SemaDeclCXX.cpp revision 01de7a44cea9f77cbcda65faad8edc8b48a3b617
1//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for C++ declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/CXXFieldCollector.h"
16#include "clang/Sema/Scope.h"
17#include "clang/Sema/Initialization.h"
18#include "clang/Sema/Lookup.h"
19#include "clang/AST/ASTConsumer.h"
20#include "clang/AST/ASTContext.h"
21#include "clang/AST/CharUnits.h"
22#include "clang/AST/CXXInheritance.h"
23#include "clang/AST/DeclVisitor.h"
24#include "clang/AST/RecordLayout.h"
25#include "clang/AST/StmtVisitor.h"
26#include "clang/AST/TypeLoc.h"
27#include "clang/AST/TypeOrdering.h"
28#include "clang/Sema/DeclSpec.h"
29#include "clang/Sema/ParsedTemplate.h"
30#include "clang/Basic/PartialDiagnostic.h"
31#include "clang/Lex/Preprocessor.h"
32#include "llvm/ADT/DenseSet.h"
33#include "llvm/ADT/STLExtras.h"
34#include <map>
35#include <set>
36
37using namespace clang;
38
39//===----------------------------------------------------------------------===//
40// CheckDefaultArgumentVisitor
41//===----------------------------------------------------------------------===//
42
43namespace {
44  /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
45  /// the default argument of a parameter to determine whether it
46  /// contains any ill-formed subexpressions. For example, this will
47  /// diagnose the use of local variables or parameters within the
48  /// default argument expression.
49  class CheckDefaultArgumentVisitor
50    : public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
51    Expr *DefaultArg;
52    Sema *S;
53
54  public:
55    CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
56      : DefaultArg(defarg), S(s) {}
57
58    bool VisitExpr(Expr *Node);
59    bool VisitDeclRefExpr(DeclRefExpr *DRE);
60    bool VisitCXXThisExpr(CXXThisExpr *ThisE);
61  };
62
63  /// VisitExpr - Visit all of the children of this expression.
64  bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
65    bool IsInvalid = false;
66    for (Stmt::child_iterator I = Node->child_begin(),
67         E = Node->child_end(); I != E; ++I)
68      IsInvalid |= Visit(*I);
69    return IsInvalid;
70  }
71
72  /// VisitDeclRefExpr - Visit a reference to a declaration, to
73  /// determine whether this declaration can be used in the default
74  /// argument expression.
75  bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
76    NamedDecl *Decl = DRE->getDecl();
77    if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
78      // C++ [dcl.fct.default]p9
79      //   Default arguments are evaluated each time the function is
80      //   called. The order of evaluation of function arguments is
81      //   unspecified. Consequently, parameters of a function shall not
82      //   be used in default argument expressions, even if they are not
83      //   evaluated. Parameters of a function declared before a default
84      //   argument expression are in scope and can hide namespace and
85      //   class member names.
86      return S->Diag(DRE->getSourceRange().getBegin(),
87                     diag::err_param_default_argument_references_param)
88         << Param->getDeclName() << DefaultArg->getSourceRange();
89    } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
90      // C++ [dcl.fct.default]p7
91      //   Local variables shall not be used in default argument
92      //   expressions.
93      if (VDecl->isLocalVarDecl())
94        return S->Diag(DRE->getSourceRange().getBegin(),
95                       diag::err_param_default_argument_references_local)
96          << VDecl->getDeclName() << DefaultArg->getSourceRange();
97    }
98
99    return false;
100  }
101
102  /// VisitCXXThisExpr - Visit a C++ "this" expression.
103  bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
104    // C++ [dcl.fct.default]p8:
105    //   The keyword this shall not be used in a default argument of a
106    //   member function.
107    return S->Diag(ThisE->getSourceRange().getBegin(),
108                   diag::err_param_default_argument_references_this)
109               << ThisE->getSourceRange();
110  }
111}
112
113bool
114Sema::SetParamDefaultArgument(ParmVarDecl *Param, Expr *Arg,
115                              SourceLocation EqualLoc) {
116  if (RequireCompleteType(Param->getLocation(), Param->getType(),
117                          diag::err_typecheck_decl_incomplete_type)) {
118    Param->setInvalidDecl();
119    return true;
120  }
121
122  // C++ [dcl.fct.default]p5
123  //   A default argument expression is implicitly converted (clause
124  //   4) to the parameter type. The default argument expression has
125  //   the same semantic constraints as the initializer expression in
126  //   a declaration of a variable of the parameter type, using the
127  //   copy-initialization semantics (8.5).
128  InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
129                                                                    Param);
130  InitializationKind Kind = InitializationKind::CreateCopy(Param->getLocation(),
131                                                           EqualLoc);
132  InitializationSequence InitSeq(*this, Entity, Kind, &Arg, 1);
133  ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
134                                      MultiExprArg(*this, &Arg, 1));
135  if (Result.isInvalid())
136    return true;
137  Arg = Result.takeAs<Expr>();
138
139  CheckImplicitConversions(Arg, EqualLoc);
140  Arg = MaybeCreateExprWithCleanups(Arg);
141
142  // Okay: add the default argument to the parameter
143  Param->setDefaultArg(Arg);
144
145  // We have already instantiated this parameter; provide each of the
146  // instantiations with the uninstantiated default argument.
147  UnparsedDefaultArgInstantiationsMap::iterator InstPos
148    = UnparsedDefaultArgInstantiations.find(Param);
149  if (InstPos != UnparsedDefaultArgInstantiations.end()) {
150    for (unsigned I = 0, N = InstPos->second.size(); I != N; ++I)
151      InstPos->second[I]->setUninstantiatedDefaultArg(Arg);
152
153    // We're done tracking this parameter's instantiations.
154    UnparsedDefaultArgInstantiations.erase(InstPos);
155  }
156
157  return false;
158}
159
160/// ActOnParamDefaultArgument - Check whether the default argument
161/// provided for a function parameter is well-formed. If so, attach it
162/// to the parameter declaration.
163void
164Sema::ActOnParamDefaultArgument(Decl *param, SourceLocation EqualLoc,
165                                Expr *DefaultArg) {
166  if (!param || !DefaultArg)
167    return;
168
169  ParmVarDecl *Param = cast<ParmVarDecl>(param);
170  UnparsedDefaultArgLocs.erase(Param);
171
172  // Default arguments are only permitted in C++
173  if (!getLangOptions().CPlusPlus) {
174    Diag(EqualLoc, diag::err_param_default_argument)
175      << DefaultArg->getSourceRange();
176    Param->setInvalidDecl();
177    return;
178  }
179
180  // Check for unexpanded parameter packs.
181  if (DiagnoseUnexpandedParameterPack(DefaultArg, UPPC_DefaultArgument)) {
182    Param->setInvalidDecl();
183    return;
184  }
185
186  // Check that the default argument is well-formed
187  CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg, this);
188  if (DefaultArgChecker.Visit(DefaultArg)) {
189    Param->setInvalidDecl();
190    return;
191  }
192
193  SetParamDefaultArgument(Param, DefaultArg, EqualLoc);
194}
195
196/// ActOnParamUnparsedDefaultArgument - We've seen a default
197/// argument for a function parameter, but we can't parse it yet
198/// because we're inside a class definition. Note that this default
199/// argument will be parsed later.
200void Sema::ActOnParamUnparsedDefaultArgument(Decl *param,
201                                             SourceLocation EqualLoc,
202                                             SourceLocation ArgLoc) {
203  if (!param)
204    return;
205
206  ParmVarDecl *Param = cast<ParmVarDecl>(param);
207  if (Param)
208    Param->setUnparsedDefaultArg();
209
210  UnparsedDefaultArgLocs[Param] = ArgLoc;
211}
212
213/// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
214/// the default argument for the parameter param failed.
215void Sema::ActOnParamDefaultArgumentError(Decl *param) {
216  if (!param)
217    return;
218
219  ParmVarDecl *Param = cast<ParmVarDecl>(param);
220
221  Param->setInvalidDecl();
222
223  UnparsedDefaultArgLocs.erase(Param);
224}
225
226/// CheckExtraCXXDefaultArguments - Check for any extra default
227/// arguments in the declarator, which is not a function declaration
228/// or definition and therefore is not permitted to have default
229/// arguments. This routine should be invoked for every declarator
230/// that is not a function declaration or definition.
231void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
232  // C++ [dcl.fct.default]p3
233  //   A default argument expression shall be specified only in the
234  //   parameter-declaration-clause of a function declaration or in a
235  //   template-parameter (14.1). It shall not be specified for a
236  //   parameter pack. If it is specified in a
237  //   parameter-declaration-clause, it shall not occur within a
238  //   declarator or abstract-declarator of a parameter-declaration.
239  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
240    DeclaratorChunk &chunk = D.getTypeObject(i);
241    if (chunk.Kind == DeclaratorChunk::Function) {
242      for (unsigned argIdx = 0, e = chunk.Fun.NumArgs; argIdx != e; ++argIdx) {
243        ParmVarDecl *Param =
244          cast<ParmVarDecl>(chunk.Fun.ArgInfo[argIdx].Param);
245        if (Param->hasUnparsedDefaultArg()) {
246          CachedTokens *Toks = chunk.Fun.ArgInfo[argIdx].DefaultArgTokens;
247          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
248            << SourceRange((*Toks)[1].getLocation(), Toks->back().getLocation());
249          delete Toks;
250          chunk.Fun.ArgInfo[argIdx].DefaultArgTokens = 0;
251        } else if (Param->getDefaultArg()) {
252          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
253            << Param->getDefaultArg()->getSourceRange();
254          Param->setDefaultArg(0);
255        }
256      }
257    }
258  }
259}
260
261// MergeCXXFunctionDecl - Merge two declarations of the same C++
262// function, once we already know that they have the same
263// type. Subroutine of MergeFunctionDecl. Returns true if there was an
264// error, false otherwise.
265bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old) {
266  bool Invalid = false;
267
268  // C++ [dcl.fct.default]p4:
269  //   For non-template functions, default arguments can be added in
270  //   later declarations of a function in the same
271  //   scope. Declarations in different scopes have completely
272  //   distinct sets of default arguments. That is, declarations in
273  //   inner scopes do not acquire default arguments from
274  //   declarations in outer scopes, and vice versa. In a given
275  //   function declaration, all parameters subsequent to a
276  //   parameter with a default argument shall have default
277  //   arguments supplied in this or previous declarations. A
278  //   default argument shall not be redefined by a later
279  //   declaration (not even to the same value).
280  //
281  // C++ [dcl.fct.default]p6:
282  //   Except for member functions of class templates, the default arguments
283  //   in a member function definition that appears outside of the class
284  //   definition are added to the set of default arguments provided by the
285  //   member function declaration in the class definition.
286  for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) {
287    ParmVarDecl *OldParam = Old->getParamDecl(p);
288    ParmVarDecl *NewParam = New->getParamDecl(p);
289
290    if (OldParam->hasDefaultArg() && NewParam->hasDefaultArg()) {
291      // FIXME: If we knew where the '=' was, we could easily provide a fix-it
292      // hint here. Alternatively, we could walk the type-source information
293      // for NewParam to find the last source location in the type... but it
294      // isn't worth the effort right now. This is the kind of test case that
295      // is hard to get right:
296
297      //   int f(int);
298      //   void g(int (*fp)(int) = f);
299      //   void g(int (*fp)(int) = &f);
300      Diag(NewParam->getLocation(),
301           diag::err_param_default_argument_redefinition)
302        << NewParam->getDefaultArgRange();
303
304      // Look for the function declaration where the default argument was
305      // actually written, which may be a declaration prior to Old.
306      for (FunctionDecl *Older = Old->getPreviousDeclaration();
307           Older; Older = Older->getPreviousDeclaration()) {
308        if (!Older->getParamDecl(p)->hasDefaultArg())
309          break;
310
311        OldParam = Older->getParamDecl(p);
312      }
313
314      Diag(OldParam->getLocation(), diag::note_previous_definition)
315        << OldParam->getDefaultArgRange();
316      Invalid = true;
317    } else if (OldParam->hasDefaultArg()) {
318      // Merge the old default argument into the new parameter.
319      // It's important to use getInit() here;  getDefaultArg()
320      // strips off any top-level ExprWithCleanups.
321      NewParam->setHasInheritedDefaultArg();
322      if (OldParam->hasUninstantiatedDefaultArg())
323        NewParam->setUninstantiatedDefaultArg(
324                                      OldParam->getUninstantiatedDefaultArg());
325      else
326        NewParam->setDefaultArg(OldParam->getInit());
327    } else if (NewParam->hasDefaultArg()) {
328      if (New->getDescribedFunctionTemplate()) {
329        // Paragraph 4, quoted above, only applies to non-template functions.
330        Diag(NewParam->getLocation(),
331             diag::err_param_default_argument_template_redecl)
332          << NewParam->getDefaultArgRange();
333        Diag(Old->getLocation(), diag::note_template_prev_declaration)
334          << false;
335      } else if (New->getTemplateSpecializationKind()
336                   != TSK_ImplicitInstantiation &&
337                 New->getTemplateSpecializationKind() != TSK_Undeclared) {
338        // C++ [temp.expr.spec]p21:
339        //   Default function arguments shall not be specified in a declaration
340        //   or a definition for one of the following explicit specializations:
341        //     - the explicit specialization of a function template;
342        //     - the explicit specialization of a member function template;
343        //     - the explicit specialization of a member function of a class
344        //       template where the class template specialization to which the
345        //       member function specialization belongs is implicitly
346        //       instantiated.
347        Diag(NewParam->getLocation(), diag::err_template_spec_default_arg)
348          << (New->getTemplateSpecializationKind() ==TSK_ExplicitSpecialization)
349          << New->getDeclName()
350          << NewParam->getDefaultArgRange();
351      } else if (New->getDeclContext()->isDependentContext()) {
352        // C++ [dcl.fct.default]p6 (DR217):
353        //   Default arguments for a member function of a class template shall
354        //   be specified on the initial declaration of the member function
355        //   within the class template.
356        //
357        // Reading the tea leaves a bit in DR217 and its reference to DR205
358        // leads me to the conclusion that one cannot add default function
359        // arguments for an out-of-line definition of a member function of a
360        // dependent type.
361        int WhichKind = 2;
362        if (CXXRecordDecl *Record
363              = dyn_cast<CXXRecordDecl>(New->getDeclContext())) {
364          if (Record->getDescribedClassTemplate())
365            WhichKind = 0;
366          else if (isa<ClassTemplatePartialSpecializationDecl>(Record))
367            WhichKind = 1;
368          else
369            WhichKind = 2;
370        }
371
372        Diag(NewParam->getLocation(),
373             diag::err_param_default_argument_member_template_redecl)
374          << WhichKind
375          << NewParam->getDefaultArgRange();
376      }
377    }
378  }
379
380  if (CheckEquivalentExceptionSpec(Old, New))
381    Invalid = true;
382
383  return Invalid;
384}
385
386/// CheckCXXDefaultArguments - Verify that the default arguments for a
387/// function declaration are well-formed according to C++
388/// [dcl.fct.default].
389void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
390  unsigned NumParams = FD->getNumParams();
391  unsigned p;
392
393  // Find first parameter with a default argument
394  for (p = 0; p < NumParams; ++p) {
395    ParmVarDecl *Param = FD->getParamDecl(p);
396    if (Param->hasDefaultArg())
397      break;
398  }
399
400  // C++ [dcl.fct.default]p4:
401  //   In a given function declaration, all parameters
402  //   subsequent to a parameter with a default argument shall
403  //   have default arguments supplied in this or previous
404  //   declarations. A default argument shall not be redefined
405  //   by a later declaration (not even to the same value).
406  unsigned LastMissingDefaultArg = 0;
407  for (; p < NumParams; ++p) {
408    ParmVarDecl *Param = FD->getParamDecl(p);
409    if (!Param->hasDefaultArg()) {
410      if (Param->isInvalidDecl())
411        /* We already complained about this parameter. */;
412      else if (Param->getIdentifier())
413        Diag(Param->getLocation(),
414             diag::err_param_default_argument_missing_name)
415          << Param->getIdentifier();
416      else
417        Diag(Param->getLocation(),
418             diag::err_param_default_argument_missing);
419
420      LastMissingDefaultArg = p;
421    }
422  }
423
424  if (LastMissingDefaultArg > 0) {
425    // Some default arguments were missing. Clear out all of the
426    // default arguments up to (and including) the last missing
427    // default argument, so that we leave the function parameters
428    // in a semantically valid state.
429    for (p = 0; p <= LastMissingDefaultArg; ++p) {
430      ParmVarDecl *Param = FD->getParamDecl(p);
431      if (Param->hasDefaultArg()) {
432        Param->setDefaultArg(0);
433      }
434    }
435  }
436}
437
438/// isCurrentClassName - Determine whether the identifier II is the
439/// name of the class type currently being defined. In the case of
440/// nested classes, this will only return true if II is the name of
441/// the innermost class.
442bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *,
443                              const CXXScopeSpec *SS) {
444  assert(getLangOptions().CPlusPlus && "No class names in C!");
445
446  CXXRecordDecl *CurDecl;
447  if (SS && SS->isSet() && !SS->isInvalid()) {
448    DeclContext *DC = computeDeclContext(*SS, true);
449    CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
450  } else
451    CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
452
453  if (CurDecl && CurDecl->getIdentifier())
454    return &II == CurDecl->getIdentifier();
455  else
456    return false;
457}
458
459/// \brief Check the validity of a C++ base class specifier.
460///
461/// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
462/// and returns NULL otherwise.
463CXXBaseSpecifier *
464Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
465                         SourceRange SpecifierRange,
466                         bool Virtual, AccessSpecifier Access,
467                         TypeSourceInfo *TInfo,
468                         SourceLocation EllipsisLoc) {
469  QualType BaseType = TInfo->getType();
470
471  // C++ [class.union]p1:
472  //   A union shall not have base classes.
473  if (Class->isUnion()) {
474    Diag(Class->getLocation(), diag::err_base_clause_on_union)
475      << SpecifierRange;
476    return 0;
477  }
478
479  if (EllipsisLoc.isValid() &&
480      !TInfo->getType()->containsUnexpandedParameterPack()) {
481    Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
482      << TInfo->getTypeLoc().getSourceRange();
483    EllipsisLoc = SourceLocation();
484  }
485
486  if (BaseType->isDependentType())
487    return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
488                                          Class->getTagKind() == TTK_Class,
489                                          Access, TInfo, EllipsisLoc);
490
491  SourceLocation BaseLoc = TInfo->getTypeLoc().getBeginLoc();
492
493  // Base specifiers must be record types.
494  if (!BaseType->isRecordType()) {
495    Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
496    return 0;
497  }
498
499  // C++ [class.union]p1:
500  //   A union shall not be used as a base class.
501  if (BaseType->isUnionType()) {
502    Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
503    return 0;
504  }
505
506  // C++ [class.derived]p2:
507  //   The class-name in a base-specifier shall not be an incompletely
508  //   defined class.
509  if (RequireCompleteType(BaseLoc, BaseType,
510                          PDiag(diag::err_incomplete_base_class)
511                            << SpecifierRange)) {
512    Class->setInvalidDecl();
513    return 0;
514  }
515
516  // If the base class is polymorphic or isn't empty, the new one is/isn't, too.
517  RecordDecl *BaseDecl = BaseType->getAs<RecordType>()->getDecl();
518  assert(BaseDecl && "Record type has no declaration");
519  BaseDecl = BaseDecl->getDefinition();
520  assert(BaseDecl && "Base type is not incomplete, but has no definition");
521  CXXRecordDecl * CXXBaseDecl = cast<CXXRecordDecl>(BaseDecl);
522  assert(CXXBaseDecl && "Base type is not a C++ type");
523
524  // C++ [class.derived]p2:
525  //   If a class is marked with the class-virt-specifier final and it appears
526  //   as a base-type-specifier in a base-clause (10 class.derived), the program
527  //   is ill-formed.
528  if (CXXBaseDecl->hasAttr<FinalAttr>()) {
529    Diag(BaseLoc, diag::err_class_marked_final_used_as_base)
530      << CXXBaseDecl->getDeclName();
531    Diag(CXXBaseDecl->getLocation(), diag::note_previous_decl)
532      << CXXBaseDecl->getDeclName();
533    return 0;
534  }
535
536  if (BaseDecl->isInvalidDecl())
537    Class->setInvalidDecl();
538
539  // Create the base specifier.
540  return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
541                                        Class->getTagKind() == TTK_Class,
542                                        Access, TInfo, EllipsisLoc);
543}
544
545/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
546/// one entry in the base class list of a class specifier, for
547/// example:
548///    class foo : public bar, virtual private baz {
549/// 'public bar' and 'virtual private baz' are each base-specifiers.
550BaseResult
551Sema::ActOnBaseSpecifier(Decl *classdecl, SourceRange SpecifierRange,
552                         bool Virtual, AccessSpecifier Access,
553                         ParsedType basetype, SourceLocation BaseLoc,
554                         SourceLocation EllipsisLoc) {
555  if (!classdecl)
556    return true;
557
558  AdjustDeclIfTemplate(classdecl);
559  CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(classdecl);
560  if (!Class)
561    return true;
562
563  TypeSourceInfo *TInfo = 0;
564  GetTypeFromParser(basetype, &TInfo);
565
566  if (EllipsisLoc.isInvalid() &&
567      DiagnoseUnexpandedParameterPack(SpecifierRange.getBegin(), TInfo,
568                                      UPPC_BaseType))
569    return true;
570
571  if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
572                                                      Virtual, Access, TInfo,
573                                                      EllipsisLoc))
574    return BaseSpec;
575
576  return true;
577}
578
579/// \brief Performs the actual work of attaching the given base class
580/// specifiers to a C++ class.
581bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, CXXBaseSpecifier **Bases,
582                                unsigned NumBases) {
583 if (NumBases == 0)
584    return false;
585
586  // Used to keep track of which base types we have already seen, so
587  // that we can properly diagnose redundant direct base types. Note
588  // that the key is always the unqualified canonical type of the base
589  // class.
590  std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
591
592  // Copy non-redundant base specifiers into permanent storage.
593  unsigned NumGoodBases = 0;
594  bool Invalid = false;
595  for (unsigned idx = 0; idx < NumBases; ++idx) {
596    QualType NewBaseType
597      = Context.getCanonicalType(Bases[idx]->getType());
598    NewBaseType = NewBaseType.getLocalUnqualifiedType();
599    if (!Class->hasObjectMember()) {
600      if (const RecordType *FDTTy =
601            NewBaseType.getTypePtr()->getAs<RecordType>())
602        if (FDTTy->getDecl()->hasObjectMember())
603          Class->setHasObjectMember(true);
604    }
605
606    if (KnownBaseTypes[NewBaseType]) {
607      // C++ [class.mi]p3:
608      //   A class shall not be specified as a direct base class of a
609      //   derived class more than once.
610      Diag(Bases[idx]->getSourceRange().getBegin(),
611           diag::err_duplicate_base_class)
612        << KnownBaseTypes[NewBaseType]->getType()
613        << Bases[idx]->getSourceRange();
614
615      // Delete the duplicate base class specifier; we're going to
616      // overwrite its pointer later.
617      Context.Deallocate(Bases[idx]);
618
619      Invalid = true;
620    } else {
621      // Okay, add this new base class.
622      KnownBaseTypes[NewBaseType] = Bases[idx];
623      Bases[NumGoodBases++] = Bases[idx];
624    }
625  }
626
627  // Attach the remaining base class specifiers to the derived class.
628  Class->setBases(Bases, NumGoodBases);
629
630  // Delete the remaining (good) base class specifiers, since their
631  // data has been copied into the CXXRecordDecl.
632  for (unsigned idx = 0; idx < NumGoodBases; ++idx)
633    Context.Deallocate(Bases[idx]);
634
635  return Invalid;
636}
637
638/// ActOnBaseSpecifiers - Attach the given base specifiers to the
639/// class, after checking whether there are any duplicate base
640/// classes.
641void Sema::ActOnBaseSpecifiers(Decl *ClassDecl, BaseTy **Bases,
642                               unsigned NumBases) {
643  if (!ClassDecl || !Bases || !NumBases)
644    return;
645
646  AdjustDeclIfTemplate(ClassDecl);
647  AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl),
648                       (CXXBaseSpecifier**)(Bases), NumBases);
649}
650
651static CXXRecordDecl *GetClassForType(QualType T) {
652  if (const RecordType *RT = T->getAs<RecordType>())
653    return cast<CXXRecordDecl>(RT->getDecl());
654  else if (const InjectedClassNameType *ICT = T->getAs<InjectedClassNameType>())
655    return ICT->getDecl();
656  else
657    return 0;
658}
659
660/// \brief Determine whether the type \p Derived is a C++ class that is
661/// derived from the type \p Base.
662bool Sema::IsDerivedFrom(QualType Derived, QualType Base) {
663  if (!getLangOptions().CPlusPlus)
664    return false;
665
666  CXXRecordDecl *DerivedRD = GetClassForType(Derived);
667  if (!DerivedRD)
668    return false;
669
670  CXXRecordDecl *BaseRD = GetClassForType(Base);
671  if (!BaseRD)
672    return false;
673
674  // FIXME: instantiate DerivedRD if necessary.  We need a PoI for this.
675  return DerivedRD->hasDefinition() && DerivedRD->isDerivedFrom(BaseRD);
676}
677
678/// \brief Determine whether the type \p Derived is a C++ class that is
679/// derived from the type \p Base.
680bool Sema::IsDerivedFrom(QualType Derived, QualType Base, CXXBasePaths &Paths) {
681  if (!getLangOptions().CPlusPlus)
682    return false;
683
684  CXXRecordDecl *DerivedRD = GetClassForType(Derived);
685  if (!DerivedRD)
686    return false;
687
688  CXXRecordDecl *BaseRD = GetClassForType(Base);
689  if (!BaseRD)
690    return false;
691
692  return DerivedRD->isDerivedFrom(BaseRD, Paths);
693}
694
695void Sema::BuildBasePathArray(const CXXBasePaths &Paths,
696                              CXXCastPath &BasePathArray) {
697  assert(BasePathArray.empty() && "Base path array must be empty!");
698  assert(Paths.isRecordingPaths() && "Must record paths!");
699
700  const CXXBasePath &Path = Paths.front();
701
702  // We first go backward and check if we have a virtual base.
703  // FIXME: It would be better if CXXBasePath had the base specifier for
704  // the nearest virtual base.
705  unsigned Start = 0;
706  for (unsigned I = Path.size(); I != 0; --I) {
707    if (Path[I - 1].Base->isVirtual()) {
708      Start = I - 1;
709      break;
710    }
711  }
712
713  // Now add all bases.
714  for (unsigned I = Start, E = Path.size(); I != E; ++I)
715    BasePathArray.push_back(const_cast<CXXBaseSpecifier*>(Path[I].Base));
716}
717
718/// \brief Determine whether the given base path includes a virtual
719/// base class.
720bool Sema::BasePathInvolvesVirtualBase(const CXXCastPath &BasePath) {
721  for (CXXCastPath::const_iterator B = BasePath.begin(),
722                                BEnd = BasePath.end();
723       B != BEnd; ++B)
724    if ((*B)->isVirtual())
725      return true;
726
727  return false;
728}
729
730/// CheckDerivedToBaseConversion - Check whether the Derived-to-Base
731/// conversion (where Derived and Base are class types) is
732/// well-formed, meaning that the conversion is unambiguous (and
733/// that all of the base classes are accessible). Returns true
734/// and emits a diagnostic if the code is ill-formed, returns false
735/// otherwise. Loc is the location where this routine should point to
736/// if there is an error, and Range is the source range to highlight
737/// if there is an error.
738bool
739Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
740                                   unsigned InaccessibleBaseID,
741                                   unsigned AmbigiousBaseConvID,
742                                   SourceLocation Loc, SourceRange Range,
743                                   DeclarationName Name,
744                                   CXXCastPath *BasePath) {
745  // First, determine whether the path from Derived to Base is
746  // ambiguous. This is slightly more expensive than checking whether
747  // the Derived to Base conversion exists, because here we need to
748  // explore multiple paths to determine if there is an ambiguity.
749  CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
750                     /*DetectVirtual=*/false);
751  bool DerivationOkay = IsDerivedFrom(Derived, Base, Paths);
752  assert(DerivationOkay &&
753         "Can only be used with a derived-to-base conversion");
754  (void)DerivationOkay;
755
756  if (!Paths.isAmbiguous(Context.getCanonicalType(Base).getUnqualifiedType())) {
757    if (InaccessibleBaseID) {
758      // Check that the base class can be accessed.
759      switch (CheckBaseClassAccess(Loc, Base, Derived, Paths.front(),
760                                   InaccessibleBaseID)) {
761        case AR_inaccessible:
762          return true;
763        case AR_accessible:
764        case AR_dependent:
765        case AR_delayed:
766          break;
767      }
768    }
769
770    // Build a base path if necessary.
771    if (BasePath)
772      BuildBasePathArray(Paths, *BasePath);
773    return false;
774  }
775
776  // We know that the derived-to-base conversion is ambiguous, and
777  // we're going to produce a diagnostic. Perform the derived-to-base
778  // search just one more time to compute all of the possible paths so
779  // that we can print them out. This is more expensive than any of
780  // the previous derived-to-base checks we've done, but at this point
781  // performance isn't as much of an issue.
782  Paths.clear();
783  Paths.setRecordingPaths(true);
784  bool StillOkay = IsDerivedFrom(Derived, Base, Paths);
785  assert(StillOkay && "Can only be used with a derived-to-base conversion");
786  (void)StillOkay;
787
788  // Build up a textual representation of the ambiguous paths, e.g.,
789  // D -> B -> A, that will be used to illustrate the ambiguous
790  // conversions in the diagnostic. We only print one of the paths
791  // to each base class subobject.
792  std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
793
794  Diag(Loc, AmbigiousBaseConvID)
795  << Derived << Base << PathDisplayStr << Range << Name;
796  return true;
797}
798
799bool
800Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
801                                   SourceLocation Loc, SourceRange Range,
802                                   CXXCastPath *BasePath,
803                                   bool IgnoreAccess) {
804  return CheckDerivedToBaseConversion(Derived, Base,
805                                      IgnoreAccess ? 0
806                                       : diag::err_upcast_to_inaccessible_base,
807                                      diag::err_ambiguous_derived_to_base_conv,
808                                      Loc, Range, DeclarationName(),
809                                      BasePath);
810}
811
812
813/// @brief Builds a string representing ambiguous paths from a
814/// specific derived class to different subobjects of the same base
815/// class.
816///
817/// This function builds a string that can be used in error messages
818/// to show the different paths that one can take through the
819/// inheritance hierarchy to go from the derived class to different
820/// subobjects of a base class. The result looks something like this:
821/// @code
822/// struct D -> struct B -> struct A
823/// struct D -> struct C -> struct A
824/// @endcode
825std::string Sema::getAmbiguousPathsDisplayString(CXXBasePaths &Paths) {
826  std::string PathDisplayStr;
827  std::set<unsigned> DisplayedPaths;
828  for (CXXBasePaths::paths_iterator Path = Paths.begin();
829       Path != Paths.end(); ++Path) {
830    if (DisplayedPaths.insert(Path->back().SubobjectNumber).second) {
831      // We haven't displayed a path to this particular base
832      // class subobject yet.
833      PathDisplayStr += "\n    ";
834      PathDisplayStr += Context.getTypeDeclType(Paths.getOrigin()).getAsString();
835      for (CXXBasePath::const_iterator Element = Path->begin();
836           Element != Path->end(); ++Element)
837        PathDisplayStr += " -> " + Element->Base->getType().getAsString();
838    }
839  }
840
841  return PathDisplayStr;
842}
843
844//===----------------------------------------------------------------------===//
845// C++ class member Handling
846//===----------------------------------------------------------------------===//
847
848/// ActOnAccessSpecifier - Parsed an access specifier followed by a colon.
849Decl *Sema::ActOnAccessSpecifier(AccessSpecifier Access,
850                                 SourceLocation ASLoc,
851                                 SourceLocation ColonLoc) {
852  assert(Access != AS_none && "Invalid kind for syntactic access specifier!");
853  AccessSpecDecl *ASDecl = AccessSpecDecl::Create(Context, Access, CurContext,
854                                                  ASLoc, ColonLoc);
855  CurContext->addHiddenDecl(ASDecl);
856  return ASDecl;
857}
858
859/// CheckOverrideControl - Check C++0x override control semantics.
860void Sema::CheckOverrideControl(const Decl *D) {
861  const CXXMethodDecl *MD = llvm::dyn_cast<CXXMethodDecl>(D);
862  if (!MD || !MD->isVirtual())
863    return;
864
865  if (MD->isDependentContext())
866    return;
867
868  // C++0x [class.virtual]p3:
869  //   If a virtual function is marked with the virt-specifier override and does
870  //   not override a member function of a base class,
871  //   the program is ill-formed.
872  bool HasOverriddenMethods =
873    MD->begin_overridden_methods() != MD->end_overridden_methods();
874  if (MD->hasAttr<OverrideAttr>() && !HasOverriddenMethods) {
875    Diag(MD->getLocation(),
876                 diag::err_function_marked_override_not_overriding)
877      << MD->getDeclName();
878    return;
879  }
880
881  // C++0x [class.derived]p8:
882  //   In a class definition marked with the class-virt-specifier explicit,
883  //   if a virtual member function that is neither implicitly-declared nor a
884  //   destructor overrides a member function of a base class and it is not
885  //   marked with the virt-specifier override, the program is ill-formed.
886  if (MD->getParent()->hasAttr<ExplicitAttr>() && !isa<CXXDestructorDecl>(MD) &&
887      HasOverriddenMethods && !MD->hasAttr<OverrideAttr>()) {
888    llvm::SmallVector<const CXXMethodDecl*, 4>
889      OverriddenMethods(MD->begin_overridden_methods(),
890                        MD->end_overridden_methods());
891
892    Diag(MD->getLocation(), diag::err_function_overriding_without_override)
893      << MD->getDeclName()
894      << (unsigned)OverriddenMethods.size();
895
896    for (unsigned I = 0; I != OverriddenMethods.size(); ++I)
897      Diag(OverriddenMethods[I]->getLocation(),
898           diag::note_overridden_virtual_function);
899  }
900}
901
902/// CheckIfOverriddenFunctionIsMarkedFinal - Checks whether a virtual member
903/// function overrides a virtual member function marked 'final', according to
904/// C++0x [class.virtual]p3.
905bool Sema::CheckIfOverriddenFunctionIsMarkedFinal(const CXXMethodDecl *New,
906                                                  const CXXMethodDecl *Old) {
907  if (!Old->hasAttr<FinalAttr>())
908    return false;
909
910  Diag(New->getLocation(), diag::err_final_function_overridden)
911    << New->getDeclName();
912  Diag(Old->getLocation(), diag::note_overridden_virtual_function);
913  return true;
914}
915
916/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
917/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
918/// bitfield width if there is one and 'InitExpr' specifies the initializer if
919/// any.
920Decl *
921Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
922                               MultiTemplateParamsArg TemplateParameterLists,
923                               ExprTy *BW, const VirtSpecifiers &VS,
924                               ExprTy *InitExpr, bool IsDefinition,
925                               bool Deleted) {
926  const DeclSpec &DS = D.getDeclSpec();
927  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
928  DeclarationName Name = NameInfo.getName();
929  SourceLocation Loc = NameInfo.getLoc();
930
931  // For anonymous bitfields, the location should point to the type.
932  if (Loc.isInvalid())
933    Loc = D.getSourceRange().getBegin();
934
935  Expr *BitWidth = static_cast<Expr*>(BW);
936  Expr *Init = static_cast<Expr*>(InitExpr);
937
938  assert(isa<CXXRecordDecl>(CurContext));
939  assert(!DS.isFriendSpecified());
940
941  bool isFunc = false;
942  if (D.isFunctionDeclarator())
943    isFunc = true;
944  else if (D.getNumTypeObjects() == 0 &&
945           D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_typename) {
946    QualType TDType = GetTypeFromParser(DS.getRepAsType());
947    isFunc = TDType->isFunctionType();
948  }
949
950  // C++ 9.2p6: A member shall not be declared to have automatic storage
951  // duration (auto, register) or with the extern storage-class-specifier.
952  // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
953  // data members and cannot be applied to names declared const or static,
954  // and cannot be applied to reference members.
955  switch (DS.getStorageClassSpec()) {
956    case DeclSpec::SCS_unspecified:
957    case DeclSpec::SCS_typedef:
958    case DeclSpec::SCS_static:
959      // FALL THROUGH.
960      break;
961    case DeclSpec::SCS_mutable:
962      if (isFunc) {
963        if (DS.getStorageClassSpecLoc().isValid())
964          Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
965        else
966          Diag(DS.getThreadSpecLoc(), diag::err_mutable_function);
967
968        // FIXME: It would be nicer if the keyword was ignored only for this
969        // declarator. Otherwise we could get follow-up errors.
970        D.getMutableDeclSpec().ClearStorageClassSpecs();
971      }
972      break;
973    default:
974      if (DS.getStorageClassSpecLoc().isValid())
975        Diag(DS.getStorageClassSpecLoc(),
976             diag::err_storageclass_invalid_for_member);
977      else
978        Diag(DS.getThreadSpecLoc(), diag::err_storageclass_invalid_for_member);
979      D.getMutableDeclSpec().ClearStorageClassSpecs();
980  }
981
982  bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
983                       DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
984                      !isFunc);
985
986  Decl *Member;
987  if (isInstField) {
988    CXXScopeSpec &SS = D.getCXXScopeSpec();
989
990
991    if (SS.isSet() && !SS.isInvalid()) {
992      // The user provided a superfluous scope specifier inside a class
993      // definition:
994      //
995      // class X {
996      //   int X::member;
997      // };
998      DeclContext *DC = 0;
999      if ((DC = computeDeclContext(SS, false)) && DC->Equals(CurContext))
1000        Diag(D.getIdentifierLoc(), diag::warn_member_extra_qualification)
1001        << Name << FixItHint::CreateRemoval(SS.getRange());
1002      else
1003        Diag(D.getIdentifierLoc(), diag::err_member_qualification)
1004          << Name << SS.getRange();
1005
1006      SS.clear();
1007    }
1008
1009    // FIXME: Check for template parameters!
1010    // FIXME: Check that the name is an identifier!
1011    Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D, BitWidth,
1012                         AS);
1013    assert(Member && "HandleField never returns null");
1014  } else {
1015    Member = HandleDeclarator(S, D, move(TemplateParameterLists), IsDefinition);
1016    if (!Member) {
1017      return 0;
1018    }
1019
1020    // Non-instance-fields can't have a bitfield.
1021    if (BitWidth) {
1022      if (Member->isInvalidDecl()) {
1023        // don't emit another diagnostic.
1024      } else if (isa<VarDecl>(Member)) {
1025        // C++ 9.6p3: A bit-field shall not be a static member.
1026        // "static member 'A' cannot be a bit-field"
1027        Diag(Loc, diag::err_static_not_bitfield)
1028          << Name << BitWidth->getSourceRange();
1029      } else if (isa<TypedefDecl>(Member)) {
1030        // "typedef member 'x' cannot be a bit-field"
1031        Diag(Loc, diag::err_typedef_not_bitfield)
1032          << Name << BitWidth->getSourceRange();
1033      } else {
1034        // A function typedef ("typedef int f(); f a;").
1035        // C++ 9.6p3: A bit-field shall have integral or enumeration type.
1036        Diag(Loc, diag::err_not_integral_type_bitfield)
1037          << Name << cast<ValueDecl>(Member)->getType()
1038          << BitWidth->getSourceRange();
1039      }
1040
1041      BitWidth = 0;
1042      Member->setInvalidDecl();
1043    }
1044
1045    Member->setAccess(AS);
1046
1047    // If we have declared a member function template, set the access of the
1048    // templated declaration as well.
1049    if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Member))
1050      FunTmpl->getTemplatedDecl()->setAccess(AS);
1051  }
1052
1053  if (VS.isOverrideSpecified()) {
1054    CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Member);
1055    if (!MD || !MD->isVirtual()) {
1056      Diag(Member->getLocStart(),
1057           diag::override_keyword_only_allowed_on_virtual_member_functions)
1058        << "override" << FixItHint::CreateRemoval(VS.getOverrideLoc());
1059    } else
1060      MD->addAttr(new (Context) OverrideAttr(VS.getOverrideLoc(), Context));
1061  }
1062  if (VS.isFinalSpecified()) {
1063    CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Member);
1064    if (!MD || !MD->isVirtual()) {
1065      Diag(Member->getLocStart(),
1066           diag::override_keyword_only_allowed_on_virtual_member_functions)
1067      << "final" << FixItHint::CreateRemoval(VS.getFinalLoc());
1068    } else
1069      MD->addAttr(new (Context) FinalAttr(VS.getFinalLoc(), Context));
1070  }
1071
1072  CheckOverrideControl(Member);
1073
1074  assert((Name || isInstField) && "No identifier for non-field ?");
1075
1076  if (Init)
1077    AddInitializerToDecl(Member, Init, false);
1078  if (Deleted) // FIXME: Source location is not very good.
1079    SetDeclDeleted(Member, D.getSourceRange().getBegin());
1080
1081  if (isInstField) {
1082    FieldCollector->Add(cast<FieldDecl>(Member));
1083    return 0;
1084  }
1085  return Member;
1086}
1087
1088/// \brief Find the direct and/or virtual base specifiers that
1089/// correspond to the given base type, for use in base initialization
1090/// within a constructor.
1091static bool FindBaseInitializer(Sema &SemaRef,
1092                                CXXRecordDecl *ClassDecl,
1093                                QualType BaseType,
1094                                const CXXBaseSpecifier *&DirectBaseSpec,
1095                                const CXXBaseSpecifier *&VirtualBaseSpec) {
1096  // First, check for a direct base class.
1097  DirectBaseSpec = 0;
1098  for (CXXRecordDecl::base_class_const_iterator Base
1099         = ClassDecl->bases_begin();
1100       Base != ClassDecl->bases_end(); ++Base) {
1101    if (SemaRef.Context.hasSameUnqualifiedType(BaseType, Base->getType())) {
1102      // We found a direct base of this type. That's what we're
1103      // initializing.
1104      DirectBaseSpec = &*Base;
1105      break;
1106    }
1107  }
1108
1109  // Check for a virtual base class.
1110  // FIXME: We might be able to short-circuit this if we know in advance that
1111  // there are no virtual bases.
1112  VirtualBaseSpec = 0;
1113  if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
1114    // We haven't found a base yet; search the class hierarchy for a
1115    // virtual base class.
1116    CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
1117                       /*DetectVirtual=*/false);
1118    if (SemaRef.IsDerivedFrom(SemaRef.Context.getTypeDeclType(ClassDecl),
1119                              BaseType, Paths)) {
1120      for (CXXBasePaths::paths_iterator Path = Paths.begin();
1121           Path != Paths.end(); ++Path) {
1122        if (Path->back().Base->isVirtual()) {
1123          VirtualBaseSpec = Path->back().Base;
1124          break;
1125        }
1126      }
1127    }
1128  }
1129
1130  return DirectBaseSpec || VirtualBaseSpec;
1131}
1132
1133/// ActOnMemInitializer - Handle a C++ member initializer.
1134MemInitResult
1135Sema::ActOnMemInitializer(Decl *ConstructorD,
1136                          Scope *S,
1137                          CXXScopeSpec &SS,
1138                          IdentifierInfo *MemberOrBase,
1139                          ParsedType TemplateTypeTy,
1140                          SourceLocation IdLoc,
1141                          SourceLocation LParenLoc,
1142                          ExprTy **Args, unsigned NumArgs,
1143                          SourceLocation RParenLoc,
1144                          SourceLocation EllipsisLoc) {
1145  if (!ConstructorD)
1146    return true;
1147
1148  AdjustDeclIfTemplate(ConstructorD);
1149
1150  CXXConstructorDecl *Constructor
1151    = dyn_cast<CXXConstructorDecl>(ConstructorD);
1152  if (!Constructor) {
1153    // The user wrote a constructor initializer on a function that is
1154    // not a C++ constructor. Ignore the error for now, because we may
1155    // have more member initializers coming; we'll diagnose it just
1156    // once in ActOnMemInitializers.
1157    return true;
1158  }
1159
1160  CXXRecordDecl *ClassDecl = Constructor->getParent();
1161
1162  // C++ [class.base.init]p2:
1163  //   Names in a mem-initializer-id are looked up in the scope of the
1164  //   constructor's class and, if not found in that scope, are looked
1165  //   up in the scope containing the constructor's definition.
1166  //   [Note: if the constructor's class contains a member with the
1167  //   same name as a direct or virtual base class of the class, a
1168  //   mem-initializer-id naming the member or base class and composed
1169  //   of a single identifier refers to the class member. A
1170  //   mem-initializer-id for the hidden base class may be specified
1171  //   using a qualified name. ]
1172  if (!SS.getScopeRep() && !TemplateTypeTy) {
1173    // Look for a member, first.
1174    FieldDecl *Member = 0;
1175    DeclContext::lookup_result Result
1176      = ClassDecl->lookup(MemberOrBase);
1177    if (Result.first != Result.second) {
1178      Member = dyn_cast<FieldDecl>(*Result.first);
1179
1180      if (Member) {
1181        if (EllipsisLoc.isValid())
1182          Diag(EllipsisLoc, diag::err_pack_expansion_member_init)
1183            << MemberOrBase << SourceRange(IdLoc, RParenLoc);
1184
1185        return BuildMemberInitializer(Member, (Expr**)Args, NumArgs, IdLoc,
1186                                    LParenLoc, RParenLoc);
1187      }
1188
1189      // Handle anonymous union case.
1190      if (IndirectFieldDecl* IndirectField
1191            = dyn_cast<IndirectFieldDecl>(*Result.first)) {
1192        if (EllipsisLoc.isValid())
1193          Diag(EllipsisLoc, diag::err_pack_expansion_member_init)
1194            << MemberOrBase << SourceRange(IdLoc, RParenLoc);
1195
1196         return BuildMemberInitializer(IndirectField, (Expr**)Args,
1197                                       NumArgs, IdLoc,
1198                                       LParenLoc, RParenLoc);
1199      }
1200    }
1201  }
1202  // It didn't name a member, so see if it names a class.
1203  QualType BaseType;
1204  TypeSourceInfo *TInfo = 0;
1205
1206  if (TemplateTypeTy) {
1207    BaseType = GetTypeFromParser(TemplateTypeTy, &TInfo);
1208  } else {
1209    LookupResult R(*this, MemberOrBase, IdLoc, LookupOrdinaryName);
1210    LookupParsedName(R, S, &SS);
1211
1212    TypeDecl *TyD = R.getAsSingle<TypeDecl>();
1213    if (!TyD) {
1214      if (R.isAmbiguous()) return true;
1215
1216      // We don't want access-control diagnostics here.
1217      R.suppressDiagnostics();
1218
1219      if (SS.isSet() && isDependentScopeSpecifier(SS)) {
1220        bool NotUnknownSpecialization = false;
1221        DeclContext *DC = computeDeclContext(SS, false);
1222        if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(DC))
1223          NotUnknownSpecialization = !Record->hasAnyDependentBases();
1224
1225        if (!NotUnknownSpecialization) {
1226          // When the scope specifier can refer to a member of an unknown
1227          // specialization, we take it as a type name.
1228          BaseType = CheckTypenameType(ETK_None,
1229                                       (NestedNameSpecifier *)SS.getScopeRep(),
1230                                       *MemberOrBase, SourceLocation(),
1231                                       SS.getRange(), IdLoc);
1232          if (BaseType.isNull())
1233            return true;
1234
1235          R.clear();
1236          R.setLookupName(MemberOrBase);
1237        }
1238      }
1239
1240      // If no results were found, try to correct typos.
1241      if (R.empty() && BaseType.isNull() &&
1242          CorrectTypo(R, S, &SS, ClassDecl, 0, CTC_NoKeywords) &&
1243          R.isSingleResult()) {
1244        if (FieldDecl *Member = R.getAsSingle<FieldDecl>()) {
1245          if (Member->getDeclContext()->getRedeclContext()->Equals(ClassDecl)) {
1246            // We have found a non-static data member with a similar
1247            // name to what was typed; complain and initialize that
1248            // member.
1249            Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
1250              << MemberOrBase << true << R.getLookupName()
1251              << FixItHint::CreateReplacement(R.getNameLoc(),
1252                                              R.getLookupName().getAsString());
1253            Diag(Member->getLocation(), diag::note_previous_decl)
1254              << Member->getDeclName();
1255
1256            return BuildMemberInitializer(Member, (Expr**)Args, NumArgs, IdLoc,
1257                                          LParenLoc, RParenLoc);
1258          }
1259        } else if (TypeDecl *Type = R.getAsSingle<TypeDecl>()) {
1260          const CXXBaseSpecifier *DirectBaseSpec;
1261          const CXXBaseSpecifier *VirtualBaseSpec;
1262          if (FindBaseInitializer(*this, ClassDecl,
1263                                  Context.getTypeDeclType(Type),
1264                                  DirectBaseSpec, VirtualBaseSpec)) {
1265            // We have found a direct or virtual base class with a
1266            // similar name to what was typed; complain and initialize
1267            // that base class.
1268            Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
1269              << MemberOrBase << false << R.getLookupName()
1270              << FixItHint::CreateReplacement(R.getNameLoc(),
1271                                              R.getLookupName().getAsString());
1272
1273            const CXXBaseSpecifier *BaseSpec = DirectBaseSpec? DirectBaseSpec
1274                                                             : VirtualBaseSpec;
1275            Diag(BaseSpec->getSourceRange().getBegin(),
1276                 diag::note_base_class_specified_here)
1277              << BaseSpec->getType()
1278              << BaseSpec->getSourceRange();
1279
1280            TyD = Type;
1281          }
1282        }
1283      }
1284
1285      if (!TyD && BaseType.isNull()) {
1286        Diag(IdLoc, diag::err_mem_init_not_member_or_class)
1287          << MemberOrBase << SourceRange(IdLoc, RParenLoc);
1288        return true;
1289      }
1290    }
1291
1292    if (BaseType.isNull()) {
1293      BaseType = Context.getTypeDeclType(TyD);
1294      if (SS.isSet()) {
1295        NestedNameSpecifier *Qualifier =
1296          static_cast<NestedNameSpecifier*>(SS.getScopeRep());
1297
1298        // FIXME: preserve source range information
1299        BaseType = Context.getElaboratedType(ETK_None, Qualifier, BaseType);
1300      }
1301    }
1302  }
1303
1304  if (!TInfo)
1305    TInfo = Context.getTrivialTypeSourceInfo(BaseType, IdLoc);
1306
1307  return BuildBaseInitializer(BaseType, TInfo, (Expr **)Args, NumArgs,
1308                              LParenLoc, RParenLoc, ClassDecl, EllipsisLoc);
1309}
1310
1311/// Checks an initializer expression for use of uninitialized fields, such as
1312/// containing the field that is being initialized. Returns true if there is an
1313/// uninitialized field was used an updates the SourceLocation parameter; false
1314/// otherwise.
1315static bool InitExprContainsUninitializedFields(const Stmt *S,
1316                                                const ValueDecl *LhsField,
1317                                                SourceLocation *L) {
1318  assert(isa<FieldDecl>(LhsField) || isa<IndirectFieldDecl>(LhsField));
1319
1320  if (isa<CallExpr>(S)) {
1321    // Do not descend into function calls or constructors, as the use
1322    // of an uninitialized field may be valid. One would have to inspect
1323    // the contents of the function/ctor to determine if it is safe or not.
1324    // i.e. Pass-by-value is never safe, but pass-by-reference and pointers
1325    // may be safe, depending on what the function/ctor does.
1326    return false;
1327  }
1328  if (const MemberExpr *ME = dyn_cast<MemberExpr>(S)) {
1329    const NamedDecl *RhsField = ME->getMemberDecl();
1330
1331    if (const VarDecl *VD = dyn_cast<VarDecl>(RhsField)) {
1332      // The member expression points to a static data member.
1333      assert(VD->isStaticDataMember() &&
1334             "Member points to non-static data member!");
1335      (void)VD;
1336      return false;
1337    }
1338
1339    if (isa<EnumConstantDecl>(RhsField)) {
1340      // The member expression points to an enum.
1341      return false;
1342    }
1343
1344    if (RhsField == LhsField) {
1345      // Initializing a field with itself. Throw a warning.
1346      // But wait; there are exceptions!
1347      // Exception #1:  The field may not belong to this record.
1348      // e.g. Foo(const Foo& rhs) : A(rhs.A) {}
1349      const Expr *base = ME->getBase();
1350      if (base != NULL && !isa<CXXThisExpr>(base->IgnoreParenCasts())) {
1351        // Even though the field matches, it does not belong to this record.
1352        return false;
1353      }
1354      // None of the exceptions triggered; return true to indicate an
1355      // uninitialized field was used.
1356      *L = ME->getMemberLoc();
1357      return true;
1358    }
1359  } else if (isa<SizeOfAlignOfExpr>(S)) {
1360    // sizeof/alignof doesn't reference contents, do not warn.
1361    return false;
1362  } else if (const UnaryOperator *UOE = dyn_cast<UnaryOperator>(S)) {
1363    // address-of doesn't reference contents (the pointer may be dereferenced
1364    // in the same expression but it would be rare; and weird).
1365    if (UOE->getOpcode() == UO_AddrOf)
1366      return false;
1367  }
1368  for (Stmt::const_child_iterator it = S->child_begin(), e = S->child_end();
1369       it != e; ++it) {
1370    if (!*it) {
1371      // An expression such as 'member(arg ?: "")' may trigger this.
1372      continue;
1373    }
1374    if (InitExprContainsUninitializedFields(*it, LhsField, L))
1375      return true;
1376  }
1377  return false;
1378}
1379
1380MemInitResult
1381Sema::BuildMemberInitializer(ValueDecl *Member, Expr **Args,
1382                             unsigned NumArgs, SourceLocation IdLoc,
1383                             SourceLocation LParenLoc,
1384                             SourceLocation RParenLoc) {
1385  FieldDecl *DirectMember = dyn_cast<FieldDecl>(Member);
1386  IndirectFieldDecl *IndirectMember = dyn_cast<IndirectFieldDecl>(Member);
1387  assert((DirectMember || IndirectMember) &&
1388         "Member must be a FieldDecl or IndirectFieldDecl");
1389
1390  if (Member->isInvalidDecl())
1391    return true;
1392
1393  // Diagnose value-uses of fields to initialize themselves, e.g.
1394  //   foo(foo)
1395  // where foo is not also a parameter to the constructor.
1396  // TODO: implement -Wuninitialized and fold this into that framework.
1397  for (unsigned i = 0; i < NumArgs; ++i) {
1398    SourceLocation L;
1399    if (InitExprContainsUninitializedFields(Args[i], Member, &L)) {
1400      // FIXME: Return true in the case when other fields are used before being
1401      // uninitialized. For example, let this field be the i'th field. When
1402      // initializing the i'th field, throw a warning if any of the >= i'th
1403      // fields are used, as they are not yet initialized.
1404      // Right now we are only handling the case where the i'th field uses
1405      // itself in its initializer.
1406      Diag(L, diag::warn_field_is_uninit);
1407    }
1408  }
1409
1410  bool HasDependentArg = false;
1411  for (unsigned i = 0; i < NumArgs; i++)
1412    HasDependentArg |= Args[i]->isTypeDependent();
1413
1414  Expr *Init;
1415  if (Member->getType()->isDependentType() || HasDependentArg) {
1416    // Can't check initialization for a member of dependent type or when
1417    // any of the arguments are type-dependent expressions.
1418    Init = new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1419                                       RParenLoc);
1420
1421    // Erase any temporaries within this evaluation context; we're not
1422    // going to track them in the AST, since we'll be rebuilding the
1423    // ASTs during template instantiation.
1424    ExprTemporaries.erase(
1425              ExprTemporaries.begin() + ExprEvalContexts.back().NumTemporaries,
1426                          ExprTemporaries.end());
1427  } else {
1428    // Initialize the member.
1429    InitializedEntity MemberEntity =
1430      DirectMember ? InitializedEntity::InitializeMember(DirectMember, 0)
1431                   : InitializedEntity::InitializeMember(IndirectMember, 0);
1432    InitializationKind Kind =
1433      InitializationKind::CreateDirect(IdLoc, LParenLoc, RParenLoc);
1434
1435    InitializationSequence InitSeq(*this, MemberEntity, Kind, Args, NumArgs);
1436
1437    ExprResult MemberInit =
1438      InitSeq.Perform(*this, MemberEntity, Kind,
1439                      MultiExprArg(*this, Args, NumArgs), 0);
1440    if (MemberInit.isInvalid())
1441      return true;
1442
1443    CheckImplicitConversions(MemberInit.get(), LParenLoc);
1444
1445    // C++0x [class.base.init]p7:
1446    //   The initialization of each base and member constitutes a
1447    //   full-expression.
1448    MemberInit = MaybeCreateExprWithCleanups(MemberInit);
1449    if (MemberInit.isInvalid())
1450      return true;
1451
1452    // If we are in a dependent context, template instantiation will
1453    // perform this type-checking again. Just save the arguments that we
1454    // received in a ParenListExpr.
1455    // FIXME: This isn't quite ideal, since our ASTs don't capture all
1456    // of the information that we have about the member
1457    // initializer. However, deconstructing the ASTs is a dicey process,
1458    // and this approach is far more likely to get the corner cases right.
1459    if (CurContext->isDependentContext())
1460      Init = new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1461                                               RParenLoc);
1462    else
1463      Init = MemberInit.get();
1464  }
1465
1466  if (DirectMember) {
1467    return new (Context) CXXCtorInitializer(Context, DirectMember,
1468                                                    IdLoc, LParenLoc, Init,
1469                                                    RParenLoc);
1470  } else {
1471    return new (Context) CXXCtorInitializer(Context, IndirectMember,
1472                                                    IdLoc, LParenLoc, Init,
1473                                                    RParenLoc);
1474  }
1475}
1476
1477MemInitResult
1478Sema::BuildDelegatingInitializer(TypeSourceInfo *TInfo,
1479                                 Expr **Args, unsigned NumArgs,
1480                                 SourceLocation LParenLoc,
1481                                 SourceLocation RParenLoc,
1482                                 CXXRecordDecl *ClassDecl,
1483                                 SourceLocation EllipsisLoc) {
1484  SourceLocation Loc = TInfo->getTypeLoc().getLocalSourceRange().getBegin();
1485  if (!LangOpts.CPlusPlus0x)
1486    return Diag(Loc, diag::err_delegation_0x_only)
1487      << TInfo->getTypeLoc().getLocalSourceRange();
1488
1489  return Diag(Loc, diag::err_delegation_unimplemented)
1490    << TInfo->getTypeLoc().getLocalSourceRange();
1491}
1492
1493MemInitResult
1494Sema::BuildBaseInitializer(QualType BaseType, TypeSourceInfo *BaseTInfo,
1495                           Expr **Args, unsigned NumArgs,
1496                           SourceLocation LParenLoc, SourceLocation RParenLoc,
1497                           CXXRecordDecl *ClassDecl,
1498                           SourceLocation EllipsisLoc) {
1499  bool HasDependentArg = false;
1500  for (unsigned i = 0; i < NumArgs; i++)
1501    HasDependentArg |= Args[i]->isTypeDependent();
1502
1503  SourceLocation BaseLoc
1504    = BaseTInfo->getTypeLoc().getLocalSourceRange().getBegin();
1505
1506  if (!BaseType->isDependentType() && !BaseType->isRecordType())
1507    return Diag(BaseLoc, diag::err_base_init_does_not_name_class)
1508             << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
1509
1510  // C++ [class.base.init]p2:
1511  //   [...] Unless the mem-initializer-id names a nonstatic data
1512  //   member of the constructor's class or a direct or virtual base
1513  //   of that class, the mem-initializer is ill-formed. A
1514  //   mem-initializer-list can initialize a base class using any
1515  //   name that denotes that base class type.
1516  bool Dependent = BaseType->isDependentType() || HasDependentArg;
1517
1518  if (EllipsisLoc.isValid()) {
1519    // This is a pack expansion.
1520    if (!BaseType->containsUnexpandedParameterPack())  {
1521      Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
1522        << SourceRange(BaseLoc, RParenLoc);
1523
1524      EllipsisLoc = SourceLocation();
1525    }
1526  } else {
1527    // Check for any unexpanded parameter packs.
1528    if (DiagnoseUnexpandedParameterPack(BaseLoc, BaseTInfo, UPPC_Initializer))
1529      return true;
1530
1531    for (unsigned I = 0; I != NumArgs; ++I)
1532      if (DiagnoseUnexpandedParameterPack(Args[I]))
1533        return true;
1534  }
1535
1536  // Check for direct and virtual base classes.
1537  const CXXBaseSpecifier *DirectBaseSpec = 0;
1538  const CXXBaseSpecifier *VirtualBaseSpec = 0;
1539  if (!Dependent) {
1540    if (Context.hasSameUnqualifiedType(QualType(ClassDecl->getTypeForDecl(),0),
1541                                       BaseType))
1542      return BuildDelegatingInitializer(BaseTInfo, Args, NumArgs,
1543                                        LParenLoc, RParenLoc, ClassDecl,
1544                                        EllipsisLoc);
1545
1546    FindBaseInitializer(*this, ClassDecl, BaseType, DirectBaseSpec,
1547                        VirtualBaseSpec);
1548
1549    // C++ [base.class.init]p2:
1550    // Unless the mem-initializer-id names a nonstatic data member of the
1551    // constructor's class or a direct or virtual base of that class, the
1552    // mem-initializer is ill-formed.
1553    if (!DirectBaseSpec && !VirtualBaseSpec) {
1554      // If the class has any dependent bases, then it's possible that
1555      // one of those types will resolve to the same type as
1556      // BaseType. Therefore, just treat this as a dependent base
1557      // class initialization.  FIXME: Should we try to check the
1558      // initialization anyway? It seems odd.
1559      if (ClassDecl->hasAnyDependentBases())
1560        Dependent = true;
1561      else
1562        return Diag(BaseLoc, diag::err_not_direct_base_or_virtual)
1563          << BaseType << Context.getTypeDeclType(ClassDecl)
1564          << BaseTInfo->getTypeLoc().getLocalSourceRange();
1565    }
1566  }
1567
1568  if (Dependent) {
1569    // Can't check initialization for a base of dependent type or when
1570    // any of the arguments are type-dependent expressions.
1571    ExprResult BaseInit
1572      = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1573                                          RParenLoc));
1574
1575    // Erase any temporaries within this evaluation context; we're not
1576    // going to track them in the AST, since we'll be rebuilding the
1577    // ASTs during template instantiation.
1578    ExprTemporaries.erase(
1579              ExprTemporaries.begin() + ExprEvalContexts.back().NumTemporaries,
1580                          ExprTemporaries.end());
1581
1582    return new (Context) CXXCtorInitializer(Context, BaseTInfo,
1583                                                    /*IsVirtual=*/false,
1584                                                    LParenLoc,
1585                                                    BaseInit.takeAs<Expr>(),
1586                                                    RParenLoc,
1587                                                    EllipsisLoc);
1588  }
1589
1590  // C++ [base.class.init]p2:
1591  //   If a mem-initializer-id is ambiguous because it designates both
1592  //   a direct non-virtual base class and an inherited virtual base
1593  //   class, the mem-initializer is ill-formed.
1594  if (DirectBaseSpec && VirtualBaseSpec)
1595    return Diag(BaseLoc, diag::err_base_init_direct_and_virtual)
1596      << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
1597
1598  CXXBaseSpecifier *BaseSpec
1599    = const_cast<CXXBaseSpecifier *>(DirectBaseSpec);
1600  if (!BaseSpec)
1601    BaseSpec = const_cast<CXXBaseSpecifier *>(VirtualBaseSpec);
1602
1603  // Initialize the base.
1604  InitializedEntity BaseEntity =
1605    InitializedEntity::InitializeBase(Context, BaseSpec, VirtualBaseSpec);
1606  InitializationKind Kind =
1607    InitializationKind::CreateDirect(BaseLoc, LParenLoc, RParenLoc);
1608
1609  InitializationSequence InitSeq(*this, BaseEntity, Kind, Args, NumArgs);
1610
1611  ExprResult BaseInit =
1612    InitSeq.Perform(*this, BaseEntity, Kind,
1613                    MultiExprArg(*this, Args, NumArgs), 0);
1614  if (BaseInit.isInvalid())
1615    return true;
1616
1617  CheckImplicitConversions(BaseInit.get(), LParenLoc);
1618
1619  // C++0x [class.base.init]p7:
1620  //   The initialization of each base and member constitutes a
1621  //   full-expression.
1622  BaseInit = MaybeCreateExprWithCleanups(BaseInit);
1623  if (BaseInit.isInvalid())
1624    return true;
1625
1626  // If we are in a dependent context, template instantiation will
1627  // perform this type-checking again. Just save the arguments that we
1628  // received in a ParenListExpr.
1629  // FIXME: This isn't quite ideal, since our ASTs don't capture all
1630  // of the information that we have about the base
1631  // initializer. However, deconstructing the ASTs is a dicey process,
1632  // and this approach is far more likely to get the corner cases right.
1633  if (CurContext->isDependentContext()) {
1634    ExprResult Init
1635      = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1636                                          RParenLoc));
1637    return new (Context) CXXCtorInitializer(Context, BaseTInfo,
1638                                                    BaseSpec->isVirtual(),
1639                                                    LParenLoc,
1640                                                    Init.takeAs<Expr>(),
1641                                                    RParenLoc,
1642                                                    EllipsisLoc);
1643  }
1644
1645  return new (Context) CXXCtorInitializer(Context, BaseTInfo,
1646                                                  BaseSpec->isVirtual(),
1647                                                  LParenLoc,
1648                                                  BaseInit.takeAs<Expr>(),
1649                                                  RParenLoc,
1650                                                  EllipsisLoc);
1651}
1652
1653/// ImplicitInitializerKind - How an implicit base or member initializer should
1654/// initialize its base or member.
1655enum ImplicitInitializerKind {
1656  IIK_Default,
1657  IIK_Copy,
1658  IIK_Move
1659};
1660
1661static bool
1662BuildImplicitBaseInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
1663                             ImplicitInitializerKind ImplicitInitKind,
1664                             CXXBaseSpecifier *BaseSpec,
1665                             bool IsInheritedVirtualBase,
1666                             CXXCtorInitializer *&CXXBaseInit) {
1667  InitializedEntity InitEntity
1668    = InitializedEntity::InitializeBase(SemaRef.Context, BaseSpec,
1669                                        IsInheritedVirtualBase);
1670
1671  ExprResult BaseInit;
1672
1673  switch (ImplicitInitKind) {
1674  case IIK_Default: {
1675    InitializationKind InitKind
1676      = InitializationKind::CreateDefault(Constructor->getLocation());
1677    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
1678    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind,
1679                               MultiExprArg(SemaRef, 0, 0));
1680    break;
1681  }
1682
1683  case IIK_Copy: {
1684    ParmVarDecl *Param = Constructor->getParamDecl(0);
1685    QualType ParamType = Param->getType().getNonReferenceType();
1686
1687    Expr *CopyCtorArg =
1688      DeclRefExpr::Create(SemaRef.Context, 0, SourceRange(), Param,
1689                          Constructor->getLocation(), ParamType,
1690                          VK_LValue, 0);
1691
1692    // Cast to the base class to avoid ambiguities.
1693    QualType ArgTy =
1694      SemaRef.Context.getQualifiedType(BaseSpec->getType().getUnqualifiedType(),
1695                                       ParamType.getQualifiers());
1696
1697    CXXCastPath BasePath;
1698    BasePath.push_back(BaseSpec);
1699    SemaRef.ImpCastExprToType(CopyCtorArg, ArgTy,
1700                              CK_UncheckedDerivedToBase,
1701                              VK_LValue, &BasePath);
1702
1703    InitializationKind InitKind
1704      = InitializationKind::CreateDirect(Constructor->getLocation(),
1705                                         SourceLocation(), SourceLocation());
1706    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind,
1707                                   &CopyCtorArg, 1);
1708    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind,
1709                               MultiExprArg(&CopyCtorArg, 1));
1710    break;
1711  }
1712
1713  case IIK_Move:
1714    assert(false && "Unhandled initializer kind!");
1715  }
1716
1717  BaseInit = SemaRef.MaybeCreateExprWithCleanups(BaseInit);
1718  if (BaseInit.isInvalid())
1719    return true;
1720
1721  CXXBaseInit =
1722    new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
1723               SemaRef.Context.getTrivialTypeSourceInfo(BaseSpec->getType(),
1724                                                        SourceLocation()),
1725                                             BaseSpec->isVirtual(),
1726                                             SourceLocation(),
1727                                             BaseInit.takeAs<Expr>(),
1728                                             SourceLocation(),
1729                                             SourceLocation());
1730
1731  return false;
1732}
1733
1734static bool
1735BuildImplicitMemberInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
1736                               ImplicitInitializerKind ImplicitInitKind,
1737                               FieldDecl *Field,
1738                               CXXCtorInitializer *&CXXMemberInit) {
1739  if (Field->isInvalidDecl())
1740    return true;
1741
1742  SourceLocation Loc = Constructor->getLocation();
1743
1744  if (ImplicitInitKind == IIK_Copy) {
1745    ParmVarDecl *Param = Constructor->getParamDecl(0);
1746    QualType ParamType = Param->getType().getNonReferenceType();
1747
1748    Expr *MemberExprBase =
1749      DeclRefExpr::Create(SemaRef.Context, 0, SourceRange(), Param,
1750                          Loc, ParamType, VK_LValue, 0);
1751
1752    // Build a reference to this field within the parameter.
1753    CXXScopeSpec SS;
1754    LookupResult MemberLookup(SemaRef, Field->getDeclName(), Loc,
1755                              Sema::LookupMemberName);
1756    MemberLookup.addDecl(Field, AS_public);
1757    MemberLookup.resolveKind();
1758    ExprResult CopyCtorArg
1759      = SemaRef.BuildMemberReferenceExpr(MemberExprBase,
1760                                         ParamType, Loc,
1761                                         /*IsArrow=*/false,
1762                                         SS,
1763                                         /*FirstQualifierInScope=*/0,
1764                                         MemberLookup,
1765                                         /*TemplateArgs=*/0);
1766    if (CopyCtorArg.isInvalid())
1767      return true;
1768
1769    // When the field we are copying is an array, create index variables for
1770    // each dimension of the array. We use these index variables to subscript
1771    // the source array, and other clients (e.g., CodeGen) will perform the
1772    // necessary iteration with these index variables.
1773    llvm::SmallVector<VarDecl *, 4> IndexVariables;
1774    QualType BaseType = Field->getType();
1775    QualType SizeType = SemaRef.Context.getSizeType();
1776    while (const ConstantArrayType *Array
1777                          = SemaRef.Context.getAsConstantArrayType(BaseType)) {
1778      // Create the iteration variable for this array index.
1779      IdentifierInfo *IterationVarName = 0;
1780      {
1781        llvm::SmallString<8> Str;
1782        llvm::raw_svector_ostream OS(Str);
1783        OS << "__i" << IndexVariables.size();
1784        IterationVarName = &SemaRef.Context.Idents.get(OS.str());
1785      }
1786      VarDecl *IterationVar
1787        = VarDecl::Create(SemaRef.Context, SemaRef.CurContext, Loc,
1788                          IterationVarName, SizeType,
1789                        SemaRef.Context.getTrivialTypeSourceInfo(SizeType, Loc),
1790                          SC_None, SC_None);
1791      IndexVariables.push_back(IterationVar);
1792
1793      // Create a reference to the iteration variable.
1794      ExprResult IterationVarRef
1795        = SemaRef.BuildDeclRefExpr(IterationVar, SizeType, VK_RValue, Loc);
1796      assert(!IterationVarRef.isInvalid() &&
1797             "Reference to invented variable cannot fail!");
1798
1799      // Subscript the array with this iteration variable.
1800      CopyCtorArg = SemaRef.CreateBuiltinArraySubscriptExpr(CopyCtorArg.take(),
1801                                                            Loc,
1802                                                        IterationVarRef.take(),
1803                                                            Loc);
1804      if (CopyCtorArg.isInvalid())
1805        return true;
1806
1807      BaseType = Array->getElementType();
1808    }
1809
1810    // Construct the entity that we will be initializing. For an array, this
1811    // will be first element in the array, which may require several levels
1812    // of array-subscript entities.
1813    llvm::SmallVector<InitializedEntity, 4> Entities;
1814    Entities.reserve(1 + IndexVariables.size());
1815    Entities.push_back(InitializedEntity::InitializeMember(Field));
1816    for (unsigned I = 0, N = IndexVariables.size(); I != N; ++I)
1817      Entities.push_back(InitializedEntity::InitializeElement(SemaRef.Context,
1818                                                              0,
1819                                                              Entities.back()));
1820
1821    // Direct-initialize to use the copy constructor.
1822    InitializationKind InitKind =
1823      InitializationKind::CreateDirect(Loc, SourceLocation(), SourceLocation());
1824
1825    Expr *CopyCtorArgE = CopyCtorArg.takeAs<Expr>();
1826    InitializationSequence InitSeq(SemaRef, Entities.back(), InitKind,
1827                                   &CopyCtorArgE, 1);
1828
1829    ExprResult MemberInit
1830      = InitSeq.Perform(SemaRef, Entities.back(), InitKind,
1831                        MultiExprArg(&CopyCtorArgE, 1));
1832    MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
1833    if (MemberInit.isInvalid())
1834      return true;
1835
1836    CXXMemberInit
1837      = CXXCtorInitializer::Create(SemaRef.Context, Field, Loc, Loc,
1838                                           MemberInit.takeAs<Expr>(), Loc,
1839                                           IndexVariables.data(),
1840                                           IndexVariables.size());
1841    return false;
1842  }
1843
1844  assert(ImplicitInitKind == IIK_Default && "Unhandled implicit init kind!");
1845
1846  QualType FieldBaseElementType =
1847    SemaRef.Context.getBaseElementType(Field->getType());
1848
1849  if (FieldBaseElementType->isRecordType()) {
1850    InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field);
1851    InitializationKind InitKind =
1852      InitializationKind::CreateDefault(Loc);
1853
1854    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
1855    ExprResult MemberInit =
1856      InitSeq.Perform(SemaRef, InitEntity, InitKind, MultiExprArg());
1857
1858    MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
1859    if (MemberInit.isInvalid())
1860      return true;
1861
1862    CXXMemberInit =
1863      new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
1864                                                       Field, Loc, Loc,
1865                                                       MemberInit.get(),
1866                                                       Loc);
1867    return false;
1868  }
1869
1870  if (FieldBaseElementType->isReferenceType()) {
1871    SemaRef.Diag(Constructor->getLocation(),
1872                 diag::err_uninitialized_member_in_ctor)
1873    << (int)Constructor->isImplicit()
1874    << SemaRef.Context.getTagDeclType(Constructor->getParent())
1875    << 0 << Field->getDeclName();
1876    SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
1877    return true;
1878  }
1879
1880  if (FieldBaseElementType.isConstQualified()) {
1881    SemaRef.Diag(Constructor->getLocation(),
1882                 diag::err_uninitialized_member_in_ctor)
1883    << (int)Constructor->isImplicit()
1884    << SemaRef.Context.getTagDeclType(Constructor->getParent())
1885    << 1 << Field->getDeclName();
1886    SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
1887    return true;
1888  }
1889
1890  // Nothing to initialize.
1891  CXXMemberInit = 0;
1892  return false;
1893}
1894
1895namespace {
1896struct BaseAndFieldInfo {
1897  Sema &S;
1898  CXXConstructorDecl *Ctor;
1899  bool AnyErrorsInInits;
1900  ImplicitInitializerKind IIK;
1901  llvm::DenseMap<const void *, CXXCtorInitializer*> AllBaseFields;
1902  llvm::SmallVector<CXXCtorInitializer*, 8> AllToInit;
1903
1904  BaseAndFieldInfo(Sema &S, CXXConstructorDecl *Ctor, bool ErrorsInInits)
1905    : S(S), Ctor(Ctor), AnyErrorsInInits(ErrorsInInits) {
1906    // FIXME: Handle implicit move constructors.
1907    if (Ctor->isImplicit() && Ctor->isCopyConstructor())
1908      IIK = IIK_Copy;
1909    else
1910      IIK = IIK_Default;
1911  }
1912};
1913}
1914
1915static bool CollectFieldInitializer(BaseAndFieldInfo &Info,
1916                                    FieldDecl *Top, FieldDecl *Field) {
1917
1918  // Overwhelmingly common case: we have a direct initializer for this field.
1919  if (CXXCtorInitializer *Init = Info.AllBaseFields.lookup(Field)) {
1920    Info.AllToInit.push_back(Init);
1921    return false;
1922  }
1923
1924  if (Info.IIK == IIK_Default && Field->isAnonymousStructOrUnion()) {
1925    const RecordType *FieldClassType = Field->getType()->getAs<RecordType>();
1926    assert(FieldClassType && "anonymous struct/union without record type");
1927    CXXRecordDecl *FieldClassDecl
1928      = cast<CXXRecordDecl>(FieldClassType->getDecl());
1929
1930    // Even though union members never have non-trivial default
1931    // constructions in C++03, we still build member initializers for aggregate
1932    // record types which can be union members, and C++0x allows non-trivial
1933    // default constructors for union members, so we ensure that only one
1934    // member is initialized for these.
1935    if (FieldClassDecl->isUnion()) {
1936      // First check for an explicit initializer for one field.
1937      for (RecordDecl::field_iterator FA = FieldClassDecl->field_begin(),
1938           EA = FieldClassDecl->field_end(); FA != EA; FA++) {
1939        if (CXXCtorInitializer *Init = Info.AllBaseFields.lookup(*FA)) {
1940          Info.AllToInit.push_back(Init);
1941
1942          // Once we've initialized a field of an anonymous union, the union
1943          // field in the class is also initialized, so exit immediately.
1944          return false;
1945        } else if ((*FA)->isAnonymousStructOrUnion()) {
1946          if (CollectFieldInitializer(Info, Top, *FA))
1947            return true;
1948        }
1949      }
1950
1951      // Fallthrough and construct a default initializer for the union as
1952      // a whole, which can call its default constructor if such a thing exists
1953      // (C++0x perhaps). FIXME: It's not clear that this is the correct
1954      // behavior going forward with C++0x, when anonymous unions there are
1955      // finalized, we should revisit this.
1956    } else {
1957      // For structs, we simply descend through to initialize all members where
1958      // necessary.
1959      for (RecordDecl::field_iterator FA = FieldClassDecl->field_begin(),
1960           EA = FieldClassDecl->field_end(); FA != EA; FA++) {
1961        if (CollectFieldInitializer(Info, Top, *FA))
1962          return true;
1963      }
1964    }
1965  }
1966
1967  // Don't try to build an implicit initializer if there were semantic
1968  // errors in any of the initializers (and therefore we might be
1969  // missing some that the user actually wrote).
1970  if (Info.AnyErrorsInInits)
1971    return false;
1972
1973  CXXCtorInitializer *Init = 0;
1974  if (BuildImplicitMemberInitializer(Info.S, Info.Ctor, Info.IIK, Field, Init))
1975    return true;
1976
1977  if (Init)
1978    Info.AllToInit.push_back(Init);
1979
1980  return false;
1981}
1982
1983bool
1984Sema::SetCtorInitializers(CXXConstructorDecl *Constructor,
1985                                  CXXCtorInitializer **Initializers,
1986                                  unsigned NumInitializers,
1987                                  bool AnyErrors) {
1988  if (Constructor->getDeclContext()->isDependentContext()) {
1989    // Just store the initializers as written, they will be checked during
1990    // instantiation.
1991    if (NumInitializers > 0) {
1992      Constructor->setNumCtorInitializers(NumInitializers);
1993      CXXCtorInitializer **baseOrMemberInitializers =
1994        new (Context) CXXCtorInitializer*[NumInitializers];
1995      memcpy(baseOrMemberInitializers, Initializers,
1996             NumInitializers * sizeof(CXXCtorInitializer*));
1997      Constructor->setCtorInitializers(baseOrMemberInitializers);
1998    }
1999
2000    return false;
2001  }
2002
2003  BaseAndFieldInfo Info(*this, Constructor, AnyErrors);
2004
2005  // We need to build the initializer AST according to order of construction
2006  // and not what user specified in the Initializers list.
2007  CXXRecordDecl *ClassDecl = Constructor->getParent()->getDefinition();
2008  if (!ClassDecl)
2009    return true;
2010
2011  bool HadError = false;
2012
2013  for (unsigned i = 0; i < NumInitializers; i++) {
2014    CXXCtorInitializer *Member = Initializers[i];
2015
2016    if (Member->isBaseInitializer())
2017      Info.AllBaseFields[Member->getBaseClass()->getAs<RecordType>()] = Member;
2018    else
2019      Info.AllBaseFields[Member->getAnyMember()] = Member;
2020  }
2021
2022  // Keep track of the direct virtual bases.
2023  llvm::SmallPtrSet<CXXBaseSpecifier *, 16> DirectVBases;
2024  for (CXXRecordDecl::base_class_iterator I = ClassDecl->bases_begin(),
2025       E = ClassDecl->bases_end(); I != E; ++I) {
2026    if (I->isVirtual())
2027      DirectVBases.insert(I);
2028  }
2029
2030  // Push virtual bases before others.
2031  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
2032       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
2033
2034    if (CXXCtorInitializer *Value
2035        = Info.AllBaseFields.lookup(VBase->getType()->getAs<RecordType>())) {
2036      Info.AllToInit.push_back(Value);
2037    } else if (!AnyErrors) {
2038      bool IsInheritedVirtualBase = !DirectVBases.count(VBase);
2039      CXXCtorInitializer *CXXBaseInit;
2040      if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
2041                                       VBase, IsInheritedVirtualBase,
2042                                       CXXBaseInit)) {
2043        HadError = true;
2044        continue;
2045      }
2046
2047      Info.AllToInit.push_back(CXXBaseInit);
2048    }
2049  }
2050
2051  // Non-virtual bases.
2052  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
2053       E = ClassDecl->bases_end(); Base != E; ++Base) {
2054    // Virtuals are in the virtual base list and already constructed.
2055    if (Base->isVirtual())
2056      continue;
2057
2058    if (CXXCtorInitializer *Value
2059          = Info.AllBaseFields.lookup(Base->getType()->getAs<RecordType>())) {
2060      Info.AllToInit.push_back(Value);
2061    } else if (!AnyErrors) {
2062      CXXCtorInitializer *CXXBaseInit;
2063      if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
2064                                       Base, /*IsInheritedVirtualBase=*/false,
2065                                       CXXBaseInit)) {
2066        HadError = true;
2067        continue;
2068      }
2069
2070      Info.AllToInit.push_back(CXXBaseInit);
2071    }
2072  }
2073
2074  // Fields.
2075  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
2076       E = ClassDecl->field_end(); Field != E; ++Field) {
2077    if ((*Field)->getType()->isIncompleteArrayType()) {
2078      assert(ClassDecl->hasFlexibleArrayMember() &&
2079             "Incomplete array type is not valid");
2080      continue;
2081    }
2082    if (CollectFieldInitializer(Info, *Field, *Field))
2083      HadError = true;
2084  }
2085
2086  NumInitializers = Info.AllToInit.size();
2087  if (NumInitializers > 0) {
2088    Constructor->setNumCtorInitializers(NumInitializers);
2089    CXXCtorInitializer **baseOrMemberInitializers =
2090      new (Context) CXXCtorInitializer*[NumInitializers];
2091    memcpy(baseOrMemberInitializers, Info.AllToInit.data(),
2092           NumInitializers * sizeof(CXXCtorInitializer*));
2093    Constructor->setCtorInitializers(baseOrMemberInitializers);
2094
2095    // Constructors implicitly reference the base and member
2096    // destructors.
2097    MarkBaseAndMemberDestructorsReferenced(Constructor->getLocation(),
2098                                           Constructor->getParent());
2099  }
2100
2101  return HadError;
2102}
2103
2104static void *GetKeyForTopLevelField(FieldDecl *Field) {
2105  // For anonymous unions, use the class declaration as the key.
2106  if (const RecordType *RT = Field->getType()->getAs<RecordType>()) {
2107    if (RT->getDecl()->isAnonymousStructOrUnion())
2108      return static_cast<void *>(RT->getDecl());
2109  }
2110  return static_cast<void *>(Field);
2111}
2112
2113static void *GetKeyForBase(ASTContext &Context, QualType BaseType) {
2114  return const_cast<Type*>(Context.getCanonicalType(BaseType).getTypePtr());
2115}
2116
2117static void *GetKeyForMember(ASTContext &Context,
2118                             CXXCtorInitializer *Member) {
2119  if (!Member->isAnyMemberInitializer())
2120    return GetKeyForBase(Context, QualType(Member->getBaseClass(), 0));
2121
2122  // For fields injected into the class via declaration of an anonymous union,
2123  // use its anonymous union class declaration as the unique key.
2124  FieldDecl *Field = Member->getAnyMember();
2125
2126  // If the field is a member of an anonymous struct or union, our key
2127  // is the anonymous record decl that's a direct child of the class.
2128  RecordDecl *RD = Field->getParent();
2129  if (RD->isAnonymousStructOrUnion()) {
2130    while (true) {
2131      RecordDecl *Parent = cast<RecordDecl>(RD->getDeclContext());
2132      if (Parent->isAnonymousStructOrUnion())
2133        RD = Parent;
2134      else
2135        break;
2136    }
2137
2138    return static_cast<void *>(RD);
2139  }
2140
2141  return static_cast<void *>(Field);
2142}
2143
2144static void
2145DiagnoseBaseOrMemInitializerOrder(Sema &SemaRef,
2146                                  const CXXConstructorDecl *Constructor,
2147                                  CXXCtorInitializer **Inits,
2148                                  unsigned NumInits) {
2149  if (Constructor->getDeclContext()->isDependentContext())
2150    return;
2151
2152  // Don't check initializers order unless the warning is enabled at the
2153  // location of at least one initializer.
2154  bool ShouldCheckOrder = false;
2155  for (unsigned InitIndex = 0; InitIndex != NumInits; ++InitIndex) {
2156    CXXCtorInitializer *Init = Inits[InitIndex];
2157    if (SemaRef.Diags.getDiagnosticLevel(diag::warn_initializer_out_of_order,
2158                                         Init->getSourceLocation())
2159          != Diagnostic::Ignored) {
2160      ShouldCheckOrder = true;
2161      break;
2162    }
2163  }
2164  if (!ShouldCheckOrder)
2165    return;
2166
2167  // Build the list of bases and members in the order that they'll
2168  // actually be initialized.  The explicit initializers should be in
2169  // this same order but may be missing things.
2170  llvm::SmallVector<const void*, 32> IdealInitKeys;
2171
2172  const CXXRecordDecl *ClassDecl = Constructor->getParent();
2173
2174  // 1. Virtual bases.
2175  for (CXXRecordDecl::base_class_const_iterator VBase =
2176       ClassDecl->vbases_begin(),
2177       E = ClassDecl->vbases_end(); VBase != E; ++VBase)
2178    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, VBase->getType()));
2179
2180  // 2. Non-virtual bases.
2181  for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin(),
2182       E = ClassDecl->bases_end(); Base != E; ++Base) {
2183    if (Base->isVirtual())
2184      continue;
2185    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, Base->getType()));
2186  }
2187
2188  // 3. Direct fields.
2189  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
2190       E = ClassDecl->field_end(); Field != E; ++Field)
2191    IdealInitKeys.push_back(GetKeyForTopLevelField(*Field));
2192
2193  unsigned NumIdealInits = IdealInitKeys.size();
2194  unsigned IdealIndex = 0;
2195
2196  CXXCtorInitializer *PrevInit = 0;
2197  for (unsigned InitIndex = 0; InitIndex != NumInits; ++InitIndex) {
2198    CXXCtorInitializer *Init = Inits[InitIndex];
2199    void *InitKey = GetKeyForMember(SemaRef.Context, Init);
2200
2201    // Scan forward to try to find this initializer in the idealized
2202    // initializers list.
2203    for (; IdealIndex != NumIdealInits; ++IdealIndex)
2204      if (InitKey == IdealInitKeys[IdealIndex])
2205        break;
2206
2207    // If we didn't find this initializer, it must be because we
2208    // scanned past it on a previous iteration.  That can only
2209    // happen if we're out of order;  emit a warning.
2210    if (IdealIndex == NumIdealInits && PrevInit) {
2211      Sema::SemaDiagnosticBuilder D =
2212        SemaRef.Diag(PrevInit->getSourceLocation(),
2213                     diag::warn_initializer_out_of_order);
2214
2215      if (PrevInit->isAnyMemberInitializer())
2216        D << 0 << PrevInit->getAnyMember()->getDeclName();
2217      else
2218        D << 1 << PrevInit->getBaseClassInfo()->getType();
2219
2220      if (Init->isAnyMemberInitializer())
2221        D << 0 << Init->getAnyMember()->getDeclName();
2222      else
2223        D << 1 << Init->getBaseClassInfo()->getType();
2224
2225      // Move back to the initializer's location in the ideal list.
2226      for (IdealIndex = 0; IdealIndex != NumIdealInits; ++IdealIndex)
2227        if (InitKey == IdealInitKeys[IdealIndex])
2228          break;
2229
2230      assert(IdealIndex != NumIdealInits &&
2231             "initializer not found in initializer list");
2232    }
2233
2234    PrevInit = Init;
2235  }
2236}
2237
2238namespace {
2239bool CheckRedundantInit(Sema &S,
2240                        CXXCtorInitializer *Init,
2241                        CXXCtorInitializer *&PrevInit) {
2242  if (!PrevInit) {
2243    PrevInit = Init;
2244    return false;
2245  }
2246
2247  if (FieldDecl *Field = Init->getMember())
2248    S.Diag(Init->getSourceLocation(),
2249           diag::err_multiple_mem_initialization)
2250      << Field->getDeclName()
2251      << Init->getSourceRange();
2252  else {
2253    const Type *BaseClass = Init->getBaseClass();
2254    assert(BaseClass && "neither field nor base");
2255    S.Diag(Init->getSourceLocation(),
2256           diag::err_multiple_base_initialization)
2257      << QualType(BaseClass, 0)
2258      << Init->getSourceRange();
2259  }
2260  S.Diag(PrevInit->getSourceLocation(), diag::note_previous_initializer)
2261    << 0 << PrevInit->getSourceRange();
2262
2263  return true;
2264}
2265
2266typedef std::pair<NamedDecl *, CXXCtorInitializer *> UnionEntry;
2267typedef llvm::DenseMap<RecordDecl*, UnionEntry> RedundantUnionMap;
2268
2269bool CheckRedundantUnionInit(Sema &S,
2270                             CXXCtorInitializer *Init,
2271                             RedundantUnionMap &Unions) {
2272  FieldDecl *Field = Init->getAnyMember();
2273  RecordDecl *Parent = Field->getParent();
2274  if (!Parent->isAnonymousStructOrUnion())
2275    return false;
2276
2277  NamedDecl *Child = Field;
2278  do {
2279    if (Parent->isUnion()) {
2280      UnionEntry &En = Unions[Parent];
2281      if (En.first && En.first != Child) {
2282        S.Diag(Init->getSourceLocation(),
2283               diag::err_multiple_mem_union_initialization)
2284          << Field->getDeclName()
2285          << Init->getSourceRange();
2286        S.Diag(En.second->getSourceLocation(), diag::note_previous_initializer)
2287          << 0 << En.second->getSourceRange();
2288        return true;
2289      } else if (!En.first) {
2290        En.first = Child;
2291        En.second = Init;
2292      }
2293    }
2294
2295    Child = Parent;
2296    Parent = cast<RecordDecl>(Parent->getDeclContext());
2297  } while (Parent->isAnonymousStructOrUnion());
2298
2299  return false;
2300}
2301}
2302
2303/// ActOnMemInitializers - Handle the member initializers for a constructor.
2304void Sema::ActOnMemInitializers(Decl *ConstructorDecl,
2305                                SourceLocation ColonLoc,
2306                                MemInitTy **meminits, unsigned NumMemInits,
2307                                bool AnyErrors) {
2308  if (!ConstructorDecl)
2309    return;
2310
2311  AdjustDeclIfTemplate(ConstructorDecl);
2312
2313  CXXConstructorDecl *Constructor
2314    = dyn_cast<CXXConstructorDecl>(ConstructorDecl);
2315
2316  if (!Constructor) {
2317    Diag(ColonLoc, diag::err_only_constructors_take_base_inits);
2318    return;
2319  }
2320
2321  CXXCtorInitializer **MemInits =
2322    reinterpret_cast<CXXCtorInitializer **>(meminits);
2323
2324  // Mapping for the duplicate initializers check.
2325  // For member initializers, this is keyed with a FieldDecl*.
2326  // For base initializers, this is keyed with a Type*.
2327  llvm::DenseMap<void*, CXXCtorInitializer *> Members;
2328
2329  // Mapping for the inconsistent anonymous-union initializers check.
2330  RedundantUnionMap MemberUnions;
2331
2332  bool HadError = false;
2333  for (unsigned i = 0; i < NumMemInits; i++) {
2334    CXXCtorInitializer *Init = MemInits[i];
2335
2336    // Set the source order index.
2337    Init->setSourceOrder(i);
2338
2339    if (Init->isAnyMemberInitializer()) {
2340      FieldDecl *Field = Init->getAnyMember();
2341      if (CheckRedundantInit(*this, Init, Members[Field]) ||
2342          CheckRedundantUnionInit(*this, Init, MemberUnions))
2343        HadError = true;
2344    } else {
2345      void *Key = GetKeyForBase(Context, QualType(Init->getBaseClass(), 0));
2346      if (CheckRedundantInit(*this, Init, Members[Key]))
2347        HadError = true;
2348    }
2349  }
2350
2351  if (HadError)
2352    return;
2353
2354  DiagnoseBaseOrMemInitializerOrder(*this, Constructor, MemInits, NumMemInits);
2355
2356  SetCtorInitializers(Constructor, MemInits, NumMemInits, AnyErrors);
2357}
2358
2359void
2360Sema::MarkBaseAndMemberDestructorsReferenced(SourceLocation Location,
2361                                             CXXRecordDecl *ClassDecl) {
2362  // Ignore dependent contexts.
2363  if (ClassDecl->isDependentContext())
2364    return;
2365
2366  // FIXME: all the access-control diagnostics are positioned on the
2367  // field/base declaration.  That's probably good; that said, the
2368  // user might reasonably want to know why the destructor is being
2369  // emitted, and we currently don't say.
2370
2371  // Non-static data members.
2372  for (CXXRecordDecl::field_iterator I = ClassDecl->field_begin(),
2373       E = ClassDecl->field_end(); I != E; ++I) {
2374    FieldDecl *Field = *I;
2375    if (Field->isInvalidDecl())
2376      continue;
2377    QualType FieldType = Context.getBaseElementType(Field->getType());
2378
2379    const RecordType* RT = FieldType->getAs<RecordType>();
2380    if (!RT)
2381      continue;
2382
2383    CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
2384    if (FieldClassDecl->hasTrivialDestructor())
2385      continue;
2386
2387    CXXDestructorDecl *Dtor = LookupDestructor(FieldClassDecl);
2388    CheckDestructorAccess(Field->getLocation(), Dtor,
2389                          PDiag(diag::err_access_dtor_field)
2390                            << Field->getDeclName()
2391                            << FieldType);
2392
2393    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
2394  }
2395
2396  llvm::SmallPtrSet<const RecordType *, 8> DirectVirtualBases;
2397
2398  // Bases.
2399  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
2400       E = ClassDecl->bases_end(); Base != E; ++Base) {
2401    // Bases are always records in a well-formed non-dependent class.
2402    const RecordType *RT = Base->getType()->getAs<RecordType>();
2403
2404    // Remember direct virtual bases.
2405    if (Base->isVirtual())
2406      DirectVirtualBases.insert(RT);
2407
2408    // Ignore trivial destructors.
2409    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
2410    if (BaseClassDecl->hasTrivialDestructor())
2411      continue;
2412
2413    CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
2414
2415    // FIXME: caret should be on the start of the class name
2416    CheckDestructorAccess(Base->getSourceRange().getBegin(), Dtor,
2417                          PDiag(diag::err_access_dtor_base)
2418                            << Base->getType()
2419                            << Base->getSourceRange());
2420
2421    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
2422  }
2423
2424  // Virtual bases.
2425  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
2426       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
2427
2428    // Bases are always records in a well-formed non-dependent class.
2429    const RecordType *RT = VBase->getType()->getAs<RecordType>();
2430
2431    // Ignore direct virtual bases.
2432    if (DirectVirtualBases.count(RT))
2433      continue;
2434
2435    // Ignore trivial destructors.
2436    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
2437    if (BaseClassDecl->hasTrivialDestructor())
2438      continue;
2439
2440    CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
2441    CheckDestructorAccess(ClassDecl->getLocation(), Dtor,
2442                          PDiag(diag::err_access_dtor_vbase)
2443                            << VBase->getType());
2444
2445    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
2446  }
2447}
2448
2449void Sema::ActOnDefaultCtorInitializers(Decl *CDtorDecl) {
2450  if (!CDtorDecl)
2451    return;
2452
2453  if (CXXConstructorDecl *Constructor
2454      = dyn_cast<CXXConstructorDecl>(CDtorDecl))
2455    SetCtorInitializers(Constructor, 0, 0, /*AnyErrors=*/false);
2456}
2457
2458bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
2459                                  unsigned DiagID, AbstractDiagSelID SelID) {
2460  if (SelID == -1)
2461    return RequireNonAbstractType(Loc, T, PDiag(DiagID));
2462  else
2463    return RequireNonAbstractType(Loc, T, PDiag(DiagID) << SelID);
2464}
2465
2466bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
2467                                  const PartialDiagnostic &PD) {
2468  if (!getLangOptions().CPlusPlus)
2469    return false;
2470
2471  if (const ArrayType *AT = Context.getAsArrayType(T))
2472    return RequireNonAbstractType(Loc, AT->getElementType(), PD);
2473
2474  if (const PointerType *PT = T->getAs<PointerType>()) {
2475    // Find the innermost pointer type.
2476    while (const PointerType *T = PT->getPointeeType()->getAs<PointerType>())
2477      PT = T;
2478
2479    if (const ArrayType *AT = Context.getAsArrayType(PT->getPointeeType()))
2480      return RequireNonAbstractType(Loc, AT->getElementType(), PD);
2481  }
2482
2483  const RecordType *RT = T->getAs<RecordType>();
2484  if (!RT)
2485    return false;
2486
2487  const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
2488
2489  // We can't answer whether something is abstract until it has a
2490  // definition.  If it's currently being defined, we'll walk back
2491  // over all the declarations when we have a full definition.
2492  const CXXRecordDecl *Def = RD->getDefinition();
2493  if (!Def || Def->isBeingDefined())
2494    return false;
2495
2496  if (!RD->isAbstract())
2497    return false;
2498
2499  Diag(Loc, PD) << RD->getDeclName();
2500  DiagnoseAbstractType(RD);
2501
2502  return true;
2503}
2504
2505void Sema::DiagnoseAbstractType(const CXXRecordDecl *RD) {
2506  // Check if we've already emitted the list of pure virtual functions
2507  // for this class.
2508  if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD))
2509    return;
2510
2511  CXXFinalOverriderMap FinalOverriders;
2512  RD->getFinalOverriders(FinalOverriders);
2513
2514  // Keep a set of seen pure methods so we won't diagnose the same method
2515  // more than once.
2516  llvm::SmallPtrSet<const CXXMethodDecl *, 8> SeenPureMethods;
2517
2518  for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
2519                                   MEnd = FinalOverriders.end();
2520       M != MEnd;
2521       ++M) {
2522    for (OverridingMethods::iterator SO = M->second.begin(),
2523                                  SOEnd = M->second.end();
2524         SO != SOEnd; ++SO) {
2525      // C++ [class.abstract]p4:
2526      //   A class is abstract if it contains or inherits at least one
2527      //   pure virtual function for which the final overrider is pure
2528      //   virtual.
2529
2530      //
2531      if (SO->second.size() != 1)
2532        continue;
2533
2534      if (!SO->second.front().Method->isPure())
2535        continue;
2536
2537      if (!SeenPureMethods.insert(SO->second.front().Method))
2538        continue;
2539
2540      Diag(SO->second.front().Method->getLocation(),
2541           diag::note_pure_virtual_function)
2542        << SO->second.front().Method->getDeclName();
2543    }
2544  }
2545
2546  if (!PureVirtualClassDiagSet)
2547    PureVirtualClassDiagSet.reset(new RecordDeclSetTy);
2548  PureVirtualClassDiagSet->insert(RD);
2549}
2550
2551namespace {
2552struct AbstractUsageInfo {
2553  Sema &S;
2554  CXXRecordDecl *Record;
2555  CanQualType AbstractType;
2556  bool Invalid;
2557
2558  AbstractUsageInfo(Sema &S, CXXRecordDecl *Record)
2559    : S(S), Record(Record),
2560      AbstractType(S.Context.getCanonicalType(
2561                   S.Context.getTypeDeclType(Record))),
2562      Invalid(false) {}
2563
2564  void DiagnoseAbstractType() {
2565    if (Invalid) return;
2566    S.DiagnoseAbstractType(Record);
2567    Invalid = true;
2568  }
2569
2570  void CheckType(const NamedDecl *D, TypeLoc TL, Sema::AbstractDiagSelID Sel);
2571};
2572
2573struct CheckAbstractUsage {
2574  AbstractUsageInfo &Info;
2575  const NamedDecl *Ctx;
2576
2577  CheckAbstractUsage(AbstractUsageInfo &Info, const NamedDecl *Ctx)
2578    : Info(Info), Ctx(Ctx) {}
2579
2580  void Visit(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
2581    switch (TL.getTypeLocClass()) {
2582#define ABSTRACT_TYPELOC(CLASS, PARENT)
2583#define TYPELOC(CLASS, PARENT) \
2584    case TypeLoc::CLASS: Check(cast<CLASS##TypeLoc>(TL), Sel); break;
2585#include "clang/AST/TypeLocNodes.def"
2586    }
2587  }
2588
2589  void Check(FunctionProtoTypeLoc TL, Sema::AbstractDiagSelID Sel) {
2590    Visit(TL.getResultLoc(), Sema::AbstractReturnType);
2591    for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
2592      TypeSourceInfo *TSI = TL.getArg(I)->getTypeSourceInfo();
2593      if (TSI) Visit(TSI->getTypeLoc(), Sema::AbstractParamType);
2594    }
2595  }
2596
2597  void Check(ArrayTypeLoc TL, Sema::AbstractDiagSelID Sel) {
2598    Visit(TL.getElementLoc(), Sema::AbstractArrayType);
2599  }
2600
2601  void Check(TemplateSpecializationTypeLoc TL, Sema::AbstractDiagSelID Sel) {
2602    // Visit the type parameters from a permissive context.
2603    for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
2604      TemplateArgumentLoc TAL = TL.getArgLoc(I);
2605      if (TAL.getArgument().getKind() == TemplateArgument::Type)
2606        if (TypeSourceInfo *TSI = TAL.getTypeSourceInfo())
2607          Visit(TSI->getTypeLoc(), Sema::AbstractNone);
2608      // TODO: other template argument types?
2609    }
2610  }
2611
2612  // Visit pointee types from a permissive context.
2613#define CheckPolymorphic(Type) \
2614  void Check(Type TL, Sema::AbstractDiagSelID Sel) { \
2615    Visit(TL.getNextTypeLoc(), Sema::AbstractNone); \
2616  }
2617  CheckPolymorphic(PointerTypeLoc)
2618  CheckPolymorphic(ReferenceTypeLoc)
2619  CheckPolymorphic(MemberPointerTypeLoc)
2620  CheckPolymorphic(BlockPointerTypeLoc)
2621
2622  /// Handle all the types we haven't given a more specific
2623  /// implementation for above.
2624  void Check(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
2625    // Every other kind of type that we haven't called out already
2626    // that has an inner type is either (1) sugar or (2) contains that
2627    // inner type in some way as a subobject.
2628    if (TypeLoc Next = TL.getNextTypeLoc())
2629      return Visit(Next, Sel);
2630
2631    // If there's no inner type and we're in a permissive context,
2632    // don't diagnose.
2633    if (Sel == Sema::AbstractNone) return;
2634
2635    // Check whether the type matches the abstract type.
2636    QualType T = TL.getType();
2637    if (T->isArrayType()) {
2638      Sel = Sema::AbstractArrayType;
2639      T = Info.S.Context.getBaseElementType(T);
2640    }
2641    CanQualType CT = T->getCanonicalTypeUnqualified().getUnqualifiedType();
2642    if (CT != Info.AbstractType) return;
2643
2644    // It matched; do some magic.
2645    if (Sel == Sema::AbstractArrayType) {
2646      Info.S.Diag(Ctx->getLocation(), diag::err_array_of_abstract_type)
2647        << T << TL.getSourceRange();
2648    } else {
2649      Info.S.Diag(Ctx->getLocation(), diag::err_abstract_type_in_decl)
2650        << Sel << T << TL.getSourceRange();
2651    }
2652    Info.DiagnoseAbstractType();
2653  }
2654};
2655
2656void AbstractUsageInfo::CheckType(const NamedDecl *D, TypeLoc TL,
2657                                  Sema::AbstractDiagSelID Sel) {
2658  CheckAbstractUsage(*this, D).Visit(TL, Sel);
2659}
2660
2661}
2662
2663/// Check for invalid uses of an abstract type in a method declaration.
2664static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
2665                                    CXXMethodDecl *MD) {
2666  // No need to do the check on definitions, which require that
2667  // the return/param types be complete.
2668  if (MD->isThisDeclarationADefinition())
2669    return;
2670
2671  // For safety's sake, just ignore it if we don't have type source
2672  // information.  This should never happen for non-implicit methods,
2673  // but...
2674  if (TypeSourceInfo *TSI = MD->getTypeSourceInfo())
2675    Info.CheckType(MD, TSI->getTypeLoc(), Sema::AbstractNone);
2676}
2677
2678/// Check for invalid uses of an abstract type within a class definition.
2679static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
2680                                    CXXRecordDecl *RD) {
2681  for (CXXRecordDecl::decl_iterator
2682         I = RD->decls_begin(), E = RD->decls_end(); I != E; ++I) {
2683    Decl *D = *I;
2684    if (D->isImplicit()) continue;
2685
2686    // Methods and method templates.
2687    if (isa<CXXMethodDecl>(D)) {
2688      CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(D));
2689    } else if (isa<FunctionTemplateDecl>(D)) {
2690      FunctionDecl *FD = cast<FunctionTemplateDecl>(D)->getTemplatedDecl();
2691      CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(FD));
2692
2693    // Fields and static variables.
2694    } else if (isa<FieldDecl>(D)) {
2695      FieldDecl *FD = cast<FieldDecl>(D);
2696      if (TypeSourceInfo *TSI = FD->getTypeSourceInfo())
2697        Info.CheckType(FD, TSI->getTypeLoc(), Sema::AbstractFieldType);
2698    } else if (isa<VarDecl>(D)) {
2699      VarDecl *VD = cast<VarDecl>(D);
2700      if (TypeSourceInfo *TSI = VD->getTypeSourceInfo())
2701        Info.CheckType(VD, TSI->getTypeLoc(), Sema::AbstractVariableType);
2702
2703    // Nested classes and class templates.
2704    } else if (isa<CXXRecordDecl>(D)) {
2705      CheckAbstractClassUsage(Info, cast<CXXRecordDecl>(D));
2706    } else if (isa<ClassTemplateDecl>(D)) {
2707      CheckAbstractClassUsage(Info,
2708                             cast<ClassTemplateDecl>(D)->getTemplatedDecl());
2709    }
2710  }
2711}
2712
2713/// \brief Perform semantic checks on a class definition that has been
2714/// completing, introducing implicitly-declared members, checking for
2715/// abstract types, etc.
2716void Sema::CheckCompletedCXXClass(CXXRecordDecl *Record) {
2717  if (!Record)
2718    return;
2719
2720  if (Record->isAbstract() && !Record->isInvalidDecl()) {
2721    AbstractUsageInfo Info(*this, Record);
2722    CheckAbstractClassUsage(Info, Record);
2723  }
2724
2725  // If this is not an aggregate type and has no user-declared constructor,
2726  // complain about any non-static data members of reference or const scalar
2727  // type, since they will never get initializers.
2728  if (!Record->isInvalidDecl() && !Record->isDependentType() &&
2729      !Record->isAggregate() && !Record->hasUserDeclaredConstructor()) {
2730    bool Complained = false;
2731    for (RecordDecl::field_iterator F = Record->field_begin(),
2732                                 FEnd = Record->field_end();
2733         F != FEnd; ++F) {
2734      if (F->getType()->isReferenceType() ||
2735          (F->getType().isConstQualified() && F->getType()->isScalarType())) {
2736        if (!Complained) {
2737          Diag(Record->getLocation(), diag::warn_no_constructor_for_refconst)
2738            << Record->getTagKind() << Record;
2739          Complained = true;
2740        }
2741
2742        Diag(F->getLocation(), diag::note_refconst_member_not_initialized)
2743          << F->getType()->isReferenceType()
2744          << F->getDeclName();
2745      }
2746    }
2747  }
2748
2749  if (Record->isDynamicClass() && !Record->isDependentType())
2750    DynamicClasses.push_back(Record);
2751
2752  if (Record->getIdentifier()) {
2753    // C++ [class.mem]p13:
2754    //   If T is the name of a class, then each of the following shall have a
2755    //   name different from T:
2756    //     - every member of every anonymous union that is a member of class T.
2757    //
2758    // C++ [class.mem]p14:
2759    //   In addition, if class T has a user-declared constructor (12.1), every
2760    //   non-static data member of class T shall have a name different from T.
2761    for (DeclContext::lookup_result R = Record->lookup(Record->getDeclName());
2762         R.first != R.second; ++R.first) {
2763      NamedDecl *D = *R.first;
2764      if ((isa<FieldDecl>(D) && Record->hasUserDeclaredConstructor()) ||
2765          isa<IndirectFieldDecl>(D)) {
2766        Diag(D->getLocation(), diag::err_member_name_of_class)
2767          << D->getDeclName();
2768        break;
2769      }
2770    }
2771  }
2772
2773  // Warn if the class has virtual methods but non-virtual public destructor.
2774  if (Record->isDynamicClass() && !Record->isDependentType()) {
2775    CXXDestructorDecl *dtor = Record->getDestructor();
2776    if (!dtor || (!dtor->isVirtual() && dtor->getAccess() == AS_public))
2777      Diag(dtor ? dtor->getLocation() : Record->getLocation(),
2778           diag::warn_non_virtual_dtor) << Context.getRecordType(Record);
2779  }
2780}
2781
2782void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
2783                                             Decl *TagDecl,
2784                                             SourceLocation LBrac,
2785                                             SourceLocation RBrac,
2786                                             AttributeList *AttrList) {
2787  if (!TagDecl)
2788    return;
2789
2790  AdjustDeclIfTemplate(TagDecl);
2791
2792  ActOnFields(S, RLoc, TagDecl,
2793              // strict aliasing violation!
2794              reinterpret_cast<Decl**>(FieldCollector->getCurFields()),
2795              FieldCollector->getCurNumFields(), LBrac, RBrac, AttrList);
2796
2797  CheckCompletedCXXClass(
2798                        dyn_cast_or_null<CXXRecordDecl>(TagDecl));
2799}
2800
2801namespace {
2802  /// \brief Helper class that collects exception specifications for
2803  /// implicitly-declared special member functions.
2804  class ImplicitExceptionSpecification {
2805    ASTContext &Context;
2806    bool AllowsAllExceptions;
2807    llvm::SmallPtrSet<CanQualType, 4> ExceptionsSeen;
2808    llvm::SmallVector<QualType, 4> Exceptions;
2809
2810  public:
2811    explicit ImplicitExceptionSpecification(ASTContext &Context)
2812      : Context(Context), AllowsAllExceptions(false) { }
2813
2814    /// \brief Whether the special member function should have any
2815    /// exception specification at all.
2816    bool hasExceptionSpecification() const {
2817      return !AllowsAllExceptions;
2818    }
2819
2820    /// \brief Whether the special member function should have a
2821    /// throw(...) exception specification (a Microsoft extension).
2822    bool hasAnyExceptionSpecification() const {
2823      return false;
2824    }
2825
2826    /// \brief The number of exceptions in the exception specification.
2827    unsigned size() const { return Exceptions.size(); }
2828
2829    /// \brief The set of exceptions in the exception specification.
2830    const QualType *data() const { return Exceptions.data(); }
2831
2832    /// \brief Note that
2833    void CalledDecl(CXXMethodDecl *Method) {
2834      // If we already know that we allow all exceptions, do nothing.
2835      if (AllowsAllExceptions || !Method)
2836        return;
2837
2838      const FunctionProtoType *Proto
2839        = Method->getType()->getAs<FunctionProtoType>();
2840
2841      // If this function can throw any exceptions, make a note of that.
2842      if (!Proto->hasExceptionSpec() || Proto->hasAnyExceptionSpec()) {
2843        AllowsAllExceptions = true;
2844        ExceptionsSeen.clear();
2845        Exceptions.clear();
2846        return;
2847      }
2848
2849      // Record the exceptions in this function's exception specification.
2850      for (FunctionProtoType::exception_iterator E = Proto->exception_begin(),
2851                                              EEnd = Proto->exception_end();
2852           E != EEnd; ++E)
2853        if (ExceptionsSeen.insert(Context.getCanonicalType(*E)))
2854          Exceptions.push_back(*E);
2855    }
2856  };
2857}
2858
2859
2860/// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
2861/// special functions, such as the default constructor, copy
2862/// constructor, or destructor, to the given C++ class (C++
2863/// [special]p1).  This routine can only be executed just before the
2864/// definition of the class is complete.
2865void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) {
2866  if (!ClassDecl->hasUserDeclaredConstructor())
2867    ++ASTContext::NumImplicitDefaultConstructors;
2868
2869  if (!ClassDecl->hasUserDeclaredCopyConstructor())
2870    ++ASTContext::NumImplicitCopyConstructors;
2871
2872  if (!ClassDecl->hasUserDeclaredCopyAssignment()) {
2873    ++ASTContext::NumImplicitCopyAssignmentOperators;
2874
2875    // If we have a dynamic class, then the copy assignment operator may be
2876    // virtual, so we have to declare it immediately. This ensures that, e.g.,
2877    // it shows up in the right place in the vtable and that we diagnose
2878    // problems with the implicit exception specification.
2879    if (ClassDecl->isDynamicClass())
2880      DeclareImplicitCopyAssignment(ClassDecl);
2881  }
2882
2883  if (!ClassDecl->hasUserDeclaredDestructor()) {
2884    ++ASTContext::NumImplicitDestructors;
2885
2886    // If we have a dynamic class, then the destructor may be virtual, so we
2887    // have to declare the destructor immediately. This ensures that, e.g., it
2888    // shows up in the right place in the vtable and that we diagnose problems
2889    // with the implicit exception specification.
2890    if (ClassDecl->isDynamicClass())
2891      DeclareImplicitDestructor(ClassDecl);
2892  }
2893}
2894
2895void Sema::ActOnReenterTemplateScope(Scope *S, Decl *D) {
2896  if (!D)
2897    return;
2898
2899  TemplateParameterList *Params = 0;
2900  if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D))
2901    Params = Template->getTemplateParameters();
2902  else if (ClassTemplatePartialSpecializationDecl *PartialSpec
2903           = dyn_cast<ClassTemplatePartialSpecializationDecl>(D))
2904    Params = PartialSpec->getTemplateParameters();
2905  else
2906    return;
2907
2908  for (TemplateParameterList::iterator Param = Params->begin(),
2909                                    ParamEnd = Params->end();
2910       Param != ParamEnd; ++Param) {
2911    NamedDecl *Named = cast<NamedDecl>(*Param);
2912    if (Named->getDeclName()) {
2913      S->AddDecl(Named);
2914      IdResolver.AddDecl(Named);
2915    }
2916  }
2917}
2918
2919void Sema::ActOnStartDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
2920  if (!RecordD) return;
2921  AdjustDeclIfTemplate(RecordD);
2922  CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordD);
2923  PushDeclContext(S, Record);
2924}
2925
2926void Sema::ActOnFinishDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
2927  if (!RecordD) return;
2928  PopDeclContext();
2929}
2930
2931/// ActOnStartDelayedCXXMethodDeclaration - We have completed
2932/// parsing a top-level (non-nested) C++ class, and we are now
2933/// parsing those parts of the given Method declaration that could
2934/// not be parsed earlier (C++ [class.mem]p2), such as default
2935/// arguments. This action should enter the scope of the given
2936/// Method declaration as if we had just parsed the qualified method
2937/// name. However, it should not bring the parameters into scope;
2938/// that will be performed by ActOnDelayedCXXMethodParameter.
2939void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
2940}
2941
2942/// ActOnDelayedCXXMethodParameter - We've already started a delayed
2943/// C++ method declaration. We're (re-)introducing the given
2944/// function parameter into scope for use in parsing later parts of
2945/// the method declaration. For example, we could see an
2946/// ActOnParamDefaultArgument event for this parameter.
2947void Sema::ActOnDelayedCXXMethodParameter(Scope *S, Decl *ParamD) {
2948  if (!ParamD)
2949    return;
2950
2951  ParmVarDecl *Param = cast<ParmVarDecl>(ParamD);
2952
2953  // If this parameter has an unparsed default argument, clear it out
2954  // to make way for the parsed default argument.
2955  if (Param->hasUnparsedDefaultArg())
2956    Param->setDefaultArg(0);
2957
2958  S->AddDecl(Param);
2959  if (Param->getDeclName())
2960    IdResolver.AddDecl(Param);
2961}
2962
2963/// ActOnFinishDelayedCXXMethodDeclaration - We have finished
2964/// processing the delayed method declaration for Method. The method
2965/// declaration is now considered finished. There may be a separate
2966/// ActOnStartOfFunctionDef action later (not necessarily
2967/// immediately!) for this method, if it was also defined inside the
2968/// class body.
2969void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
2970  if (!MethodD)
2971    return;
2972
2973  AdjustDeclIfTemplate(MethodD);
2974
2975  FunctionDecl *Method = cast<FunctionDecl>(MethodD);
2976
2977  // Now that we have our default arguments, check the constructor
2978  // again. It could produce additional diagnostics or affect whether
2979  // the class has implicitly-declared destructors, among other
2980  // things.
2981  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method))
2982    CheckConstructor(Constructor);
2983
2984  // Check the default arguments, which we may have added.
2985  if (!Method->isInvalidDecl())
2986    CheckCXXDefaultArguments(Method);
2987}
2988
2989/// CheckConstructorDeclarator - Called by ActOnDeclarator to check
2990/// the well-formedness of the constructor declarator @p D with type @p
2991/// R. If there are any errors in the declarator, this routine will
2992/// emit diagnostics and set the invalid bit to true.  In any case, the type
2993/// will be updated to reflect a well-formed type for the constructor and
2994/// returned.
2995QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R,
2996                                          StorageClass &SC) {
2997  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
2998
2999  // C++ [class.ctor]p3:
3000  //   A constructor shall not be virtual (10.3) or static (9.4). A
3001  //   constructor can be invoked for a const, volatile or const
3002  //   volatile object. A constructor shall not be declared const,
3003  //   volatile, or const volatile (9.3.2).
3004  if (isVirtual) {
3005    if (!D.isInvalidType())
3006      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
3007        << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
3008        << SourceRange(D.getIdentifierLoc());
3009    D.setInvalidType();
3010  }
3011  if (SC == SC_Static) {
3012    if (!D.isInvalidType())
3013      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
3014        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
3015        << SourceRange(D.getIdentifierLoc());
3016    D.setInvalidType();
3017    SC = SC_None;
3018  }
3019
3020  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
3021  if (FTI.TypeQuals != 0) {
3022    if (FTI.TypeQuals & Qualifiers::Const)
3023      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
3024        << "const" << SourceRange(D.getIdentifierLoc());
3025    if (FTI.TypeQuals & Qualifiers::Volatile)
3026      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
3027        << "volatile" << SourceRange(D.getIdentifierLoc());
3028    if (FTI.TypeQuals & Qualifiers::Restrict)
3029      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
3030        << "restrict" << SourceRange(D.getIdentifierLoc());
3031    D.setInvalidType();
3032  }
3033
3034  // C++0x [class.ctor]p4:
3035  //   A constructor shall not be declared with a ref-qualifier.
3036  if (FTI.hasRefQualifier()) {
3037    Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_constructor)
3038      << FTI.RefQualifierIsLValueRef
3039      << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
3040    D.setInvalidType();
3041  }
3042
3043  // Rebuild the function type "R" without any type qualifiers (in
3044  // case any of the errors above fired) and with "void" as the
3045  // return type, since constructors don't have return types.
3046  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
3047  if (Proto->getResultType() == Context.VoidTy && !D.isInvalidType())
3048    return R;
3049
3050  FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
3051  EPI.TypeQuals = 0;
3052  EPI.RefQualifier = RQ_None;
3053
3054  return Context.getFunctionType(Context.VoidTy, Proto->arg_type_begin(),
3055                                 Proto->getNumArgs(), EPI);
3056}
3057
3058/// CheckConstructor - Checks a fully-formed constructor for
3059/// well-formedness, issuing any diagnostics required. Returns true if
3060/// the constructor declarator is invalid.
3061void Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
3062  CXXRecordDecl *ClassDecl
3063    = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext());
3064  if (!ClassDecl)
3065    return Constructor->setInvalidDecl();
3066
3067  // C++ [class.copy]p3:
3068  //   A declaration of a constructor for a class X is ill-formed if
3069  //   its first parameter is of type (optionally cv-qualified) X and
3070  //   either there are no other parameters or else all other
3071  //   parameters have default arguments.
3072  if (!Constructor->isInvalidDecl() &&
3073      ((Constructor->getNumParams() == 1) ||
3074       (Constructor->getNumParams() > 1 &&
3075        Constructor->getParamDecl(1)->hasDefaultArg())) &&
3076      Constructor->getTemplateSpecializationKind()
3077                                              != TSK_ImplicitInstantiation) {
3078    QualType ParamType = Constructor->getParamDecl(0)->getType();
3079    QualType ClassTy = Context.getTagDeclType(ClassDecl);
3080    if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
3081      SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation();
3082      const char *ConstRef
3083        = Constructor->getParamDecl(0)->getIdentifier() ? "const &"
3084                                                        : " const &";
3085      Diag(ParamLoc, diag::err_constructor_byvalue_arg)
3086        << FixItHint::CreateInsertion(ParamLoc, ConstRef);
3087
3088      // FIXME: Rather that making the constructor invalid, we should endeavor
3089      // to fix the type.
3090      Constructor->setInvalidDecl();
3091    }
3092  }
3093}
3094
3095/// CheckDestructor - Checks a fully-formed destructor definition for
3096/// well-formedness, issuing any diagnostics required.  Returns true
3097/// on error.
3098bool Sema::CheckDestructor(CXXDestructorDecl *Destructor) {
3099  CXXRecordDecl *RD = Destructor->getParent();
3100
3101  if (Destructor->isVirtual()) {
3102    SourceLocation Loc;
3103
3104    if (!Destructor->isImplicit())
3105      Loc = Destructor->getLocation();
3106    else
3107      Loc = RD->getLocation();
3108
3109    // If we have a virtual destructor, look up the deallocation function
3110    FunctionDecl *OperatorDelete = 0;
3111    DeclarationName Name =
3112    Context.DeclarationNames.getCXXOperatorName(OO_Delete);
3113    if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete))
3114      return true;
3115
3116    MarkDeclarationReferenced(Loc, OperatorDelete);
3117
3118    Destructor->setOperatorDelete(OperatorDelete);
3119  }
3120
3121  return false;
3122}
3123
3124static inline bool
3125FTIHasSingleVoidArgument(DeclaratorChunk::FunctionTypeInfo &FTI) {
3126  return (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
3127          FTI.ArgInfo[0].Param &&
3128          cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType());
3129}
3130
3131/// CheckDestructorDeclarator - Called by ActOnDeclarator to check
3132/// the well-formednes of the destructor declarator @p D with type @p
3133/// R. If there are any errors in the declarator, this routine will
3134/// emit diagnostics and set the declarator to invalid.  Even if this happens,
3135/// will be updated to reflect a well-formed type for the destructor and
3136/// returned.
3137QualType Sema::CheckDestructorDeclarator(Declarator &D, QualType R,
3138                                         StorageClass& SC) {
3139  // C++ [class.dtor]p1:
3140  //   [...] A typedef-name that names a class is a class-name
3141  //   (7.1.3); however, a typedef-name that names a class shall not
3142  //   be used as the identifier in the declarator for a destructor
3143  //   declaration.
3144  QualType DeclaratorType = GetTypeFromParser(D.getName().DestructorName);
3145  if (isa<TypedefType>(DeclaratorType))
3146    Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
3147      << DeclaratorType;
3148
3149  // C++ [class.dtor]p2:
3150  //   A destructor is used to destroy objects of its class type. A
3151  //   destructor takes no parameters, and no return type can be
3152  //   specified for it (not even void). The address of a destructor
3153  //   shall not be taken. A destructor shall not be static. A
3154  //   destructor can be invoked for a const, volatile or const
3155  //   volatile object. A destructor shall not be declared const,
3156  //   volatile or const volatile (9.3.2).
3157  if (SC == SC_Static) {
3158    if (!D.isInvalidType())
3159      Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
3160        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
3161        << SourceRange(D.getIdentifierLoc())
3162        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
3163
3164    SC = SC_None;
3165  }
3166  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
3167    // Destructors don't have return types, but the parser will
3168    // happily parse something like:
3169    //
3170    //   class X {
3171    //     float ~X();
3172    //   };
3173    //
3174    // The return type will be eliminated later.
3175    Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
3176      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
3177      << SourceRange(D.getIdentifierLoc());
3178  }
3179
3180  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
3181  if (FTI.TypeQuals != 0 && !D.isInvalidType()) {
3182    if (FTI.TypeQuals & Qualifiers::Const)
3183      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
3184        << "const" << SourceRange(D.getIdentifierLoc());
3185    if (FTI.TypeQuals & Qualifiers::Volatile)
3186      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
3187        << "volatile" << SourceRange(D.getIdentifierLoc());
3188    if (FTI.TypeQuals & Qualifiers::Restrict)
3189      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
3190        << "restrict" << SourceRange(D.getIdentifierLoc());
3191    D.setInvalidType();
3192  }
3193
3194  // C++0x [class.dtor]p2:
3195  //   A destructor shall not be declared with a ref-qualifier.
3196  if (FTI.hasRefQualifier()) {
3197    Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_destructor)
3198      << FTI.RefQualifierIsLValueRef
3199      << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
3200    D.setInvalidType();
3201  }
3202
3203  // Make sure we don't have any parameters.
3204  if (FTI.NumArgs > 0 && !FTIHasSingleVoidArgument(FTI)) {
3205    Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
3206
3207    // Delete the parameters.
3208    FTI.freeArgs();
3209    D.setInvalidType();
3210  }
3211
3212  // Make sure the destructor isn't variadic.
3213  if (FTI.isVariadic) {
3214    Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
3215    D.setInvalidType();
3216  }
3217
3218  // Rebuild the function type "R" without any type qualifiers or
3219  // parameters (in case any of the errors above fired) and with
3220  // "void" as the return type, since destructors don't have return
3221  // types.
3222  if (!D.isInvalidType())
3223    return R;
3224
3225  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
3226  FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
3227  EPI.Variadic = false;
3228  EPI.TypeQuals = 0;
3229  EPI.RefQualifier = RQ_None;
3230  return Context.getFunctionType(Context.VoidTy, 0, 0, EPI);
3231}
3232
3233/// CheckConversionDeclarator - Called by ActOnDeclarator to check the
3234/// well-formednes of the conversion function declarator @p D with
3235/// type @p R. If there are any errors in the declarator, this routine
3236/// will emit diagnostics and return true. Otherwise, it will return
3237/// false. Either way, the type @p R will be updated to reflect a
3238/// well-formed type for the conversion operator.
3239void Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
3240                                     StorageClass& SC) {
3241  // C++ [class.conv.fct]p1:
3242  //   Neither parameter types nor return type can be specified. The
3243  //   type of a conversion function (8.3.5) is "function taking no
3244  //   parameter returning conversion-type-id."
3245  if (SC == SC_Static) {
3246    if (!D.isInvalidType())
3247      Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
3248        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
3249        << SourceRange(D.getIdentifierLoc());
3250    D.setInvalidType();
3251    SC = SC_None;
3252  }
3253
3254  QualType ConvType = GetTypeFromParser(D.getName().ConversionFunctionId);
3255
3256  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
3257    // Conversion functions don't have return types, but the parser will
3258    // happily parse something like:
3259    //
3260    //   class X {
3261    //     float operator bool();
3262    //   };
3263    //
3264    // The return type will be changed later anyway.
3265    Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
3266      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
3267      << SourceRange(D.getIdentifierLoc());
3268    D.setInvalidType();
3269  }
3270
3271  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
3272
3273  // Make sure we don't have any parameters.
3274  if (Proto->getNumArgs() > 0) {
3275    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
3276
3277    // Delete the parameters.
3278    D.getFunctionTypeInfo().freeArgs();
3279    D.setInvalidType();
3280  } else if (Proto->isVariadic()) {
3281    Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
3282    D.setInvalidType();
3283  }
3284
3285  // Diagnose "&operator bool()" and other such nonsense.  This
3286  // is actually a gcc extension which we don't support.
3287  if (Proto->getResultType() != ConvType) {
3288    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_complex_decl)
3289      << Proto->getResultType();
3290    D.setInvalidType();
3291    ConvType = Proto->getResultType();
3292  }
3293
3294  // C++ [class.conv.fct]p4:
3295  //   The conversion-type-id shall not represent a function type nor
3296  //   an array type.
3297  if (ConvType->isArrayType()) {
3298    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
3299    ConvType = Context.getPointerType(ConvType);
3300    D.setInvalidType();
3301  } else if (ConvType->isFunctionType()) {
3302    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
3303    ConvType = Context.getPointerType(ConvType);
3304    D.setInvalidType();
3305  }
3306
3307  // Rebuild the function type "R" without any parameters (in case any
3308  // of the errors above fired) and with the conversion type as the
3309  // return type.
3310  if (D.isInvalidType())
3311    R = Context.getFunctionType(ConvType, 0, 0, Proto->getExtProtoInfo());
3312
3313  // C++0x explicit conversion operators.
3314  if (D.getDeclSpec().isExplicitSpecified() && !getLangOptions().CPlusPlus0x)
3315    Diag(D.getDeclSpec().getExplicitSpecLoc(),
3316         diag::warn_explicit_conversion_functions)
3317      << SourceRange(D.getDeclSpec().getExplicitSpecLoc());
3318}
3319
3320/// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
3321/// the declaration of the given C++ conversion function. This routine
3322/// is responsible for recording the conversion function in the C++
3323/// class, if possible.
3324Decl *Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
3325  assert(Conversion && "Expected to receive a conversion function declaration");
3326
3327  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext());
3328
3329  // Make sure we aren't redeclaring the conversion function.
3330  QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());
3331
3332  // C++ [class.conv.fct]p1:
3333  //   [...] A conversion function is never used to convert a
3334  //   (possibly cv-qualified) object to the (possibly cv-qualified)
3335  //   same object type (or a reference to it), to a (possibly
3336  //   cv-qualified) base class of that type (or a reference to it),
3337  //   or to (possibly cv-qualified) void.
3338  // FIXME: Suppress this warning if the conversion function ends up being a
3339  // virtual function that overrides a virtual function in a base class.
3340  QualType ClassType
3341    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
3342  if (const ReferenceType *ConvTypeRef = ConvType->getAs<ReferenceType>())
3343    ConvType = ConvTypeRef->getPointeeType();
3344  if (Conversion->getTemplateSpecializationKind() != TSK_Undeclared &&
3345      Conversion->getTemplateSpecializationKind() != TSK_ExplicitSpecialization)
3346    /* Suppress diagnostics for instantiations. */;
3347  else if (ConvType->isRecordType()) {
3348    ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
3349    if (ConvType == ClassType)
3350      Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used)
3351        << ClassType;
3352    else if (IsDerivedFrom(ClassType, ConvType))
3353      Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used)
3354        <<  ClassType << ConvType;
3355  } else if (ConvType->isVoidType()) {
3356    Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used)
3357      << ClassType << ConvType;
3358  }
3359
3360  if (FunctionTemplateDecl *ConversionTemplate
3361                                = Conversion->getDescribedFunctionTemplate())
3362    return ConversionTemplate;
3363
3364  return Conversion;
3365}
3366
3367//===----------------------------------------------------------------------===//
3368// Namespace Handling
3369//===----------------------------------------------------------------------===//
3370
3371
3372
3373/// ActOnStartNamespaceDef - This is called at the start of a namespace
3374/// definition.
3375Decl *Sema::ActOnStartNamespaceDef(Scope *NamespcScope,
3376                                   SourceLocation InlineLoc,
3377                                   SourceLocation IdentLoc,
3378                                   IdentifierInfo *II,
3379                                   SourceLocation LBrace,
3380                                   AttributeList *AttrList) {
3381  // anonymous namespace starts at its left brace
3382  NamespaceDecl *Namespc = NamespaceDecl::Create(Context, CurContext,
3383    (II ? IdentLoc : LBrace) , II);
3384  Namespc->setLBracLoc(LBrace);
3385  Namespc->setInline(InlineLoc.isValid());
3386
3387  Scope *DeclRegionScope = NamespcScope->getParent();
3388
3389  ProcessDeclAttributeList(DeclRegionScope, Namespc, AttrList);
3390
3391  if (const VisibilityAttr *Attr = Namespc->getAttr<VisibilityAttr>())
3392    PushNamespaceVisibilityAttr(Attr);
3393
3394  if (II) {
3395    // C++ [namespace.def]p2:
3396    //   The identifier in an original-namespace-definition shall not
3397    //   have been previously defined in the declarative region in
3398    //   which the original-namespace-definition appears. The
3399    //   identifier in an original-namespace-definition is the name of
3400    //   the namespace. Subsequently in that declarative region, it is
3401    //   treated as an original-namespace-name.
3402    //
3403    // Since namespace names are unique in their scope, and we don't
3404    // look through using directives, just
3405    DeclContext::lookup_result R = CurContext->getRedeclContext()->lookup(II);
3406    NamedDecl *PrevDecl = R.first == R.second? 0 : *R.first;
3407
3408    if (NamespaceDecl *OrigNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl)) {
3409      // This is an extended namespace definition.
3410      if (Namespc->isInline() != OrigNS->isInline()) {
3411        // inline-ness must match
3412        Diag(Namespc->getLocation(), diag::err_inline_namespace_mismatch)
3413          << Namespc->isInline();
3414        Diag(OrigNS->getLocation(), diag::note_previous_definition);
3415        Namespc->setInvalidDecl();
3416        // Recover by ignoring the new namespace's inline status.
3417        Namespc->setInline(OrigNS->isInline());
3418      }
3419
3420      // Attach this namespace decl to the chain of extended namespace
3421      // definitions.
3422      OrigNS->setNextNamespace(Namespc);
3423      Namespc->setOriginalNamespace(OrigNS->getOriginalNamespace());
3424
3425      // Remove the previous declaration from the scope.
3426      if (DeclRegionScope->isDeclScope(OrigNS)) {
3427        IdResolver.RemoveDecl(OrigNS);
3428        DeclRegionScope->RemoveDecl(OrigNS);
3429      }
3430    } else if (PrevDecl) {
3431      // This is an invalid name redefinition.
3432      Diag(Namespc->getLocation(), diag::err_redefinition_different_kind)
3433       << Namespc->getDeclName();
3434      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3435      Namespc->setInvalidDecl();
3436      // Continue on to push Namespc as current DeclContext and return it.
3437    } else if (II->isStr("std") &&
3438               CurContext->getRedeclContext()->isTranslationUnit()) {
3439      // This is the first "real" definition of the namespace "std", so update
3440      // our cache of the "std" namespace to point at this definition.
3441      if (NamespaceDecl *StdNS = getStdNamespace()) {
3442        // We had already defined a dummy namespace "std". Link this new
3443        // namespace definition to the dummy namespace "std".
3444        StdNS->setNextNamespace(Namespc);
3445        StdNS->setLocation(IdentLoc);
3446        Namespc->setOriginalNamespace(StdNS->getOriginalNamespace());
3447      }
3448
3449      // Make our StdNamespace cache point at the first real definition of the
3450      // "std" namespace.
3451      StdNamespace = Namespc;
3452    }
3453
3454    PushOnScopeChains(Namespc, DeclRegionScope);
3455  } else {
3456    // Anonymous namespaces.
3457    assert(Namespc->isAnonymousNamespace());
3458
3459    // Link the anonymous namespace into its parent.
3460    NamespaceDecl *PrevDecl;
3461    DeclContext *Parent = CurContext->getRedeclContext();
3462    if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
3463      PrevDecl = TU->getAnonymousNamespace();
3464      TU->setAnonymousNamespace(Namespc);
3465    } else {
3466      NamespaceDecl *ND = cast<NamespaceDecl>(Parent);
3467      PrevDecl = ND->getAnonymousNamespace();
3468      ND->setAnonymousNamespace(Namespc);
3469    }
3470
3471    // Link the anonymous namespace with its previous declaration.
3472    if (PrevDecl) {
3473      assert(PrevDecl->isAnonymousNamespace());
3474      assert(!PrevDecl->getNextNamespace());
3475      Namespc->setOriginalNamespace(PrevDecl->getOriginalNamespace());
3476      PrevDecl->setNextNamespace(Namespc);
3477
3478      if (Namespc->isInline() != PrevDecl->isInline()) {
3479        // inline-ness must match
3480        Diag(Namespc->getLocation(), diag::err_inline_namespace_mismatch)
3481          << Namespc->isInline();
3482        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3483        Namespc->setInvalidDecl();
3484        // Recover by ignoring the new namespace's inline status.
3485        Namespc->setInline(PrevDecl->isInline());
3486      }
3487    }
3488
3489    CurContext->addDecl(Namespc);
3490
3491    // C++ [namespace.unnamed]p1.  An unnamed-namespace-definition
3492    //   behaves as if it were replaced by
3493    //     namespace unique { /* empty body */ }
3494    //     using namespace unique;
3495    //     namespace unique { namespace-body }
3496    //   where all occurrences of 'unique' in a translation unit are
3497    //   replaced by the same identifier and this identifier differs
3498    //   from all other identifiers in the entire program.
3499
3500    // We just create the namespace with an empty name and then add an
3501    // implicit using declaration, just like the standard suggests.
3502    //
3503    // CodeGen enforces the "universally unique" aspect by giving all
3504    // declarations semantically contained within an anonymous
3505    // namespace internal linkage.
3506
3507    if (!PrevDecl) {
3508      UsingDirectiveDecl* UD
3509        = UsingDirectiveDecl::Create(Context, CurContext,
3510                                     /* 'using' */ LBrace,
3511                                     /* 'namespace' */ SourceLocation(),
3512                                     /* qualifier */ SourceRange(),
3513                                     /* NNS */ NULL,
3514                                     /* identifier */ SourceLocation(),
3515                                     Namespc,
3516                                     /* Ancestor */ CurContext);
3517      UD->setImplicit();
3518      CurContext->addDecl(UD);
3519    }
3520  }
3521
3522  // Although we could have an invalid decl (i.e. the namespace name is a
3523  // redefinition), push it as current DeclContext and try to continue parsing.
3524  // FIXME: We should be able to push Namespc here, so that the each DeclContext
3525  // for the namespace has the declarations that showed up in that particular
3526  // namespace definition.
3527  PushDeclContext(NamespcScope, Namespc);
3528  return Namespc;
3529}
3530
3531/// getNamespaceDecl - Returns the namespace a decl represents. If the decl
3532/// is a namespace alias, returns the namespace it points to.
3533static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) {
3534  if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D))
3535    return AD->getNamespace();
3536  return dyn_cast_or_null<NamespaceDecl>(D);
3537}
3538
3539/// ActOnFinishNamespaceDef - This callback is called after a namespace is
3540/// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
3541void Sema::ActOnFinishNamespaceDef(Decl *Dcl, SourceLocation RBrace) {
3542  NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
3543  assert(Namespc && "Invalid parameter, expected NamespaceDecl");
3544  Namespc->setRBracLoc(RBrace);
3545  PopDeclContext();
3546  if (Namespc->hasAttr<VisibilityAttr>())
3547    PopPragmaVisibility();
3548}
3549
3550CXXRecordDecl *Sema::getStdBadAlloc() const {
3551  return cast_or_null<CXXRecordDecl>(
3552                                  StdBadAlloc.get(Context.getExternalSource()));
3553}
3554
3555NamespaceDecl *Sema::getStdNamespace() const {
3556  return cast_or_null<NamespaceDecl>(
3557                                 StdNamespace.get(Context.getExternalSource()));
3558}
3559
3560/// \brief Retrieve the special "std" namespace, which may require us to
3561/// implicitly define the namespace.
3562NamespaceDecl *Sema::getOrCreateStdNamespace() {
3563  if (!StdNamespace) {
3564    // The "std" namespace has not yet been defined, so build one implicitly.
3565    StdNamespace = NamespaceDecl::Create(Context,
3566                                         Context.getTranslationUnitDecl(),
3567                                         SourceLocation(),
3568                                         &PP.getIdentifierTable().get("std"));
3569    getStdNamespace()->setImplicit(true);
3570  }
3571
3572  return getStdNamespace();
3573}
3574
3575Decl *Sema::ActOnUsingDirective(Scope *S,
3576                                          SourceLocation UsingLoc,
3577                                          SourceLocation NamespcLoc,
3578                                          CXXScopeSpec &SS,
3579                                          SourceLocation IdentLoc,
3580                                          IdentifierInfo *NamespcName,
3581                                          AttributeList *AttrList) {
3582  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
3583  assert(NamespcName && "Invalid NamespcName.");
3584  assert(IdentLoc.isValid() && "Invalid NamespceName location.");
3585
3586  // This can only happen along a recovery path.
3587  while (S->getFlags() & Scope::TemplateParamScope)
3588    S = S->getParent();
3589  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
3590
3591  UsingDirectiveDecl *UDir = 0;
3592  NestedNameSpecifier *Qualifier = 0;
3593  if (SS.isSet())
3594    Qualifier = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
3595
3596  // Lookup namespace name.
3597  LookupResult R(*this, NamespcName, IdentLoc, LookupNamespaceName);
3598  LookupParsedName(R, S, &SS);
3599  if (R.isAmbiguous())
3600    return 0;
3601
3602  if (R.empty()) {
3603    // Allow "using namespace std;" or "using namespace ::std;" even if
3604    // "std" hasn't been defined yet, for GCC compatibility.
3605    if ((!Qualifier || Qualifier->getKind() == NestedNameSpecifier::Global) &&
3606        NamespcName->isStr("std")) {
3607      Diag(IdentLoc, diag::ext_using_undefined_std);
3608      R.addDecl(getOrCreateStdNamespace());
3609      R.resolveKind();
3610    }
3611    // Otherwise, attempt typo correction.
3612    else if (DeclarationName Corrected = CorrectTypo(R, S, &SS, 0, false,
3613                                                       CTC_NoKeywords, 0)) {
3614      if (R.getAsSingle<NamespaceDecl>() ||
3615          R.getAsSingle<NamespaceAliasDecl>()) {
3616        if (DeclContext *DC = computeDeclContext(SS, false))
3617          Diag(IdentLoc, diag::err_using_directive_member_suggest)
3618            << NamespcName << DC << Corrected << SS.getRange()
3619            << FixItHint::CreateReplacement(IdentLoc, Corrected.getAsString());
3620        else
3621          Diag(IdentLoc, diag::err_using_directive_suggest)
3622            << NamespcName << Corrected
3623            << FixItHint::CreateReplacement(IdentLoc, Corrected.getAsString());
3624        Diag(R.getFoundDecl()->getLocation(), diag::note_namespace_defined_here)
3625          << Corrected;
3626
3627        NamespcName = Corrected.getAsIdentifierInfo();
3628      } else {
3629        R.clear();
3630        R.setLookupName(NamespcName);
3631      }
3632    }
3633  }
3634
3635  if (!R.empty()) {
3636    NamedDecl *Named = R.getFoundDecl();
3637    assert((isa<NamespaceDecl>(Named) || isa<NamespaceAliasDecl>(Named))
3638        && "expected namespace decl");
3639    // C++ [namespace.udir]p1:
3640    //   A using-directive specifies that the names in the nominated
3641    //   namespace can be used in the scope in which the
3642    //   using-directive appears after the using-directive. During
3643    //   unqualified name lookup (3.4.1), the names appear as if they
3644    //   were declared in the nearest enclosing namespace which
3645    //   contains both the using-directive and the nominated
3646    //   namespace. [Note: in this context, "contains" means "contains
3647    //   directly or indirectly". ]
3648
3649    // Find enclosing context containing both using-directive and
3650    // nominated namespace.
3651    NamespaceDecl *NS = getNamespaceDecl(Named);
3652    DeclContext *CommonAncestor = cast<DeclContext>(NS);
3653    while (CommonAncestor && !CommonAncestor->Encloses(CurContext))
3654      CommonAncestor = CommonAncestor->getParent();
3655
3656    UDir = UsingDirectiveDecl::Create(Context, CurContext, UsingLoc, NamespcLoc,
3657                                      SS.getRange(),
3658                                      (NestedNameSpecifier *)SS.getScopeRep(),
3659                                      IdentLoc, Named, CommonAncestor);
3660    PushUsingDirective(S, UDir);
3661  } else {
3662    Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
3663  }
3664
3665  // FIXME: We ignore attributes for now.
3666  return UDir;
3667}
3668
3669void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) {
3670  // If scope has associated entity, then using directive is at namespace
3671  // or translation unit scope. We add UsingDirectiveDecls, into
3672  // it's lookup structure.
3673  if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity()))
3674    Ctx->addDecl(UDir);
3675  else
3676    // Otherwise it is block-sope. using-directives will affect lookup
3677    // only to the end of scope.
3678    S->PushUsingDirective(UDir);
3679}
3680
3681
3682Decl *Sema::ActOnUsingDeclaration(Scope *S,
3683                                  AccessSpecifier AS,
3684                                  bool HasUsingKeyword,
3685                                  SourceLocation UsingLoc,
3686                                  CXXScopeSpec &SS,
3687                                  UnqualifiedId &Name,
3688                                  AttributeList *AttrList,
3689                                  bool IsTypeName,
3690                                  SourceLocation TypenameLoc) {
3691  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
3692
3693  switch (Name.getKind()) {
3694  case UnqualifiedId::IK_Identifier:
3695  case UnqualifiedId::IK_OperatorFunctionId:
3696  case UnqualifiedId::IK_LiteralOperatorId:
3697  case UnqualifiedId::IK_ConversionFunctionId:
3698    break;
3699
3700  case UnqualifiedId::IK_ConstructorName:
3701  case UnqualifiedId::IK_ConstructorTemplateId:
3702    // C++0x inherited constructors.
3703    if (getLangOptions().CPlusPlus0x) break;
3704
3705    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_constructor)
3706      << SS.getRange();
3707    return 0;
3708
3709  case UnqualifiedId::IK_DestructorName:
3710    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_destructor)
3711      << SS.getRange();
3712    return 0;
3713
3714  case UnqualifiedId::IK_TemplateId:
3715    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_template_id)
3716      << SourceRange(Name.TemplateId->LAngleLoc, Name.TemplateId->RAngleLoc);
3717    return 0;
3718  }
3719
3720  DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name);
3721  DeclarationName TargetName = TargetNameInfo.getName();
3722  if (!TargetName)
3723    return 0;
3724
3725  // Warn about using declarations.
3726  // TODO: store that the declaration was written without 'using' and
3727  // talk about access decls instead of using decls in the
3728  // diagnostics.
3729  if (!HasUsingKeyword) {
3730    UsingLoc = Name.getSourceRange().getBegin();
3731
3732    Diag(UsingLoc, diag::warn_access_decl_deprecated)
3733      << FixItHint::CreateInsertion(SS.getRange().getBegin(), "using ");
3734  }
3735
3736  if (DiagnoseUnexpandedParameterPack(SS, UPPC_UsingDeclaration) ||
3737      DiagnoseUnexpandedParameterPack(TargetNameInfo, UPPC_UsingDeclaration))
3738    return 0;
3739
3740  NamedDecl *UD = BuildUsingDeclaration(S, AS, UsingLoc, SS,
3741                                        TargetNameInfo, AttrList,
3742                                        /* IsInstantiation */ false,
3743                                        IsTypeName, TypenameLoc);
3744  if (UD)
3745    PushOnScopeChains(UD, S, /*AddToContext*/ false);
3746
3747  return UD;
3748}
3749
3750/// \brief Determine whether a using declaration considers the given
3751/// declarations as "equivalent", e.g., if they are redeclarations of
3752/// the same entity or are both typedefs of the same type.
3753static bool
3754IsEquivalentForUsingDecl(ASTContext &Context, NamedDecl *D1, NamedDecl *D2,
3755                         bool &SuppressRedeclaration) {
3756  if (D1->getCanonicalDecl() == D2->getCanonicalDecl()) {
3757    SuppressRedeclaration = false;
3758    return true;
3759  }
3760
3761  if (TypedefDecl *TD1 = dyn_cast<TypedefDecl>(D1))
3762    if (TypedefDecl *TD2 = dyn_cast<TypedefDecl>(D2)) {
3763      SuppressRedeclaration = true;
3764      return Context.hasSameType(TD1->getUnderlyingType(),
3765                                 TD2->getUnderlyingType());
3766    }
3767
3768  return false;
3769}
3770
3771
3772/// Determines whether to create a using shadow decl for a particular
3773/// decl, given the set of decls existing prior to this using lookup.
3774bool Sema::CheckUsingShadowDecl(UsingDecl *Using, NamedDecl *Orig,
3775                                const LookupResult &Previous) {
3776  // Diagnose finding a decl which is not from a base class of the
3777  // current class.  We do this now because there are cases where this
3778  // function will silently decide not to build a shadow decl, which
3779  // will pre-empt further diagnostics.
3780  //
3781  // We don't need to do this in C++0x because we do the check once on
3782  // the qualifier.
3783  //
3784  // FIXME: diagnose the following if we care enough:
3785  //   struct A { int foo; };
3786  //   struct B : A { using A::foo; };
3787  //   template <class T> struct C : A {};
3788  //   template <class T> struct D : C<T> { using B::foo; } // <---
3789  // This is invalid (during instantiation) in C++03 because B::foo
3790  // resolves to the using decl in B, which is not a base class of D<T>.
3791  // We can't diagnose it immediately because C<T> is an unknown
3792  // specialization.  The UsingShadowDecl in D<T> then points directly
3793  // to A::foo, which will look well-formed when we instantiate.
3794  // The right solution is to not collapse the shadow-decl chain.
3795  if (!getLangOptions().CPlusPlus0x && CurContext->isRecord()) {
3796    DeclContext *OrigDC = Orig->getDeclContext();
3797
3798    // Handle enums and anonymous structs.
3799    if (isa<EnumDecl>(OrigDC)) OrigDC = OrigDC->getParent();
3800    CXXRecordDecl *OrigRec = cast<CXXRecordDecl>(OrigDC);
3801    while (OrigRec->isAnonymousStructOrUnion())
3802      OrigRec = cast<CXXRecordDecl>(OrigRec->getDeclContext());
3803
3804    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(OrigRec)) {
3805      if (OrigDC == CurContext) {
3806        Diag(Using->getLocation(),
3807             diag::err_using_decl_nested_name_specifier_is_current_class)
3808          << Using->getNestedNameRange();
3809        Diag(Orig->getLocation(), diag::note_using_decl_target);
3810        return true;
3811      }
3812
3813      Diag(Using->getNestedNameRange().getBegin(),
3814           diag::err_using_decl_nested_name_specifier_is_not_base_class)
3815        << Using->getTargetNestedNameDecl()
3816        << cast<CXXRecordDecl>(CurContext)
3817        << Using->getNestedNameRange();
3818      Diag(Orig->getLocation(), diag::note_using_decl_target);
3819      return true;
3820    }
3821  }
3822
3823  if (Previous.empty()) return false;
3824
3825  NamedDecl *Target = Orig;
3826  if (isa<UsingShadowDecl>(Target))
3827    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
3828
3829  // If the target happens to be one of the previous declarations, we
3830  // don't have a conflict.
3831  //
3832  // FIXME: but we might be increasing its access, in which case we
3833  // should redeclare it.
3834  NamedDecl *NonTag = 0, *Tag = 0;
3835  for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
3836         I != E; ++I) {
3837    NamedDecl *D = (*I)->getUnderlyingDecl();
3838    bool Result;
3839    if (IsEquivalentForUsingDecl(Context, D, Target, Result))
3840      return Result;
3841
3842    (isa<TagDecl>(D) ? Tag : NonTag) = D;
3843  }
3844
3845  if (Target->isFunctionOrFunctionTemplate()) {
3846    FunctionDecl *FD;
3847    if (isa<FunctionTemplateDecl>(Target))
3848      FD = cast<FunctionTemplateDecl>(Target)->getTemplatedDecl();
3849    else
3850      FD = cast<FunctionDecl>(Target);
3851
3852    NamedDecl *OldDecl = 0;
3853    switch (CheckOverload(0, FD, Previous, OldDecl, /*IsForUsingDecl*/ true)) {
3854    case Ovl_Overload:
3855      return false;
3856
3857    case Ovl_NonFunction:
3858      Diag(Using->getLocation(), diag::err_using_decl_conflict);
3859      break;
3860
3861    // We found a decl with the exact signature.
3862    case Ovl_Match:
3863      // If we're in a record, we want to hide the target, so we
3864      // return true (without a diagnostic) to tell the caller not to
3865      // build a shadow decl.
3866      if (CurContext->isRecord())
3867        return true;
3868
3869      // If we're not in a record, this is an error.
3870      Diag(Using->getLocation(), diag::err_using_decl_conflict);
3871      break;
3872    }
3873
3874    Diag(Target->getLocation(), diag::note_using_decl_target);
3875    Diag(OldDecl->getLocation(), diag::note_using_decl_conflict);
3876    return true;
3877  }
3878
3879  // Target is not a function.
3880
3881  if (isa<TagDecl>(Target)) {
3882    // No conflict between a tag and a non-tag.
3883    if (!Tag) return false;
3884
3885    Diag(Using->getLocation(), diag::err_using_decl_conflict);
3886    Diag(Target->getLocation(), diag::note_using_decl_target);
3887    Diag(Tag->getLocation(), diag::note_using_decl_conflict);
3888    return true;
3889  }
3890
3891  // No conflict between a tag and a non-tag.
3892  if (!NonTag) return false;
3893
3894  Diag(Using->getLocation(), diag::err_using_decl_conflict);
3895  Diag(Target->getLocation(), diag::note_using_decl_target);
3896  Diag(NonTag->getLocation(), diag::note_using_decl_conflict);
3897  return true;
3898}
3899
3900/// Builds a shadow declaration corresponding to a 'using' declaration.
3901UsingShadowDecl *Sema::BuildUsingShadowDecl(Scope *S,
3902                                            UsingDecl *UD,
3903                                            NamedDecl *Orig) {
3904
3905  // If we resolved to another shadow declaration, just coalesce them.
3906  NamedDecl *Target = Orig;
3907  if (isa<UsingShadowDecl>(Target)) {
3908    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
3909    assert(!isa<UsingShadowDecl>(Target) && "nested shadow declaration");
3910  }
3911
3912  UsingShadowDecl *Shadow
3913    = UsingShadowDecl::Create(Context, CurContext,
3914                              UD->getLocation(), UD, Target);
3915  UD->addShadowDecl(Shadow);
3916
3917  Shadow->setAccess(UD->getAccess());
3918  if (Orig->isInvalidDecl() || UD->isInvalidDecl())
3919    Shadow->setInvalidDecl();
3920
3921  if (S)
3922    PushOnScopeChains(Shadow, S);
3923  else
3924    CurContext->addDecl(Shadow);
3925
3926
3927  return Shadow;
3928}
3929
3930/// Hides a using shadow declaration.  This is required by the current
3931/// using-decl implementation when a resolvable using declaration in a
3932/// class is followed by a declaration which would hide or override
3933/// one or more of the using decl's targets; for example:
3934///
3935///   struct Base { void foo(int); };
3936///   struct Derived : Base {
3937///     using Base::foo;
3938///     void foo(int);
3939///   };
3940///
3941/// The governing language is C++03 [namespace.udecl]p12:
3942///
3943///   When a using-declaration brings names from a base class into a
3944///   derived class scope, member functions in the derived class
3945///   override and/or hide member functions with the same name and
3946///   parameter types in a base class (rather than conflicting).
3947///
3948/// There are two ways to implement this:
3949///   (1) optimistically create shadow decls when they're not hidden
3950///       by existing declarations, or
3951///   (2) don't create any shadow decls (or at least don't make them
3952///       visible) until we've fully parsed/instantiated the class.
3953/// The problem with (1) is that we might have to retroactively remove
3954/// a shadow decl, which requires several O(n) operations because the
3955/// decl structures are (very reasonably) not designed for removal.
3956/// (2) avoids this but is very fiddly and phase-dependent.
3957void Sema::HideUsingShadowDecl(Scope *S, UsingShadowDecl *Shadow) {
3958  if (Shadow->getDeclName().getNameKind() ==
3959        DeclarationName::CXXConversionFunctionName)
3960    cast<CXXRecordDecl>(Shadow->getDeclContext())->removeConversion(Shadow);
3961
3962  // Remove it from the DeclContext...
3963  Shadow->getDeclContext()->removeDecl(Shadow);
3964
3965  // ...and the scope, if applicable...
3966  if (S) {
3967    S->RemoveDecl(Shadow);
3968    IdResolver.RemoveDecl(Shadow);
3969  }
3970
3971  // ...and the using decl.
3972  Shadow->getUsingDecl()->removeShadowDecl(Shadow);
3973
3974  // TODO: complain somehow if Shadow was used.  It shouldn't
3975  // be possible for this to happen, because...?
3976}
3977
3978/// Builds a using declaration.
3979///
3980/// \param IsInstantiation - Whether this call arises from an
3981///   instantiation of an unresolved using declaration.  We treat
3982///   the lookup differently for these declarations.
3983NamedDecl *Sema::BuildUsingDeclaration(Scope *S, AccessSpecifier AS,
3984                                       SourceLocation UsingLoc,
3985                                       CXXScopeSpec &SS,
3986                                       const DeclarationNameInfo &NameInfo,
3987                                       AttributeList *AttrList,
3988                                       bool IsInstantiation,
3989                                       bool IsTypeName,
3990                                       SourceLocation TypenameLoc) {
3991  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
3992  SourceLocation IdentLoc = NameInfo.getLoc();
3993  assert(IdentLoc.isValid() && "Invalid TargetName location.");
3994
3995  // FIXME: We ignore attributes for now.
3996
3997  if (SS.isEmpty()) {
3998    Diag(IdentLoc, diag::err_using_requires_qualname);
3999    return 0;
4000  }
4001
4002  // Do the redeclaration lookup in the current scope.
4003  LookupResult Previous(*this, NameInfo, LookupUsingDeclName,
4004                        ForRedeclaration);
4005  Previous.setHideTags(false);
4006  if (S) {
4007    LookupName(Previous, S);
4008
4009    // It is really dumb that we have to do this.
4010    LookupResult::Filter F = Previous.makeFilter();
4011    while (F.hasNext()) {
4012      NamedDecl *D = F.next();
4013      if (!isDeclInScope(D, CurContext, S))
4014        F.erase();
4015    }
4016    F.done();
4017  } else {
4018    assert(IsInstantiation && "no scope in non-instantiation");
4019    assert(CurContext->isRecord() && "scope not record in instantiation");
4020    LookupQualifiedName(Previous, CurContext);
4021  }
4022
4023  NestedNameSpecifier *NNS =
4024    static_cast<NestedNameSpecifier *>(SS.getScopeRep());
4025
4026  // Check for invalid redeclarations.
4027  if (CheckUsingDeclRedeclaration(UsingLoc, IsTypeName, SS, IdentLoc, Previous))
4028    return 0;
4029
4030  // Check for bad qualifiers.
4031  if (CheckUsingDeclQualifier(UsingLoc, SS, IdentLoc))
4032    return 0;
4033
4034  DeclContext *LookupContext = computeDeclContext(SS);
4035  NamedDecl *D;
4036  if (!LookupContext) {
4037    if (IsTypeName) {
4038      // FIXME: not all declaration name kinds are legal here
4039      D = UnresolvedUsingTypenameDecl::Create(Context, CurContext,
4040                                              UsingLoc, TypenameLoc,
4041                                              SS.getRange(), NNS,
4042                                              IdentLoc, NameInfo.getName());
4043    } else {
4044      D = UnresolvedUsingValueDecl::Create(Context, CurContext,
4045                                           UsingLoc, SS.getRange(),
4046                                           NNS, NameInfo);
4047    }
4048  } else {
4049    D = UsingDecl::Create(Context, CurContext,
4050                          SS.getRange(), UsingLoc, NNS, NameInfo,
4051                          IsTypeName);
4052  }
4053  D->setAccess(AS);
4054  CurContext->addDecl(D);
4055
4056  if (!LookupContext) return D;
4057  UsingDecl *UD = cast<UsingDecl>(D);
4058
4059  if (RequireCompleteDeclContext(SS, LookupContext)) {
4060    UD->setInvalidDecl();
4061    return UD;
4062  }
4063
4064  // Look up the target name.
4065
4066  LookupResult R(*this, NameInfo, LookupOrdinaryName);
4067
4068  // Unlike most lookups, we don't always want to hide tag
4069  // declarations: tag names are visible through the using declaration
4070  // even if hidden by ordinary names, *except* in a dependent context
4071  // where it's important for the sanity of two-phase lookup.
4072  if (!IsInstantiation)
4073    R.setHideTags(false);
4074
4075  LookupQualifiedName(R, LookupContext);
4076
4077  if (R.empty()) {
4078    Diag(IdentLoc, diag::err_no_member)
4079      << NameInfo.getName() << LookupContext << SS.getRange();
4080    UD->setInvalidDecl();
4081    return UD;
4082  }
4083
4084  if (R.isAmbiguous()) {
4085    UD->setInvalidDecl();
4086    return UD;
4087  }
4088
4089  if (IsTypeName) {
4090    // If we asked for a typename and got a non-type decl, error out.
4091    if (!R.getAsSingle<TypeDecl>()) {
4092      Diag(IdentLoc, diag::err_using_typename_non_type);
4093      for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
4094        Diag((*I)->getUnderlyingDecl()->getLocation(),
4095             diag::note_using_decl_target);
4096      UD->setInvalidDecl();
4097      return UD;
4098    }
4099  } else {
4100    // If we asked for a non-typename and we got a type, error out,
4101    // but only if this is an instantiation of an unresolved using
4102    // decl.  Otherwise just silently find the type name.
4103    if (IsInstantiation && R.getAsSingle<TypeDecl>()) {
4104      Diag(IdentLoc, diag::err_using_dependent_value_is_type);
4105      Diag(R.getFoundDecl()->getLocation(), diag::note_using_decl_target);
4106      UD->setInvalidDecl();
4107      return UD;
4108    }
4109  }
4110
4111  // C++0x N2914 [namespace.udecl]p6:
4112  // A using-declaration shall not name a namespace.
4113  if (R.getAsSingle<NamespaceDecl>()) {
4114    Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_namespace)
4115      << SS.getRange();
4116    UD->setInvalidDecl();
4117    return UD;
4118  }
4119
4120  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
4121    if (!CheckUsingShadowDecl(UD, *I, Previous))
4122      BuildUsingShadowDecl(S, UD, *I);
4123  }
4124
4125  return UD;
4126}
4127
4128/// Checks that the given using declaration is not an invalid
4129/// redeclaration.  Note that this is checking only for the using decl
4130/// itself, not for any ill-formedness among the UsingShadowDecls.
4131bool Sema::CheckUsingDeclRedeclaration(SourceLocation UsingLoc,
4132                                       bool isTypeName,
4133                                       const CXXScopeSpec &SS,
4134                                       SourceLocation NameLoc,
4135                                       const LookupResult &Prev) {
4136  // C++03 [namespace.udecl]p8:
4137  // C++0x [namespace.udecl]p10:
4138  //   A using-declaration is a declaration and can therefore be used
4139  //   repeatedly where (and only where) multiple declarations are
4140  //   allowed.
4141  //
4142  // That's in non-member contexts.
4143  if (!CurContext->getRedeclContext()->isRecord())
4144    return false;
4145
4146  NestedNameSpecifier *Qual
4147    = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
4148
4149  for (LookupResult::iterator I = Prev.begin(), E = Prev.end(); I != E; ++I) {
4150    NamedDecl *D = *I;
4151
4152    bool DTypename;
4153    NestedNameSpecifier *DQual;
4154    if (UsingDecl *UD = dyn_cast<UsingDecl>(D)) {
4155      DTypename = UD->isTypeName();
4156      DQual = UD->getTargetNestedNameDecl();
4157    } else if (UnresolvedUsingValueDecl *UD
4158                 = dyn_cast<UnresolvedUsingValueDecl>(D)) {
4159      DTypename = false;
4160      DQual = UD->getTargetNestedNameSpecifier();
4161    } else if (UnresolvedUsingTypenameDecl *UD
4162                 = dyn_cast<UnresolvedUsingTypenameDecl>(D)) {
4163      DTypename = true;
4164      DQual = UD->getTargetNestedNameSpecifier();
4165    } else continue;
4166
4167    // using decls differ if one says 'typename' and the other doesn't.
4168    // FIXME: non-dependent using decls?
4169    if (isTypeName != DTypename) continue;
4170
4171    // using decls differ if they name different scopes (but note that
4172    // template instantiation can cause this check to trigger when it
4173    // didn't before instantiation).
4174    if (Context.getCanonicalNestedNameSpecifier(Qual) !=
4175        Context.getCanonicalNestedNameSpecifier(DQual))
4176      continue;
4177
4178    Diag(NameLoc, diag::err_using_decl_redeclaration) << SS.getRange();
4179    Diag(D->getLocation(), diag::note_using_decl) << 1;
4180    return true;
4181  }
4182
4183  return false;
4184}
4185
4186
4187/// Checks that the given nested-name qualifier used in a using decl
4188/// in the current context is appropriately related to the current
4189/// scope.  If an error is found, diagnoses it and returns true.
4190bool Sema::CheckUsingDeclQualifier(SourceLocation UsingLoc,
4191                                   const CXXScopeSpec &SS,
4192                                   SourceLocation NameLoc) {
4193  DeclContext *NamedContext = computeDeclContext(SS);
4194
4195  if (!CurContext->isRecord()) {
4196    // C++03 [namespace.udecl]p3:
4197    // C++0x [namespace.udecl]p8:
4198    //   A using-declaration for a class member shall be a member-declaration.
4199
4200    // If we weren't able to compute a valid scope, it must be a
4201    // dependent class scope.
4202    if (!NamedContext || NamedContext->isRecord()) {
4203      Diag(NameLoc, diag::err_using_decl_can_not_refer_to_class_member)
4204        << SS.getRange();
4205      return true;
4206    }
4207
4208    // Otherwise, everything is known to be fine.
4209    return false;
4210  }
4211
4212  // The current scope is a record.
4213
4214  // If the named context is dependent, we can't decide much.
4215  if (!NamedContext) {
4216    // FIXME: in C++0x, we can diagnose if we can prove that the
4217    // nested-name-specifier does not refer to a base class, which is
4218    // still possible in some cases.
4219
4220    // Otherwise we have to conservatively report that things might be
4221    // okay.
4222    return false;
4223  }
4224
4225  if (!NamedContext->isRecord()) {
4226    // Ideally this would point at the last name in the specifier,
4227    // but we don't have that level of source info.
4228    Diag(SS.getRange().getBegin(),
4229         diag::err_using_decl_nested_name_specifier_is_not_class)
4230      << (NestedNameSpecifier*) SS.getScopeRep() << SS.getRange();
4231    return true;
4232  }
4233
4234  if (!NamedContext->isDependentContext() &&
4235      RequireCompleteDeclContext(const_cast<CXXScopeSpec&>(SS), NamedContext))
4236    return true;
4237
4238  if (getLangOptions().CPlusPlus0x) {
4239    // C++0x [namespace.udecl]p3:
4240    //   In a using-declaration used as a member-declaration, the
4241    //   nested-name-specifier shall name a base class of the class
4242    //   being defined.
4243
4244    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(
4245                                 cast<CXXRecordDecl>(NamedContext))) {
4246      if (CurContext == NamedContext) {
4247        Diag(NameLoc,
4248             diag::err_using_decl_nested_name_specifier_is_current_class)
4249          << SS.getRange();
4250        return true;
4251      }
4252
4253      Diag(SS.getRange().getBegin(),
4254           diag::err_using_decl_nested_name_specifier_is_not_base_class)
4255        << (NestedNameSpecifier*) SS.getScopeRep()
4256        << cast<CXXRecordDecl>(CurContext)
4257        << SS.getRange();
4258      return true;
4259    }
4260
4261    return false;
4262  }
4263
4264  // C++03 [namespace.udecl]p4:
4265  //   A using-declaration used as a member-declaration shall refer
4266  //   to a member of a base class of the class being defined [etc.].
4267
4268  // Salient point: SS doesn't have to name a base class as long as
4269  // lookup only finds members from base classes.  Therefore we can
4270  // diagnose here only if we can prove that that can't happen,
4271  // i.e. if the class hierarchies provably don't intersect.
4272
4273  // TODO: it would be nice if "definitely valid" results were cached
4274  // in the UsingDecl and UsingShadowDecl so that these checks didn't
4275  // need to be repeated.
4276
4277  struct UserData {
4278    llvm::DenseSet<const CXXRecordDecl*> Bases;
4279
4280    static bool collect(const CXXRecordDecl *Base, void *OpaqueData) {
4281      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
4282      Data->Bases.insert(Base);
4283      return true;
4284    }
4285
4286    bool hasDependentBases(const CXXRecordDecl *Class) {
4287      return !Class->forallBases(collect, this);
4288    }
4289
4290    /// Returns true if the base is dependent or is one of the
4291    /// accumulated base classes.
4292    static bool doesNotContain(const CXXRecordDecl *Base, void *OpaqueData) {
4293      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
4294      return !Data->Bases.count(Base);
4295    }
4296
4297    bool mightShareBases(const CXXRecordDecl *Class) {
4298      return Bases.count(Class) || !Class->forallBases(doesNotContain, this);
4299    }
4300  };
4301
4302  UserData Data;
4303
4304  // Returns false if we find a dependent base.
4305  if (Data.hasDependentBases(cast<CXXRecordDecl>(CurContext)))
4306    return false;
4307
4308  // Returns false if the class has a dependent base or if it or one
4309  // of its bases is present in the base set of the current context.
4310  if (Data.mightShareBases(cast<CXXRecordDecl>(NamedContext)))
4311    return false;
4312
4313  Diag(SS.getRange().getBegin(),
4314       diag::err_using_decl_nested_name_specifier_is_not_base_class)
4315    << (NestedNameSpecifier*) SS.getScopeRep()
4316    << cast<CXXRecordDecl>(CurContext)
4317    << SS.getRange();
4318
4319  return true;
4320}
4321
4322Decl *Sema::ActOnNamespaceAliasDef(Scope *S,
4323                                             SourceLocation NamespaceLoc,
4324                                             SourceLocation AliasLoc,
4325                                             IdentifierInfo *Alias,
4326                                             CXXScopeSpec &SS,
4327                                             SourceLocation IdentLoc,
4328                                             IdentifierInfo *Ident) {
4329
4330  // Lookup the namespace name.
4331  LookupResult R(*this, Ident, IdentLoc, LookupNamespaceName);
4332  LookupParsedName(R, S, &SS);
4333
4334  // Check if we have a previous declaration with the same name.
4335  NamedDecl *PrevDecl
4336    = LookupSingleName(S, Alias, AliasLoc, LookupOrdinaryName,
4337                       ForRedeclaration);
4338  if (PrevDecl && !isDeclInScope(PrevDecl, CurContext, S))
4339    PrevDecl = 0;
4340
4341  if (PrevDecl) {
4342    if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) {
4343      // We already have an alias with the same name that points to the same
4344      // namespace, so don't create a new one.
4345      // FIXME: At some point, we'll want to create the (redundant)
4346      // declaration to maintain better source information.
4347      if (!R.isAmbiguous() && !R.empty() &&
4348          AD->getNamespace()->Equals(getNamespaceDecl(R.getFoundDecl())))
4349        return 0;
4350    }
4351
4352    unsigned DiagID = isa<NamespaceDecl>(PrevDecl) ? diag::err_redefinition :
4353      diag::err_redefinition_different_kind;
4354    Diag(AliasLoc, DiagID) << Alias;
4355    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
4356    return 0;
4357  }
4358
4359  if (R.isAmbiguous())
4360    return 0;
4361
4362  if (R.empty()) {
4363    if (DeclarationName Corrected = CorrectTypo(R, S, &SS, 0, false,
4364                                                CTC_NoKeywords, 0)) {
4365      if (R.getAsSingle<NamespaceDecl>() ||
4366          R.getAsSingle<NamespaceAliasDecl>()) {
4367        if (DeclContext *DC = computeDeclContext(SS, false))
4368          Diag(IdentLoc, diag::err_using_directive_member_suggest)
4369            << Ident << DC << Corrected << SS.getRange()
4370            << FixItHint::CreateReplacement(IdentLoc, Corrected.getAsString());
4371        else
4372          Diag(IdentLoc, diag::err_using_directive_suggest)
4373            << Ident << Corrected
4374            << FixItHint::CreateReplacement(IdentLoc, Corrected.getAsString());
4375
4376        Diag(R.getFoundDecl()->getLocation(), diag::note_namespace_defined_here)
4377          << Corrected;
4378
4379        Ident = Corrected.getAsIdentifierInfo();
4380      } else {
4381        R.clear();
4382        R.setLookupName(Ident);
4383      }
4384    }
4385
4386    if (R.empty()) {
4387      Diag(NamespaceLoc, diag::err_expected_namespace_name) << SS.getRange();
4388      return 0;
4389    }
4390  }
4391
4392  NamespaceAliasDecl *AliasDecl =
4393    NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc,
4394                               Alias, SS.getRange(),
4395                               (NestedNameSpecifier *)SS.getScopeRep(),
4396                               IdentLoc, R.getFoundDecl());
4397
4398  PushOnScopeChains(AliasDecl, S);
4399  return AliasDecl;
4400}
4401
4402namespace {
4403  /// \brief Scoped object used to handle the state changes required in Sema
4404  /// to implicitly define the body of a C++ member function;
4405  class ImplicitlyDefinedFunctionScope {
4406    Sema &S;
4407    DeclContext *PreviousContext;
4408
4409  public:
4410    ImplicitlyDefinedFunctionScope(Sema &S, CXXMethodDecl *Method)
4411      : S(S), PreviousContext(S.CurContext)
4412    {
4413      S.CurContext = Method;
4414      S.PushFunctionScope();
4415      S.PushExpressionEvaluationContext(Sema::PotentiallyEvaluated);
4416    }
4417
4418    ~ImplicitlyDefinedFunctionScope() {
4419      S.PopExpressionEvaluationContext();
4420      S.PopFunctionOrBlockScope();
4421      S.CurContext = PreviousContext;
4422    }
4423  };
4424}
4425
4426static CXXConstructorDecl *getDefaultConstructorUnsafe(Sema &Self,
4427                                                       CXXRecordDecl *D) {
4428  ASTContext &Context = Self.Context;
4429  QualType ClassType = Context.getTypeDeclType(D);
4430  DeclarationName ConstructorName
4431    = Context.DeclarationNames.getCXXConstructorName(
4432                      Context.getCanonicalType(ClassType.getUnqualifiedType()));
4433
4434  DeclContext::lookup_const_iterator Con, ConEnd;
4435  for (llvm::tie(Con, ConEnd) = D->lookup(ConstructorName);
4436       Con != ConEnd; ++Con) {
4437    // FIXME: In C++0x, a constructor template can be a default constructor.
4438    if (isa<FunctionTemplateDecl>(*Con))
4439      continue;
4440
4441    CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
4442    if (Constructor->isDefaultConstructor())
4443      return Constructor;
4444  }
4445  return 0;
4446}
4447
4448CXXConstructorDecl *Sema::DeclareImplicitDefaultConstructor(
4449                                                     CXXRecordDecl *ClassDecl) {
4450  // C++ [class.ctor]p5:
4451  //   A default constructor for a class X is a constructor of class X
4452  //   that can be called without an argument. If there is no
4453  //   user-declared constructor for class X, a default constructor is
4454  //   implicitly declared. An implicitly-declared default constructor
4455  //   is an inline public member of its class.
4456  assert(!ClassDecl->hasUserDeclaredConstructor() &&
4457         "Should not build implicit default constructor!");
4458
4459  // C++ [except.spec]p14:
4460  //   An implicitly declared special member function (Clause 12) shall have an
4461  //   exception-specification. [...]
4462  ImplicitExceptionSpecification ExceptSpec(Context);
4463
4464  // Direct base-class destructors.
4465  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
4466                                       BEnd = ClassDecl->bases_end();
4467       B != BEnd; ++B) {
4468    if (B->isVirtual()) // Handled below.
4469      continue;
4470
4471    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
4472      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
4473      if (!BaseClassDecl->hasDeclaredDefaultConstructor())
4474        ExceptSpec.CalledDecl(DeclareImplicitDefaultConstructor(BaseClassDecl));
4475      else if (CXXConstructorDecl *Constructor
4476                            = getDefaultConstructorUnsafe(*this, BaseClassDecl))
4477        ExceptSpec.CalledDecl(Constructor);
4478    }
4479  }
4480
4481  // Virtual base-class destructors.
4482  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
4483                                       BEnd = ClassDecl->vbases_end();
4484       B != BEnd; ++B) {
4485    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
4486      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
4487      if (!BaseClassDecl->hasDeclaredDefaultConstructor())
4488        ExceptSpec.CalledDecl(DeclareImplicitDefaultConstructor(BaseClassDecl));
4489      else if (CXXConstructorDecl *Constructor
4490                            = getDefaultConstructorUnsafe(*this, BaseClassDecl))
4491        ExceptSpec.CalledDecl(Constructor);
4492    }
4493  }
4494
4495  // Field destructors.
4496  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
4497                               FEnd = ClassDecl->field_end();
4498       F != FEnd; ++F) {
4499    if (const RecordType *RecordTy
4500              = Context.getBaseElementType(F->getType())->getAs<RecordType>()) {
4501      CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
4502      if (!FieldClassDecl->hasDeclaredDefaultConstructor())
4503        ExceptSpec.CalledDecl(
4504                            DeclareImplicitDefaultConstructor(FieldClassDecl));
4505      else if (CXXConstructorDecl *Constructor
4506                           = getDefaultConstructorUnsafe(*this, FieldClassDecl))
4507        ExceptSpec.CalledDecl(Constructor);
4508    }
4509  }
4510
4511  FunctionProtoType::ExtProtoInfo EPI;
4512  EPI.HasExceptionSpec = ExceptSpec.hasExceptionSpecification();
4513  EPI.HasAnyExceptionSpec = ExceptSpec.hasAnyExceptionSpecification();
4514  EPI.NumExceptions = ExceptSpec.size();
4515  EPI.Exceptions = ExceptSpec.data();
4516
4517  // Create the actual constructor declaration.
4518  CanQualType ClassType
4519    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
4520  DeclarationName Name
4521    = Context.DeclarationNames.getCXXConstructorName(ClassType);
4522  DeclarationNameInfo NameInfo(Name, ClassDecl->getLocation());
4523  CXXConstructorDecl *DefaultCon
4524    = CXXConstructorDecl::Create(Context, ClassDecl, NameInfo,
4525                                 Context.getFunctionType(Context.VoidTy,
4526                                                         0, 0, EPI),
4527                                 /*TInfo=*/0,
4528                                 /*isExplicit=*/false,
4529                                 /*isInline=*/true,
4530                                 /*isImplicitlyDeclared=*/true);
4531  DefaultCon->setAccess(AS_public);
4532  DefaultCon->setImplicit();
4533  DefaultCon->setTrivial(ClassDecl->hasTrivialConstructor());
4534
4535  // Note that we have declared this constructor.
4536  ++ASTContext::NumImplicitDefaultConstructorsDeclared;
4537
4538  if (Scope *S = getScopeForContext(ClassDecl))
4539    PushOnScopeChains(DefaultCon, S, false);
4540  ClassDecl->addDecl(DefaultCon);
4541
4542  return DefaultCon;
4543}
4544
4545void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,
4546                                            CXXConstructorDecl *Constructor) {
4547  assert((Constructor->isImplicit() && Constructor->isDefaultConstructor() &&
4548          !Constructor->isUsed(false)) &&
4549    "DefineImplicitDefaultConstructor - call it for implicit default ctor");
4550
4551  CXXRecordDecl *ClassDecl = Constructor->getParent();
4552  assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor");
4553
4554  ImplicitlyDefinedFunctionScope Scope(*this, Constructor);
4555  DiagnosticErrorTrap Trap(Diags);
4556  if (SetCtorInitializers(Constructor, 0, 0, /*AnyErrors=*/false) ||
4557      Trap.hasErrorOccurred()) {
4558    Diag(CurrentLocation, diag::note_member_synthesized_at)
4559      << CXXConstructor << Context.getTagDeclType(ClassDecl);
4560    Constructor->setInvalidDecl();
4561    return;
4562  }
4563
4564  SourceLocation Loc = Constructor->getLocation();
4565  Constructor->setBody(new (Context) CompoundStmt(Context, 0, 0, Loc, Loc));
4566
4567  Constructor->setUsed();
4568  MarkVTableUsed(CurrentLocation, ClassDecl);
4569}
4570
4571CXXDestructorDecl *Sema::DeclareImplicitDestructor(CXXRecordDecl *ClassDecl) {
4572  // C++ [class.dtor]p2:
4573  //   If a class has no user-declared destructor, a destructor is
4574  //   declared implicitly. An implicitly-declared destructor is an
4575  //   inline public member of its class.
4576
4577  // C++ [except.spec]p14:
4578  //   An implicitly declared special member function (Clause 12) shall have
4579  //   an exception-specification.
4580  ImplicitExceptionSpecification ExceptSpec(Context);
4581
4582  // Direct base-class destructors.
4583  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
4584                                       BEnd = ClassDecl->bases_end();
4585       B != BEnd; ++B) {
4586    if (B->isVirtual()) // Handled below.
4587      continue;
4588
4589    if (const RecordType *BaseType = B->getType()->getAs<RecordType>())
4590      ExceptSpec.CalledDecl(
4591                    LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
4592  }
4593
4594  // Virtual base-class destructors.
4595  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
4596                                       BEnd = ClassDecl->vbases_end();
4597       B != BEnd; ++B) {
4598    if (const RecordType *BaseType = B->getType()->getAs<RecordType>())
4599      ExceptSpec.CalledDecl(
4600                    LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
4601  }
4602
4603  // Field destructors.
4604  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
4605                               FEnd = ClassDecl->field_end();
4606       F != FEnd; ++F) {
4607    if (const RecordType *RecordTy
4608        = Context.getBaseElementType(F->getType())->getAs<RecordType>())
4609      ExceptSpec.CalledDecl(
4610                    LookupDestructor(cast<CXXRecordDecl>(RecordTy->getDecl())));
4611  }
4612
4613  // Create the actual destructor declaration.
4614  FunctionProtoType::ExtProtoInfo EPI;
4615  EPI.HasExceptionSpec = ExceptSpec.hasExceptionSpecification();
4616  EPI.HasAnyExceptionSpec = ExceptSpec.hasAnyExceptionSpecification();
4617  EPI.NumExceptions = ExceptSpec.size();
4618  EPI.Exceptions = ExceptSpec.data();
4619  QualType Ty = Context.getFunctionType(Context.VoidTy, 0, 0, EPI);
4620
4621  CanQualType ClassType
4622    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
4623  DeclarationName Name
4624    = Context.DeclarationNames.getCXXDestructorName(ClassType);
4625  DeclarationNameInfo NameInfo(Name, ClassDecl->getLocation());
4626  CXXDestructorDecl *Destructor
4627      = CXXDestructorDecl::Create(Context, ClassDecl, NameInfo, Ty, 0,
4628                                /*isInline=*/true,
4629                                /*isImplicitlyDeclared=*/true);
4630  Destructor->setAccess(AS_public);
4631  Destructor->setImplicit();
4632  Destructor->setTrivial(ClassDecl->hasTrivialDestructor());
4633
4634  // Note that we have declared this destructor.
4635  ++ASTContext::NumImplicitDestructorsDeclared;
4636
4637  // Introduce this destructor into its scope.
4638  if (Scope *S = getScopeForContext(ClassDecl))
4639    PushOnScopeChains(Destructor, S, false);
4640  ClassDecl->addDecl(Destructor);
4641
4642  // This could be uniqued if it ever proves significant.
4643  Destructor->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(Ty));
4644
4645  AddOverriddenMethods(ClassDecl, Destructor);
4646
4647  return Destructor;
4648}
4649
4650void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation,
4651                                    CXXDestructorDecl *Destructor) {
4652  assert((Destructor->isImplicit() && !Destructor->isUsed(false)) &&
4653         "DefineImplicitDestructor - call it for implicit default dtor");
4654  CXXRecordDecl *ClassDecl = Destructor->getParent();
4655  assert(ClassDecl && "DefineImplicitDestructor - invalid destructor");
4656
4657  if (Destructor->isInvalidDecl())
4658    return;
4659
4660  ImplicitlyDefinedFunctionScope Scope(*this, Destructor);
4661
4662  DiagnosticErrorTrap Trap(Diags);
4663  MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
4664                                         Destructor->getParent());
4665
4666  if (CheckDestructor(Destructor) || Trap.hasErrorOccurred()) {
4667    Diag(CurrentLocation, diag::note_member_synthesized_at)
4668      << CXXDestructor << Context.getTagDeclType(ClassDecl);
4669
4670    Destructor->setInvalidDecl();
4671    return;
4672  }
4673
4674  SourceLocation Loc = Destructor->getLocation();
4675  Destructor->setBody(new (Context) CompoundStmt(Context, 0, 0, Loc, Loc));
4676
4677  Destructor->setUsed();
4678  MarkVTableUsed(CurrentLocation, ClassDecl);
4679}
4680
4681/// \brief Builds a statement that copies the given entity from \p From to
4682/// \c To.
4683///
4684/// This routine is used to copy the members of a class with an
4685/// implicitly-declared copy assignment operator. When the entities being
4686/// copied are arrays, this routine builds for loops to copy them.
4687///
4688/// \param S The Sema object used for type-checking.
4689///
4690/// \param Loc The location where the implicit copy is being generated.
4691///
4692/// \param T The type of the expressions being copied. Both expressions must
4693/// have this type.
4694///
4695/// \param To The expression we are copying to.
4696///
4697/// \param From The expression we are copying from.
4698///
4699/// \param CopyingBaseSubobject Whether we're copying a base subobject.
4700/// Otherwise, it's a non-static member subobject.
4701///
4702/// \param Depth Internal parameter recording the depth of the recursion.
4703///
4704/// \returns A statement or a loop that copies the expressions.
4705static StmtResult
4706BuildSingleCopyAssign(Sema &S, SourceLocation Loc, QualType T,
4707                      Expr *To, Expr *From,
4708                      bool CopyingBaseSubobject, unsigned Depth = 0) {
4709  // C++0x [class.copy]p30:
4710  //   Each subobject is assigned in the manner appropriate to its type:
4711  //
4712  //     - if the subobject is of class type, the copy assignment operator
4713  //       for the class is used (as if by explicit qualification; that is,
4714  //       ignoring any possible virtual overriding functions in more derived
4715  //       classes);
4716  if (const RecordType *RecordTy = T->getAs<RecordType>()) {
4717    CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
4718
4719    // Look for operator=.
4720    DeclarationName Name
4721      = S.Context.DeclarationNames.getCXXOperatorName(OO_Equal);
4722    LookupResult OpLookup(S, Name, Loc, Sema::LookupOrdinaryName);
4723    S.LookupQualifiedName(OpLookup, ClassDecl, false);
4724
4725    // Filter out any result that isn't a copy-assignment operator.
4726    LookupResult::Filter F = OpLookup.makeFilter();
4727    while (F.hasNext()) {
4728      NamedDecl *D = F.next();
4729      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
4730        if (Method->isCopyAssignmentOperator())
4731          continue;
4732
4733      F.erase();
4734    }
4735    F.done();
4736
4737    // Suppress the protected check (C++ [class.protected]) for each of the
4738    // assignment operators we found. This strange dance is required when
4739    // we're assigning via a base classes's copy-assignment operator. To
4740    // ensure that we're getting the right base class subobject (without
4741    // ambiguities), we need to cast "this" to that subobject type; to
4742    // ensure that we don't go through the virtual call mechanism, we need
4743    // to qualify the operator= name with the base class (see below). However,
4744    // this means that if the base class has a protected copy assignment
4745    // operator, the protected member access check will fail. So, we
4746    // rewrite "protected" access to "public" access in this case, since we
4747    // know by construction that we're calling from a derived class.
4748    if (CopyingBaseSubobject) {
4749      for (LookupResult::iterator L = OpLookup.begin(), LEnd = OpLookup.end();
4750           L != LEnd; ++L) {
4751        if (L.getAccess() == AS_protected)
4752          L.setAccess(AS_public);
4753      }
4754    }
4755
4756    // Create the nested-name-specifier that will be used to qualify the
4757    // reference to operator=; this is required to suppress the virtual
4758    // call mechanism.
4759    CXXScopeSpec SS;
4760    SS.setRange(Loc);
4761    SS.setScopeRep(NestedNameSpecifier::Create(S.Context, 0, false,
4762                                               T.getTypePtr()));
4763
4764    // Create the reference to operator=.
4765    ExprResult OpEqualRef
4766      = S.BuildMemberReferenceExpr(To, T, Loc, /*isArrow=*/false, SS,
4767                                   /*FirstQualifierInScope=*/0, OpLookup,
4768                                   /*TemplateArgs=*/0,
4769                                   /*SuppressQualifierCheck=*/true);
4770    if (OpEqualRef.isInvalid())
4771      return StmtError();
4772
4773    // Build the call to the assignment operator.
4774
4775    ExprResult Call = S.BuildCallToMemberFunction(/*Scope=*/0,
4776                                                  OpEqualRef.takeAs<Expr>(),
4777                                                  Loc, &From, 1, Loc);
4778    if (Call.isInvalid())
4779      return StmtError();
4780
4781    return S.Owned(Call.takeAs<Stmt>());
4782  }
4783
4784  //     - if the subobject is of scalar type, the built-in assignment
4785  //       operator is used.
4786  const ConstantArrayType *ArrayTy = S.Context.getAsConstantArrayType(T);
4787  if (!ArrayTy) {
4788    ExprResult Assignment = S.CreateBuiltinBinOp(Loc, BO_Assign, To, From);
4789    if (Assignment.isInvalid())
4790      return StmtError();
4791
4792    return S.Owned(Assignment.takeAs<Stmt>());
4793  }
4794
4795  //     - if the subobject is an array, each element is assigned, in the
4796  //       manner appropriate to the element type;
4797
4798  // Construct a loop over the array bounds, e.g.,
4799  //
4800  //   for (__SIZE_TYPE__ i0 = 0; i0 != array-size; ++i0)
4801  //
4802  // that will copy each of the array elements.
4803  QualType SizeType = S.Context.getSizeType();
4804
4805  // Create the iteration variable.
4806  IdentifierInfo *IterationVarName = 0;
4807  {
4808    llvm::SmallString<8> Str;
4809    llvm::raw_svector_ostream OS(Str);
4810    OS << "__i" << Depth;
4811    IterationVarName = &S.Context.Idents.get(OS.str());
4812  }
4813  VarDecl *IterationVar = VarDecl::Create(S.Context, S.CurContext, Loc,
4814                                          IterationVarName, SizeType,
4815                            S.Context.getTrivialTypeSourceInfo(SizeType, Loc),
4816                                          SC_None, SC_None);
4817
4818  // Initialize the iteration variable to zero.
4819  llvm::APInt Zero(S.Context.getTypeSize(SizeType), 0);
4820  IterationVar->setInit(IntegerLiteral::Create(S.Context, Zero, SizeType, Loc));
4821
4822  // Create a reference to the iteration variable; we'll use this several
4823  // times throughout.
4824  Expr *IterationVarRef
4825    = S.BuildDeclRefExpr(IterationVar, SizeType, VK_RValue, Loc).take();
4826  assert(IterationVarRef && "Reference to invented variable cannot fail!");
4827
4828  // Create the DeclStmt that holds the iteration variable.
4829  Stmt *InitStmt = new (S.Context) DeclStmt(DeclGroupRef(IterationVar),Loc,Loc);
4830
4831  // Create the comparison against the array bound.
4832  llvm::APInt Upper
4833    = ArrayTy->getSize().zextOrTrunc(S.Context.getTypeSize(SizeType));
4834  Expr *Comparison
4835    = new (S.Context) BinaryOperator(IterationVarRef,
4836                     IntegerLiteral::Create(S.Context, Upper, SizeType, Loc),
4837                                     BO_NE, S.Context.BoolTy,
4838                                     VK_RValue, OK_Ordinary, Loc);
4839
4840  // Create the pre-increment of the iteration variable.
4841  Expr *Increment
4842    = new (S.Context) UnaryOperator(IterationVarRef, UO_PreInc, SizeType,
4843                                    VK_LValue, OK_Ordinary, Loc);
4844
4845  // Subscript the "from" and "to" expressions with the iteration variable.
4846  From = AssertSuccess(S.CreateBuiltinArraySubscriptExpr(From, Loc,
4847                                                         IterationVarRef, Loc));
4848  To = AssertSuccess(S.CreateBuiltinArraySubscriptExpr(To, Loc,
4849                                                       IterationVarRef, Loc));
4850
4851  // Build the copy for an individual element of the array.
4852  StmtResult Copy = BuildSingleCopyAssign(S, Loc, ArrayTy->getElementType(),
4853                                          To, From, CopyingBaseSubobject,
4854                                          Depth + 1);
4855  if (Copy.isInvalid())
4856    return StmtError();
4857
4858  // Construct the loop that copies all elements of this array.
4859  return S.ActOnForStmt(Loc, Loc, InitStmt,
4860                        S.MakeFullExpr(Comparison),
4861                        0, S.MakeFullExpr(Increment),
4862                        Loc, Copy.take());
4863}
4864
4865/// \brief Determine whether the given class has a copy assignment operator
4866/// that accepts a const-qualified argument.
4867static bool hasConstCopyAssignment(Sema &S, const CXXRecordDecl *CClass) {
4868  CXXRecordDecl *Class = const_cast<CXXRecordDecl *>(CClass);
4869
4870  if (!Class->hasDeclaredCopyAssignment())
4871    S.DeclareImplicitCopyAssignment(Class);
4872
4873  QualType ClassType = S.Context.getCanonicalType(S.Context.getTypeDeclType(Class));
4874  DeclarationName OpName
4875    = S.Context.DeclarationNames.getCXXOperatorName(OO_Equal);
4876
4877  DeclContext::lookup_const_iterator Op, OpEnd;
4878  for (llvm::tie(Op, OpEnd) = Class->lookup(OpName); Op != OpEnd; ++Op) {
4879    // C++ [class.copy]p9:
4880    //   A user-declared copy assignment operator is a non-static non-template
4881    //   member function of class X with exactly one parameter of type X, X&,
4882    //   const X&, volatile X& or const volatile X&.
4883    const CXXMethodDecl* Method = dyn_cast<CXXMethodDecl>(*Op);
4884    if (!Method)
4885      continue;
4886
4887    if (Method->isStatic())
4888      continue;
4889    if (Method->getPrimaryTemplate())
4890      continue;
4891    const FunctionProtoType *FnType =
4892    Method->getType()->getAs<FunctionProtoType>();
4893    assert(FnType && "Overloaded operator has no prototype.");
4894    // Don't assert on this; an invalid decl might have been left in the AST.
4895    if (FnType->getNumArgs() != 1 || FnType->isVariadic())
4896      continue;
4897    bool AcceptsConst = true;
4898    QualType ArgType = FnType->getArgType(0);
4899    if (const LValueReferenceType *Ref = ArgType->getAs<LValueReferenceType>()){
4900      ArgType = Ref->getPointeeType();
4901      // Is it a non-const lvalue reference?
4902      if (!ArgType.isConstQualified())
4903        AcceptsConst = false;
4904    }
4905    if (!S.Context.hasSameUnqualifiedType(ArgType, ClassType))
4906      continue;
4907
4908    // We have a single argument of type cv X or cv X&, i.e. we've found the
4909    // copy assignment operator. Return whether it accepts const arguments.
4910    return AcceptsConst;
4911  }
4912  assert(Class->isInvalidDecl() &&
4913         "No copy assignment operator declared in valid code.");
4914  return false;
4915}
4916
4917CXXMethodDecl *Sema::DeclareImplicitCopyAssignment(CXXRecordDecl *ClassDecl) {
4918  // Note: The following rules are largely analoguous to the copy
4919  // constructor rules. Note that virtual bases are not taken into account
4920  // for determining the argument type of the operator. Note also that
4921  // operators taking an object instead of a reference are allowed.
4922
4923
4924  // C++ [class.copy]p10:
4925  //   If the class definition does not explicitly declare a copy
4926  //   assignment operator, one is declared implicitly.
4927  //   The implicitly-defined copy assignment operator for a class X
4928  //   will have the form
4929  //
4930  //       X& X::operator=(const X&)
4931  //
4932  //   if
4933  bool HasConstCopyAssignment = true;
4934
4935  //       -- each direct base class B of X has a copy assignment operator
4936  //          whose parameter is of type const B&, const volatile B& or B,
4937  //          and
4938  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
4939                                       BaseEnd = ClassDecl->bases_end();
4940       HasConstCopyAssignment && Base != BaseEnd; ++Base) {
4941    assert(!Base->getType()->isDependentType() &&
4942           "Cannot generate implicit members for class with dependent bases.");
4943    const CXXRecordDecl *BaseClassDecl
4944      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
4945    HasConstCopyAssignment = hasConstCopyAssignment(*this, BaseClassDecl);
4946  }
4947
4948  //       -- for all the nonstatic data members of X that are of a class
4949  //          type M (or array thereof), each such class type has a copy
4950  //          assignment operator whose parameter is of type const M&,
4951  //          const volatile M& or M.
4952  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
4953                                  FieldEnd = ClassDecl->field_end();
4954       HasConstCopyAssignment && Field != FieldEnd;
4955       ++Field) {
4956    QualType FieldType = Context.getBaseElementType((*Field)->getType());
4957    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
4958      const CXXRecordDecl *FieldClassDecl
4959        = cast<CXXRecordDecl>(FieldClassType->getDecl());
4960      HasConstCopyAssignment = hasConstCopyAssignment(*this, FieldClassDecl);
4961    }
4962  }
4963
4964  //   Otherwise, the implicitly declared copy assignment operator will
4965  //   have the form
4966  //
4967  //       X& X::operator=(X&)
4968  QualType ArgType = Context.getTypeDeclType(ClassDecl);
4969  QualType RetType = Context.getLValueReferenceType(ArgType);
4970  if (HasConstCopyAssignment)
4971    ArgType = ArgType.withConst();
4972  ArgType = Context.getLValueReferenceType(ArgType);
4973
4974  // C++ [except.spec]p14:
4975  //   An implicitly declared special member function (Clause 12) shall have an
4976  //   exception-specification. [...]
4977  ImplicitExceptionSpecification ExceptSpec(Context);
4978  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
4979                                       BaseEnd = ClassDecl->bases_end();
4980       Base != BaseEnd; ++Base) {
4981    CXXRecordDecl *BaseClassDecl
4982      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
4983
4984    if (!BaseClassDecl->hasDeclaredCopyAssignment())
4985      DeclareImplicitCopyAssignment(BaseClassDecl);
4986
4987    if (CXXMethodDecl *CopyAssign
4988           = BaseClassDecl->getCopyAssignmentOperator(HasConstCopyAssignment))
4989      ExceptSpec.CalledDecl(CopyAssign);
4990  }
4991  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
4992                                  FieldEnd = ClassDecl->field_end();
4993       Field != FieldEnd;
4994       ++Field) {
4995    QualType FieldType = Context.getBaseElementType((*Field)->getType());
4996    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
4997      CXXRecordDecl *FieldClassDecl
4998        = cast<CXXRecordDecl>(FieldClassType->getDecl());
4999
5000      if (!FieldClassDecl->hasDeclaredCopyAssignment())
5001        DeclareImplicitCopyAssignment(FieldClassDecl);
5002
5003      if (CXXMethodDecl *CopyAssign
5004            = FieldClassDecl->getCopyAssignmentOperator(HasConstCopyAssignment))
5005        ExceptSpec.CalledDecl(CopyAssign);
5006    }
5007  }
5008
5009  //   An implicitly-declared copy assignment operator is an inline public
5010  //   member of its class.
5011  FunctionProtoType::ExtProtoInfo EPI;
5012  EPI.HasExceptionSpec = ExceptSpec.hasExceptionSpecification();
5013  EPI.HasAnyExceptionSpec = ExceptSpec.hasAnyExceptionSpecification();
5014  EPI.NumExceptions = ExceptSpec.size();
5015  EPI.Exceptions = ExceptSpec.data();
5016  DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
5017  DeclarationNameInfo NameInfo(Name, ClassDecl->getLocation());
5018  CXXMethodDecl *CopyAssignment
5019    = CXXMethodDecl::Create(Context, ClassDecl, NameInfo,
5020                            Context.getFunctionType(RetType, &ArgType, 1, EPI),
5021                            /*TInfo=*/0, /*isStatic=*/false,
5022                            /*StorageClassAsWritten=*/SC_None,
5023                            /*isInline=*/true);
5024  CopyAssignment->setAccess(AS_public);
5025  CopyAssignment->setImplicit();
5026  CopyAssignment->setTrivial(ClassDecl->hasTrivialCopyAssignment());
5027
5028  // Add the parameter to the operator.
5029  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment,
5030                                               ClassDecl->getLocation(),
5031                                               /*Id=*/0,
5032                                               ArgType, /*TInfo=*/0,
5033                                               SC_None,
5034                                               SC_None, 0);
5035  CopyAssignment->setParams(&FromParam, 1);
5036
5037  // Note that we have added this copy-assignment operator.
5038  ++ASTContext::NumImplicitCopyAssignmentOperatorsDeclared;
5039
5040  if (Scope *S = getScopeForContext(ClassDecl))
5041    PushOnScopeChains(CopyAssignment, S, false);
5042  ClassDecl->addDecl(CopyAssignment);
5043
5044  AddOverriddenMethods(ClassDecl, CopyAssignment);
5045  return CopyAssignment;
5046}
5047
5048void Sema::DefineImplicitCopyAssignment(SourceLocation CurrentLocation,
5049                                        CXXMethodDecl *CopyAssignOperator) {
5050  assert((CopyAssignOperator->isImplicit() &&
5051          CopyAssignOperator->isOverloadedOperator() &&
5052          CopyAssignOperator->getOverloadedOperator() == OO_Equal &&
5053          !CopyAssignOperator->isUsed(false)) &&
5054         "DefineImplicitCopyAssignment called for wrong function");
5055
5056  CXXRecordDecl *ClassDecl = CopyAssignOperator->getParent();
5057
5058  if (ClassDecl->isInvalidDecl() || CopyAssignOperator->isInvalidDecl()) {
5059    CopyAssignOperator->setInvalidDecl();
5060    return;
5061  }
5062
5063  CopyAssignOperator->setUsed();
5064
5065  ImplicitlyDefinedFunctionScope Scope(*this, CopyAssignOperator);
5066  DiagnosticErrorTrap Trap(Diags);
5067
5068  // C++0x [class.copy]p30:
5069  //   The implicitly-defined or explicitly-defaulted copy assignment operator
5070  //   for a non-union class X performs memberwise copy assignment of its
5071  //   subobjects. The direct base classes of X are assigned first, in the
5072  //   order of their declaration in the base-specifier-list, and then the
5073  //   immediate non-static data members of X are assigned, in the order in
5074  //   which they were declared in the class definition.
5075
5076  // The statements that form the synthesized function body.
5077  ASTOwningVector<Stmt*> Statements(*this);
5078
5079  // The parameter for the "other" object, which we are copying from.
5080  ParmVarDecl *Other = CopyAssignOperator->getParamDecl(0);
5081  Qualifiers OtherQuals = Other->getType().getQualifiers();
5082  QualType OtherRefType = Other->getType();
5083  if (const LValueReferenceType *OtherRef
5084                                = OtherRefType->getAs<LValueReferenceType>()) {
5085    OtherRefType = OtherRef->getPointeeType();
5086    OtherQuals = OtherRefType.getQualifiers();
5087  }
5088
5089  // Our location for everything implicitly-generated.
5090  SourceLocation Loc = CopyAssignOperator->getLocation();
5091
5092  // Construct a reference to the "other" object. We'll be using this
5093  // throughout the generated ASTs.
5094  Expr *OtherRef = BuildDeclRefExpr(Other, OtherRefType, VK_LValue, Loc).take();
5095  assert(OtherRef && "Reference to parameter cannot fail!");
5096
5097  // Construct the "this" pointer. We'll be using this throughout the generated
5098  // ASTs.
5099  Expr *This = ActOnCXXThis(Loc).takeAs<Expr>();
5100  assert(This && "Reference to this cannot fail!");
5101
5102  // Assign base classes.
5103  bool Invalid = false;
5104  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
5105       E = ClassDecl->bases_end(); Base != E; ++Base) {
5106    // Form the assignment:
5107    //   static_cast<Base*>(this)->Base::operator=(static_cast<Base&>(other));
5108    QualType BaseType = Base->getType().getUnqualifiedType();
5109    if (!BaseType->isRecordType()) {
5110      Invalid = true;
5111      continue;
5112    }
5113
5114    CXXCastPath BasePath;
5115    BasePath.push_back(Base);
5116
5117    // Construct the "from" expression, which is an implicit cast to the
5118    // appropriately-qualified base type.
5119    Expr *From = OtherRef;
5120    ImpCastExprToType(From, Context.getQualifiedType(BaseType, OtherQuals),
5121                      CK_UncheckedDerivedToBase,
5122                      VK_LValue, &BasePath);
5123
5124    // Dereference "this".
5125    ExprResult To = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
5126
5127    // Implicitly cast "this" to the appropriately-qualified base type.
5128    Expr *ToE = To.takeAs<Expr>();
5129    ImpCastExprToType(ToE,
5130                      Context.getCVRQualifiedType(BaseType,
5131                                      CopyAssignOperator->getTypeQualifiers()),
5132                      CK_UncheckedDerivedToBase,
5133                      VK_LValue, &BasePath);
5134    To = Owned(ToE);
5135
5136    // Build the copy.
5137    StmtResult Copy = BuildSingleCopyAssign(*this, Loc, BaseType,
5138                                            To.get(), From,
5139                                            /*CopyingBaseSubobject=*/true);
5140    if (Copy.isInvalid()) {
5141      Diag(CurrentLocation, diag::note_member_synthesized_at)
5142        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
5143      CopyAssignOperator->setInvalidDecl();
5144      return;
5145    }
5146
5147    // Success! Record the copy.
5148    Statements.push_back(Copy.takeAs<Expr>());
5149  }
5150
5151  // \brief Reference to the __builtin_memcpy function.
5152  Expr *BuiltinMemCpyRef = 0;
5153  // \brief Reference to the __builtin_objc_memmove_collectable function.
5154  Expr *CollectableMemCpyRef = 0;
5155
5156  // Assign non-static members.
5157  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
5158                                  FieldEnd = ClassDecl->field_end();
5159       Field != FieldEnd; ++Field) {
5160    // Check for members of reference type; we can't copy those.
5161    if (Field->getType()->isReferenceType()) {
5162      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
5163        << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
5164      Diag(Field->getLocation(), diag::note_declared_at);
5165      Diag(CurrentLocation, diag::note_member_synthesized_at)
5166        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
5167      Invalid = true;
5168      continue;
5169    }
5170
5171    // Check for members of const-qualified, non-class type.
5172    QualType BaseType = Context.getBaseElementType(Field->getType());
5173    if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) {
5174      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
5175        << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
5176      Diag(Field->getLocation(), diag::note_declared_at);
5177      Diag(CurrentLocation, diag::note_member_synthesized_at)
5178        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
5179      Invalid = true;
5180      continue;
5181    }
5182
5183    QualType FieldType = Field->getType().getNonReferenceType();
5184    if (FieldType->isIncompleteArrayType()) {
5185      assert(ClassDecl->hasFlexibleArrayMember() &&
5186             "Incomplete array type is not valid");
5187      continue;
5188    }
5189
5190    // Build references to the field in the object we're copying from and to.
5191    CXXScopeSpec SS; // Intentionally empty
5192    LookupResult MemberLookup(*this, Field->getDeclName(), Loc,
5193                              LookupMemberName);
5194    MemberLookup.addDecl(*Field);
5195    MemberLookup.resolveKind();
5196    ExprResult From = BuildMemberReferenceExpr(OtherRef, OtherRefType,
5197                                               Loc, /*IsArrow=*/false,
5198                                               SS, 0, MemberLookup, 0);
5199    ExprResult To = BuildMemberReferenceExpr(This, This->getType(),
5200                                             Loc, /*IsArrow=*/true,
5201                                             SS, 0, MemberLookup, 0);
5202    assert(!From.isInvalid() && "Implicit field reference cannot fail");
5203    assert(!To.isInvalid() && "Implicit field reference cannot fail");
5204
5205    // If the field should be copied with __builtin_memcpy rather than via
5206    // explicit assignments, do so. This optimization only applies for arrays
5207    // of scalars and arrays of class type with trivial copy-assignment
5208    // operators.
5209    if (FieldType->isArrayType() &&
5210        (!BaseType->isRecordType() ||
5211         cast<CXXRecordDecl>(BaseType->getAs<RecordType>()->getDecl())
5212           ->hasTrivialCopyAssignment())) {
5213      // Compute the size of the memory buffer to be copied.
5214      QualType SizeType = Context.getSizeType();
5215      llvm::APInt Size(Context.getTypeSize(SizeType),
5216                       Context.getTypeSizeInChars(BaseType).getQuantity());
5217      for (const ConstantArrayType *Array
5218              = Context.getAsConstantArrayType(FieldType);
5219           Array;
5220           Array = Context.getAsConstantArrayType(Array->getElementType())) {
5221        llvm::APInt ArraySize
5222          = Array->getSize().zextOrTrunc(Size.getBitWidth());
5223        Size *= ArraySize;
5224      }
5225
5226      // Take the address of the field references for "from" and "to".
5227      From = CreateBuiltinUnaryOp(Loc, UO_AddrOf, From.get());
5228      To = CreateBuiltinUnaryOp(Loc, UO_AddrOf, To.get());
5229
5230      bool NeedsCollectableMemCpy =
5231          (BaseType->isRecordType() &&
5232           BaseType->getAs<RecordType>()->getDecl()->hasObjectMember());
5233
5234      if (NeedsCollectableMemCpy) {
5235        if (!CollectableMemCpyRef) {
5236          // Create a reference to the __builtin_objc_memmove_collectable function.
5237          LookupResult R(*this,
5238                         &Context.Idents.get("__builtin_objc_memmove_collectable"),
5239                         Loc, LookupOrdinaryName);
5240          LookupName(R, TUScope, true);
5241
5242          FunctionDecl *CollectableMemCpy = R.getAsSingle<FunctionDecl>();
5243          if (!CollectableMemCpy) {
5244            // Something went horribly wrong earlier, and we will have
5245            // complained about it.
5246            Invalid = true;
5247            continue;
5248          }
5249
5250          CollectableMemCpyRef = BuildDeclRefExpr(CollectableMemCpy,
5251                                                  CollectableMemCpy->getType(),
5252                                                  VK_LValue, Loc, 0).take();
5253          assert(CollectableMemCpyRef && "Builtin reference cannot fail");
5254        }
5255      }
5256      // Create a reference to the __builtin_memcpy builtin function.
5257      else if (!BuiltinMemCpyRef) {
5258        LookupResult R(*this, &Context.Idents.get("__builtin_memcpy"), Loc,
5259                       LookupOrdinaryName);
5260        LookupName(R, TUScope, true);
5261
5262        FunctionDecl *BuiltinMemCpy = R.getAsSingle<FunctionDecl>();
5263        if (!BuiltinMemCpy) {
5264          // Something went horribly wrong earlier, and we will have complained
5265          // about it.
5266          Invalid = true;
5267          continue;
5268        }
5269
5270        BuiltinMemCpyRef = BuildDeclRefExpr(BuiltinMemCpy,
5271                                            BuiltinMemCpy->getType(),
5272                                            VK_LValue, Loc, 0).take();
5273        assert(BuiltinMemCpyRef && "Builtin reference cannot fail");
5274      }
5275
5276      ASTOwningVector<Expr*> CallArgs(*this);
5277      CallArgs.push_back(To.takeAs<Expr>());
5278      CallArgs.push_back(From.takeAs<Expr>());
5279      CallArgs.push_back(IntegerLiteral::Create(Context, Size, SizeType, Loc));
5280      ExprResult Call = ExprError();
5281      if (NeedsCollectableMemCpy)
5282        Call = ActOnCallExpr(/*Scope=*/0,
5283                             CollectableMemCpyRef,
5284                             Loc, move_arg(CallArgs),
5285                             Loc);
5286      else
5287        Call = ActOnCallExpr(/*Scope=*/0,
5288                             BuiltinMemCpyRef,
5289                             Loc, move_arg(CallArgs),
5290                             Loc);
5291
5292      assert(!Call.isInvalid() && "Call to __builtin_memcpy cannot fail!");
5293      Statements.push_back(Call.takeAs<Expr>());
5294      continue;
5295    }
5296
5297    // Build the copy of this field.
5298    StmtResult Copy = BuildSingleCopyAssign(*this, Loc, FieldType,
5299                                                  To.get(), From.get(),
5300                                              /*CopyingBaseSubobject=*/false);
5301    if (Copy.isInvalid()) {
5302      Diag(CurrentLocation, diag::note_member_synthesized_at)
5303        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
5304      CopyAssignOperator->setInvalidDecl();
5305      return;
5306    }
5307
5308    // Success! Record the copy.
5309    Statements.push_back(Copy.takeAs<Stmt>());
5310  }
5311
5312  if (!Invalid) {
5313    // Add a "return *this;"
5314    ExprResult ThisObj = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
5315
5316    StmtResult Return = ActOnReturnStmt(Loc, ThisObj.get());
5317    if (Return.isInvalid())
5318      Invalid = true;
5319    else {
5320      Statements.push_back(Return.takeAs<Stmt>());
5321
5322      if (Trap.hasErrorOccurred()) {
5323        Diag(CurrentLocation, diag::note_member_synthesized_at)
5324          << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
5325        Invalid = true;
5326      }
5327    }
5328  }
5329
5330  if (Invalid) {
5331    CopyAssignOperator->setInvalidDecl();
5332    return;
5333  }
5334
5335  StmtResult Body = ActOnCompoundStmt(Loc, Loc, move_arg(Statements),
5336                                            /*isStmtExpr=*/false);
5337  assert(!Body.isInvalid() && "Compound statement creation cannot fail");
5338  CopyAssignOperator->setBody(Body.takeAs<Stmt>());
5339}
5340
5341CXXConstructorDecl *Sema::DeclareImplicitCopyConstructor(
5342                                                    CXXRecordDecl *ClassDecl) {
5343  // C++ [class.copy]p4:
5344  //   If the class definition does not explicitly declare a copy
5345  //   constructor, one is declared implicitly.
5346
5347  // C++ [class.copy]p5:
5348  //   The implicitly-declared copy constructor for a class X will
5349  //   have the form
5350  //
5351  //       X::X(const X&)
5352  //
5353  //   if
5354  bool HasConstCopyConstructor = true;
5355
5356  //     -- each direct or virtual base class B of X has a copy
5357  //        constructor whose first parameter is of type const B& or
5358  //        const volatile B&, and
5359  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
5360                                       BaseEnd = ClassDecl->bases_end();
5361       HasConstCopyConstructor && Base != BaseEnd;
5362       ++Base) {
5363    // Virtual bases are handled below.
5364    if (Base->isVirtual())
5365      continue;
5366
5367    CXXRecordDecl *BaseClassDecl
5368      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
5369    if (!BaseClassDecl->hasDeclaredCopyConstructor())
5370      DeclareImplicitCopyConstructor(BaseClassDecl);
5371
5372    HasConstCopyConstructor
5373      = BaseClassDecl->hasConstCopyConstructor(Context);
5374  }
5375
5376  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
5377                                       BaseEnd = ClassDecl->vbases_end();
5378       HasConstCopyConstructor && Base != BaseEnd;
5379       ++Base) {
5380    CXXRecordDecl *BaseClassDecl
5381      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
5382    if (!BaseClassDecl->hasDeclaredCopyConstructor())
5383      DeclareImplicitCopyConstructor(BaseClassDecl);
5384
5385    HasConstCopyConstructor
5386      = BaseClassDecl->hasConstCopyConstructor(Context);
5387  }
5388
5389  //     -- for all the nonstatic data members of X that are of a
5390  //        class type M (or array thereof), each such class type
5391  //        has a copy constructor whose first parameter is of type
5392  //        const M& or const volatile M&.
5393  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
5394                                  FieldEnd = ClassDecl->field_end();
5395       HasConstCopyConstructor && Field != FieldEnd;
5396       ++Field) {
5397    QualType FieldType = Context.getBaseElementType((*Field)->getType());
5398    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
5399      CXXRecordDecl *FieldClassDecl
5400        = cast<CXXRecordDecl>(FieldClassType->getDecl());
5401      if (!FieldClassDecl->hasDeclaredCopyConstructor())
5402        DeclareImplicitCopyConstructor(FieldClassDecl);
5403
5404      HasConstCopyConstructor
5405        = FieldClassDecl->hasConstCopyConstructor(Context);
5406    }
5407  }
5408
5409  //   Otherwise, the implicitly declared copy constructor will have
5410  //   the form
5411  //
5412  //       X::X(X&)
5413  QualType ClassType = Context.getTypeDeclType(ClassDecl);
5414  QualType ArgType = ClassType;
5415  if (HasConstCopyConstructor)
5416    ArgType = ArgType.withConst();
5417  ArgType = Context.getLValueReferenceType(ArgType);
5418
5419  // C++ [except.spec]p14:
5420  //   An implicitly declared special member function (Clause 12) shall have an
5421  //   exception-specification. [...]
5422  ImplicitExceptionSpecification ExceptSpec(Context);
5423  unsigned Quals = HasConstCopyConstructor? Qualifiers::Const : 0;
5424  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
5425                                       BaseEnd = ClassDecl->bases_end();
5426       Base != BaseEnd;
5427       ++Base) {
5428    // Virtual bases are handled below.
5429    if (Base->isVirtual())
5430      continue;
5431
5432    CXXRecordDecl *BaseClassDecl
5433      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
5434    if (!BaseClassDecl->hasDeclaredCopyConstructor())
5435      DeclareImplicitCopyConstructor(BaseClassDecl);
5436
5437    if (CXXConstructorDecl *CopyConstructor
5438                          = BaseClassDecl->getCopyConstructor(Context, Quals))
5439      ExceptSpec.CalledDecl(CopyConstructor);
5440  }
5441  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
5442                                       BaseEnd = ClassDecl->vbases_end();
5443       Base != BaseEnd;
5444       ++Base) {
5445    CXXRecordDecl *BaseClassDecl
5446      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
5447    if (!BaseClassDecl->hasDeclaredCopyConstructor())
5448      DeclareImplicitCopyConstructor(BaseClassDecl);
5449
5450    if (CXXConstructorDecl *CopyConstructor
5451                          = BaseClassDecl->getCopyConstructor(Context, Quals))
5452      ExceptSpec.CalledDecl(CopyConstructor);
5453  }
5454  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
5455                                  FieldEnd = ClassDecl->field_end();
5456       Field != FieldEnd;
5457       ++Field) {
5458    QualType FieldType = Context.getBaseElementType((*Field)->getType());
5459    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
5460      CXXRecordDecl *FieldClassDecl
5461        = cast<CXXRecordDecl>(FieldClassType->getDecl());
5462      if (!FieldClassDecl->hasDeclaredCopyConstructor())
5463        DeclareImplicitCopyConstructor(FieldClassDecl);
5464
5465      if (CXXConstructorDecl *CopyConstructor
5466                          = FieldClassDecl->getCopyConstructor(Context, Quals))
5467        ExceptSpec.CalledDecl(CopyConstructor);
5468    }
5469  }
5470
5471  //   An implicitly-declared copy constructor is an inline public
5472  //   member of its class.
5473  FunctionProtoType::ExtProtoInfo EPI;
5474  EPI.HasExceptionSpec = ExceptSpec.hasExceptionSpecification();
5475  EPI.HasAnyExceptionSpec = ExceptSpec.hasAnyExceptionSpecification();
5476  EPI.NumExceptions = ExceptSpec.size();
5477  EPI.Exceptions = ExceptSpec.data();
5478  DeclarationName Name
5479    = Context.DeclarationNames.getCXXConstructorName(
5480                                           Context.getCanonicalType(ClassType));
5481  DeclarationNameInfo NameInfo(Name, ClassDecl->getLocation());
5482  CXXConstructorDecl *CopyConstructor
5483    = CXXConstructorDecl::Create(Context, ClassDecl, NameInfo,
5484                                 Context.getFunctionType(Context.VoidTy,
5485                                                         &ArgType, 1, EPI),
5486                                 /*TInfo=*/0,
5487                                 /*isExplicit=*/false,
5488                                 /*isInline=*/true,
5489                                 /*isImplicitlyDeclared=*/true);
5490  CopyConstructor->setAccess(AS_public);
5491  CopyConstructor->setImplicit();
5492  CopyConstructor->setTrivial(ClassDecl->hasTrivialCopyConstructor());
5493
5494  // Note that we have declared this constructor.
5495  ++ASTContext::NumImplicitCopyConstructorsDeclared;
5496
5497  // Add the parameter to the constructor.
5498  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor,
5499                                               ClassDecl->getLocation(),
5500                                               /*IdentifierInfo=*/0,
5501                                               ArgType, /*TInfo=*/0,
5502                                               SC_None,
5503                                               SC_None, 0);
5504  CopyConstructor->setParams(&FromParam, 1);
5505  if (Scope *S = getScopeForContext(ClassDecl))
5506    PushOnScopeChains(CopyConstructor, S, false);
5507  ClassDecl->addDecl(CopyConstructor);
5508
5509  return CopyConstructor;
5510}
5511
5512void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation,
5513                                   CXXConstructorDecl *CopyConstructor,
5514                                   unsigned TypeQuals) {
5515  assert((CopyConstructor->isImplicit() &&
5516          CopyConstructor->isCopyConstructor(TypeQuals) &&
5517          !CopyConstructor->isUsed(false)) &&
5518         "DefineImplicitCopyConstructor - call it for implicit copy ctor");
5519
5520  CXXRecordDecl *ClassDecl = CopyConstructor->getParent();
5521  assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor");
5522
5523  ImplicitlyDefinedFunctionScope Scope(*this, CopyConstructor);
5524  DiagnosticErrorTrap Trap(Diags);
5525
5526  if (SetCtorInitializers(CopyConstructor, 0, 0, /*AnyErrors=*/false) ||
5527      Trap.hasErrorOccurred()) {
5528    Diag(CurrentLocation, diag::note_member_synthesized_at)
5529      << CXXCopyConstructor << Context.getTagDeclType(ClassDecl);
5530    CopyConstructor->setInvalidDecl();
5531  }  else {
5532    CopyConstructor->setBody(ActOnCompoundStmt(CopyConstructor->getLocation(),
5533                                               CopyConstructor->getLocation(),
5534                                               MultiStmtArg(*this, 0, 0),
5535                                               /*isStmtExpr=*/false)
5536                                                              .takeAs<Stmt>());
5537  }
5538
5539  CopyConstructor->setUsed();
5540}
5541
5542ExprResult
5543Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
5544                            CXXConstructorDecl *Constructor,
5545                            MultiExprArg ExprArgs,
5546                            bool RequiresZeroInit,
5547                            unsigned ConstructKind,
5548                            SourceRange ParenRange) {
5549  bool Elidable = false;
5550
5551  // C++0x [class.copy]p34:
5552  //   When certain criteria are met, an implementation is allowed to
5553  //   omit the copy/move construction of a class object, even if the
5554  //   copy/move constructor and/or destructor for the object have
5555  //   side effects. [...]
5556  //     - when a temporary class object that has not been bound to a
5557  //       reference (12.2) would be copied/moved to a class object
5558  //       with the same cv-unqualified type, the copy/move operation
5559  //       can be omitted by constructing the temporary object
5560  //       directly into the target of the omitted copy/move
5561  if (ConstructKind == CXXConstructExpr::CK_Complete &&
5562      Constructor->isCopyOrMoveConstructor() && ExprArgs.size() >= 1) {
5563    Expr *SubExpr = ((Expr **)ExprArgs.get())[0];
5564    Elidable = SubExpr->isTemporaryObject(Context, Constructor->getParent());
5565  }
5566
5567  return BuildCXXConstructExpr(ConstructLoc, DeclInitType, Constructor,
5568                               Elidable, move(ExprArgs), RequiresZeroInit,
5569                               ConstructKind, ParenRange);
5570}
5571
5572/// BuildCXXConstructExpr - Creates a complete call to a constructor,
5573/// including handling of its default argument expressions.
5574ExprResult
5575Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
5576                            CXXConstructorDecl *Constructor, bool Elidable,
5577                            MultiExprArg ExprArgs,
5578                            bool RequiresZeroInit,
5579                            unsigned ConstructKind,
5580                            SourceRange ParenRange) {
5581  unsigned NumExprs = ExprArgs.size();
5582  Expr **Exprs = (Expr **)ExprArgs.release();
5583
5584  MarkDeclarationReferenced(ConstructLoc, Constructor);
5585  return Owned(CXXConstructExpr::Create(Context, DeclInitType, ConstructLoc,
5586                                        Constructor, Elidable, Exprs, NumExprs,
5587                                        RequiresZeroInit,
5588              static_cast<CXXConstructExpr::ConstructionKind>(ConstructKind),
5589                                        ParenRange));
5590}
5591
5592bool Sema::InitializeVarWithConstructor(VarDecl *VD,
5593                                        CXXConstructorDecl *Constructor,
5594                                        MultiExprArg Exprs) {
5595  // FIXME: Provide the correct paren SourceRange when available.
5596  ExprResult TempResult =
5597    BuildCXXConstructExpr(VD->getLocation(), VD->getType(), Constructor,
5598                          move(Exprs), false, CXXConstructExpr::CK_Complete,
5599                          SourceRange());
5600  if (TempResult.isInvalid())
5601    return true;
5602
5603  Expr *Temp = TempResult.takeAs<Expr>();
5604  CheckImplicitConversions(Temp, VD->getLocation());
5605  MarkDeclarationReferenced(VD->getLocation(), Constructor);
5606  Temp = MaybeCreateExprWithCleanups(Temp);
5607  VD->setInit(Temp);
5608
5609  return false;
5610}
5611
5612void Sema::FinalizeVarWithDestructor(VarDecl *VD, const RecordType *Record) {
5613  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Record->getDecl());
5614  if (!ClassDecl->isInvalidDecl() && !VD->isInvalidDecl() &&
5615      !ClassDecl->hasTrivialDestructor() && !ClassDecl->isDependentContext()) {
5616    CXXDestructorDecl *Destructor = LookupDestructor(ClassDecl);
5617    MarkDeclarationReferenced(VD->getLocation(), Destructor);
5618    CheckDestructorAccess(VD->getLocation(), Destructor,
5619                          PDiag(diag::err_access_dtor_var)
5620                            << VD->getDeclName()
5621                            << VD->getType());
5622
5623    // TODO: this should be re-enabled for static locals by !CXAAtExit
5624    if (!VD->isInvalidDecl() && VD->hasGlobalStorage() && !VD->isStaticLocal())
5625      Diag(VD->getLocation(), diag::warn_global_destructor);
5626  }
5627}
5628
5629/// AddCXXDirectInitializerToDecl - This action is called immediately after
5630/// ActOnDeclarator, when a C++ direct initializer is present.
5631/// e.g: "int x(1);"
5632void Sema::AddCXXDirectInitializerToDecl(Decl *RealDecl,
5633                                         SourceLocation LParenLoc,
5634                                         MultiExprArg Exprs,
5635                                         SourceLocation RParenLoc) {
5636  assert(Exprs.size() != 0 && Exprs.get() && "missing expressions");
5637
5638  // If there is no declaration, there was an error parsing it.  Just ignore
5639  // the initializer.
5640  if (RealDecl == 0)
5641    return;
5642
5643  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
5644  if (!VDecl) {
5645    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
5646    RealDecl->setInvalidDecl();
5647    return;
5648  }
5649
5650  // We will represent direct-initialization similarly to copy-initialization:
5651  //    int x(1);  -as-> int x = 1;
5652  //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
5653  //
5654  // Clients that want to distinguish between the two forms, can check for
5655  // direct initializer using VarDecl::hasCXXDirectInitializer().
5656  // A major benefit is that clients that don't particularly care about which
5657  // exactly form was it (like the CodeGen) can handle both cases without
5658  // special case code.
5659
5660  // C++ 8.5p11:
5661  // The form of initialization (using parentheses or '=') is generally
5662  // insignificant, but does matter when the entity being initialized has a
5663  // class type.
5664
5665  if (!VDecl->getType()->isDependentType() &&
5666      RequireCompleteType(VDecl->getLocation(), VDecl->getType(),
5667                          diag::err_typecheck_decl_incomplete_type)) {
5668    VDecl->setInvalidDecl();
5669    return;
5670  }
5671
5672  // The variable can not have an abstract class type.
5673  if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
5674                             diag::err_abstract_type_in_decl,
5675                             AbstractVariableType))
5676    VDecl->setInvalidDecl();
5677
5678  const VarDecl *Def;
5679  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
5680    Diag(VDecl->getLocation(), diag::err_redefinition)
5681    << VDecl->getDeclName();
5682    Diag(Def->getLocation(), diag::note_previous_definition);
5683    VDecl->setInvalidDecl();
5684    return;
5685  }
5686
5687  // C++ [class.static.data]p4
5688  //   If a static data member is of const integral or const
5689  //   enumeration type, its declaration in the class definition can
5690  //   specify a constant-initializer which shall be an integral
5691  //   constant expression (5.19). In that case, the member can appear
5692  //   in integral constant expressions. The member shall still be
5693  //   defined in a namespace scope if it is used in the program and the
5694  //   namespace scope definition shall not contain an initializer.
5695  //
5696  // We already performed a redefinition check above, but for static
5697  // data members we also need to check whether there was an in-class
5698  // declaration with an initializer.
5699  const VarDecl* PrevInit = 0;
5700  if (VDecl->isStaticDataMember() && VDecl->getAnyInitializer(PrevInit)) {
5701    Diag(VDecl->getLocation(), diag::err_redefinition) << VDecl->getDeclName();
5702    Diag(PrevInit->getLocation(), diag::note_previous_definition);
5703    return;
5704  }
5705
5706  bool IsDependent = false;
5707  for (unsigned I = 0, N = Exprs.size(); I != N; ++I) {
5708    if (DiagnoseUnexpandedParameterPack(Exprs.get()[I], UPPC_Expression)) {
5709      VDecl->setInvalidDecl();
5710      return;
5711    }
5712
5713    if (Exprs.get()[I]->isTypeDependent())
5714      IsDependent = true;
5715  }
5716
5717  // If either the declaration has a dependent type or if any of the
5718  // expressions is type-dependent, we represent the initialization
5719  // via a ParenListExpr for later use during template instantiation.
5720  if (VDecl->getType()->isDependentType() || IsDependent) {
5721    // Let clients know that initialization was done with a direct initializer.
5722    VDecl->setCXXDirectInitializer(true);
5723
5724    // Store the initialization expressions as a ParenListExpr.
5725    unsigned NumExprs = Exprs.size();
5726    VDecl->setInit(new (Context) ParenListExpr(Context, LParenLoc,
5727                                               (Expr **)Exprs.release(),
5728                                               NumExprs, RParenLoc));
5729    return;
5730  }
5731
5732  // Capture the variable that is being initialized and the style of
5733  // initialization.
5734  InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
5735
5736  // FIXME: Poor source location information.
5737  InitializationKind Kind
5738    = InitializationKind::CreateDirect(VDecl->getLocation(),
5739                                       LParenLoc, RParenLoc);
5740
5741  InitializationSequence InitSeq(*this, Entity, Kind,
5742                                 Exprs.get(), Exprs.size());
5743  ExprResult Result = InitSeq.Perform(*this, Entity, Kind, move(Exprs));
5744  if (Result.isInvalid()) {
5745    VDecl->setInvalidDecl();
5746    return;
5747  }
5748
5749  CheckImplicitConversions(Result.get(), LParenLoc);
5750
5751  Result = MaybeCreateExprWithCleanups(Result);
5752  VDecl->setInit(Result.takeAs<Expr>());
5753  VDecl->setCXXDirectInitializer(true);
5754
5755  CheckCompleteVariableDeclaration(VDecl);
5756}
5757
5758/// \brief Given a constructor and the set of arguments provided for the
5759/// constructor, convert the arguments and add any required default arguments
5760/// to form a proper call to this constructor.
5761///
5762/// \returns true if an error occurred, false otherwise.
5763bool
5764Sema::CompleteConstructorCall(CXXConstructorDecl *Constructor,
5765                              MultiExprArg ArgsPtr,
5766                              SourceLocation Loc,
5767                              ASTOwningVector<Expr*> &ConvertedArgs) {
5768  // FIXME: This duplicates a lot of code from Sema::ConvertArgumentsForCall.
5769  unsigned NumArgs = ArgsPtr.size();
5770  Expr **Args = (Expr **)ArgsPtr.get();
5771
5772  const FunctionProtoType *Proto
5773    = Constructor->getType()->getAs<FunctionProtoType>();
5774  assert(Proto && "Constructor without a prototype?");
5775  unsigned NumArgsInProto = Proto->getNumArgs();
5776
5777  // If too few arguments are available, we'll fill in the rest with defaults.
5778  if (NumArgs < NumArgsInProto)
5779    ConvertedArgs.reserve(NumArgsInProto);
5780  else
5781    ConvertedArgs.reserve(NumArgs);
5782
5783  VariadicCallType CallType =
5784    Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply;
5785  llvm::SmallVector<Expr *, 8> AllArgs;
5786  bool Invalid = GatherArgumentsForCall(Loc, Constructor,
5787                                        Proto, 0, Args, NumArgs, AllArgs,
5788                                        CallType);
5789  for (unsigned i =0, size = AllArgs.size(); i < size; i++)
5790    ConvertedArgs.push_back(AllArgs[i]);
5791  return Invalid;
5792}
5793
5794static inline bool
5795CheckOperatorNewDeleteDeclarationScope(Sema &SemaRef,
5796                                       const FunctionDecl *FnDecl) {
5797  const DeclContext *DC = FnDecl->getDeclContext()->getRedeclContext();
5798  if (isa<NamespaceDecl>(DC)) {
5799    return SemaRef.Diag(FnDecl->getLocation(),
5800                        diag::err_operator_new_delete_declared_in_namespace)
5801      << FnDecl->getDeclName();
5802  }
5803
5804  if (isa<TranslationUnitDecl>(DC) &&
5805      FnDecl->getStorageClass() == SC_Static) {
5806    return SemaRef.Diag(FnDecl->getLocation(),
5807                        diag::err_operator_new_delete_declared_static)
5808      << FnDecl->getDeclName();
5809  }
5810
5811  return false;
5812}
5813
5814static inline bool
5815CheckOperatorNewDeleteTypes(Sema &SemaRef, const FunctionDecl *FnDecl,
5816                            CanQualType ExpectedResultType,
5817                            CanQualType ExpectedFirstParamType,
5818                            unsigned DependentParamTypeDiag,
5819                            unsigned InvalidParamTypeDiag) {
5820  QualType ResultType =
5821    FnDecl->getType()->getAs<FunctionType>()->getResultType();
5822
5823  // Check that the result type is not dependent.
5824  if (ResultType->isDependentType())
5825    return SemaRef.Diag(FnDecl->getLocation(),
5826                        diag::err_operator_new_delete_dependent_result_type)
5827    << FnDecl->getDeclName() << ExpectedResultType;
5828
5829  // Check that the result type is what we expect.
5830  if (SemaRef.Context.getCanonicalType(ResultType) != ExpectedResultType)
5831    return SemaRef.Diag(FnDecl->getLocation(),
5832                        diag::err_operator_new_delete_invalid_result_type)
5833    << FnDecl->getDeclName() << ExpectedResultType;
5834
5835  // A function template must have at least 2 parameters.
5836  if (FnDecl->getDescribedFunctionTemplate() && FnDecl->getNumParams() < 2)
5837    return SemaRef.Diag(FnDecl->getLocation(),
5838                      diag::err_operator_new_delete_template_too_few_parameters)
5839        << FnDecl->getDeclName();
5840
5841  // The function decl must have at least 1 parameter.
5842  if (FnDecl->getNumParams() == 0)
5843    return SemaRef.Diag(FnDecl->getLocation(),
5844                        diag::err_operator_new_delete_too_few_parameters)
5845      << FnDecl->getDeclName();
5846
5847  // Check the the first parameter type is not dependent.
5848  QualType FirstParamType = FnDecl->getParamDecl(0)->getType();
5849  if (FirstParamType->isDependentType())
5850    return SemaRef.Diag(FnDecl->getLocation(), DependentParamTypeDiag)
5851      << FnDecl->getDeclName() << ExpectedFirstParamType;
5852
5853  // Check that the first parameter type is what we expect.
5854  if (SemaRef.Context.getCanonicalType(FirstParamType).getUnqualifiedType() !=
5855      ExpectedFirstParamType)
5856    return SemaRef.Diag(FnDecl->getLocation(), InvalidParamTypeDiag)
5857    << FnDecl->getDeclName() << ExpectedFirstParamType;
5858
5859  return false;
5860}
5861
5862static bool
5863CheckOperatorNewDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
5864  // C++ [basic.stc.dynamic.allocation]p1:
5865  //   A program is ill-formed if an allocation function is declared in a
5866  //   namespace scope other than global scope or declared static in global
5867  //   scope.
5868  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
5869    return true;
5870
5871  CanQualType SizeTy =
5872    SemaRef.Context.getCanonicalType(SemaRef.Context.getSizeType());
5873
5874  // C++ [basic.stc.dynamic.allocation]p1:
5875  //  The return type shall be void*. The first parameter shall have type
5876  //  std::size_t.
5877  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidPtrTy,
5878                                  SizeTy,
5879                                  diag::err_operator_new_dependent_param_type,
5880                                  diag::err_operator_new_param_type))
5881    return true;
5882
5883  // C++ [basic.stc.dynamic.allocation]p1:
5884  //  The first parameter shall not have an associated default argument.
5885  if (FnDecl->getParamDecl(0)->hasDefaultArg())
5886    return SemaRef.Diag(FnDecl->getLocation(),
5887                        diag::err_operator_new_default_arg)
5888      << FnDecl->getDeclName() << FnDecl->getParamDecl(0)->getDefaultArgRange();
5889
5890  return false;
5891}
5892
5893static bool
5894CheckOperatorDeleteDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
5895  // C++ [basic.stc.dynamic.deallocation]p1:
5896  //   A program is ill-formed if deallocation functions are declared in a
5897  //   namespace scope other than global scope or declared static in global
5898  //   scope.
5899  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
5900    return true;
5901
5902  // C++ [basic.stc.dynamic.deallocation]p2:
5903  //   Each deallocation function shall return void and its first parameter
5904  //   shall be void*.
5905  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidTy,
5906                                  SemaRef.Context.VoidPtrTy,
5907                                 diag::err_operator_delete_dependent_param_type,
5908                                 diag::err_operator_delete_param_type))
5909    return true;
5910
5911  return false;
5912}
5913
5914/// CheckOverloadedOperatorDeclaration - Check whether the declaration
5915/// of this overloaded operator is well-formed. If so, returns false;
5916/// otherwise, emits appropriate diagnostics and returns true.
5917bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
5918  assert(FnDecl && FnDecl->isOverloadedOperator() &&
5919         "Expected an overloaded operator declaration");
5920
5921  OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
5922
5923  // C++ [over.oper]p5:
5924  //   The allocation and deallocation functions, operator new,
5925  //   operator new[], operator delete and operator delete[], are
5926  //   described completely in 3.7.3. The attributes and restrictions
5927  //   found in the rest of this subclause do not apply to them unless
5928  //   explicitly stated in 3.7.3.
5929  if (Op == OO_Delete || Op == OO_Array_Delete)
5930    return CheckOperatorDeleteDeclaration(*this, FnDecl);
5931
5932  if (Op == OO_New || Op == OO_Array_New)
5933    return CheckOperatorNewDeclaration(*this, FnDecl);
5934
5935  // C++ [over.oper]p6:
5936  //   An operator function shall either be a non-static member
5937  //   function or be a non-member function and have at least one
5938  //   parameter whose type is a class, a reference to a class, an
5939  //   enumeration, or a reference to an enumeration.
5940  if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) {
5941    if (MethodDecl->isStatic())
5942      return Diag(FnDecl->getLocation(),
5943                  diag::err_operator_overload_static) << FnDecl->getDeclName();
5944  } else {
5945    bool ClassOrEnumParam = false;
5946    for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
5947                                   ParamEnd = FnDecl->param_end();
5948         Param != ParamEnd; ++Param) {
5949      QualType ParamType = (*Param)->getType().getNonReferenceType();
5950      if (ParamType->isDependentType() || ParamType->isRecordType() ||
5951          ParamType->isEnumeralType()) {
5952        ClassOrEnumParam = true;
5953        break;
5954      }
5955    }
5956
5957    if (!ClassOrEnumParam)
5958      return Diag(FnDecl->getLocation(),
5959                  diag::err_operator_overload_needs_class_or_enum)
5960        << FnDecl->getDeclName();
5961  }
5962
5963  // C++ [over.oper]p8:
5964  //   An operator function cannot have default arguments (8.3.6),
5965  //   except where explicitly stated below.
5966  //
5967  // Only the function-call operator allows default arguments
5968  // (C++ [over.call]p1).
5969  if (Op != OO_Call) {
5970    for (FunctionDecl::param_iterator Param = FnDecl->param_begin();
5971         Param != FnDecl->param_end(); ++Param) {
5972      if ((*Param)->hasDefaultArg())
5973        return Diag((*Param)->getLocation(),
5974                    diag::err_operator_overload_default_arg)
5975          << FnDecl->getDeclName() << (*Param)->getDefaultArgRange();
5976    }
5977  }
5978
5979  static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
5980    { false, false, false }
5981#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
5982    , { Unary, Binary, MemberOnly }
5983#include "clang/Basic/OperatorKinds.def"
5984  };
5985
5986  bool CanBeUnaryOperator = OperatorUses[Op][0];
5987  bool CanBeBinaryOperator = OperatorUses[Op][1];
5988  bool MustBeMemberOperator = OperatorUses[Op][2];
5989
5990  // C++ [over.oper]p8:
5991  //   [...] Operator functions cannot have more or fewer parameters
5992  //   than the number required for the corresponding operator, as
5993  //   described in the rest of this subclause.
5994  unsigned NumParams = FnDecl->getNumParams()
5995                     + (isa<CXXMethodDecl>(FnDecl)? 1 : 0);
5996  if (Op != OO_Call &&
5997      ((NumParams == 1 && !CanBeUnaryOperator) ||
5998       (NumParams == 2 && !CanBeBinaryOperator) ||
5999       (NumParams < 1) || (NumParams > 2))) {
6000    // We have the wrong number of parameters.
6001    unsigned ErrorKind;
6002    if (CanBeUnaryOperator && CanBeBinaryOperator) {
6003      ErrorKind = 2;  // 2 -> unary or binary.
6004    } else if (CanBeUnaryOperator) {
6005      ErrorKind = 0;  // 0 -> unary
6006    } else {
6007      assert(CanBeBinaryOperator &&
6008             "All non-call overloaded operators are unary or binary!");
6009      ErrorKind = 1;  // 1 -> binary
6010    }
6011
6012    return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be)
6013      << FnDecl->getDeclName() << NumParams << ErrorKind;
6014  }
6015
6016  // Overloaded operators other than operator() cannot be variadic.
6017  if (Op != OO_Call &&
6018      FnDecl->getType()->getAs<FunctionProtoType>()->isVariadic()) {
6019    return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
6020      << FnDecl->getDeclName();
6021  }
6022
6023  // Some operators must be non-static member functions.
6024  if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) {
6025    return Diag(FnDecl->getLocation(),
6026                diag::err_operator_overload_must_be_member)
6027      << FnDecl->getDeclName();
6028  }
6029
6030  // C++ [over.inc]p1:
6031  //   The user-defined function called operator++ implements the
6032  //   prefix and postfix ++ operator. If this function is a member
6033  //   function with no parameters, or a non-member function with one
6034  //   parameter of class or enumeration type, it defines the prefix
6035  //   increment operator ++ for objects of that type. If the function
6036  //   is a member function with one parameter (which shall be of type
6037  //   int) or a non-member function with two parameters (the second
6038  //   of which shall be of type int), it defines the postfix
6039  //   increment operator ++ for objects of that type.
6040  if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
6041    ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
6042    bool ParamIsInt = false;
6043    if (const BuiltinType *BT = LastParam->getType()->getAs<BuiltinType>())
6044      ParamIsInt = BT->getKind() == BuiltinType::Int;
6045
6046    if (!ParamIsInt)
6047      return Diag(LastParam->getLocation(),
6048                  diag::err_operator_overload_post_incdec_must_be_int)
6049        << LastParam->getType() << (Op == OO_MinusMinus);
6050  }
6051
6052  return false;
6053}
6054
6055/// CheckLiteralOperatorDeclaration - Check whether the declaration
6056/// of this literal operator function is well-formed. If so, returns
6057/// false; otherwise, emits appropriate diagnostics and returns true.
6058bool Sema::CheckLiteralOperatorDeclaration(FunctionDecl *FnDecl) {
6059  DeclContext *DC = FnDecl->getDeclContext();
6060  Decl::Kind Kind = DC->getDeclKind();
6061  if (Kind != Decl::TranslationUnit && Kind != Decl::Namespace &&
6062      Kind != Decl::LinkageSpec) {
6063    Diag(FnDecl->getLocation(), diag::err_literal_operator_outside_namespace)
6064      << FnDecl->getDeclName();
6065    return true;
6066  }
6067
6068  bool Valid = false;
6069
6070  // template <char...> type operator "" name() is the only valid template
6071  // signature, and the only valid signature with no parameters.
6072  if (FnDecl->param_size() == 0) {
6073    if (FunctionTemplateDecl *TpDecl = FnDecl->getDescribedFunctionTemplate()) {
6074      // Must have only one template parameter
6075      TemplateParameterList *Params = TpDecl->getTemplateParameters();
6076      if (Params->size() == 1) {
6077        NonTypeTemplateParmDecl *PmDecl =
6078          cast<NonTypeTemplateParmDecl>(Params->getParam(0));
6079
6080        // The template parameter must be a char parameter pack.
6081        if (PmDecl && PmDecl->isTemplateParameterPack() &&
6082            Context.hasSameType(PmDecl->getType(), Context.CharTy))
6083          Valid = true;
6084      }
6085    }
6086  } else {
6087    // Check the first parameter
6088    FunctionDecl::param_iterator Param = FnDecl->param_begin();
6089
6090    QualType T = (*Param)->getType();
6091
6092    // unsigned long long int, long double, and any character type are allowed
6093    // as the only parameters.
6094    if (Context.hasSameType(T, Context.UnsignedLongLongTy) ||
6095        Context.hasSameType(T, Context.LongDoubleTy) ||
6096        Context.hasSameType(T, Context.CharTy) ||
6097        Context.hasSameType(T, Context.WCharTy) ||
6098        Context.hasSameType(T, Context.Char16Ty) ||
6099        Context.hasSameType(T, Context.Char32Ty)) {
6100      if (++Param == FnDecl->param_end())
6101        Valid = true;
6102      goto FinishedParams;
6103    }
6104
6105    // Otherwise it must be a pointer to const; let's strip those qualifiers.
6106    const PointerType *PT = T->getAs<PointerType>();
6107    if (!PT)
6108      goto FinishedParams;
6109    T = PT->getPointeeType();
6110    if (!T.isConstQualified())
6111      goto FinishedParams;
6112    T = T.getUnqualifiedType();
6113
6114    // Move on to the second parameter;
6115    ++Param;
6116
6117    // If there is no second parameter, the first must be a const char *
6118    if (Param == FnDecl->param_end()) {
6119      if (Context.hasSameType(T, Context.CharTy))
6120        Valid = true;
6121      goto FinishedParams;
6122    }
6123
6124    // const char *, const wchar_t*, const char16_t*, and const char32_t*
6125    // are allowed as the first parameter to a two-parameter function
6126    if (!(Context.hasSameType(T, Context.CharTy) ||
6127          Context.hasSameType(T, Context.WCharTy) ||
6128          Context.hasSameType(T, Context.Char16Ty) ||
6129          Context.hasSameType(T, Context.Char32Ty)))
6130      goto FinishedParams;
6131
6132    // The second and final parameter must be an std::size_t
6133    T = (*Param)->getType().getUnqualifiedType();
6134    if (Context.hasSameType(T, Context.getSizeType()) &&
6135        ++Param == FnDecl->param_end())
6136      Valid = true;
6137  }
6138
6139  // FIXME: This diagnostic is absolutely terrible.
6140FinishedParams:
6141  if (!Valid) {
6142    Diag(FnDecl->getLocation(), diag::err_literal_operator_params)
6143      << FnDecl->getDeclName();
6144    return true;
6145  }
6146
6147  return false;
6148}
6149
6150/// ActOnStartLinkageSpecification - Parsed the beginning of a C++
6151/// linkage specification, including the language and (if present)
6152/// the '{'. ExternLoc is the location of the 'extern', LangLoc is
6153/// the location of the language string literal, which is provided
6154/// by Lang/StrSize. LBraceLoc, if valid, provides the location of
6155/// the '{' brace. Otherwise, this linkage specification does not
6156/// have any braces.
6157Decl *Sema::ActOnStartLinkageSpecification(Scope *S, SourceLocation ExternLoc,
6158                                           SourceLocation LangLoc,
6159                                           llvm::StringRef Lang,
6160                                           SourceLocation LBraceLoc) {
6161  LinkageSpecDecl::LanguageIDs Language;
6162  if (Lang == "\"C\"")
6163    Language = LinkageSpecDecl::lang_c;
6164  else if (Lang == "\"C++\"")
6165    Language = LinkageSpecDecl::lang_cxx;
6166  else {
6167    Diag(LangLoc, diag::err_bad_language);
6168    return 0;
6169  }
6170
6171  // FIXME: Add all the various semantics of linkage specifications
6172
6173  LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext,
6174                                               LangLoc, Language,
6175                                               LBraceLoc.isValid());
6176  CurContext->addDecl(D);
6177  PushDeclContext(S, D);
6178  return D;
6179}
6180
6181/// ActOnFinishLinkageSpecification - Complete the definition of
6182/// the C++ linkage specification LinkageSpec. If RBraceLoc is
6183/// valid, it's the position of the closing '}' brace in a linkage
6184/// specification that uses braces.
6185Decl *Sema::ActOnFinishLinkageSpecification(Scope *S,
6186                                                      Decl *LinkageSpec,
6187                                                      SourceLocation RBraceLoc) {
6188  if (LinkageSpec)
6189    PopDeclContext();
6190  return LinkageSpec;
6191}
6192
6193/// \brief Perform semantic analysis for the variable declaration that
6194/// occurs within a C++ catch clause, returning the newly-created
6195/// variable.
6196VarDecl *Sema::BuildExceptionDeclaration(Scope *S,
6197                                         TypeSourceInfo *TInfo,
6198                                         IdentifierInfo *Name,
6199                                         SourceLocation Loc) {
6200  bool Invalid = false;
6201  QualType ExDeclType = TInfo->getType();
6202
6203  // Arrays and functions decay.
6204  if (ExDeclType->isArrayType())
6205    ExDeclType = Context.getArrayDecayedType(ExDeclType);
6206  else if (ExDeclType->isFunctionType())
6207    ExDeclType = Context.getPointerType(ExDeclType);
6208
6209  // C++ 15.3p1: The exception-declaration shall not denote an incomplete type.
6210  // The exception-declaration shall not denote a pointer or reference to an
6211  // incomplete type, other than [cv] void*.
6212  // N2844 forbids rvalue references.
6213  if (!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) {
6214    Diag(Loc, diag::err_catch_rvalue_ref);
6215    Invalid = true;
6216  }
6217
6218  // GCC allows catching pointers and references to incomplete types
6219  // as an extension; so do we, but we warn by default.
6220
6221  QualType BaseType = ExDeclType;
6222  int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference
6223  unsigned DK = diag::err_catch_incomplete;
6224  bool IncompleteCatchIsInvalid = true;
6225  if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
6226    BaseType = Ptr->getPointeeType();
6227    Mode = 1;
6228    DK = diag::ext_catch_incomplete_ptr;
6229    IncompleteCatchIsInvalid = false;
6230  } else if (const ReferenceType *Ref = BaseType->getAs<ReferenceType>()) {
6231    // For the purpose of error recovery, we treat rvalue refs like lvalue refs.
6232    BaseType = Ref->getPointeeType();
6233    Mode = 2;
6234    DK = diag::ext_catch_incomplete_ref;
6235    IncompleteCatchIsInvalid = false;
6236  }
6237  if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) &&
6238      !BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK) &&
6239      IncompleteCatchIsInvalid)
6240    Invalid = true;
6241
6242  if (!Invalid && !ExDeclType->isDependentType() &&
6243      RequireNonAbstractType(Loc, ExDeclType,
6244                             diag::err_abstract_type_in_decl,
6245                             AbstractVariableType))
6246    Invalid = true;
6247
6248  // Only the non-fragile NeXT runtime currently supports C++ catches
6249  // of ObjC types, and no runtime supports catching ObjC types by value.
6250  if (!Invalid && getLangOptions().ObjC1) {
6251    QualType T = ExDeclType;
6252    if (const ReferenceType *RT = T->getAs<ReferenceType>())
6253      T = RT->getPointeeType();
6254
6255    if (T->isObjCObjectType()) {
6256      Diag(Loc, diag::err_objc_object_catch);
6257      Invalid = true;
6258    } else if (T->isObjCObjectPointerType()) {
6259      if (!getLangOptions().NeXTRuntime) {
6260        Diag(Loc, diag::err_objc_pointer_cxx_catch_gnu);
6261        Invalid = true;
6262      } else if (!getLangOptions().ObjCNonFragileABI) {
6263        Diag(Loc, diag::err_objc_pointer_cxx_catch_fragile);
6264        Invalid = true;
6265      }
6266    }
6267  }
6268
6269  VarDecl *ExDecl = VarDecl::Create(Context, CurContext, Loc,
6270                                    Name, ExDeclType, TInfo, SC_None,
6271                                    SC_None);
6272  ExDecl->setExceptionVariable(true);
6273
6274  if (!Invalid) {
6275    if (const RecordType *RecordTy = ExDeclType->getAs<RecordType>()) {
6276      // C++ [except.handle]p16:
6277      //   The object declared in an exception-declaration or, if the
6278      //   exception-declaration does not specify a name, a temporary (12.2) is
6279      //   copy-initialized (8.5) from the exception object. [...]
6280      //   The object is destroyed when the handler exits, after the destruction
6281      //   of any automatic objects initialized within the handler.
6282      //
6283      // We just pretend to initialize the object with itself, then make sure
6284      // it can be destroyed later.
6285      InitializedEntity Entity = InitializedEntity::InitializeVariable(ExDecl);
6286      Expr *ExDeclRef = DeclRefExpr::Create(Context, 0, SourceRange(), ExDecl,
6287                                            Loc, ExDeclType, VK_LValue, 0);
6288      InitializationKind Kind = InitializationKind::CreateCopy(Loc,
6289                                                               SourceLocation());
6290      InitializationSequence InitSeq(*this, Entity, Kind, &ExDeclRef, 1);
6291      ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
6292                                         MultiExprArg(*this, &ExDeclRef, 1));
6293      if (Result.isInvalid())
6294        Invalid = true;
6295      else
6296        FinalizeVarWithDestructor(ExDecl, RecordTy);
6297    }
6298  }
6299
6300  if (Invalid)
6301    ExDecl->setInvalidDecl();
6302
6303  return ExDecl;
6304}
6305
6306/// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch
6307/// handler.
6308Decl *Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) {
6309  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
6310  bool Invalid = D.isInvalidType();
6311
6312  // Check for unexpanded parameter packs.
6313  if (TInfo && DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
6314                                               UPPC_ExceptionType)) {
6315    TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy,
6316                                             D.getIdentifierLoc());
6317    Invalid = true;
6318  }
6319
6320  IdentifierInfo *II = D.getIdentifier();
6321  if (NamedDecl *PrevDecl = LookupSingleName(S, II, D.getIdentifierLoc(),
6322                                             LookupOrdinaryName,
6323                                             ForRedeclaration)) {
6324    // The scope should be freshly made just for us. There is just no way
6325    // it contains any previous declaration.
6326    assert(!S->isDeclScope(PrevDecl));
6327    if (PrevDecl->isTemplateParameter()) {
6328      // Maybe we will complain about the shadowed template parameter.
6329      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
6330    }
6331  }
6332
6333  if (D.getCXXScopeSpec().isSet() && !Invalid) {
6334    Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator)
6335      << D.getCXXScopeSpec().getRange();
6336    Invalid = true;
6337  }
6338
6339  VarDecl *ExDecl = BuildExceptionDeclaration(S, TInfo,
6340                                              D.getIdentifier(),
6341                                              D.getIdentifierLoc());
6342
6343  if (Invalid)
6344    ExDecl->setInvalidDecl();
6345
6346  // Add the exception declaration into this scope.
6347  if (II)
6348    PushOnScopeChains(ExDecl, S);
6349  else
6350    CurContext->addDecl(ExDecl);
6351
6352  ProcessDeclAttributes(S, ExDecl, D);
6353  return ExDecl;
6354}
6355
6356Decl *Sema::ActOnStaticAssertDeclaration(SourceLocation AssertLoc,
6357                                         Expr *AssertExpr,
6358                                         Expr *AssertMessageExpr_) {
6359  StringLiteral *AssertMessage = cast<StringLiteral>(AssertMessageExpr_);
6360
6361  if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent()) {
6362    llvm::APSInt Value(32);
6363    if (!AssertExpr->isIntegerConstantExpr(Value, Context)) {
6364      Diag(AssertLoc, diag::err_static_assert_expression_is_not_constant) <<
6365        AssertExpr->getSourceRange();
6366      return 0;
6367    }
6368
6369    if (Value == 0) {
6370      Diag(AssertLoc, diag::err_static_assert_failed)
6371        << AssertMessage->getString() << AssertExpr->getSourceRange();
6372    }
6373  }
6374
6375  if (DiagnoseUnexpandedParameterPack(AssertExpr, UPPC_StaticAssertExpression))
6376    return 0;
6377
6378  Decl *Decl = StaticAssertDecl::Create(Context, CurContext, AssertLoc,
6379                                        AssertExpr, AssertMessage);
6380
6381  CurContext->addDecl(Decl);
6382  return Decl;
6383}
6384
6385/// \brief Perform semantic analysis of the given friend type declaration.
6386///
6387/// \returns A friend declaration that.
6388FriendDecl *Sema::CheckFriendTypeDecl(SourceLocation FriendLoc,
6389                                      TypeSourceInfo *TSInfo) {
6390  assert(TSInfo && "NULL TypeSourceInfo for friend type declaration");
6391
6392  QualType T = TSInfo->getType();
6393  SourceRange TypeRange = TSInfo->getTypeLoc().getLocalSourceRange();
6394
6395  if (!getLangOptions().CPlusPlus0x) {
6396    // C++03 [class.friend]p2:
6397    //   An elaborated-type-specifier shall be used in a friend declaration
6398    //   for a class.*
6399    //
6400    //   * The class-key of the elaborated-type-specifier is required.
6401    if (!ActiveTemplateInstantiations.empty()) {
6402      // Do not complain about the form of friend template types during
6403      // template instantiation; we will already have complained when the
6404      // template was declared.
6405    } else if (!T->isElaboratedTypeSpecifier()) {
6406      // If we evaluated the type to a record type, suggest putting
6407      // a tag in front.
6408      if (const RecordType *RT = T->getAs<RecordType>()) {
6409        RecordDecl *RD = RT->getDecl();
6410
6411        std::string InsertionText = std::string(" ") + RD->getKindName();
6412
6413        Diag(TypeRange.getBegin(), diag::ext_unelaborated_friend_type)
6414          << (unsigned) RD->getTagKind()
6415          << T
6416          << FixItHint::CreateInsertion(PP.getLocForEndOfToken(FriendLoc),
6417                                        InsertionText);
6418      } else {
6419        Diag(FriendLoc, diag::ext_nonclass_type_friend)
6420          << T
6421          << SourceRange(FriendLoc, TypeRange.getEnd());
6422      }
6423    } else if (T->getAs<EnumType>()) {
6424      Diag(FriendLoc, diag::ext_enum_friend)
6425        << T
6426        << SourceRange(FriendLoc, TypeRange.getEnd());
6427    }
6428  }
6429
6430  // C++0x [class.friend]p3:
6431  //   If the type specifier in a friend declaration designates a (possibly
6432  //   cv-qualified) class type, that class is declared as a friend; otherwise,
6433  //   the friend declaration is ignored.
6434
6435  // FIXME: C++0x has some syntactic restrictions on friend type declarations
6436  // in [class.friend]p3 that we do not implement.
6437
6438  return FriendDecl::Create(Context, CurContext, FriendLoc, TSInfo, FriendLoc);
6439}
6440
6441/// Handle a friend tag declaration where the scope specifier was
6442/// templated.
6443Decl *Sema::ActOnTemplatedFriendTag(Scope *S, SourceLocation FriendLoc,
6444                                    unsigned TagSpec, SourceLocation TagLoc,
6445                                    CXXScopeSpec &SS,
6446                                    IdentifierInfo *Name, SourceLocation NameLoc,
6447                                    AttributeList *Attr,
6448                                    MultiTemplateParamsArg TempParamLists) {
6449  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
6450
6451  bool isExplicitSpecialization = false;
6452  unsigned NumMatchedTemplateParamLists = TempParamLists.size();
6453  bool Invalid = false;
6454
6455  if (TemplateParameterList *TemplateParams
6456        = MatchTemplateParametersToScopeSpecifier(TagLoc, SS,
6457                                                  TempParamLists.get(),
6458                                                  TempParamLists.size(),
6459                                                  /*friend*/ true,
6460                                                  isExplicitSpecialization,
6461                                                  Invalid)) {
6462    --NumMatchedTemplateParamLists;
6463
6464    if (TemplateParams->size() > 0) {
6465      // This is a declaration of a class template.
6466      if (Invalid)
6467        return 0;
6468
6469      return CheckClassTemplate(S, TagSpec, TUK_Friend, TagLoc,
6470                                SS, Name, NameLoc, Attr,
6471                                TemplateParams, AS_public).take();
6472    } else {
6473      // The "template<>" header is extraneous.
6474      Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
6475        << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
6476      isExplicitSpecialization = true;
6477    }
6478  }
6479
6480  if (Invalid) return 0;
6481
6482  assert(SS.isNotEmpty() && "valid templated tag with no SS and no direct?");
6483
6484  bool isAllExplicitSpecializations = true;
6485  for (unsigned I = 0; I != NumMatchedTemplateParamLists; ++I) {
6486    if (TempParamLists.get()[I]->size()) {
6487      isAllExplicitSpecializations = false;
6488      break;
6489    }
6490  }
6491
6492  // FIXME: don't ignore attributes.
6493
6494  // If it's explicit specializations all the way down, just forget
6495  // about the template header and build an appropriate non-templated
6496  // friend.  TODO: for source fidelity, remember the headers.
6497  if (isAllExplicitSpecializations) {
6498    ElaboratedTypeKeyword Keyword
6499      = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
6500    QualType T = CheckTypenameType(Keyword, SS.getScopeRep(), *Name,
6501                                   TagLoc, SS.getRange(), NameLoc);
6502    if (T.isNull())
6503      return 0;
6504
6505    TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
6506    if (isa<DependentNameType>(T)) {
6507      DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc());
6508      TL.setKeywordLoc(TagLoc);
6509      TL.setQualifierRange(SS.getRange());
6510      TL.setNameLoc(NameLoc);
6511    } else {
6512      ElaboratedTypeLoc TL = cast<ElaboratedTypeLoc>(TSI->getTypeLoc());
6513      TL.setKeywordLoc(TagLoc);
6514      TL.setQualifierRange(SS.getRange());
6515      cast<TypeSpecTypeLoc>(TL.getNamedTypeLoc()).setNameLoc(NameLoc);
6516    }
6517
6518    FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
6519                                            TSI, FriendLoc);
6520    Friend->setAccess(AS_public);
6521    CurContext->addDecl(Friend);
6522    return Friend;
6523  }
6524
6525  // Handle the case of a templated-scope friend class.  e.g.
6526  //   template <class T> class A<T>::B;
6527  // FIXME: we don't support these right now.
6528  ElaboratedTypeKeyword ETK = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
6529  QualType T = Context.getDependentNameType(ETK, SS.getScopeRep(), Name);
6530  TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
6531  DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc());
6532  TL.setKeywordLoc(TagLoc);
6533  TL.setQualifierRange(SS.getRange());
6534  TL.setNameLoc(NameLoc);
6535
6536  FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
6537                                          TSI, FriendLoc);
6538  Friend->setAccess(AS_public);
6539  Friend->setUnsupportedFriend(true);
6540  CurContext->addDecl(Friend);
6541  return Friend;
6542}
6543
6544
6545/// Handle a friend type declaration.  This works in tandem with
6546/// ActOnTag.
6547///
6548/// Notes on friend class templates:
6549///
6550/// We generally treat friend class declarations as if they were
6551/// declaring a class.  So, for example, the elaborated type specifier
6552/// in a friend declaration is required to obey the restrictions of a
6553/// class-head (i.e. no typedefs in the scope chain), template
6554/// parameters are required to match up with simple template-ids, &c.
6555/// However, unlike when declaring a template specialization, it's
6556/// okay to refer to a template specialization without an empty
6557/// template parameter declaration, e.g.
6558///   friend class A<T>::B<unsigned>;
6559/// We permit this as a special case; if there are any template
6560/// parameters present at all, require proper matching, i.e.
6561///   template <> template <class T> friend class A<int>::B;
6562Decl *Sema::ActOnFriendTypeDecl(Scope *S, const DeclSpec &DS,
6563                                MultiTemplateParamsArg TempParams) {
6564  SourceLocation Loc = DS.getSourceRange().getBegin();
6565
6566  assert(DS.isFriendSpecified());
6567  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
6568
6569  // Try to convert the decl specifier to a type.  This works for
6570  // friend templates because ActOnTag never produces a ClassTemplateDecl
6571  // for a TUK_Friend.
6572  Declarator TheDeclarator(DS, Declarator::MemberContext);
6573  TypeSourceInfo *TSI = GetTypeForDeclarator(TheDeclarator, S);
6574  QualType T = TSI->getType();
6575  if (TheDeclarator.isInvalidType())
6576    return 0;
6577
6578  if (DiagnoseUnexpandedParameterPack(Loc, TSI, UPPC_FriendDeclaration))
6579    return 0;
6580
6581  // This is definitely an error in C++98.  It's probably meant to
6582  // be forbidden in C++0x, too, but the specification is just
6583  // poorly written.
6584  //
6585  // The problem is with declarations like the following:
6586  //   template <T> friend A<T>::foo;
6587  // where deciding whether a class C is a friend or not now hinges
6588  // on whether there exists an instantiation of A that causes
6589  // 'foo' to equal C.  There are restrictions on class-heads
6590  // (which we declare (by fiat) elaborated friend declarations to
6591  // be) that makes this tractable.
6592  //
6593  // FIXME: handle "template <> friend class A<T>;", which
6594  // is possibly well-formed?  Who even knows?
6595  if (TempParams.size() && !T->isElaboratedTypeSpecifier()) {
6596    Diag(Loc, diag::err_tagless_friend_type_template)
6597      << DS.getSourceRange();
6598    return 0;
6599  }
6600
6601  // C++98 [class.friend]p1: A friend of a class is a function
6602  //   or class that is not a member of the class . . .
6603  // This is fixed in DR77, which just barely didn't make the C++03
6604  // deadline.  It's also a very silly restriction that seriously
6605  // affects inner classes and which nobody else seems to implement;
6606  // thus we never diagnose it, not even in -pedantic.
6607  //
6608  // But note that we could warn about it: it's always useless to
6609  // friend one of your own members (it's not, however, worthless to
6610  // friend a member of an arbitrary specialization of your template).
6611
6612  Decl *D;
6613  if (unsigned NumTempParamLists = TempParams.size())
6614    D = FriendTemplateDecl::Create(Context, CurContext, Loc,
6615                                   NumTempParamLists,
6616                                   TempParams.release(),
6617                                   TSI,
6618                                   DS.getFriendSpecLoc());
6619  else
6620    D = CheckFriendTypeDecl(DS.getFriendSpecLoc(), TSI);
6621
6622  if (!D)
6623    return 0;
6624
6625  D->setAccess(AS_public);
6626  CurContext->addDecl(D);
6627
6628  return D;
6629}
6630
6631Decl *Sema::ActOnFriendFunctionDecl(Scope *S, Declarator &D, bool IsDefinition,
6632                                    MultiTemplateParamsArg TemplateParams) {
6633  const DeclSpec &DS = D.getDeclSpec();
6634
6635  assert(DS.isFriendSpecified());
6636  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
6637
6638  SourceLocation Loc = D.getIdentifierLoc();
6639  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
6640  QualType T = TInfo->getType();
6641
6642  // C++ [class.friend]p1
6643  //   A friend of a class is a function or class....
6644  // Note that this sees through typedefs, which is intended.
6645  // It *doesn't* see through dependent types, which is correct
6646  // according to [temp.arg.type]p3:
6647  //   If a declaration acquires a function type through a
6648  //   type dependent on a template-parameter and this causes
6649  //   a declaration that does not use the syntactic form of a
6650  //   function declarator to have a function type, the program
6651  //   is ill-formed.
6652  if (!T->isFunctionType()) {
6653    Diag(Loc, diag::err_unexpected_friend);
6654
6655    // It might be worthwhile to try to recover by creating an
6656    // appropriate declaration.
6657    return 0;
6658  }
6659
6660  // C++ [namespace.memdef]p3
6661  //  - If a friend declaration in a non-local class first declares a
6662  //    class or function, the friend class or function is a member
6663  //    of the innermost enclosing namespace.
6664  //  - The name of the friend is not found by simple name lookup
6665  //    until a matching declaration is provided in that namespace
6666  //    scope (either before or after the class declaration granting
6667  //    friendship).
6668  //  - If a friend function is called, its name may be found by the
6669  //    name lookup that considers functions from namespaces and
6670  //    classes associated with the types of the function arguments.
6671  //  - When looking for a prior declaration of a class or a function
6672  //    declared as a friend, scopes outside the innermost enclosing
6673  //    namespace scope are not considered.
6674
6675  CXXScopeSpec &SS = D.getCXXScopeSpec();
6676  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
6677  DeclarationName Name = NameInfo.getName();
6678  assert(Name);
6679
6680  // Check for unexpanded parameter packs.
6681  if (DiagnoseUnexpandedParameterPack(Loc, TInfo, UPPC_FriendDeclaration) ||
6682      DiagnoseUnexpandedParameterPack(NameInfo, UPPC_FriendDeclaration) ||
6683      DiagnoseUnexpandedParameterPack(SS, UPPC_FriendDeclaration))
6684    return 0;
6685
6686  // The context we found the declaration in, or in which we should
6687  // create the declaration.
6688  DeclContext *DC;
6689  Scope *DCScope = S;
6690  LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
6691                        ForRedeclaration);
6692
6693  // FIXME: there are different rules in local classes
6694
6695  // There are four cases here.
6696  //   - There's no scope specifier, in which case we just go to the
6697  //     appropriate scope and look for a function or function template
6698  //     there as appropriate.
6699  // Recover from invalid scope qualifiers as if they just weren't there.
6700  if (SS.isInvalid() || !SS.isSet()) {
6701    // C++0x [namespace.memdef]p3:
6702    //   If the name in a friend declaration is neither qualified nor
6703    //   a template-id and the declaration is a function or an
6704    //   elaborated-type-specifier, the lookup to determine whether
6705    //   the entity has been previously declared shall not consider
6706    //   any scopes outside the innermost enclosing namespace.
6707    // C++0x [class.friend]p11:
6708    //   If a friend declaration appears in a local class and the name
6709    //   specified is an unqualified name, a prior declaration is
6710    //   looked up without considering scopes that are outside the
6711    //   innermost enclosing non-class scope. For a friend function
6712    //   declaration, if there is no prior declaration, the program is
6713    //   ill-formed.
6714    bool isLocal = cast<CXXRecordDecl>(CurContext)->isLocalClass();
6715    bool isTemplateId = D.getName().getKind() == UnqualifiedId::IK_TemplateId;
6716
6717    // Find the appropriate context according to the above.
6718    DC = CurContext;
6719    while (true) {
6720      // Skip class contexts.  If someone can cite chapter and verse
6721      // for this behavior, that would be nice --- it's what GCC and
6722      // EDG do, and it seems like a reasonable intent, but the spec
6723      // really only says that checks for unqualified existing
6724      // declarations should stop at the nearest enclosing namespace,
6725      // not that they should only consider the nearest enclosing
6726      // namespace.
6727      while (DC->isRecord())
6728        DC = DC->getParent();
6729
6730      LookupQualifiedName(Previous, DC);
6731
6732      // TODO: decide what we think about using declarations.
6733      if (isLocal || !Previous.empty())
6734        break;
6735
6736      if (isTemplateId) {
6737        if (isa<TranslationUnitDecl>(DC)) break;
6738      } else {
6739        if (DC->isFileContext()) break;
6740      }
6741      DC = DC->getParent();
6742    }
6743
6744    // C++ [class.friend]p1: A friend of a class is a function or
6745    //   class that is not a member of the class . . .
6746    // C++0x changes this for both friend types and functions.
6747    // Most C++ 98 compilers do seem to give an error here, so
6748    // we do, too.
6749    if (!Previous.empty() && DC->Equals(CurContext)
6750        && !getLangOptions().CPlusPlus0x)
6751      Diag(DS.getFriendSpecLoc(), diag::err_friend_is_member);
6752
6753    DCScope = getScopeForDeclContext(S, DC);
6754
6755  //   - There's a non-dependent scope specifier, in which case we
6756  //     compute it and do a previous lookup there for a function
6757  //     or function template.
6758  } else if (!SS.getScopeRep()->isDependent()) {
6759    DC = computeDeclContext(SS);
6760    if (!DC) return 0;
6761
6762    if (RequireCompleteDeclContext(SS, DC)) return 0;
6763
6764    LookupQualifiedName(Previous, DC);
6765
6766    // Ignore things found implicitly in the wrong scope.
6767    // TODO: better diagnostics for this case.  Suggesting the right
6768    // qualified scope would be nice...
6769    LookupResult::Filter F = Previous.makeFilter();
6770    while (F.hasNext()) {
6771      NamedDecl *D = F.next();
6772      if (!DC->InEnclosingNamespaceSetOf(
6773              D->getDeclContext()->getRedeclContext()))
6774        F.erase();
6775    }
6776    F.done();
6777
6778    if (Previous.empty()) {
6779      D.setInvalidType();
6780      Diag(Loc, diag::err_qualified_friend_not_found) << Name << T;
6781      return 0;
6782    }
6783
6784    // C++ [class.friend]p1: A friend of a class is a function or
6785    //   class that is not a member of the class . . .
6786    if (DC->Equals(CurContext))
6787      Diag(DS.getFriendSpecLoc(), diag::err_friend_is_member);
6788
6789  //   - There's a scope specifier that does not match any template
6790  //     parameter lists, in which case we use some arbitrary context,
6791  //     create a method or method template, and wait for instantiation.
6792  //   - There's a scope specifier that does match some template
6793  //     parameter lists, which we don't handle right now.
6794  } else {
6795    DC = CurContext;
6796    assert(isa<CXXRecordDecl>(DC) && "friend declaration not in class?");
6797  }
6798
6799  if (!DC->isRecord()) {
6800    // This implies that it has to be an operator or function.
6801    if (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ||
6802        D.getName().getKind() == UnqualifiedId::IK_DestructorName ||
6803        D.getName().getKind() == UnqualifiedId::IK_ConversionFunctionId) {
6804      Diag(Loc, diag::err_introducing_special_friend) <<
6805        (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ? 0 :
6806         D.getName().getKind() == UnqualifiedId::IK_DestructorName ? 1 : 2);
6807      return 0;
6808    }
6809  }
6810
6811  bool Redeclaration = false;
6812  NamedDecl *ND = ActOnFunctionDeclarator(DCScope, D, DC, T, TInfo, Previous,
6813                                          move(TemplateParams),
6814                                          IsDefinition,
6815                                          Redeclaration);
6816  if (!ND) return 0;
6817
6818  assert(ND->getDeclContext() == DC);
6819  assert(ND->getLexicalDeclContext() == CurContext);
6820
6821  // Add the function declaration to the appropriate lookup tables,
6822  // adjusting the redeclarations list as necessary.  We don't
6823  // want to do this yet if the friending class is dependent.
6824  //
6825  // Also update the scope-based lookup if the target context's
6826  // lookup context is in lexical scope.
6827  if (!CurContext->isDependentContext()) {
6828    DC = DC->getRedeclContext();
6829    DC->makeDeclVisibleInContext(ND, /* Recoverable=*/ false);
6830    if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
6831      PushOnScopeChains(ND, EnclosingScope, /*AddToContext=*/ false);
6832  }
6833
6834  FriendDecl *FrD = FriendDecl::Create(Context, CurContext,
6835                                       D.getIdentifierLoc(), ND,
6836                                       DS.getFriendSpecLoc());
6837  FrD->setAccess(AS_public);
6838  CurContext->addDecl(FrD);
6839
6840  if (ND->isInvalidDecl())
6841    FrD->setInvalidDecl();
6842  else {
6843    FunctionDecl *FD;
6844    if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND))
6845      FD = FTD->getTemplatedDecl();
6846    else
6847      FD = cast<FunctionDecl>(ND);
6848
6849    // Mark templated-scope function declarations as unsupported.
6850    if (FD->getNumTemplateParameterLists())
6851      FrD->setUnsupportedFriend(true);
6852  }
6853
6854  return ND;
6855}
6856
6857void Sema::SetDeclDeleted(Decl *Dcl, SourceLocation DelLoc) {
6858  AdjustDeclIfTemplate(Dcl);
6859
6860  FunctionDecl *Fn = dyn_cast<FunctionDecl>(Dcl);
6861  if (!Fn) {
6862    Diag(DelLoc, diag::err_deleted_non_function);
6863    return;
6864  }
6865  if (const FunctionDecl *Prev = Fn->getPreviousDeclaration()) {
6866    Diag(DelLoc, diag::err_deleted_decl_not_first);
6867    Diag(Prev->getLocation(), diag::note_previous_declaration);
6868    // If the declaration wasn't the first, we delete the function anyway for
6869    // recovery.
6870  }
6871  Fn->setDeleted();
6872}
6873
6874static void SearchForReturnInStmt(Sema &Self, Stmt *S) {
6875  for (Stmt::child_iterator CI = S->child_begin(), E = S->child_end(); CI != E;
6876       ++CI) {
6877    Stmt *SubStmt = *CI;
6878    if (!SubStmt)
6879      continue;
6880    if (isa<ReturnStmt>(SubStmt))
6881      Self.Diag(SubStmt->getSourceRange().getBegin(),
6882           diag::err_return_in_constructor_handler);
6883    if (!isa<Expr>(SubStmt))
6884      SearchForReturnInStmt(Self, SubStmt);
6885  }
6886}
6887
6888void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) {
6889  for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) {
6890    CXXCatchStmt *Handler = TryBlock->getHandler(I);
6891    SearchForReturnInStmt(*this, Handler);
6892  }
6893}
6894
6895bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New,
6896                                             const CXXMethodDecl *Old) {
6897  QualType NewTy = New->getType()->getAs<FunctionType>()->getResultType();
6898  QualType OldTy = Old->getType()->getAs<FunctionType>()->getResultType();
6899
6900  if (Context.hasSameType(NewTy, OldTy) ||
6901      NewTy->isDependentType() || OldTy->isDependentType())
6902    return false;
6903
6904  // Check if the return types are covariant
6905  QualType NewClassTy, OldClassTy;
6906
6907  /// Both types must be pointers or references to classes.
6908  if (const PointerType *NewPT = NewTy->getAs<PointerType>()) {
6909    if (const PointerType *OldPT = OldTy->getAs<PointerType>()) {
6910      NewClassTy = NewPT->getPointeeType();
6911      OldClassTy = OldPT->getPointeeType();
6912    }
6913  } else if (const ReferenceType *NewRT = NewTy->getAs<ReferenceType>()) {
6914    if (const ReferenceType *OldRT = OldTy->getAs<ReferenceType>()) {
6915      if (NewRT->getTypeClass() == OldRT->getTypeClass()) {
6916        NewClassTy = NewRT->getPointeeType();
6917        OldClassTy = OldRT->getPointeeType();
6918      }
6919    }
6920  }
6921
6922  // The return types aren't either both pointers or references to a class type.
6923  if (NewClassTy.isNull()) {
6924    Diag(New->getLocation(),
6925         diag::err_different_return_type_for_overriding_virtual_function)
6926      << New->getDeclName() << NewTy << OldTy;
6927    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
6928
6929    return true;
6930  }
6931
6932  // C++ [class.virtual]p6:
6933  //   If the return type of D::f differs from the return type of B::f, the
6934  //   class type in the return type of D::f shall be complete at the point of
6935  //   declaration of D::f or shall be the class type D.
6936  if (const RecordType *RT = NewClassTy->getAs<RecordType>()) {
6937    if (!RT->isBeingDefined() &&
6938        RequireCompleteType(New->getLocation(), NewClassTy,
6939                            PDiag(diag::err_covariant_return_incomplete)
6940                              << New->getDeclName()))
6941    return true;
6942  }
6943
6944  if (!Context.hasSameUnqualifiedType(NewClassTy, OldClassTy)) {
6945    // Check if the new class derives from the old class.
6946    if (!IsDerivedFrom(NewClassTy, OldClassTy)) {
6947      Diag(New->getLocation(),
6948           diag::err_covariant_return_not_derived)
6949      << New->getDeclName() << NewTy << OldTy;
6950      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
6951      return true;
6952    }
6953
6954    // Check if we the conversion from derived to base is valid.
6955    if (CheckDerivedToBaseConversion(NewClassTy, OldClassTy,
6956                    diag::err_covariant_return_inaccessible_base,
6957                    diag::err_covariant_return_ambiguous_derived_to_base_conv,
6958                    // FIXME: Should this point to the return type?
6959                    New->getLocation(), SourceRange(), New->getDeclName(), 0)) {
6960      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
6961      return true;
6962    }
6963  }
6964
6965  // The qualifiers of the return types must be the same.
6966  if (NewTy.getLocalCVRQualifiers() != OldTy.getLocalCVRQualifiers()) {
6967    Diag(New->getLocation(),
6968         diag::err_covariant_return_type_different_qualifications)
6969    << New->getDeclName() << NewTy << OldTy;
6970    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
6971    return true;
6972  };
6973
6974
6975  // The new class type must have the same or less qualifiers as the old type.
6976  if (NewClassTy.isMoreQualifiedThan(OldClassTy)) {
6977    Diag(New->getLocation(),
6978         diag::err_covariant_return_type_class_type_more_qualified)
6979    << New->getDeclName() << NewTy << OldTy;
6980    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
6981    return true;
6982  };
6983
6984  return false;
6985}
6986
6987/// \brief Mark the given method pure.
6988///
6989/// \param Method the method to be marked pure.
6990///
6991/// \param InitRange the source range that covers the "0" initializer.
6992bool Sema::CheckPureMethod(CXXMethodDecl *Method, SourceRange InitRange) {
6993  if (Method->isVirtual() || Method->getParent()->isDependentContext()) {
6994    Method->setPure();
6995    return false;
6996  }
6997
6998  if (!Method->isInvalidDecl())
6999    Diag(Method->getLocation(), diag::err_non_virtual_pure)
7000      << Method->getDeclName() << InitRange;
7001  return true;
7002}
7003
7004/// ActOnCXXEnterDeclInitializer - Invoked when we are about to parse
7005/// an initializer for the out-of-line declaration 'Dcl'.  The scope
7006/// is a fresh scope pushed for just this purpose.
7007///
7008/// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a
7009/// static data member of class X, names should be looked up in the scope of
7010/// class X.
7011void Sema::ActOnCXXEnterDeclInitializer(Scope *S, Decl *D) {
7012  // If there is no declaration, there was an error parsing it.
7013  if (D == 0) return;
7014
7015  // We should only get called for declarations with scope specifiers, like:
7016  //   int foo::bar;
7017  assert(D->isOutOfLine());
7018  EnterDeclaratorContext(S, D->getDeclContext());
7019}
7020
7021/// ActOnCXXExitDeclInitializer - Invoked after we are finished parsing an
7022/// initializer for the out-of-line declaration 'D'.
7023void Sema::ActOnCXXExitDeclInitializer(Scope *S, Decl *D) {
7024  // If there is no declaration, there was an error parsing it.
7025  if (D == 0) return;
7026
7027  assert(D->isOutOfLine());
7028  ExitDeclaratorContext(S);
7029}
7030
7031/// ActOnCXXConditionDeclarationExpr - Parsed a condition declaration of a
7032/// C++ if/switch/while/for statement.
7033/// e.g: "if (int x = f()) {...}"
7034DeclResult Sema::ActOnCXXConditionDeclaration(Scope *S, Declarator &D) {
7035  // C++ 6.4p2:
7036  // The declarator shall not specify a function or an array.
7037  // The type-specifier-seq shall not contain typedef and shall not declare a
7038  // new class or enumeration.
7039  assert(D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
7040         "Parser allowed 'typedef' as storage class of condition decl.");
7041
7042  TagDecl *OwnedTag = 0;
7043  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S, &OwnedTag);
7044  QualType Ty = TInfo->getType();
7045
7046  if (Ty->isFunctionType()) { // The declarator shall not specify a function...
7047                              // We exit without creating a CXXConditionDeclExpr because a FunctionDecl
7048                              // would be created and CXXConditionDeclExpr wants a VarDecl.
7049    Diag(D.getIdentifierLoc(), diag::err_invalid_use_of_function_type)
7050      << D.getSourceRange();
7051    return DeclResult();
7052  } else if (OwnedTag && OwnedTag->isDefinition()) {
7053    // The type-specifier-seq shall not declare a new class or enumeration.
7054    Diag(OwnedTag->getLocation(), diag::err_type_defined_in_condition);
7055  }
7056
7057  Decl *Dcl = ActOnDeclarator(S, D);
7058  if (!Dcl)
7059    return DeclResult();
7060
7061  return Dcl;
7062}
7063
7064void Sema::MarkVTableUsed(SourceLocation Loc, CXXRecordDecl *Class,
7065                          bool DefinitionRequired) {
7066  // Ignore any vtable uses in unevaluated operands or for classes that do
7067  // not have a vtable.
7068  if (!Class->isDynamicClass() || Class->isDependentContext() ||
7069      CurContext->isDependentContext() ||
7070      ExprEvalContexts.back().Context == Unevaluated)
7071    return;
7072
7073  // Try to insert this class into the map.
7074  Class = cast<CXXRecordDecl>(Class->getCanonicalDecl());
7075  std::pair<llvm::DenseMap<CXXRecordDecl *, bool>::iterator, bool>
7076    Pos = VTablesUsed.insert(std::make_pair(Class, DefinitionRequired));
7077  if (!Pos.second) {
7078    // If we already had an entry, check to see if we are promoting this vtable
7079    // to required a definition. If so, we need to reappend to the VTableUses
7080    // list, since we may have already processed the first entry.
7081    if (DefinitionRequired && !Pos.first->second) {
7082      Pos.first->second = true;
7083    } else {
7084      // Otherwise, we can early exit.
7085      return;
7086    }
7087  }
7088
7089  // Local classes need to have their virtual members marked
7090  // immediately. For all other classes, we mark their virtual members
7091  // at the end of the translation unit.
7092  if (Class->isLocalClass())
7093    MarkVirtualMembersReferenced(Loc, Class);
7094  else
7095    VTableUses.push_back(std::make_pair(Class, Loc));
7096}
7097
7098bool Sema::DefineUsedVTables() {
7099  if (VTableUses.empty())
7100    return false;
7101
7102  // Note: The VTableUses vector could grow as a result of marking
7103  // the members of a class as "used", so we check the size each
7104  // time through the loop and prefer indices (with are stable) to
7105  // iterators (which are not).
7106  for (unsigned I = 0; I != VTableUses.size(); ++I) {
7107    CXXRecordDecl *Class = VTableUses[I].first->getDefinition();
7108    if (!Class)
7109      continue;
7110
7111    SourceLocation Loc = VTableUses[I].second;
7112
7113    // If this class has a key function, but that key function is
7114    // defined in another translation unit, we don't need to emit the
7115    // vtable even though we're using it.
7116    const CXXMethodDecl *KeyFunction = Context.getKeyFunction(Class);
7117    if (KeyFunction && !KeyFunction->hasBody()) {
7118      switch (KeyFunction->getTemplateSpecializationKind()) {
7119      case TSK_Undeclared:
7120      case TSK_ExplicitSpecialization:
7121        // The key function is in another translation unit. Mark all of the
7122        // virtual members of this class as referenced so that we can build a
7123        // vtable anyway (in order to do devirtualization when optimizations
7124        // are turned on for example.
7125        MarkVirtualMembersReferenced(Loc, Class);
7126        continue;
7127
7128      case TSK_ExplicitInstantiationDeclaration:
7129        // The key function is in another translation unit.
7130        continue;
7131
7132      case TSK_ExplicitInstantiationDefinition:
7133      case TSK_ImplicitInstantiation:
7134        // We will be instantiating the key function.
7135        break;
7136      }
7137    } else if (!KeyFunction) {
7138      // If we have a class with no key function that is the subject
7139      // of an explicit instantiation declaration, suppress the
7140      // vtable; it will live with the explicit instantiation
7141      // definition.
7142      bool IsExplicitInstantiationDeclaration
7143        = Class->getTemplateSpecializationKind()
7144                                      == TSK_ExplicitInstantiationDeclaration;
7145      for (TagDecl::redecl_iterator R = Class->redecls_begin(),
7146                                 REnd = Class->redecls_end();
7147           R != REnd; ++R) {
7148        TemplateSpecializationKind TSK
7149          = cast<CXXRecordDecl>(*R)->getTemplateSpecializationKind();
7150        if (TSK == TSK_ExplicitInstantiationDeclaration)
7151          IsExplicitInstantiationDeclaration = true;
7152        else if (TSK == TSK_ExplicitInstantiationDefinition) {
7153          IsExplicitInstantiationDeclaration = false;
7154          break;
7155        }
7156      }
7157
7158      if (IsExplicitInstantiationDeclaration)
7159        continue;
7160    }
7161
7162    // Mark all of the virtual members of this class as referenced, so
7163    // that we can build a vtable. Then, tell the AST consumer that a
7164    // vtable for this class is required.
7165    MarkVirtualMembersReferenced(Loc, Class);
7166    CXXRecordDecl *Canonical = cast<CXXRecordDecl>(Class->getCanonicalDecl());
7167    Consumer.HandleVTable(Class, VTablesUsed[Canonical]);
7168
7169    // Optionally warn if we're emitting a weak vtable.
7170    if (Class->getLinkage() == ExternalLinkage &&
7171        Class->getTemplateSpecializationKind() != TSK_ImplicitInstantiation) {
7172      if (!KeyFunction || (KeyFunction->hasBody() && KeyFunction->isInlined()))
7173        Diag(Class->getLocation(), diag::warn_weak_vtable) << Class;
7174    }
7175  }
7176  VTableUses.clear();
7177
7178  return true;
7179}
7180
7181void Sema::MarkVirtualMembersReferenced(SourceLocation Loc,
7182                                        const CXXRecordDecl *RD) {
7183  for (CXXRecordDecl::method_iterator i = RD->method_begin(),
7184       e = RD->method_end(); i != e; ++i) {
7185    CXXMethodDecl *MD = *i;
7186
7187    // C++ [basic.def.odr]p2:
7188    //   [...] A virtual member function is used if it is not pure. [...]
7189    if (MD->isVirtual() && !MD->isPure())
7190      MarkDeclarationReferenced(Loc, MD);
7191  }
7192
7193  // Only classes that have virtual bases need a VTT.
7194  if (RD->getNumVBases() == 0)
7195    return;
7196
7197  for (CXXRecordDecl::base_class_const_iterator i = RD->bases_begin(),
7198           e = RD->bases_end(); i != e; ++i) {
7199    const CXXRecordDecl *Base =
7200        cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
7201    if (Base->getNumVBases() == 0)
7202      continue;
7203    MarkVirtualMembersReferenced(Loc, Base);
7204  }
7205}
7206
7207/// SetIvarInitializers - This routine builds initialization ASTs for the
7208/// Objective-C implementation whose ivars need be initialized.
7209void Sema::SetIvarInitializers(ObjCImplementationDecl *ObjCImplementation) {
7210  if (!getLangOptions().CPlusPlus)
7211    return;
7212  if (ObjCInterfaceDecl *OID = ObjCImplementation->getClassInterface()) {
7213    llvm::SmallVector<ObjCIvarDecl*, 8> ivars;
7214    CollectIvarsToConstructOrDestruct(OID, ivars);
7215    if (ivars.empty())
7216      return;
7217    llvm::SmallVector<CXXCtorInitializer*, 32> AllToInit;
7218    for (unsigned i = 0; i < ivars.size(); i++) {
7219      FieldDecl *Field = ivars[i];
7220      if (Field->isInvalidDecl())
7221        continue;
7222
7223      CXXCtorInitializer *Member;
7224      InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field);
7225      InitializationKind InitKind =
7226        InitializationKind::CreateDefault(ObjCImplementation->getLocation());
7227
7228      InitializationSequence InitSeq(*this, InitEntity, InitKind, 0, 0);
7229      ExprResult MemberInit =
7230        InitSeq.Perform(*this, InitEntity, InitKind, MultiExprArg());
7231      MemberInit = MaybeCreateExprWithCleanups(MemberInit);
7232      // Note, MemberInit could actually come back empty if no initialization
7233      // is required (e.g., because it would call a trivial default constructor)
7234      if (!MemberInit.get() || MemberInit.isInvalid())
7235        continue;
7236
7237      Member =
7238        new (Context) CXXCtorInitializer(Context, Field, SourceLocation(),
7239                                         SourceLocation(),
7240                                         MemberInit.takeAs<Expr>(),
7241                                         SourceLocation());
7242      AllToInit.push_back(Member);
7243
7244      // Be sure that the destructor is accessible and is marked as referenced.
7245      if (const RecordType *RecordTy
7246                  = Context.getBaseElementType(Field->getType())
7247                                                        ->getAs<RecordType>()) {
7248                    CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl());
7249        if (CXXDestructorDecl *Destructor = LookupDestructor(RD)) {
7250          MarkDeclarationReferenced(Field->getLocation(), Destructor);
7251          CheckDestructorAccess(Field->getLocation(), Destructor,
7252                            PDiag(diag::err_access_dtor_ivar)
7253                              << Context.getBaseElementType(Field->getType()));
7254        }
7255      }
7256    }
7257    ObjCImplementation->setIvarInitializers(Context,
7258                                            AllToInit.data(), AllToInit.size());
7259  }
7260}
7261