SemaDeclAttr.cpp revision 9aa926143ba36c09bea5b93b22205b30784a7a04
1//===--- SemaDeclAttr.cpp - Declaration Attribute Handling ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements decl-related attribute processing.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "TargetAttributesSema.h"
16#include "clang/AST/ASTContext.h"
17#include "clang/AST/CXXInheritance.h"
18#include "clang/AST/DeclCXX.h"
19#include "clang/AST/DeclObjC.h"
20#include "clang/AST/DeclTemplate.h"
21#include "clang/AST/Expr.h"
22#include "clang/AST/Mangle.h"
23#include "clang/Basic/CharInfo.h"
24#include "clang/Basic/SourceManager.h"
25#include "clang/Basic/TargetInfo.h"
26#include "clang/Lex/Preprocessor.h"
27#include "clang/Sema/DeclSpec.h"
28#include "clang/Sema/DelayedDiagnostic.h"
29#include "clang/Sema/Lookup.h"
30#include "clang/Sema/Scope.h"
31#include "llvm/ADT/StringExtras.h"
32using namespace clang;
33using namespace sema;
34
35/// These constants match the enumerated choices of
36/// warn_attribute_wrong_decl_type and err_attribute_wrong_decl_type.
37enum AttributeDeclKind {
38  ExpectedFunction,
39  ExpectedUnion,
40  ExpectedVariableOrFunction,
41  ExpectedFunctionOrMethod,
42  ExpectedParameter,
43  ExpectedFunctionMethodOrBlock,
44  ExpectedFunctionMethodOrClass,
45  ExpectedFunctionMethodOrParameter,
46  ExpectedClass,
47  ExpectedVariable,
48  ExpectedMethod,
49  ExpectedVariableFunctionOrLabel,
50  ExpectedFieldOrGlobalVar,
51  ExpectedStruct,
52  ExpectedVariableFunctionOrTag,
53  ExpectedTLSVar,
54  ExpectedVariableOrField,
55  ExpectedVariableFieldOrTag,
56  ExpectedTypeOrNamespace,
57  ExpectedObjectiveCInterface,
58  ExpectedMethodOrProperty
59};
60
61//===----------------------------------------------------------------------===//
62//  Helper functions
63//===----------------------------------------------------------------------===//
64
65static const FunctionType *getFunctionType(const Decl *D,
66                                           bool blocksToo = true) {
67  QualType Ty;
68  if (const ValueDecl *decl = dyn_cast<ValueDecl>(D))
69    Ty = decl->getType();
70  else if (const FieldDecl *decl = dyn_cast<FieldDecl>(D))
71    Ty = decl->getType();
72  else if (const TypedefNameDecl* decl = dyn_cast<TypedefNameDecl>(D))
73    Ty = decl->getUnderlyingType();
74  else
75    return 0;
76
77  if (Ty->isFunctionPointerType())
78    Ty = Ty->getAs<PointerType>()->getPointeeType();
79  else if (blocksToo && Ty->isBlockPointerType())
80    Ty = Ty->getAs<BlockPointerType>()->getPointeeType();
81
82  return Ty->getAs<FunctionType>();
83}
84
85// FIXME: We should provide an abstraction around a method or function
86// to provide the following bits of information.
87
88/// isFunction - Return true if the given decl has function
89/// type (function or function-typed variable).
90static bool isFunction(const Decl *D) {
91  return getFunctionType(D, false) != NULL;
92}
93
94/// isFunctionOrMethod - Return true if the given decl has function
95/// type (function or function-typed variable) or an Objective-C
96/// method.
97static bool isFunctionOrMethod(const Decl *D) {
98  return isFunction(D) || isa<ObjCMethodDecl>(D);
99}
100
101/// isFunctionOrMethodOrBlock - Return true if the given decl has function
102/// type (function or function-typed variable) or an Objective-C
103/// method or a block.
104static bool isFunctionOrMethodOrBlock(const Decl *D) {
105  if (isFunctionOrMethod(D))
106    return true;
107  // check for block is more involved.
108  if (const VarDecl *V = dyn_cast<VarDecl>(D)) {
109    QualType Ty = V->getType();
110    return Ty->isBlockPointerType();
111  }
112  return isa<BlockDecl>(D);
113}
114
115/// Return true if the given decl has a declarator that should have
116/// been processed by Sema::GetTypeForDeclarator.
117static bool hasDeclarator(const Decl *D) {
118  // In some sense, TypedefDecl really *ought* to be a DeclaratorDecl.
119  return isa<DeclaratorDecl>(D) || isa<BlockDecl>(D) || isa<TypedefNameDecl>(D) ||
120         isa<ObjCPropertyDecl>(D);
121}
122
123/// hasFunctionProto - Return true if the given decl has a argument
124/// information. This decl should have already passed
125/// isFunctionOrMethod or isFunctionOrMethodOrBlock.
126static bool hasFunctionProto(const Decl *D) {
127  if (const FunctionType *FnTy = getFunctionType(D))
128    return isa<FunctionProtoType>(FnTy);
129  else {
130    assert(isa<ObjCMethodDecl>(D) || isa<BlockDecl>(D));
131    return true;
132  }
133}
134
135/// getFunctionOrMethodNumArgs - Return number of function or method
136/// arguments. It is an error to call this on a K&R function (use
137/// hasFunctionProto first).
138static unsigned getFunctionOrMethodNumArgs(const Decl *D) {
139  if (const FunctionType *FnTy = getFunctionType(D))
140    return cast<FunctionProtoType>(FnTy)->getNumArgs();
141  if (const BlockDecl *BD = dyn_cast<BlockDecl>(D))
142    return BD->getNumParams();
143  return cast<ObjCMethodDecl>(D)->param_size();
144}
145
146static QualType getFunctionOrMethodArgType(const Decl *D, unsigned Idx) {
147  if (const FunctionType *FnTy = getFunctionType(D))
148    return cast<FunctionProtoType>(FnTy)->getArgType(Idx);
149  if (const BlockDecl *BD = dyn_cast<BlockDecl>(D))
150    return BD->getParamDecl(Idx)->getType();
151
152  return cast<ObjCMethodDecl>(D)->param_begin()[Idx]->getType();
153}
154
155static QualType getFunctionOrMethodResultType(const Decl *D) {
156  if (const FunctionType *FnTy = getFunctionType(D))
157    return cast<FunctionProtoType>(FnTy)->getResultType();
158  return cast<ObjCMethodDecl>(D)->getResultType();
159}
160
161static bool isFunctionOrMethodVariadic(const Decl *D) {
162  if (const FunctionType *FnTy = getFunctionType(D)) {
163    const FunctionProtoType *proto = cast<FunctionProtoType>(FnTy);
164    return proto->isVariadic();
165  } else if (const BlockDecl *BD = dyn_cast<BlockDecl>(D))
166    return BD->isVariadic();
167  else {
168    return cast<ObjCMethodDecl>(D)->isVariadic();
169  }
170}
171
172static bool isInstanceMethod(const Decl *D) {
173  if (const CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(D))
174    return MethodDecl->isInstance();
175  return false;
176}
177
178static inline bool isNSStringType(QualType T, ASTContext &Ctx) {
179  const ObjCObjectPointerType *PT = T->getAs<ObjCObjectPointerType>();
180  if (!PT)
181    return false;
182
183  ObjCInterfaceDecl *Cls = PT->getObjectType()->getInterface();
184  if (!Cls)
185    return false;
186
187  IdentifierInfo* ClsName = Cls->getIdentifier();
188
189  // FIXME: Should we walk the chain of classes?
190  return ClsName == &Ctx.Idents.get("NSString") ||
191         ClsName == &Ctx.Idents.get("NSMutableString");
192}
193
194static inline bool isCFStringType(QualType T, ASTContext &Ctx) {
195  const PointerType *PT = T->getAs<PointerType>();
196  if (!PT)
197    return false;
198
199  const RecordType *RT = PT->getPointeeType()->getAs<RecordType>();
200  if (!RT)
201    return false;
202
203  const RecordDecl *RD = RT->getDecl();
204  if (RD->getTagKind() != TTK_Struct)
205    return false;
206
207  return RD->getIdentifier() == &Ctx.Idents.get("__CFString");
208}
209
210/// \brief Check if the attribute has exactly as many args as Num. May
211/// output an error.
212static bool checkAttributeNumArgs(Sema &S, const AttributeList &Attr,
213                                  unsigned int Num) {
214  if (Attr.getNumArgs() != Num) {
215    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments)
216      << Attr.getName() << Num;
217    return false;
218  }
219
220  return true;
221}
222
223
224/// \brief Check if the attribute has at least as many args as Num. May
225/// output an error.
226static bool checkAttributeAtLeastNumArgs(Sema &S, const AttributeList &Attr,
227                                  unsigned int Num) {
228  if (Attr.getNumArgs() < Num) {
229    S.Diag(Attr.getLoc(), diag::err_attribute_too_few_arguments) << Num;
230    return false;
231  }
232
233  return true;
234}
235
236/// \brief Check if IdxExpr is a valid argument index for a function or
237/// instance method D.  May output an error.
238///
239/// \returns true if IdxExpr is a valid index.
240static bool checkFunctionOrMethodArgumentIndex(Sema &S, const Decl *D,
241                                               StringRef AttrName,
242                                               SourceLocation AttrLoc,
243                                               unsigned AttrArgNum,
244                                               const Expr *IdxExpr,
245                                               uint64_t &Idx)
246{
247  assert(isFunctionOrMethod(D));
248
249  // In C++ the implicit 'this' function parameter also counts.
250  // Parameters are counted from one.
251  bool HP = hasFunctionProto(D);
252  bool HasImplicitThisParam = isInstanceMethod(D);
253  bool IV = HP && isFunctionOrMethodVariadic(D);
254  unsigned NumArgs = (HP ? getFunctionOrMethodNumArgs(D) : 0) +
255                     HasImplicitThisParam;
256
257  llvm::APSInt IdxInt;
258  if (IdxExpr->isTypeDependent() || IdxExpr->isValueDependent() ||
259      !IdxExpr->isIntegerConstantExpr(IdxInt, S.Context)) {
260    std::string Name = std::string("'") + AttrName.str() + std::string("'");
261    S.Diag(AttrLoc, diag::err_attribute_argument_n_type) << Name.c_str()
262      << AttrArgNum << AANT_ArgumentIntegerConstant << IdxExpr->getSourceRange();
263    return false;
264  }
265
266  Idx = IdxInt.getLimitedValue();
267  if (Idx < 1 || (!IV && Idx > NumArgs)) {
268    S.Diag(AttrLoc, diag::err_attribute_argument_out_of_bounds)
269      << AttrName << AttrArgNum << IdxExpr->getSourceRange();
270    return false;
271  }
272  Idx--; // Convert to zero-based.
273  if (HasImplicitThisParam) {
274    if (Idx == 0) {
275      S.Diag(AttrLoc,
276             diag::err_attribute_invalid_implicit_this_argument)
277        << AttrName << IdxExpr->getSourceRange();
278      return false;
279    }
280    --Idx;
281  }
282
283  return true;
284}
285
286/// \brief Check if the argument \p ArgNum of \p Attr is a ASCII string literal.
287/// If not emit an error and return false. If the argument is an identifier it
288/// will emit an error with a fixit hint and treat it as if it was a string
289/// literal.
290bool Sema::checkStringLiteralArgumentAttr(const AttributeList &Attr,
291                                          unsigned ArgNum, StringRef &Str,
292                                          SourceLocation *ArgLocation) {
293  // Look for identifiers. If we have one emit a hint to fix it to a literal.
294  if (Attr.isArgIdent(ArgNum)) {
295    IdentifierLoc *Loc = Attr.getArgAsIdent(ArgNum);
296    Diag(Loc->Loc, diag::err_attribute_argument_type)
297        << Attr.getName() << AANT_ArgumentString
298        << FixItHint::CreateInsertion(Loc->Loc, "\"")
299        << FixItHint::CreateInsertion(PP.getLocForEndOfToken(Loc->Loc), "\"");
300    Str = Loc->Ident->getName();
301    if (ArgLocation)
302      *ArgLocation = Loc->Loc;
303    return true;
304  }
305
306  // Now check for an actual string literal.
307  Expr *ArgExpr = Attr.getArgAsExpr(ArgNum);
308  StringLiteral *Literal = dyn_cast<StringLiteral>(ArgExpr->IgnoreParenCasts());
309  if (ArgLocation)
310    *ArgLocation = ArgExpr->getLocStart();
311
312  if (!Literal || !Literal->isAscii()) {
313    Diag(ArgExpr->getLocStart(), diag::err_attribute_argument_type)
314        << Attr.getName() << AANT_ArgumentString;
315    return false;
316  }
317
318  Str = Literal->getString();
319  return true;
320}
321
322///
323/// \brief Check if passed in Decl is a field or potentially shared global var
324/// \return true if the Decl is a field or potentially shared global variable
325///
326static bool mayBeSharedVariable(const Decl *D) {
327  if (isa<FieldDecl>(D))
328    return true;
329  if (const VarDecl *vd = dyn_cast<VarDecl>(D))
330    return vd->hasGlobalStorage() && !vd->getTLSKind();
331
332  return false;
333}
334
335/// \brief Check if the passed-in expression is of type int or bool.
336static bool isIntOrBool(Expr *Exp) {
337  QualType QT = Exp->getType();
338  return QT->isBooleanType() || QT->isIntegerType();
339}
340
341
342// Check to see if the type is a smart pointer of some kind.  We assume
343// it's a smart pointer if it defines both operator-> and operator*.
344static bool threadSafetyCheckIsSmartPointer(Sema &S, const RecordType* RT) {
345  DeclContextLookupConstResult Res1 = RT->getDecl()->lookup(
346    S.Context.DeclarationNames.getCXXOperatorName(OO_Star));
347  if (Res1.empty())
348    return false;
349
350  DeclContextLookupConstResult Res2 = RT->getDecl()->lookup(
351    S.Context.DeclarationNames.getCXXOperatorName(OO_Arrow));
352  if (Res2.empty())
353    return false;
354
355  return true;
356}
357
358/// \brief Check if passed in Decl is a pointer type.
359/// Note that this function may produce an error message.
360/// \return true if the Decl is a pointer type; false otherwise
361static bool threadSafetyCheckIsPointer(Sema &S, const Decl *D,
362                                       const AttributeList &Attr) {
363  if (const ValueDecl *vd = dyn_cast<ValueDecl>(D)) {
364    QualType QT = vd->getType();
365    if (QT->isAnyPointerType())
366      return true;
367
368    if (const RecordType *RT = QT->getAs<RecordType>()) {
369      // If it's an incomplete type, it could be a smart pointer; skip it.
370      // (We don't want to force template instantiation if we can avoid it,
371      // since that would alter the order in which templates are instantiated.)
372      if (RT->isIncompleteType())
373        return true;
374
375      if (threadSafetyCheckIsSmartPointer(S, RT))
376        return true;
377    }
378
379    S.Diag(Attr.getLoc(), diag::warn_thread_attribute_decl_not_pointer)
380      << Attr.getName()->getName() << QT;
381  } else {
382    S.Diag(Attr.getLoc(), diag::err_attribute_can_be_applied_only_to_value_decl)
383      << Attr.getName();
384  }
385  return false;
386}
387
388/// \brief Checks that the passed in QualType either is of RecordType or points
389/// to RecordType. Returns the relevant RecordType, null if it does not exit.
390static const RecordType *getRecordType(QualType QT) {
391  if (const RecordType *RT = QT->getAs<RecordType>())
392    return RT;
393
394  // Now check if we point to record type.
395  if (const PointerType *PT = QT->getAs<PointerType>())
396    return PT->getPointeeType()->getAs<RecordType>();
397
398  return 0;
399}
400
401
402static bool checkBaseClassIsLockableCallback(const CXXBaseSpecifier *Specifier,
403                                             CXXBasePath &Path, void *Unused) {
404  const RecordType *RT = Specifier->getType()->getAs<RecordType>();
405  if (RT->getDecl()->getAttr<LockableAttr>())
406    return true;
407  return false;
408}
409
410
411/// \brief Thread Safety Analysis: Checks that the passed in RecordType
412/// resolves to a lockable object.
413static void checkForLockableRecord(Sema &S, Decl *D, const AttributeList &Attr,
414                                   QualType Ty) {
415  const RecordType *RT = getRecordType(Ty);
416
417  // Warn if could not get record type for this argument.
418  if (!RT) {
419    S.Diag(Attr.getLoc(), diag::warn_thread_attribute_argument_not_class)
420      << Attr.getName() << Ty.getAsString();
421    return;
422  }
423
424  // Don't check for lockable if the class hasn't been defined yet.
425  if (RT->isIncompleteType())
426    return;
427
428  // Allow smart pointers to be used as lockable objects.
429  // FIXME -- Check the type that the smart pointer points to.
430  if (threadSafetyCheckIsSmartPointer(S, RT))
431    return;
432
433  // Check if the type is lockable.
434  RecordDecl *RD = RT->getDecl();
435  if (RD->getAttr<LockableAttr>())
436    return;
437
438  // Else check if any base classes are lockable.
439  if (CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
440    CXXBasePaths BPaths(false, false);
441    if (CRD->lookupInBases(checkBaseClassIsLockableCallback, 0, BPaths))
442      return;
443  }
444
445  S.Diag(Attr.getLoc(), diag::warn_thread_attribute_argument_not_lockable)
446    << Attr.getName() << Ty.getAsString();
447}
448
449/// \brief Thread Safety Analysis: Checks that all attribute arguments, starting
450/// from Sidx, resolve to a lockable object.
451/// \param Sidx The attribute argument index to start checking with.
452/// \param ParamIdxOk Whether an argument can be indexing into a function
453/// parameter list.
454static void checkAttrArgsAreLockableObjs(Sema &S, Decl *D,
455                                         const AttributeList &Attr,
456                                         SmallVectorImpl<Expr*> &Args,
457                                         int Sidx = 0,
458                                         bool ParamIdxOk = false) {
459  for(unsigned Idx = Sidx; Idx < Attr.getNumArgs(); ++Idx) {
460    Expr *ArgExp = Attr.getArgAsExpr(Idx);
461
462    if (ArgExp->isTypeDependent()) {
463      // FIXME -- need to check this again on template instantiation
464      Args.push_back(ArgExp);
465      continue;
466    }
467
468    if (StringLiteral *StrLit = dyn_cast<StringLiteral>(ArgExp)) {
469      if (StrLit->getLength() == 0 ||
470          (StrLit->isAscii() && StrLit->getString() == StringRef("*"))) {
471        // Pass empty strings to the analyzer without warnings.
472        // Treat "*" as the universal lock.
473        Args.push_back(ArgExp);
474        continue;
475      }
476
477      // We allow constant strings to be used as a placeholder for expressions
478      // that are not valid C++ syntax, but warn that they are ignored.
479      S.Diag(Attr.getLoc(), diag::warn_thread_attribute_ignored) <<
480        Attr.getName();
481      Args.push_back(ArgExp);
482      continue;
483    }
484
485    QualType ArgTy = ArgExp->getType();
486
487    // A pointer to member expression of the form  &MyClass::mu is treated
488    // specially -- we need to look at the type of the member.
489    if (UnaryOperator *UOp = dyn_cast<UnaryOperator>(ArgExp))
490      if (UOp->getOpcode() == UO_AddrOf)
491        if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(UOp->getSubExpr()))
492          if (DRE->getDecl()->isCXXInstanceMember())
493            ArgTy = DRE->getDecl()->getType();
494
495    // First see if we can just cast to record type, or point to record type.
496    const RecordType *RT = getRecordType(ArgTy);
497
498    // Now check if we index into a record type function param.
499    if(!RT && ParamIdxOk) {
500      FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
501      IntegerLiteral *IL = dyn_cast<IntegerLiteral>(ArgExp);
502      if(FD && IL) {
503        unsigned int NumParams = FD->getNumParams();
504        llvm::APInt ArgValue = IL->getValue();
505        uint64_t ParamIdxFromOne = ArgValue.getZExtValue();
506        uint64_t ParamIdxFromZero = ParamIdxFromOne - 1;
507        if(!ArgValue.isStrictlyPositive() || ParamIdxFromOne > NumParams) {
508          S.Diag(Attr.getLoc(), diag::err_attribute_argument_out_of_range)
509            << Attr.getName() << Idx + 1 << NumParams;
510          continue;
511        }
512        ArgTy = FD->getParamDecl(ParamIdxFromZero)->getType();
513      }
514    }
515
516    checkForLockableRecord(S, D, Attr, ArgTy);
517
518    Args.push_back(ArgExp);
519  }
520}
521
522//===----------------------------------------------------------------------===//
523// Attribute Implementations
524//===----------------------------------------------------------------------===//
525
526// FIXME: All this manual attribute parsing code is gross. At the
527// least add some helper functions to check most argument patterns (#
528// and types of args).
529
530enum ThreadAttributeDeclKind {
531  ThreadExpectedFieldOrGlobalVar,
532  ThreadExpectedFunctionOrMethod,
533  ThreadExpectedClassOrStruct
534};
535
536static bool checkGuardedVarAttrCommon(Sema &S, Decl *D,
537                                      const AttributeList &Attr) {
538  // D must be either a member field or global (potentially shared) variable.
539  if (!mayBeSharedVariable(D)) {
540    S.Diag(Attr.getLoc(), diag::warn_thread_attribute_wrong_decl_type)
541      << Attr.getName() << ThreadExpectedFieldOrGlobalVar;
542    return false;
543  }
544
545  return true;
546}
547
548static void handleGuardedVarAttr(Sema &S, Decl *D, const AttributeList &Attr) {
549  if (!checkGuardedVarAttrCommon(S, D, Attr))
550    return;
551
552  D->addAttr(::new (S.Context)
553             GuardedVarAttr(Attr.getRange(), S.Context,
554                            Attr.getAttributeSpellingListIndex()));
555}
556
557static void handlePtGuardedVarAttr(Sema &S, Decl *D,
558                                   const AttributeList &Attr) {
559  if (!checkGuardedVarAttrCommon(S, D, Attr))
560    return;
561
562  if (!threadSafetyCheckIsPointer(S, D, Attr))
563    return;
564
565  D->addAttr(::new (S.Context)
566             PtGuardedVarAttr(Attr.getRange(), S.Context,
567                              Attr.getAttributeSpellingListIndex()));
568}
569
570static bool checkGuardedByAttrCommon(Sema &S, Decl *D,
571                                     const AttributeList &Attr,
572                                     Expr* &Arg) {
573  // D must be either a member field or global (potentially shared) variable.
574  if (!mayBeSharedVariable(D)) {
575    S.Diag(Attr.getLoc(), diag::warn_thread_attribute_wrong_decl_type)
576      << Attr.getName() << ThreadExpectedFieldOrGlobalVar;
577    return false;
578  }
579
580  SmallVector<Expr*, 1> Args;
581  // check that all arguments are lockable objects
582  checkAttrArgsAreLockableObjs(S, D, Attr, Args);
583  unsigned Size = Args.size();
584  if (Size != 1)
585    return false;
586
587  Arg = Args[0];
588
589  return true;
590}
591
592static void handleGuardedByAttr(Sema &S, Decl *D, const AttributeList &Attr) {
593  Expr *Arg = 0;
594  if (!checkGuardedByAttrCommon(S, D, Attr, Arg))
595    return;
596
597  D->addAttr(::new (S.Context) GuardedByAttr(Attr.getRange(), S.Context, Arg));
598}
599
600static void handlePtGuardedByAttr(Sema &S, Decl *D,
601                                  const AttributeList &Attr) {
602  Expr *Arg = 0;
603  if (!checkGuardedByAttrCommon(S, D, Attr, Arg))
604    return;
605
606  if (!threadSafetyCheckIsPointer(S, D, Attr))
607    return;
608
609  D->addAttr(::new (S.Context) PtGuardedByAttr(Attr.getRange(),
610                                               S.Context, Arg));
611}
612
613static bool checkLockableAttrCommon(Sema &S, Decl *D,
614                                    const AttributeList &Attr) {
615  // FIXME: Lockable structs for C code.
616  if (!isa<RecordDecl>(D)) {
617    S.Diag(Attr.getLoc(), diag::warn_thread_attribute_wrong_decl_type)
618      << Attr.getName() << ThreadExpectedClassOrStruct;
619    return false;
620  }
621
622  return true;
623}
624
625static void handleLockableAttr(Sema &S, Decl *D, const AttributeList &Attr) {
626  if (!checkLockableAttrCommon(S, D, Attr))
627    return;
628
629  D->addAttr(::new (S.Context) LockableAttr(Attr.getRange(), S.Context));
630}
631
632static void handleScopedLockableAttr(Sema &S, Decl *D,
633                             const AttributeList &Attr) {
634  if (!checkLockableAttrCommon(S, D, Attr))
635    return;
636
637  D->addAttr(::new (S.Context)
638             ScopedLockableAttr(Attr.getRange(), S.Context,
639                                Attr.getAttributeSpellingListIndex()));
640}
641
642static void handleNoThreadSafetyAnalysis(Sema &S, Decl *D,
643                                         const AttributeList &Attr) {
644  if (!isa<FunctionDecl>(D) && !isa<FunctionTemplateDecl>(D)) {
645    S.Diag(Attr.getLoc(), diag::warn_thread_attribute_wrong_decl_type)
646      << Attr.getName() << ThreadExpectedFunctionOrMethod;
647    return;
648  }
649
650  D->addAttr(::new (S.Context) NoThreadSafetyAnalysisAttr(Attr.getRange(),
651                                                          S.Context));
652}
653
654static void handleNoSanitizeAddressAttr(Sema &S, Decl *D,
655                                      const AttributeList &Attr) {
656  if (!isa<FunctionDecl>(D) && !isa<FunctionTemplateDecl>(D)) {
657    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_decl_type)
658      << Attr.getName() << ExpectedFunctionOrMethod;
659    return;
660  }
661
662  D->addAttr(::new (S.Context)
663             NoSanitizeAddressAttr(Attr.getRange(), S.Context,
664                                   Attr.getAttributeSpellingListIndex()));
665}
666
667static void handleNoSanitizeMemory(Sema &S, Decl *D,
668                                   const AttributeList &Attr) {
669  if (!isa<FunctionDecl>(D) && !isa<FunctionTemplateDecl>(D)) {
670    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_decl_type)
671      << Attr.getName() << ExpectedFunctionOrMethod;
672    return;
673  }
674
675  D->addAttr(::new (S.Context) NoSanitizeMemoryAttr(Attr.getRange(),
676                                                         S.Context));
677}
678
679static void handleNoSanitizeThread(Sema &S, Decl *D,
680                                   const AttributeList &Attr) {
681  if (!isa<FunctionDecl>(D) && !isa<FunctionTemplateDecl>(D)) {
682    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_decl_type)
683      << Attr.getName() << ExpectedFunctionOrMethod;
684    return;
685  }
686
687  D->addAttr(::new (S.Context) NoSanitizeThreadAttr(Attr.getRange(),
688                                                    S.Context));
689}
690
691static bool checkAcquireOrderAttrCommon(Sema &S, Decl *D,
692                                        const AttributeList &Attr,
693                                        SmallVectorImpl<Expr *> &Args) {
694  if (!checkAttributeAtLeastNumArgs(S, Attr, 1))
695    return false;
696
697  // D must be either a member field or global (potentially shared) variable.
698  ValueDecl *VD = dyn_cast<ValueDecl>(D);
699  if (!VD || !mayBeSharedVariable(D)) {
700    S.Diag(Attr.getLoc(), diag::warn_thread_attribute_wrong_decl_type)
701      << Attr.getName() << ThreadExpectedFieldOrGlobalVar;
702    return false;
703  }
704
705  // Check that this attribute only applies to lockable types.
706  QualType QT = VD->getType();
707  if (!QT->isDependentType()) {
708    const RecordType *RT = getRecordType(QT);
709    if (!RT || !RT->getDecl()->getAttr<LockableAttr>()) {
710      S.Diag(Attr.getLoc(), diag::warn_thread_attribute_decl_not_lockable)
711        << Attr.getName();
712      return false;
713    }
714  }
715
716  // Check that all arguments are lockable objects.
717  checkAttrArgsAreLockableObjs(S, D, Attr, Args);
718  if (Args.empty())
719    return false;
720
721  return true;
722}
723
724static void handleAcquiredAfterAttr(Sema &S, Decl *D,
725                                    const AttributeList &Attr) {
726  SmallVector<Expr*, 1> Args;
727  if (!checkAcquireOrderAttrCommon(S, D, Attr, Args))
728    return;
729
730  Expr **StartArg = &Args[0];
731  D->addAttr(::new (S.Context)
732             AcquiredAfterAttr(Attr.getRange(), S.Context,
733                               StartArg, Args.size(),
734                               Attr.getAttributeSpellingListIndex()));
735}
736
737static void handleAcquiredBeforeAttr(Sema &S, Decl *D,
738                                     const AttributeList &Attr) {
739  SmallVector<Expr*, 1> Args;
740  if (!checkAcquireOrderAttrCommon(S, D, Attr, Args))
741    return;
742
743  Expr **StartArg = &Args[0];
744  D->addAttr(::new (S.Context)
745             AcquiredBeforeAttr(Attr.getRange(), S.Context,
746                                StartArg, Args.size(),
747                                Attr.getAttributeSpellingListIndex()));
748}
749
750static bool checkLockFunAttrCommon(Sema &S, Decl *D,
751                                   const AttributeList &Attr,
752                                   SmallVectorImpl<Expr *> &Args) {
753  // zero or more arguments ok
754
755  // check that the attribute is applied to a function
756  if (!isa<FunctionDecl>(D) && !isa<FunctionTemplateDecl>(D)) {
757    S.Diag(Attr.getLoc(), diag::warn_thread_attribute_wrong_decl_type)
758      << Attr.getName() << ThreadExpectedFunctionOrMethod;
759    return false;
760  }
761
762  // check that all arguments are lockable objects
763  checkAttrArgsAreLockableObjs(S, D, Attr, Args, 0, /*ParamIdxOk=*/true);
764
765  return true;
766}
767
768static void handleSharedLockFunctionAttr(Sema &S, Decl *D,
769                                         const AttributeList &Attr) {
770  SmallVector<Expr*, 1> Args;
771  if (!checkLockFunAttrCommon(S, D, Attr, Args))
772    return;
773
774  unsigned Size = Args.size();
775  Expr **StartArg = Size == 0 ? 0 : &Args[0];
776  D->addAttr(::new (S.Context)
777             SharedLockFunctionAttr(Attr.getRange(), S.Context, StartArg, Size,
778                                    Attr.getAttributeSpellingListIndex()));
779}
780
781static void handleExclusiveLockFunctionAttr(Sema &S, Decl *D,
782                                            const AttributeList &Attr) {
783  SmallVector<Expr*, 1> Args;
784  if (!checkLockFunAttrCommon(S, D, Attr, Args))
785    return;
786
787  unsigned Size = Args.size();
788  Expr **StartArg = Size == 0 ? 0 : &Args[0];
789  D->addAttr(::new (S.Context)
790             ExclusiveLockFunctionAttr(Attr.getRange(), S.Context,
791                                       StartArg, Size,
792                                       Attr.getAttributeSpellingListIndex()));
793}
794
795static void handleAssertSharedLockAttr(Sema &S, Decl *D,
796                                       const AttributeList &Attr) {
797  SmallVector<Expr*, 1> Args;
798  if (!checkLockFunAttrCommon(S, D, Attr, Args))
799    return;
800
801  unsigned Size = Args.size();
802  Expr **StartArg = Size == 0 ? 0 : &Args[0];
803  D->addAttr(::new (S.Context)
804             AssertSharedLockAttr(Attr.getRange(), S.Context, StartArg, Size,
805                                  Attr.getAttributeSpellingListIndex()));
806}
807
808static void handleAssertExclusiveLockAttr(Sema &S, Decl *D,
809                                          const AttributeList &Attr) {
810  SmallVector<Expr*, 1> Args;
811  if (!checkLockFunAttrCommon(S, D, Attr, Args))
812    return;
813
814  unsigned Size = Args.size();
815  Expr **StartArg = Size == 0 ? 0 : &Args[0];
816  D->addAttr(::new (S.Context)
817             AssertExclusiveLockAttr(Attr.getRange(), S.Context,
818                                     StartArg, Size,
819                                     Attr.getAttributeSpellingListIndex()));
820}
821
822
823static bool checkTryLockFunAttrCommon(Sema &S, Decl *D,
824                                      const AttributeList &Attr,
825                                      SmallVectorImpl<Expr *> &Args) {
826  if (!checkAttributeAtLeastNumArgs(S, Attr, 1))
827    return false;
828
829  if (!isa<FunctionDecl>(D) && !isa<FunctionTemplateDecl>(D)) {
830    S.Diag(Attr.getLoc(), diag::warn_thread_attribute_wrong_decl_type)
831      << Attr.getName() << ThreadExpectedFunctionOrMethod;
832    return false;
833  }
834
835  if (!isIntOrBool(Attr.getArgAsExpr(0))) {
836    S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_type)
837      << Attr.getName() << 1 << AANT_ArgumentIntOrBool;
838    return false;
839  }
840
841  // check that all arguments are lockable objects
842  checkAttrArgsAreLockableObjs(S, D, Attr, Args, 1);
843
844  return true;
845}
846
847static void handleSharedTrylockFunctionAttr(Sema &S, Decl *D,
848                                            const AttributeList &Attr) {
849  SmallVector<Expr*, 2> Args;
850  if (!checkTryLockFunAttrCommon(S, D, Attr, Args))
851    return;
852
853  D->addAttr(::new (S.Context)
854             SharedTrylockFunctionAttr(Attr.getRange(), S.Context,
855                                       Attr.getArgAsExpr(0),
856                                       Args.data(), Args.size(),
857                                       Attr.getAttributeSpellingListIndex()));
858}
859
860static void handleExclusiveTrylockFunctionAttr(Sema &S, Decl *D,
861                                               const AttributeList &Attr) {
862  SmallVector<Expr*, 2> Args;
863  if (!checkTryLockFunAttrCommon(S, D, Attr, Args))
864    return;
865
866  D->addAttr(::new (S.Context)
867             ExclusiveTrylockFunctionAttr(Attr.getRange(), S.Context,
868                                          Attr.getArgAsExpr(0),
869                                          Args.data(), Args.size(),
870                                          Attr.getAttributeSpellingListIndex()));
871}
872
873static bool checkLocksRequiredCommon(Sema &S, Decl *D,
874                                     const AttributeList &Attr,
875                                     SmallVectorImpl<Expr *> &Args) {
876  if (!checkAttributeAtLeastNumArgs(S, Attr, 1))
877    return false;
878
879  if (!isa<FunctionDecl>(D) && !isa<FunctionTemplateDecl>(D)) {
880    S.Diag(Attr.getLoc(), diag::warn_thread_attribute_wrong_decl_type)
881      << Attr.getName() << ThreadExpectedFunctionOrMethod;
882    return false;
883  }
884
885  // check that all arguments are lockable objects
886  checkAttrArgsAreLockableObjs(S, D, Attr, Args);
887  if (Args.empty())
888    return false;
889
890  return true;
891}
892
893static void handleExclusiveLocksRequiredAttr(Sema &S, Decl *D,
894                                             const AttributeList &Attr) {
895  SmallVector<Expr*, 1> Args;
896  if (!checkLocksRequiredCommon(S, D, Attr, Args))
897    return;
898
899  Expr **StartArg = &Args[0];
900  D->addAttr(::new (S.Context)
901             ExclusiveLocksRequiredAttr(Attr.getRange(), S.Context,
902                                        StartArg, Args.size(),
903                                        Attr.getAttributeSpellingListIndex()));
904}
905
906static void handleSharedLocksRequiredAttr(Sema &S, Decl *D,
907                                          const AttributeList &Attr) {
908  SmallVector<Expr*, 1> Args;
909  if (!checkLocksRequiredCommon(S, D, Attr, Args))
910    return;
911
912  Expr **StartArg = &Args[0];
913  D->addAttr(::new (S.Context)
914             SharedLocksRequiredAttr(Attr.getRange(), S.Context,
915                                     StartArg, Args.size(),
916                                     Attr.getAttributeSpellingListIndex()));
917}
918
919static void handleUnlockFunAttr(Sema &S, Decl *D,
920                                const AttributeList &Attr) {
921  // zero or more arguments ok
922
923  if (!isa<FunctionDecl>(D) && !isa<FunctionTemplateDecl>(D)) {
924    S.Diag(Attr.getLoc(), diag::warn_thread_attribute_wrong_decl_type)
925      << Attr.getName() << ThreadExpectedFunctionOrMethod;
926    return;
927  }
928
929  // check that all arguments are lockable objects
930  SmallVector<Expr*, 1> Args;
931  checkAttrArgsAreLockableObjs(S, D, Attr, Args, 0, /*ParamIdxOk=*/true);
932  unsigned Size = Args.size();
933  Expr **StartArg = Size == 0 ? 0 : &Args[0];
934
935  D->addAttr(::new (S.Context)
936             UnlockFunctionAttr(Attr.getRange(), S.Context, StartArg, Size,
937                                Attr.getAttributeSpellingListIndex()));
938}
939
940static void handleLockReturnedAttr(Sema &S, Decl *D,
941                                   const AttributeList &Attr) {
942  if (!isa<FunctionDecl>(D) && !isa<FunctionTemplateDecl>(D)) {
943    S.Diag(Attr.getLoc(), diag::warn_thread_attribute_wrong_decl_type)
944      << Attr.getName() << ThreadExpectedFunctionOrMethod;
945    return;
946  }
947
948  // check that the argument is lockable object
949  SmallVector<Expr*, 1> Args;
950  checkAttrArgsAreLockableObjs(S, D, Attr, Args);
951  unsigned Size = Args.size();
952  if (Size == 0)
953    return;
954
955  D->addAttr(::new (S.Context)
956             LockReturnedAttr(Attr.getRange(), S.Context, Args[0],
957                              Attr.getAttributeSpellingListIndex()));
958}
959
960static void handleLocksExcludedAttr(Sema &S, Decl *D,
961                                    const AttributeList &Attr) {
962  if (!checkAttributeAtLeastNumArgs(S, Attr, 1))
963    return;
964
965  if (!isa<FunctionDecl>(D) && !isa<FunctionTemplateDecl>(D)) {
966    S.Diag(Attr.getLoc(), diag::warn_thread_attribute_wrong_decl_type)
967      << Attr.getName() << ThreadExpectedFunctionOrMethod;
968    return;
969  }
970
971  // check that all arguments are lockable objects
972  SmallVector<Expr*, 1> Args;
973  checkAttrArgsAreLockableObjs(S, D, Attr, Args);
974  unsigned Size = Args.size();
975  if (Size == 0)
976    return;
977  Expr **StartArg = &Args[0];
978
979  D->addAttr(::new (S.Context)
980             LocksExcludedAttr(Attr.getRange(), S.Context, StartArg, Size,
981                               Attr.getAttributeSpellingListIndex()));
982}
983
984static void handleConsumableAttr(Sema &S, Decl *D, const AttributeList &Attr) {
985  ConsumableAttr::ConsumedState DefaultState;
986
987  if (Attr.isArgIdent(0)) {
988    IdentifierLoc *IL = Attr.getArgAsIdent(0);
989    if (!ConsumableAttr::ConvertStrToConsumedState(IL->Ident->getName(),
990                                                   DefaultState)) {
991      S.Diag(IL->Loc, diag::warn_attribute_type_not_supported)
992        << Attr.getName() << IL->Ident;
993      return;
994    }
995  } else {
996    S.Diag(Attr.getLoc(), diag::err_attribute_argument_type)
997        << Attr.getName() << AANT_ArgumentIdentifier;
998    return;
999  }
1000
1001  if (!isa<CXXRecordDecl>(D)) {
1002    S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type) <<
1003      Attr.getName() << ExpectedClass;
1004    return;
1005  }
1006
1007  D->addAttr(::new (S.Context)
1008             ConsumableAttr(Attr.getRange(), S.Context, DefaultState,
1009                            Attr.getAttributeSpellingListIndex()));
1010}
1011
1012static bool checkForConsumableClass(Sema &S, const CXXMethodDecl *MD,
1013                                        const AttributeList &Attr) {
1014  ASTContext &CurrContext = S.getASTContext();
1015  QualType ThisType = MD->getThisType(CurrContext)->getPointeeType();
1016
1017  if (const CXXRecordDecl *RD = ThisType->getAsCXXRecordDecl()) {
1018    if (!RD->hasAttr<ConsumableAttr>()) {
1019      S.Diag(Attr.getLoc(), diag::warn_attr_on_unconsumable_class) <<
1020        RD->getNameAsString();
1021
1022      return false;
1023    }
1024  }
1025
1026  return true;
1027}
1028
1029
1030static void handleCallableWhenAttr(Sema &S, Decl *D,
1031                                   const AttributeList &Attr) {
1032  if (!checkAttributeAtLeastNumArgs(S, Attr, 1))
1033    return;
1034
1035  if (!isa<CXXMethodDecl>(D)) {
1036    S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type) <<
1037      Attr.getName() << ExpectedMethod;
1038    return;
1039  }
1040
1041  if (!checkForConsumableClass(S, cast<CXXMethodDecl>(D), Attr))
1042    return;
1043
1044  SmallVector<CallableWhenAttr::ConsumedState, 3> States;
1045  for (unsigned ArgIndex = 0; ArgIndex < Attr.getNumArgs(); ++ArgIndex) {
1046    CallableWhenAttr::ConsumedState CallableState;
1047
1048    StringRef StateString;
1049    SourceLocation Loc;
1050    if (!S.checkStringLiteralArgumentAttr(Attr, ArgIndex, StateString, &Loc))
1051      return;
1052
1053    if (!CallableWhenAttr::ConvertStrToConsumedState(StateString,
1054                                                      CallableState)) {
1055      S.Diag(Loc, diag::warn_attribute_type_not_supported)
1056        << Attr.getName() << StateString;
1057      return;
1058    }
1059
1060    States.push_back(CallableState);
1061  }
1062
1063  D->addAttr(::new (S.Context)
1064             CallableWhenAttr(Attr.getRange(), S.Context, States.data(),
1065               States.size(), Attr.getAttributeSpellingListIndex()));
1066}
1067
1068
1069static void handleReturnTypestateAttr(Sema &S, Decl *D,
1070                                      const AttributeList &Attr) {
1071  ReturnTypestateAttr::ConsumedState ReturnState;
1072
1073  if (Attr.isArgIdent(0)) {
1074    IdentifierLoc *IL = Attr.getArgAsIdent(0);
1075    if (!ReturnTypestateAttr::ConvertStrToConsumedState(IL->Ident->getName(),
1076                                                        ReturnState)) {
1077      S.Diag(IL->Loc, diag::warn_attribute_type_not_supported)
1078        << Attr.getName() << IL->Ident;
1079      return;
1080    }
1081  } else {
1082    S.Diag(Attr.getLoc(), diag::err_attribute_argument_type) <<
1083      Attr.getName() << AANT_ArgumentIdentifier;
1084    return;
1085  }
1086
1087  if (!isa<FunctionDecl>(D)) {
1088    S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type) <<
1089      Attr.getName() << ExpectedFunction;
1090    return;
1091  }
1092
1093  // FIXME: This check is currently being done in the analysis.  It can be
1094  //        enabled here only after the parser propagates attributes at
1095  //        template specialization definition, not declaration.
1096  //QualType ReturnType;
1097  //
1098  //if (const CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(D)) {
1099  //  ReturnType = Constructor->getThisType(S.getASTContext())->getPointeeType();
1100  //
1101  //} else {
1102  //
1103  //  ReturnType = cast<FunctionDecl>(D)->getCallResultType();
1104  //}
1105  //
1106  //const CXXRecordDecl *RD = ReturnType->getAsCXXRecordDecl();
1107  //
1108  //if (!RD || !RD->hasAttr<ConsumableAttr>()) {
1109  //    S.Diag(Attr.getLoc(), diag::warn_return_state_for_unconsumable_type) <<
1110  //      ReturnType.getAsString();
1111  //    return;
1112  //}
1113
1114  D->addAttr(::new (S.Context)
1115             ReturnTypestateAttr(Attr.getRange(), S.Context, ReturnState,
1116                                 Attr.getAttributeSpellingListIndex()));
1117}
1118
1119
1120static void handleSetTypestateAttr(Sema &S, Decl *D, const AttributeList &Attr) {
1121  if (!checkAttributeNumArgs(S, Attr, 1))
1122    return;
1123
1124  if (!isa<CXXMethodDecl>(D)) {
1125    S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type) <<
1126      Attr.getName() << ExpectedMethod;
1127    return;
1128  }
1129
1130  if (!checkForConsumableClass(S, cast<CXXMethodDecl>(D), Attr))
1131    return;
1132
1133  SetTypestateAttr::ConsumedState NewState;
1134  if (Attr.isArgIdent(0)) {
1135    IdentifierLoc *Ident = Attr.getArgAsIdent(0);
1136    StringRef Param = Ident->Ident->getName();
1137    if (!SetTypestateAttr::ConvertStrToConsumedState(Param, NewState)) {
1138      S.Diag(Ident->Loc, diag::warn_attribute_type_not_supported)
1139        << Attr.getName() << Param;
1140      return;
1141    }
1142  } else {
1143    S.Diag(Attr.getLoc(), diag::err_attribute_argument_type) <<
1144      Attr.getName() << AANT_ArgumentIdentifier;
1145    return;
1146  }
1147
1148  D->addAttr(::new (S.Context)
1149             SetTypestateAttr(Attr.getRange(), S.Context, NewState,
1150                              Attr.getAttributeSpellingListIndex()));
1151}
1152
1153static void handleTestsTypestateAttr(Sema &S, Decl *D,
1154                                        const AttributeList &Attr) {
1155  if (!checkAttributeNumArgs(S, Attr, 1))
1156    return;
1157
1158  if (!isa<CXXMethodDecl>(D)) {
1159    S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type) <<
1160      Attr.getName() << ExpectedMethod;
1161    return;
1162  }
1163
1164  if (!checkForConsumableClass(S, cast<CXXMethodDecl>(D), Attr))
1165    return;
1166
1167  TestsTypestateAttr::ConsumedState TestState;
1168  if (Attr.isArgIdent(0)) {
1169    IdentifierLoc *Ident = Attr.getArgAsIdent(0);
1170    StringRef Param = Ident->Ident->getName();
1171    if (!TestsTypestateAttr::ConvertStrToConsumedState(Param, TestState)) {
1172      S.Diag(Ident->Loc, diag::warn_attribute_type_not_supported)
1173        << Attr.getName() << Param;
1174      return;
1175    }
1176  } else {
1177    S.Diag(Attr.getLoc(), diag::err_attribute_argument_type) <<
1178      Attr.getName() << AANT_ArgumentIdentifier;
1179    return;
1180  }
1181
1182  D->addAttr(::new (S.Context)
1183             TestsTypestateAttr(Attr.getRange(), S.Context, TestState,
1184                                Attr.getAttributeSpellingListIndex()));
1185}
1186
1187static void handleExtVectorTypeAttr(Sema &S, Scope *scope, Decl *D,
1188                                    const AttributeList &Attr) {
1189  TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(D);
1190  if (TD == 0) {
1191    // __attribute__((ext_vector_type(N))) can only be applied to typedefs
1192    // and type-ids.
1193    S.Diag(Attr.getLoc(), diag::err_typecheck_ext_vector_not_typedef);
1194    return;
1195  }
1196
1197  // Remember this typedef decl, we will need it later for diagnostics.
1198  S.ExtVectorDecls.push_back(TD);
1199}
1200
1201static void handlePackedAttr(Sema &S, Decl *D, const AttributeList &Attr) {
1202  if (TagDecl *TD = dyn_cast<TagDecl>(D))
1203    TD->addAttr(::new (S.Context) PackedAttr(Attr.getRange(), S.Context));
1204  else if (FieldDecl *FD = dyn_cast<FieldDecl>(D)) {
1205    // If the alignment is less than or equal to 8 bits, the packed attribute
1206    // has no effect.
1207    if (!FD->getType()->isDependentType() &&
1208        !FD->getType()->isIncompleteType() &&
1209        S.Context.getTypeAlign(FD->getType()) <= 8)
1210      S.Diag(Attr.getLoc(), diag::warn_attribute_ignored_for_field_of_type)
1211        << Attr.getName() << FD->getType();
1212    else
1213      FD->addAttr(::new (S.Context)
1214                  PackedAttr(Attr.getRange(), S.Context,
1215                             Attr.getAttributeSpellingListIndex()));
1216  } else
1217    S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << Attr.getName();
1218}
1219
1220static void handleMsStructAttr(Sema &S, Decl *D, const AttributeList &Attr) {
1221  if (RecordDecl *RD = dyn_cast<RecordDecl>(D))
1222    RD->addAttr(::new (S.Context)
1223                MsStructAttr(Attr.getRange(), S.Context,
1224                             Attr.getAttributeSpellingListIndex()));
1225  else
1226    S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << Attr.getName();
1227}
1228
1229static void handleIBAction(Sema &S, Decl *D, const AttributeList &Attr) {
1230  // The IBAction attributes only apply to instance methods.
1231  if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D))
1232    if (MD->isInstanceMethod()) {
1233      D->addAttr(::new (S.Context)
1234                 IBActionAttr(Attr.getRange(), S.Context,
1235                              Attr.getAttributeSpellingListIndex()));
1236      return;
1237    }
1238
1239  S.Diag(Attr.getLoc(), diag::warn_attribute_ibaction) << Attr.getName();
1240}
1241
1242static bool checkIBOutletCommon(Sema &S, Decl *D, const AttributeList &Attr) {
1243  // The IBOutlet/IBOutletCollection attributes only apply to instance
1244  // variables or properties of Objective-C classes.  The outlet must also
1245  // have an object reference type.
1246  if (const ObjCIvarDecl *VD = dyn_cast<ObjCIvarDecl>(D)) {
1247    if (!VD->getType()->getAs<ObjCObjectPointerType>()) {
1248      S.Diag(Attr.getLoc(), diag::warn_iboutlet_object_type)
1249        << Attr.getName() << VD->getType() << 0;
1250      return false;
1251    }
1252  }
1253  else if (const ObjCPropertyDecl *PD = dyn_cast<ObjCPropertyDecl>(D)) {
1254    if (!PD->getType()->getAs<ObjCObjectPointerType>()) {
1255      S.Diag(Attr.getLoc(), diag::warn_iboutlet_object_type)
1256        << Attr.getName() << PD->getType() << 1;
1257      return false;
1258    }
1259  }
1260  else {
1261    S.Diag(Attr.getLoc(), diag::warn_attribute_iboutlet) << Attr.getName();
1262    return false;
1263  }
1264
1265  return true;
1266}
1267
1268static void handleIBOutlet(Sema &S, Decl *D, const AttributeList &Attr) {
1269  if (!checkIBOutletCommon(S, D, Attr))
1270    return;
1271
1272  D->addAttr(::new (S.Context)
1273             IBOutletAttr(Attr.getRange(), S.Context,
1274                          Attr.getAttributeSpellingListIndex()));
1275}
1276
1277static void handleIBOutletCollection(Sema &S, Decl *D,
1278                                     const AttributeList &Attr) {
1279
1280  // The iboutletcollection attribute can have zero or one arguments.
1281  if (Attr.getNumArgs() > 1) {
1282    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments)
1283      << Attr.getName() << 1;
1284    return;
1285  }
1286
1287  if (!checkIBOutletCommon(S, D, Attr))
1288    return;
1289
1290  IdentifierLoc *IL = Attr.isArgIdent(0) ? Attr.getArgAsIdent(0) : 0;
1291  IdentifierInfo *II;
1292  SourceLocation ILS;
1293  if (IL) {
1294    II = IL->Ident;
1295    ILS = IL->Loc;
1296  } else {
1297    II = &S.Context.Idents.get("NSObject");
1298  }
1299
1300  ParsedType TypeRep = S.getTypeName(*II, Attr.getLoc(),
1301                        S.getScopeForContext(D->getDeclContext()->getParent()));
1302  if (!TypeRep) {
1303    S.Diag(Attr.getLoc(), diag::err_iboutletcollection_type) << II;
1304    return;
1305  }
1306  QualType QT = TypeRep.get();
1307  // Diagnose use of non-object type in iboutletcollection attribute.
1308  // FIXME. Gnu attribute extension ignores use of builtin types in
1309  // attributes. So, __attribute__((iboutletcollection(char))) will be
1310  // treated as __attribute__((iboutletcollection())).
1311  if (!QT->isObjCIdType() && !QT->isObjCObjectType()) {
1312    S.Diag(Attr.getLoc(), diag::err_iboutletcollection_type) << II;
1313    return;
1314  }
1315  D->addAttr(::new (S.Context)
1316             IBOutletCollectionAttr(Attr.getRange(), S.Context, QT, ILS,
1317                                    Attr.getAttributeSpellingListIndex()));
1318}
1319
1320static void possibleTransparentUnionPointerType(QualType &T) {
1321  if (const RecordType *UT = T->getAsUnionType())
1322    if (UT && UT->getDecl()->hasAttr<TransparentUnionAttr>()) {
1323      RecordDecl *UD = UT->getDecl();
1324      for (RecordDecl::field_iterator it = UD->field_begin(),
1325           itend = UD->field_end(); it != itend; ++it) {
1326        QualType QT = it->getType();
1327        if (QT->isAnyPointerType() || QT->isBlockPointerType()) {
1328          T = QT;
1329          return;
1330        }
1331      }
1332    }
1333}
1334
1335static void handleAllocSizeAttr(Sema &S, Decl *D, const AttributeList &Attr) {
1336  if (!isFunctionOrMethod(D)) {
1337    S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
1338    << Attr.getName() << ExpectedFunctionOrMethod;
1339    return;
1340  }
1341
1342  if (!checkAttributeAtLeastNumArgs(S, Attr, 1))
1343    return;
1344
1345  SmallVector<unsigned, 8> SizeArgs;
1346  for (unsigned i = 0; i < Attr.getNumArgs(); ++i) {
1347    Expr *Ex = Attr.getArgAsExpr(i);
1348    uint64_t Idx;
1349    if (!checkFunctionOrMethodArgumentIndex(S, D, Attr.getName()->getName(),
1350                                            Attr.getLoc(), i + 1, Ex, Idx))
1351      return;
1352
1353    // check if the function argument is of an integer type
1354    QualType T = getFunctionOrMethodArgType(D, Idx).getNonReferenceType();
1355    if (!T->isIntegerType()) {
1356      S.Diag(Attr.getLoc(), diag::err_attribute_argument_type)
1357        << Attr.getName() << AANT_ArgumentIntegerConstant
1358        << Ex->getSourceRange();
1359      return;
1360    }
1361    SizeArgs.push_back(Idx);
1362  }
1363
1364  // check if the function returns a pointer
1365  if (!getFunctionType(D)->getResultType()->isAnyPointerType()) {
1366    S.Diag(Attr.getLoc(), diag::warn_ns_attribute_wrong_return_type)
1367    << Attr.getName() << 0 /*function*/<< 1 /*pointer*/ << D->getSourceRange();
1368  }
1369
1370  D->addAttr(::new (S.Context)
1371             AllocSizeAttr(Attr.getRange(), S.Context,
1372                           SizeArgs.data(), SizeArgs.size(),
1373                           Attr.getAttributeSpellingListIndex()));
1374}
1375
1376static void handleNonNullAttr(Sema &S, Decl *D, const AttributeList &Attr) {
1377  // GCC ignores the nonnull attribute on K&R style function prototypes, so we
1378  // ignore it as well
1379  if (!isFunctionOrMethod(D) || !hasFunctionProto(D)) {
1380    S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
1381      << Attr.getName() << ExpectedFunction;
1382    return;
1383  }
1384
1385  SmallVector<unsigned, 8> NonNullArgs;
1386  for (unsigned i = 0; i < Attr.getNumArgs(); ++i) {
1387    Expr *Ex = Attr.getArgAsExpr(i);
1388    uint64_t Idx;
1389    if (!checkFunctionOrMethodArgumentIndex(S, D, Attr.getName()->getName(),
1390                                            Attr.getLoc(), i + 1, Ex, Idx))
1391      return;
1392
1393    // Is the function argument a pointer type?
1394    QualType T = getFunctionOrMethodArgType(D, Idx).getNonReferenceType();
1395    possibleTransparentUnionPointerType(T);
1396
1397    if (!T->isAnyPointerType() && !T->isBlockPointerType()) {
1398      // FIXME: Should also highlight argument in decl.
1399      S.Diag(Attr.getLoc(), diag::warn_nonnull_pointers_only)
1400        << "nonnull" << Ex->getSourceRange();
1401      continue;
1402    }
1403
1404    NonNullArgs.push_back(Idx);
1405  }
1406
1407  // If no arguments were specified to __attribute__((nonnull)) then all pointer
1408  // arguments have a nonnull attribute.
1409  if (NonNullArgs.empty()) {
1410    for (unsigned i = 0, e = getFunctionOrMethodNumArgs(D); i != e; ++i) {
1411      QualType T = getFunctionOrMethodArgType(D, i).getNonReferenceType();
1412      possibleTransparentUnionPointerType(T);
1413      if (T->isAnyPointerType() || T->isBlockPointerType())
1414        NonNullArgs.push_back(i);
1415    }
1416
1417    // No pointer arguments?
1418    if (NonNullArgs.empty()) {
1419      // Warn the trivial case only if attribute is not coming from a
1420      // macro instantiation.
1421      if (Attr.getLoc().isFileID())
1422        S.Diag(Attr.getLoc(), diag::warn_attribute_nonnull_no_pointers);
1423      return;
1424    }
1425  }
1426
1427  unsigned *start = &NonNullArgs[0];
1428  unsigned size = NonNullArgs.size();
1429  llvm::array_pod_sort(start, start + size);
1430  D->addAttr(::new (S.Context)
1431             NonNullAttr(Attr.getRange(), S.Context, start, size,
1432                         Attr.getAttributeSpellingListIndex()));
1433}
1434
1435static const char *ownershipKindToDiagName(OwnershipAttr::OwnershipKind K) {
1436  switch (K) {
1437    case OwnershipAttr::Holds:    return "'ownership_holds'";
1438    case OwnershipAttr::Takes:    return "'ownership_takes'";
1439    case OwnershipAttr::Returns:  return "'ownership_returns'";
1440  }
1441  llvm_unreachable("unknown ownership");
1442}
1443
1444static void handleOwnershipAttr(Sema &S, Decl *D, const AttributeList &AL) {
1445  // This attribute must be applied to a function declaration. The first
1446  // argument to the attribute must be an identifier, the name of the resource,
1447  // for example: malloc. The following arguments must be argument indexes, the
1448  // arguments must be of integer type for Returns, otherwise of pointer type.
1449  // The difference between Holds and Takes is that a pointer may still be used
1450  // after being held. free() should be __attribute((ownership_takes)), whereas
1451  // a list append function may well be __attribute((ownership_holds)).
1452
1453  if (!AL.isArgIdent(0)) {
1454    S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type)
1455      << AL.getName() << 1 << AANT_ArgumentIdentifier;
1456    return;
1457  }
1458
1459  // Figure out our Kind, and check arguments while we're at it.
1460  OwnershipAttr::OwnershipKind K;
1461  switch (AL.getKind()) {
1462  case AttributeList::AT_ownership_takes:
1463    K = OwnershipAttr::Takes;
1464    if (AL.getNumArgs() < 2) {
1465      S.Diag(AL.getLoc(), diag::err_attribute_too_few_arguments) << 2;
1466      return;
1467    }
1468    break;
1469  case AttributeList::AT_ownership_holds:
1470    K = OwnershipAttr::Holds;
1471    if (AL.getNumArgs() < 2) {
1472      S.Diag(AL.getLoc(), diag::err_attribute_too_few_arguments) << 2;
1473      return;
1474    }
1475    break;
1476  case AttributeList::AT_ownership_returns:
1477    K = OwnershipAttr::Returns;
1478
1479    if (AL.getNumArgs() > 2) {
1480      S.Diag(AL.getLoc(), diag::err_attribute_too_many_arguments) << 1;
1481      return;
1482    }
1483    break;
1484  default:
1485    // This should never happen given how we are called.
1486    llvm_unreachable("Unknown ownership attribute");
1487  }
1488
1489  if (!isFunction(D) || !hasFunctionProto(D)) {
1490    S.Diag(AL.getLoc(), diag::warn_attribute_wrong_decl_type)
1491      << AL.getName() << ExpectedFunction;
1492    return;
1493  }
1494
1495  StringRef Module = AL.getArgAsIdent(0)->Ident->getName();
1496
1497  // Normalize the argument, __foo__ becomes foo.
1498  if (Module.startswith("__") && Module.endswith("__"))
1499    Module = Module.substr(2, Module.size() - 4);
1500
1501  SmallVector<unsigned, 8> OwnershipArgs;
1502  for (unsigned i = 1; i < AL.getNumArgs(); ++i) {
1503    Expr *Ex = AL.getArgAsExpr(i);
1504    uint64_t Idx;
1505    if (!checkFunctionOrMethodArgumentIndex(S, D, AL.getName()->getName(),
1506                                            AL.getLoc(), i, Ex, Idx))
1507      return;
1508
1509    // Is the function argument a pointer type?
1510    QualType T = getFunctionOrMethodArgType(D, Idx);
1511    int Err = -1;  // No error
1512    switch (K) {
1513      case OwnershipAttr::Takes:
1514      case OwnershipAttr::Holds:
1515        if (!T->isAnyPointerType() && !T->isBlockPointerType())
1516          Err = 0;
1517        break;
1518      case OwnershipAttr::Returns:
1519        if (!T->isIntegerType())
1520          Err = 1;
1521        break;
1522    }
1523    if (-1 != Err) {
1524      S.Diag(AL.getLoc(), diag::err_ownership_type) << AL.getName() << Err
1525        << Ex->getSourceRange();
1526      return;
1527    }
1528
1529    // Check we don't have a conflict with another ownership attribute.
1530    for (specific_attr_iterator<OwnershipAttr>
1531         i = D->specific_attr_begin<OwnershipAttr>(),
1532         e = D->specific_attr_end<OwnershipAttr>(); i != e; ++i) {
1533      if ((*i)->getOwnKind() != K && (*i)->args_end() !=
1534          std::find((*i)->args_begin(), (*i)->args_end(), Idx)) {
1535        S.Diag(AL.getLoc(), diag::err_attributes_are_not_compatible)
1536          << AL.getName() << ownershipKindToDiagName((*i)->getOwnKind());
1537        return;
1538      }
1539    }
1540    OwnershipArgs.push_back(Idx);
1541  }
1542
1543  unsigned* start = OwnershipArgs.data();
1544  unsigned size = OwnershipArgs.size();
1545  llvm::array_pod_sort(start, start + size);
1546
1547  D->addAttr(::new (S.Context)
1548             OwnershipAttr(AL.getLoc(), S.Context, K, Module, start, size,
1549                           AL.getAttributeSpellingListIndex()));
1550}
1551
1552static void handleWeakRefAttr(Sema &S, Decl *D, const AttributeList &Attr) {
1553  // Check the attribute arguments.
1554  if (Attr.getNumArgs() > 1) {
1555    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments)
1556      << Attr.getName() << 1;
1557    return;
1558  }
1559
1560  if (!isa<VarDecl>(D) && !isa<FunctionDecl>(D)) {
1561    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_decl_type)
1562      << Attr.getName() << ExpectedVariableOrFunction;
1563    return;
1564  }
1565
1566  NamedDecl *nd = cast<NamedDecl>(D);
1567
1568  // gcc rejects
1569  // class c {
1570  //   static int a __attribute__((weakref ("v2")));
1571  //   static int b() __attribute__((weakref ("f3")));
1572  // };
1573  // and ignores the attributes of
1574  // void f(void) {
1575  //   static int a __attribute__((weakref ("v2")));
1576  // }
1577  // we reject them
1578  const DeclContext *Ctx = D->getDeclContext()->getRedeclContext();
1579  if (!Ctx->isFileContext()) {
1580    S.Diag(Attr.getLoc(), diag::err_attribute_weakref_not_global_context) <<
1581        nd->getNameAsString();
1582    return;
1583  }
1584
1585  // The GCC manual says
1586  //
1587  // At present, a declaration to which `weakref' is attached can only
1588  // be `static'.
1589  //
1590  // It also says
1591  //
1592  // Without a TARGET,
1593  // given as an argument to `weakref' or to `alias', `weakref' is
1594  // equivalent to `weak'.
1595  //
1596  // gcc 4.4.1 will accept
1597  // int a7 __attribute__((weakref));
1598  // as
1599  // int a7 __attribute__((weak));
1600  // This looks like a bug in gcc. We reject that for now. We should revisit
1601  // it if this behaviour is actually used.
1602
1603  // GCC rejects
1604  // static ((alias ("y"), weakref)).
1605  // Should we? How to check that weakref is before or after alias?
1606
1607  // FIXME: it would be good for us to keep the WeakRefAttr as-written instead
1608  // of transforming it into an AliasAttr.  The WeakRefAttr never uses the
1609  // StringRef parameter it was given anyway.
1610  StringRef Str;
1611  if (Attr.getNumArgs() && S.checkStringLiteralArgumentAttr(Attr, 0, Str))
1612    // GCC will accept anything as the argument of weakref. Should we
1613    // check for an existing decl?
1614    D->addAttr(::new (S.Context) AliasAttr(Attr.getRange(), S.Context, Str,
1615                                        Attr.getAttributeSpellingListIndex()));
1616
1617  D->addAttr(::new (S.Context)
1618             WeakRefAttr(Attr.getRange(), S.Context,
1619                         Attr.getAttributeSpellingListIndex()));
1620}
1621
1622static void handleAliasAttr(Sema &S, Decl *D, const AttributeList &Attr) {
1623  StringRef Str;
1624  if (!S.checkStringLiteralArgumentAttr(Attr, 0, Str))
1625    return;
1626
1627  if (S.Context.getTargetInfo().getTriple().isOSDarwin()) {
1628    S.Diag(Attr.getLoc(), diag::err_alias_not_supported_on_darwin);
1629    return;
1630  }
1631
1632  // FIXME: check if target symbol exists in current file
1633
1634  D->addAttr(::new (S.Context) AliasAttr(Attr.getRange(), S.Context, Str,
1635                                         Attr.getAttributeSpellingListIndex()));
1636}
1637
1638static void handleMinSizeAttr(Sema &S, Decl *D, const AttributeList &Attr) {
1639  if (!isa<FunctionDecl>(D) && !isa<ObjCMethodDecl>(D)) {
1640    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_decl_type)
1641      << Attr.getName() << ExpectedFunctionOrMethod;
1642    return;
1643  }
1644
1645  D->addAttr(::new (S.Context)
1646             MinSizeAttr(Attr.getRange(), S.Context,
1647                         Attr.getAttributeSpellingListIndex()));
1648}
1649
1650static void handleColdAttr(Sema &S, Decl *D, const AttributeList &Attr) {
1651  if (!isa<FunctionDecl>(D)) {
1652    S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
1653      << Attr.getName() << ExpectedFunction;
1654    return;
1655  }
1656
1657  if (D->hasAttr<HotAttr>()) {
1658    S.Diag(Attr.getLoc(), diag::err_attributes_are_not_compatible)
1659      << Attr.getName() << "hot";
1660    return;
1661  }
1662
1663  D->addAttr(::new (S.Context) ColdAttr(Attr.getRange(), S.Context,
1664                                        Attr.getAttributeSpellingListIndex()));
1665}
1666
1667static void handleHotAttr(Sema &S, Decl *D, const AttributeList &Attr) {
1668  if (!isa<FunctionDecl>(D)) {
1669    S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
1670      << Attr.getName() << ExpectedFunction;
1671    return;
1672  }
1673
1674  if (D->hasAttr<ColdAttr>()) {
1675    S.Diag(Attr.getLoc(), diag::err_attributes_are_not_compatible)
1676      << Attr.getName() << "cold";
1677    return;
1678  }
1679
1680  D->addAttr(::new (S.Context) HotAttr(Attr.getRange(), S.Context,
1681                                       Attr.getAttributeSpellingListIndex()));
1682}
1683
1684static void handleNakedAttr(Sema &S, Decl *D, const AttributeList &Attr) {
1685  if (!isa<FunctionDecl>(D)) {
1686    S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
1687      << Attr.getName() << ExpectedFunction;
1688    return;
1689  }
1690
1691  D->addAttr(::new (S.Context)
1692             NakedAttr(Attr.getRange(), S.Context,
1693                       Attr.getAttributeSpellingListIndex()));
1694}
1695
1696static void handleAlwaysInlineAttr(Sema &S, Decl *D,
1697                                   const AttributeList &Attr) {
1698  if (!isa<FunctionDecl>(D)) {
1699    S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
1700      << Attr.getName() << ExpectedFunction;
1701    return;
1702  }
1703
1704  D->addAttr(::new (S.Context)
1705             AlwaysInlineAttr(Attr.getRange(), S.Context,
1706                              Attr.getAttributeSpellingListIndex()));
1707}
1708
1709static void handleTLSModelAttr(Sema &S, Decl *D,
1710                               const AttributeList &Attr) {
1711  StringRef Model;
1712  SourceLocation LiteralLoc;
1713  // Check that it is a string.
1714  if (!S.checkStringLiteralArgumentAttr(Attr, 0, Model, &LiteralLoc))
1715    return;
1716
1717  if (!isa<VarDecl>(D) || !cast<VarDecl>(D)->getTLSKind()) {
1718    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_decl_type)
1719      << Attr.getName() << ExpectedTLSVar;
1720    return;
1721  }
1722
1723  // Check that the value.
1724  if (Model != "global-dynamic" && Model != "local-dynamic"
1725      && Model != "initial-exec" && Model != "local-exec") {
1726    S.Diag(LiteralLoc, diag::err_attr_tlsmodel_arg);
1727    return;
1728  }
1729
1730  D->addAttr(::new (S.Context)
1731             TLSModelAttr(Attr.getRange(), S.Context, Model,
1732                          Attr.getAttributeSpellingListIndex()));
1733}
1734
1735static void handleMallocAttr(Sema &S, Decl *D, const AttributeList &Attr) {
1736  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1737    QualType RetTy = FD->getResultType();
1738    if (RetTy->isAnyPointerType() || RetTy->isBlockPointerType()) {
1739      D->addAttr(::new (S.Context)
1740                 MallocAttr(Attr.getRange(), S.Context,
1741                            Attr.getAttributeSpellingListIndex()));
1742      return;
1743    }
1744  }
1745
1746  S.Diag(Attr.getLoc(), diag::warn_attribute_malloc_pointer_only);
1747}
1748
1749static void handleMayAliasAttr(Sema &S, Decl *D, const AttributeList &Attr) {
1750  D->addAttr(::new (S.Context)
1751             MayAliasAttr(Attr.getRange(), S.Context,
1752                          Attr.getAttributeSpellingListIndex()));
1753}
1754
1755static void handleNoCommonAttr(Sema &S, Decl *D, const AttributeList &Attr) {
1756  if (isa<VarDecl>(D))
1757    D->addAttr(::new (S.Context)
1758               NoCommonAttr(Attr.getRange(), S.Context,
1759                            Attr.getAttributeSpellingListIndex()));
1760  else
1761    S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
1762      << Attr.getName() << ExpectedVariable;
1763}
1764
1765static void handleCommonAttr(Sema &S, Decl *D, const AttributeList &Attr) {
1766  if (S.LangOpts.CPlusPlus) {
1767    S.Diag(Attr.getLoc(), diag::err_common_not_supported_cplusplus);
1768    return;
1769  }
1770
1771  if (isa<VarDecl>(D))
1772    D->addAttr(::new (S.Context)
1773               CommonAttr(Attr.getRange(), S.Context,
1774                          Attr.getAttributeSpellingListIndex()));
1775  else
1776    S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
1777      << Attr.getName() << ExpectedVariable;
1778}
1779
1780static void handleNoReturnAttr(Sema &S, Decl *D, const AttributeList &attr) {
1781  if (hasDeclarator(D)) return;
1782
1783  if (S.CheckNoReturnAttr(attr)) return;
1784
1785  if (!isa<ObjCMethodDecl>(D)) {
1786    S.Diag(attr.getLoc(), diag::warn_attribute_wrong_decl_type)
1787      << attr.getName() << ExpectedFunctionOrMethod;
1788    return;
1789  }
1790
1791  D->addAttr(::new (S.Context)
1792             NoReturnAttr(attr.getRange(), S.Context,
1793                          attr.getAttributeSpellingListIndex()));
1794}
1795
1796bool Sema::CheckNoReturnAttr(const AttributeList &attr) {
1797  if (!checkAttributeNumArgs(*this, attr, 0)) {
1798    attr.setInvalid();
1799    return true;
1800  }
1801
1802  return false;
1803}
1804
1805static void handleAnalyzerNoReturnAttr(Sema &S, Decl *D,
1806                                       const AttributeList &Attr) {
1807
1808  // The checking path for 'noreturn' and 'analyzer_noreturn' are different
1809  // because 'analyzer_noreturn' does not impact the type.
1810  if (!isFunctionOrMethod(D) && !isa<BlockDecl>(D)) {
1811    ValueDecl *VD = dyn_cast<ValueDecl>(D);
1812    if (VD == 0 || (!VD->getType()->isBlockPointerType()
1813                    && !VD->getType()->isFunctionPointerType())) {
1814      S.Diag(Attr.getLoc(),
1815             Attr.isCXX11Attribute() ? diag::err_attribute_wrong_decl_type
1816             : diag::warn_attribute_wrong_decl_type)
1817        << Attr.getName() << ExpectedFunctionMethodOrBlock;
1818      return;
1819    }
1820  }
1821
1822  D->addAttr(::new (S.Context)
1823             AnalyzerNoReturnAttr(Attr.getRange(), S.Context,
1824                                  Attr.getAttributeSpellingListIndex()));
1825}
1826
1827static void handleCXX11NoReturnAttr(Sema &S, Decl *D,
1828                                    const AttributeList &Attr) {
1829  // C++11 [dcl.attr.noreturn]p1:
1830  //   The attribute may be applied to the declarator-id in a function
1831  //   declaration.
1832  FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
1833  if (!FD) {
1834    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_decl_type)
1835      << Attr.getName() << ExpectedFunctionOrMethod;
1836    return;
1837  }
1838
1839  D->addAttr(::new (S.Context)
1840             CXX11NoReturnAttr(Attr.getRange(), S.Context,
1841                               Attr.getAttributeSpellingListIndex()));
1842}
1843
1844// PS3 PPU-specific.
1845static void handleVecReturnAttr(Sema &S, Decl *D, const AttributeList &Attr) {
1846/*
1847  Returning a Vector Class in Registers
1848
1849  According to the PPU ABI specifications, a class with a single member of
1850  vector type is returned in memory when used as the return value of a function.
1851  This results in inefficient code when implementing vector classes. To return
1852  the value in a single vector register, add the vecreturn attribute to the
1853  class definition. This attribute is also applicable to struct types.
1854
1855  Example:
1856
1857  struct Vector
1858  {
1859    __vector float xyzw;
1860  } __attribute__((vecreturn));
1861
1862  Vector Add(Vector lhs, Vector rhs)
1863  {
1864    Vector result;
1865    result.xyzw = vec_add(lhs.xyzw, rhs.xyzw);
1866    return result; // This will be returned in a register
1867  }
1868*/
1869  if (!isa<RecordDecl>(D)) {
1870    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_decl_type)
1871      << Attr.getName() << ExpectedClass;
1872    return;
1873  }
1874
1875  if (D->getAttr<VecReturnAttr>()) {
1876    S.Diag(Attr.getLoc(), diag::err_repeat_attribute) << "vecreturn";
1877    return;
1878  }
1879
1880  RecordDecl *record = cast<RecordDecl>(D);
1881  int count = 0;
1882
1883  if (!isa<CXXRecordDecl>(record)) {
1884    S.Diag(Attr.getLoc(), diag::err_attribute_vecreturn_only_vector_member);
1885    return;
1886  }
1887
1888  if (!cast<CXXRecordDecl>(record)->isPOD()) {
1889    S.Diag(Attr.getLoc(), diag::err_attribute_vecreturn_only_pod_record);
1890    return;
1891  }
1892
1893  for (RecordDecl::field_iterator iter = record->field_begin();
1894       iter != record->field_end(); iter++) {
1895    if ((count == 1) || !iter->getType()->isVectorType()) {
1896      S.Diag(Attr.getLoc(), diag::err_attribute_vecreturn_only_vector_member);
1897      return;
1898    }
1899    count++;
1900  }
1901
1902  D->addAttr(::new (S.Context)
1903             VecReturnAttr(Attr.getRange(), S.Context,
1904                           Attr.getAttributeSpellingListIndex()));
1905}
1906
1907static void handleDependencyAttr(Sema &S, Scope *Scope, Decl *D,
1908                                 const AttributeList &Attr) {
1909  if (isa<ParmVarDecl>(D)) {
1910    // [[carries_dependency]] can only be applied to a parameter if it is a
1911    // parameter of a function declaration or lambda.
1912    if (!(Scope->getFlags() & clang::Scope::FunctionDeclarationScope)) {
1913      S.Diag(Attr.getLoc(),
1914             diag::err_carries_dependency_param_not_function_decl);
1915      return;
1916    }
1917  } else if (!isa<FunctionDecl>(D)) {
1918    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_decl_type)
1919      << Attr.getName() << ExpectedFunctionMethodOrParameter;
1920    return;
1921  }
1922
1923  D->addAttr(::new (S.Context) CarriesDependencyAttr(
1924                                   Attr.getRange(), S.Context,
1925                                   Attr.getAttributeSpellingListIndex()));
1926}
1927
1928static void handleUnusedAttr(Sema &S, Decl *D, const AttributeList &Attr) {
1929  if (!isa<VarDecl>(D) && !isa<ObjCIvarDecl>(D) && !isFunctionOrMethod(D) &&
1930      !isa<TypeDecl>(D) && !isa<LabelDecl>(D) && !isa<FieldDecl>(D)) {
1931    S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
1932      << Attr.getName() << ExpectedVariableFunctionOrLabel;
1933    return;
1934  }
1935
1936  D->addAttr(::new (S.Context)
1937             UnusedAttr(Attr.getRange(), S.Context,
1938                        Attr.getAttributeSpellingListIndex()));
1939}
1940
1941static void handleReturnsTwiceAttr(Sema &S, Decl *D,
1942                                   const AttributeList &Attr) {
1943  if (!isa<FunctionDecl>(D)) {
1944    S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
1945      << Attr.getName() << ExpectedFunction;
1946    return;
1947  }
1948
1949  D->addAttr(::new (S.Context)
1950             ReturnsTwiceAttr(Attr.getRange(), S.Context,
1951                              Attr.getAttributeSpellingListIndex()));
1952}
1953
1954static void handleUsedAttr(Sema &S, Decl *D, const AttributeList &Attr) {
1955  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1956    if (VD->hasLocalStorage()) {
1957      S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << "used";
1958      return;
1959    }
1960  } else if (!isFunctionOrMethod(D)) {
1961    S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
1962      << Attr.getName() << ExpectedVariableOrFunction;
1963    return;
1964  }
1965
1966  D->addAttr(::new (S.Context)
1967             UsedAttr(Attr.getRange(), S.Context,
1968                      Attr.getAttributeSpellingListIndex()));
1969}
1970
1971static void handleConstructorAttr(Sema &S, Decl *D, const AttributeList &Attr) {
1972  // check the attribute arguments.
1973  if (Attr.getNumArgs() > 1) {
1974    S.Diag(Attr.getLoc(), diag::err_attribute_too_many_arguments) << 1;
1975    return;
1976  }
1977
1978  int priority = 65535; // FIXME: Do not hardcode such constants.
1979  if (Attr.getNumArgs() > 0) {
1980    Expr *E = Attr.getArgAsExpr(0);
1981    llvm::APSInt Idx(32);
1982    if (E->isTypeDependent() || E->isValueDependent() ||
1983        !E->isIntegerConstantExpr(Idx, S.Context)) {
1984      S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_type)
1985        << Attr.getName() << 1 << AANT_ArgumentIntegerConstant
1986        << E->getSourceRange();
1987      return;
1988    }
1989    priority = Idx.getZExtValue();
1990  }
1991
1992  if (!isa<FunctionDecl>(D)) {
1993    S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
1994      << Attr.getName() << ExpectedFunction;
1995    return;
1996  }
1997
1998  D->addAttr(::new (S.Context)
1999             ConstructorAttr(Attr.getRange(), S.Context, priority,
2000                             Attr.getAttributeSpellingListIndex()));
2001}
2002
2003static void handleDestructorAttr(Sema &S, Decl *D, const AttributeList &Attr) {
2004  // check the attribute arguments.
2005  if (Attr.getNumArgs() > 1) {
2006    S.Diag(Attr.getLoc(), diag::err_attribute_too_many_arguments) << 1;
2007    return;
2008  }
2009
2010  int priority = 65535; // FIXME: Do not hardcode such constants.
2011  if (Attr.getNumArgs() > 0) {
2012    Expr *E = Attr.getArgAsExpr(0);
2013    llvm::APSInt Idx(32);
2014    if (E->isTypeDependent() || E->isValueDependent() ||
2015        !E->isIntegerConstantExpr(Idx, S.Context)) {
2016      S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_type)
2017        << Attr.getName() << 1 << AANT_ArgumentIntegerConstant
2018        << E->getSourceRange();
2019      return;
2020    }
2021    priority = Idx.getZExtValue();
2022  }
2023
2024  if (!isa<FunctionDecl>(D)) {
2025    S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
2026      << Attr.getName() << ExpectedFunction;
2027    return;
2028  }
2029
2030  D->addAttr(::new (S.Context)
2031             DestructorAttr(Attr.getRange(), S.Context, priority,
2032                            Attr.getAttributeSpellingListIndex()));
2033}
2034
2035template <typename AttrTy>
2036static void handleAttrWithMessage(Sema &S, Decl *D,
2037                                  const AttributeList &Attr) {
2038  unsigned NumArgs = Attr.getNumArgs();
2039  if (NumArgs > 1) {
2040    S.Diag(Attr.getLoc(), diag::err_attribute_too_many_arguments) << 1;
2041    return;
2042  }
2043
2044  // Handle the case where the attribute has a text message.
2045  StringRef Str;
2046  if (NumArgs == 1 && !S.checkStringLiteralArgumentAttr(Attr, 0, Str))
2047    return;
2048
2049  D->addAttr(::new (S.Context) AttrTy(Attr.getRange(), S.Context, Str,
2050                                      Attr.getAttributeSpellingListIndex()));
2051}
2052
2053static void handleArcWeakrefUnavailableAttr(Sema &S, Decl *D,
2054                                            const AttributeList &Attr) {
2055  D->addAttr(::new (S.Context)
2056             ArcWeakrefUnavailableAttr(Attr.getRange(), S.Context,
2057                                       Attr.getAttributeSpellingListIndex()));
2058}
2059
2060static void handleObjCRootClassAttr(Sema &S, Decl *D,
2061                                    const AttributeList &Attr) {
2062  if (!isa<ObjCInterfaceDecl>(D)) {
2063    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_decl_type)
2064      << Attr.getName() << ExpectedObjectiveCInterface;
2065    return;
2066  }
2067
2068  D->addAttr(::new (S.Context)
2069             ObjCRootClassAttr(Attr.getRange(), S.Context,
2070                               Attr.getAttributeSpellingListIndex()));
2071}
2072
2073static void handleObjCRequiresPropertyDefsAttr(Sema &S, Decl *D,
2074                                               const AttributeList &Attr) {
2075  if (!isa<ObjCInterfaceDecl>(D)) {
2076    S.Diag(Attr.getLoc(), diag::err_suppress_autosynthesis);
2077    return;
2078  }
2079
2080  D->addAttr(::new (S.Context)
2081             ObjCRequiresPropertyDefsAttr(Attr.getRange(), S.Context,
2082                                          Attr.getAttributeSpellingListIndex()));
2083}
2084
2085static bool checkAvailabilityAttr(Sema &S, SourceRange Range,
2086                                  IdentifierInfo *Platform,
2087                                  VersionTuple Introduced,
2088                                  VersionTuple Deprecated,
2089                                  VersionTuple Obsoleted) {
2090  StringRef PlatformName
2091    = AvailabilityAttr::getPrettyPlatformName(Platform->getName());
2092  if (PlatformName.empty())
2093    PlatformName = Platform->getName();
2094
2095  // Ensure that Introduced <= Deprecated <= Obsoleted (although not all
2096  // of these steps are needed).
2097  if (!Introduced.empty() && !Deprecated.empty() &&
2098      !(Introduced <= Deprecated)) {
2099    S.Diag(Range.getBegin(), diag::warn_availability_version_ordering)
2100      << 1 << PlatformName << Deprecated.getAsString()
2101      << 0 << Introduced.getAsString();
2102    return true;
2103  }
2104
2105  if (!Introduced.empty() && !Obsoleted.empty() &&
2106      !(Introduced <= Obsoleted)) {
2107    S.Diag(Range.getBegin(), diag::warn_availability_version_ordering)
2108      << 2 << PlatformName << Obsoleted.getAsString()
2109      << 0 << Introduced.getAsString();
2110    return true;
2111  }
2112
2113  if (!Deprecated.empty() && !Obsoleted.empty() &&
2114      !(Deprecated <= Obsoleted)) {
2115    S.Diag(Range.getBegin(), diag::warn_availability_version_ordering)
2116      << 2 << PlatformName << Obsoleted.getAsString()
2117      << 1 << Deprecated.getAsString();
2118    return true;
2119  }
2120
2121  return false;
2122}
2123
2124/// \brief Check whether the two versions match.
2125///
2126/// If either version tuple is empty, then they are assumed to match. If
2127/// \p BeforeIsOkay is true, then \p X can be less than or equal to \p Y.
2128static bool versionsMatch(const VersionTuple &X, const VersionTuple &Y,
2129                          bool BeforeIsOkay) {
2130  if (X.empty() || Y.empty())
2131    return true;
2132
2133  if (X == Y)
2134    return true;
2135
2136  if (BeforeIsOkay && X < Y)
2137    return true;
2138
2139  return false;
2140}
2141
2142AvailabilityAttr *Sema::mergeAvailabilityAttr(NamedDecl *D, SourceRange Range,
2143                                              IdentifierInfo *Platform,
2144                                              VersionTuple Introduced,
2145                                              VersionTuple Deprecated,
2146                                              VersionTuple Obsoleted,
2147                                              bool IsUnavailable,
2148                                              StringRef Message,
2149                                              bool Override,
2150                                              unsigned AttrSpellingListIndex) {
2151  VersionTuple MergedIntroduced = Introduced;
2152  VersionTuple MergedDeprecated = Deprecated;
2153  VersionTuple MergedObsoleted = Obsoleted;
2154  bool FoundAny = false;
2155
2156  if (D->hasAttrs()) {
2157    AttrVec &Attrs = D->getAttrs();
2158    for (unsigned i = 0, e = Attrs.size(); i != e;) {
2159      const AvailabilityAttr *OldAA = dyn_cast<AvailabilityAttr>(Attrs[i]);
2160      if (!OldAA) {
2161        ++i;
2162        continue;
2163      }
2164
2165      IdentifierInfo *OldPlatform = OldAA->getPlatform();
2166      if (OldPlatform != Platform) {
2167        ++i;
2168        continue;
2169      }
2170
2171      FoundAny = true;
2172      VersionTuple OldIntroduced = OldAA->getIntroduced();
2173      VersionTuple OldDeprecated = OldAA->getDeprecated();
2174      VersionTuple OldObsoleted = OldAA->getObsoleted();
2175      bool OldIsUnavailable = OldAA->getUnavailable();
2176
2177      if (!versionsMatch(OldIntroduced, Introduced, Override) ||
2178          !versionsMatch(Deprecated, OldDeprecated, Override) ||
2179          !versionsMatch(Obsoleted, OldObsoleted, Override) ||
2180          !(OldIsUnavailable == IsUnavailable ||
2181            (Override && !OldIsUnavailable && IsUnavailable))) {
2182        if (Override) {
2183          int Which = -1;
2184          VersionTuple FirstVersion;
2185          VersionTuple SecondVersion;
2186          if (!versionsMatch(OldIntroduced, Introduced, Override)) {
2187            Which = 0;
2188            FirstVersion = OldIntroduced;
2189            SecondVersion = Introduced;
2190          } else if (!versionsMatch(Deprecated, OldDeprecated, Override)) {
2191            Which = 1;
2192            FirstVersion = Deprecated;
2193            SecondVersion = OldDeprecated;
2194          } else if (!versionsMatch(Obsoleted, OldObsoleted, Override)) {
2195            Which = 2;
2196            FirstVersion = Obsoleted;
2197            SecondVersion = OldObsoleted;
2198          }
2199
2200          if (Which == -1) {
2201            Diag(OldAA->getLocation(),
2202                 diag::warn_mismatched_availability_override_unavail)
2203              << AvailabilityAttr::getPrettyPlatformName(Platform->getName());
2204          } else {
2205            Diag(OldAA->getLocation(),
2206                 diag::warn_mismatched_availability_override)
2207              << Which
2208              << AvailabilityAttr::getPrettyPlatformName(Platform->getName())
2209              << FirstVersion.getAsString() << SecondVersion.getAsString();
2210          }
2211          Diag(Range.getBegin(), diag::note_overridden_method);
2212        } else {
2213          Diag(OldAA->getLocation(), diag::warn_mismatched_availability);
2214          Diag(Range.getBegin(), diag::note_previous_attribute);
2215        }
2216
2217        Attrs.erase(Attrs.begin() + i);
2218        --e;
2219        continue;
2220      }
2221
2222      VersionTuple MergedIntroduced2 = MergedIntroduced;
2223      VersionTuple MergedDeprecated2 = MergedDeprecated;
2224      VersionTuple MergedObsoleted2 = MergedObsoleted;
2225
2226      if (MergedIntroduced2.empty())
2227        MergedIntroduced2 = OldIntroduced;
2228      if (MergedDeprecated2.empty())
2229        MergedDeprecated2 = OldDeprecated;
2230      if (MergedObsoleted2.empty())
2231        MergedObsoleted2 = OldObsoleted;
2232
2233      if (checkAvailabilityAttr(*this, OldAA->getRange(), Platform,
2234                                MergedIntroduced2, MergedDeprecated2,
2235                                MergedObsoleted2)) {
2236        Attrs.erase(Attrs.begin() + i);
2237        --e;
2238        continue;
2239      }
2240
2241      MergedIntroduced = MergedIntroduced2;
2242      MergedDeprecated = MergedDeprecated2;
2243      MergedObsoleted = MergedObsoleted2;
2244      ++i;
2245    }
2246  }
2247
2248  if (FoundAny &&
2249      MergedIntroduced == Introduced &&
2250      MergedDeprecated == Deprecated &&
2251      MergedObsoleted == Obsoleted)
2252    return NULL;
2253
2254  // Only create a new attribute if !Override, but we want to do
2255  // the checking.
2256  if (!checkAvailabilityAttr(*this, Range, Platform, MergedIntroduced,
2257                             MergedDeprecated, MergedObsoleted) &&
2258      !Override) {
2259    return ::new (Context) AvailabilityAttr(Range, Context, Platform,
2260                                            Introduced, Deprecated,
2261                                            Obsoleted, IsUnavailable, Message,
2262                                            AttrSpellingListIndex);
2263  }
2264  return NULL;
2265}
2266
2267static void handleAvailabilityAttr(Sema &S, Decl *D,
2268                                   const AttributeList &Attr) {
2269  if (!checkAttributeNumArgs(S, Attr, 1))
2270    return;
2271  IdentifierLoc *Platform = Attr.getArgAsIdent(0);
2272  unsigned Index = Attr.getAttributeSpellingListIndex();
2273
2274  IdentifierInfo *II = Platform->Ident;
2275  if (AvailabilityAttr::getPrettyPlatformName(II->getName()).empty())
2276    S.Diag(Platform->Loc, diag::warn_availability_unknown_platform)
2277      << Platform->Ident;
2278
2279  NamedDecl *ND = dyn_cast<NamedDecl>(D);
2280  if (!ND) {
2281    S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << Attr.getName();
2282    return;
2283  }
2284
2285  AvailabilityChange Introduced = Attr.getAvailabilityIntroduced();
2286  AvailabilityChange Deprecated = Attr.getAvailabilityDeprecated();
2287  AvailabilityChange Obsoleted = Attr.getAvailabilityObsoleted();
2288  bool IsUnavailable = Attr.getUnavailableLoc().isValid();
2289  StringRef Str;
2290  if (const StringLiteral *SE =
2291          dyn_cast_or_null<StringLiteral>(Attr.getMessageExpr()))
2292    Str = SE->getString();
2293
2294  AvailabilityAttr *NewAttr = S.mergeAvailabilityAttr(ND, Attr.getRange(), II,
2295                                                      Introduced.Version,
2296                                                      Deprecated.Version,
2297                                                      Obsoleted.Version,
2298                                                      IsUnavailable, Str,
2299                                                      /*Override=*/false,
2300                                                      Index);
2301  if (NewAttr)
2302    D->addAttr(NewAttr);
2303}
2304
2305template <class T>
2306static T *mergeVisibilityAttr(Sema &S, Decl *D, SourceRange range,
2307                              typename T::VisibilityType value,
2308                              unsigned attrSpellingListIndex) {
2309  T *existingAttr = D->getAttr<T>();
2310  if (existingAttr) {
2311    typename T::VisibilityType existingValue = existingAttr->getVisibility();
2312    if (existingValue == value)
2313      return NULL;
2314    S.Diag(existingAttr->getLocation(), diag::err_mismatched_visibility);
2315    S.Diag(range.getBegin(), diag::note_previous_attribute);
2316    D->dropAttr<T>();
2317  }
2318  return ::new (S.Context) T(range, S.Context, value, attrSpellingListIndex);
2319}
2320
2321VisibilityAttr *Sema::mergeVisibilityAttr(Decl *D, SourceRange Range,
2322                                          VisibilityAttr::VisibilityType Vis,
2323                                          unsigned AttrSpellingListIndex) {
2324  return ::mergeVisibilityAttr<VisibilityAttr>(*this, D, Range, Vis,
2325                                               AttrSpellingListIndex);
2326}
2327
2328TypeVisibilityAttr *Sema::mergeTypeVisibilityAttr(Decl *D, SourceRange Range,
2329                                      TypeVisibilityAttr::VisibilityType Vis,
2330                                      unsigned AttrSpellingListIndex) {
2331  return ::mergeVisibilityAttr<TypeVisibilityAttr>(*this, D, Range, Vis,
2332                                                   AttrSpellingListIndex);
2333}
2334
2335static void handleVisibilityAttr(Sema &S, Decl *D, const AttributeList &Attr,
2336                                 bool isTypeVisibility) {
2337  // Visibility attributes don't mean anything on a typedef.
2338  if (isa<TypedefNameDecl>(D)) {
2339    S.Diag(Attr.getRange().getBegin(), diag::warn_attribute_ignored)
2340      << Attr.getName();
2341    return;
2342  }
2343
2344  // 'type_visibility' can only go on a type or namespace.
2345  if (isTypeVisibility &&
2346      !(isa<TagDecl>(D) ||
2347        isa<ObjCInterfaceDecl>(D) ||
2348        isa<NamespaceDecl>(D))) {
2349    S.Diag(Attr.getRange().getBegin(), diag::err_attribute_wrong_decl_type)
2350      << Attr.getName() << ExpectedTypeOrNamespace;
2351    return;
2352  }
2353
2354  // Check that the argument is a string literal.
2355  StringRef TypeStr;
2356  SourceLocation LiteralLoc;
2357  if (!S.checkStringLiteralArgumentAttr(Attr, 0, TypeStr, &LiteralLoc))
2358    return;
2359
2360  VisibilityAttr::VisibilityType type;
2361  if (!VisibilityAttr::ConvertStrToVisibilityType(TypeStr, type)) {
2362    S.Diag(LiteralLoc, diag::warn_attribute_type_not_supported)
2363      << Attr.getName() << TypeStr;
2364    return;
2365  }
2366
2367  // Complain about attempts to use protected visibility on targets
2368  // (like Darwin) that don't support it.
2369  if (type == VisibilityAttr::Protected &&
2370      !S.Context.getTargetInfo().hasProtectedVisibility()) {
2371    S.Diag(Attr.getLoc(), diag::warn_attribute_protected_visibility);
2372    type = VisibilityAttr::Default;
2373  }
2374
2375  unsigned Index = Attr.getAttributeSpellingListIndex();
2376  clang::Attr *newAttr;
2377  if (isTypeVisibility) {
2378    newAttr = S.mergeTypeVisibilityAttr(D, Attr.getRange(),
2379                                    (TypeVisibilityAttr::VisibilityType) type,
2380                                        Index);
2381  } else {
2382    newAttr = S.mergeVisibilityAttr(D, Attr.getRange(), type, Index);
2383  }
2384  if (newAttr)
2385    D->addAttr(newAttr);
2386}
2387
2388static void handleObjCMethodFamilyAttr(Sema &S, Decl *decl,
2389                                       const AttributeList &Attr) {
2390  ObjCMethodDecl *method = dyn_cast<ObjCMethodDecl>(decl);
2391  if (!method) {
2392    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_decl_type)
2393      << ExpectedMethod;
2394    return;
2395  }
2396
2397  if (!Attr.isArgIdent(0)) {
2398    S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_type)
2399      << Attr.getName() << 1 << AANT_ArgumentIdentifier;
2400    return;
2401  }
2402
2403  IdentifierLoc *IL = Attr.getArgAsIdent(0);
2404  ObjCMethodFamilyAttr::FamilyKind F;
2405  if (!ObjCMethodFamilyAttr::ConvertStrToFamilyKind(IL->Ident->getName(), F)) {
2406    S.Diag(IL->Loc, diag::warn_attribute_type_not_supported) << Attr.getName()
2407      << IL->Ident;
2408    return;
2409  }
2410
2411  if (F == ObjCMethodFamilyAttr::OMF_init &&
2412      !method->getResultType()->isObjCObjectPointerType()) {
2413    S.Diag(method->getLocation(), diag::err_init_method_bad_return_type)
2414      << method->getResultType();
2415    // Ignore the attribute.
2416    return;
2417  }
2418
2419  method->addAttr(new (S.Context) ObjCMethodFamilyAttr(Attr.getRange(),
2420                                                       S.Context, F));
2421}
2422
2423static void handleObjCExceptionAttr(Sema &S, Decl *D,
2424                                    const AttributeList &Attr) {
2425  ObjCInterfaceDecl *OCI = dyn_cast<ObjCInterfaceDecl>(D);
2426  if (OCI == 0) {
2427    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_decl_type)
2428      << Attr.getName() << ExpectedObjectiveCInterface;
2429    return;
2430  }
2431
2432  D->addAttr(::new (S.Context)
2433             ObjCExceptionAttr(Attr.getRange(), S.Context,
2434                               Attr.getAttributeSpellingListIndex()));
2435}
2436
2437static void handleObjCNSObject(Sema &S, Decl *D, const AttributeList &Attr) {
2438  if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(D)) {
2439    QualType T = TD->getUnderlyingType();
2440    if (!T->isCARCBridgableType()) {
2441      S.Diag(TD->getLocation(), diag::err_nsobject_attribute);
2442      return;
2443    }
2444  }
2445  else if (ObjCPropertyDecl *PD = dyn_cast<ObjCPropertyDecl>(D)) {
2446    QualType T = PD->getType();
2447    if (!T->isCARCBridgableType()) {
2448      S.Diag(PD->getLocation(), diag::err_nsobject_attribute);
2449      return;
2450    }
2451  }
2452  else {
2453    // It is okay to include this attribute on properties, e.g.:
2454    //
2455    //  @property (retain, nonatomic) struct Bork *Q __attribute__((NSObject));
2456    //
2457    // In this case it follows tradition and suppresses an error in the above
2458    // case.
2459    S.Diag(D->getLocation(), diag::warn_nsobject_attribute);
2460  }
2461  D->addAttr(::new (S.Context)
2462             ObjCNSObjectAttr(Attr.getRange(), S.Context,
2463                              Attr.getAttributeSpellingListIndex()));
2464}
2465
2466static void
2467handleOverloadableAttr(Sema &S, Decl *D, const AttributeList &Attr) {
2468  if (!isa<FunctionDecl>(D)) {
2469    S.Diag(Attr.getLoc(), diag::err_attribute_overloadable_not_function);
2470    return;
2471  }
2472
2473  D->addAttr(::new (S.Context)
2474             OverloadableAttr(Attr.getRange(), S.Context,
2475                              Attr.getAttributeSpellingListIndex()));
2476}
2477
2478static void handleBlocksAttr(Sema &S, Decl *D, const AttributeList &Attr) {
2479  if (!Attr.isArgIdent(0)) {
2480    S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_type)
2481      << Attr.getName() << 1 << AANT_ArgumentIdentifier;
2482    return;
2483  }
2484
2485  IdentifierInfo *II = Attr.getArgAsIdent(0)->Ident;
2486  BlocksAttr::BlockType type;
2487  if (!BlocksAttr::ConvertStrToBlockType(II->getName(), type)) {
2488    S.Diag(Attr.getLoc(), diag::warn_attribute_type_not_supported)
2489      << Attr.getName() << II;
2490    return;
2491  }
2492
2493  D->addAttr(::new (S.Context)
2494             BlocksAttr(Attr.getRange(), S.Context, type,
2495                        Attr.getAttributeSpellingListIndex()));
2496}
2497
2498static void handleSentinelAttr(Sema &S, Decl *D, const AttributeList &Attr) {
2499  // check the attribute arguments.
2500  if (Attr.getNumArgs() > 2) {
2501    S.Diag(Attr.getLoc(), diag::err_attribute_too_many_arguments) << 2;
2502    return;
2503  }
2504
2505  unsigned sentinel = 0;
2506  if (Attr.getNumArgs() > 0) {
2507    Expr *E = Attr.getArgAsExpr(0);
2508    llvm::APSInt Idx(32);
2509    if (E->isTypeDependent() || E->isValueDependent() ||
2510        !E->isIntegerConstantExpr(Idx, S.Context)) {
2511      S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_type)
2512        << Attr.getName() << 1 << AANT_ArgumentIntegerConstant
2513        << E->getSourceRange();
2514      return;
2515    }
2516
2517    if (Idx.isSigned() && Idx.isNegative()) {
2518      S.Diag(Attr.getLoc(), diag::err_attribute_sentinel_less_than_zero)
2519        << E->getSourceRange();
2520      return;
2521    }
2522
2523    sentinel = Idx.getZExtValue();
2524  }
2525
2526  unsigned nullPos = 0;
2527  if (Attr.getNumArgs() > 1) {
2528    Expr *E = Attr.getArgAsExpr(1);
2529    llvm::APSInt Idx(32);
2530    if (E->isTypeDependent() || E->isValueDependent() ||
2531        !E->isIntegerConstantExpr(Idx, S.Context)) {
2532      S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_type)
2533        << Attr.getName() << 2 << AANT_ArgumentIntegerConstant
2534        << E->getSourceRange();
2535      return;
2536    }
2537    nullPos = Idx.getZExtValue();
2538
2539    if ((Idx.isSigned() && Idx.isNegative()) || nullPos > 1) {
2540      // FIXME: This error message could be improved, it would be nice
2541      // to say what the bounds actually are.
2542      S.Diag(Attr.getLoc(), diag::err_attribute_sentinel_not_zero_or_one)
2543        << E->getSourceRange();
2544      return;
2545    }
2546  }
2547
2548  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
2549    const FunctionType *FT = FD->getType()->castAs<FunctionType>();
2550    if (isa<FunctionNoProtoType>(FT)) {
2551      S.Diag(Attr.getLoc(), diag::warn_attribute_sentinel_named_arguments);
2552      return;
2553    }
2554
2555    if (!cast<FunctionProtoType>(FT)->isVariadic()) {
2556      S.Diag(Attr.getLoc(), diag::warn_attribute_sentinel_not_variadic) << 0;
2557      return;
2558    }
2559  } else if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
2560    if (!MD->isVariadic()) {
2561      S.Diag(Attr.getLoc(), diag::warn_attribute_sentinel_not_variadic) << 0;
2562      return;
2563    }
2564  } else if (BlockDecl *BD = dyn_cast<BlockDecl>(D)) {
2565    if (!BD->isVariadic()) {
2566      S.Diag(Attr.getLoc(), diag::warn_attribute_sentinel_not_variadic) << 1;
2567      return;
2568    }
2569  } else if (const VarDecl *V = dyn_cast<VarDecl>(D)) {
2570    QualType Ty = V->getType();
2571    if (Ty->isBlockPointerType() || Ty->isFunctionPointerType()) {
2572      const FunctionType *FT = Ty->isFunctionPointerType() ? getFunctionType(D)
2573       : Ty->getAs<BlockPointerType>()->getPointeeType()->getAs<FunctionType>();
2574      if (!cast<FunctionProtoType>(FT)->isVariadic()) {
2575        int m = Ty->isFunctionPointerType() ? 0 : 1;
2576        S.Diag(Attr.getLoc(), diag::warn_attribute_sentinel_not_variadic) << m;
2577        return;
2578      }
2579    } else {
2580      S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
2581        << Attr.getName() << ExpectedFunctionMethodOrBlock;
2582      return;
2583    }
2584  } else {
2585    S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
2586      << Attr.getName() << ExpectedFunctionMethodOrBlock;
2587    return;
2588  }
2589  D->addAttr(::new (S.Context)
2590             SentinelAttr(Attr.getRange(), S.Context, sentinel, nullPos,
2591                          Attr.getAttributeSpellingListIndex()));
2592}
2593
2594static void handleWarnUnusedAttr(Sema &S, Decl *D, const AttributeList &Attr) {
2595  if (RecordDecl *RD = dyn_cast<RecordDecl>(D))
2596    RD->addAttr(::new (S.Context) WarnUnusedAttr(Attr.getRange(), S.Context));
2597  else
2598    S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << Attr.getName();
2599}
2600
2601static void handleWarnUnusedResult(Sema &S, Decl *D, const AttributeList &Attr) {
2602  if (!isFunction(D) && !isa<ObjCMethodDecl>(D) && !isa<CXXRecordDecl>(D)) {
2603    S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
2604      << Attr.getName() << ExpectedFunctionMethodOrClass;
2605    return;
2606  }
2607
2608  if (isFunction(D) && getFunctionType(D)->getResultType()->isVoidType()) {
2609    S.Diag(Attr.getLoc(), diag::warn_attribute_void_function_method)
2610      << Attr.getName() << 0;
2611    return;
2612  }
2613  if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D))
2614    if (MD->getResultType()->isVoidType()) {
2615      S.Diag(Attr.getLoc(), diag::warn_attribute_void_function_method)
2616      << Attr.getName() << 1;
2617      return;
2618    }
2619
2620  D->addAttr(::new (S.Context)
2621             WarnUnusedResultAttr(Attr.getRange(), S.Context,
2622                                  Attr.getAttributeSpellingListIndex()));
2623}
2624
2625static void handleWeakAttr(Sema &S, Decl *D, const AttributeList &Attr) {
2626  if (!isa<VarDecl>(D) && !isa<FunctionDecl>(D)) {
2627    if (isa<CXXRecordDecl>(D)) {
2628      D->addAttr(::new (S.Context) WeakAttr(Attr.getRange(), S.Context));
2629      return;
2630    }
2631    S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
2632      << Attr.getName() << ExpectedVariableOrFunction;
2633    return;
2634  }
2635
2636  NamedDecl *nd = cast<NamedDecl>(D);
2637
2638  nd->addAttr(::new (S.Context)
2639              WeakAttr(Attr.getRange(), S.Context,
2640                       Attr.getAttributeSpellingListIndex()));
2641}
2642
2643static void handleWeakImportAttr(Sema &S, Decl *D, const AttributeList &Attr) {
2644  // weak_import only applies to variable & function declarations.
2645  bool isDef = false;
2646  if (!D->canBeWeakImported(isDef)) {
2647    if (isDef)
2648      S.Diag(Attr.getLoc(), diag::warn_attribute_invalid_on_definition)
2649        << "weak_import";
2650    else if (isa<ObjCPropertyDecl>(D) || isa<ObjCMethodDecl>(D) ||
2651             (S.Context.getTargetInfo().getTriple().isOSDarwin() &&
2652              (isa<ObjCInterfaceDecl>(D) || isa<EnumDecl>(D)))) {
2653      // Nothing to warn about here.
2654    } else
2655      S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
2656        << Attr.getName() << ExpectedVariableOrFunction;
2657
2658    return;
2659  }
2660
2661  D->addAttr(::new (S.Context)
2662             WeakImportAttr(Attr.getRange(), S.Context,
2663                            Attr.getAttributeSpellingListIndex()));
2664}
2665
2666// Handles reqd_work_group_size and work_group_size_hint.
2667static void handleWorkGroupSize(Sema &S, Decl *D,
2668                                const AttributeList &Attr) {
2669  unsigned WGSize[3];
2670  for (unsigned i = 0; i < 3; ++i) {
2671    Expr *E = Attr.getArgAsExpr(i);
2672    llvm::APSInt ArgNum(32);
2673    if (E->isTypeDependent() || E->isValueDependent() ||
2674        !E->isIntegerConstantExpr(ArgNum, S.Context)) {
2675      S.Diag(Attr.getLoc(), diag::err_attribute_argument_type)
2676        << Attr.getName() << AANT_ArgumentIntegerConstant
2677        << E->getSourceRange();
2678      return;
2679    }
2680    WGSize[i] = (unsigned) ArgNum.getZExtValue();
2681  }
2682
2683  if (Attr.getKind() == AttributeList::AT_ReqdWorkGroupSize
2684    && D->hasAttr<ReqdWorkGroupSizeAttr>()) {
2685      ReqdWorkGroupSizeAttr *A = D->getAttr<ReqdWorkGroupSizeAttr>();
2686      if (!(A->getXDim() == WGSize[0] &&
2687            A->getYDim() == WGSize[1] &&
2688            A->getZDim() == WGSize[2])) {
2689        S.Diag(Attr.getLoc(), diag::warn_duplicate_attribute) <<
2690          Attr.getName();
2691      }
2692  }
2693
2694  if (Attr.getKind() == AttributeList::AT_WorkGroupSizeHint
2695    && D->hasAttr<WorkGroupSizeHintAttr>()) {
2696      WorkGroupSizeHintAttr *A = D->getAttr<WorkGroupSizeHintAttr>();
2697      if (!(A->getXDim() == WGSize[0] &&
2698            A->getYDim() == WGSize[1] &&
2699            A->getZDim() == WGSize[2])) {
2700        S.Diag(Attr.getLoc(), diag::warn_duplicate_attribute) <<
2701          Attr.getName();
2702      }
2703  }
2704
2705  if (Attr.getKind() == AttributeList::AT_ReqdWorkGroupSize)
2706    D->addAttr(::new (S.Context)
2707                 ReqdWorkGroupSizeAttr(Attr.getRange(), S.Context,
2708                                       WGSize[0], WGSize[1], WGSize[2],
2709                                       Attr.getAttributeSpellingListIndex()));
2710  else
2711    D->addAttr(::new (S.Context)
2712                 WorkGroupSizeHintAttr(Attr.getRange(), S.Context,
2713                                       WGSize[0], WGSize[1], WGSize[2],
2714                                       Attr.getAttributeSpellingListIndex()));
2715}
2716
2717static void handleVecTypeHint(Sema &S, Decl *D, const AttributeList &Attr) {
2718  assert(Attr.getKind() == AttributeList::AT_VecTypeHint);
2719
2720  if (!checkAttributeNumArgs(S, Attr, 0))
2721    return;
2722
2723  if (!Attr.hasParsedType()) {
2724    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments)
2725      << Attr.getName() << 1;
2726    return;
2727  }
2728
2729  QualType ParmType = S.GetTypeFromParser(Attr.getTypeArg());
2730
2731  if (!ParmType->isExtVectorType() && !ParmType->isFloatingType() &&
2732      (ParmType->isBooleanType() ||
2733       !ParmType->isIntegralType(S.getASTContext()))) {
2734    S.Diag(Attr.getLoc(), diag::err_attribute_argument_vec_type_hint)
2735        << ParmType;
2736    return;
2737  }
2738
2739  if (Attr.getKind() == AttributeList::AT_VecTypeHint &&
2740      D->hasAttr<VecTypeHintAttr>()) {
2741    VecTypeHintAttr *A = D->getAttr<VecTypeHintAttr>();
2742    if (A->getTypeHint() != ParmType) {
2743      S.Diag(Attr.getLoc(), diag::warn_duplicate_attribute) << Attr.getName();
2744      return;
2745    }
2746  }
2747
2748  D->addAttr(::new (S.Context) VecTypeHintAttr(Attr.getLoc(), S.Context,
2749                                               ParmType, Attr.getLoc()));
2750}
2751
2752SectionAttr *Sema::mergeSectionAttr(Decl *D, SourceRange Range,
2753                                    StringRef Name,
2754                                    unsigned AttrSpellingListIndex) {
2755  if (SectionAttr *ExistingAttr = D->getAttr<SectionAttr>()) {
2756    if (ExistingAttr->getName() == Name)
2757      return NULL;
2758    Diag(ExistingAttr->getLocation(), diag::warn_mismatched_section);
2759    Diag(Range.getBegin(), diag::note_previous_attribute);
2760    return NULL;
2761  }
2762  return ::new (Context) SectionAttr(Range, Context, Name,
2763                                     AttrSpellingListIndex);
2764}
2765
2766static void handleSectionAttr(Sema &S, Decl *D, const AttributeList &Attr) {
2767  // Make sure that there is a string literal as the sections's single
2768  // argument.
2769  StringRef Str;
2770  SourceLocation LiteralLoc;
2771  if (!S.checkStringLiteralArgumentAttr(Attr, 0, Str, &LiteralLoc))
2772    return;
2773
2774  // If the target wants to validate the section specifier, make it happen.
2775  std::string Error = S.Context.getTargetInfo().isValidSectionSpecifier(Str);
2776  if (!Error.empty()) {
2777    S.Diag(LiteralLoc, diag::err_attribute_section_invalid_for_target)
2778    << Error;
2779    return;
2780  }
2781
2782  // This attribute cannot be applied to local variables.
2783  if (isa<VarDecl>(D) && cast<VarDecl>(D)->hasLocalStorage()) {
2784    S.Diag(LiteralLoc, diag::err_attribute_section_local_variable);
2785    return;
2786  }
2787
2788  unsigned Index = Attr.getAttributeSpellingListIndex();
2789  SectionAttr *NewAttr = S.mergeSectionAttr(D, Attr.getRange(), Str, Index);
2790  if (NewAttr)
2791    D->addAttr(NewAttr);
2792}
2793
2794
2795static void handleNothrowAttr(Sema &S, Decl *D, const AttributeList &Attr) {
2796  if (NoThrowAttr *Existing = D->getAttr<NoThrowAttr>()) {
2797    if (Existing->getLocation().isInvalid())
2798      Existing->setRange(Attr.getRange());
2799  } else {
2800    D->addAttr(::new (S.Context)
2801               NoThrowAttr(Attr.getRange(), S.Context,
2802                           Attr.getAttributeSpellingListIndex()));
2803  }
2804}
2805
2806static void handleConstAttr(Sema &S, Decl *D, const AttributeList &Attr) {
2807  if (ConstAttr *Existing = D->getAttr<ConstAttr>()) {
2808   if (Existing->getLocation().isInvalid())
2809     Existing->setRange(Attr.getRange());
2810  } else {
2811    D->addAttr(::new (S.Context)
2812               ConstAttr(Attr.getRange(), S.Context,
2813                         Attr.getAttributeSpellingListIndex() ));
2814  }
2815}
2816
2817static void handlePureAttr(Sema &S, Decl *D, const AttributeList &Attr) {
2818  D->addAttr(::new (S.Context)
2819             PureAttr(Attr.getRange(), S.Context,
2820                      Attr.getAttributeSpellingListIndex()));
2821}
2822
2823static void handleCleanupAttr(Sema &S, Decl *D, const AttributeList &Attr) {
2824  VarDecl *VD = dyn_cast<VarDecl>(D);
2825  if (!VD || !VD->hasLocalStorage()) {
2826    S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << Attr.getName();
2827    return;
2828  }
2829
2830  Expr *E = Attr.getArgAsExpr(0);
2831  SourceLocation Loc = E->getExprLoc();
2832  FunctionDecl *FD = 0;
2833  DeclarationNameInfo NI;
2834
2835  // gcc only allows for simple identifiers. Since we support more than gcc, we
2836  // will warn the user.
2837  if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
2838    if (DRE->hasQualifier())
2839      S.Diag(Loc, diag::warn_cleanup_ext);
2840    FD = dyn_cast<FunctionDecl>(DRE->getDecl());
2841    NI = DRE->getNameInfo();
2842    if (!FD) {
2843      S.Diag(Loc, diag::err_attribute_cleanup_arg_not_function) << 1
2844        << NI.getName();
2845      return;
2846    }
2847  } else if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(E)) {
2848    if (ULE->hasExplicitTemplateArgs())
2849      S.Diag(Loc, diag::warn_cleanup_ext);
2850
2851    // This will diagnose the case where the function cannot be found.
2852    FD = S.ResolveSingleFunctionTemplateSpecialization(ULE, true);
2853    NI = ULE->getNameInfo();
2854  } else {
2855    S.Diag(Loc, diag::err_attribute_cleanup_arg_not_function) << 0;
2856    return;
2857  }
2858
2859  if (FD->getNumParams() != 1) {
2860    S.Diag(Loc, diag::err_attribute_cleanup_func_must_take_one_arg)
2861      << NI.getName();
2862    return;
2863  }
2864
2865  // We're currently more strict than GCC about what function types we accept.
2866  // If this ever proves to be a problem it should be easy to fix.
2867  QualType Ty = S.Context.getPointerType(VD->getType());
2868  QualType ParamTy = FD->getParamDecl(0)->getType();
2869  if (S.CheckAssignmentConstraints(FD->getParamDecl(0)->getLocation(),
2870                                   ParamTy, Ty) != Sema::Compatible) {
2871    S.Diag(Loc, diag::err_attribute_cleanup_func_arg_incompatible_type)
2872      << NI.getName() << ParamTy << Ty;
2873    return;
2874  }
2875
2876  D->addAttr(::new (S.Context)
2877             CleanupAttr(Attr.getRange(), S.Context, FD,
2878                         Attr.getAttributeSpellingListIndex()));
2879}
2880
2881/// Handle __attribute__((format_arg((idx)))) attribute based on
2882/// http://gcc.gnu.org/onlinedocs/gcc/Function-Attributes.html
2883static void handleFormatArgAttr(Sema &S, Decl *D, const AttributeList &Attr) {
2884  if (!isFunctionOrMethod(D) || !hasFunctionProto(D)) {
2885    S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
2886      << Attr.getName() << ExpectedFunction;
2887    return;
2888  }
2889
2890  Expr *IdxExpr = Attr.getArgAsExpr(0);
2891  uint64_t ArgIdx;
2892  if (!checkFunctionOrMethodArgumentIndex(S, D, Attr.getName()->getName(),
2893                                          Attr.getLoc(), 1, IdxExpr, ArgIdx))
2894    return;
2895
2896  // make sure the format string is really a string
2897  QualType Ty = getFunctionOrMethodArgType(D, ArgIdx);
2898
2899  bool not_nsstring_type = !isNSStringType(Ty, S.Context);
2900  if (not_nsstring_type &&
2901      !isCFStringType(Ty, S.Context) &&
2902      (!Ty->isPointerType() ||
2903       !Ty->getAs<PointerType>()->getPointeeType()->isCharType())) {
2904    // FIXME: Should highlight the actual expression that has the wrong type.
2905    S.Diag(Attr.getLoc(), diag::err_format_attribute_not)
2906    << (not_nsstring_type ? "a string type" : "an NSString")
2907       << IdxExpr->getSourceRange();
2908    return;
2909  }
2910  Ty = getFunctionOrMethodResultType(D);
2911  if (!isNSStringType(Ty, S.Context) &&
2912      !isCFStringType(Ty, S.Context) &&
2913      (!Ty->isPointerType() ||
2914       !Ty->getAs<PointerType>()->getPointeeType()->isCharType())) {
2915    // FIXME: Should highlight the actual expression that has the wrong type.
2916    S.Diag(Attr.getLoc(), diag::err_format_attribute_result_not)
2917    << (not_nsstring_type ? "string type" : "NSString")
2918       << IdxExpr->getSourceRange();
2919    return;
2920  }
2921
2922  // We cannot use the ArgIdx returned from checkFunctionOrMethodArgumentIndex
2923  // because that has corrected for the implicit this parameter, and is zero-
2924  // based.  The attribute expects what the user wrote explicitly.
2925  llvm::APSInt Val;
2926  IdxExpr->EvaluateAsInt(Val, S.Context);
2927
2928  D->addAttr(::new (S.Context)
2929             FormatArgAttr(Attr.getRange(), S.Context, Val.getZExtValue(),
2930                           Attr.getAttributeSpellingListIndex()));
2931}
2932
2933enum FormatAttrKind {
2934  CFStringFormat,
2935  NSStringFormat,
2936  StrftimeFormat,
2937  SupportedFormat,
2938  IgnoredFormat,
2939  InvalidFormat
2940};
2941
2942/// getFormatAttrKind - Map from format attribute names to supported format
2943/// types.
2944static FormatAttrKind getFormatAttrKind(StringRef Format) {
2945  return llvm::StringSwitch<FormatAttrKind>(Format)
2946    // Check for formats that get handled specially.
2947    .Case("NSString", NSStringFormat)
2948    .Case("CFString", CFStringFormat)
2949    .Case("strftime", StrftimeFormat)
2950
2951    // Otherwise, check for supported formats.
2952    .Cases("scanf", "printf", "printf0", "strfmon", SupportedFormat)
2953    .Cases("cmn_err", "vcmn_err", "zcmn_err", SupportedFormat)
2954    .Case("kprintf", SupportedFormat) // OpenBSD.
2955
2956    .Cases("gcc_diag", "gcc_cdiag", "gcc_cxxdiag", "gcc_tdiag", IgnoredFormat)
2957    .Default(InvalidFormat);
2958}
2959
2960/// Handle __attribute__((init_priority(priority))) attributes based on
2961/// http://gcc.gnu.org/onlinedocs/gcc/C_002b_002b-Attributes.html
2962static void handleInitPriorityAttr(Sema &S, Decl *D,
2963                                   const AttributeList &Attr) {
2964  if (!S.getLangOpts().CPlusPlus) {
2965    S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << Attr.getName();
2966    return;
2967  }
2968
2969  if (!isa<VarDecl>(D) || S.getCurFunctionOrMethodDecl()) {
2970    S.Diag(Attr.getLoc(), diag::err_init_priority_object_attr);
2971    Attr.setInvalid();
2972    return;
2973  }
2974  QualType T = dyn_cast<VarDecl>(D)->getType();
2975  if (S.Context.getAsArrayType(T))
2976    T = S.Context.getBaseElementType(T);
2977  if (!T->getAs<RecordType>()) {
2978    S.Diag(Attr.getLoc(), diag::err_init_priority_object_attr);
2979    Attr.setInvalid();
2980    return;
2981  }
2982
2983  Expr *priorityExpr = Attr.getArgAsExpr(0);
2984
2985  llvm::APSInt priority(32);
2986  if (priorityExpr->isTypeDependent() || priorityExpr->isValueDependent() ||
2987      !priorityExpr->isIntegerConstantExpr(priority, S.Context)) {
2988    S.Diag(Attr.getLoc(), diag::err_attribute_argument_type)
2989      << Attr.getName() << AANT_ArgumentIntegerConstant
2990      << priorityExpr->getSourceRange();
2991    Attr.setInvalid();
2992    return;
2993  }
2994  unsigned prioritynum = priority.getZExtValue();
2995  if (prioritynum < 101 || prioritynum > 65535) {
2996    S.Diag(Attr.getLoc(), diag::err_attribute_argument_outof_range)
2997    <<  priorityExpr->getSourceRange();
2998    Attr.setInvalid();
2999    return;
3000  }
3001  D->addAttr(::new (S.Context)
3002             InitPriorityAttr(Attr.getRange(), S.Context, prioritynum,
3003                              Attr.getAttributeSpellingListIndex()));
3004}
3005
3006FormatAttr *Sema::mergeFormatAttr(Decl *D, SourceRange Range,
3007                                  IdentifierInfo *Format, int FormatIdx,
3008                                  int FirstArg,
3009                                  unsigned AttrSpellingListIndex) {
3010  // Check whether we already have an equivalent format attribute.
3011  for (specific_attr_iterator<FormatAttr>
3012         i = D->specific_attr_begin<FormatAttr>(),
3013         e = D->specific_attr_end<FormatAttr>();
3014       i != e ; ++i) {
3015    FormatAttr *f = *i;
3016    if (f->getType() == Format &&
3017        f->getFormatIdx() == FormatIdx &&
3018        f->getFirstArg() == FirstArg) {
3019      // If we don't have a valid location for this attribute, adopt the
3020      // location.
3021      if (f->getLocation().isInvalid())
3022        f->setRange(Range);
3023      return NULL;
3024    }
3025  }
3026
3027  return ::new (Context) FormatAttr(Range, Context, Format, FormatIdx,
3028                                    FirstArg, AttrSpellingListIndex);
3029}
3030
3031/// Handle __attribute__((format(type,idx,firstarg))) attributes based on
3032/// http://gcc.gnu.org/onlinedocs/gcc/Function-Attributes.html
3033static void handleFormatAttr(Sema &S, Decl *D, const AttributeList &Attr) {
3034  if (!Attr.isArgIdent(0)) {
3035    S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_type)
3036      << Attr.getName() << 1 << AANT_ArgumentIdentifier;
3037    return;
3038  }
3039
3040  if (!isFunctionOrMethodOrBlock(D) || !hasFunctionProto(D)) {
3041    S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
3042      << Attr.getName() << ExpectedFunction;
3043    return;
3044  }
3045
3046  // In C++ the implicit 'this' function parameter also counts, and they are
3047  // counted from one.
3048  bool HasImplicitThisParam = isInstanceMethod(D);
3049  unsigned NumArgs  = getFunctionOrMethodNumArgs(D) + HasImplicitThisParam;
3050  unsigned FirstIdx = 1;
3051
3052  IdentifierInfo *II = Attr.getArgAsIdent(0)->Ident;
3053  StringRef Format = II->getName();
3054
3055  // Normalize the argument, __foo__ becomes foo.
3056  if (Format.startswith("__") && Format.endswith("__")) {
3057    Format = Format.substr(2, Format.size() - 4);
3058    // If we've modified the string name, we need a new identifier for it.
3059    II = &S.Context.Idents.get(Format);
3060  }
3061
3062  // Check for supported formats.
3063  FormatAttrKind Kind = getFormatAttrKind(Format);
3064
3065  if (Kind == IgnoredFormat)
3066    return;
3067
3068  if (Kind == InvalidFormat) {
3069    S.Diag(Attr.getLoc(), diag::warn_attribute_type_not_supported)
3070      << "format" << II->getName();
3071    return;
3072  }
3073
3074  // checks for the 2nd argument
3075  Expr *IdxExpr = Attr.getArgAsExpr(1);
3076  llvm::APSInt Idx(32);
3077  if (IdxExpr->isTypeDependent() || IdxExpr->isValueDependent() ||
3078      !IdxExpr->isIntegerConstantExpr(Idx, S.Context)) {
3079    S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_type)
3080      << Attr.getName() << 2 << AANT_ArgumentIntegerConstant
3081      << IdxExpr->getSourceRange();
3082    return;
3083  }
3084
3085  if (Idx.getZExtValue() < FirstIdx || Idx.getZExtValue() > NumArgs) {
3086    S.Diag(Attr.getLoc(), diag::err_attribute_argument_out_of_bounds)
3087      << "format" << 2 << IdxExpr->getSourceRange();
3088    return;
3089  }
3090
3091  // FIXME: Do we need to bounds check?
3092  unsigned ArgIdx = Idx.getZExtValue() - 1;
3093
3094  if (HasImplicitThisParam) {
3095    if (ArgIdx == 0) {
3096      S.Diag(Attr.getLoc(),
3097             diag::err_format_attribute_implicit_this_format_string)
3098        << IdxExpr->getSourceRange();
3099      return;
3100    }
3101    ArgIdx--;
3102  }
3103
3104  // make sure the format string is really a string
3105  QualType Ty = getFunctionOrMethodArgType(D, ArgIdx);
3106
3107  if (Kind == CFStringFormat) {
3108    if (!isCFStringType(Ty, S.Context)) {
3109      S.Diag(Attr.getLoc(), diag::err_format_attribute_not)
3110        << "a CFString" << IdxExpr->getSourceRange();
3111      return;
3112    }
3113  } else if (Kind == NSStringFormat) {
3114    // FIXME: do we need to check if the type is NSString*?  What are the
3115    // semantics?
3116    if (!isNSStringType(Ty, S.Context)) {
3117      // FIXME: Should highlight the actual expression that has the wrong type.
3118      S.Diag(Attr.getLoc(), diag::err_format_attribute_not)
3119        << "an NSString" << IdxExpr->getSourceRange();
3120      return;
3121    }
3122  } else if (!Ty->isPointerType() ||
3123             !Ty->getAs<PointerType>()->getPointeeType()->isCharType()) {
3124    // FIXME: Should highlight the actual expression that has the wrong type.
3125    S.Diag(Attr.getLoc(), diag::err_format_attribute_not)
3126      << "a string type" << IdxExpr->getSourceRange();
3127    return;
3128  }
3129
3130  // check the 3rd argument
3131  Expr *FirstArgExpr = Attr.getArgAsExpr(2);
3132  llvm::APSInt FirstArg(32);
3133  if (FirstArgExpr->isTypeDependent() || FirstArgExpr->isValueDependent() ||
3134      !FirstArgExpr->isIntegerConstantExpr(FirstArg, S.Context)) {
3135    S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_type)
3136      << Attr.getName() << 3 << AANT_ArgumentIntegerConstant
3137      << FirstArgExpr->getSourceRange();
3138    return;
3139  }
3140
3141  // check if the function is variadic if the 3rd argument non-zero
3142  if (FirstArg != 0) {
3143    if (isFunctionOrMethodVariadic(D)) {
3144      ++NumArgs; // +1 for ...
3145    } else {
3146      S.Diag(D->getLocation(), diag::err_format_attribute_requires_variadic);
3147      return;
3148    }
3149  }
3150
3151  // strftime requires FirstArg to be 0 because it doesn't read from any
3152  // variable the input is just the current time + the format string.
3153  if (Kind == StrftimeFormat) {
3154    if (FirstArg != 0) {
3155      S.Diag(Attr.getLoc(), diag::err_format_strftime_third_parameter)
3156        << FirstArgExpr->getSourceRange();
3157      return;
3158    }
3159  // if 0 it disables parameter checking (to use with e.g. va_list)
3160  } else if (FirstArg != 0 && FirstArg != NumArgs) {
3161    S.Diag(Attr.getLoc(), diag::err_attribute_argument_out_of_bounds)
3162      << "format" << 3 << FirstArgExpr->getSourceRange();
3163    return;
3164  }
3165
3166  FormatAttr *NewAttr = S.mergeFormatAttr(D, Attr.getRange(), II,
3167                                          Idx.getZExtValue(),
3168                                          FirstArg.getZExtValue(),
3169                                          Attr.getAttributeSpellingListIndex());
3170  if (NewAttr)
3171    D->addAttr(NewAttr);
3172}
3173
3174static void handleTransparentUnionAttr(Sema &S, Decl *D,
3175                                       const AttributeList &Attr) {
3176  // Try to find the underlying union declaration.
3177  RecordDecl *RD = 0;
3178  TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(D);
3179  if (TD && TD->getUnderlyingType()->isUnionType())
3180    RD = TD->getUnderlyingType()->getAsUnionType()->getDecl();
3181  else
3182    RD = dyn_cast<RecordDecl>(D);
3183
3184  if (!RD || !RD->isUnion()) {
3185    S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
3186      << Attr.getName() << ExpectedUnion;
3187    return;
3188  }
3189
3190  if (!RD->isCompleteDefinition()) {
3191    S.Diag(Attr.getLoc(),
3192        diag::warn_transparent_union_attribute_not_definition);
3193    return;
3194  }
3195
3196  RecordDecl::field_iterator Field = RD->field_begin(),
3197                          FieldEnd = RD->field_end();
3198  if (Field == FieldEnd) {
3199    S.Diag(Attr.getLoc(), diag::warn_transparent_union_attribute_zero_fields);
3200    return;
3201  }
3202
3203  FieldDecl *FirstField = *Field;
3204  QualType FirstType = FirstField->getType();
3205  if (FirstType->hasFloatingRepresentation() || FirstType->isVectorType()) {
3206    S.Diag(FirstField->getLocation(),
3207           diag::warn_transparent_union_attribute_floating)
3208      << FirstType->isVectorType() << FirstType;
3209    return;
3210  }
3211
3212  uint64_t FirstSize = S.Context.getTypeSize(FirstType);
3213  uint64_t FirstAlign = S.Context.getTypeAlign(FirstType);
3214  for (; Field != FieldEnd; ++Field) {
3215    QualType FieldType = Field->getType();
3216    if (S.Context.getTypeSize(FieldType) != FirstSize ||
3217        S.Context.getTypeAlign(FieldType) != FirstAlign) {
3218      // Warn if we drop the attribute.
3219      bool isSize = S.Context.getTypeSize(FieldType) != FirstSize;
3220      unsigned FieldBits = isSize? S.Context.getTypeSize(FieldType)
3221                                 : S.Context.getTypeAlign(FieldType);
3222      S.Diag(Field->getLocation(),
3223          diag::warn_transparent_union_attribute_field_size_align)
3224        << isSize << Field->getDeclName() << FieldBits;
3225      unsigned FirstBits = isSize? FirstSize : FirstAlign;
3226      S.Diag(FirstField->getLocation(),
3227             diag::note_transparent_union_first_field_size_align)
3228        << isSize << FirstBits;
3229      return;
3230    }
3231  }
3232
3233  RD->addAttr(::new (S.Context)
3234              TransparentUnionAttr(Attr.getRange(), S.Context,
3235                                   Attr.getAttributeSpellingListIndex()));
3236}
3237
3238static void handleAnnotateAttr(Sema &S, Decl *D, const AttributeList &Attr) {
3239  // Make sure that there is a string literal as the annotation's single
3240  // argument.
3241  StringRef Str;
3242  if (!S.checkStringLiteralArgumentAttr(Attr, 0, Str))
3243    return;
3244
3245  // Don't duplicate annotations that are already set.
3246  for (specific_attr_iterator<AnnotateAttr>
3247       i = D->specific_attr_begin<AnnotateAttr>(),
3248       e = D->specific_attr_end<AnnotateAttr>(); i != e; ++i) {
3249    if ((*i)->getAnnotation() == Str)
3250      return;
3251  }
3252
3253  D->addAttr(::new (S.Context)
3254             AnnotateAttr(Attr.getRange(), S.Context, Str,
3255                          Attr.getAttributeSpellingListIndex()));
3256}
3257
3258static void handleAlignedAttr(Sema &S, Decl *D, const AttributeList &Attr) {
3259  // check the attribute arguments.
3260  if (Attr.getNumArgs() > 1) {
3261    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments)
3262      << Attr.getName() << 1;
3263    return;
3264  }
3265
3266  if (Attr.getNumArgs() == 0) {
3267    D->addAttr(::new (S.Context) AlignedAttr(Attr.getRange(), S.Context,
3268               true, 0, Attr.getAttributeSpellingListIndex()));
3269    return;
3270  }
3271
3272  Expr *E = Attr.getArgAsExpr(0);
3273  if (Attr.isPackExpansion() && !E->containsUnexpandedParameterPack()) {
3274    S.Diag(Attr.getEllipsisLoc(),
3275           diag::err_pack_expansion_without_parameter_packs);
3276    return;
3277  }
3278
3279  if (!Attr.isPackExpansion() && S.DiagnoseUnexpandedParameterPack(E))
3280    return;
3281
3282  S.AddAlignedAttr(Attr.getRange(), D, E, Attr.getAttributeSpellingListIndex(),
3283                   Attr.isPackExpansion());
3284}
3285
3286void Sema::AddAlignedAttr(SourceRange AttrRange, Decl *D, Expr *E,
3287                          unsigned SpellingListIndex, bool IsPackExpansion) {
3288  AlignedAttr TmpAttr(AttrRange, Context, true, E, SpellingListIndex);
3289  SourceLocation AttrLoc = AttrRange.getBegin();
3290
3291  // C++11 alignas(...) and C11 _Alignas(...) have additional requirements.
3292  if (TmpAttr.isAlignas()) {
3293    // C++11 [dcl.align]p1:
3294    //   An alignment-specifier may be applied to a variable or to a class
3295    //   data member, but it shall not be applied to a bit-field, a function
3296    //   parameter, the formal parameter of a catch clause, or a variable
3297    //   declared with the register storage class specifier. An
3298    //   alignment-specifier may also be applied to the declaration of a class
3299    //   or enumeration type.
3300    // C11 6.7.5/2:
3301    //   An alignment attribute shall not be specified in a declaration of
3302    //   a typedef, or a bit-field, or a function, or a parameter, or an
3303    //   object declared with the register storage-class specifier.
3304    int DiagKind = -1;
3305    if (isa<ParmVarDecl>(D)) {
3306      DiagKind = 0;
3307    } else if (VarDecl *VD = dyn_cast<VarDecl>(D)) {
3308      if (VD->getStorageClass() == SC_Register)
3309        DiagKind = 1;
3310      if (VD->isExceptionVariable())
3311        DiagKind = 2;
3312    } else if (FieldDecl *FD = dyn_cast<FieldDecl>(D)) {
3313      if (FD->isBitField())
3314        DiagKind = 3;
3315    } else if (!isa<TagDecl>(D)) {
3316      Diag(AttrLoc, diag::err_attribute_wrong_decl_type)
3317        << (TmpAttr.isC11() ? "'_Alignas'" : "'alignas'")
3318        << (TmpAttr.isC11() ? ExpectedVariableOrField
3319                            : ExpectedVariableFieldOrTag);
3320      return;
3321    }
3322    if (DiagKind != -1) {
3323      Diag(AttrLoc, diag::err_alignas_attribute_wrong_decl_type)
3324        << TmpAttr.isC11() << DiagKind;
3325      return;
3326    }
3327  }
3328
3329  if (E->isTypeDependent() || E->isValueDependent()) {
3330    // Save dependent expressions in the AST to be instantiated.
3331    AlignedAttr *AA = ::new (Context) AlignedAttr(TmpAttr);
3332    AA->setPackExpansion(IsPackExpansion);
3333    D->addAttr(AA);
3334    return;
3335  }
3336
3337  // FIXME: Cache the number on the Attr object?
3338  llvm::APSInt Alignment(32);
3339  ExprResult ICE
3340    = VerifyIntegerConstantExpression(E, &Alignment,
3341        diag::err_aligned_attribute_argument_not_int,
3342        /*AllowFold*/ false);
3343  if (ICE.isInvalid())
3344    return;
3345
3346  // C++11 [dcl.align]p2:
3347  //   -- if the constant expression evaluates to zero, the alignment
3348  //      specifier shall have no effect
3349  // C11 6.7.5p6:
3350  //   An alignment specification of zero has no effect.
3351  if (!(TmpAttr.isAlignas() && !Alignment) &&
3352      !llvm::isPowerOf2_64(Alignment.getZExtValue())) {
3353    Diag(AttrLoc, diag::err_attribute_aligned_not_power_of_two)
3354      << E->getSourceRange();
3355    return;
3356  }
3357
3358  if (TmpAttr.isDeclspec()) {
3359    // We've already verified it's a power of 2, now let's make sure it's
3360    // 8192 or less.
3361    if (Alignment.getZExtValue() > 8192) {
3362      Diag(AttrLoc, diag::err_attribute_aligned_greater_than_8192)
3363        << E->getSourceRange();
3364      return;
3365    }
3366  }
3367
3368  AlignedAttr *AA = ::new (Context) AlignedAttr(AttrRange, Context, true,
3369                                                ICE.take(), SpellingListIndex);
3370  AA->setPackExpansion(IsPackExpansion);
3371  D->addAttr(AA);
3372}
3373
3374void Sema::AddAlignedAttr(SourceRange AttrRange, Decl *D, TypeSourceInfo *TS,
3375                          unsigned SpellingListIndex, bool IsPackExpansion) {
3376  // FIXME: Cache the number on the Attr object if non-dependent?
3377  // FIXME: Perform checking of type validity
3378  AlignedAttr *AA = ::new (Context) AlignedAttr(AttrRange, Context, false, TS,
3379                                                SpellingListIndex);
3380  AA->setPackExpansion(IsPackExpansion);
3381  D->addAttr(AA);
3382}
3383
3384void Sema::CheckAlignasUnderalignment(Decl *D) {
3385  assert(D->hasAttrs() && "no attributes on decl");
3386
3387  QualType Ty;
3388  if (ValueDecl *VD = dyn_cast<ValueDecl>(D))
3389    Ty = VD->getType();
3390  else
3391    Ty = Context.getTagDeclType(cast<TagDecl>(D));
3392  if (Ty->isDependentType() || Ty->isIncompleteType())
3393    return;
3394
3395  // C++11 [dcl.align]p5, C11 6.7.5/4:
3396  //   The combined effect of all alignment attributes in a declaration shall
3397  //   not specify an alignment that is less strict than the alignment that
3398  //   would otherwise be required for the entity being declared.
3399  AlignedAttr *AlignasAttr = 0;
3400  unsigned Align = 0;
3401  for (specific_attr_iterator<AlignedAttr>
3402         I = D->specific_attr_begin<AlignedAttr>(),
3403         E = D->specific_attr_end<AlignedAttr>(); I != E; ++I) {
3404    if (I->isAlignmentDependent())
3405      return;
3406    if (I->isAlignas())
3407      AlignasAttr = *I;
3408    Align = std::max(Align, I->getAlignment(Context));
3409  }
3410
3411  if (AlignasAttr && Align) {
3412    CharUnits RequestedAlign = Context.toCharUnitsFromBits(Align);
3413    CharUnits NaturalAlign = Context.getTypeAlignInChars(Ty);
3414    if (NaturalAlign > RequestedAlign)
3415      Diag(AlignasAttr->getLocation(), diag::err_alignas_underaligned)
3416        << Ty << (unsigned)NaturalAlign.getQuantity();
3417  }
3418}
3419
3420/// handleModeAttr - This attribute modifies the width of a decl with primitive
3421/// type.
3422///
3423/// Despite what would be logical, the mode attribute is a decl attribute, not a
3424/// type attribute: 'int ** __attribute((mode(HI))) *G;' tries to make 'G' be
3425/// HImode, not an intermediate pointer.
3426static void handleModeAttr(Sema &S, Decl *D, const AttributeList &Attr) {
3427  // This attribute isn't documented, but glibc uses it.  It changes
3428  // the width of an int or unsigned int to the specified size.
3429  if (!Attr.isArgIdent(0)) {
3430    S.Diag(Attr.getLoc(), diag::err_attribute_argument_type) << Attr.getName()
3431      << AANT_ArgumentIdentifier;
3432    return;
3433  }
3434
3435  IdentifierInfo *Name = Attr.getArgAsIdent(0)->Ident;
3436  StringRef Str = Name->getName();
3437
3438  // Normalize the attribute name, __foo__ becomes foo.
3439  if (Str.startswith("__") && Str.endswith("__"))
3440    Str = Str.substr(2, Str.size() - 4);
3441
3442  unsigned DestWidth = 0;
3443  bool IntegerMode = true;
3444  bool ComplexMode = false;
3445  switch (Str.size()) {
3446  case 2:
3447    switch (Str[0]) {
3448    case 'Q': DestWidth = 8; break;
3449    case 'H': DestWidth = 16; break;
3450    case 'S': DestWidth = 32; break;
3451    case 'D': DestWidth = 64; break;
3452    case 'X': DestWidth = 96; break;
3453    case 'T': DestWidth = 128; break;
3454    }
3455    if (Str[1] == 'F') {
3456      IntegerMode = false;
3457    } else if (Str[1] == 'C') {
3458      IntegerMode = false;
3459      ComplexMode = true;
3460    } else if (Str[1] != 'I') {
3461      DestWidth = 0;
3462    }
3463    break;
3464  case 4:
3465    // FIXME: glibc uses 'word' to define register_t; this is narrower than a
3466    // pointer on PIC16 and other embedded platforms.
3467    if (Str == "word")
3468      DestWidth = S.Context.getTargetInfo().getPointerWidth(0);
3469    else if (Str == "byte")
3470      DestWidth = S.Context.getTargetInfo().getCharWidth();
3471    break;
3472  case 7:
3473    if (Str == "pointer")
3474      DestWidth = S.Context.getTargetInfo().getPointerWidth(0);
3475    break;
3476  case 11:
3477    if (Str == "unwind_word")
3478      DestWidth = S.Context.getTargetInfo().getUnwindWordWidth();
3479    break;
3480  }
3481
3482  QualType OldTy;
3483  if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(D))
3484    OldTy = TD->getUnderlyingType();
3485  else if (ValueDecl *VD = dyn_cast<ValueDecl>(D))
3486    OldTy = VD->getType();
3487  else {
3488    S.Diag(D->getLocation(), diag::err_attr_wrong_decl)
3489      << "mode" << Attr.getRange();
3490    return;
3491  }
3492
3493  if (!OldTy->getAs<BuiltinType>() && !OldTy->isComplexType())
3494    S.Diag(Attr.getLoc(), diag::err_mode_not_primitive);
3495  else if (IntegerMode) {
3496    if (!OldTy->isIntegralOrEnumerationType())
3497      S.Diag(Attr.getLoc(), diag::err_mode_wrong_type);
3498  } else if (ComplexMode) {
3499    if (!OldTy->isComplexType())
3500      S.Diag(Attr.getLoc(), diag::err_mode_wrong_type);
3501  } else {
3502    if (!OldTy->isFloatingType())
3503      S.Diag(Attr.getLoc(), diag::err_mode_wrong_type);
3504  }
3505
3506  // FIXME: Sync this with InitializePredefinedMacros; we need to match int8_t
3507  // and friends, at least with glibc.
3508  // FIXME: Make sure floating-point mappings are accurate
3509  // FIXME: Support XF and TF types
3510  if (!DestWidth) {
3511    S.Diag(Attr.getLoc(), diag::err_unknown_machine_mode) << Name;
3512    return;
3513  }
3514
3515  QualType NewTy;
3516
3517  if (IntegerMode)
3518    NewTy = S.Context.getIntTypeForBitwidth(DestWidth,
3519                                            OldTy->isSignedIntegerType());
3520  else
3521    NewTy = S.Context.getRealTypeForBitwidth(DestWidth);
3522
3523  if (NewTy.isNull()) {
3524    S.Diag(Attr.getLoc(), diag::err_unsupported_machine_mode) << Name;
3525    return;
3526  }
3527
3528  if (ComplexMode) {
3529    NewTy = S.Context.getComplexType(NewTy);
3530  }
3531
3532  // Install the new type.
3533  if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(D))
3534    TD->setModedTypeSourceInfo(TD->getTypeSourceInfo(), NewTy);
3535  else
3536    cast<ValueDecl>(D)->setType(NewTy);
3537
3538  D->addAttr(::new (S.Context)
3539             ModeAttr(Attr.getRange(), S.Context, Name,
3540                      Attr.getAttributeSpellingListIndex()));
3541}
3542
3543static void handleNoDebugAttr(Sema &S, Decl *D, const AttributeList &Attr) {
3544  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
3545    if (!VD->hasGlobalStorage())
3546      S.Diag(Attr.getLoc(),
3547             diag::warn_attribute_requires_functions_or_static_globals)
3548        << Attr.getName();
3549  } else if (!isFunctionOrMethod(D)) {
3550    S.Diag(Attr.getLoc(),
3551           diag::warn_attribute_requires_functions_or_static_globals)
3552      << Attr.getName();
3553    return;
3554  }
3555
3556  D->addAttr(::new (S.Context)
3557             NoDebugAttr(Attr.getRange(), S.Context,
3558                         Attr.getAttributeSpellingListIndex()));
3559}
3560
3561static void handleNoInlineAttr(Sema &S, Decl *D, const AttributeList &Attr) {
3562  if (!isa<FunctionDecl>(D)) {
3563    S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
3564      << Attr.getName() << ExpectedFunction;
3565    return;
3566  }
3567
3568  D->addAttr(::new (S.Context)
3569             NoInlineAttr(Attr.getRange(), S.Context,
3570             Attr.getAttributeSpellingListIndex()));
3571}
3572
3573static void handleNoInstrumentFunctionAttr(Sema &S, Decl *D,
3574                                           const AttributeList &Attr) {
3575  if (!isa<FunctionDecl>(D)) {
3576    S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
3577      << Attr.getName() << ExpectedFunction;
3578    return;
3579  }
3580
3581  D->addAttr(::new (S.Context)
3582             NoInstrumentFunctionAttr(Attr.getRange(), S.Context,
3583                                      Attr.getAttributeSpellingListIndex()));
3584}
3585
3586static void handleConstantAttr(Sema &S, Decl *D, const AttributeList &Attr) {
3587  if (S.LangOpts.CUDA) {
3588    if (!isa<VarDecl>(D)) {
3589      S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
3590        << Attr.getName() << ExpectedVariable;
3591      return;
3592    }
3593
3594    D->addAttr(::new (S.Context)
3595               CUDAConstantAttr(Attr.getRange(), S.Context,
3596                                Attr.getAttributeSpellingListIndex()));
3597  } else {
3598    S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << "constant";
3599  }
3600}
3601
3602static void handleDeviceAttr(Sema &S, Decl *D, const AttributeList &Attr) {
3603  if (S.LangOpts.CUDA) {
3604    // check the attribute arguments.
3605    if (Attr.getNumArgs() != 0) {
3606      S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments)
3607        << Attr.getName() << 0;
3608      return;
3609    }
3610
3611    if (!isa<FunctionDecl>(D) && !isa<VarDecl>(D)) {
3612      S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
3613        << Attr.getName() << ExpectedVariableOrFunction;
3614      return;
3615    }
3616
3617    D->addAttr(::new (S.Context)
3618               CUDADeviceAttr(Attr.getRange(), S.Context,
3619                              Attr.getAttributeSpellingListIndex()));
3620  } else {
3621    S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << "device";
3622  }
3623}
3624
3625static void handleGlobalAttr(Sema &S, Decl *D, const AttributeList &Attr) {
3626  if (S.LangOpts.CUDA) {
3627    if (!isa<FunctionDecl>(D)) {
3628      S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
3629        << Attr.getName() << ExpectedFunction;
3630      return;
3631    }
3632
3633    FunctionDecl *FD = cast<FunctionDecl>(D);
3634    if (!FD->getResultType()->isVoidType()) {
3635      TypeLoc TL = FD->getTypeSourceInfo()->getTypeLoc().IgnoreParens();
3636      if (FunctionTypeLoc FTL = TL.getAs<FunctionTypeLoc>()) {
3637        S.Diag(FD->getTypeSpecStartLoc(), diag::err_kern_type_not_void_return)
3638          << FD->getType()
3639          << FixItHint::CreateReplacement(FTL.getResultLoc().getSourceRange(),
3640                                          "void");
3641      } else {
3642        S.Diag(FD->getTypeSpecStartLoc(), diag::err_kern_type_not_void_return)
3643          << FD->getType();
3644      }
3645      return;
3646    }
3647
3648    D->addAttr(::new (S.Context)
3649               CUDAGlobalAttr(Attr.getRange(), S.Context,
3650                              Attr.getAttributeSpellingListIndex()));
3651  } else {
3652    S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << "global";
3653  }
3654}
3655
3656static void handleHostAttr(Sema &S, Decl *D, const AttributeList &Attr) {
3657  if (S.LangOpts.CUDA) {
3658    if (!isa<FunctionDecl>(D)) {
3659      S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
3660        << Attr.getName() << ExpectedFunction;
3661      return;
3662    }
3663
3664    D->addAttr(::new (S.Context)
3665               CUDAHostAttr(Attr.getRange(), S.Context,
3666                            Attr.getAttributeSpellingListIndex()));
3667  } else {
3668    S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << "host";
3669  }
3670}
3671
3672static void handleSharedAttr(Sema &S, Decl *D, const AttributeList &Attr) {
3673  if (S.LangOpts.CUDA) {
3674    if (!isa<VarDecl>(D)) {
3675      S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
3676        << Attr.getName() << ExpectedVariable;
3677      return;
3678    }
3679
3680    D->addAttr(::new (S.Context)
3681               CUDASharedAttr(Attr.getRange(), S.Context,
3682                              Attr.getAttributeSpellingListIndex()));
3683  } else {
3684    S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << "shared";
3685  }
3686}
3687
3688static void handleGNUInlineAttr(Sema &S, Decl *D, const AttributeList &Attr) {
3689  FunctionDecl *Fn = dyn_cast<FunctionDecl>(D);
3690  if (Fn == 0) {
3691    S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
3692      << Attr.getName() << ExpectedFunction;
3693    return;
3694  }
3695
3696  if (!Fn->isInlineSpecified()) {
3697    S.Diag(Attr.getLoc(), diag::warn_gnu_inline_attribute_requires_inline);
3698    return;
3699  }
3700
3701  D->addAttr(::new (S.Context)
3702             GNUInlineAttr(Attr.getRange(), S.Context,
3703                           Attr.getAttributeSpellingListIndex()));
3704}
3705
3706static void handleCallConvAttr(Sema &S, Decl *D, const AttributeList &Attr) {
3707  if (hasDeclarator(D)) return;
3708
3709  const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
3710  // Diagnostic is emitted elsewhere: here we store the (valid) Attr
3711  // in the Decl node for syntactic reasoning, e.g., pretty-printing.
3712  CallingConv CC;
3713  if (S.CheckCallingConvAttr(Attr, CC, FD))
3714    return;
3715
3716  if (!isa<ObjCMethodDecl>(D)) {
3717    S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
3718      << Attr.getName() << ExpectedFunctionOrMethod;
3719    return;
3720  }
3721
3722  switch (Attr.getKind()) {
3723  case AttributeList::AT_FastCall:
3724    D->addAttr(::new (S.Context)
3725               FastCallAttr(Attr.getRange(), S.Context,
3726                            Attr.getAttributeSpellingListIndex()));
3727    return;
3728  case AttributeList::AT_StdCall:
3729    D->addAttr(::new (S.Context)
3730               StdCallAttr(Attr.getRange(), S.Context,
3731                           Attr.getAttributeSpellingListIndex()));
3732    return;
3733  case AttributeList::AT_ThisCall:
3734    D->addAttr(::new (S.Context)
3735               ThisCallAttr(Attr.getRange(), S.Context,
3736                            Attr.getAttributeSpellingListIndex()));
3737    return;
3738  case AttributeList::AT_CDecl:
3739    D->addAttr(::new (S.Context)
3740               CDeclAttr(Attr.getRange(), S.Context,
3741                         Attr.getAttributeSpellingListIndex()));
3742    return;
3743  case AttributeList::AT_Pascal:
3744    D->addAttr(::new (S.Context)
3745               PascalAttr(Attr.getRange(), S.Context,
3746                          Attr.getAttributeSpellingListIndex()));
3747    return;
3748  case AttributeList::AT_MSABI:
3749    D->addAttr(::new (S.Context)
3750               MSABIAttr(Attr.getRange(), S.Context,
3751                         Attr.getAttributeSpellingListIndex()));
3752    return;
3753  case AttributeList::AT_SysVABI:
3754    D->addAttr(::new (S.Context)
3755               SysVABIAttr(Attr.getRange(), S.Context,
3756                           Attr.getAttributeSpellingListIndex()));
3757    return;
3758  case AttributeList::AT_Pcs: {
3759    PcsAttr::PCSType PCS;
3760    switch (CC) {
3761    case CC_AAPCS:
3762      PCS = PcsAttr::AAPCS;
3763      break;
3764    case CC_AAPCS_VFP:
3765      PCS = PcsAttr::AAPCS_VFP;
3766      break;
3767    default:
3768      llvm_unreachable("unexpected calling convention in pcs attribute");
3769    }
3770
3771    D->addAttr(::new (S.Context)
3772               PcsAttr(Attr.getRange(), S.Context, PCS,
3773                       Attr.getAttributeSpellingListIndex()));
3774    return;
3775  }
3776  case AttributeList::AT_PnaclCall:
3777    D->addAttr(::new (S.Context)
3778               PnaclCallAttr(Attr.getRange(), S.Context,
3779                             Attr.getAttributeSpellingListIndex()));
3780    return;
3781  case AttributeList::AT_IntelOclBicc:
3782    D->addAttr(::new (S.Context)
3783               IntelOclBiccAttr(Attr.getRange(), S.Context,
3784                                Attr.getAttributeSpellingListIndex()));
3785    return;
3786
3787  default:
3788    llvm_unreachable("unexpected attribute kind");
3789  }
3790}
3791
3792static void handleOpenCLKernelAttr(Sema &S, Decl *D, const AttributeList &Attr){
3793  D->addAttr(::new (S.Context) OpenCLKernelAttr(Attr.getRange(), S.Context));
3794}
3795
3796static void handleOpenCLImageAccessAttr(Sema &S, Decl *D, const AttributeList &Attr){
3797  Expr *E = Attr.getArgAsExpr(0);
3798  llvm::APSInt ArgNum(32);
3799  if (E->isTypeDependent() || E->isValueDependent() ||
3800      !E->isIntegerConstantExpr(ArgNum, S.Context)) {
3801    S.Diag(Attr.getLoc(), diag::err_attribute_argument_type)
3802      << Attr.getName() << AANT_ArgumentIntegerConstant
3803      << E->getSourceRange();
3804    return;
3805  }
3806
3807  D->addAttr(::new (S.Context) OpenCLImageAccessAttr(
3808    Attr.getRange(), S.Context, ArgNum.getZExtValue()));
3809}
3810
3811bool Sema::CheckCallingConvAttr(const AttributeList &attr, CallingConv &CC,
3812                                const FunctionDecl *FD) {
3813  if (attr.isInvalid())
3814    return true;
3815
3816  unsigned ReqArgs = attr.getKind() == AttributeList::AT_Pcs ? 1 : 0;
3817  if (!checkAttributeNumArgs(*this, attr, ReqArgs)) {
3818    attr.setInvalid();
3819    return true;
3820  }
3821
3822  // TODO: diagnose uses of these conventions on the wrong target. Or, better
3823  // move to TargetAttributesSema one day.
3824  switch (attr.getKind()) {
3825  case AttributeList::AT_CDecl: CC = CC_C; break;
3826  case AttributeList::AT_FastCall: CC = CC_X86FastCall; break;
3827  case AttributeList::AT_StdCall: CC = CC_X86StdCall; break;
3828  case AttributeList::AT_ThisCall: CC = CC_X86ThisCall; break;
3829  case AttributeList::AT_Pascal: CC = CC_X86Pascal; break;
3830  case AttributeList::AT_MSABI:
3831    CC = Context.getTargetInfo().getTriple().isOSWindows() ? CC_C :
3832                                                             CC_X86_64Win64;
3833    break;
3834  case AttributeList::AT_SysVABI:
3835    CC = Context.getTargetInfo().getTriple().isOSWindows() ? CC_X86_64SysV :
3836                                                             CC_C;
3837    break;
3838  case AttributeList::AT_Pcs: {
3839    StringRef StrRef;
3840    if (!checkStringLiteralArgumentAttr(attr, 0, StrRef)) {
3841      attr.setInvalid();
3842      return true;
3843    }
3844    if (StrRef == "aapcs") {
3845      CC = CC_AAPCS;
3846      break;
3847    } else if (StrRef == "aapcs-vfp") {
3848      CC = CC_AAPCS_VFP;
3849      break;
3850    }
3851
3852    attr.setInvalid();
3853    Diag(attr.getLoc(), diag::err_invalid_pcs);
3854    return true;
3855  }
3856  case AttributeList::AT_PnaclCall: CC = CC_PnaclCall; break;
3857  case AttributeList::AT_IntelOclBicc: CC = CC_IntelOclBicc; break;
3858  default: llvm_unreachable("unexpected attribute kind");
3859  }
3860
3861  const TargetInfo &TI = Context.getTargetInfo();
3862  TargetInfo::CallingConvCheckResult A = TI.checkCallingConvention(CC);
3863  if (A == TargetInfo::CCCR_Warning) {
3864    Diag(attr.getLoc(), diag::warn_cconv_ignored) << attr.getName();
3865
3866    TargetInfo::CallingConvMethodType MT = TargetInfo::CCMT_Unknown;
3867    if (FD)
3868      MT = FD->isCXXInstanceMember() ? TargetInfo::CCMT_Member :
3869                                    TargetInfo::CCMT_NonMember;
3870    CC = TI.getDefaultCallingConv(MT);
3871  }
3872
3873  return false;
3874}
3875
3876static void handleRegparmAttr(Sema &S, Decl *D, const AttributeList &Attr) {
3877  if (hasDeclarator(D)) return;
3878
3879  unsigned numParams;
3880  if (S.CheckRegparmAttr(Attr, numParams))
3881    return;
3882
3883  if (!isa<ObjCMethodDecl>(D)) {
3884    S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
3885      << Attr.getName() << ExpectedFunctionOrMethod;
3886    return;
3887  }
3888
3889  D->addAttr(::new (S.Context)
3890             RegparmAttr(Attr.getRange(), S.Context, numParams,
3891                         Attr.getAttributeSpellingListIndex()));
3892}
3893
3894/// Checks a regparm attribute, returning true if it is ill-formed and
3895/// otherwise setting numParams to the appropriate value.
3896bool Sema::CheckRegparmAttr(const AttributeList &Attr, unsigned &numParams) {
3897  if (Attr.isInvalid())
3898    return true;
3899
3900  if (!checkAttributeNumArgs(*this, Attr, 1)) {
3901    Attr.setInvalid();
3902    return true;
3903  }
3904
3905  Expr *NumParamsExpr = Attr.getArgAsExpr(0);
3906  llvm::APSInt NumParams(32);
3907  if (NumParamsExpr->isTypeDependent() || NumParamsExpr->isValueDependent() ||
3908      !NumParamsExpr->isIntegerConstantExpr(NumParams, Context)) {
3909    Diag(Attr.getLoc(), diag::err_attribute_argument_type)
3910      << Attr.getName() << AANT_ArgumentIntegerConstant
3911      << NumParamsExpr->getSourceRange();
3912    Attr.setInvalid();
3913    return true;
3914  }
3915
3916  if (Context.getTargetInfo().getRegParmMax() == 0) {
3917    Diag(Attr.getLoc(), diag::err_attribute_regparm_wrong_platform)
3918      << NumParamsExpr->getSourceRange();
3919    Attr.setInvalid();
3920    return true;
3921  }
3922
3923  numParams = NumParams.getZExtValue();
3924  if (numParams > Context.getTargetInfo().getRegParmMax()) {
3925    Diag(Attr.getLoc(), diag::err_attribute_regparm_invalid_number)
3926      << Context.getTargetInfo().getRegParmMax() << NumParamsExpr->getSourceRange();
3927    Attr.setInvalid();
3928    return true;
3929  }
3930
3931  return false;
3932}
3933
3934static void handleLaunchBoundsAttr(Sema &S, Decl *D, const AttributeList &Attr){
3935  if (S.LangOpts.CUDA) {
3936    // check the attribute arguments.
3937    if (Attr.getNumArgs() != 1 && Attr.getNumArgs() != 2) {
3938      // FIXME: 0 is not okay.
3939      S.Diag(Attr.getLoc(), diag::err_attribute_too_many_arguments) << 2;
3940      return;
3941    }
3942
3943    if (!isFunctionOrMethod(D)) {
3944      S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
3945        << Attr.getName() << ExpectedFunctionOrMethod;
3946      return;
3947    }
3948
3949    Expr *MaxThreadsExpr = Attr.getArgAsExpr(0);
3950    llvm::APSInt MaxThreads(32);
3951    if (MaxThreadsExpr->isTypeDependent() ||
3952        MaxThreadsExpr->isValueDependent() ||
3953        !MaxThreadsExpr->isIntegerConstantExpr(MaxThreads, S.Context)) {
3954      S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_type)
3955        << Attr.getName() << 1 << AANT_ArgumentIntegerConstant
3956        << MaxThreadsExpr->getSourceRange();
3957      return;
3958    }
3959
3960    llvm::APSInt MinBlocks(32);
3961    if (Attr.getNumArgs() > 1) {
3962      Expr *MinBlocksExpr = Attr.getArgAsExpr(1);
3963      if (MinBlocksExpr->isTypeDependent() ||
3964          MinBlocksExpr->isValueDependent() ||
3965          !MinBlocksExpr->isIntegerConstantExpr(MinBlocks, S.Context)) {
3966        S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_type)
3967          << Attr.getName() << 2 << AANT_ArgumentIntegerConstant
3968          << MinBlocksExpr->getSourceRange();
3969        return;
3970      }
3971    }
3972
3973    D->addAttr(::new (S.Context)
3974               CUDALaunchBoundsAttr(Attr.getRange(), S.Context,
3975                                    MaxThreads.getZExtValue(),
3976                                    MinBlocks.getZExtValue(),
3977                                    Attr.getAttributeSpellingListIndex()));
3978  } else {
3979    S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << "launch_bounds";
3980  }
3981}
3982
3983static void handleArgumentWithTypeTagAttr(Sema &S, Decl *D,
3984                                          const AttributeList &Attr) {
3985  if (!Attr.isArgIdent(0)) {
3986    S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_type)
3987      << Attr.getName() << /* arg num = */ 1 << AANT_ArgumentIdentifier;
3988    return;
3989  }
3990
3991  if (!checkAttributeNumArgs(S, Attr, 3))
3992    return;
3993
3994  StringRef AttrName = Attr.getName()->getName();
3995  IdentifierInfo *ArgumentKind = Attr.getArgAsIdent(0)->Ident;
3996
3997  if (!isFunctionOrMethod(D) || !hasFunctionProto(D)) {
3998    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_decl_type)
3999      << Attr.getName() << ExpectedFunctionOrMethod;
4000    return;
4001  }
4002
4003  uint64_t ArgumentIdx;
4004  if (!checkFunctionOrMethodArgumentIndex(S, D, AttrName,
4005                                          Attr.getLoc(), 2,
4006                                          Attr.getArgAsExpr(1), ArgumentIdx))
4007    return;
4008
4009  uint64_t TypeTagIdx;
4010  if (!checkFunctionOrMethodArgumentIndex(S, D, AttrName,
4011                                          Attr.getLoc(), 3,
4012                                          Attr.getArgAsExpr(2), TypeTagIdx))
4013    return;
4014
4015  bool IsPointer = (AttrName == "pointer_with_type_tag");
4016  if (IsPointer) {
4017    // Ensure that buffer has a pointer type.
4018    QualType BufferTy = getFunctionOrMethodArgType(D, ArgumentIdx);
4019    if (!BufferTy->isPointerType()) {
4020      S.Diag(Attr.getLoc(), diag::err_attribute_pointers_only)
4021        << Attr.getName();
4022    }
4023  }
4024
4025  D->addAttr(::new (S.Context)
4026             ArgumentWithTypeTagAttr(Attr.getRange(), S.Context, ArgumentKind,
4027                                     ArgumentIdx, TypeTagIdx, IsPointer,
4028                                     Attr.getAttributeSpellingListIndex()));
4029}
4030
4031static void handleTypeTagForDatatypeAttr(Sema &S, Decl *D,
4032                                         const AttributeList &Attr) {
4033  if (!Attr.isArgIdent(0)) {
4034    S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_type)
4035      << Attr.getName() << 1 << AANT_ArgumentIdentifier;
4036    return;
4037  }
4038
4039  if (!checkAttributeNumArgs(S, Attr, 1))
4040    return;
4041
4042  IdentifierInfo *PointerKind = Attr.getArgAsIdent(0)->Ident;
4043  QualType MatchingCType = S.GetTypeFromParser(Attr.getMatchingCType(), NULL);
4044
4045  D->addAttr(::new (S.Context)
4046             TypeTagForDatatypeAttr(Attr.getRange(), S.Context, PointerKind,
4047                                    MatchingCType,
4048                                    Attr.getLayoutCompatible(),
4049                                    Attr.getMustBeNull(),
4050                                    Attr.getAttributeSpellingListIndex()));
4051}
4052
4053//===----------------------------------------------------------------------===//
4054// Checker-specific attribute handlers.
4055//===----------------------------------------------------------------------===//
4056
4057static bool isValidSubjectOfNSAttribute(Sema &S, QualType type) {
4058  return type->isDependentType() ||
4059         type->isObjCObjectPointerType() ||
4060         S.Context.isObjCNSObjectType(type);
4061}
4062static bool isValidSubjectOfCFAttribute(Sema &S, QualType type) {
4063  return type->isDependentType() ||
4064         type->isPointerType() ||
4065         isValidSubjectOfNSAttribute(S, type);
4066}
4067
4068static void handleNSConsumedAttr(Sema &S, Decl *D, const AttributeList &Attr) {
4069  ParmVarDecl *param = dyn_cast<ParmVarDecl>(D);
4070  if (!param) {
4071    S.Diag(D->getLocStart(), diag::warn_attribute_wrong_decl_type)
4072      << Attr.getRange() << Attr.getName() << ExpectedParameter;
4073    return;
4074  }
4075
4076  bool typeOK, cf;
4077  if (Attr.getKind() == AttributeList::AT_NSConsumed) {
4078    typeOK = isValidSubjectOfNSAttribute(S, param->getType());
4079    cf = false;
4080  } else {
4081    typeOK = isValidSubjectOfCFAttribute(S, param->getType());
4082    cf = true;
4083  }
4084
4085  if (!typeOK) {
4086    S.Diag(D->getLocStart(), diag::warn_ns_attribute_wrong_parameter_type)
4087      << Attr.getRange() << Attr.getName() << cf;
4088    return;
4089  }
4090
4091  if (cf)
4092    param->addAttr(::new (S.Context)
4093                   CFConsumedAttr(Attr.getRange(), S.Context,
4094                                  Attr.getAttributeSpellingListIndex()));
4095  else
4096    param->addAttr(::new (S.Context)
4097                   NSConsumedAttr(Attr.getRange(), S.Context,
4098                                  Attr.getAttributeSpellingListIndex()));
4099}
4100
4101static void handleNSConsumesSelfAttr(Sema &S, Decl *D,
4102                                     const AttributeList &Attr) {
4103  if (!isa<ObjCMethodDecl>(D)) {
4104    S.Diag(D->getLocStart(), diag::warn_attribute_wrong_decl_type)
4105      << Attr.getRange() << Attr.getName() << ExpectedMethod;
4106    return;
4107  }
4108
4109  D->addAttr(::new (S.Context)
4110             NSConsumesSelfAttr(Attr.getRange(), S.Context,
4111                                Attr.getAttributeSpellingListIndex()));
4112}
4113
4114static void handleNSReturnsRetainedAttr(Sema &S, Decl *D,
4115                                        const AttributeList &Attr) {
4116
4117  QualType returnType;
4118
4119  if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D))
4120    returnType = MD->getResultType();
4121  else if (S.getLangOpts().ObjCAutoRefCount && hasDeclarator(D) &&
4122           (Attr.getKind() == AttributeList::AT_NSReturnsRetained))
4123    return; // ignore: was handled as a type attribute
4124  else if (ObjCPropertyDecl *PD = dyn_cast<ObjCPropertyDecl>(D))
4125    returnType = PD->getType();
4126  else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
4127    returnType = FD->getResultType();
4128  else {
4129    S.Diag(D->getLocStart(), diag::warn_attribute_wrong_decl_type)
4130        << Attr.getRange() << Attr.getName()
4131        << ExpectedFunctionOrMethod;
4132    return;
4133  }
4134
4135  bool typeOK;
4136  bool cf;
4137  switch (Attr.getKind()) {
4138  default: llvm_unreachable("invalid ownership attribute");
4139  case AttributeList::AT_NSReturnsAutoreleased:
4140  case AttributeList::AT_NSReturnsRetained:
4141  case AttributeList::AT_NSReturnsNotRetained:
4142    typeOK = isValidSubjectOfNSAttribute(S, returnType);
4143    cf = false;
4144    break;
4145
4146  case AttributeList::AT_CFReturnsRetained:
4147  case AttributeList::AT_CFReturnsNotRetained:
4148    typeOK = isValidSubjectOfCFAttribute(S, returnType);
4149    cf = true;
4150    break;
4151  }
4152
4153  if (!typeOK) {
4154    S.Diag(D->getLocStart(), diag::warn_ns_attribute_wrong_return_type)
4155      << Attr.getRange() << Attr.getName() << isa<ObjCMethodDecl>(D) << cf;
4156    return;
4157  }
4158
4159  switch (Attr.getKind()) {
4160    default:
4161      llvm_unreachable("invalid ownership attribute");
4162    case AttributeList::AT_NSReturnsAutoreleased:
4163      D->addAttr(::new (S.Context)
4164                 NSReturnsAutoreleasedAttr(Attr.getRange(), S.Context,
4165                                           Attr.getAttributeSpellingListIndex()));
4166      return;
4167    case AttributeList::AT_CFReturnsNotRetained:
4168      D->addAttr(::new (S.Context)
4169                 CFReturnsNotRetainedAttr(Attr.getRange(), S.Context,
4170                                          Attr.getAttributeSpellingListIndex()));
4171      return;
4172    case AttributeList::AT_NSReturnsNotRetained:
4173      D->addAttr(::new (S.Context)
4174                 NSReturnsNotRetainedAttr(Attr.getRange(), S.Context,
4175                                          Attr.getAttributeSpellingListIndex()));
4176      return;
4177    case AttributeList::AT_CFReturnsRetained:
4178      D->addAttr(::new (S.Context)
4179                 CFReturnsRetainedAttr(Attr.getRange(), S.Context,
4180                                       Attr.getAttributeSpellingListIndex()));
4181      return;
4182    case AttributeList::AT_NSReturnsRetained:
4183      D->addAttr(::new (S.Context)
4184                 NSReturnsRetainedAttr(Attr.getRange(), S.Context,
4185                                       Attr.getAttributeSpellingListIndex()));
4186      return;
4187  };
4188}
4189
4190static void handleObjCReturnsInnerPointerAttr(Sema &S, Decl *D,
4191                                              const AttributeList &attr) {
4192  const int EP_ObjCMethod = 1;
4193  const int EP_ObjCProperty = 2;
4194
4195  SourceLocation loc = attr.getLoc();
4196  QualType resultType;
4197
4198  ObjCMethodDecl *method = dyn_cast<ObjCMethodDecl>(D);
4199
4200  if (!method) {
4201    ObjCPropertyDecl *property = dyn_cast<ObjCPropertyDecl>(D);
4202    if (!property) {
4203      S.Diag(D->getLocStart(), diag::err_attribute_wrong_decl_type)
4204        << SourceRange(loc, loc) << attr.getName() << ExpectedMethodOrProperty;
4205      return;
4206    }
4207    resultType = property->getType();
4208  }
4209  else
4210    // Check that the method returns a normal pointer.
4211    resultType = method->getResultType();
4212
4213  if (!resultType->isReferenceType() &&
4214      (!resultType->isPointerType() || resultType->isObjCRetainableType())) {
4215    S.Diag(D->getLocStart(), diag::warn_ns_attribute_wrong_return_type)
4216      << SourceRange(loc)
4217    << attr.getName() << (method ? EP_ObjCMethod : EP_ObjCProperty)
4218    << /*non-retainable pointer*/ 2;
4219
4220    // Drop the attribute.
4221    return;
4222  }
4223
4224  D->addAttr(::new (S.Context)
4225                  ObjCReturnsInnerPointerAttr(attr.getRange(), S.Context,
4226                                              attr.getAttributeSpellingListIndex()));
4227}
4228
4229static void handleObjCRequiresSuperAttr(Sema &S, Decl *D,
4230                                        const AttributeList &attr) {
4231  SourceLocation loc = attr.getLoc();
4232  ObjCMethodDecl *method = dyn_cast<ObjCMethodDecl>(D);
4233
4234  if (!method) {
4235   S.Diag(D->getLocStart(), diag::err_attribute_wrong_decl_type)
4236   << SourceRange(loc, loc) << attr.getName() << ExpectedMethod;
4237    return;
4238  }
4239  DeclContext *DC = method->getDeclContext();
4240  if (const ObjCProtocolDecl *PDecl = dyn_cast_or_null<ObjCProtocolDecl>(DC)) {
4241    S.Diag(D->getLocStart(), diag::warn_objc_requires_super_protocol)
4242    << attr.getName() << 0;
4243    S.Diag(PDecl->getLocation(), diag::note_protocol_decl);
4244    return;
4245  }
4246  if (method->getMethodFamily() == OMF_dealloc) {
4247    S.Diag(D->getLocStart(), diag::warn_objc_requires_super_protocol)
4248    << attr.getName() << 1;
4249    return;
4250  }
4251
4252  method->addAttr(::new (S.Context)
4253                  ObjCRequiresSuperAttr(attr.getRange(), S.Context,
4254                                        attr.getAttributeSpellingListIndex()));
4255}
4256
4257/// Handle cf_audited_transfer and cf_unknown_transfer.
4258static void handleCFTransferAttr(Sema &S, Decl *D, const AttributeList &A) {
4259  if (!isa<FunctionDecl>(D)) {
4260    S.Diag(D->getLocStart(), diag::err_attribute_wrong_decl_type)
4261      << A.getRange() << A.getName() << ExpectedFunction;
4262    return;
4263  }
4264
4265  bool IsAudited = (A.getKind() == AttributeList::AT_CFAuditedTransfer);
4266
4267  // Check whether there's a conflicting attribute already present.
4268  Attr *Existing;
4269  if (IsAudited) {
4270    Existing = D->getAttr<CFUnknownTransferAttr>();
4271  } else {
4272    Existing = D->getAttr<CFAuditedTransferAttr>();
4273  }
4274  if (Existing) {
4275    S.Diag(D->getLocStart(), diag::err_attributes_are_not_compatible)
4276      << A.getName()
4277      << (IsAudited ? "cf_unknown_transfer" : "cf_audited_transfer")
4278      << A.getRange() << Existing->getRange();
4279    return;
4280  }
4281
4282  // All clear;  add the attribute.
4283  if (IsAudited) {
4284    D->addAttr(::new (S.Context)
4285               CFAuditedTransferAttr(A.getRange(), S.Context,
4286                                     A.getAttributeSpellingListIndex()));
4287  } else {
4288    D->addAttr(::new (S.Context)
4289               CFUnknownTransferAttr(A.getRange(), S.Context,
4290                                     A.getAttributeSpellingListIndex()));
4291  }
4292}
4293
4294static void handleNSBridgedAttr(Sema &S, Scope *Sc, Decl *D,
4295                                const AttributeList &Attr) {
4296  RecordDecl *RD = dyn_cast<RecordDecl>(D);
4297  if (!RD || RD->isUnion()) {
4298    S.Diag(D->getLocStart(), diag::err_attribute_wrong_decl_type)
4299      << Attr.getRange() << Attr.getName() << ExpectedStruct;
4300  }
4301
4302  IdentifierLoc *Parm = Attr.isArgIdent(0) ? Attr.getArgAsIdent(0) : 0;
4303
4304  // In Objective-C, verify that the type names an Objective-C type.
4305  // We don't want to check this outside of ObjC because people sometimes
4306  // do crazy C declarations of Objective-C types.
4307  if (Parm && S.getLangOpts().ObjC1) {
4308    // Check for an existing type with this name.
4309    LookupResult R(S, DeclarationName(Parm->Ident), Parm->Loc,
4310                   Sema::LookupOrdinaryName);
4311    if (S.LookupName(R, Sc)) {
4312      NamedDecl *Target = R.getFoundDecl();
4313      if (Target && !isa<ObjCInterfaceDecl>(Target)) {
4314        S.Diag(D->getLocStart(), diag::err_ns_bridged_not_interface);
4315        S.Diag(Target->getLocStart(), diag::note_declared_at);
4316      }
4317    }
4318  }
4319
4320  D->addAttr(::new (S.Context)
4321             NSBridgedAttr(Attr.getRange(), S.Context, Parm ? Parm->Ident : 0,
4322                           Attr.getAttributeSpellingListIndex()));
4323}
4324
4325static void handleObjCOwnershipAttr(Sema &S, Decl *D,
4326                                    const AttributeList &Attr) {
4327  if (hasDeclarator(D)) return;
4328
4329  S.Diag(D->getLocStart(), diag::err_attribute_wrong_decl_type)
4330    << Attr.getRange() << Attr.getName() << ExpectedVariable;
4331}
4332
4333static void handleObjCPreciseLifetimeAttr(Sema &S, Decl *D,
4334                                          const AttributeList &Attr) {
4335  if (!isa<VarDecl>(D) && !isa<FieldDecl>(D)) {
4336    S.Diag(D->getLocStart(), diag::err_attribute_wrong_decl_type)
4337      << Attr.getRange() << Attr.getName() << ExpectedVariable;
4338    return;
4339  }
4340
4341  ValueDecl *vd = cast<ValueDecl>(D);
4342  QualType type = vd->getType();
4343
4344  if (!type->isDependentType() &&
4345      !type->isObjCLifetimeType()) {
4346    S.Diag(Attr.getLoc(), diag::err_objc_precise_lifetime_bad_type)
4347      << type;
4348    return;
4349  }
4350
4351  Qualifiers::ObjCLifetime lifetime = type.getObjCLifetime();
4352
4353  // If we have no lifetime yet, check the lifetime we're presumably
4354  // going to infer.
4355  if (lifetime == Qualifiers::OCL_None && !type->isDependentType())
4356    lifetime = type->getObjCARCImplicitLifetime();
4357
4358  switch (lifetime) {
4359  case Qualifiers::OCL_None:
4360    assert(type->isDependentType() &&
4361           "didn't infer lifetime for non-dependent type?");
4362    break;
4363
4364  case Qualifiers::OCL_Weak:   // meaningful
4365  case Qualifiers::OCL_Strong: // meaningful
4366    break;
4367
4368  case Qualifiers::OCL_ExplicitNone:
4369  case Qualifiers::OCL_Autoreleasing:
4370    S.Diag(Attr.getLoc(), diag::warn_objc_precise_lifetime_meaningless)
4371      << (lifetime == Qualifiers::OCL_Autoreleasing);
4372    break;
4373  }
4374
4375  D->addAttr(::new (S.Context)
4376             ObjCPreciseLifetimeAttr(Attr.getRange(), S.Context,
4377                                     Attr.getAttributeSpellingListIndex()));
4378}
4379
4380//===----------------------------------------------------------------------===//
4381// Microsoft specific attribute handlers.
4382//===----------------------------------------------------------------------===//
4383
4384// Check if MS extensions or some other language extensions are enabled.  If
4385// not, issue a diagnostic that the given attribute is unused.
4386static bool checkMicrosoftExt(Sema &S, const AttributeList &Attr,
4387                              bool OtherExtension = false) {
4388  if (S.LangOpts.MicrosoftExt || OtherExtension)
4389    return true;
4390  S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << Attr.getName();
4391  return false;
4392}
4393
4394static void handleUuidAttr(Sema &S, Decl *D, const AttributeList &Attr) {
4395  if (!checkMicrosoftExt(S, Attr, S.LangOpts.Borland))
4396    return;
4397
4398  StringRef StrRef;
4399  SourceLocation LiteralLoc;
4400  if (!S.checkStringLiteralArgumentAttr(Attr, 0, StrRef, &LiteralLoc))
4401    return;
4402
4403  // GUID format is "XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX" or
4404  // "{XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX}", normalize to the former.
4405  if (StrRef.size() == 38 && StrRef.front() == '{' && StrRef.back() == '}')
4406    StrRef = StrRef.drop_front().drop_back();
4407
4408  // Validate GUID length.
4409  if (StrRef.size() != 36) {
4410    S.Diag(LiteralLoc, diag::err_attribute_uuid_malformed_guid);
4411    return;
4412  }
4413
4414  for (unsigned i = 0; i < 36; ++i) {
4415    if (i == 8 || i == 13 || i == 18 || i == 23) {
4416      if (StrRef[i] != '-') {
4417        S.Diag(LiteralLoc, diag::err_attribute_uuid_malformed_guid);
4418        return;
4419      }
4420    } else if (!isHexDigit(StrRef[i])) {
4421      S.Diag(LiteralLoc, diag::err_attribute_uuid_malformed_guid);
4422      return;
4423    }
4424  }
4425
4426  D->addAttr(::new (S.Context) UuidAttr(Attr.getRange(), S.Context, StrRef,
4427                                        Attr.getAttributeSpellingListIndex()));
4428}
4429
4430static void handleInheritanceAttr(Sema &S, Decl *D, const AttributeList &Attr) {
4431  if (!checkMicrosoftExt(S, Attr))
4432    return;
4433
4434  AttributeList::Kind Kind = Attr.getKind();
4435  if (Kind == AttributeList::AT_SingleInheritance)
4436    D->addAttr(
4437        ::new (S.Context)
4438               SingleInheritanceAttr(Attr.getRange(), S.Context,
4439                                     Attr.getAttributeSpellingListIndex()));
4440  else if (Kind == AttributeList::AT_MultipleInheritance)
4441    D->addAttr(
4442        ::new (S.Context)
4443               MultipleInheritanceAttr(Attr.getRange(), S.Context,
4444                                       Attr.getAttributeSpellingListIndex()));
4445  else if (Kind == AttributeList::AT_VirtualInheritance)
4446    D->addAttr(
4447        ::new (S.Context)
4448               VirtualInheritanceAttr(Attr.getRange(), S.Context,
4449                                      Attr.getAttributeSpellingListIndex()));
4450}
4451
4452static void handlePortabilityAttr(Sema &S, Decl *D, const AttributeList &Attr) {
4453  if (!checkMicrosoftExt(S, Attr))
4454    return;
4455
4456  AttributeList::Kind Kind = Attr.getKind();
4457    if (Kind == AttributeList::AT_Win64)
4458    D->addAttr(
4459        ::new (S.Context) Win64Attr(Attr.getRange(), S.Context,
4460                                    Attr.getAttributeSpellingListIndex()));
4461}
4462
4463static void handleForceInlineAttr(Sema &S, Decl *D, const AttributeList &Attr) {
4464  if (!checkMicrosoftExt(S, Attr))
4465    return;
4466  D->addAttr(::new (S.Context)
4467             ForceInlineAttr(Attr.getRange(), S.Context,
4468                             Attr.getAttributeSpellingListIndex()));
4469}
4470
4471static void handleSelectAnyAttr(Sema &S, Decl *D, const AttributeList &Attr) {
4472  if (!checkMicrosoftExt(S, Attr))
4473    return;
4474  // Check linkage after possibly merging declaratinos.  See
4475  // checkAttributesAfterMerging().
4476  D->addAttr(::new (S.Context)
4477             SelectAnyAttr(Attr.getRange(), S.Context,
4478                           Attr.getAttributeSpellingListIndex()));
4479}
4480
4481/// Handles semantic checking for features that are common to all attributes,
4482/// such as checking whether a parameter was properly specified, or the correct
4483/// number of arguments were passed, etc.
4484static bool handleCommonAttributeFeatures(Sema &S, Scope *scope, Decl *D,
4485                                          const AttributeList &Attr) {
4486  // Several attributes carry different semantics than the parsing requires, so
4487  // those are opted out of the common handling.
4488  //
4489  // We also bail on unknown and ignored attributes because those are handled
4490  // as part of the target-specific handling logic.
4491  if (Attr.hasCustomParsing() ||
4492      Attr.getKind() == AttributeList::UnknownAttribute ||
4493      Attr.getKind() == AttributeList::IgnoredAttribute)
4494    return false;
4495
4496  // If there are no optional arguments, then checking for the argument count
4497  // is trivial.
4498  if (Attr.getMinArgs() == Attr.getMaxArgs() &&
4499      !checkAttributeNumArgs(S, Attr, Attr.getMinArgs()))
4500    return true;
4501  return false;
4502}
4503
4504//===----------------------------------------------------------------------===//
4505// Top Level Sema Entry Points
4506//===----------------------------------------------------------------------===//
4507
4508/// ProcessDeclAttribute - Apply the specific attribute to the specified decl if
4509/// the attribute applies to decls.  If the attribute is a type attribute, just
4510/// silently ignore it if a GNU attribute.
4511static void ProcessDeclAttribute(Sema &S, Scope *scope, Decl *D,
4512                                 const AttributeList &Attr,
4513                                 bool IncludeCXX11Attributes) {
4514  if (Attr.isInvalid())
4515    return;
4516
4517  // Ignore C++11 attributes on declarator chunks: they appertain to the type
4518  // instead.
4519  if (Attr.isCXX11Attribute() && !IncludeCXX11Attributes)
4520    return;
4521
4522  if (handleCommonAttributeFeatures(S, scope, D, Attr))
4523    return;
4524
4525  switch (Attr.getKind()) {
4526  case AttributeList::AT_IBAction:    handleIBAction(S, D, Attr); break;
4527  case AttributeList::AT_IBOutlet:    handleIBOutlet(S, D, Attr); break;
4528  case AttributeList::AT_IBOutletCollection:
4529    handleIBOutletCollection(S, D, Attr); break;
4530  case AttributeList::AT_AddressSpace:
4531  case AttributeList::AT_ObjCGC:
4532  case AttributeList::AT_VectorSize:
4533  case AttributeList::AT_NeonVectorType:
4534  case AttributeList::AT_NeonPolyVectorType:
4535  case AttributeList::AT_Ptr32:
4536  case AttributeList::AT_Ptr64:
4537  case AttributeList::AT_SPtr:
4538  case AttributeList::AT_UPtr:
4539    // Ignore these, these are type attributes, handled by
4540    // ProcessTypeAttributes.
4541    break;
4542  case AttributeList::AT_Alias:       handleAliasAttr       (S, D, Attr); break;
4543  case AttributeList::AT_Aligned:     handleAlignedAttr     (S, D, Attr); break;
4544  case AttributeList::AT_AllocSize:   handleAllocSizeAttr   (S, D, Attr); break;
4545  case AttributeList::AT_AlwaysInline:
4546    handleAlwaysInlineAttr  (S, D, Attr); break;
4547  case AttributeList::AT_AnalyzerNoReturn:
4548    handleAnalyzerNoReturnAttr  (S, D, Attr); break;
4549  case AttributeList::AT_TLSModel:    handleTLSModelAttr    (S, D, Attr); break;
4550  case AttributeList::AT_Annotate:    handleAnnotateAttr    (S, D, Attr); break;
4551  case AttributeList::AT_Availability:handleAvailabilityAttr(S, D, Attr); break;
4552  case AttributeList::AT_CarriesDependency:
4553    handleDependencyAttr(S, scope, D, Attr);
4554    break;
4555  case AttributeList::AT_Common:      handleCommonAttr      (S, D, Attr); break;
4556  case AttributeList::AT_CUDAConstant:handleConstantAttr    (S, D, Attr); break;
4557  case AttributeList::AT_Constructor: handleConstructorAttr (S, D, Attr); break;
4558  case AttributeList::AT_CXX11NoReturn:
4559    handleCXX11NoReturnAttr(S, D, Attr);
4560    break;
4561  case AttributeList::AT_Deprecated:
4562    handleAttrWithMessage<DeprecatedAttr>(S, D, Attr);
4563    break;
4564  case AttributeList::AT_Destructor:  handleDestructorAttr  (S, D, Attr); break;
4565  case AttributeList::AT_ExtVectorType:
4566    handleExtVectorTypeAttr(S, scope, D, Attr);
4567    break;
4568  case AttributeList::AT_MinSize:
4569    handleMinSizeAttr(S, D, Attr);
4570    break;
4571  case AttributeList::AT_Format:      handleFormatAttr      (S, D, Attr); break;
4572  case AttributeList::AT_FormatArg:   handleFormatArgAttr   (S, D, Attr); break;
4573  case AttributeList::AT_CUDAGlobal:  handleGlobalAttr      (S, D, Attr); break;
4574  case AttributeList::AT_CUDADevice:  handleDeviceAttr      (S, D, Attr); break;
4575  case AttributeList::AT_CUDAHost:    handleHostAttr        (S, D, Attr); break;
4576  case AttributeList::AT_GNUInline:   handleGNUInlineAttr   (S, D, Attr); break;
4577  case AttributeList::AT_CUDALaunchBounds:
4578    handleLaunchBoundsAttr(S, D, Attr);
4579    break;
4580  case AttributeList::AT_Malloc:      handleMallocAttr      (S, D, Attr); break;
4581  case AttributeList::AT_MayAlias:    handleMayAliasAttr    (S, D, Attr); break;
4582  case AttributeList::AT_Mode:        handleModeAttr        (S, D, Attr); break;
4583  case AttributeList::AT_NoCommon:    handleNoCommonAttr    (S, D, Attr); break;
4584  case AttributeList::AT_NonNull:     handleNonNullAttr     (S, D, Attr); break;
4585  case AttributeList::AT_Overloadable:handleOverloadableAttr(S, D, Attr); break;
4586  case AttributeList::AT_ownership_returns:
4587  case AttributeList::AT_ownership_takes:
4588  case AttributeList::AT_ownership_holds:
4589      handleOwnershipAttr     (S, D, Attr); break;
4590  case AttributeList::AT_Cold:        handleColdAttr        (S, D, Attr); break;
4591  case AttributeList::AT_Hot:         handleHotAttr         (S, D, Attr); break;
4592  case AttributeList::AT_Naked:       handleNakedAttr       (S, D, Attr); break;
4593  case AttributeList::AT_NoReturn:    handleNoReturnAttr    (S, D, Attr); break;
4594  case AttributeList::AT_NoThrow:     handleNothrowAttr     (S, D, Attr); break;
4595  case AttributeList::AT_CUDAShared:  handleSharedAttr      (S, D, Attr); break;
4596  case AttributeList::AT_VecReturn:   handleVecReturnAttr   (S, D, Attr); break;
4597
4598  case AttributeList::AT_ObjCOwnership:
4599    handleObjCOwnershipAttr(S, D, Attr); break;
4600  case AttributeList::AT_ObjCPreciseLifetime:
4601    handleObjCPreciseLifetimeAttr(S, D, Attr); break;
4602
4603  case AttributeList::AT_ObjCReturnsInnerPointer:
4604    handleObjCReturnsInnerPointerAttr(S, D, Attr); break;
4605
4606  case AttributeList::AT_ObjCRequiresSuper:
4607      handleObjCRequiresSuperAttr(S, D, Attr); break;
4608
4609  case AttributeList::AT_NSBridged:
4610    handleNSBridgedAttr(S, scope, D, Attr); break;
4611
4612  case AttributeList::AT_CFAuditedTransfer:
4613  case AttributeList::AT_CFUnknownTransfer:
4614    handleCFTransferAttr(S, D, Attr); break;
4615
4616  // Checker-specific.
4617  case AttributeList::AT_CFConsumed:
4618  case AttributeList::AT_NSConsumed:  handleNSConsumedAttr  (S, D, Attr); break;
4619  case AttributeList::AT_NSConsumesSelf:
4620    handleNSConsumesSelfAttr(S, D, Attr); break;
4621
4622  case AttributeList::AT_NSReturnsAutoreleased:
4623  case AttributeList::AT_NSReturnsNotRetained:
4624  case AttributeList::AT_CFReturnsNotRetained:
4625  case AttributeList::AT_NSReturnsRetained:
4626  case AttributeList::AT_CFReturnsRetained:
4627    handleNSReturnsRetainedAttr(S, D, Attr); break;
4628
4629  case AttributeList::AT_WorkGroupSizeHint:
4630  case AttributeList::AT_ReqdWorkGroupSize:
4631    handleWorkGroupSize(S, D, Attr); break;
4632
4633  case AttributeList::AT_VecTypeHint:
4634    handleVecTypeHint(S, D, Attr); break;
4635
4636  case AttributeList::AT_InitPriority:
4637      handleInitPriorityAttr(S, D, Attr); break;
4638
4639  case AttributeList::AT_Packed:      handlePackedAttr      (S, D, Attr); break;
4640  case AttributeList::AT_Section:     handleSectionAttr     (S, D, Attr); break;
4641  case AttributeList::AT_Unavailable:
4642    handleAttrWithMessage<UnavailableAttr>(S, D, Attr);
4643    break;
4644  case AttributeList::AT_ArcWeakrefUnavailable:
4645    handleArcWeakrefUnavailableAttr (S, D, Attr);
4646    break;
4647  case AttributeList::AT_ObjCRootClass:
4648    handleObjCRootClassAttr(S, D, Attr);
4649    break;
4650  case AttributeList::AT_ObjCRequiresPropertyDefs:
4651    handleObjCRequiresPropertyDefsAttr (S, D, Attr);
4652    break;
4653  case AttributeList::AT_Unused:      handleUnusedAttr      (S, D, Attr); break;
4654  case AttributeList::AT_ReturnsTwice:
4655    handleReturnsTwiceAttr(S, D, Attr);
4656    break;
4657  case AttributeList::AT_Used:        handleUsedAttr        (S, D, Attr); break;
4658  case AttributeList::AT_Visibility:
4659    handleVisibilityAttr(S, D, Attr, false);
4660    break;
4661  case AttributeList::AT_TypeVisibility:
4662    handleVisibilityAttr(S, D, Attr, true);
4663    break;
4664  case AttributeList::AT_WarnUnused:
4665    handleWarnUnusedAttr(S, D, Attr);
4666    break;
4667  case AttributeList::AT_WarnUnusedResult: handleWarnUnusedResult(S, D, Attr);
4668    break;
4669  case AttributeList::AT_Weak:        handleWeakAttr        (S, D, Attr); break;
4670  case AttributeList::AT_WeakRef:     handleWeakRefAttr     (S, D, Attr); break;
4671  case AttributeList::AT_WeakImport:  handleWeakImportAttr  (S, D, Attr); break;
4672  case AttributeList::AT_TransparentUnion:
4673    handleTransparentUnionAttr(S, D, Attr);
4674    break;
4675  case AttributeList::AT_ObjCException:
4676    handleObjCExceptionAttr(S, D, Attr);
4677    break;
4678  case AttributeList::AT_ObjCMethodFamily:
4679    handleObjCMethodFamilyAttr(S, D, Attr);
4680    break;
4681  case AttributeList::AT_ObjCNSObject:handleObjCNSObject    (S, D, Attr); break;
4682  case AttributeList::AT_Blocks:      handleBlocksAttr      (S, D, Attr); break;
4683  case AttributeList::AT_Sentinel:    handleSentinelAttr    (S, D, Attr); break;
4684  case AttributeList::AT_Const:       handleConstAttr       (S, D, Attr); break;
4685  case AttributeList::AT_Pure:        handlePureAttr        (S, D, Attr); break;
4686  case AttributeList::AT_Cleanup:     handleCleanupAttr     (S, D, Attr); break;
4687  case AttributeList::AT_NoDebug:     handleNoDebugAttr     (S, D, Attr); break;
4688  case AttributeList::AT_NoInline:    handleNoInlineAttr    (S, D, Attr); break;
4689  case AttributeList::AT_Regparm:     handleRegparmAttr     (S, D, Attr); break;
4690  case AttributeList::IgnoredAttribute:
4691    // Just ignore
4692    break;
4693  case AttributeList::AT_NoInstrumentFunction:  // Interacts with -pg.
4694    handleNoInstrumentFunctionAttr(S, D, Attr);
4695    break;
4696  case AttributeList::AT_StdCall:
4697  case AttributeList::AT_CDecl:
4698  case AttributeList::AT_FastCall:
4699  case AttributeList::AT_ThisCall:
4700  case AttributeList::AT_Pascal:
4701  case AttributeList::AT_MSABI:
4702  case AttributeList::AT_SysVABI:
4703  case AttributeList::AT_Pcs:
4704  case AttributeList::AT_PnaclCall:
4705  case AttributeList::AT_IntelOclBicc:
4706    handleCallConvAttr(S, D, Attr);
4707    break;
4708  case AttributeList::AT_OpenCLKernel:
4709    handleOpenCLKernelAttr(S, D, Attr);
4710    break;
4711  case AttributeList::AT_OpenCLImageAccess:
4712    handleOpenCLImageAccessAttr(S, D, Attr);
4713    break;
4714
4715  // Microsoft attributes:
4716  case AttributeList::AT_MsStruct:
4717    handleMsStructAttr(S, D, Attr);
4718    break;
4719  case AttributeList::AT_Uuid:
4720    handleUuidAttr(S, D, Attr);
4721    break;
4722  case AttributeList::AT_SingleInheritance:
4723  case AttributeList::AT_MultipleInheritance:
4724  case AttributeList::AT_VirtualInheritance:
4725    handleInheritanceAttr(S, D, Attr);
4726    break;
4727  case AttributeList::AT_Win64:
4728    handlePortabilityAttr(S, D, Attr);
4729    break;
4730  case AttributeList::AT_ForceInline:
4731    handleForceInlineAttr(S, D, Attr);
4732    break;
4733  case AttributeList::AT_SelectAny:
4734    handleSelectAnyAttr(S, D, Attr);
4735    break;
4736
4737  // Thread safety attributes:
4738  case AttributeList::AT_AssertExclusiveLock:
4739    handleAssertExclusiveLockAttr(S, D, Attr);
4740    break;
4741  case AttributeList::AT_AssertSharedLock:
4742    handleAssertSharedLockAttr(S, D, Attr);
4743    break;
4744  case AttributeList::AT_GuardedVar:
4745    handleGuardedVarAttr(S, D, Attr);
4746    break;
4747  case AttributeList::AT_PtGuardedVar:
4748    handlePtGuardedVarAttr(S, D, Attr);
4749    break;
4750  case AttributeList::AT_ScopedLockable:
4751    handleScopedLockableAttr(S, D, Attr);
4752    break;
4753  case AttributeList::AT_NoSanitizeAddress:
4754    handleNoSanitizeAddressAttr(S, D, Attr);
4755    break;
4756  case AttributeList::AT_NoThreadSafetyAnalysis:
4757    handleNoThreadSafetyAnalysis(S, D, Attr);
4758    break;
4759  case AttributeList::AT_NoSanitizeThread:
4760    handleNoSanitizeThread(S, D, Attr);
4761    break;
4762  case AttributeList::AT_NoSanitizeMemory:
4763    handleNoSanitizeMemory(S, D, Attr);
4764    break;
4765  case AttributeList::AT_Lockable:
4766    handleLockableAttr(S, D, Attr);
4767    break;
4768  case AttributeList::AT_GuardedBy:
4769    handleGuardedByAttr(S, D, Attr);
4770    break;
4771  case AttributeList::AT_PtGuardedBy:
4772    handlePtGuardedByAttr(S, D, Attr);
4773    break;
4774  case AttributeList::AT_ExclusiveLockFunction:
4775    handleExclusiveLockFunctionAttr(S, D, Attr);
4776    break;
4777  case AttributeList::AT_ExclusiveLocksRequired:
4778    handleExclusiveLocksRequiredAttr(S, D, Attr);
4779    break;
4780  case AttributeList::AT_ExclusiveTrylockFunction:
4781    handleExclusiveTrylockFunctionAttr(S, D, Attr);
4782    break;
4783  case AttributeList::AT_LockReturned:
4784    handleLockReturnedAttr(S, D, Attr);
4785    break;
4786  case AttributeList::AT_LocksExcluded:
4787    handleLocksExcludedAttr(S, D, Attr);
4788    break;
4789  case AttributeList::AT_SharedLockFunction:
4790    handleSharedLockFunctionAttr(S, D, Attr);
4791    break;
4792  case AttributeList::AT_SharedLocksRequired:
4793    handleSharedLocksRequiredAttr(S, D, Attr);
4794    break;
4795  case AttributeList::AT_SharedTrylockFunction:
4796    handleSharedTrylockFunctionAttr(S, D, Attr);
4797    break;
4798  case AttributeList::AT_UnlockFunction:
4799    handleUnlockFunAttr(S, D, Attr);
4800    break;
4801  case AttributeList::AT_AcquiredBefore:
4802    handleAcquiredBeforeAttr(S, D, Attr);
4803    break;
4804  case AttributeList::AT_AcquiredAfter:
4805    handleAcquiredAfterAttr(S, D, Attr);
4806    break;
4807
4808  // Consumed analysis attributes.
4809  case AttributeList::AT_Consumable:
4810    handleConsumableAttr(S, D, Attr);
4811    break;
4812  case AttributeList::AT_CallableWhen:
4813    handleCallableWhenAttr(S, D, Attr);
4814    break;
4815  case AttributeList::AT_ReturnTypestate:
4816    handleReturnTypestateAttr(S, D, Attr);
4817    break;
4818  case AttributeList::AT_SetTypestate:
4819    handleSetTypestateAttr(S, D, Attr);
4820    break;
4821  case AttributeList::AT_TestsTypestate:
4822    handleTestsTypestateAttr(S, D, Attr);
4823    break;
4824
4825  // Type safety attributes.
4826  case AttributeList::AT_ArgumentWithTypeTag:
4827    handleArgumentWithTypeTagAttr(S, D, Attr);
4828    break;
4829  case AttributeList::AT_TypeTagForDatatype:
4830    handleTypeTagForDatatypeAttr(S, D, Attr);
4831    break;
4832
4833  default:
4834    // Ask target about the attribute.
4835    const TargetAttributesSema &TargetAttrs = S.getTargetAttributesSema();
4836    if (!TargetAttrs.ProcessDeclAttribute(scope, D, Attr, S))
4837      S.Diag(Attr.getLoc(), Attr.isDeclspecAttribute() ?
4838             diag::warn_unhandled_ms_attribute_ignored :
4839             diag::warn_unknown_attribute_ignored) << Attr.getName();
4840    break;
4841  }
4842}
4843
4844/// ProcessDeclAttributeList - Apply all the decl attributes in the specified
4845/// attribute list to the specified decl, ignoring any type attributes.
4846void Sema::ProcessDeclAttributeList(Scope *S, Decl *D,
4847                                    const AttributeList *AttrList,
4848                                    bool IncludeCXX11Attributes) {
4849  for (const AttributeList* l = AttrList; l; l = l->getNext())
4850    ProcessDeclAttribute(*this, S, D, *l, IncludeCXX11Attributes);
4851
4852  // GCC accepts
4853  // static int a9 __attribute__((weakref));
4854  // but that looks really pointless. We reject it.
4855  if (D->hasAttr<WeakRefAttr>() && !D->hasAttr<AliasAttr>()) {
4856    Diag(AttrList->getLoc(), diag::err_attribute_weakref_without_alias) <<
4857    cast<NamedDecl>(D)->getNameAsString();
4858    D->dropAttr<WeakRefAttr>();
4859    return;
4860  }
4861}
4862
4863// Annotation attributes are the only attributes allowed after an access
4864// specifier.
4865bool Sema::ProcessAccessDeclAttributeList(AccessSpecDecl *ASDecl,
4866                                          const AttributeList *AttrList) {
4867  for (const AttributeList* l = AttrList; l; l = l->getNext()) {
4868    if (l->getKind() == AttributeList::AT_Annotate) {
4869      handleAnnotateAttr(*this, ASDecl, *l);
4870    } else {
4871      Diag(l->getLoc(), diag::err_only_annotate_after_access_spec);
4872      return true;
4873    }
4874  }
4875
4876  return false;
4877}
4878
4879/// checkUnusedDeclAttributes - Check a list of attributes to see if it
4880/// contains any decl attributes that we should warn about.
4881static void checkUnusedDeclAttributes(Sema &S, const AttributeList *A) {
4882  for ( ; A; A = A->getNext()) {
4883    // Only warn if the attribute is an unignored, non-type attribute.
4884    if (A->isUsedAsTypeAttr() || A->isInvalid()) continue;
4885    if (A->getKind() == AttributeList::IgnoredAttribute) continue;
4886
4887    if (A->getKind() == AttributeList::UnknownAttribute) {
4888      S.Diag(A->getLoc(), diag::warn_unknown_attribute_ignored)
4889        << A->getName() << A->getRange();
4890    } else {
4891      S.Diag(A->getLoc(), diag::warn_attribute_not_on_decl)
4892        << A->getName() << A->getRange();
4893    }
4894  }
4895}
4896
4897/// checkUnusedDeclAttributes - Given a declarator which is not being
4898/// used to build a declaration, complain about any decl attributes
4899/// which might be lying around on it.
4900void Sema::checkUnusedDeclAttributes(Declarator &D) {
4901  ::checkUnusedDeclAttributes(*this, D.getDeclSpec().getAttributes().getList());
4902  ::checkUnusedDeclAttributes(*this, D.getAttributes());
4903  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i)
4904    ::checkUnusedDeclAttributes(*this, D.getTypeObject(i).getAttrs());
4905}
4906
4907/// DeclClonePragmaWeak - clone existing decl (maybe definition),
4908/// \#pragma weak needs a non-definition decl and source may not have one.
4909NamedDecl * Sema::DeclClonePragmaWeak(NamedDecl *ND, IdentifierInfo *II,
4910                                      SourceLocation Loc) {
4911  assert(isa<FunctionDecl>(ND) || isa<VarDecl>(ND));
4912  NamedDecl *NewD = 0;
4913  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)) {
4914    FunctionDecl *NewFD;
4915    // FIXME: Missing call to CheckFunctionDeclaration().
4916    // FIXME: Mangling?
4917    // FIXME: Is the qualifier info correct?
4918    // FIXME: Is the DeclContext correct?
4919    NewFD = FunctionDecl::Create(FD->getASTContext(), FD->getDeclContext(),
4920                                 Loc, Loc, DeclarationName(II),
4921                                 FD->getType(), FD->getTypeSourceInfo(),
4922                                 SC_None, false/*isInlineSpecified*/,
4923                                 FD->hasPrototype(),
4924                                 false/*isConstexprSpecified*/);
4925    NewD = NewFD;
4926
4927    if (FD->getQualifier())
4928      NewFD->setQualifierInfo(FD->getQualifierLoc());
4929
4930    // Fake up parameter variables; they are declared as if this were
4931    // a typedef.
4932    QualType FDTy = FD->getType();
4933    if (const FunctionProtoType *FT = FDTy->getAs<FunctionProtoType>()) {
4934      SmallVector<ParmVarDecl*, 16> Params;
4935      for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
4936           AE = FT->arg_type_end(); AI != AE; ++AI) {
4937        ParmVarDecl *Param = BuildParmVarDeclForTypedef(NewFD, Loc, *AI);
4938        Param->setScopeInfo(0, Params.size());
4939        Params.push_back(Param);
4940      }
4941      NewFD->setParams(Params);
4942    }
4943  } else if (VarDecl *VD = dyn_cast<VarDecl>(ND)) {
4944    NewD = VarDecl::Create(VD->getASTContext(), VD->getDeclContext(),
4945                           VD->getInnerLocStart(), VD->getLocation(), II,
4946                           VD->getType(), VD->getTypeSourceInfo(),
4947                           VD->getStorageClass());
4948    if (VD->getQualifier()) {
4949      VarDecl *NewVD = cast<VarDecl>(NewD);
4950      NewVD->setQualifierInfo(VD->getQualifierLoc());
4951    }
4952  }
4953  return NewD;
4954}
4955
4956/// DeclApplyPragmaWeak - A declaration (maybe definition) needs \#pragma weak
4957/// applied to it, possibly with an alias.
4958void Sema::DeclApplyPragmaWeak(Scope *S, NamedDecl *ND, WeakInfo &W) {
4959  if (W.getUsed()) return; // only do this once
4960  W.setUsed(true);
4961  if (W.getAlias()) { // clone decl, impersonate __attribute(weak,alias(...))
4962    IdentifierInfo *NDId = ND->getIdentifier();
4963    NamedDecl *NewD = DeclClonePragmaWeak(ND, W.getAlias(), W.getLocation());
4964    NewD->addAttr(::new (Context) AliasAttr(W.getLocation(), Context,
4965                                            NDId->getName()));
4966    NewD->addAttr(::new (Context) WeakAttr(W.getLocation(), Context));
4967    WeakTopLevelDecl.push_back(NewD);
4968    // FIXME: "hideous" code from Sema::LazilyCreateBuiltin
4969    // to insert Decl at TU scope, sorry.
4970    DeclContext *SavedContext = CurContext;
4971    CurContext = Context.getTranslationUnitDecl();
4972    PushOnScopeChains(NewD, S);
4973    CurContext = SavedContext;
4974  } else { // just add weak to existing
4975    ND->addAttr(::new (Context) WeakAttr(W.getLocation(), Context));
4976  }
4977}
4978
4979void Sema::ProcessPragmaWeak(Scope *S, Decl *D) {
4980  // It's valid to "forward-declare" #pragma weak, in which case we
4981  // have to do this.
4982  LoadExternalWeakUndeclaredIdentifiers();
4983  if (!WeakUndeclaredIdentifiers.empty()) {
4984    NamedDecl *ND = NULL;
4985    if (VarDecl *VD = dyn_cast<VarDecl>(D))
4986      if (VD->isExternC())
4987        ND = VD;
4988    if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
4989      if (FD->isExternC())
4990        ND = FD;
4991    if (ND) {
4992      if (IdentifierInfo *Id = ND->getIdentifier()) {
4993        llvm::DenseMap<IdentifierInfo*,WeakInfo>::iterator I
4994          = WeakUndeclaredIdentifiers.find(Id);
4995        if (I != WeakUndeclaredIdentifiers.end()) {
4996          WeakInfo W = I->second;
4997          DeclApplyPragmaWeak(S, ND, W);
4998          WeakUndeclaredIdentifiers[Id] = W;
4999        }
5000      }
5001    }
5002  }
5003}
5004
5005/// ProcessDeclAttributes - Given a declarator (PD) with attributes indicated in
5006/// it, apply them to D.  This is a bit tricky because PD can have attributes
5007/// specified in many different places, and we need to find and apply them all.
5008void Sema::ProcessDeclAttributes(Scope *S, Decl *D, const Declarator &PD) {
5009  // Apply decl attributes from the DeclSpec if present.
5010  if (const AttributeList *Attrs = PD.getDeclSpec().getAttributes().getList())
5011    ProcessDeclAttributeList(S, D, Attrs);
5012
5013  // Walk the declarator structure, applying decl attributes that were in a type
5014  // position to the decl itself.  This handles cases like:
5015  //   int *__attr__(x)** D;
5016  // when X is a decl attribute.
5017  for (unsigned i = 0, e = PD.getNumTypeObjects(); i != e; ++i)
5018    if (const AttributeList *Attrs = PD.getTypeObject(i).getAttrs())
5019      ProcessDeclAttributeList(S, D, Attrs, /*IncludeCXX11Attributes=*/false);
5020
5021  // Finally, apply any attributes on the decl itself.
5022  if (const AttributeList *Attrs = PD.getAttributes())
5023    ProcessDeclAttributeList(S, D, Attrs);
5024}
5025
5026/// Is the given declaration allowed to use a forbidden type?
5027static bool isForbiddenTypeAllowed(Sema &S, Decl *decl) {
5028  // Private ivars are always okay.  Unfortunately, people don't
5029  // always properly make their ivars private, even in system headers.
5030  // Plus we need to make fields okay, too.
5031  // Function declarations in sys headers will be marked unavailable.
5032  if (!isa<FieldDecl>(decl) && !isa<ObjCPropertyDecl>(decl) &&
5033      !isa<FunctionDecl>(decl))
5034    return false;
5035
5036  // Require it to be declared in a system header.
5037  return S.Context.getSourceManager().isInSystemHeader(decl->getLocation());
5038}
5039
5040/// Handle a delayed forbidden-type diagnostic.
5041static void handleDelayedForbiddenType(Sema &S, DelayedDiagnostic &diag,
5042                                       Decl *decl) {
5043  if (decl && isForbiddenTypeAllowed(S, decl)) {
5044    decl->addAttr(new (S.Context) UnavailableAttr(diag.Loc, S.Context,
5045                        "this system declaration uses an unsupported type"));
5046    return;
5047  }
5048  if (S.getLangOpts().ObjCAutoRefCount)
5049    if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(decl)) {
5050      // FIXME: we may want to suppress diagnostics for all
5051      // kind of forbidden type messages on unavailable functions.
5052      if (FD->hasAttr<UnavailableAttr>() &&
5053          diag.getForbiddenTypeDiagnostic() ==
5054          diag::err_arc_array_param_no_ownership) {
5055        diag.Triggered = true;
5056        return;
5057      }
5058    }
5059
5060  S.Diag(diag.Loc, diag.getForbiddenTypeDiagnostic())
5061    << diag.getForbiddenTypeOperand() << diag.getForbiddenTypeArgument();
5062  diag.Triggered = true;
5063}
5064
5065void Sema::PopParsingDeclaration(ParsingDeclState state, Decl *decl) {
5066  assert(DelayedDiagnostics.getCurrentPool());
5067  DelayedDiagnosticPool &poppedPool = *DelayedDiagnostics.getCurrentPool();
5068  DelayedDiagnostics.popWithoutEmitting(state);
5069
5070  // When delaying diagnostics to run in the context of a parsed
5071  // declaration, we only want to actually emit anything if parsing
5072  // succeeds.
5073  if (!decl) return;
5074
5075  // We emit all the active diagnostics in this pool or any of its
5076  // parents.  In general, we'll get one pool for the decl spec
5077  // and a child pool for each declarator; in a decl group like:
5078  //   deprecated_typedef foo, *bar, baz();
5079  // only the declarator pops will be passed decls.  This is correct;
5080  // we really do need to consider delayed diagnostics from the decl spec
5081  // for each of the different declarations.
5082  const DelayedDiagnosticPool *pool = &poppedPool;
5083  do {
5084    for (DelayedDiagnosticPool::pool_iterator
5085           i = pool->pool_begin(), e = pool->pool_end(); i != e; ++i) {
5086      // This const_cast is a bit lame.  Really, Triggered should be mutable.
5087      DelayedDiagnostic &diag = const_cast<DelayedDiagnostic&>(*i);
5088      if (diag.Triggered)
5089        continue;
5090
5091      switch (diag.Kind) {
5092      case DelayedDiagnostic::Deprecation:
5093        // Don't bother giving deprecation diagnostics if the decl is invalid.
5094        if (!decl->isInvalidDecl())
5095          HandleDelayedDeprecationCheck(diag, decl);
5096        break;
5097
5098      case DelayedDiagnostic::Access:
5099        HandleDelayedAccessCheck(diag, decl);
5100        break;
5101
5102      case DelayedDiagnostic::ForbiddenType:
5103        handleDelayedForbiddenType(*this, diag, decl);
5104        break;
5105      }
5106    }
5107  } while ((pool = pool->getParent()));
5108}
5109
5110/// Given a set of delayed diagnostics, re-emit them as if they had
5111/// been delayed in the current context instead of in the given pool.
5112/// Essentially, this just moves them to the current pool.
5113void Sema::redelayDiagnostics(DelayedDiagnosticPool &pool) {
5114  DelayedDiagnosticPool *curPool = DelayedDiagnostics.getCurrentPool();
5115  assert(curPool && "re-emitting in undelayed context not supported");
5116  curPool->steal(pool);
5117}
5118
5119static bool isDeclDeprecated(Decl *D) {
5120  do {
5121    if (D->isDeprecated())
5122      return true;
5123    // A category implicitly has the availability of the interface.
5124    if (const ObjCCategoryDecl *CatD = dyn_cast<ObjCCategoryDecl>(D))
5125      return CatD->getClassInterface()->isDeprecated();
5126  } while ((D = cast_or_null<Decl>(D->getDeclContext())));
5127  return false;
5128}
5129
5130static void
5131DoEmitDeprecationWarning(Sema &S, const NamedDecl *D, StringRef Message,
5132                         SourceLocation Loc,
5133                         const ObjCInterfaceDecl *UnknownObjCClass,
5134                         const ObjCPropertyDecl *ObjCPropery) {
5135  DeclarationName Name = D->getDeclName();
5136  if (!Message.empty()) {
5137    S.Diag(Loc, diag::warn_deprecated_message) << Name << Message;
5138    S.Diag(D->getLocation(),
5139           isa<ObjCMethodDecl>(D) ? diag::note_method_declared_at
5140                                  : diag::note_previous_decl) << Name;
5141    if (ObjCPropery)
5142      S.Diag(ObjCPropery->getLocation(), diag::note_property_attribute)
5143        << ObjCPropery->getDeclName() << 0;
5144  } else if (!UnknownObjCClass) {
5145    S.Diag(Loc, diag::warn_deprecated) << D->getDeclName();
5146    S.Diag(D->getLocation(),
5147           isa<ObjCMethodDecl>(D) ? diag::note_method_declared_at
5148                                  : diag::note_previous_decl) << Name;
5149    if (ObjCPropery)
5150      S.Diag(ObjCPropery->getLocation(), diag::note_property_attribute)
5151        << ObjCPropery->getDeclName() << 0;
5152  } else {
5153    S.Diag(Loc, diag::warn_deprecated_fwdclass_message) << Name;
5154    S.Diag(UnknownObjCClass->getLocation(), diag::note_forward_class);
5155  }
5156}
5157
5158void Sema::HandleDelayedDeprecationCheck(DelayedDiagnostic &DD,
5159                                         Decl *Ctx) {
5160  if (isDeclDeprecated(Ctx))
5161    return;
5162
5163  DD.Triggered = true;
5164  DoEmitDeprecationWarning(*this, DD.getDeprecationDecl(),
5165                           DD.getDeprecationMessage(), DD.Loc,
5166                           DD.getUnknownObjCClass(),
5167                           DD.getObjCProperty());
5168}
5169
5170void Sema::EmitDeprecationWarning(NamedDecl *D, StringRef Message,
5171                                  SourceLocation Loc,
5172                                  const ObjCInterfaceDecl *UnknownObjCClass,
5173                                  const ObjCPropertyDecl  *ObjCProperty) {
5174  // Delay if we're currently parsing a declaration.
5175  if (DelayedDiagnostics.shouldDelayDiagnostics()) {
5176    DelayedDiagnostics.add(DelayedDiagnostic::makeDeprecation(Loc, D,
5177                                                              UnknownObjCClass,
5178                                                              ObjCProperty,
5179                                                              Message));
5180    return;
5181  }
5182
5183  // Otherwise, don't warn if our current context is deprecated.
5184  if (isDeclDeprecated(cast<Decl>(getCurLexicalContext())))
5185    return;
5186  DoEmitDeprecationWarning(*this, D, Message, Loc, UnknownObjCClass, ObjCProperty);
5187}
5188