TargetInfo.cpp revision fd1ba91e009ff7775744627f2855ffbfe713333e
1//===---- TargetInfo.cpp - Encapsulate target details -----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// These classes wrap the information about a call or function
11// definition used to handle ABI compliancy.
12//
13//===----------------------------------------------------------------------===//
14
15#include "TargetInfo.h"
16#include "ABIInfo.h"
17#include "CodeGenFunction.h"
18#include "clang/AST/RecordLayout.h"
19#include "clang/Frontend/CodeGenOptions.h"
20#include "llvm/Type.h"
21#include "llvm/DataLayout.h"
22#include "llvm/ADT/Triple.h"
23#include "llvm/Support/raw_ostream.h"
24using namespace clang;
25using namespace CodeGen;
26
27static void AssignToArrayRange(CodeGen::CGBuilderTy &Builder,
28                               llvm::Value *Array,
29                               llvm::Value *Value,
30                               unsigned FirstIndex,
31                               unsigned LastIndex) {
32  // Alternatively, we could emit this as a loop in the source.
33  for (unsigned I = FirstIndex; I <= LastIndex; ++I) {
34    llvm::Value *Cell = Builder.CreateConstInBoundsGEP1_32(Array, I);
35    Builder.CreateStore(Value, Cell);
36  }
37}
38
39static bool isAggregateTypeForABI(QualType T) {
40  return CodeGenFunction::hasAggregateLLVMType(T) ||
41         T->isMemberFunctionPointerType();
42}
43
44ABIInfo::~ABIInfo() {}
45
46ASTContext &ABIInfo::getContext() const {
47  return CGT.getContext();
48}
49
50llvm::LLVMContext &ABIInfo::getVMContext() const {
51  return CGT.getLLVMContext();
52}
53
54const llvm::DataLayout &ABIInfo::getDataLayout() const {
55  return CGT.getDataLayout();
56}
57
58
59void ABIArgInfo::dump() const {
60  raw_ostream &OS = llvm::errs();
61  OS << "(ABIArgInfo Kind=";
62  switch (TheKind) {
63  case Direct:
64    OS << "Direct Type=";
65    if (llvm::Type *Ty = getCoerceToType())
66      Ty->print(OS);
67    else
68      OS << "null";
69    break;
70  case Extend:
71    OS << "Extend";
72    break;
73  case Ignore:
74    OS << "Ignore";
75    break;
76  case Indirect:
77    OS << "Indirect Align=" << getIndirectAlign()
78       << " ByVal=" << getIndirectByVal()
79       << " Realign=" << getIndirectRealign();
80    break;
81  case Expand:
82    OS << "Expand";
83    break;
84  }
85  OS << ")\n";
86}
87
88TargetCodeGenInfo::~TargetCodeGenInfo() { delete Info; }
89
90// If someone can figure out a general rule for this, that would be great.
91// It's probably just doomed to be platform-dependent, though.
92unsigned TargetCodeGenInfo::getSizeOfUnwindException() const {
93  // Verified for:
94  //   x86-64     FreeBSD, Linux, Darwin
95  //   x86-32     FreeBSD, Linux, Darwin
96  //   PowerPC    Linux, Darwin
97  //   ARM        Darwin (*not* EABI)
98  return 32;
99}
100
101bool TargetCodeGenInfo::isNoProtoCallVariadic(const CallArgList &args,
102                                     const FunctionNoProtoType *fnType) const {
103  // The following conventions are known to require this to be false:
104  //   x86_stdcall
105  //   MIPS
106  // For everything else, we just prefer false unless we opt out.
107  return false;
108}
109
110static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays);
111
112/// isEmptyField - Return true iff a the field is "empty", that is it
113/// is an unnamed bit-field or an (array of) empty record(s).
114static bool isEmptyField(ASTContext &Context, const FieldDecl *FD,
115                         bool AllowArrays) {
116  if (FD->isUnnamedBitfield())
117    return true;
118
119  QualType FT = FD->getType();
120
121  // Constant arrays of empty records count as empty, strip them off.
122  // Constant arrays of zero length always count as empty.
123  if (AllowArrays)
124    while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
125      if (AT->getSize() == 0)
126        return true;
127      FT = AT->getElementType();
128    }
129
130  const RecordType *RT = FT->getAs<RecordType>();
131  if (!RT)
132    return false;
133
134  // C++ record fields are never empty, at least in the Itanium ABI.
135  //
136  // FIXME: We should use a predicate for whether this behavior is true in the
137  // current ABI.
138  if (isa<CXXRecordDecl>(RT->getDecl()))
139    return false;
140
141  return isEmptyRecord(Context, FT, AllowArrays);
142}
143
144/// isEmptyRecord - Return true iff a structure contains only empty
145/// fields. Note that a structure with a flexible array member is not
146/// considered empty.
147static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays) {
148  const RecordType *RT = T->getAs<RecordType>();
149  if (!RT)
150    return 0;
151  const RecordDecl *RD = RT->getDecl();
152  if (RD->hasFlexibleArrayMember())
153    return false;
154
155  // If this is a C++ record, check the bases first.
156  if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
157    for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
158           e = CXXRD->bases_end(); i != e; ++i)
159      if (!isEmptyRecord(Context, i->getType(), true))
160        return false;
161
162  for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
163         i != e; ++i)
164    if (!isEmptyField(Context, *i, AllowArrays))
165      return false;
166  return true;
167}
168
169/// hasNonTrivialDestructorOrCopyConstructor - Determine if a type has either
170/// a non-trivial destructor or a non-trivial copy constructor.
171static bool hasNonTrivialDestructorOrCopyConstructor(const RecordType *RT) {
172  const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
173  if (!RD)
174    return false;
175
176  return !RD->hasTrivialDestructor() || !RD->hasTrivialCopyConstructor();
177}
178
179/// isRecordWithNonTrivialDestructorOrCopyConstructor - Determine if a type is
180/// a record type with either a non-trivial destructor or a non-trivial copy
181/// constructor.
182static bool isRecordWithNonTrivialDestructorOrCopyConstructor(QualType T) {
183  const RecordType *RT = T->getAs<RecordType>();
184  if (!RT)
185    return false;
186
187  return hasNonTrivialDestructorOrCopyConstructor(RT);
188}
189
190/// isSingleElementStruct - Determine if a structure is a "single
191/// element struct", i.e. it has exactly one non-empty field or
192/// exactly one field which is itself a single element
193/// struct. Structures with flexible array members are never
194/// considered single element structs.
195///
196/// \return The field declaration for the single non-empty field, if
197/// it exists.
198static const Type *isSingleElementStruct(QualType T, ASTContext &Context) {
199  const RecordType *RT = T->getAsStructureType();
200  if (!RT)
201    return 0;
202
203  const RecordDecl *RD = RT->getDecl();
204  if (RD->hasFlexibleArrayMember())
205    return 0;
206
207  const Type *Found = 0;
208
209  // If this is a C++ record, check the bases first.
210  if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
211    for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
212           e = CXXRD->bases_end(); i != e; ++i) {
213      // Ignore empty records.
214      if (isEmptyRecord(Context, i->getType(), true))
215        continue;
216
217      // If we already found an element then this isn't a single-element struct.
218      if (Found)
219        return 0;
220
221      // If this is non-empty and not a single element struct, the composite
222      // cannot be a single element struct.
223      Found = isSingleElementStruct(i->getType(), Context);
224      if (!Found)
225        return 0;
226    }
227  }
228
229  // Check for single element.
230  for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
231         i != e; ++i) {
232    const FieldDecl *FD = *i;
233    QualType FT = FD->getType();
234
235    // Ignore empty fields.
236    if (isEmptyField(Context, FD, true))
237      continue;
238
239    // If we already found an element then this isn't a single-element
240    // struct.
241    if (Found)
242      return 0;
243
244    // Treat single element arrays as the element.
245    while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
246      if (AT->getSize().getZExtValue() != 1)
247        break;
248      FT = AT->getElementType();
249    }
250
251    if (!isAggregateTypeForABI(FT)) {
252      Found = FT.getTypePtr();
253    } else {
254      Found = isSingleElementStruct(FT, Context);
255      if (!Found)
256        return 0;
257    }
258  }
259
260  // We don't consider a struct a single-element struct if it has
261  // padding beyond the element type.
262  if (Found && Context.getTypeSize(Found) != Context.getTypeSize(T))
263    return 0;
264
265  return Found;
266}
267
268static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) {
269  if (!Ty->getAs<BuiltinType>() && !Ty->hasPointerRepresentation() &&
270      !Ty->isAnyComplexType() && !Ty->isEnumeralType() &&
271      !Ty->isBlockPointerType())
272    return false;
273
274  uint64_t Size = Context.getTypeSize(Ty);
275  return Size == 32 || Size == 64;
276}
277
278/// canExpandIndirectArgument - Test whether an argument type which is to be
279/// passed indirectly (on the stack) would have the equivalent layout if it was
280/// expanded into separate arguments. If so, we prefer to do the latter to avoid
281/// inhibiting optimizations.
282///
283// FIXME: This predicate is missing many cases, currently it just follows
284// llvm-gcc (checks that all fields are 32-bit or 64-bit primitive types). We
285// should probably make this smarter, or better yet make the LLVM backend
286// capable of handling it.
287static bool canExpandIndirectArgument(QualType Ty, ASTContext &Context) {
288  // We can only expand structure types.
289  const RecordType *RT = Ty->getAs<RecordType>();
290  if (!RT)
291    return false;
292
293  // We can only expand (C) structures.
294  //
295  // FIXME: This needs to be generalized to handle classes as well.
296  const RecordDecl *RD = RT->getDecl();
297  if (!RD->isStruct() || isa<CXXRecordDecl>(RD))
298    return false;
299
300  uint64_t Size = 0;
301
302  for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
303         i != e; ++i) {
304    const FieldDecl *FD = *i;
305
306    if (!is32Or64BitBasicType(FD->getType(), Context))
307      return false;
308
309    // FIXME: Reject bit-fields wholesale; there are two problems, we don't know
310    // how to expand them yet, and the predicate for telling if a bitfield still
311    // counts as "basic" is more complicated than what we were doing previously.
312    if (FD->isBitField())
313      return false;
314
315    Size += Context.getTypeSize(FD->getType());
316  }
317
318  // Make sure there are not any holes in the struct.
319  if (Size != Context.getTypeSize(Ty))
320    return false;
321
322  return true;
323}
324
325namespace {
326/// DefaultABIInfo - The default implementation for ABI specific
327/// details. This implementation provides information which results in
328/// self-consistent and sensible LLVM IR generation, but does not
329/// conform to any particular ABI.
330class DefaultABIInfo : public ABIInfo {
331public:
332  DefaultABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
333
334  ABIArgInfo classifyReturnType(QualType RetTy) const;
335  ABIArgInfo classifyArgumentType(QualType RetTy) const;
336
337  virtual void computeInfo(CGFunctionInfo &FI) const {
338    FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
339    for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
340         it != ie; ++it)
341      it->info = classifyArgumentType(it->type);
342  }
343
344  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
345                                 CodeGenFunction &CGF) const;
346};
347
348class DefaultTargetCodeGenInfo : public TargetCodeGenInfo {
349public:
350  DefaultTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
351    : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
352};
353
354llvm::Value *DefaultABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
355                                       CodeGenFunction &CGF) const {
356  return 0;
357}
358
359ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty) const {
360  if (isAggregateTypeForABI(Ty)) {
361    // Records with non trivial destructors/constructors should not be passed
362    // by value.
363    if (isRecordWithNonTrivialDestructorOrCopyConstructor(Ty))
364      return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
365
366    return ABIArgInfo::getIndirect(0);
367  }
368
369  // Treat an enum type as its underlying type.
370  if (const EnumType *EnumTy = Ty->getAs<EnumType>())
371    Ty = EnumTy->getDecl()->getIntegerType();
372
373  return (Ty->isPromotableIntegerType() ?
374          ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
375}
376
377ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy) const {
378  if (RetTy->isVoidType())
379    return ABIArgInfo::getIgnore();
380
381  if (isAggregateTypeForABI(RetTy))
382    return ABIArgInfo::getIndirect(0);
383
384  // Treat an enum type as its underlying type.
385  if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
386    RetTy = EnumTy->getDecl()->getIntegerType();
387
388  return (RetTy->isPromotableIntegerType() ?
389          ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
390}
391
392//===----------------------------------------------------------------------===//
393// le32/PNaCl bitcode ABI Implementation
394//===----------------------------------------------------------------------===//
395
396class PNaClABIInfo : public ABIInfo {
397 public:
398  PNaClABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
399
400  ABIArgInfo classifyReturnType(QualType RetTy) const;
401  ABIArgInfo classifyArgumentType(QualType RetTy, unsigned &FreeRegs) const;
402
403  virtual void computeInfo(CGFunctionInfo &FI) const;
404  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
405                                 CodeGenFunction &CGF) const;
406};
407
408class PNaClTargetCodeGenInfo : public TargetCodeGenInfo {
409 public:
410  PNaClTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
411    : TargetCodeGenInfo(new PNaClABIInfo(CGT)) {}
412};
413
414void PNaClABIInfo::computeInfo(CGFunctionInfo &FI) const {
415    FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
416
417    unsigned FreeRegs = FI.getHasRegParm() ? FI.getRegParm() : 0;
418
419    for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
420         it != ie; ++it)
421      it->info = classifyArgumentType(it->type, FreeRegs);
422  }
423
424llvm::Value *PNaClABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
425                                       CodeGenFunction &CGF) const {
426  return 0;
427}
428
429ABIArgInfo PNaClABIInfo::classifyArgumentType(QualType Ty,
430                                              unsigned &FreeRegs) const {
431  if (isAggregateTypeForABI(Ty)) {
432    // Records with non trivial destructors/constructors should not be passed
433    // by value.
434    FreeRegs = 0;
435    if (isRecordWithNonTrivialDestructorOrCopyConstructor(Ty))
436      return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
437
438    return ABIArgInfo::getIndirect(0);
439  }
440
441  // Treat an enum type as its underlying type.
442  if (const EnumType *EnumTy = Ty->getAs<EnumType>())
443    Ty = EnumTy->getDecl()->getIntegerType();
444
445  ABIArgInfo BaseInfo = (Ty->isPromotableIntegerType() ?
446          ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
447
448  // Regparm regs hold 32 bits.
449  unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32;
450  if (SizeInRegs == 0) return BaseInfo;
451  if (SizeInRegs > FreeRegs) {
452    FreeRegs = 0;
453    return BaseInfo;
454  }
455  FreeRegs -= SizeInRegs;
456  return BaseInfo.isDirect() ?
457      ABIArgInfo::getDirectInReg(BaseInfo.getCoerceToType()) :
458      ABIArgInfo::getExtendInReg(BaseInfo.getCoerceToType());
459}
460
461ABIArgInfo PNaClABIInfo::classifyReturnType(QualType RetTy) const {
462  if (RetTy->isVoidType())
463    return ABIArgInfo::getIgnore();
464
465  if (isAggregateTypeForABI(RetTy))
466    return ABIArgInfo::getIndirect(0);
467
468  // Treat an enum type as its underlying type.
469  if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
470    RetTy = EnumTy->getDecl()->getIntegerType();
471
472  return (RetTy->isPromotableIntegerType() ?
473          ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
474}
475
476/// UseX86_MMXType - Return true if this is an MMX type that should use the
477/// special x86_mmx type.
478bool UseX86_MMXType(llvm::Type *IRType) {
479  // If the type is an MMX type <2 x i32>, <4 x i16>, or <8 x i8>, use the
480  // special x86_mmx type.
481  return IRType->isVectorTy() && IRType->getPrimitiveSizeInBits() == 64 &&
482    cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy() &&
483    IRType->getScalarSizeInBits() != 64;
484}
485
486static llvm::Type* X86AdjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
487                                          StringRef Constraint,
488                                          llvm::Type* Ty) {
489  if ((Constraint == "y" || Constraint == "&y") && Ty->isVectorTy())
490    return llvm::Type::getX86_MMXTy(CGF.getLLVMContext());
491  return Ty;
492}
493
494//===----------------------------------------------------------------------===//
495// X86-32 ABI Implementation
496//===----------------------------------------------------------------------===//
497
498/// X86_32ABIInfo - The X86-32 ABI information.
499class X86_32ABIInfo : public ABIInfo {
500  enum Class {
501    Integer,
502    Float
503  };
504
505  static const unsigned MinABIStackAlignInBytes = 4;
506
507  bool IsDarwinVectorABI;
508  bool IsSmallStructInRegABI;
509  bool IsMMXDisabled;
510  bool IsWin32FloatStructABI;
511  unsigned DefaultNumRegisterParameters;
512
513  static bool isRegisterSize(unsigned Size) {
514    return (Size == 8 || Size == 16 || Size == 32 || Size == 64);
515  }
516
517  static bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context,
518                                          unsigned callingConvention);
519
520  /// getIndirectResult - Give a source type \arg Ty, return a suitable result
521  /// such that the argument will be passed in memory.
522  ABIArgInfo getIndirectResult(QualType Ty, bool ByVal,
523                               unsigned &FreeRegs) const;
524
525  /// \brief Return the alignment to use for the given type on the stack.
526  unsigned getTypeStackAlignInBytes(QualType Ty, unsigned Align) const;
527
528  Class classify(QualType Ty) const;
529  ABIArgInfo classifyReturnType(QualType RetTy,
530                                unsigned callingConvention) const;
531  ABIArgInfo classifyArgumentType(QualType RetTy, unsigned &FreeRegs,
532                                  bool IsFastCall) const;
533  bool shouldUseInReg(QualType Ty, unsigned &FreeRegs,
534                      bool IsFastCall, bool &NeedsPadding) const;
535
536public:
537
538  virtual void computeInfo(CGFunctionInfo &FI) const;
539  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
540                                 CodeGenFunction &CGF) const;
541
542  X86_32ABIInfo(CodeGen::CodeGenTypes &CGT, bool d, bool p, bool m, bool w,
543                unsigned r)
544    : ABIInfo(CGT), IsDarwinVectorABI(d), IsSmallStructInRegABI(p),
545      IsMMXDisabled(m), IsWin32FloatStructABI(w),
546      DefaultNumRegisterParameters(r) {}
547};
548
549class X86_32TargetCodeGenInfo : public TargetCodeGenInfo {
550public:
551  X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
552      bool d, bool p, bool m, bool w, unsigned r)
553    :TargetCodeGenInfo(new X86_32ABIInfo(CGT, d, p, m, w, r)) {}
554
555  void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
556                           CodeGen::CodeGenModule &CGM) const;
557
558  int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const {
559    // Darwin uses different dwarf register numbers for EH.
560    if (CGM.isTargetDarwin()) return 5;
561
562    return 4;
563  }
564
565  bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
566                               llvm::Value *Address) const;
567
568  llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
569                                  StringRef Constraint,
570                                  llvm::Type* Ty) const {
571    return X86AdjustInlineAsmType(CGF, Constraint, Ty);
572  }
573
574};
575
576}
577
578/// shouldReturnTypeInRegister - Determine if the given type should be
579/// passed in a register (for the Darwin ABI).
580bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty,
581                                               ASTContext &Context,
582                                               unsigned callingConvention) {
583  uint64_t Size = Context.getTypeSize(Ty);
584
585  // Type must be register sized.
586  if (!isRegisterSize(Size))
587    return false;
588
589  if (Ty->isVectorType()) {
590    // 64- and 128- bit vectors inside structures are not returned in
591    // registers.
592    if (Size == 64 || Size == 128)
593      return false;
594
595    return true;
596  }
597
598  // If this is a builtin, pointer, enum, complex type, member pointer, or
599  // member function pointer it is ok.
600  if (Ty->getAs<BuiltinType>() || Ty->hasPointerRepresentation() ||
601      Ty->isAnyComplexType() || Ty->isEnumeralType() ||
602      Ty->isBlockPointerType() || Ty->isMemberPointerType())
603    return true;
604
605  // Arrays are treated like records.
606  if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty))
607    return shouldReturnTypeInRegister(AT->getElementType(), Context,
608                                      callingConvention);
609
610  // Otherwise, it must be a record type.
611  const RecordType *RT = Ty->getAs<RecordType>();
612  if (!RT) return false;
613
614  // FIXME: Traverse bases here too.
615
616  // For thiscall conventions, structures will never be returned in
617  // a register.  This is for compatibility with the MSVC ABI
618  if (callingConvention == llvm::CallingConv::X86_ThisCall &&
619      RT->isStructureType()) {
620    return false;
621  }
622
623  // Structure types are passed in register if all fields would be
624  // passed in a register.
625  for (RecordDecl::field_iterator i = RT->getDecl()->field_begin(),
626         e = RT->getDecl()->field_end(); i != e; ++i) {
627    const FieldDecl *FD = *i;
628
629    // Empty fields are ignored.
630    if (isEmptyField(Context, FD, true))
631      continue;
632
633    // Check fields recursively.
634    if (!shouldReturnTypeInRegister(FD->getType(), Context,
635                                    callingConvention))
636      return false;
637  }
638  return true;
639}
640
641ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy,
642                                            unsigned callingConvention) const {
643  if (RetTy->isVoidType())
644    return ABIArgInfo::getIgnore();
645
646  if (const VectorType *VT = RetTy->getAs<VectorType>()) {
647    // On Darwin, some vectors are returned in registers.
648    if (IsDarwinVectorABI) {
649      uint64_t Size = getContext().getTypeSize(RetTy);
650
651      // 128-bit vectors are a special case; they are returned in
652      // registers and we need to make sure to pick a type the LLVM
653      // backend will like.
654      if (Size == 128)
655        return ABIArgInfo::getDirect(llvm::VectorType::get(
656                  llvm::Type::getInt64Ty(getVMContext()), 2));
657
658      // Always return in register if it fits in a general purpose
659      // register, or if it is 64 bits and has a single element.
660      if ((Size == 8 || Size == 16 || Size == 32) ||
661          (Size == 64 && VT->getNumElements() == 1))
662        return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
663                                                            Size));
664
665      return ABIArgInfo::getIndirect(0);
666    }
667
668    return ABIArgInfo::getDirect();
669  }
670
671  if (isAggregateTypeForABI(RetTy)) {
672    if (const RecordType *RT = RetTy->getAs<RecordType>()) {
673      // Structures with either a non-trivial destructor or a non-trivial
674      // copy constructor are always indirect.
675      if (hasNonTrivialDestructorOrCopyConstructor(RT))
676        return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
677
678      // Structures with flexible arrays are always indirect.
679      if (RT->getDecl()->hasFlexibleArrayMember())
680        return ABIArgInfo::getIndirect(0);
681    }
682
683    // If specified, structs and unions are always indirect.
684    if (!IsSmallStructInRegABI && !RetTy->isAnyComplexType())
685      return ABIArgInfo::getIndirect(0);
686
687    // Small structures which are register sized are generally returned
688    // in a register.
689    if (X86_32ABIInfo::shouldReturnTypeInRegister(RetTy, getContext(),
690                                                  callingConvention)) {
691      uint64_t Size = getContext().getTypeSize(RetTy);
692
693      // As a special-case, if the struct is a "single-element" struct, and
694      // the field is of type "float" or "double", return it in a
695      // floating-point register. (MSVC does not apply this special case.)
696      // We apply a similar transformation for pointer types to improve the
697      // quality of the generated IR.
698      if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext()))
699        if ((!IsWin32FloatStructABI && SeltTy->isRealFloatingType())
700            || SeltTy->hasPointerRepresentation())
701          return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
702
703      // FIXME: We should be able to narrow this integer in cases with dead
704      // padding.
705      return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),Size));
706    }
707
708    return ABIArgInfo::getIndirect(0);
709  }
710
711  // Treat an enum type as its underlying type.
712  if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
713    RetTy = EnumTy->getDecl()->getIntegerType();
714
715  return (RetTy->isPromotableIntegerType() ?
716          ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
717}
718
719static bool isSSEVectorType(ASTContext &Context, QualType Ty) {
720  return Ty->getAs<VectorType>() && Context.getTypeSize(Ty) == 128;
721}
722
723static bool isRecordWithSSEVectorType(ASTContext &Context, QualType Ty) {
724  const RecordType *RT = Ty->getAs<RecordType>();
725  if (!RT)
726    return 0;
727  const RecordDecl *RD = RT->getDecl();
728
729  // If this is a C++ record, check the bases first.
730  if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
731    for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
732           e = CXXRD->bases_end(); i != e; ++i)
733      if (!isRecordWithSSEVectorType(Context, i->getType()))
734        return false;
735
736  for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
737       i != e; ++i) {
738    QualType FT = i->getType();
739
740    if (isSSEVectorType(Context, FT))
741      return true;
742
743    if (isRecordWithSSEVectorType(Context, FT))
744      return true;
745  }
746
747  return false;
748}
749
750unsigned X86_32ABIInfo::getTypeStackAlignInBytes(QualType Ty,
751                                                 unsigned Align) const {
752  // Otherwise, if the alignment is less than or equal to the minimum ABI
753  // alignment, just use the default; the backend will handle this.
754  if (Align <= MinABIStackAlignInBytes)
755    return 0; // Use default alignment.
756
757  // On non-Darwin, the stack type alignment is always 4.
758  if (!IsDarwinVectorABI) {
759    // Set explicit alignment, since we may need to realign the top.
760    return MinABIStackAlignInBytes;
761  }
762
763  // Otherwise, if the type contains an SSE vector type, the alignment is 16.
764  if (Align >= 16 && (isSSEVectorType(getContext(), Ty) ||
765                      isRecordWithSSEVectorType(getContext(), Ty)))
766    return 16;
767
768  return MinABIStackAlignInBytes;
769}
770
771ABIArgInfo X86_32ABIInfo::getIndirectResult(QualType Ty, bool ByVal,
772                                            unsigned &FreeRegs) const {
773  if (!ByVal) {
774    if (FreeRegs) {
775      --FreeRegs; // Non byval indirects just use one pointer.
776      return ABIArgInfo::getIndirectInReg(0, false);
777    }
778    return ABIArgInfo::getIndirect(0, false);
779  }
780
781  // Compute the byval alignment.
782  unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8;
783  unsigned StackAlign = getTypeStackAlignInBytes(Ty, TypeAlign);
784  if (StackAlign == 0)
785    return ABIArgInfo::getIndirect(4);
786
787  // If the stack alignment is less than the type alignment, realign the
788  // argument.
789  if (StackAlign < TypeAlign)
790    return ABIArgInfo::getIndirect(StackAlign, /*ByVal=*/true,
791                                   /*Realign=*/true);
792
793  return ABIArgInfo::getIndirect(StackAlign);
794}
795
796X86_32ABIInfo::Class X86_32ABIInfo::classify(QualType Ty) const {
797  const Type *T = isSingleElementStruct(Ty, getContext());
798  if (!T)
799    T = Ty.getTypePtr();
800
801  if (const BuiltinType *BT = T->getAs<BuiltinType>()) {
802    BuiltinType::Kind K = BT->getKind();
803    if (K == BuiltinType::Float || K == BuiltinType::Double)
804      return Float;
805  }
806  return Integer;
807}
808
809bool X86_32ABIInfo::shouldUseInReg(QualType Ty, unsigned &FreeRegs,
810                                   bool IsFastCall, bool &NeedsPadding) const {
811  NeedsPadding = false;
812  Class C = classify(Ty);
813  if (C == Float)
814    return false;
815
816  unsigned Size = getContext().getTypeSize(Ty);
817  unsigned SizeInRegs = (Size + 31) / 32;
818
819  if (SizeInRegs == 0)
820    return false;
821
822  if (SizeInRegs > FreeRegs) {
823    FreeRegs = 0;
824    return false;
825  }
826
827  FreeRegs -= SizeInRegs;
828
829  if (IsFastCall) {
830    if (Size > 32)
831      return false;
832
833    if (Ty->isIntegralOrEnumerationType())
834      return true;
835
836    if (Ty->isPointerType())
837      return true;
838
839    if (Ty->isReferenceType())
840      return true;
841
842    if (FreeRegs)
843      NeedsPadding = true;
844
845    return false;
846  }
847
848  return true;
849}
850
851ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty,
852                                               unsigned &FreeRegs,
853                                               bool IsFastCall) const {
854  // FIXME: Set alignment on indirect arguments.
855  if (isAggregateTypeForABI(Ty)) {
856    // Structures with flexible arrays are always indirect.
857    if (const RecordType *RT = Ty->getAs<RecordType>()) {
858      // Structures with either a non-trivial destructor or a non-trivial
859      // copy constructor are always indirect.
860      if (hasNonTrivialDestructorOrCopyConstructor(RT))
861        return getIndirectResult(Ty, false, FreeRegs);
862
863      if (RT->getDecl()->hasFlexibleArrayMember())
864        return getIndirectResult(Ty, true, FreeRegs);
865    }
866
867    // Ignore empty structs/unions.
868    if (isEmptyRecord(getContext(), Ty, true))
869      return ABIArgInfo::getIgnore();
870
871    llvm::LLVMContext &LLVMContext = getVMContext();
872    llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext);
873    bool NeedsPadding;
874    if (shouldUseInReg(Ty, FreeRegs, IsFastCall, NeedsPadding)) {
875      unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32;
876      SmallVector<llvm::Type*, 3> Elements;
877      for (unsigned I = 0; I < SizeInRegs; ++I)
878        Elements.push_back(Int32);
879      llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements);
880      return ABIArgInfo::getDirectInReg(Result);
881    }
882    llvm::IntegerType *PaddingType = NeedsPadding ? Int32 : 0;
883
884    // Expand small (<= 128-bit) record types when we know that the stack layout
885    // of those arguments will match the struct. This is important because the
886    // LLVM backend isn't smart enough to remove byval, which inhibits many
887    // optimizations.
888    if (getContext().getTypeSize(Ty) <= 4*32 &&
889        canExpandIndirectArgument(Ty, getContext()))
890      return ABIArgInfo::getExpandWithPadding(IsFastCall, PaddingType);
891
892    return getIndirectResult(Ty, true, FreeRegs);
893  }
894
895  if (const VectorType *VT = Ty->getAs<VectorType>()) {
896    // On Darwin, some vectors are passed in memory, we handle this by passing
897    // it as an i8/i16/i32/i64.
898    if (IsDarwinVectorABI) {
899      uint64_t Size = getContext().getTypeSize(Ty);
900      if ((Size == 8 || Size == 16 || Size == 32) ||
901          (Size == 64 && VT->getNumElements() == 1))
902        return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
903                                                            Size));
904    }
905
906    llvm::Type *IRType = CGT.ConvertType(Ty);
907    if (UseX86_MMXType(IRType)) {
908      if (IsMMXDisabled)
909        return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
910                                                            64));
911      ABIArgInfo AAI = ABIArgInfo::getDirect(IRType);
912      AAI.setCoerceToType(llvm::Type::getX86_MMXTy(getVMContext()));
913      return AAI;
914    }
915
916    return ABIArgInfo::getDirect();
917  }
918
919
920  if (const EnumType *EnumTy = Ty->getAs<EnumType>())
921    Ty = EnumTy->getDecl()->getIntegerType();
922
923  bool NeedsPadding;
924  bool InReg = shouldUseInReg(Ty, FreeRegs, IsFastCall, NeedsPadding);
925
926  if (Ty->isPromotableIntegerType()) {
927    if (InReg)
928      return ABIArgInfo::getExtendInReg();
929    return ABIArgInfo::getExtend();
930  }
931  if (InReg)
932    return ABIArgInfo::getDirectInReg();
933  return ABIArgInfo::getDirect();
934}
935
936void X86_32ABIInfo::computeInfo(CGFunctionInfo &FI) const {
937  FI.getReturnInfo() = classifyReturnType(FI.getReturnType(),
938                                          FI.getCallingConvention());
939
940  unsigned CC = FI.getCallingConvention();
941  bool IsFastCall = CC == llvm::CallingConv::X86_FastCall;
942  unsigned FreeRegs;
943  if (IsFastCall)
944    FreeRegs = 2;
945  else if (FI.getHasRegParm())
946    FreeRegs = FI.getRegParm();
947  else
948    FreeRegs = DefaultNumRegisterParameters;
949
950  // If the return value is indirect, then the hidden argument is consuming one
951  // integer register.
952  if (FI.getReturnInfo().isIndirect() && FreeRegs) {
953    --FreeRegs;
954    ABIArgInfo &Old = FI.getReturnInfo();
955    Old = ABIArgInfo::getIndirectInReg(Old.getIndirectAlign(),
956                                       Old.getIndirectByVal(),
957                                       Old.getIndirectRealign());
958  }
959
960  for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
961       it != ie; ++it)
962    it->info = classifyArgumentType(it->type, FreeRegs, IsFastCall);
963}
964
965llvm::Value *X86_32ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
966                                      CodeGenFunction &CGF) const {
967  llvm::Type *BPP = CGF.Int8PtrPtrTy;
968
969  CGBuilderTy &Builder = CGF.Builder;
970  llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP,
971                                                       "ap");
972  llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
973
974  // Compute if the address needs to be aligned
975  unsigned Align = CGF.getContext().getTypeAlignInChars(Ty).getQuantity();
976  Align = getTypeStackAlignInBytes(Ty, Align);
977  Align = std::max(Align, 4U);
978  if (Align > 4) {
979    // addr = (addr + align - 1) & -align;
980    llvm::Value *Offset =
981      llvm::ConstantInt::get(CGF.Int32Ty, Align - 1);
982    Addr = CGF.Builder.CreateGEP(Addr, Offset);
983    llvm::Value *AsInt = CGF.Builder.CreatePtrToInt(Addr,
984                                                    CGF.Int32Ty);
985    llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int32Ty, -Align);
986    Addr = CGF.Builder.CreateIntToPtr(CGF.Builder.CreateAnd(AsInt, Mask),
987                                      Addr->getType(),
988                                      "ap.cur.aligned");
989  }
990
991  llvm::Type *PTy =
992    llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
993  llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
994
995  uint64_t Offset =
996    llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, Align);
997  llvm::Value *NextAddr =
998    Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
999                      "ap.next");
1000  Builder.CreateStore(NextAddr, VAListAddrAsBPP);
1001
1002  return AddrTyped;
1003}
1004
1005void X86_32TargetCodeGenInfo::SetTargetAttributes(const Decl *D,
1006                                                  llvm::GlobalValue *GV,
1007                                            CodeGen::CodeGenModule &CGM) const {
1008  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1009    if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
1010      // Get the LLVM function.
1011      llvm::Function *Fn = cast<llvm::Function>(GV);
1012
1013      // Now add the 'alignstack' attribute with a value of 16.
1014      llvm::AttrBuilder B;
1015      B.addStackAlignmentAttr(16);
1016      Fn->addAttribute(llvm::AttrListPtr::FunctionIndex,
1017                       llvm::Attributes::get(CGM.getLLVMContext(), B));
1018    }
1019  }
1020}
1021
1022bool X86_32TargetCodeGenInfo::initDwarfEHRegSizeTable(
1023                                               CodeGen::CodeGenFunction &CGF,
1024                                               llvm::Value *Address) const {
1025  CodeGen::CGBuilderTy &Builder = CGF.Builder;
1026
1027  llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
1028
1029  // 0-7 are the eight integer registers;  the order is different
1030  //   on Darwin (for EH), but the range is the same.
1031  // 8 is %eip.
1032  AssignToArrayRange(Builder, Address, Four8, 0, 8);
1033
1034  if (CGF.CGM.isTargetDarwin()) {
1035    // 12-16 are st(0..4).  Not sure why we stop at 4.
1036    // These have size 16, which is sizeof(long double) on
1037    // platforms with 8-byte alignment for that type.
1038    llvm::Value *Sixteen8 = llvm::ConstantInt::get(CGF.Int8Ty, 16);
1039    AssignToArrayRange(Builder, Address, Sixteen8, 12, 16);
1040
1041  } else {
1042    // 9 is %eflags, which doesn't get a size on Darwin for some
1043    // reason.
1044    Builder.CreateStore(Four8, Builder.CreateConstInBoundsGEP1_32(Address, 9));
1045
1046    // 11-16 are st(0..5).  Not sure why we stop at 5.
1047    // These have size 12, which is sizeof(long double) on
1048    // platforms with 4-byte alignment for that type.
1049    llvm::Value *Twelve8 = llvm::ConstantInt::get(CGF.Int8Ty, 12);
1050    AssignToArrayRange(Builder, Address, Twelve8, 11, 16);
1051  }
1052
1053  return false;
1054}
1055
1056//===----------------------------------------------------------------------===//
1057// X86-64 ABI Implementation
1058//===----------------------------------------------------------------------===//
1059
1060
1061namespace {
1062/// X86_64ABIInfo - The X86_64 ABI information.
1063class X86_64ABIInfo : public ABIInfo {
1064  enum Class {
1065    Integer = 0,
1066    SSE,
1067    SSEUp,
1068    X87,
1069    X87Up,
1070    ComplexX87,
1071    NoClass,
1072    Memory
1073  };
1074
1075  /// merge - Implement the X86_64 ABI merging algorithm.
1076  ///
1077  /// Merge an accumulating classification \arg Accum with a field
1078  /// classification \arg Field.
1079  ///
1080  /// \param Accum - The accumulating classification. This should
1081  /// always be either NoClass or the result of a previous merge
1082  /// call. In addition, this should never be Memory (the caller
1083  /// should just return Memory for the aggregate).
1084  static Class merge(Class Accum, Class Field);
1085
1086  /// postMerge - Implement the X86_64 ABI post merging algorithm.
1087  ///
1088  /// Post merger cleanup, reduces a malformed Hi and Lo pair to
1089  /// final MEMORY or SSE classes when necessary.
1090  ///
1091  /// \param AggregateSize - The size of the current aggregate in
1092  /// the classification process.
1093  ///
1094  /// \param Lo - The classification for the parts of the type
1095  /// residing in the low word of the containing object.
1096  ///
1097  /// \param Hi - The classification for the parts of the type
1098  /// residing in the higher words of the containing object.
1099  ///
1100  void postMerge(unsigned AggregateSize, Class &Lo, Class &Hi) const;
1101
1102  /// classify - Determine the x86_64 register classes in which the
1103  /// given type T should be passed.
1104  ///
1105  /// \param Lo - The classification for the parts of the type
1106  /// residing in the low word of the containing object.
1107  ///
1108  /// \param Hi - The classification for the parts of the type
1109  /// residing in the high word of the containing object.
1110  ///
1111  /// \param OffsetBase - The bit offset of this type in the
1112  /// containing object.  Some parameters are classified different
1113  /// depending on whether they straddle an eightbyte boundary.
1114  ///
1115  /// If a word is unused its result will be NoClass; if a type should
1116  /// be passed in Memory then at least the classification of \arg Lo
1117  /// will be Memory.
1118  ///
1119  /// The \arg Lo class will be NoClass iff the argument is ignored.
1120  ///
1121  /// If the \arg Lo class is ComplexX87, then the \arg Hi class will
1122  /// also be ComplexX87.
1123  void classify(QualType T, uint64_t OffsetBase, Class &Lo, Class &Hi) const;
1124
1125  llvm::Type *GetByteVectorType(QualType Ty) const;
1126  llvm::Type *GetSSETypeAtOffset(llvm::Type *IRType,
1127                                 unsigned IROffset, QualType SourceTy,
1128                                 unsigned SourceOffset) const;
1129  llvm::Type *GetINTEGERTypeAtOffset(llvm::Type *IRType,
1130                                     unsigned IROffset, QualType SourceTy,
1131                                     unsigned SourceOffset) const;
1132
1133  /// getIndirectResult - Give a source type \arg Ty, return a suitable result
1134  /// such that the argument will be returned in memory.
1135  ABIArgInfo getIndirectReturnResult(QualType Ty) const;
1136
1137  /// getIndirectResult - Give a source type \arg Ty, return a suitable result
1138  /// such that the argument will be passed in memory.
1139  ///
1140  /// \param freeIntRegs - The number of free integer registers remaining
1141  /// available.
1142  ABIArgInfo getIndirectResult(QualType Ty, unsigned freeIntRegs) const;
1143
1144  ABIArgInfo classifyReturnType(QualType RetTy) const;
1145
1146  ABIArgInfo classifyArgumentType(QualType Ty,
1147                                  unsigned freeIntRegs,
1148                                  unsigned &neededInt,
1149                                  unsigned &neededSSE) const;
1150
1151  bool IsIllegalVectorType(QualType Ty) const;
1152
1153  /// The 0.98 ABI revision clarified a lot of ambiguities,
1154  /// unfortunately in ways that were not always consistent with
1155  /// certain previous compilers.  In particular, platforms which
1156  /// required strict binary compatibility with older versions of GCC
1157  /// may need to exempt themselves.
1158  bool honorsRevision0_98() const {
1159    return !getContext().getTargetInfo().getTriple().isOSDarwin();
1160  }
1161
1162  bool HasAVX;
1163  // Some ABIs (e.g. X32 ABI and Native Client OS) use 32 bit pointers on
1164  // 64-bit hardware.
1165  bool Has64BitPointers;
1166
1167public:
1168  X86_64ABIInfo(CodeGen::CodeGenTypes &CGT, bool hasavx) :
1169      ABIInfo(CGT), HasAVX(hasavx),
1170      Has64BitPointers(CGT.getDataLayout().getPointerSize(0) == 8) {
1171  }
1172
1173  bool isPassedUsingAVXType(QualType type) const {
1174    unsigned neededInt, neededSSE;
1175    // The freeIntRegs argument doesn't matter here.
1176    ABIArgInfo info = classifyArgumentType(type, 0, neededInt, neededSSE);
1177    if (info.isDirect()) {
1178      llvm::Type *ty = info.getCoerceToType();
1179      if (llvm::VectorType *vectorTy = dyn_cast_or_null<llvm::VectorType>(ty))
1180        return (vectorTy->getBitWidth() > 128);
1181    }
1182    return false;
1183  }
1184
1185  virtual void computeInfo(CGFunctionInfo &FI) const;
1186
1187  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
1188                                 CodeGenFunction &CGF) const;
1189};
1190
1191/// WinX86_64ABIInfo - The Windows X86_64 ABI information.
1192class WinX86_64ABIInfo : public ABIInfo {
1193
1194  ABIArgInfo classify(QualType Ty) const;
1195
1196public:
1197  WinX86_64ABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
1198
1199  virtual void computeInfo(CGFunctionInfo &FI) const;
1200
1201  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
1202                                 CodeGenFunction &CGF) const;
1203};
1204
1205class X86_64TargetCodeGenInfo : public TargetCodeGenInfo {
1206public:
1207  X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool HasAVX)
1208      : TargetCodeGenInfo(new X86_64ABIInfo(CGT, HasAVX)) {}
1209
1210  const X86_64ABIInfo &getABIInfo() const {
1211    return static_cast<const X86_64ABIInfo&>(TargetCodeGenInfo::getABIInfo());
1212  }
1213
1214  int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const {
1215    return 7;
1216  }
1217
1218  bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
1219                               llvm::Value *Address) const {
1220    llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8);
1221
1222    // 0-15 are the 16 integer registers.
1223    // 16 is %rip.
1224    AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16);
1225    return false;
1226  }
1227
1228  llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
1229                                  StringRef Constraint,
1230                                  llvm::Type* Ty) const {
1231    return X86AdjustInlineAsmType(CGF, Constraint, Ty);
1232  }
1233
1234  bool isNoProtoCallVariadic(const CallArgList &args,
1235                             const FunctionNoProtoType *fnType) const {
1236    // The default CC on x86-64 sets %al to the number of SSA
1237    // registers used, and GCC sets this when calling an unprototyped
1238    // function, so we override the default behavior.  However, don't do
1239    // that when AVX types are involved: the ABI explicitly states it is
1240    // undefined, and it doesn't work in practice because of how the ABI
1241    // defines varargs anyway.
1242    if (fnType->getCallConv() == CC_Default || fnType->getCallConv() == CC_C) {
1243      bool HasAVXType = false;
1244      for (CallArgList::const_iterator
1245             it = args.begin(), ie = args.end(); it != ie; ++it) {
1246        if (getABIInfo().isPassedUsingAVXType(it->Ty)) {
1247          HasAVXType = true;
1248          break;
1249        }
1250      }
1251
1252      if (!HasAVXType)
1253        return true;
1254    }
1255
1256    return TargetCodeGenInfo::isNoProtoCallVariadic(args, fnType);
1257  }
1258
1259};
1260
1261class WinX86_64TargetCodeGenInfo : public TargetCodeGenInfo {
1262public:
1263  WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
1264    : TargetCodeGenInfo(new WinX86_64ABIInfo(CGT)) {}
1265
1266  int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const {
1267    return 7;
1268  }
1269
1270  bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
1271                               llvm::Value *Address) const {
1272    llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8);
1273
1274    // 0-15 are the 16 integer registers.
1275    // 16 is %rip.
1276    AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16);
1277    return false;
1278  }
1279};
1280
1281}
1282
1283void X86_64ABIInfo::postMerge(unsigned AggregateSize, Class &Lo,
1284                              Class &Hi) const {
1285  // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done:
1286  //
1287  // (a) If one of the classes is Memory, the whole argument is passed in
1288  //     memory.
1289  //
1290  // (b) If X87UP is not preceded by X87, the whole argument is passed in
1291  //     memory.
1292  //
1293  // (c) If the size of the aggregate exceeds two eightbytes and the first
1294  //     eightbyte isn't SSE or any other eightbyte isn't SSEUP, the whole
1295  //     argument is passed in memory. NOTE: This is necessary to keep the
1296  //     ABI working for processors that don't support the __m256 type.
1297  //
1298  // (d) If SSEUP is not preceded by SSE or SSEUP, it is converted to SSE.
1299  //
1300  // Some of these are enforced by the merging logic.  Others can arise
1301  // only with unions; for example:
1302  //   union { _Complex double; unsigned; }
1303  //
1304  // Note that clauses (b) and (c) were added in 0.98.
1305  //
1306  if (Hi == Memory)
1307    Lo = Memory;
1308  if (Hi == X87Up && Lo != X87 && honorsRevision0_98())
1309    Lo = Memory;
1310  if (AggregateSize > 128 && (Lo != SSE || Hi != SSEUp))
1311    Lo = Memory;
1312  if (Hi == SSEUp && Lo != SSE)
1313    Hi = SSE;
1314}
1315
1316X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, Class Field) {
1317  // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is
1318  // classified recursively so that always two fields are
1319  // considered. The resulting class is calculated according to
1320  // the classes of the fields in the eightbyte:
1321  //
1322  // (a) If both classes are equal, this is the resulting class.
1323  //
1324  // (b) If one of the classes is NO_CLASS, the resulting class is
1325  // the other class.
1326  //
1327  // (c) If one of the classes is MEMORY, the result is the MEMORY
1328  // class.
1329  //
1330  // (d) If one of the classes is INTEGER, the result is the
1331  // INTEGER.
1332  //
1333  // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class,
1334  // MEMORY is used as class.
1335  //
1336  // (f) Otherwise class SSE is used.
1337
1338  // Accum should never be memory (we should have returned) or
1339  // ComplexX87 (because this cannot be passed in a structure).
1340  assert((Accum != Memory && Accum != ComplexX87) &&
1341         "Invalid accumulated classification during merge.");
1342  if (Accum == Field || Field == NoClass)
1343    return Accum;
1344  if (Field == Memory)
1345    return Memory;
1346  if (Accum == NoClass)
1347    return Field;
1348  if (Accum == Integer || Field == Integer)
1349    return Integer;
1350  if (Field == X87 || Field == X87Up || Field == ComplexX87 ||
1351      Accum == X87 || Accum == X87Up)
1352    return Memory;
1353  return SSE;
1354}
1355
1356void X86_64ABIInfo::classify(QualType Ty, uint64_t OffsetBase,
1357                             Class &Lo, Class &Hi) const {
1358  // FIXME: This code can be simplified by introducing a simple value class for
1359  // Class pairs with appropriate constructor methods for the various
1360  // situations.
1361
1362  // FIXME: Some of the split computations are wrong; unaligned vectors
1363  // shouldn't be passed in registers for example, so there is no chance they
1364  // can straddle an eightbyte. Verify & simplify.
1365
1366  Lo = Hi = NoClass;
1367
1368  Class &Current = OffsetBase < 64 ? Lo : Hi;
1369  Current = Memory;
1370
1371  if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
1372    BuiltinType::Kind k = BT->getKind();
1373
1374    if (k == BuiltinType::Void) {
1375      Current = NoClass;
1376    } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) {
1377      Lo = Integer;
1378      Hi = Integer;
1379    } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) {
1380      Current = Integer;
1381    } else if ((k == BuiltinType::Float || k == BuiltinType::Double) ||
1382               (k == BuiltinType::LongDouble &&
1383                getContext().getTargetInfo().getTriple().getOS() ==
1384                llvm::Triple::NativeClient)) {
1385      Current = SSE;
1386    } else if (k == BuiltinType::LongDouble) {
1387      Lo = X87;
1388      Hi = X87Up;
1389    }
1390    // FIXME: _Decimal32 and _Decimal64 are SSE.
1391    // FIXME: _float128 and _Decimal128 are (SSE, SSEUp).
1392    return;
1393  }
1394
1395  if (const EnumType *ET = Ty->getAs<EnumType>()) {
1396    // Classify the underlying integer type.
1397    classify(ET->getDecl()->getIntegerType(), OffsetBase, Lo, Hi);
1398    return;
1399  }
1400
1401  if (Ty->hasPointerRepresentation()) {
1402    Current = Integer;
1403    return;
1404  }
1405
1406  if (Ty->isMemberPointerType()) {
1407    if (Ty->isMemberFunctionPointerType() && Has64BitPointers)
1408      Lo = Hi = Integer;
1409    else
1410      Current = Integer;
1411    return;
1412  }
1413
1414  if (const VectorType *VT = Ty->getAs<VectorType>()) {
1415    uint64_t Size = getContext().getTypeSize(VT);
1416    if (Size == 32) {
1417      // gcc passes all <4 x char>, <2 x short>, <1 x int>, <1 x
1418      // float> as integer.
1419      Current = Integer;
1420
1421      // If this type crosses an eightbyte boundary, it should be
1422      // split.
1423      uint64_t EB_Real = (OffsetBase) / 64;
1424      uint64_t EB_Imag = (OffsetBase + Size - 1) / 64;
1425      if (EB_Real != EB_Imag)
1426        Hi = Lo;
1427    } else if (Size == 64) {
1428      // gcc passes <1 x double> in memory. :(
1429      if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::Double))
1430        return;
1431
1432      // gcc passes <1 x long long> as INTEGER.
1433      if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::LongLong) ||
1434          VT->getElementType()->isSpecificBuiltinType(BuiltinType::ULongLong) ||
1435          VT->getElementType()->isSpecificBuiltinType(BuiltinType::Long) ||
1436          VT->getElementType()->isSpecificBuiltinType(BuiltinType::ULong))
1437        Current = Integer;
1438      else
1439        Current = SSE;
1440
1441      // If this type crosses an eightbyte boundary, it should be
1442      // split.
1443      if (OffsetBase && OffsetBase != 64)
1444        Hi = Lo;
1445    } else if (Size == 128 || (HasAVX && Size == 256)) {
1446      // Arguments of 256-bits are split into four eightbyte chunks. The
1447      // least significant one belongs to class SSE and all the others to class
1448      // SSEUP. The original Lo and Hi design considers that types can't be
1449      // greater than 128-bits, so a 64-bit split in Hi and Lo makes sense.
1450      // This design isn't correct for 256-bits, but since there're no cases
1451      // where the upper parts would need to be inspected, avoid adding
1452      // complexity and just consider Hi to match the 64-256 part.
1453      Lo = SSE;
1454      Hi = SSEUp;
1455    }
1456    return;
1457  }
1458
1459  if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
1460    QualType ET = getContext().getCanonicalType(CT->getElementType());
1461
1462    uint64_t Size = getContext().getTypeSize(Ty);
1463    if (ET->isIntegralOrEnumerationType()) {
1464      if (Size <= 64)
1465        Current = Integer;
1466      else if (Size <= 128)
1467        Lo = Hi = Integer;
1468    } else if (ET == getContext().FloatTy)
1469      Current = SSE;
1470    else if (ET == getContext().DoubleTy ||
1471             (ET == getContext().LongDoubleTy &&
1472              getContext().getTargetInfo().getTriple().getOS() ==
1473              llvm::Triple::NativeClient))
1474      Lo = Hi = SSE;
1475    else if (ET == getContext().LongDoubleTy)
1476      Current = ComplexX87;
1477
1478    // If this complex type crosses an eightbyte boundary then it
1479    // should be split.
1480    uint64_t EB_Real = (OffsetBase) / 64;
1481    uint64_t EB_Imag = (OffsetBase + getContext().getTypeSize(ET)) / 64;
1482    if (Hi == NoClass && EB_Real != EB_Imag)
1483      Hi = Lo;
1484
1485    return;
1486  }
1487
1488  if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
1489    // Arrays are treated like structures.
1490
1491    uint64_t Size = getContext().getTypeSize(Ty);
1492
1493    // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
1494    // than four eightbytes, ..., it has class MEMORY.
1495    if (Size > 256)
1496      return;
1497
1498    // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned
1499    // fields, it has class MEMORY.
1500    //
1501    // Only need to check alignment of array base.
1502    if (OffsetBase % getContext().getTypeAlign(AT->getElementType()))
1503      return;
1504
1505    // Otherwise implement simplified merge. We could be smarter about
1506    // this, but it isn't worth it and would be harder to verify.
1507    Current = NoClass;
1508    uint64_t EltSize = getContext().getTypeSize(AT->getElementType());
1509    uint64_t ArraySize = AT->getSize().getZExtValue();
1510
1511    // The only case a 256-bit wide vector could be used is when the array
1512    // contains a single 256-bit element. Since Lo and Hi logic isn't extended
1513    // to work for sizes wider than 128, early check and fallback to memory.
1514    if (Size > 128 && EltSize != 256)
1515      return;
1516
1517    for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) {
1518      Class FieldLo, FieldHi;
1519      classify(AT->getElementType(), Offset, FieldLo, FieldHi);
1520      Lo = merge(Lo, FieldLo);
1521      Hi = merge(Hi, FieldHi);
1522      if (Lo == Memory || Hi == Memory)
1523        break;
1524    }
1525
1526    postMerge(Size, Lo, Hi);
1527    assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification.");
1528    return;
1529  }
1530
1531  if (const RecordType *RT = Ty->getAs<RecordType>()) {
1532    uint64_t Size = getContext().getTypeSize(Ty);
1533
1534    // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
1535    // than four eightbytes, ..., it has class MEMORY.
1536    if (Size > 256)
1537      return;
1538
1539    // AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial
1540    // copy constructor or a non-trivial destructor, it is passed by invisible
1541    // reference.
1542    if (hasNonTrivialDestructorOrCopyConstructor(RT))
1543      return;
1544
1545    const RecordDecl *RD = RT->getDecl();
1546
1547    // Assume variable sized types are passed in memory.
1548    if (RD->hasFlexibleArrayMember())
1549      return;
1550
1551    const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
1552
1553    // Reset Lo class, this will be recomputed.
1554    Current = NoClass;
1555
1556    // If this is a C++ record, classify the bases first.
1557    if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
1558      for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
1559             e = CXXRD->bases_end(); i != e; ++i) {
1560        assert(!i->isVirtual() && !i->getType()->isDependentType() &&
1561               "Unexpected base class!");
1562        const CXXRecordDecl *Base =
1563          cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
1564
1565        // Classify this field.
1566        //
1567        // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a
1568        // single eightbyte, each is classified separately. Each eightbyte gets
1569        // initialized to class NO_CLASS.
1570        Class FieldLo, FieldHi;
1571        uint64_t Offset =
1572          OffsetBase + getContext().toBits(Layout.getBaseClassOffset(Base));
1573        classify(i->getType(), Offset, FieldLo, FieldHi);
1574        Lo = merge(Lo, FieldLo);
1575        Hi = merge(Hi, FieldHi);
1576        if (Lo == Memory || Hi == Memory)
1577          break;
1578      }
1579    }
1580
1581    // Classify the fields one at a time, merging the results.
1582    unsigned idx = 0;
1583    for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
1584           i != e; ++i, ++idx) {
1585      uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
1586      bool BitField = i->isBitField();
1587
1588      // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger than
1589      // four eightbytes, or it contains unaligned fields, it has class MEMORY.
1590      //
1591      // The only case a 256-bit wide vector could be used is when the struct
1592      // contains a single 256-bit element. Since Lo and Hi logic isn't extended
1593      // to work for sizes wider than 128, early check and fallback to memory.
1594      //
1595      if (Size > 128 && getContext().getTypeSize(i->getType()) != 256) {
1596        Lo = Memory;
1597        return;
1598      }
1599      // Note, skip this test for bit-fields, see below.
1600      if (!BitField && Offset % getContext().getTypeAlign(i->getType())) {
1601        Lo = Memory;
1602        return;
1603      }
1604
1605      // Classify this field.
1606      //
1607      // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate
1608      // exceeds a single eightbyte, each is classified
1609      // separately. Each eightbyte gets initialized to class
1610      // NO_CLASS.
1611      Class FieldLo, FieldHi;
1612
1613      // Bit-fields require special handling, they do not force the
1614      // structure to be passed in memory even if unaligned, and
1615      // therefore they can straddle an eightbyte.
1616      if (BitField) {
1617        // Ignore padding bit-fields.
1618        if (i->isUnnamedBitfield())
1619          continue;
1620
1621        uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
1622        uint64_t Size = i->getBitWidthValue(getContext());
1623
1624        uint64_t EB_Lo = Offset / 64;
1625        uint64_t EB_Hi = (Offset + Size - 1) / 64;
1626        FieldLo = FieldHi = NoClass;
1627        if (EB_Lo) {
1628          assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes.");
1629          FieldLo = NoClass;
1630          FieldHi = Integer;
1631        } else {
1632          FieldLo = Integer;
1633          FieldHi = EB_Hi ? Integer : NoClass;
1634        }
1635      } else
1636        classify(i->getType(), Offset, FieldLo, FieldHi);
1637      Lo = merge(Lo, FieldLo);
1638      Hi = merge(Hi, FieldHi);
1639      if (Lo == Memory || Hi == Memory)
1640        break;
1641    }
1642
1643    postMerge(Size, Lo, Hi);
1644  }
1645}
1646
1647ABIArgInfo X86_64ABIInfo::getIndirectReturnResult(QualType Ty) const {
1648  // If this is a scalar LLVM value then assume LLVM will pass it in the right
1649  // place naturally.
1650  if (!isAggregateTypeForABI(Ty)) {
1651    // Treat an enum type as its underlying type.
1652    if (const EnumType *EnumTy = Ty->getAs<EnumType>())
1653      Ty = EnumTy->getDecl()->getIntegerType();
1654
1655    return (Ty->isPromotableIntegerType() ?
1656            ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
1657  }
1658
1659  return ABIArgInfo::getIndirect(0);
1660}
1661
1662bool X86_64ABIInfo::IsIllegalVectorType(QualType Ty) const {
1663  if (const VectorType *VecTy = Ty->getAs<VectorType>()) {
1664    uint64_t Size = getContext().getTypeSize(VecTy);
1665    unsigned LargestVector = HasAVX ? 256 : 128;
1666    if (Size <= 64 || Size > LargestVector)
1667      return true;
1668  }
1669
1670  return false;
1671}
1672
1673ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty,
1674                                            unsigned freeIntRegs) const {
1675  // If this is a scalar LLVM value then assume LLVM will pass it in the right
1676  // place naturally.
1677  //
1678  // This assumption is optimistic, as there could be free registers available
1679  // when we need to pass this argument in memory, and LLVM could try to pass
1680  // the argument in the free register. This does not seem to happen currently,
1681  // but this code would be much safer if we could mark the argument with
1682  // 'onstack'. See PR12193.
1683  if (!isAggregateTypeForABI(Ty) && !IsIllegalVectorType(Ty)) {
1684    // Treat an enum type as its underlying type.
1685    if (const EnumType *EnumTy = Ty->getAs<EnumType>())
1686      Ty = EnumTy->getDecl()->getIntegerType();
1687
1688    return (Ty->isPromotableIntegerType() ?
1689            ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
1690  }
1691
1692  if (isRecordWithNonTrivialDestructorOrCopyConstructor(Ty))
1693    return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
1694
1695  // Compute the byval alignment. We specify the alignment of the byval in all
1696  // cases so that the mid-level optimizer knows the alignment of the byval.
1697  unsigned Align = std::max(getContext().getTypeAlign(Ty) / 8, 8U);
1698
1699  // Attempt to avoid passing indirect results using byval when possible. This
1700  // is important for good codegen.
1701  //
1702  // We do this by coercing the value into a scalar type which the backend can
1703  // handle naturally (i.e., without using byval).
1704  //
1705  // For simplicity, we currently only do this when we have exhausted all of the
1706  // free integer registers. Doing this when there are free integer registers
1707  // would require more care, as we would have to ensure that the coerced value
1708  // did not claim the unused register. That would require either reording the
1709  // arguments to the function (so that any subsequent inreg values came first),
1710  // or only doing this optimization when there were no following arguments that
1711  // might be inreg.
1712  //
1713  // We currently expect it to be rare (particularly in well written code) for
1714  // arguments to be passed on the stack when there are still free integer
1715  // registers available (this would typically imply large structs being passed
1716  // by value), so this seems like a fair tradeoff for now.
1717  //
1718  // We can revisit this if the backend grows support for 'onstack' parameter
1719  // attributes. See PR12193.
1720  if (freeIntRegs == 0) {
1721    uint64_t Size = getContext().getTypeSize(Ty);
1722
1723    // If this type fits in an eightbyte, coerce it into the matching integral
1724    // type, which will end up on the stack (with alignment 8).
1725    if (Align == 8 && Size <= 64)
1726      return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
1727                                                          Size));
1728  }
1729
1730  return ABIArgInfo::getIndirect(Align);
1731}
1732
1733/// GetByteVectorType - The ABI specifies that a value should be passed in an
1734/// full vector XMM/YMM register.  Pick an LLVM IR type that will be passed as a
1735/// vector register.
1736llvm::Type *X86_64ABIInfo::GetByteVectorType(QualType Ty) const {
1737  llvm::Type *IRType = CGT.ConvertType(Ty);
1738
1739  // Wrapper structs that just contain vectors are passed just like vectors,
1740  // strip them off if present.
1741  llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType);
1742  while (STy && STy->getNumElements() == 1) {
1743    IRType = STy->getElementType(0);
1744    STy = dyn_cast<llvm::StructType>(IRType);
1745  }
1746
1747  // If the preferred type is a 16-byte vector, prefer to pass it.
1748  if (llvm::VectorType *VT = dyn_cast<llvm::VectorType>(IRType)){
1749    llvm::Type *EltTy = VT->getElementType();
1750    unsigned BitWidth = VT->getBitWidth();
1751    if ((BitWidth >= 128 && BitWidth <= 256) &&
1752        (EltTy->isFloatTy() || EltTy->isDoubleTy() ||
1753         EltTy->isIntegerTy(8) || EltTy->isIntegerTy(16) ||
1754         EltTy->isIntegerTy(32) || EltTy->isIntegerTy(64) ||
1755         EltTy->isIntegerTy(128)))
1756      return VT;
1757  }
1758
1759  return llvm::VectorType::get(llvm::Type::getDoubleTy(getVMContext()), 2);
1760}
1761
1762/// BitsContainNoUserData - Return true if the specified [start,end) bit range
1763/// is known to either be off the end of the specified type or being in
1764/// alignment padding.  The user type specified is known to be at most 128 bits
1765/// in size, and have passed through X86_64ABIInfo::classify with a successful
1766/// classification that put one of the two halves in the INTEGER class.
1767///
1768/// It is conservatively correct to return false.
1769static bool BitsContainNoUserData(QualType Ty, unsigned StartBit,
1770                                  unsigned EndBit, ASTContext &Context) {
1771  // If the bytes being queried are off the end of the type, there is no user
1772  // data hiding here.  This handles analysis of builtins, vectors and other
1773  // types that don't contain interesting padding.
1774  unsigned TySize = (unsigned)Context.getTypeSize(Ty);
1775  if (TySize <= StartBit)
1776    return true;
1777
1778  if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
1779    unsigned EltSize = (unsigned)Context.getTypeSize(AT->getElementType());
1780    unsigned NumElts = (unsigned)AT->getSize().getZExtValue();
1781
1782    // Check each element to see if the element overlaps with the queried range.
1783    for (unsigned i = 0; i != NumElts; ++i) {
1784      // If the element is after the span we care about, then we're done..
1785      unsigned EltOffset = i*EltSize;
1786      if (EltOffset >= EndBit) break;
1787
1788      unsigned EltStart = EltOffset < StartBit ? StartBit-EltOffset :0;
1789      if (!BitsContainNoUserData(AT->getElementType(), EltStart,
1790                                 EndBit-EltOffset, Context))
1791        return false;
1792    }
1793    // If it overlaps no elements, then it is safe to process as padding.
1794    return true;
1795  }
1796
1797  if (const RecordType *RT = Ty->getAs<RecordType>()) {
1798    const RecordDecl *RD = RT->getDecl();
1799    const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
1800
1801    // If this is a C++ record, check the bases first.
1802    if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
1803      for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
1804           e = CXXRD->bases_end(); i != e; ++i) {
1805        assert(!i->isVirtual() && !i->getType()->isDependentType() &&
1806               "Unexpected base class!");
1807        const CXXRecordDecl *Base =
1808          cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
1809
1810        // If the base is after the span we care about, ignore it.
1811        unsigned BaseOffset = Context.toBits(Layout.getBaseClassOffset(Base));
1812        if (BaseOffset >= EndBit) continue;
1813
1814        unsigned BaseStart = BaseOffset < StartBit ? StartBit-BaseOffset :0;
1815        if (!BitsContainNoUserData(i->getType(), BaseStart,
1816                                   EndBit-BaseOffset, Context))
1817          return false;
1818      }
1819    }
1820
1821    // Verify that no field has data that overlaps the region of interest.  Yes
1822    // this could be sped up a lot by being smarter about queried fields,
1823    // however we're only looking at structs up to 16 bytes, so we don't care
1824    // much.
1825    unsigned idx = 0;
1826    for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
1827         i != e; ++i, ++idx) {
1828      unsigned FieldOffset = (unsigned)Layout.getFieldOffset(idx);
1829
1830      // If we found a field after the region we care about, then we're done.
1831      if (FieldOffset >= EndBit) break;
1832
1833      unsigned FieldStart = FieldOffset < StartBit ? StartBit-FieldOffset :0;
1834      if (!BitsContainNoUserData(i->getType(), FieldStart, EndBit-FieldOffset,
1835                                 Context))
1836        return false;
1837    }
1838
1839    // If nothing in this record overlapped the area of interest, then we're
1840    // clean.
1841    return true;
1842  }
1843
1844  return false;
1845}
1846
1847/// ContainsFloatAtOffset - Return true if the specified LLVM IR type has a
1848/// float member at the specified offset.  For example, {int,{float}} has a
1849/// float at offset 4.  It is conservatively correct for this routine to return
1850/// false.
1851static bool ContainsFloatAtOffset(llvm::Type *IRType, unsigned IROffset,
1852                                  const llvm::DataLayout &TD) {
1853  // Base case if we find a float.
1854  if (IROffset == 0 && IRType->isFloatTy())
1855    return true;
1856
1857  // If this is a struct, recurse into the field at the specified offset.
1858  if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
1859    const llvm::StructLayout *SL = TD.getStructLayout(STy);
1860    unsigned Elt = SL->getElementContainingOffset(IROffset);
1861    IROffset -= SL->getElementOffset(Elt);
1862    return ContainsFloatAtOffset(STy->getElementType(Elt), IROffset, TD);
1863  }
1864
1865  // If this is an array, recurse into the field at the specified offset.
1866  if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
1867    llvm::Type *EltTy = ATy->getElementType();
1868    unsigned EltSize = TD.getTypeAllocSize(EltTy);
1869    IROffset -= IROffset/EltSize*EltSize;
1870    return ContainsFloatAtOffset(EltTy, IROffset, TD);
1871  }
1872
1873  return false;
1874}
1875
1876
1877/// GetSSETypeAtOffset - Return a type that will be passed by the backend in the
1878/// low 8 bytes of an XMM register, corresponding to the SSE class.
1879llvm::Type *X86_64ABIInfo::
1880GetSSETypeAtOffset(llvm::Type *IRType, unsigned IROffset,
1881                   QualType SourceTy, unsigned SourceOffset) const {
1882  // The only three choices we have are either double, <2 x float>, or float. We
1883  // pass as float if the last 4 bytes is just padding.  This happens for
1884  // structs that contain 3 floats.
1885  if (BitsContainNoUserData(SourceTy, SourceOffset*8+32,
1886                            SourceOffset*8+64, getContext()))
1887    return llvm::Type::getFloatTy(getVMContext());
1888
1889  // We want to pass as <2 x float> if the LLVM IR type contains a float at
1890  // offset+0 and offset+4.  Walk the LLVM IR type to find out if this is the
1891  // case.
1892  if (ContainsFloatAtOffset(IRType, IROffset, getDataLayout()) &&
1893      ContainsFloatAtOffset(IRType, IROffset+4, getDataLayout()))
1894    return llvm::VectorType::get(llvm::Type::getFloatTy(getVMContext()), 2);
1895
1896  return llvm::Type::getDoubleTy(getVMContext());
1897}
1898
1899
1900/// GetINTEGERTypeAtOffset - The ABI specifies that a value should be passed in
1901/// an 8-byte GPR.  This means that we either have a scalar or we are talking
1902/// about the high or low part of an up-to-16-byte struct.  This routine picks
1903/// the best LLVM IR type to represent this, which may be i64 or may be anything
1904/// else that the backend will pass in a GPR that works better (e.g. i8, %foo*,
1905/// etc).
1906///
1907/// PrefType is an LLVM IR type that corresponds to (part of) the IR type for
1908/// the source type.  IROffset is an offset in bytes into the LLVM IR type that
1909/// the 8-byte value references.  PrefType may be null.
1910///
1911/// SourceTy is the source level type for the entire argument.  SourceOffset is
1912/// an offset into this that we're processing (which is always either 0 or 8).
1913///
1914llvm::Type *X86_64ABIInfo::
1915GetINTEGERTypeAtOffset(llvm::Type *IRType, unsigned IROffset,
1916                       QualType SourceTy, unsigned SourceOffset) const {
1917  // If we're dealing with an un-offset LLVM IR type, then it means that we're
1918  // returning an 8-byte unit starting with it.  See if we can safely use it.
1919  if (IROffset == 0) {
1920    // Pointers and int64's always fill the 8-byte unit.
1921    if ((isa<llvm::PointerType>(IRType) && Has64BitPointers) ||
1922        IRType->isIntegerTy(64))
1923      return IRType;
1924
1925    // If we have a 1/2/4-byte integer, we can use it only if the rest of the
1926    // goodness in the source type is just tail padding.  This is allowed to
1927    // kick in for struct {double,int} on the int, but not on
1928    // struct{double,int,int} because we wouldn't return the second int.  We
1929    // have to do this analysis on the source type because we can't depend on
1930    // unions being lowered a specific way etc.
1931    if (IRType->isIntegerTy(8) || IRType->isIntegerTy(16) ||
1932        IRType->isIntegerTy(32) ||
1933        (isa<llvm::PointerType>(IRType) && !Has64BitPointers)) {
1934      unsigned BitWidth = isa<llvm::PointerType>(IRType) ? 32 :
1935          cast<llvm::IntegerType>(IRType)->getBitWidth();
1936
1937      if (BitsContainNoUserData(SourceTy, SourceOffset*8+BitWidth,
1938                                SourceOffset*8+64, getContext()))
1939        return IRType;
1940    }
1941  }
1942
1943  if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
1944    // If this is a struct, recurse into the field at the specified offset.
1945    const llvm::StructLayout *SL = getDataLayout().getStructLayout(STy);
1946    if (IROffset < SL->getSizeInBytes()) {
1947      unsigned FieldIdx = SL->getElementContainingOffset(IROffset);
1948      IROffset -= SL->getElementOffset(FieldIdx);
1949
1950      return GetINTEGERTypeAtOffset(STy->getElementType(FieldIdx), IROffset,
1951                                    SourceTy, SourceOffset);
1952    }
1953  }
1954
1955  if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
1956    llvm::Type *EltTy = ATy->getElementType();
1957    unsigned EltSize = getDataLayout().getTypeAllocSize(EltTy);
1958    unsigned EltOffset = IROffset/EltSize*EltSize;
1959    return GetINTEGERTypeAtOffset(EltTy, IROffset-EltOffset, SourceTy,
1960                                  SourceOffset);
1961  }
1962
1963  // Okay, we don't have any better idea of what to pass, so we pass this in an
1964  // integer register that isn't too big to fit the rest of the struct.
1965  unsigned TySizeInBytes =
1966    (unsigned)getContext().getTypeSizeInChars(SourceTy).getQuantity();
1967
1968  assert(TySizeInBytes != SourceOffset && "Empty field?");
1969
1970  // It is always safe to classify this as an integer type up to i64 that
1971  // isn't larger than the structure.
1972  return llvm::IntegerType::get(getVMContext(),
1973                                std::min(TySizeInBytes-SourceOffset, 8U)*8);
1974}
1975
1976
1977/// GetX86_64ByValArgumentPair - Given a high and low type that can ideally
1978/// be used as elements of a two register pair to pass or return, return a
1979/// first class aggregate to represent them.  For example, if the low part of
1980/// a by-value argument should be passed as i32* and the high part as float,
1981/// return {i32*, float}.
1982static llvm::Type *
1983GetX86_64ByValArgumentPair(llvm::Type *Lo, llvm::Type *Hi,
1984                           const llvm::DataLayout &TD) {
1985  // In order to correctly satisfy the ABI, we need to the high part to start
1986  // at offset 8.  If the high and low parts we inferred are both 4-byte types
1987  // (e.g. i32 and i32) then the resultant struct type ({i32,i32}) won't have
1988  // the second element at offset 8.  Check for this:
1989  unsigned LoSize = (unsigned)TD.getTypeAllocSize(Lo);
1990  unsigned HiAlign = TD.getABITypeAlignment(Hi);
1991  unsigned HiStart = llvm::DataLayout::RoundUpAlignment(LoSize, HiAlign);
1992  assert(HiStart != 0 && HiStart <= 8 && "Invalid x86-64 argument pair!");
1993
1994  // To handle this, we have to increase the size of the low part so that the
1995  // second element will start at an 8 byte offset.  We can't increase the size
1996  // of the second element because it might make us access off the end of the
1997  // struct.
1998  if (HiStart != 8) {
1999    // There are only two sorts of types the ABI generation code can produce for
2000    // the low part of a pair that aren't 8 bytes in size: float or i8/i16/i32.
2001    // Promote these to a larger type.
2002    if (Lo->isFloatTy())
2003      Lo = llvm::Type::getDoubleTy(Lo->getContext());
2004    else {
2005      assert(Lo->isIntegerTy() && "Invalid/unknown lo type");
2006      Lo = llvm::Type::getInt64Ty(Lo->getContext());
2007    }
2008  }
2009
2010  llvm::StructType *Result = llvm::StructType::get(Lo, Hi, NULL);
2011
2012
2013  // Verify that the second element is at an 8-byte offset.
2014  assert(TD.getStructLayout(Result)->getElementOffset(1) == 8 &&
2015         "Invalid x86-64 argument pair!");
2016  return Result;
2017}
2018
2019ABIArgInfo X86_64ABIInfo::
2020classifyReturnType(QualType RetTy) const {
2021  // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the
2022  // classification algorithm.
2023  X86_64ABIInfo::Class Lo, Hi;
2024  classify(RetTy, 0, Lo, Hi);
2025
2026  // Check some invariants.
2027  assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
2028  assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
2029
2030  llvm::Type *ResType = 0;
2031  switch (Lo) {
2032  case NoClass:
2033    if (Hi == NoClass)
2034      return ABIArgInfo::getIgnore();
2035    // If the low part is just padding, it takes no register, leave ResType
2036    // null.
2037    assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
2038           "Unknown missing lo part");
2039    break;
2040
2041  case SSEUp:
2042  case X87Up:
2043    llvm_unreachable("Invalid classification for lo word.");
2044
2045    // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via
2046    // hidden argument.
2047  case Memory:
2048    return getIndirectReturnResult(RetTy);
2049
2050    // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next
2051    // available register of the sequence %rax, %rdx is used.
2052  case Integer:
2053    ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0);
2054
2055    // If we have a sign or zero extended integer, make sure to return Extend
2056    // so that the parameter gets the right LLVM IR attributes.
2057    if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
2058      // Treat an enum type as its underlying type.
2059      if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
2060        RetTy = EnumTy->getDecl()->getIntegerType();
2061
2062      if (RetTy->isIntegralOrEnumerationType() &&
2063          RetTy->isPromotableIntegerType())
2064        return ABIArgInfo::getExtend();
2065    }
2066    break;
2067
2068    // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next
2069    // available SSE register of the sequence %xmm0, %xmm1 is used.
2070  case SSE:
2071    ResType = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0);
2072    break;
2073
2074    // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is
2075    // returned on the X87 stack in %st0 as 80-bit x87 number.
2076  case X87:
2077    ResType = llvm::Type::getX86_FP80Ty(getVMContext());
2078    break;
2079
2080    // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real
2081    // part of the value is returned in %st0 and the imaginary part in
2082    // %st1.
2083  case ComplexX87:
2084    assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification.");
2085    ResType = llvm::StructType::get(llvm::Type::getX86_FP80Ty(getVMContext()),
2086                                    llvm::Type::getX86_FP80Ty(getVMContext()),
2087                                    NULL);
2088    break;
2089  }
2090
2091  llvm::Type *HighPart = 0;
2092  switch (Hi) {
2093    // Memory was handled previously and X87 should
2094    // never occur as a hi class.
2095  case Memory:
2096  case X87:
2097    llvm_unreachable("Invalid classification for hi word.");
2098
2099  case ComplexX87: // Previously handled.
2100  case NoClass:
2101    break;
2102
2103  case Integer:
2104    HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
2105    if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
2106      return ABIArgInfo::getDirect(HighPart, 8);
2107    break;
2108  case SSE:
2109    HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
2110    if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
2111      return ABIArgInfo::getDirect(HighPart, 8);
2112    break;
2113
2114    // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte
2115    // is passed in the next available eightbyte chunk if the last used
2116    // vector register.
2117    //
2118    // SSEUP should always be preceded by SSE, just widen.
2119  case SSEUp:
2120    assert(Lo == SSE && "Unexpected SSEUp classification.");
2121    ResType = GetByteVectorType(RetTy);
2122    break;
2123
2124    // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is
2125    // returned together with the previous X87 value in %st0.
2126  case X87Up:
2127    // If X87Up is preceded by X87, we don't need to do
2128    // anything. However, in some cases with unions it may not be
2129    // preceded by X87. In such situations we follow gcc and pass the
2130    // extra bits in an SSE reg.
2131    if (Lo != X87) {
2132      HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
2133      if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
2134        return ABIArgInfo::getDirect(HighPart, 8);
2135    }
2136    break;
2137  }
2138
2139  // If a high part was specified, merge it together with the low part.  It is
2140  // known to pass in the high eightbyte of the result.  We do this by forming a
2141  // first class struct aggregate with the high and low part: {low, high}
2142  if (HighPart)
2143    ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout());
2144
2145  return ABIArgInfo::getDirect(ResType);
2146}
2147
2148ABIArgInfo X86_64ABIInfo::classifyArgumentType(
2149  QualType Ty, unsigned freeIntRegs, unsigned &neededInt, unsigned &neededSSE)
2150  const
2151{
2152  X86_64ABIInfo::Class Lo, Hi;
2153  classify(Ty, 0, Lo, Hi);
2154
2155  // Check some invariants.
2156  // FIXME: Enforce these by construction.
2157  assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
2158  assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
2159
2160  neededInt = 0;
2161  neededSSE = 0;
2162  llvm::Type *ResType = 0;
2163  switch (Lo) {
2164  case NoClass:
2165    if (Hi == NoClass)
2166      return ABIArgInfo::getIgnore();
2167    // If the low part is just padding, it takes no register, leave ResType
2168    // null.
2169    assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
2170           "Unknown missing lo part");
2171    break;
2172
2173    // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument
2174    // on the stack.
2175  case Memory:
2176
2177    // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or
2178    // COMPLEX_X87, it is passed in memory.
2179  case X87:
2180  case ComplexX87:
2181    if (isRecordWithNonTrivialDestructorOrCopyConstructor(Ty))
2182      ++neededInt;
2183    return getIndirectResult(Ty, freeIntRegs);
2184
2185  case SSEUp:
2186  case X87Up:
2187    llvm_unreachable("Invalid classification for lo word.");
2188
2189    // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next
2190    // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8
2191    // and %r9 is used.
2192  case Integer:
2193    ++neededInt;
2194
2195    // Pick an 8-byte type based on the preferred type.
2196    ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 0, Ty, 0);
2197
2198    // If we have a sign or zero extended integer, make sure to return Extend
2199    // so that the parameter gets the right LLVM IR attributes.
2200    if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
2201      // Treat an enum type as its underlying type.
2202      if (const EnumType *EnumTy = Ty->getAs<EnumType>())
2203        Ty = EnumTy->getDecl()->getIntegerType();
2204
2205      if (Ty->isIntegralOrEnumerationType() &&
2206          Ty->isPromotableIntegerType())
2207        return ABIArgInfo::getExtend();
2208    }
2209
2210    break;
2211
2212    // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next
2213    // available SSE register is used, the registers are taken in the
2214    // order from %xmm0 to %xmm7.
2215  case SSE: {
2216    llvm::Type *IRType = CGT.ConvertType(Ty);
2217    ResType = GetSSETypeAtOffset(IRType, 0, Ty, 0);
2218    ++neededSSE;
2219    break;
2220  }
2221  }
2222
2223  llvm::Type *HighPart = 0;
2224  switch (Hi) {
2225    // Memory was handled previously, ComplexX87 and X87 should
2226    // never occur as hi classes, and X87Up must be preceded by X87,
2227    // which is passed in memory.
2228  case Memory:
2229  case X87:
2230  case ComplexX87:
2231    llvm_unreachable("Invalid classification for hi word.");
2232
2233  case NoClass: break;
2234
2235  case Integer:
2236    ++neededInt;
2237    // Pick an 8-byte type based on the preferred type.
2238    HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8);
2239
2240    if (Lo == NoClass)  // Pass HighPart at offset 8 in memory.
2241      return ABIArgInfo::getDirect(HighPart, 8);
2242    break;
2243
2244    // X87Up generally doesn't occur here (long double is passed in
2245    // memory), except in situations involving unions.
2246  case X87Up:
2247  case SSE:
2248    HighPart = GetSSETypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8);
2249
2250    if (Lo == NoClass)  // Pass HighPart at offset 8 in memory.
2251      return ABIArgInfo::getDirect(HighPart, 8);
2252
2253    ++neededSSE;
2254    break;
2255
2256    // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the
2257    // eightbyte is passed in the upper half of the last used SSE
2258    // register.  This only happens when 128-bit vectors are passed.
2259  case SSEUp:
2260    assert(Lo == SSE && "Unexpected SSEUp classification");
2261    ResType = GetByteVectorType(Ty);
2262    break;
2263  }
2264
2265  // If a high part was specified, merge it together with the low part.  It is
2266  // known to pass in the high eightbyte of the result.  We do this by forming a
2267  // first class struct aggregate with the high and low part: {low, high}
2268  if (HighPart)
2269    ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout());
2270
2271  return ABIArgInfo::getDirect(ResType);
2272}
2273
2274void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
2275
2276  FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
2277
2278  // Keep track of the number of assigned registers.
2279  unsigned freeIntRegs = 6, freeSSERegs = 8;
2280
2281  // If the return value is indirect, then the hidden argument is consuming one
2282  // integer register.
2283  if (FI.getReturnInfo().isIndirect())
2284    --freeIntRegs;
2285
2286  // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers
2287  // get assigned (in left-to-right order) for passing as follows...
2288  for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
2289       it != ie; ++it) {
2290    unsigned neededInt, neededSSE;
2291    it->info = classifyArgumentType(it->type, freeIntRegs, neededInt,
2292                                    neededSSE);
2293
2294    // AMD64-ABI 3.2.3p3: If there are no registers available for any
2295    // eightbyte of an argument, the whole argument is passed on the
2296    // stack. If registers have already been assigned for some
2297    // eightbytes of such an argument, the assignments get reverted.
2298    if (freeIntRegs >= neededInt && freeSSERegs >= neededSSE) {
2299      freeIntRegs -= neededInt;
2300      freeSSERegs -= neededSSE;
2301    } else {
2302      it->info = getIndirectResult(it->type, freeIntRegs);
2303    }
2304  }
2305}
2306
2307static llvm::Value *EmitVAArgFromMemory(llvm::Value *VAListAddr,
2308                                        QualType Ty,
2309                                        CodeGenFunction &CGF) {
2310  llvm::Value *overflow_arg_area_p =
2311    CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_p");
2312  llvm::Value *overflow_arg_area =
2313    CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area");
2314
2315  // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16
2316  // byte boundary if alignment needed by type exceeds 8 byte boundary.
2317  // It isn't stated explicitly in the standard, but in practice we use
2318  // alignment greater than 16 where necessary.
2319  uint64_t Align = CGF.getContext().getTypeAlign(Ty) / 8;
2320  if (Align > 8) {
2321    // overflow_arg_area = (overflow_arg_area + align - 1) & -align;
2322    llvm::Value *Offset =
2323      llvm::ConstantInt::get(CGF.Int64Ty, Align - 1);
2324    overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset);
2325    llvm::Value *AsInt = CGF.Builder.CreatePtrToInt(overflow_arg_area,
2326                                                    CGF.Int64Ty);
2327    llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int64Ty, -(uint64_t)Align);
2328    overflow_arg_area =
2329      CGF.Builder.CreateIntToPtr(CGF.Builder.CreateAnd(AsInt, Mask),
2330                                 overflow_arg_area->getType(),
2331                                 "overflow_arg_area.align");
2332  }
2333
2334  // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area.
2335  llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
2336  llvm::Value *Res =
2337    CGF.Builder.CreateBitCast(overflow_arg_area,
2338                              llvm::PointerType::getUnqual(LTy));
2339
2340  // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to:
2341  // l->overflow_arg_area + sizeof(type).
2342  // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to
2343  // an 8 byte boundary.
2344
2345  uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8;
2346  llvm::Value *Offset =
2347      llvm::ConstantInt::get(CGF.Int32Ty, (SizeInBytes + 7)  & ~7);
2348  overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset,
2349                                            "overflow_arg_area.next");
2350  CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p);
2351
2352  // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type.
2353  return Res;
2354}
2355
2356llvm::Value *X86_64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2357                                      CodeGenFunction &CGF) const {
2358  // Assume that va_list type is correct; should be pointer to LLVM type:
2359  // struct {
2360  //   i32 gp_offset;
2361  //   i32 fp_offset;
2362  //   i8* overflow_arg_area;
2363  //   i8* reg_save_area;
2364  // };
2365  unsigned neededInt, neededSSE;
2366
2367  Ty = CGF.getContext().getCanonicalType(Ty);
2368  ABIArgInfo AI = classifyArgumentType(Ty, 0, neededInt, neededSSE);
2369
2370  // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed
2371  // in the registers. If not go to step 7.
2372  if (!neededInt && !neededSSE)
2373    return EmitVAArgFromMemory(VAListAddr, Ty, CGF);
2374
2375  // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of
2376  // general purpose registers needed to pass type and num_fp to hold
2377  // the number of floating point registers needed.
2378
2379  // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into
2380  // registers. In the case: l->gp_offset > 48 - num_gp * 8 or
2381  // l->fp_offset > 304 - num_fp * 16 go to step 7.
2382  //
2383  // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of
2384  // register save space).
2385
2386  llvm::Value *InRegs = 0;
2387  llvm::Value *gp_offset_p = 0, *gp_offset = 0;
2388  llvm::Value *fp_offset_p = 0, *fp_offset = 0;
2389  if (neededInt) {
2390    gp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "gp_offset_p");
2391    gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset");
2392    InRegs = llvm::ConstantInt::get(CGF.Int32Ty, 48 - neededInt * 8);
2393    InRegs = CGF.Builder.CreateICmpULE(gp_offset, InRegs, "fits_in_gp");
2394  }
2395
2396  if (neededSSE) {
2397    fp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 1, "fp_offset_p");
2398    fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset");
2399    llvm::Value *FitsInFP =
2400      llvm::ConstantInt::get(CGF.Int32Ty, 176 - neededSSE * 16);
2401    FitsInFP = CGF.Builder.CreateICmpULE(fp_offset, FitsInFP, "fits_in_fp");
2402    InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP;
2403  }
2404
2405  llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
2406  llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
2407  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
2408  CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);
2409
2410  // Emit code to load the value if it was passed in registers.
2411
2412  CGF.EmitBlock(InRegBlock);
2413
2414  // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with
2415  // an offset of l->gp_offset and/or l->fp_offset. This may require
2416  // copying to a temporary location in case the parameter is passed
2417  // in different register classes or requires an alignment greater
2418  // than 8 for general purpose registers and 16 for XMM registers.
2419  //
2420  // FIXME: This really results in shameful code when we end up needing to
2421  // collect arguments from different places; often what should result in a
2422  // simple assembling of a structure from scattered addresses has many more
2423  // loads than necessary. Can we clean this up?
2424  llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
2425  llvm::Value *RegAddr =
2426    CGF.Builder.CreateLoad(CGF.Builder.CreateStructGEP(VAListAddr, 3),
2427                           "reg_save_area");
2428  if (neededInt && neededSSE) {
2429    // FIXME: Cleanup.
2430    assert(AI.isDirect() && "Unexpected ABI info for mixed regs");
2431    llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType());
2432    llvm::Value *Tmp = CGF.CreateTempAlloca(ST);
2433    assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs");
2434    llvm::Type *TyLo = ST->getElementType(0);
2435    llvm::Type *TyHi = ST->getElementType(1);
2436    assert((TyLo->isFPOrFPVectorTy() ^ TyHi->isFPOrFPVectorTy()) &&
2437           "Unexpected ABI info for mixed regs");
2438    llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo);
2439    llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi);
2440    llvm::Value *GPAddr = CGF.Builder.CreateGEP(RegAddr, gp_offset);
2441    llvm::Value *FPAddr = CGF.Builder.CreateGEP(RegAddr, fp_offset);
2442    llvm::Value *RegLoAddr = TyLo->isFloatingPointTy() ? FPAddr : GPAddr;
2443    llvm::Value *RegHiAddr = TyLo->isFloatingPointTy() ? GPAddr : FPAddr;
2444    llvm::Value *V =
2445      CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegLoAddr, PTyLo));
2446    CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0));
2447    V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegHiAddr, PTyHi));
2448    CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1));
2449
2450    RegAddr = CGF.Builder.CreateBitCast(Tmp,
2451                                        llvm::PointerType::getUnqual(LTy));
2452  } else if (neededInt) {
2453    RegAddr = CGF.Builder.CreateGEP(RegAddr, gp_offset);
2454    RegAddr = CGF.Builder.CreateBitCast(RegAddr,
2455                                        llvm::PointerType::getUnqual(LTy));
2456  } else if (neededSSE == 1) {
2457    RegAddr = CGF.Builder.CreateGEP(RegAddr, fp_offset);
2458    RegAddr = CGF.Builder.CreateBitCast(RegAddr,
2459                                        llvm::PointerType::getUnqual(LTy));
2460  } else {
2461    assert(neededSSE == 2 && "Invalid number of needed registers!");
2462    // SSE registers are spaced 16 bytes apart in the register save
2463    // area, we need to collect the two eightbytes together.
2464    llvm::Value *RegAddrLo = CGF.Builder.CreateGEP(RegAddr, fp_offset);
2465    llvm::Value *RegAddrHi = CGF.Builder.CreateConstGEP1_32(RegAddrLo, 16);
2466    llvm::Type *DoubleTy = CGF.DoubleTy;
2467    llvm::Type *DblPtrTy =
2468      llvm::PointerType::getUnqual(DoubleTy);
2469    llvm::StructType *ST = llvm::StructType::get(DoubleTy,
2470                                                       DoubleTy, NULL);
2471    llvm::Value *V, *Tmp = CGF.CreateTempAlloca(ST);
2472    V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegAddrLo,
2473                                                         DblPtrTy));
2474    CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0));
2475    V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegAddrHi,
2476                                                         DblPtrTy));
2477    CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1));
2478    RegAddr = CGF.Builder.CreateBitCast(Tmp,
2479                                        llvm::PointerType::getUnqual(LTy));
2480  }
2481
2482  // AMD64-ABI 3.5.7p5: Step 5. Set:
2483  // l->gp_offset = l->gp_offset + num_gp * 8
2484  // l->fp_offset = l->fp_offset + num_fp * 16.
2485  if (neededInt) {
2486    llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededInt * 8);
2487    CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset),
2488                            gp_offset_p);
2489  }
2490  if (neededSSE) {
2491    llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededSSE * 16);
2492    CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset),
2493                            fp_offset_p);
2494  }
2495  CGF.EmitBranch(ContBlock);
2496
2497  // Emit code to load the value if it was passed in memory.
2498
2499  CGF.EmitBlock(InMemBlock);
2500  llvm::Value *MemAddr = EmitVAArgFromMemory(VAListAddr, Ty, CGF);
2501
2502  // Return the appropriate result.
2503
2504  CGF.EmitBlock(ContBlock);
2505  llvm::PHINode *ResAddr = CGF.Builder.CreatePHI(RegAddr->getType(), 2,
2506                                                 "vaarg.addr");
2507  ResAddr->addIncoming(RegAddr, InRegBlock);
2508  ResAddr->addIncoming(MemAddr, InMemBlock);
2509  return ResAddr;
2510}
2511
2512ABIArgInfo WinX86_64ABIInfo::classify(QualType Ty) const {
2513
2514  if (Ty->isVoidType())
2515    return ABIArgInfo::getIgnore();
2516
2517  if (const EnumType *EnumTy = Ty->getAs<EnumType>())
2518    Ty = EnumTy->getDecl()->getIntegerType();
2519
2520  uint64_t Size = getContext().getTypeSize(Ty);
2521
2522  if (const RecordType *RT = Ty->getAs<RecordType>()) {
2523    if (hasNonTrivialDestructorOrCopyConstructor(RT) ||
2524        RT->getDecl()->hasFlexibleArrayMember())
2525      return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
2526
2527    // FIXME: mingw-w64-gcc emits 128-bit struct as i128
2528    if (Size == 128 &&
2529        getContext().getTargetInfo().getTriple().getOS()
2530          == llvm::Triple::MinGW32)
2531      return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
2532                                                          Size));
2533
2534    // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is
2535    // not 1, 2, 4, or 8 bytes, must be passed by reference."
2536    if (Size <= 64 &&
2537        (Size & (Size - 1)) == 0)
2538      return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
2539                                                          Size));
2540
2541    return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
2542  }
2543
2544  if (Ty->isPromotableIntegerType())
2545    return ABIArgInfo::getExtend();
2546
2547  return ABIArgInfo::getDirect();
2548}
2549
2550void WinX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
2551
2552  QualType RetTy = FI.getReturnType();
2553  FI.getReturnInfo() = classify(RetTy);
2554
2555  for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
2556       it != ie; ++it)
2557    it->info = classify(it->type);
2558}
2559
2560llvm::Value *WinX86_64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2561                                      CodeGenFunction &CGF) const {
2562  llvm::Type *BPP = CGF.Int8PtrPtrTy;
2563
2564  CGBuilderTy &Builder = CGF.Builder;
2565  llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP,
2566                                                       "ap");
2567  llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
2568  llvm::Type *PTy =
2569    llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
2570  llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
2571
2572  uint64_t Offset =
2573    llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 8);
2574  llvm::Value *NextAddr =
2575    Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
2576                      "ap.next");
2577  Builder.CreateStore(NextAddr, VAListAddrAsBPP);
2578
2579  return AddrTyped;
2580}
2581
2582namespace {
2583
2584class NaClX86_64ABIInfo : public ABIInfo {
2585 public:
2586  NaClX86_64ABIInfo(CodeGen::CodeGenTypes &CGT, bool HasAVX)
2587      : ABIInfo(CGT), PInfo(CGT), NInfo(CGT, HasAVX) {}
2588  virtual void computeInfo(CGFunctionInfo &FI) const;
2589  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2590                                 CodeGenFunction &CGF) const;
2591 private:
2592  PNaClABIInfo PInfo;  // Used for generating calls with pnaclcall callingconv.
2593  X86_64ABIInfo NInfo; // Used for everything else.
2594};
2595
2596class NaClX86_64TargetCodeGenInfo : public TargetCodeGenInfo  {
2597 public:
2598  NaClX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool HasAVX)
2599      : TargetCodeGenInfo(new NaClX86_64ABIInfo(CGT, HasAVX)) {}
2600};
2601
2602}
2603
2604void NaClX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
2605  if (FI.getASTCallingConvention() == CC_PnaclCall)
2606    PInfo.computeInfo(FI);
2607  else
2608    NInfo.computeInfo(FI);
2609}
2610
2611llvm::Value *NaClX86_64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2612                                          CodeGenFunction &CGF) const {
2613  // Always use the native convention; calling pnacl-style varargs functions
2614  // is unuspported.
2615  return NInfo.EmitVAArg(VAListAddr, Ty, CGF);
2616}
2617
2618
2619// PowerPC-32
2620
2621namespace {
2622class PPC32TargetCodeGenInfo : public DefaultTargetCodeGenInfo {
2623public:
2624  PPC32TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {}
2625
2626  int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const {
2627    // This is recovered from gcc output.
2628    return 1; // r1 is the dedicated stack pointer
2629  }
2630
2631  bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2632                               llvm::Value *Address) const;
2633};
2634
2635}
2636
2637bool
2638PPC32TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2639                                                llvm::Value *Address) const {
2640  // This is calculated from the LLVM and GCC tables and verified
2641  // against gcc output.  AFAIK all ABIs use the same encoding.
2642
2643  CodeGen::CGBuilderTy &Builder = CGF.Builder;
2644
2645  llvm::IntegerType *i8 = CGF.Int8Ty;
2646  llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
2647  llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
2648  llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16);
2649
2650  // 0-31: r0-31, the 4-byte general-purpose registers
2651  AssignToArrayRange(Builder, Address, Four8, 0, 31);
2652
2653  // 32-63: fp0-31, the 8-byte floating-point registers
2654  AssignToArrayRange(Builder, Address, Eight8, 32, 63);
2655
2656  // 64-76 are various 4-byte special-purpose registers:
2657  // 64: mq
2658  // 65: lr
2659  // 66: ctr
2660  // 67: ap
2661  // 68-75 cr0-7
2662  // 76: xer
2663  AssignToArrayRange(Builder, Address, Four8, 64, 76);
2664
2665  // 77-108: v0-31, the 16-byte vector registers
2666  AssignToArrayRange(Builder, Address, Sixteen8, 77, 108);
2667
2668  // 109: vrsave
2669  // 110: vscr
2670  // 111: spe_acc
2671  // 112: spefscr
2672  // 113: sfp
2673  AssignToArrayRange(Builder, Address, Four8, 109, 113);
2674
2675  return false;
2676}
2677
2678// PowerPC-64
2679
2680namespace {
2681/// PPC64_SVR4_ABIInfo - The 64-bit PowerPC ELF (SVR4) ABI information.
2682class PPC64_SVR4_ABIInfo : public DefaultABIInfo {
2683
2684public:
2685  PPC64_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
2686
2687  bool isPromotableTypeForABI(QualType Ty) const;
2688
2689  ABIArgInfo classifyReturnType(QualType RetTy) const;
2690  ABIArgInfo classifyArgumentType(QualType Ty) const;
2691
2692  // TODO: We can add more logic to computeInfo to improve performance.
2693  // Example: For aggregate arguments that fit in a register, we could
2694  // use getDirectInReg (as is done below for structs containing a single
2695  // floating-point value) to avoid pushing them to memory on function
2696  // entry.  This would require changing the logic in PPCISelLowering
2697  // when lowering the parameters in the caller and args in the callee.
2698  virtual void computeInfo(CGFunctionInfo &FI) const {
2699    FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
2700    for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
2701         it != ie; ++it) {
2702      // We rely on the default argument classification for the most part.
2703      // One exception:  An aggregate containing a single floating-point
2704      // item must be passed in a register if one is available.
2705      const Type *T = isSingleElementStruct(it->type, getContext());
2706      if (T) {
2707        const BuiltinType *BT = T->getAs<BuiltinType>();
2708        if (BT && BT->isFloatingPoint()) {
2709          QualType QT(T, 0);
2710          it->info = ABIArgInfo::getDirectInReg(CGT.ConvertType(QT));
2711          continue;
2712        }
2713      }
2714      it->info = classifyArgumentType(it->type);
2715    }
2716  }
2717
2718  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr,
2719                                 QualType Ty,
2720                                 CodeGenFunction &CGF) const;
2721};
2722
2723class PPC64_SVR4_TargetCodeGenInfo : public TargetCodeGenInfo {
2724public:
2725  PPC64_SVR4_TargetCodeGenInfo(CodeGenTypes &CGT)
2726    : TargetCodeGenInfo(new PPC64_SVR4_ABIInfo(CGT)) {}
2727
2728  int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const {
2729    // This is recovered from gcc output.
2730    return 1; // r1 is the dedicated stack pointer
2731  }
2732
2733  bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2734                               llvm::Value *Address) const;
2735};
2736
2737class PPC64TargetCodeGenInfo : public DefaultTargetCodeGenInfo {
2738public:
2739  PPC64TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {}
2740
2741  int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const {
2742    // This is recovered from gcc output.
2743    return 1; // r1 is the dedicated stack pointer
2744  }
2745
2746  bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2747                               llvm::Value *Address) const;
2748};
2749
2750}
2751
2752// Return true if the ABI requires Ty to be passed sign- or zero-
2753// extended to 64 bits.
2754bool
2755PPC64_SVR4_ABIInfo::isPromotableTypeForABI(QualType Ty) const {
2756  // Treat an enum type as its underlying type.
2757  if (const EnumType *EnumTy = Ty->getAs<EnumType>())
2758    Ty = EnumTy->getDecl()->getIntegerType();
2759
2760  // Promotable integer types are required to be promoted by the ABI.
2761  if (Ty->isPromotableIntegerType())
2762    return true;
2763
2764  // In addition to the usual promotable integer types, we also need to
2765  // extend all 32-bit types, since the ABI requires promotion to 64 bits.
2766  if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
2767    switch (BT->getKind()) {
2768    case BuiltinType::Int:
2769    case BuiltinType::UInt:
2770      return true;
2771    default:
2772      break;
2773    }
2774
2775  return false;
2776}
2777
2778ABIArgInfo
2779PPC64_SVR4_ABIInfo::classifyArgumentType(QualType Ty) const {
2780  if (isAggregateTypeForABI(Ty)) {
2781    // Records with non trivial destructors/constructors should not be passed
2782    // by value.
2783    if (isRecordWithNonTrivialDestructorOrCopyConstructor(Ty))
2784      return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
2785
2786    return ABIArgInfo::getIndirect(0);
2787  }
2788
2789  return (isPromotableTypeForABI(Ty) ?
2790          ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
2791}
2792
2793ABIArgInfo
2794PPC64_SVR4_ABIInfo::classifyReturnType(QualType RetTy) const {
2795  if (RetTy->isVoidType())
2796    return ABIArgInfo::getIgnore();
2797
2798  if (isAggregateTypeForABI(RetTy))
2799    return ABIArgInfo::getIndirect(0);
2800
2801  return (isPromotableTypeForABI(RetTy) ?
2802          ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
2803}
2804
2805// Based on ARMABIInfo::EmitVAArg, adjusted for 64-bit machine.
2806llvm::Value *PPC64_SVR4_ABIInfo::EmitVAArg(llvm::Value *VAListAddr,
2807                                           QualType Ty,
2808                                           CodeGenFunction &CGF) const {
2809  llvm::Type *BP = CGF.Int8PtrTy;
2810  llvm::Type *BPP = CGF.Int8PtrPtrTy;
2811
2812  CGBuilderTy &Builder = CGF.Builder;
2813  llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap");
2814  llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
2815
2816  // Update the va_list pointer.
2817  unsigned SizeInBytes = CGF.getContext().getTypeSize(Ty) / 8;
2818  unsigned Offset = llvm::RoundUpToAlignment(SizeInBytes, 8);
2819  llvm::Value *NextAddr =
2820    Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int64Ty, Offset),
2821                      "ap.next");
2822  Builder.CreateStore(NextAddr, VAListAddrAsBPP);
2823
2824  // If the argument is smaller than 8 bytes, it is right-adjusted in
2825  // its doubleword slot.  Adjust the pointer to pick it up from the
2826  // correct offset.
2827  if (SizeInBytes < 8) {
2828    llvm::Value *AddrAsInt = Builder.CreatePtrToInt(Addr, CGF.Int64Ty);
2829    AddrAsInt = Builder.CreateAdd(AddrAsInt, Builder.getInt64(8 - SizeInBytes));
2830    Addr = Builder.CreateIntToPtr(AddrAsInt, BP);
2831  }
2832
2833  llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
2834  return Builder.CreateBitCast(Addr, PTy);
2835}
2836
2837static bool
2838PPC64_initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2839                              llvm::Value *Address) {
2840  // This is calculated from the LLVM and GCC tables and verified
2841  // against gcc output.  AFAIK all ABIs use the same encoding.
2842
2843  CodeGen::CGBuilderTy &Builder = CGF.Builder;
2844
2845  llvm::IntegerType *i8 = CGF.Int8Ty;
2846  llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
2847  llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
2848  llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16);
2849
2850  // 0-31: r0-31, the 8-byte general-purpose registers
2851  AssignToArrayRange(Builder, Address, Eight8, 0, 31);
2852
2853  // 32-63: fp0-31, the 8-byte floating-point registers
2854  AssignToArrayRange(Builder, Address, Eight8, 32, 63);
2855
2856  // 64-76 are various 4-byte special-purpose registers:
2857  // 64: mq
2858  // 65: lr
2859  // 66: ctr
2860  // 67: ap
2861  // 68-75 cr0-7
2862  // 76: xer
2863  AssignToArrayRange(Builder, Address, Four8, 64, 76);
2864
2865  // 77-108: v0-31, the 16-byte vector registers
2866  AssignToArrayRange(Builder, Address, Sixteen8, 77, 108);
2867
2868  // 109: vrsave
2869  // 110: vscr
2870  // 111: spe_acc
2871  // 112: spefscr
2872  // 113: sfp
2873  AssignToArrayRange(Builder, Address, Four8, 109, 113);
2874
2875  return false;
2876}
2877
2878bool
2879PPC64_SVR4_TargetCodeGenInfo::initDwarfEHRegSizeTable(
2880  CodeGen::CodeGenFunction &CGF,
2881  llvm::Value *Address) const {
2882
2883  return PPC64_initDwarfEHRegSizeTable(CGF, Address);
2884}
2885
2886bool
2887PPC64TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2888                                                llvm::Value *Address) const {
2889
2890  return PPC64_initDwarfEHRegSizeTable(CGF, Address);
2891}
2892
2893//===----------------------------------------------------------------------===//
2894// ARM ABI Implementation
2895//===----------------------------------------------------------------------===//
2896
2897namespace {
2898
2899class ARMABIInfo : public ABIInfo {
2900public:
2901  enum ABIKind {
2902    APCS = 0,
2903    AAPCS = 1,
2904    AAPCS_VFP
2905  };
2906
2907private:
2908  ABIKind Kind;
2909
2910public:
2911  ARMABIInfo(CodeGenTypes &CGT, ABIKind _Kind) : ABIInfo(CGT), Kind(_Kind) {}
2912
2913  bool isEABI() const {
2914    StringRef Env =
2915      getContext().getTargetInfo().getTriple().getEnvironmentName();
2916    return (Env == "gnueabi" || Env == "eabi" ||
2917            Env == "android" || Env == "androideabi");
2918  }
2919
2920private:
2921  ABIKind getABIKind() const { return Kind; }
2922
2923  ABIArgInfo classifyReturnType(QualType RetTy) const;
2924  ABIArgInfo classifyArgumentType(QualType RetTy, int *VFPRegs,
2925                                  unsigned &AllocatedVFP,
2926                                  bool &IsHA) const;
2927  bool isIllegalVectorType(QualType Ty) const;
2928
2929  virtual void computeInfo(CGFunctionInfo &FI) const;
2930
2931  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2932                                 CodeGenFunction &CGF) const;
2933};
2934
2935class ARMTargetCodeGenInfo : public TargetCodeGenInfo {
2936public:
2937  ARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K)
2938    :TargetCodeGenInfo(new ARMABIInfo(CGT, K)) {}
2939
2940  const ARMABIInfo &getABIInfo() const {
2941    return static_cast<const ARMABIInfo&>(TargetCodeGenInfo::getABIInfo());
2942  }
2943
2944  int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const {
2945    return 13;
2946  }
2947
2948  StringRef getARCRetainAutoreleasedReturnValueMarker() const {
2949    return "mov\tr7, r7\t\t@ marker for objc_retainAutoreleaseReturnValue";
2950  }
2951
2952  bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2953                               llvm::Value *Address) const {
2954    llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
2955
2956    // 0-15 are the 16 integer registers.
2957    AssignToArrayRange(CGF.Builder, Address, Four8, 0, 15);
2958    return false;
2959  }
2960
2961  unsigned getSizeOfUnwindException() const {
2962    if (getABIInfo().isEABI()) return 88;
2963    return TargetCodeGenInfo::getSizeOfUnwindException();
2964  }
2965};
2966
2967}
2968
2969void ARMABIInfo::computeInfo(CGFunctionInfo &FI) const {
2970  // To correctly handle Homogeneous Aggregate, we need to keep track of the
2971  // VFP registers allocated so far.
2972  // C.1.vfp If the argument is a VFP CPRC and there are sufficient consecutive
2973  // VFP registers of the appropriate type unallocated then the argument is
2974  // allocated to the lowest-numbered sequence of such registers.
2975  // C.2.vfp If the argument is a VFP CPRC then any VFP registers that are
2976  // unallocated are marked as unavailable.
2977  unsigned AllocatedVFP = 0;
2978  int VFPRegs[16] = { 0 };
2979  FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
2980  for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
2981       it != ie; ++it) {
2982    unsigned PreAllocation = AllocatedVFP;
2983    bool IsHA = false;
2984    // 6.1.2.3 There is one VFP co-processor register class using registers
2985    // s0-s15 (d0-d7) for passing arguments.
2986    const unsigned NumVFPs = 16;
2987    it->info = classifyArgumentType(it->type, VFPRegs, AllocatedVFP, IsHA);
2988    // If we do not have enough VFP registers for the HA, any VFP registers
2989    // that are unallocated are marked as unavailable. To achieve this, we add
2990    // padding of (NumVFPs - PreAllocation) floats.
2991    if (IsHA && AllocatedVFP > NumVFPs && PreAllocation < NumVFPs) {
2992      llvm::Type *PaddingTy = llvm::ArrayType::get(
2993          llvm::Type::getFloatTy(getVMContext()), NumVFPs - PreAllocation);
2994      it->info = ABIArgInfo::getExpandWithPadding(false, PaddingTy);
2995    }
2996  }
2997
2998  // Always honor user-specified calling convention.
2999  if (FI.getCallingConvention() != llvm::CallingConv::C)
3000    return;
3001
3002  // Calling convention as default by an ABI.
3003  llvm::CallingConv::ID DefaultCC;
3004  if (getContext().getTargetInfo().getTriple().getEnvironmentName()=="gnueabihf")
3005    DefaultCC = llvm::CallingConv::ARM_AAPCS_VFP;
3006  else if (isEABI())
3007    DefaultCC = llvm::CallingConv::ARM_AAPCS;
3008  else
3009    DefaultCC = llvm::CallingConv::ARM_APCS;
3010
3011  // If user did not ask for specific calling convention explicitly (e.g. via
3012  // pcs attribute), set effective calling convention if it's different than ABI
3013  // default.
3014  switch (getABIKind()) {
3015  case APCS:
3016    if (DefaultCC != llvm::CallingConv::ARM_APCS)
3017      FI.setEffectiveCallingConvention(llvm::CallingConv::ARM_APCS);
3018    break;
3019  case AAPCS:
3020    if (DefaultCC != llvm::CallingConv::ARM_AAPCS)
3021      FI.setEffectiveCallingConvention(llvm::CallingConv::ARM_AAPCS);
3022    break;
3023  case AAPCS_VFP:
3024    if (DefaultCC != llvm::CallingConv::ARM_AAPCS_VFP)
3025      FI.setEffectiveCallingConvention(llvm::CallingConv::ARM_AAPCS_VFP);
3026    break;
3027  }
3028}
3029
3030/// isHomogeneousAggregate - Return true if a type is an AAPCS-VFP homogeneous
3031/// aggregate.  If HAMembers is non-null, the number of base elements
3032/// contained in the type is returned through it; this is used for the
3033/// recursive calls that check aggregate component types.
3034static bool isHomogeneousAggregate(QualType Ty, const Type *&Base,
3035                                   ASTContext &Context,
3036                                   uint64_t *HAMembers = 0) {
3037  uint64_t Members = 0;
3038  if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
3039    if (!isHomogeneousAggregate(AT->getElementType(), Base, Context, &Members))
3040      return false;
3041    Members *= AT->getSize().getZExtValue();
3042  } else if (const RecordType *RT = Ty->getAs<RecordType>()) {
3043    const RecordDecl *RD = RT->getDecl();
3044    if (RD->hasFlexibleArrayMember())
3045      return false;
3046
3047    Members = 0;
3048    for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
3049         i != e; ++i) {
3050      const FieldDecl *FD = *i;
3051      uint64_t FldMembers;
3052      if (!isHomogeneousAggregate(FD->getType(), Base, Context, &FldMembers))
3053        return false;
3054
3055      Members = (RD->isUnion() ?
3056                 std::max(Members, FldMembers) : Members + FldMembers);
3057    }
3058  } else {
3059    Members = 1;
3060    if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
3061      Members = 2;
3062      Ty = CT->getElementType();
3063    }
3064
3065    // Homogeneous aggregates for AAPCS-VFP must have base types of float,
3066    // double, or 64-bit or 128-bit vectors.
3067    if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
3068      if (BT->getKind() != BuiltinType::Float &&
3069          BT->getKind() != BuiltinType::Double &&
3070          BT->getKind() != BuiltinType::LongDouble)
3071        return false;
3072    } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
3073      unsigned VecSize = Context.getTypeSize(VT);
3074      if (VecSize != 64 && VecSize != 128)
3075        return false;
3076    } else {
3077      return false;
3078    }
3079
3080    // The base type must be the same for all members.  Vector types of the
3081    // same total size are treated as being equivalent here.
3082    const Type *TyPtr = Ty.getTypePtr();
3083    if (!Base)
3084      Base = TyPtr;
3085    if (Base != TyPtr &&
3086        (!Base->isVectorType() || !TyPtr->isVectorType() ||
3087         Context.getTypeSize(Base) != Context.getTypeSize(TyPtr)))
3088      return false;
3089  }
3090
3091  // Homogeneous Aggregates can have at most 4 members of the base type.
3092  if (HAMembers)
3093    *HAMembers = Members;
3094
3095  return (Members > 0 && Members <= 4);
3096}
3097
3098/// markAllocatedVFPs - update VFPRegs according to the alignment and
3099/// number of VFP registers (unit is S register) requested.
3100static void markAllocatedVFPs(int *VFPRegs, unsigned &AllocatedVFP,
3101                              unsigned Alignment,
3102                              unsigned NumRequired) {
3103  // Early Exit.
3104  if (AllocatedVFP >= 16)
3105    return;
3106  // C.1.vfp If the argument is a VFP CPRC and there are sufficient consecutive
3107  // VFP registers of the appropriate type unallocated then the argument is
3108  // allocated to the lowest-numbered sequence of such registers.
3109  for (unsigned I = 0; I < 16; I += Alignment) {
3110    bool FoundSlot = true;
3111    for (unsigned J = I, JEnd = I + NumRequired; J < JEnd; J++)
3112      if (J >= 16 || VFPRegs[J]) {
3113         FoundSlot = false;
3114         break;
3115      }
3116    if (FoundSlot) {
3117      for (unsigned J = I, JEnd = I + NumRequired; J < JEnd; J++)
3118        VFPRegs[J] = 1;
3119      AllocatedVFP += NumRequired;
3120      return;
3121    }
3122  }
3123  // C.2.vfp If the argument is a VFP CPRC then any VFP registers that are
3124  // unallocated are marked as unavailable.
3125  for (unsigned I = 0; I < 16; I++)
3126    VFPRegs[I] = 1;
3127  AllocatedVFP = 17; // We do not have enough VFP registers.
3128}
3129
3130ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty, int *VFPRegs,
3131                                            unsigned &AllocatedVFP,
3132                                            bool &IsHA) const {
3133  // We update number of allocated VFPs according to
3134  // 6.1.2.1 The following argument types are VFP CPRCs:
3135  //   A single-precision floating-point type (including promoted
3136  //   half-precision types); A double-precision floating-point type;
3137  //   A 64-bit or 128-bit containerized vector type; Homogeneous Aggregate
3138  //   with a Base Type of a single- or double-precision floating-point type,
3139  //   64-bit containerized vectors or 128-bit containerized vectors with one
3140  //   to four Elements.
3141
3142  // Handle illegal vector types here.
3143  if (isIllegalVectorType(Ty)) {
3144    uint64_t Size = getContext().getTypeSize(Ty);
3145    if (Size <= 32) {
3146      llvm::Type *ResType =
3147          llvm::Type::getInt32Ty(getVMContext());
3148      return ABIArgInfo::getDirect(ResType);
3149    }
3150    if (Size == 64) {
3151      llvm::Type *ResType = llvm::VectorType::get(
3152          llvm::Type::getInt32Ty(getVMContext()), 2);
3153      markAllocatedVFPs(VFPRegs, AllocatedVFP, 2, 2);
3154      return ABIArgInfo::getDirect(ResType);
3155    }
3156    if (Size == 128) {
3157      llvm::Type *ResType = llvm::VectorType::get(
3158          llvm::Type::getInt32Ty(getVMContext()), 4);
3159      markAllocatedVFPs(VFPRegs, AllocatedVFP, 4, 4);
3160      return ABIArgInfo::getDirect(ResType);
3161    }
3162    return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
3163  }
3164  // Update VFPRegs for legal vector types.
3165  if (const VectorType *VT = Ty->getAs<VectorType>()) {
3166    uint64_t Size = getContext().getTypeSize(VT);
3167    // Size of a legal vector should be power of 2 and above 64.
3168    markAllocatedVFPs(VFPRegs, AllocatedVFP, Size >= 128 ? 4 : 2, Size / 32);
3169  }
3170  // Update VFPRegs for floating point types.
3171  if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
3172    if (BT->getKind() == BuiltinType::Half ||
3173        BT->getKind() == BuiltinType::Float)
3174      markAllocatedVFPs(VFPRegs, AllocatedVFP, 1, 1);
3175    if (BT->getKind() == BuiltinType::Double ||
3176        BT->getKind() == BuiltinType::LongDouble)
3177      markAllocatedVFPs(VFPRegs, AllocatedVFP, 2, 2);
3178  }
3179
3180  if (!isAggregateTypeForABI(Ty)) {
3181    // Treat an enum type as its underlying type.
3182    if (const EnumType *EnumTy = Ty->getAs<EnumType>())
3183      Ty = EnumTy->getDecl()->getIntegerType();
3184
3185    return (Ty->isPromotableIntegerType() ?
3186            ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
3187  }
3188
3189  // Ignore empty records.
3190  if (isEmptyRecord(getContext(), Ty, true))
3191    return ABIArgInfo::getIgnore();
3192
3193  // Structures with either a non-trivial destructor or a non-trivial
3194  // copy constructor are always indirect.
3195  if (isRecordWithNonTrivialDestructorOrCopyConstructor(Ty))
3196    return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
3197
3198  if (getABIKind() == ARMABIInfo::AAPCS_VFP) {
3199    // Homogeneous Aggregates need to be expanded when we can fit the aggregate
3200    // into VFP registers.
3201    const Type *Base = 0;
3202    uint64_t Members = 0;
3203    if (isHomogeneousAggregate(Ty, Base, getContext(), &Members)) {
3204      assert(Base && "Base class should be set for homogeneous aggregate");
3205      // Base can be a floating-point or a vector.
3206      if (Base->isVectorType()) {
3207        // ElementSize is in number of floats.
3208        unsigned ElementSize = getContext().getTypeSize(Base) == 64 ? 2 : 4;
3209        markAllocatedVFPs(VFPRegs, AllocatedVFP, ElementSize, Members * ElementSize);
3210      } else if (Base->isSpecificBuiltinType(BuiltinType::Float))
3211        markAllocatedVFPs(VFPRegs, AllocatedVFP, 1, Members);
3212      else {
3213        assert(Base->isSpecificBuiltinType(BuiltinType::Double) ||
3214               Base->isSpecificBuiltinType(BuiltinType::LongDouble));
3215        markAllocatedVFPs(VFPRegs, AllocatedVFP, 2, Members * 2);
3216      }
3217      IsHA = true;
3218      return ABIArgInfo::getExpand();
3219    }
3220  }
3221
3222  // Support byval for ARM.
3223  // The ABI alignment for APCS is 4-byte and for AAPCS at least 4-byte and at most 8-byte.
3224  // Byval can't handle the case where type alignment is bigger than ABI alignment.
3225  // We also increase the threshold for byval due to its overhead.
3226  uint64_t ABIAlign = 4;
3227  uint64_t TyAlign = getContext().getTypeAlign(Ty) / 8;
3228  if (getABIKind() == ARMABIInfo::AAPCS_VFP ||
3229      getABIKind() == ARMABIInfo::AAPCS)
3230    ABIAlign = std::min(std::max(TyAlign, (uint64_t)4), (uint64_t)8);
3231  if (getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(64*8) &&
3232      TyAlign <= ABIAlign) {
3233    return ABIArgInfo::getIndirect(0, /*ByVal=*/true);
3234  }
3235
3236  // Otherwise, pass by coercing to a structure of the appropriate size.
3237  llvm::Type* ElemTy;
3238  unsigned SizeRegs;
3239  // FIXME: Try to match the types of the arguments more accurately where
3240  // we can.
3241  if (getContext().getTypeAlign(Ty) <= 32) {
3242    ElemTy = llvm::Type::getInt32Ty(getVMContext());
3243    SizeRegs = (getContext().getTypeSize(Ty) + 31) / 32;
3244  } else {
3245    ElemTy = llvm::Type::getInt64Ty(getVMContext());
3246    SizeRegs = (getContext().getTypeSize(Ty) + 63) / 64;
3247  }
3248
3249  llvm::Type *STy =
3250    llvm::StructType::get(llvm::ArrayType::get(ElemTy, SizeRegs), NULL);
3251  return ABIArgInfo::getDirect(STy);
3252}
3253
3254static bool isIntegerLikeType(QualType Ty, ASTContext &Context,
3255                              llvm::LLVMContext &VMContext) {
3256  // APCS, C Language Calling Conventions, Non-Simple Return Values: A structure
3257  // is called integer-like if its size is less than or equal to one word, and
3258  // the offset of each of its addressable sub-fields is zero.
3259
3260  uint64_t Size = Context.getTypeSize(Ty);
3261
3262  // Check that the type fits in a word.
3263  if (Size > 32)
3264    return false;
3265
3266  // FIXME: Handle vector types!
3267  if (Ty->isVectorType())
3268    return false;
3269
3270  // Float types are never treated as "integer like".
3271  if (Ty->isRealFloatingType())
3272    return false;
3273
3274  // If this is a builtin or pointer type then it is ok.
3275  if (Ty->getAs<BuiltinType>() || Ty->isPointerType())
3276    return true;
3277
3278  // Small complex integer types are "integer like".
3279  if (const ComplexType *CT = Ty->getAs<ComplexType>())
3280    return isIntegerLikeType(CT->getElementType(), Context, VMContext);
3281
3282  // Single element and zero sized arrays should be allowed, by the definition
3283  // above, but they are not.
3284
3285  // Otherwise, it must be a record type.
3286  const RecordType *RT = Ty->getAs<RecordType>();
3287  if (!RT) return false;
3288
3289  // Ignore records with flexible arrays.
3290  const RecordDecl *RD = RT->getDecl();
3291  if (RD->hasFlexibleArrayMember())
3292    return false;
3293
3294  // Check that all sub-fields are at offset 0, and are themselves "integer
3295  // like".
3296  const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
3297
3298  bool HadField = false;
3299  unsigned idx = 0;
3300  for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
3301       i != e; ++i, ++idx) {
3302    const FieldDecl *FD = *i;
3303
3304    // Bit-fields are not addressable, we only need to verify they are "integer
3305    // like". We still have to disallow a subsequent non-bitfield, for example:
3306    //   struct { int : 0; int x }
3307    // is non-integer like according to gcc.
3308    if (FD->isBitField()) {
3309      if (!RD->isUnion())
3310        HadField = true;
3311
3312      if (!isIntegerLikeType(FD->getType(), Context, VMContext))
3313        return false;
3314
3315      continue;
3316    }
3317
3318    // Check if this field is at offset 0.
3319    if (Layout.getFieldOffset(idx) != 0)
3320      return false;
3321
3322    if (!isIntegerLikeType(FD->getType(), Context, VMContext))
3323      return false;
3324
3325    // Only allow at most one field in a structure. This doesn't match the
3326    // wording above, but follows gcc in situations with a field following an
3327    // empty structure.
3328    if (!RD->isUnion()) {
3329      if (HadField)
3330        return false;
3331
3332      HadField = true;
3333    }
3334  }
3335
3336  return true;
3337}
3338
3339ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy) const {
3340  if (RetTy->isVoidType())
3341    return ABIArgInfo::getIgnore();
3342
3343  // Large vector types should be returned via memory.
3344  if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128)
3345    return ABIArgInfo::getIndirect(0);
3346
3347  if (!isAggregateTypeForABI(RetTy)) {
3348    // Treat an enum type as its underlying type.
3349    if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
3350      RetTy = EnumTy->getDecl()->getIntegerType();
3351
3352    return (RetTy->isPromotableIntegerType() ?
3353            ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
3354  }
3355
3356  // Structures with either a non-trivial destructor or a non-trivial
3357  // copy constructor are always indirect.
3358  if (isRecordWithNonTrivialDestructorOrCopyConstructor(RetTy))
3359    return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
3360
3361  // Are we following APCS?
3362  if (getABIKind() == APCS) {
3363    if (isEmptyRecord(getContext(), RetTy, false))
3364      return ABIArgInfo::getIgnore();
3365
3366    // Complex types are all returned as packed integers.
3367    //
3368    // FIXME: Consider using 2 x vector types if the back end handles them
3369    // correctly.
3370    if (RetTy->isAnyComplexType())
3371      return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
3372                                              getContext().getTypeSize(RetTy)));
3373
3374    // Integer like structures are returned in r0.
3375    if (isIntegerLikeType(RetTy, getContext(), getVMContext())) {
3376      // Return in the smallest viable integer type.
3377      uint64_t Size = getContext().getTypeSize(RetTy);
3378      if (Size <= 8)
3379        return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
3380      if (Size <= 16)
3381        return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
3382      return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
3383    }
3384
3385    // Otherwise return in memory.
3386    return ABIArgInfo::getIndirect(0);
3387  }
3388
3389  // Otherwise this is an AAPCS variant.
3390
3391  if (isEmptyRecord(getContext(), RetTy, true))
3392    return ABIArgInfo::getIgnore();
3393
3394  // Check for homogeneous aggregates with AAPCS-VFP.
3395  if (getABIKind() == AAPCS_VFP) {
3396    const Type *Base = 0;
3397    if (isHomogeneousAggregate(RetTy, Base, getContext())) {
3398      assert(Base && "Base class should be set for homogeneous aggregate");
3399      // Homogeneous Aggregates are returned directly.
3400      return ABIArgInfo::getDirect();
3401    }
3402  }
3403
3404  // Aggregates <= 4 bytes are returned in r0; other aggregates
3405  // are returned indirectly.
3406  uint64_t Size = getContext().getTypeSize(RetTy);
3407  if (Size <= 32) {
3408    // Return in the smallest viable integer type.
3409    if (Size <= 8)
3410      return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
3411    if (Size <= 16)
3412      return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
3413    return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
3414  }
3415
3416  return ABIArgInfo::getIndirect(0);
3417}
3418
3419/// isIllegalVector - check whether Ty is an illegal vector type.
3420bool ARMABIInfo::isIllegalVectorType(QualType Ty) const {
3421  if (const VectorType *VT = Ty->getAs<VectorType>()) {
3422    // Check whether VT is legal.
3423    unsigned NumElements = VT->getNumElements();
3424    uint64_t Size = getContext().getTypeSize(VT);
3425    // NumElements should be power of 2.
3426    if ((NumElements & (NumElements - 1)) != 0)
3427      return true;
3428    // Size should be greater than 32 bits.
3429    return Size <= 32;
3430  }
3431  return false;
3432}
3433
3434llvm::Value *ARMABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
3435                                   CodeGenFunction &CGF) const {
3436  llvm::Type *BP = CGF.Int8PtrTy;
3437  llvm::Type *BPP = CGF.Int8PtrPtrTy;
3438
3439  CGBuilderTy &Builder = CGF.Builder;
3440  llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap");
3441  llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
3442
3443  uint64_t Size = CGF.getContext().getTypeSize(Ty) / 8;
3444  uint64_t TyAlign = CGF.getContext().getTypeAlign(Ty) / 8;
3445  bool IsIndirect = false;
3446
3447  // The ABI alignment for 64-bit or 128-bit vectors is 8 for AAPCS and 4 for
3448  // APCS. For AAPCS, the ABI alignment is at least 4-byte and at most 8-byte.
3449  if (getABIKind() == ARMABIInfo::AAPCS_VFP ||
3450      getABIKind() == ARMABIInfo::AAPCS)
3451    TyAlign = std::min(std::max(TyAlign, (uint64_t)4), (uint64_t)8);
3452  else
3453    TyAlign = 4;
3454  // Use indirect if size of the illegal vector is bigger than 16 bytes.
3455  if (isIllegalVectorType(Ty) && Size > 16) {
3456    IsIndirect = true;
3457    Size = 4;
3458    TyAlign = 4;
3459  }
3460
3461  // Handle address alignment for ABI alignment > 4 bytes.
3462  if (TyAlign > 4) {
3463    assert((TyAlign & (TyAlign - 1)) == 0 &&
3464           "Alignment is not power of 2!");
3465    llvm::Value *AddrAsInt = Builder.CreatePtrToInt(Addr, CGF.Int32Ty);
3466    AddrAsInt = Builder.CreateAdd(AddrAsInt, Builder.getInt32(TyAlign - 1));
3467    AddrAsInt = Builder.CreateAnd(AddrAsInt, Builder.getInt32(~(TyAlign - 1)));
3468    Addr = Builder.CreateIntToPtr(AddrAsInt, BP, "ap.align");
3469  }
3470
3471  uint64_t Offset =
3472    llvm::RoundUpToAlignment(Size, 4);
3473  llvm::Value *NextAddr =
3474    Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
3475                      "ap.next");
3476  Builder.CreateStore(NextAddr, VAListAddrAsBPP);
3477
3478  if (IsIndirect)
3479    Addr = Builder.CreateLoad(Builder.CreateBitCast(Addr, BPP));
3480  else if (TyAlign < CGF.getContext().getTypeAlign(Ty) / 8) {
3481    // We can't directly cast ap.cur to pointer to a vector type, since ap.cur
3482    // may not be correctly aligned for the vector type. We create an aligned
3483    // temporary space and copy the content over from ap.cur to the temporary
3484    // space. This is necessary if the natural alignment of the type is greater
3485    // than the ABI alignment.
3486    llvm::Type *I8PtrTy = Builder.getInt8PtrTy();
3487    CharUnits CharSize = getContext().getTypeSizeInChars(Ty);
3488    llvm::Value *AlignedTemp = CGF.CreateTempAlloca(CGF.ConvertType(Ty),
3489                                                    "var.align");
3490    llvm::Value *Dst = Builder.CreateBitCast(AlignedTemp, I8PtrTy);
3491    llvm::Value *Src = Builder.CreateBitCast(Addr, I8PtrTy);
3492    Builder.CreateMemCpy(Dst, Src,
3493        llvm::ConstantInt::get(CGF.IntPtrTy, CharSize.getQuantity()),
3494        TyAlign, false);
3495    Addr = AlignedTemp; //The content is in aligned location.
3496  }
3497  llvm::Type *PTy =
3498    llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
3499  llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
3500
3501  return AddrTyped;
3502}
3503
3504namespace {
3505
3506class NaClARMABIInfo : public ABIInfo {
3507 public:
3508  NaClARMABIInfo(CodeGen::CodeGenTypes &CGT, ARMABIInfo::ABIKind Kind)
3509      : ABIInfo(CGT), PInfo(CGT), NInfo(CGT, Kind) {}
3510  virtual void computeInfo(CGFunctionInfo &FI) const;
3511  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
3512                                 CodeGenFunction &CGF) const;
3513 private:
3514  PNaClABIInfo PInfo; // Used for generating calls with pnaclcall callingconv.
3515  ARMABIInfo NInfo; // Used for everything else.
3516};
3517
3518class NaClARMTargetCodeGenInfo : public TargetCodeGenInfo  {
3519 public:
3520  NaClARMTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, ARMABIInfo::ABIKind Kind)
3521      : TargetCodeGenInfo(new NaClARMABIInfo(CGT, Kind)) {}
3522};
3523
3524}
3525
3526void NaClARMABIInfo::computeInfo(CGFunctionInfo &FI) const {
3527  if (FI.getASTCallingConvention() == CC_PnaclCall)
3528    PInfo.computeInfo(FI);
3529  else
3530    static_cast<const ABIInfo&>(NInfo).computeInfo(FI);
3531}
3532
3533llvm::Value *NaClARMABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
3534                                       CodeGenFunction &CGF) const {
3535  // Always use the native convention; calling pnacl-style varargs functions
3536  // is unsupported.
3537  return static_cast<const ABIInfo&>(NInfo).EmitVAArg(VAListAddr, Ty, CGF);
3538}
3539
3540//===----------------------------------------------------------------------===//
3541// NVPTX ABI Implementation
3542//===----------------------------------------------------------------------===//
3543
3544namespace {
3545
3546class NVPTXABIInfo : public ABIInfo {
3547public:
3548  NVPTXABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
3549
3550  ABIArgInfo classifyReturnType(QualType RetTy) const;
3551  ABIArgInfo classifyArgumentType(QualType Ty) const;
3552
3553  virtual void computeInfo(CGFunctionInfo &FI) const;
3554  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
3555                                 CodeGenFunction &CFG) const;
3556};
3557
3558class NVPTXTargetCodeGenInfo : public TargetCodeGenInfo {
3559public:
3560  NVPTXTargetCodeGenInfo(CodeGenTypes &CGT)
3561    : TargetCodeGenInfo(new NVPTXABIInfo(CGT)) {}
3562
3563  virtual void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
3564                                   CodeGen::CodeGenModule &M) const;
3565};
3566
3567ABIArgInfo NVPTXABIInfo::classifyReturnType(QualType RetTy) const {
3568  if (RetTy->isVoidType())
3569    return ABIArgInfo::getIgnore();
3570  if (isAggregateTypeForABI(RetTy))
3571    return ABIArgInfo::getIndirect(0);
3572  return ABIArgInfo::getDirect();
3573}
3574
3575ABIArgInfo NVPTXABIInfo::classifyArgumentType(QualType Ty) const {
3576  if (isAggregateTypeForABI(Ty))
3577    return ABIArgInfo::getIndirect(0);
3578
3579  return ABIArgInfo::getDirect();
3580}
3581
3582void NVPTXABIInfo::computeInfo(CGFunctionInfo &FI) const {
3583  FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
3584  for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
3585       it != ie; ++it)
3586    it->info = classifyArgumentType(it->type);
3587
3588  // Always honor user-specified calling convention.
3589  if (FI.getCallingConvention() != llvm::CallingConv::C)
3590    return;
3591
3592  // Calling convention as default by an ABI.
3593  // We're still using the PTX_Kernel/PTX_Device calling conventions here,
3594  // but we should switch to NVVM metadata later on.
3595  llvm::CallingConv::ID DefaultCC;
3596  const LangOptions &LangOpts = getContext().getLangOpts();
3597  if (LangOpts.OpenCL || LangOpts.CUDA) {
3598    // If we are in OpenCL or CUDA mode, then default to device functions
3599    DefaultCC = llvm::CallingConv::PTX_Device;
3600  } else {
3601    // If we are in standard C/C++ mode, use the triple to decide on the default
3602    StringRef Env =
3603      getContext().getTargetInfo().getTriple().getEnvironmentName();
3604    if (Env == "device")
3605      DefaultCC = llvm::CallingConv::PTX_Device;
3606    else
3607      DefaultCC = llvm::CallingConv::PTX_Kernel;
3608  }
3609  FI.setEffectiveCallingConvention(DefaultCC);
3610
3611}
3612
3613llvm::Value *NVPTXABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
3614                                     CodeGenFunction &CFG) const {
3615  llvm_unreachable("NVPTX does not support varargs");
3616}
3617
3618void NVPTXTargetCodeGenInfo::
3619SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
3620                    CodeGen::CodeGenModule &M) const{
3621  const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
3622  if (!FD) return;
3623
3624  llvm::Function *F = cast<llvm::Function>(GV);
3625
3626  // Perform special handling in OpenCL mode
3627  if (M.getLangOpts().OpenCL) {
3628    // Use OpenCL function attributes to set proper calling conventions
3629    // By default, all functions are device functions
3630    if (FD->hasAttr<OpenCLKernelAttr>()) {
3631      // OpenCL __kernel functions get a kernel calling convention
3632      F->setCallingConv(llvm::CallingConv::PTX_Kernel);
3633      // And kernel functions are not subject to inlining
3634      F->addFnAttr(llvm::Attributes::NoInline);
3635    }
3636  }
3637
3638  // Perform special handling in CUDA mode.
3639  if (M.getLangOpts().CUDA) {
3640    // CUDA __global__ functions get a kernel calling convention.  Since
3641    // __global__ functions cannot be called from the device, we do not
3642    // need to set the noinline attribute.
3643    if (FD->getAttr<CUDAGlobalAttr>())
3644      F->setCallingConv(llvm::CallingConv::PTX_Kernel);
3645  }
3646}
3647
3648}
3649
3650//===----------------------------------------------------------------------===//
3651// MBlaze ABI Implementation
3652//===----------------------------------------------------------------------===//
3653
3654namespace {
3655
3656class MBlazeABIInfo : public ABIInfo {
3657public:
3658  MBlazeABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
3659
3660  bool isPromotableIntegerType(QualType Ty) const;
3661
3662  ABIArgInfo classifyReturnType(QualType RetTy) const;
3663  ABIArgInfo classifyArgumentType(QualType RetTy) const;
3664
3665  virtual void computeInfo(CGFunctionInfo &FI) const {
3666    FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
3667    for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
3668         it != ie; ++it)
3669      it->info = classifyArgumentType(it->type);
3670  }
3671
3672  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
3673                                 CodeGenFunction &CGF) const;
3674};
3675
3676class MBlazeTargetCodeGenInfo : public TargetCodeGenInfo {
3677public:
3678  MBlazeTargetCodeGenInfo(CodeGenTypes &CGT)
3679    : TargetCodeGenInfo(new MBlazeABIInfo(CGT)) {}
3680  void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
3681                           CodeGen::CodeGenModule &M) const;
3682};
3683
3684}
3685
3686bool MBlazeABIInfo::isPromotableIntegerType(QualType Ty) const {
3687  // MBlaze ABI requires all 8 and 16 bit quantities to be extended.
3688  if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
3689    switch (BT->getKind()) {
3690    case BuiltinType::Bool:
3691    case BuiltinType::Char_S:
3692    case BuiltinType::Char_U:
3693    case BuiltinType::SChar:
3694    case BuiltinType::UChar:
3695    case BuiltinType::Short:
3696    case BuiltinType::UShort:
3697      return true;
3698    default:
3699      return false;
3700    }
3701  return false;
3702}
3703
3704llvm::Value *MBlazeABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
3705                                      CodeGenFunction &CGF) const {
3706  // FIXME: Implement
3707  return 0;
3708}
3709
3710
3711ABIArgInfo MBlazeABIInfo::classifyReturnType(QualType RetTy) const {
3712  if (RetTy->isVoidType())
3713    return ABIArgInfo::getIgnore();
3714  if (isAggregateTypeForABI(RetTy))
3715    return ABIArgInfo::getIndirect(0);
3716
3717  return (isPromotableIntegerType(RetTy) ?
3718          ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
3719}
3720
3721ABIArgInfo MBlazeABIInfo::classifyArgumentType(QualType Ty) const {
3722  if (isAggregateTypeForABI(Ty))
3723    return ABIArgInfo::getIndirect(0);
3724
3725  return (isPromotableIntegerType(Ty) ?
3726          ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
3727}
3728
3729void MBlazeTargetCodeGenInfo::SetTargetAttributes(const Decl *D,
3730                                                  llvm::GlobalValue *GV,
3731                                                  CodeGen::CodeGenModule &M)
3732                                                  const {
3733  const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
3734  if (!FD) return;
3735
3736  llvm::CallingConv::ID CC = llvm::CallingConv::C;
3737  if (FD->hasAttr<MBlazeInterruptHandlerAttr>())
3738    CC = llvm::CallingConv::MBLAZE_INTR;
3739  else if (FD->hasAttr<MBlazeSaveVolatilesAttr>())
3740    CC = llvm::CallingConv::MBLAZE_SVOL;
3741
3742  if (CC != llvm::CallingConv::C) {
3743      // Handle 'interrupt_handler' attribute:
3744      llvm::Function *F = cast<llvm::Function>(GV);
3745
3746      // Step 1: Set ISR calling convention.
3747      F->setCallingConv(CC);
3748
3749      // Step 2: Add attributes goodness.
3750      F->addFnAttr(llvm::Attributes::NoInline);
3751  }
3752
3753  // Step 3: Emit _interrupt_handler alias.
3754  if (CC == llvm::CallingConv::MBLAZE_INTR)
3755    new llvm::GlobalAlias(GV->getType(), llvm::Function::ExternalLinkage,
3756                          "_interrupt_handler", GV, &M.getModule());
3757}
3758
3759
3760//===----------------------------------------------------------------------===//
3761// MSP430 ABI Implementation
3762//===----------------------------------------------------------------------===//
3763
3764namespace {
3765
3766class MSP430TargetCodeGenInfo : public TargetCodeGenInfo {
3767public:
3768  MSP430TargetCodeGenInfo(CodeGenTypes &CGT)
3769    : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
3770  void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
3771                           CodeGen::CodeGenModule &M) const;
3772};
3773
3774}
3775
3776void MSP430TargetCodeGenInfo::SetTargetAttributes(const Decl *D,
3777                                                  llvm::GlobalValue *GV,
3778                                             CodeGen::CodeGenModule &M) const {
3779  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
3780    if (const MSP430InterruptAttr *attr = FD->getAttr<MSP430InterruptAttr>()) {
3781      // Handle 'interrupt' attribute:
3782      llvm::Function *F = cast<llvm::Function>(GV);
3783
3784      // Step 1: Set ISR calling convention.
3785      F->setCallingConv(llvm::CallingConv::MSP430_INTR);
3786
3787      // Step 2: Add attributes goodness.
3788      F->addFnAttr(llvm::Attributes::NoInline);
3789
3790      // Step 3: Emit ISR vector alias.
3791      unsigned Num = attr->getNumber() + 0xffe0;
3792      new llvm::GlobalAlias(GV->getType(), llvm::Function::ExternalLinkage,
3793                            "vector_" + Twine::utohexstr(Num),
3794                            GV, &M.getModule());
3795    }
3796  }
3797}
3798
3799//===----------------------------------------------------------------------===//
3800// MIPS ABI Implementation.  This works for both little-endian and
3801// big-endian variants.
3802//===----------------------------------------------------------------------===//
3803
3804namespace {
3805class MipsABIInfo : public ABIInfo {
3806  bool IsO32;
3807  unsigned MinABIStackAlignInBytes, StackAlignInBytes;
3808  void CoerceToIntArgs(uint64_t TySize,
3809                       SmallVector<llvm::Type*, 8> &ArgList) const;
3810  llvm::Type* HandleAggregates(QualType Ty, uint64_t TySize) const;
3811  llvm::Type* returnAggregateInRegs(QualType RetTy, uint64_t Size) const;
3812  llvm::Type* getPaddingType(uint64_t Align, uint64_t Offset) const;
3813public:
3814  MipsABIInfo(CodeGenTypes &CGT, bool _IsO32) :
3815    ABIInfo(CGT), IsO32(_IsO32), MinABIStackAlignInBytes(IsO32 ? 4 : 8),
3816    StackAlignInBytes(IsO32 ? 8 : 16) {}
3817
3818  ABIArgInfo classifyReturnType(QualType RetTy) const;
3819  ABIArgInfo classifyArgumentType(QualType RetTy, uint64_t &Offset) const;
3820  virtual void computeInfo(CGFunctionInfo &FI) const;
3821  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
3822                                 CodeGenFunction &CGF) const;
3823};
3824
3825class MIPSTargetCodeGenInfo : public TargetCodeGenInfo {
3826  unsigned SizeOfUnwindException;
3827public:
3828  MIPSTargetCodeGenInfo(CodeGenTypes &CGT, bool IsO32)
3829    : TargetCodeGenInfo(new MipsABIInfo(CGT, IsO32)),
3830      SizeOfUnwindException(IsO32 ? 24 : 32) {}
3831
3832  int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const {
3833    return 29;
3834  }
3835
3836  bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
3837                               llvm::Value *Address) const;
3838
3839  unsigned getSizeOfUnwindException() const {
3840    return SizeOfUnwindException;
3841  }
3842};
3843}
3844
3845void MipsABIInfo::CoerceToIntArgs(uint64_t TySize,
3846                                  SmallVector<llvm::Type*, 8> &ArgList) const {
3847  llvm::IntegerType *IntTy =
3848    llvm::IntegerType::get(getVMContext(), MinABIStackAlignInBytes * 8);
3849
3850  // Add (TySize / MinABIStackAlignInBytes) args of IntTy.
3851  for (unsigned N = TySize / (MinABIStackAlignInBytes * 8); N; --N)
3852    ArgList.push_back(IntTy);
3853
3854  // If necessary, add one more integer type to ArgList.
3855  unsigned R = TySize % (MinABIStackAlignInBytes * 8);
3856
3857  if (R)
3858    ArgList.push_back(llvm::IntegerType::get(getVMContext(), R));
3859}
3860
3861// In N32/64, an aligned double precision floating point field is passed in
3862// a register.
3863llvm::Type* MipsABIInfo::HandleAggregates(QualType Ty, uint64_t TySize) const {
3864  SmallVector<llvm::Type*, 8> ArgList, IntArgList;
3865
3866  if (IsO32) {
3867    CoerceToIntArgs(TySize, ArgList);
3868    return llvm::StructType::get(getVMContext(), ArgList);
3869  }
3870
3871  if (Ty->isComplexType())
3872    return CGT.ConvertType(Ty);
3873
3874  const RecordType *RT = Ty->getAs<RecordType>();
3875
3876  // Unions/vectors are passed in integer registers.
3877  if (!RT || !RT->isStructureOrClassType()) {
3878    CoerceToIntArgs(TySize, ArgList);
3879    return llvm::StructType::get(getVMContext(), ArgList);
3880  }
3881
3882  const RecordDecl *RD = RT->getDecl();
3883  const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
3884  assert(!(TySize % 8) && "Size of structure must be multiple of 8.");
3885
3886  uint64_t LastOffset = 0;
3887  unsigned idx = 0;
3888  llvm::IntegerType *I64 = llvm::IntegerType::get(getVMContext(), 64);
3889
3890  // Iterate over fields in the struct/class and check if there are any aligned
3891  // double fields.
3892  for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
3893       i != e; ++i, ++idx) {
3894    const QualType Ty = i->getType();
3895    const BuiltinType *BT = Ty->getAs<BuiltinType>();
3896
3897    if (!BT || BT->getKind() != BuiltinType::Double)
3898      continue;
3899
3900    uint64_t Offset = Layout.getFieldOffset(idx);
3901    if (Offset % 64) // Ignore doubles that are not aligned.
3902      continue;
3903
3904    // Add ((Offset - LastOffset) / 64) args of type i64.
3905    for (unsigned j = (Offset - LastOffset) / 64; j > 0; --j)
3906      ArgList.push_back(I64);
3907
3908    // Add double type.
3909    ArgList.push_back(llvm::Type::getDoubleTy(getVMContext()));
3910    LastOffset = Offset + 64;
3911  }
3912
3913  CoerceToIntArgs(TySize - LastOffset, IntArgList);
3914  ArgList.append(IntArgList.begin(), IntArgList.end());
3915
3916  return llvm::StructType::get(getVMContext(), ArgList);
3917}
3918
3919llvm::Type *MipsABIInfo::getPaddingType(uint64_t Align, uint64_t Offset) const {
3920  assert((Offset % MinABIStackAlignInBytes) == 0);
3921
3922  if ((Align - 1) & Offset)
3923    return llvm::IntegerType::get(getVMContext(), MinABIStackAlignInBytes * 8);
3924
3925  return 0;
3926}
3927
3928ABIArgInfo
3929MipsABIInfo::classifyArgumentType(QualType Ty, uint64_t &Offset) const {
3930  uint64_t OrigOffset = Offset;
3931  uint64_t TySize = getContext().getTypeSize(Ty);
3932  uint64_t Align = getContext().getTypeAlign(Ty) / 8;
3933
3934  Align = std::min(std::max(Align, (uint64_t)MinABIStackAlignInBytes),
3935                   (uint64_t)StackAlignInBytes);
3936  Offset = llvm::RoundUpToAlignment(Offset, Align);
3937  Offset += llvm::RoundUpToAlignment(TySize, Align * 8) / 8;
3938
3939  if (isAggregateTypeForABI(Ty) || Ty->isVectorType()) {
3940    // Ignore empty aggregates.
3941    if (TySize == 0)
3942      return ABIArgInfo::getIgnore();
3943
3944    // Records with non trivial destructors/constructors should not be passed
3945    // by value.
3946    if (isRecordWithNonTrivialDestructorOrCopyConstructor(Ty)) {
3947      Offset = OrigOffset + MinABIStackAlignInBytes;
3948      return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
3949    }
3950
3951    // If we have reached here, aggregates are passed directly by coercing to
3952    // another structure type. Padding is inserted if the offset of the
3953    // aggregate is unaligned.
3954    return ABIArgInfo::getDirect(HandleAggregates(Ty, TySize), 0,
3955                                 getPaddingType(Align, OrigOffset));
3956  }
3957
3958  // Treat an enum type as its underlying type.
3959  if (const EnumType *EnumTy = Ty->getAs<EnumType>())
3960    Ty = EnumTy->getDecl()->getIntegerType();
3961
3962  if (Ty->isPromotableIntegerType())
3963    return ABIArgInfo::getExtend();
3964
3965  return ABIArgInfo::getDirect(0, 0, getPaddingType(Align, OrigOffset));
3966}
3967
3968llvm::Type*
3969MipsABIInfo::returnAggregateInRegs(QualType RetTy, uint64_t Size) const {
3970  const RecordType *RT = RetTy->getAs<RecordType>();
3971  SmallVector<llvm::Type*, 8> RTList;
3972
3973  if (RT && RT->isStructureOrClassType()) {
3974    const RecordDecl *RD = RT->getDecl();
3975    const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
3976    unsigned FieldCnt = Layout.getFieldCount();
3977
3978    // N32/64 returns struct/classes in floating point registers if the
3979    // following conditions are met:
3980    // 1. The size of the struct/class is no larger than 128-bit.
3981    // 2. The struct/class has one or two fields all of which are floating
3982    //    point types.
3983    // 3. The offset of the first field is zero (this follows what gcc does).
3984    //
3985    // Any other composite results are returned in integer registers.
3986    //
3987    if (FieldCnt && (FieldCnt <= 2) && !Layout.getFieldOffset(0)) {
3988      RecordDecl::field_iterator b = RD->field_begin(), e = RD->field_end();
3989      for (; b != e; ++b) {
3990        const BuiltinType *BT = b->getType()->getAs<BuiltinType>();
3991
3992        if (!BT || !BT->isFloatingPoint())
3993          break;
3994
3995        RTList.push_back(CGT.ConvertType(b->getType()));
3996      }
3997
3998      if (b == e)
3999        return llvm::StructType::get(getVMContext(), RTList,
4000                                     RD->hasAttr<PackedAttr>());
4001
4002      RTList.clear();
4003    }
4004  }
4005
4006  CoerceToIntArgs(Size, RTList);
4007  return llvm::StructType::get(getVMContext(), RTList);
4008}
4009
4010ABIArgInfo MipsABIInfo::classifyReturnType(QualType RetTy) const {
4011  uint64_t Size = getContext().getTypeSize(RetTy);
4012
4013  if (RetTy->isVoidType() || Size == 0)
4014    return ABIArgInfo::getIgnore();
4015
4016  if (isAggregateTypeForABI(RetTy) || RetTy->isVectorType()) {
4017    if (Size <= 128) {
4018      if (RetTy->isAnyComplexType())
4019        return ABIArgInfo::getDirect();
4020
4021      // O32 returns integer vectors in registers.
4022      if (IsO32 && RetTy->isVectorType() && !RetTy->hasFloatingRepresentation())
4023        return ABIArgInfo::getDirect(returnAggregateInRegs(RetTy, Size));
4024
4025      if (!IsO32 && !isRecordWithNonTrivialDestructorOrCopyConstructor(RetTy))
4026        return ABIArgInfo::getDirect(returnAggregateInRegs(RetTy, Size));
4027    }
4028
4029    return ABIArgInfo::getIndirect(0);
4030  }
4031
4032  // Treat an enum type as its underlying type.
4033  if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
4034    RetTy = EnumTy->getDecl()->getIntegerType();
4035
4036  return (RetTy->isPromotableIntegerType() ?
4037          ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
4038}
4039
4040void MipsABIInfo::computeInfo(CGFunctionInfo &FI) const {
4041  ABIArgInfo &RetInfo = FI.getReturnInfo();
4042  RetInfo = classifyReturnType(FI.getReturnType());
4043
4044  // Check if a pointer to an aggregate is passed as a hidden argument.
4045  uint64_t Offset = RetInfo.isIndirect() ? MinABIStackAlignInBytes : 0;
4046
4047  for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
4048       it != ie; ++it)
4049    it->info = classifyArgumentType(it->type, Offset);
4050}
4051
4052llvm::Value* MipsABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
4053                                    CodeGenFunction &CGF) const {
4054  llvm::Type *BP = CGF.Int8PtrTy;
4055  llvm::Type *BPP = CGF.Int8PtrPtrTy;
4056
4057  CGBuilderTy &Builder = CGF.Builder;
4058  llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap");
4059  llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
4060  int64_t TypeAlign = getContext().getTypeAlign(Ty) / 8;
4061  llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
4062  llvm::Value *AddrTyped;
4063  unsigned PtrWidth = getContext().getTargetInfo().getPointerWidth(0);
4064  llvm::IntegerType *IntTy = (PtrWidth == 32) ? CGF.Int32Ty : CGF.Int64Ty;
4065
4066  if (TypeAlign > MinABIStackAlignInBytes) {
4067    llvm::Value *AddrAsInt = CGF.Builder.CreatePtrToInt(Addr, IntTy);
4068    llvm::Value *Inc = llvm::ConstantInt::get(IntTy, TypeAlign - 1);
4069    llvm::Value *Mask = llvm::ConstantInt::get(IntTy, -TypeAlign);
4070    llvm::Value *Add = CGF.Builder.CreateAdd(AddrAsInt, Inc);
4071    llvm::Value *And = CGF.Builder.CreateAnd(Add, Mask);
4072    AddrTyped = CGF.Builder.CreateIntToPtr(And, PTy);
4073  }
4074  else
4075    AddrTyped = Builder.CreateBitCast(Addr, PTy);
4076
4077  llvm::Value *AlignedAddr = Builder.CreateBitCast(AddrTyped, BP);
4078  TypeAlign = std::max((unsigned)TypeAlign, MinABIStackAlignInBytes);
4079  uint64_t Offset =
4080    llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, TypeAlign);
4081  llvm::Value *NextAddr =
4082    Builder.CreateGEP(AlignedAddr, llvm::ConstantInt::get(IntTy, Offset),
4083                      "ap.next");
4084  Builder.CreateStore(NextAddr, VAListAddrAsBPP);
4085
4086  return AddrTyped;
4087}
4088
4089bool
4090MIPSTargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4091                                               llvm::Value *Address) const {
4092  // This information comes from gcc's implementation, which seems to
4093  // as canonical as it gets.
4094
4095  // Everything on MIPS is 4 bytes.  Double-precision FP registers
4096  // are aliased to pairs of single-precision FP registers.
4097  llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
4098
4099  // 0-31 are the general purpose registers, $0 - $31.
4100  // 32-63 are the floating-point registers, $f0 - $f31.
4101  // 64 and 65 are the multiply/divide registers, $hi and $lo.
4102  // 66 is the (notional, I think) register for signal-handler return.
4103  AssignToArrayRange(CGF.Builder, Address, Four8, 0, 65);
4104
4105  // 67-74 are the floating-point status registers, $fcc0 - $fcc7.
4106  // They are one bit wide and ignored here.
4107
4108  // 80-111 are the coprocessor 0 registers, $c0r0 - $c0r31.
4109  // (coprocessor 1 is the FP unit)
4110  // 112-143 are the coprocessor 2 registers, $c2r0 - $c2r31.
4111  // 144-175 are the coprocessor 3 registers, $c3r0 - $c3r31.
4112  // 176-181 are the DSP accumulator registers.
4113  AssignToArrayRange(CGF.Builder, Address, Four8, 80, 181);
4114  return false;
4115}
4116
4117//===----------------------------------------------------------------------===//
4118// TCE ABI Implementation (see http://tce.cs.tut.fi). Uses mostly the defaults.
4119// Currently subclassed only to implement custom OpenCL C function attribute
4120// handling.
4121//===----------------------------------------------------------------------===//
4122
4123namespace {
4124
4125class TCETargetCodeGenInfo : public DefaultTargetCodeGenInfo {
4126public:
4127  TCETargetCodeGenInfo(CodeGenTypes &CGT)
4128    : DefaultTargetCodeGenInfo(CGT) {}
4129
4130  virtual void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
4131                                   CodeGen::CodeGenModule &M) const;
4132};
4133
4134void TCETargetCodeGenInfo::SetTargetAttributes(const Decl *D,
4135                                               llvm::GlobalValue *GV,
4136                                               CodeGen::CodeGenModule &M) const {
4137  const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
4138  if (!FD) return;
4139
4140  llvm::Function *F = cast<llvm::Function>(GV);
4141
4142  if (M.getLangOpts().OpenCL) {
4143    if (FD->hasAttr<OpenCLKernelAttr>()) {
4144      // OpenCL C Kernel functions are not subject to inlining
4145      F->addFnAttr(llvm::Attributes::NoInline);
4146
4147      if (FD->hasAttr<ReqdWorkGroupSizeAttr>()) {
4148
4149        // Convert the reqd_work_group_size() attributes to metadata.
4150        llvm::LLVMContext &Context = F->getContext();
4151        llvm::NamedMDNode *OpenCLMetadata =
4152            M.getModule().getOrInsertNamedMetadata("opencl.kernel_wg_size_info");
4153
4154        SmallVector<llvm::Value*, 5> Operands;
4155        Operands.push_back(F);
4156
4157        Operands.push_back(llvm::Constant::getIntegerValue(M.Int32Ty,
4158                             llvm::APInt(32,
4159                             FD->getAttr<ReqdWorkGroupSizeAttr>()->getXDim())));
4160        Operands.push_back(llvm::Constant::getIntegerValue(M.Int32Ty,
4161                             llvm::APInt(32,
4162                               FD->getAttr<ReqdWorkGroupSizeAttr>()->getYDim())));
4163        Operands.push_back(llvm::Constant::getIntegerValue(M.Int32Ty,
4164                             llvm::APInt(32,
4165                               FD->getAttr<ReqdWorkGroupSizeAttr>()->getZDim())));
4166
4167        // Add a boolean constant operand for "required" (true) or "hint" (false)
4168        // for implementing the work_group_size_hint attr later. Currently
4169        // always true as the hint is not yet implemented.
4170        Operands.push_back(llvm::ConstantInt::getTrue(Context));
4171        OpenCLMetadata->addOperand(llvm::MDNode::get(Context, Operands));
4172      }
4173    }
4174  }
4175}
4176
4177}
4178
4179//===----------------------------------------------------------------------===//
4180// Hexagon ABI Implementation
4181//===----------------------------------------------------------------------===//
4182
4183namespace {
4184
4185class HexagonABIInfo : public ABIInfo {
4186
4187
4188public:
4189  HexagonABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
4190
4191private:
4192
4193  ABIArgInfo classifyReturnType(QualType RetTy) const;
4194  ABIArgInfo classifyArgumentType(QualType RetTy) const;
4195
4196  virtual void computeInfo(CGFunctionInfo &FI) const;
4197
4198  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
4199                                 CodeGenFunction &CGF) const;
4200};
4201
4202class HexagonTargetCodeGenInfo : public TargetCodeGenInfo {
4203public:
4204  HexagonTargetCodeGenInfo(CodeGenTypes &CGT)
4205    :TargetCodeGenInfo(new HexagonABIInfo(CGT)) {}
4206
4207  int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const {
4208    return 29;
4209  }
4210};
4211
4212}
4213
4214void HexagonABIInfo::computeInfo(CGFunctionInfo &FI) const {
4215  FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
4216  for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
4217       it != ie; ++it)
4218    it->info = classifyArgumentType(it->type);
4219}
4220
4221ABIArgInfo HexagonABIInfo::classifyArgumentType(QualType Ty) const {
4222  if (!isAggregateTypeForABI(Ty)) {
4223    // Treat an enum type as its underlying type.
4224    if (const EnumType *EnumTy = Ty->getAs<EnumType>())
4225      Ty = EnumTy->getDecl()->getIntegerType();
4226
4227    return (Ty->isPromotableIntegerType() ?
4228            ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
4229  }
4230
4231  // Ignore empty records.
4232  if (isEmptyRecord(getContext(), Ty, true))
4233    return ABIArgInfo::getIgnore();
4234
4235  // Structures with either a non-trivial destructor or a non-trivial
4236  // copy constructor are always indirect.
4237  if (isRecordWithNonTrivialDestructorOrCopyConstructor(Ty))
4238    return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
4239
4240  uint64_t Size = getContext().getTypeSize(Ty);
4241  if (Size > 64)
4242    return ABIArgInfo::getIndirect(0, /*ByVal=*/true);
4243    // Pass in the smallest viable integer type.
4244  else if (Size > 32)
4245      return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext()));
4246  else if (Size > 16)
4247      return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
4248  else if (Size > 8)
4249      return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
4250  else
4251      return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
4252}
4253
4254ABIArgInfo HexagonABIInfo::classifyReturnType(QualType RetTy) const {
4255  if (RetTy->isVoidType())
4256    return ABIArgInfo::getIgnore();
4257
4258  // Large vector types should be returned via memory.
4259  if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 64)
4260    return ABIArgInfo::getIndirect(0);
4261
4262  if (!isAggregateTypeForABI(RetTy)) {
4263    // Treat an enum type as its underlying type.
4264    if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
4265      RetTy = EnumTy->getDecl()->getIntegerType();
4266
4267    return (RetTy->isPromotableIntegerType() ?
4268            ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
4269  }
4270
4271  // Structures with either a non-trivial destructor or a non-trivial
4272  // copy constructor are always indirect.
4273  if (isRecordWithNonTrivialDestructorOrCopyConstructor(RetTy))
4274    return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
4275
4276  if (isEmptyRecord(getContext(), RetTy, true))
4277    return ABIArgInfo::getIgnore();
4278
4279  // Aggregates <= 8 bytes are returned in r0; other aggregates
4280  // are returned indirectly.
4281  uint64_t Size = getContext().getTypeSize(RetTy);
4282  if (Size <= 64) {
4283    // Return in the smallest viable integer type.
4284    if (Size <= 8)
4285      return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
4286    if (Size <= 16)
4287      return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
4288    if (Size <= 32)
4289      return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
4290    return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext()));
4291  }
4292
4293  return ABIArgInfo::getIndirect(0, /*ByVal=*/true);
4294}
4295
4296llvm::Value *HexagonABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
4297                                       CodeGenFunction &CGF) const {
4298  // FIXME: Need to handle alignment
4299  llvm::Type *BPP = CGF.Int8PtrPtrTy;
4300
4301  CGBuilderTy &Builder = CGF.Builder;
4302  llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP,
4303                                                       "ap");
4304  llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
4305  llvm::Type *PTy =
4306    llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
4307  llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
4308
4309  uint64_t Offset =
4310    llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 4);
4311  llvm::Value *NextAddr =
4312    Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
4313                      "ap.next");
4314  Builder.CreateStore(NextAddr, VAListAddrAsBPP);
4315
4316  return AddrTyped;
4317}
4318
4319
4320const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() {
4321  if (TheTargetCodeGenInfo)
4322    return *TheTargetCodeGenInfo;
4323
4324  const llvm::Triple &Triple = getContext().getTargetInfo().getTriple();
4325  switch (Triple.getArch()) {
4326  default:
4327    return *(TheTargetCodeGenInfo = new DefaultTargetCodeGenInfo(Types));
4328
4329  case llvm::Triple::le32:
4330    return *(TheTargetCodeGenInfo = new PNaClTargetCodeGenInfo(Types));
4331  case llvm::Triple::mips:
4332  case llvm::Triple::mipsel:
4333    return *(TheTargetCodeGenInfo = new MIPSTargetCodeGenInfo(Types, true));
4334
4335  case llvm::Triple::mips64:
4336  case llvm::Triple::mips64el:
4337    return *(TheTargetCodeGenInfo = new MIPSTargetCodeGenInfo(Types, false));
4338
4339  case llvm::Triple::arm:
4340  case llvm::Triple::thumb:
4341    {
4342      ARMABIInfo::ABIKind Kind = ARMABIInfo::AAPCS;
4343      if (strcmp(getContext().getTargetInfo().getABI(), "apcs-gnu") == 0)
4344        Kind = ARMABIInfo::APCS;
4345      else if (CodeGenOpts.FloatABI == "hard" ||
4346               (CodeGenOpts.FloatABI != "soft" && Triple.getEnvironment()==llvm::Triple::GNUEABIHF))
4347        Kind = ARMABIInfo::AAPCS_VFP;
4348
4349      switch (Triple.getOS()) {
4350        case llvm::Triple::NativeClient:
4351          return *(TheTargetCodeGenInfo =
4352                   new NaClARMTargetCodeGenInfo(Types, Kind));
4353        default:
4354          return *(TheTargetCodeGenInfo =
4355                   new ARMTargetCodeGenInfo(Types, Kind));
4356      }
4357    }
4358
4359  case llvm::Triple::ppc:
4360    return *(TheTargetCodeGenInfo = new PPC32TargetCodeGenInfo(Types));
4361  case llvm::Triple::ppc64:
4362    if (Triple.isOSBinFormatELF())
4363      return *(TheTargetCodeGenInfo = new PPC64_SVR4_TargetCodeGenInfo(Types));
4364    else
4365      return *(TheTargetCodeGenInfo = new PPC64TargetCodeGenInfo(Types));
4366
4367  case llvm::Triple::nvptx:
4368  case llvm::Triple::nvptx64:
4369    return *(TheTargetCodeGenInfo = new NVPTXTargetCodeGenInfo(Types));
4370
4371  case llvm::Triple::mblaze:
4372    return *(TheTargetCodeGenInfo = new MBlazeTargetCodeGenInfo(Types));
4373
4374  case llvm::Triple::msp430:
4375    return *(TheTargetCodeGenInfo = new MSP430TargetCodeGenInfo(Types));
4376
4377  case llvm::Triple::tce:
4378    return *(TheTargetCodeGenInfo = new TCETargetCodeGenInfo(Types));
4379
4380  case llvm::Triple::x86: {
4381    bool DisableMMX = strcmp(getContext().getTargetInfo().getABI(), "no-mmx") == 0;
4382
4383    if (Triple.isOSDarwin())
4384      return *(TheTargetCodeGenInfo =
4385               new X86_32TargetCodeGenInfo(Types, true, true, DisableMMX, false,
4386                                           CodeGenOpts.NumRegisterParameters));
4387
4388    switch (Triple.getOS()) {
4389    case llvm::Triple::Cygwin:
4390    case llvm::Triple::MinGW32:
4391    case llvm::Triple::AuroraUX:
4392    case llvm::Triple::DragonFly:
4393    case llvm::Triple::FreeBSD:
4394    case llvm::Triple::OpenBSD:
4395    case llvm::Triple::Bitrig:
4396      return *(TheTargetCodeGenInfo =
4397               new X86_32TargetCodeGenInfo(Types, false, true, DisableMMX,
4398                                           false,
4399                                           CodeGenOpts.NumRegisterParameters));
4400
4401    case llvm::Triple::Win32:
4402      return *(TheTargetCodeGenInfo =
4403               new X86_32TargetCodeGenInfo(Types, false, true, DisableMMX, true,
4404                                           CodeGenOpts.NumRegisterParameters));
4405
4406    default:
4407      return *(TheTargetCodeGenInfo =
4408               new X86_32TargetCodeGenInfo(Types, false, false, DisableMMX,
4409                                           false,
4410                                           CodeGenOpts.NumRegisterParameters));
4411    }
4412  }
4413
4414  case llvm::Triple::x86_64: {
4415    bool HasAVX = strcmp(getContext().getTargetInfo().getABI(), "avx") == 0;
4416
4417    switch (Triple.getOS()) {
4418    case llvm::Triple::Win32:
4419    case llvm::Triple::MinGW32:
4420    case llvm::Triple::Cygwin:
4421      return *(TheTargetCodeGenInfo = new WinX86_64TargetCodeGenInfo(Types));
4422    case llvm::Triple::NativeClient:
4423      return *(TheTargetCodeGenInfo = new NaClX86_64TargetCodeGenInfo(Types, HasAVX));
4424    default:
4425      return *(TheTargetCodeGenInfo = new X86_64TargetCodeGenInfo(Types,
4426                                                                  HasAVX));
4427    }
4428  }
4429  case llvm::Triple::hexagon:
4430    return *(TheTargetCodeGenInfo = new HexagonTargetCodeGenInfo(Types));
4431  }
4432}
4433