TargetInfo.cpp revision b914e87377fd4d7642f544000a79f8648c6f06c9
1//===---- TargetInfo.cpp - Encapsulate target details -----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// These classes wrap the information about a call or function
11// definition used to handle ABI compliancy.
12//
13//===----------------------------------------------------------------------===//
14
15#include "TargetInfo.h"
16#include "ABIInfo.h"
17#include "CGCXXABI.h"
18#include "CodeGenFunction.h"
19#include "clang/AST/RecordLayout.h"
20#include "clang/Frontend/CodeGenOptions.h"
21#include "llvm/ADT/Triple.h"
22#include "llvm/IR/DataLayout.h"
23#include "llvm/IR/Type.h"
24#include "llvm/Support/raw_ostream.h"
25using namespace clang;
26using namespace CodeGen;
27
28static void AssignToArrayRange(CodeGen::CGBuilderTy &Builder,
29                               llvm::Value *Array,
30                               llvm::Value *Value,
31                               unsigned FirstIndex,
32                               unsigned LastIndex) {
33  // Alternatively, we could emit this as a loop in the source.
34  for (unsigned I = FirstIndex; I <= LastIndex; ++I) {
35    llvm::Value *Cell = Builder.CreateConstInBoundsGEP1_32(Array, I);
36    Builder.CreateStore(Value, Cell);
37  }
38}
39
40static bool isAggregateTypeForABI(QualType T) {
41  return !CodeGenFunction::hasScalarEvaluationKind(T) ||
42         T->isMemberFunctionPointerType();
43}
44
45ABIInfo::~ABIInfo() {}
46
47static bool isRecordReturnIndirect(const RecordType *RT,
48                                   CGCXXABI &CXXABI) {
49  const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
50  if (!RD)
51    return false;
52  return CXXABI.isReturnTypeIndirect(RD);
53}
54
55
56static bool isRecordReturnIndirect(QualType T, CGCXXABI &CXXABI) {
57  const RecordType *RT = T->getAs<RecordType>();
58  if (!RT)
59    return false;
60  return isRecordReturnIndirect(RT, CXXABI);
61}
62
63static CGCXXABI::RecordArgABI getRecordArgABI(const RecordType *RT,
64                                              CGCXXABI &CXXABI) {
65  const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
66  if (!RD)
67    return CGCXXABI::RAA_Default;
68  return CXXABI.getRecordArgABI(RD);
69}
70
71static CGCXXABI::RecordArgABI getRecordArgABI(QualType T,
72                                              CGCXXABI &CXXABI) {
73  const RecordType *RT = T->getAs<RecordType>();
74  if (!RT)
75    return CGCXXABI::RAA_Default;
76  return getRecordArgABI(RT, CXXABI);
77}
78
79CGCXXABI &ABIInfo::getCXXABI() const {
80  return CGT.getCXXABI();
81}
82
83ASTContext &ABIInfo::getContext() const {
84  return CGT.getContext();
85}
86
87llvm::LLVMContext &ABIInfo::getVMContext() const {
88  return CGT.getLLVMContext();
89}
90
91const llvm::DataLayout &ABIInfo::getDataLayout() const {
92  return CGT.getDataLayout();
93}
94
95const TargetInfo &ABIInfo::getTarget() const {
96  return CGT.getTarget();
97}
98
99void ABIArgInfo::dump() const {
100  raw_ostream &OS = llvm::errs();
101  OS << "(ABIArgInfo Kind=";
102  switch (TheKind) {
103  case Direct:
104    OS << "Direct Type=";
105    if (llvm::Type *Ty = getCoerceToType())
106      Ty->print(OS);
107    else
108      OS << "null";
109    break;
110  case Extend:
111    OS << "Extend";
112    break;
113  case Ignore:
114    OS << "Ignore";
115    break;
116  case Indirect:
117    OS << "Indirect Align=" << getIndirectAlign()
118       << " ByVal=" << getIndirectByVal()
119       << " Realign=" << getIndirectRealign();
120    break;
121  case Expand:
122    OS << "Expand";
123    break;
124  }
125  OS << ")\n";
126}
127
128TargetCodeGenInfo::~TargetCodeGenInfo() { delete Info; }
129
130// If someone can figure out a general rule for this, that would be great.
131// It's probably just doomed to be platform-dependent, though.
132unsigned TargetCodeGenInfo::getSizeOfUnwindException() const {
133  // Verified for:
134  //   x86-64     FreeBSD, Linux, Darwin
135  //   x86-32     FreeBSD, Linux, Darwin
136  //   PowerPC    Linux, Darwin
137  //   ARM        Darwin (*not* EABI)
138  //   AArch64    Linux
139  return 32;
140}
141
142bool TargetCodeGenInfo::isNoProtoCallVariadic(const CallArgList &args,
143                                     const FunctionNoProtoType *fnType) const {
144  // The following conventions are known to require this to be false:
145  //   x86_stdcall
146  //   MIPS
147  // For everything else, we just prefer false unless we opt out.
148  return false;
149}
150
151void
152TargetCodeGenInfo::getDependentLibraryOption(llvm::StringRef Lib,
153                                             llvm::SmallString<24> &Opt) const {
154  // This assumes the user is passing a library name like "rt" instead of a
155  // filename like "librt.a/so", and that they don't care whether it's static or
156  // dynamic.
157  Opt = "-l";
158  Opt += Lib;
159}
160
161static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays);
162
163/// isEmptyField - Return true iff a the field is "empty", that is it
164/// is an unnamed bit-field or an (array of) empty record(s).
165static bool isEmptyField(ASTContext &Context, const FieldDecl *FD,
166                         bool AllowArrays) {
167  if (FD->isUnnamedBitfield())
168    return true;
169
170  QualType FT = FD->getType();
171
172  // Constant arrays of empty records count as empty, strip them off.
173  // Constant arrays of zero length always count as empty.
174  if (AllowArrays)
175    while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
176      if (AT->getSize() == 0)
177        return true;
178      FT = AT->getElementType();
179    }
180
181  const RecordType *RT = FT->getAs<RecordType>();
182  if (!RT)
183    return false;
184
185  // C++ record fields are never empty, at least in the Itanium ABI.
186  //
187  // FIXME: We should use a predicate for whether this behavior is true in the
188  // current ABI.
189  if (isa<CXXRecordDecl>(RT->getDecl()))
190    return false;
191
192  return isEmptyRecord(Context, FT, AllowArrays);
193}
194
195/// isEmptyRecord - Return true iff a structure contains only empty
196/// fields. Note that a structure with a flexible array member is not
197/// considered empty.
198static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays) {
199  const RecordType *RT = T->getAs<RecordType>();
200  if (!RT)
201    return 0;
202  const RecordDecl *RD = RT->getDecl();
203  if (RD->hasFlexibleArrayMember())
204    return false;
205
206  // If this is a C++ record, check the bases first.
207  if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
208    for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
209           e = CXXRD->bases_end(); i != e; ++i)
210      if (!isEmptyRecord(Context, i->getType(), true))
211        return false;
212
213  for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
214         i != e; ++i)
215    if (!isEmptyField(Context, *i, AllowArrays))
216      return false;
217  return true;
218}
219
220/// isSingleElementStruct - Determine if a structure is a "single
221/// element struct", i.e. it has exactly one non-empty field or
222/// exactly one field which is itself a single element
223/// struct. Structures with flexible array members are never
224/// considered single element structs.
225///
226/// \return The field declaration for the single non-empty field, if
227/// it exists.
228static const Type *isSingleElementStruct(QualType T, ASTContext &Context) {
229  const RecordType *RT = T->getAsStructureType();
230  if (!RT)
231    return 0;
232
233  const RecordDecl *RD = RT->getDecl();
234  if (RD->hasFlexibleArrayMember())
235    return 0;
236
237  const Type *Found = 0;
238
239  // If this is a C++ record, check the bases first.
240  if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
241    for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
242           e = CXXRD->bases_end(); i != e; ++i) {
243      // Ignore empty records.
244      if (isEmptyRecord(Context, i->getType(), true))
245        continue;
246
247      // If we already found an element then this isn't a single-element struct.
248      if (Found)
249        return 0;
250
251      // If this is non-empty and not a single element struct, the composite
252      // cannot be a single element struct.
253      Found = isSingleElementStruct(i->getType(), Context);
254      if (!Found)
255        return 0;
256    }
257  }
258
259  // Check for single element.
260  for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
261         i != e; ++i) {
262    const FieldDecl *FD = *i;
263    QualType FT = FD->getType();
264
265    // Ignore empty fields.
266    if (isEmptyField(Context, FD, true))
267      continue;
268
269    // If we already found an element then this isn't a single-element
270    // struct.
271    if (Found)
272      return 0;
273
274    // Treat single element arrays as the element.
275    while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
276      if (AT->getSize().getZExtValue() != 1)
277        break;
278      FT = AT->getElementType();
279    }
280
281    if (!isAggregateTypeForABI(FT)) {
282      Found = FT.getTypePtr();
283    } else {
284      Found = isSingleElementStruct(FT, Context);
285      if (!Found)
286        return 0;
287    }
288  }
289
290  // We don't consider a struct a single-element struct if it has
291  // padding beyond the element type.
292  if (Found && Context.getTypeSize(Found) != Context.getTypeSize(T))
293    return 0;
294
295  return Found;
296}
297
298static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) {
299  // Treat complex types as the element type.
300  if (const ComplexType *CTy = Ty->getAs<ComplexType>())
301    Ty = CTy->getElementType();
302
303  // Check for a type which we know has a simple scalar argument-passing
304  // convention without any padding.  (We're specifically looking for 32
305  // and 64-bit integer and integer-equivalents, float, and double.)
306  if (!Ty->getAs<BuiltinType>() && !Ty->hasPointerRepresentation() &&
307      !Ty->isEnumeralType() && !Ty->isBlockPointerType())
308    return false;
309
310  uint64_t Size = Context.getTypeSize(Ty);
311  return Size == 32 || Size == 64;
312}
313
314/// canExpandIndirectArgument - Test whether an argument type which is to be
315/// passed indirectly (on the stack) would have the equivalent layout if it was
316/// expanded into separate arguments. If so, we prefer to do the latter to avoid
317/// inhibiting optimizations.
318///
319// FIXME: This predicate is missing many cases, currently it just follows
320// llvm-gcc (checks that all fields are 32-bit or 64-bit primitive types). We
321// should probably make this smarter, or better yet make the LLVM backend
322// capable of handling it.
323static bool canExpandIndirectArgument(QualType Ty, ASTContext &Context) {
324  // We can only expand structure types.
325  const RecordType *RT = Ty->getAs<RecordType>();
326  if (!RT)
327    return false;
328
329  // We can only expand (C) structures.
330  //
331  // FIXME: This needs to be generalized to handle classes as well.
332  const RecordDecl *RD = RT->getDecl();
333  if (!RD->isStruct() || isa<CXXRecordDecl>(RD))
334    return false;
335
336  uint64_t Size = 0;
337
338  for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
339         i != e; ++i) {
340    const FieldDecl *FD = *i;
341
342    if (!is32Or64BitBasicType(FD->getType(), Context))
343      return false;
344
345    // FIXME: Reject bit-fields wholesale; there are two problems, we don't know
346    // how to expand them yet, and the predicate for telling if a bitfield still
347    // counts as "basic" is more complicated than what we were doing previously.
348    if (FD->isBitField())
349      return false;
350
351    Size += Context.getTypeSize(FD->getType());
352  }
353
354  // Make sure there are not any holes in the struct.
355  if (Size != Context.getTypeSize(Ty))
356    return false;
357
358  return true;
359}
360
361namespace {
362/// DefaultABIInfo - The default implementation for ABI specific
363/// details. This implementation provides information which results in
364/// self-consistent and sensible LLVM IR generation, but does not
365/// conform to any particular ABI.
366class DefaultABIInfo : public ABIInfo {
367public:
368  DefaultABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
369
370  ABIArgInfo classifyReturnType(QualType RetTy) const;
371  ABIArgInfo classifyArgumentType(QualType RetTy) const;
372
373  virtual void computeInfo(CGFunctionInfo &FI) const {
374    FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
375    for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
376         it != ie; ++it)
377      it->info = classifyArgumentType(it->type);
378  }
379
380  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
381                                 CodeGenFunction &CGF) const;
382};
383
384class DefaultTargetCodeGenInfo : public TargetCodeGenInfo {
385public:
386  DefaultTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
387    : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
388};
389
390llvm::Value *DefaultABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
391                                       CodeGenFunction &CGF) const {
392  return 0;
393}
394
395ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty) const {
396  if (isAggregateTypeForABI(Ty)) {
397    // Records with non trivial destructors/constructors should not be passed
398    // by value.
399    if (isRecordReturnIndirect(Ty, getCXXABI()))
400      return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
401
402    return ABIArgInfo::getIndirect(0);
403  }
404
405  // Treat an enum type as its underlying type.
406  if (const EnumType *EnumTy = Ty->getAs<EnumType>())
407    Ty = EnumTy->getDecl()->getIntegerType();
408
409  return (Ty->isPromotableIntegerType() ?
410          ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
411}
412
413ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy) const {
414  if (RetTy->isVoidType())
415    return ABIArgInfo::getIgnore();
416
417  if (isAggregateTypeForABI(RetTy))
418    return ABIArgInfo::getIndirect(0);
419
420  // Treat an enum type as its underlying type.
421  if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
422    RetTy = EnumTy->getDecl()->getIntegerType();
423
424  return (RetTy->isPromotableIntegerType() ?
425          ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
426}
427
428//===----------------------------------------------------------------------===//
429// le32/PNaCl bitcode ABI Implementation
430//
431// This is a simplified version of the x86_32 ABI.  Arguments and return values
432// are always passed on the stack.
433//===----------------------------------------------------------------------===//
434
435class PNaClABIInfo : public ABIInfo {
436 public:
437  PNaClABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
438
439  ABIArgInfo classifyReturnType(QualType RetTy) const;
440  ABIArgInfo classifyArgumentType(QualType RetTy) const;
441
442  virtual void computeInfo(CGFunctionInfo &FI) const;
443  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
444                                 CodeGenFunction &CGF) const;
445};
446
447class PNaClTargetCodeGenInfo : public TargetCodeGenInfo {
448 public:
449  PNaClTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
450    : TargetCodeGenInfo(new PNaClABIInfo(CGT)) {}
451};
452
453void PNaClABIInfo::computeInfo(CGFunctionInfo &FI) const {
454    FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
455
456    for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
457         it != ie; ++it)
458      it->info = classifyArgumentType(it->type);
459  }
460
461llvm::Value *PNaClABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
462                                       CodeGenFunction &CGF) const {
463  return 0;
464}
465
466/// \brief Classify argument of given type \p Ty.
467ABIArgInfo PNaClABIInfo::classifyArgumentType(QualType Ty) const {
468  if (isAggregateTypeForABI(Ty)) {
469    if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
470      return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
471    return ABIArgInfo::getIndirect(0);
472  } else if (const EnumType *EnumTy = Ty->getAs<EnumType>()) {
473    // Treat an enum type as its underlying type.
474    Ty = EnumTy->getDecl()->getIntegerType();
475  } else if (Ty->isFloatingType()) {
476    // Floating-point types don't go inreg.
477    return ABIArgInfo::getDirect();
478  }
479
480  return (Ty->isPromotableIntegerType() ?
481          ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
482}
483
484ABIArgInfo PNaClABIInfo::classifyReturnType(QualType RetTy) const {
485  if (RetTy->isVoidType())
486    return ABIArgInfo::getIgnore();
487
488  // In the PNaCl ABI we always return records/structures on the stack.
489  if (isAggregateTypeForABI(RetTy))
490    return ABIArgInfo::getIndirect(0);
491
492  // Treat an enum type as its underlying type.
493  if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
494    RetTy = EnumTy->getDecl()->getIntegerType();
495
496  return (RetTy->isPromotableIntegerType() ?
497          ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
498}
499
500/// IsX86_MMXType - Return true if this is an MMX type.
501bool IsX86_MMXType(llvm::Type *IRType) {
502  // Return true if the type is an MMX type <2 x i32>, <4 x i16>, or <8 x i8>.
503  return IRType->isVectorTy() && IRType->getPrimitiveSizeInBits() == 64 &&
504    cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy() &&
505    IRType->getScalarSizeInBits() != 64;
506}
507
508static llvm::Type* X86AdjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
509                                          StringRef Constraint,
510                                          llvm::Type* Ty) {
511  if ((Constraint == "y" || Constraint == "&y") && Ty->isVectorTy()) {
512    if (cast<llvm::VectorType>(Ty)->getBitWidth() != 64) {
513      // Invalid MMX constraint
514      return 0;
515    }
516
517    return llvm::Type::getX86_MMXTy(CGF.getLLVMContext());
518  }
519
520  // No operation needed
521  return Ty;
522}
523
524//===----------------------------------------------------------------------===//
525// X86-32 ABI Implementation
526//===----------------------------------------------------------------------===//
527
528/// X86_32ABIInfo - The X86-32 ABI information.
529class X86_32ABIInfo : public ABIInfo {
530  enum Class {
531    Integer,
532    Float
533  };
534
535  static const unsigned MinABIStackAlignInBytes = 4;
536
537  bool IsDarwinVectorABI;
538  bool IsSmallStructInRegABI;
539  bool IsWin32StructABI;
540  unsigned DefaultNumRegisterParameters;
541
542  static bool isRegisterSize(unsigned Size) {
543    return (Size == 8 || Size == 16 || Size == 32 || Size == 64);
544  }
545
546  static bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context,
547                                          unsigned callingConvention);
548
549  /// getIndirectResult - Give a source type \arg Ty, return a suitable result
550  /// such that the argument will be passed in memory.
551  ABIArgInfo getIndirectResult(QualType Ty, bool ByVal,
552                               unsigned &FreeRegs) const;
553
554  /// \brief Return the alignment to use for the given type on the stack.
555  unsigned getTypeStackAlignInBytes(QualType Ty, unsigned Align) const;
556
557  Class classify(QualType Ty) const;
558  ABIArgInfo classifyReturnType(QualType RetTy,
559                                unsigned callingConvention) const;
560  ABIArgInfo classifyArgumentType(QualType RetTy, unsigned &FreeRegs,
561                                  bool IsFastCall) const;
562  bool shouldUseInReg(QualType Ty, unsigned &FreeRegs,
563                      bool IsFastCall, bool &NeedsPadding) const;
564
565public:
566
567  virtual void computeInfo(CGFunctionInfo &FI) const;
568  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
569                                 CodeGenFunction &CGF) const;
570
571  X86_32ABIInfo(CodeGen::CodeGenTypes &CGT, bool d, bool p, bool w,
572                unsigned r)
573    : ABIInfo(CGT), IsDarwinVectorABI(d), IsSmallStructInRegABI(p),
574      IsWin32StructABI(w), DefaultNumRegisterParameters(r) {}
575};
576
577class X86_32TargetCodeGenInfo : public TargetCodeGenInfo {
578public:
579  X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
580      bool d, bool p, bool w, unsigned r)
581    :TargetCodeGenInfo(new X86_32ABIInfo(CGT, d, p, w, r)) {}
582
583  static bool isStructReturnInRegABI(
584      const llvm::Triple &Triple, const CodeGenOptions &Opts);
585
586  void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
587                           CodeGen::CodeGenModule &CGM) const;
588
589  int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const {
590    // Darwin uses different dwarf register numbers for EH.
591    if (CGM.getTarget().getTriple().isOSDarwin()) return 5;
592    return 4;
593  }
594
595  bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
596                               llvm::Value *Address) const;
597
598  llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
599                                  StringRef Constraint,
600                                  llvm::Type* Ty) const {
601    return X86AdjustInlineAsmType(CGF, Constraint, Ty);
602  }
603
604  llvm::Constant *getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const {
605    unsigned Sig = (0xeb << 0) |  // jmp rel8
606                   (0x06 << 8) |  //           .+0x08
607                   ('F' << 16) |
608                   ('T' << 24);
609    return llvm::ConstantInt::get(CGM.Int32Ty, Sig);
610  }
611
612};
613
614}
615
616/// shouldReturnTypeInRegister - Determine if the given type should be
617/// passed in a register (for the Darwin ABI).
618bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty,
619                                               ASTContext &Context,
620                                               unsigned callingConvention) {
621  uint64_t Size = Context.getTypeSize(Ty);
622
623  // Type must be register sized.
624  if (!isRegisterSize(Size))
625    return false;
626
627  if (Ty->isVectorType()) {
628    // 64- and 128- bit vectors inside structures are not returned in
629    // registers.
630    if (Size == 64 || Size == 128)
631      return false;
632
633    return true;
634  }
635
636  // If this is a builtin, pointer, enum, complex type, member pointer, or
637  // member function pointer it is ok.
638  if (Ty->getAs<BuiltinType>() || Ty->hasPointerRepresentation() ||
639      Ty->isAnyComplexType() || Ty->isEnumeralType() ||
640      Ty->isBlockPointerType() || Ty->isMemberPointerType())
641    return true;
642
643  // Arrays are treated like records.
644  if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty))
645    return shouldReturnTypeInRegister(AT->getElementType(), Context,
646                                      callingConvention);
647
648  // Otherwise, it must be a record type.
649  const RecordType *RT = Ty->getAs<RecordType>();
650  if (!RT) return false;
651
652  // FIXME: Traverse bases here too.
653
654  // For thiscall conventions, structures will never be returned in
655  // a register.  This is for compatibility with the MSVC ABI
656  if (callingConvention == llvm::CallingConv::X86_ThisCall &&
657      RT->isStructureType()) {
658    return false;
659  }
660
661  // Structure types are passed in register if all fields would be
662  // passed in a register.
663  for (RecordDecl::field_iterator i = RT->getDecl()->field_begin(),
664         e = RT->getDecl()->field_end(); i != e; ++i) {
665    const FieldDecl *FD = *i;
666
667    // Empty fields are ignored.
668    if (isEmptyField(Context, FD, true))
669      continue;
670
671    // Check fields recursively.
672    if (!shouldReturnTypeInRegister(FD->getType(), Context,
673                                    callingConvention))
674      return false;
675  }
676  return true;
677}
678
679ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy,
680                                            unsigned callingConvention) const {
681  if (RetTy->isVoidType())
682    return ABIArgInfo::getIgnore();
683
684  if (const VectorType *VT = RetTy->getAs<VectorType>()) {
685    // On Darwin, some vectors are returned in registers.
686    if (IsDarwinVectorABI) {
687      uint64_t Size = getContext().getTypeSize(RetTy);
688
689      // 128-bit vectors are a special case; they are returned in
690      // registers and we need to make sure to pick a type the LLVM
691      // backend will like.
692      if (Size == 128)
693        return ABIArgInfo::getDirect(llvm::VectorType::get(
694                  llvm::Type::getInt64Ty(getVMContext()), 2));
695
696      // Always return in register if it fits in a general purpose
697      // register, or if it is 64 bits and has a single element.
698      if ((Size == 8 || Size == 16 || Size == 32) ||
699          (Size == 64 && VT->getNumElements() == 1))
700        return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
701                                                            Size));
702
703      return ABIArgInfo::getIndirect(0);
704    }
705
706    return ABIArgInfo::getDirect();
707  }
708
709  if (isAggregateTypeForABI(RetTy)) {
710    if (const RecordType *RT = RetTy->getAs<RecordType>()) {
711      if (isRecordReturnIndirect(RT, getCXXABI()))
712        return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
713
714      // Structures with flexible arrays are always indirect.
715      if (RT->getDecl()->hasFlexibleArrayMember())
716        return ABIArgInfo::getIndirect(0);
717    }
718
719    // If specified, structs and unions are always indirect.
720    if (!IsSmallStructInRegABI && !RetTy->isAnyComplexType())
721      return ABIArgInfo::getIndirect(0);
722
723    // Small structures which are register sized are generally returned
724    // in a register.
725    if (X86_32ABIInfo::shouldReturnTypeInRegister(RetTy, getContext(),
726                                                  callingConvention)) {
727      uint64_t Size = getContext().getTypeSize(RetTy);
728
729      // As a special-case, if the struct is a "single-element" struct, and
730      // the field is of type "float" or "double", return it in a
731      // floating-point register. (MSVC does not apply this special case.)
732      // We apply a similar transformation for pointer types to improve the
733      // quality of the generated IR.
734      if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext()))
735        if ((!IsWin32StructABI && SeltTy->isRealFloatingType())
736            || SeltTy->hasPointerRepresentation())
737          return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
738
739      // FIXME: We should be able to narrow this integer in cases with dead
740      // padding.
741      return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),Size));
742    }
743
744    return ABIArgInfo::getIndirect(0);
745  }
746
747  // Treat an enum type as its underlying type.
748  if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
749    RetTy = EnumTy->getDecl()->getIntegerType();
750
751  return (RetTy->isPromotableIntegerType() ?
752          ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
753}
754
755static bool isSSEVectorType(ASTContext &Context, QualType Ty) {
756  return Ty->getAs<VectorType>() && Context.getTypeSize(Ty) == 128;
757}
758
759static bool isRecordWithSSEVectorType(ASTContext &Context, QualType Ty) {
760  const RecordType *RT = Ty->getAs<RecordType>();
761  if (!RT)
762    return 0;
763  const RecordDecl *RD = RT->getDecl();
764
765  // If this is a C++ record, check the bases first.
766  if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
767    for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
768           e = CXXRD->bases_end(); i != e; ++i)
769      if (!isRecordWithSSEVectorType(Context, i->getType()))
770        return false;
771
772  for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
773       i != e; ++i) {
774    QualType FT = i->getType();
775
776    if (isSSEVectorType(Context, FT))
777      return true;
778
779    if (isRecordWithSSEVectorType(Context, FT))
780      return true;
781  }
782
783  return false;
784}
785
786unsigned X86_32ABIInfo::getTypeStackAlignInBytes(QualType Ty,
787                                                 unsigned Align) const {
788  // Otherwise, if the alignment is less than or equal to the minimum ABI
789  // alignment, just use the default; the backend will handle this.
790  if (Align <= MinABIStackAlignInBytes)
791    return 0; // Use default alignment.
792
793  // On non-Darwin, the stack type alignment is always 4.
794  if (!IsDarwinVectorABI) {
795    // Set explicit alignment, since we may need to realign the top.
796    return MinABIStackAlignInBytes;
797  }
798
799  // Otherwise, if the type contains an SSE vector type, the alignment is 16.
800  if (Align >= 16 && (isSSEVectorType(getContext(), Ty) ||
801                      isRecordWithSSEVectorType(getContext(), Ty)))
802    return 16;
803
804  return MinABIStackAlignInBytes;
805}
806
807ABIArgInfo X86_32ABIInfo::getIndirectResult(QualType Ty, bool ByVal,
808                                            unsigned &FreeRegs) const {
809  if (!ByVal) {
810    if (FreeRegs) {
811      --FreeRegs; // Non byval indirects just use one pointer.
812      return ABIArgInfo::getIndirectInReg(0, false);
813    }
814    return ABIArgInfo::getIndirect(0, false);
815  }
816
817  // Compute the byval alignment.
818  unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8;
819  unsigned StackAlign = getTypeStackAlignInBytes(Ty, TypeAlign);
820  if (StackAlign == 0)
821    return ABIArgInfo::getIndirect(4);
822
823  // If the stack alignment is less than the type alignment, realign the
824  // argument.
825  if (StackAlign < TypeAlign)
826    return ABIArgInfo::getIndirect(StackAlign, /*ByVal=*/true,
827                                   /*Realign=*/true);
828
829  return ABIArgInfo::getIndirect(StackAlign);
830}
831
832X86_32ABIInfo::Class X86_32ABIInfo::classify(QualType Ty) const {
833  const Type *T = isSingleElementStruct(Ty, getContext());
834  if (!T)
835    T = Ty.getTypePtr();
836
837  if (const BuiltinType *BT = T->getAs<BuiltinType>()) {
838    BuiltinType::Kind K = BT->getKind();
839    if (K == BuiltinType::Float || K == BuiltinType::Double)
840      return Float;
841  }
842  return Integer;
843}
844
845bool X86_32ABIInfo::shouldUseInReg(QualType Ty, unsigned &FreeRegs,
846                                   bool IsFastCall, bool &NeedsPadding) const {
847  NeedsPadding = false;
848  Class C = classify(Ty);
849  if (C == Float)
850    return false;
851
852  unsigned Size = getContext().getTypeSize(Ty);
853  unsigned SizeInRegs = (Size + 31) / 32;
854
855  if (SizeInRegs == 0)
856    return false;
857
858  if (SizeInRegs > FreeRegs) {
859    FreeRegs = 0;
860    return false;
861  }
862
863  FreeRegs -= SizeInRegs;
864
865  if (IsFastCall) {
866    if (Size > 32)
867      return false;
868
869    if (Ty->isIntegralOrEnumerationType())
870      return true;
871
872    if (Ty->isPointerType())
873      return true;
874
875    if (Ty->isReferenceType())
876      return true;
877
878    if (FreeRegs)
879      NeedsPadding = true;
880
881    return false;
882  }
883
884  return true;
885}
886
887ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty,
888                                               unsigned &FreeRegs,
889                                               bool IsFastCall) const {
890  // FIXME: Set alignment on indirect arguments.
891  if (isAggregateTypeForABI(Ty)) {
892    if (const RecordType *RT = Ty->getAs<RecordType>()) {
893      if (IsWin32StructABI)
894        return getIndirectResult(Ty, true, FreeRegs);
895
896      if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()))
897        return getIndirectResult(Ty, RAA == CGCXXABI::RAA_DirectInMemory, FreeRegs);
898
899      // Structures with flexible arrays are always indirect.
900      if (RT->getDecl()->hasFlexibleArrayMember())
901        return getIndirectResult(Ty, true, FreeRegs);
902    }
903
904    // Ignore empty structs/unions.
905    if (isEmptyRecord(getContext(), Ty, true))
906      return ABIArgInfo::getIgnore();
907
908    llvm::LLVMContext &LLVMContext = getVMContext();
909    llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext);
910    bool NeedsPadding;
911    if (shouldUseInReg(Ty, FreeRegs, IsFastCall, NeedsPadding)) {
912      unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32;
913      SmallVector<llvm::Type*, 3> Elements(SizeInRegs, Int32);
914      llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements);
915      return ABIArgInfo::getDirectInReg(Result);
916    }
917    llvm::IntegerType *PaddingType = NeedsPadding ? Int32 : 0;
918
919    // Expand small (<= 128-bit) record types when we know that the stack layout
920    // of those arguments will match the struct. This is important because the
921    // LLVM backend isn't smart enough to remove byval, which inhibits many
922    // optimizations.
923    if (getContext().getTypeSize(Ty) <= 4*32 &&
924        canExpandIndirectArgument(Ty, getContext()))
925      return ABIArgInfo::getExpandWithPadding(IsFastCall, PaddingType);
926
927    return getIndirectResult(Ty, true, FreeRegs);
928  }
929
930  if (const VectorType *VT = Ty->getAs<VectorType>()) {
931    // On Darwin, some vectors are passed in memory, we handle this by passing
932    // it as an i8/i16/i32/i64.
933    if (IsDarwinVectorABI) {
934      uint64_t Size = getContext().getTypeSize(Ty);
935      if ((Size == 8 || Size == 16 || Size == 32) ||
936          (Size == 64 && VT->getNumElements() == 1))
937        return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
938                                                            Size));
939    }
940
941    if (IsX86_MMXType(CGT.ConvertType(Ty)))
942      return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 64));
943
944    return ABIArgInfo::getDirect();
945  }
946
947
948  if (const EnumType *EnumTy = Ty->getAs<EnumType>())
949    Ty = EnumTy->getDecl()->getIntegerType();
950
951  bool NeedsPadding;
952  bool InReg = shouldUseInReg(Ty, FreeRegs, IsFastCall, NeedsPadding);
953
954  if (Ty->isPromotableIntegerType()) {
955    if (InReg)
956      return ABIArgInfo::getExtendInReg();
957    return ABIArgInfo::getExtend();
958  }
959  if (InReg)
960    return ABIArgInfo::getDirectInReg();
961  return ABIArgInfo::getDirect();
962}
963
964void X86_32ABIInfo::computeInfo(CGFunctionInfo &FI) const {
965  FI.getReturnInfo() = classifyReturnType(FI.getReturnType(),
966                                          FI.getCallingConvention());
967
968  unsigned CC = FI.getCallingConvention();
969  bool IsFastCall = CC == llvm::CallingConv::X86_FastCall;
970  unsigned FreeRegs;
971  if (IsFastCall)
972    FreeRegs = 2;
973  else if (FI.getHasRegParm())
974    FreeRegs = FI.getRegParm();
975  else
976    FreeRegs = DefaultNumRegisterParameters;
977
978  // If the return value is indirect, then the hidden argument is consuming one
979  // integer register.
980  if (FI.getReturnInfo().isIndirect() && FreeRegs) {
981    --FreeRegs;
982    ABIArgInfo &Old = FI.getReturnInfo();
983    Old = ABIArgInfo::getIndirectInReg(Old.getIndirectAlign(),
984                                       Old.getIndirectByVal(),
985                                       Old.getIndirectRealign());
986  }
987
988  for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
989       it != ie; ++it)
990    it->info = classifyArgumentType(it->type, FreeRegs, IsFastCall);
991}
992
993llvm::Value *X86_32ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
994                                      CodeGenFunction &CGF) const {
995  llvm::Type *BPP = CGF.Int8PtrPtrTy;
996
997  CGBuilderTy &Builder = CGF.Builder;
998  llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP,
999                                                       "ap");
1000  llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
1001
1002  // Compute if the address needs to be aligned
1003  unsigned Align = CGF.getContext().getTypeAlignInChars(Ty).getQuantity();
1004  Align = getTypeStackAlignInBytes(Ty, Align);
1005  Align = std::max(Align, 4U);
1006  if (Align > 4) {
1007    // addr = (addr + align - 1) & -align;
1008    llvm::Value *Offset =
1009      llvm::ConstantInt::get(CGF.Int32Ty, Align - 1);
1010    Addr = CGF.Builder.CreateGEP(Addr, Offset);
1011    llvm::Value *AsInt = CGF.Builder.CreatePtrToInt(Addr,
1012                                                    CGF.Int32Ty);
1013    llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int32Ty, -Align);
1014    Addr = CGF.Builder.CreateIntToPtr(CGF.Builder.CreateAnd(AsInt, Mask),
1015                                      Addr->getType(),
1016                                      "ap.cur.aligned");
1017  }
1018
1019  llvm::Type *PTy =
1020    llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
1021  llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
1022
1023  uint64_t Offset =
1024    llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, Align);
1025  llvm::Value *NextAddr =
1026    Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
1027                      "ap.next");
1028  Builder.CreateStore(NextAddr, VAListAddrAsBPP);
1029
1030  return AddrTyped;
1031}
1032
1033void X86_32TargetCodeGenInfo::SetTargetAttributes(const Decl *D,
1034                                                  llvm::GlobalValue *GV,
1035                                            CodeGen::CodeGenModule &CGM) const {
1036  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1037    if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
1038      // Get the LLVM function.
1039      llvm::Function *Fn = cast<llvm::Function>(GV);
1040
1041      // Now add the 'alignstack' attribute with a value of 16.
1042      llvm::AttrBuilder B;
1043      B.addStackAlignmentAttr(16);
1044      Fn->addAttributes(llvm::AttributeSet::FunctionIndex,
1045                      llvm::AttributeSet::get(CGM.getLLVMContext(),
1046                                              llvm::AttributeSet::FunctionIndex,
1047                                              B));
1048    }
1049  }
1050}
1051
1052bool X86_32TargetCodeGenInfo::initDwarfEHRegSizeTable(
1053                                               CodeGen::CodeGenFunction &CGF,
1054                                               llvm::Value *Address) const {
1055  CodeGen::CGBuilderTy &Builder = CGF.Builder;
1056
1057  llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
1058
1059  // 0-7 are the eight integer registers;  the order is different
1060  //   on Darwin (for EH), but the range is the same.
1061  // 8 is %eip.
1062  AssignToArrayRange(Builder, Address, Four8, 0, 8);
1063
1064  if (CGF.CGM.getTarget().getTriple().isOSDarwin()) {
1065    // 12-16 are st(0..4).  Not sure why we stop at 4.
1066    // These have size 16, which is sizeof(long double) on
1067    // platforms with 8-byte alignment for that type.
1068    llvm::Value *Sixteen8 = llvm::ConstantInt::get(CGF.Int8Ty, 16);
1069    AssignToArrayRange(Builder, Address, Sixteen8, 12, 16);
1070
1071  } else {
1072    // 9 is %eflags, which doesn't get a size on Darwin for some
1073    // reason.
1074    Builder.CreateStore(Four8, Builder.CreateConstInBoundsGEP1_32(Address, 9));
1075
1076    // 11-16 are st(0..5).  Not sure why we stop at 5.
1077    // These have size 12, which is sizeof(long double) on
1078    // platforms with 4-byte alignment for that type.
1079    llvm::Value *Twelve8 = llvm::ConstantInt::get(CGF.Int8Ty, 12);
1080    AssignToArrayRange(Builder, Address, Twelve8, 11, 16);
1081  }
1082
1083  return false;
1084}
1085
1086//===----------------------------------------------------------------------===//
1087// X86-64 ABI Implementation
1088//===----------------------------------------------------------------------===//
1089
1090
1091namespace {
1092/// X86_64ABIInfo - The X86_64 ABI information.
1093class X86_64ABIInfo : public ABIInfo {
1094  enum Class {
1095    Integer = 0,
1096    SSE,
1097    SSEUp,
1098    X87,
1099    X87Up,
1100    ComplexX87,
1101    NoClass,
1102    Memory
1103  };
1104
1105  /// merge - Implement the X86_64 ABI merging algorithm.
1106  ///
1107  /// Merge an accumulating classification \arg Accum with a field
1108  /// classification \arg Field.
1109  ///
1110  /// \param Accum - The accumulating classification. This should
1111  /// always be either NoClass or the result of a previous merge
1112  /// call. In addition, this should never be Memory (the caller
1113  /// should just return Memory for the aggregate).
1114  static Class merge(Class Accum, Class Field);
1115
1116  /// postMerge - Implement the X86_64 ABI post merging algorithm.
1117  ///
1118  /// Post merger cleanup, reduces a malformed Hi and Lo pair to
1119  /// final MEMORY or SSE classes when necessary.
1120  ///
1121  /// \param AggregateSize - The size of the current aggregate in
1122  /// the classification process.
1123  ///
1124  /// \param Lo - The classification for the parts of the type
1125  /// residing in the low word of the containing object.
1126  ///
1127  /// \param Hi - The classification for the parts of the type
1128  /// residing in the higher words of the containing object.
1129  ///
1130  void postMerge(unsigned AggregateSize, Class &Lo, Class &Hi) const;
1131
1132  /// classify - Determine the x86_64 register classes in which the
1133  /// given type T should be passed.
1134  ///
1135  /// \param Lo - The classification for the parts of the type
1136  /// residing in the low word of the containing object.
1137  ///
1138  /// \param Hi - The classification for the parts of the type
1139  /// residing in the high word of the containing object.
1140  ///
1141  /// \param OffsetBase - The bit offset of this type in the
1142  /// containing object.  Some parameters are classified different
1143  /// depending on whether they straddle an eightbyte boundary.
1144  ///
1145  /// \param isNamedArg - Whether the argument in question is a "named"
1146  /// argument, as used in AMD64-ABI 3.5.7.
1147  ///
1148  /// If a word is unused its result will be NoClass; if a type should
1149  /// be passed in Memory then at least the classification of \arg Lo
1150  /// will be Memory.
1151  ///
1152  /// The \arg Lo class will be NoClass iff the argument is ignored.
1153  ///
1154  /// If the \arg Lo class is ComplexX87, then the \arg Hi class will
1155  /// also be ComplexX87.
1156  void classify(QualType T, uint64_t OffsetBase, Class &Lo, Class &Hi,
1157                bool isNamedArg) const;
1158
1159  llvm::Type *GetByteVectorType(QualType Ty) const;
1160  llvm::Type *GetSSETypeAtOffset(llvm::Type *IRType,
1161                                 unsigned IROffset, QualType SourceTy,
1162                                 unsigned SourceOffset) const;
1163  llvm::Type *GetINTEGERTypeAtOffset(llvm::Type *IRType,
1164                                     unsigned IROffset, QualType SourceTy,
1165                                     unsigned SourceOffset) const;
1166
1167  /// getIndirectResult - Give a source type \arg Ty, return a suitable result
1168  /// such that the argument will be returned in memory.
1169  ABIArgInfo getIndirectReturnResult(QualType Ty) const;
1170
1171  /// getIndirectResult - Give a source type \arg Ty, return a suitable result
1172  /// such that the argument will be passed in memory.
1173  ///
1174  /// \param freeIntRegs - The number of free integer registers remaining
1175  /// available.
1176  ABIArgInfo getIndirectResult(QualType Ty, unsigned freeIntRegs) const;
1177
1178  ABIArgInfo classifyReturnType(QualType RetTy) const;
1179
1180  ABIArgInfo classifyArgumentType(QualType Ty,
1181                                  unsigned freeIntRegs,
1182                                  unsigned &neededInt,
1183                                  unsigned &neededSSE,
1184                                  bool isNamedArg) const;
1185
1186  bool IsIllegalVectorType(QualType Ty) const;
1187
1188  /// The 0.98 ABI revision clarified a lot of ambiguities,
1189  /// unfortunately in ways that were not always consistent with
1190  /// certain previous compilers.  In particular, platforms which
1191  /// required strict binary compatibility with older versions of GCC
1192  /// may need to exempt themselves.
1193  bool honorsRevision0_98() const {
1194    return !getTarget().getTriple().isOSDarwin();
1195  }
1196
1197  bool HasAVX;
1198  // Some ABIs (e.g. X32 ABI and Native Client OS) use 32 bit pointers on
1199  // 64-bit hardware.
1200  bool Has64BitPointers;
1201
1202public:
1203  X86_64ABIInfo(CodeGen::CodeGenTypes &CGT, bool hasavx) :
1204      ABIInfo(CGT), HasAVX(hasavx),
1205      Has64BitPointers(CGT.getDataLayout().getPointerSize(0) == 8) {
1206  }
1207
1208  bool isPassedUsingAVXType(QualType type) const {
1209    unsigned neededInt, neededSSE;
1210    // The freeIntRegs argument doesn't matter here.
1211    ABIArgInfo info = classifyArgumentType(type, 0, neededInt, neededSSE,
1212                                           /*isNamedArg*/true);
1213    if (info.isDirect()) {
1214      llvm::Type *ty = info.getCoerceToType();
1215      if (llvm::VectorType *vectorTy = dyn_cast_or_null<llvm::VectorType>(ty))
1216        return (vectorTy->getBitWidth() > 128);
1217    }
1218    return false;
1219  }
1220
1221  virtual void computeInfo(CGFunctionInfo &FI) const;
1222
1223  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
1224                                 CodeGenFunction &CGF) const;
1225};
1226
1227/// WinX86_64ABIInfo - The Windows X86_64 ABI information.
1228class WinX86_64ABIInfo : public ABIInfo {
1229
1230  ABIArgInfo classify(QualType Ty, bool IsReturnType) const;
1231
1232public:
1233  WinX86_64ABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
1234
1235  virtual void computeInfo(CGFunctionInfo &FI) const;
1236
1237  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
1238                                 CodeGenFunction &CGF) const;
1239};
1240
1241class X86_64TargetCodeGenInfo : public TargetCodeGenInfo {
1242public:
1243  X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool HasAVX)
1244      : TargetCodeGenInfo(new X86_64ABIInfo(CGT, HasAVX)) {}
1245
1246  const X86_64ABIInfo &getABIInfo() const {
1247    return static_cast<const X86_64ABIInfo&>(TargetCodeGenInfo::getABIInfo());
1248  }
1249
1250  int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const {
1251    return 7;
1252  }
1253
1254  bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
1255                               llvm::Value *Address) const {
1256    llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8);
1257
1258    // 0-15 are the 16 integer registers.
1259    // 16 is %rip.
1260    AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16);
1261    return false;
1262  }
1263
1264  llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
1265                                  StringRef Constraint,
1266                                  llvm::Type* Ty) const {
1267    return X86AdjustInlineAsmType(CGF, Constraint, Ty);
1268  }
1269
1270  bool isNoProtoCallVariadic(const CallArgList &args,
1271                             const FunctionNoProtoType *fnType) const {
1272    // The default CC on x86-64 sets %al to the number of SSA
1273    // registers used, and GCC sets this when calling an unprototyped
1274    // function, so we override the default behavior.  However, don't do
1275    // that when AVX types are involved: the ABI explicitly states it is
1276    // undefined, and it doesn't work in practice because of how the ABI
1277    // defines varargs anyway.
1278    if (fnType->getCallConv() == CC_C) {
1279      bool HasAVXType = false;
1280      for (CallArgList::const_iterator
1281             it = args.begin(), ie = args.end(); it != ie; ++it) {
1282        if (getABIInfo().isPassedUsingAVXType(it->Ty)) {
1283          HasAVXType = true;
1284          break;
1285        }
1286      }
1287
1288      if (!HasAVXType)
1289        return true;
1290    }
1291
1292    return TargetCodeGenInfo::isNoProtoCallVariadic(args, fnType);
1293  }
1294
1295  llvm::Constant *getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const {
1296    unsigned Sig = (0xeb << 0) |  // jmp rel8
1297                   (0x0a << 8) |  //           .+0x0c
1298                   ('F' << 16) |
1299                   ('T' << 24);
1300    return llvm::ConstantInt::get(CGM.Int32Ty, Sig);
1301  }
1302
1303};
1304
1305static std::string qualifyWindowsLibrary(llvm::StringRef Lib) {
1306  // If the argument does not end in .lib, automatically add the suffix. This
1307  // matches the behavior of MSVC.
1308  std::string ArgStr = Lib;
1309  if (Lib.size() <= 4 ||
1310      Lib.substr(Lib.size() - 4).compare_lower(".lib") != 0) {
1311    ArgStr += ".lib";
1312  }
1313  return ArgStr;
1314}
1315
1316class WinX86_32TargetCodeGenInfo : public X86_32TargetCodeGenInfo {
1317public:
1318  WinX86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
1319        bool d, bool p, bool w, unsigned RegParms)
1320    : X86_32TargetCodeGenInfo(CGT, d, p, w, RegParms) {}
1321
1322  void getDependentLibraryOption(llvm::StringRef Lib,
1323                                 llvm::SmallString<24> &Opt) const {
1324    Opt = "/DEFAULTLIB:";
1325    Opt += qualifyWindowsLibrary(Lib);
1326  }
1327
1328  void getDetectMismatchOption(llvm::StringRef Name,
1329                               llvm::StringRef Value,
1330                               llvm::SmallString<32> &Opt) const {
1331    Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
1332  }
1333};
1334
1335class WinX86_64TargetCodeGenInfo : public TargetCodeGenInfo {
1336public:
1337  WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
1338    : TargetCodeGenInfo(new WinX86_64ABIInfo(CGT)) {}
1339
1340  int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const {
1341    return 7;
1342  }
1343
1344  bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
1345                               llvm::Value *Address) const {
1346    llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8);
1347
1348    // 0-15 are the 16 integer registers.
1349    // 16 is %rip.
1350    AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16);
1351    return false;
1352  }
1353
1354  void getDependentLibraryOption(llvm::StringRef Lib,
1355                                 llvm::SmallString<24> &Opt) const {
1356    Opt = "/DEFAULTLIB:";
1357    Opt += qualifyWindowsLibrary(Lib);
1358  }
1359
1360  void getDetectMismatchOption(llvm::StringRef Name,
1361                               llvm::StringRef Value,
1362                               llvm::SmallString<32> &Opt) const {
1363    Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
1364  }
1365};
1366
1367}
1368
1369void X86_64ABIInfo::postMerge(unsigned AggregateSize, Class &Lo,
1370                              Class &Hi) const {
1371  // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done:
1372  //
1373  // (a) If one of the classes is Memory, the whole argument is passed in
1374  //     memory.
1375  //
1376  // (b) If X87UP is not preceded by X87, the whole argument is passed in
1377  //     memory.
1378  //
1379  // (c) If the size of the aggregate exceeds two eightbytes and the first
1380  //     eightbyte isn't SSE or any other eightbyte isn't SSEUP, the whole
1381  //     argument is passed in memory. NOTE: This is necessary to keep the
1382  //     ABI working for processors that don't support the __m256 type.
1383  //
1384  // (d) If SSEUP is not preceded by SSE or SSEUP, it is converted to SSE.
1385  //
1386  // Some of these are enforced by the merging logic.  Others can arise
1387  // only with unions; for example:
1388  //   union { _Complex double; unsigned; }
1389  //
1390  // Note that clauses (b) and (c) were added in 0.98.
1391  //
1392  if (Hi == Memory)
1393    Lo = Memory;
1394  if (Hi == X87Up && Lo != X87 && honorsRevision0_98())
1395    Lo = Memory;
1396  if (AggregateSize > 128 && (Lo != SSE || Hi != SSEUp))
1397    Lo = Memory;
1398  if (Hi == SSEUp && Lo != SSE)
1399    Hi = SSE;
1400}
1401
1402X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, Class Field) {
1403  // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is
1404  // classified recursively so that always two fields are
1405  // considered. The resulting class is calculated according to
1406  // the classes of the fields in the eightbyte:
1407  //
1408  // (a) If both classes are equal, this is the resulting class.
1409  //
1410  // (b) If one of the classes is NO_CLASS, the resulting class is
1411  // the other class.
1412  //
1413  // (c) If one of the classes is MEMORY, the result is the MEMORY
1414  // class.
1415  //
1416  // (d) If one of the classes is INTEGER, the result is the
1417  // INTEGER.
1418  //
1419  // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class,
1420  // MEMORY is used as class.
1421  //
1422  // (f) Otherwise class SSE is used.
1423
1424  // Accum should never be memory (we should have returned) or
1425  // ComplexX87 (because this cannot be passed in a structure).
1426  assert((Accum != Memory && Accum != ComplexX87) &&
1427         "Invalid accumulated classification during merge.");
1428  if (Accum == Field || Field == NoClass)
1429    return Accum;
1430  if (Field == Memory)
1431    return Memory;
1432  if (Accum == NoClass)
1433    return Field;
1434  if (Accum == Integer || Field == Integer)
1435    return Integer;
1436  if (Field == X87 || Field == X87Up || Field == ComplexX87 ||
1437      Accum == X87 || Accum == X87Up)
1438    return Memory;
1439  return SSE;
1440}
1441
1442void X86_64ABIInfo::classify(QualType Ty, uint64_t OffsetBase,
1443                             Class &Lo, Class &Hi, bool isNamedArg) const {
1444  // FIXME: This code can be simplified by introducing a simple value class for
1445  // Class pairs with appropriate constructor methods for the various
1446  // situations.
1447
1448  // FIXME: Some of the split computations are wrong; unaligned vectors
1449  // shouldn't be passed in registers for example, so there is no chance they
1450  // can straddle an eightbyte. Verify & simplify.
1451
1452  Lo = Hi = NoClass;
1453
1454  Class &Current = OffsetBase < 64 ? Lo : Hi;
1455  Current = Memory;
1456
1457  if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
1458    BuiltinType::Kind k = BT->getKind();
1459
1460    if (k == BuiltinType::Void) {
1461      Current = NoClass;
1462    } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) {
1463      Lo = Integer;
1464      Hi = Integer;
1465    } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) {
1466      Current = Integer;
1467    } else if ((k == BuiltinType::Float || k == BuiltinType::Double) ||
1468               (k == BuiltinType::LongDouble &&
1469                getTarget().getTriple().isOSNaCl())) {
1470      Current = SSE;
1471    } else if (k == BuiltinType::LongDouble) {
1472      Lo = X87;
1473      Hi = X87Up;
1474    }
1475    // FIXME: _Decimal32 and _Decimal64 are SSE.
1476    // FIXME: _float128 and _Decimal128 are (SSE, SSEUp).
1477    return;
1478  }
1479
1480  if (const EnumType *ET = Ty->getAs<EnumType>()) {
1481    // Classify the underlying integer type.
1482    classify(ET->getDecl()->getIntegerType(), OffsetBase, Lo, Hi, isNamedArg);
1483    return;
1484  }
1485
1486  if (Ty->hasPointerRepresentation()) {
1487    Current = Integer;
1488    return;
1489  }
1490
1491  if (Ty->isMemberPointerType()) {
1492    if (Ty->isMemberFunctionPointerType() && Has64BitPointers)
1493      Lo = Hi = Integer;
1494    else
1495      Current = Integer;
1496    return;
1497  }
1498
1499  if (const VectorType *VT = Ty->getAs<VectorType>()) {
1500    uint64_t Size = getContext().getTypeSize(VT);
1501    if (Size == 32) {
1502      // gcc passes all <4 x char>, <2 x short>, <1 x int>, <1 x
1503      // float> as integer.
1504      Current = Integer;
1505
1506      // If this type crosses an eightbyte boundary, it should be
1507      // split.
1508      uint64_t EB_Real = (OffsetBase) / 64;
1509      uint64_t EB_Imag = (OffsetBase + Size - 1) / 64;
1510      if (EB_Real != EB_Imag)
1511        Hi = Lo;
1512    } else if (Size == 64) {
1513      // gcc passes <1 x double> in memory. :(
1514      if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::Double))
1515        return;
1516
1517      // gcc passes <1 x long long> as INTEGER.
1518      if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::LongLong) ||
1519          VT->getElementType()->isSpecificBuiltinType(BuiltinType::ULongLong) ||
1520          VT->getElementType()->isSpecificBuiltinType(BuiltinType::Long) ||
1521          VT->getElementType()->isSpecificBuiltinType(BuiltinType::ULong))
1522        Current = Integer;
1523      else
1524        Current = SSE;
1525
1526      // If this type crosses an eightbyte boundary, it should be
1527      // split.
1528      if (OffsetBase && OffsetBase != 64)
1529        Hi = Lo;
1530    } else if (Size == 128 || (HasAVX && isNamedArg && Size == 256)) {
1531      // Arguments of 256-bits are split into four eightbyte chunks. The
1532      // least significant one belongs to class SSE and all the others to class
1533      // SSEUP. The original Lo and Hi design considers that types can't be
1534      // greater than 128-bits, so a 64-bit split in Hi and Lo makes sense.
1535      // This design isn't correct for 256-bits, but since there're no cases
1536      // where the upper parts would need to be inspected, avoid adding
1537      // complexity and just consider Hi to match the 64-256 part.
1538      //
1539      // Note that per 3.5.7 of AMD64-ABI, 256-bit args are only passed in
1540      // registers if they are "named", i.e. not part of the "..." of a
1541      // variadic function.
1542      Lo = SSE;
1543      Hi = SSEUp;
1544    }
1545    return;
1546  }
1547
1548  if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
1549    QualType ET = getContext().getCanonicalType(CT->getElementType());
1550
1551    uint64_t Size = getContext().getTypeSize(Ty);
1552    if (ET->isIntegralOrEnumerationType()) {
1553      if (Size <= 64)
1554        Current = Integer;
1555      else if (Size <= 128)
1556        Lo = Hi = Integer;
1557    } else if (ET == getContext().FloatTy)
1558      Current = SSE;
1559    else if (ET == getContext().DoubleTy ||
1560             (ET == getContext().LongDoubleTy &&
1561              getTarget().getTriple().isOSNaCl()))
1562      Lo = Hi = SSE;
1563    else if (ET == getContext().LongDoubleTy)
1564      Current = ComplexX87;
1565
1566    // If this complex type crosses an eightbyte boundary then it
1567    // should be split.
1568    uint64_t EB_Real = (OffsetBase) / 64;
1569    uint64_t EB_Imag = (OffsetBase + getContext().getTypeSize(ET)) / 64;
1570    if (Hi == NoClass && EB_Real != EB_Imag)
1571      Hi = Lo;
1572
1573    return;
1574  }
1575
1576  if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
1577    // Arrays are treated like structures.
1578
1579    uint64_t Size = getContext().getTypeSize(Ty);
1580
1581    // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
1582    // than four eightbytes, ..., it has class MEMORY.
1583    if (Size > 256)
1584      return;
1585
1586    // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned
1587    // fields, it has class MEMORY.
1588    //
1589    // Only need to check alignment of array base.
1590    if (OffsetBase % getContext().getTypeAlign(AT->getElementType()))
1591      return;
1592
1593    // Otherwise implement simplified merge. We could be smarter about
1594    // this, but it isn't worth it and would be harder to verify.
1595    Current = NoClass;
1596    uint64_t EltSize = getContext().getTypeSize(AT->getElementType());
1597    uint64_t ArraySize = AT->getSize().getZExtValue();
1598
1599    // The only case a 256-bit wide vector could be used is when the array
1600    // contains a single 256-bit element. Since Lo and Hi logic isn't extended
1601    // to work for sizes wider than 128, early check and fallback to memory.
1602    if (Size > 128 && EltSize != 256)
1603      return;
1604
1605    for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) {
1606      Class FieldLo, FieldHi;
1607      classify(AT->getElementType(), Offset, FieldLo, FieldHi, isNamedArg);
1608      Lo = merge(Lo, FieldLo);
1609      Hi = merge(Hi, FieldHi);
1610      if (Lo == Memory || Hi == Memory)
1611        break;
1612    }
1613
1614    postMerge(Size, Lo, Hi);
1615    assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification.");
1616    return;
1617  }
1618
1619  if (const RecordType *RT = Ty->getAs<RecordType>()) {
1620    uint64_t Size = getContext().getTypeSize(Ty);
1621
1622    // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
1623    // than four eightbytes, ..., it has class MEMORY.
1624    if (Size > 256)
1625      return;
1626
1627    // AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial
1628    // copy constructor or a non-trivial destructor, it is passed by invisible
1629    // reference.
1630    if (getRecordArgABI(RT, getCXXABI()))
1631      return;
1632
1633    const RecordDecl *RD = RT->getDecl();
1634
1635    // Assume variable sized types are passed in memory.
1636    if (RD->hasFlexibleArrayMember())
1637      return;
1638
1639    const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
1640
1641    // Reset Lo class, this will be recomputed.
1642    Current = NoClass;
1643
1644    // If this is a C++ record, classify the bases first.
1645    if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
1646      for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
1647             e = CXXRD->bases_end(); i != e; ++i) {
1648        assert(!i->isVirtual() && !i->getType()->isDependentType() &&
1649               "Unexpected base class!");
1650        const CXXRecordDecl *Base =
1651          cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
1652
1653        // Classify this field.
1654        //
1655        // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a
1656        // single eightbyte, each is classified separately. Each eightbyte gets
1657        // initialized to class NO_CLASS.
1658        Class FieldLo, FieldHi;
1659        uint64_t Offset =
1660          OffsetBase + getContext().toBits(Layout.getBaseClassOffset(Base));
1661        classify(i->getType(), Offset, FieldLo, FieldHi, isNamedArg);
1662        Lo = merge(Lo, FieldLo);
1663        Hi = merge(Hi, FieldHi);
1664        if (Lo == Memory || Hi == Memory)
1665          break;
1666      }
1667    }
1668
1669    // Classify the fields one at a time, merging the results.
1670    unsigned idx = 0;
1671    for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
1672           i != e; ++i, ++idx) {
1673      uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
1674      bool BitField = i->isBitField();
1675
1676      // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger than
1677      // four eightbytes, or it contains unaligned fields, it has class MEMORY.
1678      //
1679      // The only case a 256-bit wide vector could be used is when the struct
1680      // contains a single 256-bit element. Since Lo and Hi logic isn't extended
1681      // to work for sizes wider than 128, early check and fallback to memory.
1682      //
1683      if (Size > 128 && getContext().getTypeSize(i->getType()) != 256) {
1684        Lo = Memory;
1685        return;
1686      }
1687      // Note, skip this test for bit-fields, see below.
1688      if (!BitField && Offset % getContext().getTypeAlign(i->getType())) {
1689        Lo = Memory;
1690        return;
1691      }
1692
1693      // Classify this field.
1694      //
1695      // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate
1696      // exceeds a single eightbyte, each is classified
1697      // separately. Each eightbyte gets initialized to class
1698      // NO_CLASS.
1699      Class FieldLo, FieldHi;
1700
1701      // Bit-fields require special handling, they do not force the
1702      // structure to be passed in memory even if unaligned, and
1703      // therefore they can straddle an eightbyte.
1704      if (BitField) {
1705        // Ignore padding bit-fields.
1706        if (i->isUnnamedBitfield())
1707          continue;
1708
1709        uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
1710        uint64_t Size = i->getBitWidthValue(getContext());
1711
1712        uint64_t EB_Lo = Offset / 64;
1713        uint64_t EB_Hi = (Offset + Size - 1) / 64;
1714
1715        if (EB_Lo) {
1716          assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes.");
1717          FieldLo = NoClass;
1718          FieldHi = Integer;
1719        } else {
1720          FieldLo = Integer;
1721          FieldHi = EB_Hi ? Integer : NoClass;
1722        }
1723      } else
1724        classify(i->getType(), Offset, FieldLo, FieldHi, isNamedArg);
1725      Lo = merge(Lo, FieldLo);
1726      Hi = merge(Hi, FieldHi);
1727      if (Lo == Memory || Hi == Memory)
1728        break;
1729    }
1730
1731    postMerge(Size, Lo, Hi);
1732  }
1733}
1734
1735ABIArgInfo X86_64ABIInfo::getIndirectReturnResult(QualType Ty) const {
1736  // If this is a scalar LLVM value then assume LLVM will pass it in the right
1737  // place naturally.
1738  if (!isAggregateTypeForABI(Ty)) {
1739    // Treat an enum type as its underlying type.
1740    if (const EnumType *EnumTy = Ty->getAs<EnumType>())
1741      Ty = EnumTy->getDecl()->getIntegerType();
1742
1743    return (Ty->isPromotableIntegerType() ?
1744            ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
1745  }
1746
1747  return ABIArgInfo::getIndirect(0);
1748}
1749
1750bool X86_64ABIInfo::IsIllegalVectorType(QualType Ty) const {
1751  if (const VectorType *VecTy = Ty->getAs<VectorType>()) {
1752    uint64_t Size = getContext().getTypeSize(VecTy);
1753    unsigned LargestVector = HasAVX ? 256 : 128;
1754    if (Size <= 64 || Size > LargestVector)
1755      return true;
1756  }
1757
1758  return false;
1759}
1760
1761ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty,
1762                                            unsigned freeIntRegs) const {
1763  // If this is a scalar LLVM value then assume LLVM will pass it in the right
1764  // place naturally.
1765  //
1766  // This assumption is optimistic, as there could be free registers available
1767  // when we need to pass this argument in memory, and LLVM could try to pass
1768  // the argument in the free register. This does not seem to happen currently,
1769  // but this code would be much safer if we could mark the argument with
1770  // 'onstack'. See PR12193.
1771  if (!isAggregateTypeForABI(Ty) && !IsIllegalVectorType(Ty)) {
1772    // Treat an enum type as its underlying type.
1773    if (const EnumType *EnumTy = Ty->getAs<EnumType>())
1774      Ty = EnumTy->getDecl()->getIntegerType();
1775
1776    return (Ty->isPromotableIntegerType() ?
1777            ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
1778  }
1779
1780  if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
1781    return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
1782
1783  // Compute the byval alignment. We specify the alignment of the byval in all
1784  // cases so that the mid-level optimizer knows the alignment of the byval.
1785  unsigned Align = std::max(getContext().getTypeAlign(Ty) / 8, 8U);
1786
1787  // Attempt to avoid passing indirect results using byval when possible. This
1788  // is important for good codegen.
1789  //
1790  // We do this by coercing the value into a scalar type which the backend can
1791  // handle naturally (i.e., without using byval).
1792  //
1793  // For simplicity, we currently only do this when we have exhausted all of the
1794  // free integer registers. Doing this when there are free integer registers
1795  // would require more care, as we would have to ensure that the coerced value
1796  // did not claim the unused register. That would require either reording the
1797  // arguments to the function (so that any subsequent inreg values came first),
1798  // or only doing this optimization when there were no following arguments that
1799  // might be inreg.
1800  //
1801  // We currently expect it to be rare (particularly in well written code) for
1802  // arguments to be passed on the stack when there are still free integer
1803  // registers available (this would typically imply large structs being passed
1804  // by value), so this seems like a fair tradeoff for now.
1805  //
1806  // We can revisit this if the backend grows support for 'onstack' parameter
1807  // attributes. See PR12193.
1808  if (freeIntRegs == 0) {
1809    uint64_t Size = getContext().getTypeSize(Ty);
1810
1811    // If this type fits in an eightbyte, coerce it into the matching integral
1812    // type, which will end up on the stack (with alignment 8).
1813    if (Align == 8 && Size <= 64)
1814      return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
1815                                                          Size));
1816  }
1817
1818  return ABIArgInfo::getIndirect(Align);
1819}
1820
1821/// GetByteVectorType - The ABI specifies that a value should be passed in an
1822/// full vector XMM/YMM register.  Pick an LLVM IR type that will be passed as a
1823/// vector register.
1824llvm::Type *X86_64ABIInfo::GetByteVectorType(QualType Ty) const {
1825  llvm::Type *IRType = CGT.ConvertType(Ty);
1826
1827  // Wrapper structs that just contain vectors are passed just like vectors,
1828  // strip them off if present.
1829  llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType);
1830  while (STy && STy->getNumElements() == 1) {
1831    IRType = STy->getElementType(0);
1832    STy = dyn_cast<llvm::StructType>(IRType);
1833  }
1834
1835  // If the preferred type is a 16-byte vector, prefer to pass it.
1836  if (llvm::VectorType *VT = dyn_cast<llvm::VectorType>(IRType)){
1837    llvm::Type *EltTy = VT->getElementType();
1838    unsigned BitWidth = VT->getBitWidth();
1839    if ((BitWidth >= 128 && BitWidth <= 256) &&
1840        (EltTy->isFloatTy() || EltTy->isDoubleTy() ||
1841         EltTy->isIntegerTy(8) || EltTy->isIntegerTy(16) ||
1842         EltTy->isIntegerTy(32) || EltTy->isIntegerTy(64) ||
1843         EltTy->isIntegerTy(128)))
1844      return VT;
1845  }
1846
1847  return llvm::VectorType::get(llvm::Type::getDoubleTy(getVMContext()), 2);
1848}
1849
1850/// BitsContainNoUserData - Return true if the specified [start,end) bit range
1851/// is known to either be off the end of the specified type or being in
1852/// alignment padding.  The user type specified is known to be at most 128 bits
1853/// in size, and have passed through X86_64ABIInfo::classify with a successful
1854/// classification that put one of the two halves in the INTEGER class.
1855///
1856/// It is conservatively correct to return false.
1857static bool BitsContainNoUserData(QualType Ty, unsigned StartBit,
1858                                  unsigned EndBit, ASTContext &Context) {
1859  // If the bytes being queried are off the end of the type, there is no user
1860  // data hiding here.  This handles analysis of builtins, vectors and other
1861  // types that don't contain interesting padding.
1862  unsigned TySize = (unsigned)Context.getTypeSize(Ty);
1863  if (TySize <= StartBit)
1864    return true;
1865
1866  if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
1867    unsigned EltSize = (unsigned)Context.getTypeSize(AT->getElementType());
1868    unsigned NumElts = (unsigned)AT->getSize().getZExtValue();
1869
1870    // Check each element to see if the element overlaps with the queried range.
1871    for (unsigned i = 0; i != NumElts; ++i) {
1872      // If the element is after the span we care about, then we're done..
1873      unsigned EltOffset = i*EltSize;
1874      if (EltOffset >= EndBit) break;
1875
1876      unsigned EltStart = EltOffset < StartBit ? StartBit-EltOffset :0;
1877      if (!BitsContainNoUserData(AT->getElementType(), EltStart,
1878                                 EndBit-EltOffset, Context))
1879        return false;
1880    }
1881    // If it overlaps no elements, then it is safe to process as padding.
1882    return true;
1883  }
1884
1885  if (const RecordType *RT = Ty->getAs<RecordType>()) {
1886    const RecordDecl *RD = RT->getDecl();
1887    const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
1888
1889    // If this is a C++ record, check the bases first.
1890    if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
1891      for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
1892           e = CXXRD->bases_end(); i != e; ++i) {
1893        assert(!i->isVirtual() && !i->getType()->isDependentType() &&
1894               "Unexpected base class!");
1895        const CXXRecordDecl *Base =
1896          cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
1897
1898        // If the base is after the span we care about, ignore it.
1899        unsigned BaseOffset = Context.toBits(Layout.getBaseClassOffset(Base));
1900        if (BaseOffset >= EndBit) continue;
1901
1902        unsigned BaseStart = BaseOffset < StartBit ? StartBit-BaseOffset :0;
1903        if (!BitsContainNoUserData(i->getType(), BaseStart,
1904                                   EndBit-BaseOffset, Context))
1905          return false;
1906      }
1907    }
1908
1909    // Verify that no field has data that overlaps the region of interest.  Yes
1910    // this could be sped up a lot by being smarter about queried fields,
1911    // however we're only looking at structs up to 16 bytes, so we don't care
1912    // much.
1913    unsigned idx = 0;
1914    for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
1915         i != e; ++i, ++idx) {
1916      unsigned FieldOffset = (unsigned)Layout.getFieldOffset(idx);
1917
1918      // If we found a field after the region we care about, then we're done.
1919      if (FieldOffset >= EndBit) break;
1920
1921      unsigned FieldStart = FieldOffset < StartBit ? StartBit-FieldOffset :0;
1922      if (!BitsContainNoUserData(i->getType(), FieldStart, EndBit-FieldOffset,
1923                                 Context))
1924        return false;
1925    }
1926
1927    // If nothing in this record overlapped the area of interest, then we're
1928    // clean.
1929    return true;
1930  }
1931
1932  return false;
1933}
1934
1935/// ContainsFloatAtOffset - Return true if the specified LLVM IR type has a
1936/// float member at the specified offset.  For example, {int,{float}} has a
1937/// float at offset 4.  It is conservatively correct for this routine to return
1938/// false.
1939static bool ContainsFloatAtOffset(llvm::Type *IRType, unsigned IROffset,
1940                                  const llvm::DataLayout &TD) {
1941  // Base case if we find a float.
1942  if (IROffset == 0 && IRType->isFloatTy())
1943    return true;
1944
1945  // If this is a struct, recurse into the field at the specified offset.
1946  if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
1947    const llvm::StructLayout *SL = TD.getStructLayout(STy);
1948    unsigned Elt = SL->getElementContainingOffset(IROffset);
1949    IROffset -= SL->getElementOffset(Elt);
1950    return ContainsFloatAtOffset(STy->getElementType(Elt), IROffset, TD);
1951  }
1952
1953  // If this is an array, recurse into the field at the specified offset.
1954  if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
1955    llvm::Type *EltTy = ATy->getElementType();
1956    unsigned EltSize = TD.getTypeAllocSize(EltTy);
1957    IROffset -= IROffset/EltSize*EltSize;
1958    return ContainsFloatAtOffset(EltTy, IROffset, TD);
1959  }
1960
1961  return false;
1962}
1963
1964
1965/// GetSSETypeAtOffset - Return a type that will be passed by the backend in the
1966/// low 8 bytes of an XMM register, corresponding to the SSE class.
1967llvm::Type *X86_64ABIInfo::
1968GetSSETypeAtOffset(llvm::Type *IRType, unsigned IROffset,
1969                   QualType SourceTy, unsigned SourceOffset) const {
1970  // The only three choices we have are either double, <2 x float>, or float. We
1971  // pass as float if the last 4 bytes is just padding.  This happens for
1972  // structs that contain 3 floats.
1973  if (BitsContainNoUserData(SourceTy, SourceOffset*8+32,
1974                            SourceOffset*8+64, getContext()))
1975    return llvm::Type::getFloatTy(getVMContext());
1976
1977  // We want to pass as <2 x float> if the LLVM IR type contains a float at
1978  // offset+0 and offset+4.  Walk the LLVM IR type to find out if this is the
1979  // case.
1980  if (ContainsFloatAtOffset(IRType, IROffset, getDataLayout()) &&
1981      ContainsFloatAtOffset(IRType, IROffset+4, getDataLayout()))
1982    return llvm::VectorType::get(llvm::Type::getFloatTy(getVMContext()), 2);
1983
1984  return llvm::Type::getDoubleTy(getVMContext());
1985}
1986
1987
1988/// GetINTEGERTypeAtOffset - The ABI specifies that a value should be passed in
1989/// an 8-byte GPR.  This means that we either have a scalar or we are talking
1990/// about the high or low part of an up-to-16-byte struct.  This routine picks
1991/// the best LLVM IR type to represent this, which may be i64 or may be anything
1992/// else that the backend will pass in a GPR that works better (e.g. i8, %foo*,
1993/// etc).
1994///
1995/// PrefType is an LLVM IR type that corresponds to (part of) the IR type for
1996/// the source type.  IROffset is an offset in bytes into the LLVM IR type that
1997/// the 8-byte value references.  PrefType may be null.
1998///
1999/// SourceTy is the source level type for the entire argument.  SourceOffset is
2000/// an offset into this that we're processing (which is always either 0 or 8).
2001///
2002llvm::Type *X86_64ABIInfo::
2003GetINTEGERTypeAtOffset(llvm::Type *IRType, unsigned IROffset,
2004                       QualType SourceTy, unsigned SourceOffset) const {
2005  // If we're dealing with an un-offset LLVM IR type, then it means that we're
2006  // returning an 8-byte unit starting with it.  See if we can safely use it.
2007  if (IROffset == 0) {
2008    // Pointers and int64's always fill the 8-byte unit.
2009    if ((isa<llvm::PointerType>(IRType) && Has64BitPointers) ||
2010        IRType->isIntegerTy(64))
2011      return IRType;
2012
2013    // If we have a 1/2/4-byte integer, we can use it only if the rest of the
2014    // goodness in the source type is just tail padding.  This is allowed to
2015    // kick in for struct {double,int} on the int, but not on
2016    // struct{double,int,int} because we wouldn't return the second int.  We
2017    // have to do this analysis on the source type because we can't depend on
2018    // unions being lowered a specific way etc.
2019    if (IRType->isIntegerTy(8) || IRType->isIntegerTy(16) ||
2020        IRType->isIntegerTy(32) ||
2021        (isa<llvm::PointerType>(IRType) && !Has64BitPointers)) {
2022      unsigned BitWidth = isa<llvm::PointerType>(IRType) ? 32 :
2023          cast<llvm::IntegerType>(IRType)->getBitWidth();
2024
2025      if (BitsContainNoUserData(SourceTy, SourceOffset*8+BitWidth,
2026                                SourceOffset*8+64, getContext()))
2027        return IRType;
2028    }
2029  }
2030
2031  if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
2032    // If this is a struct, recurse into the field at the specified offset.
2033    const llvm::StructLayout *SL = getDataLayout().getStructLayout(STy);
2034    if (IROffset < SL->getSizeInBytes()) {
2035      unsigned FieldIdx = SL->getElementContainingOffset(IROffset);
2036      IROffset -= SL->getElementOffset(FieldIdx);
2037
2038      return GetINTEGERTypeAtOffset(STy->getElementType(FieldIdx), IROffset,
2039                                    SourceTy, SourceOffset);
2040    }
2041  }
2042
2043  if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
2044    llvm::Type *EltTy = ATy->getElementType();
2045    unsigned EltSize = getDataLayout().getTypeAllocSize(EltTy);
2046    unsigned EltOffset = IROffset/EltSize*EltSize;
2047    return GetINTEGERTypeAtOffset(EltTy, IROffset-EltOffset, SourceTy,
2048                                  SourceOffset);
2049  }
2050
2051  // Okay, we don't have any better idea of what to pass, so we pass this in an
2052  // integer register that isn't too big to fit the rest of the struct.
2053  unsigned TySizeInBytes =
2054    (unsigned)getContext().getTypeSizeInChars(SourceTy).getQuantity();
2055
2056  assert(TySizeInBytes != SourceOffset && "Empty field?");
2057
2058  // It is always safe to classify this as an integer type up to i64 that
2059  // isn't larger than the structure.
2060  return llvm::IntegerType::get(getVMContext(),
2061                                std::min(TySizeInBytes-SourceOffset, 8U)*8);
2062}
2063
2064
2065/// GetX86_64ByValArgumentPair - Given a high and low type that can ideally
2066/// be used as elements of a two register pair to pass or return, return a
2067/// first class aggregate to represent them.  For example, if the low part of
2068/// a by-value argument should be passed as i32* and the high part as float,
2069/// return {i32*, float}.
2070static llvm::Type *
2071GetX86_64ByValArgumentPair(llvm::Type *Lo, llvm::Type *Hi,
2072                           const llvm::DataLayout &TD) {
2073  // In order to correctly satisfy the ABI, we need to the high part to start
2074  // at offset 8.  If the high and low parts we inferred are both 4-byte types
2075  // (e.g. i32 and i32) then the resultant struct type ({i32,i32}) won't have
2076  // the second element at offset 8.  Check for this:
2077  unsigned LoSize = (unsigned)TD.getTypeAllocSize(Lo);
2078  unsigned HiAlign = TD.getABITypeAlignment(Hi);
2079  unsigned HiStart = llvm::DataLayout::RoundUpAlignment(LoSize, HiAlign);
2080  assert(HiStart != 0 && HiStart <= 8 && "Invalid x86-64 argument pair!");
2081
2082  // To handle this, we have to increase the size of the low part so that the
2083  // second element will start at an 8 byte offset.  We can't increase the size
2084  // of the second element because it might make us access off the end of the
2085  // struct.
2086  if (HiStart != 8) {
2087    // There are only two sorts of types the ABI generation code can produce for
2088    // the low part of a pair that aren't 8 bytes in size: float or i8/i16/i32.
2089    // Promote these to a larger type.
2090    if (Lo->isFloatTy())
2091      Lo = llvm::Type::getDoubleTy(Lo->getContext());
2092    else {
2093      assert(Lo->isIntegerTy() && "Invalid/unknown lo type");
2094      Lo = llvm::Type::getInt64Ty(Lo->getContext());
2095    }
2096  }
2097
2098  llvm::StructType *Result = llvm::StructType::get(Lo, Hi, NULL);
2099
2100
2101  // Verify that the second element is at an 8-byte offset.
2102  assert(TD.getStructLayout(Result)->getElementOffset(1) == 8 &&
2103         "Invalid x86-64 argument pair!");
2104  return Result;
2105}
2106
2107ABIArgInfo X86_64ABIInfo::
2108classifyReturnType(QualType RetTy) const {
2109  // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the
2110  // classification algorithm.
2111  X86_64ABIInfo::Class Lo, Hi;
2112  classify(RetTy, 0, Lo, Hi, /*isNamedArg*/ true);
2113
2114  // Check some invariants.
2115  assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
2116  assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
2117
2118  llvm::Type *ResType = 0;
2119  switch (Lo) {
2120  case NoClass:
2121    if (Hi == NoClass)
2122      return ABIArgInfo::getIgnore();
2123    // If the low part is just padding, it takes no register, leave ResType
2124    // null.
2125    assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
2126           "Unknown missing lo part");
2127    break;
2128
2129  case SSEUp:
2130  case X87Up:
2131    llvm_unreachable("Invalid classification for lo word.");
2132
2133    // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via
2134    // hidden argument.
2135  case Memory:
2136    return getIndirectReturnResult(RetTy);
2137
2138    // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next
2139    // available register of the sequence %rax, %rdx is used.
2140  case Integer:
2141    ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0);
2142
2143    // If we have a sign or zero extended integer, make sure to return Extend
2144    // so that the parameter gets the right LLVM IR attributes.
2145    if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
2146      // Treat an enum type as its underlying type.
2147      if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
2148        RetTy = EnumTy->getDecl()->getIntegerType();
2149
2150      if (RetTy->isIntegralOrEnumerationType() &&
2151          RetTy->isPromotableIntegerType())
2152        return ABIArgInfo::getExtend();
2153    }
2154    break;
2155
2156    // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next
2157    // available SSE register of the sequence %xmm0, %xmm1 is used.
2158  case SSE:
2159    ResType = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0);
2160    break;
2161
2162    // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is
2163    // returned on the X87 stack in %st0 as 80-bit x87 number.
2164  case X87:
2165    ResType = llvm::Type::getX86_FP80Ty(getVMContext());
2166    break;
2167
2168    // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real
2169    // part of the value is returned in %st0 and the imaginary part in
2170    // %st1.
2171  case ComplexX87:
2172    assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification.");
2173    ResType = llvm::StructType::get(llvm::Type::getX86_FP80Ty(getVMContext()),
2174                                    llvm::Type::getX86_FP80Ty(getVMContext()),
2175                                    NULL);
2176    break;
2177  }
2178
2179  llvm::Type *HighPart = 0;
2180  switch (Hi) {
2181    // Memory was handled previously and X87 should
2182    // never occur as a hi class.
2183  case Memory:
2184  case X87:
2185    llvm_unreachable("Invalid classification for hi word.");
2186
2187  case ComplexX87: // Previously handled.
2188  case NoClass:
2189    break;
2190
2191  case Integer:
2192    HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
2193    if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
2194      return ABIArgInfo::getDirect(HighPart, 8);
2195    break;
2196  case SSE:
2197    HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
2198    if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
2199      return ABIArgInfo::getDirect(HighPart, 8);
2200    break;
2201
2202    // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte
2203    // is passed in the next available eightbyte chunk if the last used
2204    // vector register.
2205    //
2206    // SSEUP should always be preceded by SSE, just widen.
2207  case SSEUp:
2208    assert(Lo == SSE && "Unexpected SSEUp classification.");
2209    ResType = GetByteVectorType(RetTy);
2210    break;
2211
2212    // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is
2213    // returned together with the previous X87 value in %st0.
2214  case X87Up:
2215    // If X87Up is preceded by X87, we don't need to do
2216    // anything. However, in some cases with unions it may not be
2217    // preceded by X87. In such situations we follow gcc and pass the
2218    // extra bits in an SSE reg.
2219    if (Lo != X87) {
2220      HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
2221      if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
2222        return ABIArgInfo::getDirect(HighPart, 8);
2223    }
2224    break;
2225  }
2226
2227  // If a high part was specified, merge it together with the low part.  It is
2228  // known to pass in the high eightbyte of the result.  We do this by forming a
2229  // first class struct aggregate with the high and low part: {low, high}
2230  if (HighPart)
2231    ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout());
2232
2233  return ABIArgInfo::getDirect(ResType);
2234}
2235
2236ABIArgInfo X86_64ABIInfo::classifyArgumentType(
2237  QualType Ty, unsigned freeIntRegs, unsigned &neededInt, unsigned &neededSSE,
2238  bool isNamedArg)
2239  const
2240{
2241  X86_64ABIInfo::Class Lo, Hi;
2242  classify(Ty, 0, Lo, Hi, isNamedArg);
2243
2244  // Check some invariants.
2245  // FIXME: Enforce these by construction.
2246  assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
2247  assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
2248
2249  neededInt = 0;
2250  neededSSE = 0;
2251  llvm::Type *ResType = 0;
2252  switch (Lo) {
2253  case NoClass:
2254    if (Hi == NoClass)
2255      return ABIArgInfo::getIgnore();
2256    // If the low part is just padding, it takes no register, leave ResType
2257    // null.
2258    assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
2259           "Unknown missing lo part");
2260    break;
2261
2262    // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument
2263    // on the stack.
2264  case Memory:
2265
2266    // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or
2267    // COMPLEX_X87, it is passed in memory.
2268  case X87:
2269  case ComplexX87:
2270    if (getRecordArgABI(Ty, getCXXABI()) == CGCXXABI::RAA_Indirect)
2271      ++neededInt;
2272    return getIndirectResult(Ty, freeIntRegs);
2273
2274  case SSEUp:
2275  case X87Up:
2276    llvm_unreachable("Invalid classification for lo word.");
2277
2278    // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next
2279    // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8
2280    // and %r9 is used.
2281  case Integer:
2282    ++neededInt;
2283
2284    // Pick an 8-byte type based on the preferred type.
2285    ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 0, Ty, 0);
2286
2287    // If we have a sign or zero extended integer, make sure to return Extend
2288    // so that the parameter gets the right LLVM IR attributes.
2289    if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
2290      // Treat an enum type as its underlying type.
2291      if (const EnumType *EnumTy = Ty->getAs<EnumType>())
2292        Ty = EnumTy->getDecl()->getIntegerType();
2293
2294      if (Ty->isIntegralOrEnumerationType() &&
2295          Ty->isPromotableIntegerType())
2296        return ABIArgInfo::getExtend();
2297    }
2298
2299    break;
2300
2301    // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next
2302    // available SSE register is used, the registers are taken in the
2303    // order from %xmm0 to %xmm7.
2304  case SSE: {
2305    llvm::Type *IRType = CGT.ConvertType(Ty);
2306    ResType = GetSSETypeAtOffset(IRType, 0, Ty, 0);
2307    ++neededSSE;
2308    break;
2309  }
2310  }
2311
2312  llvm::Type *HighPart = 0;
2313  switch (Hi) {
2314    // Memory was handled previously, ComplexX87 and X87 should
2315    // never occur as hi classes, and X87Up must be preceded by X87,
2316    // which is passed in memory.
2317  case Memory:
2318  case X87:
2319  case ComplexX87:
2320    llvm_unreachable("Invalid classification for hi word.");
2321
2322  case NoClass: break;
2323
2324  case Integer:
2325    ++neededInt;
2326    // Pick an 8-byte type based on the preferred type.
2327    HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8);
2328
2329    if (Lo == NoClass)  // Pass HighPart at offset 8 in memory.
2330      return ABIArgInfo::getDirect(HighPart, 8);
2331    break;
2332
2333    // X87Up generally doesn't occur here (long double is passed in
2334    // memory), except in situations involving unions.
2335  case X87Up:
2336  case SSE:
2337    HighPart = GetSSETypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8);
2338
2339    if (Lo == NoClass)  // Pass HighPart at offset 8 in memory.
2340      return ABIArgInfo::getDirect(HighPart, 8);
2341
2342    ++neededSSE;
2343    break;
2344
2345    // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the
2346    // eightbyte is passed in the upper half of the last used SSE
2347    // register.  This only happens when 128-bit vectors are passed.
2348  case SSEUp:
2349    assert(Lo == SSE && "Unexpected SSEUp classification");
2350    ResType = GetByteVectorType(Ty);
2351    break;
2352  }
2353
2354  // If a high part was specified, merge it together with the low part.  It is
2355  // known to pass in the high eightbyte of the result.  We do this by forming a
2356  // first class struct aggregate with the high and low part: {low, high}
2357  if (HighPart)
2358    ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout());
2359
2360  return ABIArgInfo::getDirect(ResType);
2361}
2362
2363void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
2364
2365  FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
2366
2367  // Keep track of the number of assigned registers.
2368  unsigned freeIntRegs = 6, freeSSERegs = 8;
2369
2370  // If the return value is indirect, then the hidden argument is consuming one
2371  // integer register.
2372  if (FI.getReturnInfo().isIndirect())
2373    --freeIntRegs;
2374
2375  bool isVariadic = FI.isVariadic();
2376  unsigned numRequiredArgs = 0;
2377  if (isVariadic)
2378    numRequiredArgs = FI.getRequiredArgs().getNumRequiredArgs();
2379
2380  // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers
2381  // get assigned (in left-to-right order) for passing as follows...
2382  for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
2383       it != ie; ++it) {
2384    bool isNamedArg = true;
2385    if (isVariadic)
2386      isNamedArg = (it - FI.arg_begin()) <
2387                    static_cast<signed>(numRequiredArgs);
2388
2389    unsigned neededInt, neededSSE;
2390    it->info = classifyArgumentType(it->type, freeIntRegs, neededInt,
2391                                    neededSSE, isNamedArg);
2392
2393    // AMD64-ABI 3.2.3p3: If there are no registers available for any
2394    // eightbyte of an argument, the whole argument is passed on the
2395    // stack. If registers have already been assigned for some
2396    // eightbytes of such an argument, the assignments get reverted.
2397    if (freeIntRegs >= neededInt && freeSSERegs >= neededSSE) {
2398      freeIntRegs -= neededInt;
2399      freeSSERegs -= neededSSE;
2400    } else {
2401      it->info = getIndirectResult(it->type, freeIntRegs);
2402    }
2403  }
2404}
2405
2406static llvm::Value *EmitVAArgFromMemory(llvm::Value *VAListAddr,
2407                                        QualType Ty,
2408                                        CodeGenFunction &CGF) {
2409  llvm::Value *overflow_arg_area_p =
2410    CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_p");
2411  llvm::Value *overflow_arg_area =
2412    CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area");
2413
2414  // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16
2415  // byte boundary if alignment needed by type exceeds 8 byte boundary.
2416  // It isn't stated explicitly in the standard, but in practice we use
2417  // alignment greater than 16 where necessary.
2418  uint64_t Align = CGF.getContext().getTypeAlign(Ty) / 8;
2419  if (Align > 8) {
2420    // overflow_arg_area = (overflow_arg_area + align - 1) & -align;
2421    llvm::Value *Offset =
2422      llvm::ConstantInt::get(CGF.Int64Ty, Align - 1);
2423    overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset);
2424    llvm::Value *AsInt = CGF.Builder.CreatePtrToInt(overflow_arg_area,
2425                                                    CGF.Int64Ty);
2426    llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int64Ty, -(uint64_t)Align);
2427    overflow_arg_area =
2428      CGF.Builder.CreateIntToPtr(CGF.Builder.CreateAnd(AsInt, Mask),
2429                                 overflow_arg_area->getType(),
2430                                 "overflow_arg_area.align");
2431  }
2432
2433  // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area.
2434  llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
2435  llvm::Value *Res =
2436    CGF.Builder.CreateBitCast(overflow_arg_area,
2437                              llvm::PointerType::getUnqual(LTy));
2438
2439  // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to:
2440  // l->overflow_arg_area + sizeof(type).
2441  // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to
2442  // an 8 byte boundary.
2443
2444  uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8;
2445  llvm::Value *Offset =
2446      llvm::ConstantInt::get(CGF.Int32Ty, (SizeInBytes + 7)  & ~7);
2447  overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset,
2448                                            "overflow_arg_area.next");
2449  CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p);
2450
2451  // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type.
2452  return Res;
2453}
2454
2455llvm::Value *X86_64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2456                                      CodeGenFunction &CGF) const {
2457  // Assume that va_list type is correct; should be pointer to LLVM type:
2458  // struct {
2459  //   i32 gp_offset;
2460  //   i32 fp_offset;
2461  //   i8* overflow_arg_area;
2462  //   i8* reg_save_area;
2463  // };
2464  unsigned neededInt, neededSSE;
2465
2466  Ty = CGF.getContext().getCanonicalType(Ty);
2467  ABIArgInfo AI = classifyArgumentType(Ty, 0, neededInt, neededSSE,
2468                                       /*isNamedArg*/false);
2469
2470  // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed
2471  // in the registers. If not go to step 7.
2472  if (!neededInt && !neededSSE)
2473    return EmitVAArgFromMemory(VAListAddr, Ty, CGF);
2474
2475  // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of
2476  // general purpose registers needed to pass type and num_fp to hold
2477  // the number of floating point registers needed.
2478
2479  // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into
2480  // registers. In the case: l->gp_offset > 48 - num_gp * 8 or
2481  // l->fp_offset > 304 - num_fp * 16 go to step 7.
2482  //
2483  // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of
2484  // register save space).
2485
2486  llvm::Value *InRegs = 0;
2487  llvm::Value *gp_offset_p = 0, *gp_offset = 0;
2488  llvm::Value *fp_offset_p = 0, *fp_offset = 0;
2489  if (neededInt) {
2490    gp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "gp_offset_p");
2491    gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset");
2492    InRegs = llvm::ConstantInt::get(CGF.Int32Ty, 48 - neededInt * 8);
2493    InRegs = CGF.Builder.CreateICmpULE(gp_offset, InRegs, "fits_in_gp");
2494  }
2495
2496  if (neededSSE) {
2497    fp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 1, "fp_offset_p");
2498    fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset");
2499    llvm::Value *FitsInFP =
2500      llvm::ConstantInt::get(CGF.Int32Ty, 176 - neededSSE * 16);
2501    FitsInFP = CGF.Builder.CreateICmpULE(fp_offset, FitsInFP, "fits_in_fp");
2502    InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP;
2503  }
2504
2505  llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
2506  llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
2507  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
2508  CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);
2509
2510  // Emit code to load the value if it was passed in registers.
2511
2512  CGF.EmitBlock(InRegBlock);
2513
2514  // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with
2515  // an offset of l->gp_offset and/or l->fp_offset. This may require
2516  // copying to a temporary location in case the parameter is passed
2517  // in different register classes or requires an alignment greater
2518  // than 8 for general purpose registers and 16 for XMM registers.
2519  //
2520  // FIXME: This really results in shameful code when we end up needing to
2521  // collect arguments from different places; often what should result in a
2522  // simple assembling of a structure from scattered addresses has many more
2523  // loads than necessary. Can we clean this up?
2524  llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
2525  llvm::Value *RegAddr =
2526    CGF.Builder.CreateLoad(CGF.Builder.CreateStructGEP(VAListAddr, 3),
2527                           "reg_save_area");
2528  if (neededInt && neededSSE) {
2529    // FIXME: Cleanup.
2530    assert(AI.isDirect() && "Unexpected ABI info for mixed regs");
2531    llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType());
2532    llvm::Value *Tmp = CGF.CreateMemTemp(Ty);
2533    Tmp = CGF.Builder.CreateBitCast(Tmp, ST->getPointerTo());
2534    assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs");
2535    llvm::Type *TyLo = ST->getElementType(0);
2536    llvm::Type *TyHi = ST->getElementType(1);
2537    assert((TyLo->isFPOrFPVectorTy() ^ TyHi->isFPOrFPVectorTy()) &&
2538           "Unexpected ABI info for mixed regs");
2539    llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo);
2540    llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi);
2541    llvm::Value *GPAddr = CGF.Builder.CreateGEP(RegAddr, gp_offset);
2542    llvm::Value *FPAddr = CGF.Builder.CreateGEP(RegAddr, fp_offset);
2543    llvm::Value *RegLoAddr = TyLo->isFloatingPointTy() ? FPAddr : GPAddr;
2544    llvm::Value *RegHiAddr = TyLo->isFloatingPointTy() ? GPAddr : FPAddr;
2545    llvm::Value *V =
2546      CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegLoAddr, PTyLo));
2547    CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0));
2548    V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegHiAddr, PTyHi));
2549    CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1));
2550
2551    RegAddr = CGF.Builder.CreateBitCast(Tmp,
2552                                        llvm::PointerType::getUnqual(LTy));
2553  } else if (neededInt) {
2554    RegAddr = CGF.Builder.CreateGEP(RegAddr, gp_offset);
2555    RegAddr = CGF.Builder.CreateBitCast(RegAddr,
2556                                        llvm::PointerType::getUnqual(LTy));
2557
2558    // Copy to a temporary if necessary to ensure the appropriate alignment.
2559    std::pair<CharUnits, CharUnits> SizeAlign =
2560        CGF.getContext().getTypeInfoInChars(Ty);
2561    uint64_t TySize = SizeAlign.first.getQuantity();
2562    unsigned TyAlign = SizeAlign.second.getQuantity();
2563    if (TyAlign > 8) {
2564      llvm::Value *Tmp = CGF.CreateMemTemp(Ty);
2565      CGF.Builder.CreateMemCpy(Tmp, RegAddr, TySize, 8, false);
2566      RegAddr = Tmp;
2567    }
2568  } else if (neededSSE == 1) {
2569    RegAddr = CGF.Builder.CreateGEP(RegAddr, fp_offset);
2570    RegAddr = CGF.Builder.CreateBitCast(RegAddr,
2571                                        llvm::PointerType::getUnqual(LTy));
2572  } else {
2573    assert(neededSSE == 2 && "Invalid number of needed registers!");
2574    // SSE registers are spaced 16 bytes apart in the register save
2575    // area, we need to collect the two eightbytes together.
2576    llvm::Value *RegAddrLo = CGF.Builder.CreateGEP(RegAddr, fp_offset);
2577    llvm::Value *RegAddrHi = CGF.Builder.CreateConstGEP1_32(RegAddrLo, 16);
2578    llvm::Type *DoubleTy = CGF.DoubleTy;
2579    llvm::Type *DblPtrTy =
2580      llvm::PointerType::getUnqual(DoubleTy);
2581    llvm::StructType *ST = llvm::StructType::get(DoubleTy, DoubleTy, NULL);
2582    llvm::Value *V, *Tmp = CGF.CreateMemTemp(Ty);
2583    Tmp = CGF.Builder.CreateBitCast(Tmp, ST->getPointerTo());
2584    V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegAddrLo,
2585                                                         DblPtrTy));
2586    CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0));
2587    V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegAddrHi,
2588                                                         DblPtrTy));
2589    CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1));
2590    RegAddr = CGF.Builder.CreateBitCast(Tmp,
2591                                        llvm::PointerType::getUnqual(LTy));
2592  }
2593
2594  // AMD64-ABI 3.5.7p5: Step 5. Set:
2595  // l->gp_offset = l->gp_offset + num_gp * 8
2596  // l->fp_offset = l->fp_offset + num_fp * 16.
2597  if (neededInt) {
2598    llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededInt * 8);
2599    CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset),
2600                            gp_offset_p);
2601  }
2602  if (neededSSE) {
2603    llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededSSE * 16);
2604    CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset),
2605                            fp_offset_p);
2606  }
2607  CGF.EmitBranch(ContBlock);
2608
2609  // Emit code to load the value if it was passed in memory.
2610
2611  CGF.EmitBlock(InMemBlock);
2612  llvm::Value *MemAddr = EmitVAArgFromMemory(VAListAddr, Ty, CGF);
2613
2614  // Return the appropriate result.
2615
2616  CGF.EmitBlock(ContBlock);
2617  llvm::PHINode *ResAddr = CGF.Builder.CreatePHI(RegAddr->getType(), 2,
2618                                                 "vaarg.addr");
2619  ResAddr->addIncoming(RegAddr, InRegBlock);
2620  ResAddr->addIncoming(MemAddr, InMemBlock);
2621  return ResAddr;
2622}
2623
2624ABIArgInfo WinX86_64ABIInfo::classify(QualType Ty, bool IsReturnType) const {
2625
2626  if (Ty->isVoidType())
2627    return ABIArgInfo::getIgnore();
2628
2629  if (const EnumType *EnumTy = Ty->getAs<EnumType>())
2630    Ty = EnumTy->getDecl()->getIntegerType();
2631
2632  uint64_t Size = getContext().getTypeSize(Ty);
2633
2634  if (const RecordType *RT = Ty->getAs<RecordType>()) {
2635    if (IsReturnType) {
2636      if (isRecordReturnIndirect(RT, getCXXABI()))
2637        return ABIArgInfo::getIndirect(0, false);
2638    } else {
2639      if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()))
2640        return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
2641    }
2642
2643    if (RT->getDecl()->hasFlexibleArrayMember())
2644      return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
2645
2646    // FIXME: mingw-w64-gcc emits 128-bit struct as i128
2647    if (Size == 128 && getTarget().getTriple().getOS() == llvm::Triple::MinGW32)
2648      return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
2649                                                          Size));
2650
2651    // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is
2652    // not 1, 2, 4, or 8 bytes, must be passed by reference."
2653    if (Size <= 64 &&
2654        (Size & (Size - 1)) == 0)
2655      return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
2656                                                          Size));
2657
2658    return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
2659  }
2660
2661  if (Ty->isPromotableIntegerType())
2662    return ABIArgInfo::getExtend();
2663
2664  return ABIArgInfo::getDirect();
2665}
2666
2667void WinX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
2668
2669  QualType RetTy = FI.getReturnType();
2670  FI.getReturnInfo() = classify(RetTy, true);
2671
2672  for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
2673       it != ie; ++it)
2674    it->info = classify(it->type, false);
2675}
2676
2677llvm::Value *WinX86_64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2678                                      CodeGenFunction &CGF) const {
2679  llvm::Type *BPP = CGF.Int8PtrPtrTy;
2680
2681  CGBuilderTy &Builder = CGF.Builder;
2682  llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP,
2683                                                       "ap");
2684  llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
2685  llvm::Type *PTy =
2686    llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
2687  llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
2688
2689  uint64_t Offset =
2690    llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 8);
2691  llvm::Value *NextAddr =
2692    Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
2693                      "ap.next");
2694  Builder.CreateStore(NextAddr, VAListAddrAsBPP);
2695
2696  return AddrTyped;
2697}
2698
2699namespace {
2700
2701class NaClX86_64ABIInfo : public ABIInfo {
2702 public:
2703  NaClX86_64ABIInfo(CodeGen::CodeGenTypes &CGT, bool HasAVX)
2704      : ABIInfo(CGT), PInfo(CGT), NInfo(CGT, HasAVX) {}
2705  virtual void computeInfo(CGFunctionInfo &FI) const;
2706  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2707                                 CodeGenFunction &CGF) const;
2708 private:
2709  PNaClABIInfo PInfo;  // Used for generating calls with pnaclcall callingconv.
2710  X86_64ABIInfo NInfo; // Used for everything else.
2711};
2712
2713class NaClX86_64TargetCodeGenInfo : public TargetCodeGenInfo  {
2714 public:
2715  NaClX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool HasAVX)
2716      : TargetCodeGenInfo(new NaClX86_64ABIInfo(CGT, HasAVX)) {}
2717};
2718
2719}
2720
2721void NaClX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
2722  if (FI.getASTCallingConvention() == CC_PnaclCall)
2723    PInfo.computeInfo(FI);
2724  else
2725    NInfo.computeInfo(FI);
2726}
2727
2728llvm::Value *NaClX86_64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2729                                          CodeGenFunction &CGF) const {
2730  // Always use the native convention; calling pnacl-style varargs functions
2731  // is unuspported.
2732  return NInfo.EmitVAArg(VAListAddr, Ty, CGF);
2733}
2734
2735
2736// PowerPC-32
2737
2738namespace {
2739class PPC32TargetCodeGenInfo : public DefaultTargetCodeGenInfo {
2740public:
2741  PPC32TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {}
2742
2743  int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const {
2744    // This is recovered from gcc output.
2745    return 1; // r1 is the dedicated stack pointer
2746  }
2747
2748  bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2749                               llvm::Value *Address) const;
2750};
2751
2752}
2753
2754bool
2755PPC32TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2756                                                llvm::Value *Address) const {
2757  // This is calculated from the LLVM and GCC tables and verified
2758  // against gcc output.  AFAIK all ABIs use the same encoding.
2759
2760  CodeGen::CGBuilderTy &Builder = CGF.Builder;
2761
2762  llvm::IntegerType *i8 = CGF.Int8Ty;
2763  llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
2764  llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
2765  llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16);
2766
2767  // 0-31: r0-31, the 4-byte general-purpose registers
2768  AssignToArrayRange(Builder, Address, Four8, 0, 31);
2769
2770  // 32-63: fp0-31, the 8-byte floating-point registers
2771  AssignToArrayRange(Builder, Address, Eight8, 32, 63);
2772
2773  // 64-76 are various 4-byte special-purpose registers:
2774  // 64: mq
2775  // 65: lr
2776  // 66: ctr
2777  // 67: ap
2778  // 68-75 cr0-7
2779  // 76: xer
2780  AssignToArrayRange(Builder, Address, Four8, 64, 76);
2781
2782  // 77-108: v0-31, the 16-byte vector registers
2783  AssignToArrayRange(Builder, Address, Sixteen8, 77, 108);
2784
2785  // 109: vrsave
2786  // 110: vscr
2787  // 111: spe_acc
2788  // 112: spefscr
2789  // 113: sfp
2790  AssignToArrayRange(Builder, Address, Four8, 109, 113);
2791
2792  return false;
2793}
2794
2795// PowerPC-64
2796
2797namespace {
2798/// PPC64_SVR4_ABIInfo - The 64-bit PowerPC ELF (SVR4) ABI information.
2799class PPC64_SVR4_ABIInfo : public DefaultABIInfo {
2800
2801public:
2802  PPC64_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
2803
2804  bool isPromotableTypeForABI(QualType Ty) const;
2805
2806  ABIArgInfo classifyReturnType(QualType RetTy) const;
2807  ABIArgInfo classifyArgumentType(QualType Ty) const;
2808
2809  // TODO: We can add more logic to computeInfo to improve performance.
2810  // Example: For aggregate arguments that fit in a register, we could
2811  // use getDirectInReg (as is done below for structs containing a single
2812  // floating-point value) to avoid pushing them to memory on function
2813  // entry.  This would require changing the logic in PPCISelLowering
2814  // when lowering the parameters in the caller and args in the callee.
2815  virtual void computeInfo(CGFunctionInfo &FI) const {
2816    FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
2817    for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
2818         it != ie; ++it) {
2819      // We rely on the default argument classification for the most part.
2820      // One exception:  An aggregate containing a single floating-point
2821      // or vector item must be passed in a register if one is available.
2822      const Type *T = isSingleElementStruct(it->type, getContext());
2823      if (T) {
2824        const BuiltinType *BT = T->getAs<BuiltinType>();
2825        if (T->isVectorType() || (BT && BT->isFloatingPoint())) {
2826          QualType QT(T, 0);
2827          it->info = ABIArgInfo::getDirectInReg(CGT.ConvertType(QT));
2828          continue;
2829        }
2830      }
2831      it->info = classifyArgumentType(it->type);
2832    }
2833  }
2834
2835  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr,
2836                                 QualType Ty,
2837                                 CodeGenFunction &CGF) const;
2838};
2839
2840class PPC64_SVR4_TargetCodeGenInfo : public TargetCodeGenInfo {
2841public:
2842  PPC64_SVR4_TargetCodeGenInfo(CodeGenTypes &CGT)
2843    : TargetCodeGenInfo(new PPC64_SVR4_ABIInfo(CGT)) {}
2844
2845  int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const {
2846    // This is recovered from gcc output.
2847    return 1; // r1 is the dedicated stack pointer
2848  }
2849
2850  bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2851                               llvm::Value *Address) const;
2852};
2853
2854class PPC64TargetCodeGenInfo : public DefaultTargetCodeGenInfo {
2855public:
2856  PPC64TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {}
2857
2858  int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const {
2859    // This is recovered from gcc output.
2860    return 1; // r1 is the dedicated stack pointer
2861  }
2862
2863  bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2864                               llvm::Value *Address) const;
2865};
2866
2867}
2868
2869// Return true if the ABI requires Ty to be passed sign- or zero-
2870// extended to 64 bits.
2871bool
2872PPC64_SVR4_ABIInfo::isPromotableTypeForABI(QualType Ty) const {
2873  // Treat an enum type as its underlying type.
2874  if (const EnumType *EnumTy = Ty->getAs<EnumType>())
2875    Ty = EnumTy->getDecl()->getIntegerType();
2876
2877  // Promotable integer types are required to be promoted by the ABI.
2878  if (Ty->isPromotableIntegerType())
2879    return true;
2880
2881  // In addition to the usual promotable integer types, we also need to
2882  // extend all 32-bit types, since the ABI requires promotion to 64 bits.
2883  if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
2884    switch (BT->getKind()) {
2885    case BuiltinType::Int:
2886    case BuiltinType::UInt:
2887      return true;
2888    default:
2889      break;
2890    }
2891
2892  return false;
2893}
2894
2895ABIArgInfo
2896PPC64_SVR4_ABIInfo::classifyArgumentType(QualType Ty) const {
2897  if (Ty->isAnyComplexType())
2898    return ABIArgInfo::getDirect();
2899
2900  if (isAggregateTypeForABI(Ty)) {
2901    if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
2902      return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
2903
2904    return ABIArgInfo::getIndirect(0);
2905  }
2906
2907  return (isPromotableTypeForABI(Ty) ?
2908          ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
2909}
2910
2911ABIArgInfo
2912PPC64_SVR4_ABIInfo::classifyReturnType(QualType RetTy) const {
2913  if (RetTy->isVoidType())
2914    return ABIArgInfo::getIgnore();
2915
2916  if (RetTy->isAnyComplexType())
2917    return ABIArgInfo::getDirect();
2918
2919  if (isAggregateTypeForABI(RetTy))
2920    return ABIArgInfo::getIndirect(0);
2921
2922  return (isPromotableTypeForABI(RetTy) ?
2923          ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
2924}
2925
2926// Based on ARMABIInfo::EmitVAArg, adjusted for 64-bit machine.
2927llvm::Value *PPC64_SVR4_ABIInfo::EmitVAArg(llvm::Value *VAListAddr,
2928                                           QualType Ty,
2929                                           CodeGenFunction &CGF) const {
2930  llvm::Type *BP = CGF.Int8PtrTy;
2931  llvm::Type *BPP = CGF.Int8PtrPtrTy;
2932
2933  CGBuilderTy &Builder = CGF.Builder;
2934  llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap");
2935  llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
2936
2937  // Update the va_list pointer.  The pointer should be bumped by the
2938  // size of the object.  We can trust getTypeSize() except for a complex
2939  // type whose base type is smaller than a doubleword.  For these, the
2940  // size of the object is 16 bytes; see below for further explanation.
2941  unsigned SizeInBytes = CGF.getContext().getTypeSize(Ty) / 8;
2942  QualType BaseTy;
2943  unsigned CplxBaseSize = 0;
2944
2945  if (const ComplexType *CTy = Ty->getAs<ComplexType>()) {
2946    BaseTy = CTy->getElementType();
2947    CplxBaseSize = CGF.getContext().getTypeSize(BaseTy) / 8;
2948    if (CplxBaseSize < 8)
2949      SizeInBytes = 16;
2950  }
2951
2952  unsigned Offset = llvm::RoundUpToAlignment(SizeInBytes, 8);
2953  llvm::Value *NextAddr =
2954    Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int64Ty, Offset),
2955                      "ap.next");
2956  Builder.CreateStore(NextAddr, VAListAddrAsBPP);
2957
2958  // If we have a complex type and the base type is smaller than 8 bytes,
2959  // the ABI calls for the real and imaginary parts to be right-adjusted
2960  // in separate doublewords.  However, Clang expects us to produce a
2961  // pointer to a structure with the two parts packed tightly.  So generate
2962  // loads of the real and imaginary parts relative to the va_list pointer,
2963  // and store them to a temporary structure.
2964  if (CplxBaseSize && CplxBaseSize < 8) {
2965    llvm::Value *RealAddr = Builder.CreatePtrToInt(Addr, CGF.Int64Ty);
2966    llvm::Value *ImagAddr = RealAddr;
2967    RealAddr = Builder.CreateAdd(RealAddr, Builder.getInt64(8 - CplxBaseSize));
2968    ImagAddr = Builder.CreateAdd(ImagAddr, Builder.getInt64(16 - CplxBaseSize));
2969    llvm::Type *PBaseTy = llvm::PointerType::getUnqual(CGF.ConvertType(BaseTy));
2970    RealAddr = Builder.CreateIntToPtr(RealAddr, PBaseTy);
2971    ImagAddr = Builder.CreateIntToPtr(ImagAddr, PBaseTy);
2972    llvm::Value *Real = Builder.CreateLoad(RealAddr, false, ".vareal");
2973    llvm::Value *Imag = Builder.CreateLoad(ImagAddr, false, ".vaimag");
2974    llvm::Value *Ptr = CGF.CreateTempAlloca(CGT.ConvertTypeForMem(Ty),
2975                                            "vacplx");
2976    llvm::Value *RealPtr = Builder.CreateStructGEP(Ptr, 0, ".real");
2977    llvm::Value *ImagPtr = Builder.CreateStructGEP(Ptr, 1, ".imag");
2978    Builder.CreateStore(Real, RealPtr, false);
2979    Builder.CreateStore(Imag, ImagPtr, false);
2980    return Ptr;
2981  }
2982
2983  // If the argument is smaller than 8 bytes, it is right-adjusted in
2984  // its doubleword slot.  Adjust the pointer to pick it up from the
2985  // correct offset.
2986  if (SizeInBytes < 8) {
2987    llvm::Value *AddrAsInt = Builder.CreatePtrToInt(Addr, CGF.Int64Ty);
2988    AddrAsInt = Builder.CreateAdd(AddrAsInt, Builder.getInt64(8 - SizeInBytes));
2989    Addr = Builder.CreateIntToPtr(AddrAsInt, BP);
2990  }
2991
2992  llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
2993  return Builder.CreateBitCast(Addr, PTy);
2994}
2995
2996static bool
2997PPC64_initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2998                              llvm::Value *Address) {
2999  // This is calculated from the LLVM and GCC tables and verified
3000  // against gcc output.  AFAIK all ABIs use the same encoding.
3001
3002  CodeGen::CGBuilderTy &Builder = CGF.Builder;
3003
3004  llvm::IntegerType *i8 = CGF.Int8Ty;
3005  llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
3006  llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
3007  llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16);
3008
3009  // 0-31: r0-31, the 8-byte general-purpose registers
3010  AssignToArrayRange(Builder, Address, Eight8, 0, 31);
3011
3012  // 32-63: fp0-31, the 8-byte floating-point registers
3013  AssignToArrayRange(Builder, Address, Eight8, 32, 63);
3014
3015  // 64-76 are various 4-byte special-purpose registers:
3016  // 64: mq
3017  // 65: lr
3018  // 66: ctr
3019  // 67: ap
3020  // 68-75 cr0-7
3021  // 76: xer
3022  AssignToArrayRange(Builder, Address, Four8, 64, 76);
3023
3024  // 77-108: v0-31, the 16-byte vector registers
3025  AssignToArrayRange(Builder, Address, Sixteen8, 77, 108);
3026
3027  // 109: vrsave
3028  // 110: vscr
3029  // 111: spe_acc
3030  // 112: spefscr
3031  // 113: sfp
3032  AssignToArrayRange(Builder, Address, Four8, 109, 113);
3033
3034  return false;
3035}
3036
3037bool
3038PPC64_SVR4_TargetCodeGenInfo::initDwarfEHRegSizeTable(
3039  CodeGen::CodeGenFunction &CGF,
3040  llvm::Value *Address) const {
3041
3042  return PPC64_initDwarfEHRegSizeTable(CGF, Address);
3043}
3044
3045bool
3046PPC64TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
3047                                                llvm::Value *Address) const {
3048
3049  return PPC64_initDwarfEHRegSizeTable(CGF, Address);
3050}
3051
3052//===----------------------------------------------------------------------===//
3053// ARM ABI Implementation
3054//===----------------------------------------------------------------------===//
3055
3056namespace {
3057
3058class ARMABIInfo : public ABIInfo {
3059public:
3060  enum ABIKind {
3061    APCS = 0,
3062    AAPCS = 1,
3063    AAPCS_VFP
3064  };
3065
3066private:
3067  ABIKind Kind;
3068
3069public:
3070  ARMABIInfo(CodeGenTypes &CGT, ABIKind _Kind) : ABIInfo(CGT), Kind(_Kind) {
3071    setRuntimeCC();
3072  }
3073
3074  bool isEABI() const {
3075    StringRef Env = getTarget().getTriple().getEnvironmentName();
3076    return (Env == "gnueabi" || Env == "eabi" ||
3077            Env == "android" || Env == "androideabi");
3078  }
3079
3080  ABIKind getABIKind() const { return Kind; }
3081
3082private:
3083  ABIArgInfo classifyReturnType(QualType RetTy) const;
3084  ABIArgInfo classifyArgumentType(QualType RetTy, int *VFPRegs,
3085                                  unsigned &AllocatedVFP,
3086                                  bool &IsHA) const;
3087  bool isIllegalVectorType(QualType Ty) const;
3088
3089  virtual void computeInfo(CGFunctionInfo &FI) const;
3090
3091  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
3092                                 CodeGenFunction &CGF) const;
3093
3094  llvm::CallingConv::ID getLLVMDefaultCC() const;
3095  llvm::CallingConv::ID getABIDefaultCC() const;
3096  void setRuntimeCC();
3097};
3098
3099class ARMTargetCodeGenInfo : public TargetCodeGenInfo {
3100public:
3101  ARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K)
3102    :TargetCodeGenInfo(new ARMABIInfo(CGT, K)) {}
3103
3104  const ARMABIInfo &getABIInfo() const {
3105    return static_cast<const ARMABIInfo&>(TargetCodeGenInfo::getABIInfo());
3106  }
3107
3108  int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const {
3109    return 13;
3110  }
3111
3112  StringRef getARCRetainAutoreleasedReturnValueMarker() const {
3113    return "mov\tr7, r7\t\t@ marker for objc_retainAutoreleaseReturnValue";
3114  }
3115
3116  bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
3117                               llvm::Value *Address) const {
3118    llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
3119
3120    // 0-15 are the 16 integer registers.
3121    AssignToArrayRange(CGF.Builder, Address, Four8, 0, 15);
3122    return false;
3123  }
3124
3125  unsigned getSizeOfUnwindException() const {
3126    if (getABIInfo().isEABI()) return 88;
3127    return TargetCodeGenInfo::getSizeOfUnwindException();
3128  }
3129
3130  void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
3131                           CodeGen::CodeGenModule &CGM) const {
3132    const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
3133    if (!FD)
3134      return;
3135
3136    const ARMInterruptAttr *Attr = FD->getAttr<ARMInterruptAttr>();
3137    if (!Attr)
3138      return;
3139
3140    const char *Kind;
3141    switch (Attr->getInterrupt()) {
3142    case ARMInterruptAttr::Generic: Kind = ""; break;
3143    case ARMInterruptAttr::IRQ:     Kind = "IRQ"; break;
3144    case ARMInterruptAttr::FIQ:     Kind = "FIQ"; break;
3145    case ARMInterruptAttr::SWI:     Kind = "SWI"; break;
3146    case ARMInterruptAttr::ABORT:   Kind = "ABORT"; break;
3147    case ARMInterruptAttr::UNDEF:   Kind = "UNDEF"; break;
3148    }
3149
3150    llvm::Function *Fn = cast<llvm::Function>(GV);
3151
3152    Fn->addFnAttr("interrupt", Kind);
3153
3154    if (cast<ARMABIInfo>(getABIInfo()).getABIKind() == ARMABIInfo::APCS)
3155      return;
3156
3157    // AAPCS guarantees that sp will be 8-byte aligned on any public interface,
3158    // however this is not necessarily true on taking any interrupt. Instruct
3159    // the backend to perform a realignment as part of the function prologue.
3160    llvm::AttrBuilder B;
3161    B.addStackAlignmentAttr(8);
3162    Fn->addAttributes(llvm::AttributeSet::FunctionIndex,
3163                      llvm::AttributeSet::get(CGM.getLLVMContext(),
3164                                              llvm::AttributeSet::FunctionIndex,
3165                                              B));
3166  }
3167
3168};
3169
3170}
3171
3172void ARMABIInfo::computeInfo(CGFunctionInfo &FI) const {
3173  // To correctly handle Homogeneous Aggregate, we need to keep track of the
3174  // VFP registers allocated so far.
3175  // C.1.vfp If the argument is a VFP CPRC and there are sufficient consecutive
3176  // VFP registers of the appropriate type unallocated then the argument is
3177  // allocated to the lowest-numbered sequence of such registers.
3178  // C.2.vfp If the argument is a VFP CPRC then any VFP registers that are
3179  // unallocated are marked as unavailable.
3180  unsigned AllocatedVFP = 0;
3181  int VFPRegs[16] = { 0 };
3182  FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
3183  for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
3184       it != ie; ++it) {
3185    unsigned PreAllocation = AllocatedVFP;
3186    bool IsHA = false;
3187    // 6.1.2.3 There is one VFP co-processor register class using registers
3188    // s0-s15 (d0-d7) for passing arguments.
3189    const unsigned NumVFPs = 16;
3190    it->info = classifyArgumentType(it->type, VFPRegs, AllocatedVFP, IsHA);
3191    // If we do not have enough VFP registers for the HA, any VFP registers
3192    // that are unallocated are marked as unavailable. To achieve this, we add
3193    // padding of (NumVFPs - PreAllocation) floats.
3194    if (IsHA && AllocatedVFP > NumVFPs && PreAllocation < NumVFPs) {
3195      llvm::Type *PaddingTy = llvm::ArrayType::get(
3196          llvm::Type::getFloatTy(getVMContext()), NumVFPs - PreAllocation);
3197      it->info = ABIArgInfo::getExpandWithPadding(false, PaddingTy);
3198    }
3199  }
3200
3201  // Always honor user-specified calling convention.
3202  if (FI.getCallingConvention() != llvm::CallingConv::C)
3203    return;
3204
3205  llvm::CallingConv::ID cc = getRuntimeCC();
3206  if (cc != llvm::CallingConv::C)
3207    FI.setEffectiveCallingConvention(cc);
3208}
3209
3210/// Return the default calling convention that LLVM will use.
3211llvm::CallingConv::ID ARMABIInfo::getLLVMDefaultCC() const {
3212  // The default calling convention that LLVM will infer.
3213  if (getTarget().getTriple().getEnvironmentName()=="gnueabihf")
3214    return llvm::CallingConv::ARM_AAPCS_VFP;
3215  else if (isEABI())
3216    return llvm::CallingConv::ARM_AAPCS;
3217  else
3218    return llvm::CallingConv::ARM_APCS;
3219}
3220
3221/// Return the calling convention that our ABI would like us to use
3222/// as the C calling convention.
3223llvm::CallingConv::ID ARMABIInfo::getABIDefaultCC() const {
3224  switch (getABIKind()) {
3225  case APCS: return llvm::CallingConv::ARM_APCS;
3226  case AAPCS: return llvm::CallingConv::ARM_AAPCS;
3227  case AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
3228  }
3229  llvm_unreachable("bad ABI kind");
3230}
3231
3232void ARMABIInfo::setRuntimeCC() {
3233  assert(getRuntimeCC() == llvm::CallingConv::C);
3234
3235  // Don't muddy up the IR with a ton of explicit annotations if
3236  // they'd just match what LLVM will infer from the triple.
3237  llvm::CallingConv::ID abiCC = getABIDefaultCC();
3238  if (abiCC != getLLVMDefaultCC())
3239    RuntimeCC = abiCC;
3240}
3241
3242/// isHomogeneousAggregate - Return true if a type is an AAPCS-VFP homogeneous
3243/// aggregate.  If HAMembers is non-null, the number of base elements
3244/// contained in the type is returned through it; this is used for the
3245/// recursive calls that check aggregate component types.
3246static bool isHomogeneousAggregate(QualType Ty, const Type *&Base,
3247                                   ASTContext &Context,
3248                                   uint64_t *HAMembers = 0) {
3249  uint64_t Members = 0;
3250  if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
3251    if (!isHomogeneousAggregate(AT->getElementType(), Base, Context, &Members))
3252      return false;
3253    Members *= AT->getSize().getZExtValue();
3254  } else if (const RecordType *RT = Ty->getAs<RecordType>()) {
3255    const RecordDecl *RD = RT->getDecl();
3256    if (RD->hasFlexibleArrayMember())
3257      return false;
3258
3259    Members = 0;
3260    for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
3261         i != e; ++i) {
3262      const FieldDecl *FD = *i;
3263      uint64_t FldMembers;
3264      if (!isHomogeneousAggregate(FD->getType(), Base, Context, &FldMembers))
3265        return false;
3266
3267      Members = (RD->isUnion() ?
3268                 std::max(Members, FldMembers) : Members + FldMembers);
3269    }
3270  } else {
3271    Members = 1;
3272    if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
3273      Members = 2;
3274      Ty = CT->getElementType();
3275    }
3276
3277    // Homogeneous aggregates for AAPCS-VFP must have base types of float,
3278    // double, or 64-bit or 128-bit vectors.
3279    if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
3280      if (BT->getKind() != BuiltinType::Float &&
3281          BT->getKind() != BuiltinType::Double &&
3282          BT->getKind() != BuiltinType::LongDouble)
3283        return false;
3284    } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
3285      unsigned VecSize = Context.getTypeSize(VT);
3286      if (VecSize != 64 && VecSize != 128)
3287        return false;
3288    } else {
3289      return false;
3290    }
3291
3292    // The base type must be the same for all members.  Vector types of the
3293    // same total size are treated as being equivalent here.
3294    const Type *TyPtr = Ty.getTypePtr();
3295    if (!Base)
3296      Base = TyPtr;
3297    if (Base != TyPtr &&
3298        (!Base->isVectorType() || !TyPtr->isVectorType() ||
3299         Context.getTypeSize(Base) != Context.getTypeSize(TyPtr)))
3300      return false;
3301  }
3302
3303  // Homogeneous Aggregates can have at most 4 members of the base type.
3304  if (HAMembers)
3305    *HAMembers = Members;
3306
3307  return (Members > 0 && Members <= 4);
3308}
3309
3310/// markAllocatedVFPs - update VFPRegs according to the alignment and
3311/// number of VFP registers (unit is S register) requested.
3312static void markAllocatedVFPs(int *VFPRegs, unsigned &AllocatedVFP,
3313                              unsigned Alignment,
3314                              unsigned NumRequired) {
3315  // Early Exit.
3316  if (AllocatedVFP >= 16)
3317    return;
3318  // C.1.vfp If the argument is a VFP CPRC and there are sufficient consecutive
3319  // VFP registers of the appropriate type unallocated then the argument is
3320  // allocated to the lowest-numbered sequence of such registers.
3321  for (unsigned I = 0; I < 16; I += Alignment) {
3322    bool FoundSlot = true;
3323    for (unsigned J = I, JEnd = I + NumRequired; J < JEnd; J++)
3324      if (J >= 16 || VFPRegs[J]) {
3325         FoundSlot = false;
3326         break;
3327      }
3328    if (FoundSlot) {
3329      for (unsigned J = I, JEnd = I + NumRequired; J < JEnd; J++)
3330        VFPRegs[J] = 1;
3331      AllocatedVFP += NumRequired;
3332      return;
3333    }
3334  }
3335  // C.2.vfp If the argument is a VFP CPRC then any VFP registers that are
3336  // unallocated are marked as unavailable.
3337  for (unsigned I = 0; I < 16; I++)
3338    VFPRegs[I] = 1;
3339  AllocatedVFP = 17; // We do not have enough VFP registers.
3340}
3341
3342ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty, int *VFPRegs,
3343                                            unsigned &AllocatedVFP,
3344                                            bool &IsHA) const {
3345  // We update number of allocated VFPs according to
3346  // 6.1.2.1 The following argument types are VFP CPRCs:
3347  //   A single-precision floating-point type (including promoted
3348  //   half-precision types); A double-precision floating-point type;
3349  //   A 64-bit or 128-bit containerized vector type; Homogeneous Aggregate
3350  //   with a Base Type of a single- or double-precision floating-point type,
3351  //   64-bit containerized vectors or 128-bit containerized vectors with one
3352  //   to four Elements.
3353
3354  // Handle illegal vector types here.
3355  if (isIllegalVectorType(Ty)) {
3356    uint64_t Size = getContext().getTypeSize(Ty);
3357    if (Size <= 32) {
3358      llvm::Type *ResType =
3359          llvm::Type::getInt32Ty(getVMContext());
3360      return ABIArgInfo::getDirect(ResType);
3361    }
3362    if (Size == 64) {
3363      llvm::Type *ResType = llvm::VectorType::get(
3364          llvm::Type::getInt32Ty(getVMContext()), 2);
3365      markAllocatedVFPs(VFPRegs, AllocatedVFP, 2, 2);
3366      return ABIArgInfo::getDirect(ResType);
3367    }
3368    if (Size == 128) {
3369      llvm::Type *ResType = llvm::VectorType::get(
3370          llvm::Type::getInt32Ty(getVMContext()), 4);
3371      markAllocatedVFPs(VFPRegs, AllocatedVFP, 4, 4);
3372      return ABIArgInfo::getDirect(ResType);
3373    }
3374    return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
3375  }
3376  // Update VFPRegs for legal vector types.
3377  if (const VectorType *VT = Ty->getAs<VectorType>()) {
3378    uint64_t Size = getContext().getTypeSize(VT);
3379    // Size of a legal vector should be power of 2 and above 64.
3380    markAllocatedVFPs(VFPRegs, AllocatedVFP, Size >= 128 ? 4 : 2, Size / 32);
3381  }
3382  // Update VFPRegs for floating point types.
3383  if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
3384    if (BT->getKind() == BuiltinType::Half ||
3385        BT->getKind() == BuiltinType::Float)
3386      markAllocatedVFPs(VFPRegs, AllocatedVFP, 1, 1);
3387    if (BT->getKind() == BuiltinType::Double ||
3388        BT->getKind() == BuiltinType::LongDouble)
3389      markAllocatedVFPs(VFPRegs, AllocatedVFP, 2, 2);
3390  }
3391
3392  if (!isAggregateTypeForABI(Ty)) {
3393    // Treat an enum type as its underlying type.
3394    if (const EnumType *EnumTy = Ty->getAs<EnumType>())
3395      Ty = EnumTy->getDecl()->getIntegerType();
3396
3397    return (Ty->isPromotableIntegerType() ?
3398            ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
3399  }
3400
3401  if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
3402    return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
3403
3404  // Ignore empty records.
3405  if (isEmptyRecord(getContext(), Ty, true))
3406    return ABIArgInfo::getIgnore();
3407
3408  if (getABIKind() == ARMABIInfo::AAPCS_VFP) {
3409    // Homogeneous Aggregates need to be expanded when we can fit the aggregate
3410    // into VFP registers.
3411    const Type *Base = 0;
3412    uint64_t Members = 0;
3413    if (isHomogeneousAggregate(Ty, Base, getContext(), &Members)) {
3414      assert(Base && "Base class should be set for homogeneous aggregate");
3415      // Base can be a floating-point or a vector.
3416      if (Base->isVectorType()) {
3417        // ElementSize is in number of floats.
3418        unsigned ElementSize = getContext().getTypeSize(Base) == 64 ? 2 : 4;
3419        markAllocatedVFPs(VFPRegs, AllocatedVFP, ElementSize,
3420                          Members * ElementSize);
3421      } else if (Base->isSpecificBuiltinType(BuiltinType::Float))
3422        markAllocatedVFPs(VFPRegs, AllocatedVFP, 1, Members);
3423      else {
3424        assert(Base->isSpecificBuiltinType(BuiltinType::Double) ||
3425               Base->isSpecificBuiltinType(BuiltinType::LongDouble));
3426        markAllocatedVFPs(VFPRegs, AllocatedVFP, 2, Members * 2);
3427      }
3428      IsHA = true;
3429      return ABIArgInfo::getExpand();
3430    }
3431  }
3432
3433  // Support byval for ARM.
3434  // The ABI alignment for APCS is 4-byte and for AAPCS at least 4-byte and at
3435  // most 8-byte. We realign the indirect argument if type alignment is bigger
3436  // than ABI alignment.
3437  uint64_t ABIAlign = 4;
3438  uint64_t TyAlign = getContext().getTypeAlign(Ty) / 8;
3439  if (getABIKind() == ARMABIInfo::AAPCS_VFP ||
3440      getABIKind() == ARMABIInfo::AAPCS)
3441    ABIAlign = std::min(std::max(TyAlign, (uint64_t)4), (uint64_t)8);
3442  if (getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(64)) {
3443    return ABIArgInfo::getIndirect(0, /*ByVal=*/true,
3444           /*Realign=*/TyAlign > ABIAlign);
3445  }
3446
3447  // Otherwise, pass by coercing to a structure of the appropriate size.
3448  llvm::Type* ElemTy;
3449  unsigned SizeRegs;
3450  // FIXME: Try to match the types of the arguments more accurately where
3451  // we can.
3452  if (getContext().getTypeAlign(Ty) <= 32) {
3453    ElemTy = llvm::Type::getInt32Ty(getVMContext());
3454    SizeRegs = (getContext().getTypeSize(Ty) + 31) / 32;
3455  } else {
3456    ElemTy = llvm::Type::getInt64Ty(getVMContext());
3457    SizeRegs = (getContext().getTypeSize(Ty) + 63) / 64;
3458  }
3459
3460  llvm::Type *STy =
3461    llvm::StructType::get(llvm::ArrayType::get(ElemTy, SizeRegs), NULL);
3462  return ABIArgInfo::getDirect(STy);
3463}
3464
3465static bool isIntegerLikeType(QualType Ty, ASTContext &Context,
3466                              llvm::LLVMContext &VMContext) {
3467  // APCS, C Language Calling Conventions, Non-Simple Return Values: A structure
3468  // is called integer-like if its size is less than or equal to one word, and
3469  // the offset of each of its addressable sub-fields is zero.
3470
3471  uint64_t Size = Context.getTypeSize(Ty);
3472
3473  // Check that the type fits in a word.
3474  if (Size > 32)
3475    return false;
3476
3477  // FIXME: Handle vector types!
3478  if (Ty->isVectorType())
3479    return false;
3480
3481  // Float types are never treated as "integer like".
3482  if (Ty->isRealFloatingType())
3483    return false;
3484
3485  // If this is a builtin or pointer type then it is ok.
3486  if (Ty->getAs<BuiltinType>() || Ty->isPointerType())
3487    return true;
3488
3489  // Small complex integer types are "integer like".
3490  if (const ComplexType *CT = Ty->getAs<ComplexType>())
3491    return isIntegerLikeType(CT->getElementType(), Context, VMContext);
3492
3493  // Single element and zero sized arrays should be allowed, by the definition
3494  // above, but they are not.
3495
3496  // Otherwise, it must be a record type.
3497  const RecordType *RT = Ty->getAs<RecordType>();
3498  if (!RT) return false;
3499
3500  // Ignore records with flexible arrays.
3501  const RecordDecl *RD = RT->getDecl();
3502  if (RD->hasFlexibleArrayMember())
3503    return false;
3504
3505  // Check that all sub-fields are at offset 0, and are themselves "integer
3506  // like".
3507  const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
3508
3509  bool HadField = false;
3510  unsigned idx = 0;
3511  for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
3512       i != e; ++i, ++idx) {
3513    const FieldDecl *FD = *i;
3514
3515    // Bit-fields are not addressable, we only need to verify they are "integer
3516    // like". We still have to disallow a subsequent non-bitfield, for example:
3517    //   struct { int : 0; int x }
3518    // is non-integer like according to gcc.
3519    if (FD->isBitField()) {
3520      if (!RD->isUnion())
3521        HadField = true;
3522
3523      if (!isIntegerLikeType(FD->getType(), Context, VMContext))
3524        return false;
3525
3526      continue;
3527    }
3528
3529    // Check if this field is at offset 0.
3530    if (Layout.getFieldOffset(idx) != 0)
3531      return false;
3532
3533    if (!isIntegerLikeType(FD->getType(), Context, VMContext))
3534      return false;
3535
3536    // Only allow at most one field in a structure. This doesn't match the
3537    // wording above, but follows gcc in situations with a field following an
3538    // empty structure.
3539    if (!RD->isUnion()) {
3540      if (HadField)
3541        return false;
3542
3543      HadField = true;
3544    }
3545  }
3546
3547  return true;
3548}
3549
3550ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy) const {
3551  if (RetTy->isVoidType())
3552    return ABIArgInfo::getIgnore();
3553
3554  // Large vector types should be returned via memory.
3555  if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128)
3556    return ABIArgInfo::getIndirect(0);
3557
3558  if (!isAggregateTypeForABI(RetTy)) {
3559    // Treat an enum type as its underlying type.
3560    if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
3561      RetTy = EnumTy->getDecl()->getIntegerType();
3562
3563    return (RetTy->isPromotableIntegerType() ?
3564            ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
3565  }
3566
3567  // Structures with either a non-trivial destructor or a non-trivial
3568  // copy constructor are always indirect.
3569  if (isRecordReturnIndirect(RetTy, getCXXABI()))
3570    return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
3571
3572  // Are we following APCS?
3573  if (getABIKind() == APCS) {
3574    if (isEmptyRecord(getContext(), RetTy, false))
3575      return ABIArgInfo::getIgnore();
3576
3577    // Complex types are all returned as packed integers.
3578    //
3579    // FIXME: Consider using 2 x vector types if the back end handles them
3580    // correctly.
3581    if (RetTy->isAnyComplexType())
3582      return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
3583                                              getContext().getTypeSize(RetTy)));
3584
3585    // Integer like structures are returned in r0.
3586    if (isIntegerLikeType(RetTy, getContext(), getVMContext())) {
3587      // Return in the smallest viable integer type.
3588      uint64_t Size = getContext().getTypeSize(RetTy);
3589      if (Size <= 8)
3590        return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
3591      if (Size <= 16)
3592        return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
3593      return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
3594    }
3595
3596    // Otherwise return in memory.
3597    return ABIArgInfo::getIndirect(0);
3598  }
3599
3600  // Otherwise this is an AAPCS variant.
3601
3602  if (isEmptyRecord(getContext(), RetTy, true))
3603    return ABIArgInfo::getIgnore();
3604
3605  // Check for homogeneous aggregates with AAPCS-VFP.
3606  if (getABIKind() == AAPCS_VFP) {
3607    const Type *Base = 0;
3608    if (isHomogeneousAggregate(RetTy, Base, getContext())) {
3609      assert(Base && "Base class should be set for homogeneous aggregate");
3610      // Homogeneous Aggregates are returned directly.
3611      return ABIArgInfo::getDirect();
3612    }
3613  }
3614
3615  // Aggregates <= 4 bytes are returned in r0; other aggregates
3616  // are returned indirectly.
3617  uint64_t Size = getContext().getTypeSize(RetTy);
3618  if (Size <= 32) {
3619    // Return in the smallest viable integer type.
3620    if (Size <= 8)
3621      return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
3622    if (Size <= 16)
3623      return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
3624    return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
3625  }
3626
3627  return ABIArgInfo::getIndirect(0);
3628}
3629
3630/// isIllegalVector - check whether Ty is an illegal vector type.
3631bool ARMABIInfo::isIllegalVectorType(QualType Ty) const {
3632  if (const VectorType *VT = Ty->getAs<VectorType>()) {
3633    // Check whether VT is legal.
3634    unsigned NumElements = VT->getNumElements();
3635    uint64_t Size = getContext().getTypeSize(VT);
3636    // NumElements should be power of 2.
3637    if ((NumElements & (NumElements - 1)) != 0)
3638      return true;
3639    // Size should be greater than 32 bits.
3640    return Size <= 32;
3641  }
3642  return false;
3643}
3644
3645llvm::Value *ARMABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
3646                                   CodeGenFunction &CGF) const {
3647  llvm::Type *BP = CGF.Int8PtrTy;
3648  llvm::Type *BPP = CGF.Int8PtrPtrTy;
3649
3650  CGBuilderTy &Builder = CGF.Builder;
3651  llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap");
3652  llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
3653
3654  if (isEmptyRecord(getContext(), Ty, true)) {
3655    // These are ignored for parameter passing purposes.
3656    llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
3657    return Builder.CreateBitCast(Addr, PTy);
3658  }
3659
3660  uint64_t Size = CGF.getContext().getTypeSize(Ty) / 8;
3661  uint64_t TyAlign = CGF.getContext().getTypeAlign(Ty) / 8;
3662  bool IsIndirect = false;
3663
3664  // The ABI alignment for 64-bit or 128-bit vectors is 8 for AAPCS and 4 for
3665  // APCS. For AAPCS, the ABI alignment is at least 4-byte and at most 8-byte.
3666  if (getABIKind() == ARMABIInfo::AAPCS_VFP ||
3667      getABIKind() == ARMABIInfo::AAPCS)
3668    TyAlign = std::min(std::max(TyAlign, (uint64_t)4), (uint64_t)8);
3669  else
3670    TyAlign = 4;
3671  // Use indirect if size of the illegal vector is bigger than 16 bytes.
3672  if (isIllegalVectorType(Ty) && Size > 16) {
3673    IsIndirect = true;
3674    Size = 4;
3675    TyAlign = 4;
3676  }
3677
3678  // Handle address alignment for ABI alignment > 4 bytes.
3679  if (TyAlign > 4) {
3680    assert((TyAlign & (TyAlign - 1)) == 0 &&
3681           "Alignment is not power of 2!");
3682    llvm::Value *AddrAsInt = Builder.CreatePtrToInt(Addr, CGF.Int32Ty);
3683    AddrAsInt = Builder.CreateAdd(AddrAsInt, Builder.getInt32(TyAlign - 1));
3684    AddrAsInt = Builder.CreateAnd(AddrAsInt, Builder.getInt32(~(TyAlign - 1)));
3685    Addr = Builder.CreateIntToPtr(AddrAsInt, BP, "ap.align");
3686  }
3687
3688  uint64_t Offset =
3689    llvm::RoundUpToAlignment(Size, 4);
3690  llvm::Value *NextAddr =
3691    Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
3692                      "ap.next");
3693  Builder.CreateStore(NextAddr, VAListAddrAsBPP);
3694
3695  if (IsIndirect)
3696    Addr = Builder.CreateLoad(Builder.CreateBitCast(Addr, BPP));
3697  else if (TyAlign < CGF.getContext().getTypeAlign(Ty) / 8) {
3698    // We can't directly cast ap.cur to pointer to a vector type, since ap.cur
3699    // may not be correctly aligned for the vector type. We create an aligned
3700    // temporary space and copy the content over from ap.cur to the temporary
3701    // space. This is necessary if the natural alignment of the type is greater
3702    // than the ABI alignment.
3703    llvm::Type *I8PtrTy = Builder.getInt8PtrTy();
3704    CharUnits CharSize = getContext().getTypeSizeInChars(Ty);
3705    llvm::Value *AlignedTemp = CGF.CreateTempAlloca(CGF.ConvertType(Ty),
3706                                                    "var.align");
3707    llvm::Value *Dst = Builder.CreateBitCast(AlignedTemp, I8PtrTy);
3708    llvm::Value *Src = Builder.CreateBitCast(Addr, I8PtrTy);
3709    Builder.CreateMemCpy(Dst, Src,
3710        llvm::ConstantInt::get(CGF.IntPtrTy, CharSize.getQuantity()),
3711        TyAlign, false);
3712    Addr = AlignedTemp; //The content is in aligned location.
3713  }
3714  llvm::Type *PTy =
3715    llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
3716  llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
3717
3718  return AddrTyped;
3719}
3720
3721namespace {
3722
3723class NaClARMABIInfo : public ABIInfo {
3724 public:
3725  NaClARMABIInfo(CodeGen::CodeGenTypes &CGT, ARMABIInfo::ABIKind Kind)
3726      : ABIInfo(CGT), PInfo(CGT), NInfo(CGT, Kind) {}
3727  virtual void computeInfo(CGFunctionInfo &FI) const;
3728  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
3729                                 CodeGenFunction &CGF) const;
3730 private:
3731  PNaClABIInfo PInfo; // Used for generating calls with pnaclcall callingconv.
3732  ARMABIInfo NInfo; // Used for everything else.
3733};
3734
3735class NaClARMTargetCodeGenInfo : public TargetCodeGenInfo  {
3736 public:
3737  NaClARMTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, ARMABIInfo::ABIKind Kind)
3738      : TargetCodeGenInfo(new NaClARMABIInfo(CGT, Kind)) {}
3739};
3740
3741}
3742
3743void NaClARMABIInfo::computeInfo(CGFunctionInfo &FI) const {
3744  if (FI.getASTCallingConvention() == CC_PnaclCall)
3745    PInfo.computeInfo(FI);
3746  else
3747    static_cast<const ABIInfo&>(NInfo).computeInfo(FI);
3748}
3749
3750llvm::Value *NaClARMABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
3751                                       CodeGenFunction &CGF) const {
3752  // Always use the native convention; calling pnacl-style varargs functions
3753  // is unsupported.
3754  return static_cast<const ABIInfo&>(NInfo).EmitVAArg(VAListAddr, Ty, CGF);
3755}
3756
3757//===----------------------------------------------------------------------===//
3758// AArch64 ABI Implementation
3759//===----------------------------------------------------------------------===//
3760
3761namespace {
3762
3763class AArch64ABIInfo : public ABIInfo {
3764public:
3765  AArch64ABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
3766
3767private:
3768  // The AArch64 PCS is explicit about return types and argument types being
3769  // handled identically, so we don't need to draw a distinction between
3770  // Argument and Return classification.
3771  ABIArgInfo classifyGenericType(QualType Ty, int &FreeIntRegs,
3772                                 int &FreeVFPRegs) const;
3773
3774  ABIArgInfo tryUseRegs(QualType Ty, int &FreeRegs, int RegsNeeded, bool IsInt,
3775                        llvm::Type *DirectTy = 0) const;
3776
3777  virtual void computeInfo(CGFunctionInfo &FI) const;
3778
3779  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
3780                                 CodeGenFunction &CGF) const;
3781};
3782
3783class AArch64TargetCodeGenInfo : public TargetCodeGenInfo {
3784public:
3785  AArch64TargetCodeGenInfo(CodeGenTypes &CGT)
3786    :TargetCodeGenInfo(new AArch64ABIInfo(CGT)) {}
3787
3788  const AArch64ABIInfo &getABIInfo() const {
3789    return static_cast<const AArch64ABIInfo&>(TargetCodeGenInfo::getABIInfo());
3790  }
3791
3792  int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const {
3793    return 31;
3794  }
3795
3796  bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
3797                               llvm::Value *Address) const {
3798    // 0-31 are x0-x30 and sp: 8 bytes each
3799    llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8);
3800    AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 31);
3801
3802    // 64-95 are v0-v31: 16 bytes each
3803    llvm::Value *Sixteen8 = llvm::ConstantInt::get(CGF.Int8Ty, 16);
3804    AssignToArrayRange(CGF.Builder, Address, Sixteen8, 64, 95);
3805
3806    return false;
3807  }
3808
3809};
3810
3811}
3812
3813void AArch64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
3814  int FreeIntRegs = 8, FreeVFPRegs = 8;
3815
3816  FI.getReturnInfo() = classifyGenericType(FI.getReturnType(),
3817                                           FreeIntRegs, FreeVFPRegs);
3818
3819  FreeIntRegs = FreeVFPRegs = 8;
3820  for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
3821       it != ie; ++it) {
3822    it->info = classifyGenericType(it->type, FreeIntRegs, FreeVFPRegs);
3823
3824  }
3825}
3826
3827ABIArgInfo
3828AArch64ABIInfo::tryUseRegs(QualType Ty, int &FreeRegs, int RegsNeeded,
3829                           bool IsInt, llvm::Type *DirectTy) const {
3830  if (FreeRegs >= RegsNeeded) {
3831    FreeRegs -= RegsNeeded;
3832    return ABIArgInfo::getDirect(DirectTy);
3833  }
3834
3835  llvm::Type *Padding = 0;
3836
3837  // We need padding so that later arguments don't get filled in anyway. That
3838  // wouldn't happen if only ByVal arguments followed in the same category, but
3839  // a large structure will simply seem to be a pointer as far as LLVM is
3840  // concerned.
3841  if (FreeRegs > 0) {
3842    if (IsInt)
3843      Padding = llvm::Type::getInt64Ty(getVMContext());
3844    else
3845      Padding = llvm::Type::getFloatTy(getVMContext());
3846
3847    // Either [N x i64] or [N x float].
3848    Padding = llvm::ArrayType::get(Padding, FreeRegs);
3849    FreeRegs = 0;
3850  }
3851
3852  return ABIArgInfo::getIndirect(getContext().getTypeAlign(Ty) / 8,
3853                                 /*IsByVal=*/ true, /*Realign=*/ false,
3854                                 Padding);
3855}
3856
3857
3858ABIArgInfo AArch64ABIInfo::classifyGenericType(QualType Ty,
3859                                               int &FreeIntRegs,
3860                                               int &FreeVFPRegs) const {
3861  // Can only occurs for return, but harmless otherwise.
3862  if (Ty->isVoidType())
3863    return ABIArgInfo::getIgnore();
3864
3865  // Large vector types should be returned via memory. There's no such concept
3866  // in the ABI, but they'd be over 16 bytes anyway so no matter how they're
3867  // classified they'd go into memory (see B.3).
3868  if (Ty->isVectorType() && getContext().getTypeSize(Ty) > 128) {
3869    if (FreeIntRegs > 0)
3870      --FreeIntRegs;
3871    return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
3872  }
3873
3874  // All non-aggregate LLVM types have a concrete ABI representation so they can
3875  // be passed directly. After this block we're guaranteed to be in a
3876  // complicated case.
3877  if (!isAggregateTypeForABI(Ty)) {
3878    // Treat an enum type as its underlying type.
3879    if (const EnumType *EnumTy = Ty->getAs<EnumType>())
3880      Ty = EnumTy->getDecl()->getIntegerType();
3881
3882    if (Ty->isFloatingType() || Ty->isVectorType())
3883      return tryUseRegs(Ty, FreeVFPRegs, /*RegsNeeded=*/ 1, /*IsInt=*/ false);
3884
3885    assert(getContext().getTypeSize(Ty) <= 128 &&
3886           "unexpectedly large scalar type");
3887
3888    int RegsNeeded = getContext().getTypeSize(Ty) > 64 ? 2 : 1;
3889
3890    // If the type may need padding registers to ensure "alignment", we must be
3891    // careful when this is accounted for. Increasing the effective size covers
3892    // all cases.
3893    if (getContext().getTypeAlign(Ty) == 128)
3894      RegsNeeded += FreeIntRegs % 2 != 0;
3895
3896    return tryUseRegs(Ty, FreeIntRegs, RegsNeeded, /*IsInt=*/ true);
3897  }
3898
3899  if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
3900    if (FreeIntRegs > 0 && RAA == CGCXXABI::RAA_Indirect)
3901      --FreeIntRegs;
3902    return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
3903  }
3904
3905  if (isEmptyRecord(getContext(), Ty, true)) {
3906    if (!getContext().getLangOpts().CPlusPlus) {
3907      // Empty structs outside C++ mode are a GNU extension, so no ABI can
3908      // possibly tell us what to do. It turns out (I believe) that GCC ignores
3909      // the object for parameter-passsing purposes.
3910      return ABIArgInfo::getIgnore();
3911    }
3912
3913    // The combination of C++98 9p5 (sizeof(struct) != 0) and the pseudocode
3914    // description of va_arg in the PCS require that an empty struct does
3915    // actually occupy space for parameter-passing. I'm hoping for a
3916    // clarification giving an explicit paragraph to point to in future.
3917    return tryUseRegs(Ty, FreeIntRegs, /*RegsNeeded=*/ 1, /*IsInt=*/ true,
3918                      llvm::Type::getInt8Ty(getVMContext()));
3919  }
3920
3921  // Homogeneous vector aggregates get passed in registers or on the stack.
3922  const Type *Base = 0;
3923  uint64_t NumMembers = 0;
3924  if (isHomogeneousAggregate(Ty, Base, getContext(), &NumMembers)) {
3925    assert(Base && "Base class should be set for homogeneous aggregate");
3926    // Homogeneous aggregates are passed and returned directly.
3927    return tryUseRegs(Ty, FreeVFPRegs, /*RegsNeeded=*/ NumMembers,
3928                      /*IsInt=*/ false);
3929  }
3930
3931  uint64_t Size = getContext().getTypeSize(Ty);
3932  if (Size <= 128) {
3933    // Small structs can use the same direct type whether they're in registers
3934    // or on the stack.
3935    llvm::Type *BaseTy;
3936    unsigned NumBases;
3937    int SizeInRegs = (Size + 63) / 64;
3938
3939    if (getContext().getTypeAlign(Ty) == 128) {
3940      BaseTy = llvm::Type::getIntNTy(getVMContext(), 128);
3941      NumBases = 1;
3942
3943      // If the type may need padding registers to ensure "alignment", we must
3944      // be careful when this is accounted for. Increasing the effective size
3945      // covers all cases.
3946      SizeInRegs += FreeIntRegs % 2 != 0;
3947    } else {
3948      BaseTy = llvm::Type::getInt64Ty(getVMContext());
3949      NumBases = SizeInRegs;
3950    }
3951    llvm::Type *DirectTy = llvm::ArrayType::get(BaseTy, NumBases);
3952
3953    return tryUseRegs(Ty, FreeIntRegs, /*RegsNeeded=*/ SizeInRegs,
3954                      /*IsInt=*/ true, DirectTy);
3955  }
3956
3957  // If the aggregate is > 16 bytes, it's passed and returned indirectly. In
3958  // LLVM terms the return uses an "sret" pointer, but that's handled elsewhere.
3959  --FreeIntRegs;
3960  return ABIArgInfo::getIndirect(0, /* byVal = */ false);
3961}
3962
3963llvm::Value *AArch64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
3964                                       CodeGenFunction &CGF) const {
3965  // The AArch64 va_list type and handling is specified in the Procedure Call
3966  // Standard, section B.4:
3967  //
3968  // struct {
3969  //   void *__stack;
3970  //   void *__gr_top;
3971  //   void *__vr_top;
3972  //   int __gr_offs;
3973  //   int __vr_offs;
3974  // };
3975
3976  assert(!CGF.CGM.getDataLayout().isBigEndian()
3977         && "va_arg not implemented for big-endian AArch64");
3978
3979  int FreeIntRegs = 8, FreeVFPRegs = 8;
3980  Ty = CGF.getContext().getCanonicalType(Ty);
3981  ABIArgInfo AI = classifyGenericType(Ty, FreeIntRegs, FreeVFPRegs);
3982
3983  llvm::BasicBlock *MaybeRegBlock = CGF.createBasicBlock("vaarg.maybe_reg");
3984  llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
3985  llvm::BasicBlock *OnStackBlock = CGF.createBasicBlock("vaarg.on_stack");
3986  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
3987
3988  llvm::Value *reg_offs_p = 0, *reg_offs = 0;
3989  int reg_top_index;
3990  int RegSize;
3991  if (FreeIntRegs < 8) {
3992    assert(FreeVFPRegs == 8 && "Arguments never split between int & VFP regs");
3993    // 3 is the field number of __gr_offs
3994    reg_offs_p = CGF.Builder.CreateStructGEP(VAListAddr, 3, "gr_offs_p");
3995    reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "gr_offs");
3996    reg_top_index = 1; // field number for __gr_top
3997    RegSize = 8 * (8 - FreeIntRegs);
3998  } else {
3999    assert(FreeVFPRegs < 8 && "Argument must go in VFP or int regs");
4000    // 4 is the field number of __vr_offs.
4001    reg_offs_p = CGF.Builder.CreateStructGEP(VAListAddr, 4, "vr_offs_p");
4002    reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "vr_offs");
4003    reg_top_index = 2; // field number for __vr_top
4004    RegSize = 16 * (8 - FreeVFPRegs);
4005  }
4006
4007  //=======================================
4008  // Find out where argument was passed
4009  //=======================================
4010
4011  // If reg_offs >= 0 we're already using the stack for this type of
4012  // argument. We don't want to keep updating reg_offs (in case it overflows,
4013  // though anyone passing 2GB of arguments, each at most 16 bytes, deserves
4014  // whatever they get).
4015  llvm::Value *UsingStack = 0;
4016  UsingStack = CGF.Builder.CreateICmpSGE(reg_offs,
4017                                         llvm::ConstantInt::get(CGF.Int32Ty, 0));
4018
4019  CGF.Builder.CreateCondBr(UsingStack, OnStackBlock, MaybeRegBlock);
4020
4021  // Otherwise, at least some kind of argument could go in these registers, the
4022  // quesiton is whether this particular type is too big.
4023  CGF.EmitBlock(MaybeRegBlock);
4024
4025  // Integer arguments may need to correct register alignment (for example a
4026  // "struct { __int128 a; };" gets passed in x_2N, x_{2N+1}). In this case we
4027  // align __gr_offs to calculate the potential address.
4028  if (FreeIntRegs < 8 && AI.isDirect() && getContext().getTypeAlign(Ty) > 64) {
4029    int Align = getContext().getTypeAlign(Ty) / 8;
4030
4031    reg_offs = CGF.Builder.CreateAdd(reg_offs,
4032                                 llvm::ConstantInt::get(CGF.Int32Ty, Align - 1),
4033                                 "align_regoffs");
4034    reg_offs = CGF.Builder.CreateAnd(reg_offs,
4035                                    llvm::ConstantInt::get(CGF.Int32Ty, -Align),
4036                                    "aligned_regoffs");
4037  }
4038
4039  // Update the gr_offs/vr_offs pointer for next call to va_arg on this va_list.
4040  llvm::Value *NewOffset = 0;
4041  NewOffset = CGF.Builder.CreateAdd(reg_offs,
4042                                    llvm::ConstantInt::get(CGF.Int32Ty, RegSize),
4043                                    "new_reg_offs");
4044  CGF.Builder.CreateStore(NewOffset, reg_offs_p);
4045
4046  // Now we're in a position to decide whether this argument really was in
4047  // registers or not.
4048  llvm::Value *InRegs = 0;
4049  InRegs = CGF.Builder.CreateICmpSLE(NewOffset,
4050                                     llvm::ConstantInt::get(CGF.Int32Ty, 0),
4051                                     "inreg");
4052
4053  CGF.Builder.CreateCondBr(InRegs, InRegBlock, OnStackBlock);
4054
4055  //=======================================
4056  // Argument was in registers
4057  //=======================================
4058
4059  // Now we emit the code for if the argument was originally passed in
4060  // registers. First start the appropriate block:
4061  CGF.EmitBlock(InRegBlock);
4062
4063  llvm::Value *reg_top_p = 0, *reg_top = 0;
4064  reg_top_p = CGF.Builder.CreateStructGEP(VAListAddr, reg_top_index, "reg_top_p");
4065  reg_top = CGF.Builder.CreateLoad(reg_top_p, "reg_top");
4066  llvm::Value *BaseAddr = CGF.Builder.CreateGEP(reg_top, reg_offs);
4067  llvm::Value *RegAddr = 0;
4068  llvm::Type *MemTy = llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty));
4069
4070  if (!AI.isDirect()) {
4071    // If it's been passed indirectly (actually a struct), whatever we find from
4072    // stored registers or on the stack will actually be a struct **.
4073    MemTy = llvm::PointerType::getUnqual(MemTy);
4074  }
4075
4076  const Type *Base = 0;
4077  uint64_t NumMembers;
4078  if (isHomogeneousAggregate(Ty, Base, getContext(), &NumMembers)
4079      && NumMembers > 1) {
4080    // Homogeneous aggregates passed in registers will have their elements split
4081    // and stored 16-bytes apart regardless of size (they're notionally in qN,
4082    // qN+1, ...). We reload and store into a temporary local variable
4083    // contiguously.
4084    assert(AI.isDirect() && "Homogeneous aggregates should be passed directly");
4085    llvm::Type *BaseTy = CGF.ConvertType(QualType(Base, 0));
4086    llvm::Type *HFATy = llvm::ArrayType::get(BaseTy, NumMembers);
4087    llvm::Value *Tmp = CGF.CreateTempAlloca(HFATy);
4088
4089    for (unsigned i = 0; i < NumMembers; ++i) {
4090      llvm::Value *BaseOffset = llvm::ConstantInt::get(CGF.Int32Ty, 16 * i);
4091      llvm::Value *LoadAddr = CGF.Builder.CreateGEP(BaseAddr, BaseOffset);
4092      LoadAddr = CGF.Builder.CreateBitCast(LoadAddr,
4093                                           llvm::PointerType::getUnqual(BaseTy));
4094      llvm::Value *StoreAddr = CGF.Builder.CreateStructGEP(Tmp, i);
4095
4096      llvm::Value *Elem = CGF.Builder.CreateLoad(LoadAddr);
4097      CGF.Builder.CreateStore(Elem, StoreAddr);
4098    }
4099
4100    RegAddr = CGF.Builder.CreateBitCast(Tmp, MemTy);
4101  } else {
4102    // Otherwise the object is contiguous in memory
4103    RegAddr = CGF.Builder.CreateBitCast(BaseAddr, MemTy);
4104  }
4105
4106  CGF.EmitBranch(ContBlock);
4107
4108  //=======================================
4109  // Argument was on the stack
4110  //=======================================
4111  CGF.EmitBlock(OnStackBlock);
4112
4113  llvm::Value *stack_p = 0, *OnStackAddr = 0;
4114  stack_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "stack_p");
4115  OnStackAddr = CGF.Builder.CreateLoad(stack_p, "stack");
4116
4117  // Again, stack arguments may need realigmnent. In this case both integer and
4118  // floating-point ones might be affected.
4119  if (AI.isDirect() && getContext().getTypeAlign(Ty) > 64) {
4120    int Align = getContext().getTypeAlign(Ty) / 8;
4121
4122    OnStackAddr = CGF.Builder.CreatePtrToInt(OnStackAddr, CGF.Int64Ty);
4123
4124    OnStackAddr = CGF.Builder.CreateAdd(OnStackAddr,
4125                                 llvm::ConstantInt::get(CGF.Int64Ty, Align - 1),
4126                                 "align_stack");
4127    OnStackAddr = CGF.Builder.CreateAnd(OnStackAddr,
4128                                    llvm::ConstantInt::get(CGF.Int64Ty, -Align),
4129                                    "align_stack");
4130
4131    OnStackAddr = CGF.Builder.CreateIntToPtr(OnStackAddr, CGF.Int8PtrTy);
4132  }
4133
4134  uint64_t StackSize;
4135  if (AI.isDirect())
4136    StackSize = getContext().getTypeSize(Ty) / 8;
4137  else
4138    StackSize = 8;
4139
4140  // All stack slots are 8 bytes
4141  StackSize = llvm::RoundUpToAlignment(StackSize, 8);
4142
4143  llvm::Value *StackSizeC = llvm::ConstantInt::get(CGF.Int32Ty, StackSize);
4144  llvm::Value *NewStack = CGF.Builder.CreateGEP(OnStackAddr, StackSizeC,
4145                                                "new_stack");
4146
4147  // Write the new value of __stack for the next call to va_arg
4148  CGF.Builder.CreateStore(NewStack, stack_p);
4149
4150  OnStackAddr = CGF.Builder.CreateBitCast(OnStackAddr, MemTy);
4151
4152  CGF.EmitBranch(ContBlock);
4153
4154  //=======================================
4155  // Tidy up
4156  //=======================================
4157  CGF.EmitBlock(ContBlock);
4158
4159  llvm::PHINode *ResAddr = CGF.Builder.CreatePHI(MemTy, 2, "vaarg.addr");
4160  ResAddr->addIncoming(RegAddr, InRegBlock);
4161  ResAddr->addIncoming(OnStackAddr, OnStackBlock);
4162
4163  if (AI.isDirect())
4164    return ResAddr;
4165
4166  return CGF.Builder.CreateLoad(ResAddr, "vaarg.addr");
4167}
4168
4169//===----------------------------------------------------------------------===//
4170// NVPTX ABI Implementation
4171//===----------------------------------------------------------------------===//
4172
4173namespace {
4174
4175class NVPTXABIInfo : public ABIInfo {
4176public:
4177  NVPTXABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
4178
4179  ABIArgInfo classifyReturnType(QualType RetTy) const;
4180  ABIArgInfo classifyArgumentType(QualType Ty) const;
4181
4182  virtual void computeInfo(CGFunctionInfo &FI) const;
4183  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
4184                                 CodeGenFunction &CFG) const;
4185};
4186
4187class NVPTXTargetCodeGenInfo : public TargetCodeGenInfo {
4188public:
4189  NVPTXTargetCodeGenInfo(CodeGenTypes &CGT)
4190    : TargetCodeGenInfo(new NVPTXABIInfo(CGT)) {}
4191
4192  virtual void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
4193                                   CodeGen::CodeGenModule &M) const;
4194private:
4195  static void addKernelMetadata(llvm::Function *F);
4196};
4197
4198ABIArgInfo NVPTXABIInfo::classifyReturnType(QualType RetTy) const {
4199  if (RetTy->isVoidType())
4200    return ABIArgInfo::getIgnore();
4201  if (isAggregateTypeForABI(RetTy))
4202    return ABIArgInfo::getIndirect(0);
4203  return ABIArgInfo::getDirect();
4204}
4205
4206ABIArgInfo NVPTXABIInfo::classifyArgumentType(QualType Ty) const {
4207  if (isAggregateTypeForABI(Ty))
4208    return ABIArgInfo::getIndirect(0);
4209
4210  return ABIArgInfo::getDirect();
4211}
4212
4213void NVPTXABIInfo::computeInfo(CGFunctionInfo &FI) const {
4214  FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
4215  for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
4216       it != ie; ++it)
4217    it->info = classifyArgumentType(it->type);
4218
4219  // Always honor user-specified calling convention.
4220  if (FI.getCallingConvention() != llvm::CallingConv::C)
4221    return;
4222
4223  FI.setEffectiveCallingConvention(getRuntimeCC());
4224}
4225
4226llvm::Value *NVPTXABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
4227                                     CodeGenFunction &CFG) const {
4228  llvm_unreachable("NVPTX does not support varargs");
4229}
4230
4231void NVPTXTargetCodeGenInfo::
4232SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
4233                    CodeGen::CodeGenModule &M) const{
4234  const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
4235  if (!FD) return;
4236
4237  llvm::Function *F = cast<llvm::Function>(GV);
4238
4239  // Perform special handling in OpenCL mode
4240  if (M.getLangOpts().OpenCL) {
4241    // Use OpenCL function attributes to check for kernel functions
4242    // By default, all functions are device functions
4243    if (FD->hasAttr<OpenCLKernelAttr>()) {
4244      // OpenCL __kernel functions get kernel metadata
4245      addKernelMetadata(F);
4246      // And kernel functions are not subject to inlining
4247      F->addFnAttr(llvm::Attribute::NoInline);
4248    }
4249  }
4250
4251  // Perform special handling in CUDA mode.
4252  if (M.getLangOpts().CUDA) {
4253    // CUDA __global__ functions get a kernel metadata entry.  Since
4254    // __global__ functions cannot be called from the device, we do not
4255    // need to set the noinline attribute.
4256    if (FD->getAttr<CUDAGlobalAttr>())
4257      addKernelMetadata(F);
4258  }
4259}
4260
4261void NVPTXTargetCodeGenInfo::addKernelMetadata(llvm::Function *F) {
4262  llvm::Module *M = F->getParent();
4263  llvm::LLVMContext &Ctx = M->getContext();
4264
4265  // Get "nvvm.annotations" metadata node
4266  llvm::NamedMDNode *MD = M->getOrInsertNamedMetadata("nvvm.annotations");
4267
4268  // Create !{<func-ref>, metadata !"kernel", i32 1} node
4269  llvm::SmallVector<llvm::Value *, 3> MDVals;
4270  MDVals.push_back(F);
4271  MDVals.push_back(llvm::MDString::get(Ctx, "kernel"));
4272  MDVals.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(Ctx), 1));
4273
4274  // Append metadata to nvvm.annotations
4275  MD->addOperand(llvm::MDNode::get(Ctx, MDVals));
4276}
4277
4278}
4279
4280//===----------------------------------------------------------------------===//
4281// SystemZ ABI Implementation
4282//===----------------------------------------------------------------------===//
4283
4284namespace {
4285
4286class SystemZABIInfo : public ABIInfo {
4287public:
4288  SystemZABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
4289
4290  bool isPromotableIntegerType(QualType Ty) const;
4291  bool isCompoundType(QualType Ty) const;
4292  bool isFPArgumentType(QualType Ty) const;
4293
4294  ABIArgInfo classifyReturnType(QualType RetTy) const;
4295  ABIArgInfo classifyArgumentType(QualType ArgTy) const;
4296
4297  virtual void computeInfo(CGFunctionInfo &FI) const {
4298    FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
4299    for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
4300         it != ie; ++it)
4301      it->info = classifyArgumentType(it->type);
4302  }
4303
4304  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
4305                                 CodeGenFunction &CGF) const;
4306};
4307
4308class SystemZTargetCodeGenInfo : public TargetCodeGenInfo {
4309public:
4310  SystemZTargetCodeGenInfo(CodeGenTypes &CGT)
4311    : TargetCodeGenInfo(new SystemZABIInfo(CGT)) {}
4312};
4313
4314}
4315
4316bool SystemZABIInfo::isPromotableIntegerType(QualType Ty) const {
4317  // Treat an enum type as its underlying type.
4318  if (const EnumType *EnumTy = Ty->getAs<EnumType>())
4319    Ty = EnumTy->getDecl()->getIntegerType();
4320
4321  // Promotable integer types are required to be promoted by the ABI.
4322  if (Ty->isPromotableIntegerType())
4323    return true;
4324
4325  // 32-bit values must also be promoted.
4326  if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
4327    switch (BT->getKind()) {
4328    case BuiltinType::Int:
4329    case BuiltinType::UInt:
4330      return true;
4331    default:
4332      return false;
4333    }
4334  return false;
4335}
4336
4337bool SystemZABIInfo::isCompoundType(QualType Ty) const {
4338  return Ty->isAnyComplexType() || isAggregateTypeForABI(Ty);
4339}
4340
4341bool SystemZABIInfo::isFPArgumentType(QualType Ty) const {
4342  if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
4343    switch (BT->getKind()) {
4344    case BuiltinType::Float:
4345    case BuiltinType::Double:
4346      return true;
4347    default:
4348      return false;
4349    }
4350
4351  if (const RecordType *RT = Ty->getAsStructureType()) {
4352    const RecordDecl *RD = RT->getDecl();
4353    bool Found = false;
4354
4355    // If this is a C++ record, check the bases first.
4356    if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
4357      for (CXXRecordDecl::base_class_const_iterator I = CXXRD->bases_begin(),
4358             E = CXXRD->bases_end(); I != E; ++I) {
4359        QualType Base = I->getType();
4360
4361        // Empty bases don't affect things either way.
4362        if (isEmptyRecord(getContext(), Base, true))
4363          continue;
4364
4365        if (Found)
4366          return false;
4367        Found = isFPArgumentType(Base);
4368        if (!Found)
4369          return false;
4370      }
4371
4372    // Check the fields.
4373    for (RecordDecl::field_iterator I = RD->field_begin(),
4374           E = RD->field_end(); I != E; ++I) {
4375      const FieldDecl *FD = *I;
4376
4377      // Empty bitfields don't affect things either way.
4378      // Unlike isSingleElementStruct(), empty structure and array fields
4379      // do count.  So do anonymous bitfields that aren't zero-sized.
4380      if (FD->isBitField() && FD->getBitWidthValue(getContext()) == 0)
4381        return true;
4382
4383      // Unlike isSingleElementStruct(), arrays do not count.
4384      // Nested isFPArgumentType structures still do though.
4385      if (Found)
4386        return false;
4387      Found = isFPArgumentType(FD->getType());
4388      if (!Found)
4389        return false;
4390    }
4391
4392    // Unlike isSingleElementStruct(), trailing padding is allowed.
4393    // An 8-byte aligned struct s { float f; } is passed as a double.
4394    return Found;
4395  }
4396
4397  return false;
4398}
4399
4400llvm::Value *SystemZABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
4401                                       CodeGenFunction &CGF) const {
4402  // Assume that va_list type is correct; should be pointer to LLVM type:
4403  // struct {
4404  //   i64 __gpr;
4405  //   i64 __fpr;
4406  //   i8 *__overflow_arg_area;
4407  //   i8 *__reg_save_area;
4408  // };
4409
4410  // Every argument occupies 8 bytes and is passed by preference in either
4411  // GPRs or FPRs.
4412  Ty = CGF.getContext().getCanonicalType(Ty);
4413  ABIArgInfo AI = classifyArgumentType(Ty);
4414  bool InFPRs = isFPArgumentType(Ty);
4415
4416  llvm::Type *APTy = llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty));
4417  bool IsIndirect = AI.isIndirect();
4418  unsigned UnpaddedBitSize;
4419  if (IsIndirect) {
4420    APTy = llvm::PointerType::getUnqual(APTy);
4421    UnpaddedBitSize = 64;
4422  } else
4423    UnpaddedBitSize = getContext().getTypeSize(Ty);
4424  unsigned PaddedBitSize = 64;
4425  assert((UnpaddedBitSize <= PaddedBitSize) && "Invalid argument size.");
4426
4427  unsigned PaddedSize = PaddedBitSize / 8;
4428  unsigned Padding = (PaddedBitSize - UnpaddedBitSize) / 8;
4429
4430  unsigned MaxRegs, RegCountField, RegSaveIndex, RegPadding;
4431  if (InFPRs) {
4432    MaxRegs = 4; // Maximum of 4 FPR arguments
4433    RegCountField = 1; // __fpr
4434    RegSaveIndex = 16; // save offset for f0
4435    RegPadding = 0; // floats are passed in the high bits of an FPR
4436  } else {
4437    MaxRegs = 5; // Maximum of 5 GPR arguments
4438    RegCountField = 0; // __gpr
4439    RegSaveIndex = 2; // save offset for r2
4440    RegPadding = Padding; // values are passed in the low bits of a GPR
4441  }
4442
4443  llvm::Value *RegCountPtr =
4444    CGF.Builder.CreateStructGEP(VAListAddr, RegCountField, "reg_count_ptr");
4445  llvm::Value *RegCount = CGF.Builder.CreateLoad(RegCountPtr, "reg_count");
4446  llvm::Type *IndexTy = RegCount->getType();
4447  llvm::Value *MaxRegsV = llvm::ConstantInt::get(IndexTy, MaxRegs);
4448  llvm::Value *InRegs = CGF.Builder.CreateICmpULT(RegCount, MaxRegsV,
4449						  "fits_in_regs");
4450
4451  llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
4452  llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
4453  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
4454  CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);
4455
4456  // Emit code to load the value if it was passed in registers.
4457  CGF.EmitBlock(InRegBlock);
4458
4459  // Work out the address of an argument register.
4460  llvm::Value *PaddedSizeV = llvm::ConstantInt::get(IndexTy, PaddedSize);
4461  llvm::Value *ScaledRegCount =
4462    CGF.Builder.CreateMul(RegCount, PaddedSizeV, "scaled_reg_count");
4463  llvm::Value *RegBase =
4464    llvm::ConstantInt::get(IndexTy, RegSaveIndex * PaddedSize + RegPadding);
4465  llvm::Value *RegOffset =
4466    CGF.Builder.CreateAdd(ScaledRegCount, RegBase, "reg_offset");
4467  llvm::Value *RegSaveAreaPtr =
4468    CGF.Builder.CreateStructGEP(VAListAddr, 3, "reg_save_area_ptr");
4469  llvm::Value *RegSaveArea =
4470    CGF.Builder.CreateLoad(RegSaveAreaPtr, "reg_save_area");
4471  llvm::Value *RawRegAddr =
4472    CGF.Builder.CreateGEP(RegSaveArea, RegOffset, "raw_reg_addr");
4473  llvm::Value *RegAddr =
4474    CGF.Builder.CreateBitCast(RawRegAddr, APTy, "reg_addr");
4475
4476  // Update the register count
4477  llvm::Value *One = llvm::ConstantInt::get(IndexTy, 1);
4478  llvm::Value *NewRegCount =
4479    CGF.Builder.CreateAdd(RegCount, One, "reg_count");
4480  CGF.Builder.CreateStore(NewRegCount, RegCountPtr);
4481  CGF.EmitBranch(ContBlock);
4482
4483  // Emit code to load the value if it was passed in memory.
4484  CGF.EmitBlock(InMemBlock);
4485
4486  // Work out the address of a stack argument.
4487  llvm::Value *OverflowArgAreaPtr =
4488    CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_ptr");
4489  llvm::Value *OverflowArgArea =
4490    CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area");
4491  llvm::Value *PaddingV = llvm::ConstantInt::get(IndexTy, Padding);
4492  llvm::Value *RawMemAddr =
4493    CGF.Builder.CreateGEP(OverflowArgArea, PaddingV, "raw_mem_addr");
4494  llvm::Value *MemAddr =
4495    CGF.Builder.CreateBitCast(RawMemAddr, APTy, "mem_addr");
4496
4497  // Update overflow_arg_area_ptr pointer
4498  llvm::Value *NewOverflowArgArea =
4499    CGF.Builder.CreateGEP(OverflowArgArea, PaddedSizeV, "overflow_arg_area");
4500  CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr);
4501  CGF.EmitBranch(ContBlock);
4502
4503  // Return the appropriate result.
4504  CGF.EmitBlock(ContBlock);
4505  llvm::PHINode *ResAddr = CGF.Builder.CreatePHI(APTy, 2, "va_arg.addr");
4506  ResAddr->addIncoming(RegAddr, InRegBlock);
4507  ResAddr->addIncoming(MemAddr, InMemBlock);
4508
4509  if (IsIndirect)
4510    return CGF.Builder.CreateLoad(ResAddr, "indirect_arg");
4511
4512  return ResAddr;
4513}
4514
4515bool X86_32TargetCodeGenInfo::isStructReturnInRegABI(
4516    const llvm::Triple &Triple, const CodeGenOptions &Opts) {
4517  assert(Triple.getArch() == llvm::Triple::x86);
4518
4519  switch (Opts.getStructReturnConvention()) {
4520  case CodeGenOptions::SRCK_Default:
4521    break;
4522  case CodeGenOptions::SRCK_OnStack:  // -fpcc-struct-return
4523    return false;
4524  case CodeGenOptions::SRCK_InRegs:  // -freg-struct-return
4525    return true;
4526  }
4527
4528  if (Triple.isOSDarwin())
4529    return true;
4530
4531  switch (Triple.getOS()) {
4532  case llvm::Triple::Cygwin:
4533  case llvm::Triple::MinGW32:
4534  case llvm::Triple::AuroraUX:
4535  case llvm::Triple::DragonFly:
4536  case llvm::Triple::FreeBSD:
4537  case llvm::Triple::OpenBSD:
4538  case llvm::Triple::Bitrig:
4539  case llvm::Triple::Win32:
4540    return true;
4541  default:
4542    return false;
4543  }
4544}
4545
4546ABIArgInfo SystemZABIInfo::classifyReturnType(QualType RetTy) const {
4547  if (RetTy->isVoidType())
4548    return ABIArgInfo::getIgnore();
4549  if (isCompoundType(RetTy) || getContext().getTypeSize(RetTy) > 64)
4550    return ABIArgInfo::getIndirect(0);
4551  return (isPromotableIntegerType(RetTy) ?
4552          ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
4553}
4554
4555ABIArgInfo SystemZABIInfo::classifyArgumentType(QualType Ty) const {
4556  // Handle the generic C++ ABI.
4557  if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
4558    return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
4559
4560  // Integers and enums are extended to full register width.
4561  if (isPromotableIntegerType(Ty))
4562    return ABIArgInfo::getExtend();
4563
4564  // Values that are not 1, 2, 4 or 8 bytes in size are passed indirectly.
4565  uint64_t Size = getContext().getTypeSize(Ty);
4566  if (Size != 8 && Size != 16 && Size != 32 && Size != 64)
4567    return ABIArgInfo::getIndirect(0);
4568
4569  // Handle small structures.
4570  if (const RecordType *RT = Ty->getAs<RecordType>()) {
4571    // Structures with flexible arrays have variable length, so really
4572    // fail the size test above.
4573    const RecordDecl *RD = RT->getDecl();
4574    if (RD->hasFlexibleArrayMember())
4575      return ABIArgInfo::getIndirect(0);
4576
4577    // The structure is passed as an unextended integer, a float, or a double.
4578    llvm::Type *PassTy;
4579    if (isFPArgumentType(Ty)) {
4580      assert(Size == 32 || Size == 64);
4581      if (Size == 32)
4582        PassTy = llvm::Type::getFloatTy(getVMContext());
4583      else
4584        PassTy = llvm::Type::getDoubleTy(getVMContext());
4585    } else
4586      PassTy = llvm::IntegerType::get(getVMContext(), Size);
4587    return ABIArgInfo::getDirect(PassTy);
4588  }
4589
4590  // Non-structure compounds are passed indirectly.
4591  if (isCompoundType(Ty))
4592    return ABIArgInfo::getIndirect(0);
4593
4594  return ABIArgInfo::getDirect(0);
4595}
4596
4597//===----------------------------------------------------------------------===//
4598// MSP430 ABI Implementation
4599//===----------------------------------------------------------------------===//
4600
4601namespace {
4602
4603class MSP430TargetCodeGenInfo : public TargetCodeGenInfo {
4604public:
4605  MSP430TargetCodeGenInfo(CodeGenTypes &CGT)
4606    : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
4607  void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
4608                           CodeGen::CodeGenModule &M) const;
4609};
4610
4611}
4612
4613void MSP430TargetCodeGenInfo::SetTargetAttributes(const Decl *D,
4614                                                  llvm::GlobalValue *GV,
4615                                             CodeGen::CodeGenModule &M) const {
4616  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
4617    if (const MSP430InterruptAttr *attr = FD->getAttr<MSP430InterruptAttr>()) {
4618      // Handle 'interrupt' attribute:
4619      llvm::Function *F = cast<llvm::Function>(GV);
4620
4621      // Step 1: Set ISR calling convention.
4622      F->setCallingConv(llvm::CallingConv::MSP430_INTR);
4623
4624      // Step 2: Add attributes goodness.
4625      F->addFnAttr(llvm::Attribute::NoInline);
4626
4627      // Step 3: Emit ISR vector alias.
4628      unsigned Num = attr->getNumber() / 2;
4629      new llvm::GlobalAlias(GV->getType(), llvm::Function::ExternalLinkage,
4630                            "__isr_" + Twine(Num),
4631                            GV, &M.getModule());
4632    }
4633  }
4634}
4635
4636//===----------------------------------------------------------------------===//
4637// MIPS ABI Implementation.  This works for both little-endian and
4638// big-endian variants.
4639//===----------------------------------------------------------------------===//
4640
4641namespace {
4642class MipsABIInfo : public ABIInfo {
4643  bool IsO32;
4644  unsigned MinABIStackAlignInBytes, StackAlignInBytes;
4645  void CoerceToIntArgs(uint64_t TySize,
4646                       SmallVectorImpl<llvm::Type *> &ArgList) const;
4647  llvm::Type* HandleAggregates(QualType Ty, uint64_t TySize) const;
4648  llvm::Type* returnAggregateInRegs(QualType RetTy, uint64_t Size) const;
4649  llvm::Type* getPaddingType(uint64_t Align, uint64_t Offset) const;
4650public:
4651  MipsABIInfo(CodeGenTypes &CGT, bool _IsO32) :
4652    ABIInfo(CGT), IsO32(_IsO32), MinABIStackAlignInBytes(IsO32 ? 4 : 8),
4653    StackAlignInBytes(IsO32 ? 8 : 16) {}
4654
4655  ABIArgInfo classifyReturnType(QualType RetTy) const;
4656  ABIArgInfo classifyArgumentType(QualType RetTy, uint64_t &Offset) const;
4657  virtual void computeInfo(CGFunctionInfo &FI) const;
4658  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
4659                                 CodeGenFunction &CGF) const;
4660};
4661
4662class MIPSTargetCodeGenInfo : public TargetCodeGenInfo {
4663  unsigned SizeOfUnwindException;
4664public:
4665  MIPSTargetCodeGenInfo(CodeGenTypes &CGT, bool IsO32)
4666    : TargetCodeGenInfo(new MipsABIInfo(CGT, IsO32)),
4667      SizeOfUnwindException(IsO32 ? 24 : 32) {}
4668
4669  int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const {
4670    return 29;
4671  }
4672
4673  void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
4674                           CodeGen::CodeGenModule &CGM) const {
4675    const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
4676    if (!FD) return;
4677    llvm::Function *Fn = cast<llvm::Function>(GV);
4678    if (FD->hasAttr<Mips16Attr>()) {
4679      Fn->addFnAttr("mips16");
4680    }
4681    else if (FD->hasAttr<NoMips16Attr>()) {
4682      Fn->addFnAttr("nomips16");
4683    }
4684  }
4685
4686  bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4687                               llvm::Value *Address) const;
4688
4689  unsigned getSizeOfUnwindException() const {
4690    return SizeOfUnwindException;
4691  }
4692};
4693}
4694
4695void MipsABIInfo::CoerceToIntArgs(uint64_t TySize,
4696                                  SmallVectorImpl<llvm::Type *> &ArgList) const {
4697  llvm::IntegerType *IntTy =
4698    llvm::IntegerType::get(getVMContext(), MinABIStackAlignInBytes * 8);
4699
4700  // Add (TySize / MinABIStackAlignInBytes) args of IntTy.
4701  for (unsigned N = TySize / (MinABIStackAlignInBytes * 8); N; --N)
4702    ArgList.push_back(IntTy);
4703
4704  // If necessary, add one more integer type to ArgList.
4705  unsigned R = TySize % (MinABIStackAlignInBytes * 8);
4706
4707  if (R)
4708    ArgList.push_back(llvm::IntegerType::get(getVMContext(), R));
4709}
4710
4711// In N32/64, an aligned double precision floating point field is passed in
4712// a register.
4713llvm::Type* MipsABIInfo::HandleAggregates(QualType Ty, uint64_t TySize) const {
4714  SmallVector<llvm::Type*, 8> ArgList, IntArgList;
4715
4716  if (IsO32) {
4717    CoerceToIntArgs(TySize, ArgList);
4718    return llvm::StructType::get(getVMContext(), ArgList);
4719  }
4720
4721  if (Ty->isComplexType())
4722    return CGT.ConvertType(Ty);
4723
4724  const RecordType *RT = Ty->getAs<RecordType>();
4725
4726  // Unions/vectors are passed in integer registers.
4727  if (!RT || !RT->isStructureOrClassType()) {
4728    CoerceToIntArgs(TySize, ArgList);
4729    return llvm::StructType::get(getVMContext(), ArgList);
4730  }
4731
4732  const RecordDecl *RD = RT->getDecl();
4733  const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
4734  assert(!(TySize % 8) && "Size of structure must be multiple of 8.");
4735
4736  uint64_t LastOffset = 0;
4737  unsigned idx = 0;
4738  llvm::IntegerType *I64 = llvm::IntegerType::get(getVMContext(), 64);
4739
4740  // Iterate over fields in the struct/class and check if there are any aligned
4741  // double fields.
4742  for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
4743       i != e; ++i, ++idx) {
4744    const QualType Ty = i->getType();
4745    const BuiltinType *BT = Ty->getAs<BuiltinType>();
4746
4747    if (!BT || BT->getKind() != BuiltinType::Double)
4748      continue;
4749
4750    uint64_t Offset = Layout.getFieldOffset(idx);
4751    if (Offset % 64) // Ignore doubles that are not aligned.
4752      continue;
4753
4754    // Add ((Offset - LastOffset) / 64) args of type i64.
4755    for (unsigned j = (Offset - LastOffset) / 64; j > 0; --j)
4756      ArgList.push_back(I64);
4757
4758    // Add double type.
4759    ArgList.push_back(llvm::Type::getDoubleTy(getVMContext()));
4760    LastOffset = Offset + 64;
4761  }
4762
4763  CoerceToIntArgs(TySize - LastOffset, IntArgList);
4764  ArgList.append(IntArgList.begin(), IntArgList.end());
4765
4766  return llvm::StructType::get(getVMContext(), ArgList);
4767}
4768
4769llvm::Type *MipsABIInfo::getPaddingType(uint64_t Align, uint64_t Offset) const {
4770  assert((Offset % MinABIStackAlignInBytes) == 0);
4771
4772  if ((Align - 1) & Offset)
4773    return llvm::IntegerType::get(getVMContext(), MinABIStackAlignInBytes * 8);
4774
4775  return 0;
4776}
4777
4778ABIArgInfo
4779MipsABIInfo::classifyArgumentType(QualType Ty, uint64_t &Offset) const {
4780  uint64_t OrigOffset = Offset;
4781  uint64_t TySize = getContext().getTypeSize(Ty);
4782  uint64_t Align = getContext().getTypeAlign(Ty) / 8;
4783
4784  Align = std::min(std::max(Align, (uint64_t)MinABIStackAlignInBytes),
4785                   (uint64_t)StackAlignInBytes);
4786  Offset = llvm::RoundUpToAlignment(Offset, Align);
4787  Offset += llvm::RoundUpToAlignment(TySize, Align * 8) / 8;
4788
4789  if (isAggregateTypeForABI(Ty) || Ty->isVectorType()) {
4790    // Ignore empty aggregates.
4791    if (TySize == 0)
4792      return ABIArgInfo::getIgnore();
4793
4794    if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
4795      Offset = OrigOffset + MinABIStackAlignInBytes;
4796      return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
4797    }
4798
4799    // If we have reached here, aggregates are passed directly by coercing to
4800    // another structure type. Padding is inserted if the offset of the
4801    // aggregate is unaligned.
4802    return ABIArgInfo::getDirect(HandleAggregates(Ty, TySize), 0,
4803                                 getPaddingType(Align, OrigOffset));
4804  }
4805
4806  // Treat an enum type as its underlying type.
4807  if (const EnumType *EnumTy = Ty->getAs<EnumType>())
4808    Ty = EnumTy->getDecl()->getIntegerType();
4809
4810  if (Ty->isPromotableIntegerType())
4811    return ABIArgInfo::getExtend();
4812
4813  return ABIArgInfo::getDirect(0, 0,
4814                               IsO32 ? 0 : getPaddingType(Align, OrigOffset));
4815}
4816
4817llvm::Type*
4818MipsABIInfo::returnAggregateInRegs(QualType RetTy, uint64_t Size) const {
4819  const RecordType *RT = RetTy->getAs<RecordType>();
4820  SmallVector<llvm::Type*, 8> RTList;
4821
4822  if (RT && RT->isStructureOrClassType()) {
4823    const RecordDecl *RD = RT->getDecl();
4824    const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
4825    unsigned FieldCnt = Layout.getFieldCount();
4826
4827    // N32/64 returns struct/classes in floating point registers if the
4828    // following conditions are met:
4829    // 1. The size of the struct/class is no larger than 128-bit.
4830    // 2. The struct/class has one or two fields all of which are floating
4831    //    point types.
4832    // 3. The offset of the first field is zero (this follows what gcc does).
4833    //
4834    // Any other composite results are returned in integer registers.
4835    //
4836    if (FieldCnt && (FieldCnt <= 2) && !Layout.getFieldOffset(0)) {
4837      RecordDecl::field_iterator b = RD->field_begin(), e = RD->field_end();
4838      for (; b != e; ++b) {
4839        const BuiltinType *BT = b->getType()->getAs<BuiltinType>();
4840
4841        if (!BT || !BT->isFloatingPoint())
4842          break;
4843
4844        RTList.push_back(CGT.ConvertType(b->getType()));
4845      }
4846
4847      if (b == e)
4848        return llvm::StructType::get(getVMContext(), RTList,
4849                                     RD->hasAttr<PackedAttr>());
4850
4851      RTList.clear();
4852    }
4853  }
4854
4855  CoerceToIntArgs(Size, RTList);
4856  return llvm::StructType::get(getVMContext(), RTList);
4857}
4858
4859ABIArgInfo MipsABIInfo::classifyReturnType(QualType RetTy) const {
4860  uint64_t Size = getContext().getTypeSize(RetTy);
4861
4862  if (RetTy->isVoidType() || Size == 0)
4863    return ABIArgInfo::getIgnore();
4864
4865  if (isAggregateTypeForABI(RetTy) || RetTy->isVectorType()) {
4866    if (isRecordReturnIndirect(RetTy, getCXXABI()))
4867      return ABIArgInfo::getIndirect(0);
4868
4869    if (Size <= 128) {
4870      if (RetTy->isAnyComplexType())
4871        return ABIArgInfo::getDirect();
4872
4873      // O32 returns integer vectors in registers.
4874      if (IsO32 && RetTy->isVectorType() && !RetTy->hasFloatingRepresentation())
4875        return ABIArgInfo::getDirect(returnAggregateInRegs(RetTy, Size));
4876
4877      if (!IsO32)
4878        return ABIArgInfo::getDirect(returnAggregateInRegs(RetTy, Size));
4879    }
4880
4881    return ABIArgInfo::getIndirect(0);
4882  }
4883
4884  // Treat an enum type as its underlying type.
4885  if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
4886    RetTy = EnumTy->getDecl()->getIntegerType();
4887
4888  return (RetTy->isPromotableIntegerType() ?
4889          ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
4890}
4891
4892void MipsABIInfo::computeInfo(CGFunctionInfo &FI) const {
4893  ABIArgInfo &RetInfo = FI.getReturnInfo();
4894  RetInfo = classifyReturnType(FI.getReturnType());
4895
4896  // Check if a pointer to an aggregate is passed as a hidden argument.
4897  uint64_t Offset = RetInfo.isIndirect() ? MinABIStackAlignInBytes : 0;
4898
4899  for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
4900       it != ie; ++it)
4901    it->info = classifyArgumentType(it->type, Offset);
4902}
4903
4904llvm::Value* MipsABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
4905                                    CodeGenFunction &CGF) const {
4906  llvm::Type *BP = CGF.Int8PtrTy;
4907  llvm::Type *BPP = CGF.Int8PtrPtrTy;
4908
4909  CGBuilderTy &Builder = CGF.Builder;
4910  llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap");
4911  llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
4912  int64_t TypeAlign = getContext().getTypeAlign(Ty) / 8;
4913  llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
4914  llvm::Value *AddrTyped;
4915  unsigned PtrWidth = getTarget().getPointerWidth(0);
4916  llvm::IntegerType *IntTy = (PtrWidth == 32) ? CGF.Int32Ty : CGF.Int64Ty;
4917
4918  if (TypeAlign > MinABIStackAlignInBytes) {
4919    llvm::Value *AddrAsInt = CGF.Builder.CreatePtrToInt(Addr, IntTy);
4920    llvm::Value *Inc = llvm::ConstantInt::get(IntTy, TypeAlign - 1);
4921    llvm::Value *Mask = llvm::ConstantInt::get(IntTy, -TypeAlign);
4922    llvm::Value *Add = CGF.Builder.CreateAdd(AddrAsInt, Inc);
4923    llvm::Value *And = CGF.Builder.CreateAnd(Add, Mask);
4924    AddrTyped = CGF.Builder.CreateIntToPtr(And, PTy);
4925  }
4926  else
4927    AddrTyped = Builder.CreateBitCast(Addr, PTy);
4928
4929  llvm::Value *AlignedAddr = Builder.CreateBitCast(AddrTyped, BP);
4930  TypeAlign = std::max((unsigned)TypeAlign, MinABIStackAlignInBytes);
4931  uint64_t Offset =
4932    llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, TypeAlign);
4933  llvm::Value *NextAddr =
4934    Builder.CreateGEP(AlignedAddr, llvm::ConstantInt::get(IntTy, Offset),
4935                      "ap.next");
4936  Builder.CreateStore(NextAddr, VAListAddrAsBPP);
4937
4938  return AddrTyped;
4939}
4940
4941bool
4942MIPSTargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4943                                               llvm::Value *Address) const {
4944  // This information comes from gcc's implementation, which seems to
4945  // as canonical as it gets.
4946
4947  // Everything on MIPS is 4 bytes.  Double-precision FP registers
4948  // are aliased to pairs of single-precision FP registers.
4949  llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
4950
4951  // 0-31 are the general purpose registers, $0 - $31.
4952  // 32-63 are the floating-point registers, $f0 - $f31.
4953  // 64 and 65 are the multiply/divide registers, $hi and $lo.
4954  // 66 is the (notional, I think) register for signal-handler return.
4955  AssignToArrayRange(CGF.Builder, Address, Four8, 0, 65);
4956
4957  // 67-74 are the floating-point status registers, $fcc0 - $fcc7.
4958  // They are one bit wide and ignored here.
4959
4960  // 80-111 are the coprocessor 0 registers, $c0r0 - $c0r31.
4961  // (coprocessor 1 is the FP unit)
4962  // 112-143 are the coprocessor 2 registers, $c2r0 - $c2r31.
4963  // 144-175 are the coprocessor 3 registers, $c3r0 - $c3r31.
4964  // 176-181 are the DSP accumulator registers.
4965  AssignToArrayRange(CGF.Builder, Address, Four8, 80, 181);
4966  return false;
4967}
4968
4969//===----------------------------------------------------------------------===//
4970// TCE ABI Implementation (see http://tce.cs.tut.fi). Uses mostly the defaults.
4971// Currently subclassed only to implement custom OpenCL C function attribute
4972// handling.
4973//===----------------------------------------------------------------------===//
4974
4975namespace {
4976
4977class TCETargetCodeGenInfo : public DefaultTargetCodeGenInfo {
4978public:
4979  TCETargetCodeGenInfo(CodeGenTypes &CGT)
4980    : DefaultTargetCodeGenInfo(CGT) {}
4981
4982  virtual void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
4983                                   CodeGen::CodeGenModule &M) const;
4984};
4985
4986void TCETargetCodeGenInfo::SetTargetAttributes(const Decl *D,
4987                                               llvm::GlobalValue *GV,
4988                                               CodeGen::CodeGenModule &M) const {
4989  const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
4990  if (!FD) return;
4991
4992  llvm::Function *F = cast<llvm::Function>(GV);
4993
4994  if (M.getLangOpts().OpenCL) {
4995    if (FD->hasAttr<OpenCLKernelAttr>()) {
4996      // OpenCL C Kernel functions are not subject to inlining
4997      F->addFnAttr(llvm::Attribute::NoInline);
4998
4999      if (FD->hasAttr<ReqdWorkGroupSizeAttr>()) {
5000
5001        // Convert the reqd_work_group_size() attributes to metadata.
5002        llvm::LLVMContext &Context = F->getContext();
5003        llvm::NamedMDNode *OpenCLMetadata =
5004            M.getModule().getOrInsertNamedMetadata("opencl.kernel_wg_size_info");
5005
5006        SmallVector<llvm::Value*, 5> Operands;
5007        Operands.push_back(F);
5008
5009        Operands.push_back(llvm::Constant::getIntegerValue(M.Int32Ty,
5010                             llvm::APInt(32,
5011                             FD->getAttr<ReqdWorkGroupSizeAttr>()->getXDim())));
5012        Operands.push_back(llvm::Constant::getIntegerValue(M.Int32Ty,
5013                             llvm::APInt(32,
5014                               FD->getAttr<ReqdWorkGroupSizeAttr>()->getYDim())));
5015        Operands.push_back(llvm::Constant::getIntegerValue(M.Int32Ty,
5016                             llvm::APInt(32,
5017                               FD->getAttr<ReqdWorkGroupSizeAttr>()->getZDim())));
5018
5019        // Add a boolean constant operand for "required" (true) or "hint" (false)
5020        // for implementing the work_group_size_hint attr later. Currently
5021        // always true as the hint is not yet implemented.
5022        Operands.push_back(llvm::ConstantInt::getTrue(Context));
5023        OpenCLMetadata->addOperand(llvm::MDNode::get(Context, Operands));
5024      }
5025    }
5026  }
5027}
5028
5029}
5030
5031//===----------------------------------------------------------------------===//
5032// Hexagon ABI Implementation
5033//===----------------------------------------------------------------------===//
5034
5035namespace {
5036
5037class HexagonABIInfo : public ABIInfo {
5038
5039
5040public:
5041  HexagonABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
5042
5043private:
5044
5045  ABIArgInfo classifyReturnType(QualType RetTy) const;
5046  ABIArgInfo classifyArgumentType(QualType RetTy) const;
5047
5048  virtual void computeInfo(CGFunctionInfo &FI) const;
5049
5050  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
5051                                 CodeGenFunction &CGF) const;
5052};
5053
5054class HexagonTargetCodeGenInfo : public TargetCodeGenInfo {
5055public:
5056  HexagonTargetCodeGenInfo(CodeGenTypes &CGT)
5057    :TargetCodeGenInfo(new HexagonABIInfo(CGT)) {}
5058
5059  int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const {
5060    return 29;
5061  }
5062};
5063
5064}
5065
5066void HexagonABIInfo::computeInfo(CGFunctionInfo &FI) const {
5067  FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
5068  for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
5069       it != ie; ++it)
5070    it->info = classifyArgumentType(it->type);
5071}
5072
5073ABIArgInfo HexagonABIInfo::classifyArgumentType(QualType Ty) const {
5074  if (!isAggregateTypeForABI(Ty)) {
5075    // Treat an enum type as its underlying type.
5076    if (const EnumType *EnumTy = Ty->getAs<EnumType>())
5077      Ty = EnumTy->getDecl()->getIntegerType();
5078
5079    return (Ty->isPromotableIntegerType() ?
5080            ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
5081  }
5082
5083  // Ignore empty records.
5084  if (isEmptyRecord(getContext(), Ty, true))
5085    return ABIArgInfo::getIgnore();
5086
5087  if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
5088    return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
5089
5090  uint64_t Size = getContext().getTypeSize(Ty);
5091  if (Size > 64)
5092    return ABIArgInfo::getIndirect(0, /*ByVal=*/true);
5093    // Pass in the smallest viable integer type.
5094  else if (Size > 32)
5095      return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext()));
5096  else if (Size > 16)
5097      return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
5098  else if (Size > 8)
5099      return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
5100  else
5101      return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
5102}
5103
5104ABIArgInfo HexagonABIInfo::classifyReturnType(QualType RetTy) const {
5105  if (RetTy->isVoidType())
5106    return ABIArgInfo::getIgnore();
5107
5108  // Large vector types should be returned via memory.
5109  if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 64)
5110    return ABIArgInfo::getIndirect(0);
5111
5112  if (!isAggregateTypeForABI(RetTy)) {
5113    // Treat an enum type as its underlying type.
5114    if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
5115      RetTy = EnumTy->getDecl()->getIntegerType();
5116
5117    return (RetTy->isPromotableIntegerType() ?
5118            ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
5119  }
5120
5121  // Structures with either a non-trivial destructor or a non-trivial
5122  // copy constructor are always indirect.
5123  if (isRecordReturnIndirect(RetTy, getCXXABI()))
5124    return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
5125
5126  if (isEmptyRecord(getContext(), RetTy, true))
5127    return ABIArgInfo::getIgnore();
5128
5129  // Aggregates <= 8 bytes are returned in r0; other aggregates
5130  // are returned indirectly.
5131  uint64_t Size = getContext().getTypeSize(RetTy);
5132  if (Size <= 64) {
5133    // Return in the smallest viable integer type.
5134    if (Size <= 8)
5135      return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
5136    if (Size <= 16)
5137      return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
5138    if (Size <= 32)
5139      return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
5140    return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext()));
5141  }
5142
5143  return ABIArgInfo::getIndirect(0, /*ByVal=*/true);
5144}
5145
5146llvm::Value *HexagonABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
5147                                       CodeGenFunction &CGF) const {
5148  // FIXME: Need to handle alignment
5149  llvm::Type *BPP = CGF.Int8PtrPtrTy;
5150
5151  CGBuilderTy &Builder = CGF.Builder;
5152  llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP,
5153                                                       "ap");
5154  llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
5155  llvm::Type *PTy =
5156    llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
5157  llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
5158
5159  uint64_t Offset =
5160    llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 4);
5161  llvm::Value *NextAddr =
5162    Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
5163                      "ap.next");
5164  Builder.CreateStore(NextAddr, VAListAddrAsBPP);
5165
5166  return AddrTyped;
5167}
5168
5169
5170//===----------------------------------------------------------------------===//
5171// SPARC v9 ABI Implementation.
5172// Based on the SPARC Compliance Definition version 2.4.1.
5173//
5174// Function arguments a mapped to a nominal "parameter array" and promoted to
5175// registers depending on their type. Each argument occupies 8 or 16 bytes in
5176// the array, structs larger than 16 bytes are passed indirectly.
5177//
5178// One case requires special care:
5179//
5180//   struct mixed {
5181//     int i;
5182//     float f;
5183//   };
5184//
5185// When a struct mixed is passed by value, it only occupies 8 bytes in the
5186// parameter array, but the int is passed in an integer register, and the float
5187// is passed in a floating point register. This is represented as two arguments
5188// with the LLVM IR inreg attribute:
5189//
5190//   declare void f(i32 inreg %i, float inreg %f)
5191//
5192// The code generator will only allocate 4 bytes from the parameter array for
5193// the inreg arguments. All other arguments are allocated a multiple of 8
5194// bytes.
5195//
5196namespace {
5197class SparcV9ABIInfo : public ABIInfo {
5198public:
5199  SparcV9ABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
5200
5201private:
5202  ABIArgInfo classifyType(QualType RetTy, unsigned SizeLimit) const;
5203  virtual void computeInfo(CGFunctionInfo &FI) const;
5204  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
5205                                 CodeGenFunction &CGF) const;
5206
5207  // Coercion type builder for structs passed in registers. The coercion type
5208  // serves two purposes:
5209  //
5210  // 1. Pad structs to a multiple of 64 bits, so they are passed 'left-aligned'
5211  //    in registers.
5212  // 2. Expose aligned floating point elements as first-level elements, so the
5213  //    code generator knows to pass them in floating point registers.
5214  //
5215  // We also compute the InReg flag which indicates that the struct contains
5216  // aligned 32-bit floats.
5217  //
5218  struct CoerceBuilder {
5219    llvm::LLVMContext &Context;
5220    const llvm::DataLayout &DL;
5221    SmallVector<llvm::Type*, 8> Elems;
5222    uint64_t Size;
5223    bool InReg;
5224
5225    CoerceBuilder(llvm::LLVMContext &c, const llvm::DataLayout &dl)
5226      : Context(c), DL(dl), Size(0), InReg(false) {}
5227
5228    // Pad Elems with integers until Size is ToSize.
5229    void pad(uint64_t ToSize) {
5230      assert(ToSize >= Size && "Cannot remove elements");
5231      if (ToSize == Size)
5232        return;
5233
5234      // Finish the current 64-bit word.
5235      uint64_t Aligned = llvm::RoundUpToAlignment(Size, 64);
5236      if (Aligned > Size && Aligned <= ToSize) {
5237        Elems.push_back(llvm::IntegerType::get(Context, Aligned - Size));
5238        Size = Aligned;
5239      }
5240
5241      // Add whole 64-bit words.
5242      while (Size + 64 <= ToSize) {
5243        Elems.push_back(llvm::Type::getInt64Ty(Context));
5244        Size += 64;
5245      }
5246
5247      // Final in-word padding.
5248      if (Size < ToSize) {
5249        Elems.push_back(llvm::IntegerType::get(Context, ToSize - Size));
5250        Size = ToSize;
5251      }
5252    }
5253
5254    // Add a floating point element at Offset.
5255    void addFloat(uint64_t Offset, llvm::Type *Ty, unsigned Bits) {
5256      // Unaligned floats are treated as integers.
5257      if (Offset % Bits)
5258        return;
5259      // The InReg flag is only required if there are any floats < 64 bits.
5260      if (Bits < 64)
5261        InReg = true;
5262      pad(Offset);
5263      Elems.push_back(Ty);
5264      Size = Offset + Bits;
5265    }
5266
5267    // Add a struct type to the coercion type, starting at Offset (in bits).
5268    void addStruct(uint64_t Offset, llvm::StructType *StrTy) {
5269      const llvm::StructLayout *Layout = DL.getStructLayout(StrTy);
5270      for (unsigned i = 0, e = StrTy->getNumElements(); i != e; ++i) {
5271        llvm::Type *ElemTy = StrTy->getElementType(i);
5272        uint64_t ElemOffset = Offset + Layout->getElementOffsetInBits(i);
5273        switch (ElemTy->getTypeID()) {
5274        case llvm::Type::StructTyID:
5275          addStruct(ElemOffset, cast<llvm::StructType>(ElemTy));
5276          break;
5277        case llvm::Type::FloatTyID:
5278          addFloat(ElemOffset, ElemTy, 32);
5279          break;
5280        case llvm::Type::DoubleTyID:
5281          addFloat(ElemOffset, ElemTy, 64);
5282          break;
5283        case llvm::Type::FP128TyID:
5284          addFloat(ElemOffset, ElemTy, 128);
5285          break;
5286        case llvm::Type::PointerTyID:
5287          if (ElemOffset % 64 == 0) {
5288            pad(ElemOffset);
5289            Elems.push_back(ElemTy);
5290            Size += 64;
5291          }
5292          break;
5293        default:
5294          break;
5295        }
5296      }
5297    }
5298
5299    // Check if Ty is a usable substitute for the coercion type.
5300    bool isUsableType(llvm::StructType *Ty) const {
5301      if (Ty->getNumElements() != Elems.size())
5302        return false;
5303      for (unsigned i = 0, e = Elems.size(); i != e; ++i)
5304        if (Elems[i] != Ty->getElementType(i))
5305          return false;
5306      return true;
5307    }
5308
5309    // Get the coercion type as a literal struct type.
5310    llvm::Type *getType() const {
5311      if (Elems.size() == 1)
5312        return Elems.front();
5313      else
5314        return llvm::StructType::get(Context, Elems);
5315    }
5316  };
5317};
5318} // end anonymous namespace
5319
5320ABIArgInfo
5321SparcV9ABIInfo::classifyType(QualType Ty, unsigned SizeLimit) const {
5322  if (Ty->isVoidType())
5323    return ABIArgInfo::getIgnore();
5324
5325  uint64_t Size = getContext().getTypeSize(Ty);
5326
5327  // Anything too big to fit in registers is passed with an explicit indirect
5328  // pointer / sret pointer.
5329  if (Size > SizeLimit)
5330    return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
5331
5332  // Treat an enum type as its underlying type.
5333  if (const EnumType *EnumTy = Ty->getAs<EnumType>())
5334    Ty = EnumTy->getDecl()->getIntegerType();
5335
5336  // Integer types smaller than a register are extended.
5337  if (Size < 64 && Ty->isIntegerType())
5338    return ABIArgInfo::getExtend();
5339
5340  // Other non-aggregates go in registers.
5341  if (!isAggregateTypeForABI(Ty))
5342    return ABIArgInfo::getDirect();
5343
5344  // This is a small aggregate type that should be passed in registers.
5345  // Build a coercion type from the LLVM struct type.
5346  llvm::StructType *StrTy = dyn_cast<llvm::StructType>(CGT.ConvertType(Ty));
5347  if (!StrTy)
5348    return ABIArgInfo::getDirect();
5349
5350  CoerceBuilder CB(getVMContext(), getDataLayout());
5351  CB.addStruct(0, StrTy);
5352  CB.pad(llvm::RoundUpToAlignment(CB.DL.getTypeSizeInBits(StrTy), 64));
5353
5354  // Try to use the original type for coercion.
5355  llvm::Type *CoerceTy = CB.isUsableType(StrTy) ? StrTy : CB.getType();
5356
5357  if (CB.InReg)
5358    return ABIArgInfo::getDirectInReg(CoerceTy);
5359  else
5360    return ABIArgInfo::getDirect(CoerceTy);
5361}
5362
5363llvm::Value *SparcV9ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
5364                                       CodeGenFunction &CGF) const {
5365  ABIArgInfo AI = classifyType(Ty, 16 * 8);
5366  llvm::Type *ArgTy = CGT.ConvertType(Ty);
5367  if (AI.canHaveCoerceToType() && !AI.getCoerceToType())
5368    AI.setCoerceToType(ArgTy);
5369
5370  llvm::Type *BPP = CGF.Int8PtrPtrTy;
5371  CGBuilderTy &Builder = CGF.Builder;
5372  llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap");
5373  llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
5374  llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy);
5375  llvm::Value *ArgAddr;
5376  unsigned Stride;
5377
5378  switch (AI.getKind()) {
5379  case ABIArgInfo::Expand:
5380    llvm_unreachable("Unsupported ABI kind for va_arg");
5381
5382  case ABIArgInfo::Extend:
5383    Stride = 8;
5384    ArgAddr = Builder
5385      .CreateConstGEP1_32(Addr, 8 - getDataLayout().getTypeAllocSize(ArgTy),
5386                          "extend");
5387    break;
5388
5389  case ABIArgInfo::Direct:
5390    Stride = getDataLayout().getTypeAllocSize(AI.getCoerceToType());
5391    ArgAddr = Addr;
5392    break;
5393
5394  case ABIArgInfo::Indirect:
5395    Stride = 8;
5396    ArgAddr = Builder.CreateBitCast(Addr,
5397                                    llvm::PointerType::getUnqual(ArgPtrTy),
5398                                    "indirect");
5399    ArgAddr = Builder.CreateLoad(ArgAddr, "indirect.arg");
5400    break;
5401
5402  case ABIArgInfo::Ignore:
5403    return llvm::UndefValue::get(ArgPtrTy);
5404  }
5405
5406  // Update VAList.
5407  Addr = Builder.CreateConstGEP1_32(Addr, Stride, "ap.next");
5408  Builder.CreateStore(Addr, VAListAddrAsBPP);
5409
5410  return Builder.CreatePointerCast(ArgAddr, ArgPtrTy, "arg.addr");
5411}
5412
5413void SparcV9ABIInfo::computeInfo(CGFunctionInfo &FI) const {
5414  FI.getReturnInfo() = classifyType(FI.getReturnType(), 32 * 8);
5415  for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
5416       it != ie; ++it)
5417    it->info = classifyType(it->type, 16 * 8);
5418}
5419
5420namespace {
5421class SparcV9TargetCodeGenInfo : public TargetCodeGenInfo {
5422public:
5423  SparcV9TargetCodeGenInfo(CodeGenTypes &CGT)
5424    : TargetCodeGenInfo(new SparcV9ABIInfo(CGT)) {}
5425};
5426} // end anonymous namespace
5427
5428
5429//===----------------------------------------------------------------------===//
5430// Xcore ABI Implementation
5431//===----------------------------------------------------------------------===//
5432namespace {
5433class XCoreABIInfo : public DefaultABIInfo {
5434public:
5435  XCoreABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
5436  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
5437                                 CodeGenFunction &CGF) const;
5438};
5439
5440class XcoreTargetCodeGenInfo : public TargetCodeGenInfo {
5441public:
5442  XcoreTargetCodeGenInfo(CodeGenTypes &CGT)
5443    :TargetCodeGenInfo(new XCoreABIInfo(CGT)) {}
5444};
5445} // End anonymous namespace.
5446
5447llvm::Value *XCoreABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
5448                                     CodeGenFunction &CGF) const {
5449  CGBuilderTy &Builder = CGF.Builder;
5450
5451  // Get the VAList.
5452  llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr,
5453                                                       CGF.Int8PtrPtrTy);
5454  llvm::Value *AP = Builder.CreateLoad(VAListAddrAsBPP);
5455
5456  // Handle the argument.
5457  ABIArgInfo AI = classifyArgumentType(Ty);
5458  llvm::Type *ArgTy = CGT.ConvertType(Ty);
5459  if (AI.canHaveCoerceToType() && !AI.getCoerceToType())
5460    AI.setCoerceToType(ArgTy);
5461  llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy);
5462  llvm::Value *Val;
5463  uint64_t ArgSize = 0;
5464  switch (AI.getKind()) {
5465  case ABIArgInfo::Expand:
5466    llvm_unreachable("Unsupported ABI kind for va_arg");
5467  case ABIArgInfo::Ignore:
5468    Val = llvm::UndefValue::get(ArgPtrTy);
5469    ArgSize = 0;
5470    break;
5471  case ABIArgInfo::Extend:
5472  case ABIArgInfo::Direct:
5473    Val = Builder.CreatePointerCast(AP, ArgPtrTy);
5474    ArgSize = getDataLayout().getTypeAllocSize(AI.getCoerceToType());
5475    if (ArgSize < 4)
5476      ArgSize = 4;
5477    break;
5478  case ABIArgInfo::Indirect:
5479    llvm::Value *ArgAddr;
5480    ArgAddr = Builder.CreateBitCast(AP, llvm::PointerType::getUnqual(ArgPtrTy));
5481    ArgAddr = Builder.CreateLoad(ArgAddr);
5482    Val = Builder.CreatePointerCast(ArgAddr, ArgPtrTy);
5483    ArgSize = 4;
5484    break;
5485  }
5486
5487  // Increment the VAList.
5488  if (ArgSize) {
5489    llvm::Value *APN = Builder.CreateConstGEP1_32(AP, ArgSize);
5490    Builder.CreateStore(APN, VAListAddrAsBPP);
5491  }
5492  return Val;
5493}
5494
5495//===----------------------------------------------------------------------===//
5496// Driver code
5497//===----------------------------------------------------------------------===//
5498
5499const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() {
5500  if (TheTargetCodeGenInfo)
5501    return *TheTargetCodeGenInfo;
5502
5503  const llvm::Triple &Triple = getTarget().getTriple();
5504  switch (Triple.getArch()) {
5505  default:
5506    return *(TheTargetCodeGenInfo = new DefaultTargetCodeGenInfo(Types));
5507
5508  case llvm::Triple::le32:
5509    return *(TheTargetCodeGenInfo = new PNaClTargetCodeGenInfo(Types));
5510  case llvm::Triple::mips:
5511  case llvm::Triple::mipsel:
5512    return *(TheTargetCodeGenInfo = new MIPSTargetCodeGenInfo(Types, true));
5513
5514  case llvm::Triple::mips64:
5515  case llvm::Triple::mips64el:
5516    return *(TheTargetCodeGenInfo = new MIPSTargetCodeGenInfo(Types, false));
5517
5518  case llvm::Triple::aarch64:
5519    return *(TheTargetCodeGenInfo = new AArch64TargetCodeGenInfo(Types));
5520
5521  case llvm::Triple::arm:
5522  case llvm::Triple::thumb:
5523    {
5524      ARMABIInfo::ABIKind Kind = ARMABIInfo::AAPCS;
5525      if (strcmp(getTarget().getABI(), "apcs-gnu") == 0)
5526        Kind = ARMABIInfo::APCS;
5527      else if (CodeGenOpts.FloatABI == "hard" ||
5528               (CodeGenOpts.FloatABI != "soft" &&
5529                Triple.getEnvironment() == llvm::Triple::GNUEABIHF))
5530        Kind = ARMABIInfo::AAPCS_VFP;
5531
5532      switch (Triple.getOS()) {
5533        case llvm::Triple::NaCl:
5534          return *(TheTargetCodeGenInfo =
5535                   new NaClARMTargetCodeGenInfo(Types, Kind));
5536        default:
5537          return *(TheTargetCodeGenInfo =
5538                   new ARMTargetCodeGenInfo(Types, Kind));
5539      }
5540    }
5541
5542  case llvm::Triple::ppc:
5543    return *(TheTargetCodeGenInfo = new PPC32TargetCodeGenInfo(Types));
5544  case llvm::Triple::ppc64:
5545    if (Triple.isOSBinFormatELF())
5546      return *(TheTargetCodeGenInfo = new PPC64_SVR4_TargetCodeGenInfo(Types));
5547    else
5548      return *(TheTargetCodeGenInfo = new PPC64TargetCodeGenInfo(Types));
5549  case llvm::Triple::ppc64le:
5550    assert(Triple.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!");
5551    return *(TheTargetCodeGenInfo = new PPC64_SVR4_TargetCodeGenInfo(Types));
5552
5553  case llvm::Triple::nvptx:
5554  case llvm::Triple::nvptx64:
5555    return *(TheTargetCodeGenInfo = new NVPTXTargetCodeGenInfo(Types));
5556
5557  case llvm::Triple::msp430:
5558    return *(TheTargetCodeGenInfo = new MSP430TargetCodeGenInfo(Types));
5559
5560  case llvm::Triple::systemz:
5561    return *(TheTargetCodeGenInfo = new SystemZTargetCodeGenInfo(Types));
5562
5563  case llvm::Triple::tce:
5564    return *(TheTargetCodeGenInfo = new TCETargetCodeGenInfo(Types));
5565
5566  case llvm::Triple::x86: {
5567    bool IsDarwinVectorABI = Triple.isOSDarwin();
5568    bool IsSmallStructInRegABI =
5569        X86_32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts);
5570    bool IsWin32FloatStructABI = (Triple.getOS() == llvm::Triple::Win32);
5571
5572    if (Triple.getOS() == llvm::Triple::Win32) {
5573      return *(TheTargetCodeGenInfo =
5574               new WinX86_32TargetCodeGenInfo(Types,
5575                                              IsDarwinVectorABI, IsSmallStructInRegABI,
5576                                              IsWin32FloatStructABI,
5577                                              CodeGenOpts.NumRegisterParameters));
5578    } else {
5579      return *(TheTargetCodeGenInfo =
5580               new X86_32TargetCodeGenInfo(Types,
5581                                           IsDarwinVectorABI, IsSmallStructInRegABI,
5582                                           IsWin32FloatStructABI,
5583                                           CodeGenOpts.NumRegisterParameters));
5584    }
5585  }
5586
5587  case llvm::Triple::x86_64: {
5588    bool HasAVX = strcmp(getTarget().getABI(), "avx") == 0;
5589
5590    switch (Triple.getOS()) {
5591    case llvm::Triple::Win32:
5592    case llvm::Triple::MinGW32:
5593    case llvm::Triple::Cygwin:
5594      return *(TheTargetCodeGenInfo = new WinX86_64TargetCodeGenInfo(Types));
5595    case llvm::Triple::NaCl:
5596      return *(TheTargetCodeGenInfo = new NaClX86_64TargetCodeGenInfo(Types,
5597                                                                      HasAVX));
5598    default:
5599      return *(TheTargetCodeGenInfo = new X86_64TargetCodeGenInfo(Types,
5600                                                                  HasAVX));
5601    }
5602  }
5603  case llvm::Triple::hexagon:
5604    return *(TheTargetCodeGenInfo = new HexagonTargetCodeGenInfo(Types));
5605  case llvm::Triple::sparcv9:
5606    return *(TheTargetCodeGenInfo = new SparcV9TargetCodeGenInfo(Types));
5607  case llvm::Triple::xcore:
5608    return *(TheTargetCodeGenInfo = new XcoreTargetCodeGenInfo(Types));
5609
5610  }
5611}
5612