInfo : public ABIInfo {
3331
3332
3333public:
3334  HexagonABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
3335
3336private:
3337
3338  ABIArgInfo classifyReturnType(QualType RetTy) const;
3339  ABIArgInfo classifyArgumentType(QualType RetTy) const;
3340
3341  virtual void computeInfo(CGFunctionInfo &FI) const;
3342
3343  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
3344                                 CodeGenFunction &CGF) const;
3345};
3346
3347class HexagonTargetCodeGenInfo : public TargetCodeGenInfo {
3348public:
3349  HexagonTargetCodeGenInfo(CodeGenTypes &CGT)
3350    :TargetCodeGenInfo(new HexagonABIInfo(CGT)) {}
3351
3352  int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const {
3353    return 29;
3354  }
3355};
3356
3357}
3358
3359void HexagonABIInfo::computeInfo(CGFunctionInfo &FI) const {
3360  FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
3361  for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
3362       it != ie; ++it)
3363    it->info = classifyArgumentType(it->type);
3364}
3365
3366ABIArgInfo HexagonABIInfo::classifyArgumentType(QualType Ty) const {
3367  if (!isAggregateTypeForABI(Ty)) {
3368    // Treat an enum type as its underlying type.
3369    if (const EnumType *EnumTy = Ty->getAs<EnumType>())
3370      Ty = EnumTy->getDecl()->getIntegerType();
3371
3372    return (Ty->isPromotableIntegerType() ?
3373            ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
3374  }
3375
3376  // Ignore empty records.
3377  if (isEmptyRecord(getContext(), Ty, true))
3378    return ABIArgInfo::getIgnore();
3379
3380  // Structures with either a non-trivial destructor or a non-trivial
3381  // copy constructor are always indirect.
3382  if (isRecordWithNonTrivialDestructorOrCopyConstructor(Ty))
3383    return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
3384
3385  uint64_t Size = getContext().getTypeSize(Ty);
3386  if (Size > 64)
3387    return ABIArgInfo::getIndirect(0, /*ByVal=*/true);
3388    // Pass in the smallest viable integer type.
3389  else if (Size > 32)
3390      return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext()));
3391  else if (Size > 16)
3392      return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
3393  else if (Size > 8)
3394      return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
3395  else
3396      return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
3397}
3398
3399ABIArgInfo HexagonABIInfo::classifyReturnType(QualType RetTy) const {
3400  if (RetTy->isVoidType())
3401    return ABIArgInfo::getIgnore();
3402
3403  // Large vector types should be returned via memory.
3404  if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 64)
3405    return ABIArgInfo::getIndirect(0);
3406
3407  if (!isAggregateTypeForABI(RetTy)) {
3408    // Treat an enum type as its underlying type.
3409    if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
3410      RetTy = EnumTy->getDecl()->getIntegerType();
3411
3412    return (RetTy->isPromotableIntegerType() ?
3413            ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
3414  }
3415
3416  // Structures with either a non-trivial destructor or a non-trivial
3417  // copy constructor are always indirect.
3418  if (isRecordWithNonTrivialDestructorOrCopyConstructor(RetTy))
3419    return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
3420
3421  if (isEmptyRecord(getContext(), RetTy, true))
3422    return ABIArgInfo::getIgnore();
3423
3424  // Aggregates <= 8 bytes are returned in r0; other aggregates
3425  // are returned indirectly.
3426  uint64_t Size = getContext().getTypeSize(RetTy);
3427  if (Size <= 64) {
3428    // Return in the smallest viable integer type.
3429    if (Size <= 8)
3430      return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
3431    if (Size <= 16)
3432      return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
3433    if (Size <= 32)
3434      return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
3435    return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext()));
3436  }
3437
3438  return ABIArgInfo::getIndirect(0, /*ByVal=*/true);
3439}
3440
3441llvm::Value *HexagonABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
3442                                   CodeGenFunction &CGF) const {
3443  // FIXME: Need to handle alignment
3444  llvm::Type *BP = llvm::Type::getInt8PtrTy(CGF.getLLVMContext());
3445  llvm::Type *BPP = llvm::PointerType::getUnqual(BP);
3446
3447  CGBuilderTy &Builder = CGF.Builder;
3448  llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP,
3449                                                       "ap");
3450  llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
3451  llvm::Type *PTy =
3452    llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
3453  llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
3454
3455  uint64_t Offset =
3456    llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 4);
3457  llvm::Value *NextAddr =
3458    Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
3459                      "ap.next");
3460  Builder.CreateStore(NextAddr, VAListAddrAsBPP);
3461
3462  return AddrTyped;
3463}
3464
3465
3466const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() {
3467  if (TheTargetCodeGenInfo)
3468    return *TheTargetCodeGenInfo;
3469
3470  const llvm::Triple &Triple = getContext().getTargetInfo().getTriple();
3471  switch (Triple.getArch()) {
3472  default:
3473    return *(TheTargetCodeGenInfo = new DefaultTargetCodeGenInfo(Types));
3474
3475  case llvm::Triple::mips:
3476  case llvm::Triple::mipsel:
3477    return *(TheTargetCodeGenInfo = new MIPSTargetCodeGenInfo(Types, true));
3478
3479  case llvm::Triple::mips64:
3480  case llvm::Triple::mips64el:
3481    return *(TheTargetCodeGenInfo = new MIPSTargetCodeGenInfo(Types, false));
3482
3483  case llvm::Triple::arm:
3484  case llvm::Triple::thumb:
3485    {
3486      ARMABIInfo::ABIKind Kind = ARMABIInfo::AAPCS;
3487
3488      if (strcmp(getContext().getTargetInfo().getABI(), "apcs-gnu") == 0)
3489        Kind = ARMABIInfo::APCS;
3490      else if (CodeGenOpts.FloatABI == "hard")
3491        Kind = ARMABIInfo::AAPCS_VFP;
3492
3493      return *(TheTargetCodeGenInfo = new ARMTargetCodeGenInfo(Types, Kind));
3494    }
3495
3496  case llvm::Triple::ppc:
3497    return *(TheTargetCodeGenInfo = new PPC32TargetCodeGenInfo(Types));
3498
3499  case llvm::Triple::ptx32:
3500  case llvm::Triple::ptx64:
3501    return *(TheTargetCodeGenInfo = new PTXTargetCodeGenInfo(Types));
3502
3503  case llvm::Triple::mblaze:
3504    return *(TheTargetCodeGenInfo = new MBlazeTargetCodeGenInfo(Types));
3505
3506  case llvm::Triple::msp430:
3507    return *(TheTargetCodeGenInfo = new MSP430TargetCodeGenInfo(Types));
3508
3509  case llvm::Triple::tce:
3510    return *(TheTargetCodeGenInfo = new TCETargetCodeGenInfo(Types));
3511
3512  case llvm::Triple::x86: {
3513    bool DisableMMX = strcmp(getContext().getTargetInfo().getABI(), "no-mmx") == 0;
3514
3515    if (Triple.isOSDarwin())
3516      return *(TheTargetCodeGenInfo =
3517               new X86_32TargetCodeGenInfo(Types, true, true, DisableMMX));
3518
3519    switch (Triple.getOS()) {
3520    case llvm::Triple::Cygwin:
3521    case llvm::Triple::MinGW32:
3522    case llvm::Triple::AuroraUX:
3523    case llvm::Triple::DragonFly:
3524    case llvm::Triple::FreeBSD:
3525    case llvm::Triple::OpenBSD:
3526    case llvm::Triple::NetBSD:
3527      return *(TheTargetCodeGenInfo =
3528               new X86_32TargetCodeGenInfo(Types, false, true, DisableMMX));
3529
3530    default:
3531      return *(TheTargetCodeGenInfo =
3532               new X86_32TargetCodeGenInfo(Types, false, false, DisableMMX));
3533    }
3534  }
3535
3536  case llvm::Triple::x86_64: {
3537    bool HasAVX = strcmp(getContext().getTargetInfo().getABI(), "avx") == 0;
3538
3539    switch (Triple.getOS()) {
3540    case llvm::Triple::Win32:
3541    case llvm::Triple::MinGW32:
3542    case llvm::Triple::Cygwin:
3543      return *(TheTargetCodeGenInfo = new WinX86_64TargetCodeGenInfo(Types));
3544    default:
3545      return *(TheTargetCodeGenInfo = new X86_64TargetCodeGenInfo(Types,
3546                                                                  HasAVX));
3547    }
3548  }
3549  case llvm::Triple::hexagon:
3550    return *(TheTargetCodeGenInfo = new HexagonTargetCodeGenInfo(Types));
3551  }
3552}
3553