TargetInfo.cpp revision 9ed63f8b87b1f7d074d21cc1210fd28d93291bea
1//===---- TargetInfo.cpp - Encapsulate target details -----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// These classes wrap the information about a call or function
11// definition used to handle ABI compliancy.
12//
13//===----------------------------------------------------------------------===//
14
15#include "TargetInfo.h"
16#include "ABIInfo.h"
17#include "CodeGenFunction.h"
18#include "clang/AST/RecordLayout.h"
19#include "clang/Frontend/CodeGenOptions.h"
20#include "llvm/Type.h"
21#include "llvm/Target/TargetData.h"
22#include "llvm/ADT/Triple.h"
23#include "llvm/Support/raw_ostream.h"
24using namespace clang;
25using namespace CodeGen;
26
27static void AssignToArrayRange(CodeGen::CGBuilderTy &Builder,
28                               llvm::Value *Array,
29                               llvm::Value *Value,
30                               unsigned FirstIndex,
31                               unsigned LastIndex) {
32  // Alternatively, we could emit this as a loop in the source.
33  for (unsigned I = FirstIndex; I <= LastIndex; ++I) {
34    llvm::Value *Cell = Builder.CreateConstInBoundsGEP1_32(Array, I);
35    Builder.CreateStore(Value, Cell);
36  }
37}
38
39static bool isAggregateTypeForABI(QualType T) {
40  return CodeGenFunction::hasAggregateLLVMType(T) ||
41         T->isMemberFunctionPointerType();
42}
43
44ABIInfo::~ABIInfo() {}
45
46ASTContext &ABIInfo::getContext() const {
47  return CGT.getContext();
48}
49
50llvm::LLVMContext &ABIInfo::getVMContext() const {
51  return CGT.getLLVMContext();
52}
53
54const llvm::TargetData &ABIInfo::getTargetData() const {
55  return CGT.getTargetData();
56}
57
58
59void ABIArgInfo::dump() const {
60  raw_ostream &OS = llvm::errs();
61  OS << "(ABIArgInfo Kind=";
62  switch (TheKind) {
63  case Direct:
64    OS << "Direct Type=";
65    if (llvm::Type *Ty = getCoerceToType())
66      Ty->print(OS);
67    else
68      OS << "null";
69    break;
70  case Extend:
71    OS << "Extend";
72    break;
73  case Ignore:
74    OS << "Ignore";
75    break;
76  case Indirect:
77    OS << "Indirect Align=" << getIndirectAlign()
78       << " ByVal=" << getIndirectByVal()
79       << " Realign=" << getIndirectRealign();
80    break;
81  case Expand:
82    OS << "Expand";
83    break;
84  }
85  OS << ")\n";
86}
87
88TargetCodeGenInfo::~TargetCodeGenInfo() { delete Info; }
89
90// If someone can figure out a general rule for this, that would be great.
91// It's probably just doomed to be platform-dependent, though.
92unsigned TargetCodeGenInfo::getSizeOfUnwindException() const {
93  // Verified for:
94  //   x86-64     FreeBSD, Linux, Darwin
95  //   x86-32     FreeBSD, Linux, Darwin
96  //   PowerPC    Linux, Darwin
97  //   ARM        Darwin (*not* EABI)
98  return 32;
99}
100
101bool TargetCodeGenInfo::isNoProtoCallVariadic(const CallArgList &args,
102                                     const FunctionNoProtoType *fnType) const {
103  // The following conventions are known to require this to be false:
104  //   x86_stdcall
105  //   MIPS
106  // For everything else, we just prefer false unless we opt out.
107  return false;
108}
109
110static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays);
111
112/// isEmptyField - Return true iff a the field is "empty", that is it
113/// is an unnamed bit-field or an (array of) empty record(s).
114static bool isEmptyField(ASTContext &Context, const FieldDecl *FD,
115                         bool AllowArrays) {
116  if (FD->isUnnamedBitfield())
117    return true;
118
119  QualType FT = FD->getType();
120
121  // Constant arrays of empty records count as empty, strip them off.
122  // Constant arrays of zero length always count as empty.
123  if (AllowArrays)
124    while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
125      if (AT->getSize() == 0)
126        return true;
127      FT = AT->getElementType();
128    }
129
130  const RecordType *RT = FT->getAs<RecordType>();
131  if (!RT)
132    return false;
133
134  // C++ record fields are never empty, at least in the Itanium ABI.
135  //
136  // FIXME: We should use a predicate for whether this behavior is true in the
137  // current ABI.
138  if (isa<CXXRecordDecl>(RT->getDecl()))
139    return false;
140
141  return isEmptyRecord(Context, FT, AllowArrays);
142}
143
144/// isEmptyRecord - Return true iff a structure contains only empty
145/// fields. Note that a structure with a flexible array member is not
146/// considered empty.
147static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays) {
148  const RecordType *RT = T->getAs<RecordType>();
149  if (!RT)
150    return 0;
151  const RecordDecl *RD = RT->getDecl();
152  if (RD->hasFlexibleArrayMember())
153    return false;
154
155  // If this is a C++ record, check the bases first.
156  if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
157    for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
158           e = CXXRD->bases_end(); i != e; ++i)
159      if (!isEmptyRecord(Context, i->getType(), true))
160        return false;
161
162  for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
163         i != e; ++i)
164    if (!isEmptyField(Context, *i, AllowArrays))
165      return false;
166  return true;
167}
168
169/// hasNonTrivialDestructorOrCopyConstructor - Determine if a type has either
170/// a non-trivial destructor or a non-trivial copy constructor.
171static bool hasNonTrivialDestructorOrCopyConstructor(const RecordType *RT) {
172  const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
173  if (!RD)
174    return false;
175
176  return !RD->hasTrivialDestructor() || !RD->hasTrivialCopyConstructor();
177}
178
179/// isRecordWithNonTrivialDestructorOrCopyConstructor - Determine if a type is
180/// a record type with either a non-trivial destructor or a non-trivial copy
181/// constructor.
182static bool isRecordWithNonTrivialDestructorOrCopyConstructor(QualType T) {
183  const RecordType *RT = T->getAs<RecordType>();
184  if (!RT)
185    return false;
186
187  return hasNonTrivialDestructorOrCopyConstructor(RT);
188}
189
190/// isSingleElementStruct - Determine if a structure is a "single
191/// element struct", i.e. it has exactly one non-empty field or
192/// exactly one field which is itself a single element
193/// struct. Structures with flexible array members are never
194/// considered single element structs.
195///
196/// \return The field declaration for the single non-empty field, if
197/// it exists.
198static const Type *isSingleElementStruct(QualType T, ASTContext &Context) {
199  const RecordType *RT = T->getAsStructureType();
200  if (!RT)
201    return 0;
202
203  const RecordDecl *RD = RT->getDecl();
204  if (RD->hasFlexibleArrayMember())
205    return 0;
206
207  const Type *Found = 0;
208
209  // If this is a C++ record, check the bases first.
210  if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
211    for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
212           e = CXXRD->bases_end(); i != e; ++i) {
213      // Ignore empty records.
214      if (isEmptyRecord(Context, i->getType(), true))
215        continue;
216
217      // If we already found an element then this isn't a single-element struct.
218      if (Found)
219        return 0;
220
221      // If this is non-empty and not a single element struct, the composite
222      // cannot be a single element struct.
223      Found = isSingleElementStruct(i->getType(), Context);
224      if (!Found)
225        return 0;
226    }
227  }
228
229  // Check for single element.
230  for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
231         i != e; ++i) {
232    const FieldDecl *FD = *i;
233    QualType FT = FD->getType();
234
235    // Ignore empty fields.
236    if (isEmptyField(Context, FD, true))
237      continue;
238
239    // If we already found an element then this isn't a single-element
240    // struct.
241    if (Found)
242      return 0;
243
244    // Treat single element arrays as the element.
245    while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
246      if (AT->getSize().getZExtValue() != 1)
247        break;
248      FT = AT->getElementType();
249    }
250
251    if (!isAggregateTypeForABI(FT)) {
252      Found = FT.getTypePtr();
253    } else {
254      Found = isSingleElementStruct(FT, Context);
255      if (!Found)
256        return 0;
257    }
258  }
259
260  // We don't consider a struct a single-element struct if it has
261  // padding beyond the element type.
262  if (Found && Context.getTypeSize(Found) != Context.getTypeSize(T))
263    return 0;
264
265  return Found;
266}
267
268static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) {
269  if (!Ty->getAs<BuiltinType>() && !Ty->hasPointerRepresentation() &&
270      !Ty->isAnyComplexType() && !Ty->isEnumeralType() &&
271      !Ty->isBlockPointerType())
272    return false;
273
274  uint64_t Size = Context.getTypeSize(Ty);
275  return Size == 32 || Size == 64;
276}
277
278/// canExpandIndirectArgument - Test whether an argument type which is to be
279/// passed indirectly (on the stack) would have the equivalent layout if it was
280/// expanded into separate arguments. If so, we prefer to do the latter to avoid
281/// inhibiting optimizations.
282///
283// FIXME: This predicate is missing many cases, currently it just follows
284// llvm-gcc (checks that all fields are 32-bit or 64-bit primitive types). We
285// should probably make this smarter, or better yet make the LLVM backend
286// capable of handling it.
287static bool canExpandIndirectArgument(QualType Ty, ASTContext &Context) {
288  // We can only expand structure types.
289  const RecordType *RT = Ty->getAs<RecordType>();
290  if (!RT)
291    return false;
292
293  // We can only expand (C) structures.
294  //
295  // FIXME: This needs to be generalized to handle classes as well.
296  const RecordDecl *RD = RT->getDecl();
297  if (!RD->isStruct() || isa<CXXRecordDecl>(RD))
298    return false;
299
300  uint64_t Size = 0;
301
302  for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
303         i != e; ++i) {
304    const FieldDecl *FD = *i;
305
306    if (!is32Or64BitBasicType(FD->getType(), Context))
307      return false;
308
309    // FIXME: Reject bit-fields wholesale; there are two problems, we don't know
310    // how to expand them yet, and the predicate for telling if a bitfield still
311    // counts as "basic" is more complicated than what we were doing previously.
312    if (FD->isBitField())
313      return false;
314
315    Size += Context.getTypeSize(FD->getType());
316  }
317
318  // Make sure there are not any holes in the struct.
319  if (Size != Context.getTypeSize(Ty))
320    return false;
321
322  return true;
323}
324
325namespace {
326/// DefaultABIInfo - The default implementation for ABI specific
327/// details. This implementation provides information which results in
328/// self-consistent and sensible LLVM IR generation, but does not
329/// conform to any particular ABI.
330class DefaultABIInfo : public ABIInfo {
331public:
332  DefaultABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
333
334  ABIArgInfo classifyReturnType(QualType RetTy) const;
335  ABIArgInfo classifyArgumentType(QualType RetTy) const;
336
337  virtual void computeInfo(CGFunctionInfo &FI) const {
338    FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
339    for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
340         it != ie; ++it)
341      it->info = classifyArgumentType(it->type);
342  }
343
344  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
345                                 CodeGenFunction &CGF) const;
346};
347
348class DefaultTargetCodeGenInfo : public TargetCodeGenInfo {
349public:
350  DefaultTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
351    : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
352};
353
354llvm::Value *DefaultABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
355                                       CodeGenFunction &CGF) const {
356  return 0;
357}
358
359ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty) const {
360  if (isAggregateTypeForABI(Ty)) {
361    // Records with non trivial destructors/constructors should not be passed
362    // by value.
363    if (isRecordWithNonTrivialDestructorOrCopyConstructor(Ty))
364      return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
365
366    return ABIArgInfo::getIndirect(0);
367  }
368
369  // Treat an enum type as its underlying type.
370  if (const EnumType *EnumTy = Ty->getAs<EnumType>())
371    Ty = EnumTy->getDecl()->getIntegerType();
372
373  return (Ty->isPromotableIntegerType() ?
374          ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
375}
376
377ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy) const {
378  if (RetTy->isVoidType())
379    return ABIArgInfo::getIgnore();
380
381  if (isAggregateTypeForABI(RetTy))
382    return ABIArgInfo::getIndirect(0);
383
384  // Treat an enum type as its underlying type.
385  if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
386    RetTy = EnumTy->getDecl()->getIntegerType();
387
388  return (RetTy->isPromotableIntegerType() ?
389          ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
390}
391
392//===----------------------------------------------------------------------===//
393// le32/PNaCl bitcode ABI Implementation
394//===----------------------------------------------------------------------===//
395
396class PNaClABIInfo : public ABIInfo {
397 public:
398  PNaClABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
399
400  ABIArgInfo classifyReturnType(QualType RetTy) const;
401  ABIArgInfo classifyArgumentType(QualType RetTy, unsigned &FreeRegs) const;
402
403  virtual void computeInfo(CGFunctionInfo &FI) const;
404  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
405                                 CodeGenFunction &CGF) const;
406};
407
408class PNaClTargetCodeGenInfo : public TargetCodeGenInfo {
409 public:
410  PNaClTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
411    : TargetCodeGenInfo(new PNaClABIInfo(CGT)) {}
412};
413
414void PNaClABIInfo::computeInfo(CGFunctionInfo &FI) const {
415    FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
416
417    unsigned FreeRegs = FI.getHasRegParm() ? FI.getRegParm() : 0;
418
419    for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
420         it != ie; ++it)
421      it->info = classifyArgumentType(it->type, FreeRegs);
422  }
423
424llvm::Value *PNaClABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
425                                       CodeGenFunction &CGF) const {
426  return 0;
427}
428
429ABIArgInfo PNaClABIInfo::classifyArgumentType(QualType Ty,
430                                              unsigned &FreeRegs) const {
431  if (isAggregateTypeForABI(Ty)) {
432    // Records with non trivial destructors/constructors should not be passed
433    // by value.
434    FreeRegs = 0;
435    if (isRecordWithNonTrivialDestructorOrCopyConstructor(Ty))
436      return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
437
438    return ABIArgInfo::getIndirect(0);
439  }
440
441  // Treat an enum type as its underlying type.
442  if (const EnumType *EnumTy = Ty->getAs<EnumType>())
443    Ty = EnumTy->getDecl()->getIntegerType();
444
445  ABIArgInfo BaseInfo = (Ty->isPromotableIntegerType() ?
446          ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
447
448  // Regparm regs hold 32 bits.
449  unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32;
450  if (SizeInRegs == 0) return BaseInfo;
451  if (SizeInRegs > FreeRegs) {
452    FreeRegs = 0;
453    return BaseInfo;
454  }
455  FreeRegs -= SizeInRegs;
456  return BaseInfo.isDirect() ?
457      ABIArgInfo::getDirectInReg(BaseInfo.getCoerceToType()) :
458      ABIArgInfo::getExtendInReg(BaseInfo.getCoerceToType());
459}
460
461ABIArgInfo PNaClABIInfo::classifyReturnType(QualType RetTy) const {
462  if (RetTy->isVoidType())
463    return ABIArgInfo::getIgnore();
464
465  if (isAggregateTypeForABI(RetTy))
466    return ABIArgInfo::getIndirect(0);
467
468  // Treat an enum type as its underlying type.
469  if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
470    RetTy = EnumTy->getDecl()->getIntegerType();
471
472  return (RetTy->isPromotableIntegerType() ?
473          ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
474}
475
476/// UseX86_MMXType - Return true if this is an MMX type that should use the
477/// special x86_mmx type.
478bool UseX86_MMXType(llvm::Type *IRType) {
479  // If the type is an MMX type <2 x i32>, <4 x i16>, or <8 x i8>, use the
480  // special x86_mmx type.
481  return IRType->isVectorTy() && IRType->getPrimitiveSizeInBits() == 64 &&
482    cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy() &&
483    IRType->getScalarSizeInBits() != 64;
484}
485
486static llvm::Type* X86AdjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
487                                          StringRef Constraint,
488                                          llvm::Type* Ty) {
489  if ((Constraint == "y" || Constraint == "&y") && Ty->isVectorTy())
490    return llvm::Type::getX86_MMXTy(CGF.getLLVMContext());
491  return Ty;
492}
493
494//===----------------------------------------------------------------------===//
495// X86-32 ABI Implementation
496//===----------------------------------------------------------------------===//
497
498/// X86_32ABIInfo - The X86-32 ABI information.
499class X86_32ABIInfo : public ABIInfo {
500  enum Class {
501    Integer,
502    Float
503  };
504
505  static const unsigned MinABIStackAlignInBytes = 4;
506
507  bool IsDarwinVectorABI;
508  bool IsSmallStructInRegABI;
509  bool IsMMXDisabled;
510  bool IsWin32FloatStructABI;
511  unsigned DefaultNumRegisterParameters;
512
513  static bool isRegisterSize(unsigned Size) {
514    return (Size == 8 || Size == 16 || Size == 32 || Size == 64);
515  }
516
517  static bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context,
518                                          unsigned callingConvention);
519
520  /// getIndirectResult - Give a source type \arg Ty, return a suitable result
521  /// such that the argument will be passed in memory.
522  ABIArgInfo getIndirectResult(QualType Ty, bool ByVal = true) const;
523
524  /// \brief Return the alignment to use for the given type on the stack.
525  unsigned getTypeStackAlignInBytes(QualType Ty, unsigned Align) const;
526
527  Class classify(QualType Ty) const;
528  ABIArgInfo classifyReturnType(QualType RetTy,
529                                unsigned callingConvention) const;
530  ABIArgInfo classifyArgumentTypeWithReg(QualType RetTy,
531                                         unsigned &FreeRegs) const;
532  ABIArgInfo classifyArgumentType(QualType RetTy) const;
533
534public:
535
536  virtual void computeInfo(CGFunctionInfo &FI) const;
537  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
538                                 CodeGenFunction &CGF) const;
539
540  X86_32ABIInfo(CodeGen::CodeGenTypes &CGT, bool d, bool p, bool m, bool w,
541                unsigned r)
542    : ABIInfo(CGT), IsDarwinVectorABI(d), IsSmallStructInRegABI(p),
543      IsMMXDisabled(m), IsWin32FloatStructABI(w),
544      DefaultNumRegisterParameters(r) {}
545};
546
547class X86_32TargetCodeGenInfo : public TargetCodeGenInfo {
548public:
549  X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
550      bool d, bool p, bool m, bool w, unsigned r)
551    :TargetCodeGenInfo(new X86_32ABIInfo(CGT, d, p, m, w, r)) {}
552
553  void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
554                           CodeGen::CodeGenModule &CGM) const;
555
556  int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const {
557    // Darwin uses different dwarf register numbers for EH.
558    if (CGM.isTargetDarwin()) return 5;
559
560    return 4;
561  }
562
563  bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
564                               llvm::Value *Address) const;
565
566  llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
567                                  StringRef Constraint,
568                                  llvm::Type* Ty) const {
569    return X86AdjustInlineAsmType(CGF, Constraint, Ty);
570  }
571
572};
573
574}
575
576/// shouldReturnTypeInRegister - Determine if the given type should be
577/// passed in a register (for the Darwin ABI).
578bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty,
579                                               ASTContext &Context,
580                                               unsigned callingConvention) {
581  uint64_t Size = Context.getTypeSize(Ty);
582
583  // Type must be register sized.
584  if (!isRegisterSize(Size))
585    return false;
586
587  if (Ty->isVectorType()) {
588    // 64- and 128- bit vectors inside structures are not returned in
589    // registers.
590    if (Size == 64 || Size == 128)
591      return false;
592
593    return true;
594  }
595
596  // If this is a builtin, pointer, enum, complex type, member pointer, or
597  // member function pointer it is ok.
598  if (Ty->getAs<BuiltinType>() || Ty->hasPointerRepresentation() ||
599      Ty->isAnyComplexType() || Ty->isEnumeralType() ||
600      Ty->isBlockPointerType() || Ty->isMemberPointerType())
601    return true;
602
603  // Arrays are treated like records.
604  if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty))
605    return shouldReturnTypeInRegister(AT->getElementType(), Context,
606                                      callingConvention);
607
608  // Otherwise, it must be a record type.
609  const RecordType *RT = Ty->getAs<RecordType>();
610  if (!RT) return false;
611
612  // FIXME: Traverse bases here too.
613
614  // For thiscall conventions, structures will never be returned in
615  // a register.  This is for compatibility with the MSVC ABI
616  if (callingConvention == llvm::CallingConv::X86_ThisCall &&
617      RT->isStructureType()) {
618    return false;
619  }
620
621  // Structure types are passed in register if all fields would be
622  // passed in a register.
623  for (RecordDecl::field_iterator i = RT->getDecl()->field_begin(),
624         e = RT->getDecl()->field_end(); i != e; ++i) {
625    const FieldDecl *FD = *i;
626
627    // Empty fields are ignored.
628    if (isEmptyField(Context, FD, true))
629      continue;
630
631    // Check fields recursively.
632    if (!shouldReturnTypeInRegister(FD->getType(), Context,
633                                    callingConvention))
634      return false;
635  }
636  return true;
637}
638
639ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy,
640                                            unsigned callingConvention) const {
641  if (RetTy->isVoidType())
642    return ABIArgInfo::getIgnore();
643
644  if (const VectorType *VT = RetTy->getAs<VectorType>()) {
645    // On Darwin, some vectors are returned in registers.
646    if (IsDarwinVectorABI) {
647      uint64_t Size = getContext().getTypeSize(RetTy);
648
649      // 128-bit vectors are a special case; they are returned in
650      // registers and we need to make sure to pick a type the LLVM
651      // backend will like.
652      if (Size == 128)
653        return ABIArgInfo::getDirect(llvm::VectorType::get(
654                  llvm::Type::getInt64Ty(getVMContext()), 2));
655
656      // Always return in register if it fits in a general purpose
657      // register, or if it is 64 bits and has a single element.
658      if ((Size == 8 || Size == 16 || Size == 32) ||
659          (Size == 64 && VT->getNumElements() == 1))
660        return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
661                                                            Size));
662
663      return ABIArgInfo::getIndirect(0);
664    }
665
666    return ABIArgInfo::getDirect();
667  }
668
669  if (isAggregateTypeForABI(RetTy)) {
670    if (const RecordType *RT = RetTy->getAs<RecordType>()) {
671      // Structures with either a non-trivial destructor or a non-trivial
672      // copy constructor are always indirect.
673      if (hasNonTrivialDestructorOrCopyConstructor(RT))
674        return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
675
676      // Structures with flexible arrays are always indirect.
677      if (RT->getDecl()->hasFlexibleArrayMember())
678        return ABIArgInfo::getIndirect(0);
679    }
680
681    // If specified, structs and unions are always indirect.
682    if (!IsSmallStructInRegABI && !RetTy->isAnyComplexType())
683      return ABIArgInfo::getIndirect(0);
684
685    // Small structures which are register sized are generally returned
686    // in a register.
687    if (X86_32ABIInfo::shouldReturnTypeInRegister(RetTy, getContext(),
688                                                  callingConvention)) {
689      uint64_t Size = getContext().getTypeSize(RetTy);
690
691      // As a special-case, if the struct is a "single-element" struct, and
692      // the field is of type "float" or "double", return it in a
693      // floating-point register. (MSVC does not apply this special case.)
694      // We apply a similar transformation for pointer types to improve the
695      // quality of the generated IR.
696      if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext()))
697        if ((!IsWin32FloatStructABI && SeltTy->isRealFloatingType())
698            || SeltTy->hasPointerRepresentation())
699          return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
700
701      // FIXME: We should be able to narrow this integer in cases with dead
702      // padding.
703      return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),Size));
704    }
705
706    return ABIArgInfo::getIndirect(0);
707  }
708
709  // Treat an enum type as its underlying type.
710  if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
711    RetTy = EnumTy->getDecl()->getIntegerType();
712
713  return (RetTy->isPromotableIntegerType() ?
714          ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
715}
716
717static bool isSSEVectorType(ASTContext &Context, QualType Ty) {
718  return Ty->getAs<VectorType>() && Context.getTypeSize(Ty) == 128;
719}
720
721static bool isRecordWithSSEVectorType(ASTContext &Context, QualType Ty) {
722  const RecordType *RT = Ty->getAs<RecordType>();
723  if (!RT)
724    return 0;
725  const RecordDecl *RD = RT->getDecl();
726
727  // If this is a C++ record, check the bases first.
728  if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
729    for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
730           e = CXXRD->bases_end(); i != e; ++i)
731      if (!isRecordWithSSEVectorType(Context, i->getType()))
732        return false;
733
734  for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
735       i != e; ++i) {
736    QualType FT = i->getType();
737
738    if (isSSEVectorType(Context, FT))
739      return true;
740
741    if (isRecordWithSSEVectorType(Context, FT))
742      return true;
743  }
744
745  return false;
746}
747
748unsigned X86_32ABIInfo::getTypeStackAlignInBytes(QualType Ty,
749                                                 unsigned Align) const {
750  // Otherwise, if the alignment is less than or equal to the minimum ABI
751  // alignment, just use the default; the backend will handle this.
752  if (Align <= MinABIStackAlignInBytes)
753    return 0; // Use default alignment.
754
755  // On non-Darwin, the stack type alignment is always 4.
756  if (!IsDarwinVectorABI) {
757    // Set explicit alignment, since we may need to realign the top.
758    return MinABIStackAlignInBytes;
759  }
760
761  // Otherwise, if the type contains an SSE vector type, the alignment is 16.
762  if (Align >= 16 && (isSSEVectorType(getContext(), Ty) ||
763                      isRecordWithSSEVectorType(getContext(), Ty)))
764    return 16;
765
766  return MinABIStackAlignInBytes;
767}
768
769ABIArgInfo X86_32ABIInfo::getIndirectResult(QualType Ty, bool ByVal) const {
770  if (!ByVal)
771    return ABIArgInfo::getIndirect(0, false);
772
773  // Compute the byval alignment.
774  unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8;
775  unsigned StackAlign = getTypeStackAlignInBytes(Ty, TypeAlign);
776  if (StackAlign == 0)
777    return ABIArgInfo::getIndirect(4);
778
779  // If the stack alignment is less than the type alignment, realign the
780  // argument.
781  if (StackAlign < TypeAlign)
782    return ABIArgInfo::getIndirect(StackAlign, /*ByVal=*/true,
783                                   /*Realign=*/true);
784
785  return ABIArgInfo::getIndirect(StackAlign);
786}
787
788X86_32ABIInfo::Class X86_32ABIInfo::classify(QualType Ty) const {
789  const Type *T = isSingleElementStruct(Ty, getContext());
790  if (!T)
791    T = Ty.getTypePtr();
792
793  if (const BuiltinType *BT = T->getAs<BuiltinType>()) {
794    BuiltinType::Kind K = BT->getKind();
795    if (K == BuiltinType::Float || K == BuiltinType::Double)
796      return Float;
797  }
798  return Integer;
799}
800
801ABIArgInfo
802X86_32ABIInfo::classifyArgumentTypeWithReg(QualType Ty,
803                                           unsigned &FreeRegs) const {
804  // Common case first.
805  if (FreeRegs == 0)
806    return classifyArgumentType(Ty);
807
808  Class C = classify(Ty);
809  if (C == Float)
810    return classifyArgumentType(Ty);
811
812  unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32;
813  if (SizeInRegs == 0)
814    return classifyArgumentType(Ty);
815
816  if (SizeInRegs > FreeRegs) {
817    FreeRegs = 0;
818    return classifyArgumentType(Ty);
819  }
820  assert(SizeInRegs >= 1 && SizeInRegs <= 3);
821  FreeRegs -= SizeInRegs;
822
823  // If it is a simple scalar, keep the type so that we produce a cleaner IR.
824  ABIArgInfo Foo = classifyArgumentType(Ty);
825  if (Foo.isDirect() && !Foo.getDirectOffset() && !Foo.getPaddingType())
826    return ABIArgInfo::getDirectInReg(Foo.getCoerceToType());
827  if (Foo.isExtend())
828    return ABIArgInfo::getExtendInReg(Foo.getCoerceToType());
829
830  llvm::LLVMContext &LLVMContext = getVMContext();
831  llvm::Type *Int32 = llvm::Type::getInt32Ty(LLVMContext);
832  SmallVector<llvm::Type*, 3> Elements;
833  for (unsigned I = 0; I < SizeInRegs; ++I)
834    Elements.push_back(Int32);
835  llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements);
836  return ABIArgInfo::getDirectInReg(Result);
837}
838
839ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty) const {
840  // FIXME: Set alignment on indirect arguments.
841  if (isAggregateTypeForABI(Ty)) {
842    // Structures with flexible arrays are always indirect.
843    if (const RecordType *RT = Ty->getAs<RecordType>()) {
844      // Structures with either a non-trivial destructor or a non-trivial
845      // copy constructor are always indirect.
846      if (hasNonTrivialDestructorOrCopyConstructor(RT))
847        return getIndirectResult(Ty, /*ByVal=*/false);
848
849      if (RT->getDecl()->hasFlexibleArrayMember())
850        return getIndirectResult(Ty);
851    }
852
853    // Ignore empty structs/unions.
854    if (isEmptyRecord(getContext(), Ty, true))
855      return ABIArgInfo::getIgnore();
856
857    // Expand small (<= 128-bit) record types when we know that the stack layout
858    // of those arguments will match the struct. This is important because the
859    // LLVM backend isn't smart enough to remove byval, which inhibits many
860    // optimizations.
861    if (getContext().getTypeSize(Ty) <= 4*32 &&
862        canExpandIndirectArgument(Ty, getContext()))
863      return ABIArgInfo::getExpand();
864
865    return getIndirectResult(Ty);
866  }
867
868  if (const VectorType *VT = Ty->getAs<VectorType>()) {
869    // On Darwin, some vectors are passed in memory, we handle this by passing
870    // it as an i8/i16/i32/i64.
871    if (IsDarwinVectorABI) {
872      uint64_t Size = getContext().getTypeSize(Ty);
873      if ((Size == 8 || Size == 16 || Size == 32) ||
874          (Size == 64 && VT->getNumElements() == 1))
875        return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
876                                                            Size));
877    }
878
879    llvm::Type *IRType = CGT.ConvertType(Ty);
880    if (UseX86_MMXType(IRType)) {
881      if (IsMMXDisabled)
882        return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
883                                                            64));
884      ABIArgInfo AAI = ABIArgInfo::getDirect(IRType);
885      AAI.setCoerceToType(llvm::Type::getX86_MMXTy(getVMContext()));
886      return AAI;
887    }
888
889    return ABIArgInfo::getDirect();
890  }
891
892
893  if (const EnumType *EnumTy = Ty->getAs<EnumType>())
894    Ty = EnumTy->getDecl()->getIntegerType();
895
896  return (Ty->isPromotableIntegerType() ?
897          ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
898}
899
900void X86_32ABIInfo::computeInfo(CGFunctionInfo &FI) const {
901  FI.getReturnInfo() = classifyReturnType(FI.getReturnType(),
902                                          FI.getCallingConvention());
903
904  unsigned FreeRegs = FI.getHasRegParm() ? FI.getRegParm() :
905    DefaultNumRegisterParameters;
906
907  // If the return value is indirect, then the hidden argument is consuming one
908  // integer register.
909  if (FI.getReturnInfo().isIndirect() && FreeRegs) {
910    --FreeRegs;
911    ABIArgInfo &Old = FI.getReturnInfo();
912    Old = ABIArgInfo::getIndirectInReg(Old.getIndirectAlign(),
913                                       Old.getIndirectByVal(),
914                                       Old.getIndirectRealign());
915  }
916
917  for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
918       it != ie; ++it)
919    it->info = classifyArgumentTypeWithReg(it->type, FreeRegs);
920}
921
922llvm::Value *X86_32ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
923                                      CodeGenFunction &CGF) const {
924  llvm::Type *BPP = CGF.Int8PtrPtrTy;
925
926  CGBuilderTy &Builder = CGF.Builder;
927  llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP,
928                                                       "ap");
929  llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
930
931  // Compute if the address needs to be aligned
932  unsigned Align = CGF.getContext().getTypeAlignInChars(Ty).getQuantity();
933  Align = getTypeStackAlignInBytes(Ty, Align);
934  Align = std::max(Align, 4U);
935  if (Align > 4) {
936    // addr = (addr + align - 1) & -align;
937    llvm::Value *Offset =
938      llvm::ConstantInt::get(CGF.Int32Ty, Align - 1);
939    Addr = CGF.Builder.CreateGEP(Addr, Offset);
940    llvm::Value *AsInt = CGF.Builder.CreatePtrToInt(Addr,
941                                                    CGF.Int32Ty);
942    llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int32Ty, -Align);
943    Addr = CGF.Builder.CreateIntToPtr(CGF.Builder.CreateAnd(AsInt, Mask),
944                                      Addr->getType(),
945                                      "ap.cur.aligned");
946  }
947
948  llvm::Type *PTy =
949    llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
950  llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
951
952  uint64_t Offset =
953    llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, Align);
954  llvm::Value *NextAddr =
955    Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
956                      "ap.next");
957  Builder.CreateStore(NextAddr, VAListAddrAsBPP);
958
959  return AddrTyped;
960}
961
962void X86_32TargetCodeGenInfo::SetTargetAttributes(const Decl *D,
963                                                  llvm::GlobalValue *GV,
964                                            CodeGen::CodeGenModule &CGM) const {
965  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
966    if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
967      // Get the LLVM function.
968      llvm::Function *Fn = cast<llvm::Function>(GV);
969
970      // Now add the 'alignstack' attribute with a value of 16.
971      Fn->addFnAttr(llvm::Attribute::constructStackAlignmentFromInt(16));
972    }
973  }
974}
975
976bool X86_32TargetCodeGenInfo::initDwarfEHRegSizeTable(
977                                               CodeGen::CodeGenFunction &CGF,
978                                               llvm::Value *Address) const {
979  CodeGen::CGBuilderTy &Builder = CGF.Builder;
980
981  llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
982
983  // 0-7 are the eight integer registers;  the order is different
984  //   on Darwin (for EH), but the range is the same.
985  // 8 is %eip.
986  AssignToArrayRange(Builder, Address, Four8, 0, 8);
987
988  if (CGF.CGM.isTargetDarwin()) {
989    // 12-16 are st(0..4).  Not sure why we stop at 4.
990    // These have size 16, which is sizeof(long double) on
991    // platforms with 8-byte alignment for that type.
992    llvm::Value *Sixteen8 = llvm::ConstantInt::get(CGF.Int8Ty, 16);
993    AssignToArrayRange(Builder, Address, Sixteen8, 12, 16);
994
995  } else {
996    // 9 is %eflags, which doesn't get a size on Darwin for some
997    // reason.
998    Builder.CreateStore(Four8, Builder.CreateConstInBoundsGEP1_32(Address, 9));
999
1000    // 11-16 are st(0..5).  Not sure why we stop at 5.
1001    // These have size 12, which is sizeof(long double) on
1002    // platforms with 4-byte alignment for that type.
1003    llvm::Value *Twelve8 = llvm::ConstantInt::get(CGF.Int8Ty, 12);
1004    AssignToArrayRange(Builder, Address, Twelve8, 11, 16);
1005  }
1006
1007  return false;
1008}
1009
1010//===----------------------------------------------------------------------===//
1011// X86-64 ABI Implementation
1012//===----------------------------------------------------------------------===//
1013
1014
1015namespace {
1016/// X86_64ABIInfo - The X86_64 ABI information.
1017class X86_64ABIInfo : public ABIInfo {
1018  enum Class {
1019    Integer = 0,
1020    SSE,
1021    SSEUp,
1022    X87,
1023    X87Up,
1024    ComplexX87,
1025    NoClass,
1026    Memory
1027  };
1028
1029  /// merge - Implement the X86_64 ABI merging algorithm.
1030  ///
1031  /// Merge an accumulating classification \arg Accum with a field
1032  /// classification \arg Field.
1033  ///
1034  /// \param Accum - The accumulating classification. This should
1035  /// always be either NoClass or the result of a previous merge
1036  /// call. In addition, this should never be Memory (the caller
1037  /// should just return Memory for the aggregate).
1038  static Class merge(Class Accum, Class Field);
1039
1040  /// postMerge - Implement the X86_64 ABI post merging algorithm.
1041  ///
1042  /// Post merger cleanup, reduces a malformed Hi and Lo pair to
1043  /// final MEMORY or SSE classes when necessary.
1044  ///
1045  /// \param AggregateSize - The size of the current aggregate in
1046  /// the classification process.
1047  ///
1048  /// \param Lo - The classification for the parts of the type
1049  /// residing in the low word of the containing object.
1050  ///
1051  /// \param Hi - The classification for the parts of the type
1052  /// residing in the higher words of the containing object.
1053  ///
1054  void postMerge(unsigned AggregateSize, Class &Lo, Class &Hi) const;
1055
1056  /// classify - Determine the x86_64 register classes in which the
1057  /// given type T should be passed.
1058  ///
1059  /// \param Lo - The classification for the parts of the type
1060  /// residing in the low word of the containing object.
1061  ///
1062  /// \param Hi - The classification for the parts of the type
1063  /// residing in the high word of the containing object.
1064  ///
1065  /// \param OffsetBase - The bit offset of this type in the
1066  /// containing object.  Some parameters are classified different
1067  /// depending on whether they straddle an eightbyte boundary.
1068  ///
1069  /// If a word is unused its result will be NoClass; if a type should
1070  /// be passed in Memory then at least the classification of \arg Lo
1071  /// will be Memory.
1072  ///
1073  /// The \arg Lo class will be NoClass iff the argument is ignored.
1074  ///
1075  /// If the \arg Lo class is ComplexX87, then the \arg Hi class will
1076  /// also be ComplexX87.
1077  void classify(QualType T, uint64_t OffsetBase, Class &Lo, Class &Hi) const;
1078
1079  llvm::Type *GetByteVectorType(QualType Ty) const;
1080  llvm::Type *GetSSETypeAtOffset(llvm::Type *IRType,
1081                                 unsigned IROffset, QualType SourceTy,
1082                                 unsigned SourceOffset) const;
1083  llvm::Type *GetINTEGERTypeAtOffset(llvm::Type *IRType,
1084                                     unsigned IROffset, QualType SourceTy,
1085                                     unsigned SourceOffset) const;
1086
1087  /// getIndirectResult - Give a source type \arg Ty, return a suitable result
1088  /// such that the argument will be returned in memory.
1089  ABIArgInfo getIndirectReturnResult(QualType Ty) const;
1090
1091  /// getIndirectResult - Give a source type \arg Ty, return a suitable result
1092  /// such that the argument will be passed in memory.
1093  ///
1094  /// \param freeIntRegs - The number of free integer registers remaining
1095  /// available.
1096  ABIArgInfo getIndirectResult(QualType Ty, unsigned freeIntRegs) const;
1097
1098  ABIArgInfo classifyReturnType(QualType RetTy) const;
1099
1100  ABIArgInfo classifyArgumentType(QualType Ty,
1101                                  unsigned freeIntRegs,
1102                                  unsigned &neededInt,
1103                                  unsigned &neededSSE) const;
1104
1105  bool IsIllegalVectorType(QualType Ty) const;
1106
1107  /// The 0.98 ABI revision clarified a lot of ambiguities,
1108  /// unfortunately in ways that were not always consistent with
1109  /// certain previous compilers.  In particular, platforms which
1110  /// required strict binary compatibility with older versions of GCC
1111  /// may need to exempt themselves.
1112  bool honorsRevision0_98() const {
1113    return !getContext().getTargetInfo().getTriple().isOSDarwin();
1114  }
1115
1116  bool HasAVX;
1117
1118public:
1119  X86_64ABIInfo(CodeGen::CodeGenTypes &CGT, bool hasavx) :
1120      ABIInfo(CGT), HasAVX(hasavx) {}
1121
1122  bool isPassedUsingAVXType(QualType type) const {
1123    unsigned neededInt, neededSSE;
1124    // The freeIntRegs argument doesn't matter here.
1125    ABIArgInfo info = classifyArgumentType(type, 0, neededInt, neededSSE);
1126    if (info.isDirect()) {
1127      llvm::Type *ty = info.getCoerceToType();
1128      if (llvm::VectorType *vectorTy = dyn_cast_or_null<llvm::VectorType>(ty))
1129        return (vectorTy->getBitWidth() > 128);
1130    }
1131    return false;
1132  }
1133
1134  virtual void computeInfo(CGFunctionInfo &FI) const;
1135
1136  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
1137                                 CodeGenFunction &CGF) const;
1138};
1139
1140/// WinX86_64ABIInfo - The Windows X86_64 ABI information.
1141class WinX86_64ABIInfo : public ABIInfo {
1142
1143  ABIArgInfo classify(QualType Ty) const;
1144
1145public:
1146  WinX86_64ABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
1147
1148  virtual void computeInfo(CGFunctionInfo &FI) const;
1149
1150  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
1151                                 CodeGenFunction &CGF) const;
1152};
1153
1154class X86_64TargetCodeGenInfo : public TargetCodeGenInfo {
1155public:
1156  X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool HasAVX)
1157    : TargetCodeGenInfo(new X86_64ABIInfo(CGT, HasAVX)) {}
1158
1159  const X86_64ABIInfo &getABIInfo() const {
1160    return static_cast<const X86_64ABIInfo&>(TargetCodeGenInfo::getABIInfo());
1161  }
1162
1163  int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const {
1164    return 7;
1165  }
1166
1167  bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
1168                               llvm::Value *Address) const {
1169    llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8);
1170
1171    // 0-15 are the 16 integer registers.
1172    // 16 is %rip.
1173    AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16);
1174    return false;
1175  }
1176
1177  llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
1178                                  StringRef Constraint,
1179                                  llvm::Type* Ty) const {
1180    return X86AdjustInlineAsmType(CGF, Constraint, Ty);
1181  }
1182
1183  bool isNoProtoCallVariadic(const CallArgList &args,
1184                             const FunctionNoProtoType *fnType) const {
1185    // The default CC on x86-64 sets %al to the number of SSA
1186    // registers used, and GCC sets this when calling an unprototyped
1187    // function, so we override the default behavior.  However, don't do
1188    // that when AVX types are involved: the ABI explicitly states it is
1189    // undefined, and it doesn't work in practice because of how the ABI
1190    // defines varargs anyway.
1191    if (fnType->getCallConv() == CC_Default || fnType->getCallConv() == CC_C) {
1192      bool HasAVXType = false;
1193      for (CallArgList::const_iterator
1194             it = args.begin(), ie = args.end(); it != ie; ++it) {
1195        if (getABIInfo().isPassedUsingAVXType(it->Ty)) {
1196          HasAVXType = true;
1197          break;
1198        }
1199      }
1200
1201      if (!HasAVXType)
1202        return true;
1203    }
1204
1205    return TargetCodeGenInfo::isNoProtoCallVariadic(args, fnType);
1206  }
1207
1208};
1209
1210class WinX86_64TargetCodeGenInfo : public TargetCodeGenInfo {
1211public:
1212  WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
1213    : TargetCodeGenInfo(new WinX86_64ABIInfo(CGT)) {}
1214
1215  int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const {
1216    return 7;
1217  }
1218
1219  bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
1220                               llvm::Value *Address) const {
1221    llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8);
1222
1223    // 0-15 are the 16 integer registers.
1224    // 16 is %rip.
1225    AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16);
1226    return false;
1227  }
1228};
1229
1230}
1231
1232void X86_64ABIInfo::postMerge(unsigned AggregateSize, Class &Lo,
1233                              Class &Hi) const {
1234  // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done:
1235  //
1236  // (a) If one of the classes is Memory, the whole argument is passed in
1237  //     memory.
1238  //
1239  // (b) If X87UP is not preceded by X87, the whole argument is passed in
1240  //     memory.
1241  //
1242  // (c) If the size of the aggregate exceeds two eightbytes and the first
1243  //     eightbyte isn't SSE or any other eightbyte isn't SSEUP, the whole
1244  //     argument is passed in memory. NOTE: This is necessary to keep the
1245  //     ABI working for processors that don't support the __m256 type.
1246  //
1247  // (d) If SSEUP is not preceded by SSE or SSEUP, it is converted to SSE.
1248  //
1249  // Some of these are enforced by the merging logic.  Others can arise
1250  // only with unions; for example:
1251  //   union { _Complex double; unsigned; }
1252  //
1253  // Note that clauses (b) and (c) were added in 0.98.
1254  //
1255  if (Hi == Memory)
1256    Lo = Memory;
1257  if (Hi == X87Up && Lo != X87 && honorsRevision0_98())
1258    Lo = Memory;
1259  if (AggregateSize > 128 && (Lo != SSE || Hi != SSEUp))
1260    Lo = Memory;
1261  if (Hi == SSEUp && Lo != SSE)
1262    Hi = SSE;
1263}
1264
1265X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, Class Field) {
1266  // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is
1267  // classified recursively so that always two fields are
1268  // considered. The resulting class is calculated according to
1269  // the classes of the fields in the eightbyte:
1270  //
1271  // (a) If both classes are equal, this is the resulting class.
1272  //
1273  // (b) If one of the classes is NO_CLASS, the resulting class is
1274  // the other class.
1275  //
1276  // (c) If one of the classes is MEMORY, the result is the MEMORY
1277  // class.
1278  //
1279  // (d) If one of the classes is INTEGER, the result is the
1280  // INTEGER.
1281  //
1282  // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class,
1283  // MEMORY is used as class.
1284  //
1285  // (f) Otherwise class SSE is used.
1286
1287  // Accum should never be memory (we should have returned) or
1288  // ComplexX87 (because this cannot be passed in a structure).
1289  assert((Accum != Memory && Accum != ComplexX87) &&
1290         "Invalid accumulated classification during merge.");
1291  if (Accum == Field || Field == NoClass)
1292    return Accum;
1293  if (Field == Memory)
1294    return Memory;
1295  if (Accum == NoClass)
1296    return Field;
1297  if (Accum == Integer || Field == Integer)
1298    return Integer;
1299  if (Field == X87 || Field == X87Up || Field == ComplexX87 ||
1300      Accum == X87 || Accum == X87Up)
1301    return Memory;
1302  return SSE;
1303}
1304
1305void X86_64ABIInfo::classify(QualType Ty, uint64_t OffsetBase,
1306                             Class &Lo, Class &Hi) const {
1307  // FIXME: This code can be simplified by introducing a simple value class for
1308  // Class pairs with appropriate constructor methods for the various
1309  // situations.
1310
1311  // FIXME: Some of the split computations are wrong; unaligned vectors
1312  // shouldn't be passed in registers for example, so there is no chance they
1313  // can straddle an eightbyte. Verify & simplify.
1314
1315  Lo = Hi = NoClass;
1316
1317  Class &Current = OffsetBase < 64 ? Lo : Hi;
1318  Current = Memory;
1319
1320  if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
1321    BuiltinType::Kind k = BT->getKind();
1322
1323    if (k == BuiltinType::Void) {
1324      Current = NoClass;
1325    } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) {
1326      Lo = Integer;
1327      Hi = Integer;
1328    } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) {
1329      Current = Integer;
1330    } else if (k == BuiltinType::Float || k == BuiltinType::Double) {
1331      Current = SSE;
1332    } else if (k == BuiltinType::LongDouble) {
1333      Lo = X87;
1334      Hi = X87Up;
1335    }
1336    // FIXME: _Decimal32 and _Decimal64 are SSE.
1337    // FIXME: _float128 and _Decimal128 are (SSE, SSEUp).
1338    return;
1339  }
1340
1341  if (const EnumType *ET = Ty->getAs<EnumType>()) {
1342    // Classify the underlying integer type.
1343    classify(ET->getDecl()->getIntegerType(), OffsetBase, Lo, Hi);
1344    return;
1345  }
1346
1347  if (Ty->hasPointerRepresentation()) {
1348    Current = Integer;
1349    return;
1350  }
1351
1352  if (Ty->isMemberPointerType()) {
1353    if (Ty->isMemberFunctionPointerType())
1354      Lo = Hi = Integer;
1355    else
1356      Current = Integer;
1357    return;
1358  }
1359
1360  if (const VectorType *VT = Ty->getAs<VectorType>()) {
1361    uint64_t Size = getContext().getTypeSize(VT);
1362    if (Size == 32) {
1363      // gcc passes all <4 x char>, <2 x short>, <1 x int>, <1 x
1364      // float> as integer.
1365      Current = Integer;
1366
1367      // If this type crosses an eightbyte boundary, it should be
1368      // split.
1369      uint64_t EB_Real = (OffsetBase) / 64;
1370      uint64_t EB_Imag = (OffsetBase + Size - 1) / 64;
1371      if (EB_Real != EB_Imag)
1372        Hi = Lo;
1373    } else if (Size == 64) {
1374      // gcc passes <1 x double> in memory. :(
1375      if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::Double))
1376        return;
1377
1378      // gcc passes <1 x long long> as INTEGER.
1379      if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::LongLong) ||
1380          VT->getElementType()->isSpecificBuiltinType(BuiltinType::ULongLong) ||
1381          VT->getElementType()->isSpecificBuiltinType(BuiltinType::Long) ||
1382          VT->getElementType()->isSpecificBuiltinType(BuiltinType::ULong))
1383        Current = Integer;
1384      else
1385        Current = SSE;
1386
1387      // If this type crosses an eightbyte boundary, it should be
1388      // split.
1389      if (OffsetBase && OffsetBase != 64)
1390        Hi = Lo;
1391    } else if (Size == 128 || (HasAVX && Size == 256)) {
1392      // Arguments of 256-bits are split into four eightbyte chunks. The
1393      // least significant one belongs to class SSE and all the others to class
1394      // SSEUP. The original Lo and Hi design considers that types can't be
1395      // greater than 128-bits, so a 64-bit split in Hi and Lo makes sense.
1396      // This design isn't correct for 256-bits, but since there're no cases
1397      // where the upper parts would need to be inspected, avoid adding
1398      // complexity and just consider Hi to match the 64-256 part.
1399      Lo = SSE;
1400      Hi = SSEUp;
1401    }
1402    return;
1403  }
1404
1405  if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
1406    QualType ET = getContext().getCanonicalType(CT->getElementType());
1407
1408    uint64_t Size = getContext().getTypeSize(Ty);
1409    if (ET->isIntegralOrEnumerationType()) {
1410      if (Size <= 64)
1411        Current = Integer;
1412      else if (Size <= 128)
1413        Lo = Hi = Integer;
1414    } else if (ET == getContext().FloatTy)
1415      Current = SSE;
1416    else if (ET == getContext().DoubleTy)
1417      Lo = Hi = SSE;
1418    else if (ET == getContext().LongDoubleTy)
1419      Current = ComplexX87;
1420
1421    // If this complex type crosses an eightbyte boundary then it
1422    // should be split.
1423    uint64_t EB_Real = (OffsetBase) / 64;
1424    uint64_t EB_Imag = (OffsetBase + getContext().getTypeSize(ET)) / 64;
1425    if (Hi == NoClass && EB_Real != EB_Imag)
1426      Hi = Lo;
1427
1428    return;
1429  }
1430
1431  if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
1432    // Arrays are treated like structures.
1433
1434    uint64_t Size = getContext().getTypeSize(Ty);
1435
1436    // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
1437    // than four eightbytes, ..., it has class MEMORY.
1438    if (Size > 256)
1439      return;
1440
1441    // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned
1442    // fields, it has class MEMORY.
1443    //
1444    // Only need to check alignment of array base.
1445    if (OffsetBase % getContext().getTypeAlign(AT->getElementType()))
1446      return;
1447
1448    // Otherwise implement simplified merge. We could be smarter about
1449    // this, but it isn't worth it and would be harder to verify.
1450    Current = NoClass;
1451    uint64_t EltSize = getContext().getTypeSize(AT->getElementType());
1452    uint64_t ArraySize = AT->getSize().getZExtValue();
1453
1454    // The only case a 256-bit wide vector could be used is when the array
1455    // contains a single 256-bit element. Since Lo and Hi logic isn't extended
1456    // to work for sizes wider than 128, early check and fallback to memory.
1457    if (Size > 128 && EltSize != 256)
1458      return;
1459
1460    for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) {
1461      Class FieldLo, FieldHi;
1462      classify(AT->getElementType(), Offset, FieldLo, FieldHi);
1463      Lo = merge(Lo, FieldLo);
1464      Hi = merge(Hi, FieldHi);
1465      if (Lo == Memory || Hi == Memory)
1466        break;
1467    }
1468
1469    postMerge(Size, Lo, Hi);
1470    assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification.");
1471    return;
1472  }
1473
1474  if (const RecordType *RT = Ty->getAs<RecordType>()) {
1475    uint64_t Size = getContext().getTypeSize(Ty);
1476
1477    // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
1478    // than four eightbytes, ..., it has class MEMORY.
1479    if (Size > 256)
1480      return;
1481
1482    // AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial
1483    // copy constructor or a non-trivial destructor, it is passed by invisible
1484    // reference.
1485    if (hasNonTrivialDestructorOrCopyConstructor(RT))
1486      return;
1487
1488    const RecordDecl *RD = RT->getDecl();
1489
1490    // Assume variable sized types are passed in memory.
1491    if (RD->hasFlexibleArrayMember())
1492      return;
1493
1494    const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
1495
1496    // Reset Lo class, this will be recomputed.
1497    Current = NoClass;
1498
1499    // If this is a C++ record, classify the bases first.
1500    if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
1501      for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
1502             e = CXXRD->bases_end(); i != e; ++i) {
1503        assert(!i->isVirtual() && !i->getType()->isDependentType() &&
1504               "Unexpected base class!");
1505        const CXXRecordDecl *Base =
1506          cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
1507
1508        // Classify this field.
1509        //
1510        // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a
1511        // single eightbyte, each is classified separately. Each eightbyte gets
1512        // initialized to class NO_CLASS.
1513        Class FieldLo, FieldHi;
1514        uint64_t Offset =
1515          OffsetBase + getContext().toBits(Layout.getBaseClassOffset(Base));
1516        classify(i->getType(), Offset, FieldLo, FieldHi);
1517        Lo = merge(Lo, FieldLo);
1518        Hi = merge(Hi, FieldHi);
1519        if (Lo == Memory || Hi == Memory)
1520          break;
1521      }
1522    }
1523
1524    // Classify the fields one at a time, merging the results.
1525    unsigned idx = 0;
1526    for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
1527           i != e; ++i, ++idx) {
1528      uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
1529      bool BitField = i->isBitField();
1530
1531      // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger than
1532      // four eightbytes, or it contains unaligned fields, it has class MEMORY.
1533      //
1534      // The only case a 256-bit wide vector could be used is when the struct
1535      // contains a single 256-bit element. Since Lo and Hi logic isn't extended
1536      // to work for sizes wider than 128, early check and fallback to memory.
1537      //
1538      if (Size > 128 && getContext().getTypeSize(i->getType()) != 256) {
1539        Lo = Memory;
1540        return;
1541      }
1542      // Note, skip this test for bit-fields, see below.
1543      if (!BitField && Offset % getContext().getTypeAlign(i->getType())) {
1544        Lo = Memory;
1545        return;
1546      }
1547
1548      // Classify this field.
1549      //
1550      // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate
1551      // exceeds a single eightbyte, each is classified
1552      // separately. Each eightbyte gets initialized to class
1553      // NO_CLASS.
1554      Class FieldLo, FieldHi;
1555
1556      // Bit-fields require special handling, they do not force the
1557      // structure to be passed in memory even if unaligned, and
1558      // therefore they can straddle an eightbyte.
1559      if (BitField) {
1560        // Ignore padding bit-fields.
1561        if (i->isUnnamedBitfield())
1562          continue;
1563
1564        uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
1565        uint64_t Size = i->getBitWidthValue(getContext());
1566
1567        uint64_t EB_Lo = Offset / 64;
1568        uint64_t EB_Hi = (Offset + Size - 1) / 64;
1569        FieldLo = FieldHi = NoClass;
1570        if (EB_Lo) {
1571          assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes.");
1572          FieldLo = NoClass;
1573          FieldHi = Integer;
1574        } else {
1575          FieldLo = Integer;
1576          FieldHi = EB_Hi ? Integer : NoClass;
1577        }
1578      } else
1579        classify(i->getType(), Offset, FieldLo, FieldHi);
1580      Lo = merge(Lo, FieldLo);
1581      Hi = merge(Hi, FieldHi);
1582      if (Lo == Memory || Hi == Memory)
1583        break;
1584    }
1585
1586    postMerge(Size, Lo, Hi);
1587  }
1588}
1589
1590ABIArgInfo X86_64ABIInfo::getIndirectReturnResult(QualType Ty) const {
1591  // If this is a scalar LLVM value then assume LLVM will pass it in the right
1592  // place naturally.
1593  if (!isAggregateTypeForABI(Ty)) {
1594    // Treat an enum type as its underlying type.
1595    if (const EnumType *EnumTy = Ty->getAs<EnumType>())
1596      Ty = EnumTy->getDecl()->getIntegerType();
1597
1598    return (Ty->isPromotableIntegerType() ?
1599            ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
1600  }
1601
1602  return ABIArgInfo::getIndirect(0);
1603}
1604
1605bool X86_64ABIInfo::IsIllegalVectorType(QualType Ty) const {
1606  if (const VectorType *VecTy = Ty->getAs<VectorType>()) {
1607    uint64_t Size = getContext().getTypeSize(VecTy);
1608    unsigned LargestVector = HasAVX ? 256 : 128;
1609    if (Size <= 64 || Size > LargestVector)
1610      return true;
1611  }
1612
1613  return false;
1614}
1615
1616ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty,
1617                                            unsigned freeIntRegs) const {
1618  // If this is a scalar LLVM value then assume LLVM will pass it in the right
1619  // place naturally.
1620  //
1621  // This assumption is optimistic, as there could be free registers available
1622  // when we need to pass this argument in memory, and LLVM could try to pass
1623  // the argument in the free register. This does not seem to happen currently,
1624  // but this code would be much safer if we could mark the argument with
1625  // 'onstack'. See PR12193.
1626  if (!isAggregateTypeForABI(Ty) && !IsIllegalVectorType(Ty)) {
1627    // Treat an enum type as its underlying type.
1628    if (const EnumType *EnumTy = Ty->getAs<EnumType>())
1629      Ty = EnumTy->getDecl()->getIntegerType();
1630
1631    return (Ty->isPromotableIntegerType() ?
1632            ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
1633  }
1634
1635  if (isRecordWithNonTrivialDestructorOrCopyConstructor(Ty))
1636    return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
1637
1638  // Compute the byval alignment. We specify the alignment of the byval in all
1639  // cases so that the mid-level optimizer knows the alignment of the byval.
1640  unsigned Align = std::max(getContext().getTypeAlign(Ty) / 8, 8U);
1641
1642  // Attempt to avoid passing indirect results using byval when possible. This
1643  // is important for good codegen.
1644  //
1645  // We do this by coercing the value into a scalar type which the backend can
1646  // handle naturally (i.e., without using byval).
1647  //
1648  // For simplicity, we currently only do this when we have exhausted all of the
1649  // free integer registers. Doing this when there are free integer registers
1650  // would require more care, as we would have to ensure that the coerced value
1651  // did not claim the unused register. That would require either reording the
1652  // arguments to the function (so that any subsequent inreg values came first),
1653  // or only doing this optimization when there were no following arguments that
1654  // might be inreg.
1655  //
1656  // We currently expect it to be rare (particularly in well written code) for
1657  // arguments to be passed on the stack when there are still free integer
1658  // registers available (this would typically imply large structs being passed
1659  // by value), so this seems like a fair tradeoff for now.
1660  //
1661  // We can revisit this if the backend grows support for 'onstack' parameter
1662  // attributes. See PR12193.
1663  if (freeIntRegs == 0) {
1664    uint64_t Size = getContext().getTypeSize(Ty);
1665
1666    // If this type fits in an eightbyte, coerce it into the matching integral
1667    // type, which will end up on the stack (with alignment 8).
1668    if (Align == 8 && Size <= 64)
1669      return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
1670                                                          Size));
1671  }
1672
1673  return ABIArgInfo::getIndirect(Align);
1674}
1675
1676/// GetByteVectorType - The ABI specifies that a value should be passed in an
1677/// full vector XMM/YMM register.  Pick an LLVM IR type that will be passed as a
1678/// vector register.
1679llvm::Type *X86_64ABIInfo::GetByteVectorType(QualType Ty) const {
1680  llvm::Type *IRType = CGT.ConvertType(Ty);
1681
1682  // Wrapper structs that just contain vectors are passed just like vectors,
1683  // strip them off if present.
1684  llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType);
1685  while (STy && STy->getNumElements() == 1) {
1686    IRType = STy->getElementType(0);
1687    STy = dyn_cast<llvm::StructType>(IRType);
1688  }
1689
1690  // If the preferred type is a 16-byte vector, prefer to pass it.
1691  if (llvm::VectorType *VT = dyn_cast<llvm::VectorType>(IRType)){
1692    llvm::Type *EltTy = VT->getElementType();
1693    unsigned BitWidth = VT->getBitWidth();
1694    if ((BitWidth >= 128 && BitWidth <= 256) &&
1695        (EltTy->isFloatTy() || EltTy->isDoubleTy() ||
1696         EltTy->isIntegerTy(8) || EltTy->isIntegerTy(16) ||
1697         EltTy->isIntegerTy(32) || EltTy->isIntegerTy(64) ||
1698         EltTy->isIntegerTy(128)))
1699      return VT;
1700  }
1701
1702  return llvm::VectorType::get(llvm::Type::getDoubleTy(getVMContext()), 2);
1703}
1704
1705/// BitsContainNoUserData - Return true if the specified [start,end) bit range
1706/// is known to either be off the end of the specified type or being in
1707/// alignment padding.  The user type specified is known to be at most 128 bits
1708/// in size, and have passed through X86_64ABIInfo::classify with a successful
1709/// classification that put one of the two halves in the INTEGER class.
1710///
1711/// It is conservatively correct to return false.
1712static bool BitsContainNoUserData(QualType Ty, unsigned StartBit,
1713                                  unsigned EndBit, ASTContext &Context) {
1714  // If the bytes being queried are off the end of the type, there is no user
1715  // data hiding here.  This handles analysis of builtins, vectors and other
1716  // types that don't contain interesting padding.
1717  unsigned TySize = (unsigned)Context.getTypeSize(Ty);
1718  if (TySize <= StartBit)
1719    return true;
1720
1721  if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
1722    unsigned EltSize = (unsigned)Context.getTypeSize(AT->getElementType());
1723    unsigned NumElts = (unsigned)AT->getSize().getZExtValue();
1724
1725    // Check each element to see if the element overlaps with the queried range.
1726    for (unsigned i = 0; i != NumElts; ++i) {
1727      // If the element is after the span we care about, then we're done..
1728      unsigned EltOffset = i*EltSize;
1729      if (EltOffset >= EndBit) break;
1730
1731      unsigned EltStart = EltOffset < StartBit ? StartBit-EltOffset :0;
1732      if (!BitsContainNoUserData(AT->getElementType(), EltStart,
1733                                 EndBit-EltOffset, Context))
1734        return false;
1735    }
1736    // If it overlaps no elements, then it is safe to process as padding.
1737    return true;
1738  }
1739
1740  if (const RecordType *RT = Ty->getAs<RecordType>()) {
1741    const RecordDecl *RD = RT->getDecl();
1742    const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
1743
1744    // If this is a C++ record, check the bases first.
1745    if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
1746      for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
1747           e = CXXRD->bases_end(); i != e; ++i) {
1748        assert(!i->isVirtual() && !i->getType()->isDependentType() &&
1749               "Unexpected base class!");
1750        const CXXRecordDecl *Base =
1751          cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
1752
1753        // If the base is after the span we care about, ignore it.
1754        unsigned BaseOffset = Context.toBits(Layout.getBaseClassOffset(Base));
1755        if (BaseOffset >= EndBit) continue;
1756
1757        unsigned BaseStart = BaseOffset < StartBit ? StartBit-BaseOffset :0;
1758        if (!BitsContainNoUserData(i->getType(), BaseStart,
1759                                   EndBit-BaseOffset, Context))
1760          return false;
1761      }
1762    }
1763
1764    // Verify that no field has data that overlaps the region of interest.  Yes
1765    // this could be sped up a lot by being smarter about queried fields,
1766    // however we're only looking at structs up to 16 bytes, so we don't care
1767    // much.
1768    unsigned idx = 0;
1769    for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
1770         i != e; ++i, ++idx) {
1771      unsigned FieldOffset = (unsigned)Layout.getFieldOffset(idx);
1772
1773      // If we found a field after the region we care about, then we're done.
1774      if (FieldOffset >= EndBit) break;
1775
1776      unsigned FieldStart = FieldOffset < StartBit ? StartBit-FieldOffset :0;
1777      if (!BitsContainNoUserData(i->getType(), FieldStart, EndBit-FieldOffset,
1778                                 Context))
1779        return false;
1780    }
1781
1782    // If nothing in this record overlapped the area of interest, then we're
1783    // clean.
1784    return true;
1785  }
1786
1787  return false;
1788}
1789
1790/// ContainsFloatAtOffset - Return true if the specified LLVM IR type has a
1791/// float member at the specified offset.  For example, {int,{float}} has a
1792/// float at offset 4.  It is conservatively correct for this routine to return
1793/// false.
1794static bool ContainsFloatAtOffset(llvm::Type *IRType, unsigned IROffset,
1795                                  const llvm::TargetData &TD) {
1796  // Base case if we find a float.
1797  if (IROffset == 0 && IRType->isFloatTy())
1798    return true;
1799
1800  // If this is a struct, recurse into the field at the specified offset.
1801  if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
1802    const llvm::StructLayout *SL = TD.getStructLayout(STy);
1803    unsigned Elt = SL->getElementContainingOffset(IROffset);
1804    IROffset -= SL->getElementOffset(Elt);
1805    return ContainsFloatAtOffset(STy->getElementType(Elt), IROffset, TD);
1806  }
1807
1808  // If this is an array, recurse into the field at the specified offset.
1809  if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
1810    llvm::Type *EltTy = ATy->getElementType();
1811    unsigned EltSize = TD.getTypeAllocSize(EltTy);
1812    IROffset -= IROffset/EltSize*EltSize;
1813    return ContainsFloatAtOffset(EltTy, IROffset, TD);
1814  }
1815
1816  return false;
1817}
1818
1819
1820/// GetSSETypeAtOffset - Return a type that will be passed by the backend in the
1821/// low 8 bytes of an XMM register, corresponding to the SSE class.
1822llvm::Type *X86_64ABIInfo::
1823GetSSETypeAtOffset(llvm::Type *IRType, unsigned IROffset,
1824                   QualType SourceTy, unsigned SourceOffset) const {
1825  // The only three choices we have are either double, <2 x float>, or float. We
1826  // pass as float if the last 4 bytes is just padding.  This happens for
1827  // structs that contain 3 floats.
1828  if (BitsContainNoUserData(SourceTy, SourceOffset*8+32,
1829                            SourceOffset*8+64, getContext()))
1830    return llvm::Type::getFloatTy(getVMContext());
1831
1832  // We want to pass as <2 x float> if the LLVM IR type contains a float at
1833  // offset+0 and offset+4.  Walk the LLVM IR type to find out if this is the
1834  // case.
1835  if (ContainsFloatAtOffset(IRType, IROffset, getTargetData()) &&
1836      ContainsFloatAtOffset(IRType, IROffset+4, getTargetData()))
1837    return llvm::VectorType::get(llvm::Type::getFloatTy(getVMContext()), 2);
1838
1839  return llvm::Type::getDoubleTy(getVMContext());
1840}
1841
1842
1843/// GetINTEGERTypeAtOffset - The ABI specifies that a value should be passed in
1844/// an 8-byte GPR.  This means that we either have a scalar or we are talking
1845/// about the high or low part of an up-to-16-byte struct.  This routine picks
1846/// the best LLVM IR type to represent this, which may be i64 or may be anything
1847/// else that the backend will pass in a GPR that works better (e.g. i8, %foo*,
1848/// etc).
1849///
1850/// PrefType is an LLVM IR type that corresponds to (part of) the IR type for
1851/// the source type.  IROffset is an offset in bytes into the LLVM IR type that
1852/// the 8-byte value references.  PrefType may be null.
1853///
1854/// SourceTy is the source level type for the entire argument.  SourceOffset is
1855/// an offset into this that we're processing (which is always either 0 or 8).
1856///
1857llvm::Type *X86_64ABIInfo::
1858GetINTEGERTypeAtOffset(llvm::Type *IRType, unsigned IROffset,
1859                       QualType SourceTy, unsigned SourceOffset) const {
1860  // If we're dealing with an un-offset LLVM IR type, then it means that we're
1861  // returning an 8-byte unit starting with it.  See if we can safely use it.
1862  if (IROffset == 0) {
1863    // Pointers and int64's always fill the 8-byte unit.
1864    if (isa<llvm::PointerType>(IRType) || IRType->isIntegerTy(64))
1865      return IRType;
1866
1867    // If we have a 1/2/4-byte integer, we can use it only if the rest of the
1868    // goodness in the source type is just tail padding.  This is allowed to
1869    // kick in for struct {double,int} on the int, but not on
1870    // struct{double,int,int} because we wouldn't return the second int.  We
1871    // have to do this analysis on the source type because we can't depend on
1872    // unions being lowered a specific way etc.
1873    if (IRType->isIntegerTy(8) || IRType->isIntegerTy(16) ||
1874        IRType->isIntegerTy(32)) {
1875      unsigned BitWidth = cast<llvm::IntegerType>(IRType)->getBitWidth();
1876
1877      if (BitsContainNoUserData(SourceTy, SourceOffset*8+BitWidth,
1878                                SourceOffset*8+64, getContext()))
1879        return IRType;
1880    }
1881  }
1882
1883  if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
1884    // If this is a struct, recurse into the field at the specified offset.
1885    const llvm::StructLayout *SL = getTargetData().getStructLayout(STy);
1886    if (IROffset < SL->getSizeInBytes()) {
1887      unsigned FieldIdx = SL->getElementContainingOffset(IROffset);
1888      IROffset -= SL->getElementOffset(FieldIdx);
1889
1890      return GetINTEGERTypeAtOffset(STy->getElementType(FieldIdx), IROffset,
1891                                    SourceTy, SourceOffset);
1892    }
1893  }
1894
1895  if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
1896    llvm::Type *EltTy = ATy->getElementType();
1897    unsigned EltSize = getTargetData().getTypeAllocSize(EltTy);
1898    unsigned EltOffset = IROffset/EltSize*EltSize;
1899    return GetINTEGERTypeAtOffset(EltTy, IROffset-EltOffset, SourceTy,
1900                                  SourceOffset);
1901  }
1902
1903  // Okay, we don't have any better idea of what to pass, so we pass this in an
1904  // integer register that isn't too big to fit the rest of the struct.
1905  unsigned TySizeInBytes =
1906    (unsigned)getContext().getTypeSizeInChars(SourceTy).getQuantity();
1907
1908  assert(TySizeInBytes != SourceOffset && "Empty field?");
1909
1910  // It is always safe to classify this as an integer type up to i64 that
1911  // isn't larger than the structure.
1912  return llvm::IntegerType::get(getVMContext(),
1913                                std::min(TySizeInBytes-SourceOffset, 8U)*8);
1914}
1915
1916
1917/// GetX86_64ByValArgumentPair - Given a high and low type that can ideally
1918/// be used as elements of a two register pair to pass or return, return a
1919/// first class aggregate to represent them.  For example, if the low part of
1920/// a by-value argument should be passed as i32* and the high part as float,
1921/// return {i32*, float}.
1922static llvm::Type *
1923GetX86_64ByValArgumentPair(llvm::Type *Lo, llvm::Type *Hi,
1924                           const llvm::TargetData &TD) {
1925  // In order to correctly satisfy the ABI, we need to the high part to start
1926  // at offset 8.  If the high and low parts we inferred are both 4-byte types
1927  // (e.g. i32 and i32) then the resultant struct type ({i32,i32}) won't have
1928  // the second element at offset 8.  Check for this:
1929  unsigned LoSize = (unsigned)TD.getTypeAllocSize(Lo);
1930  unsigned HiAlign = TD.getABITypeAlignment(Hi);
1931  unsigned HiStart = llvm::TargetData::RoundUpAlignment(LoSize, HiAlign);
1932  assert(HiStart != 0 && HiStart <= 8 && "Invalid x86-64 argument pair!");
1933
1934  // To handle this, we have to increase the size of the low part so that the
1935  // second element will start at an 8 byte offset.  We can't increase the size
1936  // of the second element because it might make us access off the end of the
1937  // struct.
1938  if (HiStart != 8) {
1939    // There are only two sorts of types the ABI generation code can produce for
1940    // the low part of a pair that aren't 8 bytes in size: float or i8/i16/i32.
1941    // Promote these to a larger type.
1942    if (Lo->isFloatTy())
1943      Lo = llvm::Type::getDoubleTy(Lo->getContext());
1944    else {
1945      assert(Lo->isIntegerTy() && "Invalid/unknown lo type");
1946      Lo = llvm::Type::getInt64Ty(Lo->getContext());
1947    }
1948  }
1949
1950  llvm::StructType *Result = llvm::StructType::get(Lo, Hi, NULL);
1951
1952
1953  // Verify that the second element is at an 8-byte offset.
1954  assert(TD.getStructLayout(Result)->getElementOffset(1) == 8 &&
1955         "Invalid x86-64 argument pair!");
1956  return Result;
1957}
1958
1959ABIArgInfo X86_64ABIInfo::
1960classifyReturnType(QualType RetTy) const {
1961  // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the
1962  // classification algorithm.
1963  X86_64ABIInfo::Class Lo, Hi;
1964  classify(RetTy, 0, Lo, Hi);
1965
1966  // Check some invariants.
1967  assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
1968  assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
1969
1970  llvm::Type *ResType = 0;
1971  switch (Lo) {
1972  case NoClass:
1973    if (Hi == NoClass)
1974      return ABIArgInfo::getIgnore();
1975    // If the low part is just padding, it takes no register, leave ResType
1976    // null.
1977    assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
1978           "Unknown missing lo part");
1979    break;
1980
1981  case SSEUp:
1982  case X87Up:
1983    llvm_unreachable("Invalid classification for lo word.");
1984
1985    // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via
1986    // hidden argument.
1987  case Memory:
1988    return getIndirectReturnResult(RetTy);
1989
1990    // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next
1991    // available register of the sequence %rax, %rdx is used.
1992  case Integer:
1993    ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0);
1994
1995    // If we have a sign or zero extended integer, make sure to return Extend
1996    // so that the parameter gets the right LLVM IR attributes.
1997    if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
1998      // Treat an enum type as its underlying type.
1999      if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
2000        RetTy = EnumTy->getDecl()->getIntegerType();
2001
2002      if (RetTy->isIntegralOrEnumerationType() &&
2003          RetTy->isPromotableIntegerType())
2004        return ABIArgInfo::getExtend();
2005    }
2006    break;
2007
2008    // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next
2009    // available SSE register of the sequence %xmm0, %xmm1 is used.
2010  case SSE:
2011    ResType = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0);
2012    break;
2013
2014    // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is
2015    // returned on the X87 stack in %st0 as 80-bit x87 number.
2016  case X87:
2017    ResType = llvm::Type::getX86_FP80Ty(getVMContext());
2018    break;
2019
2020    // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real
2021    // part of the value is returned in %st0 and the imaginary part in
2022    // %st1.
2023  case ComplexX87:
2024    assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification.");
2025    ResType = llvm::StructType::get(llvm::Type::getX86_FP80Ty(getVMContext()),
2026                                    llvm::Type::getX86_FP80Ty(getVMContext()),
2027                                    NULL);
2028    break;
2029  }
2030
2031  llvm::Type *HighPart = 0;
2032  switch (Hi) {
2033    // Memory was handled previously and X87 should
2034    // never occur as a hi class.
2035  case Memory:
2036  case X87:
2037    llvm_unreachable("Invalid classification for hi word.");
2038
2039  case ComplexX87: // Previously handled.
2040  case NoClass:
2041    break;
2042
2043  case Integer:
2044    HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
2045    if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
2046      return ABIArgInfo::getDirect(HighPart, 8);
2047    break;
2048  case SSE:
2049    HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
2050    if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
2051      return ABIArgInfo::getDirect(HighPart, 8);
2052    break;
2053
2054    // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte
2055    // is passed in the next available eightbyte chunk if the last used
2056    // vector register.
2057    //
2058    // SSEUP should always be preceded by SSE, just widen.
2059  case SSEUp:
2060    assert(Lo == SSE && "Unexpected SSEUp classification.");
2061    ResType = GetByteVectorType(RetTy);
2062    break;
2063
2064    // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is
2065    // returned together with the previous X87 value in %st0.
2066  case X87Up:
2067    // If X87Up is preceded by X87, we don't need to do
2068    // anything. However, in some cases with unions it may not be
2069    // preceded by X87. In such situations we follow gcc and pass the
2070    // extra bits in an SSE reg.
2071    if (Lo != X87) {
2072      HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
2073      if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
2074        return ABIArgInfo::getDirect(HighPart, 8);
2075    }
2076    break;
2077  }
2078
2079  // If a high part was specified, merge it together with the low part.  It is
2080  // known to pass in the high eightbyte of the result.  We do this by forming a
2081  // first class struct aggregate with the high and low part: {low, high}
2082  if (HighPart)
2083    ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getTargetData());
2084
2085  return ABIArgInfo::getDirect(ResType);
2086}
2087
2088ABIArgInfo X86_64ABIInfo::classifyArgumentType(
2089  QualType Ty, unsigned freeIntRegs, unsigned &neededInt, unsigned &neededSSE)
2090  const
2091{
2092  X86_64ABIInfo::Class Lo, Hi;
2093  classify(Ty, 0, Lo, Hi);
2094
2095  // Check some invariants.
2096  // FIXME: Enforce these by construction.
2097  assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
2098  assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
2099
2100  neededInt = 0;
2101  neededSSE = 0;
2102  llvm::Type *ResType = 0;
2103  switch (Lo) {
2104  case NoClass:
2105    if (Hi == NoClass)
2106      return ABIArgInfo::getIgnore();
2107    // If the low part is just padding, it takes no register, leave ResType
2108    // null.
2109    assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
2110           "Unknown missing lo part");
2111    break;
2112
2113    // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument
2114    // on the stack.
2115  case Memory:
2116
2117    // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or
2118    // COMPLEX_X87, it is passed in memory.
2119  case X87:
2120  case ComplexX87:
2121    if (isRecordWithNonTrivialDestructorOrCopyConstructor(Ty))
2122      ++neededInt;
2123    return getIndirectResult(Ty, freeIntRegs);
2124
2125  case SSEUp:
2126  case X87Up:
2127    llvm_unreachable("Invalid classification for lo word.");
2128
2129    // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next
2130    // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8
2131    // and %r9 is used.
2132  case Integer:
2133    ++neededInt;
2134
2135    // Pick an 8-byte type based on the preferred type.
2136    ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 0, Ty, 0);
2137
2138    // If we have a sign or zero extended integer, make sure to return Extend
2139    // so that the parameter gets the right LLVM IR attributes.
2140    if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
2141      // Treat an enum type as its underlying type.
2142      if (const EnumType *EnumTy = Ty->getAs<EnumType>())
2143        Ty = EnumTy->getDecl()->getIntegerType();
2144
2145      if (Ty->isIntegralOrEnumerationType() &&
2146          Ty->isPromotableIntegerType())
2147        return ABIArgInfo::getExtend();
2148    }
2149
2150    break;
2151
2152    // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next
2153    // available SSE register is used, the registers are taken in the
2154    // order from %xmm0 to %xmm7.
2155  case SSE: {
2156    llvm::Type *IRType = CGT.ConvertType(Ty);
2157    ResType = GetSSETypeAtOffset(IRType, 0, Ty, 0);
2158    ++neededSSE;
2159    break;
2160  }
2161  }
2162
2163  llvm::Type *HighPart = 0;
2164  switch (Hi) {
2165    // Memory was handled previously, ComplexX87 and X87 should
2166    // never occur as hi classes, and X87Up must be preceded by X87,
2167    // which is passed in memory.
2168  case Memory:
2169  case X87:
2170  case ComplexX87:
2171    llvm_unreachable("Invalid classification for hi word.");
2172
2173  case NoClass: break;
2174
2175  case Integer:
2176    ++neededInt;
2177    // Pick an 8-byte type based on the preferred type.
2178    HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8);
2179
2180    if (Lo == NoClass)  // Pass HighPart at offset 8 in memory.
2181      return ABIArgInfo::getDirect(HighPart, 8);
2182    break;
2183
2184    // X87Up generally doesn't occur here (long double is passed in
2185    // memory), except in situations involving unions.
2186  case X87Up:
2187  case SSE:
2188    HighPart = GetSSETypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8);
2189
2190    if (Lo == NoClass)  // Pass HighPart at offset 8 in memory.
2191      return ABIArgInfo::getDirect(HighPart, 8);
2192
2193    ++neededSSE;
2194    break;
2195
2196    // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the
2197    // eightbyte is passed in the upper half of the last used SSE
2198    // register.  This only happens when 128-bit vectors are passed.
2199  case SSEUp:
2200    assert(Lo == SSE && "Unexpected SSEUp classification");
2201    ResType = GetByteVectorType(Ty);
2202    break;
2203  }
2204
2205  // If a high part was specified, merge it together with the low part.  It is
2206  // known to pass in the high eightbyte of the result.  We do this by forming a
2207  // first class struct aggregate with the high and low part: {low, high}
2208  if (HighPart)
2209    ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getTargetData());
2210
2211  return ABIArgInfo::getDirect(ResType);
2212}
2213
2214void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
2215
2216  FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
2217
2218  // Keep track of the number of assigned registers.
2219  unsigned freeIntRegs = 6, freeSSERegs = 8;
2220
2221  // If the return value is indirect, then the hidden argument is consuming one
2222  // integer register.
2223  if (FI.getReturnInfo().isIndirect())
2224    --freeIntRegs;
2225
2226  // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers
2227  // get assigned (in left-to-right order) for passing as follows...
2228  for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
2229       it != ie; ++it) {
2230    unsigned neededInt, neededSSE;
2231    it->info = classifyArgumentType(it->type, freeIntRegs, neededInt,
2232                                    neededSSE);
2233
2234    // AMD64-ABI 3.2.3p3: If there are no registers available for any
2235    // eightbyte of an argument, the whole argument is passed on the
2236    // stack. If registers have already been assigned for some
2237    // eightbytes of such an argument, the assignments get reverted.
2238    if (freeIntRegs >= neededInt && freeSSERegs >= neededSSE) {
2239      freeIntRegs -= neededInt;
2240      freeSSERegs -= neededSSE;
2241    } else {
2242      it->info = getIndirectResult(it->type, freeIntRegs);
2243    }
2244  }
2245}
2246
2247static llvm::Value *EmitVAArgFromMemory(llvm::Value *VAListAddr,
2248                                        QualType Ty,
2249                                        CodeGenFunction &CGF) {
2250  llvm::Value *overflow_arg_area_p =
2251    CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_p");
2252  llvm::Value *overflow_arg_area =
2253    CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area");
2254
2255  // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16
2256  // byte boundary if alignment needed by type exceeds 8 byte boundary.
2257  // It isn't stated explicitly in the standard, but in practice we use
2258  // alignment greater than 16 where necessary.
2259  uint64_t Align = CGF.getContext().getTypeAlign(Ty) / 8;
2260  if (Align > 8) {
2261    // overflow_arg_area = (overflow_arg_area + align - 1) & -align;
2262    llvm::Value *Offset =
2263      llvm::ConstantInt::get(CGF.Int64Ty, Align - 1);
2264    overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset);
2265    llvm::Value *AsInt = CGF.Builder.CreatePtrToInt(overflow_arg_area,
2266                                                    CGF.Int64Ty);
2267    llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int64Ty, -(uint64_t)Align);
2268    overflow_arg_area =
2269      CGF.Builder.CreateIntToPtr(CGF.Builder.CreateAnd(AsInt, Mask),
2270                                 overflow_arg_area->getType(),
2271                                 "overflow_arg_area.align");
2272  }
2273
2274  // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area.
2275  llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
2276  llvm::Value *Res =
2277    CGF.Builder.CreateBitCast(overflow_arg_area,
2278                              llvm::PointerType::getUnqual(LTy));
2279
2280  // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to:
2281  // l->overflow_arg_area + sizeof(type).
2282  // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to
2283  // an 8 byte boundary.
2284
2285  uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8;
2286  llvm::Value *Offset =
2287      llvm::ConstantInt::get(CGF.Int32Ty, (SizeInBytes + 7)  & ~7);
2288  overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset,
2289                                            "overflow_arg_area.next");
2290  CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p);
2291
2292  // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type.
2293  return Res;
2294}
2295
2296llvm::Value *X86_64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2297                                      CodeGenFunction &CGF) const {
2298  // Assume that va_list type is correct; should be pointer to LLVM type:
2299  // struct {
2300  //   i32 gp_offset;
2301  //   i32 fp_offset;
2302  //   i8* overflow_arg_area;
2303  //   i8* reg_save_area;
2304  // };
2305  unsigned neededInt, neededSSE;
2306
2307  Ty = CGF.getContext().getCanonicalType(Ty);
2308  ABIArgInfo AI = classifyArgumentType(Ty, 0, neededInt, neededSSE);
2309
2310  // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed
2311  // in the registers. If not go to step 7.
2312  if (!neededInt && !neededSSE)
2313    return EmitVAArgFromMemory(VAListAddr, Ty, CGF);
2314
2315  // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of
2316  // general purpose registers needed to pass type and num_fp to hold
2317  // the number of floating point registers needed.
2318
2319  // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into
2320  // registers. In the case: l->gp_offset > 48 - num_gp * 8 or
2321  // l->fp_offset > 304 - num_fp * 16 go to step 7.
2322  //
2323  // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of
2324  // register save space).
2325
2326  llvm::Value *InRegs = 0;
2327  llvm::Value *gp_offset_p = 0, *gp_offset = 0;
2328  llvm::Value *fp_offset_p = 0, *fp_offset = 0;
2329  if (neededInt) {
2330    gp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "gp_offset_p");
2331    gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset");
2332    InRegs = llvm::ConstantInt::get(CGF.Int32Ty, 48 - neededInt * 8);
2333    InRegs = CGF.Builder.CreateICmpULE(gp_offset, InRegs, "fits_in_gp");
2334  }
2335
2336  if (neededSSE) {
2337    fp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 1, "fp_offset_p");
2338    fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset");
2339    llvm::Value *FitsInFP =
2340      llvm::ConstantInt::get(CGF.Int32Ty, 176 - neededSSE * 16);
2341    FitsInFP = CGF.Builder.CreateICmpULE(fp_offset, FitsInFP, "fits_in_fp");
2342    InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP;
2343  }
2344
2345  llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
2346  llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
2347  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
2348  CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);
2349
2350  // Emit code to load the value if it was passed in registers.
2351
2352  CGF.EmitBlock(InRegBlock);
2353
2354  // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with
2355  // an offset of l->gp_offset and/or l->fp_offset. This may require
2356  // copying to a temporary location in case the parameter is passed
2357  // in different register classes or requires an alignment greater
2358  // than 8 for general purpose registers and 16 for XMM registers.
2359  //
2360  // FIXME: This really results in shameful code when we end up needing to
2361  // collect arguments from different places; often what should result in a
2362  // simple assembling of a structure from scattered addresses has many more
2363  // loads than necessary. Can we clean this up?
2364  llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
2365  llvm::Value *RegAddr =
2366    CGF.Builder.CreateLoad(CGF.Builder.CreateStructGEP(VAListAddr, 3),
2367                           "reg_save_area");
2368  if (neededInt && neededSSE) {
2369    // FIXME: Cleanup.
2370    assert(AI.isDirect() && "Unexpected ABI info for mixed regs");
2371    llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType());
2372    llvm::Value *Tmp = CGF.CreateTempAlloca(ST);
2373    assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs");
2374    llvm::Type *TyLo = ST->getElementType(0);
2375    llvm::Type *TyHi = ST->getElementType(1);
2376    assert((TyLo->isFPOrFPVectorTy() ^ TyHi->isFPOrFPVectorTy()) &&
2377           "Unexpected ABI info for mixed regs");
2378    llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo);
2379    llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi);
2380    llvm::Value *GPAddr = CGF.Builder.CreateGEP(RegAddr, gp_offset);
2381    llvm::Value *FPAddr = CGF.Builder.CreateGEP(RegAddr, fp_offset);
2382    llvm::Value *RegLoAddr = TyLo->isFloatingPointTy() ? FPAddr : GPAddr;
2383    llvm::Value *RegHiAddr = TyLo->isFloatingPointTy() ? GPAddr : FPAddr;
2384    llvm::Value *V =
2385      CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegLoAddr, PTyLo));
2386    CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0));
2387    V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegHiAddr, PTyHi));
2388    CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1));
2389
2390    RegAddr = CGF.Builder.CreateBitCast(Tmp,
2391                                        llvm::PointerType::getUnqual(LTy));
2392  } else if (neededInt) {
2393    RegAddr = CGF.Builder.CreateGEP(RegAddr, gp_offset);
2394    RegAddr = CGF.Builder.CreateBitCast(RegAddr,
2395                                        llvm::PointerType::getUnqual(LTy));
2396  } else if (neededSSE == 1) {
2397    RegAddr = CGF.Builder.CreateGEP(RegAddr, fp_offset);
2398    RegAddr = CGF.Builder.CreateBitCast(RegAddr,
2399                                        llvm::PointerType::getUnqual(LTy));
2400  } else {
2401    assert(neededSSE == 2 && "Invalid number of needed registers!");
2402    // SSE registers are spaced 16 bytes apart in the register save
2403    // area, we need to collect the two eightbytes together.
2404    llvm::Value *RegAddrLo = CGF.Builder.CreateGEP(RegAddr, fp_offset);
2405    llvm::Value *RegAddrHi = CGF.Builder.CreateConstGEP1_32(RegAddrLo, 16);
2406    llvm::Type *DoubleTy = CGF.DoubleTy;
2407    llvm::Type *DblPtrTy =
2408      llvm::PointerType::getUnqual(DoubleTy);
2409    llvm::StructType *ST = llvm::StructType::get(DoubleTy,
2410                                                       DoubleTy, NULL);
2411    llvm::Value *V, *Tmp = CGF.CreateTempAlloca(ST);
2412    V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegAddrLo,
2413                                                         DblPtrTy));
2414    CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0));
2415    V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegAddrHi,
2416                                                         DblPtrTy));
2417    CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1));
2418    RegAddr = CGF.Builder.CreateBitCast(Tmp,
2419                                        llvm::PointerType::getUnqual(LTy));
2420  }
2421
2422  // AMD64-ABI 3.5.7p5: Step 5. Set:
2423  // l->gp_offset = l->gp_offset + num_gp * 8
2424  // l->fp_offset = l->fp_offset + num_fp * 16.
2425  if (neededInt) {
2426    llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededInt * 8);
2427    CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset),
2428                            gp_offset_p);
2429  }
2430  if (neededSSE) {
2431    llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededSSE * 16);
2432    CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset),
2433                            fp_offset_p);
2434  }
2435  CGF.EmitBranch(ContBlock);
2436
2437  // Emit code to load the value if it was passed in memory.
2438
2439  CGF.EmitBlock(InMemBlock);
2440  llvm::Value *MemAddr = EmitVAArgFromMemory(VAListAddr, Ty, CGF);
2441
2442  // Return the appropriate result.
2443
2444  CGF.EmitBlock(ContBlock);
2445  llvm::PHINode *ResAddr = CGF.Builder.CreatePHI(RegAddr->getType(), 2,
2446                                                 "vaarg.addr");
2447  ResAddr->addIncoming(RegAddr, InRegBlock);
2448  ResAddr->addIncoming(MemAddr, InMemBlock);
2449  return ResAddr;
2450}
2451
2452ABIArgInfo WinX86_64ABIInfo::classify(QualType Ty) const {
2453
2454  if (Ty->isVoidType())
2455    return ABIArgInfo::getIgnore();
2456
2457  if (const EnumType *EnumTy = Ty->getAs<EnumType>())
2458    Ty = EnumTy->getDecl()->getIntegerType();
2459
2460  uint64_t Size = getContext().getTypeSize(Ty);
2461
2462  if (const RecordType *RT = Ty->getAs<RecordType>()) {
2463    if (hasNonTrivialDestructorOrCopyConstructor(RT) ||
2464        RT->getDecl()->hasFlexibleArrayMember())
2465      return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
2466
2467    // FIXME: mingw-w64-gcc emits 128-bit struct as i128
2468    if (Size == 128 &&
2469        getContext().getTargetInfo().getTriple().getOS()
2470          == llvm::Triple::MinGW32)
2471      return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
2472                                                          Size));
2473
2474    // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is
2475    // not 1, 2, 4, or 8 bytes, must be passed by reference."
2476    if (Size <= 64 &&
2477        (Size & (Size - 1)) == 0)
2478      return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
2479                                                          Size));
2480
2481    return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
2482  }
2483
2484  if (Ty->isPromotableIntegerType())
2485    return ABIArgInfo::getExtend();
2486
2487  return ABIArgInfo::getDirect();
2488}
2489
2490void WinX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
2491
2492  QualType RetTy = FI.getReturnType();
2493  FI.getReturnInfo() = classify(RetTy);
2494
2495  for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
2496       it != ie; ++it)
2497    it->info = classify(it->type);
2498}
2499
2500llvm::Value *WinX86_64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2501                                      CodeGenFunction &CGF) const {
2502  llvm::Type *BPP = CGF.Int8PtrPtrTy;
2503
2504  CGBuilderTy &Builder = CGF.Builder;
2505  llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP,
2506                                                       "ap");
2507  llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
2508  llvm::Type *PTy =
2509    llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
2510  llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
2511
2512  uint64_t Offset =
2513    llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 8);
2514  llvm::Value *NextAddr =
2515    Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
2516                      "ap.next");
2517  Builder.CreateStore(NextAddr, VAListAddrAsBPP);
2518
2519  return AddrTyped;
2520}
2521
2522// PowerPC-32
2523
2524namespace {
2525class PPC32TargetCodeGenInfo : public DefaultTargetCodeGenInfo {
2526public:
2527  PPC32TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {}
2528
2529  int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const {
2530    // This is recovered from gcc output.
2531    return 1; // r1 is the dedicated stack pointer
2532  }
2533
2534  bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2535                               llvm::Value *Address) const;
2536};
2537
2538}
2539
2540bool
2541PPC32TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2542                                                llvm::Value *Address) const {
2543  // This is calculated from the LLVM and GCC tables and verified
2544  // against gcc output.  AFAIK all ABIs use the same encoding.
2545
2546  CodeGen::CGBuilderTy &Builder = CGF.Builder;
2547
2548  llvm::IntegerType *i8 = CGF.Int8Ty;
2549  llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
2550  llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
2551  llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16);
2552
2553  // 0-31: r0-31, the 4-byte general-purpose registers
2554  AssignToArrayRange(Builder, Address, Four8, 0, 31);
2555
2556  // 32-63: fp0-31, the 8-byte floating-point registers
2557  AssignToArrayRange(Builder, Address, Eight8, 32, 63);
2558
2559  // 64-76 are various 4-byte special-purpose registers:
2560  // 64: mq
2561  // 65: lr
2562  // 66: ctr
2563  // 67: ap
2564  // 68-75 cr0-7
2565  // 76: xer
2566  AssignToArrayRange(Builder, Address, Four8, 64, 76);
2567
2568  // 77-108: v0-31, the 16-byte vector registers
2569  AssignToArrayRange(Builder, Address, Sixteen8, 77, 108);
2570
2571  // 109: vrsave
2572  // 110: vscr
2573  // 111: spe_acc
2574  // 112: spefscr
2575  // 113: sfp
2576  AssignToArrayRange(Builder, Address, Four8, 109, 113);
2577
2578  return false;
2579}
2580
2581// PowerPC-64
2582
2583namespace {
2584class PPC64TargetCodeGenInfo : public DefaultTargetCodeGenInfo {
2585public:
2586  PPC64TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {}
2587
2588  int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const {
2589    // This is recovered from gcc output.
2590    return 1; // r1 is the dedicated stack pointer
2591  }
2592
2593  bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2594                               llvm::Value *Address) const;
2595};
2596
2597}
2598
2599bool
2600PPC64TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2601                                                llvm::Value *Address) const {
2602  // This is calculated from the LLVM and GCC tables and verified
2603  // against gcc output.  AFAIK all ABIs use the same encoding.
2604
2605  CodeGen::CGBuilderTy &Builder = CGF.Builder;
2606
2607  llvm::IntegerType *i8 = CGF.Int8Ty;
2608  llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
2609  llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
2610  llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16);
2611
2612  // 0-31: r0-31, the 8-byte general-purpose registers
2613  AssignToArrayRange(Builder, Address, Eight8, 0, 31);
2614
2615  // 32-63: fp0-31, the 8-byte floating-point registers
2616  AssignToArrayRange(Builder, Address, Eight8, 32, 63);
2617
2618  // 64-76 are various 4-byte special-purpose registers:
2619  // 64: mq
2620  // 65: lr
2621  // 66: ctr
2622  // 67: ap
2623  // 68-75 cr0-7
2624  // 76: xer
2625  AssignToArrayRange(Builder, Address, Four8, 64, 76);
2626
2627  // 77-108: v0-31, the 16-byte vector registers
2628  AssignToArrayRange(Builder, Address, Sixteen8, 77, 108);
2629
2630  // 109: vrsave
2631  // 110: vscr
2632  // 111: spe_acc
2633  // 112: spefscr
2634  // 113: sfp
2635  AssignToArrayRange(Builder, Address, Four8, 109, 113);
2636
2637  return false;
2638}
2639
2640//===----------------------------------------------------------------------===//
2641// ARM ABI Implementation
2642//===----------------------------------------------------------------------===//
2643
2644namespace {
2645
2646class ARMABIInfo : public ABIInfo {
2647public:
2648  enum ABIKind {
2649    APCS = 0,
2650    AAPCS = 1,
2651    AAPCS_VFP
2652  };
2653
2654private:
2655  ABIKind Kind;
2656
2657public:
2658  ARMABIInfo(CodeGenTypes &CGT, ABIKind _Kind) : ABIInfo(CGT), Kind(_Kind) {}
2659
2660  bool isEABI() const {
2661    StringRef Env =
2662      getContext().getTargetInfo().getTriple().getEnvironmentName();
2663    return (Env == "gnueabi" || Env == "eabi" ||
2664            Env == "android" || Env == "androideabi");
2665  }
2666
2667private:
2668  ABIKind getABIKind() const { return Kind; }
2669
2670  ABIArgInfo classifyReturnType(QualType RetTy) const;
2671  ABIArgInfo classifyArgumentType(QualType RetTy) const;
2672
2673  virtual void computeInfo(CGFunctionInfo &FI) const;
2674
2675  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2676                                 CodeGenFunction &CGF) const;
2677};
2678
2679class ARMTargetCodeGenInfo : public TargetCodeGenInfo {
2680public:
2681  ARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K)
2682    :TargetCodeGenInfo(new ARMABIInfo(CGT, K)) {}
2683
2684  const ARMABIInfo &getABIInfo() const {
2685    return static_cast<const ARMABIInfo&>(TargetCodeGenInfo::getABIInfo());
2686  }
2687
2688  int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const {
2689    return 13;
2690  }
2691
2692  StringRef getARCRetainAutoreleasedReturnValueMarker() const {
2693    return "mov\tr7, r7\t\t@ marker for objc_retainAutoreleaseReturnValue";
2694  }
2695
2696  bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2697                               llvm::Value *Address) const {
2698    llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
2699
2700    // 0-15 are the 16 integer registers.
2701    AssignToArrayRange(CGF.Builder, Address, Four8, 0, 15);
2702    return false;
2703  }
2704
2705  unsigned getSizeOfUnwindException() const {
2706    if (getABIInfo().isEABI()) return 88;
2707    return TargetCodeGenInfo::getSizeOfUnwindException();
2708  }
2709};
2710
2711}
2712
2713void ARMABIInfo::computeInfo(CGFunctionInfo &FI) const {
2714  FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
2715  for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
2716       it != ie; ++it)
2717    it->info = classifyArgumentType(it->type);
2718
2719  // Always honor user-specified calling convention.
2720  if (FI.getCallingConvention() != llvm::CallingConv::C)
2721    return;
2722
2723  // Calling convention as default by an ABI.
2724  llvm::CallingConv::ID DefaultCC;
2725  if (isEABI())
2726    DefaultCC = llvm::CallingConv::ARM_AAPCS;
2727  else
2728    DefaultCC = llvm::CallingConv::ARM_APCS;
2729
2730  // If user did not ask for specific calling convention explicitly (e.g. via
2731  // pcs attribute), set effective calling convention if it's different than ABI
2732  // default.
2733  switch (getABIKind()) {
2734  case APCS:
2735    if (DefaultCC != llvm::CallingConv::ARM_APCS)
2736      FI.setEffectiveCallingConvention(llvm::CallingConv::ARM_APCS);
2737    break;
2738  case AAPCS:
2739    if (DefaultCC != llvm::CallingConv::ARM_AAPCS)
2740      FI.setEffectiveCallingConvention(llvm::CallingConv::ARM_AAPCS);
2741    break;
2742  case AAPCS_VFP:
2743    if (DefaultCC != llvm::CallingConv::ARM_AAPCS_VFP)
2744      FI.setEffectiveCallingConvention(llvm::CallingConv::ARM_AAPCS_VFP);
2745    break;
2746  }
2747}
2748
2749/// isHomogeneousAggregate - Return true if a type is an AAPCS-VFP homogeneous
2750/// aggregate.  If HAMembers is non-null, the number of base elements
2751/// contained in the type is returned through it; this is used for the
2752/// recursive calls that check aggregate component types.
2753static bool isHomogeneousAggregate(QualType Ty, const Type *&Base,
2754                                   ASTContext &Context,
2755                                   uint64_t *HAMembers = 0) {
2756  uint64_t Members = 0;
2757  if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
2758    if (!isHomogeneousAggregate(AT->getElementType(), Base, Context, &Members))
2759      return false;
2760    Members *= AT->getSize().getZExtValue();
2761  } else if (const RecordType *RT = Ty->getAs<RecordType>()) {
2762    const RecordDecl *RD = RT->getDecl();
2763    if (RD->hasFlexibleArrayMember())
2764      return false;
2765
2766    Members = 0;
2767    for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
2768         i != e; ++i) {
2769      const FieldDecl *FD = *i;
2770      uint64_t FldMembers;
2771      if (!isHomogeneousAggregate(FD->getType(), Base, Context, &FldMembers))
2772        return false;
2773
2774      Members = (RD->isUnion() ?
2775                 std::max(Members, FldMembers) : Members + FldMembers);
2776    }
2777  } else {
2778    Members = 1;
2779    if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
2780      Members = 2;
2781      Ty = CT->getElementType();
2782    }
2783
2784    // Homogeneous aggregates for AAPCS-VFP must have base types of float,
2785    // double, or 64-bit or 128-bit vectors.
2786    if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
2787      if (BT->getKind() != BuiltinType::Float &&
2788          BT->getKind() != BuiltinType::Double &&
2789          BT->getKind() != BuiltinType::LongDouble)
2790        return false;
2791    } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
2792      unsigned VecSize = Context.getTypeSize(VT);
2793      if (VecSize != 64 && VecSize != 128)
2794        return false;
2795    } else {
2796      return false;
2797    }
2798
2799    // The base type must be the same for all members.  Vector types of the
2800    // same total size are treated as being equivalent here.
2801    const Type *TyPtr = Ty.getTypePtr();
2802    if (!Base)
2803      Base = TyPtr;
2804    if (Base != TyPtr &&
2805        (!Base->isVectorType() || !TyPtr->isVectorType() ||
2806         Context.getTypeSize(Base) != Context.getTypeSize(TyPtr)))
2807      return false;
2808  }
2809
2810  // Homogeneous Aggregates can have at most 4 members of the base type.
2811  if (HAMembers)
2812    *HAMembers = Members;
2813
2814  return (Members > 0 && Members <= 4);
2815}
2816
2817ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty) const {
2818  if (!isAggregateTypeForABI(Ty)) {
2819    // Treat an enum type as its underlying type.
2820    if (const EnumType *EnumTy = Ty->getAs<EnumType>())
2821      Ty = EnumTy->getDecl()->getIntegerType();
2822
2823    return (Ty->isPromotableIntegerType() ?
2824            ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
2825  }
2826
2827  // Ignore empty records.
2828  if (isEmptyRecord(getContext(), Ty, true))
2829    return ABIArgInfo::getIgnore();
2830
2831  // Structures with either a non-trivial destructor or a non-trivial
2832  // copy constructor are always indirect.
2833  if (isRecordWithNonTrivialDestructorOrCopyConstructor(Ty))
2834    return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
2835
2836  if (getABIKind() == ARMABIInfo::AAPCS_VFP) {
2837    // Homogeneous Aggregates need to be expanded.
2838    const Type *Base = 0;
2839    if (isHomogeneousAggregate(Ty, Base, getContext())) {
2840      assert(Base && "Base class should be set for homogeneous aggregate");
2841      return ABIArgInfo::getExpand();
2842    }
2843  }
2844
2845  // Support byval for ARM.
2846  if (getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(64) ||
2847      getContext().getTypeAlign(Ty) > 64) {
2848    return ABIArgInfo::getIndirect(0, /*ByVal=*/true);
2849  }
2850
2851  // Otherwise, pass by coercing to a structure of the appropriate size.
2852  llvm::Type* ElemTy;
2853  unsigned SizeRegs;
2854  // FIXME: Try to match the types of the arguments more accurately where
2855  // we can.
2856  if (getContext().getTypeAlign(Ty) <= 32) {
2857    ElemTy = llvm::Type::getInt32Ty(getVMContext());
2858    SizeRegs = (getContext().getTypeSize(Ty) + 31) / 32;
2859  } else {
2860    ElemTy = llvm::Type::getInt64Ty(getVMContext());
2861    SizeRegs = (getContext().getTypeSize(Ty) + 63) / 64;
2862  }
2863
2864  llvm::Type *STy =
2865    llvm::StructType::get(llvm::ArrayType::get(ElemTy, SizeRegs), NULL);
2866  return ABIArgInfo::getDirect(STy);
2867}
2868
2869static bool isIntegerLikeType(QualType Ty, ASTContext &Context,
2870                              llvm::LLVMContext &VMContext) {
2871  // APCS, C Language Calling Conventions, Non-Simple Return Values: A structure
2872  // is called integer-like if its size is less than or equal to one word, and
2873  // the offset of each of its addressable sub-fields is zero.
2874
2875  uint64_t Size = Context.getTypeSize(Ty);
2876
2877  // Check that the type fits in a word.
2878  if (Size > 32)
2879    return false;
2880
2881  // FIXME: Handle vector types!
2882  if (Ty->isVectorType())
2883    return false;
2884
2885  // Float types are never treated as "integer like".
2886  if (Ty->isRealFloatingType())
2887    return false;
2888
2889  // If this is a builtin or pointer type then it is ok.
2890  if (Ty->getAs<BuiltinType>() || Ty->isPointerType())
2891    return true;
2892
2893  // Small complex integer types are "integer like".
2894  if (const ComplexType *CT = Ty->getAs<ComplexType>())
2895    return isIntegerLikeType(CT->getElementType(), Context, VMContext);
2896
2897  // Single element and zero sized arrays should be allowed, by the definition
2898  // above, but they are not.
2899
2900  // Otherwise, it must be a record type.
2901  const RecordType *RT = Ty->getAs<RecordType>();
2902  if (!RT) return false;
2903
2904  // Ignore records with flexible arrays.
2905  const RecordDecl *RD = RT->getDecl();
2906  if (RD->hasFlexibleArrayMember())
2907    return false;
2908
2909  // Check that all sub-fields are at offset 0, and are themselves "integer
2910  // like".
2911  const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
2912
2913  bool HadField = false;
2914  unsigned idx = 0;
2915  for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
2916       i != e; ++i, ++idx) {
2917    const FieldDecl *FD = *i;
2918
2919    // Bit-fields are not addressable, we only need to verify they are "integer
2920    // like". We still have to disallow a subsequent non-bitfield, for example:
2921    //   struct { int : 0; int x }
2922    // is non-integer like according to gcc.
2923    if (FD->isBitField()) {
2924      if (!RD->isUnion())
2925        HadField = true;
2926
2927      if (!isIntegerLikeType(FD->getType(), Context, VMContext))
2928        return false;
2929
2930      continue;
2931    }
2932
2933    // Check if this field is at offset 0.
2934    if (Layout.getFieldOffset(idx) != 0)
2935      return false;
2936
2937    if (!isIntegerLikeType(FD->getType(), Context, VMContext))
2938      return false;
2939
2940    // Only allow at most one field in a structure. This doesn't match the
2941    // wording above, but follows gcc in situations with a field following an
2942    // empty structure.
2943    if (!RD->isUnion()) {
2944      if (HadField)
2945        return false;
2946
2947      HadField = true;
2948    }
2949  }
2950
2951  return true;
2952}
2953
2954ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy) const {
2955  if (RetTy->isVoidType())
2956    return ABIArgInfo::getIgnore();
2957
2958  // Large vector types should be returned via memory.
2959  if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128)
2960    return ABIArgInfo::getIndirect(0);
2961
2962  if (!isAggregateTypeForABI(RetTy)) {
2963    // Treat an enum type as its underlying type.
2964    if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
2965      RetTy = EnumTy->getDecl()->getIntegerType();
2966
2967    return (RetTy->isPromotableIntegerType() ?
2968            ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
2969  }
2970
2971  // Structures with either a non-trivial destructor or a non-trivial
2972  // copy constructor are always indirect.
2973  if (isRecordWithNonTrivialDestructorOrCopyConstructor(RetTy))
2974    return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
2975
2976  // Are we following APCS?
2977  if (getABIKind() == APCS) {
2978    if (isEmptyRecord(getContext(), RetTy, false))
2979      return ABIArgInfo::getIgnore();
2980
2981    // Complex types are all returned as packed integers.
2982    //
2983    // FIXME: Consider using 2 x vector types if the back end handles them
2984    // correctly.
2985    if (RetTy->isAnyComplexType())
2986      return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
2987                                              getContext().getTypeSize(RetTy)));
2988
2989    // Integer like structures are returned in r0.
2990    if (isIntegerLikeType(RetTy, getContext(), getVMContext())) {
2991      // Return in the smallest viable integer type.
2992      uint64_t Size = getContext().getTypeSize(RetTy);
2993      if (Size <= 8)
2994        return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
2995      if (Size <= 16)
2996        return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
2997      return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
2998    }
2999
3000    // Otherwise return in memory.
3001    return ABIArgInfo::getIndirect(0);
3002  }
3003
3004  // Otherwise this is an AAPCS variant.
3005
3006  if (isEmptyRecord(getContext(), RetTy, true))
3007    return ABIArgInfo::getIgnore();
3008
3009  // Check for homogeneous aggregates with AAPCS-VFP.
3010  if (getABIKind() == AAPCS_VFP) {
3011    const Type *Base = 0;
3012    if (isHomogeneousAggregate(RetTy, Base, getContext())) {
3013      assert(Base && "Base class should be set for homogeneous aggregate");
3014      // Homogeneous Aggregates are returned directly.
3015      return ABIArgInfo::getDirect();
3016    }
3017  }
3018
3019  // Aggregates <= 4 bytes are returned in r0; other aggregates
3020  // are returned indirectly.
3021  uint64_t Size = getContext().getTypeSize(RetTy);
3022  if (Size <= 32) {
3023    // Return in the smallest viable integer type.
3024    if (Size <= 8)
3025      return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
3026    if (Size <= 16)
3027      return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
3028    return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
3029  }
3030
3031  return ABIArgInfo::getIndirect(0);
3032}
3033
3034llvm::Value *ARMABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
3035                                   CodeGenFunction &CGF) const {
3036  llvm::Type *BP = CGF.Int8PtrTy;
3037  llvm::Type *BPP = CGF.Int8PtrPtrTy;
3038
3039  CGBuilderTy &Builder = CGF.Builder;
3040  llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap");
3041  llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
3042  // Handle address alignment for type alignment > 32 bits
3043  uint64_t TyAlign = CGF.getContext().getTypeAlign(Ty) / 8;
3044  if (TyAlign > 4) {
3045    assert((TyAlign & (TyAlign - 1)) == 0 &&
3046           "Alignment is not power of 2!");
3047    llvm::Value *AddrAsInt = Builder.CreatePtrToInt(Addr, CGF.Int32Ty);
3048    AddrAsInt = Builder.CreateAdd(AddrAsInt, Builder.getInt32(TyAlign - 1));
3049    AddrAsInt = Builder.CreateAnd(AddrAsInt, Builder.getInt32(~(TyAlign - 1)));
3050    Addr = Builder.CreateIntToPtr(AddrAsInt, BP);
3051  }
3052  llvm::Type *PTy =
3053    llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
3054  llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
3055
3056  uint64_t Offset =
3057    llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 4);
3058  llvm::Value *NextAddr =
3059    Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
3060                      "ap.next");
3061  Builder.CreateStore(NextAddr, VAListAddrAsBPP);
3062
3063  return AddrTyped;
3064}
3065
3066//===----------------------------------------------------------------------===//
3067// NVPTX ABI Implementation
3068//===----------------------------------------------------------------------===//
3069
3070namespace {
3071
3072class NVPTXABIInfo : public ABIInfo {
3073public:
3074  NVPTXABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
3075
3076  ABIArgInfo classifyReturnType(QualType RetTy) const;
3077  ABIArgInfo classifyArgumentType(QualType Ty) const;
3078
3079  virtual void computeInfo(CGFunctionInfo &FI) const;
3080  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
3081                                 CodeGenFunction &CFG) const;
3082};
3083
3084class NVPTXTargetCodeGenInfo : public TargetCodeGenInfo {
3085public:
3086  NVPTXTargetCodeGenInfo(CodeGenTypes &CGT)
3087    : TargetCodeGenInfo(new NVPTXABIInfo(CGT)) {}
3088
3089  virtual void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
3090                                   CodeGen::CodeGenModule &M) const;
3091};
3092
3093ABIArgInfo NVPTXABIInfo::classifyReturnType(QualType RetTy) const {
3094  if (RetTy->isVoidType())
3095    return ABIArgInfo::getIgnore();
3096  if (isAggregateTypeForABI(RetTy))
3097    return ABIArgInfo::getIndirect(0);
3098  return ABIArgInfo::getDirect();
3099}
3100
3101ABIArgInfo NVPTXABIInfo::classifyArgumentType(QualType Ty) const {
3102  if (isAggregateTypeForABI(Ty))
3103    return ABIArgInfo::getIndirect(0);
3104
3105  return ABIArgInfo::getDirect();
3106}
3107
3108void NVPTXABIInfo::computeInfo(CGFunctionInfo &FI) const {
3109  FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
3110  for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
3111       it != ie; ++it)
3112    it->info = classifyArgumentType(it->type);
3113
3114  // Always honor user-specified calling convention.
3115  if (FI.getCallingConvention() != llvm::CallingConv::C)
3116    return;
3117
3118  // Calling convention as default by an ABI.
3119  // We're still using the PTX_Kernel/PTX_Device calling conventions here,
3120  // but we should switch to NVVM metadata later on.
3121  llvm::CallingConv::ID DefaultCC;
3122  const LangOptions &LangOpts = getContext().getLangOpts();
3123  if (LangOpts.OpenCL || LangOpts.CUDA) {
3124    // If we are in OpenCL or CUDA mode, then default to device functions
3125    DefaultCC = llvm::CallingConv::PTX_Device;
3126  } else {
3127    // If we are in standard C/C++ mode, use the triple to decide on the default
3128    StringRef Env =
3129      getContext().getTargetInfo().getTriple().getEnvironmentName();
3130    if (Env == "device")
3131      DefaultCC = llvm::CallingConv::PTX_Device;
3132    else
3133      DefaultCC = llvm::CallingConv::PTX_Kernel;
3134  }
3135  FI.setEffectiveCallingConvention(DefaultCC);
3136
3137}
3138
3139llvm::Value *NVPTXABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
3140                                     CodeGenFunction &CFG) const {
3141  llvm_unreachable("NVPTX does not support varargs");
3142}
3143
3144void NVPTXTargetCodeGenInfo::
3145SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
3146                    CodeGen::CodeGenModule &M) const{
3147  const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
3148  if (!FD) return;
3149
3150  llvm::Function *F = cast<llvm::Function>(GV);
3151
3152  // Perform special handling in OpenCL mode
3153  if (M.getLangOpts().OpenCL) {
3154    // Use OpenCL function attributes to set proper calling conventions
3155    // By default, all functions are device functions
3156    if (FD->hasAttr<OpenCLKernelAttr>()) {
3157      // OpenCL __kernel functions get a kernel calling convention
3158      F->setCallingConv(llvm::CallingConv::PTX_Kernel);
3159      // And kernel functions are not subject to inlining
3160      F->addFnAttr(llvm::Attribute::NoInline);
3161    }
3162  }
3163
3164  // Perform special handling in CUDA mode.
3165  if (M.getLangOpts().CUDA) {
3166    // CUDA __global__ functions get a kernel calling convention.  Since
3167    // __global__ functions cannot be called from the device, we do not
3168    // need to set the noinline attribute.
3169    if (FD->getAttr<CUDAGlobalAttr>())
3170      F->setCallingConv(llvm::CallingConv::PTX_Kernel);
3171  }
3172}
3173
3174}
3175
3176//===----------------------------------------------------------------------===//
3177// MBlaze ABI Implementation
3178//===----------------------------------------------------------------------===//
3179
3180namespace {
3181
3182class MBlazeABIInfo : public ABIInfo {
3183public:
3184  MBlazeABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
3185
3186  bool isPromotableIntegerType(QualType Ty) const;
3187
3188  ABIArgInfo classifyReturnType(QualType RetTy) const;
3189  ABIArgInfo classifyArgumentType(QualType RetTy) const;
3190
3191  virtual void computeInfo(CGFunctionInfo &FI) const {
3192    FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
3193    for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
3194         it != ie; ++it)
3195      it->info = classifyArgumentType(it->type);
3196  }
3197
3198  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
3199                                 CodeGenFunction &CGF) const;
3200};
3201
3202class MBlazeTargetCodeGenInfo : public TargetCodeGenInfo {
3203public:
3204  MBlazeTargetCodeGenInfo(CodeGenTypes &CGT)
3205    : TargetCodeGenInfo(new MBlazeABIInfo(CGT)) {}
3206  void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
3207                           CodeGen::CodeGenModule &M) const;
3208};
3209
3210}
3211
3212bool MBlazeABIInfo::isPromotableIntegerType(QualType Ty) const {
3213  // MBlaze ABI requires all 8 and 16 bit quantities to be extended.
3214  if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
3215    switch (BT->getKind()) {
3216    case BuiltinType::Bool:
3217    case BuiltinType::Char_S:
3218    case BuiltinType::Char_U:
3219    case BuiltinType::SChar:
3220    case BuiltinType::UChar:
3221    case BuiltinType::Short:
3222    case BuiltinType::UShort:
3223      return true;
3224    default:
3225      return false;
3226    }
3227  return false;
3228}
3229
3230llvm::Value *MBlazeABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
3231                                      CodeGenFunction &CGF) const {
3232  // FIXME: Implement
3233  return 0;
3234}
3235
3236
3237ABIArgInfo MBlazeABIInfo::classifyReturnType(QualType RetTy) const {
3238  if (RetTy->isVoidType())
3239    return ABIArgInfo::getIgnore();
3240  if (isAggregateTypeForABI(RetTy))
3241    return ABIArgInfo::getIndirect(0);
3242
3243  return (isPromotableIntegerType(RetTy) ?
3244          ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
3245}
3246
3247ABIArgInfo MBlazeABIInfo::classifyArgumentType(QualType Ty) const {
3248  if (isAggregateTypeForABI(Ty))
3249    return ABIArgInfo::getIndirect(0);
3250
3251  return (isPromotableIntegerType(Ty) ?
3252          ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
3253}
3254
3255void MBlazeTargetCodeGenInfo::SetTargetAttributes(const Decl *D,
3256                                                  llvm::GlobalValue *GV,
3257                                                  CodeGen::CodeGenModule &M)
3258                                                  const {
3259  const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
3260  if (!FD) return;
3261
3262  llvm::CallingConv::ID CC = llvm::CallingConv::C;
3263  if (FD->hasAttr<MBlazeInterruptHandlerAttr>())
3264    CC = llvm::CallingConv::MBLAZE_INTR;
3265  else if (FD->hasAttr<MBlazeSaveVolatilesAttr>())
3266    CC = llvm::CallingConv::MBLAZE_SVOL;
3267
3268  if (CC != llvm::CallingConv::C) {
3269      // Handle 'interrupt_handler' attribute:
3270      llvm::Function *F = cast<llvm::Function>(GV);
3271
3272      // Step 1: Set ISR calling convention.
3273      F->setCallingConv(CC);
3274
3275      // Step 2: Add attributes goodness.
3276      F->addFnAttr(llvm::Attribute::NoInline);
3277  }
3278
3279  // Step 3: Emit _interrupt_handler alias.
3280  if (CC == llvm::CallingConv::MBLAZE_INTR)
3281    new llvm::GlobalAlias(GV->getType(), llvm::Function::ExternalLinkage,
3282                          "_interrupt_handler", GV, &M.getModule());
3283}
3284
3285
3286//===----------------------------------------------------------------------===//
3287// MSP430 ABI Implementation
3288//===----------------------------------------------------------------------===//
3289
3290namespace {
3291
3292class MSP430TargetCodeGenInfo : public TargetCodeGenInfo {
3293public:
3294  MSP430TargetCodeGenInfo(CodeGenTypes &CGT)
3295    : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
3296  void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
3297                           CodeGen::CodeGenModule &M) const;
3298};
3299
3300}
3301
3302void MSP430TargetCodeGenInfo::SetTargetAttributes(const Decl *D,
3303                                                  llvm::GlobalValue *GV,
3304                                             CodeGen::CodeGenModule &M) const {
3305  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
3306    if (const MSP430InterruptAttr *attr = FD->getAttr<MSP430InterruptAttr>()) {
3307      // Handle 'interrupt' attribute:
3308      llvm::Function *F = cast<llvm::Function>(GV);
3309
3310      // Step 1: Set ISR calling convention.
3311      F->setCallingConv(llvm::CallingConv::MSP430_INTR);
3312
3313      // Step 2: Add attributes goodness.
3314      F->addFnAttr(llvm::Attribute::NoInline);
3315
3316      // Step 3: Emit ISR vector alias.
3317      unsigned Num = attr->getNumber() + 0xffe0;
3318      new llvm::GlobalAlias(GV->getType(), llvm::Function::ExternalLinkage,
3319                            "vector_" + Twine::utohexstr(Num),
3320                            GV, &M.getModule());
3321    }
3322  }
3323}
3324
3325//===----------------------------------------------------------------------===//
3326// MIPS ABI Implementation.  This works for both little-endian and
3327// big-endian variants.
3328//===----------------------------------------------------------------------===//
3329
3330namespace {
3331class MipsABIInfo : public ABIInfo {
3332  bool IsO32;
3333  unsigned MinABIStackAlignInBytes, StackAlignInBytes;
3334  void CoerceToIntArgs(uint64_t TySize,
3335                       SmallVector<llvm::Type*, 8> &ArgList) const;
3336  llvm::Type* HandleAggregates(QualType Ty, uint64_t TySize) const;
3337  llvm::Type* returnAggregateInRegs(QualType RetTy, uint64_t Size) const;
3338  llvm::Type* getPaddingType(uint64_t Align, uint64_t Offset) const;
3339public:
3340  MipsABIInfo(CodeGenTypes &CGT, bool _IsO32) :
3341    ABIInfo(CGT), IsO32(_IsO32), MinABIStackAlignInBytes(IsO32 ? 4 : 8),
3342    StackAlignInBytes(IsO32 ? 8 : 16) {}
3343
3344  ABIArgInfo classifyReturnType(QualType RetTy) const;
3345  ABIArgInfo classifyArgumentType(QualType RetTy, uint64_t &Offset) const;
3346  virtual void computeInfo(CGFunctionInfo &FI) const;
3347  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
3348                                 CodeGenFunction &CGF) const;
3349};
3350
3351class MIPSTargetCodeGenInfo : public TargetCodeGenInfo {
3352  unsigned SizeOfUnwindException;
3353public:
3354  MIPSTargetCodeGenInfo(CodeGenTypes &CGT, bool IsO32)
3355    : TargetCodeGenInfo(new MipsABIInfo(CGT, IsO32)),
3356      SizeOfUnwindException(IsO32 ? 24 : 32) {}
3357
3358  int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const {
3359    return 29;
3360  }
3361
3362  bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
3363                               llvm::Value *Address) const;
3364
3365  unsigned getSizeOfUnwindException() const {
3366    return SizeOfUnwindException;
3367  }
3368};
3369}
3370
3371void MipsABIInfo::CoerceToIntArgs(uint64_t TySize,
3372                                  SmallVector<llvm::Type*, 8> &ArgList) const {
3373  llvm::IntegerType *IntTy =
3374    llvm::IntegerType::get(getVMContext(), MinABIStackAlignInBytes * 8);
3375
3376  // Add (TySize / MinABIStackAlignInBytes) args of IntTy.
3377  for (unsigned N = TySize / (MinABIStackAlignInBytes * 8); N; --N)
3378    ArgList.push_back(IntTy);
3379
3380  // If necessary, add one more integer type to ArgList.
3381  unsigned R = TySize % (MinABIStackAlignInBytes * 8);
3382
3383  if (R)
3384    ArgList.push_back(llvm::IntegerType::get(getVMContext(), R));
3385}
3386
3387// In N32/64, an aligned double precision floating point field is passed in
3388// a register.
3389llvm::Type* MipsABIInfo::HandleAggregates(QualType Ty, uint64_t TySize) const {
3390  SmallVector<llvm::Type*, 8> ArgList, IntArgList;
3391
3392  if (IsO32) {
3393    CoerceToIntArgs(TySize, ArgList);
3394    return llvm::StructType::get(getVMContext(), ArgList);
3395  }
3396
3397  if (Ty->isComplexType())
3398    return CGT.ConvertType(Ty);
3399
3400  const RecordType *RT = Ty->getAs<RecordType>();
3401
3402  // Unions/vectors are passed in integer registers.
3403  if (!RT || !RT->isStructureOrClassType()) {
3404    CoerceToIntArgs(TySize, ArgList);
3405    return llvm::StructType::get(getVMContext(), ArgList);
3406  }
3407
3408  const RecordDecl *RD = RT->getDecl();
3409  const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
3410  assert(!(TySize % 8) && "Size of structure must be multiple of 8.");
3411
3412  uint64_t LastOffset = 0;
3413  unsigned idx = 0;
3414  llvm::IntegerType *I64 = llvm::IntegerType::get(getVMContext(), 64);
3415
3416  // Iterate over fields in the struct/class and check if there are any aligned
3417  // double fields.
3418  for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
3419       i != e; ++i, ++idx) {
3420    const QualType Ty = i->getType();
3421    const BuiltinType *BT = Ty->getAs<BuiltinType>();
3422
3423    if (!BT || BT->getKind() != BuiltinType::Double)
3424      continue;
3425
3426    uint64_t Offset = Layout.getFieldOffset(idx);
3427    if (Offset % 64) // Ignore doubles that are not aligned.
3428      continue;
3429
3430    // Add ((Offset - LastOffset) / 64) args of type i64.
3431    for (unsigned j = (Offset - LastOffset) / 64; j > 0; --j)
3432      ArgList.push_back(I64);
3433
3434    // Add double type.
3435    ArgList.push_back(llvm::Type::getDoubleTy(getVMContext()));
3436    LastOffset = Offset + 64;
3437  }
3438
3439  CoerceToIntArgs(TySize - LastOffset, IntArgList);
3440  ArgList.append(IntArgList.begin(), IntArgList.end());
3441
3442  return llvm::StructType::get(getVMContext(), ArgList);
3443}
3444
3445llvm::Type *MipsABIInfo::getPaddingType(uint64_t Align, uint64_t Offset) const {
3446  assert((Offset % MinABIStackAlignInBytes) == 0);
3447
3448  if ((Align - 1) & Offset)
3449    return llvm::IntegerType::get(getVMContext(), MinABIStackAlignInBytes * 8);
3450
3451  return 0;
3452}
3453
3454ABIArgInfo
3455MipsABIInfo::classifyArgumentType(QualType Ty, uint64_t &Offset) const {
3456  uint64_t OrigOffset = Offset;
3457  uint64_t TySize = getContext().getTypeSize(Ty);
3458  uint64_t Align = getContext().getTypeAlign(Ty) / 8;
3459
3460  Align = std::min(std::max(Align, (uint64_t)MinABIStackAlignInBytes),
3461                   (uint64_t)StackAlignInBytes);
3462  Offset = llvm::RoundUpToAlignment(Offset, Align);
3463  Offset += llvm::RoundUpToAlignment(TySize, Align * 8) / 8;
3464
3465  if (isAggregateTypeForABI(Ty) || Ty->isVectorType()) {
3466    // Ignore empty aggregates.
3467    if (TySize == 0)
3468      return ABIArgInfo::getIgnore();
3469
3470    // Records with non trivial destructors/constructors should not be passed
3471    // by value.
3472    if (isRecordWithNonTrivialDestructorOrCopyConstructor(Ty)) {
3473      Offset = OrigOffset + MinABIStackAlignInBytes;
3474      return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
3475    }
3476
3477    // If we have reached here, aggregates are passed directly by coercing to
3478    // another structure type. Padding is inserted if the offset of the
3479    // aggregate is unaligned.
3480    return ABIArgInfo::getDirect(HandleAggregates(Ty, TySize), 0,
3481                                 getPaddingType(Align, OrigOffset));
3482  }
3483
3484  // Treat an enum type as its underlying type.
3485  if (const EnumType *EnumTy = Ty->getAs<EnumType>())
3486    Ty = EnumTy->getDecl()->getIntegerType();
3487
3488  if (Ty->isPromotableIntegerType())
3489    return ABIArgInfo::getExtend();
3490
3491  return ABIArgInfo::getDirect(0, 0, getPaddingType(Align, OrigOffset));
3492}
3493
3494llvm::Type*
3495MipsABIInfo::returnAggregateInRegs(QualType RetTy, uint64_t Size) const {
3496  const RecordType *RT = RetTy->getAs<RecordType>();
3497  SmallVector<llvm::Type*, 8> RTList;
3498
3499  if (RT && RT->isStructureOrClassType()) {
3500    const RecordDecl *RD = RT->getDecl();
3501    const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
3502    unsigned FieldCnt = Layout.getFieldCount();
3503
3504    // N32/64 returns struct/classes in floating point registers if the
3505    // following conditions are met:
3506    // 1. The size of the struct/class is no larger than 128-bit.
3507    // 2. The struct/class has one or two fields all of which are floating
3508    //    point types.
3509    // 3. The offset of the first field is zero (this follows what gcc does).
3510    //
3511    // Any other composite results are returned in integer registers.
3512    //
3513    if (FieldCnt && (FieldCnt <= 2) && !Layout.getFieldOffset(0)) {
3514      RecordDecl::field_iterator b = RD->field_begin(), e = RD->field_end();
3515      for (; b != e; ++b) {
3516        const BuiltinType *BT = b->getType()->getAs<BuiltinType>();
3517
3518        if (!BT || !BT->isFloatingPoint())
3519          break;
3520
3521        RTList.push_back(CGT.ConvertType(b->getType()));
3522      }
3523
3524      if (b == e)
3525        return llvm::StructType::get(getVMContext(), RTList,
3526                                     RD->hasAttr<PackedAttr>());
3527
3528      RTList.clear();
3529    }
3530  }
3531
3532  CoerceToIntArgs(Size, RTList);
3533  return llvm::StructType::get(getVMContext(), RTList);
3534}
3535
3536ABIArgInfo MipsABIInfo::classifyReturnType(QualType RetTy) const {
3537  uint64_t Size = getContext().getTypeSize(RetTy);
3538
3539  if (RetTy->isVoidType() || Size == 0)
3540    return ABIArgInfo::getIgnore();
3541
3542  if (isAggregateTypeForABI(RetTy) || RetTy->isVectorType()) {
3543    if (Size <= 128) {
3544      if (RetTy->isAnyComplexType())
3545        return ABIArgInfo::getDirect();
3546
3547      // O32 returns integer vectors in registers.
3548      if (IsO32 && RetTy->isVectorType() && !RetTy->hasFloatingRepresentation())
3549        return ABIArgInfo::getDirect(returnAggregateInRegs(RetTy, Size));
3550
3551      if (!IsO32 && !isRecordWithNonTrivialDestructorOrCopyConstructor(RetTy))
3552        return ABIArgInfo::getDirect(returnAggregateInRegs(RetTy, Size));
3553    }
3554
3555    return ABIArgInfo::getIndirect(0);
3556  }
3557
3558  // Treat an enum type as its underlying type.
3559  if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
3560    RetTy = EnumTy->getDecl()->getIntegerType();
3561
3562  return (RetTy->isPromotableIntegerType() ?
3563          ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
3564}
3565
3566void MipsABIInfo::computeInfo(CGFunctionInfo &FI) const {
3567  ABIArgInfo &RetInfo = FI.getReturnInfo();
3568  RetInfo = classifyReturnType(FI.getReturnType());
3569
3570  // Check if a pointer to an aggregate is passed as a hidden argument.
3571  uint64_t Offset = RetInfo.isIndirect() ? MinABIStackAlignInBytes : 0;
3572
3573  for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
3574       it != ie; ++it)
3575    it->info = classifyArgumentType(it->type, Offset);
3576}
3577
3578llvm::Value* MipsABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
3579                                    CodeGenFunction &CGF) const {
3580  llvm::Type *BP = CGF.Int8PtrTy;
3581  llvm::Type *BPP = CGF.Int8PtrPtrTy;
3582
3583  CGBuilderTy &Builder = CGF.Builder;
3584  llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap");
3585  llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
3586  int64_t TypeAlign = getContext().getTypeAlign(Ty) / 8;
3587  llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
3588  llvm::Value *AddrTyped;
3589  unsigned PtrWidth = getContext().getTargetInfo().getPointerWidth(0);
3590  llvm::IntegerType *IntTy = (PtrWidth == 32) ? CGF.Int32Ty : CGF.Int64Ty;
3591
3592  if (TypeAlign > MinABIStackAlignInBytes) {
3593    llvm::Value *AddrAsInt = CGF.Builder.CreatePtrToInt(Addr, IntTy);
3594    llvm::Value *Inc = llvm::ConstantInt::get(IntTy, TypeAlign - 1);
3595    llvm::Value *Mask = llvm::ConstantInt::get(IntTy, -TypeAlign);
3596    llvm::Value *Add = CGF.Builder.CreateAdd(AddrAsInt, Inc);
3597    llvm::Value *And = CGF.Builder.CreateAnd(Add, Mask);
3598    AddrTyped = CGF.Builder.CreateIntToPtr(And, PTy);
3599  }
3600  else
3601    AddrTyped = Builder.CreateBitCast(Addr, PTy);
3602
3603  llvm::Value *AlignedAddr = Builder.CreateBitCast(AddrTyped, BP);
3604  TypeAlign = std::max((unsigned)TypeAlign, MinABIStackAlignInBytes);
3605  uint64_t Offset =
3606    llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, TypeAlign);
3607  llvm::Value *NextAddr =
3608    Builder.CreateGEP(AlignedAddr, llvm::ConstantInt::get(IntTy, Offset),
3609                      "ap.next");
3610  Builder.CreateStore(NextAddr, VAListAddrAsBPP);
3611
3612  return AddrTyped;
3613}
3614
3615bool
3616MIPSTargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
3617                                               llvm::Value *Address) const {
3618  // This information comes from gcc's implementation, which seems to
3619  // as canonical as it gets.
3620
3621  // Everything on MIPS is 4 bytes.  Double-precision FP registers
3622  // are aliased to pairs of single-precision FP registers.
3623  llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
3624
3625  // 0-31 are the general purpose registers, $0 - $31.
3626  // 32-63 are the floating-point registers, $f0 - $f31.
3627  // 64 and 65 are the multiply/divide registers, $hi and $lo.
3628  // 66 is the (notional, I think) register for signal-handler return.
3629  AssignToArrayRange(CGF.Builder, Address, Four8, 0, 65);
3630
3631  // 67-74 are the floating-point status registers, $fcc0 - $fcc7.
3632  // They are one bit wide and ignored here.
3633
3634  // 80-111 are the coprocessor 0 registers, $c0r0 - $c0r31.
3635  // (coprocessor 1 is the FP unit)
3636  // 112-143 are the coprocessor 2 registers, $c2r0 - $c2r31.
3637  // 144-175 are the coprocessor 3 registers, $c3r0 - $c3r31.
3638  // 176-181 are the DSP accumulator registers.
3639  AssignToArrayRange(CGF.Builder, Address, Four8, 80, 181);
3640  return false;
3641}
3642
3643//===----------------------------------------------------------------------===//
3644// TCE ABI Implementation (see http://tce.cs.tut.fi). Uses mostly the defaults.
3645// Currently subclassed only to implement custom OpenCL C function attribute
3646// handling.
3647//===----------------------------------------------------------------------===//
3648
3649namespace {
3650
3651class TCETargetCodeGenInfo : public DefaultTargetCodeGenInfo {
3652public:
3653  TCETargetCodeGenInfo(CodeGenTypes &CGT)
3654    : DefaultTargetCodeGenInfo(CGT) {}
3655
3656  virtual void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
3657                                   CodeGen::CodeGenModule &M) const;
3658};
3659
3660void TCETargetCodeGenInfo::SetTargetAttributes(const Decl *D,
3661                                               llvm::GlobalValue *GV,
3662                                               CodeGen::CodeGenModule &M) const {
3663  const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
3664  if (!FD) return;
3665
3666  llvm::Function *F = cast<llvm::Function>(GV);
3667
3668  if (M.getLangOpts().OpenCL) {
3669    if (FD->hasAttr<OpenCLKernelAttr>()) {
3670      // OpenCL C Kernel functions are not subject to inlining
3671      F->addFnAttr(llvm::Attribute::NoInline);
3672
3673      if (FD->hasAttr<ReqdWorkGroupSizeAttr>()) {
3674
3675        // Convert the reqd_work_group_size() attributes to metadata.
3676        llvm::LLVMContext &Context = F->getContext();
3677        llvm::NamedMDNode *OpenCLMetadata =
3678            M.getModule().getOrInsertNamedMetadata("opencl.kernel_wg_size_info");
3679
3680        SmallVector<llvm::Value*, 5> Operands;
3681        Operands.push_back(F);
3682
3683        Operands.push_back(llvm::Constant::getIntegerValue(M.Int32Ty,
3684                             llvm::APInt(32,
3685                             FD->getAttr<ReqdWorkGroupSizeAttr>()->getXDim())));
3686        Operands.push_back(llvm::Constant::getIntegerValue(M.Int32Ty,
3687                             llvm::APInt(32,
3688                               FD->getAttr<ReqdWorkGroupSizeAttr>()->getYDim())));
3689        Operands.push_back(llvm::Constant::getIntegerValue(M.Int32Ty,
3690                             llvm::APInt(32,
3691                               FD->getAttr<ReqdWorkGroupSizeAttr>()->getZDim())));
3692
3693        // Add a boolean constant operand for "required" (true) or "hint" (false)
3694        // for implementing the work_group_size_hint attr later. Currently
3695        // always true as the hint is not yet implemented.
3696        Operands.push_back(llvm::ConstantInt::getTrue(Context));
3697        OpenCLMetadata->addOperand(llvm::MDNode::get(Context, Operands));
3698      }
3699    }
3700  }
3701}
3702
3703}
3704
3705//===----------------------------------------------------------------------===//
3706// Hexagon ABI Implementation
3707//===----------------------------------------------------------------------===//
3708
3709namespace {
3710
3711class HexagonABIInfo : public ABIInfo {
3712
3713
3714public:
3715  HexagonABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
3716
3717private:
3718
3719  ABIArgInfo classifyReturnType(QualType RetTy) const;
3720  ABIArgInfo classifyArgumentType(QualType RetTy) const;
3721
3722  virtual void computeInfo(CGFunctionInfo &FI) const;
3723
3724  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
3725                                 CodeGenFunction &CGF) const;
3726};
3727
3728class HexagonTargetCodeGenInfo : public TargetCodeGenInfo {
3729public:
3730  HexagonTargetCodeGenInfo(CodeGenTypes &CGT)
3731    :TargetCodeGenInfo(new HexagonABIInfo(CGT)) {}
3732
3733  int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const {
3734    return 29;
3735  }
3736};
3737
3738}
3739
3740void HexagonABIInfo::computeInfo(CGFunctionInfo &FI) const {
3741  FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
3742  for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
3743       it != ie; ++it)
3744    it->info = classifyArgumentType(it->type);
3745}
3746
3747ABIArgInfo HexagonABIInfo::classifyArgumentType(QualType Ty) const {
3748  if (!isAggregateTypeForABI(Ty)) {
3749    // Treat an enum type as its underlying type.
3750    if (const EnumType *EnumTy = Ty->getAs<EnumType>())
3751      Ty = EnumTy->getDecl()->getIntegerType();
3752
3753    return (Ty->isPromotableIntegerType() ?
3754            ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
3755  }
3756
3757  // Ignore empty records.
3758  if (isEmptyRecord(getContext(), Ty, true))
3759    return ABIArgInfo::getIgnore();
3760
3761  // Structures with either a non-trivial destructor or a non-trivial
3762  // copy constructor are always indirect.
3763  if (isRecordWithNonTrivialDestructorOrCopyConstructor(Ty))
3764    return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
3765
3766  uint64_t Size = getContext().getTypeSize(Ty);
3767  if (Size > 64)
3768    return ABIArgInfo::getIndirect(0, /*ByVal=*/true);
3769    // Pass in the smallest viable integer type.
3770  else if (Size > 32)
3771      return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext()));
3772  else if (Size > 16)
3773      return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
3774  else if (Size > 8)
3775      return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
3776  else
3777      return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
3778}
3779
3780ABIArgInfo HexagonABIInfo::classifyReturnType(QualType RetTy) const {
3781  if (RetTy->isVoidType())
3782    return ABIArgInfo::getIgnore();
3783
3784  // Large vector types should be returned via memory.
3785  if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 64)
3786    return ABIArgInfo::getIndirect(0);
3787
3788  if (!isAggregateTypeForABI(RetTy)) {
3789    // Treat an enum type as its underlying type.
3790    if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
3791      RetTy = EnumTy->getDecl()->getIntegerType();
3792
3793    return (RetTy->isPromotableIntegerType() ?
3794            ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
3795  }
3796
3797  // Structures with either a non-trivial destructor or a non-trivial
3798  // copy constructor are always indirect.
3799  if (isRecordWithNonTrivialDestructorOrCopyConstructor(RetTy))
3800    return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
3801
3802  if (isEmptyRecord(getContext(), RetTy, true))
3803    return ABIArgInfo::getIgnore();
3804
3805  // Aggregates <= 8 bytes are returned in r0; other aggregates
3806  // are returned indirectly.
3807  uint64_t Size = getContext().getTypeSize(RetTy);
3808  if (Size <= 64) {
3809    // Return in the smallest viable integer type.
3810    if (Size <= 8)
3811      return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
3812    if (Size <= 16)
3813      return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
3814    if (Size <= 32)
3815      return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
3816    return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext()));
3817  }
3818
3819  return ABIArgInfo::getIndirect(0, /*ByVal=*/true);
3820}
3821
3822llvm::Value *HexagonABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
3823                                       CodeGenFunction &CGF) const {
3824  // FIXME: Need to handle alignment
3825  llvm::Type *BPP = CGF.Int8PtrPtrTy;
3826
3827  CGBuilderTy &Builder = CGF.Builder;
3828  llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP,
3829                                                       "ap");
3830  llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
3831  llvm::Type *PTy =
3832    llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
3833  llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
3834
3835  uint64_t Offset =
3836    llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 4);
3837  llvm::Value *NextAddr =
3838    Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
3839                      "ap.next");
3840  Builder.CreateStore(NextAddr, VAListAddrAsBPP);
3841
3842  return AddrTyped;
3843}
3844
3845
3846const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() {
3847  if (TheTargetCodeGenInfo)
3848    return *TheTargetCodeGenInfo;
3849
3850  const llvm::Triple &Triple = getContext().getTargetInfo().getTriple();
3851  switch (Triple.getArch()) {
3852  default:
3853    return *(TheTargetCodeGenInfo = new DefaultTargetCodeGenInfo(Types));
3854
3855  case llvm::Triple::le32:
3856    return *(TheTargetCodeGenInfo = new PNaClTargetCodeGenInfo(Types));
3857  case llvm::Triple::mips:
3858  case llvm::Triple::mipsel:
3859    return *(TheTargetCodeGenInfo = new MIPSTargetCodeGenInfo(Types, true));
3860
3861  case llvm::Triple::mips64:
3862  case llvm::Triple::mips64el:
3863    return *(TheTargetCodeGenInfo = new MIPSTargetCodeGenInfo(Types, false));
3864
3865  case llvm::Triple::arm:
3866  case llvm::Triple::thumb:
3867    {
3868      ARMABIInfo::ABIKind Kind = ARMABIInfo::AAPCS;
3869
3870      if (strcmp(getContext().getTargetInfo().getABI(), "apcs-gnu") == 0)
3871        Kind = ARMABIInfo::APCS;
3872      else if (CodeGenOpts.FloatABI == "hard")
3873        Kind = ARMABIInfo::AAPCS_VFP;
3874
3875      return *(TheTargetCodeGenInfo = new ARMTargetCodeGenInfo(Types, Kind));
3876    }
3877
3878  case llvm::Triple::ppc:
3879    return *(TheTargetCodeGenInfo = new PPC32TargetCodeGenInfo(Types));
3880  case llvm::Triple::ppc64:
3881    return *(TheTargetCodeGenInfo = new PPC64TargetCodeGenInfo(Types));
3882
3883  case llvm::Triple::nvptx:
3884  case llvm::Triple::nvptx64:
3885    return *(TheTargetCodeGenInfo = new NVPTXTargetCodeGenInfo(Types));
3886
3887  case llvm::Triple::mblaze:
3888    return *(TheTargetCodeGenInfo = new MBlazeTargetCodeGenInfo(Types));
3889
3890  case llvm::Triple::msp430:
3891    return *(TheTargetCodeGenInfo = new MSP430TargetCodeGenInfo(Types));
3892
3893  case llvm::Triple::tce:
3894    return *(TheTargetCodeGenInfo = new TCETargetCodeGenInfo(Types));
3895
3896  case llvm::Triple::x86: {
3897    bool DisableMMX = strcmp(getContext().getTargetInfo().getABI(), "no-mmx") == 0;
3898
3899    if (Triple.isOSDarwin())
3900      return *(TheTargetCodeGenInfo =
3901               new X86_32TargetCodeGenInfo(Types, true, true, DisableMMX, false,
3902                                           CodeGenOpts.NumRegisterParameters));
3903
3904    switch (Triple.getOS()) {
3905    case llvm::Triple::Cygwin:
3906    case llvm::Triple::MinGW32:
3907    case llvm::Triple::AuroraUX:
3908    case llvm::Triple::DragonFly:
3909    case llvm::Triple::FreeBSD:
3910    case llvm::Triple::OpenBSD:
3911    case llvm::Triple::Bitrig:
3912      return *(TheTargetCodeGenInfo =
3913               new X86_32TargetCodeGenInfo(Types, false, true, DisableMMX,
3914                                           false,
3915                                           CodeGenOpts.NumRegisterParameters));
3916
3917    case llvm::Triple::Win32:
3918      return *(TheTargetCodeGenInfo =
3919               new X86_32TargetCodeGenInfo(Types, false, true, DisableMMX, true,
3920                                           CodeGenOpts.NumRegisterParameters));
3921
3922    default:
3923      return *(TheTargetCodeGenInfo =
3924               new X86_32TargetCodeGenInfo(Types, false, false, DisableMMX,
3925                                           false,
3926                                           CodeGenOpts.NumRegisterParameters));
3927    }
3928  }
3929
3930  case llvm::Triple::x86_64: {
3931    bool HasAVX = strcmp(getContext().getTargetInfo().getABI(), "avx") == 0;
3932
3933    switch (Triple.getOS()) {
3934    case llvm::Triple::Win32:
3935    case llvm::Triple::MinGW32:
3936    case llvm::Triple::Cygwin:
3937      return *(TheTargetCodeGenInfo = new WinX86_64TargetCodeGenInfo(Types));
3938    default:
3939      return *(TheTargetCodeGenInfo = new X86_64TargetCodeGenInfo(Types,
3940                                                                  HasAVX));
3941    }
3942  }
3943  case llvm::Triple::hexagon:
3944    return *(TheTargetCodeGenInfo = new HexagonTargetCodeGenInfo(Types));
3945  }
3946}
3947