SemaDeclAttr.cpp revision 768d6cae40ad4ff3aed5483269d068ff7a45e229
1//===--- SemaDeclAttr.cpp - Declaration Attribute Handling ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements decl-related attribute processing.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "TargetAttributesSema.h"
16#include "clang/AST/ASTContext.h"
17#include "clang/AST/DeclCXX.h"
18#include "clang/AST/DeclTemplate.h"
19#include "clang/AST/DeclObjC.h"
20#include "clang/AST/Expr.h"
21#include "clang/Basic/SourceManager.h"
22#include "clang/Basic/TargetInfo.h"
23#include "clang/Sema/DeclSpec.h"
24#include "clang/Sema/DelayedDiagnostic.h"
25#include "llvm/ADT/StringExtras.h"
26using namespace clang;
27using namespace sema;
28
29/// These constants match the enumerated choices of
30/// warn_attribute_wrong_decl_type and err_attribute_wrong_decl_type.
31enum AttributeDeclKind {
32  ExpectedFunction,
33  ExpectedUnion,
34  ExpectedVariableOrFunction,
35  ExpectedFunctionOrMethod,
36  ExpectedParameter,
37  ExpectedParameterOrMethod,
38  ExpectedFunctionMethodOrBlock,
39  ExpectedClassOrVirtualMethod,
40  ExpectedFunctionMethodOrParameter,
41  ExpectedClass,
42  ExpectedVirtualMethod,
43  ExpectedClassMember,
44  ExpectedVariable,
45  ExpectedMethod,
46  ExpectedVariableFunctionOrLabel,
47  ExpectedFieldOrGlobalVar
48};
49
50//===----------------------------------------------------------------------===//
51//  Helper functions
52//===----------------------------------------------------------------------===//
53
54static const FunctionType *getFunctionType(const Decl *D,
55                                           bool blocksToo = true) {
56  QualType Ty;
57  if (const ValueDecl *decl = dyn_cast<ValueDecl>(D))
58    Ty = decl->getType();
59  else if (const FieldDecl *decl = dyn_cast<FieldDecl>(D))
60    Ty = decl->getType();
61  else if (const TypedefNameDecl* decl = dyn_cast<TypedefNameDecl>(D))
62    Ty = decl->getUnderlyingType();
63  else
64    return 0;
65
66  if (Ty->isFunctionPointerType())
67    Ty = Ty->getAs<PointerType>()->getPointeeType();
68  else if (blocksToo && Ty->isBlockPointerType())
69    Ty = Ty->getAs<BlockPointerType>()->getPointeeType();
70
71  return Ty->getAs<FunctionType>();
72}
73
74// FIXME: We should provide an abstraction around a method or function
75// to provide the following bits of information.
76
77/// isFunction - Return true if the given decl has function
78/// type (function or function-typed variable).
79static bool isFunction(const Decl *D) {
80  return getFunctionType(D, false) != NULL;
81}
82
83/// isFunctionOrMethod - Return true if the given decl has function
84/// type (function or function-typed variable) or an Objective-C
85/// method.
86static bool isFunctionOrMethod(const Decl *D) {
87  return isFunction(D)|| isa<ObjCMethodDecl>(D);
88}
89
90/// isFunctionOrMethodOrBlock - Return true if the given decl has function
91/// type (function or function-typed variable) or an Objective-C
92/// method or a block.
93static bool isFunctionOrMethodOrBlock(const Decl *D) {
94  if (isFunctionOrMethod(D))
95    return true;
96  // check for block is more involved.
97  if (const VarDecl *V = dyn_cast<VarDecl>(D)) {
98    QualType Ty = V->getType();
99    return Ty->isBlockPointerType();
100  }
101  return isa<BlockDecl>(D);
102}
103
104/// Return true if the given decl has a declarator that should have
105/// been processed by Sema::GetTypeForDeclarator.
106static bool hasDeclarator(const Decl *D) {
107  // In some sense, TypedefDecl really *ought* to be a DeclaratorDecl.
108  return isa<DeclaratorDecl>(D) || isa<BlockDecl>(D) || isa<TypedefNameDecl>(D) ||
109         isa<ObjCPropertyDecl>(D);
110}
111
112/// hasFunctionProto - Return true if the given decl has a argument
113/// information. This decl should have already passed
114/// isFunctionOrMethod or isFunctionOrMethodOrBlock.
115static bool hasFunctionProto(const Decl *D) {
116  if (const FunctionType *FnTy = getFunctionType(D))
117    return isa<FunctionProtoType>(FnTy);
118  else {
119    assert(isa<ObjCMethodDecl>(D) || isa<BlockDecl>(D));
120    return true;
121  }
122}
123
124/// getFunctionOrMethodNumArgs - Return number of function or method
125/// arguments. It is an error to call this on a K&R function (use
126/// hasFunctionProto first).
127static unsigned getFunctionOrMethodNumArgs(const Decl *D) {
128  if (const FunctionType *FnTy = getFunctionType(D))
129    return cast<FunctionProtoType>(FnTy)->getNumArgs();
130  if (const BlockDecl *BD = dyn_cast<BlockDecl>(D))
131    return BD->getNumParams();
132  return cast<ObjCMethodDecl>(D)->param_size();
133}
134
135static QualType getFunctionOrMethodArgType(const Decl *D, unsigned Idx) {
136  if (const FunctionType *FnTy = getFunctionType(D))
137    return cast<FunctionProtoType>(FnTy)->getArgType(Idx);
138  if (const BlockDecl *BD = dyn_cast<BlockDecl>(D))
139    return BD->getParamDecl(Idx)->getType();
140
141  return cast<ObjCMethodDecl>(D)->param_begin()[Idx]->getType();
142}
143
144static QualType getFunctionOrMethodResultType(const Decl *D) {
145  if (const FunctionType *FnTy = getFunctionType(D))
146    return cast<FunctionProtoType>(FnTy)->getResultType();
147  return cast<ObjCMethodDecl>(D)->getResultType();
148}
149
150static bool isFunctionOrMethodVariadic(const Decl *D) {
151  if (const FunctionType *FnTy = getFunctionType(D)) {
152    const FunctionProtoType *proto = cast<FunctionProtoType>(FnTy);
153    return proto->isVariadic();
154  } else if (const BlockDecl *BD = dyn_cast<BlockDecl>(D))
155    return BD->isVariadic();
156  else {
157    return cast<ObjCMethodDecl>(D)->isVariadic();
158  }
159}
160
161static bool isInstanceMethod(const Decl *D) {
162  if (const CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(D))
163    return MethodDecl->isInstance();
164  return false;
165}
166
167static inline bool isNSStringType(QualType T, ASTContext &Ctx) {
168  const ObjCObjectPointerType *PT = T->getAs<ObjCObjectPointerType>();
169  if (!PT)
170    return false;
171
172  ObjCInterfaceDecl *Cls = PT->getObjectType()->getInterface();
173  if (!Cls)
174    return false;
175
176  IdentifierInfo* ClsName = Cls->getIdentifier();
177
178  // FIXME: Should we walk the chain of classes?
179  return ClsName == &Ctx.Idents.get("NSString") ||
180         ClsName == &Ctx.Idents.get("NSMutableString");
181}
182
183static inline bool isCFStringType(QualType T, ASTContext &Ctx) {
184  const PointerType *PT = T->getAs<PointerType>();
185  if (!PT)
186    return false;
187
188  const RecordType *RT = PT->getPointeeType()->getAs<RecordType>();
189  if (!RT)
190    return false;
191
192  const RecordDecl *RD = RT->getDecl();
193  if (RD->getTagKind() != TTK_Struct)
194    return false;
195
196  return RD->getIdentifier() == &Ctx.Idents.get("__CFString");
197}
198
199/// \brief Check if the attribute has exactly as many args as Num. May
200/// output an error.
201static bool checkAttributeNumArgs(Sema &S, const AttributeList &Attr,
202                                  unsigned int Num) {
203  if (Attr.getNumArgs() != Num) {
204    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << Num;
205    return false;
206  }
207
208  return true;
209}
210
211
212/// \brief Check if the attribute has at least as many args as Num. May
213/// output an error.
214static bool checkAttributeAtLeastNumArgs(Sema &S, const AttributeList &Attr,
215                                  unsigned int Num) {
216  if (Attr.getNumArgs() < Num) {
217    S.Diag(Attr.getLoc(), diag::err_attribute_too_few_arguments) << Num;
218    return false;
219  }
220
221  return true;
222}
223
224///
225/// \brief Check if passed in Decl is a field or potentially shared global var
226/// \return true if the Decl is a field or potentially shared global variable
227///
228static bool mayBeSharedVariable(const Decl *D) {
229  if (isa<FieldDecl>(D))
230    return true;
231  if (const VarDecl *vd = dyn_cast<VarDecl>(D))
232    return (vd->hasGlobalStorage() && !(vd->isThreadSpecified()));
233
234  return false;
235}
236
237/// \brief Check if the passed-in expression is of type int or bool.
238static bool isIntOrBool(Expr *Exp) {
239  QualType QT = Exp->getType();
240  return QT->isBooleanType() || QT->isIntegerType();
241}
242
243///
244/// \brief Check if passed in Decl is a pointer type.
245/// Note that this function may produce an error message.
246/// \return true if the Decl is a pointer type; false otherwise
247///
248static bool checkIsPointer(Sema &S, const Decl *D, const AttributeList &Attr) {
249  if (const ValueDecl *vd = dyn_cast<ValueDecl>(D)) {
250    QualType QT = vd->getType();
251    if (QT->isAnyPointerType())
252      return true;
253    S.Diag(Attr.getLoc(), diag::warn_pointer_attribute_wrong_type)
254      << Attr.getName()->getName() << QT;
255  } else {
256    S.Diag(Attr.getLoc(), diag::err_attribute_can_be_applied_only_to_value_decl)
257      << Attr.getName();
258  }
259  return false;
260}
261
262/// \brief Checks that the passed in QualType either is of RecordType or points
263/// to RecordType. Returns the relevant RecordType, null if it does not exit.
264static const RecordType *getRecordType(QualType QT) {
265  if (const RecordType *RT = QT->getAs<RecordType>())
266    return RT;
267
268  // Now check if we point to record type.
269  if (const PointerType *PT = QT->getAs<PointerType>())
270    return PT->getPointeeType()->getAs<RecordType>();
271
272  return 0;
273}
274
275/// \brief Thread Safety Analysis: Checks that the passed in RecordType
276/// resolves to a lockable object. May flag an error.
277static bool checkForLockableRecord(Sema &S, Decl *D, const AttributeList &Attr,
278                                   const RecordType *RT) {
279  // Flag error if could not get record type for this argument.
280  if (!RT) {
281    S.Diag(Attr.getLoc(), diag::err_attribute_argument_not_class)
282      << Attr.getName();
283    return false;
284  }
285  // Flag error if the type is not lockable.
286  if (!RT->getDecl()->getAttr<LockableAttr>()) {
287    S.Diag(Attr.getLoc(), diag::err_attribute_argument_not_lockable)
288      << Attr.getName();
289    return false;
290  }
291  return true;
292}
293
294/// \brief Thread Safety Analysis: Checks that all attribute arguments, starting
295/// from Sidx, resolve to a lockable object. May flag an error.
296/// \param Sidx The attribute argument index to start checking with.
297/// \param ParamIdxOk Whether an argument can be indexing into a function
298/// parameter list.
299static bool checkAttrArgsAreLockableObjs(Sema &S, Decl *D,
300                                         const AttributeList &Attr,
301                                         SmallVectorImpl<Expr*> &Args,
302                                         int Sidx = 0,
303                                         bool ParamIdxOk = false) {
304  for(unsigned Idx = Sidx; Idx < Attr.getNumArgs(); ++Idx) {
305    Expr *ArgExp = Attr.getArg(Idx);
306
307    if (ArgExp->isTypeDependent()) {
308      // FIXME -- need to processs this again on template instantiation
309      Args.push_back(ArgExp);
310      continue;
311    }
312
313    QualType ArgTy = ArgExp->getType();
314
315    // First see if we can just cast to record type, or point to record type.
316    const RecordType *RT = getRecordType(ArgTy);
317
318    // Now check if we index into a record type function param.
319    if(!RT && ParamIdxOk) {
320      FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
321      IntegerLiteral *IL = dyn_cast<IntegerLiteral>(ArgExp);
322      if(FD && IL) {
323        unsigned int NumParams = FD->getNumParams();
324        llvm::APInt ArgValue = IL->getValue();
325        uint64_t ParamIdxFromOne = ArgValue.getZExtValue();
326        uint64_t ParamIdxFromZero = ParamIdxFromOne - 1;
327        if(!ArgValue.isStrictlyPositive() || ParamIdxFromOne > NumParams) {
328          S.Diag(Attr.getLoc(), diag::err_attribute_argument_out_of_range)
329            << Attr.getName() << Idx + 1 << NumParams;
330          return false;
331        }
332        ArgTy = FD->getParamDecl(ParamIdxFromZero)->getType();
333        RT = getRecordType(ArgTy);
334      }
335    }
336
337    if (!checkForLockableRecord(S, D, Attr, RT))
338      return false;
339
340    Args.push_back(ArgExp);
341  }
342  return true;
343}
344
345//===----------------------------------------------------------------------===//
346// Attribute Implementations
347//===----------------------------------------------------------------------===//
348
349// FIXME: All this manual attribute parsing code is gross. At the
350// least add some helper functions to check most argument patterns (#
351// and types of args).
352
353static void handleGuardedVarAttr(Sema &S, Decl *D, const AttributeList &Attr,
354                                 bool pointer = false) {
355  assert(!Attr.isInvalid());
356
357  if (!checkAttributeNumArgs(S, Attr, 0))
358    return;
359
360  // D must be either a member field or global (potentially shared) variable.
361  if (!mayBeSharedVariable(D)) {
362    S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
363      << Attr.getName() << ExpectedFieldOrGlobalVar;
364    return;
365  }
366
367  if (pointer && !checkIsPointer(S, D, Attr))
368    return;
369
370  if (pointer)
371    D->addAttr(::new (S.Context) PtGuardedVarAttr(Attr.getRange(), S.Context));
372  else
373    D->addAttr(::new (S.Context) GuardedVarAttr(Attr.getRange(), S.Context));
374}
375
376static void handleGuardedByAttr(Sema &S, Decl *D, const AttributeList &Attr,
377                                bool pointer = false) {
378  assert(!Attr.isInvalid());
379
380  if (!checkAttributeNumArgs(S, Attr, 1))
381    return;
382
383  Expr *Arg = Attr.getArg(0);
384
385  // D must be either a member field or global (potentially shared) variable.
386  if (!mayBeSharedVariable(D)) {
387    S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
388      << Attr.getName() << ExpectedFieldOrGlobalVar;
389    return;
390  }
391
392  if (pointer && !checkIsPointer(S, D, Attr))
393    return;
394
395  if (Arg->isTypeDependent())
396    // FIXME: handle attributes with dependent types
397    return;
398
399  // check that the argument is lockable object
400  if (!checkForLockableRecord(S, D, Attr, getRecordType(Arg->getType())))
401    return;
402
403  if (pointer)
404    D->addAttr(::new (S.Context) PtGuardedByAttr(Attr.getRange(),
405                                                 S.Context, Arg));
406  else
407    D->addAttr(::new (S.Context) GuardedByAttr(Attr.getRange(), S.Context, Arg));
408}
409
410
411static void handleLockableAttr(Sema &S, Decl *D, const AttributeList &Attr,
412                               bool scoped = false) {
413  assert(!Attr.isInvalid());
414
415  if (!checkAttributeNumArgs(S, Attr, 0))
416    return;
417
418  if (!isa<CXXRecordDecl>(D)) {
419    S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
420      << Attr.getName() << ExpectedClass;
421    return;
422  }
423
424  if (scoped)
425    D->addAttr(::new (S.Context) ScopedLockableAttr(Attr.getRange(), S.Context));
426  else
427    D->addAttr(::new (S.Context) LockableAttr(Attr.getRange(), S.Context));
428}
429
430static void handleNoThreadSafetyAttr(Sema &S, Decl *D,
431                                     const AttributeList &Attr) {
432  assert(!Attr.isInvalid());
433
434  if (!checkAttributeNumArgs(S, Attr, 0))
435    return;
436
437  if (!isa<FunctionDecl>(D) && !isa<FunctionTemplateDecl>(D)) {
438    S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
439      << Attr.getName() << ExpectedFunctionOrMethod;
440    return;
441  }
442
443  D->addAttr(::new (S.Context) NoThreadSafetyAnalysisAttr(Attr.getRange(),
444                                                          S.Context));
445}
446
447static void handleAcquireOrderAttr(Sema &S, Decl *D, const AttributeList &Attr,
448                                   bool before) {
449  assert(!Attr.isInvalid());
450
451  if (!checkAttributeAtLeastNumArgs(S, Attr, 1))
452    return;
453
454  // D must be either a member field or global (potentially shared) variable.
455  ValueDecl *VD = dyn_cast<ValueDecl>(D);
456  if (!VD || !mayBeSharedVariable(D)) {
457    S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
458      << Attr.getName() << ExpectedFieldOrGlobalVar;
459    return;
460  }
461
462  // Check that this attribute only applies to lockable types
463  QualType QT = VD->getType();
464  if (!QT->isDependentType()) {
465    const RecordType *RT = getRecordType(QT);
466    if (!RT || !RT->getDecl()->getAttr<LockableAttr>()) {
467      S.Diag(Attr.getLoc(), diag::err_attribute_decl_not_lockable)
468              << Attr.getName();
469      return;
470    }
471  }
472
473  SmallVector<Expr*, 1> Args;
474  // check that all arguments are lockable objects
475  if (!checkAttrArgsAreLockableObjs(S, D, Attr, Args))
476    return;
477
478  unsigned Size = Args.size();
479  assert(Size == Attr.getNumArgs());
480  Expr **StartArg = Size == 0 ? 0 : &Args[0];
481
482  if (before)
483    D->addAttr(::new (S.Context) AcquiredBeforeAttr(Attr.getRange(), S.Context,
484                                                    StartArg, Size));
485  else
486    D->addAttr(::new (S.Context) AcquiredAfterAttr(Attr.getRange(), S.Context,
487                                                   StartArg, Size));
488}
489
490static void handleLockFunAttr(Sema &S, Decl *D, const AttributeList &Attr,
491                              bool exclusive = false) {
492  assert(!Attr.isInvalid());
493
494  // zero or more arguments ok
495
496  // check that the attribute is applied to a function
497  if (!isa<FunctionDecl>(D) && !isa<FunctionTemplateDecl>(D)) {
498    S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
499      << Attr.getName() << ExpectedFunctionOrMethod;
500    return;
501  }
502
503  // check that all arguments are lockable objects
504  SmallVector<Expr*, 1> Args;
505  if (!checkAttrArgsAreLockableObjs(S, D, Attr, Args, 0, /*ParamIdxOk=*/true))
506    return;
507
508  unsigned Size = Args.size();
509  assert(Size == Attr.getNumArgs());
510  Expr **StartArg = Size == 0 ? 0 : &Args[0];
511
512  if (exclusive)
513    D->addAttr(::new (S.Context) ExclusiveLockFunctionAttr(Attr.getRange(),
514                                                           S.Context, StartArg,
515                                                           Size));
516  else
517    D->addAttr(::new (S.Context) SharedLockFunctionAttr(Attr.getRange(),
518                                                        S.Context, StartArg,
519                                                        Size));
520}
521
522static void handleTrylockFunAttr(Sema &S, Decl *D, const AttributeList &Attr,
523                                 bool exclusive = false) {
524  assert(!Attr.isInvalid());
525
526  if (!checkAttributeAtLeastNumArgs(S, Attr, 1))
527    return;
528
529
530  if (!isa<FunctionDecl>(D) && !isa<FunctionTemplateDecl>(D)) {
531    S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
532      << Attr.getName() << ExpectedFunctionOrMethod;
533    return;
534  }
535
536  if (!isIntOrBool(Attr.getArg(0))) {
537    S.Diag(Attr.getLoc(), diag::err_attribute_first_argument_not_int_or_bool)
538        << Attr.getName();
539    return;
540  }
541
542  SmallVector<Expr*, 2> Args;
543  Args.push_back(Attr.getArg(0)); //FIXME
544  // check that all arguments are lockable objects
545  if (!checkAttrArgsAreLockableObjs(S, D, Attr, Args, 1))
546    return;
547
548  unsigned Size = Args.size();
549  assert(Size == Attr.getNumArgs());
550  Expr **StartArg = Size == 0 ? 0 : &Args[0];
551
552  if (exclusive)
553    D->addAttr(::new (S.Context) ExclusiveTrylockFunctionAttr(Attr.getRange(),
554                                                              S.Context,
555                                                              StartArg, Size));
556  else
557    D->addAttr(::new (S.Context) SharedTrylockFunctionAttr(Attr.getRange(),
558                                                           S.Context, StartArg,
559                                                           Size));
560}
561
562static void handleLocksRequiredAttr(Sema &S, Decl *D, const AttributeList &Attr,
563                                    bool exclusive = false) {
564  assert(!Attr.isInvalid());
565
566  if (!checkAttributeAtLeastNumArgs(S, Attr, 1))
567    return;
568
569  if (!isa<FunctionDecl>(D) && !isa<FunctionTemplateDecl>(D)) {
570    S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
571      << Attr.getName() << ExpectedFunctionOrMethod;
572    return;
573  }
574
575  // check that all arguments are lockable objects
576  SmallVector<Expr*, 1> Args;
577  if (!checkAttrArgsAreLockableObjs(S, D, Attr, Args))
578    return;
579
580  unsigned Size = Args.size();
581  assert(Size == Attr.getNumArgs());
582  Expr **StartArg = Size == 0 ? 0 : &Args[0];
583
584  if (exclusive)
585    D->addAttr(::new (S.Context) ExclusiveLocksRequiredAttr(Attr.getRange(),
586                                                            S.Context, StartArg,
587                                                            Size));
588  else
589    D->addAttr(::new (S.Context) SharedLocksRequiredAttr(Attr.getRange(),
590                                                         S.Context, StartArg,
591                                                         Size));
592}
593
594static void handleUnlockFunAttr(Sema &S, Decl *D,
595                                const AttributeList &Attr) {
596  assert(!Attr.isInvalid());
597
598  // zero or more arguments ok
599
600  if (!isa<FunctionDecl>(D) && !isa<FunctionTemplateDecl>(D)) {
601    S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
602      << Attr.getName() << ExpectedFunctionOrMethod;
603    return;
604  }
605
606  // check that all arguments are lockable objects
607  SmallVector<Expr*, 1> Args;
608  if (!checkAttrArgsAreLockableObjs(S, D, Attr, Args, 0, /*ParamIdxOk=*/true))
609    return;
610
611  unsigned Size = Args.size();
612  assert(Size == Attr.getNumArgs());
613  Expr **StartArg = Size == 0 ? 0 : &Args[0];
614
615  D->addAttr(::new (S.Context) UnlockFunctionAttr(Attr.getRange(), S.Context,
616                                                  StartArg, Size));
617}
618
619static void handleLockReturnedAttr(Sema &S, Decl *D,
620                                   const AttributeList &Attr) {
621  assert(!Attr.isInvalid());
622
623  if (!checkAttributeNumArgs(S, Attr, 1))
624    return;
625  Expr *Arg = Attr.getArg(0);
626
627  if (!isa<FunctionDecl>(D) && !isa<FunctionTemplateDecl>(D)) {
628    S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
629      << Attr.getName() << ExpectedFunctionOrMethod;
630    return;
631  }
632
633  if (Arg->isTypeDependent())
634    return;
635
636  // check that the argument is lockable object
637  if (!checkForLockableRecord(S, D, Attr, getRecordType(Arg->getType())))
638    return;
639
640  D->addAttr(::new (S.Context) LockReturnedAttr(Attr.getRange(), S.Context, Arg));
641}
642
643static void handleLocksExcludedAttr(Sema &S, Decl *D,
644                                    const AttributeList &Attr) {
645  assert(!Attr.isInvalid());
646
647  if (!checkAttributeAtLeastNumArgs(S, Attr, 1))
648    return;
649
650  if (!isa<FunctionDecl>(D) && !isa<FunctionTemplateDecl>(D)) {
651    S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
652      << Attr.getName() << ExpectedFunctionOrMethod;
653    return;
654  }
655
656  // check that all arguments are lockable objects
657  SmallVector<Expr*, 1> Args;
658  if (!checkAttrArgsAreLockableObjs(S, D, Attr, Args))
659    return;
660
661  unsigned Size = Args.size();
662  assert(Size == Attr.getNumArgs());
663  Expr **StartArg = Size == 0 ? 0 : &Args[0];
664
665  D->addAttr(::new (S.Context) LocksExcludedAttr(Attr.getRange(), S.Context,
666                                                 StartArg, Size));
667}
668
669
670static void handleExtVectorTypeAttr(Sema &S, Scope *scope, Decl *D,
671                                    const AttributeList &Attr) {
672  TypedefNameDecl *tDecl = dyn_cast<TypedefNameDecl>(D);
673  if (tDecl == 0) {
674    S.Diag(Attr.getLoc(), diag::err_typecheck_ext_vector_not_typedef);
675    return;
676  }
677
678  QualType curType = tDecl->getUnderlyingType();
679
680  Expr *sizeExpr;
681
682  // Special case where the argument is a template id.
683  if (Attr.getParameterName()) {
684    CXXScopeSpec SS;
685    UnqualifiedId id;
686    id.setIdentifier(Attr.getParameterName(), Attr.getLoc());
687
688    ExprResult Size = S.ActOnIdExpression(scope, SS, id, false, false);
689    if (Size.isInvalid())
690      return;
691
692    sizeExpr = Size.get();
693  } else {
694    // check the attribute arguments.
695    if (!checkAttributeNumArgs(S, Attr, 1))
696      return;
697
698    sizeExpr = Attr.getArg(0);
699  }
700
701  // Instantiate/Install the vector type, and let Sema build the type for us.
702  // This will run the reguired checks.
703  QualType T = S.BuildExtVectorType(curType, sizeExpr, Attr.getLoc());
704  if (!T.isNull()) {
705    // FIXME: preserve the old source info.
706    tDecl->setTypeSourceInfo(S.Context.getTrivialTypeSourceInfo(T));
707
708    // Remember this typedef decl, we will need it later for diagnostics.
709    S.ExtVectorDecls.push_back(tDecl);
710  }
711}
712
713static void handlePackedAttr(Sema &S, Decl *D, const AttributeList &Attr) {
714  // check the attribute arguments.
715  if (!checkAttributeNumArgs(S, Attr, 0))
716    return;
717
718  if (TagDecl *TD = dyn_cast<TagDecl>(D))
719    TD->addAttr(::new (S.Context) PackedAttr(Attr.getRange(), S.Context));
720  else if (FieldDecl *FD = dyn_cast<FieldDecl>(D)) {
721    // If the alignment is less than or equal to 8 bits, the packed attribute
722    // has no effect.
723    if (!FD->getType()->isIncompleteType() &&
724        S.Context.getTypeAlign(FD->getType()) <= 8)
725      S.Diag(Attr.getLoc(), diag::warn_attribute_ignored_for_field_of_type)
726        << Attr.getName() << FD->getType();
727    else
728      FD->addAttr(::new (S.Context) PackedAttr(Attr.getRange(), S.Context));
729  } else
730    S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << Attr.getName();
731}
732
733static void handleMsStructAttr(Sema &S, Decl *D, const AttributeList &Attr) {
734  if (TagDecl *TD = dyn_cast<TagDecl>(D))
735    TD->addAttr(::new (S.Context) MsStructAttr(Attr.getRange(), S.Context));
736  else
737    S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << Attr.getName();
738}
739
740static void handleIBAction(Sema &S, Decl *D, const AttributeList &Attr) {
741  // check the attribute arguments.
742  if (!checkAttributeNumArgs(S, Attr, 0))
743    return;
744
745  // The IBAction attributes only apply to instance methods.
746  if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D))
747    if (MD->isInstanceMethod()) {
748      D->addAttr(::new (S.Context) IBActionAttr(Attr.getRange(), S.Context));
749      return;
750    }
751
752  S.Diag(Attr.getLoc(), diag::warn_attribute_ibaction) << Attr.getName();
753}
754
755static void handleIBOutlet(Sema &S, Decl *D, const AttributeList &Attr) {
756  // check the attribute arguments.
757  if (!checkAttributeNumArgs(S, Attr, 0))
758    return;
759
760  // The IBOutlet attributes only apply to instance variables of
761  // Objective-C classes.
762  if (isa<ObjCIvarDecl>(D) || isa<ObjCPropertyDecl>(D)) {
763    D->addAttr(::new (S.Context) IBOutletAttr(Attr.getRange(), S.Context));
764    return;
765  }
766
767  S.Diag(Attr.getLoc(), diag::warn_attribute_iboutlet) << Attr.getName();
768}
769
770static void handleIBOutletCollection(Sema &S, Decl *D,
771                                     const AttributeList &Attr) {
772
773  // The iboutletcollection attribute can have zero or one arguments.
774  if (Attr.getParameterName() && Attr.getNumArgs() > 0) {
775    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
776    return;
777  }
778
779  // The IBOutletCollection attributes only apply to instance variables of
780  // Objective-C classes.
781  if (!(isa<ObjCIvarDecl>(D) || isa<ObjCPropertyDecl>(D))) {
782    S.Diag(Attr.getLoc(), diag::warn_attribute_iboutlet) << Attr.getName();
783    return;
784  }
785  if (const ValueDecl *VD = dyn_cast<ValueDecl>(D))
786    if (!VD->getType()->getAs<ObjCObjectPointerType>()) {
787      S.Diag(Attr.getLoc(), diag::err_iboutletcollection_object_type)
788        << VD->getType() << 0;
789      return;
790    }
791  if (const ObjCPropertyDecl *PD = dyn_cast<ObjCPropertyDecl>(D))
792    if (!PD->getType()->getAs<ObjCObjectPointerType>()) {
793      S.Diag(Attr.getLoc(), diag::err_iboutletcollection_object_type)
794        << PD->getType() << 1;
795      return;
796    }
797
798  IdentifierInfo *II = Attr.getParameterName();
799  if (!II)
800    II = &S.Context.Idents.get("id");
801
802  ParsedType TypeRep = S.getTypeName(*II, Attr.getLoc(),
803                        S.getScopeForContext(D->getDeclContext()->getParent()));
804  if (!TypeRep) {
805    S.Diag(Attr.getLoc(), diag::err_iboutletcollection_type) << II;
806    return;
807  }
808  QualType QT = TypeRep.get();
809  // Diagnose use of non-object type in iboutletcollection attribute.
810  // FIXME. Gnu attribute extension ignores use of builtin types in
811  // attributes. So, __attribute__((iboutletcollection(char))) will be
812  // treated as __attribute__((iboutletcollection())).
813  if (!QT->isObjCIdType() && !QT->isObjCClassType() &&
814      !QT->isObjCObjectType()) {
815    S.Diag(Attr.getLoc(), diag::err_iboutletcollection_type) << II;
816    return;
817  }
818  D->addAttr(::new (S.Context) IBOutletCollectionAttr(Attr.getRange(), S.Context,
819                                                      QT));
820}
821
822static void possibleTransparentUnionPointerType(QualType &T) {
823  if (const RecordType *UT = T->getAsUnionType())
824    if (UT && UT->getDecl()->hasAttr<TransparentUnionAttr>()) {
825      RecordDecl *UD = UT->getDecl();
826      for (RecordDecl::field_iterator it = UD->field_begin(),
827           itend = UD->field_end(); it != itend; ++it) {
828        QualType QT = it->getType();
829        if (QT->isAnyPointerType() || QT->isBlockPointerType()) {
830          T = QT;
831          return;
832        }
833      }
834    }
835}
836
837static void handleNonNullAttr(Sema &S, Decl *D, const AttributeList &Attr) {
838  // GCC ignores the nonnull attribute on K&R style function prototypes, so we
839  // ignore it as well
840  if (!isFunctionOrMethod(D) || !hasFunctionProto(D)) {
841    S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
842      << Attr.getName() << ExpectedFunction;
843    return;
844  }
845
846  // In C++ the implicit 'this' function parameter also counts, and they are
847  // counted from one.
848  bool HasImplicitThisParam = isInstanceMethod(D);
849  unsigned NumArgs  = getFunctionOrMethodNumArgs(D) + HasImplicitThisParam;
850
851  // The nonnull attribute only applies to pointers.
852  SmallVector<unsigned, 10> NonNullArgs;
853
854  for (AttributeList::arg_iterator I=Attr.arg_begin(),
855                                   E=Attr.arg_end(); I!=E; ++I) {
856
857
858    // The argument must be an integer constant expression.
859    Expr *Ex = *I;
860    llvm::APSInt ArgNum(32);
861    if (Ex->isTypeDependent() || Ex->isValueDependent() ||
862        !Ex->isIntegerConstantExpr(ArgNum, S.Context)) {
863      S.Diag(Attr.getLoc(), diag::err_attribute_argument_not_int)
864        << "nonnull" << Ex->getSourceRange();
865      return;
866    }
867
868    unsigned x = (unsigned) ArgNum.getZExtValue();
869
870    if (x < 1 || x > NumArgs) {
871      S.Diag(Attr.getLoc(), diag::err_attribute_argument_out_of_bounds)
872       << "nonnull" << I.getArgNum() << Ex->getSourceRange();
873      return;
874    }
875
876    --x;
877    if (HasImplicitThisParam) {
878      if (x == 0) {
879        S.Diag(Attr.getLoc(),
880               diag::err_attribute_invalid_implicit_this_argument)
881          << "nonnull" << Ex->getSourceRange();
882        return;
883      }
884      --x;
885    }
886
887    // Is the function argument a pointer type?
888    QualType T = getFunctionOrMethodArgType(D, x).getNonReferenceType();
889    possibleTransparentUnionPointerType(T);
890
891    if (!T->isAnyPointerType() && !T->isBlockPointerType()) {
892      // FIXME: Should also highlight argument in decl.
893      S.Diag(Attr.getLoc(), diag::warn_nonnull_pointers_only)
894        << "nonnull" << Ex->getSourceRange();
895      continue;
896    }
897
898    NonNullArgs.push_back(x);
899  }
900
901  // If no arguments were specified to __attribute__((nonnull)) then all pointer
902  // arguments have a nonnull attribute.
903  if (NonNullArgs.empty()) {
904    for (unsigned I = 0, E = getFunctionOrMethodNumArgs(D); I != E; ++I) {
905      QualType T = getFunctionOrMethodArgType(D, I).getNonReferenceType();
906      possibleTransparentUnionPointerType(T);
907      if (T->isAnyPointerType() || T->isBlockPointerType())
908        NonNullArgs.push_back(I);
909    }
910
911    // No pointer arguments?
912    if (NonNullArgs.empty()) {
913      // Warn the trivial case only if attribute is not coming from a
914      // macro instantiation.
915      if (Attr.getLoc().isFileID())
916        S.Diag(Attr.getLoc(), diag::warn_attribute_nonnull_no_pointers);
917      return;
918    }
919  }
920
921  unsigned* start = &NonNullArgs[0];
922  unsigned size = NonNullArgs.size();
923  llvm::array_pod_sort(start, start + size);
924  D->addAttr(::new (S.Context) NonNullAttr(Attr.getRange(), S.Context, start,
925                                           size));
926}
927
928static void handleOwnershipAttr(Sema &S, Decl *D, const AttributeList &AL) {
929  // This attribute must be applied to a function declaration.
930  // The first argument to the attribute must be a string,
931  // the name of the resource, for example "malloc".
932  // The following arguments must be argument indexes, the arguments must be
933  // of integer type for Returns, otherwise of pointer type.
934  // The difference between Holds and Takes is that a pointer may still be used
935  // after being held.  free() should be __attribute((ownership_takes)), whereas
936  // a list append function may well be __attribute((ownership_holds)).
937
938  if (!AL.getParameterName()) {
939    S.Diag(AL.getLoc(), diag::err_attribute_argument_n_not_string)
940        << AL.getName()->getName() << 1;
941    return;
942  }
943  // Figure out our Kind, and check arguments while we're at it.
944  OwnershipAttr::OwnershipKind K;
945  switch (AL.getKind()) {
946  case AttributeList::AT_ownership_takes:
947    K = OwnershipAttr::Takes;
948    if (AL.getNumArgs() < 1) {
949      S.Diag(AL.getLoc(), diag::err_attribute_wrong_number_arguments) << 2;
950      return;
951    }
952    break;
953  case AttributeList::AT_ownership_holds:
954    K = OwnershipAttr::Holds;
955    if (AL.getNumArgs() < 1) {
956      S.Diag(AL.getLoc(), diag::err_attribute_wrong_number_arguments) << 2;
957      return;
958    }
959    break;
960  case AttributeList::AT_ownership_returns:
961    K = OwnershipAttr::Returns;
962    if (AL.getNumArgs() > 1) {
963      S.Diag(AL.getLoc(), diag::err_attribute_wrong_number_arguments)
964          << AL.getNumArgs() + 1;
965      return;
966    }
967    break;
968  default:
969    // This should never happen given how we are called.
970    llvm_unreachable("Unknown ownership attribute");
971  }
972
973  if (!isFunction(D) || !hasFunctionProto(D)) {
974    S.Diag(AL.getLoc(), diag::warn_attribute_wrong_decl_type)
975      << AL.getName() << ExpectedFunction;
976    return;
977  }
978
979  // In C++ the implicit 'this' function parameter also counts, and they are
980  // counted from one.
981  bool HasImplicitThisParam = isInstanceMethod(D);
982  unsigned NumArgs  = getFunctionOrMethodNumArgs(D) + HasImplicitThisParam;
983
984  StringRef Module = AL.getParameterName()->getName();
985
986  // Normalize the argument, __foo__ becomes foo.
987  if (Module.startswith("__") && Module.endswith("__"))
988    Module = Module.substr(2, Module.size() - 4);
989
990  SmallVector<unsigned, 10> OwnershipArgs;
991
992  for (AttributeList::arg_iterator I = AL.arg_begin(), E = AL.arg_end(); I != E;
993       ++I) {
994
995    Expr *IdxExpr = *I;
996    llvm::APSInt ArgNum(32);
997    if (IdxExpr->isTypeDependent() || IdxExpr->isValueDependent()
998        || !IdxExpr->isIntegerConstantExpr(ArgNum, S.Context)) {
999      S.Diag(AL.getLoc(), diag::err_attribute_argument_not_int)
1000          << AL.getName()->getName() << IdxExpr->getSourceRange();
1001      continue;
1002    }
1003
1004    unsigned x = (unsigned) ArgNum.getZExtValue();
1005
1006    if (x > NumArgs || x < 1) {
1007      S.Diag(AL.getLoc(), diag::err_attribute_argument_out_of_bounds)
1008          << AL.getName()->getName() << x << IdxExpr->getSourceRange();
1009      continue;
1010    }
1011    --x;
1012    if (HasImplicitThisParam) {
1013      if (x == 0) {
1014        S.Diag(AL.getLoc(), diag::err_attribute_invalid_implicit_this_argument)
1015          << "ownership" << IdxExpr->getSourceRange();
1016        return;
1017      }
1018      --x;
1019    }
1020
1021    switch (K) {
1022    case OwnershipAttr::Takes:
1023    case OwnershipAttr::Holds: {
1024      // Is the function argument a pointer type?
1025      QualType T = getFunctionOrMethodArgType(D, x);
1026      if (!T->isAnyPointerType() && !T->isBlockPointerType()) {
1027        // FIXME: Should also highlight argument in decl.
1028        S.Diag(AL.getLoc(), diag::err_ownership_type)
1029            << ((K==OwnershipAttr::Takes)?"ownership_takes":"ownership_holds")
1030            << "pointer"
1031            << IdxExpr->getSourceRange();
1032        continue;
1033      }
1034      break;
1035    }
1036    case OwnershipAttr::Returns: {
1037      if (AL.getNumArgs() > 1) {
1038          // Is the function argument an integer type?
1039          Expr *IdxExpr = AL.getArg(0);
1040          llvm::APSInt ArgNum(32);
1041          if (IdxExpr->isTypeDependent() || IdxExpr->isValueDependent()
1042              || !IdxExpr->isIntegerConstantExpr(ArgNum, S.Context)) {
1043            S.Diag(AL.getLoc(), diag::err_ownership_type)
1044                << "ownership_returns" << "integer"
1045                << IdxExpr->getSourceRange();
1046            return;
1047          }
1048      }
1049      break;
1050    }
1051    default:
1052      llvm_unreachable("Unknown ownership attribute");
1053    } // switch
1054
1055    // Check we don't have a conflict with another ownership attribute.
1056    for (specific_attr_iterator<OwnershipAttr>
1057          i = D->specific_attr_begin<OwnershipAttr>(),
1058          e = D->specific_attr_end<OwnershipAttr>();
1059        i != e; ++i) {
1060      if ((*i)->getOwnKind() != K) {
1061        for (const unsigned *I = (*i)->args_begin(), *E = (*i)->args_end();
1062             I!=E; ++I) {
1063          if (x == *I) {
1064            S.Diag(AL.getLoc(), diag::err_attributes_are_not_compatible)
1065                << AL.getName()->getName() << "ownership_*";
1066          }
1067        }
1068      }
1069    }
1070    OwnershipArgs.push_back(x);
1071  }
1072
1073  unsigned* start = OwnershipArgs.data();
1074  unsigned size = OwnershipArgs.size();
1075  llvm::array_pod_sort(start, start + size);
1076
1077  if (K != OwnershipAttr::Returns && OwnershipArgs.empty()) {
1078    S.Diag(AL.getLoc(), diag::err_attribute_wrong_number_arguments) << 2;
1079    return;
1080  }
1081
1082  D->addAttr(::new (S.Context) OwnershipAttr(AL.getLoc(), S.Context, K, Module,
1083                                             start, size));
1084}
1085
1086/// Whether this declaration has internal linkage for the purposes of
1087/// things that want to complain about things not have internal linkage.
1088static bool hasEffectivelyInternalLinkage(NamedDecl *D) {
1089  switch (D->getLinkage()) {
1090  case NoLinkage:
1091  case InternalLinkage:
1092    return true;
1093
1094  // Template instantiations that go from external to unique-external
1095  // shouldn't get diagnosed.
1096  case UniqueExternalLinkage:
1097    return true;
1098
1099  case ExternalLinkage:
1100    return false;
1101  }
1102  llvm_unreachable("unknown linkage kind!");
1103  return false;
1104}
1105
1106static void handleWeakRefAttr(Sema &S, Decl *D, const AttributeList &Attr) {
1107  // Check the attribute arguments.
1108  if (Attr.getNumArgs() > 1) {
1109    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
1110    return;
1111  }
1112
1113  if (!isa<VarDecl>(D) && !isa<FunctionDecl>(D)) {
1114    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_decl_type)
1115      << Attr.getName() << ExpectedVariableOrFunction;
1116    return;
1117  }
1118
1119  NamedDecl *nd = cast<NamedDecl>(D);
1120
1121  // gcc rejects
1122  // class c {
1123  //   static int a __attribute__((weakref ("v2")));
1124  //   static int b() __attribute__((weakref ("f3")));
1125  // };
1126  // and ignores the attributes of
1127  // void f(void) {
1128  //   static int a __attribute__((weakref ("v2")));
1129  // }
1130  // we reject them
1131  const DeclContext *Ctx = D->getDeclContext()->getRedeclContext();
1132  if (!Ctx->isFileContext()) {
1133    S.Diag(Attr.getLoc(), diag::err_attribute_weakref_not_global_context) <<
1134        nd->getNameAsString();
1135    return;
1136  }
1137
1138  // The GCC manual says
1139  //
1140  // At present, a declaration to which `weakref' is attached can only
1141  // be `static'.
1142  //
1143  // It also says
1144  //
1145  // Without a TARGET,
1146  // given as an argument to `weakref' or to `alias', `weakref' is
1147  // equivalent to `weak'.
1148  //
1149  // gcc 4.4.1 will accept
1150  // int a7 __attribute__((weakref));
1151  // as
1152  // int a7 __attribute__((weak));
1153  // This looks like a bug in gcc. We reject that for now. We should revisit
1154  // it if this behaviour is actually used.
1155
1156  if (!hasEffectivelyInternalLinkage(nd)) {
1157    S.Diag(Attr.getLoc(), diag::err_attribute_weakref_not_static);
1158    return;
1159  }
1160
1161  // GCC rejects
1162  // static ((alias ("y"), weakref)).
1163  // Should we? How to check that weakref is before or after alias?
1164
1165  if (Attr.getNumArgs() == 1) {
1166    Expr *Arg = Attr.getArg(0);
1167    Arg = Arg->IgnoreParenCasts();
1168    StringLiteral *Str = dyn_cast<StringLiteral>(Arg);
1169
1170    if (!Str || !Str->isAscii()) {
1171      S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_string)
1172          << "weakref" << 1;
1173      return;
1174    }
1175    // GCC will accept anything as the argument of weakref. Should we
1176    // check for an existing decl?
1177    D->addAttr(::new (S.Context) AliasAttr(Attr.getRange(), S.Context,
1178                                           Str->getString()));
1179  }
1180
1181  D->addAttr(::new (S.Context) WeakRefAttr(Attr.getRange(), S.Context));
1182}
1183
1184static void handleAliasAttr(Sema &S, Decl *D, const AttributeList &Attr) {
1185  // check the attribute arguments.
1186  if (Attr.getNumArgs() != 1) {
1187    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
1188    return;
1189  }
1190
1191  Expr *Arg = Attr.getArg(0);
1192  Arg = Arg->IgnoreParenCasts();
1193  StringLiteral *Str = dyn_cast<StringLiteral>(Arg);
1194
1195  if (!Str || !Str->isAscii()) {
1196    S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_string)
1197      << "alias" << 1;
1198    return;
1199  }
1200
1201  if (S.Context.getTargetInfo().getTriple().isOSDarwin()) {
1202    S.Diag(Attr.getLoc(), diag::err_alias_not_supported_on_darwin);
1203    return;
1204  }
1205
1206  // FIXME: check if target symbol exists in current file
1207
1208  D->addAttr(::new (S.Context) AliasAttr(Attr.getRange(), S.Context,
1209                                         Str->getString()));
1210}
1211
1212static void handleNakedAttr(Sema &S, Decl *D, const AttributeList &Attr) {
1213  // Check the attribute arguments.
1214  if (!checkAttributeNumArgs(S, Attr, 0))
1215    return;
1216
1217  if (!isa<FunctionDecl>(D)) {
1218    S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
1219      << Attr.getName() << ExpectedFunction;
1220    return;
1221  }
1222
1223  D->addAttr(::new (S.Context) NakedAttr(Attr.getRange(), S.Context));
1224}
1225
1226static void handleAlwaysInlineAttr(Sema &S, Decl *D,
1227                                   const AttributeList &Attr) {
1228  // Check the attribute arguments.
1229  if (Attr.hasParameterOrArguments()) {
1230    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 0;
1231    return;
1232  }
1233
1234  if (!isa<FunctionDecl>(D)) {
1235    S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
1236      << Attr.getName() << ExpectedFunction;
1237    return;
1238  }
1239
1240  D->addAttr(::new (S.Context) AlwaysInlineAttr(Attr.getRange(), S.Context));
1241}
1242
1243static void handleMallocAttr(Sema &S, Decl *D, const AttributeList &Attr) {
1244  // Check the attribute arguments.
1245  if (Attr.hasParameterOrArguments()) {
1246    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 0;
1247    return;
1248  }
1249
1250  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1251    QualType RetTy = FD->getResultType();
1252    if (RetTy->isAnyPointerType() || RetTy->isBlockPointerType()) {
1253      D->addAttr(::new (S.Context) MallocAttr(Attr.getRange(), S.Context));
1254      return;
1255    }
1256  }
1257
1258  S.Diag(Attr.getLoc(), diag::warn_attribute_malloc_pointer_only);
1259}
1260
1261static void handleMayAliasAttr(Sema &S, Decl *D, const AttributeList &Attr) {
1262  // check the attribute arguments.
1263  if (!checkAttributeNumArgs(S, Attr, 0))
1264    return;
1265
1266  D->addAttr(::new (S.Context) MayAliasAttr(Attr.getRange(), S.Context));
1267}
1268
1269static void handleNoCommonAttr(Sema &S, Decl *D, const AttributeList &Attr) {
1270  assert(!Attr.isInvalid());
1271  if (isa<VarDecl>(D))
1272    D->addAttr(::new (S.Context) NoCommonAttr(Attr.getRange(), S.Context));
1273  else
1274    S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
1275      << Attr.getName() << ExpectedVariable;
1276}
1277
1278static void handleCommonAttr(Sema &S, Decl *D, const AttributeList &Attr) {
1279  assert(!Attr.isInvalid());
1280  if (isa<VarDecl>(D))
1281    D->addAttr(::new (S.Context) CommonAttr(Attr.getRange(), S.Context));
1282  else
1283    S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
1284      << Attr.getName() << ExpectedVariable;
1285}
1286
1287static void handleNoReturnAttr(Sema &S, Decl *D, const AttributeList &attr) {
1288  if (hasDeclarator(D)) return;
1289
1290  if (S.CheckNoReturnAttr(attr)) return;
1291
1292  if (!isa<ObjCMethodDecl>(D)) {
1293    S.Diag(attr.getLoc(), diag::warn_attribute_wrong_decl_type)
1294      << attr.getName() << ExpectedFunctionOrMethod;
1295    return;
1296  }
1297
1298  D->addAttr(::new (S.Context) NoReturnAttr(attr.getRange(), S.Context));
1299}
1300
1301bool Sema::CheckNoReturnAttr(const AttributeList &attr) {
1302  if (attr.hasParameterOrArguments()) {
1303    Diag(attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 0;
1304    attr.setInvalid();
1305    return true;
1306  }
1307
1308  return false;
1309}
1310
1311static void handleAnalyzerNoReturnAttr(Sema &S, Decl *D,
1312                                       const AttributeList &Attr) {
1313
1314  // The checking path for 'noreturn' and 'analyzer_noreturn' are different
1315  // because 'analyzer_noreturn' does not impact the type.
1316
1317  if(!checkAttributeNumArgs(S, Attr, 0))
1318      return;
1319
1320  if (!isFunctionOrMethod(D) && !isa<BlockDecl>(D)) {
1321    ValueDecl *VD = dyn_cast<ValueDecl>(D);
1322    if (VD == 0 || (!VD->getType()->isBlockPointerType()
1323                    && !VD->getType()->isFunctionPointerType())) {
1324      S.Diag(Attr.getLoc(),
1325             Attr.isCXX0XAttribute() ? diag::err_attribute_wrong_decl_type
1326             : diag::warn_attribute_wrong_decl_type)
1327        << Attr.getName() << ExpectedFunctionMethodOrBlock;
1328      return;
1329    }
1330  }
1331
1332  D->addAttr(::new (S.Context) AnalyzerNoReturnAttr(Attr.getRange(), S.Context));
1333}
1334
1335// PS3 PPU-specific.
1336static void handleVecReturnAttr(Sema &S, Decl *D, const AttributeList &Attr) {
1337/*
1338  Returning a Vector Class in Registers
1339
1340  According to the PPU ABI specifications, a class with a single member of
1341  vector type is returned in memory when used as the return value of a function.
1342  This results in inefficient code when implementing vector classes. To return
1343  the value in a single vector register, add the vecreturn attribute to the
1344  class definition. This attribute is also applicable to struct types.
1345
1346  Example:
1347
1348  struct Vector
1349  {
1350    __vector float xyzw;
1351  } __attribute__((vecreturn));
1352
1353  Vector Add(Vector lhs, Vector rhs)
1354  {
1355    Vector result;
1356    result.xyzw = vec_add(lhs.xyzw, rhs.xyzw);
1357    return result; // This will be returned in a register
1358  }
1359*/
1360  if (!isa<RecordDecl>(D)) {
1361    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_decl_type)
1362      << Attr.getName() << ExpectedClass;
1363    return;
1364  }
1365
1366  if (D->getAttr<VecReturnAttr>()) {
1367    S.Diag(Attr.getLoc(), diag::err_repeat_attribute) << "vecreturn";
1368    return;
1369  }
1370
1371  RecordDecl *record = cast<RecordDecl>(D);
1372  int count = 0;
1373
1374  if (!isa<CXXRecordDecl>(record)) {
1375    S.Diag(Attr.getLoc(), diag::err_attribute_vecreturn_only_vector_member);
1376    return;
1377  }
1378
1379  if (!cast<CXXRecordDecl>(record)->isPOD()) {
1380    S.Diag(Attr.getLoc(), diag::err_attribute_vecreturn_only_pod_record);
1381    return;
1382  }
1383
1384  for (RecordDecl::field_iterator iter = record->field_begin();
1385       iter != record->field_end(); iter++) {
1386    if ((count == 1) || !iter->getType()->isVectorType()) {
1387      S.Diag(Attr.getLoc(), diag::err_attribute_vecreturn_only_vector_member);
1388      return;
1389    }
1390    count++;
1391  }
1392
1393  D->addAttr(::new (S.Context) VecReturnAttr(Attr.getRange(), S.Context));
1394}
1395
1396static void handleDependencyAttr(Sema &S, Decl *D, const AttributeList &Attr) {
1397  if (!isFunctionOrMethod(D) && !isa<ParmVarDecl>(D)) {
1398    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_decl_type)
1399      << Attr.getName() << ExpectedFunctionMethodOrParameter;
1400    return;
1401  }
1402  // FIXME: Actually store the attribute on the declaration
1403}
1404
1405static void handleUnusedAttr(Sema &S, Decl *D, const AttributeList &Attr) {
1406  // check the attribute arguments.
1407  if (Attr.hasParameterOrArguments()) {
1408    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 0;
1409    return;
1410  }
1411
1412  if (!isa<VarDecl>(D) && !isa<ObjCIvarDecl>(D) && !isFunctionOrMethod(D) &&
1413      !isa<TypeDecl>(D) && !isa<LabelDecl>(D)) {
1414    S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
1415      << Attr.getName() << ExpectedVariableFunctionOrLabel;
1416    return;
1417  }
1418
1419  D->addAttr(::new (S.Context) UnusedAttr(Attr.getRange(), S.Context));
1420}
1421
1422static void handleUsedAttr(Sema &S, Decl *D, const AttributeList &Attr) {
1423  // check the attribute arguments.
1424  if (Attr.hasParameterOrArguments()) {
1425    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 0;
1426    return;
1427  }
1428
1429  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1430    if (VD->hasLocalStorage() || VD->hasExternalStorage()) {
1431      S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << "used";
1432      return;
1433    }
1434  } else if (!isFunctionOrMethod(D)) {
1435    S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
1436      << Attr.getName() << ExpectedVariableOrFunction;
1437    return;
1438  }
1439
1440  D->addAttr(::new (S.Context) UsedAttr(Attr.getRange(), S.Context));
1441}
1442
1443static void handleConstructorAttr(Sema &S, Decl *D, const AttributeList &Attr) {
1444  // check the attribute arguments.
1445  if (Attr.getNumArgs() > 1) {
1446    S.Diag(Attr.getLoc(), diag::err_attribute_too_many_arguments) << 1;
1447    return;
1448  }
1449
1450  int priority = 65535; // FIXME: Do not hardcode such constants.
1451  if (Attr.getNumArgs() > 0) {
1452    Expr *E = Attr.getArg(0);
1453    llvm::APSInt Idx(32);
1454    if (E->isTypeDependent() || E->isValueDependent() ||
1455        !E->isIntegerConstantExpr(Idx, S.Context)) {
1456      S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_int)
1457        << "constructor" << 1 << E->getSourceRange();
1458      return;
1459    }
1460    priority = Idx.getZExtValue();
1461  }
1462
1463  if (!isa<FunctionDecl>(D)) {
1464    S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
1465      << Attr.getName() << ExpectedFunction;
1466    return;
1467  }
1468
1469  D->addAttr(::new (S.Context) ConstructorAttr(Attr.getRange(), S.Context,
1470                                               priority));
1471}
1472
1473static void handleDestructorAttr(Sema &S, Decl *D, const AttributeList &Attr) {
1474  // check the attribute arguments.
1475  if (Attr.getNumArgs() > 1) {
1476    S.Diag(Attr.getLoc(), diag::err_attribute_too_many_arguments) << 1;
1477    return;
1478  }
1479
1480  int priority = 65535; // FIXME: Do not hardcode such constants.
1481  if (Attr.getNumArgs() > 0) {
1482    Expr *E = Attr.getArg(0);
1483    llvm::APSInt Idx(32);
1484    if (E->isTypeDependent() || E->isValueDependent() ||
1485        !E->isIntegerConstantExpr(Idx, S.Context)) {
1486      S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_int)
1487        << "destructor" << 1 << E->getSourceRange();
1488      return;
1489    }
1490    priority = Idx.getZExtValue();
1491  }
1492
1493  if (!isa<FunctionDecl>(D)) {
1494    S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
1495      << Attr.getName() << ExpectedFunction;
1496    return;
1497  }
1498
1499  D->addAttr(::new (S.Context) DestructorAttr(Attr.getRange(), S.Context,
1500                                              priority));
1501}
1502
1503static void handleDeprecatedAttr(Sema &S, Decl *D, const AttributeList &Attr) {
1504  unsigned NumArgs = Attr.getNumArgs();
1505  if (NumArgs > 1) {
1506    S.Diag(Attr.getLoc(), diag::err_attribute_too_many_arguments) << 1;
1507    return;
1508  }
1509
1510  // Handle the case where deprecated attribute has a text message.
1511  StringRef Str;
1512  if (NumArgs == 1) {
1513    StringLiteral *SE = dyn_cast<StringLiteral>(Attr.getArg(0));
1514    if (!SE) {
1515      S.Diag(Attr.getArg(0)->getLocStart(), diag::err_attribute_not_string)
1516        << "deprecated";
1517      return;
1518    }
1519    Str = SE->getString();
1520  }
1521
1522  D->addAttr(::new (S.Context) DeprecatedAttr(Attr.getRange(), S.Context, Str));
1523}
1524
1525static void handleUnavailableAttr(Sema &S, Decl *D, const AttributeList &Attr) {
1526  unsigned NumArgs = Attr.getNumArgs();
1527  if (NumArgs > 1) {
1528    S.Diag(Attr.getLoc(), diag::err_attribute_too_many_arguments) << 1;
1529    return;
1530  }
1531
1532  // Handle the case where unavailable attribute has a text message.
1533  StringRef Str;
1534  if (NumArgs == 1) {
1535    StringLiteral *SE = dyn_cast<StringLiteral>(Attr.getArg(0));
1536    if (!SE) {
1537      S.Diag(Attr.getArg(0)->getLocStart(),
1538             diag::err_attribute_not_string) << "unavailable";
1539      return;
1540    }
1541    Str = SE->getString();
1542  }
1543  D->addAttr(::new (S.Context) UnavailableAttr(Attr.getRange(), S.Context, Str));
1544}
1545
1546static void handleArcWeakrefUnavailableAttr(Sema &S, Decl *D,
1547                                            const AttributeList &Attr) {
1548  unsigned NumArgs = Attr.getNumArgs();
1549  if (NumArgs > 0) {
1550    S.Diag(Attr.getLoc(), diag::err_attribute_too_many_arguments) << 0;
1551    return;
1552  }
1553
1554  D->addAttr(::new (S.Context) ArcWeakrefUnavailableAttr(
1555                                          Attr.getRange(), S.Context));
1556}
1557
1558static void handleAvailabilityAttr(Sema &S, Decl *D,
1559                                   const AttributeList &Attr) {
1560  IdentifierInfo *Platform = Attr.getParameterName();
1561  SourceLocation PlatformLoc = Attr.getParameterLoc();
1562
1563  StringRef PlatformName
1564    = AvailabilityAttr::getPrettyPlatformName(Platform->getName());
1565  if (PlatformName.empty()) {
1566    S.Diag(PlatformLoc, diag::warn_availability_unknown_platform)
1567      << Platform;
1568
1569    PlatformName = Platform->getName();
1570  }
1571
1572  AvailabilityChange Introduced = Attr.getAvailabilityIntroduced();
1573  AvailabilityChange Deprecated = Attr.getAvailabilityDeprecated();
1574  AvailabilityChange Obsoleted = Attr.getAvailabilityObsoleted();
1575  bool IsUnavailable = Attr.getUnavailableLoc().isValid();
1576
1577  // Ensure that Introduced <= Deprecated <= Obsoleted (although not all
1578  // of these steps are needed).
1579  if (Introduced.isValid() && Deprecated.isValid() &&
1580      !(Introduced.Version <= Deprecated.Version)) {
1581    S.Diag(Introduced.KeywordLoc, diag::warn_availability_version_ordering)
1582      << 1 << PlatformName << Deprecated.Version.getAsString()
1583      << 0 << Introduced.Version.getAsString();
1584    return;
1585  }
1586
1587  if (Introduced.isValid() && Obsoleted.isValid() &&
1588      !(Introduced.Version <= Obsoleted.Version)) {
1589    S.Diag(Introduced.KeywordLoc, diag::warn_availability_version_ordering)
1590      << 2 << PlatformName << Obsoleted.Version.getAsString()
1591      << 0 << Introduced.Version.getAsString();
1592    return;
1593  }
1594
1595  if (Deprecated.isValid() && Obsoleted.isValid() &&
1596      !(Deprecated.Version <= Obsoleted.Version)) {
1597    S.Diag(Deprecated.KeywordLoc, diag::warn_availability_version_ordering)
1598      << 2 << PlatformName << Obsoleted.Version.getAsString()
1599      << 1 << Deprecated.Version.getAsString();
1600    return;
1601  }
1602
1603  D->addAttr(::new (S.Context) AvailabilityAttr(Attr.getRange(), S.Context,
1604                                                Platform,
1605                                                Introduced.Version,
1606                                                Deprecated.Version,
1607                                                Obsoleted.Version,
1608                                                IsUnavailable));
1609}
1610
1611static void handleVisibilityAttr(Sema &S, Decl *D, const AttributeList &Attr) {
1612  // check the attribute arguments.
1613  if(!checkAttributeNumArgs(S, Attr, 1))
1614    return;
1615
1616  Expr *Arg = Attr.getArg(0);
1617  Arg = Arg->IgnoreParenCasts();
1618  StringLiteral *Str = dyn_cast<StringLiteral>(Arg);
1619
1620  if (!Str || !Str->isAscii()) {
1621    S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_string)
1622      << "visibility" << 1;
1623    return;
1624  }
1625
1626  StringRef TypeStr = Str->getString();
1627  VisibilityAttr::VisibilityType type;
1628
1629  if (TypeStr == "default")
1630    type = VisibilityAttr::Default;
1631  else if (TypeStr == "hidden")
1632    type = VisibilityAttr::Hidden;
1633  else if (TypeStr == "internal")
1634    type = VisibilityAttr::Hidden; // FIXME
1635  else if (TypeStr == "protected")
1636    type = VisibilityAttr::Protected;
1637  else {
1638    S.Diag(Attr.getLoc(), diag::warn_attribute_unknown_visibility) << TypeStr;
1639    return;
1640  }
1641
1642  D->addAttr(::new (S.Context) VisibilityAttr(Attr.getRange(), S.Context, type));
1643}
1644
1645static void handleObjCMethodFamilyAttr(Sema &S, Decl *decl,
1646                                       const AttributeList &Attr) {
1647  ObjCMethodDecl *method = dyn_cast<ObjCMethodDecl>(decl);
1648  if (!method) {
1649    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_decl_type)
1650      << ExpectedMethod;
1651    return;
1652  }
1653
1654  if (Attr.getNumArgs() != 0 || !Attr.getParameterName()) {
1655    if (!Attr.getParameterName() && Attr.getNumArgs() == 1) {
1656      S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_string)
1657        << "objc_method_family" << 1;
1658    } else {
1659      S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 0;
1660    }
1661    Attr.setInvalid();
1662    return;
1663  }
1664
1665  StringRef param = Attr.getParameterName()->getName();
1666  ObjCMethodFamilyAttr::FamilyKind family;
1667  if (param == "none")
1668    family = ObjCMethodFamilyAttr::OMF_None;
1669  else if (param == "alloc")
1670    family = ObjCMethodFamilyAttr::OMF_alloc;
1671  else if (param == "copy")
1672    family = ObjCMethodFamilyAttr::OMF_copy;
1673  else if (param == "init")
1674    family = ObjCMethodFamilyAttr::OMF_init;
1675  else if (param == "mutableCopy")
1676    family = ObjCMethodFamilyAttr::OMF_mutableCopy;
1677  else if (param == "new")
1678    family = ObjCMethodFamilyAttr::OMF_new;
1679  else {
1680    // Just warn and ignore it.  This is future-proof against new
1681    // families being used in system headers.
1682    S.Diag(Attr.getParameterLoc(), diag::warn_unknown_method_family);
1683    return;
1684  }
1685
1686  if (family == ObjCMethodFamilyAttr::OMF_init &&
1687      !method->getResultType()->isObjCObjectPointerType()) {
1688    S.Diag(method->getLocation(), diag::err_init_method_bad_return_type)
1689      << method->getResultType();
1690    // Ignore the attribute.
1691    return;
1692  }
1693
1694  method->addAttr(new (S.Context) ObjCMethodFamilyAttr(Attr.getRange(),
1695                                                       S.Context, family));
1696}
1697
1698static void handleObjCExceptionAttr(Sema &S, Decl *D,
1699                                    const AttributeList &Attr) {
1700  if (!checkAttributeNumArgs(S, Attr, 0))
1701    return;
1702
1703  ObjCInterfaceDecl *OCI = dyn_cast<ObjCInterfaceDecl>(D);
1704  if (OCI == 0) {
1705    S.Diag(Attr.getLoc(), diag::err_attribute_requires_objc_interface);
1706    return;
1707  }
1708
1709  D->addAttr(::new (S.Context) ObjCExceptionAttr(Attr.getRange(), S.Context));
1710}
1711
1712static void handleObjCNSObject(Sema &S, Decl *D, const AttributeList &Attr) {
1713  if (Attr.getNumArgs() != 0) {
1714    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
1715    return;
1716  }
1717  if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(D)) {
1718    QualType T = TD->getUnderlyingType();
1719    if (!T->isPointerType() ||
1720        !T->getAs<PointerType>()->getPointeeType()->isRecordType()) {
1721      S.Diag(TD->getLocation(), diag::err_nsobject_attribute);
1722      return;
1723    }
1724  }
1725  D->addAttr(::new (S.Context) ObjCNSObjectAttr(Attr.getRange(), S.Context));
1726}
1727
1728static void
1729handleOverloadableAttr(Sema &S, Decl *D, const AttributeList &Attr) {
1730  if (Attr.getNumArgs() != 0) {
1731    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
1732    return;
1733  }
1734
1735  if (!isa<FunctionDecl>(D)) {
1736    S.Diag(Attr.getLoc(), diag::err_attribute_overloadable_not_function);
1737    return;
1738  }
1739
1740  D->addAttr(::new (S.Context) OverloadableAttr(Attr.getRange(), S.Context));
1741}
1742
1743static void handleBlocksAttr(Sema &S, Decl *D, const AttributeList &Attr) {
1744  if (!Attr.getParameterName()) {
1745    S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_string)
1746      << "blocks" << 1;
1747    return;
1748  }
1749
1750  if (Attr.getNumArgs() != 0) {
1751    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
1752    return;
1753  }
1754
1755  BlocksAttr::BlockType type;
1756  if (Attr.getParameterName()->isStr("byref"))
1757    type = BlocksAttr::ByRef;
1758  else {
1759    S.Diag(Attr.getLoc(), diag::warn_attribute_type_not_supported)
1760      << "blocks" << Attr.getParameterName();
1761    return;
1762  }
1763
1764  D->addAttr(::new (S.Context) BlocksAttr(Attr.getRange(), S.Context, type));
1765}
1766
1767static void handleSentinelAttr(Sema &S, Decl *D, const AttributeList &Attr) {
1768  // check the attribute arguments.
1769  if (Attr.getNumArgs() > 2) {
1770    S.Diag(Attr.getLoc(), diag::err_attribute_too_many_arguments) << 2;
1771    return;
1772  }
1773
1774  unsigned sentinel = 0;
1775  if (Attr.getNumArgs() > 0) {
1776    Expr *E = Attr.getArg(0);
1777    llvm::APSInt Idx(32);
1778    if (E->isTypeDependent() || E->isValueDependent() ||
1779        !E->isIntegerConstantExpr(Idx, S.Context)) {
1780      S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_int)
1781       << "sentinel" << 1 << E->getSourceRange();
1782      return;
1783    }
1784
1785    if (Idx.isSigned() && Idx.isNegative()) {
1786      S.Diag(Attr.getLoc(), diag::err_attribute_sentinel_less_than_zero)
1787        << E->getSourceRange();
1788      return;
1789    }
1790
1791    sentinel = Idx.getZExtValue();
1792  }
1793
1794  unsigned nullPos = 0;
1795  if (Attr.getNumArgs() > 1) {
1796    Expr *E = Attr.getArg(1);
1797    llvm::APSInt Idx(32);
1798    if (E->isTypeDependent() || E->isValueDependent() ||
1799        !E->isIntegerConstantExpr(Idx, S.Context)) {
1800      S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_int)
1801        << "sentinel" << 2 << E->getSourceRange();
1802      return;
1803    }
1804    nullPos = Idx.getZExtValue();
1805
1806    if ((Idx.isSigned() && Idx.isNegative()) || nullPos > 1) {
1807      // FIXME: This error message could be improved, it would be nice
1808      // to say what the bounds actually are.
1809      S.Diag(Attr.getLoc(), diag::err_attribute_sentinel_not_zero_or_one)
1810        << E->getSourceRange();
1811      return;
1812    }
1813  }
1814
1815  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1816    const FunctionType *FT = FD->getType()->castAs<FunctionType>();
1817    if (isa<FunctionNoProtoType>(FT)) {
1818      S.Diag(Attr.getLoc(), diag::warn_attribute_sentinel_named_arguments);
1819      return;
1820    }
1821
1822    if (!cast<FunctionProtoType>(FT)->isVariadic()) {
1823      S.Diag(Attr.getLoc(), diag::warn_attribute_sentinel_not_variadic) << 0;
1824      return;
1825    }
1826  } else if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
1827    if (!MD->isVariadic()) {
1828      S.Diag(Attr.getLoc(), diag::warn_attribute_sentinel_not_variadic) << 0;
1829      return;
1830    }
1831  } else if (isa<BlockDecl>(D)) {
1832    // Note! BlockDecl is typeless. Variadic diagnostics will be issued by the
1833    // caller.
1834    ;
1835  } else if (const VarDecl *V = dyn_cast<VarDecl>(D)) {
1836    QualType Ty = V->getType();
1837    if (Ty->isBlockPointerType() || Ty->isFunctionPointerType()) {
1838      const FunctionType *FT = Ty->isFunctionPointerType() ? getFunctionType(D)
1839       : Ty->getAs<BlockPointerType>()->getPointeeType()->getAs<FunctionType>();
1840      if (!cast<FunctionProtoType>(FT)->isVariadic()) {
1841        int m = Ty->isFunctionPointerType() ? 0 : 1;
1842        S.Diag(Attr.getLoc(), diag::warn_attribute_sentinel_not_variadic) << m;
1843        return;
1844      }
1845    } else {
1846      S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
1847        << Attr.getName() << ExpectedFunctionMethodOrBlock;
1848      return;
1849    }
1850  } else {
1851    S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
1852      << Attr.getName() << ExpectedFunctionMethodOrBlock;
1853    return;
1854  }
1855  D->addAttr(::new (S.Context) SentinelAttr(Attr.getRange(), S.Context, sentinel,
1856                                            nullPos));
1857}
1858
1859static void handleWarnUnusedResult(Sema &S, Decl *D, const AttributeList &Attr) {
1860  // check the attribute arguments.
1861  if (!checkAttributeNumArgs(S, Attr, 0))
1862    return;
1863
1864  if (!isFunction(D) && !isa<ObjCMethodDecl>(D)) {
1865    S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
1866      << Attr.getName() << ExpectedFunctionOrMethod;
1867    return;
1868  }
1869
1870  if (isFunction(D) && getFunctionType(D)->getResultType()->isVoidType()) {
1871    S.Diag(Attr.getLoc(), diag::warn_attribute_void_function_method)
1872      << Attr.getName() << 0;
1873    return;
1874  }
1875  if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D))
1876    if (MD->getResultType()->isVoidType()) {
1877      S.Diag(Attr.getLoc(), diag::warn_attribute_void_function_method)
1878      << Attr.getName() << 1;
1879      return;
1880    }
1881
1882  D->addAttr(::new (S.Context) WarnUnusedResultAttr(Attr.getRange(), S.Context));
1883}
1884
1885static void handleWeakAttr(Sema &S, Decl *D, const AttributeList &Attr) {
1886  // check the attribute arguments.
1887  if (Attr.hasParameterOrArguments()) {
1888    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 0;
1889    return;
1890  }
1891
1892  if (!isa<VarDecl>(D) && !isa<FunctionDecl>(D)) {
1893    S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
1894      << Attr.getName() << ExpectedVariableOrFunction;
1895    return;
1896  }
1897
1898  NamedDecl *nd = cast<NamedDecl>(D);
1899
1900  // 'weak' only applies to declarations with external linkage.
1901  if (hasEffectivelyInternalLinkage(nd)) {
1902    S.Diag(Attr.getLoc(), diag::err_attribute_weak_static);
1903    return;
1904  }
1905
1906  nd->addAttr(::new (S.Context) WeakAttr(Attr.getRange(), S.Context));
1907}
1908
1909static void handleWeakImportAttr(Sema &S, Decl *D, const AttributeList &Attr) {
1910  // check the attribute arguments.
1911  if (!checkAttributeNumArgs(S, Attr, 0))
1912    return;
1913
1914
1915  // weak_import only applies to variable & function declarations.
1916  bool isDef = false;
1917  if (!D->canBeWeakImported(isDef)) {
1918    if (isDef)
1919      S.Diag(Attr.getLoc(),
1920             diag::warn_attribute_weak_import_invalid_on_definition)
1921        << "weak_import" << 2 /*variable and function*/;
1922    else if (isa<ObjCPropertyDecl>(D) || isa<ObjCMethodDecl>(D) ||
1923             (S.Context.getTargetInfo().getTriple().isOSDarwin() &&
1924              isa<ObjCInterfaceDecl>(D))) {
1925      // Nothing to warn about here.
1926    } else
1927      S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
1928        << Attr.getName() << ExpectedVariableOrFunction;
1929
1930    return;
1931  }
1932
1933  D->addAttr(::new (S.Context) WeakImportAttr(Attr.getRange(), S.Context));
1934}
1935
1936static void handleReqdWorkGroupSize(Sema &S, Decl *D,
1937                                    const AttributeList &Attr) {
1938  // Attribute has 3 arguments.
1939  if (!checkAttributeNumArgs(S, Attr, 3))
1940    return;
1941
1942  unsigned WGSize[3];
1943  for (unsigned i = 0; i < 3; ++i) {
1944    Expr *E = Attr.getArg(i);
1945    llvm::APSInt ArgNum(32);
1946    if (E->isTypeDependent() || E->isValueDependent() ||
1947        !E->isIntegerConstantExpr(ArgNum, S.Context)) {
1948      S.Diag(Attr.getLoc(), diag::err_attribute_argument_not_int)
1949        << "reqd_work_group_size" << E->getSourceRange();
1950      return;
1951    }
1952    WGSize[i] = (unsigned) ArgNum.getZExtValue();
1953  }
1954  D->addAttr(::new (S.Context) ReqdWorkGroupSizeAttr(Attr.getRange(), S.Context,
1955                                                     WGSize[0], WGSize[1],
1956                                                     WGSize[2]));
1957}
1958
1959static void handleSectionAttr(Sema &S, Decl *D, const AttributeList &Attr) {
1960  // Attribute has no arguments.
1961  if (!checkAttributeNumArgs(S, Attr, 1))
1962    return;
1963
1964  // Make sure that there is a string literal as the sections's single
1965  // argument.
1966  Expr *ArgExpr = Attr.getArg(0);
1967  StringLiteral *SE = dyn_cast<StringLiteral>(ArgExpr);
1968  if (!SE) {
1969    S.Diag(ArgExpr->getLocStart(), diag::err_attribute_not_string) << "section";
1970    return;
1971  }
1972
1973  // If the target wants to validate the section specifier, make it happen.
1974  std::string Error = S.Context.getTargetInfo().isValidSectionSpecifier(SE->getString());
1975  if (!Error.empty()) {
1976    S.Diag(SE->getLocStart(), diag::err_attribute_section_invalid_for_target)
1977    << Error;
1978    return;
1979  }
1980
1981  // This attribute cannot be applied to local variables.
1982  if (isa<VarDecl>(D) && cast<VarDecl>(D)->hasLocalStorage()) {
1983    S.Diag(SE->getLocStart(), diag::err_attribute_section_local_variable);
1984    return;
1985  }
1986
1987  D->addAttr(::new (S.Context) SectionAttr(Attr.getRange(), S.Context,
1988                                           SE->getString()));
1989}
1990
1991
1992static void handleNothrowAttr(Sema &S, Decl *D, const AttributeList &Attr) {
1993  // check the attribute arguments.
1994  if (Attr.hasParameterOrArguments()) {
1995    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 0;
1996    return;
1997  }
1998
1999  if (NoThrowAttr *Existing = D->getAttr<NoThrowAttr>()) {
2000    if (Existing->getLocation().isInvalid())
2001      Existing->setRange(Attr.getRange());
2002  } else {
2003    D->addAttr(::new (S.Context) NoThrowAttr(Attr.getRange(), S.Context));
2004  }
2005}
2006
2007static void handleConstAttr(Sema &S, Decl *D, const AttributeList &Attr) {
2008  // check the attribute arguments.
2009  if (Attr.hasParameterOrArguments()) {
2010    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 0;
2011    return;
2012  }
2013
2014  if (ConstAttr *Existing = D->getAttr<ConstAttr>()) {
2015   if (Existing->getLocation().isInvalid())
2016     Existing->setRange(Attr.getRange());
2017  } else {
2018    D->addAttr(::new (S.Context) ConstAttr(Attr.getRange(), S.Context));
2019  }
2020}
2021
2022static void handlePureAttr(Sema &S, Decl *D, const AttributeList &Attr) {
2023  // check the attribute arguments.
2024  if (!checkAttributeNumArgs(S, Attr, 0))
2025    return;
2026
2027  D->addAttr(::new (S.Context) PureAttr(Attr.getRange(), S.Context));
2028}
2029
2030static void handleCleanupAttr(Sema &S, Decl *D, const AttributeList &Attr) {
2031  if (!Attr.getParameterName()) {
2032    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
2033    return;
2034  }
2035
2036  if (Attr.getNumArgs() != 0) {
2037    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
2038    return;
2039  }
2040
2041  VarDecl *VD = dyn_cast<VarDecl>(D);
2042
2043  if (!VD || !VD->hasLocalStorage()) {
2044    S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << "cleanup";
2045    return;
2046  }
2047
2048  // Look up the function
2049  // FIXME: Lookup probably isn't looking in the right place
2050  NamedDecl *CleanupDecl
2051    = S.LookupSingleName(S.TUScope, Attr.getParameterName(),
2052                         Attr.getParameterLoc(), Sema::LookupOrdinaryName);
2053  if (!CleanupDecl) {
2054    S.Diag(Attr.getParameterLoc(), diag::err_attribute_cleanup_arg_not_found) <<
2055      Attr.getParameterName();
2056    return;
2057  }
2058
2059  FunctionDecl *FD = dyn_cast<FunctionDecl>(CleanupDecl);
2060  if (!FD) {
2061    S.Diag(Attr.getParameterLoc(),
2062           diag::err_attribute_cleanup_arg_not_function)
2063      << Attr.getParameterName();
2064    return;
2065  }
2066
2067  if (FD->getNumParams() != 1) {
2068    S.Diag(Attr.getParameterLoc(),
2069           diag::err_attribute_cleanup_func_must_take_one_arg)
2070      << Attr.getParameterName();
2071    return;
2072  }
2073
2074  // We're currently more strict than GCC about what function types we accept.
2075  // If this ever proves to be a problem it should be easy to fix.
2076  QualType Ty = S.Context.getPointerType(VD->getType());
2077  QualType ParamTy = FD->getParamDecl(0)->getType();
2078  if (S.CheckAssignmentConstraints(FD->getParamDecl(0)->getLocation(),
2079                                   ParamTy, Ty) != Sema::Compatible) {
2080    S.Diag(Attr.getParameterLoc(),
2081           diag::err_attribute_cleanup_func_arg_incompatible_type) <<
2082      Attr.getParameterName() << ParamTy << Ty;
2083    return;
2084  }
2085
2086  D->addAttr(::new (S.Context) CleanupAttr(Attr.getRange(), S.Context, FD));
2087  S.MarkDeclarationReferenced(Attr.getParameterLoc(), FD);
2088}
2089
2090/// Handle __attribute__((format_arg((idx)))) attribute based on
2091/// http://gcc.gnu.org/onlinedocs/gcc/Function-Attributes.html
2092static void handleFormatArgAttr(Sema &S, Decl *D, const AttributeList &Attr) {
2093  if (!checkAttributeNumArgs(S, Attr, 1))
2094    return;
2095
2096  if (!isFunctionOrMethod(D) || !hasFunctionProto(D)) {
2097    S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
2098      << Attr.getName() << ExpectedFunction;
2099    return;
2100  }
2101
2102  // In C++ the implicit 'this' function parameter also counts, and they are
2103  // counted from one.
2104  bool HasImplicitThisParam = isInstanceMethod(D);
2105  unsigned NumArgs  = getFunctionOrMethodNumArgs(D) + HasImplicitThisParam;
2106  unsigned FirstIdx = 1;
2107
2108  // checks for the 2nd argument
2109  Expr *IdxExpr = Attr.getArg(0);
2110  llvm::APSInt Idx(32);
2111  if (IdxExpr->isTypeDependent() || IdxExpr->isValueDependent() ||
2112      !IdxExpr->isIntegerConstantExpr(Idx, S.Context)) {
2113    S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_int)
2114    << "format" << 2 << IdxExpr->getSourceRange();
2115    return;
2116  }
2117
2118  if (Idx.getZExtValue() < FirstIdx || Idx.getZExtValue() > NumArgs) {
2119    S.Diag(Attr.getLoc(), diag::err_attribute_argument_out_of_bounds)
2120    << "format" << 2 << IdxExpr->getSourceRange();
2121    return;
2122  }
2123
2124  unsigned ArgIdx = Idx.getZExtValue() - 1;
2125
2126  if (HasImplicitThisParam) {
2127    if (ArgIdx == 0) {
2128      S.Diag(Attr.getLoc(), diag::err_attribute_invalid_implicit_this_argument)
2129        << "format_arg" << IdxExpr->getSourceRange();
2130      return;
2131    }
2132    ArgIdx--;
2133  }
2134
2135  // make sure the format string is really a string
2136  QualType Ty = getFunctionOrMethodArgType(D, ArgIdx);
2137
2138  bool not_nsstring_type = !isNSStringType(Ty, S.Context);
2139  if (not_nsstring_type &&
2140      !isCFStringType(Ty, S.Context) &&
2141      (!Ty->isPointerType() ||
2142       !Ty->getAs<PointerType>()->getPointeeType()->isCharType())) {
2143    // FIXME: Should highlight the actual expression that has the wrong type.
2144    S.Diag(Attr.getLoc(), diag::err_format_attribute_not)
2145    << (not_nsstring_type ? "a string type" : "an NSString")
2146       << IdxExpr->getSourceRange();
2147    return;
2148  }
2149  Ty = getFunctionOrMethodResultType(D);
2150  if (!isNSStringType(Ty, S.Context) &&
2151      !isCFStringType(Ty, S.Context) &&
2152      (!Ty->isPointerType() ||
2153       !Ty->getAs<PointerType>()->getPointeeType()->isCharType())) {
2154    // FIXME: Should highlight the actual expression that has the wrong type.
2155    S.Diag(Attr.getLoc(), diag::err_format_attribute_result_not)
2156    << (not_nsstring_type ? "string type" : "NSString")
2157       << IdxExpr->getSourceRange();
2158    return;
2159  }
2160
2161  D->addAttr(::new (S.Context) FormatArgAttr(Attr.getRange(), S.Context,
2162                                             Idx.getZExtValue()));
2163}
2164
2165enum FormatAttrKind {
2166  CFStringFormat,
2167  NSStringFormat,
2168  StrftimeFormat,
2169  SupportedFormat,
2170  IgnoredFormat,
2171  InvalidFormat
2172};
2173
2174/// getFormatAttrKind - Map from format attribute names to supported format
2175/// types.
2176static FormatAttrKind getFormatAttrKind(StringRef Format) {
2177  // Check for formats that get handled specially.
2178  if (Format == "NSString")
2179    return NSStringFormat;
2180  if (Format == "CFString")
2181    return CFStringFormat;
2182  if (Format == "strftime")
2183    return StrftimeFormat;
2184
2185  // Otherwise, check for supported formats.
2186  if (Format == "scanf" || Format == "printf" || Format == "printf0" ||
2187      Format == "strfmon" || Format == "cmn_err" || Format == "strftime" ||
2188      Format == "NSString" || Format == "CFString" || Format == "vcmn_err" ||
2189      Format == "zcmn_err" ||
2190      Format == "kprintf")  // OpenBSD.
2191    return SupportedFormat;
2192
2193  if (Format == "gcc_diag" || Format == "gcc_cdiag" ||
2194      Format == "gcc_cxxdiag" || Format == "gcc_tdiag")
2195    return IgnoredFormat;
2196
2197  return InvalidFormat;
2198}
2199
2200/// Handle __attribute__((init_priority(priority))) attributes based on
2201/// http://gcc.gnu.org/onlinedocs/gcc/C_002b_002b-Attributes.html
2202static void handleInitPriorityAttr(Sema &S, Decl *D,
2203                                   const AttributeList &Attr) {
2204  if (!S.getLangOptions().CPlusPlus) {
2205    S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << Attr.getName();
2206    return;
2207  }
2208
2209  if (!isa<VarDecl>(D) || S.getCurFunctionOrMethodDecl()) {
2210    S.Diag(Attr.getLoc(), diag::err_init_priority_object_attr);
2211    Attr.setInvalid();
2212    return;
2213  }
2214  QualType T = dyn_cast<VarDecl>(D)->getType();
2215  if (S.Context.getAsArrayType(T))
2216    T = S.Context.getBaseElementType(T);
2217  if (!T->getAs<RecordType>()) {
2218    S.Diag(Attr.getLoc(), diag::err_init_priority_object_attr);
2219    Attr.setInvalid();
2220    return;
2221  }
2222
2223  if (Attr.getNumArgs() != 1) {
2224    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
2225    Attr.setInvalid();
2226    return;
2227  }
2228  Expr *priorityExpr = Attr.getArg(0);
2229
2230  llvm::APSInt priority(32);
2231  if (priorityExpr->isTypeDependent() || priorityExpr->isValueDependent() ||
2232      !priorityExpr->isIntegerConstantExpr(priority, S.Context)) {
2233    S.Diag(Attr.getLoc(), diag::err_attribute_argument_not_int)
2234    << "init_priority" << priorityExpr->getSourceRange();
2235    Attr.setInvalid();
2236    return;
2237  }
2238  unsigned prioritynum = priority.getZExtValue();
2239  if (prioritynum < 101 || prioritynum > 65535) {
2240    S.Diag(Attr.getLoc(), diag::err_attribute_argument_outof_range)
2241    <<  priorityExpr->getSourceRange();
2242    Attr.setInvalid();
2243    return;
2244  }
2245  D->addAttr(::new (S.Context) InitPriorityAttr(Attr.getRange(), S.Context,
2246                                                prioritynum));
2247}
2248
2249/// Handle __attribute__((format(type,idx,firstarg))) attributes based on
2250/// http://gcc.gnu.org/onlinedocs/gcc/Function-Attributes.html
2251static void handleFormatAttr(Sema &S, Decl *D, const AttributeList &Attr) {
2252
2253  if (!Attr.getParameterName()) {
2254    S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_string)
2255      << "format" << 1;
2256    return;
2257  }
2258
2259  if (Attr.getNumArgs() != 2) {
2260    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 3;
2261    return;
2262  }
2263
2264  if (!isFunctionOrMethodOrBlock(D) || !hasFunctionProto(D)) {
2265    S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
2266      << Attr.getName() << ExpectedFunction;
2267    return;
2268  }
2269
2270  // In C++ the implicit 'this' function parameter also counts, and they are
2271  // counted from one.
2272  bool HasImplicitThisParam = isInstanceMethod(D);
2273  unsigned NumArgs  = getFunctionOrMethodNumArgs(D) + HasImplicitThisParam;
2274  unsigned FirstIdx = 1;
2275
2276  StringRef Format = Attr.getParameterName()->getName();
2277
2278  // Normalize the argument, __foo__ becomes foo.
2279  if (Format.startswith("__") && Format.endswith("__"))
2280    Format = Format.substr(2, Format.size() - 4);
2281
2282  // Check for supported formats.
2283  FormatAttrKind Kind = getFormatAttrKind(Format);
2284
2285  if (Kind == IgnoredFormat)
2286    return;
2287
2288  if (Kind == InvalidFormat) {
2289    S.Diag(Attr.getLoc(), diag::warn_attribute_type_not_supported)
2290      << "format" << Attr.getParameterName()->getName();
2291    return;
2292  }
2293
2294  // checks for the 2nd argument
2295  Expr *IdxExpr = Attr.getArg(0);
2296  llvm::APSInt Idx(32);
2297  if (IdxExpr->isTypeDependent() || IdxExpr->isValueDependent() ||
2298      !IdxExpr->isIntegerConstantExpr(Idx, S.Context)) {
2299    S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_int)
2300      << "format" << 2 << IdxExpr->getSourceRange();
2301    return;
2302  }
2303
2304  if (Idx.getZExtValue() < FirstIdx || Idx.getZExtValue() > NumArgs) {
2305    S.Diag(Attr.getLoc(), diag::err_attribute_argument_out_of_bounds)
2306      << "format" << 2 << IdxExpr->getSourceRange();
2307    return;
2308  }
2309
2310  // FIXME: Do we need to bounds check?
2311  unsigned ArgIdx = Idx.getZExtValue() - 1;
2312
2313  if (HasImplicitThisParam) {
2314    if (ArgIdx == 0) {
2315      S.Diag(Attr.getLoc(),
2316             diag::err_format_attribute_implicit_this_format_string)
2317        << IdxExpr->getSourceRange();
2318      return;
2319    }
2320    ArgIdx--;
2321  }
2322
2323  // make sure the format string is really a string
2324  QualType Ty = getFunctionOrMethodArgType(D, ArgIdx);
2325
2326  if (Kind == CFStringFormat) {
2327    if (!isCFStringType(Ty, S.Context)) {
2328      S.Diag(Attr.getLoc(), diag::err_format_attribute_not)
2329        << "a CFString" << IdxExpr->getSourceRange();
2330      return;
2331    }
2332  } else if (Kind == NSStringFormat) {
2333    // FIXME: do we need to check if the type is NSString*?  What are the
2334    // semantics?
2335    if (!isNSStringType(Ty, S.Context)) {
2336      // FIXME: Should highlight the actual expression that has the wrong type.
2337      S.Diag(Attr.getLoc(), diag::err_format_attribute_not)
2338        << "an NSString" << IdxExpr->getSourceRange();
2339      return;
2340    }
2341  } else if (!Ty->isPointerType() ||
2342             !Ty->getAs<PointerType>()->getPointeeType()->isCharType()) {
2343    // FIXME: Should highlight the actual expression that has the wrong type.
2344    S.Diag(Attr.getLoc(), diag::err_format_attribute_not)
2345      << "a string type" << IdxExpr->getSourceRange();
2346    return;
2347  }
2348
2349  // check the 3rd argument
2350  Expr *FirstArgExpr = Attr.getArg(1);
2351  llvm::APSInt FirstArg(32);
2352  if (FirstArgExpr->isTypeDependent() || FirstArgExpr->isValueDependent() ||
2353      !FirstArgExpr->isIntegerConstantExpr(FirstArg, S.Context)) {
2354    S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_int)
2355      << "format" << 3 << FirstArgExpr->getSourceRange();
2356    return;
2357  }
2358
2359  // check if the function is variadic if the 3rd argument non-zero
2360  if (FirstArg != 0) {
2361    if (isFunctionOrMethodVariadic(D)) {
2362      ++NumArgs; // +1 for ...
2363    } else {
2364      S.Diag(D->getLocation(), diag::err_format_attribute_requires_variadic);
2365      return;
2366    }
2367  }
2368
2369  // strftime requires FirstArg to be 0 because it doesn't read from any
2370  // variable the input is just the current time + the format string.
2371  if (Kind == StrftimeFormat) {
2372    if (FirstArg != 0) {
2373      S.Diag(Attr.getLoc(), diag::err_format_strftime_third_parameter)
2374        << FirstArgExpr->getSourceRange();
2375      return;
2376    }
2377  // if 0 it disables parameter checking (to use with e.g. va_list)
2378  } else if (FirstArg != 0 && FirstArg != NumArgs) {
2379    S.Diag(Attr.getLoc(), diag::err_attribute_argument_out_of_bounds)
2380      << "format" << 3 << FirstArgExpr->getSourceRange();
2381    return;
2382  }
2383
2384  // Check whether we already have an equivalent format attribute.
2385  for (specific_attr_iterator<FormatAttr>
2386         i = D->specific_attr_begin<FormatAttr>(),
2387         e = D->specific_attr_end<FormatAttr>();
2388       i != e ; ++i) {
2389    FormatAttr *f = *i;
2390    if (f->getType() == Format &&
2391        f->getFormatIdx() == (int)Idx.getZExtValue() &&
2392        f->getFirstArg() == (int)FirstArg.getZExtValue()) {
2393      // If we don't have a valid location for this attribute, adopt the
2394      // location.
2395      if (f->getLocation().isInvalid())
2396        f->setRange(Attr.getRange());
2397      return;
2398    }
2399  }
2400
2401  D->addAttr(::new (S.Context) FormatAttr(Attr.getRange(), S.Context, Format,
2402                                          Idx.getZExtValue(),
2403                                          FirstArg.getZExtValue()));
2404}
2405
2406static void handleTransparentUnionAttr(Sema &S, Decl *D,
2407                                       const AttributeList &Attr) {
2408  // check the attribute arguments.
2409  if (!checkAttributeNumArgs(S, Attr, 0))
2410    return;
2411
2412
2413  // Try to find the underlying union declaration.
2414  RecordDecl *RD = 0;
2415  TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(D);
2416  if (TD && TD->getUnderlyingType()->isUnionType())
2417    RD = TD->getUnderlyingType()->getAsUnionType()->getDecl();
2418  else
2419    RD = dyn_cast<RecordDecl>(D);
2420
2421  if (!RD || !RD->isUnion()) {
2422    S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
2423      << Attr.getName() << ExpectedUnion;
2424    return;
2425  }
2426
2427  if (!RD->isDefinition()) {
2428    S.Diag(Attr.getLoc(),
2429        diag::warn_transparent_union_attribute_not_definition);
2430    return;
2431  }
2432
2433  RecordDecl::field_iterator Field = RD->field_begin(),
2434                          FieldEnd = RD->field_end();
2435  if (Field == FieldEnd) {
2436    S.Diag(Attr.getLoc(), diag::warn_transparent_union_attribute_zero_fields);
2437    return;
2438  }
2439
2440  FieldDecl *FirstField = *Field;
2441  QualType FirstType = FirstField->getType();
2442  if (FirstType->hasFloatingRepresentation() || FirstType->isVectorType()) {
2443    S.Diag(FirstField->getLocation(),
2444           diag::warn_transparent_union_attribute_floating)
2445      << FirstType->isVectorType() << FirstType;
2446    return;
2447  }
2448
2449  uint64_t FirstSize = S.Context.getTypeSize(FirstType);
2450  uint64_t FirstAlign = S.Context.getTypeAlign(FirstType);
2451  for (; Field != FieldEnd; ++Field) {
2452    QualType FieldType = Field->getType();
2453    if (S.Context.getTypeSize(FieldType) != FirstSize ||
2454        S.Context.getTypeAlign(FieldType) != FirstAlign) {
2455      // Warn if we drop the attribute.
2456      bool isSize = S.Context.getTypeSize(FieldType) != FirstSize;
2457      unsigned FieldBits = isSize? S.Context.getTypeSize(FieldType)
2458                                 : S.Context.getTypeAlign(FieldType);
2459      S.Diag(Field->getLocation(),
2460          diag::warn_transparent_union_attribute_field_size_align)
2461        << isSize << Field->getDeclName() << FieldBits;
2462      unsigned FirstBits = isSize? FirstSize : FirstAlign;
2463      S.Diag(FirstField->getLocation(),
2464             diag::note_transparent_union_first_field_size_align)
2465        << isSize << FirstBits;
2466      return;
2467    }
2468  }
2469
2470  RD->addAttr(::new (S.Context) TransparentUnionAttr(Attr.getRange(), S.Context));
2471}
2472
2473static void handleAnnotateAttr(Sema &S, Decl *D, const AttributeList &Attr) {
2474  // check the attribute arguments.
2475  if (!checkAttributeNumArgs(S, Attr, 1))
2476    return;
2477
2478  Expr *ArgExpr = Attr.getArg(0);
2479  StringLiteral *SE = dyn_cast<StringLiteral>(ArgExpr);
2480
2481  // Make sure that there is a string literal as the annotation's single
2482  // argument.
2483  if (!SE) {
2484    S.Diag(ArgExpr->getLocStart(), diag::err_attribute_not_string) <<"annotate";
2485    return;
2486  }
2487
2488  // Don't duplicate annotations that are already set.
2489  for (specific_attr_iterator<AnnotateAttr>
2490       i = D->specific_attr_begin<AnnotateAttr>(),
2491       e = D->specific_attr_end<AnnotateAttr>(); i != e; ++i) {
2492      if ((*i)->getAnnotation() == SE->getString())
2493          return;
2494  }
2495  D->addAttr(::new (S.Context) AnnotateAttr(Attr.getRange(), S.Context,
2496                                            SE->getString()));
2497}
2498
2499static void handleAlignedAttr(Sema &S, Decl *D, const AttributeList &Attr) {
2500  // check the attribute arguments.
2501  if (Attr.getNumArgs() > 1) {
2502    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
2503    return;
2504  }
2505
2506  //FIXME: The C++0x version of this attribute has more limited applicabilty
2507  //       than GNU's, and should error out when it is used to specify a
2508  //       weaker alignment, rather than being silently ignored.
2509
2510  if (Attr.getNumArgs() == 0) {
2511    D->addAttr(::new (S.Context) AlignedAttr(Attr.getRange(), S.Context, true, 0));
2512    return;
2513  }
2514
2515  S.AddAlignedAttr(Attr.getRange(), D, Attr.getArg(0));
2516}
2517
2518void Sema::AddAlignedAttr(SourceRange AttrRange, Decl *D, Expr *E) {
2519  if (E->isTypeDependent() || E->isValueDependent()) {
2520    // Save dependent expressions in the AST to be instantiated.
2521    D->addAttr(::new (Context) AlignedAttr(AttrRange, Context, true, E));
2522    return;
2523  }
2524
2525  SourceLocation AttrLoc = AttrRange.getBegin();
2526  // FIXME: Cache the number on the Attr object?
2527  llvm::APSInt Alignment(32);
2528  if (!E->isIntegerConstantExpr(Alignment, Context)) {
2529    Diag(AttrLoc, diag::err_attribute_argument_not_int)
2530      << "aligned" << E->getSourceRange();
2531    return;
2532  }
2533  if (!llvm::isPowerOf2_64(Alignment.getZExtValue())) {
2534    Diag(AttrLoc, diag::err_attribute_aligned_not_power_of_two)
2535      << E->getSourceRange();
2536    return;
2537  }
2538
2539  D->addAttr(::new (Context) AlignedAttr(AttrRange, Context, true, E));
2540}
2541
2542void Sema::AddAlignedAttr(SourceRange AttrRange, Decl *D, TypeSourceInfo *TS) {
2543  // FIXME: Cache the number on the Attr object if non-dependent?
2544  // FIXME: Perform checking of type validity
2545  D->addAttr(::new (Context) AlignedAttr(AttrRange, Context, false, TS));
2546  return;
2547}
2548
2549/// handleModeAttr - This attribute modifies the width of a decl with primitive
2550/// type.
2551///
2552/// Despite what would be logical, the mode attribute is a decl attribute, not a
2553/// type attribute: 'int ** __attribute((mode(HI))) *G;' tries to make 'G' be
2554/// HImode, not an intermediate pointer.
2555static void handleModeAttr(Sema &S, Decl *D, const AttributeList &Attr) {
2556  // This attribute isn't documented, but glibc uses it.  It changes
2557  // the width of an int or unsigned int to the specified size.
2558
2559  // Check that there aren't any arguments
2560  if (!checkAttributeNumArgs(S, Attr, 0))
2561    return;
2562
2563
2564  IdentifierInfo *Name = Attr.getParameterName();
2565  if (!Name) {
2566    S.Diag(Attr.getLoc(), diag::err_attribute_missing_parameter_name);
2567    return;
2568  }
2569
2570  StringRef Str = Attr.getParameterName()->getName();
2571
2572  // Normalize the attribute name, __foo__ becomes foo.
2573  if (Str.startswith("__") && Str.endswith("__"))
2574    Str = Str.substr(2, Str.size() - 4);
2575
2576  unsigned DestWidth = 0;
2577  bool IntegerMode = true;
2578  bool ComplexMode = false;
2579  switch (Str.size()) {
2580  case 2:
2581    switch (Str[0]) {
2582    case 'Q': DestWidth = 8; break;
2583    case 'H': DestWidth = 16; break;
2584    case 'S': DestWidth = 32; break;
2585    case 'D': DestWidth = 64; break;
2586    case 'X': DestWidth = 96; break;
2587    case 'T': DestWidth = 128; break;
2588    }
2589    if (Str[1] == 'F') {
2590      IntegerMode = false;
2591    } else if (Str[1] == 'C') {
2592      IntegerMode = false;
2593      ComplexMode = true;
2594    } else if (Str[1] != 'I') {
2595      DestWidth = 0;
2596    }
2597    break;
2598  case 4:
2599    // FIXME: glibc uses 'word' to define register_t; this is narrower than a
2600    // pointer on PIC16 and other embedded platforms.
2601    if (Str == "word")
2602      DestWidth = S.Context.getTargetInfo().getPointerWidth(0);
2603    else if (Str == "byte")
2604      DestWidth = S.Context.getTargetInfo().getCharWidth();
2605    break;
2606  case 7:
2607    if (Str == "pointer")
2608      DestWidth = S.Context.getTargetInfo().getPointerWidth(0);
2609    break;
2610  }
2611
2612  QualType OldTy;
2613  if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(D))
2614    OldTy = TD->getUnderlyingType();
2615  else if (ValueDecl *VD = dyn_cast<ValueDecl>(D))
2616    OldTy = VD->getType();
2617  else {
2618    S.Diag(D->getLocation(), diag::err_attr_wrong_decl)
2619      << "mode" << Attr.getRange();
2620    return;
2621  }
2622
2623  if (!OldTy->getAs<BuiltinType>() && !OldTy->isComplexType())
2624    S.Diag(Attr.getLoc(), diag::err_mode_not_primitive);
2625  else if (IntegerMode) {
2626    if (!OldTy->isIntegralOrEnumerationType())
2627      S.Diag(Attr.getLoc(), diag::err_mode_wrong_type);
2628  } else if (ComplexMode) {
2629    if (!OldTy->isComplexType())
2630      S.Diag(Attr.getLoc(), diag::err_mode_wrong_type);
2631  } else {
2632    if (!OldTy->isFloatingType())
2633      S.Diag(Attr.getLoc(), diag::err_mode_wrong_type);
2634  }
2635
2636  // FIXME: Sync this with InitializePredefinedMacros; we need to match int8_t
2637  // and friends, at least with glibc.
2638  // FIXME: Make sure 32/64-bit integers don't get defined to types of the wrong
2639  // width on unusual platforms.
2640  // FIXME: Make sure floating-point mappings are accurate
2641  // FIXME: Support XF and TF types
2642  QualType NewTy;
2643  switch (DestWidth) {
2644  case 0:
2645    S.Diag(Attr.getLoc(), diag::err_unknown_machine_mode) << Name;
2646    return;
2647  default:
2648    S.Diag(Attr.getLoc(), diag::err_unsupported_machine_mode) << Name;
2649    return;
2650  case 8:
2651    if (!IntegerMode) {
2652      S.Diag(Attr.getLoc(), diag::err_unsupported_machine_mode) << Name;
2653      return;
2654    }
2655    if (OldTy->isSignedIntegerType())
2656      NewTy = S.Context.SignedCharTy;
2657    else
2658      NewTy = S.Context.UnsignedCharTy;
2659    break;
2660  case 16:
2661    if (!IntegerMode) {
2662      S.Diag(Attr.getLoc(), diag::err_unsupported_machine_mode) << Name;
2663      return;
2664    }
2665    if (OldTy->isSignedIntegerType())
2666      NewTy = S.Context.ShortTy;
2667    else
2668      NewTy = S.Context.UnsignedShortTy;
2669    break;
2670  case 32:
2671    if (!IntegerMode)
2672      NewTy = S.Context.FloatTy;
2673    else if (OldTy->isSignedIntegerType())
2674      NewTy = S.Context.IntTy;
2675    else
2676      NewTy = S.Context.UnsignedIntTy;
2677    break;
2678  case 64:
2679    if (!IntegerMode)
2680      NewTy = S.Context.DoubleTy;
2681    else if (OldTy->isSignedIntegerType())
2682      if (S.Context.getTargetInfo().getLongWidth() == 64)
2683        NewTy = S.Context.LongTy;
2684      else
2685        NewTy = S.Context.LongLongTy;
2686    else
2687      if (S.Context.getTargetInfo().getLongWidth() == 64)
2688        NewTy = S.Context.UnsignedLongTy;
2689      else
2690        NewTy = S.Context.UnsignedLongLongTy;
2691    break;
2692  case 96:
2693    NewTy = S.Context.LongDoubleTy;
2694    break;
2695  case 128:
2696    if (!IntegerMode) {
2697      S.Diag(Attr.getLoc(), diag::err_unsupported_machine_mode) << Name;
2698      return;
2699    }
2700    if (OldTy->isSignedIntegerType())
2701      NewTy = S.Context.Int128Ty;
2702    else
2703      NewTy = S.Context.UnsignedInt128Ty;
2704    break;
2705  }
2706
2707  if (ComplexMode) {
2708    NewTy = S.Context.getComplexType(NewTy);
2709  }
2710
2711  // Install the new type.
2712  if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(D)) {
2713    // FIXME: preserve existing source info.
2714    TD->setTypeSourceInfo(S.Context.getTrivialTypeSourceInfo(NewTy));
2715  } else
2716    cast<ValueDecl>(D)->setType(NewTy);
2717}
2718
2719static void handleNoDebugAttr(Sema &S, Decl *D, const AttributeList &Attr) {
2720  // check the attribute arguments.
2721  if (!checkAttributeNumArgs(S, Attr, 0))
2722    return;
2723
2724  if (!isFunctionOrMethod(D)) {
2725    S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
2726      << Attr.getName() << ExpectedFunction;
2727    return;
2728  }
2729
2730  D->addAttr(::new (S.Context) NoDebugAttr(Attr.getRange(), S.Context));
2731}
2732
2733static void handleNoInlineAttr(Sema &S, Decl *D, const AttributeList &Attr) {
2734  // check the attribute arguments.
2735  if (!checkAttributeNumArgs(S, Attr, 0))
2736    return;
2737
2738
2739  if (!isa<FunctionDecl>(D)) {
2740    S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
2741      << Attr.getName() << ExpectedFunction;
2742    return;
2743  }
2744
2745  D->addAttr(::new (S.Context) NoInlineAttr(Attr.getRange(), S.Context));
2746}
2747
2748static void handleNoInstrumentFunctionAttr(Sema &S, Decl *D,
2749                                           const AttributeList &Attr) {
2750  // check the attribute arguments.
2751  if (!checkAttributeNumArgs(S, Attr, 0))
2752    return;
2753
2754
2755  if (!isa<FunctionDecl>(D)) {
2756    S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
2757      << Attr.getName() << ExpectedFunction;
2758    return;
2759  }
2760
2761  D->addAttr(::new (S.Context) NoInstrumentFunctionAttr(Attr.getRange(),
2762                                                        S.Context));
2763}
2764
2765static void handleConstantAttr(Sema &S, Decl *D, const AttributeList &Attr) {
2766  if (S.LangOpts.CUDA) {
2767    // check the attribute arguments.
2768    if (Attr.hasParameterOrArguments()) {
2769      S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 0;
2770      return;
2771    }
2772
2773    if (!isa<VarDecl>(D)) {
2774      S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
2775        << Attr.getName() << ExpectedVariable;
2776      return;
2777    }
2778
2779    D->addAttr(::new (S.Context) CUDAConstantAttr(Attr.getRange(), S.Context));
2780  } else {
2781    S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << "constant";
2782  }
2783}
2784
2785static void handleDeviceAttr(Sema &S, Decl *D, const AttributeList &Attr) {
2786  if (S.LangOpts.CUDA) {
2787    // check the attribute arguments.
2788    if (Attr.getNumArgs() != 0) {
2789      S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 0;
2790      return;
2791    }
2792
2793    if (!isa<FunctionDecl>(D) && !isa<VarDecl>(D)) {
2794      S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
2795        << Attr.getName() << ExpectedVariableOrFunction;
2796      return;
2797    }
2798
2799    D->addAttr(::new (S.Context) CUDADeviceAttr(Attr.getRange(), S.Context));
2800  } else {
2801    S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << "device";
2802  }
2803}
2804
2805static void handleGlobalAttr(Sema &S, Decl *D, const AttributeList &Attr) {
2806  if (S.LangOpts.CUDA) {
2807    // check the attribute arguments.
2808    if (!checkAttributeNumArgs(S, Attr, 0))
2809      return;
2810
2811    if (!isa<FunctionDecl>(D)) {
2812      S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
2813        << Attr.getName() << ExpectedFunction;
2814      return;
2815    }
2816
2817    FunctionDecl *FD = cast<FunctionDecl>(D);
2818    if (!FD->getResultType()->isVoidType()) {
2819      TypeLoc TL = FD->getTypeSourceInfo()->getTypeLoc().IgnoreParens();
2820      if (FunctionTypeLoc* FTL = dyn_cast<FunctionTypeLoc>(&TL)) {
2821        S.Diag(FD->getTypeSpecStartLoc(), diag::err_kern_type_not_void_return)
2822          << FD->getType()
2823          << FixItHint::CreateReplacement(FTL->getResultLoc().getSourceRange(),
2824                                          "void");
2825      } else {
2826        S.Diag(FD->getTypeSpecStartLoc(), diag::err_kern_type_not_void_return)
2827          << FD->getType();
2828      }
2829      return;
2830    }
2831
2832    D->addAttr(::new (S.Context) CUDAGlobalAttr(Attr.getRange(), S.Context));
2833  } else {
2834    S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << "global";
2835  }
2836}
2837
2838static void handleHostAttr(Sema &S, Decl *D, const AttributeList &Attr) {
2839  if (S.LangOpts.CUDA) {
2840    // check the attribute arguments.
2841    if (!checkAttributeNumArgs(S, Attr, 0))
2842      return;
2843
2844
2845    if (!isa<FunctionDecl>(D)) {
2846      S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
2847        << Attr.getName() << ExpectedFunction;
2848      return;
2849    }
2850
2851    D->addAttr(::new (S.Context) CUDAHostAttr(Attr.getRange(), S.Context));
2852  } else {
2853    S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << "host";
2854  }
2855}
2856
2857static void handleSharedAttr(Sema &S, Decl *D, const AttributeList &Attr) {
2858  if (S.LangOpts.CUDA) {
2859    // check the attribute arguments.
2860    if (!checkAttributeNumArgs(S, Attr, 0))
2861      return;
2862
2863
2864    if (!isa<VarDecl>(D)) {
2865      S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
2866        << Attr.getName() << ExpectedVariable;
2867      return;
2868    }
2869
2870    D->addAttr(::new (S.Context) CUDASharedAttr(Attr.getRange(), S.Context));
2871  } else {
2872    S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << "shared";
2873  }
2874}
2875
2876static void handleGNUInlineAttr(Sema &S, Decl *D, const AttributeList &Attr) {
2877  // check the attribute arguments.
2878  if (!checkAttributeNumArgs(S, Attr, 0))
2879    return;
2880
2881  FunctionDecl *Fn = dyn_cast<FunctionDecl>(D);
2882  if (Fn == 0) {
2883    S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
2884      << Attr.getName() << ExpectedFunction;
2885    return;
2886  }
2887
2888  if (!Fn->isInlineSpecified()) {
2889    S.Diag(Attr.getLoc(), diag::warn_gnu_inline_attribute_requires_inline);
2890    return;
2891  }
2892
2893  D->addAttr(::new (S.Context) GNUInlineAttr(Attr.getRange(), S.Context));
2894}
2895
2896static void handleCallConvAttr(Sema &S, Decl *D, const AttributeList &Attr) {
2897  if (hasDeclarator(D)) return;
2898
2899  // Diagnostic is emitted elsewhere: here we store the (valid) Attr
2900  // in the Decl node for syntactic reasoning, e.g., pretty-printing.
2901  CallingConv CC;
2902  if (S.CheckCallingConvAttr(Attr, CC))
2903    return;
2904
2905  if (!isa<ObjCMethodDecl>(D)) {
2906    S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
2907      << Attr.getName() << ExpectedFunctionOrMethod;
2908    return;
2909  }
2910
2911  switch (Attr.getKind()) {
2912  case AttributeList::AT_fastcall:
2913    D->addAttr(::new (S.Context) FastCallAttr(Attr.getRange(), S.Context));
2914    return;
2915  case AttributeList::AT_stdcall:
2916    D->addAttr(::new (S.Context) StdCallAttr(Attr.getRange(), S.Context));
2917    return;
2918  case AttributeList::AT_thiscall:
2919    D->addAttr(::new (S.Context) ThisCallAttr(Attr.getRange(), S.Context));
2920    return;
2921  case AttributeList::AT_cdecl:
2922    D->addAttr(::new (S.Context) CDeclAttr(Attr.getRange(), S.Context));
2923    return;
2924  case AttributeList::AT_pascal:
2925    D->addAttr(::new (S.Context) PascalAttr(Attr.getRange(), S.Context));
2926    return;
2927  case AttributeList::AT_pcs: {
2928    Expr *Arg = Attr.getArg(0);
2929    StringLiteral *Str = dyn_cast<StringLiteral>(Arg);
2930    if (!Str || !Str->isAscii()) {
2931      S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_string)
2932        << "pcs" << 1;
2933      Attr.setInvalid();
2934      return;
2935    }
2936
2937    StringRef StrRef = Str->getString();
2938    PcsAttr::PCSType PCS;
2939    if (StrRef == "aapcs")
2940      PCS = PcsAttr::AAPCS;
2941    else if (StrRef == "aapcs-vfp")
2942      PCS = PcsAttr::AAPCS_VFP;
2943    else {
2944      S.Diag(Attr.getLoc(), diag::err_invalid_pcs);
2945      Attr.setInvalid();
2946      return;
2947    }
2948
2949    D->addAttr(::new (S.Context) PcsAttr(Attr.getRange(), S.Context, PCS));
2950  }
2951  default:
2952    llvm_unreachable("unexpected attribute kind");
2953    return;
2954  }
2955}
2956
2957static void handleOpenCLKernelAttr(Sema &S, Decl *D, const AttributeList &Attr){
2958  assert(!Attr.isInvalid());
2959  D->addAttr(::new (S.Context) OpenCLKernelAttr(Attr.getRange(), S.Context));
2960}
2961
2962bool Sema::CheckCallingConvAttr(const AttributeList &attr, CallingConv &CC) {
2963  if (attr.isInvalid())
2964    return true;
2965
2966  if ((attr.getNumArgs() != 0 &&
2967      !(attr.getKind() == AttributeList::AT_pcs && attr.getNumArgs() == 1)) ||
2968      attr.getParameterName()) {
2969    Diag(attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 0;
2970    attr.setInvalid();
2971    return true;
2972  }
2973
2974  // TODO: diagnose uses of these conventions on the wrong target. Or, better
2975  // move to TargetAttributesSema one day.
2976  switch (attr.getKind()) {
2977  case AttributeList::AT_cdecl: CC = CC_C; break;
2978  case AttributeList::AT_fastcall: CC = CC_X86FastCall; break;
2979  case AttributeList::AT_stdcall: CC = CC_X86StdCall; break;
2980  case AttributeList::AT_thiscall: CC = CC_X86ThisCall; break;
2981  case AttributeList::AT_pascal: CC = CC_X86Pascal; break;
2982  case AttributeList::AT_pcs: {
2983    Expr *Arg = attr.getArg(0);
2984    StringLiteral *Str = dyn_cast<StringLiteral>(Arg);
2985    if (!Str || !Str->isAscii()) {
2986      Diag(attr.getLoc(), diag::err_attribute_argument_n_not_string)
2987        << "pcs" << 1;
2988      attr.setInvalid();
2989      return true;
2990    }
2991
2992    StringRef StrRef = Str->getString();
2993    if (StrRef == "aapcs") {
2994      CC = CC_AAPCS;
2995      break;
2996    } else if (StrRef == "aapcs-vfp") {
2997      CC = CC_AAPCS_VFP;
2998      break;
2999    }
3000    // FALLS THROUGH
3001  }
3002  default: llvm_unreachable("unexpected attribute kind"); return true;
3003  }
3004
3005  return false;
3006}
3007
3008static void handleRegparmAttr(Sema &S, Decl *D, const AttributeList &Attr) {
3009  if (hasDeclarator(D)) return;
3010
3011  unsigned numParams;
3012  if (S.CheckRegparmAttr(Attr, numParams))
3013    return;
3014
3015  if (!isa<ObjCMethodDecl>(D)) {
3016    S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
3017      << Attr.getName() << ExpectedFunctionOrMethod;
3018    return;
3019  }
3020
3021  D->addAttr(::new (S.Context) RegparmAttr(Attr.getRange(), S.Context, numParams));
3022}
3023
3024/// Checks a regparm attribute, returning true if it is ill-formed and
3025/// otherwise setting numParams to the appropriate value.
3026bool Sema::CheckRegparmAttr(const AttributeList &Attr, unsigned &numParams) {
3027  if (Attr.isInvalid())
3028    return true;
3029
3030  if (Attr.getNumArgs() != 1) {
3031    Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
3032    Attr.setInvalid();
3033    return true;
3034  }
3035
3036  Expr *NumParamsExpr = Attr.getArg(0);
3037  llvm::APSInt NumParams(32);
3038  if (NumParamsExpr->isTypeDependent() || NumParamsExpr->isValueDependent() ||
3039      !NumParamsExpr->isIntegerConstantExpr(NumParams, Context)) {
3040    Diag(Attr.getLoc(), diag::err_attribute_argument_not_int)
3041      << "regparm" << NumParamsExpr->getSourceRange();
3042    Attr.setInvalid();
3043    return true;
3044  }
3045
3046  if (Context.getTargetInfo().getRegParmMax() == 0) {
3047    Diag(Attr.getLoc(), diag::err_attribute_regparm_wrong_platform)
3048      << NumParamsExpr->getSourceRange();
3049    Attr.setInvalid();
3050    return true;
3051  }
3052
3053  numParams = NumParams.getZExtValue();
3054  if (numParams > Context.getTargetInfo().getRegParmMax()) {
3055    Diag(Attr.getLoc(), diag::err_attribute_regparm_invalid_number)
3056      << Context.getTargetInfo().getRegParmMax() << NumParamsExpr->getSourceRange();
3057    Attr.setInvalid();
3058    return true;
3059  }
3060
3061  return false;
3062}
3063
3064static void handleLaunchBoundsAttr(Sema &S, Decl *D, const AttributeList &Attr){
3065  if (S.LangOpts.CUDA) {
3066    // check the attribute arguments.
3067    if (Attr.getNumArgs() != 1 && Attr.getNumArgs() != 2) {
3068      // FIXME: 0 is not okay.
3069      S.Diag(Attr.getLoc(), diag::err_attribute_too_many_arguments) << 2;
3070      return;
3071    }
3072
3073    if (!isFunctionOrMethod(D)) {
3074      S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
3075        << Attr.getName() << ExpectedFunctionOrMethod;
3076      return;
3077    }
3078
3079    Expr *MaxThreadsExpr = Attr.getArg(0);
3080    llvm::APSInt MaxThreads(32);
3081    if (MaxThreadsExpr->isTypeDependent() ||
3082        MaxThreadsExpr->isValueDependent() ||
3083        !MaxThreadsExpr->isIntegerConstantExpr(MaxThreads, S.Context)) {
3084      S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_int)
3085        << "launch_bounds" << 1 << MaxThreadsExpr->getSourceRange();
3086      return;
3087    }
3088
3089    llvm::APSInt MinBlocks(32);
3090    if (Attr.getNumArgs() > 1) {
3091      Expr *MinBlocksExpr = Attr.getArg(1);
3092      if (MinBlocksExpr->isTypeDependent() ||
3093          MinBlocksExpr->isValueDependent() ||
3094          !MinBlocksExpr->isIntegerConstantExpr(MinBlocks, S.Context)) {
3095        S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_int)
3096          << "launch_bounds" << 2 << MinBlocksExpr->getSourceRange();
3097        return;
3098      }
3099    }
3100
3101    D->addAttr(::new (S.Context) CUDALaunchBoundsAttr(Attr.getRange(), S.Context,
3102                                                      MaxThreads.getZExtValue(),
3103                                                     MinBlocks.getZExtValue()));
3104  } else {
3105    S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << "launch_bounds";
3106  }
3107}
3108
3109//===----------------------------------------------------------------------===//
3110// Checker-specific attribute handlers.
3111//===----------------------------------------------------------------------===//
3112
3113static bool isValidSubjectOfNSAttribute(Sema &S, QualType type) {
3114  return type->isObjCObjectPointerType() || S.Context.isObjCNSObjectType(type);
3115}
3116static bool isValidSubjectOfCFAttribute(Sema &S, QualType type) {
3117  return type->isPointerType() || isValidSubjectOfNSAttribute(S, type);
3118}
3119
3120static void handleNSConsumedAttr(Sema &S, Decl *D, const AttributeList &Attr) {
3121  ParmVarDecl *param = dyn_cast<ParmVarDecl>(D);
3122  if (!param) {
3123    S.Diag(D->getLocStart(), diag::warn_attribute_wrong_decl_type)
3124      << Attr.getRange() << Attr.getName() << ExpectedParameter;
3125    return;
3126  }
3127
3128  bool typeOK, cf;
3129  if (Attr.getKind() == AttributeList::AT_ns_consumed) {
3130    typeOK = isValidSubjectOfNSAttribute(S, param->getType());
3131    cf = false;
3132  } else {
3133    typeOK = isValidSubjectOfCFAttribute(S, param->getType());
3134    cf = true;
3135  }
3136
3137  if (!typeOK) {
3138    S.Diag(D->getLocStart(), diag::warn_ns_attribute_wrong_parameter_type)
3139      << Attr.getRange() << Attr.getName() << cf;
3140    return;
3141  }
3142
3143  if (cf)
3144    param->addAttr(::new (S.Context) CFConsumedAttr(Attr.getRange(), S.Context));
3145  else
3146    param->addAttr(::new (S.Context) NSConsumedAttr(Attr.getRange(), S.Context));
3147}
3148
3149static void handleNSConsumesSelfAttr(Sema &S, Decl *D,
3150                                     const AttributeList &Attr) {
3151  if (!isa<ObjCMethodDecl>(D)) {
3152    S.Diag(D->getLocStart(), diag::warn_attribute_wrong_decl_type)
3153      << Attr.getRange() << Attr.getName() << ExpectedMethod;
3154    return;
3155  }
3156
3157  D->addAttr(::new (S.Context) NSConsumesSelfAttr(Attr.getRange(), S.Context));
3158}
3159
3160static void handleNSReturnsRetainedAttr(Sema &S, Decl *D,
3161                                        const AttributeList &Attr) {
3162
3163  QualType returnType;
3164
3165  if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D))
3166    returnType = MD->getResultType();
3167  else if (ObjCPropertyDecl *PD = dyn_cast<ObjCPropertyDecl>(D))
3168    returnType = PD->getType();
3169  else if (S.getLangOptions().ObjCAutoRefCount && hasDeclarator(D) &&
3170           (Attr.getKind() == AttributeList::AT_ns_returns_retained))
3171    return; // ignore: was handled as a type attribute
3172  else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
3173    returnType = FD->getResultType();
3174  else {
3175    S.Diag(D->getLocStart(), diag::warn_attribute_wrong_decl_type)
3176        << Attr.getRange() << Attr.getName()
3177        << ExpectedFunctionOrMethod;
3178    return;
3179  }
3180
3181  bool typeOK;
3182  bool cf;
3183  switch (Attr.getKind()) {
3184  default: llvm_unreachable("invalid ownership attribute"); return;
3185  case AttributeList::AT_ns_returns_autoreleased:
3186  case AttributeList::AT_ns_returns_retained:
3187  case AttributeList::AT_ns_returns_not_retained:
3188    typeOK = isValidSubjectOfNSAttribute(S, returnType);
3189    cf = false;
3190    break;
3191
3192  case AttributeList::AT_cf_returns_retained:
3193  case AttributeList::AT_cf_returns_not_retained:
3194    typeOK = isValidSubjectOfCFAttribute(S, returnType);
3195    cf = true;
3196    break;
3197  }
3198
3199  if (!typeOK) {
3200    S.Diag(D->getLocStart(), diag::warn_ns_attribute_wrong_return_type)
3201      << Attr.getRange() << Attr.getName() << isa<ObjCMethodDecl>(D) << cf;
3202    return;
3203  }
3204
3205  switch (Attr.getKind()) {
3206    default:
3207      assert(0 && "invalid ownership attribute");
3208      return;
3209    case AttributeList::AT_ns_returns_autoreleased:
3210      D->addAttr(::new (S.Context) NSReturnsAutoreleasedAttr(Attr.getRange(),
3211                                                             S.Context));
3212      return;
3213    case AttributeList::AT_cf_returns_not_retained:
3214      D->addAttr(::new (S.Context) CFReturnsNotRetainedAttr(Attr.getRange(),
3215                                                            S.Context));
3216      return;
3217    case AttributeList::AT_ns_returns_not_retained:
3218      D->addAttr(::new (S.Context) NSReturnsNotRetainedAttr(Attr.getRange(),
3219                                                            S.Context));
3220      return;
3221    case AttributeList::AT_cf_returns_retained:
3222      D->addAttr(::new (S.Context) CFReturnsRetainedAttr(Attr.getRange(),
3223                                                         S.Context));
3224      return;
3225    case AttributeList::AT_ns_returns_retained:
3226      D->addAttr(::new (S.Context) NSReturnsRetainedAttr(Attr.getRange(),
3227                                                         S.Context));
3228      return;
3229  };
3230}
3231
3232static void handleObjCReturnsInnerPointerAttr(Sema &S, Decl *D,
3233                                              const AttributeList &attr) {
3234  SourceLocation loc = attr.getLoc();
3235
3236  ObjCMethodDecl *method = dyn_cast<ObjCMethodDecl>(D);
3237
3238  if (!isa<ObjCMethodDecl>(method)) {
3239    S.Diag(method->getLocStart(), diag::err_attribute_wrong_decl_type)
3240      << SourceRange(loc, loc) << attr.getName() << 13 /* methods */;
3241    return;
3242  }
3243
3244  // Check that the method returns a normal pointer.
3245  QualType resultType = method->getResultType();
3246  if (!resultType->isPointerType() || resultType->isObjCRetainableType()) {
3247    S.Diag(method->getLocStart(), diag::warn_ns_attribute_wrong_return_type)
3248      << SourceRange(loc)
3249      << attr.getName() << /*method*/ 1 << /*non-retainable pointer*/ 2;
3250
3251    // Drop the attribute.
3252    return;
3253  }
3254
3255  method->addAttr(
3256    ::new (S.Context) ObjCReturnsInnerPointerAttr(attr.getRange(), S.Context));
3257}
3258
3259static void handleObjCOwnershipAttr(Sema &S, Decl *D,
3260                                    const AttributeList &Attr) {
3261  if (hasDeclarator(D)) return;
3262
3263  S.Diag(D->getLocStart(), diag::err_attribute_wrong_decl_type)
3264    << Attr.getRange() << Attr.getName() << 12 /* variable */;
3265}
3266
3267static void handleObjCPreciseLifetimeAttr(Sema &S, Decl *D,
3268                                          const AttributeList &Attr) {
3269  if (!isa<VarDecl>(D) && !isa<FieldDecl>(D)) {
3270    S.Diag(D->getLocStart(), diag::err_attribute_wrong_decl_type)
3271      << Attr.getRange() << Attr.getName() << 12 /* variable */;
3272    return;
3273  }
3274
3275  ValueDecl *vd = cast<ValueDecl>(D);
3276  QualType type = vd->getType();
3277
3278  if (!type->isDependentType() &&
3279      !type->isObjCLifetimeType()) {
3280    S.Diag(Attr.getLoc(), diag::err_objc_precise_lifetime_bad_type)
3281      << type;
3282    return;
3283  }
3284
3285  Qualifiers::ObjCLifetime lifetime = type.getObjCLifetime();
3286
3287  // If we have no lifetime yet, check the lifetime we're presumably
3288  // going to infer.
3289  if (lifetime == Qualifiers::OCL_None && !type->isDependentType())
3290    lifetime = type->getObjCARCImplicitLifetime();
3291
3292  switch (lifetime) {
3293  case Qualifiers::OCL_None:
3294    assert(type->isDependentType() &&
3295           "didn't infer lifetime for non-dependent type?");
3296    break;
3297
3298  case Qualifiers::OCL_Weak:   // meaningful
3299  case Qualifiers::OCL_Strong: // meaningful
3300    break;
3301
3302  case Qualifiers::OCL_ExplicitNone:
3303  case Qualifiers::OCL_Autoreleasing:
3304    S.Diag(Attr.getLoc(), diag::warn_objc_precise_lifetime_meaningless)
3305      << (lifetime == Qualifiers::OCL_Autoreleasing);
3306    break;
3307  }
3308
3309  D->addAttr(::new (S.Context)
3310                 ObjCPreciseLifetimeAttr(Attr.getRange(), S.Context));
3311}
3312
3313static bool isKnownDeclSpecAttr(const AttributeList &Attr) {
3314  return Attr.getKind() == AttributeList::AT_dllimport ||
3315         Attr.getKind() == AttributeList::AT_dllexport ||
3316         Attr.getKind() == AttributeList::AT_uuid;
3317}
3318
3319//===----------------------------------------------------------------------===//
3320// Microsoft specific attribute handlers.
3321//===----------------------------------------------------------------------===//
3322
3323static void handleUuidAttr(Sema &S, Decl *D, const AttributeList &Attr) {
3324  if (S.LangOpts.Microsoft || S.LangOpts.Borland) {
3325    // check the attribute arguments.
3326    if (!checkAttributeNumArgs(S, Attr, 1))
3327      return;
3328
3329    Expr *Arg = Attr.getArg(0);
3330    StringLiteral *Str = dyn_cast<StringLiteral>(Arg);
3331    if (!Str || !Str->isAscii()) {
3332      S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_string)
3333        << "uuid" << 1;
3334      return;
3335    }
3336
3337    StringRef StrRef = Str->getString();
3338
3339    bool IsCurly = StrRef.size() > 1 && StrRef.front() == '{' &&
3340                   StrRef.back() == '}';
3341
3342    // Validate GUID length.
3343    if (IsCurly && StrRef.size() != 38) {
3344      S.Diag(Attr.getLoc(), diag::err_attribute_uuid_malformed_guid);
3345      return;
3346    }
3347    if (!IsCurly && StrRef.size() != 36) {
3348      S.Diag(Attr.getLoc(), diag::err_attribute_uuid_malformed_guid);
3349      return;
3350    }
3351
3352    // GUID format is "XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX" or
3353    // "{XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX}"
3354    StringRef::iterator I = StrRef.begin();
3355    if (IsCurly) // Skip the optional '{'
3356       ++I;
3357
3358    for (int i = 0; i < 36; ++i) {
3359      if (i == 8 || i == 13 || i == 18 || i == 23) {
3360        if (*I != '-') {
3361          S.Diag(Attr.getLoc(), diag::err_attribute_uuid_malformed_guid);
3362          return;
3363        }
3364      } else if (!isxdigit(*I)) {
3365        S.Diag(Attr.getLoc(), diag::err_attribute_uuid_malformed_guid);
3366        return;
3367      }
3368      I++;
3369    }
3370
3371    D->addAttr(::new (S.Context) UuidAttr(Attr.getRange(), S.Context,
3372                                          Str->getString()));
3373  } else
3374    S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << "uuid";
3375}
3376
3377//===----------------------------------------------------------------------===//
3378// Top Level Sema Entry Points
3379//===----------------------------------------------------------------------===//
3380
3381static void ProcessNonInheritableDeclAttr(Sema &S, Scope *scope, Decl *D,
3382                                          const AttributeList &Attr) {
3383  switch (Attr.getKind()) {
3384  case AttributeList::AT_device:      handleDeviceAttr      (S, D, Attr); break;
3385  case AttributeList::AT_host:        handleHostAttr        (S, D, Attr); break;
3386  case AttributeList::AT_overloadable:handleOverloadableAttr(S, D, Attr); break;
3387  default:
3388    break;
3389  }
3390}
3391
3392static void ProcessInheritableDeclAttr(Sema &S, Scope *scope, Decl *D,
3393                                       const AttributeList &Attr) {
3394  switch (Attr.getKind()) {
3395  case AttributeList::AT_IBAction:            handleIBAction(S, D, Attr); break;
3396    case AttributeList::AT_IBOutlet:          handleIBOutlet(S, D, Attr); break;
3397  case AttributeList::AT_IBOutletCollection:
3398      handleIBOutletCollection(S, D, Attr); break;
3399  case AttributeList::AT_address_space:
3400  case AttributeList::AT_opencl_image_access:
3401  case AttributeList::AT_objc_gc:
3402  case AttributeList::AT_vector_size:
3403  case AttributeList::AT_neon_vector_type:
3404  case AttributeList::AT_neon_polyvector_type:
3405    // Ignore these, these are type attributes, handled by
3406    // ProcessTypeAttributes.
3407    break;
3408  case AttributeList::AT_device:
3409  case AttributeList::AT_host:
3410  case AttributeList::AT_overloadable:
3411    // Ignore, this is a non-inheritable attribute, handled
3412    // by ProcessNonInheritableDeclAttr.
3413    break;
3414  case AttributeList::AT_alias:       handleAliasAttr       (S, D, Attr); break;
3415  case AttributeList::AT_aligned:     handleAlignedAttr     (S, D, Attr); break;
3416  case AttributeList::AT_always_inline:
3417    handleAlwaysInlineAttr  (S, D, Attr); break;
3418  case AttributeList::AT_analyzer_noreturn:
3419    handleAnalyzerNoReturnAttr  (S, D, Attr); break;
3420  case AttributeList::AT_annotate:    handleAnnotateAttr    (S, D, Attr); break;
3421  case AttributeList::AT_availability:handleAvailabilityAttr(S, D, Attr); break;
3422  case AttributeList::AT_carries_dependency:
3423                                      handleDependencyAttr  (S, D, Attr); break;
3424  case AttributeList::AT_common:      handleCommonAttr      (S, D, Attr); break;
3425  case AttributeList::AT_constant:    handleConstantAttr    (S, D, Attr); break;
3426  case AttributeList::AT_constructor: handleConstructorAttr (S, D, Attr); break;
3427  case AttributeList::AT_deprecated:  handleDeprecatedAttr  (S, D, Attr); break;
3428  case AttributeList::AT_destructor:  handleDestructorAttr  (S, D, Attr); break;
3429  case AttributeList::AT_ext_vector_type:
3430    handleExtVectorTypeAttr(S, scope, D, Attr);
3431    break;
3432  case AttributeList::AT_format:      handleFormatAttr      (S, D, Attr); break;
3433  case AttributeList::AT_format_arg:  handleFormatArgAttr   (S, D, Attr); break;
3434  case AttributeList::AT_global:      handleGlobalAttr      (S, D, Attr); break;
3435  case AttributeList::AT_gnu_inline:  handleGNUInlineAttr   (S, D, Attr); break;
3436  case AttributeList::AT_launch_bounds:
3437    handleLaunchBoundsAttr(S, D, Attr);
3438    break;
3439  case AttributeList::AT_mode:        handleModeAttr        (S, D, Attr); break;
3440  case AttributeList::AT_malloc:      handleMallocAttr      (S, D, Attr); break;
3441  case AttributeList::AT_may_alias:   handleMayAliasAttr    (S, D, Attr); break;
3442  case AttributeList::AT_nocommon:    handleNoCommonAttr    (S, D, Attr); break;
3443  case AttributeList::AT_nonnull:     handleNonNullAttr     (S, D, Attr); break;
3444  case AttributeList::AT_ownership_returns:
3445  case AttributeList::AT_ownership_takes:
3446  case AttributeList::AT_ownership_holds:
3447      handleOwnershipAttr     (S, D, Attr); break;
3448  case AttributeList::AT_naked:       handleNakedAttr       (S, D, Attr); break;
3449  case AttributeList::AT_noreturn:    handleNoReturnAttr    (S, D, Attr); break;
3450  case AttributeList::AT_nothrow:     handleNothrowAttr     (S, D, Attr); break;
3451  case AttributeList::AT_shared:      handleSharedAttr      (S, D, Attr); break;
3452  case AttributeList::AT_vecreturn:   handleVecReturnAttr   (S, D, Attr); break;
3453
3454  case AttributeList::AT_objc_ownership:
3455    handleObjCOwnershipAttr(S, D, Attr); break;
3456  case AttributeList::AT_objc_precise_lifetime:
3457    handleObjCPreciseLifetimeAttr(S, D, Attr); break;
3458
3459  case AttributeList::AT_objc_returns_inner_pointer:
3460    handleObjCReturnsInnerPointerAttr(S, D, Attr); break;
3461
3462  // Checker-specific.
3463  case AttributeList::AT_cf_consumed:
3464  case AttributeList::AT_ns_consumed: handleNSConsumedAttr  (S, D, Attr); break;
3465  case AttributeList::AT_ns_consumes_self:
3466    handleNSConsumesSelfAttr(S, D, Attr); break;
3467
3468  case AttributeList::AT_ns_returns_autoreleased:
3469  case AttributeList::AT_ns_returns_not_retained:
3470  case AttributeList::AT_cf_returns_not_retained:
3471  case AttributeList::AT_ns_returns_retained:
3472  case AttributeList::AT_cf_returns_retained:
3473    handleNSReturnsRetainedAttr(S, D, Attr); break;
3474
3475  case AttributeList::AT_reqd_wg_size:
3476    handleReqdWorkGroupSize(S, D, Attr); break;
3477
3478  case AttributeList::AT_init_priority:
3479      handleInitPriorityAttr(S, D, Attr); break;
3480
3481  case AttributeList::AT_packed:      handlePackedAttr      (S, D, Attr); break;
3482  case AttributeList::AT_MsStruct:    handleMsStructAttr    (S, D, Attr); break;
3483  case AttributeList::AT_section:     handleSectionAttr     (S, D, Attr); break;
3484  case AttributeList::AT_unavailable: handleUnavailableAttr (S, D, Attr); break;
3485  case AttributeList::AT_arc_weakref_unavailable:
3486    handleArcWeakrefUnavailableAttr (S, D, Attr);
3487    break;
3488  case AttributeList::AT_unused:      handleUnusedAttr      (S, D, Attr); break;
3489  case AttributeList::AT_used:        handleUsedAttr        (S, D, Attr); break;
3490  case AttributeList::AT_visibility:  handleVisibilityAttr  (S, D, Attr); break;
3491  case AttributeList::AT_warn_unused_result: handleWarnUnusedResult(S, D, Attr);
3492    break;
3493  case AttributeList::AT_weak:        handleWeakAttr        (S, D, Attr); break;
3494  case AttributeList::AT_weakref:     handleWeakRefAttr     (S, D, Attr); break;
3495  case AttributeList::AT_weak_import: handleWeakImportAttr  (S, D, Attr); break;
3496  case AttributeList::AT_transparent_union:
3497    handleTransparentUnionAttr(S, D, Attr);
3498    break;
3499  case AttributeList::AT_objc_exception:
3500    handleObjCExceptionAttr(S, D, Attr);
3501    break;
3502  case AttributeList::AT_objc_method_family:
3503    handleObjCMethodFamilyAttr(S, D, Attr);
3504    break;
3505  case AttributeList::AT_nsobject:    handleObjCNSObject    (S, D, Attr); break;
3506  case AttributeList::AT_blocks:      handleBlocksAttr      (S, D, Attr); break;
3507  case AttributeList::AT_sentinel:    handleSentinelAttr    (S, D, Attr); break;
3508  case AttributeList::AT_const:       handleConstAttr       (S, D, Attr); break;
3509  case AttributeList::AT_pure:        handlePureAttr        (S, D, Attr); break;
3510  case AttributeList::AT_cleanup:     handleCleanupAttr     (S, D, Attr); break;
3511  case AttributeList::AT_nodebug:     handleNoDebugAttr     (S, D, Attr); break;
3512  case AttributeList::AT_noinline:    handleNoInlineAttr    (S, D, Attr); break;
3513  case AttributeList::AT_regparm:     handleRegparmAttr     (S, D, Attr); break;
3514  case AttributeList::IgnoredAttribute:
3515    // Just ignore
3516    break;
3517  case AttributeList::AT_no_instrument_function:  // Interacts with -pg.
3518    handleNoInstrumentFunctionAttr(S, D, Attr);
3519    break;
3520  case AttributeList::AT_stdcall:
3521  case AttributeList::AT_cdecl:
3522  case AttributeList::AT_fastcall:
3523  case AttributeList::AT_thiscall:
3524  case AttributeList::AT_pascal:
3525  case AttributeList::AT_pcs:
3526    handleCallConvAttr(S, D, Attr);
3527    break;
3528  case AttributeList::AT_opencl_kernel_function:
3529    handleOpenCLKernelAttr(S, D, Attr);
3530    break;
3531  case AttributeList::AT_uuid:
3532    handleUuidAttr(S, D, Attr);
3533    break;
3534
3535  // Thread safety attributes:
3536  case AttributeList::AT_guarded_var:
3537    handleGuardedVarAttr(S, D, Attr);
3538    break;
3539  case AttributeList::AT_pt_guarded_var:
3540    handleGuardedVarAttr(S, D, Attr, /*pointer = */true);
3541    break;
3542  case AttributeList::AT_scoped_lockable:
3543    handleLockableAttr(S, D, Attr, /*scoped = */true);
3544    break;
3545  case AttributeList::AT_no_thread_safety_analysis:
3546    handleNoThreadSafetyAttr(S, D, Attr);
3547    break;
3548  case AttributeList::AT_lockable:
3549    handleLockableAttr(S, D, Attr);
3550    break;
3551  case AttributeList::AT_guarded_by:
3552    handleGuardedByAttr(S, D, Attr);
3553    break;
3554  case AttributeList::AT_pt_guarded_by:
3555    handleGuardedByAttr(S, D, Attr, /*pointer = */true);
3556    break;
3557  case AttributeList::AT_exclusive_lock_function:
3558    handleLockFunAttr(S, D, Attr, /*exclusive = */true);
3559    break;
3560  case AttributeList::AT_exclusive_locks_required:
3561    handleLocksRequiredAttr(S, D, Attr, /*exclusive = */true);
3562    break;
3563  case AttributeList::AT_exclusive_trylock_function:
3564    handleTrylockFunAttr(S, D, Attr, /*exclusive = */true);
3565    break;
3566  case AttributeList::AT_lock_returned:
3567    handleLockReturnedAttr(S, D, Attr);
3568    break;
3569  case AttributeList::AT_locks_excluded:
3570    handleLocksExcludedAttr(S, D, Attr);
3571    break;
3572  case AttributeList::AT_shared_lock_function:
3573    handleLockFunAttr(S, D, Attr);
3574    break;
3575  case AttributeList::AT_shared_locks_required:
3576    handleLocksRequiredAttr(S, D, Attr);
3577    break;
3578  case AttributeList::AT_shared_trylock_function:
3579    handleTrylockFunAttr(S, D, Attr);
3580    break;
3581  case AttributeList::AT_unlock_function:
3582    handleUnlockFunAttr(S, D, Attr);
3583    break;
3584  case AttributeList::AT_acquired_before:
3585    handleAcquireOrderAttr(S, D, Attr, /*before = */true);
3586    break;
3587  case AttributeList::AT_acquired_after:
3588    handleAcquireOrderAttr(S, D, Attr, /*before = */false);
3589    break;
3590
3591  default:
3592    // Ask target about the attribute.
3593    const TargetAttributesSema &TargetAttrs = S.getTargetAttributesSema();
3594    if (!TargetAttrs.ProcessDeclAttribute(scope, D, Attr, S))
3595      S.Diag(Attr.getLoc(), diag::warn_unknown_attribute_ignored)
3596        << Attr.getName();
3597    break;
3598  }
3599}
3600
3601/// ProcessDeclAttribute - Apply the specific attribute to the specified decl if
3602/// the attribute applies to decls.  If the attribute is a type attribute, just
3603/// silently ignore it if a GNU attribute. FIXME: Applying a C++0x attribute to
3604/// the wrong thing is illegal (C++0x [dcl.attr.grammar]/4).
3605static void ProcessDeclAttribute(Sema &S, Scope *scope, Decl *D,
3606                                 const AttributeList &Attr,
3607                                 bool NonInheritable, bool Inheritable) {
3608  if (Attr.isInvalid())
3609    return;
3610
3611  if (Attr.isDeclspecAttribute() && !isKnownDeclSpecAttr(Attr))
3612    // FIXME: Try to deal with other __declspec attributes!
3613    return;
3614
3615  if (NonInheritable)
3616    ProcessNonInheritableDeclAttr(S, scope, D, Attr);
3617
3618  if (Inheritable)
3619    ProcessInheritableDeclAttr(S, scope, D, Attr);
3620}
3621
3622/// ProcessDeclAttributeList - Apply all the decl attributes in the specified
3623/// attribute list to the specified decl, ignoring any type attributes.
3624void Sema::ProcessDeclAttributeList(Scope *S, Decl *D,
3625                                    const AttributeList *AttrList,
3626                                    bool NonInheritable, bool Inheritable) {
3627  for (const AttributeList* l = AttrList; l; l = l->getNext()) {
3628    ProcessDeclAttribute(*this, S, D, *l, NonInheritable, Inheritable);
3629  }
3630
3631  // GCC accepts
3632  // static int a9 __attribute__((weakref));
3633  // but that looks really pointless. We reject it.
3634  if (Inheritable && D->hasAttr<WeakRefAttr>() && !D->hasAttr<AliasAttr>()) {
3635    Diag(AttrList->getLoc(), diag::err_attribute_weakref_without_alias) <<
3636    dyn_cast<NamedDecl>(D)->getNameAsString();
3637    return;
3638  }
3639}
3640
3641/// DeclClonePragmaWeak - clone existing decl (maybe definition),
3642/// #pragma weak needs a non-definition decl and source may not have one
3643NamedDecl * Sema::DeclClonePragmaWeak(NamedDecl *ND, IdentifierInfo *II,
3644                                      SourceLocation Loc) {
3645  assert(isa<FunctionDecl>(ND) || isa<VarDecl>(ND));
3646  NamedDecl *NewD = 0;
3647  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)) {
3648    FunctionDecl *NewFD;
3649    // FIXME: Missing call to CheckFunctionDeclaration().
3650    // FIXME: Mangling?
3651    // FIXME: Is the qualifier info correct?
3652    // FIXME: Is the DeclContext correct?
3653    NewFD = FunctionDecl::Create(FD->getASTContext(), FD->getDeclContext(),
3654                                 Loc, Loc, DeclarationName(II),
3655                                 FD->getType(), FD->getTypeSourceInfo(),
3656                                 SC_None, SC_None,
3657                                 false/*isInlineSpecified*/,
3658                                 FD->hasPrototype(),
3659                                 false/*isConstexprSpecified*/);
3660    NewD = NewFD;
3661
3662    if (FD->getQualifier())
3663      NewFD->setQualifierInfo(FD->getQualifierLoc());
3664
3665    // Fake up parameter variables; they are declared as if this were
3666    // a typedef.
3667    QualType FDTy = FD->getType();
3668    if (const FunctionProtoType *FT = FDTy->getAs<FunctionProtoType>()) {
3669      SmallVector<ParmVarDecl*, 16> Params;
3670      for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
3671           AE = FT->arg_type_end(); AI != AE; ++AI) {
3672        ParmVarDecl *Param = BuildParmVarDeclForTypedef(NewFD, Loc, *AI);
3673        Param->setScopeInfo(0, Params.size());
3674        Params.push_back(Param);
3675      }
3676      NewFD->setParams(Params.data(), Params.size());
3677    }
3678  } else if (VarDecl *VD = dyn_cast<VarDecl>(ND)) {
3679    NewD = VarDecl::Create(VD->getASTContext(), VD->getDeclContext(),
3680                           VD->getInnerLocStart(), VD->getLocation(), II,
3681                           VD->getType(), VD->getTypeSourceInfo(),
3682                           VD->getStorageClass(),
3683                           VD->getStorageClassAsWritten());
3684    if (VD->getQualifier()) {
3685      VarDecl *NewVD = cast<VarDecl>(NewD);
3686      NewVD->setQualifierInfo(VD->getQualifierLoc());
3687    }
3688  }
3689  return NewD;
3690}
3691
3692/// DeclApplyPragmaWeak - A declaration (maybe definition) needs #pragma weak
3693/// applied to it, possibly with an alias.
3694void Sema::DeclApplyPragmaWeak(Scope *S, NamedDecl *ND, WeakInfo &W) {
3695  if (W.getUsed()) return; // only do this once
3696  W.setUsed(true);
3697  if (W.getAlias()) { // clone decl, impersonate __attribute(weak,alias(...))
3698    IdentifierInfo *NDId = ND->getIdentifier();
3699    NamedDecl *NewD = DeclClonePragmaWeak(ND, W.getAlias(), W.getLocation());
3700    NewD->addAttr(::new (Context) AliasAttr(W.getLocation(), Context,
3701                                            NDId->getName()));
3702    NewD->addAttr(::new (Context) WeakAttr(W.getLocation(), Context));
3703    WeakTopLevelDecl.push_back(NewD);
3704    // FIXME: "hideous" code from Sema::LazilyCreateBuiltin
3705    // to insert Decl at TU scope, sorry.
3706    DeclContext *SavedContext = CurContext;
3707    CurContext = Context.getTranslationUnitDecl();
3708    PushOnScopeChains(NewD, S);
3709    CurContext = SavedContext;
3710  } else { // just add weak to existing
3711    ND->addAttr(::new (Context) WeakAttr(W.getLocation(), Context));
3712  }
3713}
3714
3715/// ProcessDeclAttributes - Given a declarator (PD) with attributes indicated in
3716/// it, apply them to D.  This is a bit tricky because PD can have attributes
3717/// specified in many different places, and we need to find and apply them all.
3718void Sema::ProcessDeclAttributes(Scope *S, Decl *D, const Declarator &PD,
3719                                 bool NonInheritable, bool Inheritable) {
3720  // It's valid to "forward-declare" #pragma weak, in which case we
3721  // have to do this.
3722  if (Inheritable) {
3723    LoadExternalWeakUndeclaredIdentifiers();
3724    if (!WeakUndeclaredIdentifiers.empty()) {
3725      if (NamedDecl *ND = dyn_cast<NamedDecl>(D)) {
3726        if (IdentifierInfo *Id = ND->getIdentifier()) {
3727          llvm::DenseMap<IdentifierInfo*,WeakInfo>::iterator I
3728            = WeakUndeclaredIdentifiers.find(Id);
3729          if (I != WeakUndeclaredIdentifiers.end() && ND->hasLinkage()) {
3730            WeakInfo W = I->second;
3731            DeclApplyPragmaWeak(S, ND, W);
3732            WeakUndeclaredIdentifiers[Id] = W;
3733          }
3734        }
3735      }
3736    }
3737  }
3738
3739  // Apply decl attributes from the DeclSpec if present.
3740  if (const AttributeList *Attrs = PD.getDeclSpec().getAttributes().getList())
3741    ProcessDeclAttributeList(S, D, Attrs, NonInheritable, Inheritable);
3742
3743  // Walk the declarator structure, applying decl attributes that were in a type
3744  // position to the decl itself.  This handles cases like:
3745  //   int *__attr__(x)** D;
3746  // when X is a decl attribute.
3747  for (unsigned i = 0, e = PD.getNumTypeObjects(); i != e; ++i)
3748    if (const AttributeList *Attrs = PD.getTypeObject(i).getAttrs())
3749      ProcessDeclAttributeList(S, D, Attrs, NonInheritable, Inheritable);
3750
3751  // Finally, apply any attributes on the decl itself.
3752  if (const AttributeList *Attrs = PD.getAttributes())
3753    ProcessDeclAttributeList(S, D, Attrs, NonInheritable, Inheritable);
3754}
3755
3756/// Is the given declaration allowed to use a forbidden type?
3757static bool isForbiddenTypeAllowed(Sema &S, Decl *decl) {
3758  // Private ivars are always okay.  Unfortunately, people don't
3759  // always properly make their ivars private, even in system headers.
3760  // Plus we need to make fields okay, too.
3761  if (!isa<FieldDecl>(decl) && !isa<ObjCPropertyDecl>(decl))
3762    return false;
3763
3764  // Require it to be declared in a system header.
3765  return S.Context.getSourceManager().isInSystemHeader(decl->getLocation());
3766}
3767
3768/// Handle a delayed forbidden-type diagnostic.
3769static void handleDelayedForbiddenType(Sema &S, DelayedDiagnostic &diag,
3770                                       Decl *decl) {
3771  if (decl && isForbiddenTypeAllowed(S, decl)) {
3772    decl->addAttr(new (S.Context) UnavailableAttr(diag.Loc, S.Context,
3773                        "this system declaration uses an unsupported type"));
3774    return;
3775  }
3776
3777  S.Diag(diag.Loc, diag.getForbiddenTypeDiagnostic())
3778    << diag.getForbiddenTypeOperand() << diag.getForbiddenTypeArgument();
3779  diag.Triggered = true;
3780}
3781
3782// This duplicates a vector push_back but hides the need to know the
3783// size of the type.
3784void Sema::DelayedDiagnostics::add(const DelayedDiagnostic &diag) {
3785  assert(StackSize <= StackCapacity);
3786
3787  // Grow the stack if necessary.
3788  if (StackSize == StackCapacity) {
3789    unsigned newCapacity = 2 * StackCapacity + 2;
3790    char *newBuffer = new char[newCapacity * sizeof(DelayedDiagnostic)];
3791    const char *oldBuffer = (const char*) Stack;
3792
3793    if (StackCapacity)
3794      memcpy(newBuffer, oldBuffer, StackCapacity * sizeof(DelayedDiagnostic));
3795
3796    delete[] oldBuffer;
3797    Stack = reinterpret_cast<sema::DelayedDiagnostic*>(newBuffer);
3798    StackCapacity = newCapacity;
3799  }
3800
3801  assert(StackSize < StackCapacity);
3802  new (&Stack[StackSize++]) DelayedDiagnostic(diag);
3803}
3804
3805void Sema::DelayedDiagnostics::popParsingDecl(Sema &S, ParsingDeclState state,
3806                                              Decl *decl) {
3807  DelayedDiagnostics &DD = S.DelayedDiagnostics;
3808
3809  // Check the invariants.
3810  assert(DD.StackSize >= state.SavedStackSize);
3811  assert(state.SavedStackSize >= DD.ActiveStackBase);
3812  assert(DD.ParsingDepth > 0);
3813
3814  // Drop the parsing depth.
3815  DD.ParsingDepth--;
3816
3817  // If there are no active diagnostics, we're done.
3818  if (DD.StackSize == DD.ActiveStackBase)
3819    return;
3820
3821  // We only want to actually emit delayed diagnostics when we
3822  // successfully parsed a decl.
3823  if (decl && !decl->isInvalidDecl()) {
3824    // We emit all the active diagnostics, not just those starting
3825    // from the saved state.  The idea is this:  we get one push for a
3826    // decl spec and another for each declarator;  in a decl group like:
3827    //   deprecated_typedef foo, *bar, baz();
3828    // only the declarator pops will be passed decls.  This is correct;
3829    // we really do need to consider delayed diagnostics from the decl spec
3830    // for each of the different declarations.
3831    for (unsigned i = DD.ActiveStackBase, e = DD.StackSize; i != e; ++i) {
3832      DelayedDiagnostic &diag = DD.Stack[i];
3833      if (diag.Triggered)
3834        continue;
3835
3836      switch (diag.Kind) {
3837      case DelayedDiagnostic::Deprecation:
3838        S.HandleDelayedDeprecationCheck(diag, decl);
3839        break;
3840
3841      case DelayedDiagnostic::Access:
3842        S.HandleDelayedAccessCheck(diag, decl);
3843        break;
3844
3845      case DelayedDiagnostic::ForbiddenType:
3846        handleDelayedForbiddenType(S, diag, decl);
3847        break;
3848      }
3849    }
3850  }
3851
3852  // Destroy all the delayed diagnostics we're about to pop off.
3853  for (unsigned i = state.SavedStackSize, e = DD.StackSize; i != e; ++i)
3854    DD.Stack[i].Destroy();
3855
3856  DD.StackSize = state.SavedStackSize;
3857}
3858
3859static bool isDeclDeprecated(Decl *D) {
3860  do {
3861    if (D->isDeprecated())
3862      return true;
3863  } while ((D = cast_or_null<Decl>(D->getDeclContext())));
3864  return false;
3865}
3866
3867void Sema::HandleDelayedDeprecationCheck(DelayedDiagnostic &DD,
3868                                         Decl *Ctx) {
3869  if (isDeclDeprecated(Ctx))
3870    return;
3871
3872  DD.Triggered = true;
3873  if (!DD.getDeprecationMessage().empty())
3874    Diag(DD.Loc, diag::warn_deprecated_message)
3875      << DD.getDeprecationDecl()->getDeclName()
3876      << DD.getDeprecationMessage();
3877  else
3878    Diag(DD.Loc, diag::warn_deprecated)
3879      << DD.getDeprecationDecl()->getDeclName();
3880}
3881
3882void Sema::EmitDeprecationWarning(NamedDecl *D, StringRef Message,
3883                                  SourceLocation Loc,
3884                                  const ObjCInterfaceDecl *UnknownObjCClass) {
3885  // Delay if we're currently parsing a declaration.
3886  if (DelayedDiagnostics.shouldDelayDiagnostics()) {
3887    DelayedDiagnostics.add(DelayedDiagnostic::makeDeprecation(Loc, D, Message));
3888    return;
3889  }
3890
3891  // Otherwise, don't warn if our current context is deprecated.
3892  if (isDeclDeprecated(cast<Decl>(CurContext)))
3893    return;
3894  if (!Message.empty())
3895    Diag(Loc, diag::warn_deprecated_message) << D->getDeclName()
3896                                             << Message;
3897  else {
3898    if (!UnknownObjCClass)
3899      Diag(Loc, diag::warn_deprecated) << D->getDeclName();
3900    else {
3901      Diag(Loc, diag::warn_deprecated_fwdclass_message) << D->getDeclName();
3902      Diag(UnknownObjCClass->getLocation(), diag::note_forward_class);
3903    }
3904  }
3905}
3906