SemaDeclCXX.cpp revision 045d2524e136fabd10613d7ac0063df632a7c2a5
1//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for C++ declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/AST/ASTConsumer.h"
16#include "clang/AST/ASTContext.h"
17#include "clang/AST/ASTMutationListener.h"
18#include "clang/AST/CXXInheritance.h"
19#include "clang/AST/CharUnits.h"
20#include "clang/AST/DeclVisitor.h"
21#include "clang/AST/EvaluatedExprVisitor.h"
22#include "clang/AST/ExprCXX.h"
23#include "clang/AST/RecordLayout.h"
24#include "clang/AST/RecursiveASTVisitor.h"
25#include "clang/AST/StmtVisitor.h"
26#include "clang/AST/TypeLoc.h"
27#include "clang/AST/TypeOrdering.h"
28#include "clang/Basic/PartialDiagnostic.h"
29#include "clang/Basic/TargetInfo.h"
30#include "clang/Lex/Preprocessor.h"
31#include "clang/Sema/CXXFieldCollector.h"
32#include "clang/Sema/DeclSpec.h"
33#include "clang/Sema/Initialization.h"
34#include "clang/Sema/Lookup.h"
35#include "clang/Sema/ParsedTemplate.h"
36#include "clang/Sema/Scope.h"
37#include "clang/Sema/ScopeInfo.h"
38#include "llvm/ADT/STLExtras.h"
39#include "llvm/ADT/SmallString.h"
40#include <map>
41#include <set>
42
43using namespace clang;
44
45//===----------------------------------------------------------------------===//
46// CheckDefaultArgumentVisitor
47//===----------------------------------------------------------------------===//
48
49namespace {
50  /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
51  /// the default argument of a parameter to determine whether it
52  /// contains any ill-formed subexpressions. For example, this will
53  /// diagnose the use of local variables or parameters within the
54  /// default argument expression.
55  class CheckDefaultArgumentVisitor
56    : public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
57    Expr *DefaultArg;
58    Sema *S;
59
60  public:
61    CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
62      : DefaultArg(defarg), S(s) {}
63
64    bool VisitExpr(Expr *Node);
65    bool VisitDeclRefExpr(DeclRefExpr *DRE);
66    bool VisitCXXThisExpr(CXXThisExpr *ThisE);
67    bool VisitLambdaExpr(LambdaExpr *Lambda);
68    bool VisitPseudoObjectExpr(PseudoObjectExpr *POE);
69  };
70
71  /// VisitExpr - Visit all of the children of this expression.
72  bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
73    bool IsInvalid = false;
74    for (Stmt::child_range I = Node->children(); I; ++I)
75      IsInvalid |= Visit(*I);
76    return IsInvalid;
77  }
78
79  /// VisitDeclRefExpr - Visit a reference to a declaration, to
80  /// determine whether this declaration can be used in the default
81  /// argument expression.
82  bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
83    NamedDecl *Decl = DRE->getDecl();
84    if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
85      // C++ [dcl.fct.default]p9
86      //   Default arguments are evaluated each time the function is
87      //   called. The order of evaluation of function arguments is
88      //   unspecified. Consequently, parameters of a function shall not
89      //   be used in default argument expressions, even if they are not
90      //   evaluated. Parameters of a function declared before a default
91      //   argument expression are in scope and can hide namespace and
92      //   class member names.
93      return S->Diag(DRE->getLocStart(),
94                     diag::err_param_default_argument_references_param)
95         << Param->getDeclName() << DefaultArg->getSourceRange();
96    } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
97      // C++ [dcl.fct.default]p7
98      //   Local variables shall not be used in default argument
99      //   expressions.
100      if (VDecl->isLocalVarDecl())
101        return S->Diag(DRE->getLocStart(),
102                       diag::err_param_default_argument_references_local)
103          << VDecl->getDeclName() << DefaultArg->getSourceRange();
104    }
105
106    return false;
107  }
108
109  /// VisitCXXThisExpr - Visit a C++ "this" expression.
110  bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
111    // C++ [dcl.fct.default]p8:
112    //   The keyword this shall not be used in a default argument of a
113    //   member function.
114    return S->Diag(ThisE->getLocStart(),
115                   diag::err_param_default_argument_references_this)
116               << ThisE->getSourceRange();
117  }
118
119  bool CheckDefaultArgumentVisitor::VisitPseudoObjectExpr(PseudoObjectExpr *POE) {
120    bool Invalid = false;
121    for (PseudoObjectExpr::semantics_iterator
122           i = POE->semantics_begin(), e = POE->semantics_end(); i != e; ++i) {
123      Expr *E = *i;
124
125      // Look through bindings.
126      if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(E)) {
127        E = OVE->getSourceExpr();
128        assert(E && "pseudo-object binding without source expression?");
129      }
130
131      Invalid |= Visit(E);
132    }
133    return Invalid;
134  }
135
136  bool CheckDefaultArgumentVisitor::VisitLambdaExpr(LambdaExpr *Lambda) {
137    // C++11 [expr.lambda.prim]p13:
138    //   A lambda-expression appearing in a default argument shall not
139    //   implicitly or explicitly capture any entity.
140    if (Lambda->capture_begin() == Lambda->capture_end())
141      return false;
142
143    return S->Diag(Lambda->getLocStart(),
144                   diag::err_lambda_capture_default_arg);
145  }
146}
147
148void Sema::ImplicitExceptionSpecification::CalledDecl(SourceLocation CallLoc,
149                                                      CXXMethodDecl *Method) {
150  // If we have an MSAny spec already, don't bother.
151  if (!Method || ComputedEST == EST_MSAny)
152    return;
153
154  const FunctionProtoType *Proto
155    = Method->getType()->getAs<FunctionProtoType>();
156  Proto = Self->ResolveExceptionSpec(CallLoc, Proto);
157  if (!Proto)
158    return;
159
160  ExceptionSpecificationType EST = Proto->getExceptionSpecType();
161
162  // If this function can throw any exceptions, make a note of that.
163  if (EST == EST_MSAny || EST == EST_None) {
164    ClearExceptions();
165    ComputedEST = EST;
166    return;
167  }
168
169  // FIXME: If the call to this decl is using any of its default arguments, we
170  // need to search them for potentially-throwing calls.
171
172  // If this function has a basic noexcept, it doesn't affect the outcome.
173  if (EST == EST_BasicNoexcept)
174    return;
175
176  // If we have a throw-all spec at this point, ignore the function.
177  if (ComputedEST == EST_None)
178    return;
179
180  // If we're still at noexcept(true) and there's a nothrow() callee,
181  // change to that specification.
182  if (EST == EST_DynamicNone) {
183    if (ComputedEST == EST_BasicNoexcept)
184      ComputedEST = EST_DynamicNone;
185    return;
186  }
187
188  // Check out noexcept specs.
189  if (EST == EST_ComputedNoexcept) {
190    FunctionProtoType::NoexceptResult NR =
191        Proto->getNoexceptSpec(Self->Context);
192    assert(NR != FunctionProtoType::NR_NoNoexcept &&
193           "Must have noexcept result for EST_ComputedNoexcept.");
194    assert(NR != FunctionProtoType::NR_Dependent &&
195           "Should not generate implicit declarations for dependent cases, "
196           "and don't know how to handle them anyway.");
197
198    // noexcept(false) -> no spec on the new function
199    if (NR == FunctionProtoType::NR_Throw) {
200      ClearExceptions();
201      ComputedEST = EST_None;
202    }
203    // noexcept(true) won't change anything either.
204    return;
205  }
206
207  assert(EST == EST_Dynamic && "EST case not considered earlier.");
208  assert(ComputedEST != EST_None &&
209         "Shouldn't collect exceptions when throw-all is guaranteed.");
210  ComputedEST = EST_Dynamic;
211  // Record the exceptions in this function's exception specification.
212  for (FunctionProtoType::exception_iterator E = Proto->exception_begin(),
213                                          EEnd = Proto->exception_end();
214       E != EEnd; ++E)
215    if (ExceptionsSeen.insert(Self->Context.getCanonicalType(*E)))
216      Exceptions.push_back(*E);
217}
218
219void Sema::ImplicitExceptionSpecification::CalledExpr(Expr *E) {
220  if (!E || ComputedEST == EST_MSAny)
221    return;
222
223  // FIXME:
224  //
225  // C++0x [except.spec]p14:
226  //   [An] implicit exception-specification specifies the type-id T if and
227  // only if T is allowed by the exception-specification of a function directly
228  // invoked by f's implicit definition; f shall allow all exceptions if any
229  // function it directly invokes allows all exceptions, and f shall allow no
230  // exceptions if every function it directly invokes allows no exceptions.
231  //
232  // Note in particular that if an implicit exception-specification is generated
233  // for a function containing a throw-expression, that specification can still
234  // be noexcept(true).
235  //
236  // Note also that 'directly invoked' is not defined in the standard, and there
237  // is no indication that we should only consider potentially-evaluated calls.
238  //
239  // Ultimately we should implement the intent of the standard: the exception
240  // specification should be the set of exceptions which can be thrown by the
241  // implicit definition. For now, we assume that any non-nothrow expression can
242  // throw any exception.
243
244  if (Self->canThrow(E))
245    ComputedEST = EST_None;
246}
247
248bool
249Sema::SetParamDefaultArgument(ParmVarDecl *Param, Expr *Arg,
250                              SourceLocation EqualLoc) {
251  if (RequireCompleteType(Param->getLocation(), Param->getType(),
252                          diag::err_typecheck_decl_incomplete_type)) {
253    Param->setInvalidDecl();
254    return true;
255  }
256
257  // C++ [dcl.fct.default]p5
258  //   A default argument expression is implicitly converted (clause
259  //   4) to the parameter type. The default argument expression has
260  //   the same semantic constraints as the initializer expression in
261  //   a declaration of a variable of the parameter type, using the
262  //   copy-initialization semantics (8.5).
263  InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
264                                                                    Param);
265  InitializationKind Kind = InitializationKind::CreateCopy(Param->getLocation(),
266                                                           EqualLoc);
267  InitializationSequence InitSeq(*this, Entity, Kind, &Arg, 1);
268  ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Arg);
269  if (Result.isInvalid())
270    return true;
271  Arg = Result.takeAs<Expr>();
272
273  CheckCompletedExpr(Arg, EqualLoc);
274  Arg = MaybeCreateExprWithCleanups(Arg);
275
276  // Okay: add the default argument to the parameter
277  Param->setDefaultArg(Arg);
278
279  // We have already instantiated this parameter; provide each of the
280  // instantiations with the uninstantiated default argument.
281  UnparsedDefaultArgInstantiationsMap::iterator InstPos
282    = UnparsedDefaultArgInstantiations.find(Param);
283  if (InstPos != UnparsedDefaultArgInstantiations.end()) {
284    for (unsigned I = 0, N = InstPos->second.size(); I != N; ++I)
285      InstPos->second[I]->setUninstantiatedDefaultArg(Arg);
286
287    // We're done tracking this parameter's instantiations.
288    UnparsedDefaultArgInstantiations.erase(InstPos);
289  }
290
291  return false;
292}
293
294/// ActOnParamDefaultArgument - Check whether the default argument
295/// provided for a function parameter is well-formed. If so, attach it
296/// to the parameter declaration.
297void
298Sema::ActOnParamDefaultArgument(Decl *param, SourceLocation EqualLoc,
299                                Expr *DefaultArg) {
300  if (!param || !DefaultArg)
301    return;
302
303  ParmVarDecl *Param = cast<ParmVarDecl>(param);
304  UnparsedDefaultArgLocs.erase(Param);
305
306  // Default arguments are only permitted in C++
307  if (!getLangOpts().CPlusPlus) {
308    Diag(EqualLoc, diag::err_param_default_argument)
309      << DefaultArg->getSourceRange();
310    Param->setInvalidDecl();
311    return;
312  }
313
314  // Check for unexpanded parameter packs.
315  if (DiagnoseUnexpandedParameterPack(DefaultArg, UPPC_DefaultArgument)) {
316    Param->setInvalidDecl();
317    return;
318  }
319
320  // Check that the default argument is well-formed
321  CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg, this);
322  if (DefaultArgChecker.Visit(DefaultArg)) {
323    Param->setInvalidDecl();
324    return;
325  }
326
327  SetParamDefaultArgument(Param, DefaultArg, EqualLoc);
328}
329
330/// ActOnParamUnparsedDefaultArgument - We've seen a default
331/// argument for a function parameter, but we can't parse it yet
332/// because we're inside a class definition. Note that this default
333/// argument will be parsed later.
334void Sema::ActOnParamUnparsedDefaultArgument(Decl *param,
335                                             SourceLocation EqualLoc,
336                                             SourceLocation ArgLoc) {
337  if (!param)
338    return;
339
340  ParmVarDecl *Param = cast<ParmVarDecl>(param);
341  if (Param)
342    Param->setUnparsedDefaultArg();
343
344  UnparsedDefaultArgLocs[Param] = ArgLoc;
345}
346
347/// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
348/// the default argument for the parameter param failed.
349void Sema::ActOnParamDefaultArgumentError(Decl *param) {
350  if (!param)
351    return;
352
353  ParmVarDecl *Param = cast<ParmVarDecl>(param);
354
355  Param->setInvalidDecl();
356
357  UnparsedDefaultArgLocs.erase(Param);
358}
359
360/// CheckExtraCXXDefaultArguments - Check for any extra default
361/// arguments in the declarator, which is not a function declaration
362/// or definition and therefore is not permitted to have default
363/// arguments. This routine should be invoked for every declarator
364/// that is not a function declaration or definition.
365void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
366  // C++ [dcl.fct.default]p3
367  //   A default argument expression shall be specified only in the
368  //   parameter-declaration-clause of a function declaration or in a
369  //   template-parameter (14.1). It shall not be specified for a
370  //   parameter pack. If it is specified in a
371  //   parameter-declaration-clause, it shall not occur within a
372  //   declarator or abstract-declarator of a parameter-declaration.
373  bool MightBeFunction = D.isFunctionDeclarationContext();
374  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
375    DeclaratorChunk &chunk = D.getTypeObject(i);
376    if (chunk.Kind == DeclaratorChunk::Function) {
377      if (MightBeFunction) {
378        // This is a function declaration. It can have default arguments, but
379        // keep looking in case its return type is a function type with default
380        // arguments.
381        MightBeFunction = false;
382        continue;
383      }
384      for (unsigned argIdx = 0, e = chunk.Fun.NumArgs; argIdx != e; ++argIdx) {
385        ParmVarDecl *Param =
386          cast<ParmVarDecl>(chunk.Fun.ArgInfo[argIdx].Param);
387        if (Param->hasUnparsedDefaultArg()) {
388          CachedTokens *Toks = chunk.Fun.ArgInfo[argIdx].DefaultArgTokens;
389          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
390            << SourceRange((*Toks)[1].getLocation(),
391                           Toks->back().getLocation());
392          delete Toks;
393          chunk.Fun.ArgInfo[argIdx].DefaultArgTokens = 0;
394        } else if (Param->getDefaultArg()) {
395          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
396            << Param->getDefaultArg()->getSourceRange();
397          Param->setDefaultArg(0);
398        }
399      }
400    } else if (chunk.Kind != DeclaratorChunk::Paren) {
401      MightBeFunction = false;
402    }
403  }
404}
405
406/// MergeCXXFunctionDecl - Merge two declarations of the same C++
407/// function, once we already know that they have the same
408/// type. Subroutine of MergeFunctionDecl. Returns true if there was an
409/// error, false otherwise.
410bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old,
411                                Scope *S) {
412  bool Invalid = false;
413
414  // C++ [dcl.fct.default]p4:
415  //   For non-template functions, default arguments can be added in
416  //   later declarations of a function in the same
417  //   scope. Declarations in different scopes have completely
418  //   distinct sets of default arguments. That is, declarations in
419  //   inner scopes do not acquire default arguments from
420  //   declarations in outer scopes, and vice versa. In a given
421  //   function declaration, all parameters subsequent to a
422  //   parameter with a default argument shall have default
423  //   arguments supplied in this or previous declarations. A
424  //   default argument shall not be redefined by a later
425  //   declaration (not even to the same value).
426  //
427  // C++ [dcl.fct.default]p6:
428  //   Except for member functions of class templates, the default arguments
429  //   in a member function definition that appears outside of the class
430  //   definition are added to the set of default arguments provided by the
431  //   member function declaration in the class definition.
432  for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) {
433    ParmVarDecl *OldParam = Old->getParamDecl(p);
434    ParmVarDecl *NewParam = New->getParamDecl(p);
435
436    bool OldParamHasDfl = OldParam->hasDefaultArg();
437    bool NewParamHasDfl = NewParam->hasDefaultArg();
438
439    NamedDecl *ND = Old;
440    if (S && !isDeclInScope(ND, New->getDeclContext(), S))
441      // Ignore default parameters of old decl if they are not in
442      // the same scope.
443      OldParamHasDfl = false;
444
445    if (OldParamHasDfl && NewParamHasDfl) {
446
447      unsigned DiagDefaultParamID =
448        diag::err_param_default_argument_redefinition;
449
450      // MSVC accepts that default parameters be redefined for member functions
451      // of template class. The new default parameter's value is ignored.
452      Invalid = true;
453      if (getLangOpts().MicrosoftExt) {
454        CXXMethodDecl* MD = dyn_cast<CXXMethodDecl>(New);
455        if (MD && MD->getParent()->getDescribedClassTemplate()) {
456          // Merge the old default argument into the new parameter.
457          NewParam->setHasInheritedDefaultArg();
458          if (OldParam->hasUninstantiatedDefaultArg())
459            NewParam->setUninstantiatedDefaultArg(
460                                      OldParam->getUninstantiatedDefaultArg());
461          else
462            NewParam->setDefaultArg(OldParam->getInit());
463          DiagDefaultParamID = diag::warn_param_default_argument_redefinition;
464          Invalid = false;
465        }
466      }
467
468      // FIXME: If we knew where the '=' was, we could easily provide a fix-it
469      // hint here. Alternatively, we could walk the type-source information
470      // for NewParam to find the last source location in the type... but it
471      // isn't worth the effort right now. This is the kind of test case that
472      // is hard to get right:
473      //   int f(int);
474      //   void g(int (*fp)(int) = f);
475      //   void g(int (*fp)(int) = &f);
476      Diag(NewParam->getLocation(), DiagDefaultParamID)
477        << NewParam->getDefaultArgRange();
478
479      // Look for the function declaration where the default argument was
480      // actually written, which may be a declaration prior to Old.
481      for (FunctionDecl *Older = Old->getPreviousDecl();
482           Older; Older = Older->getPreviousDecl()) {
483        if (!Older->getParamDecl(p)->hasDefaultArg())
484          break;
485
486        OldParam = Older->getParamDecl(p);
487      }
488
489      Diag(OldParam->getLocation(), diag::note_previous_definition)
490        << OldParam->getDefaultArgRange();
491    } else if (OldParamHasDfl) {
492      // Merge the old default argument into the new parameter.
493      // It's important to use getInit() here;  getDefaultArg()
494      // strips off any top-level ExprWithCleanups.
495      NewParam->setHasInheritedDefaultArg();
496      if (OldParam->hasUninstantiatedDefaultArg())
497        NewParam->setUninstantiatedDefaultArg(
498                                      OldParam->getUninstantiatedDefaultArg());
499      else
500        NewParam->setDefaultArg(OldParam->getInit());
501    } else if (NewParamHasDfl) {
502      if (New->getDescribedFunctionTemplate()) {
503        // Paragraph 4, quoted above, only applies to non-template functions.
504        Diag(NewParam->getLocation(),
505             diag::err_param_default_argument_template_redecl)
506          << NewParam->getDefaultArgRange();
507        Diag(Old->getLocation(), diag::note_template_prev_declaration)
508          << false;
509      } else if (New->getTemplateSpecializationKind()
510                   != TSK_ImplicitInstantiation &&
511                 New->getTemplateSpecializationKind() != TSK_Undeclared) {
512        // C++ [temp.expr.spec]p21:
513        //   Default function arguments shall not be specified in a declaration
514        //   or a definition for one of the following explicit specializations:
515        //     - the explicit specialization of a function template;
516        //     - the explicit specialization of a member function template;
517        //     - the explicit specialization of a member function of a class
518        //       template where the class template specialization to which the
519        //       member function specialization belongs is implicitly
520        //       instantiated.
521        Diag(NewParam->getLocation(), diag::err_template_spec_default_arg)
522          << (New->getTemplateSpecializationKind() ==TSK_ExplicitSpecialization)
523          << New->getDeclName()
524          << NewParam->getDefaultArgRange();
525      } else if (New->getDeclContext()->isDependentContext()) {
526        // C++ [dcl.fct.default]p6 (DR217):
527        //   Default arguments for a member function of a class template shall
528        //   be specified on the initial declaration of the member function
529        //   within the class template.
530        //
531        // Reading the tea leaves a bit in DR217 and its reference to DR205
532        // leads me to the conclusion that one cannot add default function
533        // arguments for an out-of-line definition of a member function of a
534        // dependent type.
535        int WhichKind = 2;
536        if (CXXRecordDecl *Record
537              = dyn_cast<CXXRecordDecl>(New->getDeclContext())) {
538          if (Record->getDescribedClassTemplate())
539            WhichKind = 0;
540          else if (isa<ClassTemplatePartialSpecializationDecl>(Record))
541            WhichKind = 1;
542          else
543            WhichKind = 2;
544        }
545
546        Diag(NewParam->getLocation(),
547             diag::err_param_default_argument_member_template_redecl)
548          << WhichKind
549          << NewParam->getDefaultArgRange();
550      }
551    }
552  }
553
554  // DR1344: If a default argument is added outside a class definition and that
555  // default argument makes the function a special member function, the program
556  // is ill-formed. This can only happen for constructors.
557  if (isa<CXXConstructorDecl>(New) &&
558      New->getMinRequiredArguments() < Old->getMinRequiredArguments()) {
559    CXXSpecialMember NewSM = getSpecialMember(cast<CXXMethodDecl>(New)),
560                     OldSM = getSpecialMember(cast<CXXMethodDecl>(Old));
561    if (NewSM != OldSM) {
562      ParmVarDecl *NewParam = New->getParamDecl(New->getMinRequiredArguments());
563      assert(NewParam->hasDefaultArg());
564      Diag(NewParam->getLocation(), diag::err_default_arg_makes_ctor_special)
565        << NewParam->getDefaultArgRange() << NewSM;
566      Diag(Old->getLocation(), diag::note_previous_declaration);
567    }
568  }
569
570  // C++11 [dcl.constexpr]p1: If any declaration of a function or function
571  // template has a constexpr specifier then all its declarations shall
572  // contain the constexpr specifier.
573  if (New->isConstexpr() != Old->isConstexpr()) {
574    Diag(New->getLocation(), diag::err_constexpr_redecl_mismatch)
575      << New << New->isConstexpr();
576    Diag(Old->getLocation(), diag::note_previous_declaration);
577    Invalid = true;
578  }
579
580  if (CheckEquivalentExceptionSpec(Old, New))
581    Invalid = true;
582
583  return Invalid;
584}
585
586/// \brief Merge the exception specifications of two variable declarations.
587///
588/// This is called when there's a redeclaration of a VarDecl. The function
589/// checks if the redeclaration might have an exception specification and
590/// validates compatibility and merges the specs if necessary.
591void Sema::MergeVarDeclExceptionSpecs(VarDecl *New, VarDecl *Old) {
592  // Shortcut if exceptions are disabled.
593  if (!getLangOpts().CXXExceptions)
594    return;
595
596  assert(Context.hasSameType(New->getType(), Old->getType()) &&
597         "Should only be called if types are otherwise the same.");
598
599  QualType NewType = New->getType();
600  QualType OldType = Old->getType();
601
602  // We're only interested in pointers and references to functions, as well
603  // as pointers to member functions.
604  if (const ReferenceType *R = NewType->getAs<ReferenceType>()) {
605    NewType = R->getPointeeType();
606    OldType = OldType->getAs<ReferenceType>()->getPointeeType();
607  } else if (const PointerType *P = NewType->getAs<PointerType>()) {
608    NewType = P->getPointeeType();
609    OldType = OldType->getAs<PointerType>()->getPointeeType();
610  } else if (const MemberPointerType *M = NewType->getAs<MemberPointerType>()) {
611    NewType = M->getPointeeType();
612    OldType = OldType->getAs<MemberPointerType>()->getPointeeType();
613  }
614
615  if (!NewType->isFunctionProtoType())
616    return;
617
618  // There's lots of special cases for functions. For function pointers, system
619  // libraries are hopefully not as broken so that we don't need these
620  // workarounds.
621  if (CheckEquivalentExceptionSpec(
622        OldType->getAs<FunctionProtoType>(), Old->getLocation(),
623        NewType->getAs<FunctionProtoType>(), New->getLocation())) {
624    New->setInvalidDecl();
625  }
626}
627
628/// CheckCXXDefaultArguments - Verify that the default arguments for a
629/// function declaration are well-formed according to C++
630/// [dcl.fct.default].
631void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
632  unsigned NumParams = FD->getNumParams();
633  unsigned p;
634
635  bool IsLambda = FD->getOverloadedOperator() == OO_Call &&
636                  isa<CXXMethodDecl>(FD) &&
637                  cast<CXXMethodDecl>(FD)->getParent()->isLambda();
638
639  // Find first parameter with a default argument
640  for (p = 0; p < NumParams; ++p) {
641    ParmVarDecl *Param = FD->getParamDecl(p);
642    if (Param->hasDefaultArg()) {
643      // C++11 [expr.prim.lambda]p5:
644      //   [...] Default arguments (8.3.6) shall not be specified in the
645      //   parameter-declaration-clause of a lambda-declarator.
646      //
647      // FIXME: Core issue 974 strikes this sentence, we only provide an
648      // extension warning.
649      if (IsLambda)
650        Diag(Param->getLocation(), diag::ext_lambda_default_arguments)
651          << Param->getDefaultArgRange();
652      break;
653    }
654  }
655
656  // C++ [dcl.fct.default]p4:
657  //   In a given function declaration, all parameters
658  //   subsequent to a parameter with a default argument shall
659  //   have default arguments supplied in this or previous
660  //   declarations. A default argument shall not be redefined
661  //   by a later declaration (not even to the same value).
662  unsigned LastMissingDefaultArg = 0;
663  for (; p < NumParams; ++p) {
664    ParmVarDecl *Param = FD->getParamDecl(p);
665    if (!Param->hasDefaultArg()) {
666      if (Param->isInvalidDecl())
667        /* We already complained about this parameter. */;
668      else if (Param->getIdentifier())
669        Diag(Param->getLocation(),
670             diag::err_param_default_argument_missing_name)
671          << Param->getIdentifier();
672      else
673        Diag(Param->getLocation(),
674             diag::err_param_default_argument_missing);
675
676      LastMissingDefaultArg = p;
677    }
678  }
679
680  if (LastMissingDefaultArg > 0) {
681    // Some default arguments were missing. Clear out all of the
682    // default arguments up to (and including) the last missing
683    // default argument, so that we leave the function parameters
684    // in a semantically valid state.
685    for (p = 0; p <= LastMissingDefaultArg; ++p) {
686      ParmVarDecl *Param = FD->getParamDecl(p);
687      if (Param->hasDefaultArg()) {
688        Param->setDefaultArg(0);
689      }
690    }
691  }
692}
693
694// CheckConstexprParameterTypes - Check whether a function's parameter types
695// are all literal types. If so, return true. If not, produce a suitable
696// diagnostic and return false.
697static bool CheckConstexprParameterTypes(Sema &SemaRef,
698                                         const FunctionDecl *FD) {
699  unsigned ArgIndex = 0;
700  const FunctionProtoType *FT = FD->getType()->getAs<FunctionProtoType>();
701  for (FunctionProtoType::arg_type_iterator i = FT->arg_type_begin(),
702       e = FT->arg_type_end(); i != e; ++i, ++ArgIndex) {
703    const ParmVarDecl *PD = FD->getParamDecl(ArgIndex);
704    SourceLocation ParamLoc = PD->getLocation();
705    if (!(*i)->isDependentType() &&
706        SemaRef.RequireLiteralType(ParamLoc, *i,
707                                   diag::err_constexpr_non_literal_param,
708                                   ArgIndex+1, PD->getSourceRange(),
709                                   isa<CXXConstructorDecl>(FD)))
710      return false;
711  }
712  return true;
713}
714
715/// \brief Get diagnostic %select index for tag kind for
716/// record diagnostic message.
717/// WARNING: Indexes apply to particular diagnostics only!
718///
719/// \returns diagnostic %select index.
720static unsigned getRecordDiagFromTagKind(TagTypeKind Tag) {
721  switch (Tag) {
722  case TTK_Struct: return 0;
723  case TTK_Interface: return 1;
724  case TTK_Class:  return 2;
725  default: llvm_unreachable("Invalid tag kind for record diagnostic!");
726  }
727}
728
729// CheckConstexprFunctionDecl - Check whether a function declaration satisfies
730// the requirements of a constexpr function definition or a constexpr
731// constructor definition. If so, return true. If not, produce appropriate
732// diagnostics and return false.
733//
734// This implements C++11 [dcl.constexpr]p3,4, as amended by DR1360.
735bool Sema::CheckConstexprFunctionDecl(const FunctionDecl *NewFD) {
736  const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
737  if (MD && MD->isInstance()) {
738    // C++11 [dcl.constexpr]p4:
739    //  The definition of a constexpr constructor shall satisfy the following
740    //  constraints:
741    //  - the class shall not have any virtual base classes;
742    const CXXRecordDecl *RD = MD->getParent();
743    if (RD->getNumVBases()) {
744      Diag(NewFD->getLocation(), diag::err_constexpr_virtual_base)
745        << isa<CXXConstructorDecl>(NewFD)
746        << getRecordDiagFromTagKind(RD->getTagKind()) << RD->getNumVBases();
747      for (CXXRecordDecl::base_class_const_iterator I = RD->vbases_begin(),
748             E = RD->vbases_end(); I != E; ++I)
749        Diag(I->getLocStart(),
750             diag::note_constexpr_virtual_base_here) << I->getSourceRange();
751      return false;
752    }
753  }
754
755  if (!isa<CXXConstructorDecl>(NewFD)) {
756    // C++11 [dcl.constexpr]p3:
757    //  The definition of a constexpr function shall satisfy the following
758    //  constraints:
759    // - it shall not be virtual;
760    const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD);
761    if (Method && Method->isVirtual()) {
762      Diag(NewFD->getLocation(), diag::err_constexpr_virtual);
763
764      // If it's not obvious why this function is virtual, find an overridden
765      // function which uses the 'virtual' keyword.
766      const CXXMethodDecl *WrittenVirtual = Method;
767      while (!WrittenVirtual->isVirtualAsWritten())
768        WrittenVirtual = *WrittenVirtual->begin_overridden_methods();
769      if (WrittenVirtual != Method)
770        Diag(WrittenVirtual->getLocation(),
771             diag::note_overridden_virtual_function);
772      return false;
773    }
774
775    // - its return type shall be a literal type;
776    QualType RT = NewFD->getResultType();
777    if (!RT->isDependentType() &&
778        RequireLiteralType(NewFD->getLocation(), RT,
779                           diag::err_constexpr_non_literal_return))
780      return false;
781  }
782
783  // - each of its parameter types shall be a literal type;
784  if (!CheckConstexprParameterTypes(*this, NewFD))
785    return false;
786
787  return true;
788}
789
790/// Check the given declaration statement is legal within a constexpr function
791/// body. C++0x [dcl.constexpr]p3,p4.
792///
793/// \return true if the body is OK, false if we have diagnosed a problem.
794static bool CheckConstexprDeclStmt(Sema &SemaRef, const FunctionDecl *Dcl,
795                                   DeclStmt *DS) {
796  // C++0x [dcl.constexpr]p3 and p4:
797  //  The definition of a constexpr function(p3) or constructor(p4) [...] shall
798  //  contain only
799  for (DeclStmt::decl_iterator DclIt = DS->decl_begin(),
800         DclEnd = DS->decl_end(); DclIt != DclEnd; ++DclIt) {
801    switch ((*DclIt)->getKind()) {
802    case Decl::StaticAssert:
803    case Decl::Using:
804    case Decl::UsingShadow:
805    case Decl::UsingDirective:
806    case Decl::UnresolvedUsingTypename:
807      //   - static_assert-declarations
808      //   - using-declarations,
809      //   - using-directives,
810      continue;
811
812    case Decl::Typedef:
813    case Decl::TypeAlias: {
814      //   - typedef declarations and alias-declarations that do not define
815      //     classes or enumerations,
816      TypedefNameDecl *TN = cast<TypedefNameDecl>(*DclIt);
817      if (TN->getUnderlyingType()->isVariablyModifiedType()) {
818        // Don't allow variably-modified types in constexpr functions.
819        TypeLoc TL = TN->getTypeSourceInfo()->getTypeLoc();
820        SemaRef.Diag(TL.getBeginLoc(), diag::err_constexpr_vla)
821          << TL.getSourceRange() << TL.getType()
822          << isa<CXXConstructorDecl>(Dcl);
823        return false;
824      }
825      continue;
826    }
827
828    case Decl::Enum:
829    case Decl::CXXRecord:
830      // As an extension, we allow the declaration (but not the definition) of
831      // classes and enumerations in all declarations, not just in typedef and
832      // alias declarations.
833      if (cast<TagDecl>(*DclIt)->isThisDeclarationADefinition()) {
834        SemaRef.Diag(DS->getLocStart(), diag::err_constexpr_type_definition)
835          << isa<CXXConstructorDecl>(Dcl);
836        return false;
837      }
838      continue;
839
840    case Decl::Var:
841      SemaRef.Diag(DS->getLocStart(), diag::err_constexpr_var_declaration)
842        << isa<CXXConstructorDecl>(Dcl);
843      return false;
844
845    default:
846      SemaRef.Diag(DS->getLocStart(), diag::err_constexpr_body_invalid_stmt)
847        << isa<CXXConstructorDecl>(Dcl);
848      return false;
849    }
850  }
851
852  return true;
853}
854
855/// Check that the given field is initialized within a constexpr constructor.
856///
857/// \param Dcl The constexpr constructor being checked.
858/// \param Field The field being checked. This may be a member of an anonymous
859///        struct or union nested within the class being checked.
860/// \param Inits All declarations, including anonymous struct/union members and
861///        indirect members, for which any initialization was provided.
862/// \param Diagnosed Set to true if an error is produced.
863static void CheckConstexprCtorInitializer(Sema &SemaRef,
864                                          const FunctionDecl *Dcl,
865                                          FieldDecl *Field,
866                                          llvm::SmallSet<Decl*, 16> &Inits,
867                                          bool &Diagnosed) {
868  if (Field->isUnnamedBitfield())
869    return;
870
871  if (Field->isAnonymousStructOrUnion() &&
872      Field->getType()->getAsCXXRecordDecl()->isEmpty())
873    return;
874
875  if (!Inits.count(Field)) {
876    if (!Diagnosed) {
877      SemaRef.Diag(Dcl->getLocation(), diag::err_constexpr_ctor_missing_init);
878      Diagnosed = true;
879    }
880    SemaRef.Diag(Field->getLocation(), diag::note_constexpr_ctor_missing_init);
881  } else if (Field->isAnonymousStructOrUnion()) {
882    const RecordDecl *RD = Field->getType()->castAs<RecordType>()->getDecl();
883    for (RecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end();
884         I != E; ++I)
885      // If an anonymous union contains an anonymous struct of which any member
886      // is initialized, all members must be initialized.
887      if (!RD->isUnion() || Inits.count(*I))
888        CheckConstexprCtorInitializer(SemaRef, Dcl, *I, Inits, Diagnosed);
889  }
890}
891
892/// Check the body for the given constexpr function declaration only contains
893/// the permitted types of statement. C++11 [dcl.constexpr]p3,p4.
894///
895/// \return true if the body is OK, false if we have diagnosed a problem.
896bool Sema::CheckConstexprFunctionBody(const FunctionDecl *Dcl, Stmt *Body) {
897  if (isa<CXXTryStmt>(Body)) {
898    // C++11 [dcl.constexpr]p3:
899    //  The definition of a constexpr function shall satisfy the following
900    //  constraints: [...]
901    // - its function-body shall be = delete, = default, or a
902    //   compound-statement
903    //
904    // C++11 [dcl.constexpr]p4:
905    //  In the definition of a constexpr constructor, [...]
906    // - its function-body shall not be a function-try-block;
907    Diag(Body->getLocStart(), diag::err_constexpr_function_try_block)
908      << isa<CXXConstructorDecl>(Dcl);
909    return false;
910  }
911
912  // - its function-body shall be [...] a compound-statement that contains only
913  CompoundStmt *CompBody = cast<CompoundStmt>(Body);
914
915  SmallVector<SourceLocation, 4> ReturnStmts;
916  for (CompoundStmt::body_iterator BodyIt = CompBody->body_begin(),
917         BodyEnd = CompBody->body_end(); BodyIt != BodyEnd; ++BodyIt) {
918    switch ((*BodyIt)->getStmtClass()) {
919    case Stmt::NullStmtClass:
920      //   - null statements,
921      continue;
922
923    case Stmt::DeclStmtClass:
924      //   - static_assert-declarations
925      //   - using-declarations,
926      //   - using-directives,
927      //   - typedef declarations and alias-declarations that do not define
928      //     classes or enumerations,
929      if (!CheckConstexprDeclStmt(*this, Dcl, cast<DeclStmt>(*BodyIt)))
930        return false;
931      continue;
932
933    case Stmt::ReturnStmtClass:
934      //   - and exactly one return statement;
935      if (isa<CXXConstructorDecl>(Dcl))
936        break;
937
938      ReturnStmts.push_back((*BodyIt)->getLocStart());
939      continue;
940
941    default:
942      break;
943    }
944
945    Diag((*BodyIt)->getLocStart(), diag::err_constexpr_body_invalid_stmt)
946      << isa<CXXConstructorDecl>(Dcl);
947    return false;
948  }
949
950  if (const CXXConstructorDecl *Constructor
951        = dyn_cast<CXXConstructorDecl>(Dcl)) {
952    const CXXRecordDecl *RD = Constructor->getParent();
953    // DR1359:
954    // - every non-variant non-static data member and base class sub-object
955    //   shall be initialized;
956    // - if the class is a non-empty union, or for each non-empty anonymous
957    //   union member of a non-union class, exactly one non-static data member
958    //   shall be initialized;
959    if (RD->isUnion()) {
960      if (Constructor->getNumCtorInitializers() == 0 && !RD->isEmpty()) {
961        Diag(Dcl->getLocation(), diag::err_constexpr_union_ctor_no_init);
962        return false;
963      }
964    } else if (!Constructor->isDependentContext() &&
965               !Constructor->isDelegatingConstructor()) {
966      assert(RD->getNumVBases() == 0 && "constexpr ctor with virtual bases");
967
968      // Skip detailed checking if we have enough initializers, and we would
969      // allow at most one initializer per member.
970      bool AnyAnonStructUnionMembers = false;
971      unsigned Fields = 0;
972      for (CXXRecordDecl::field_iterator I = RD->field_begin(),
973           E = RD->field_end(); I != E; ++I, ++Fields) {
974        if (I->isAnonymousStructOrUnion()) {
975          AnyAnonStructUnionMembers = true;
976          break;
977        }
978      }
979      if (AnyAnonStructUnionMembers ||
980          Constructor->getNumCtorInitializers() != RD->getNumBases() + Fields) {
981        // Check initialization of non-static data members. Base classes are
982        // always initialized so do not need to be checked. Dependent bases
983        // might not have initializers in the member initializer list.
984        llvm::SmallSet<Decl*, 16> Inits;
985        for (CXXConstructorDecl::init_const_iterator
986               I = Constructor->init_begin(), E = Constructor->init_end();
987             I != E; ++I) {
988          if (FieldDecl *FD = (*I)->getMember())
989            Inits.insert(FD);
990          else if (IndirectFieldDecl *ID = (*I)->getIndirectMember())
991            Inits.insert(ID->chain_begin(), ID->chain_end());
992        }
993
994        bool Diagnosed = false;
995        for (CXXRecordDecl::field_iterator I = RD->field_begin(),
996             E = RD->field_end(); I != E; ++I)
997          CheckConstexprCtorInitializer(*this, Dcl, *I, Inits, Diagnosed);
998        if (Diagnosed)
999          return false;
1000      }
1001    }
1002  } else {
1003    if (ReturnStmts.empty()) {
1004      Diag(Dcl->getLocation(), diag::err_constexpr_body_no_return);
1005      return false;
1006    }
1007    if (ReturnStmts.size() > 1) {
1008      Diag(ReturnStmts.back(), diag::err_constexpr_body_multiple_return);
1009      for (unsigned I = 0; I < ReturnStmts.size() - 1; ++I)
1010        Diag(ReturnStmts[I], diag::note_constexpr_body_previous_return);
1011      return false;
1012    }
1013  }
1014
1015  // C++11 [dcl.constexpr]p5:
1016  //   if no function argument values exist such that the function invocation
1017  //   substitution would produce a constant expression, the program is
1018  //   ill-formed; no diagnostic required.
1019  // C++11 [dcl.constexpr]p3:
1020  //   - every constructor call and implicit conversion used in initializing the
1021  //     return value shall be one of those allowed in a constant expression.
1022  // C++11 [dcl.constexpr]p4:
1023  //   - every constructor involved in initializing non-static data members and
1024  //     base class sub-objects shall be a constexpr constructor.
1025  SmallVector<PartialDiagnosticAt, 8> Diags;
1026  if (!Expr::isPotentialConstantExpr(Dcl, Diags)) {
1027    Diag(Dcl->getLocation(), diag::ext_constexpr_function_never_constant_expr)
1028      << isa<CXXConstructorDecl>(Dcl);
1029    for (size_t I = 0, N = Diags.size(); I != N; ++I)
1030      Diag(Diags[I].first, Diags[I].second);
1031    // Don't return false here: we allow this for compatibility in
1032    // system headers.
1033  }
1034
1035  return true;
1036}
1037
1038/// isCurrentClassName - Determine whether the identifier II is the
1039/// name of the class type currently being defined. In the case of
1040/// nested classes, this will only return true if II is the name of
1041/// the innermost class.
1042bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *,
1043                              const CXXScopeSpec *SS) {
1044  assert(getLangOpts().CPlusPlus && "No class names in C!");
1045
1046  CXXRecordDecl *CurDecl;
1047  if (SS && SS->isSet() && !SS->isInvalid()) {
1048    DeclContext *DC = computeDeclContext(*SS, true);
1049    CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
1050  } else
1051    CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
1052
1053  if (CurDecl && CurDecl->getIdentifier())
1054    return &II == CurDecl->getIdentifier();
1055  else
1056    return false;
1057}
1058
1059/// \brief Determine whether the given class is a base class of the given
1060/// class, including looking at dependent bases.
1061static bool findCircularInheritance(const CXXRecordDecl *Class,
1062                                    const CXXRecordDecl *Current) {
1063  SmallVector<const CXXRecordDecl*, 8> Queue;
1064
1065  Class = Class->getCanonicalDecl();
1066  while (true) {
1067    for (CXXRecordDecl::base_class_const_iterator I = Current->bases_begin(),
1068                                                  E = Current->bases_end();
1069         I != E; ++I) {
1070      CXXRecordDecl *Base = I->getType()->getAsCXXRecordDecl();
1071      if (!Base)
1072        continue;
1073
1074      Base = Base->getDefinition();
1075      if (!Base)
1076        continue;
1077
1078      if (Base->getCanonicalDecl() == Class)
1079        return true;
1080
1081      Queue.push_back(Base);
1082    }
1083
1084    if (Queue.empty())
1085      return false;
1086
1087    Current = Queue.back();
1088    Queue.pop_back();
1089  }
1090
1091  return false;
1092}
1093
1094/// \brief Check the validity of a C++ base class specifier.
1095///
1096/// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
1097/// and returns NULL otherwise.
1098CXXBaseSpecifier *
1099Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
1100                         SourceRange SpecifierRange,
1101                         bool Virtual, AccessSpecifier Access,
1102                         TypeSourceInfo *TInfo,
1103                         SourceLocation EllipsisLoc) {
1104  QualType BaseType = TInfo->getType();
1105
1106  // C++ [class.union]p1:
1107  //   A union shall not have base classes.
1108  if (Class->isUnion()) {
1109    Diag(Class->getLocation(), diag::err_base_clause_on_union)
1110      << SpecifierRange;
1111    return 0;
1112  }
1113
1114  if (EllipsisLoc.isValid() &&
1115      !TInfo->getType()->containsUnexpandedParameterPack()) {
1116    Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
1117      << TInfo->getTypeLoc().getSourceRange();
1118    EllipsisLoc = SourceLocation();
1119  }
1120
1121  SourceLocation BaseLoc = TInfo->getTypeLoc().getBeginLoc();
1122
1123  if (BaseType->isDependentType()) {
1124    // Make sure that we don't have circular inheritance among our dependent
1125    // bases. For non-dependent bases, the check for completeness below handles
1126    // this.
1127    if (CXXRecordDecl *BaseDecl = BaseType->getAsCXXRecordDecl()) {
1128      if (BaseDecl->getCanonicalDecl() == Class->getCanonicalDecl() ||
1129          ((BaseDecl = BaseDecl->getDefinition()) &&
1130           findCircularInheritance(Class, BaseDecl))) {
1131        Diag(BaseLoc, diag::err_circular_inheritance)
1132          << BaseType << Context.getTypeDeclType(Class);
1133
1134        if (BaseDecl->getCanonicalDecl() != Class->getCanonicalDecl())
1135          Diag(BaseDecl->getLocation(), diag::note_previous_decl)
1136            << BaseType;
1137
1138        return 0;
1139      }
1140    }
1141
1142    return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
1143                                          Class->getTagKind() == TTK_Class,
1144                                          Access, TInfo, EllipsisLoc);
1145  }
1146
1147  // Base specifiers must be record types.
1148  if (!BaseType->isRecordType()) {
1149    Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
1150    return 0;
1151  }
1152
1153  // C++ [class.union]p1:
1154  //   A union shall not be used as a base class.
1155  if (BaseType->isUnionType()) {
1156    Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
1157    return 0;
1158  }
1159
1160  // C++ [class.derived]p2:
1161  //   The class-name in a base-specifier shall not be an incompletely
1162  //   defined class.
1163  if (RequireCompleteType(BaseLoc, BaseType,
1164                          diag::err_incomplete_base_class, SpecifierRange)) {
1165    Class->setInvalidDecl();
1166    return 0;
1167  }
1168
1169  // If the base class is polymorphic or isn't empty, the new one is/isn't, too.
1170  RecordDecl *BaseDecl = BaseType->getAs<RecordType>()->getDecl();
1171  assert(BaseDecl && "Record type has no declaration");
1172  BaseDecl = BaseDecl->getDefinition();
1173  assert(BaseDecl && "Base type is not incomplete, but has no definition");
1174  CXXRecordDecl * CXXBaseDecl = cast<CXXRecordDecl>(BaseDecl);
1175  assert(CXXBaseDecl && "Base type is not a C++ type");
1176
1177  // C++ [class]p3:
1178  //   If a class is marked final and it appears as a base-type-specifier in
1179  //   base-clause, the program is ill-formed.
1180  if (CXXBaseDecl->hasAttr<FinalAttr>()) {
1181    Diag(BaseLoc, diag::err_class_marked_final_used_as_base)
1182      << CXXBaseDecl->getDeclName();
1183    Diag(CXXBaseDecl->getLocation(), diag::note_previous_decl)
1184      << CXXBaseDecl->getDeclName();
1185    return 0;
1186  }
1187
1188  if (BaseDecl->isInvalidDecl())
1189    Class->setInvalidDecl();
1190
1191  // Create the base specifier.
1192  return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
1193                                        Class->getTagKind() == TTK_Class,
1194                                        Access, TInfo, EllipsisLoc);
1195}
1196
1197/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
1198/// one entry in the base class list of a class specifier, for
1199/// example:
1200///    class foo : public bar, virtual private baz {
1201/// 'public bar' and 'virtual private baz' are each base-specifiers.
1202BaseResult
1203Sema::ActOnBaseSpecifier(Decl *classdecl, SourceRange SpecifierRange,
1204                         ParsedAttributes &Attributes,
1205                         bool Virtual, AccessSpecifier Access,
1206                         ParsedType basetype, SourceLocation BaseLoc,
1207                         SourceLocation EllipsisLoc) {
1208  if (!classdecl)
1209    return true;
1210
1211  AdjustDeclIfTemplate(classdecl);
1212  CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(classdecl);
1213  if (!Class)
1214    return true;
1215
1216  // We do not support any C++11 attributes on base-specifiers yet.
1217  // Diagnose any attributes we see.
1218  if (!Attributes.empty()) {
1219    for (AttributeList *Attr = Attributes.getList(); Attr;
1220         Attr = Attr->getNext()) {
1221      if (Attr->isInvalid() ||
1222          Attr->getKind() == AttributeList::IgnoredAttribute)
1223        continue;
1224      Diag(Attr->getLoc(),
1225           Attr->getKind() == AttributeList::UnknownAttribute
1226             ? diag::warn_unknown_attribute_ignored
1227             : diag::err_base_specifier_attribute)
1228        << Attr->getName();
1229    }
1230  }
1231
1232  TypeSourceInfo *TInfo = 0;
1233  GetTypeFromParser(basetype, &TInfo);
1234
1235  if (EllipsisLoc.isInvalid() &&
1236      DiagnoseUnexpandedParameterPack(SpecifierRange.getBegin(), TInfo,
1237                                      UPPC_BaseType))
1238    return true;
1239
1240  if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
1241                                                      Virtual, Access, TInfo,
1242                                                      EllipsisLoc))
1243    return BaseSpec;
1244  else
1245    Class->setInvalidDecl();
1246
1247  return true;
1248}
1249
1250/// \brief Performs the actual work of attaching the given base class
1251/// specifiers to a C++ class.
1252bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, CXXBaseSpecifier **Bases,
1253                                unsigned NumBases) {
1254 if (NumBases == 0)
1255    return false;
1256
1257  // Used to keep track of which base types we have already seen, so
1258  // that we can properly diagnose redundant direct base types. Note
1259  // that the key is always the unqualified canonical type of the base
1260  // class.
1261  std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
1262
1263  // Copy non-redundant base specifiers into permanent storage.
1264  unsigned NumGoodBases = 0;
1265  bool Invalid = false;
1266  for (unsigned idx = 0; idx < NumBases; ++idx) {
1267    QualType NewBaseType
1268      = Context.getCanonicalType(Bases[idx]->getType());
1269    NewBaseType = NewBaseType.getLocalUnqualifiedType();
1270
1271    CXXBaseSpecifier *&KnownBase = KnownBaseTypes[NewBaseType];
1272    if (KnownBase) {
1273      // C++ [class.mi]p3:
1274      //   A class shall not be specified as a direct base class of a
1275      //   derived class more than once.
1276      Diag(Bases[idx]->getLocStart(),
1277           diag::err_duplicate_base_class)
1278        << KnownBase->getType()
1279        << Bases[idx]->getSourceRange();
1280
1281      // Delete the duplicate base class specifier; we're going to
1282      // overwrite its pointer later.
1283      Context.Deallocate(Bases[idx]);
1284
1285      Invalid = true;
1286    } else {
1287      // Okay, add this new base class.
1288      KnownBase = Bases[idx];
1289      Bases[NumGoodBases++] = Bases[idx];
1290      if (const RecordType *Record = NewBaseType->getAs<RecordType>()) {
1291        const CXXRecordDecl *RD = cast<CXXRecordDecl>(Record->getDecl());
1292        if (Class->isInterface() &&
1293              (!RD->isInterface() ||
1294               KnownBase->getAccessSpecifier() != AS_public)) {
1295          // The Microsoft extension __interface does not permit bases that
1296          // are not themselves public interfaces.
1297          Diag(KnownBase->getLocStart(), diag::err_invalid_base_in_interface)
1298            << getRecordDiagFromTagKind(RD->getTagKind()) << RD->getName()
1299            << RD->getSourceRange();
1300          Invalid = true;
1301        }
1302        if (RD->hasAttr<WeakAttr>())
1303          Class->addAttr(::new (Context) WeakAttr(SourceRange(), Context));
1304      }
1305    }
1306  }
1307
1308  // Attach the remaining base class specifiers to the derived class.
1309  Class->setBases(Bases, NumGoodBases);
1310
1311  // Delete the remaining (good) base class specifiers, since their
1312  // data has been copied into the CXXRecordDecl.
1313  for (unsigned idx = 0; idx < NumGoodBases; ++idx)
1314    Context.Deallocate(Bases[idx]);
1315
1316  return Invalid;
1317}
1318
1319/// ActOnBaseSpecifiers - Attach the given base specifiers to the
1320/// class, after checking whether there are any duplicate base
1321/// classes.
1322void Sema::ActOnBaseSpecifiers(Decl *ClassDecl, CXXBaseSpecifier **Bases,
1323                               unsigned NumBases) {
1324  if (!ClassDecl || !Bases || !NumBases)
1325    return;
1326
1327  AdjustDeclIfTemplate(ClassDecl);
1328  AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl),
1329                       (CXXBaseSpecifier**)(Bases), NumBases);
1330}
1331
1332/// \brief Determine whether the type \p Derived is a C++ class that is
1333/// derived from the type \p Base.
1334bool Sema::IsDerivedFrom(QualType Derived, QualType Base) {
1335  if (!getLangOpts().CPlusPlus)
1336    return false;
1337
1338  CXXRecordDecl *DerivedRD = Derived->getAsCXXRecordDecl();
1339  if (!DerivedRD)
1340    return false;
1341
1342  CXXRecordDecl *BaseRD = Base->getAsCXXRecordDecl();
1343  if (!BaseRD)
1344    return false;
1345
1346  // If either the base or the derived type is invalid, don't try to
1347  // check whether one is derived from the other.
1348  if (BaseRD->isInvalidDecl() || DerivedRD->isInvalidDecl())
1349    return false;
1350
1351  // FIXME: instantiate DerivedRD if necessary.  We need a PoI for this.
1352  return DerivedRD->hasDefinition() && DerivedRD->isDerivedFrom(BaseRD);
1353}
1354
1355/// \brief Determine whether the type \p Derived is a C++ class that is
1356/// derived from the type \p Base.
1357bool Sema::IsDerivedFrom(QualType Derived, QualType Base, CXXBasePaths &Paths) {
1358  if (!getLangOpts().CPlusPlus)
1359    return false;
1360
1361  CXXRecordDecl *DerivedRD = Derived->getAsCXXRecordDecl();
1362  if (!DerivedRD)
1363    return false;
1364
1365  CXXRecordDecl *BaseRD = Base->getAsCXXRecordDecl();
1366  if (!BaseRD)
1367    return false;
1368
1369  return DerivedRD->isDerivedFrom(BaseRD, Paths);
1370}
1371
1372void Sema::BuildBasePathArray(const CXXBasePaths &Paths,
1373                              CXXCastPath &BasePathArray) {
1374  assert(BasePathArray.empty() && "Base path array must be empty!");
1375  assert(Paths.isRecordingPaths() && "Must record paths!");
1376
1377  const CXXBasePath &Path = Paths.front();
1378
1379  // We first go backward and check if we have a virtual base.
1380  // FIXME: It would be better if CXXBasePath had the base specifier for
1381  // the nearest virtual base.
1382  unsigned Start = 0;
1383  for (unsigned I = Path.size(); I != 0; --I) {
1384    if (Path[I - 1].Base->isVirtual()) {
1385      Start = I - 1;
1386      break;
1387    }
1388  }
1389
1390  // Now add all bases.
1391  for (unsigned I = Start, E = Path.size(); I != E; ++I)
1392    BasePathArray.push_back(const_cast<CXXBaseSpecifier*>(Path[I].Base));
1393}
1394
1395/// \brief Determine whether the given base path includes a virtual
1396/// base class.
1397bool Sema::BasePathInvolvesVirtualBase(const CXXCastPath &BasePath) {
1398  for (CXXCastPath::const_iterator B = BasePath.begin(),
1399                                BEnd = BasePath.end();
1400       B != BEnd; ++B)
1401    if ((*B)->isVirtual())
1402      return true;
1403
1404  return false;
1405}
1406
1407/// CheckDerivedToBaseConversion - Check whether the Derived-to-Base
1408/// conversion (where Derived and Base are class types) is
1409/// well-formed, meaning that the conversion is unambiguous (and
1410/// that all of the base classes are accessible). Returns true
1411/// and emits a diagnostic if the code is ill-formed, returns false
1412/// otherwise. Loc is the location where this routine should point to
1413/// if there is an error, and Range is the source range to highlight
1414/// if there is an error.
1415bool
1416Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
1417                                   unsigned InaccessibleBaseID,
1418                                   unsigned AmbigiousBaseConvID,
1419                                   SourceLocation Loc, SourceRange Range,
1420                                   DeclarationName Name,
1421                                   CXXCastPath *BasePath) {
1422  // First, determine whether the path from Derived to Base is
1423  // ambiguous. This is slightly more expensive than checking whether
1424  // the Derived to Base conversion exists, because here we need to
1425  // explore multiple paths to determine if there is an ambiguity.
1426  CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
1427                     /*DetectVirtual=*/false);
1428  bool DerivationOkay = IsDerivedFrom(Derived, Base, Paths);
1429  assert(DerivationOkay &&
1430         "Can only be used with a derived-to-base conversion");
1431  (void)DerivationOkay;
1432
1433  if (!Paths.isAmbiguous(Context.getCanonicalType(Base).getUnqualifiedType())) {
1434    if (InaccessibleBaseID) {
1435      // Check that the base class can be accessed.
1436      switch (CheckBaseClassAccess(Loc, Base, Derived, Paths.front(),
1437                                   InaccessibleBaseID)) {
1438        case AR_inaccessible:
1439          return true;
1440        case AR_accessible:
1441        case AR_dependent:
1442        case AR_delayed:
1443          break;
1444      }
1445    }
1446
1447    // Build a base path if necessary.
1448    if (BasePath)
1449      BuildBasePathArray(Paths, *BasePath);
1450    return false;
1451  }
1452
1453  // We know that the derived-to-base conversion is ambiguous, and
1454  // we're going to produce a diagnostic. Perform the derived-to-base
1455  // search just one more time to compute all of the possible paths so
1456  // that we can print them out. This is more expensive than any of
1457  // the previous derived-to-base checks we've done, but at this point
1458  // performance isn't as much of an issue.
1459  Paths.clear();
1460  Paths.setRecordingPaths(true);
1461  bool StillOkay = IsDerivedFrom(Derived, Base, Paths);
1462  assert(StillOkay && "Can only be used with a derived-to-base conversion");
1463  (void)StillOkay;
1464
1465  // Build up a textual representation of the ambiguous paths, e.g.,
1466  // D -> B -> A, that will be used to illustrate the ambiguous
1467  // conversions in the diagnostic. We only print one of the paths
1468  // to each base class subobject.
1469  std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
1470
1471  Diag(Loc, AmbigiousBaseConvID)
1472  << Derived << Base << PathDisplayStr << Range << Name;
1473  return true;
1474}
1475
1476bool
1477Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
1478                                   SourceLocation Loc, SourceRange Range,
1479                                   CXXCastPath *BasePath,
1480                                   bool IgnoreAccess) {
1481  return CheckDerivedToBaseConversion(Derived, Base,
1482                                      IgnoreAccess ? 0
1483                                       : diag::err_upcast_to_inaccessible_base,
1484                                      diag::err_ambiguous_derived_to_base_conv,
1485                                      Loc, Range, DeclarationName(),
1486                                      BasePath);
1487}
1488
1489
1490/// @brief Builds a string representing ambiguous paths from a
1491/// specific derived class to different subobjects of the same base
1492/// class.
1493///
1494/// This function builds a string that can be used in error messages
1495/// to show the different paths that one can take through the
1496/// inheritance hierarchy to go from the derived class to different
1497/// subobjects of a base class. The result looks something like this:
1498/// @code
1499/// struct D -> struct B -> struct A
1500/// struct D -> struct C -> struct A
1501/// @endcode
1502std::string Sema::getAmbiguousPathsDisplayString(CXXBasePaths &Paths) {
1503  std::string PathDisplayStr;
1504  std::set<unsigned> DisplayedPaths;
1505  for (CXXBasePaths::paths_iterator Path = Paths.begin();
1506       Path != Paths.end(); ++Path) {
1507    if (DisplayedPaths.insert(Path->back().SubobjectNumber).second) {
1508      // We haven't displayed a path to this particular base
1509      // class subobject yet.
1510      PathDisplayStr += "\n    ";
1511      PathDisplayStr += Context.getTypeDeclType(Paths.getOrigin()).getAsString();
1512      for (CXXBasePath::const_iterator Element = Path->begin();
1513           Element != Path->end(); ++Element)
1514        PathDisplayStr += " -> " + Element->Base->getType().getAsString();
1515    }
1516  }
1517
1518  return PathDisplayStr;
1519}
1520
1521//===----------------------------------------------------------------------===//
1522// C++ class member Handling
1523//===----------------------------------------------------------------------===//
1524
1525/// ActOnAccessSpecifier - Parsed an access specifier followed by a colon.
1526bool Sema::ActOnAccessSpecifier(AccessSpecifier Access,
1527                                SourceLocation ASLoc,
1528                                SourceLocation ColonLoc,
1529                                AttributeList *Attrs) {
1530  assert(Access != AS_none && "Invalid kind for syntactic access specifier!");
1531  AccessSpecDecl *ASDecl = AccessSpecDecl::Create(Context, Access, CurContext,
1532                                                  ASLoc, ColonLoc);
1533  CurContext->addHiddenDecl(ASDecl);
1534  return ProcessAccessDeclAttributeList(ASDecl, Attrs);
1535}
1536
1537/// CheckOverrideControl - Check C++11 override control semantics.
1538void Sema::CheckOverrideControl(Decl *D) {
1539  if (D->isInvalidDecl())
1540    return;
1541
1542  const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D);
1543
1544  // Do we know which functions this declaration might be overriding?
1545  bool OverridesAreKnown = !MD ||
1546      (!MD->getParent()->hasAnyDependentBases() &&
1547       !MD->getType()->isDependentType());
1548
1549  if (!MD || !MD->isVirtual()) {
1550    if (OverridesAreKnown) {
1551      if (OverrideAttr *OA = D->getAttr<OverrideAttr>()) {
1552        Diag(OA->getLocation(),
1553             diag::override_keyword_only_allowed_on_virtual_member_functions)
1554          << "override" << FixItHint::CreateRemoval(OA->getLocation());
1555        D->dropAttr<OverrideAttr>();
1556      }
1557      if (FinalAttr *FA = D->getAttr<FinalAttr>()) {
1558        Diag(FA->getLocation(),
1559             diag::override_keyword_only_allowed_on_virtual_member_functions)
1560          << "final" << FixItHint::CreateRemoval(FA->getLocation());
1561        D->dropAttr<FinalAttr>();
1562      }
1563    }
1564    return;
1565  }
1566
1567  if (!OverridesAreKnown)
1568    return;
1569
1570  // C++11 [class.virtual]p5:
1571  //   If a virtual function is marked with the virt-specifier override and
1572  //   does not override a member function of a base class, the program is
1573  //   ill-formed.
1574  bool HasOverriddenMethods =
1575    MD->begin_overridden_methods() != MD->end_overridden_methods();
1576  if (MD->hasAttr<OverrideAttr>() && !HasOverriddenMethods)
1577    Diag(MD->getLocation(), diag::err_function_marked_override_not_overriding)
1578      << MD->getDeclName();
1579}
1580
1581/// CheckIfOverriddenFunctionIsMarkedFinal - Checks whether a virtual member
1582/// function overrides a virtual member function marked 'final', according to
1583/// C++11 [class.virtual]p4.
1584bool Sema::CheckIfOverriddenFunctionIsMarkedFinal(const CXXMethodDecl *New,
1585                                                  const CXXMethodDecl *Old) {
1586  if (!Old->hasAttr<FinalAttr>())
1587    return false;
1588
1589  Diag(New->getLocation(), diag::err_final_function_overridden)
1590    << New->getDeclName();
1591  Diag(Old->getLocation(), diag::note_overridden_virtual_function);
1592  return true;
1593}
1594
1595static bool InitializationHasSideEffects(const FieldDecl &FD) {
1596  const Type *T = FD.getType()->getBaseElementTypeUnsafe();
1597  // FIXME: Destruction of ObjC lifetime types has side-effects.
1598  if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
1599    return !RD->isCompleteDefinition() ||
1600           !RD->hasTrivialDefaultConstructor() ||
1601           !RD->hasTrivialDestructor();
1602  return false;
1603}
1604
1605/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
1606/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
1607/// bitfield width if there is one, 'InitExpr' specifies the initializer if
1608/// one has been parsed, and 'InitStyle' is set if an in-class initializer is
1609/// present (but parsing it has been deferred).
1610NamedDecl *
1611Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
1612                               MultiTemplateParamsArg TemplateParameterLists,
1613                               Expr *BW, const VirtSpecifiers &VS,
1614                               InClassInitStyle InitStyle) {
1615  const DeclSpec &DS = D.getDeclSpec();
1616  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
1617  DeclarationName Name = NameInfo.getName();
1618  SourceLocation Loc = NameInfo.getLoc();
1619
1620  // For anonymous bitfields, the location should point to the type.
1621  if (Loc.isInvalid())
1622    Loc = D.getLocStart();
1623
1624  Expr *BitWidth = static_cast<Expr*>(BW);
1625
1626  assert(isa<CXXRecordDecl>(CurContext));
1627  assert(!DS.isFriendSpecified());
1628
1629  bool isFunc = D.isDeclarationOfFunction();
1630
1631  if (cast<CXXRecordDecl>(CurContext)->isInterface()) {
1632    // The Microsoft extension __interface only permits public member functions
1633    // and prohibits constructors, destructors, operators, non-public member
1634    // functions, static methods and data members.
1635    unsigned InvalidDecl;
1636    bool ShowDeclName = true;
1637    if (!isFunc)
1638      InvalidDecl = (DS.getStorageClassSpec() == DeclSpec::SCS_typedef) ? 0 : 1;
1639    else if (AS != AS_public)
1640      InvalidDecl = 2;
1641    else if (DS.getStorageClassSpec() == DeclSpec::SCS_static)
1642      InvalidDecl = 3;
1643    else switch (Name.getNameKind()) {
1644      case DeclarationName::CXXConstructorName:
1645        InvalidDecl = 4;
1646        ShowDeclName = false;
1647        break;
1648
1649      case DeclarationName::CXXDestructorName:
1650        InvalidDecl = 5;
1651        ShowDeclName = false;
1652        break;
1653
1654      case DeclarationName::CXXOperatorName:
1655      case DeclarationName::CXXConversionFunctionName:
1656        InvalidDecl = 6;
1657        break;
1658
1659      default:
1660        InvalidDecl = 0;
1661        break;
1662    }
1663
1664    if (InvalidDecl) {
1665      if (ShowDeclName)
1666        Diag(Loc, diag::err_invalid_member_in_interface)
1667          << (InvalidDecl-1) << Name;
1668      else
1669        Diag(Loc, diag::err_invalid_member_in_interface)
1670          << (InvalidDecl-1) << "";
1671      return 0;
1672    }
1673  }
1674
1675  // C++ 9.2p6: A member shall not be declared to have automatic storage
1676  // duration (auto, register) or with the extern storage-class-specifier.
1677  // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
1678  // data members and cannot be applied to names declared const or static,
1679  // and cannot be applied to reference members.
1680  switch (DS.getStorageClassSpec()) {
1681    case DeclSpec::SCS_unspecified:
1682    case DeclSpec::SCS_typedef:
1683    case DeclSpec::SCS_static:
1684      // FALL THROUGH.
1685      break;
1686    case DeclSpec::SCS_mutable:
1687      if (isFunc) {
1688        if (DS.getStorageClassSpecLoc().isValid())
1689          Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
1690        else
1691          Diag(DS.getThreadSpecLoc(), diag::err_mutable_function);
1692
1693        // FIXME: It would be nicer if the keyword was ignored only for this
1694        // declarator. Otherwise we could get follow-up errors.
1695        D.getMutableDeclSpec().ClearStorageClassSpecs();
1696      }
1697      break;
1698    default:
1699      if (DS.getStorageClassSpecLoc().isValid())
1700        Diag(DS.getStorageClassSpecLoc(),
1701             diag::err_storageclass_invalid_for_member);
1702      else
1703        Diag(DS.getThreadSpecLoc(), diag::err_storageclass_invalid_for_member);
1704      D.getMutableDeclSpec().ClearStorageClassSpecs();
1705  }
1706
1707  bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
1708                       DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
1709                      !isFunc);
1710
1711  if (DS.isConstexprSpecified() && isInstField) {
1712    SemaDiagnosticBuilder B =
1713        Diag(DS.getConstexprSpecLoc(), diag::err_invalid_constexpr_member);
1714    SourceLocation ConstexprLoc = DS.getConstexprSpecLoc();
1715    if (InitStyle == ICIS_NoInit) {
1716      B << 0 << 0 << FixItHint::CreateReplacement(ConstexprLoc, "const");
1717      D.getMutableDeclSpec().ClearConstexprSpec();
1718      const char *PrevSpec;
1719      unsigned DiagID;
1720      bool Failed = D.getMutableDeclSpec().SetTypeQual(DeclSpec::TQ_const, ConstexprLoc,
1721                                         PrevSpec, DiagID, getLangOpts());
1722      (void)Failed;
1723      assert(!Failed && "Making a constexpr member const shouldn't fail");
1724    } else {
1725      B << 1;
1726      const char *PrevSpec;
1727      unsigned DiagID;
1728      if (D.getMutableDeclSpec().SetStorageClassSpec(
1729          *this, DeclSpec::SCS_static, ConstexprLoc, PrevSpec, DiagID)) {
1730        assert(DS.getStorageClassSpec() == DeclSpec::SCS_mutable &&
1731               "This is the only DeclSpec that should fail to be applied");
1732        B << 1;
1733      } else {
1734        B << 0 << FixItHint::CreateInsertion(ConstexprLoc, "static ");
1735        isInstField = false;
1736      }
1737    }
1738  }
1739
1740  NamedDecl *Member;
1741  if (isInstField) {
1742    CXXScopeSpec &SS = D.getCXXScopeSpec();
1743
1744    // Data members must have identifiers for names.
1745    if (!Name.isIdentifier()) {
1746      Diag(Loc, diag::err_bad_variable_name)
1747        << Name;
1748      return 0;
1749    }
1750
1751    IdentifierInfo *II = Name.getAsIdentifierInfo();
1752
1753    // Member field could not be with "template" keyword.
1754    // So TemplateParameterLists should be empty in this case.
1755    if (TemplateParameterLists.size()) {
1756      TemplateParameterList* TemplateParams = TemplateParameterLists[0];
1757      if (TemplateParams->size()) {
1758        // There is no such thing as a member field template.
1759        Diag(D.getIdentifierLoc(), diag::err_template_member)
1760            << II
1761            << SourceRange(TemplateParams->getTemplateLoc(),
1762                TemplateParams->getRAngleLoc());
1763      } else {
1764        // There is an extraneous 'template<>' for this member.
1765        Diag(TemplateParams->getTemplateLoc(),
1766            diag::err_template_member_noparams)
1767            << II
1768            << SourceRange(TemplateParams->getTemplateLoc(),
1769                TemplateParams->getRAngleLoc());
1770      }
1771      return 0;
1772    }
1773
1774    if (SS.isSet() && !SS.isInvalid()) {
1775      // The user provided a superfluous scope specifier inside a class
1776      // definition:
1777      //
1778      // class X {
1779      //   int X::member;
1780      // };
1781      if (DeclContext *DC = computeDeclContext(SS, false))
1782        diagnoseQualifiedDeclaration(SS, DC, Name, D.getIdentifierLoc());
1783      else
1784        Diag(D.getIdentifierLoc(), diag::err_member_qualification)
1785          << Name << SS.getRange();
1786
1787      SS.clear();
1788    }
1789
1790    Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D, BitWidth,
1791                         InitStyle, AS);
1792    assert(Member && "HandleField never returns null");
1793  } else {
1794    assert(InitStyle == ICIS_NoInit || D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_static);
1795
1796    Member = HandleDeclarator(S, D, TemplateParameterLists);
1797    if (!Member) {
1798      return 0;
1799    }
1800
1801    // Non-instance-fields can't have a bitfield.
1802    if (BitWidth) {
1803      if (Member->isInvalidDecl()) {
1804        // don't emit another diagnostic.
1805      } else if (isa<VarDecl>(Member)) {
1806        // C++ 9.6p3: A bit-field shall not be a static member.
1807        // "static member 'A' cannot be a bit-field"
1808        Diag(Loc, diag::err_static_not_bitfield)
1809          << Name << BitWidth->getSourceRange();
1810      } else if (isa<TypedefDecl>(Member)) {
1811        // "typedef member 'x' cannot be a bit-field"
1812        Diag(Loc, diag::err_typedef_not_bitfield)
1813          << Name << BitWidth->getSourceRange();
1814      } else {
1815        // A function typedef ("typedef int f(); f a;").
1816        // C++ 9.6p3: A bit-field shall have integral or enumeration type.
1817        Diag(Loc, diag::err_not_integral_type_bitfield)
1818          << Name << cast<ValueDecl>(Member)->getType()
1819          << BitWidth->getSourceRange();
1820      }
1821
1822      BitWidth = 0;
1823      Member->setInvalidDecl();
1824    }
1825
1826    Member->setAccess(AS);
1827
1828    // If we have declared a member function template, set the access of the
1829    // templated declaration as well.
1830    if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Member))
1831      FunTmpl->getTemplatedDecl()->setAccess(AS);
1832  }
1833
1834  if (VS.isOverrideSpecified())
1835    Member->addAttr(new (Context) OverrideAttr(VS.getOverrideLoc(), Context));
1836  if (VS.isFinalSpecified())
1837    Member->addAttr(new (Context) FinalAttr(VS.getFinalLoc(), Context));
1838
1839  if (VS.getLastLocation().isValid()) {
1840    // Update the end location of a method that has a virt-specifiers.
1841    if (CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(Member))
1842      MD->setRangeEnd(VS.getLastLocation());
1843  }
1844
1845  CheckOverrideControl(Member);
1846
1847  assert((Name || isInstField) && "No identifier for non-field ?");
1848
1849  if (isInstField) {
1850    FieldDecl *FD = cast<FieldDecl>(Member);
1851    FieldCollector->Add(FD);
1852
1853    if (Diags.getDiagnosticLevel(diag::warn_unused_private_field,
1854                                 FD->getLocation())
1855          != DiagnosticsEngine::Ignored) {
1856      // Remember all explicit private FieldDecls that have a name, no side
1857      // effects and are not part of a dependent type declaration.
1858      if (!FD->isImplicit() && FD->getDeclName() &&
1859          FD->getAccess() == AS_private &&
1860          !FD->hasAttr<UnusedAttr>() &&
1861          !FD->getParent()->isDependentContext() &&
1862          !InitializationHasSideEffects(*FD))
1863        UnusedPrivateFields.insert(FD);
1864    }
1865  }
1866
1867  return Member;
1868}
1869
1870namespace {
1871  class UninitializedFieldVisitor
1872      : public EvaluatedExprVisitor<UninitializedFieldVisitor> {
1873    Sema &S;
1874    ValueDecl *VD;
1875  public:
1876    typedef EvaluatedExprVisitor<UninitializedFieldVisitor> Inherited;
1877    UninitializedFieldVisitor(Sema &S, ValueDecl *VD) : Inherited(S.Context),
1878                                                        S(S) {
1879      if (IndirectFieldDecl *IFD = dyn_cast<IndirectFieldDecl>(VD))
1880        this->VD = IFD->getAnonField();
1881      else
1882        this->VD = VD;
1883    }
1884
1885    void HandleExpr(Expr *E) {
1886      if (!E) return;
1887
1888      // Expressions like x(x) sometimes lack the surrounding expressions
1889      // but need to be checked anyways.
1890      HandleValue(E);
1891      Visit(E);
1892    }
1893
1894    void HandleValue(Expr *E) {
1895      E = E->IgnoreParens();
1896
1897      if (MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
1898        if (isa<EnumConstantDecl>(ME->getMemberDecl()))
1899          return;
1900
1901        // FieldME is the inner-most MemberExpr that is not an anonymous struct
1902        // or union.
1903        MemberExpr *FieldME = ME;
1904
1905        Expr *Base = E;
1906        while (isa<MemberExpr>(Base)) {
1907          ME = cast<MemberExpr>(Base);
1908
1909          if (isa<VarDecl>(ME->getMemberDecl()))
1910            return;
1911
1912          if (FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl()))
1913            if (!FD->isAnonymousStructOrUnion())
1914              FieldME = ME;
1915
1916          Base = ME->getBase();
1917        }
1918
1919        if (VD == FieldME->getMemberDecl() && isa<CXXThisExpr>(Base)) {
1920          unsigned diag = VD->getType()->isReferenceType()
1921              ? diag::warn_reference_field_is_uninit
1922              : diag::warn_field_is_uninit;
1923          S.Diag(FieldME->getExprLoc(), diag) << VD;
1924        }
1925        return;
1926      }
1927
1928      if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
1929        HandleValue(CO->getTrueExpr());
1930        HandleValue(CO->getFalseExpr());
1931        return;
1932      }
1933
1934      if (BinaryConditionalOperator *BCO =
1935              dyn_cast<BinaryConditionalOperator>(E)) {
1936        HandleValue(BCO->getCommon());
1937        HandleValue(BCO->getFalseExpr());
1938        return;
1939      }
1940
1941      if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
1942        switch (BO->getOpcode()) {
1943        default:
1944          return;
1945        case(BO_PtrMemD):
1946        case(BO_PtrMemI):
1947          HandleValue(BO->getLHS());
1948          return;
1949        case(BO_Comma):
1950          HandleValue(BO->getRHS());
1951          return;
1952        }
1953      }
1954    }
1955
1956    void VisitImplicitCastExpr(ImplicitCastExpr *E) {
1957      if (E->getCastKind() == CK_LValueToRValue)
1958        HandleValue(E->getSubExpr());
1959
1960      Inherited::VisitImplicitCastExpr(E);
1961    }
1962
1963    void VisitCXXMemberCallExpr(CXXMemberCallExpr *E) {
1964      Expr *Callee = E->getCallee();
1965      if (isa<MemberExpr>(Callee))
1966        HandleValue(Callee);
1967
1968      Inherited::VisitCXXMemberCallExpr(E);
1969    }
1970  };
1971  static void CheckInitExprContainsUninitializedFields(Sema &S, Expr *E,
1972                                                       ValueDecl *VD) {
1973    UninitializedFieldVisitor(S, VD).HandleExpr(E);
1974  }
1975} // namespace
1976
1977/// ActOnCXXInClassMemberInitializer - This is invoked after parsing an
1978/// in-class initializer for a non-static C++ class member, and after
1979/// instantiating an in-class initializer in a class template. Such actions
1980/// are deferred until the class is complete.
1981void
1982Sema::ActOnCXXInClassMemberInitializer(Decl *D, SourceLocation InitLoc,
1983                                       Expr *InitExpr) {
1984  FieldDecl *FD = cast<FieldDecl>(D);
1985  assert(FD->getInClassInitStyle() != ICIS_NoInit &&
1986         "must set init style when field is created");
1987
1988  if (!InitExpr) {
1989    FD->setInvalidDecl();
1990    FD->removeInClassInitializer();
1991    return;
1992  }
1993
1994  if (DiagnoseUnexpandedParameterPack(InitExpr, UPPC_Initializer)) {
1995    FD->setInvalidDecl();
1996    FD->removeInClassInitializer();
1997    return;
1998  }
1999
2000  if (getDiagnostics().getDiagnosticLevel(diag::warn_field_is_uninit, InitLoc)
2001      != DiagnosticsEngine::Ignored) {
2002    CheckInitExprContainsUninitializedFields(*this, InitExpr, FD);
2003  }
2004
2005  ExprResult Init = InitExpr;
2006  if (!FD->getType()->isDependentType() && !InitExpr->isTypeDependent()) {
2007    if (isa<InitListExpr>(InitExpr) && isStdInitializerList(FD->getType(), 0)) {
2008      Diag(FD->getLocation(), diag::warn_dangling_std_initializer_list)
2009        << /*at end of ctor*/1 << InitExpr->getSourceRange();
2010    }
2011    Expr **Inits = &InitExpr;
2012    unsigned NumInits = 1;
2013    InitializedEntity Entity = InitializedEntity::InitializeMember(FD);
2014    InitializationKind Kind = FD->getInClassInitStyle() == ICIS_ListInit
2015        ? InitializationKind::CreateDirectList(InitExpr->getLocStart())
2016        : InitializationKind::CreateCopy(InitExpr->getLocStart(), InitLoc);
2017    InitializationSequence Seq(*this, Entity, Kind, Inits, NumInits);
2018    Init = Seq.Perform(*this, Entity, Kind, MultiExprArg(Inits, NumInits));
2019    if (Init.isInvalid()) {
2020      FD->setInvalidDecl();
2021      return;
2022    }
2023  }
2024
2025  // C++11 [class.base.init]p7:
2026  //   The initialization of each base and member constitutes a
2027  //   full-expression.
2028  Init = ActOnFinishFullExpr(Init.take(), InitLoc);
2029  if (Init.isInvalid()) {
2030    FD->setInvalidDecl();
2031    return;
2032  }
2033
2034  InitExpr = Init.release();
2035
2036  FD->setInClassInitializer(InitExpr);
2037}
2038
2039/// \brief Find the direct and/or virtual base specifiers that
2040/// correspond to the given base type, for use in base initialization
2041/// within a constructor.
2042static bool FindBaseInitializer(Sema &SemaRef,
2043                                CXXRecordDecl *ClassDecl,
2044                                QualType BaseType,
2045                                const CXXBaseSpecifier *&DirectBaseSpec,
2046                                const CXXBaseSpecifier *&VirtualBaseSpec) {
2047  // First, check for a direct base class.
2048  DirectBaseSpec = 0;
2049  for (CXXRecordDecl::base_class_const_iterator Base
2050         = ClassDecl->bases_begin();
2051       Base != ClassDecl->bases_end(); ++Base) {
2052    if (SemaRef.Context.hasSameUnqualifiedType(BaseType, Base->getType())) {
2053      // We found a direct base of this type. That's what we're
2054      // initializing.
2055      DirectBaseSpec = &*Base;
2056      break;
2057    }
2058  }
2059
2060  // Check for a virtual base class.
2061  // FIXME: We might be able to short-circuit this if we know in advance that
2062  // there are no virtual bases.
2063  VirtualBaseSpec = 0;
2064  if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
2065    // We haven't found a base yet; search the class hierarchy for a
2066    // virtual base class.
2067    CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
2068                       /*DetectVirtual=*/false);
2069    if (SemaRef.IsDerivedFrom(SemaRef.Context.getTypeDeclType(ClassDecl),
2070                              BaseType, Paths)) {
2071      for (CXXBasePaths::paths_iterator Path = Paths.begin();
2072           Path != Paths.end(); ++Path) {
2073        if (Path->back().Base->isVirtual()) {
2074          VirtualBaseSpec = Path->back().Base;
2075          break;
2076        }
2077      }
2078    }
2079  }
2080
2081  return DirectBaseSpec || VirtualBaseSpec;
2082}
2083
2084/// \brief Handle a C++ member initializer using braced-init-list syntax.
2085MemInitResult
2086Sema::ActOnMemInitializer(Decl *ConstructorD,
2087                          Scope *S,
2088                          CXXScopeSpec &SS,
2089                          IdentifierInfo *MemberOrBase,
2090                          ParsedType TemplateTypeTy,
2091                          const DeclSpec &DS,
2092                          SourceLocation IdLoc,
2093                          Expr *InitList,
2094                          SourceLocation EllipsisLoc) {
2095  return BuildMemInitializer(ConstructorD, S, SS, MemberOrBase, TemplateTypeTy,
2096                             DS, IdLoc, InitList,
2097                             EllipsisLoc);
2098}
2099
2100/// \brief Handle a C++ member initializer using parentheses syntax.
2101MemInitResult
2102Sema::ActOnMemInitializer(Decl *ConstructorD,
2103                          Scope *S,
2104                          CXXScopeSpec &SS,
2105                          IdentifierInfo *MemberOrBase,
2106                          ParsedType TemplateTypeTy,
2107                          const DeclSpec &DS,
2108                          SourceLocation IdLoc,
2109                          SourceLocation LParenLoc,
2110                          Expr **Args, unsigned NumArgs,
2111                          SourceLocation RParenLoc,
2112                          SourceLocation EllipsisLoc) {
2113  Expr *List = new (Context) ParenListExpr(Context, LParenLoc,
2114                                           llvm::makeArrayRef(Args, NumArgs),
2115                                           RParenLoc);
2116  return BuildMemInitializer(ConstructorD, S, SS, MemberOrBase, TemplateTypeTy,
2117                             DS, IdLoc, List, EllipsisLoc);
2118}
2119
2120namespace {
2121
2122// Callback to only accept typo corrections that can be a valid C++ member
2123// intializer: either a non-static field member or a base class.
2124class MemInitializerValidatorCCC : public CorrectionCandidateCallback {
2125 public:
2126  explicit MemInitializerValidatorCCC(CXXRecordDecl *ClassDecl)
2127      : ClassDecl(ClassDecl) {}
2128
2129  virtual bool ValidateCandidate(const TypoCorrection &candidate) {
2130    if (NamedDecl *ND = candidate.getCorrectionDecl()) {
2131      if (FieldDecl *Member = dyn_cast<FieldDecl>(ND))
2132        return Member->getDeclContext()->getRedeclContext()->Equals(ClassDecl);
2133      else
2134        return isa<TypeDecl>(ND);
2135    }
2136    return false;
2137  }
2138
2139 private:
2140  CXXRecordDecl *ClassDecl;
2141};
2142
2143}
2144
2145/// \brief Handle a C++ member initializer.
2146MemInitResult
2147Sema::BuildMemInitializer(Decl *ConstructorD,
2148                          Scope *S,
2149                          CXXScopeSpec &SS,
2150                          IdentifierInfo *MemberOrBase,
2151                          ParsedType TemplateTypeTy,
2152                          const DeclSpec &DS,
2153                          SourceLocation IdLoc,
2154                          Expr *Init,
2155                          SourceLocation EllipsisLoc) {
2156  if (!ConstructorD)
2157    return true;
2158
2159  AdjustDeclIfTemplate(ConstructorD);
2160
2161  CXXConstructorDecl *Constructor
2162    = dyn_cast<CXXConstructorDecl>(ConstructorD);
2163  if (!Constructor) {
2164    // The user wrote a constructor initializer on a function that is
2165    // not a C++ constructor. Ignore the error for now, because we may
2166    // have more member initializers coming; we'll diagnose it just
2167    // once in ActOnMemInitializers.
2168    return true;
2169  }
2170
2171  CXXRecordDecl *ClassDecl = Constructor->getParent();
2172
2173  // C++ [class.base.init]p2:
2174  //   Names in a mem-initializer-id are looked up in the scope of the
2175  //   constructor's class and, if not found in that scope, are looked
2176  //   up in the scope containing the constructor's definition.
2177  //   [Note: if the constructor's class contains a member with the
2178  //   same name as a direct or virtual base class of the class, a
2179  //   mem-initializer-id naming the member or base class and composed
2180  //   of a single identifier refers to the class member. A
2181  //   mem-initializer-id for the hidden base class may be specified
2182  //   using a qualified name. ]
2183  if (!SS.getScopeRep() && !TemplateTypeTy) {
2184    // Look for a member, first.
2185    DeclContext::lookup_result Result
2186      = ClassDecl->lookup(MemberOrBase);
2187    if (!Result.empty()) {
2188      ValueDecl *Member;
2189      if ((Member = dyn_cast<FieldDecl>(Result.front())) ||
2190          (Member = dyn_cast<IndirectFieldDecl>(Result.front()))) {
2191        if (EllipsisLoc.isValid())
2192          Diag(EllipsisLoc, diag::err_pack_expansion_member_init)
2193            << MemberOrBase
2194            << SourceRange(IdLoc, Init->getSourceRange().getEnd());
2195
2196        return BuildMemberInitializer(Member, Init, IdLoc);
2197      }
2198    }
2199  }
2200  // It didn't name a member, so see if it names a class.
2201  QualType BaseType;
2202  TypeSourceInfo *TInfo = 0;
2203
2204  if (TemplateTypeTy) {
2205    BaseType = GetTypeFromParser(TemplateTypeTy, &TInfo);
2206  } else if (DS.getTypeSpecType() == TST_decltype) {
2207    BaseType = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc());
2208  } else {
2209    LookupResult R(*this, MemberOrBase, IdLoc, LookupOrdinaryName);
2210    LookupParsedName(R, S, &SS);
2211
2212    TypeDecl *TyD = R.getAsSingle<TypeDecl>();
2213    if (!TyD) {
2214      if (R.isAmbiguous()) return true;
2215
2216      // We don't want access-control diagnostics here.
2217      R.suppressDiagnostics();
2218
2219      if (SS.isSet() && isDependentScopeSpecifier(SS)) {
2220        bool NotUnknownSpecialization = false;
2221        DeclContext *DC = computeDeclContext(SS, false);
2222        if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(DC))
2223          NotUnknownSpecialization = !Record->hasAnyDependentBases();
2224
2225        if (!NotUnknownSpecialization) {
2226          // When the scope specifier can refer to a member of an unknown
2227          // specialization, we take it as a type name.
2228          BaseType = CheckTypenameType(ETK_None, SourceLocation(),
2229                                       SS.getWithLocInContext(Context),
2230                                       *MemberOrBase, IdLoc);
2231          if (BaseType.isNull())
2232            return true;
2233
2234          R.clear();
2235          R.setLookupName(MemberOrBase);
2236        }
2237      }
2238
2239      // If no results were found, try to correct typos.
2240      TypoCorrection Corr;
2241      MemInitializerValidatorCCC Validator(ClassDecl);
2242      if (R.empty() && BaseType.isNull() &&
2243          (Corr = CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(), S, &SS,
2244                              Validator, ClassDecl))) {
2245        std::string CorrectedStr(Corr.getAsString(getLangOpts()));
2246        std::string CorrectedQuotedStr(Corr.getQuoted(getLangOpts()));
2247        if (FieldDecl *Member = Corr.getCorrectionDeclAs<FieldDecl>()) {
2248          // We have found a non-static data member with a similar
2249          // name to what was typed; complain and initialize that
2250          // member.
2251          Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
2252            << MemberOrBase << true << CorrectedQuotedStr
2253            << FixItHint::CreateReplacement(R.getNameLoc(), CorrectedStr);
2254          Diag(Member->getLocation(), diag::note_previous_decl)
2255            << CorrectedQuotedStr;
2256
2257          return BuildMemberInitializer(Member, Init, IdLoc);
2258        } else if (TypeDecl *Type = Corr.getCorrectionDeclAs<TypeDecl>()) {
2259          const CXXBaseSpecifier *DirectBaseSpec;
2260          const CXXBaseSpecifier *VirtualBaseSpec;
2261          if (FindBaseInitializer(*this, ClassDecl,
2262                                  Context.getTypeDeclType(Type),
2263                                  DirectBaseSpec, VirtualBaseSpec)) {
2264            // We have found a direct or virtual base class with a
2265            // similar name to what was typed; complain and initialize
2266            // that base class.
2267            Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
2268              << MemberOrBase << false << CorrectedQuotedStr
2269              << FixItHint::CreateReplacement(R.getNameLoc(), CorrectedStr);
2270
2271            const CXXBaseSpecifier *BaseSpec = DirectBaseSpec? DirectBaseSpec
2272                                                             : VirtualBaseSpec;
2273            Diag(BaseSpec->getLocStart(),
2274                 diag::note_base_class_specified_here)
2275              << BaseSpec->getType()
2276              << BaseSpec->getSourceRange();
2277
2278            TyD = Type;
2279          }
2280        }
2281      }
2282
2283      if (!TyD && BaseType.isNull()) {
2284        Diag(IdLoc, diag::err_mem_init_not_member_or_class)
2285          << MemberOrBase << SourceRange(IdLoc,Init->getSourceRange().getEnd());
2286        return true;
2287      }
2288    }
2289
2290    if (BaseType.isNull()) {
2291      BaseType = Context.getTypeDeclType(TyD);
2292      if (SS.isSet()) {
2293        NestedNameSpecifier *Qualifier =
2294          static_cast<NestedNameSpecifier*>(SS.getScopeRep());
2295
2296        // FIXME: preserve source range information
2297        BaseType = Context.getElaboratedType(ETK_None, Qualifier, BaseType);
2298      }
2299    }
2300  }
2301
2302  if (!TInfo)
2303    TInfo = Context.getTrivialTypeSourceInfo(BaseType, IdLoc);
2304
2305  return BuildBaseInitializer(BaseType, TInfo, Init, ClassDecl, EllipsisLoc);
2306}
2307
2308/// Checks a member initializer expression for cases where reference (or
2309/// pointer) members are bound to by-value parameters (or their addresses).
2310static void CheckForDanglingReferenceOrPointer(Sema &S, ValueDecl *Member,
2311                                               Expr *Init,
2312                                               SourceLocation IdLoc) {
2313  QualType MemberTy = Member->getType();
2314
2315  // We only handle pointers and references currently.
2316  // FIXME: Would this be relevant for ObjC object pointers? Or block pointers?
2317  if (!MemberTy->isReferenceType() && !MemberTy->isPointerType())
2318    return;
2319
2320  const bool IsPointer = MemberTy->isPointerType();
2321  if (IsPointer) {
2322    if (const UnaryOperator *Op
2323          = dyn_cast<UnaryOperator>(Init->IgnoreParenImpCasts())) {
2324      // The only case we're worried about with pointers requires taking the
2325      // address.
2326      if (Op->getOpcode() != UO_AddrOf)
2327        return;
2328
2329      Init = Op->getSubExpr();
2330    } else {
2331      // We only handle address-of expression initializers for pointers.
2332      return;
2333    }
2334  }
2335
2336  if (isa<MaterializeTemporaryExpr>(Init->IgnoreParens())) {
2337    // Taking the address of a temporary will be diagnosed as a hard error.
2338    if (IsPointer)
2339      return;
2340
2341    S.Diag(Init->getExprLoc(), diag::warn_bind_ref_member_to_temporary)
2342      << Member << Init->getSourceRange();
2343  } else if (const DeclRefExpr *DRE
2344               = dyn_cast<DeclRefExpr>(Init->IgnoreParens())) {
2345    // We only warn when referring to a non-reference parameter declaration.
2346    const ParmVarDecl *Parameter = dyn_cast<ParmVarDecl>(DRE->getDecl());
2347    if (!Parameter || Parameter->getType()->isReferenceType())
2348      return;
2349
2350    S.Diag(Init->getExprLoc(),
2351           IsPointer ? diag::warn_init_ptr_member_to_parameter_addr
2352                     : diag::warn_bind_ref_member_to_parameter)
2353      << Member << Parameter << Init->getSourceRange();
2354  } else {
2355    // Other initializers are fine.
2356    return;
2357  }
2358
2359  S.Diag(Member->getLocation(), diag::note_ref_or_ptr_member_declared_here)
2360    << (unsigned)IsPointer;
2361}
2362
2363MemInitResult
2364Sema::BuildMemberInitializer(ValueDecl *Member, Expr *Init,
2365                             SourceLocation IdLoc) {
2366  FieldDecl *DirectMember = dyn_cast<FieldDecl>(Member);
2367  IndirectFieldDecl *IndirectMember = dyn_cast<IndirectFieldDecl>(Member);
2368  assert((DirectMember || IndirectMember) &&
2369         "Member must be a FieldDecl or IndirectFieldDecl");
2370
2371  if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer))
2372    return true;
2373
2374  if (Member->isInvalidDecl())
2375    return true;
2376
2377  // Diagnose value-uses of fields to initialize themselves, e.g.
2378  //   foo(foo)
2379  // where foo is not also a parameter to the constructor.
2380  // TODO: implement -Wuninitialized and fold this into that framework.
2381  Expr **Args;
2382  unsigned NumArgs;
2383  if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) {
2384    Args = ParenList->getExprs();
2385    NumArgs = ParenList->getNumExprs();
2386  } else if (InitListExpr *InitList = dyn_cast<InitListExpr>(Init)) {
2387    Args = InitList->getInits();
2388    NumArgs = InitList->getNumInits();
2389  } else {
2390    // Template instantiation doesn't reconstruct ParenListExprs for us.
2391    Args = &Init;
2392    NumArgs = 1;
2393  }
2394
2395  if (getDiagnostics().getDiagnosticLevel(diag::warn_field_is_uninit, IdLoc)
2396        != DiagnosticsEngine::Ignored)
2397    for (unsigned i = 0; i < NumArgs; ++i)
2398      // FIXME: Warn about the case when other fields are used before being
2399      // initialized. For example, let this field be the i'th field. When
2400      // initializing the i'th field, throw a warning if any of the >= i'th
2401      // fields are used, as they are not yet initialized.
2402      // Right now we are only handling the case where the i'th field uses
2403      // itself in its initializer.
2404      // Also need to take into account that some fields may be initialized by
2405      // in-class initializers, see C++11 [class.base.init]p9.
2406      CheckInitExprContainsUninitializedFields(*this, Args[i], Member);
2407
2408  SourceRange InitRange = Init->getSourceRange();
2409
2410  if (Member->getType()->isDependentType() || Init->isTypeDependent()) {
2411    // Can't check initialization for a member of dependent type or when
2412    // any of the arguments are type-dependent expressions.
2413    DiscardCleanupsInEvaluationContext();
2414  } else {
2415    bool InitList = false;
2416    if (isa<InitListExpr>(Init)) {
2417      InitList = true;
2418      Args = &Init;
2419      NumArgs = 1;
2420
2421      if (isStdInitializerList(Member->getType(), 0)) {
2422        Diag(IdLoc, diag::warn_dangling_std_initializer_list)
2423            << /*at end of ctor*/1 << InitRange;
2424      }
2425    }
2426
2427    // Initialize the member.
2428    InitializedEntity MemberEntity =
2429      DirectMember ? InitializedEntity::InitializeMember(DirectMember, 0)
2430                   : InitializedEntity::InitializeMember(IndirectMember, 0);
2431    InitializationKind Kind =
2432      InitList ? InitializationKind::CreateDirectList(IdLoc)
2433               : InitializationKind::CreateDirect(IdLoc, InitRange.getBegin(),
2434                                                  InitRange.getEnd());
2435
2436    InitializationSequence InitSeq(*this, MemberEntity, Kind, Args, NumArgs);
2437    ExprResult MemberInit = InitSeq.Perform(*this, MemberEntity, Kind,
2438                                            MultiExprArg(Args, NumArgs),
2439                                            0);
2440    if (MemberInit.isInvalid())
2441      return true;
2442
2443    // C++11 [class.base.init]p7:
2444    //   The initialization of each base and member constitutes a
2445    //   full-expression.
2446    MemberInit = ActOnFinishFullExpr(MemberInit.get(), InitRange.getBegin());
2447    if (MemberInit.isInvalid())
2448      return true;
2449
2450    Init = MemberInit.get();
2451    CheckForDanglingReferenceOrPointer(*this, Member, Init, IdLoc);
2452  }
2453
2454  if (DirectMember) {
2455    return new (Context) CXXCtorInitializer(Context, DirectMember, IdLoc,
2456                                            InitRange.getBegin(), Init,
2457                                            InitRange.getEnd());
2458  } else {
2459    return new (Context) CXXCtorInitializer(Context, IndirectMember, IdLoc,
2460                                            InitRange.getBegin(), Init,
2461                                            InitRange.getEnd());
2462  }
2463}
2464
2465MemInitResult
2466Sema::BuildDelegatingInitializer(TypeSourceInfo *TInfo, Expr *Init,
2467                                 CXXRecordDecl *ClassDecl) {
2468  SourceLocation NameLoc = TInfo->getTypeLoc().getLocalSourceRange().getBegin();
2469  if (!LangOpts.CPlusPlus11)
2470    return Diag(NameLoc, diag::err_delegating_ctor)
2471      << TInfo->getTypeLoc().getLocalSourceRange();
2472  Diag(NameLoc, diag::warn_cxx98_compat_delegating_ctor);
2473
2474  bool InitList = true;
2475  Expr **Args = &Init;
2476  unsigned NumArgs = 1;
2477  if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) {
2478    InitList = false;
2479    Args = ParenList->getExprs();
2480    NumArgs = ParenList->getNumExprs();
2481  }
2482
2483  SourceRange InitRange = Init->getSourceRange();
2484  // Initialize the object.
2485  InitializedEntity DelegationEntity = InitializedEntity::InitializeDelegation(
2486                                     QualType(ClassDecl->getTypeForDecl(), 0));
2487  InitializationKind Kind =
2488    InitList ? InitializationKind::CreateDirectList(NameLoc)
2489             : InitializationKind::CreateDirect(NameLoc, InitRange.getBegin(),
2490                                                InitRange.getEnd());
2491  InitializationSequence InitSeq(*this, DelegationEntity, Kind, Args, NumArgs);
2492  ExprResult DelegationInit = InitSeq.Perform(*this, DelegationEntity, Kind,
2493                                              MultiExprArg(Args, NumArgs),
2494                                              0);
2495  if (DelegationInit.isInvalid())
2496    return true;
2497
2498  assert(cast<CXXConstructExpr>(DelegationInit.get())->getConstructor() &&
2499         "Delegating constructor with no target?");
2500
2501  // C++11 [class.base.init]p7:
2502  //   The initialization of each base and member constitutes a
2503  //   full-expression.
2504  DelegationInit = ActOnFinishFullExpr(DelegationInit.get(),
2505                                       InitRange.getBegin());
2506  if (DelegationInit.isInvalid())
2507    return true;
2508
2509  // If we are in a dependent context, template instantiation will
2510  // perform this type-checking again. Just save the arguments that we
2511  // received in a ParenListExpr.
2512  // FIXME: This isn't quite ideal, since our ASTs don't capture all
2513  // of the information that we have about the base
2514  // initializer. However, deconstructing the ASTs is a dicey process,
2515  // and this approach is far more likely to get the corner cases right.
2516  if (CurContext->isDependentContext())
2517    DelegationInit = Owned(Init);
2518
2519  return new (Context) CXXCtorInitializer(Context, TInfo, InitRange.getBegin(),
2520                                          DelegationInit.takeAs<Expr>(),
2521                                          InitRange.getEnd());
2522}
2523
2524MemInitResult
2525Sema::BuildBaseInitializer(QualType BaseType, TypeSourceInfo *BaseTInfo,
2526                           Expr *Init, CXXRecordDecl *ClassDecl,
2527                           SourceLocation EllipsisLoc) {
2528  SourceLocation BaseLoc
2529    = BaseTInfo->getTypeLoc().getLocalSourceRange().getBegin();
2530
2531  if (!BaseType->isDependentType() && !BaseType->isRecordType())
2532    return Diag(BaseLoc, diag::err_base_init_does_not_name_class)
2533             << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
2534
2535  // C++ [class.base.init]p2:
2536  //   [...] Unless the mem-initializer-id names a nonstatic data
2537  //   member of the constructor's class or a direct or virtual base
2538  //   of that class, the mem-initializer is ill-formed. A
2539  //   mem-initializer-list can initialize a base class using any
2540  //   name that denotes that base class type.
2541  bool Dependent = BaseType->isDependentType() || Init->isTypeDependent();
2542
2543  SourceRange InitRange = Init->getSourceRange();
2544  if (EllipsisLoc.isValid()) {
2545    // This is a pack expansion.
2546    if (!BaseType->containsUnexpandedParameterPack())  {
2547      Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
2548        << SourceRange(BaseLoc, InitRange.getEnd());
2549
2550      EllipsisLoc = SourceLocation();
2551    }
2552  } else {
2553    // Check for any unexpanded parameter packs.
2554    if (DiagnoseUnexpandedParameterPack(BaseLoc, BaseTInfo, UPPC_Initializer))
2555      return true;
2556
2557    if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer))
2558      return true;
2559  }
2560
2561  // Check for direct and virtual base classes.
2562  const CXXBaseSpecifier *DirectBaseSpec = 0;
2563  const CXXBaseSpecifier *VirtualBaseSpec = 0;
2564  if (!Dependent) {
2565    if (Context.hasSameUnqualifiedType(QualType(ClassDecl->getTypeForDecl(),0),
2566                                       BaseType))
2567      return BuildDelegatingInitializer(BaseTInfo, Init, ClassDecl);
2568
2569    FindBaseInitializer(*this, ClassDecl, BaseType, DirectBaseSpec,
2570                        VirtualBaseSpec);
2571
2572    // C++ [base.class.init]p2:
2573    // Unless the mem-initializer-id names a nonstatic data member of the
2574    // constructor's class or a direct or virtual base of that class, the
2575    // mem-initializer is ill-formed.
2576    if (!DirectBaseSpec && !VirtualBaseSpec) {
2577      // If the class has any dependent bases, then it's possible that
2578      // one of those types will resolve to the same type as
2579      // BaseType. Therefore, just treat this as a dependent base
2580      // class initialization.  FIXME: Should we try to check the
2581      // initialization anyway? It seems odd.
2582      if (ClassDecl->hasAnyDependentBases())
2583        Dependent = true;
2584      else
2585        return Diag(BaseLoc, diag::err_not_direct_base_or_virtual)
2586          << BaseType << Context.getTypeDeclType(ClassDecl)
2587          << BaseTInfo->getTypeLoc().getLocalSourceRange();
2588    }
2589  }
2590
2591  if (Dependent) {
2592    DiscardCleanupsInEvaluationContext();
2593
2594    return new (Context) CXXCtorInitializer(Context, BaseTInfo,
2595                                            /*IsVirtual=*/false,
2596                                            InitRange.getBegin(), Init,
2597                                            InitRange.getEnd(), EllipsisLoc);
2598  }
2599
2600  // C++ [base.class.init]p2:
2601  //   If a mem-initializer-id is ambiguous because it designates both
2602  //   a direct non-virtual base class and an inherited virtual base
2603  //   class, the mem-initializer is ill-formed.
2604  if (DirectBaseSpec && VirtualBaseSpec)
2605    return Diag(BaseLoc, diag::err_base_init_direct_and_virtual)
2606      << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
2607
2608  CXXBaseSpecifier *BaseSpec = const_cast<CXXBaseSpecifier *>(DirectBaseSpec);
2609  if (!BaseSpec)
2610    BaseSpec = const_cast<CXXBaseSpecifier *>(VirtualBaseSpec);
2611
2612  // Initialize the base.
2613  bool InitList = true;
2614  Expr **Args = &Init;
2615  unsigned NumArgs = 1;
2616  if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) {
2617    InitList = false;
2618    Args = ParenList->getExprs();
2619    NumArgs = ParenList->getNumExprs();
2620  }
2621
2622  InitializedEntity BaseEntity =
2623    InitializedEntity::InitializeBase(Context, BaseSpec, VirtualBaseSpec);
2624  InitializationKind Kind =
2625    InitList ? InitializationKind::CreateDirectList(BaseLoc)
2626             : InitializationKind::CreateDirect(BaseLoc, InitRange.getBegin(),
2627                                                InitRange.getEnd());
2628  InitializationSequence InitSeq(*this, BaseEntity, Kind, Args, NumArgs);
2629  ExprResult BaseInit = InitSeq.Perform(*this, BaseEntity, Kind,
2630                                        MultiExprArg(Args, NumArgs), 0);
2631  if (BaseInit.isInvalid())
2632    return true;
2633
2634  // C++11 [class.base.init]p7:
2635  //   The initialization of each base and member constitutes a
2636  //   full-expression.
2637  BaseInit = ActOnFinishFullExpr(BaseInit.get(), InitRange.getBegin());
2638  if (BaseInit.isInvalid())
2639    return true;
2640
2641  // If we are in a dependent context, template instantiation will
2642  // perform this type-checking again. Just save the arguments that we
2643  // received in a ParenListExpr.
2644  // FIXME: This isn't quite ideal, since our ASTs don't capture all
2645  // of the information that we have about the base
2646  // initializer. However, deconstructing the ASTs is a dicey process,
2647  // and this approach is far more likely to get the corner cases right.
2648  if (CurContext->isDependentContext())
2649    BaseInit = Owned(Init);
2650
2651  return new (Context) CXXCtorInitializer(Context, BaseTInfo,
2652                                          BaseSpec->isVirtual(),
2653                                          InitRange.getBegin(),
2654                                          BaseInit.takeAs<Expr>(),
2655                                          InitRange.getEnd(), EllipsisLoc);
2656}
2657
2658// Create a static_cast\<T&&>(expr).
2659static Expr *CastForMoving(Sema &SemaRef, Expr *E, QualType T = QualType()) {
2660  if (T.isNull()) T = E->getType();
2661  QualType TargetType = SemaRef.BuildReferenceType(
2662      T, /*SpelledAsLValue*/false, SourceLocation(), DeclarationName());
2663  SourceLocation ExprLoc = E->getLocStart();
2664  TypeSourceInfo *TargetLoc = SemaRef.Context.getTrivialTypeSourceInfo(
2665      TargetType, ExprLoc);
2666
2667  return SemaRef.BuildCXXNamedCast(ExprLoc, tok::kw_static_cast, TargetLoc, E,
2668                                   SourceRange(ExprLoc, ExprLoc),
2669                                   E->getSourceRange()).take();
2670}
2671
2672/// ImplicitInitializerKind - How an implicit base or member initializer should
2673/// initialize its base or member.
2674enum ImplicitInitializerKind {
2675  IIK_Default,
2676  IIK_Copy,
2677  IIK_Move,
2678  IIK_Inherit
2679};
2680
2681static bool
2682BuildImplicitBaseInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
2683                             ImplicitInitializerKind ImplicitInitKind,
2684                             CXXBaseSpecifier *BaseSpec,
2685                             bool IsInheritedVirtualBase,
2686                             CXXCtorInitializer *&CXXBaseInit) {
2687  InitializedEntity InitEntity
2688    = InitializedEntity::InitializeBase(SemaRef.Context, BaseSpec,
2689                                        IsInheritedVirtualBase);
2690
2691  ExprResult BaseInit;
2692
2693  switch (ImplicitInitKind) {
2694  case IIK_Inherit: {
2695    const CXXRecordDecl *Inherited =
2696        Constructor->getInheritedConstructor()->getParent();
2697    const CXXRecordDecl *Base = BaseSpec->getType()->getAsCXXRecordDecl();
2698    if (Base && Inherited->getCanonicalDecl() == Base->getCanonicalDecl()) {
2699      // C++11 [class.inhctor]p8:
2700      //   Each expression in the expression-list is of the form
2701      //   static_cast<T&&>(p), where p is the name of the corresponding
2702      //   constructor parameter and T is the declared type of p.
2703      SmallVector<Expr*, 16> Args;
2704      for (unsigned I = 0, E = Constructor->getNumParams(); I != E; ++I) {
2705        ParmVarDecl *PD = Constructor->getParamDecl(I);
2706        ExprResult ArgExpr =
2707            SemaRef.BuildDeclRefExpr(PD, PD->getType().getNonReferenceType(),
2708                                     VK_LValue, SourceLocation());
2709        if (ArgExpr.isInvalid())
2710          return true;
2711        Args.push_back(CastForMoving(SemaRef, ArgExpr.take(), PD->getType()));
2712      }
2713
2714      InitializationKind InitKind = InitializationKind::CreateDirect(
2715          Constructor->getLocation(), SourceLocation(), SourceLocation());
2716      InitializationSequence InitSeq(SemaRef, InitEntity, InitKind,
2717                                     Args.data(), Args.size());
2718      BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind, Args);
2719      break;
2720    }
2721  }
2722  // Fall through.
2723  case IIK_Default: {
2724    InitializationKind InitKind
2725      = InitializationKind::CreateDefault(Constructor->getLocation());
2726    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
2727    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind, MultiExprArg());
2728    break;
2729  }
2730
2731  case IIK_Move:
2732  case IIK_Copy: {
2733    bool Moving = ImplicitInitKind == IIK_Move;
2734    ParmVarDecl *Param = Constructor->getParamDecl(0);
2735    QualType ParamType = Param->getType().getNonReferenceType();
2736
2737    Expr *CopyCtorArg =
2738      DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(),
2739                          SourceLocation(), Param, false,
2740                          Constructor->getLocation(), ParamType,
2741                          VK_LValue, 0);
2742
2743    SemaRef.MarkDeclRefReferenced(cast<DeclRefExpr>(CopyCtorArg));
2744
2745    // Cast to the base class to avoid ambiguities.
2746    QualType ArgTy =
2747      SemaRef.Context.getQualifiedType(BaseSpec->getType().getUnqualifiedType(),
2748                                       ParamType.getQualifiers());
2749
2750    if (Moving) {
2751      CopyCtorArg = CastForMoving(SemaRef, CopyCtorArg);
2752    }
2753
2754    CXXCastPath BasePath;
2755    BasePath.push_back(BaseSpec);
2756    CopyCtorArg = SemaRef.ImpCastExprToType(CopyCtorArg, ArgTy,
2757                                            CK_UncheckedDerivedToBase,
2758                                            Moving ? VK_XValue : VK_LValue,
2759                                            &BasePath).take();
2760
2761    InitializationKind InitKind
2762      = InitializationKind::CreateDirect(Constructor->getLocation(),
2763                                         SourceLocation(), SourceLocation());
2764    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind,
2765                                   &CopyCtorArg, 1);
2766    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind,
2767                               MultiExprArg(&CopyCtorArg, 1));
2768    break;
2769  }
2770  }
2771
2772  BaseInit = SemaRef.MaybeCreateExprWithCleanups(BaseInit);
2773  if (BaseInit.isInvalid())
2774    return true;
2775
2776  CXXBaseInit =
2777    new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
2778               SemaRef.Context.getTrivialTypeSourceInfo(BaseSpec->getType(),
2779                                                        SourceLocation()),
2780                                             BaseSpec->isVirtual(),
2781                                             SourceLocation(),
2782                                             BaseInit.takeAs<Expr>(),
2783                                             SourceLocation(),
2784                                             SourceLocation());
2785
2786  return false;
2787}
2788
2789static bool RefersToRValueRef(Expr *MemRef) {
2790  ValueDecl *Referenced = cast<MemberExpr>(MemRef)->getMemberDecl();
2791  return Referenced->getType()->isRValueReferenceType();
2792}
2793
2794static bool
2795BuildImplicitMemberInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
2796                               ImplicitInitializerKind ImplicitInitKind,
2797                               FieldDecl *Field, IndirectFieldDecl *Indirect,
2798                               CXXCtorInitializer *&CXXMemberInit) {
2799  if (Field->isInvalidDecl())
2800    return true;
2801
2802  SourceLocation Loc = Constructor->getLocation();
2803
2804  if (ImplicitInitKind == IIK_Copy || ImplicitInitKind == IIK_Move) {
2805    bool Moving = ImplicitInitKind == IIK_Move;
2806    ParmVarDecl *Param = Constructor->getParamDecl(0);
2807    QualType ParamType = Param->getType().getNonReferenceType();
2808
2809    // Suppress copying zero-width bitfields.
2810    if (Field->isBitField() && Field->getBitWidthValue(SemaRef.Context) == 0)
2811      return false;
2812
2813    Expr *MemberExprBase =
2814      DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(),
2815                          SourceLocation(), Param, false,
2816                          Loc, ParamType, VK_LValue, 0);
2817
2818    SemaRef.MarkDeclRefReferenced(cast<DeclRefExpr>(MemberExprBase));
2819
2820    if (Moving) {
2821      MemberExprBase = CastForMoving(SemaRef, MemberExprBase);
2822    }
2823
2824    // Build a reference to this field within the parameter.
2825    CXXScopeSpec SS;
2826    LookupResult MemberLookup(SemaRef, Field->getDeclName(), Loc,
2827                              Sema::LookupMemberName);
2828    MemberLookup.addDecl(Indirect ? cast<ValueDecl>(Indirect)
2829                                  : cast<ValueDecl>(Field), AS_public);
2830    MemberLookup.resolveKind();
2831    ExprResult CtorArg
2832      = SemaRef.BuildMemberReferenceExpr(MemberExprBase,
2833                                         ParamType, Loc,
2834                                         /*IsArrow=*/false,
2835                                         SS,
2836                                         /*TemplateKWLoc=*/SourceLocation(),
2837                                         /*FirstQualifierInScope=*/0,
2838                                         MemberLookup,
2839                                         /*TemplateArgs=*/0);
2840    if (CtorArg.isInvalid())
2841      return true;
2842
2843    // C++11 [class.copy]p15:
2844    //   - if a member m has rvalue reference type T&&, it is direct-initialized
2845    //     with static_cast<T&&>(x.m);
2846    if (RefersToRValueRef(CtorArg.get())) {
2847      CtorArg = CastForMoving(SemaRef, CtorArg.take());
2848    }
2849
2850    // When the field we are copying is an array, create index variables for
2851    // each dimension of the array. We use these index variables to subscript
2852    // the source array, and other clients (e.g., CodeGen) will perform the
2853    // necessary iteration with these index variables.
2854    SmallVector<VarDecl *, 4> IndexVariables;
2855    QualType BaseType = Field->getType();
2856    QualType SizeType = SemaRef.Context.getSizeType();
2857    bool InitializingArray = false;
2858    while (const ConstantArrayType *Array
2859                          = SemaRef.Context.getAsConstantArrayType(BaseType)) {
2860      InitializingArray = true;
2861      // Create the iteration variable for this array index.
2862      IdentifierInfo *IterationVarName = 0;
2863      {
2864        SmallString<8> Str;
2865        llvm::raw_svector_ostream OS(Str);
2866        OS << "__i" << IndexVariables.size();
2867        IterationVarName = &SemaRef.Context.Idents.get(OS.str());
2868      }
2869      VarDecl *IterationVar
2870        = VarDecl::Create(SemaRef.Context, SemaRef.CurContext, Loc, Loc,
2871                          IterationVarName, SizeType,
2872                        SemaRef.Context.getTrivialTypeSourceInfo(SizeType, Loc),
2873                          SC_None);
2874      IndexVariables.push_back(IterationVar);
2875
2876      // Create a reference to the iteration variable.
2877      ExprResult IterationVarRef
2878        = SemaRef.BuildDeclRefExpr(IterationVar, SizeType, VK_LValue, Loc);
2879      assert(!IterationVarRef.isInvalid() &&
2880             "Reference to invented variable cannot fail!");
2881      IterationVarRef = SemaRef.DefaultLvalueConversion(IterationVarRef.take());
2882      assert(!IterationVarRef.isInvalid() &&
2883             "Conversion of invented variable cannot fail!");
2884
2885      // Subscript the array with this iteration variable.
2886      CtorArg = SemaRef.CreateBuiltinArraySubscriptExpr(CtorArg.take(), Loc,
2887                                                        IterationVarRef.take(),
2888                                                        Loc);
2889      if (CtorArg.isInvalid())
2890        return true;
2891
2892      BaseType = Array->getElementType();
2893    }
2894
2895    // The array subscript expression is an lvalue, which is wrong for moving.
2896    if (Moving && InitializingArray)
2897      CtorArg = CastForMoving(SemaRef, CtorArg.take());
2898
2899    // Construct the entity that we will be initializing. For an array, this
2900    // will be first element in the array, which may require several levels
2901    // of array-subscript entities.
2902    SmallVector<InitializedEntity, 4> Entities;
2903    Entities.reserve(1 + IndexVariables.size());
2904    if (Indirect)
2905      Entities.push_back(InitializedEntity::InitializeMember(Indirect));
2906    else
2907      Entities.push_back(InitializedEntity::InitializeMember(Field));
2908    for (unsigned I = 0, N = IndexVariables.size(); I != N; ++I)
2909      Entities.push_back(InitializedEntity::InitializeElement(SemaRef.Context,
2910                                                              0,
2911                                                              Entities.back()));
2912
2913    // Direct-initialize to use the copy constructor.
2914    InitializationKind InitKind =
2915      InitializationKind::CreateDirect(Loc, SourceLocation(), SourceLocation());
2916
2917    Expr *CtorArgE = CtorArg.takeAs<Expr>();
2918    InitializationSequence InitSeq(SemaRef, Entities.back(), InitKind,
2919                                   &CtorArgE, 1);
2920
2921    ExprResult MemberInit
2922      = InitSeq.Perform(SemaRef, Entities.back(), InitKind,
2923                        MultiExprArg(&CtorArgE, 1));
2924    MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
2925    if (MemberInit.isInvalid())
2926      return true;
2927
2928    if (Indirect) {
2929      assert(IndexVariables.size() == 0 &&
2930             "Indirect field improperly initialized");
2931      CXXMemberInit
2932        = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Indirect,
2933                                                   Loc, Loc,
2934                                                   MemberInit.takeAs<Expr>(),
2935                                                   Loc);
2936    } else
2937      CXXMemberInit = CXXCtorInitializer::Create(SemaRef.Context, Field, Loc,
2938                                                 Loc, MemberInit.takeAs<Expr>(),
2939                                                 Loc,
2940                                                 IndexVariables.data(),
2941                                                 IndexVariables.size());
2942    return false;
2943  }
2944
2945  assert((ImplicitInitKind == IIK_Default || ImplicitInitKind == IIK_Inherit) &&
2946         "Unhandled implicit init kind!");
2947
2948  QualType FieldBaseElementType =
2949    SemaRef.Context.getBaseElementType(Field->getType());
2950
2951  if (FieldBaseElementType->isRecordType()) {
2952    InitializedEntity InitEntity
2953      = Indirect? InitializedEntity::InitializeMember(Indirect)
2954                : InitializedEntity::InitializeMember(Field);
2955    InitializationKind InitKind =
2956      InitializationKind::CreateDefault(Loc);
2957
2958    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
2959    ExprResult MemberInit =
2960      InitSeq.Perform(SemaRef, InitEntity, InitKind, MultiExprArg());
2961
2962    MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
2963    if (MemberInit.isInvalid())
2964      return true;
2965
2966    if (Indirect)
2967      CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
2968                                                               Indirect, Loc,
2969                                                               Loc,
2970                                                               MemberInit.get(),
2971                                                               Loc);
2972    else
2973      CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
2974                                                               Field, Loc, Loc,
2975                                                               MemberInit.get(),
2976                                                               Loc);
2977    return false;
2978  }
2979
2980  if (!Field->getParent()->isUnion()) {
2981    if (FieldBaseElementType->isReferenceType()) {
2982      SemaRef.Diag(Constructor->getLocation(),
2983                   diag::err_uninitialized_member_in_ctor)
2984      << (int)Constructor->isImplicit()
2985      << SemaRef.Context.getTagDeclType(Constructor->getParent())
2986      << 0 << Field->getDeclName();
2987      SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
2988      return true;
2989    }
2990
2991    if (FieldBaseElementType.isConstQualified()) {
2992      SemaRef.Diag(Constructor->getLocation(),
2993                   diag::err_uninitialized_member_in_ctor)
2994      << (int)Constructor->isImplicit()
2995      << SemaRef.Context.getTagDeclType(Constructor->getParent())
2996      << 1 << Field->getDeclName();
2997      SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
2998      return true;
2999    }
3000  }
3001
3002  if (SemaRef.getLangOpts().ObjCAutoRefCount &&
3003      FieldBaseElementType->isObjCRetainableType() &&
3004      FieldBaseElementType.getObjCLifetime() != Qualifiers::OCL_None &&
3005      FieldBaseElementType.getObjCLifetime() != Qualifiers::OCL_ExplicitNone) {
3006    // ARC:
3007    //   Default-initialize Objective-C pointers to NULL.
3008    CXXMemberInit
3009      = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Field,
3010                                                 Loc, Loc,
3011                 new (SemaRef.Context) ImplicitValueInitExpr(Field->getType()),
3012                                                 Loc);
3013    return false;
3014  }
3015
3016  // Nothing to initialize.
3017  CXXMemberInit = 0;
3018  return false;
3019}
3020
3021namespace {
3022struct BaseAndFieldInfo {
3023  Sema &S;
3024  CXXConstructorDecl *Ctor;
3025  bool AnyErrorsInInits;
3026  ImplicitInitializerKind IIK;
3027  llvm::DenseMap<const void *, CXXCtorInitializer*> AllBaseFields;
3028  SmallVector<CXXCtorInitializer*, 8> AllToInit;
3029
3030  BaseAndFieldInfo(Sema &S, CXXConstructorDecl *Ctor, bool ErrorsInInits)
3031    : S(S), Ctor(Ctor), AnyErrorsInInits(ErrorsInInits) {
3032    bool Generated = Ctor->isImplicit() || Ctor->isDefaulted();
3033    if (Generated && Ctor->isCopyConstructor())
3034      IIK = IIK_Copy;
3035    else if (Generated && Ctor->isMoveConstructor())
3036      IIK = IIK_Move;
3037    else if (Ctor->getInheritedConstructor())
3038      IIK = IIK_Inherit;
3039    else
3040      IIK = IIK_Default;
3041  }
3042
3043  bool isImplicitCopyOrMove() const {
3044    switch (IIK) {
3045    case IIK_Copy:
3046    case IIK_Move:
3047      return true;
3048
3049    case IIK_Default:
3050    case IIK_Inherit:
3051      return false;
3052    }
3053
3054    llvm_unreachable("Invalid ImplicitInitializerKind!");
3055  }
3056
3057  bool addFieldInitializer(CXXCtorInitializer *Init) {
3058    AllToInit.push_back(Init);
3059
3060    // Check whether this initializer makes the field "used".
3061    if (Init->getInit() && Init->getInit()->HasSideEffects(S.Context))
3062      S.UnusedPrivateFields.remove(Init->getAnyMember());
3063
3064    return false;
3065  }
3066};
3067}
3068
3069/// \brief Determine whether the given indirect field declaration is somewhere
3070/// within an anonymous union.
3071static bool isWithinAnonymousUnion(IndirectFieldDecl *F) {
3072  for (IndirectFieldDecl::chain_iterator C = F->chain_begin(),
3073                                      CEnd = F->chain_end();
3074       C != CEnd; ++C)
3075    if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>((*C)->getDeclContext()))
3076      if (Record->isUnion())
3077        return true;
3078
3079  return false;
3080}
3081
3082/// \brief Determine whether the given type is an incomplete or zero-lenfgth
3083/// array type.
3084static bool isIncompleteOrZeroLengthArrayType(ASTContext &Context, QualType T) {
3085  if (T->isIncompleteArrayType())
3086    return true;
3087
3088  while (const ConstantArrayType *ArrayT = Context.getAsConstantArrayType(T)) {
3089    if (!ArrayT->getSize())
3090      return true;
3091
3092    T = ArrayT->getElementType();
3093  }
3094
3095  return false;
3096}
3097
3098static bool CollectFieldInitializer(Sema &SemaRef, BaseAndFieldInfo &Info,
3099                                    FieldDecl *Field,
3100                                    IndirectFieldDecl *Indirect = 0) {
3101
3102  // Overwhelmingly common case: we have a direct initializer for this field.
3103  if (CXXCtorInitializer *Init = Info.AllBaseFields.lookup(Field))
3104    return Info.addFieldInitializer(Init);
3105
3106  // C++11 [class.base.init]p8: if the entity is a non-static data member that
3107  // has a brace-or-equal-initializer, the entity is initialized as specified
3108  // in [dcl.init].
3109  if (Field->hasInClassInitializer() && !Info.isImplicitCopyOrMove()) {
3110    CXXCtorInitializer *Init;
3111    if (Indirect)
3112      Init = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Indirect,
3113                                                      SourceLocation(),
3114                                                      SourceLocation(), 0,
3115                                                      SourceLocation());
3116    else
3117      Init = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Field,
3118                                                      SourceLocation(),
3119                                                      SourceLocation(), 0,
3120                                                      SourceLocation());
3121    return Info.addFieldInitializer(Init);
3122  }
3123
3124  // Don't build an implicit initializer for union members if none was
3125  // explicitly specified.
3126  if (Field->getParent()->isUnion() ||
3127      (Indirect && isWithinAnonymousUnion(Indirect)))
3128    return false;
3129
3130  // Don't initialize incomplete or zero-length arrays.
3131  if (isIncompleteOrZeroLengthArrayType(SemaRef.Context, Field->getType()))
3132    return false;
3133
3134  // Don't try to build an implicit initializer if there were semantic
3135  // errors in any of the initializers (and therefore we might be
3136  // missing some that the user actually wrote).
3137  if (Info.AnyErrorsInInits || Field->isInvalidDecl())
3138    return false;
3139
3140  CXXCtorInitializer *Init = 0;
3141  if (BuildImplicitMemberInitializer(Info.S, Info.Ctor, Info.IIK, Field,
3142                                     Indirect, Init))
3143    return true;
3144
3145  if (!Init)
3146    return false;
3147
3148  return Info.addFieldInitializer(Init);
3149}
3150
3151bool
3152Sema::SetDelegatingInitializer(CXXConstructorDecl *Constructor,
3153                               CXXCtorInitializer *Initializer) {
3154  assert(Initializer->isDelegatingInitializer());
3155  Constructor->setNumCtorInitializers(1);
3156  CXXCtorInitializer **initializer =
3157    new (Context) CXXCtorInitializer*[1];
3158  memcpy(initializer, &Initializer, sizeof (CXXCtorInitializer*));
3159  Constructor->setCtorInitializers(initializer);
3160
3161  if (CXXDestructorDecl *Dtor = LookupDestructor(Constructor->getParent())) {
3162    MarkFunctionReferenced(Initializer->getSourceLocation(), Dtor);
3163    DiagnoseUseOfDecl(Dtor, Initializer->getSourceLocation());
3164  }
3165
3166  DelegatingCtorDecls.push_back(Constructor);
3167
3168  return false;
3169}
3170
3171bool Sema::SetCtorInitializers(CXXConstructorDecl *Constructor, bool AnyErrors,
3172                               ArrayRef<CXXCtorInitializer *> Initializers) {
3173  if (Constructor->isDependentContext()) {
3174    // Just store the initializers as written, they will be checked during
3175    // instantiation.
3176    if (!Initializers.empty()) {
3177      Constructor->setNumCtorInitializers(Initializers.size());
3178      CXXCtorInitializer **baseOrMemberInitializers =
3179        new (Context) CXXCtorInitializer*[Initializers.size()];
3180      memcpy(baseOrMemberInitializers, Initializers.data(),
3181             Initializers.size() * sizeof(CXXCtorInitializer*));
3182      Constructor->setCtorInitializers(baseOrMemberInitializers);
3183    }
3184
3185    // Let template instantiation know whether we had errors.
3186    if (AnyErrors)
3187      Constructor->setInvalidDecl();
3188
3189    return false;
3190  }
3191
3192  BaseAndFieldInfo Info(*this, Constructor, AnyErrors);
3193
3194  // We need to build the initializer AST according to order of construction
3195  // and not what user specified in the Initializers list.
3196  CXXRecordDecl *ClassDecl = Constructor->getParent()->getDefinition();
3197  if (!ClassDecl)
3198    return true;
3199
3200  bool HadError = false;
3201
3202  for (unsigned i = 0; i < Initializers.size(); i++) {
3203    CXXCtorInitializer *Member = Initializers[i];
3204
3205    if (Member->isBaseInitializer())
3206      Info.AllBaseFields[Member->getBaseClass()->getAs<RecordType>()] = Member;
3207    else
3208      Info.AllBaseFields[Member->getAnyMember()] = Member;
3209  }
3210
3211  // Keep track of the direct virtual bases.
3212  llvm::SmallPtrSet<CXXBaseSpecifier *, 16> DirectVBases;
3213  for (CXXRecordDecl::base_class_iterator I = ClassDecl->bases_begin(),
3214       E = ClassDecl->bases_end(); I != E; ++I) {
3215    if (I->isVirtual())
3216      DirectVBases.insert(I);
3217  }
3218
3219  // Push virtual bases before others.
3220  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
3221       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
3222
3223    if (CXXCtorInitializer *Value
3224        = Info.AllBaseFields.lookup(VBase->getType()->getAs<RecordType>())) {
3225      Info.AllToInit.push_back(Value);
3226    } else if (!AnyErrors) {
3227      bool IsInheritedVirtualBase = !DirectVBases.count(VBase);
3228      CXXCtorInitializer *CXXBaseInit;
3229      if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
3230                                       VBase, IsInheritedVirtualBase,
3231                                       CXXBaseInit)) {
3232        HadError = true;
3233        continue;
3234      }
3235
3236      Info.AllToInit.push_back(CXXBaseInit);
3237    }
3238  }
3239
3240  // Non-virtual bases.
3241  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
3242       E = ClassDecl->bases_end(); Base != E; ++Base) {
3243    // Virtuals are in the virtual base list and already constructed.
3244    if (Base->isVirtual())
3245      continue;
3246
3247    if (CXXCtorInitializer *Value
3248          = Info.AllBaseFields.lookup(Base->getType()->getAs<RecordType>())) {
3249      Info.AllToInit.push_back(Value);
3250    } else if (!AnyErrors) {
3251      CXXCtorInitializer *CXXBaseInit;
3252      if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
3253                                       Base, /*IsInheritedVirtualBase=*/false,
3254                                       CXXBaseInit)) {
3255        HadError = true;
3256        continue;
3257      }
3258
3259      Info.AllToInit.push_back(CXXBaseInit);
3260    }
3261  }
3262
3263  // Fields.
3264  for (DeclContext::decl_iterator Mem = ClassDecl->decls_begin(),
3265                               MemEnd = ClassDecl->decls_end();
3266       Mem != MemEnd; ++Mem) {
3267    if (FieldDecl *F = dyn_cast<FieldDecl>(*Mem)) {
3268      // C++ [class.bit]p2:
3269      //   A declaration for a bit-field that omits the identifier declares an
3270      //   unnamed bit-field. Unnamed bit-fields are not members and cannot be
3271      //   initialized.
3272      if (F->isUnnamedBitfield())
3273        continue;
3274
3275      // If we're not generating the implicit copy/move constructor, then we'll
3276      // handle anonymous struct/union fields based on their individual
3277      // indirect fields.
3278      if (F->isAnonymousStructOrUnion() && !Info.isImplicitCopyOrMove())
3279        continue;
3280
3281      if (CollectFieldInitializer(*this, Info, F))
3282        HadError = true;
3283      continue;
3284    }
3285
3286    // Beyond this point, we only consider default initialization.
3287    if (Info.isImplicitCopyOrMove())
3288      continue;
3289
3290    if (IndirectFieldDecl *F = dyn_cast<IndirectFieldDecl>(*Mem)) {
3291      if (F->getType()->isIncompleteArrayType()) {
3292        assert(ClassDecl->hasFlexibleArrayMember() &&
3293               "Incomplete array type is not valid");
3294        continue;
3295      }
3296
3297      // Initialize each field of an anonymous struct individually.
3298      if (CollectFieldInitializer(*this, Info, F->getAnonField(), F))
3299        HadError = true;
3300
3301      continue;
3302    }
3303  }
3304
3305  unsigned NumInitializers = Info.AllToInit.size();
3306  if (NumInitializers > 0) {
3307    Constructor->setNumCtorInitializers(NumInitializers);
3308    CXXCtorInitializer **baseOrMemberInitializers =
3309      new (Context) CXXCtorInitializer*[NumInitializers];
3310    memcpy(baseOrMemberInitializers, Info.AllToInit.data(),
3311           NumInitializers * sizeof(CXXCtorInitializer*));
3312    Constructor->setCtorInitializers(baseOrMemberInitializers);
3313
3314    // Constructors implicitly reference the base and member
3315    // destructors.
3316    MarkBaseAndMemberDestructorsReferenced(Constructor->getLocation(),
3317                                           Constructor->getParent());
3318  }
3319
3320  return HadError;
3321}
3322
3323static void PopulateKeysForFields(FieldDecl *Field, SmallVectorImpl<const void*> &IdealInits) {
3324  if (const RecordType *RT = Field->getType()->getAs<RecordType>()) {
3325    const RecordDecl *RD = RT->getDecl();
3326    if (RD->isAnonymousStructOrUnion()) {
3327      for (RecordDecl::field_iterator Field = RD->field_begin(),
3328          E = RD->field_end(); Field != E; ++Field)
3329        PopulateKeysForFields(*Field, IdealInits);
3330      return;
3331    }
3332  }
3333  IdealInits.push_back(Field);
3334}
3335
3336static void *GetKeyForBase(ASTContext &Context, QualType BaseType) {
3337  return const_cast<Type*>(Context.getCanonicalType(BaseType).getTypePtr());
3338}
3339
3340static void *GetKeyForMember(ASTContext &Context,
3341                             CXXCtorInitializer *Member) {
3342  if (!Member->isAnyMemberInitializer())
3343    return GetKeyForBase(Context, QualType(Member->getBaseClass(), 0));
3344
3345  return Member->getAnyMember();
3346}
3347
3348static void DiagnoseBaseOrMemInitializerOrder(
3349    Sema &SemaRef, const CXXConstructorDecl *Constructor,
3350    ArrayRef<CXXCtorInitializer *> Inits) {
3351  if (Constructor->getDeclContext()->isDependentContext())
3352    return;
3353
3354  // Don't check initializers order unless the warning is enabled at the
3355  // location of at least one initializer.
3356  bool ShouldCheckOrder = false;
3357  for (unsigned InitIndex = 0; InitIndex != Inits.size(); ++InitIndex) {
3358    CXXCtorInitializer *Init = Inits[InitIndex];
3359    if (SemaRef.Diags.getDiagnosticLevel(diag::warn_initializer_out_of_order,
3360                                         Init->getSourceLocation())
3361          != DiagnosticsEngine::Ignored) {
3362      ShouldCheckOrder = true;
3363      break;
3364    }
3365  }
3366  if (!ShouldCheckOrder)
3367    return;
3368
3369  // Build the list of bases and members in the order that they'll
3370  // actually be initialized.  The explicit initializers should be in
3371  // this same order but may be missing things.
3372  SmallVector<const void*, 32> IdealInitKeys;
3373
3374  const CXXRecordDecl *ClassDecl = Constructor->getParent();
3375
3376  // 1. Virtual bases.
3377  for (CXXRecordDecl::base_class_const_iterator VBase =
3378       ClassDecl->vbases_begin(),
3379       E = ClassDecl->vbases_end(); VBase != E; ++VBase)
3380    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, VBase->getType()));
3381
3382  // 2. Non-virtual bases.
3383  for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin(),
3384       E = ClassDecl->bases_end(); Base != E; ++Base) {
3385    if (Base->isVirtual())
3386      continue;
3387    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, Base->getType()));
3388  }
3389
3390  // 3. Direct fields.
3391  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
3392       E = ClassDecl->field_end(); Field != E; ++Field) {
3393    if (Field->isUnnamedBitfield())
3394      continue;
3395
3396    PopulateKeysForFields(*Field, IdealInitKeys);
3397  }
3398
3399  unsigned NumIdealInits = IdealInitKeys.size();
3400  unsigned IdealIndex = 0;
3401
3402  CXXCtorInitializer *PrevInit = 0;
3403  for (unsigned InitIndex = 0; InitIndex != Inits.size(); ++InitIndex) {
3404    CXXCtorInitializer *Init = Inits[InitIndex];
3405    void *InitKey = GetKeyForMember(SemaRef.Context, Init);
3406
3407    // Scan forward to try to find this initializer in the idealized
3408    // initializers list.
3409    for (; IdealIndex != NumIdealInits; ++IdealIndex)
3410      if (InitKey == IdealInitKeys[IdealIndex])
3411        break;
3412
3413    // If we didn't find this initializer, it must be because we
3414    // scanned past it on a previous iteration.  That can only
3415    // happen if we're out of order;  emit a warning.
3416    if (IdealIndex == NumIdealInits && PrevInit) {
3417      Sema::SemaDiagnosticBuilder D =
3418        SemaRef.Diag(PrevInit->getSourceLocation(),
3419                     diag::warn_initializer_out_of_order);
3420
3421      if (PrevInit->isAnyMemberInitializer())
3422        D << 0 << PrevInit->getAnyMember()->getDeclName();
3423      else
3424        D << 1 << PrevInit->getTypeSourceInfo()->getType();
3425
3426      if (Init->isAnyMemberInitializer())
3427        D << 0 << Init->getAnyMember()->getDeclName();
3428      else
3429        D << 1 << Init->getTypeSourceInfo()->getType();
3430
3431      // Move back to the initializer's location in the ideal list.
3432      for (IdealIndex = 0; IdealIndex != NumIdealInits; ++IdealIndex)
3433        if (InitKey == IdealInitKeys[IdealIndex])
3434          break;
3435
3436      assert(IdealIndex != NumIdealInits &&
3437             "initializer not found in initializer list");
3438    }
3439
3440    PrevInit = Init;
3441  }
3442}
3443
3444namespace {
3445bool CheckRedundantInit(Sema &S,
3446                        CXXCtorInitializer *Init,
3447                        CXXCtorInitializer *&PrevInit) {
3448  if (!PrevInit) {
3449    PrevInit = Init;
3450    return false;
3451  }
3452
3453  if (FieldDecl *Field = Init->getAnyMember())
3454    S.Diag(Init->getSourceLocation(),
3455           diag::err_multiple_mem_initialization)
3456      << Field->getDeclName()
3457      << Init->getSourceRange();
3458  else {
3459    const Type *BaseClass = Init->getBaseClass();
3460    assert(BaseClass && "neither field nor base");
3461    S.Diag(Init->getSourceLocation(),
3462           diag::err_multiple_base_initialization)
3463      << QualType(BaseClass, 0)
3464      << Init->getSourceRange();
3465  }
3466  S.Diag(PrevInit->getSourceLocation(), diag::note_previous_initializer)
3467    << 0 << PrevInit->getSourceRange();
3468
3469  return true;
3470}
3471
3472typedef std::pair<NamedDecl *, CXXCtorInitializer *> UnionEntry;
3473typedef llvm::DenseMap<RecordDecl*, UnionEntry> RedundantUnionMap;
3474
3475bool CheckRedundantUnionInit(Sema &S,
3476                             CXXCtorInitializer *Init,
3477                             RedundantUnionMap &Unions) {
3478  FieldDecl *Field = Init->getAnyMember();
3479  RecordDecl *Parent = Field->getParent();
3480  NamedDecl *Child = Field;
3481
3482  while (Parent->isAnonymousStructOrUnion() || Parent->isUnion()) {
3483    if (Parent->isUnion()) {
3484      UnionEntry &En = Unions[Parent];
3485      if (En.first && En.first != Child) {
3486        S.Diag(Init->getSourceLocation(),
3487               diag::err_multiple_mem_union_initialization)
3488          << Field->getDeclName()
3489          << Init->getSourceRange();
3490        S.Diag(En.second->getSourceLocation(), diag::note_previous_initializer)
3491          << 0 << En.second->getSourceRange();
3492        return true;
3493      }
3494      if (!En.first) {
3495        En.first = Child;
3496        En.second = Init;
3497      }
3498      if (!Parent->isAnonymousStructOrUnion())
3499        return false;
3500    }
3501
3502    Child = Parent;
3503    Parent = cast<RecordDecl>(Parent->getDeclContext());
3504  }
3505
3506  return false;
3507}
3508}
3509
3510/// ActOnMemInitializers - Handle the member initializers for a constructor.
3511void Sema::ActOnMemInitializers(Decl *ConstructorDecl,
3512                                SourceLocation ColonLoc,
3513                                ArrayRef<CXXCtorInitializer*> MemInits,
3514                                bool AnyErrors) {
3515  if (!ConstructorDecl)
3516    return;
3517
3518  AdjustDeclIfTemplate(ConstructorDecl);
3519
3520  CXXConstructorDecl *Constructor
3521    = dyn_cast<CXXConstructorDecl>(ConstructorDecl);
3522
3523  if (!Constructor) {
3524    Diag(ColonLoc, diag::err_only_constructors_take_base_inits);
3525    return;
3526  }
3527
3528  // Mapping for the duplicate initializers check.
3529  // For member initializers, this is keyed with a FieldDecl*.
3530  // For base initializers, this is keyed with a Type*.
3531  llvm::DenseMap<void*, CXXCtorInitializer *> Members;
3532
3533  // Mapping for the inconsistent anonymous-union initializers check.
3534  RedundantUnionMap MemberUnions;
3535
3536  bool HadError = false;
3537  for (unsigned i = 0; i < MemInits.size(); i++) {
3538    CXXCtorInitializer *Init = MemInits[i];
3539
3540    // Set the source order index.
3541    Init->setSourceOrder(i);
3542
3543    if (Init->isAnyMemberInitializer()) {
3544      FieldDecl *Field = Init->getAnyMember();
3545      if (CheckRedundantInit(*this, Init, Members[Field]) ||
3546          CheckRedundantUnionInit(*this, Init, MemberUnions))
3547        HadError = true;
3548    } else if (Init->isBaseInitializer()) {
3549      void *Key = GetKeyForBase(Context, QualType(Init->getBaseClass(), 0));
3550      if (CheckRedundantInit(*this, Init, Members[Key]))
3551        HadError = true;
3552    } else {
3553      assert(Init->isDelegatingInitializer());
3554      // This must be the only initializer
3555      if (MemInits.size() != 1) {
3556        Diag(Init->getSourceLocation(),
3557             diag::err_delegating_initializer_alone)
3558          << Init->getSourceRange() << MemInits[i ? 0 : 1]->getSourceRange();
3559        // We will treat this as being the only initializer.
3560      }
3561      SetDelegatingInitializer(Constructor, MemInits[i]);
3562      // Return immediately as the initializer is set.
3563      return;
3564    }
3565  }
3566
3567  if (HadError)
3568    return;
3569
3570  DiagnoseBaseOrMemInitializerOrder(*this, Constructor, MemInits);
3571
3572  SetCtorInitializers(Constructor, AnyErrors, MemInits);
3573}
3574
3575void
3576Sema::MarkBaseAndMemberDestructorsReferenced(SourceLocation Location,
3577                                             CXXRecordDecl *ClassDecl) {
3578  // Ignore dependent contexts. Also ignore unions, since their members never
3579  // have destructors implicitly called.
3580  if (ClassDecl->isDependentContext() || ClassDecl->isUnion())
3581    return;
3582
3583  // FIXME: all the access-control diagnostics are positioned on the
3584  // field/base declaration.  That's probably good; that said, the
3585  // user might reasonably want to know why the destructor is being
3586  // emitted, and we currently don't say.
3587
3588  // Non-static data members.
3589  for (CXXRecordDecl::field_iterator I = ClassDecl->field_begin(),
3590       E = ClassDecl->field_end(); I != E; ++I) {
3591    FieldDecl *Field = *I;
3592    if (Field->isInvalidDecl())
3593      continue;
3594
3595    // Don't destroy incomplete or zero-length arrays.
3596    if (isIncompleteOrZeroLengthArrayType(Context, Field->getType()))
3597      continue;
3598
3599    QualType FieldType = Context.getBaseElementType(Field->getType());
3600
3601    const RecordType* RT = FieldType->getAs<RecordType>();
3602    if (!RT)
3603      continue;
3604
3605    CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
3606    if (FieldClassDecl->isInvalidDecl())
3607      continue;
3608    if (FieldClassDecl->hasIrrelevantDestructor())
3609      continue;
3610    // The destructor for an implicit anonymous union member is never invoked.
3611    if (FieldClassDecl->isUnion() && FieldClassDecl->isAnonymousStructOrUnion())
3612      continue;
3613
3614    CXXDestructorDecl *Dtor = LookupDestructor(FieldClassDecl);
3615    assert(Dtor && "No dtor found for FieldClassDecl!");
3616    CheckDestructorAccess(Field->getLocation(), Dtor,
3617                          PDiag(diag::err_access_dtor_field)
3618                            << Field->getDeclName()
3619                            << FieldType);
3620
3621    MarkFunctionReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
3622    DiagnoseUseOfDecl(Dtor, Location);
3623  }
3624
3625  llvm::SmallPtrSet<const RecordType *, 8> DirectVirtualBases;
3626
3627  // Bases.
3628  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
3629       E = ClassDecl->bases_end(); Base != E; ++Base) {
3630    // Bases are always records in a well-formed non-dependent class.
3631    const RecordType *RT = Base->getType()->getAs<RecordType>();
3632
3633    // Remember direct virtual bases.
3634    if (Base->isVirtual())
3635      DirectVirtualBases.insert(RT);
3636
3637    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
3638    // If our base class is invalid, we probably can't get its dtor anyway.
3639    if (BaseClassDecl->isInvalidDecl())
3640      continue;
3641    if (BaseClassDecl->hasIrrelevantDestructor())
3642      continue;
3643
3644    CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
3645    assert(Dtor && "No dtor found for BaseClassDecl!");
3646
3647    // FIXME: caret should be on the start of the class name
3648    CheckDestructorAccess(Base->getLocStart(), Dtor,
3649                          PDiag(diag::err_access_dtor_base)
3650                            << Base->getType()
3651                            << Base->getSourceRange(),
3652                          Context.getTypeDeclType(ClassDecl));
3653
3654    MarkFunctionReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
3655    DiagnoseUseOfDecl(Dtor, Location);
3656  }
3657
3658  // Virtual bases.
3659  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
3660       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
3661
3662    // Bases are always records in a well-formed non-dependent class.
3663    const RecordType *RT = VBase->getType()->castAs<RecordType>();
3664
3665    // Ignore direct virtual bases.
3666    if (DirectVirtualBases.count(RT))
3667      continue;
3668
3669    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
3670    // If our base class is invalid, we probably can't get its dtor anyway.
3671    if (BaseClassDecl->isInvalidDecl())
3672      continue;
3673    if (BaseClassDecl->hasIrrelevantDestructor())
3674      continue;
3675
3676    CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
3677    assert(Dtor && "No dtor found for BaseClassDecl!");
3678    CheckDestructorAccess(ClassDecl->getLocation(), Dtor,
3679                          PDiag(diag::err_access_dtor_vbase)
3680                            << VBase->getType(),
3681                          Context.getTypeDeclType(ClassDecl));
3682
3683    MarkFunctionReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
3684    DiagnoseUseOfDecl(Dtor, Location);
3685  }
3686}
3687
3688void Sema::ActOnDefaultCtorInitializers(Decl *CDtorDecl) {
3689  if (!CDtorDecl)
3690    return;
3691
3692  if (CXXConstructorDecl *Constructor
3693      = dyn_cast<CXXConstructorDecl>(CDtorDecl))
3694    SetCtorInitializers(Constructor, /*AnyErrors=*/false);
3695}
3696
3697bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
3698                                  unsigned DiagID, AbstractDiagSelID SelID) {
3699  class NonAbstractTypeDiagnoser : public TypeDiagnoser {
3700    unsigned DiagID;
3701    AbstractDiagSelID SelID;
3702
3703  public:
3704    NonAbstractTypeDiagnoser(unsigned DiagID, AbstractDiagSelID SelID)
3705      : TypeDiagnoser(DiagID == 0), DiagID(DiagID), SelID(SelID) { }
3706
3707    virtual void diagnose(Sema &S, SourceLocation Loc, QualType T) {
3708      if (Suppressed) return;
3709      if (SelID == -1)
3710        S.Diag(Loc, DiagID) << T;
3711      else
3712        S.Diag(Loc, DiagID) << SelID << T;
3713    }
3714  } Diagnoser(DiagID, SelID);
3715
3716  return RequireNonAbstractType(Loc, T, Diagnoser);
3717}
3718
3719bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
3720                                  TypeDiagnoser &Diagnoser) {
3721  if (!getLangOpts().CPlusPlus)
3722    return false;
3723
3724  if (const ArrayType *AT = Context.getAsArrayType(T))
3725    return RequireNonAbstractType(Loc, AT->getElementType(), Diagnoser);
3726
3727  if (const PointerType *PT = T->getAs<PointerType>()) {
3728    // Find the innermost pointer type.
3729    while (const PointerType *T = PT->getPointeeType()->getAs<PointerType>())
3730      PT = T;
3731
3732    if (const ArrayType *AT = Context.getAsArrayType(PT->getPointeeType()))
3733      return RequireNonAbstractType(Loc, AT->getElementType(), Diagnoser);
3734  }
3735
3736  const RecordType *RT = T->getAs<RecordType>();
3737  if (!RT)
3738    return false;
3739
3740  const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
3741
3742  // We can't answer whether something is abstract until it has a
3743  // definition.  If it's currently being defined, we'll walk back
3744  // over all the declarations when we have a full definition.
3745  const CXXRecordDecl *Def = RD->getDefinition();
3746  if (!Def || Def->isBeingDefined())
3747    return false;
3748
3749  if (!RD->isAbstract())
3750    return false;
3751
3752  Diagnoser.diagnose(*this, Loc, T);
3753  DiagnoseAbstractType(RD);
3754
3755  return true;
3756}
3757
3758void Sema::DiagnoseAbstractType(const CXXRecordDecl *RD) {
3759  // Check if we've already emitted the list of pure virtual functions
3760  // for this class.
3761  if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD))
3762    return;
3763
3764  CXXFinalOverriderMap FinalOverriders;
3765  RD->getFinalOverriders(FinalOverriders);
3766
3767  // Keep a set of seen pure methods so we won't diagnose the same method
3768  // more than once.
3769  llvm::SmallPtrSet<const CXXMethodDecl *, 8> SeenPureMethods;
3770
3771  for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
3772                                   MEnd = FinalOverriders.end();
3773       M != MEnd;
3774       ++M) {
3775    for (OverridingMethods::iterator SO = M->second.begin(),
3776                                  SOEnd = M->second.end();
3777         SO != SOEnd; ++SO) {
3778      // C++ [class.abstract]p4:
3779      //   A class is abstract if it contains or inherits at least one
3780      //   pure virtual function for which the final overrider is pure
3781      //   virtual.
3782
3783      //
3784      if (SO->second.size() != 1)
3785        continue;
3786
3787      if (!SO->second.front().Method->isPure())
3788        continue;
3789
3790      if (!SeenPureMethods.insert(SO->second.front().Method))
3791        continue;
3792
3793      Diag(SO->second.front().Method->getLocation(),
3794           diag::note_pure_virtual_function)
3795        << SO->second.front().Method->getDeclName() << RD->getDeclName();
3796    }
3797  }
3798
3799  if (!PureVirtualClassDiagSet)
3800    PureVirtualClassDiagSet.reset(new RecordDeclSetTy);
3801  PureVirtualClassDiagSet->insert(RD);
3802}
3803
3804namespace {
3805struct AbstractUsageInfo {
3806  Sema &S;
3807  CXXRecordDecl *Record;
3808  CanQualType AbstractType;
3809  bool Invalid;
3810
3811  AbstractUsageInfo(Sema &S, CXXRecordDecl *Record)
3812    : S(S), Record(Record),
3813      AbstractType(S.Context.getCanonicalType(
3814                   S.Context.getTypeDeclType(Record))),
3815      Invalid(false) {}
3816
3817  void DiagnoseAbstractType() {
3818    if (Invalid) return;
3819    S.DiagnoseAbstractType(Record);
3820    Invalid = true;
3821  }
3822
3823  void CheckType(const NamedDecl *D, TypeLoc TL, Sema::AbstractDiagSelID Sel);
3824};
3825
3826struct CheckAbstractUsage {
3827  AbstractUsageInfo &Info;
3828  const NamedDecl *Ctx;
3829
3830  CheckAbstractUsage(AbstractUsageInfo &Info, const NamedDecl *Ctx)
3831    : Info(Info), Ctx(Ctx) {}
3832
3833  void Visit(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
3834    switch (TL.getTypeLocClass()) {
3835#define ABSTRACT_TYPELOC(CLASS, PARENT)
3836#define TYPELOC(CLASS, PARENT) \
3837    case TypeLoc::CLASS: Check(TL.castAs<CLASS##TypeLoc>(), Sel); break;
3838#include "clang/AST/TypeLocNodes.def"
3839    }
3840  }
3841
3842  void Check(FunctionProtoTypeLoc TL, Sema::AbstractDiagSelID Sel) {
3843    Visit(TL.getResultLoc(), Sema::AbstractReturnType);
3844    for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
3845      if (!TL.getArg(I))
3846        continue;
3847
3848      TypeSourceInfo *TSI = TL.getArg(I)->getTypeSourceInfo();
3849      if (TSI) Visit(TSI->getTypeLoc(), Sema::AbstractParamType);
3850    }
3851  }
3852
3853  void Check(ArrayTypeLoc TL, Sema::AbstractDiagSelID Sel) {
3854    Visit(TL.getElementLoc(), Sema::AbstractArrayType);
3855  }
3856
3857  void Check(TemplateSpecializationTypeLoc TL, Sema::AbstractDiagSelID Sel) {
3858    // Visit the type parameters from a permissive context.
3859    for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
3860      TemplateArgumentLoc TAL = TL.getArgLoc(I);
3861      if (TAL.getArgument().getKind() == TemplateArgument::Type)
3862        if (TypeSourceInfo *TSI = TAL.getTypeSourceInfo())
3863          Visit(TSI->getTypeLoc(), Sema::AbstractNone);
3864      // TODO: other template argument types?
3865    }
3866  }
3867
3868  // Visit pointee types from a permissive context.
3869#define CheckPolymorphic(Type) \
3870  void Check(Type TL, Sema::AbstractDiagSelID Sel) { \
3871    Visit(TL.getNextTypeLoc(), Sema::AbstractNone); \
3872  }
3873  CheckPolymorphic(PointerTypeLoc)
3874  CheckPolymorphic(ReferenceTypeLoc)
3875  CheckPolymorphic(MemberPointerTypeLoc)
3876  CheckPolymorphic(BlockPointerTypeLoc)
3877  CheckPolymorphic(AtomicTypeLoc)
3878
3879  /// Handle all the types we haven't given a more specific
3880  /// implementation for above.
3881  void Check(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
3882    // Every other kind of type that we haven't called out already
3883    // that has an inner type is either (1) sugar or (2) contains that
3884    // inner type in some way as a subobject.
3885    if (TypeLoc Next = TL.getNextTypeLoc())
3886      return Visit(Next, Sel);
3887
3888    // If there's no inner type and we're in a permissive context,
3889    // don't diagnose.
3890    if (Sel == Sema::AbstractNone) return;
3891
3892    // Check whether the type matches the abstract type.
3893    QualType T = TL.getType();
3894    if (T->isArrayType()) {
3895      Sel = Sema::AbstractArrayType;
3896      T = Info.S.Context.getBaseElementType(T);
3897    }
3898    CanQualType CT = T->getCanonicalTypeUnqualified().getUnqualifiedType();
3899    if (CT != Info.AbstractType) return;
3900
3901    // It matched; do some magic.
3902    if (Sel == Sema::AbstractArrayType) {
3903      Info.S.Diag(Ctx->getLocation(), diag::err_array_of_abstract_type)
3904        << T << TL.getSourceRange();
3905    } else {
3906      Info.S.Diag(Ctx->getLocation(), diag::err_abstract_type_in_decl)
3907        << Sel << T << TL.getSourceRange();
3908    }
3909    Info.DiagnoseAbstractType();
3910  }
3911};
3912
3913void AbstractUsageInfo::CheckType(const NamedDecl *D, TypeLoc TL,
3914                                  Sema::AbstractDiagSelID Sel) {
3915  CheckAbstractUsage(*this, D).Visit(TL, Sel);
3916}
3917
3918}
3919
3920/// Check for invalid uses of an abstract type in a method declaration.
3921static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
3922                                    CXXMethodDecl *MD) {
3923  // No need to do the check on definitions, which require that
3924  // the return/param types be complete.
3925  if (MD->doesThisDeclarationHaveABody())
3926    return;
3927
3928  // For safety's sake, just ignore it if we don't have type source
3929  // information.  This should never happen for non-implicit methods,
3930  // but...
3931  if (TypeSourceInfo *TSI = MD->getTypeSourceInfo())
3932    Info.CheckType(MD, TSI->getTypeLoc(), Sema::AbstractNone);
3933}
3934
3935/// Check for invalid uses of an abstract type within a class definition.
3936static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
3937                                    CXXRecordDecl *RD) {
3938  for (CXXRecordDecl::decl_iterator
3939         I = RD->decls_begin(), E = RD->decls_end(); I != E; ++I) {
3940    Decl *D = *I;
3941    if (D->isImplicit()) continue;
3942
3943    // Methods and method templates.
3944    if (isa<CXXMethodDecl>(D)) {
3945      CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(D));
3946    } else if (isa<FunctionTemplateDecl>(D)) {
3947      FunctionDecl *FD = cast<FunctionTemplateDecl>(D)->getTemplatedDecl();
3948      CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(FD));
3949
3950    // Fields and static variables.
3951    } else if (isa<FieldDecl>(D)) {
3952      FieldDecl *FD = cast<FieldDecl>(D);
3953      if (TypeSourceInfo *TSI = FD->getTypeSourceInfo())
3954        Info.CheckType(FD, TSI->getTypeLoc(), Sema::AbstractFieldType);
3955    } else if (isa<VarDecl>(D)) {
3956      VarDecl *VD = cast<VarDecl>(D);
3957      if (TypeSourceInfo *TSI = VD->getTypeSourceInfo())
3958        Info.CheckType(VD, TSI->getTypeLoc(), Sema::AbstractVariableType);
3959
3960    // Nested classes and class templates.
3961    } else if (isa<CXXRecordDecl>(D)) {
3962      CheckAbstractClassUsage(Info, cast<CXXRecordDecl>(D));
3963    } else if (isa<ClassTemplateDecl>(D)) {
3964      CheckAbstractClassUsage(Info,
3965                             cast<ClassTemplateDecl>(D)->getTemplatedDecl());
3966    }
3967  }
3968}
3969
3970/// \brief Perform semantic checks on a class definition that has been
3971/// completing, introducing implicitly-declared members, checking for
3972/// abstract types, etc.
3973void Sema::CheckCompletedCXXClass(CXXRecordDecl *Record) {
3974  if (!Record)
3975    return;
3976
3977  if (Record->isAbstract() && !Record->isInvalidDecl()) {
3978    AbstractUsageInfo Info(*this, Record);
3979    CheckAbstractClassUsage(Info, Record);
3980  }
3981
3982  // If this is not an aggregate type and has no user-declared constructor,
3983  // complain about any non-static data members of reference or const scalar
3984  // type, since they will never get initializers.
3985  if (!Record->isInvalidDecl() && !Record->isDependentType() &&
3986      !Record->isAggregate() && !Record->hasUserDeclaredConstructor() &&
3987      !Record->isLambda()) {
3988    bool Complained = false;
3989    for (RecordDecl::field_iterator F = Record->field_begin(),
3990                                 FEnd = Record->field_end();
3991         F != FEnd; ++F) {
3992      if (F->hasInClassInitializer() || F->isUnnamedBitfield())
3993        continue;
3994
3995      if (F->getType()->isReferenceType() ||
3996          (F->getType().isConstQualified() && F->getType()->isScalarType())) {
3997        if (!Complained) {
3998          Diag(Record->getLocation(), diag::warn_no_constructor_for_refconst)
3999            << Record->getTagKind() << Record;
4000          Complained = true;
4001        }
4002
4003        Diag(F->getLocation(), diag::note_refconst_member_not_initialized)
4004          << F->getType()->isReferenceType()
4005          << F->getDeclName();
4006      }
4007    }
4008  }
4009
4010  if (Record->isDynamicClass() && !Record->isDependentType())
4011    DynamicClasses.push_back(Record);
4012
4013  if (Record->getIdentifier()) {
4014    // C++ [class.mem]p13:
4015    //   If T is the name of a class, then each of the following shall have a
4016    //   name different from T:
4017    //     - every member of every anonymous union that is a member of class T.
4018    //
4019    // C++ [class.mem]p14:
4020    //   In addition, if class T has a user-declared constructor (12.1), every
4021    //   non-static data member of class T shall have a name different from T.
4022    DeclContext::lookup_result R = Record->lookup(Record->getDeclName());
4023    for (DeclContext::lookup_iterator I = R.begin(), E = R.end(); I != E;
4024         ++I) {
4025      NamedDecl *D = *I;
4026      if ((isa<FieldDecl>(D) && Record->hasUserDeclaredConstructor()) ||
4027          isa<IndirectFieldDecl>(D)) {
4028        Diag(D->getLocation(), diag::err_member_name_of_class)
4029          << D->getDeclName();
4030        break;
4031      }
4032    }
4033  }
4034
4035  // Warn if the class has virtual methods but non-virtual public destructor.
4036  if (Record->isPolymorphic() && !Record->isDependentType()) {
4037    CXXDestructorDecl *dtor = Record->getDestructor();
4038    if (!dtor || (!dtor->isVirtual() && dtor->getAccess() == AS_public))
4039      Diag(dtor ? dtor->getLocation() : Record->getLocation(),
4040           diag::warn_non_virtual_dtor) << Context.getRecordType(Record);
4041  }
4042
4043  if (Record->isAbstract() && Record->hasAttr<FinalAttr>()) {
4044    Diag(Record->getLocation(), diag::warn_abstract_final_class);
4045    DiagnoseAbstractType(Record);
4046  }
4047
4048  if (!Record->isDependentType()) {
4049    for (CXXRecordDecl::method_iterator M = Record->method_begin(),
4050                                     MEnd = Record->method_end();
4051         M != MEnd; ++M) {
4052      // See if a method overloads virtual methods in a base
4053      // class without overriding any.
4054      if (!M->isStatic())
4055        DiagnoseHiddenVirtualMethods(Record, *M);
4056
4057      // Check whether the explicitly-defaulted special members are valid.
4058      if (!M->isInvalidDecl() && M->isExplicitlyDefaulted())
4059        CheckExplicitlyDefaultedSpecialMember(*M);
4060
4061      // For an explicitly defaulted or deleted special member, we defer
4062      // determining triviality until the class is complete. That time is now!
4063      if (!M->isImplicit() && !M->isUserProvided()) {
4064        CXXSpecialMember CSM = getSpecialMember(*M);
4065        if (CSM != CXXInvalid) {
4066          M->setTrivial(SpecialMemberIsTrivial(*M, CSM));
4067
4068          // Inform the class that we've finished declaring this member.
4069          Record->finishedDefaultedOrDeletedMember(*M);
4070        }
4071      }
4072    }
4073  }
4074
4075  // C++11 [dcl.constexpr]p8: A constexpr specifier for a non-static member
4076  // function that is not a constructor declares that member function to be
4077  // const. [...] The class of which that function is a member shall be
4078  // a literal type.
4079  //
4080  // If the class has virtual bases, any constexpr members will already have
4081  // been diagnosed by the checks performed on the member declaration, so
4082  // suppress this (less useful) diagnostic.
4083  //
4084  // We delay this until we know whether an explicitly-defaulted (or deleted)
4085  // destructor for the class is trivial.
4086  if (LangOpts.CPlusPlus11 && !Record->isDependentType() &&
4087      !Record->isLiteral() && !Record->getNumVBases()) {
4088    for (CXXRecordDecl::method_iterator M = Record->method_begin(),
4089                                     MEnd = Record->method_end();
4090         M != MEnd; ++M) {
4091      if (M->isConstexpr() && M->isInstance() && !isa<CXXConstructorDecl>(*M)) {
4092        switch (Record->getTemplateSpecializationKind()) {
4093        case TSK_ImplicitInstantiation:
4094        case TSK_ExplicitInstantiationDeclaration:
4095        case TSK_ExplicitInstantiationDefinition:
4096          // If a template instantiates to a non-literal type, but its members
4097          // instantiate to constexpr functions, the template is technically
4098          // ill-formed, but we allow it for sanity.
4099          continue;
4100
4101        case TSK_Undeclared:
4102        case TSK_ExplicitSpecialization:
4103          RequireLiteralType(M->getLocation(), Context.getRecordType(Record),
4104                             diag::err_constexpr_method_non_literal);
4105          break;
4106        }
4107
4108        // Only produce one error per class.
4109        break;
4110      }
4111    }
4112  }
4113
4114  // Declare inheriting constructors. We do this eagerly here because:
4115  // - The standard requires an eager diagnostic for conflicting inheriting
4116  //   constructors from different classes.
4117  // - The lazy declaration of the other implicit constructors is so as to not
4118  //   waste space and performance on classes that are not meant to be
4119  //   instantiated (e.g. meta-functions). This doesn't apply to classes that
4120  //   have inheriting constructors.
4121  DeclareInheritingConstructors(Record);
4122}
4123
4124/// Is the special member function which would be selected to perform the
4125/// specified operation on the specified class type a constexpr constructor?
4126static bool specialMemberIsConstexpr(Sema &S, CXXRecordDecl *ClassDecl,
4127                                     Sema::CXXSpecialMember CSM,
4128                                     bool ConstArg) {
4129  Sema::SpecialMemberOverloadResult *SMOR =
4130      S.LookupSpecialMember(ClassDecl, CSM, ConstArg,
4131                            false, false, false, false);
4132  if (!SMOR || !SMOR->getMethod())
4133    // A constructor we wouldn't select can't be "involved in initializing"
4134    // anything.
4135    return true;
4136  return SMOR->getMethod()->isConstexpr();
4137}
4138
4139/// Determine whether the specified special member function would be constexpr
4140/// if it were implicitly defined.
4141static bool defaultedSpecialMemberIsConstexpr(Sema &S, CXXRecordDecl *ClassDecl,
4142                                              Sema::CXXSpecialMember CSM,
4143                                              bool ConstArg) {
4144  if (!S.getLangOpts().CPlusPlus11)
4145    return false;
4146
4147  // C++11 [dcl.constexpr]p4:
4148  // In the definition of a constexpr constructor [...]
4149  switch (CSM) {
4150  case Sema::CXXDefaultConstructor:
4151    // Since default constructor lookup is essentially trivial (and cannot
4152    // involve, for instance, template instantiation), we compute whether a
4153    // defaulted default constructor is constexpr directly within CXXRecordDecl.
4154    //
4155    // This is important for performance; we need to know whether the default
4156    // constructor is constexpr to determine whether the type is a literal type.
4157    return ClassDecl->defaultedDefaultConstructorIsConstexpr();
4158
4159  case Sema::CXXCopyConstructor:
4160  case Sema::CXXMoveConstructor:
4161    // For copy or move constructors, we need to perform overload resolution.
4162    break;
4163
4164  case Sema::CXXCopyAssignment:
4165  case Sema::CXXMoveAssignment:
4166  case Sema::CXXDestructor:
4167  case Sema::CXXInvalid:
4168    return false;
4169  }
4170
4171  //   -- if the class is a non-empty union, or for each non-empty anonymous
4172  //      union member of a non-union class, exactly one non-static data member
4173  //      shall be initialized; [DR1359]
4174  //
4175  // If we squint, this is guaranteed, since exactly one non-static data member
4176  // will be initialized (if the constructor isn't deleted), we just don't know
4177  // which one.
4178  if (ClassDecl->isUnion())
4179    return true;
4180
4181  //   -- the class shall not have any virtual base classes;
4182  if (ClassDecl->getNumVBases())
4183    return false;
4184
4185  //   -- every constructor involved in initializing [...] base class
4186  //      sub-objects shall be a constexpr constructor;
4187  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
4188                                       BEnd = ClassDecl->bases_end();
4189       B != BEnd; ++B) {
4190    const RecordType *BaseType = B->getType()->getAs<RecordType>();
4191    if (!BaseType) continue;
4192
4193    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
4194    if (!specialMemberIsConstexpr(S, BaseClassDecl, CSM, ConstArg))
4195      return false;
4196  }
4197
4198  //   -- every constructor involved in initializing non-static data members
4199  //      [...] shall be a constexpr constructor;
4200  //   -- every non-static data member and base class sub-object shall be
4201  //      initialized
4202  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
4203                               FEnd = ClassDecl->field_end();
4204       F != FEnd; ++F) {
4205    if (F->isInvalidDecl())
4206      continue;
4207    if (const RecordType *RecordTy =
4208            S.Context.getBaseElementType(F->getType())->getAs<RecordType>()) {
4209      CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
4210      if (!specialMemberIsConstexpr(S, FieldRecDecl, CSM, ConstArg))
4211        return false;
4212    }
4213  }
4214
4215  // All OK, it's constexpr!
4216  return true;
4217}
4218
4219static Sema::ImplicitExceptionSpecification
4220computeImplicitExceptionSpec(Sema &S, SourceLocation Loc, CXXMethodDecl *MD) {
4221  switch (S.getSpecialMember(MD)) {
4222  case Sema::CXXDefaultConstructor:
4223    return S.ComputeDefaultedDefaultCtorExceptionSpec(Loc, MD);
4224  case Sema::CXXCopyConstructor:
4225    return S.ComputeDefaultedCopyCtorExceptionSpec(MD);
4226  case Sema::CXXCopyAssignment:
4227    return S.ComputeDefaultedCopyAssignmentExceptionSpec(MD);
4228  case Sema::CXXMoveConstructor:
4229    return S.ComputeDefaultedMoveCtorExceptionSpec(MD);
4230  case Sema::CXXMoveAssignment:
4231    return S.ComputeDefaultedMoveAssignmentExceptionSpec(MD);
4232  case Sema::CXXDestructor:
4233    return S.ComputeDefaultedDtorExceptionSpec(MD);
4234  case Sema::CXXInvalid:
4235    break;
4236  }
4237  assert(cast<CXXConstructorDecl>(MD)->getInheritedConstructor() &&
4238         "only special members have implicit exception specs");
4239  return S.ComputeInheritingCtorExceptionSpec(cast<CXXConstructorDecl>(MD));
4240}
4241
4242static void
4243updateExceptionSpec(Sema &S, FunctionDecl *FD, const FunctionProtoType *FPT,
4244                    const Sema::ImplicitExceptionSpecification &ExceptSpec) {
4245  FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
4246  ExceptSpec.getEPI(EPI);
4247  const FunctionProtoType *NewFPT = cast<FunctionProtoType>(
4248      S.Context.getFunctionType(FPT->getResultType(), FPT->getArgTypes(), EPI));
4249  FD->setType(QualType(NewFPT, 0));
4250}
4251
4252void Sema::EvaluateImplicitExceptionSpec(SourceLocation Loc, CXXMethodDecl *MD) {
4253  const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
4254  if (FPT->getExceptionSpecType() != EST_Unevaluated)
4255    return;
4256
4257  // Evaluate the exception specification.
4258  ImplicitExceptionSpecification ExceptSpec =
4259      computeImplicitExceptionSpec(*this, Loc, MD);
4260
4261  // Update the type of the special member to use it.
4262  updateExceptionSpec(*this, MD, FPT, ExceptSpec);
4263
4264  // A user-provided destructor can be defined outside the class. When that
4265  // happens, be sure to update the exception specification on both
4266  // declarations.
4267  const FunctionProtoType *CanonicalFPT =
4268    MD->getCanonicalDecl()->getType()->castAs<FunctionProtoType>();
4269  if (CanonicalFPT->getExceptionSpecType() == EST_Unevaluated)
4270    updateExceptionSpec(*this, MD->getCanonicalDecl(),
4271                        CanonicalFPT, ExceptSpec);
4272}
4273
4274void Sema::CheckExplicitlyDefaultedSpecialMember(CXXMethodDecl *MD) {
4275  CXXRecordDecl *RD = MD->getParent();
4276  CXXSpecialMember CSM = getSpecialMember(MD);
4277
4278  assert(MD->isExplicitlyDefaulted() && CSM != CXXInvalid &&
4279         "not an explicitly-defaulted special member");
4280
4281  // Whether this was the first-declared instance of the constructor.
4282  // This affects whether we implicitly add an exception spec and constexpr.
4283  bool First = MD == MD->getCanonicalDecl();
4284
4285  bool HadError = false;
4286
4287  // C++11 [dcl.fct.def.default]p1:
4288  //   A function that is explicitly defaulted shall
4289  //     -- be a special member function (checked elsewhere),
4290  //     -- have the same type (except for ref-qualifiers, and except that a
4291  //        copy operation can take a non-const reference) as an implicit
4292  //        declaration, and
4293  //     -- not have default arguments.
4294  unsigned ExpectedParams = 1;
4295  if (CSM == CXXDefaultConstructor || CSM == CXXDestructor)
4296    ExpectedParams = 0;
4297  if (MD->getNumParams() != ExpectedParams) {
4298    // This also checks for default arguments: a copy or move constructor with a
4299    // default argument is classified as a default constructor, and assignment
4300    // operations and destructors can't have default arguments.
4301    Diag(MD->getLocation(), diag::err_defaulted_special_member_params)
4302      << CSM << MD->getSourceRange();
4303    HadError = true;
4304  } else if (MD->isVariadic()) {
4305    Diag(MD->getLocation(), diag::err_defaulted_special_member_variadic)
4306      << CSM << MD->getSourceRange();
4307    HadError = true;
4308  }
4309
4310  const FunctionProtoType *Type = MD->getType()->getAs<FunctionProtoType>();
4311
4312  bool CanHaveConstParam = false;
4313  if (CSM == CXXCopyConstructor)
4314    CanHaveConstParam = RD->implicitCopyConstructorHasConstParam();
4315  else if (CSM == CXXCopyAssignment)
4316    CanHaveConstParam = RD->implicitCopyAssignmentHasConstParam();
4317
4318  QualType ReturnType = Context.VoidTy;
4319  if (CSM == CXXCopyAssignment || CSM == CXXMoveAssignment) {
4320    // Check for return type matching.
4321    ReturnType = Type->getResultType();
4322    QualType ExpectedReturnType =
4323        Context.getLValueReferenceType(Context.getTypeDeclType(RD));
4324    if (!Context.hasSameType(ReturnType, ExpectedReturnType)) {
4325      Diag(MD->getLocation(), diag::err_defaulted_special_member_return_type)
4326        << (CSM == CXXMoveAssignment) << ExpectedReturnType;
4327      HadError = true;
4328    }
4329
4330    // A defaulted special member cannot have cv-qualifiers.
4331    if (Type->getTypeQuals()) {
4332      Diag(MD->getLocation(), diag::err_defaulted_special_member_quals)
4333        << (CSM == CXXMoveAssignment);
4334      HadError = true;
4335    }
4336  }
4337
4338  // Check for parameter type matching.
4339  QualType ArgType = ExpectedParams ? Type->getArgType(0) : QualType();
4340  bool HasConstParam = false;
4341  if (ExpectedParams && ArgType->isReferenceType()) {
4342    // Argument must be reference to possibly-const T.
4343    QualType ReferentType = ArgType->getPointeeType();
4344    HasConstParam = ReferentType.isConstQualified();
4345
4346    if (ReferentType.isVolatileQualified()) {
4347      Diag(MD->getLocation(),
4348           diag::err_defaulted_special_member_volatile_param) << CSM;
4349      HadError = true;
4350    }
4351
4352    if (HasConstParam && !CanHaveConstParam) {
4353      if (CSM == CXXCopyConstructor || CSM == CXXCopyAssignment) {
4354        Diag(MD->getLocation(),
4355             diag::err_defaulted_special_member_copy_const_param)
4356          << (CSM == CXXCopyAssignment);
4357        // FIXME: Explain why this special member can't be const.
4358      } else {
4359        Diag(MD->getLocation(),
4360             diag::err_defaulted_special_member_move_const_param)
4361          << (CSM == CXXMoveAssignment);
4362      }
4363      HadError = true;
4364    }
4365  } else if (ExpectedParams) {
4366    // A copy assignment operator can take its argument by value, but a
4367    // defaulted one cannot.
4368    assert(CSM == CXXCopyAssignment && "unexpected non-ref argument");
4369    Diag(MD->getLocation(), diag::err_defaulted_copy_assign_not_ref);
4370    HadError = true;
4371  }
4372
4373  // C++11 [dcl.fct.def.default]p2:
4374  //   An explicitly-defaulted function may be declared constexpr only if it
4375  //   would have been implicitly declared as constexpr,
4376  // Do not apply this rule to members of class templates, since core issue 1358
4377  // makes such functions always instantiate to constexpr functions. For
4378  // non-constructors, this is checked elsewhere.
4379  bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, RD, CSM,
4380                                                     HasConstParam);
4381  if (isa<CXXConstructorDecl>(MD) && MD->isConstexpr() && !Constexpr &&
4382      MD->getTemplatedKind() == FunctionDecl::TK_NonTemplate) {
4383    Diag(MD->getLocStart(), diag::err_incorrect_defaulted_constexpr) << CSM;
4384    // FIXME: Explain why the constructor can't be constexpr.
4385    HadError = true;
4386  }
4387
4388  //   and may have an explicit exception-specification only if it is compatible
4389  //   with the exception-specification on the implicit declaration.
4390  if (Type->hasExceptionSpec()) {
4391    // Delay the check if this is the first declaration of the special member,
4392    // since we may not have parsed some necessary in-class initializers yet.
4393    if (First) {
4394      // If the exception specification needs to be instantiated, do so now,
4395      // before we clobber it with an EST_Unevaluated specification below.
4396      if (Type->getExceptionSpecType() == EST_Uninstantiated) {
4397        InstantiateExceptionSpec(MD->getLocStart(), MD);
4398        Type = MD->getType()->getAs<FunctionProtoType>();
4399      }
4400      DelayedDefaultedMemberExceptionSpecs.push_back(std::make_pair(MD, Type));
4401    } else
4402      CheckExplicitlyDefaultedMemberExceptionSpec(MD, Type);
4403  }
4404
4405  //   If a function is explicitly defaulted on its first declaration,
4406  if (First) {
4407    //  -- it is implicitly considered to be constexpr if the implicit
4408    //     definition would be,
4409    MD->setConstexpr(Constexpr);
4410
4411    //  -- it is implicitly considered to have the same exception-specification
4412    //     as if it had been implicitly declared,
4413    FunctionProtoType::ExtProtoInfo EPI = Type->getExtProtoInfo();
4414    EPI.ExceptionSpecType = EST_Unevaluated;
4415    EPI.ExceptionSpecDecl = MD;
4416    MD->setType(Context.getFunctionType(ReturnType,
4417                                        ArrayRef<QualType>(&ArgType,
4418                                                           ExpectedParams),
4419                                        EPI));
4420  }
4421
4422  if (ShouldDeleteSpecialMember(MD, CSM)) {
4423    if (First) {
4424      SetDeclDeleted(MD, MD->getLocation());
4425    } else {
4426      // C++11 [dcl.fct.def.default]p4:
4427      //   [For a] user-provided explicitly-defaulted function [...] if such a
4428      //   function is implicitly defined as deleted, the program is ill-formed.
4429      Diag(MD->getLocation(), diag::err_out_of_line_default_deletes) << CSM;
4430      HadError = true;
4431    }
4432  }
4433
4434  if (HadError)
4435    MD->setInvalidDecl();
4436}
4437
4438/// Check whether the exception specification provided for an
4439/// explicitly-defaulted special member matches the exception specification
4440/// that would have been generated for an implicit special member, per
4441/// C++11 [dcl.fct.def.default]p2.
4442void Sema::CheckExplicitlyDefaultedMemberExceptionSpec(
4443    CXXMethodDecl *MD, const FunctionProtoType *SpecifiedType) {
4444  // Compute the implicit exception specification.
4445  FunctionProtoType::ExtProtoInfo EPI;
4446  computeImplicitExceptionSpec(*this, MD->getLocation(), MD).getEPI(EPI);
4447  const FunctionProtoType *ImplicitType = cast<FunctionProtoType>(
4448    Context.getFunctionType(Context.VoidTy, ArrayRef<QualType>(), EPI));
4449
4450  // Ensure that it matches.
4451  CheckEquivalentExceptionSpec(
4452    PDiag(diag::err_incorrect_defaulted_exception_spec)
4453      << getSpecialMember(MD), PDiag(),
4454    ImplicitType, SourceLocation(),
4455    SpecifiedType, MD->getLocation());
4456}
4457
4458void Sema::CheckDelayedExplicitlyDefaultedMemberExceptionSpecs() {
4459  for (unsigned I = 0, N = DelayedDefaultedMemberExceptionSpecs.size();
4460       I != N; ++I)
4461    CheckExplicitlyDefaultedMemberExceptionSpec(
4462      DelayedDefaultedMemberExceptionSpecs[I].first,
4463      DelayedDefaultedMemberExceptionSpecs[I].second);
4464
4465  DelayedDefaultedMemberExceptionSpecs.clear();
4466}
4467
4468namespace {
4469struct SpecialMemberDeletionInfo {
4470  Sema &S;
4471  CXXMethodDecl *MD;
4472  Sema::CXXSpecialMember CSM;
4473  bool Diagnose;
4474
4475  // Properties of the special member, computed for convenience.
4476  bool IsConstructor, IsAssignment, IsMove, ConstArg, VolatileArg;
4477  SourceLocation Loc;
4478
4479  bool AllFieldsAreConst;
4480
4481  SpecialMemberDeletionInfo(Sema &S, CXXMethodDecl *MD,
4482                            Sema::CXXSpecialMember CSM, bool Diagnose)
4483    : S(S), MD(MD), CSM(CSM), Diagnose(Diagnose),
4484      IsConstructor(false), IsAssignment(false), IsMove(false),
4485      ConstArg(false), VolatileArg(false), Loc(MD->getLocation()),
4486      AllFieldsAreConst(true) {
4487    switch (CSM) {
4488      case Sema::CXXDefaultConstructor:
4489      case Sema::CXXCopyConstructor:
4490        IsConstructor = true;
4491        break;
4492      case Sema::CXXMoveConstructor:
4493        IsConstructor = true;
4494        IsMove = true;
4495        break;
4496      case Sema::CXXCopyAssignment:
4497        IsAssignment = true;
4498        break;
4499      case Sema::CXXMoveAssignment:
4500        IsAssignment = true;
4501        IsMove = true;
4502        break;
4503      case Sema::CXXDestructor:
4504        break;
4505      case Sema::CXXInvalid:
4506        llvm_unreachable("invalid special member kind");
4507    }
4508
4509    if (MD->getNumParams()) {
4510      ConstArg = MD->getParamDecl(0)->getType().isConstQualified();
4511      VolatileArg = MD->getParamDecl(0)->getType().isVolatileQualified();
4512    }
4513  }
4514
4515  bool inUnion() const { return MD->getParent()->isUnion(); }
4516
4517  /// Look up the corresponding special member in the given class.
4518  Sema::SpecialMemberOverloadResult *lookupIn(CXXRecordDecl *Class,
4519                                              unsigned Quals) {
4520    unsigned TQ = MD->getTypeQualifiers();
4521    // cv-qualifiers on class members don't affect default ctor / dtor calls.
4522    if (CSM == Sema::CXXDefaultConstructor || CSM == Sema::CXXDestructor)
4523      Quals = 0;
4524    return S.LookupSpecialMember(Class, CSM,
4525                                 ConstArg || (Quals & Qualifiers::Const),
4526                                 VolatileArg || (Quals & Qualifiers::Volatile),
4527                                 MD->getRefQualifier() == RQ_RValue,
4528                                 TQ & Qualifiers::Const,
4529                                 TQ & Qualifiers::Volatile);
4530  }
4531
4532  typedef llvm::PointerUnion<CXXBaseSpecifier*, FieldDecl*> Subobject;
4533
4534  bool shouldDeleteForBase(CXXBaseSpecifier *Base);
4535  bool shouldDeleteForField(FieldDecl *FD);
4536  bool shouldDeleteForAllConstMembers();
4537
4538  bool shouldDeleteForClassSubobject(CXXRecordDecl *Class, Subobject Subobj,
4539                                     unsigned Quals);
4540  bool shouldDeleteForSubobjectCall(Subobject Subobj,
4541                                    Sema::SpecialMemberOverloadResult *SMOR,
4542                                    bool IsDtorCallInCtor);
4543
4544  bool isAccessible(Subobject Subobj, CXXMethodDecl *D);
4545};
4546}
4547
4548/// Is the given special member inaccessible when used on the given
4549/// sub-object.
4550bool SpecialMemberDeletionInfo::isAccessible(Subobject Subobj,
4551                                             CXXMethodDecl *target) {
4552  /// If we're operating on a base class, the object type is the
4553  /// type of this special member.
4554  QualType objectTy;
4555  AccessSpecifier access = target->getAccess();
4556  if (CXXBaseSpecifier *base = Subobj.dyn_cast<CXXBaseSpecifier*>()) {
4557    objectTy = S.Context.getTypeDeclType(MD->getParent());
4558    access = CXXRecordDecl::MergeAccess(base->getAccessSpecifier(), access);
4559
4560  // If we're operating on a field, the object type is the type of the field.
4561  } else {
4562    objectTy = S.Context.getTypeDeclType(target->getParent());
4563  }
4564
4565  return S.isSpecialMemberAccessibleForDeletion(target, access, objectTy);
4566}
4567
4568/// Check whether we should delete a special member due to the implicit
4569/// definition containing a call to a special member of a subobject.
4570bool SpecialMemberDeletionInfo::shouldDeleteForSubobjectCall(
4571    Subobject Subobj, Sema::SpecialMemberOverloadResult *SMOR,
4572    bool IsDtorCallInCtor) {
4573  CXXMethodDecl *Decl = SMOR->getMethod();
4574  FieldDecl *Field = Subobj.dyn_cast<FieldDecl*>();
4575
4576  int DiagKind = -1;
4577
4578  if (SMOR->getKind() == Sema::SpecialMemberOverloadResult::NoMemberOrDeleted)
4579    DiagKind = !Decl ? 0 : 1;
4580  else if (SMOR->getKind() == Sema::SpecialMemberOverloadResult::Ambiguous)
4581    DiagKind = 2;
4582  else if (!isAccessible(Subobj, Decl))
4583    DiagKind = 3;
4584  else if (!IsDtorCallInCtor && Field && Field->getParent()->isUnion() &&
4585           !Decl->isTrivial()) {
4586    // A member of a union must have a trivial corresponding special member.
4587    // As a weird special case, a destructor call from a union's constructor
4588    // must be accessible and non-deleted, but need not be trivial. Such a
4589    // destructor is never actually called, but is semantically checked as
4590    // if it were.
4591    DiagKind = 4;
4592  }
4593
4594  if (DiagKind == -1)
4595    return false;
4596
4597  if (Diagnose) {
4598    if (Field) {
4599      S.Diag(Field->getLocation(),
4600             diag::note_deleted_special_member_class_subobject)
4601        << CSM << MD->getParent() << /*IsField*/true
4602        << Field << DiagKind << IsDtorCallInCtor;
4603    } else {
4604      CXXBaseSpecifier *Base = Subobj.get<CXXBaseSpecifier*>();
4605      S.Diag(Base->getLocStart(),
4606             diag::note_deleted_special_member_class_subobject)
4607        << CSM << MD->getParent() << /*IsField*/false
4608        << Base->getType() << DiagKind << IsDtorCallInCtor;
4609    }
4610
4611    if (DiagKind == 1)
4612      S.NoteDeletedFunction(Decl);
4613    // FIXME: Explain inaccessibility if DiagKind == 3.
4614  }
4615
4616  return true;
4617}
4618
4619/// Check whether we should delete a special member function due to having a
4620/// direct or virtual base class or non-static data member of class type M.
4621bool SpecialMemberDeletionInfo::shouldDeleteForClassSubobject(
4622    CXXRecordDecl *Class, Subobject Subobj, unsigned Quals) {
4623  FieldDecl *Field = Subobj.dyn_cast<FieldDecl*>();
4624
4625  // C++11 [class.ctor]p5:
4626  // -- any direct or virtual base class, or non-static data member with no
4627  //    brace-or-equal-initializer, has class type M (or array thereof) and
4628  //    either M has no default constructor or overload resolution as applied
4629  //    to M's default constructor results in an ambiguity or in a function
4630  //    that is deleted or inaccessible
4631  // C++11 [class.copy]p11, C++11 [class.copy]p23:
4632  // -- a direct or virtual base class B that cannot be copied/moved because
4633  //    overload resolution, as applied to B's corresponding special member,
4634  //    results in an ambiguity or a function that is deleted or inaccessible
4635  //    from the defaulted special member
4636  // C++11 [class.dtor]p5:
4637  // -- any direct or virtual base class [...] has a type with a destructor
4638  //    that is deleted or inaccessible
4639  if (!(CSM == Sema::CXXDefaultConstructor &&
4640        Field && Field->hasInClassInitializer()) &&
4641      shouldDeleteForSubobjectCall(Subobj, lookupIn(Class, Quals), false))
4642    return true;
4643
4644  // C++11 [class.ctor]p5, C++11 [class.copy]p11:
4645  // -- any direct or virtual base class or non-static data member has a
4646  //    type with a destructor that is deleted or inaccessible
4647  if (IsConstructor) {
4648    Sema::SpecialMemberOverloadResult *SMOR =
4649        S.LookupSpecialMember(Class, Sema::CXXDestructor,
4650                              false, false, false, false, false);
4651    if (shouldDeleteForSubobjectCall(Subobj, SMOR, true))
4652      return true;
4653  }
4654
4655  return false;
4656}
4657
4658/// Check whether we should delete a special member function due to the class
4659/// having a particular direct or virtual base class.
4660bool SpecialMemberDeletionInfo::shouldDeleteForBase(CXXBaseSpecifier *Base) {
4661  CXXRecordDecl *BaseClass = Base->getType()->getAsCXXRecordDecl();
4662  return shouldDeleteForClassSubobject(BaseClass, Base, 0);
4663}
4664
4665/// Check whether we should delete a special member function due to the class
4666/// having a particular non-static data member.
4667bool SpecialMemberDeletionInfo::shouldDeleteForField(FieldDecl *FD) {
4668  QualType FieldType = S.Context.getBaseElementType(FD->getType());
4669  CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl();
4670
4671  if (CSM == Sema::CXXDefaultConstructor) {
4672    // For a default constructor, all references must be initialized in-class
4673    // and, if a union, it must have a non-const member.
4674    if (FieldType->isReferenceType() && !FD->hasInClassInitializer()) {
4675      if (Diagnose)
4676        S.Diag(FD->getLocation(), diag::note_deleted_default_ctor_uninit_field)
4677          << MD->getParent() << FD << FieldType << /*Reference*/0;
4678      return true;
4679    }
4680    // C++11 [class.ctor]p5: any non-variant non-static data member of
4681    // const-qualified type (or array thereof) with no
4682    // brace-or-equal-initializer does not have a user-provided default
4683    // constructor.
4684    if (!inUnion() && FieldType.isConstQualified() &&
4685        !FD->hasInClassInitializer() &&
4686        (!FieldRecord || !FieldRecord->hasUserProvidedDefaultConstructor())) {
4687      if (Diagnose)
4688        S.Diag(FD->getLocation(), diag::note_deleted_default_ctor_uninit_field)
4689          << MD->getParent() << FD << FD->getType() << /*Const*/1;
4690      return true;
4691    }
4692
4693    if (inUnion() && !FieldType.isConstQualified())
4694      AllFieldsAreConst = false;
4695  } else if (CSM == Sema::CXXCopyConstructor) {
4696    // For a copy constructor, data members must not be of rvalue reference
4697    // type.
4698    if (FieldType->isRValueReferenceType()) {
4699      if (Diagnose)
4700        S.Diag(FD->getLocation(), diag::note_deleted_copy_ctor_rvalue_reference)
4701          << MD->getParent() << FD << FieldType;
4702      return true;
4703    }
4704  } else if (IsAssignment) {
4705    // For an assignment operator, data members must not be of reference type.
4706    if (FieldType->isReferenceType()) {
4707      if (Diagnose)
4708        S.Diag(FD->getLocation(), diag::note_deleted_assign_field)
4709          << IsMove << MD->getParent() << FD << FieldType << /*Reference*/0;
4710      return true;
4711    }
4712    if (!FieldRecord && FieldType.isConstQualified()) {
4713      // C++11 [class.copy]p23:
4714      // -- a non-static data member of const non-class type (or array thereof)
4715      if (Diagnose)
4716        S.Diag(FD->getLocation(), diag::note_deleted_assign_field)
4717          << IsMove << MD->getParent() << FD << FD->getType() << /*Const*/1;
4718      return true;
4719    }
4720  }
4721
4722  if (FieldRecord) {
4723    // Some additional restrictions exist on the variant members.
4724    if (!inUnion() && FieldRecord->isUnion() &&
4725        FieldRecord->isAnonymousStructOrUnion()) {
4726      bool AllVariantFieldsAreConst = true;
4727
4728      // FIXME: Handle anonymous unions declared within anonymous unions.
4729      for (CXXRecordDecl::field_iterator UI = FieldRecord->field_begin(),
4730                                         UE = FieldRecord->field_end();
4731           UI != UE; ++UI) {
4732        QualType UnionFieldType = S.Context.getBaseElementType(UI->getType());
4733
4734        if (!UnionFieldType.isConstQualified())
4735          AllVariantFieldsAreConst = false;
4736
4737        CXXRecordDecl *UnionFieldRecord = UnionFieldType->getAsCXXRecordDecl();
4738        if (UnionFieldRecord &&
4739            shouldDeleteForClassSubobject(UnionFieldRecord, *UI,
4740                                          UnionFieldType.getCVRQualifiers()))
4741          return true;
4742      }
4743
4744      // At least one member in each anonymous union must be non-const
4745      if (CSM == Sema::CXXDefaultConstructor && AllVariantFieldsAreConst &&
4746          FieldRecord->field_begin() != FieldRecord->field_end()) {
4747        if (Diagnose)
4748          S.Diag(FieldRecord->getLocation(),
4749                 diag::note_deleted_default_ctor_all_const)
4750            << MD->getParent() << /*anonymous union*/1;
4751        return true;
4752      }
4753
4754      // Don't check the implicit member of the anonymous union type.
4755      // This is technically non-conformant, but sanity demands it.
4756      return false;
4757    }
4758
4759    if (shouldDeleteForClassSubobject(FieldRecord, FD,
4760                                      FieldType.getCVRQualifiers()))
4761      return true;
4762  }
4763
4764  return false;
4765}
4766
4767/// C++11 [class.ctor] p5:
4768///   A defaulted default constructor for a class X is defined as deleted if
4769/// X is a union and all of its variant members are of const-qualified type.
4770bool SpecialMemberDeletionInfo::shouldDeleteForAllConstMembers() {
4771  // This is a silly definition, because it gives an empty union a deleted
4772  // default constructor. Don't do that.
4773  if (CSM == Sema::CXXDefaultConstructor && inUnion() && AllFieldsAreConst &&
4774      (MD->getParent()->field_begin() != MD->getParent()->field_end())) {
4775    if (Diagnose)
4776      S.Diag(MD->getParent()->getLocation(),
4777             diag::note_deleted_default_ctor_all_const)
4778        << MD->getParent() << /*not anonymous union*/0;
4779    return true;
4780  }
4781  return false;
4782}
4783
4784/// Determine whether a defaulted special member function should be defined as
4785/// deleted, as specified in C++11 [class.ctor]p5, C++11 [class.copy]p11,
4786/// C++11 [class.copy]p23, and C++11 [class.dtor]p5.
4787bool Sema::ShouldDeleteSpecialMember(CXXMethodDecl *MD, CXXSpecialMember CSM,
4788                                     bool Diagnose) {
4789  if (MD->isInvalidDecl())
4790    return false;
4791  CXXRecordDecl *RD = MD->getParent();
4792  assert(!RD->isDependentType() && "do deletion after instantiation");
4793  if (!LangOpts.CPlusPlus11 || RD->isInvalidDecl())
4794    return false;
4795
4796  // C++11 [expr.lambda.prim]p19:
4797  //   The closure type associated with a lambda-expression has a
4798  //   deleted (8.4.3) default constructor and a deleted copy
4799  //   assignment operator.
4800  if (RD->isLambda() &&
4801      (CSM == CXXDefaultConstructor || CSM == CXXCopyAssignment)) {
4802    if (Diagnose)
4803      Diag(RD->getLocation(), diag::note_lambda_decl);
4804    return true;
4805  }
4806
4807  // For an anonymous struct or union, the copy and assignment special members
4808  // will never be used, so skip the check. For an anonymous union declared at
4809  // namespace scope, the constructor and destructor are used.
4810  if (CSM != CXXDefaultConstructor && CSM != CXXDestructor &&
4811      RD->isAnonymousStructOrUnion())
4812    return false;
4813
4814  // C++11 [class.copy]p7, p18:
4815  //   If the class definition declares a move constructor or move assignment
4816  //   operator, an implicitly declared copy constructor or copy assignment
4817  //   operator is defined as deleted.
4818  if (MD->isImplicit() &&
4819      (CSM == CXXCopyConstructor || CSM == CXXCopyAssignment)) {
4820    CXXMethodDecl *UserDeclaredMove = 0;
4821
4822    // In Microsoft mode, a user-declared move only causes the deletion of the
4823    // corresponding copy operation, not both copy operations.
4824    if (RD->hasUserDeclaredMoveConstructor() &&
4825        (!getLangOpts().MicrosoftMode || CSM == CXXCopyConstructor)) {
4826      if (!Diagnose) return true;
4827
4828      // Find any user-declared move constructor.
4829      for (CXXRecordDecl::ctor_iterator I = RD->ctor_begin(),
4830                                        E = RD->ctor_end(); I != E; ++I) {
4831        if (I->isMoveConstructor()) {
4832          UserDeclaredMove = *I;
4833          break;
4834        }
4835      }
4836      assert(UserDeclaredMove);
4837    } else if (RD->hasUserDeclaredMoveAssignment() &&
4838               (!getLangOpts().MicrosoftMode || CSM == CXXCopyAssignment)) {
4839      if (!Diagnose) return true;
4840
4841      // Find any user-declared move assignment operator.
4842      for (CXXRecordDecl::method_iterator I = RD->method_begin(),
4843                                          E = RD->method_end(); I != E; ++I) {
4844        if (I->isMoveAssignmentOperator()) {
4845          UserDeclaredMove = *I;
4846          break;
4847        }
4848      }
4849      assert(UserDeclaredMove);
4850    }
4851
4852    if (UserDeclaredMove) {
4853      Diag(UserDeclaredMove->getLocation(),
4854           diag::note_deleted_copy_user_declared_move)
4855        << (CSM == CXXCopyAssignment) << RD
4856        << UserDeclaredMove->isMoveAssignmentOperator();
4857      return true;
4858    }
4859  }
4860
4861  // Do access control from the special member function
4862  ContextRAII MethodContext(*this, MD);
4863
4864  // C++11 [class.dtor]p5:
4865  // -- for a virtual destructor, lookup of the non-array deallocation function
4866  //    results in an ambiguity or in a function that is deleted or inaccessible
4867  if (CSM == CXXDestructor && MD->isVirtual()) {
4868    FunctionDecl *OperatorDelete = 0;
4869    DeclarationName Name =
4870      Context.DeclarationNames.getCXXOperatorName(OO_Delete);
4871    if (FindDeallocationFunction(MD->getLocation(), MD->getParent(), Name,
4872                                 OperatorDelete, false)) {
4873      if (Diagnose)
4874        Diag(RD->getLocation(), diag::note_deleted_dtor_no_operator_delete);
4875      return true;
4876    }
4877  }
4878
4879  SpecialMemberDeletionInfo SMI(*this, MD, CSM, Diagnose);
4880
4881  for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
4882                                          BE = RD->bases_end(); BI != BE; ++BI)
4883    if (!BI->isVirtual() &&
4884        SMI.shouldDeleteForBase(BI))
4885      return true;
4886
4887  for (CXXRecordDecl::base_class_iterator BI = RD->vbases_begin(),
4888                                          BE = RD->vbases_end(); BI != BE; ++BI)
4889    if (SMI.shouldDeleteForBase(BI))
4890      return true;
4891
4892  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
4893                                     FE = RD->field_end(); FI != FE; ++FI)
4894    if (!FI->isInvalidDecl() && !FI->isUnnamedBitfield() &&
4895        SMI.shouldDeleteForField(*FI))
4896      return true;
4897
4898  if (SMI.shouldDeleteForAllConstMembers())
4899    return true;
4900
4901  return false;
4902}
4903
4904/// Perform lookup for a special member of the specified kind, and determine
4905/// whether it is trivial. If the triviality can be determined without the
4906/// lookup, skip it. This is intended for use when determining whether a
4907/// special member of a containing object is trivial, and thus does not ever
4908/// perform overload resolution for default constructors.
4909///
4910/// If \p Selected is not \c NULL, \c *Selected will be filled in with the
4911/// member that was most likely to be intended to be trivial, if any.
4912static bool findTrivialSpecialMember(Sema &S, CXXRecordDecl *RD,
4913                                     Sema::CXXSpecialMember CSM, unsigned Quals,
4914                                     CXXMethodDecl **Selected) {
4915  if (Selected)
4916    *Selected = 0;
4917
4918  switch (CSM) {
4919  case Sema::CXXInvalid:
4920    llvm_unreachable("not a special member");
4921
4922  case Sema::CXXDefaultConstructor:
4923    // C++11 [class.ctor]p5:
4924    //   A default constructor is trivial if:
4925    //    - all the [direct subobjects] have trivial default constructors
4926    //
4927    // Note, no overload resolution is performed in this case.
4928    if (RD->hasTrivialDefaultConstructor())
4929      return true;
4930
4931    if (Selected) {
4932      // If there's a default constructor which could have been trivial, dig it
4933      // out. Otherwise, if there's any user-provided default constructor, point
4934      // to that as an example of why there's not a trivial one.
4935      CXXConstructorDecl *DefCtor = 0;
4936      if (RD->needsImplicitDefaultConstructor())
4937        S.DeclareImplicitDefaultConstructor(RD);
4938      for (CXXRecordDecl::ctor_iterator CI = RD->ctor_begin(),
4939                                        CE = RD->ctor_end(); CI != CE; ++CI) {
4940        if (!CI->isDefaultConstructor())
4941          continue;
4942        DefCtor = *CI;
4943        if (!DefCtor->isUserProvided())
4944          break;
4945      }
4946
4947      *Selected = DefCtor;
4948    }
4949
4950    return false;
4951
4952  case Sema::CXXDestructor:
4953    // C++11 [class.dtor]p5:
4954    //   A destructor is trivial if:
4955    //    - all the direct [subobjects] have trivial destructors
4956    if (RD->hasTrivialDestructor())
4957      return true;
4958
4959    if (Selected) {
4960      if (RD->needsImplicitDestructor())
4961        S.DeclareImplicitDestructor(RD);
4962      *Selected = RD->getDestructor();
4963    }
4964
4965    return false;
4966
4967  case Sema::CXXCopyConstructor:
4968    // C++11 [class.copy]p12:
4969    //   A copy constructor is trivial if:
4970    //    - the constructor selected to copy each direct [subobject] is trivial
4971    if (RD->hasTrivialCopyConstructor()) {
4972      if (Quals == Qualifiers::Const)
4973        // We must either select the trivial copy constructor or reach an
4974        // ambiguity; no need to actually perform overload resolution.
4975        return true;
4976    } else if (!Selected) {
4977      return false;
4978    }
4979    // In C++98, we are not supposed to perform overload resolution here, but we
4980    // treat that as a language defect, as suggested on cxx-abi-dev, to treat
4981    // cases like B as having a non-trivial copy constructor:
4982    //   struct A { template<typename T> A(T&); };
4983    //   struct B { mutable A a; };
4984    goto NeedOverloadResolution;
4985
4986  case Sema::CXXCopyAssignment:
4987    // C++11 [class.copy]p25:
4988    //   A copy assignment operator is trivial if:
4989    //    - the assignment operator selected to copy each direct [subobject] is
4990    //      trivial
4991    if (RD->hasTrivialCopyAssignment()) {
4992      if (Quals == Qualifiers::Const)
4993        return true;
4994    } else if (!Selected) {
4995      return false;
4996    }
4997    // In C++98, we are not supposed to perform overload resolution here, but we
4998    // treat that as a language defect.
4999    goto NeedOverloadResolution;
5000
5001  case Sema::CXXMoveConstructor:
5002  case Sema::CXXMoveAssignment:
5003  NeedOverloadResolution:
5004    Sema::SpecialMemberOverloadResult *SMOR =
5005      S.LookupSpecialMember(RD, CSM,
5006                            Quals & Qualifiers::Const,
5007                            Quals & Qualifiers::Volatile,
5008                            /*RValueThis*/false, /*ConstThis*/false,
5009                            /*VolatileThis*/false);
5010
5011    // The standard doesn't describe how to behave if the lookup is ambiguous.
5012    // We treat it as not making the member non-trivial, just like the standard
5013    // mandates for the default constructor. This should rarely matter, because
5014    // the member will also be deleted.
5015    if (SMOR->getKind() == Sema::SpecialMemberOverloadResult::Ambiguous)
5016      return true;
5017
5018    if (!SMOR->getMethod()) {
5019      assert(SMOR->getKind() ==
5020             Sema::SpecialMemberOverloadResult::NoMemberOrDeleted);
5021      return false;
5022    }
5023
5024    // We deliberately don't check if we found a deleted special member. We're
5025    // not supposed to!
5026    if (Selected)
5027      *Selected = SMOR->getMethod();
5028    return SMOR->getMethod()->isTrivial();
5029  }
5030
5031  llvm_unreachable("unknown special method kind");
5032}
5033
5034static CXXConstructorDecl *findUserDeclaredCtor(CXXRecordDecl *RD) {
5035  for (CXXRecordDecl::ctor_iterator CI = RD->ctor_begin(), CE = RD->ctor_end();
5036       CI != CE; ++CI)
5037    if (!CI->isImplicit())
5038      return *CI;
5039
5040  // Look for constructor templates.
5041  typedef CXXRecordDecl::specific_decl_iterator<FunctionTemplateDecl> tmpl_iter;
5042  for (tmpl_iter TI(RD->decls_begin()), TE(RD->decls_end()); TI != TE; ++TI) {
5043    if (CXXConstructorDecl *CD =
5044          dyn_cast<CXXConstructorDecl>(TI->getTemplatedDecl()))
5045      return CD;
5046  }
5047
5048  return 0;
5049}
5050
5051/// The kind of subobject we are checking for triviality. The values of this
5052/// enumeration are used in diagnostics.
5053enum TrivialSubobjectKind {
5054  /// The subobject is a base class.
5055  TSK_BaseClass,
5056  /// The subobject is a non-static data member.
5057  TSK_Field,
5058  /// The object is actually the complete object.
5059  TSK_CompleteObject
5060};
5061
5062/// Check whether the special member selected for a given type would be trivial.
5063static bool checkTrivialSubobjectCall(Sema &S, SourceLocation SubobjLoc,
5064                                      QualType SubType,
5065                                      Sema::CXXSpecialMember CSM,
5066                                      TrivialSubobjectKind Kind,
5067                                      bool Diagnose) {
5068  CXXRecordDecl *SubRD = SubType->getAsCXXRecordDecl();
5069  if (!SubRD)
5070    return true;
5071
5072  CXXMethodDecl *Selected;
5073  if (findTrivialSpecialMember(S, SubRD, CSM, SubType.getCVRQualifiers(),
5074                               Diagnose ? &Selected : 0))
5075    return true;
5076
5077  if (Diagnose) {
5078    if (!Selected && CSM == Sema::CXXDefaultConstructor) {
5079      S.Diag(SubobjLoc, diag::note_nontrivial_no_def_ctor)
5080        << Kind << SubType.getUnqualifiedType();
5081      if (CXXConstructorDecl *CD = findUserDeclaredCtor(SubRD))
5082        S.Diag(CD->getLocation(), diag::note_user_declared_ctor);
5083    } else if (!Selected)
5084      S.Diag(SubobjLoc, diag::note_nontrivial_no_copy)
5085        << Kind << SubType.getUnqualifiedType() << CSM << SubType;
5086    else if (Selected->isUserProvided()) {
5087      if (Kind == TSK_CompleteObject)
5088        S.Diag(Selected->getLocation(), diag::note_nontrivial_user_provided)
5089          << Kind << SubType.getUnqualifiedType() << CSM;
5090      else {
5091        S.Diag(SubobjLoc, diag::note_nontrivial_user_provided)
5092          << Kind << SubType.getUnqualifiedType() << CSM;
5093        S.Diag(Selected->getLocation(), diag::note_declared_at);
5094      }
5095    } else {
5096      if (Kind != TSK_CompleteObject)
5097        S.Diag(SubobjLoc, diag::note_nontrivial_subobject)
5098          << Kind << SubType.getUnqualifiedType() << CSM;
5099
5100      // Explain why the defaulted or deleted special member isn't trivial.
5101      S.SpecialMemberIsTrivial(Selected, CSM, Diagnose);
5102    }
5103  }
5104
5105  return false;
5106}
5107
5108/// Check whether the members of a class type allow a special member to be
5109/// trivial.
5110static bool checkTrivialClassMembers(Sema &S, CXXRecordDecl *RD,
5111                                     Sema::CXXSpecialMember CSM,
5112                                     bool ConstArg, bool Diagnose) {
5113  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
5114                                     FE = RD->field_end(); FI != FE; ++FI) {
5115    if (FI->isInvalidDecl() || FI->isUnnamedBitfield())
5116      continue;
5117
5118    QualType FieldType = S.Context.getBaseElementType(FI->getType());
5119
5120    // Pretend anonymous struct or union members are members of this class.
5121    if (FI->isAnonymousStructOrUnion()) {
5122      if (!checkTrivialClassMembers(S, FieldType->getAsCXXRecordDecl(),
5123                                    CSM, ConstArg, Diagnose))
5124        return false;
5125      continue;
5126    }
5127
5128    // C++11 [class.ctor]p5:
5129    //   A default constructor is trivial if [...]
5130    //    -- no non-static data member of its class has a
5131    //       brace-or-equal-initializer
5132    if (CSM == Sema::CXXDefaultConstructor && FI->hasInClassInitializer()) {
5133      if (Diagnose)
5134        S.Diag(FI->getLocation(), diag::note_nontrivial_in_class_init) << *FI;
5135      return false;
5136    }
5137
5138    // Objective C ARC 4.3.5:
5139    //   [...] nontrivally ownership-qualified types are [...] not trivially
5140    //   default constructible, copy constructible, move constructible, copy
5141    //   assignable, move assignable, or destructible [...]
5142    if (S.getLangOpts().ObjCAutoRefCount &&
5143        FieldType.hasNonTrivialObjCLifetime()) {
5144      if (Diagnose)
5145        S.Diag(FI->getLocation(), diag::note_nontrivial_objc_ownership)
5146          << RD << FieldType.getObjCLifetime();
5147      return false;
5148    }
5149
5150    if (ConstArg && !FI->isMutable())
5151      FieldType.addConst();
5152    if (!checkTrivialSubobjectCall(S, FI->getLocation(), FieldType, CSM,
5153                                   TSK_Field, Diagnose))
5154      return false;
5155  }
5156
5157  return true;
5158}
5159
5160/// Diagnose why the specified class does not have a trivial special member of
5161/// the given kind.
5162void Sema::DiagnoseNontrivial(const CXXRecordDecl *RD, CXXSpecialMember CSM) {
5163  QualType Ty = Context.getRecordType(RD);
5164  if (CSM == CXXCopyConstructor || CSM == CXXCopyAssignment)
5165    Ty.addConst();
5166
5167  checkTrivialSubobjectCall(*this, RD->getLocation(), Ty, CSM,
5168                            TSK_CompleteObject, /*Diagnose*/true);
5169}
5170
5171/// Determine whether a defaulted or deleted special member function is trivial,
5172/// as specified in C++11 [class.ctor]p5, C++11 [class.copy]p12,
5173/// C++11 [class.copy]p25, and C++11 [class.dtor]p5.
5174bool Sema::SpecialMemberIsTrivial(CXXMethodDecl *MD, CXXSpecialMember CSM,
5175                                  bool Diagnose) {
5176  assert(!MD->isUserProvided() && CSM != CXXInvalid && "not special enough");
5177
5178  CXXRecordDecl *RD = MD->getParent();
5179
5180  bool ConstArg = false;
5181
5182  // C++11 [class.copy]p12, p25:
5183  //   A [special member] is trivial if its declared parameter type is the same
5184  //   as if it had been implicitly declared [...]
5185  switch (CSM) {
5186  case CXXDefaultConstructor:
5187  case CXXDestructor:
5188    // Trivial default constructors and destructors cannot have parameters.
5189    break;
5190
5191  case CXXCopyConstructor:
5192  case CXXCopyAssignment: {
5193    // Trivial copy operations always have const, non-volatile parameter types.
5194    ConstArg = true;
5195    const ParmVarDecl *Param0 = MD->getParamDecl(0);
5196    const ReferenceType *RT = Param0->getType()->getAs<ReferenceType>();
5197    if (!RT || RT->getPointeeType().getCVRQualifiers() != Qualifiers::Const) {
5198      if (Diagnose)
5199        Diag(Param0->getLocation(), diag::note_nontrivial_param_type)
5200          << Param0->getSourceRange() << Param0->getType()
5201          << Context.getLValueReferenceType(
5202               Context.getRecordType(RD).withConst());
5203      return false;
5204    }
5205    break;
5206  }
5207
5208  case CXXMoveConstructor:
5209  case CXXMoveAssignment: {
5210    // Trivial move operations always have non-cv-qualified parameters.
5211    const ParmVarDecl *Param0 = MD->getParamDecl(0);
5212    const RValueReferenceType *RT =
5213      Param0->getType()->getAs<RValueReferenceType>();
5214    if (!RT || RT->getPointeeType().getCVRQualifiers()) {
5215      if (Diagnose)
5216        Diag(Param0->getLocation(), diag::note_nontrivial_param_type)
5217          << Param0->getSourceRange() << Param0->getType()
5218          << Context.getRValueReferenceType(Context.getRecordType(RD));
5219      return false;
5220    }
5221    break;
5222  }
5223
5224  case CXXInvalid:
5225    llvm_unreachable("not a special member");
5226  }
5227
5228  // FIXME: We require that the parameter-declaration-clause is equivalent to
5229  // that of an implicit declaration, not just that the declared parameter type
5230  // matches, in order to prevent absuridities like a function simultaneously
5231  // being a trivial copy constructor and a non-trivial default constructor.
5232  // This issue has not yet been assigned a core issue number.
5233  if (MD->getMinRequiredArguments() < MD->getNumParams()) {
5234    if (Diagnose)
5235      Diag(MD->getParamDecl(MD->getMinRequiredArguments())->getLocation(),
5236           diag::note_nontrivial_default_arg)
5237        << MD->getParamDecl(MD->getMinRequiredArguments())->getSourceRange();
5238    return false;
5239  }
5240  if (MD->isVariadic()) {
5241    if (Diagnose)
5242      Diag(MD->getLocation(), diag::note_nontrivial_variadic);
5243    return false;
5244  }
5245
5246  // C++11 [class.ctor]p5, C++11 [class.dtor]p5:
5247  //   A copy/move [constructor or assignment operator] is trivial if
5248  //    -- the [member] selected to copy/move each direct base class subobject
5249  //       is trivial
5250  //
5251  // C++11 [class.copy]p12, C++11 [class.copy]p25:
5252  //   A [default constructor or destructor] is trivial if
5253  //    -- all the direct base classes have trivial [default constructors or
5254  //       destructors]
5255  for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
5256                                          BE = RD->bases_end(); BI != BE; ++BI)
5257    if (!checkTrivialSubobjectCall(*this, BI->getLocStart(),
5258                                   ConstArg ? BI->getType().withConst()
5259                                            : BI->getType(),
5260                                   CSM, TSK_BaseClass, Diagnose))
5261      return false;
5262
5263  // C++11 [class.ctor]p5, C++11 [class.dtor]p5:
5264  //   A copy/move [constructor or assignment operator] for a class X is
5265  //   trivial if
5266  //    -- for each non-static data member of X that is of class type (or array
5267  //       thereof), the constructor selected to copy/move that member is
5268  //       trivial
5269  //
5270  // C++11 [class.copy]p12, C++11 [class.copy]p25:
5271  //   A [default constructor or destructor] is trivial if
5272  //    -- for all of the non-static data members of its class that are of class
5273  //       type (or array thereof), each such class has a trivial [default
5274  //       constructor or destructor]
5275  if (!checkTrivialClassMembers(*this, RD, CSM, ConstArg, Diagnose))
5276    return false;
5277
5278  // C++11 [class.dtor]p5:
5279  //   A destructor is trivial if [...]
5280  //    -- the destructor is not virtual
5281  if (CSM == CXXDestructor && MD->isVirtual()) {
5282    if (Diagnose)
5283      Diag(MD->getLocation(), diag::note_nontrivial_virtual_dtor) << RD;
5284    return false;
5285  }
5286
5287  // C++11 [class.ctor]p5, C++11 [class.copy]p12, C++11 [class.copy]p25:
5288  //   A [special member] for class X is trivial if [...]
5289  //    -- class X has no virtual functions and no virtual base classes
5290  if (CSM != CXXDestructor && MD->getParent()->isDynamicClass()) {
5291    if (!Diagnose)
5292      return false;
5293
5294    if (RD->getNumVBases()) {
5295      // Check for virtual bases. We already know that the corresponding
5296      // member in all bases is trivial, so vbases must all be direct.
5297      CXXBaseSpecifier &BS = *RD->vbases_begin();
5298      assert(BS.isVirtual());
5299      Diag(BS.getLocStart(), diag::note_nontrivial_has_virtual) << RD << 1;
5300      return false;
5301    }
5302
5303    // Must have a virtual method.
5304    for (CXXRecordDecl::method_iterator MI = RD->method_begin(),
5305                                        ME = RD->method_end(); MI != ME; ++MI) {
5306      if (MI->isVirtual()) {
5307        SourceLocation MLoc = MI->getLocStart();
5308        Diag(MLoc, diag::note_nontrivial_has_virtual) << RD << 0;
5309        return false;
5310      }
5311    }
5312
5313    llvm_unreachable("dynamic class with no vbases and no virtual functions");
5314  }
5315
5316  // Looks like it's trivial!
5317  return true;
5318}
5319
5320/// \brief Data used with FindHiddenVirtualMethod
5321namespace {
5322  struct FindHiddenVirtualMethodData {
5323    Sema *S;
5324    CXXMethodDecl *Method;
5325    llvm::SmallPtrSet<const CXXMethodDecl *, 8> OverridenAndUsingBaseMethods;
5326    SmallVector<CXXMethodDecl *, 8> OverloadedMethods;
5327  };
5328}
5329
5330/// \brief Check whether any most overriden method from MD in Methods
5331static bool CheckMostOverridenMethods(const CXXMethodDecl *MD,
5332                   const llvm::SmallPtrSet<const CXXMethodDecl *, 8>& Methods) {
5333  if (MD->size_overridden_methods() == 0)
5334    return Methods.count(MD->getCanonicalDecl());
5335  for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
5336                                      E = MD->end_overridden_methods();
5337       I != E; ++I)
5338    if (CheckMostOverridenMethods(*I, Methods))
5339      return true;
5340  return false;
5341}
5342
5343/// \brief Member lookup function that determines whether a given C++
5344/// method overloads virtual methods in a base class without overriding any,
5345/// to be used with CXXRecordDecl::lookupInBases().
5346static bool FindHiddenVirtualMethod(const CXXBaseSpecifier *Specifier,
5347                                    CXXBasePath &Path,
5348                                    void *UserData) {
5349  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
5350
5351  FindHiddenVirtualMethodData &Data
5352    = *static_cast<FindHiddenVirtualMethodData*>(UserData);
5353
5354  DeclarationName Name = Data.Method->getDeclName();
5355  assert(Name.getNameKind() == DeclarationName::Identifier);
5356
5357  bool foundSameNameMethod = false;
5358  SmallVector<CXXMethodDecl *, 8> overloadedMethods;
5359  for (Path.Decls = BaseRecord->lookup(Name);
5360       !Path.Decls.empty();
5361       Path.Decls = Path.Decls.slice(1)) {
5362    NamedDecl *D = Path.Decls.front();
5363    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
5364      MD = MD->getCanonicalDecl();
5365      foundSameNameMethod = true;
5366      // Interested only in hidden virtual methods.
5367      if (!MD->isVirtual())
5368        continue;
5369      // If the method we are checking overrides a method from its base
5370      // don't warn about the other overloaded methods.
5371      if (!Data.S->IsOverload(Data.Method, MD, false))
5372        return true;
5373      // Collect the overload only if its hidden.
5374      if (!CheckMostOverridenMethods(MD, Data.OverridenAndUsingBaseMethods))
5375        overloadedMethods.push_back(MD);
5376    }
5377  }
5378
5379  if (foundSameNameMethod)
5380    Data.OverloadedMethods.append(overloadedMethods.begin(),
5381                                   overloadedMethods.end());
5382  return foundSameNameMethod;
5383}
5384
5385/// \brief Add the most overriden methods from MD to Methods
5386static void AddMostOverridenMethods(const CXXMethodDecl *MD,
5387                         llvm::SmallPtrSet<const CXXMethodDecl *, 8>& Methods) {
5388  if (MD->size_overridden_methods() == 0)
5389    Methods.insert(MD->getCanonicalDecl());
5390  for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
5391                                      E = MD->end_overridden_methods();
5392       I != E; ++I)
5393    AddMostOverridenMethods(*I, Methods);
5394}
5395
5396/// \brief See if a method overloads virtual methods in a base class without
5397/// overriding any.
5398void Sema::DiagnoseHiddenVirtualMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
5399  if (Diags.getDiagnosticLevel(diag::warn_overloaded_virtual,
5400                               MD->getLocation()) == DiagnosticsEngine::Ignored)
5401    return;
5402  if (!MD->getDeclName().isIdentifier())
5403    return;
5404
5405  CXXBasePaths Paths(/*FindAmbiguities=*/true, // true to look in all bases.
5406                     /*bool RecordPaths=*/false,
5407                     /*bool DetectVirtual=*/false);
5408  FindHiddenVirtualMethodData Data;
5409  Data.Method = MD;
5410  Data.S = this;
5411
5412  // Keep the base methods that were overriden or introduced in the subclass
5413  // by 'using' in a set. A base method not in this set is hidden.
5414  DeclContext::lookup_result R = DC->lookup(MD->getDeclName());
5415  for (DeclContext::lookup_iterator I = R.begin(), E = R.end(); I != E; ++I) {
5416    NamedDecl *ND = *I;
5417    if (UsingShadowDecl *shad = dyn_cast<UsingShadowDecl>(*I))
5418      ND = shad->getTargetDecl();
5419    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(ND))
5420      AddMostOverridenMethods(MD, Data.OverridenAndUsingBaseMethods);
5421  }
5422
5423  if (DC->lookupInBases(&FindHiddenVirtualMethod, &Data, Paths) &&
5424      !Data.OverloadedMethods.empty()) {
5425    Diag(MD->getLocation(), diag::warn_overloaded_virtual)
5426      << MD << (Data.OverloadedMethods.size() > 1);
5427
5428    for (unsigned i = 0, e = Data.OverloadedMethods.size(); i != e; ++i) {
5429      CXXMethodDecl *overloadedMD = Data.OverloadedMethods[i];
5430      PartialDiagnostic PD = PDiag(
5431           diag::note_hidden_overloaded_virtual_declared_here) << overloadedMD;
5432      HandleFunctionTypeMismatch(PD, MD->getType(), overloadedMD->getType());
5433      Diag(overloadedMD->getLocation(), PD);
5434    }
5435  }
5436}
5437
5438void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
5439                                             Decl *TagDecl,
5440                                             SourceLocation LBrac,
5441                                             SourceLocation RBrac,
5442                                             AttributeList *AttrList) {
5443  if (!TagDecl)
5444    return;
5445
5446  AdjustDeclIfTemplate(TagDecl);
5447
5448  for (const AttributeList* l = AttrList; l; l = l->getNext()) {
5449    if (l->getKind() != AttributeList::AT_Visibility)
5450      continue;
5451    l->setInvalid();
5452    Diag(l->getLoc(), diag::warn_attribute_after_definition_ignored) <<
5453      l->getName();
5454  }
5455
5456  ActOnFields(S, RLoc, TagDecl, llvm::makeArrayRef(
5457              // strict aliasing violation!
5458              reinterpret_cast<Decl**>(FieldCollector->getCurFields()),
5459              FieldCollector->getCurNumFields()), LBrac, RBrac, AttrList);
5460
5461  CheckCompletedCXXClass(
5462                        dyn_cast_or_null<CXXRecordDecl>(TagDecl));
5463}
5464
5465/// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
5466/// special functions, such as the default constructor, copy
5467/// constructor, or destructor, to the given C++ class (C++
5468/// [special]p1).  This routine can only be executed just before the
5469/// definition of the class is complete.
5470void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) {
5471  if (!ClassDecl->hasUserDeclaredConstructor())
5472    ++ASTContext::NumImplicitDefaultConstructors;
5473
5474  if (!ClassDecl->hasUserDeclaredCopyConstructor()) {
5475    ++ASTContext::NumImplicitCopyConstructors;
5476
5477    // If the properties or semantics of the copy constructor couldn't be
5478    // determined while the class was being declared, force a declaration
5479    // of it now.
5480    if (ClassDecl->needsOverloadResolutionForCopyConstructor())
5481      DeclareImplicitCopyConstructor(ClassDecl);
5482  }
5483
5484  if (getLangOpts().CPlusPlus11 && ClassDecl->needsImplicitMoveConstructor()) {
5485    ++ASTContext::NumImplicitMoveConstructors;
5486
5487    if (ClassDecl->needsOverloadResolutionForMoveConstructor())
5488      DeclareImplicitMoveConstructor(ClassDecl);
5489  }
5490
5491  if (!ClassDecl->hasUserDeclaredCopyAssignment()) {
5492    ++ASTContext::NumImplicitCopyAssignmentOperators;
5493
5494    // If we have a dynamic class, then the copy assignment operator may be
5495    // virtual, so we have to declare it immediately. This ensures that, e.g.,
5496    // it shows up in the right place in the vtable and that we diagnose
5497    // problems with the implicit exception specification.
5498    if (ClassDecl->isDynamicClass() ||
5499        ClassDecl->needsOverloadResolutionForCopyAssignment())
5500      DeclareImplicitCopyAssignment(ClassDecl);
5501  }
5502
5503  if (getLangOpts().CPlusPlus11 && ClassDecl->needsImplicitMoveAssignment()) {
5504    ++ASTContext::NumImplicitMoveAssignmentOperators;
5505
5506    // Likewise for the move assignment operator.
5507    if (ClassDecl->isDynamicClass() ||
5508        ClassDecl->needsOverloadResolutionForMoveAssignment())
5509      DeclareImplicitMoveAssignment(ClassDecl);
5510  }
5511
5512  if (!ClassDecl->hasUserDeclaredDestructor()) {
5513    ++ASTContext::NumImplicitDestructors;
5514
5515    // If we have a dynamic class, then the destructor may be virtual, so we
5516    // have to declare the destructor immediately. This ensures that, e.g., it
5517    // shows up in the right place in the vtable and that we diagnose problems
5518    // with the implicit exception specification.
5519    if (ClassDecl->isDynamicClass() ||
5520        ClassDecl->needsOverloadResolutionForDestructor())
5521      DeclareImplicitDestructor(ClassDecl);
5522  }
5523}
5524
5525void Sema::ActOnReenterDeclaratorTemplateScope(Scope *S, DeclaratorDecl *D) {
5526  if (!D)
5527    return;
5528
5529  int NumParamList = D->getNumTemplateParameterLists();
5530  for (int i = 0; i < NumParamList; i++) {
5531    TemplateParameterList* Params = D->getTemplateParameterList(i);
5532    for (TemplateParameterList::iterator Param = Params->begin(),
5533                                      ParamEnd = Params->end();
5534          Param != ParamEnd; ++Param) {
5535      NamedDecl *Named = cast<NamedDecl>(*Param);
5536      if (Named->getDeclName()) {
5537        S->AddDecl(Named);
5538        IdResolver.AddDecl(Named);
5539      }
5540    }
5541  }
5542}
5543
5544void Sema::ActOnReenterTemplateScope(Scope *S, Decl *D) {
5545  if (!D)
5546    return;
5547
5548  TemplateParameterList *Params = 0;
5549  if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D))
5550    Params = Template->getTemplateParameters();
5551  else if (ClassTemplatePartialSpecializationDecl *PartialSpec
5552           = dyn_cast<ClassTemplatePartialSpecializationDecl>(D))
5553    Params = PartialSpec->getTemplateParameters();
5554  else
5555    return;
5556
5557  for (TemplateParameterList::iterator Param = Params->begin(),
5558                                    ParamEnd = Params->end();
5559       Param != ParamEnd; ++Param) {
5560    NamedDecl *Named = cast<NamedDecl>(*Param);
5561    if (Named->getDeclName()) {
5562      S->AddDecl(Named);
5563      IdResolver.AddDecl(Named);
5564    }
5565  }
5566}
5567
5568void Sema::ActOnStartDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
5569  if (!RecordD) return;
5570  AdjustDeclIfTemplate(RecordD);
5571  CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordD);
5572  PushDeclContext(S, Record);
5573}
5574
5575void Sema::ActOnFinishDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
5576  if (!RecordD) return;
5577  PopDeclContext();
5578}
5579
5580/// ActOnStartDelayedCXXMethodDeclaration - We have completed
5581/// parsing a top-level (non-nested) C++ class, and we are now
5582/// parsing those parts of the given Method declaration that could
5583/// not be parsed earlier (C++ [class.mem]p2), such as default
5584/// arguments. This action should enter the scope of the given
5585/// Method declaration as if we had just parsed the qualified method
5586/// name. However, it should not bring the parameters into scope;
5587/// that will be performed by ActOnDelayedCXXMethodParameter.
5588void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
5589}
5590
5591/// ActOnDelayedCXXMethodParameter - We've already started a delayed
5592/// C++ method declaration. We're (re-)introducing the given
5593/// function parameter into scope for use in parsing later parts of
5594/// the method declaration. For example, we could see an
5595/// ActOnParamDefaultArgument event for this parameter.
5596void Sema::ActOnDelayedCXXMethodParameter(Scope *S, Decl *ParamD) {
5597  if (!ParamD)
5598    return;
5599
5600  ParmVarDecl *Param = cast<ParmVarDecl>(ParamD);
5601
5602  // If this parameter has an unparsed default argument, clear it out
5603  // to make way for the parsed default argument.
5604  if (Param->hasUnparsedDefaultArg())
5605    Param->setDefaultArg(0);
5606
5607  S->AddDecl(Param);
5608  if (Param->getDeclName())
5609    IdResolver.AddDecl(Param);
5610}
5611
5612/// ActOnFinishDelayedCXXMethodDeclaration - We have finished
5613/// processing the delayed method declaration for Method. The method
5614/// declaration is now considered finished. There may be a separate
5615/// ActOnStartOfFunctionDef action later (not necessarily
5616/// immediately!) for this method, if it was also defined inside the
5617/// class body.
5618void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
5619  if (!MethodD)
5620    return;
5621
5622  AdjustDeclIfTemplate(MethodD);
5623
5624  FunctionDecl *Method = cast<FunctionDecl>(MethodD);
5625
5626  // Now that we have our default arguments, check the constructor
5627  // again. It could produce additional diagnostics or affect whether
5628  // the class has implicitly-declared destructors, among other
5629  // things.
5630  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method))
5631    CheckConstructor(Constructor);
5632
5633  // Check the default arguments, which we may have added.
5634  if (!Method->isInvalidDecl())
5635    CheckCXXDefaultArguments(Method);
5636}
5637
5638/// CheckConstructorDeclarator - Called by ActOnDeclarator to check
5639/// the well-formedness of the constructor declarator @p D with type @p
5640/// R. If there are any errors in the declarator, this routine will
5641/// emit diagnostics and set the invalid bit to true.  In any case, the type
5642/// will be updated to reflect a well-formed type for the constructor and
5643/// returned.
5644QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R,
5645                                          StorageClass &SC) {
5646  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
5647
5648  // C++ [class.ctor]p3:
5649  //   A constructor shall not be virtual (10.3) or static (9.4). A
5650  //   constructor can be invoked for a const, volatile or const
5651  //   volatile object. A constructor shall not be declared const,
5652  //   volatile, or const volatile (9.3.2).
5653  if (isVirtual) {
5654    if (!D.isInvalidType())
5655      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
5656        << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
5657        << SourceRange(D.getIdentifierLoc());
5658    D.setInvalidType();
5659  }
5660  if (SC == SC_Static) {
5661    if (!D.isInvalidType())
5662      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
5663        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
5664        << SourceRange(D.getIdentifierLoc());
5665    D.setInvalidType();
5666    SC = SC_None;
5667  }
5668
5669  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
5670  if (FTI.TypeQuals != 0) {
5671    if (FTI.TypeQuals & Qualifiers::Const)
5672      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
5673        << "const" << SourceRange(D.getIdentifierLoc());
5674    if (FTI.TypeQuals & Qualifiers::Volatile)
5675      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
5676        << "volatile" << SourceRange(D.getIdentifierLoc());
5677    if (FTI.TypeQuals & Qualifiers::Restrict)
5678      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
5679        << "restrict" << SourceRange(D.getIdentifierLoc());
5680    D.setInvalidType();
5681  }
5682
5683  // C++0x [class.ctor]p4:
5684  //   A constructor shall not be declared with a ref-qualifier.
5685  if (FTI.hasRefQualifier()) {
5686    Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_constructor)
5687      << FTI.RefQualifierIsLValueRef
5688      << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
5689    D.setInvalidType();
5690  }
5691
5692  // Rebuild the function type "R" without any type qualifiers (in
5693  // case any of the errors above fired) and with "void" as the
5694  // return type, since constructors don't have return types.
5695  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
5696  if (Proto->getResultType() == Context.VoidTy && !D.isInvalidType())
5697    return R;
5698
5699  FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
5700  EPI.TypeQuals = 0;
5701  EPI.RefQualifier = RQ_None;
5702
5703  return Context.getFunctionType(Context.VoidTy, Proto->getArgTypes(), EPI);
5704}
5705
5706/// CheckConstructor - Checks a fully-formed constructor for
5707/// well-formedness, issuing any diagnostics required. Returns true if
5708/// the constructor declarator is invalid.
5709void Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
5710  CXXRecordDecl *ClassDecl
5711    = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext());
5712  if (!ClassDecl)
5713    return Constructor->setInvalidDecl();
5714
5715  // C++ [class.copy]p3:
5716  //   A declaration of a constructor for a class X is ill-formed if
5717  //   its first parameter is of type (optionally cv-qualified) X and
5718  //   either there are no other parameters or else all other
5719  //   parameters have default arguments.
5720  if (!Constructor->isInvalidDecl() &&
5721      ((Constructor->getNumParams() == 1) ||
5722       (Constructor->getNumParams() > 1 &&
5723        Constructor->getParamDecl(1)->hasDefaultArg())) &&
5724      Constructor->getTemplateSpecializationKind()
5725                                              != TSK_ImplicitInstantiation) {
5726    QualType ParamType = Constructor->getParamDecl(0)->getType();
5727    QualType ClassTy = Context.getTagDeclType(ClassDecl);
5728    if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
5729      SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation();
5730      const char *ConstRef
5731        = Constructor->getParamDecl(0)->getIdentifier() ? "const &"
5732                                                        : " const &";
5733      Diag(ParamLoc, diag::err_constructor_byvalue_arg)
5734        << FixItHint::CreateInsertion(ParamLoc, ConstRef);
5735
5736      // FIXME: Rather that making the constructor invalid, we should endeavor
5737      // to fix the type.
5738      Constructor->setInvalidDecl();
5739    }
5740  }
5741}
5742
5743/// CheckDestructor - Checks a fully-formed destructor definition for
5744/// well-formedness, issuing any diagnostics required.  Returns true
5745/// on error.
5746bool Sema::CheckDestructor(CXXDestructorDecl *Destructor) {
5747  CXXRecordDecl *RD = Destructor->getParent();
5748
5749  if (Destructor->isVirtual()) {
5750    SourceLocation Loc;
5751
5752    if (!Destructor->isImplicit())
5753      Loc = Destructor->getLocation();
5754    else
5755      Loc = RD->getLocation();
5756
5757    // If we have a virtual destructor, look up the deallocation function
5758    FunctionDecl *OperatorDelete = 0;
5759    DeclarationName Name =
5760    Context.DeclarationNames.getCXXOperatorName(OO_Delete);
5761    if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete))
5762      return true;
5763
5764    MarkFunctionReferenced(Loc, OperatorDelete);
5765
5766    Destructor->setOperatorDelete(OperatorDelete);
5767  }
5768
5769  return false;
5770}
5771
5772static inline bool
5773FTIHasSingleVoidArgument(DeclaratorChunk::FunctionTypeInfo &FTI) {
5774  return (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
5775          FTI.ArgInfo[0].Param &&
5776          cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType());
5777}
5778
5779/// CheckDestructorDeclarator - Called by ActOnDeclarator to check
5780/// the well-formednes of the destructor declarator @p D with type @p
5781/// R. If there are any errors in the declarator, this routine will
5782/// emit diagnostics and set the declarator to invalid.  Even if this happens,
5783/// will be updated to reflect a well-formed type for the destructor and
5784/// returned.
5785QualType Sema::CheckDestructorDeclarator(Declarator &D, QualType R,
5786                                         StorageClass& SC) {
5787  // C++ [class.dtor]p1:
5788  //   [...] A typedef-name that names a class is a class-name
5789  //   (7.1.3); however, a typedef-name that names a class shall not
5790  //   be used as the identifier in the declarator for a destructor
5791  //   declaration.
5792  QualType DeclaratorType = GetTypeFromParser(D.getName().DestructorName);
5793  if (const TypedefType *TT = DeclaratorType->getAs<TypedefType>())
5794    Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
5795      << DeclaratorType << isa<TypeAliasDecl>(TT->getDecl());
5796  else if (const TemplateSpecializationType *TST =
5797             DeclaratorType->getAs<TemplateSpecializationType>())
5798    if (TST->isTypeAlias())
5799      Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
5800        << DeclaratorType << 1;
5801
5802  // C++ [class.dtor]p2:
5803  //   A destructor is used to destroy objects of its class type. A
5804  //   destructor takes no parameters, and no return type can be
5805  //   specified for it (not even void). The address of a destructor
5806  //   shall not be taken. A destructor shall not be static. A
5807  //   destructor can be invoked for a const, volatile or const
5808  //   volatile object. A destructor shall not be declared const,
5809  //   volatile or const volatile (9.3.2).
5810  if (SC == SC_Static) {
5811    if (!D.isInvalidType())
5812      Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
5813        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
5814        << SourceRange(D.getIdentifierLoc())
5815        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
5816
5817    SC = SC_None;
5818  }
5819  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
5820    // Destructors don't have return types, but the parser will
5821    // happily parse something like:
5822    //
5823    //   class X {
5824    //     float ~X();
5825    //   };
5826    //
5827    // The return type will be eliminated later.
5828    Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
5829      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
5830      << SourceRange(D.getIdentifierLoc());
5831  }
5832
5833  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
5834  if (FTI.TypeQuals != 0 && !D.isInvalidType()) {
5835    if (FTI.TypeQuals & Qualifiers::Const)
5836      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
5837        << "const" << SourceRange(D.getIdentifierLoc());
5838    if (FTI.TypeQuals & Qualifiers::Volatile)
5839      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
5840        << "volatile" << SourceRange(D.getIdentifierLoc());
5841    if (FTI.TypeQuals & Qualifiers::Restrict)
5842      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
5843        << "restrict" << SourceRange(D.getIdentifierLoc());
5844    D.setInvalidType();
5845  }
5846
5847  // C++0x [class.dtor]p2:
5848  //   A destructor shall not be declared with a ref-qualifier.
5849  if (FTI.hasRefQualifier()) {
5850    Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_destructor)
5851      << FTI.RefQualifierIsLValueRef
5852      << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
5853    D.setInvalidType();
5854  }
5855
5856  // Make sure we don't have any parameters.
5857  if (FTI.NumArgs > 0 && !FTIHasSingleVoidArgument(FTI)) {
5858    Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
5859
5860    // Delete the parameters.
5861    FTI.freeArgs();
5862    D.setInvalidType();
5863  }
5864
5865  // Make sure the destructor isn't variadic.
5866  if (FTI.isVariadic) {
5867    Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
5868    D.setInvalidType();
5869  }
5870
5871  // Rebuild the function type "R" without any type qualifiers or
5872  // parameters (in case any of the errors above fired) and with
5873  // "void" as the return type, since destructors don't have return
5874  // types.
5875  if (!D.isInvalidType())
5876    return R;
5877
5878  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
5879  FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
5880  EPI.Variadic = false;
5881  EPI.TypeQuals = 0;
5882  EPI.RefQualifier = RQ_None;
5883  return Context.getFunctionType(Context.VoidTy, ArrayRef<QualType>(), EPI);
5884}
5885
5886/// CheckConversionDeclarator - Called by ActOnDeclarator to check the
5887/// well-formednes of the conversion function declarator @p D with
5888/// type @p R. If there are any errors in the declarator, this routine
5889/// will emit diagnostics and return true. Otherwise, it will return
5890/// false. Either way, the type @p R will be updated to reflect a
5891/// well-formed type for the conversion operator.
5892void Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
5893                                     StorageClass& SC) {
5894  // C++ [class.conv.fct]p1:
5895  //   Neither parameter types nor return type can be specified. The
5896  //   type of a conversion function (8.3.5) is "function taking no
5897  //   parameter returning conversion-type-id."
5898  if (SC == SC_Static) {
5899    if (!D.isInvalidType())
5900      Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
5901        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
5902        << SourceRange(D.getIdentifierLoc());
5903    D.setInvalidType();
5904    SC = SC_None;
5905  }
5906
5907  QualType ConvType = GetTypeFromParser(D.getName().ConversionFunctionId);
5908
5909  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
5910    // Conversion functions don't have return types, but the parser will
5911    // happily parse something like:
5912    //
5913    //   class X {
5914    //     float operator bool();
5915    //   };
5916    //
5917    // The return type will be changed later anyway.
5918    Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
5919      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
5920      << SourceRange(D.getIdentifierLoc());
5921    D.setInvalidType();
5922  }
5923
5924  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
5925
5926  // Make sure we don't have any parameters.
5927  if (Proto->getNumArgs() > 0) {
5928    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
5929
5930    // Delete the parameters.
5931    D.getFunctionTypeInfo().freeArgs();
5932    D.setInvalidType();
5933  } else if (Proto->isVariadic()) {
5934    Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
5935    D.setInvalidType();
5936  }
5937
5938  // Diagnose "&operator bool()" and other such nonsense.  This
5939  // is actually a gcc extension which we don't support.
5940  if (Proto->getResultType() != ConvType) {
5941    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_complex_decl)
5942      << Proto->getResultType();
5943    D.setInvalidType();
5944    ConvType = Proto->getResultType();
5945  }
5946
5947  // C++ [class.conv.fct]p4:
5948  //   The conversion-type-id shall not represent a function type nor
5949  //   an array type.
5950  if (ConvType->isArrayType()) {
5951    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
5952    ConvType = Context.getPointerType(ConvType);
5953    D.setInvalidType();
5954  } else if (ConvType->isFunctionType()) {
5955    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
5956    ConvType = Context.getPointerType(ConvType);
5957    D.setInvalidType();
5958  }
5959
5960  // Rebuild the function type "R" without any parameters (in case any
5961  // of the errors above fired) and with the conversion type as the
5962  // return type.
5963  if (D.isInvalidType())
5964    R = Context.getFunctionType(ConvType, ArrayRef<QualType>(),
5965                                Proto->getExtProtoInfo());
5966
5967  // C++0x explicit conversion operators.
5968  if (D.getDeclSpec().isExplicitSpecified())
5969    Diag(D.getDeclSpec().getExplicitSpecLoc(),
5970         getLangOpts().CPlusPlus11 ?
5971           diag::warn_cxx98_compat_explicit_conversion_functions :
5972           diag::ext_explicit_conversion_functions)
5973      << SourceRange(D.getDeclSpec().getExplicitSpecLoc());
5974}
5975
5976/// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
5977/// the declaration of the given C++ conversion function. This routine
5978/// is responsible for recording the conversion function in the C++
5979/// class, if possible.
5980Decl *Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
5981  assert(Conversion && "Expected to receive a conversion function declaration");
5982
5983  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext());
5984
5985  // Make sure we aren't redeclaring the conversion function.
5986  QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());
5987
5988  // C++ [class.conv.fct]p1:
5989  //   [...] A conversion function is never used to convert a
5990  //   (possibly cv-qualified) object to the (possibly cv-qualified)
5991  //   same object type (or a reference to it), to a (possibly
5992  //   cv-qualified) base class of that type (or a reference to it),
5993  //   or to (possibly cv-qualified) void.
5994  // FIXME: Suppress this warning if the conversion function ends up being a
5995  // virtual function that overrides a virtual function in a base class.
5996  QualType ClassType
5997    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
5998  if (const ReferenceType *ConvTypeRef = ConvType->getAs<ReferenceType>())
5999    ConvType = ConvTypeRef->getPointeeType();
6000  if (Conversion->getTemplateSpecializationKind() != TSK_Undeclared &&
6001      Conversion->getTemplateSpecializationKind() != TSK_ExplicitSpecialization)
6002    /* Suppress diagnostics for instantiations. */;
6003  else if (ConvType->isRecordType()) {
6004    ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
6005    if (ConvType == ClassType)
6006      Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used)
6007        << ClassType;
6008    else if (IsDerivedFrom(ClassType, ConvType))
6009      Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used)
6010        <<  ClassType << ConvType;
6011  } else if (ConvType->isVoidType()) {
6012    Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used)
6013      << ClassType << ConvType;
6014  }
6015
6016  if (FunctionTemplateDecl *ConversionTemplate
6017                                = Conversion->getDescribedFunctionTemplate())
6018    return ConversionTemplate;
6019
6020  return Conversion;
6021}
6022
6023//===----------------------------------------------------------------------===//
6024// Namespace Handling
6025//===----------------------------------------------------------------------===//
6026
6027/// \brief Diagnose a mismatch in 'inline' qualifiers when a namespace is
6028/// reopened.
6029static void DiagnoseNamespaceInlineMismatch(Sema &S, SourceLocation KeywordLoc,
6030                                            SourceLocation Loc,
6031                                            IdentifierInfo *II, bool *IsInline,
6032                                            NamespaceDecl *PrevNS) {
6033  assert(*IsInline != PrevNS->isInline());
6034
6035  // HACK: Work around a bug in libstdc++4.6's <atomic>, where
6036  // std::__atomic[0,1,2] are defined as non-inline namespaces, then reopened as
6037  // inline namespaces, with the intention of bringing names into namespace std.
6038  //
6039  // We support this just well enough to get that case working; this is not
6040  // sufficient to support reopening namespaces as inline in general.
6041  if (*IsInline && II && II->getName().startswith("__atomic") &&
6042      S.getSourceManager().isInSystemHeader(Loc)) {
6043    // Mark all prior declarations of the namespace as inline.
6044    for (NamespaceDecl *NS = PrevNS->getMostRecentDecl(); NS;
6045         NS = NS->getPreviousDecl())
6046      NS->setInline(*IsInline);
6047    // Patch up the lookup table for the containing namespace. This isn't really
6048    // correct, but it's good enough for this particular case.
6049    for (DeclContext::decl_iterator I = PrevNS->decls_begin(),
6050                                    E = PrevNS->decls_end(); I != E; ++I)
6051      if (NamedDecl *ND = dyn_cast<NamedDecl>(*I))
6052        PrevNS->getParent()->makeDeclVisibleInContext(ND);
6053    return;
6054  }
6055
6056  if (PrevNS->isInline())
6057    // The user probably just forgot the 'inline', so suggest that it
6058    // be added back.
6059    S.Diag(Loc, diag::warn_inline_namespace_reopened_noninline)
6060      << FixItHint::CreateInsertion(KeywordLoc, "inline ");
6061  else
6062    S.Diag(Loc, diag::err_inline_namespace_mismatch)
6063      << IsInline;
6064
6065  S.Diag(PrevNS->getLocation(), diag::note_previous_definition);
6066  *IsInline = PrevNS->isInline();
6067}
6068
6069/// ActOnStartNamespaceDef - This is called at the start of a namespace
6070/// definition.
6071Decl *Sema::ActOnStartNamespaceDef(Scope *NamespcScope,
6072                                   SourceLocation InlineLoc,
6073                                   SourceLocation NamespaceLoc,
6074                                   SourceLocation IdentLoc,
6075                                   IdentifierInfo *II,
6076                                   SourceLocation LBrace,
6077                                   AttributeList *AttrList) {
6078  SourceLocation StartLoc = InlineLoc.isValid() ? InlineLoc : NamespaceLoc;
6079  // For anonymous namespace, take the location of the left brace.
6080  SourceLocation Loc = II ? IdentLoc : LBrace;
6081  bool IsInline = InlineLoc.isValid();
6082  bool IsInvalid = false;
6083  bool IsStd = false;
6084  bool AddToKnown = false;
6085  Scope *DeclRegionScope = NamespcScope->getParent();
6086
6087  NamespaceDecl *PrevNS = 0;
6088  if (II) {
6089    // C++ [namespace.def]p2:
6090    //   The identifier in an original-namespace-definition shall not
6091    //   have been previously defined in the declarative region in
6092    //   which the original-namespace-definition appears. The
6093    //   identifier in an original-namespace-definition is the name of
6094    //   the namespace. Subsequently in that declarative region, it is
6095    //   treated as an original-namespace-name.
6096    //
6097    // Since namespace names are unique in their scope, and we don't
6098    // look through using directives, just look for any ordinary names.
6099
6100    const unsigned IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Member |
6101    Decl::IDNS_Type | Decl::IDNS_Using | Decl::IDNS_Tag |
6102    Decl::IDNS_Namespace;
6103    NamedDecl *PrevDecl = 0;
6104    DeclContext::lookup_result R = CurContext->getRedeclContext()->lookup(II);
6105    for (DeclContext::lookup_iterator I = R.begin(), E = R.end(); I != E;
6106         ++I) {
6107      if ((*I)->getIdentifierNamespace() & IDNS) {
6108        PrevDecl = *I;
6109        break;
6110      }
6111    }
6112
6113    PrevNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl);
6114
6115    if (PrevNS) {
6116      // This is an extended namespace definition.
6117      if (IsInline != PrevNS->isInline())
6118        DiagnoseNamespaceInlineMismatch(*this, NamespaceLoc, Loc, II,
6119                                        &IsInline, PrevNS);
6120    } else if (PrevDecl) {
6121      // This is an invalid name redefinition.
6122      Diag(Loc, diag::err_redefinition_different_kind)
6123        << II;
6124      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
6125      IsInvalid = true;
6126      // Continue on to push Namespc as current DeclContext and return it.
6127    } else if (II->isStr("std") &&
6128               CurContext->getRedeclContext()->isTranslationUnit()) {
6129      // This is the first "real" definition of the namespace "std", so update
6130      // our cache of the "std" namespace to point at this definition.
6131      PrevNS = getStdNamespace();
6132      IsStd = true;
6133      AddToKnown = !IsInline;
6134    } else {
6135      // We've seen this namespace for the first time.
6136      AddToKnown = !IsInline;
6137    }
6138  } else {
6139    // Anonymous namespaces.
6140
6141    // Determine whether the parent already has an anonymous namespace.
6142    DeclContext *Parent = CurContext->getRedeclContext();
6143    if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
6144      PrevNS = TU->getAnonymousNamespace();
6145    } else {
6146      NamespaceDecl *ND = cast<NamespaceDecl>(Parent);
6147      PrevNS = ND->getAnonymousNamespace();
6148    }
6149
6150    if (PrevNS && IsInline != PrevNS->isInline())
6151      DiagnoseNamespaceInlineMismatch(*this, NamespaceLoc, NamespaceLoc, II,
6152                                      &IsInline, PrevNS);
6153  }
6154
6155  NamespaceDecl *Namespc = NamespaceDecl::Create(Context, CurContext, IsInline,
6156                                                 StartLoc, Loc, II, PrevNS);
6157  if (IsInvalid)
6158    Namespc->setInvalidDecl();
6159
6160  ProcessDeclAttributeList(DeclRegionScope, Namespc, AttrList);
6161
6162  // FIXME: Should we be merging attributes?
6163  if (const VisibilityAttr *Attr = Namespc->getAttr<VisibilityAttr>())
6164    PushNamespaceVisibilityAttr(Attr, Loc);
6165
6166  if (IsStd)
6167    StdNamespace = Namespc;
6168  if (AddToKnown)
6169    KnownNamespaces[Namespc] = false;
6170
6171  if (II) {
6172    PushOnScopeChains(Namespc, DeclRegionScope);
6173  } else {
6174    // Link the anonymous namespace into its parent.
6175    DeclContext *Parent = CurContext->getRedeclContext();
6176    if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
6177      TU->setAnonymousNamespace(Namespc);
6178    } else {
6179      cast<NamespaceDecl>(Parent)->setAnonymousNamespace(Namespc);
6180    }
6181
6182    CurContext->addDecl(Namespc);
6183
6184    // C++ [namespace.unnamed]p1.  An unnamed-namespace-definition
6185    //   behaves as if it were replaced by
6186    //     namespace unique { /* empty body */ }
6187    //     using namespace unique;
6188    //     namespace unique { namespace-body }
6189    //   where all occurrences of 'unique' in a translation unit are
6190    //   replaced by the same identifier and this identifier differs
6191    //   from all other identifiers in the entire program.
6192
6193    // We just create the namespace with an empty name and then add an
6194    // implicit using declaration, just like the standard suggests.
6195    //
6196    // CodeGen enforces the "universally unique" aspect by giving all
6197    // declarations semantically contained within an anonymous
6198    // namespace internal linkage.
6199
6200    if (!PrevNS) {
6201      UsingDirectiveDecl* UD
6202        = UsingDirectiveDecl::Create(Context, Parent,
6203                                     /* 'using' */ LBrace,
6204                                     /* 'namespace' */ SourceLocation(),
6205                                     /* qualifier */ NestedNameSpecifierLoc(),
6206                                     /* identifier */ SourceLocation(),
6207                                     Namespc,
6208                                     /* Ancestor */ Parent);
6209      UD->setImplicit();
6210      Parent->addDecl(UD);
6211    }
6212  }
6213
6214  ActOnDocumentableDecl(Namespc);
6215
6216  // Although we could have an invalid decl (i.e. the namespace name is a
6217  // redefinition), push it as current DeclContext and try to continue parsing.
6218  // FIXME: We should be able to push Namespc here, so that the each DeclContext
6219  // for the namespace has the declarations that showed up in that particular
6220  // namespace definition.
6221  PushDeclContext(NamespcScope, Namespc);
6222  return Namespc;
6223}
6224
6225/// getNamespaceDecl - Returns the namespace a decl represents. If the decl
6226/// is a namespace alias, returns the namespace it points to.
6227static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) {
6228  if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D))
6229    return AD->getNamespace();
6230  return dyn_cast_or_null<NamespaceDecl>(D);
6231}
6232
6233/// ActOnFinishNamespaceDef - This callback is called after a namespace is
6234/// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
6235void Sema::ActOnFinishNamespaceDef(Decl *Dcl, SourceLocation RBrace) {
6236  NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
6237  assert(Namespc && "Invalid parameter, expected NamespaceDecl");
6238  Namespc->setRBraceLoc(RBrace);
6239  PopDeclContext();
6240  if (Namespc->hasAttr<VisibilityAttr>())
6241    PopPragmaVisibility(true, RBrace);
6242}
6243
6244CXXRecordDecl *Sema::getStdBadAlloc() const {
6245  return cast_or_null<CXXRecordDecl>(
6246                                  StdBadAlloc.get(Context.getExternalSource()));
6247}
6248
6249NamespaceDecl *Sema::getStdNamespace() const {
6250  return cast_or_null<NamespaceDecl>(
6251                                 StdNamespace.get(Context.getExternalSource()));
6252}
6253
6254/// \brief Retrieve the special "std" namespace, which may require us to
6255/// implicitly define the namespace.
6256NamespaceDecl *Sema::getOrCreateStdNamespace() {
6257  if (!StdNamespace) {
6258    // The "std" namespace has not yet been defined, so build one implicitly.
6259    StdNamespace = NamespaceDecl::Create(Context,
6260                                         Context.getTranslationUnitDecl(),
6261                                         /*Inline=*/false,
6262                                         SourceLocation(), SourceLocation(),
6263                                         &PP.getIdentifierTable().get("std"),
6264                                         /*PrevDecl=*/0);
6265    getStdNamespace()->setImplicit(true);
6266  }
6267
6268  return getStdNamespace();
6269}
6270
6271bool Sema::isStdInitializerList(QualType Ty, QualType *Element) {
6272  assert(getLangOpts().CPlusPlus &&
6273         "Looking for std::initializer_list outside of C++.");
6274
6275  // We're looking for implicit instantiations of
6276  // template <typename E> class std::initializer_list.
6277
6278  if (!StdNamespace) // If we haven't seen namespace std yet, this can't be it.
6279    return false;
6280
6281  ClassTemplateDecl *Template = 0;
6282  const TemplateArgument *Arguments = 0;
6283
6284  if (const RecordType *RT = Ty->getAs<RecordType>()) {
6285
6286    ClassTemplateSpecializationDecl *Specialization =
6287        dyn_cast<ClassTemplateSpecializationDecl>(RT->getDecl());
6288    if (!Specialization)
6289      return false;
6290
6291    Template = Specialization->getSpecializedTemplate();
6292    Arguments = Specialization->getTemplateArgs().data();
6293  } else if (const TemplateSpecializationType *TST =
6294                 Ty->getAs<TemplateSpecializationType>()) {
6295    Template = dyn_cast_or_null<ClassTemplateDecl>(
6296        TST->getTemplateName().getAsTemplateDecl());
6297    Arguments = TST->getArgs();
6298  }
6299  if (!Template)
6300    return false;
6301
6302  if (!StdInitializerList) {
6303    // Haven't recognized std::initializer_list yet, maybe this is it.
6304    CXXRecordDecl *TemplateClass = Template->getTemplatedDecl();
6305    if (TemplateClass->getIdentifier() !=
6306            &PP.getIdentifierTable().get("initializer_list") ||
6307        !getStdNamespace()->InEnclosingNamespaceSetOf(
6308            TemplateClass->getDeclContext()))
6309      return false;
6310    // This is a template called std::initializer_list, but is it the right
6311    // template?
6312    TemplateParameterList *Params = Template->getTemplateParameters();
6313    if (Params->getMinRequiredArguments() != 1)
6314      return false;
6315    if (!isa<TemplateTypeParmDecl>(Params->getParam(0)))
6316      return false;
6317
6318    // It's the right template.
6319    StdInitializerList = Template;
6320  }
6321
6322  if (Template != StdInitializerList)
6323    return false;
6324
6325  // This is an instance of std::initializer_list. Find the argument type.
6326  if (Element)
6327    *Element = Arguments[0].getAsType();
6328  return true;
6329}
6330
6331static ClassTemplateDecl *LookupStdInitializerList(Sema &S, SourceLocation Loc){
6332  NamespaceDecl *Std = S.getStdNamespace();
6333  if (!Std) {
6334    S.Diag(Loc, diag::err_implied_std_initializer_list_not_found);
6335    return 0;
6336  }
6337
6338  LookupResult Result(S, &S.PP.getIdentifierTable().get("initializer_list"),
6339                      Loc, Sema::LookupOrdinaryName);
6340  if (!S.LookupQualifiedName(Result, Std)) {
6341    S.Diag(Loc, diag::err_implied_std_initializer_list_not_found);
6342    return 0;
6343  }
6344  ClassTemplateDecl *Template = Result.getAsSingle<ClassTemplateDecl>();
6345  if (!Template) {
6346    Result.suppressDiagnostics();
6347    // We found something weird. Complain about the first thing we found.
6348    NamedDecl *Found = *Result.begin();
6349    S.Diag(Found->getLocation(), diag::err_malformed_std_initializer_list);
6350    return 0;
6351  }
6352
6353  // We found some template called std::initializer_list. Now verify that it's
6354  // correct.
6355  TemplateParameterList *Params = Template->getTemplateParameters();
6356  if (Params->getMinRequiredArguments() != 1 ||
6357      !isa<TemplateTypeParmDecl>(Params->getParam(0))) {
6358    S.Diag(Template->getLocation(), diag::err_malformed_std_initializer_list);
6359    return 0;
6360  }
6361
6362  return Template;
6363}
6364
6365QualType Sema::BuildStdInitializerList(QualType Element, SourceLocation Loc) {
6366  if (!StdInitializerList) {
6367    StdInitializerList = LookupStdInitializerList(*this, Loc);
6368    if (!StdInitializerList)
6369      return QualType();
6370  }
6371
6372  TemplateArgumentListInfo Args(Loc, Loc);
6373  Args.addArgument(TemplateArgumentLoc(TemplateArgument(Element),
6374                                       Context.getTrivialTypeSourceInfo(Element,
6375                                                                        Loc)));
6376  return Context.getCanonicalType(
6377      CheckTemplateIdType(TemplateName(StdInitializerList), Loc, Args));
6378}
6379
6380bool Sema::isInitListConstructor(const CXXConstructorDecl* Ctor) {
6381  // C++ [dcl.init.list]p2:
6382  //   A constructor is an initializer-list constructor if its first parameter
6383  //   is of type std::initializer_list<E> or reference to possibly cv-qualified
6384  //   std::initializer_list<E> for some type E, and either there are no other
6385  //   parameters or else all other parameters have default arguments.
6386  if (Ctor->getNumParams() < 1 ||
6387      (Ctor->getNumParams() > 1 && !Ctor->getParamDecl(1)->hasDefaultArg()))
6388    return false;
6389
6390  QualType ArgType = Ctor->getParamDecl(0)->getType();
6391  if (const ReferenceType *RT = ArgType->getAs<ReferenceType>())
6392    ArgType = RT->getPointeeType().getUnqualifiedType();
6393
6394  return isStdInitializerList(ArgType, 0);
6395}
6396
6397/// \brief Determine whether a using statement is in a context where it will be
6398/// apply in all contexts.
6399static bool IsUsingDirectiveInToplevelContext(DeclContext *CurContext) {
6400  switch (CurContext->getDeclKind()) {
6401    case Decl::TranslationUnit:
6402      return true;
6403    case Decl::LinkageSpec:
6404      return IsUsingDirectiveInToplevelContext(CurContext->getParent());
6405    default:
6406      return false;
6407  }
6408}
6409
6410namespace {
6411
6412// Callback to only accept typo corrections that are namespaces.
6413class NamespaceValidatorCCC : public CorrectionCandidateCallback {
6414 public:
6415  virtual bool ValidateCandidate(const TypoCorrection &candidate) {
6416    if (NamedDecl *ND = candidate.getCorrectionDecl()) {
6417      return isa<NamespaceDecl>(ND) || isa<NamespaceAliasDecl>(ND);
6418    }
6419    return false;
6420  }
6421};
6422
6423}
6424
6425static bool TryNamespaceTypoCorrection(Sema &S, LookupResult &R, Scope *Sc,
6426                                       CXXScopeSpec &SS,
6427                                       SourceLocation IdentLoc,
6428                                       IdentifierInfo *Ident) {
6429  NamespaceValidatorCCC Validator;
6430  R.clear();
6431  if (TypoCorrection Corrected = S.CorrectTypo(R.getLookupNameInfo(),
6432                                               R.getLookupKind(), Sc, &SS,
6433                                               Validator)) {
6434    std::string CorrectedStr(Corrected.getAsString(S.getLangOpts()));
6435    std::string CorrectedQuotedStr(Corrected.getQuoted(S.getLangOpts()));
6436    if (DeclContext *DC = S.computeDeclContext(SS, false))
6437      S.Diag(IdentLoc, diag::err_using_directive_member_suggest)
6438        << Ident << DC << CorrectedQuotedStr << SS.getRange()
6439        << FixItHint::CreateReplacement(Corrected.getCorrectionRange(),
6440                                        CorrectedStr);
6441    else
6442      S.Diag(IdentLoc, diag::err_using_directive_suggest)
6443        << Ident << CorrectedQuotedStr
6444        << FixItHint::CreateReplacement(IdentLoc, CorrectedStr);
6445
6446    S.Diag(Corrected.getCorrectionDecl()->getLocation(),
6447         diag::note_namespace_defined_here) << CorrectedQuotedStr;
6448
6449    R.addDecl(Corrected.getCorrectionDecl());
6450    return true;
6451  }
6452  return false;
6453}
6454
6455Decl *Sema::ActOnUsingDirective(Scope *S,
6456                                          SourceLocation UsingLoc,
6457                                          SourceLocation NamespcLoc,
6458                                          CXXScopeSpec &SS,
6459                                          SourceLocation IdentLoc,
6460                                          IdentifierInfo *NamespcName,
6461                                          AttributeList *AttrList) {
6462  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
6463  assert(NamespcName && "Invalid NamespcName.");
6464  assert(IdentLoc.isValid() && "Invalid NamespceName location.");
6465
6466  // This can only happen along a recovery path.
6467  while (S->getFlags() & Scope::TemplateParamScope)
6468    S = S->getParent();
6469  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
6470
6471  UsingDirectiveDecl *UDir = 0;
6472  NestedNameSpecifier *Qualifier = 0;
6473  if (SS.isSet())
6474    Qualifier = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
6475
6476  // Lookup namespace name.
6477  LookupResult R(*this, NamespcName, IdentLoc, LookupNamespaceName);
6478  LookupParsedName(R, S, &SS);
6479  if (R.isAmbiguous())
6480    return 0;
6481
6482  if (R.empty()) {
6483    R.clear();
6484    // Allow "using namespace std;" or "using namespace ::std;" even if
6485    // "std" hasn't been defined yet, for GCC compatibility.
6486    if ((!Qualifier || Qualifier->getKind() == NestedNameSpecifier::Global) &&
6487        NamespcName->isStr("std")) {
6488      Diag(IdentLoc, diag::ext_using_undefined_std);
6489      R.addDecl(getOrCreateStdNamespace());
6490      R.resolveKind();
6491    }
6492    // Otherwise, attempt typo correction.
6493    else TryNamespaceTypoCorrection(*this, R, S, SS, IdentLoc, NamespcName);
6494  }
6495
6496  if (!R.empty()) {
6497    NamedDecl *Named = R.getFoundDecl();
6498    assert((isa<NamespaceDecl>(Named) || isa<NamespaceAliasDecl>(Named))
6499        && "expected namespace decl");
6500    // C++ [namespace.udir]p1:
6501    //   A using-directive specifies that the names in the nominated
6502    //   namespace can be used in the scope in which the
6503    //   using-directive appears after the using-directive. During
6504    //   unqualified name lookup (3.4.1), the names appear as if they
6505    //   were declared in the nearest enclosing namespace which
6506    //   contains both the using-directive and the nominated
6507    //   namespace. [Note: in this context, "contains" means "contains
6508    //   directly or indirectly". ]
6509
6510    // Find enclosing context containing both using-directive and
6511    // nominated namespace.
6512    NamespaceDecl *NS = getNamespaceDecl(Named);
6513    DeclContext *CommonAncestor = cast<DeclContext>(NS);
6514    while (CommonAncestor && !CommonAncestor->Encloses(CurContext))
6515      CommonAncestor = CommonAncestor->getParent();
6516
6517    UDir = UsingDirectiveDecl::Create(Context, CurContext, UsingLoc, NamespcLoc,
6518                                      SS.getWithLocInContext(Context),
6519                                      IdentLoc, Named, CommonAncestor);
6520
6521    if (IsUsingDirectiveInToplevelContext(CurContext) &&
6522        !SourceMgr.isFromMainFile(SourceMgr.getExpansionLoc(IdentLoc))) {
6523      Diag(IdentLoc, diag::warn_using_directive_in_header);
6524    }
6525
6526    PushUsingDirective(S, UDir);
6527  } else {
6528    Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
6529  }
6530
6531  if (UDir)
6532    ProcessDeclAttributeList(S, UDir, AttrList);
6533
6534  return UDir;
6535}
6536
6537void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) {
6538  // If the scope has an associated entity and the using directive is at
6539  // namespace or translation unit scope, add the UsingDirectiveDecl into
6540  // its lookup structure so qualified name lookup can find it.
6541  DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity());
6542  if (Ctx && !Ctx->isFunctionOrMethod())
6543    Ctx->addDecl(UDir);
6544  else
6545    // Otherwise, it is at block sope. The using-directives will affect lookup
6546    // only to the end of the scope.
6547    S->PushUsingDirective(UDir);
6548}
6549
6550
6551Decl *Sema::ActOnUsingDeclaration(Scope *S,
6552                                  AccessSpecifier AS,
6553                                  bool HasUsingKeyword,
6554                                  SourceLocation UsingLoc,
6555                                  CXXScopeSpec &SS,
6556                                  UnqualifiedId &Name,
6557                                  AttributeList *AttrList,
6558                                  bool IsTypeName,
6559                                  SourceLocation TypenameLoc) {
6560  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
6561
6562  switch (Name.getKind()) {
6563  case UnqualifiedId::IK_ImplicitSelfParam:
6564  case UnqualifiedId::IK_Identifier:
6565  case UnqualifiedId::IK_OperatorFunctionId:
6566  case UnqualifiedId::IK_LiteralOperatorId:
6567  case UnqualifiedId::IK_ConversionFunctionId:
6568    break;
6569
6570  case UnqualifiedId::IK_ConstructorName:
6571  case UnqualifiedId::IK_ConstructorTemplateId:
6572    // C++11 inheriting constructors.
6573    Diag(Name.getLocStart(),
6574         getLangOpts().CPlusPlus11 ?
6575           diag::warn_cxx98_compat_using_decl_constructor :
6576           diag::err_using_decl_constructor)
6577      << SS.getRange();
6578
6579    if (getLangOpts().CPlusPlus11) break;
6580
6581    return 0;
6582
6583  case UnqualifiedId::IK_DestructorName:
6584    Diag(Name.getLocStart(), diag::err_using_decl_destructor)
6585      << SS.getRange();
6586    return 0;
6587
6588  case UnqualifiedId::IK_TemplateId:
6589    Diag(Name.getLocStart(), diag::err_using_decl_template_id)
6590      << SourceRange(Name.TemplateId->LAngleLoc, Name.TemplateId->RAngleLoc);
6591    return 0;
6592  }
6593
6594  DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name);
6595  DeclarationName TargetName = TargetNameInfo.getName();
6596  if (!TargetName)
6597    return 0;
6598
6599  // Warn about access declarations.
6600  // TODO: store that the declaration was written without 'using' and
6601  // talk about access decls instead of using decls in the
6602  // diagnostics.
6603  if (!HasUsingKeyword) {
6604    UsingLoc = Name.getLocStart();
6605
6606    Diag(UsingLoc, diag::warn_access_decl_deprecated)
6607      << FixItHint::CreateInsertion(SS.getRange().getBegin(), "using ");
6608  }
6609
6610  if (DiagnoseUnexpandedParameterPack(SS, UPPC_UsingDeclaration) ||
6611      DiagnoseUnexpandedParameterPack(TargetNameInfo, UPPC_UsingDeclaration))
6612    return 0;
6613
6614  NamedDecl *UD = BuildUsingDeclaration(S, AS, UsingLoc, SS,
6615                                        TargetNameInfo, AttrList,
6616                                        /* IsInstantiation */ false,
6617                                        IsTypeName, TypenameLoc);
6618  if (UD)
6619    PushOnScopeChains(UD, S, /*AddToContext*/ false);
6620
6621  return UD;
6622}
6623
6624/// \brief Determine whether a using declaration considers the given
6625/// declarations as "equivalent", e.g., if they are redeclarations of
6626/// the same entity or are both typedefs of the same type.
6627static bool
6628IsEquivalentForUsingDecl(ASTContext &Context, NamedDecl *D1, NamedDecl *D2,
6629                         bool &SuppressRedeclaration) {
6630  if (D1->getCanonicalDecl() == D2->getCanonicalDecl()) {
6631    SuppressRedeclaration = false;
6632    return true;
6633  }
6634
6635  if (TypedefNameDecl *TD1 = dyn_cast<TypedefNameDecl>(D1))
6636    if (TypedefNameDecl *TD2 = dyn_cast<TypedefNameDecl>(D2)) {
6637      SuppressRedeclaration = true;
6638      return Context.hasSameType(TD1->getUnderlyingType(),
6639                                 TD2->getUnderlyingType());
6640    }
6641
6642  return false;
6643}
6644
6645
6646/// Determines whether to create a using shadow decl for a particular
6647/// decl, given the set of decls existing prior to this using lookup.
6648bool Sema::CheckUsingShadowDecl(UsingDecl *Using, NamedDecl *Orig,
6649                                const LookupResult &Previous) {
6650  // Diagnose finding a decl which is not from a base class of the
6651  // current class.  We do this now because there are cases where this
6652  // function will silently decide not to build a shadow decl, which
6653  // will pre-empt further diagnostics.
6654  //
6655  // We don't need to do this in C++0x because we do the check once on
6656  // the qualifier.
6657  //
6658  // FIXME: diagnose the following if we care enough:
6659  //   struct A { int foo; };
6660  //   struct B : A { using A::foo; };
6661  //   template <class T> struct C : A {};
6662  //   template <class T> struct D : C<T> { using B::foo; } // <---
6663  // This is invalid (during instantiation) in C++03 because B::foo
6664  // resolves to the using decl in B, which is not a base class of D<T>.
6665  // We can't diagnose it immediately because C<T> is an unknown
6666  // specialization.  The UsingShadowDecl in D<T> then points directly
6667  // to A::foo, which will look well-formed when we instantiate.
6668  // The right solution is to not collapse the shadow-decl chain.
6669  if (!getLangOpts().CPlusPlus11 && CurContext->isRecord()) {
6670    DeclContext *OrigDC = Orig->getDeclContext();
6671
6672    // Handle enums and anonymous structs.
6673    if (isa<EnumDecl>(OrigDC)) OrigDC = OrigDC->getParent();
6674    CXXRecordDecl *OrigRec = cast<CXXRecordDecl>(OrigDC);
6675    while (OrigRec->isAnonymousStructOrUnion())
6676      OrigRec = cast<CXXRecordDecl>(OrigRec->getDeclContext());
6677
6678    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(OrigRec)) {
6679      if (OrigDC == CurContext) {
6680        Diag(Using->getLocation(),
6681             diag::err_using_decl_nested_name_specifier_is_current_class)
6682          << Using->getQualifierLoc().getSourceRange();
6683        Diag(Orig->getLocation(), diag::note_using_decl_target);
6684        return true;
6685      }
6686
6687      Diag(Using->getQualifierLoc().getBeginLoc(),
6688           diag::err_using_decl_nested_name_specifier_is_not_base_class)
6689        << Using->getQualifier()
6690        << cast<CXXRecordDecl>(CurContext)
6691        << Using->getQualifierLoc().getSourceRange();
6692      Diag(Orig->getLocation(), diag::note_using_decl_target);
6693      return true;
6694    }
6695  }
6696
6697  if (Previous.empty()) return false;
6698
6699  NamedDecl *Target = Orig;
6700  if (isa<UsingShadowDecl>(Target))
6701    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
6702
6703  // If the target happens to be one of the previous declarations, we
6704  // don't have a conflict.
6705  //
6706  // FIXME: but we might be increasing its access, in which case we
6707  // should redeclare it.
6708  NamedDecl *NonTag = 0, *Tag = 0;
6709  for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
6710         I != E; ++I) {
6711    NamedDecl *D = (*I)->getUnderlyingDecl();
6712    bool Result;
6713    if (IsEquivalentForUsingDecl(Context, D, Target, Result))
6714      return Result;
6715
6716    (isa<TagDecl>(D) ? Tag : NonTag) = D;
6717  }
6718
6719  if (Target->isFunctionOrFunctionTemplate()) {
6720    FunctionDecl *FD;
6721    if (isa<FunctionTemplateDecl>(Target))
6722      FD = cast<FunctionTemplateDecl>(Target)->getTemplatedDecl();
6723    else
6724      FD = cast<FunctionDecl>(Target);
6725
6726    NamedDecl *OldDecl = 0;
6727    switch (CheckOverload(0, FD, Previous, OldDecl, /*IsForUsingDecl*/ true)) {
6728    case Ovl_Overload:
6729      return false;
6730
6731    case Ovl_NonFunction:
6732      Diag(Using->getLocation(), diag::err_using_decl_conflict);
6733      break;
6734
6735    // We found a decl with the exact signature.
6736    case Ovl_Match:
6737      // If we're in a record, we want to hide the target, so we
6738      // return true (without a diagnostic) to tell the caller not to
6739      // build a shadow decl.
6740      if (CurContext->isRecord())
6741        return true;
6742
6743      // If we're not in a record, this is an error.
6744      Diag(Using->getLocation(), diag::err_using_decl_conflict);
6745      break;
6746    }
6747
6748    Diag(Target->getLocation(), diag::note_using_decl_target);
6749    Diag(OldDecl->getLocation(), diag::note_using_decl_conflict);
6750    return true;
6751  }
6752
6753  // Target is not a function.
6754
6755  if (isa<TagDecl>(Target)) {
6756    // No conflict between a tag and a non-tag.
6757    if (!Tag) return false;
6758
6759    Diag(Using->getLocation(), diag::err_using_decl_conflict);
6760    Diag(Target->getLocation(), diag::note_using_decl_target);
6761    Diag(Tag->getLocation(), diag::note_using_decl_conflict);
6762    return true;
6763  }
6764
6765  // No conflict between a tag and a non-tag.
6766  if (!NonTag) return false;
6767
6768  Diag(Using->getLocation(), diag::err_using_decl_conflict);
6769  Diag(Target->getLocation(), diag::note_using_decl_target);
6770  Diag(NonTag->getLocation(), diag::note_using_decl_conflict);
6771  return true;
6772}
6773
6774/// Builds a shadow declaration corresponding to a 'using' declaration.
6775UsingShadowDecl *Sema::BuildUsingShadowDecl(Scope *S,
6776                                            UsingDecl *UD,
6777                                            NamedDecl *Orig) {
6778
6779  // If we resolved to another shadow declaration, just coalesce them.
6780  NamedDecl *Target = Orig;
6781  if (isa<UsingShadowDecl>(Target)) {
6782    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
6783    assert(!isa<UsingShadowDecl>(Target) && "nested shadow declaration");
6784  }
6785
6786  UsingShadowDecl *Shadow
6787    = UsingShadowDecl::Create(Context, CurContext,
6788                              UD->getLocation(), UD, Target);
6789  UD->addShadowDecl(Shadow);
6790
6791  Shadow->setAccess(UD->getAccess());
6792  if (Orig->isInvalidDecl() || UD->isInvalidDecl())
6793    Shadow->setInvalidDecl();
6794
6795  if (S)
6796    PushOnScopeChains(Shadow, S);
6797  else
6798    CurContext->addDecl(Shadow);
6799
6800
6801  return Shadow;
6802}
6803
6804/// Hides a using shadow declaration.  This is required by the current
6805/// using-decl implementation when a resolvable using declaration in a
6806/// class is followed by a declaration which would hide or override
6807/// one or more of the using decl's targets; for example:
6808///
6809///   struct Base { void foo(int); };
6810///   struct Derived : Base {
6811///     using Base::foo;
6812///     void foo(int);
6813///   };
6814///
6815/// The governing language is C++03 [namespace.udecl]p12:
6816///
6817///   When a using-declaration brings names from a base class into a
6818///   derived class scope, member functions in the derived class
6819///   override and/or hide member functions with the same name and
6820///   parameter types in a base class (rather than conflicting).
6821///
6822/// There are two ways to implement this:
6823///   (1) optimistically create shadow decls when they're not hidden
6824///       by existing declarations, or
6825///   (2) don't create any shadow decls (or at least don't make them
6826///       visible) until we've fully parsed/instantiated the class.
6827/// The problem with (1) is that we might have to retroactively remove
6828/// a shadow decl, which requires several O(n) operations because the
6829/// decl structures are (very reasonably) not designed for removal.
6830/// (2) avoids this but is very fiddly and phase-dependent.
6831void Sema::HideUsingShadowDecl(Scope *S, UsingShadowDecl *Shadow) {
6832  if (Shadow->getDeclName().getNameKind() ==
6833        DeclarationName::CXXConversionFunctionName)
6834    cast<CXXRecordDecl>(Shadow->getDeclContext())->removeConversion(Shadow);
6835
6836  // Remove it from the DeclContext...
6837  Shadow->getDeclContext()->removeDecl(Shadow);
6838
6839  // ...and the scope, if applicable...
6840  if (S) {
6841    S->RemoveDecl(Shadow);
6842    IdResolver.RemoveDecl(Shadow);
6843  }
6844
6845  // ...and the using decl.
6846  Shadow->getUsingDecl()->removeShadowDecl(Shadow);
6847
6848  // TODO: complain somehow if Shadow was used.  It shouldn't
6849  // be possible for this to happen, because...?
6850}
6851
6852/// Builds a using declaration.
6853///
6854/// \param IsInstantiation - Whether this call arises from an
6855///   instantiation of an unresolved using declaration.  We treat
6856///   the lookup differently for these declarations.
6857NamedDecl *Sema::BuildUsingDeclaration(Scope *S, AccessSpecifier AS,
6858                                       SourceLocation UsingLoc,
6859                                       CXXScopeSpec &SS,
6860                                       const DeclarationNameInfo &NameInfo,
6861                                       AttributeList *AttrList,
6862                                       bool IsInstantiation,
6863                                       bool IsTypeName,
6864                                       SourceLocation TypenameLoc) {
6865  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
6866  SourceLocation IdentLoc = NameInfo.getLoc();
6867  assert(IdentLoc.isValid() && "Invalid TargetName location.");
6868
6869  // FIXME: We ignore attributes for now.
6870
6871  if (SS.isEmpty()) {
6872    Diag(IdentLoc, diag::err_using_requires_qualname);
6873    return 0;
6874  }
6875
6876  // Do the redeclaration lookup in the current scope.
6877  LookupResult Previous(*this, NameInfo, LookupUsingDeclName,
6878                        ForRedeclaration);
6879  Previous.setHideTags(false);
6880  if (S) {
6881    LookupName(Previous, S);
6882
6883    // It is really dumb that we have to do this.
6884    LookupResult::Filter F = Previous.makeFilter();
6885    while (F.hasNext()) {
6886      NamedDecl *D = F.next();
6887      if (!isDeclInScope(D, CurContext, S))
6888        F.erase();
6889    }
6890    F.done();
6891  } else {
6892    assert(IsInstantiation && "no scope in non-instantiation");
6893    assert(CurContext->isRecord() && "scope not record in instantiation");
6894    LookupQualifiedName(Previous, CurContext);
6895  }
6896
6897  // Check for invalid redeclarations.
6898  if (CheckUsingDeclRedeclaration(UsingLoc, IsTypeName, SS, IdentLoc, Previous))
6899    return 0;
6900
6901  // Check for bad qualifiers.
6902  if (CheckUsingDeclQualifier(UsingLoc, SS, IdentLoc))
6903    return 0;
6904
6905  DeclContext *LookupContext = computeDeclContext(SS);
6906  NamedDecl *D;
6907  NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
6908  if (!LookupContext) {
6909    if (IsTypeName) {
6910      // FIXME: not all declaration name kinds are legal here
6911      D = UnresolvedUsingTypenameDecl::Create(Context, CurContext,
6912                                              UsingLoc, TypenameLoc,
6913                                              QualifierLoc,
6914                                              IdentLoc, NameInfo.getName());
6915    } else {
6916      D = UnresolvedUsingValueDecl::Create(Context, CurContext, UsingLoc,
6917                                           QualifierLoc, NameInfo);
6918    }
6919  } else {
6920    D = UsingDecl::Create(Context, CurContext, UsingLoc, QualifierLoc,
6921                          NameInfo, IsTypeName);
6922  }
6923  D->setAccess(AS);
6924  CurContext->addDecl(D);
6925
6926  if (!LookupContext) return D;
6927  UsingDecl *UD = cast<UsingDecl>(D);
6928
6929  if (RequireCompleteDeclContext(SS, LookupContext)) {
6930    UD->setInvalidDecl();
6931    return UD;
6932  }
6933
6934  // The normal rules do not apply to inheriting constructor declarations.
6935  if (NameInfo.getName().getNameKind() == DeclarationName::CXXConstructorName) {
6936    if (CheckInheritingConstructorUsingDecl(UD))
6937      UD->setInvalidDecl();
6938    return UD;
6939  }
6940
6941  // Otherwise, look up the target name.
6942
6943  LookupResult R(*this, NameInfo, LookupOrdinaryName);
6944
6945  // Unlike most lookups, we don't always want to hide tag
6946  // declarations: tag names are visible through the using declaration
6947  // even if hidden by ordinary names, *except* in a dependent context
6948  // where it's important for the sanity of two-phase lookup.
6949  if (!IsInstantiation)
6950    R.setHideTags(false);
6951
6952  // For the purposes of this lookup, we have a base object type
6953  // equal to that of the current context.
6954  if (CurContext->isRecord()) {
6955    R.setBaseObjectType(
6956                   Context.getTypeDeclType(cast<CXXRecordDecl>(CurContext)));
6957  }
6958
6959  LookupQualifiedName(R, LookupContext);
6960
6961  if (R.empty()) {
6962    Diag(IdentLoc, diag::err_no_member)
6963      << NameInfo.getName() << LookupContext << SS.getRange();
6964    UD->setInvalidDecl();
6965    return UD;
6966  }
6967
6968  if (R.isAmbiguous()) {
6969    UD->setInvalidDecl();
6970    return UD;
6971  }
6972
6973  if (IsTypeName) {
6974    // If we asked for a typename and got a non-type decl, error out.
6975    if (!R.getAsSingle<TypeDecl>()) {
6976      Diag(IdentLoc, diag::err_using_typename_non_type);
6977      for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
6978        Diag((*I)->getUnderlyingDecl()->getLocation(),
6979             diag::note_using_decl_target);
6980      UD->setInvalidDecl();
6981      return UD;
6982    }
6983  } else {
6984    // If we asked for a non-typename and we got a type, error out,
6985    // but only if this is an instantiation of an unresolved using
6986    // decl.  Otherwise just silently find the type name.
6987    if (IsInstantiation && R.getAsSingle<TypeDecl>()) {
6988      Diag(IdentLoc, diag::err_using_dependent_value_is_type);
6989      Diag(R.getFoundDecl()->getLocation(), diag::note_using_decl_target);
6990      UD->setInvalidDecl();
6991      return UD;
6992    }
6993  }
6994
6995  // C++0x N2914 [namespace.udecl]p6:
6996  // A using-declaration shall not name a namespace.
6997  if (R.getAsSingle<NamespaceDecl>()) {
6998    Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_namespace)
6999      << SS.getRange();
7000    UD->setInvalidDecl();
7001    return UD;
7002  }
7003
7004  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
7005    if (!CheckUsingShadowDecl(UD, *I, Previous))
7006      BuildUsingShadowDecl(S, UD, *I);
7007  }
7008
7009  return UD;
7010}
7011
7012/// Additional checks for a using declaration referring to a constructor name.
7013bool Sema::CheckInheritingConstructorUsingDecl(UsingDecl *UD) {
7014  assert(!UD->isTypeName() && "expecting a constructor name");
7015
7016  const Type *SourceType = UD->getQualifier()->getAsType();
7017  assert(SourceType &&
7018         "Using decl naming constructor doesn't have type in scope spec.");
7019  CXXRecordDecl *TargetClass = cast<CXXRecordDecl>(CurContext);
7020
7021  // Check whether the named type is a direct base class.
7022  CanQualType CanonicalSourceType = SourceType->getCanonicalTypeUnqualified();
7023  CXXRecordDecl::base_class_iterator BaseIt, BaseE;
7024  for (BaseIt = TargetClass->bases_begin(), BaseE = TargetClass->bases_end();
7025       BaseIt != BaseE; ++BaseIt) {
7026    CanQualType BaseType = BaseIt->getType()->getCanonicalTypeUnqualified();
7027    if (CanonicalSourceType == BaseType)
7028      break;
7029    if (BaseIt->getType()->isDependentType())
7030      break;
7031  }
7032
7033  if (BaseIt == BaseE) {
7034    // Did not find SourceType in the bases.
7035    Diag(UD->getUsingLocation(),
7036         diag::err_using_decl_constructor_not_in_direct_base)
7037      << UD->getNameInfo().getSourceRange()
7038      << QualType(SourceType, 0) << TargetClass;
7039    return true;
7040  }
7041
7042  if (!CurContext->isDependentContext())
7043    BaseIt->setInheritConstructors();
7044
7045  return false;
7046}
7047
7048/// Checks that the given using declaration is not an invalid
7049/// redeclaration.  Note that this is checking only for the using decl
7050/// itself, not for any ill-formedness among the UsingShadowDecls.
7051bool Sema::CheckUsingDeclRedeclaration(SourceLocation UsingLoc,
7052                                       bool isTypeName,
7053                                       const CXXScopeSpec &SS,
7054                                       SourceLocation NameLoc,
7055                                       const LookupResult &Prev) {
7056  // C++03 [namespace.udecl]p8:
7057  // C++0x [namespace.udecl]p10:
7058  //   A using-declaration is a declaration and can therefore be used
7059  //   repeatedly where (and only where) multiple declarations are
7060  //   allowed.
7061  //
7062  // That's in non-member contexts.
7063  if (!CurContext->getRedeclContext()->isRecord())
7064    return false;
7065
7066  NestedNameSpecifier *Qual
7067    = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
7068
7069  for (LookupResult::iterator I = Prev.begin(), E = Prev.end(); I != E; ++I) {
7070    NamedDecl *D = *I;
7071
7072    bool DTypename;
7073    NestedNameSpecifier *DQual;
7074    if (UsingDecl *UD = dyn_cast<UsingDecl>(D)) {
7075      DTypename = UD->isTypeName();
7076      DQual = UD->getQualifier();
7077    } else if (UnresolvedUsingValueDecl *UD
7078                 = dyn_cast<UnresolvedUsingValueDecl>(D)) {
7079      DTypename = false;
7080      DQual = UD->getQualifier();
7081    } else if (UnresolvedUsingTypenameDecl *UD
7082                 = dyn_cast<UnresolvedUsingTypenameDecl>(D)) {
7083      DTypename = true;
7084      DQual = UD->getQualifier();
7085    } else continue;
7086
7087    // using decls differ if one says 'typename' and the other doesn't.
7088    // FIXME: non-dependent using decls?
7089    if (isTypeName != DTypename) continue;
7090
7091    // using decls differ if they name different scopes (but note that
7092    // template instantiation can cause this check to trigger when it
7093    // didn't before instantiation).
7094    if (Context.getCanonicalNestedNameSpecifier(Qual) !=
7095        Context.getCanonicalNestedNameSpecifier(DQual))
7096      continue;
7097
7098    Diag(NameLoc, diag::err_using_decl_redeclaration) << SS.getRange();
7099    Diag(D->getLocation(), diag::note_using_decl) << 1;
7100    return true;
7101  }
7102
7103  return false;
7104}
7105
7106
7107/// Checks that the given nested-name qualifier used in a using decl
7108/// in the current context is appropriately related to the current
7109/// scope.  If an error is found, diagnoses it and returns true.
7110bool Sema::CheckUsingDeclQualifier(SourceLocation UsingLoc,
7111                                   const CXXScopeSpec &SS,
7112                                   SourceLocation NameLoc) {
7113  DeclContext *NamedContext = computeDeclContext(SS);
7114
7115  if (!CurContext->isRecord()) {
7116    // C++03 [namespace.udecl]p3:
7117    // C++0x [namespace.udecl]p8:
7118    //   A using-declaration for a class member shall be a member-declaration.
7119
7120    // If we weren't able to compute a valid scope, it must be a
7121    // dependent class scope.
7122    if (!NamedContext || NamedContext->isRecord()) {
7123      Diag(NameLoc, diag::err_using_decl_can_not_refer_to_class_member)
7124        << SS.getRange();
7125      return true;
7126    }
7127
7128    // Otherwise, everything is known to be fine.
7129    return false;
7130  }
7131
7132  // The current scope is a record.
7133
7134  // If the named context is dependent, we can't decide much.
7135  if (!NamedContext) {
7136    // FIXME: in C++0x, we can diagnose if we can prove that the
7137    // nested-name-specifier does not refer to a base class, which is
7138    // still possible in some cases.
7139
7140    // Otherwise we have to conservatively report that things might be
7141    // okay.
7142    return false;
7143  }
7144
7145  if (!NamedContext->isRecord()) {
7146    // Ideally this would point at the last name in the specifier,
7147    // but we don't have that level of source info.
7148    Diag(SS.getRange().getBegin(),
7149         diag::err_using_decl_nested_name_specifier_is_not_class)
7150      << (NestedNameSpecifier*) SS.getScopeRep() << SS.getRange();
7151    return true;
7152  }
7153
7154  if (!NamedContext->isDependentContext() &&
7155      RequireCompleteDeclContext(const_cast<CXXScopeSpec&>(SS), NamedContext))
7156    return true;
7157
7158  if (getLangOpts().CPlusPlus11) {
7159    // C++0x [namespace.udecl]p3:
7160    //   In a using-declaration used as a member-declaration, the
7161    //   nested-name-specifier shall name a base class of the class
7162    //   being defined.
7163
7164    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(
7165                                 cast<CXXRecordDecl>(NamedContext))) {
7166      if (CurContext == NamedContext) {
7167        Diag(NameLoc,
7168             diag::err_using_decl_nested_name_specifier_is_current_class)
7169          << SS.getRange();
7170        return true;
7171      }
7172
7173      Diag(SS.getRange().getBegin(),
7174           diag::err_using_decl_nested_name_specifier_is_not_base_class)
7175        << (NestedNameSpecifier*) SS.getScopeRep()
7176        << cast<CXXRecordDecl>(CurContext)
7177        << SS.getRange();
7178      return true;
7179    }
7180
7181    return false;
7182  }
7183
7184  // C++03 [namespace.udecl]p4:
7185  //   A using-declaration used as a member-declaration shall refer
7186  //   to a member of a base class of the class being defined [etc.].
7187
7188  // Salient point: SS doesn't have to name a base class as long as
7189  // lookup only finds members from base classes.  Therefore we can
7190  // diagnose here only if we can prove that that can't happen,
7191  // i.e. if the class hierarchies provably don't intersect.
7192
7193  // TODO: it would be nice if "definitely valid" results were cached
7194  // in the UsingDecl and UsingShadowDecl so that these checks didn't
7195  // need to be repeated.
7196
7197  struct UserData {
7198    llvm::SmallPtrSet<const CXXRecordDecl*, 4> Bases;
7199
7200    static bool collect(const CXXRecordDecl *Base, void *OpaqueData) {
7201      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
7202      Data->Bases.insert(Base);
7203      return true;
7204    }
7205
7206    bool hasDependentBases(const CXXRecordDecl *Class) {
7207      return !Class->forallBases(collect, this);
7208    }
7209
7210    /// Returns true if the base is dependent or is one of the
7211    /// accumulated base classes.
7212    static bool doesNotContain(const CXXRecordDecl *Base, void *OpaqueData) {
7213      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
7214      return !Data->Bases.count(Base);
7215    }
7216
7217    bool mightShareBases(const CXXRecordDecl *Class) {
7218      return Bases.count(Class) || !Class->forallBases(doesNotContain, this);
7219    }
7220  };
7221
7222  UserData Data;
7223
7224  // Returns false if we find a dependent base.
7225  if (Data.hasDependentBases(cast<CXXRecordDecl>(CurContext)))
7226    return false;
7227
7228  // Returns false if the class has a dependent base or if it or one
7229  // of its bases is present in the base set of the current context.
7230  if (Data.mightShareBases(cast<CXXRecordDecl>(NamedContext)))
7231    return false;
7232
7233  Diag(SS.getRange().getBegin(),
7234       diag::err_using_decl_nested_name_specifier_is_not_base_class)
7235    << (NestedNameSpecifier*) SS.getScopeRep()
7236    << cast<CXXRecordDecl>(CurContext)
7237    << SS.getRange();
7238
7239  return true;
7240}
7241
7242Decl *Sema::ActOnAliasDeclaration(Scope *S,
7243                                  AccessSpecifier AS,
7244                                  MultiTemplateParamsArg TemplateParamLists,
7245                                  SourceLocation UsingLoc,
7246                                  UnqualifiedId &Name,
7247                                  AttributeList *AttrList,
7248                                  TypeResult Type) {
7249  // Skip up to the relevant declaration scope.
7250  while (S->getFlags() & Scope::TemplateParamScope)
7251    S = S->getParent();
7252  assert((S->getFlags() & Scope::DeclScope) &&
7253         "got alias-declaration outside of declaration scope");
7254
7255  if (Type.isInvalid())
7256    return 0;
7257
7258  bool Invalid = false;
7259  DeclarationNameInfo NameInfo = GetNameFromUnqualifiedId(Name);
7260  TypeSourceInfo *TInfo = 0;
7261  GetTypeFromParser(Type.get(), &TInfo);
7262
7263  if (DiagnoseClassNameShadow(CurContext, NameInfo))
7264    return 0;
7265
7266  if (DiagnoseUnexpandedParameterPack(Name.StartLocation, TInfo,
7267                                      UPPC_DeclarationType)) {
7268    Invalid = true;
7269    TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy,
7270                                             TInfo->getTypeLoc().getBeginLoc());
7271  }
7272
7273  LookupResult Previous(*this, NameInfo, LookupOrdinaryName, ForRedeclaration);
7274  LookupName(Previous, S);
7275
7276  // Warn about shadowing the name of a template parameter.
7277  if (Previous.isSingleResult() &&
7278      Previous.getFoundDecl()->isTemplateParameter()) {
7279    DiagnoseTemplateParameterShadow(Name.StartLocation,Previous.getFoundDecl());
7280    Previous.clear();
7281  }
7282
7283  assert(Name.Kind == UnqualifiedId::IK_Identifier &&
7284         "name in alias declaration must be an identifier");
7285  TypeAliasDecl *NewTD = TypeAliasDecl::Create(Context, CurContext, UsingLoc,
7286                                               Name.StartLocation,
7287                                               Name.Identifier, TInfo);
7288
7289  NewTD->setAccess(AS);
7290
7291  if (Invalid)
7292    NewTD->setInvalidDecl();
7293
7294  ProcessDeclAttributeList(S, NewTD, AttrList);
7295
7296  CheckTypedefForVariablyModifiedType(S, NewTD);
7297  Invalid |= NewTD->isInvalidDecl();
7298
7299  bool Redeclaration = false;
7300
7301  NamedDecl *NewND;
7302  if (TemplateParamLists.size()) {
7303    TypeAliasTemplateDecl *OldDecl = 0;
7304    TemplateParameterList *OldTemplateParams = 0;
7305
7306    if (TemplateParamLists.size() != 1) {
7307      Diag(UsingLoc, diag::err_alias_template_extra_headers)
7308        << SourceRange(TemplateParamLists[1]->getTemplateLoc(),
7309         TemplateParamLists[TemplateParamLists.size()-1]->getRAngleLoc());
7310    }
7311    TemplateParameterList *TemplateParams = TemplateParamLists[0];
7312
7313    // Only consider previous declarations in the same scope.
7314    FilterLookupForScope(Previous, CurContext, S, /*ConsiderLinkage*/false,
7315                         /*ExplicitInstantiationOrSpecialization*/false);
7316    if (!Previous.empty()) {
7317      Redeclaration = true;
7318
7319      OldDecl = Previous.getAsSingle<TypeAliasTemplateDecl>();
7320      if (!OldDecl && !Invalid) {
7321        Diag(UsingLoc, diag::err_redefinition_different_kind)
7322          << Name.Identifier;
7323
7324        NamedDecl *OldD = Previous.getRepresentativeDecl();
7325        if (OldD->getLocation().isValid())
7326          Diag(OldD->getLocation(), diag::note_previous_definition);
7327
7328        Invalid = true;
7329      }
7330
7331      if (!Invalid && OldDecl && !OldDecl->isInvalidDecl()) {
7332        if (TemplateParameterListsAreEqual(TemplateParams,
7333                                           OldDecl->getTemplateParameters(),
7334                                           /*Complain=*/true,
7335                                           TPL_TemplateMatch))
7336          OldTemplateParams = OldDecl->getTemplateParameters();
7337        else
7338          Invalid = true;
7339
7340        TypeAliasDecl *OldTD = OldDecl->getTemplatedDecl();
7341        if (!Invalid &&
7342            !Context.hasSameType(OldTD->getUnderlyingType(),
7343                                 NewTD->getUnderlyingType())) {
7344          // FIXME: The C++0x standard does not clearly say this is ill-formed,
7345          // but we can't reasonably accept it.
7346          Diag(NewTD->getLocation(), diag::err_redefinition_different_typedef)
7347            << 2 << NewTD->getUnderlyingType() << OldTD->getUnderlyingType();
7348          if (OldTD->getLocation().isValid())
7349            Diag(OldTD->getLocation(), diag::note_previous_definition);
7350          Invalid = true;
7351        }
7352      }
7353    }
7354
7355    // Merge any previous default template arguments into our parameters,
7356    // and check the parameter list.
7357    if (CheckTemplateParameterList(TemplateParams, OldTemplateParams,
7358                                   TPC_TypeAliasTemplate))
7359      return 0;
7360
7361    TypeAliasTemplateDecl *NewDecl =
7362      TypeAliasTemplateDecl::Create(Context, CurContext, UsingLoc,
7363                                    Name.Identifier, TemplateParams,
7364                                    NewTD);
7365
7366    NewDecl->setAccess(AS);
7367
7368    if (Invalid)
7369      NewDecl->setInvalidDecl();
7370    else if (OldDecl)
7371      NewDecl->setPreviousDeclaration(OldDecl);
7372
7373    NewND = NewDecl;
7374  } else {
7375    ActOnTypedefNameDecl(S, CurContext, NewTD, Previous, Redeclaration);
7376    NewND = NewTD;
7377  }
7378
7379  if (!Redeclaration)
7380    PushOnScopeChains(NewND, S);
7381
7382  ActOnDocumentableDecl(NewND);
7383  return NewND;
7384}
7385
7386Decl *Sema::ActOnNamespaceAliasDef(Scope *S,
7387                                             SourceLocation NamespaceLoc,
7388                                             SourceLocation AliasLoc,
7389                                             IdentifierInfo *Alias,
7390                                             CXXScopeSpec &SS,
7391                                             SourceLocation IdentLoc,
7392                                             IdentifierInfo *Ident) {
7393
7394  // Lookup the namespace name.
7395  LookupResult R(*this, Ident, IdentLoc, LookupNamespaceName);
7396  LookupParsedName(R, S, &SS);
7397
7398  // Check if we have a previous declaration with the same name.
7399  NamedDecl *PrevDecl
7400    = LookupSingleName(S, Alias, AliasLoc, LookupOrdinaryName,
7401                       ForRedeclaration);
7402  if (PrevDecl && !isDeclInScope(PrevDecl, CurContext, S))
7403    PrevDecl = 0;
7404
7405  if (PrevDecl) {
7406    if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) {
7407      // We already have an alias with the same name that points to the same
7408      // namespace, so don't create a new one.
7409      // FIXME: At some point, we'll want to create the (redundant)
7410      // declaration to maintain better source information.
7411      if (!R.isAmbiguous() && !R.empty() &&
7412          AD->getNamespace()->Equals(getNamespaceDecl(R.getFoundDecl())))
7413        return 0;
7414    }
7415
7416    unsigned DiagID = isa<NamespaceDecl>(PrevDecl) ? diag::err_redefinition :
7417      diag::err_redefinition_different_kind;
7418    Diag(AliasLoc, DiagID) << Alias;
7419    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
7420    return 0;
7421  }
7422
7423  if (R.isAmbiguous())
7424    return 0;
7425
7426  if (R.empty()) {
7427    if (!TryNamespaceTypoCorrection(*this, R, S, SS, IdentLoc, Ident)) {
7428      Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
7429      return 0;
7430    }
7431  }
7432
7433  NamespaceAliasDecl *AliasDecl =
7434    NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc,
7435                               Alias, SS.getWithLocInContext(Context),
7436                               IdentLoc, R.getFoundDecl());
7437
7438  PushOnScopeChains(AliasDecl, S);
7439  return AliasDecl;
7440}
7441
7442Sema::ImplicitExceptionSpecification
7443Sema::ComputeDefaultedDefaultCtorExceptionSpec(SourceLocation Loc,
7444                                               CXXMethodDecl *MD) {
7445  CXXRecordDecl *ClassDecl = MD->getParent();
7446
7447  // C++ [except.spec]p14:
7448  //   An implicitly declared special member function (Clause 12) shall have an
7449  //   exception-specification. [...]
7450  ImplicitExceptionSpecification ExceptSpec(*this);
7451  if (ClassDecl->isInvalidDecl())
7452    return ExceptSpec;
7453
7454  // Direct base-class constructors.
7455  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
7456                                       BEnd = ClassDecl->bases_end();
7457       B != BEnd; ++B) {
7458    if (B->isVirtual()) // Handled below.
7459      continue;
7460
7461    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
7462      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
7463      CXXConstructorDecl *Constructor = LookupDefaultConstructor(BaseClassDecl);
7464      // If this is a deleted function, add it anyway. This might be conformant
7465      // with the standard. This might not. I'm not sure. It might not matter.
7466      if (Constructor)
7467        ExceptSpec.CalledDecl(B->getLocStart(), Constructor);
7468    }
7469  }
7470
7471  // Virtual base-class constructors.
7472  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
7473                                       BEnd = ClassDecl->vbases_end();
7474       B != BEnd; ++B) {
7475    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
7476      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
7477      CXXConstructorDecl *Constructor = LookupDefaultConstructor(BaseClassDecl);
7478      // If this is a deleted function, add it anyway. This might be conformant
7479      // with the standard. This might not. I'm not sure. It might not matter.
7480      if (Constructor)
7481        ExceptSpec.CalledDecl(B->getLocStart(), Constructor);
7482    }
7483  }
7484
7485  // Field constructors.
7486  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
7487                               FEnd = ClassDecl->field_end();
7488       F != FEnd; ++F) {
7489    if (F->hasInClassInitializer()) {
7490      if (Expr *E = F->getInClassInitializer())
7491        ExceptSpec.CalledExpr(E);
7492      else if (!F->isInvalidDecl())
7493        // DR1351:
7494        //   If the brace-or-equal-initializer of a non-static data member
7495        //   invokes a defaulted default constructor of its class or of an
7496        //   enclosing class in a potentially evaluated subexpression, the
7497        //   program is ill-formed.
7498        //
7499        // This resolution is unworkable: the exception specification of the
7500        // default constructor can be needed in an unevaluated context, in
7501        // particular, in the operand of a noexcept-expression, and we can be
7502        // unable to compute an exception specification for an enclosed class.
7503        //
7504        // We do not allow an in-class initializer to require the evaluation
7505        // of the exception specification for any in-class initializer whose
7506        // definition is not lexically complete.
7507        Diag(Loc, diag::err_in_class_initializer_references_def_ctor) << MD;
7508    } else if (const RecordType *RecordTy
7509              = Context.getBaseElementType(F->getType())->getAs<RecordType>()) {
7510      CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
7511      CXXConstructorDecl *Constructor = LookupDefaultConstructor(FieldRecDecl);
7512      // If this is a deleted function, add it anyway. This might be conformant
7513      // with the standard. This might not. I'm not sure. It might not matter.
7514      // In particular, the problem is that this function never gets called. It
7515      // might just be ill-formed because this function attempts to refer to
7516      // a deleted function here.
7517      if (Constructor)
7518        ExceptSpec.CalledDecl(F->getLocation(), Constructor);
7519    }
7520  }
7521
7522  return ExceptSpec;
7523}
7524
7525Sema::ImplicitExceptionSpecification
7526Sema::ComputeInheritingCtorExceptionSpec(CXXMethodDecl *MD) {
7527  ImplicitExceptionSpecification ExceptSpec(*this);
7528  // FIXME: Compute the exception spec.
7529  return ExceptSpec;
7530}
7531
7532namespace {
7533/// RAII object to register a special member as being currently declared.
7534struct DeclaringSpecialMember {
7535  Sema &S;
7536  Sema::SpecialMemberDecl D;
7537  bool WasAlreadyBeingDeclared;
7538
7539  DeclaringSpecialMember(Sema &S, CXXRecordDecl *RD, Sema::CXXSpecialMember CSM)
7540    : S(S), D(RD, CSM) {
7541    WasAlreadyBeingDeclared = !S.SpecialMembersBeingDeclared.insert(D);
7542    if (WasAlreadyBeingDeclared)
7543      // This almost never happens, but if it does, ensure that our cache
7544      // doesn't contain a stale result.
7545      S.SpecialMemberCache.clear();
7546
7547    // FIXME: Register a note to be produced if we encounter an error while
7548    // declaring the special member.
7549  }
7550  ~DeclaringSpecialMember() {
7551    if (!WasAlreadyBeingDeclared)
7552      S.SpecialMembersBeingDeclared.erase(D);
7553  }
7554
7555  /// \brief Are we already trying to declare this special member?
7556  bool isAlreadyBeingDeclared() const {
7557    return WasAlreadyBeingDeclared;
7558  }
7559};
7560}
7561
7562CXXConstructorDecl *Sema::DeclareImplicitDefaultConstructor(
7563                                                     CXXRecordDecl *ClassDecl) {
7564  // C++ [class.ctor]p5:
7565  //   A default constructor for a class X is a constructor of class X
7566  //   that can be called without an argument. If there is no
7567  //   user-declared constructor for class X, a default constructor is
7568  //   implicitly declared. An implicitly-declared default constructor
7569  //   is an inline public member of its class.
7570  assert(ClassDecl->needsImplicitDefaultConstructor() &&
7571         "Should not build implicit default constructor!");
7572
7573  DeclaringSpecialMember DSM(*this, ClassDecl, CXXDefaultConstructor);
7574  if (DSM.isAlreadyBeingDeclared())
7575    return 0;
7576
7577  bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl,
7578                                                     CXXDefaultConstructor,
7579                                                     false);
7580
7581  // Create the actual constructor declaration.
7582  CanQualType ClassType
7583    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
7584  SourceLocation ClassLoc = ClassDecl->getLocation();
7585  DeclarationName Name
7586    = Context.DeclarationNames.getCXXConstructorName(ClassType);
7587  DeclarationNameInfo NameInfo(Name, ClassLoc);
7588  CXXConstructorDecl *DefaultCon = CXXConstructorDecl::Create(
7589      Context, ClassDecl, ClassLoc, NameInfo, /*Type*/QualType(), /*TInfo=*/0,
7590      /*isExplicit=*/false, /*isInline=*/true, /*isImplicitlyDeclared=*/true,
7591      Constexpr);
7592  DefaultCon->setAccess(AS_public);
7593  DefaultCon->setDefaulted();
7594  DefaultCon->setImplicit();
7595
7596  // Build an exception specification pointing back at this constructor.
7597  FunctionProtoType::ExtProtoInfo EPI;
7598  EPI.ExceptionSpecType = EST_Unevaluated;
7599  EPI.ExceptionSpecDecl = DefaultCon;
7600  DefaultCon->setType(Context.getFunctionType(Context.VoidTy,
7601                                              ArrayRef<QualType>(),
7602                                              EPI));
7603
7604  // We don't need to use SpecialMemberIsTrivial here; triviality for default
7605  // constructors is easy to compute.
7606  DefaultCon->setTrivial(ClassDecl->hasTrivialDefaultConstructor());
7607
7608  if (ShouldDeleteSpecialMember(DefaultCon, CXXDefaultConstructor))
7609    SetDeclDeleted(DefaultCon, ClassLoc);
7610
7611  // Note that we have declared this constructor.
7612  ++ASTContext::NumImplicitDefaultConstructorsDeclared;
7613
7614  if (Scope *S = getScopeForContext(ClassDecl))
7615    PushOnScopeChains(DefaultCon, S, false);
7616  ClassDecl->addDecl(DefaultCon);
7617
7618  return DefaultCon;
7619}
7620
7621void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,
7622                                            CXXConstructorDecl *Constructor) {
7623  assert((Constructor->isDefaulted() && Constructor->isDefaultConstructor() &&
7624          !Constructor->doesThisDeclarationHaveABody() &&
7625          !Constructor->isDeleted()) &&
7626    "DefineImplicitDefaultConstructor - call it for implicit default ctor");
7627
7628  CXXRecordDecl *ClassDecl = Constructor->getParent();
7629  assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor");
7630
7631  SynthesizedFunctionScope Scope(*this, Constructor);
7632  DiagnosticErrorTrap Trap(Diags);
7633  if (SetCtorInitializers(Constructor, /*AnyErrors=*/false) ||
7634      Trap.hasErrorOccurred()) {
7635    Diag(CurrentLocation, diag::note_member_synthesized_at)
7636      << CXXDefaultConstructor << Context.getTagDeclType(ClassDecl);
7637    Constructor->setInvalidDecl();
7638    return;
7639  }
7640
7641  SourceLocation Loc = Constructor->getLocation();
7642  Constructor->setBody(new (Context) CompoundStmt(Loc));
7643
7644  Constructor->setUsed();
7645  MarkVTableUsed(CurrentLocation, ClassDecl);
7646
7647  if (ASTMutationListener *L = getASTMutationListener()) {
7648    L->CompletedImplicitDefinition(Constructor);
7649  }
7650}
7651
7652void Sema::ActOnFinishDelayedMemberInitializers(Decl *D) {
7653  // Check that any explicitly-defaulted methods have exception specifications
7654  // compatible with their implicit exception specifications.
7655  CheckDelayedExplicitlyDefaultedMemberExceptionSpecs();
7656}
7657
7658void Sema::DeclareInheritingConstructors(CXXRecordDecl *ClassDecl) {
7659  // We start with an initial pass over the base classes to collect those that
7660  // inherit constructors from. If there are none, we can forgo all further
7661  // processing.
7662  typedef SmallVector<const RecordType *, 4> BasesVector;
7663  BasesVector BasesToInheritFrom;
7664  for (CXXRecordDecl::base_class_iterator BaseIt = ClassDecl->bases_begin(),
7665                                          BaseE = ClassDecl->bases_end();
7666         BaseIt != BaseE; ++BaseIt) {
7667    if (BaseIt->getInheritConstructors()) {
7668      QualType Base = BaseIt->getType();
7669      if (Base->isDependentType()) {
7670        // If we inherit constructors from anything that is dependent, just
7671        // abort processing altogether. We'll get another chance for the
7672        // instantiations.
7673        // FIXME: We need to ensure that any call to a constructor of this class
7674        // is considered instantiation-dependent in this case.
7675        return;
7676      }
7677      BasesToInheritFrom.push_back(Base->castAs<RecordType>());
7678    }
7679  }
7680  if (BasesToInheritFrom.empty())
7681    return;
7682
7683  // FIXME: Constructor templates.
7684
7685  // Now collect the constructors that we already have in the current class.
7686  // Those take precedence over inherited constructors.
7687  // C++11 [class.inhctor]p3: [...] a constructor is implicitly declared [...]
7688  //   unless there is a user-declared constructor with the same signature in
7689  //   the class where the using-declaration appears.
7690  llvm::SmallSet<const Type *, 8> ExistingConstructors;
7691  for (CXXRecordDecl::ctor_iterator CtorIt = ClassDecl->ctor_begin(),
7692                                    CtorE = ClassDecl->ctor_end();
7693       CtorIt != CtorE; ++CtorIt)
7694    ExistingConstructors.insert(
7695        Context.getCanonicalType(CtorIt->getType()).getTypePtr());
7696
7697  DeclarationName CreatedCtorName =
7698      Context.DeclarationNames.getCXXConstructorName(
7699          ClassDecl->getTypeForDecl()->getCanonicalTypeUnqualified());
7700
7701  // Now comes the true work.
7702  // First, we keep a map from constructor types to the base that introduced
7703  // them. Needed for finding conflicting constructors. We also keep the
7704  // actually inserted declarations in there, for pretty diagnostics.
7705  typedef std::pair<CanQualType, CXXConstructorDecl *> ConstructorInfo;
7706  typedef llvm::DenseMap<const Type *, ConstructorInfo> ConstructorToSourceMap;
7707  ConstructorToSourceMap InheritedConstructors;
7708  for (BasesVector::iterator BaseIt = BasesToInheritFrom.begin(),
7709                             BaseE = BasesToInheritFrom.end();
7710       BaseIt != BaseE; ++BaseIt) {
7711    const RecordType *Base = *BaseIt;
7712    CanQualType CanonicalBase = Base->getCanonicalTypeUnqualified();
7713    CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(Base->getDecl());
7714    for (CXXRecordDecl::ctor_iterator CtorIt = BaseDecl->ctor_begin(),
7715                                      CtorE = BaseDecl->ctor_end();
7716         CtorIt != CtorE; ++CtorIt) {
7717      // Find the using declaration for inheriting this base's constructors.
7718      // FIXME: Don't perform name lookup just to obtain a source location!
7719      DeclarationName Name =
7720          Context.DeclarationNames.getCXXConstructorName(CanonicalBase);
7721      LookupResult Result(*this, Name, SourceLocation(), LookupUsingDeclName);
7722      LookupQualifiedName(Result, CurContext);
7723      UsingDecl *UD = Result.getAsSingle<UsingDecl>();
7724      SourceLocation UsingLoc = UD ? UD->getLocation() :
7725                                     ClassDecl->getLocation();
7726
7727      // C++11 [class.inhctor]p1:
7728      //   The candidate set of inherited constructors from the class X named in
7729      //   the using-declaration consists of actual constructors and notional
7730      //   constructors that result from the transformation of defaulted
7731      //   parameters as follows:
7732      //   - all non-template constructors of X, and
7733      //   - for each non-template constructor of X that has at least one
7734      //     parameter with a default argument, the set of constructors that
7735      //     results from omitting any ellipsis parameter specification and
7736      //     successively omitting parameters with a default argument from the
7737      //     end of the parameter-type-list, and
7738      // FIXME: ...also constructor templates.
7739      CXXConstructorDecl *BaseCtor = *CtorIt;
7740      bool CanBeCopyOrMove = BaseCtor->isCopyOrMoveConstructor();
7741      const FunctionProtoType *BaseCtorType =
7742          BaseCtor->getType()->getAs<FunctionProtoType>();
7743
7744      // Determine whether this would be a copy or move constructor for the
7745      // derived class.
7746      if (BaseCtorType->getNumArgs() >= 1 &&
7747          BaseCtorType->getArgType(0)->isReferenceType() &&
7748          Context.hasSameUnqualifiedType(
7749            BaseCtorType->getArgType(0)->getPointeeType(),
7750            Context.getTagDeclType(ClassDecl)))
7751        CanBeCopyOrMove = true;
7752
7753      ArrayRef<QualType> ArgTypes(BaseCtorType->getArgTypes());
7754      FunctionProtoType::ExtProtoInfo EPI = BaseCtorType->getExtProtoInfo();
7755      // Core issue (no number yet): the ellipsis is always discarded.
7756      if (EPI.Variadic) {
7757        Diag(UsingLoc, diag::warn_using_decl_constructor_ellipsis);
7758        Diag(BaseCtor->getLocation(),
7759             diag::note_using_decl_constructor_ellipsis);
7760        EPI.Variadic = false;
7761      }
7762
7763      for (unsigned Params = BaseCtor->getMinRequiredArguments(),
7764                    MaxParams = BaseCtor->getNumParams();
7765           Params <= MaxParams; ++Params) {
7766        // Skip default constructors. They're never inherited.
7767        if (Params == 0)
7768          continue;
7769
7770        // Skip copy and move constructors for both base and derived class
7771        // for the same reason.
7772        if (CanBeCopyOrMove && Params == 1)
7773          continue;
7774
7775        // Build up a function type for this particular constructor.
7776        QualType NewCtorType =
7777            Context.getFunctionType(Context.VoidTy, ArgTypes.slice(0, Params),
7778                                    EPI);
7779        const Type *CanonicalNewCtorType =
7780            Context.getCanonicalType(NewCtorType).getTypePtr();
7781
7782        // C++11 [class.inhctor]p3:
7783        //   ... a constructor is implicitly declared with the same constructor
7784        //   characteristics unless there is a user-declared constructor with
7785        //   the same signature in the class where the using-declaration appears
7786        if (ExistingConstructors.count(CanonicalNewCtorType))
7787          continue;
7788
7789        // C++11 [class.inhctor]p7:
7790        //   If two using-declarations declare inheriting constructors with the
7791        //   same signature, the program is ill-formed
7792        std::pair<ConstructorToSourceMap::iterator, bool> result =
7793            InheritedConstructors.insert(std::make_pair(
7794                CanonicalNewCtorType,
7795                std::make_pair(CanonicalBase, (CXXConstructorDecl*)0)));
7796        if (!result.second) {
7797          // Already in the map. If it came from a different class, that's an
7798          // error. Not if it's from the same.
7799          CanQualType PreviousBase = result.first->second.first;
7800          if (CanonicalBase != PreviousBase) {
7801            const CXXConstructorDecl *PrevCtor = result.first->second.second;
7802            const CXXConstructorDecl *PrevBaseCtor =
7803                PrevCtor->getInheritedConstructor();
7804            assert(PrevBaseCtor && "Conflicting constructor was not inherited");
7805
7806            Diag(UsingLoc, diag::err_using_decl_constructor_conflict);
7807            Diag(BaseCtor->getLocation(),
7808                 diag::note_using_decl_constructor_conflict_current_ctor);
7809            Diag(PrevBaseCtor->getLocation(),
7810                 diag::note_using_decl_constructor_conflict_previous_ctor);
7811            Diag(PrevCtor->getLocation(),
7812                 diag::note_using_decl_constructor_conflict_previous_using);
7813          } else {
7814            // Core issue (no number): if the same inheriting constructor is
7815            // produced by multiple base class constructors from the same base
7816            // class, the inheriting constructor is defined as deleted.
7817            SetDeclDeleted(result.first->second.second, UsingLoc);
7818          }
7819          continue;
7820        }
7821
7822        // OK, we're there, now add the constructor.
7823        DeclarationNameInfo DNI(CreatedCtorName, UsingLoc);
7824        CXXConstructorDecl *NewCtor = CXXConstructorDecl::Create(
7825            Context, ClassDecl, UsingLoc, DNI, NewCtorType,
7826            /*TInfo=*/0, BaseCtor->isExplicit(), /*Inline=*/true,
7827            /*ImplicitlyDeclared=*/true, /*Constexpr=*/BaseCtor->isConstexpr());
7828        NewCtor->setAccess(BaseCtor->getAccess());
7829
7830        // Build an unevaluated exception specification for this constructor.
7831        EPI.ExceptionSpecType = EST_Unevaluated;
7832        EPI.ExceptionSpecDecl = NewCtor;
7833        NewCtor->setType(Context.getFunctionType(Context.VoidTy,
7834                                                 ArgTypes.slice(0, Params),
7835                                                 EPI));
7836
7837        // Build up the parameter decls and add them.
7838        SmallVector<ParmVarDecl *, 16> ParamDecls;
7839        for (unsigned i = 0; i < Params; ++i) {
7840          ParmVarDecl *PD = ParmVarDecl::Create(Context, NewCtor,
7841                                                UsingLoc, UsingLoc,
7842                                                /*IdentifierInfo=*/0,
7843                                                BaseCtorType->getArgType(i),
7844                                                /*TInfo=*/0, SC_None,
7845                                                /*DefaultArg=*/0);
7846          PD->setScopeInfo(0, i);
7847          PD->setImplicit();
7848          ParamDecls.push_back(PD);
7849        }
7850        NewCtor->setParams(ParamDecls);
7851        NewCtor->setInheritedConstructor(BaseCtor);
7852        if (BaseCtor->isDeleted())
7853          SetDeclDeleted(NewCtor, UsingLoc);
7854
7855        ClassDecl->addDecl(NewCtor);
7856        result.first->second.second = NewCtor;
7857      }
7858    }
7859  }
7860}
7861
7862void Sema::DefineInheritingConstructor(SourceLocation CurrentLocation,
7863                                       CXXConstructorDecl *Constructor) {
7864  CXXRecordDecl *ClassDecl = Constructor->getParent();
7865  assert(Constructor->getInheritedConstructor() &&
7866         !Constructor->doesThisDeclarationHaveABody() &&
7867         !Constructor->isDeleted());
7868
7869  SynthesizedFunctionScope Scope(*this, Constructor);
7870  DiagnosticErrorTrap Trap(Diags);
7871  if (SetCtorInitializers(Constructor, /*AnyErrors=*/false) ||
7872      Trap.hasErrorOccurred()) {
7873    Diag(CurrentLocation, diag::note_inhctor_synthesized_at)
7874      << Context.getTagDeclType(ClassDecl);
7875    Constructor->setInvalidDecl();
7876    return;
7877  }
7878
7879  SourceLocation Loc = Constructor->getLocation();
7880  Constructor->setBody(new (Context) CompoundStmt(Loc));
7881
7882  Constructor->setUsed();
7883  MarkVTableUsed(CurrentLocation, ClassDecl);
7884
7885  if (ASTMutationListener *L = getASTMutationListener()) {
7886    L->CompletedImplicitDefinition(Constructor);
7887  }
7888}
7889
7890
7891Sema::ImplicitExceptionSpecification
7892Sema::ComputeDefaultedDtorExceptionSpec(CXXMethodDecl *MD) {
7893  CXXRecordDecl *ClassDecl = MD->getParent();
7894
7895  // C++ [except.spec]p14:
7896  //   An implicitly declared special member function (Clause 12) shall have
7897  //   an exception-specification.
7898  ImplicitExceptionSpecification ExceptSpec(*this);
7899  if (ClassDecl->isInvalidDecl())
7900    return ExceptSpec;
7901
7902  // Direct base-class destructors.
7903  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
7904                                       BEnd = ClassDecl->bases_end();
7905       B != BEnd; ++B) {
7906    if (B->isVirtual()) // Handled below.
7907      continue;
7908
7909    if (const RecordType *BaseType = B->getType()->getAs<RecordType>())
7910      ExceptSpec.CalledDecl(B->getLocStart(),
7911                   LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
7912  }
7913
7914  // Virtual base-class destructors.
7915  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
7916                                       BEnd = ClassDecl->vbases_end();
7917       B != BEnd; ++B) {
7918    if (const RecordType *BaseType = B->getType()->getAs<RecordType>())
7919      ExceptSpec.CalledDecl(B->getLocStart(),
7920                  LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
7921  }
7922
7923  // Field destructors.
7924  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
7925                               FEnd = ClassDecl->field_end();
7926       F != FEnd; ++F) {
7927    if (const RecordType *RecordTy
7928        = Context.getBaseElementType(F->getType())->getAs<RecordType>())
7929      ExceptSpec.CalledDecl(F->getLocation(),
7930                  LookupDestructor(cast<CXXRecordDecl>(RecordTy->getDecl())));
7931  }
7932
7933  return ExceptSpec;
7934}
7935
7936CXXDestructorDecl *Sema::DeclareImplicitDestructor(CXXRecordDecl *ClassDecl) {
7937  // C++ [class.dtor]p2:
7938  //   If a class has no user-declared destructor, a destructor is
7939  //   declared implicitly. An implicitly-declared destructor is an
7940  //   inline public member of its class.
7941  assert(ClassDecl->needsImplicitDestructor());
7942
7943  DeclaringSpecialMember DSM(*this, ClassDecl, CXXDestructor);
7944  if (DSM.isAlreadyBeingDeclared())
7945    return 0;
7946
7947  // Create the actual destructor declaration.
7948  CanQualType ClassType
7949    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
7950  SourceLocation ClassLoc = ClassDecl->getLocation();
7951  DeclarationName Name
7952    = Context.DeclarationNames.getCXXDestructorName(ClassType);
7953  DeclarationNameInfo NameInfo(Name, ClassLoc);
7954  CXXDestructorDecl *Destructor
7955      = CXXDestructorDecl::Create(Context, ClassDecl, ClassLoc, NameInfo,
7956                                  QualType(), 0, /*isInline=*/true,
7957                                  /*isImplicitlyDeclared=*/true);
7958  Destructor->setAccess(AS_public);
7959  Destructor->setDefaulted();
7960  Destructor->setImplicit();
7961
7962  // Build an exception specification pointing back at this destructor.
7963  FunctionProtoType::ExtProtoInfo EPI;
7964  EPI.ExceptionSpecType = EST_Unevaluated;
7965  EPI.ExceptionSpecDecl = Destructor;
7966  Destructor->setType(Context.getFunctionType(Context.VoidTy,
7967                                              ArrayRef<QualType>(),
7968                                              EPI));
7969
7970  AddOverriddenMethods(ClassDecl, Destructor);
7971
7972  // We don't need to use SpecialMemberIsTrivial here; triviality for
7973  // destructors is easy to compute.
7974  Destructor->setTrivial(ClassDecl->hasTrivialDestructor());
7975
7976  if (ShouldDeleteSpecialMember(Destructor, CXXDestructor))
7977    SetDeclDeleted(Destructor, ClassLoc);
7978
7979  // Note that we have declared this destructor.
7980  ++ASTContext::NumImplicitDestructorsDeclared;
7981
7982  // Introduce this destructor into its scope.
7983  if (Scope *S = getScopeForContext(ClassDecl))
7984    PushOnScopeChains(Destructor, S, false);
7985  ClassDecl->addDecl(Destructor);
7986
7987  return Destructor;
7988}
7989
7990void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation,
7991                                    CXXDestructorDecl *Destructor) {
7992  assert((Destructor->isDefaulted() &&
7993          !Destructor->doesThisDeclarationHaveABody() &&
7994          !Destructor->isDeleted()) &&
7995         "DefineImplicitDestructor - call it for implicit default dtor");
7996  CXXRecordDecl *ClassDecl = Destructor->getParent();
7997  assert(ClassDecl && "DefineImplicitDestructor - invalid destructor");
7998
7999  if (Destructor->isInvalidDecl())
8000    return;
8001
8002  SynthesizedFunctionScope Scope(*this, Destructor);
8003
8004  DiagnosticErrorTrap Trap(Diags);
8005  MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
8006                                         Destructor->getParent());
8007
8008  if (CheckDestructor(Destructor) || Trap.hasErrorOccurred()) {
8009    Diag(CurrentLocation, diag::note_member_synthesized_at)
8010      << CXXDestructor << Context.getTagDeclType(ClassDecl);
8011
8012    Destructor->setInvalidDecl();
8013    return;
8014  }
8015
8016  SourceLocation Loc = Destructor->getLocation();
8017  Destructor->setBody(new (Context) CompoundStmt(Loc));
8018  Destructor->setImplicitlyDefined(true);
8019  Destructor->setUsed();
8020  MarkVTableUsed(CurrentLocation, ClassDecl);
8021
8022  if (ASTMutationListener *L = getASTMutationListener()) {
8023    L->CompletedImplicitDefinition(Destructor);
8024  }
8025}
8026
8027/// \brief Perform any semantic analysis which needs to be delayed until all
8028/// pending class member declarations have been parsed.
8029void Sema::ActOnFinishCXXMemberDecls() {
8030  // If the context is an invalid C++ class, just suppress these checks.
8031  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(CurContext)) {
8032    if (Record->isInvalidDecl()) {
8033      DelayedDestructorExceptionSpecChecks.clear();
8034      return;
8035    }
8036  }
8037
8038  // Perform any deferred checking of exception specifications for virtual
8039  // destructors.
8040  for (unsigned i = 0, e = DelayedDestructorExceptionSpecChecks.size();
8041       i != e; ++i) {
8042    const CXXDestructorDecl *Dtor =
8043        DelayedDestructorExceptionSpecChecks[i].first;
8044    assert(!Dtor->getParent()->isDependentType() &&
8045           "Should not ever add destructors of templates into the list.");
8046    CheckOverridingFunctionExceptionSpec(Dtor,
8047        DelayedDestructorExceptionSpecChecks[i].second);
8048  }
8049  DelayedDestructorExceptionSpecChecks.clear();
8050}
8051
8052void Sema::AdjustDestructorExceptionSpec(CXXRecordDecl *ClassDecl,
8053                                         CXXDestructorDecl *Destructor) {
8054  assert(getLangOpts().CPlusPlus11 &&
8055         "adjusting dtor exception specs was introduced in c++11");
8056
8057  // C++11 [class.dtor]p3:
8058  //   A declaration of a destructor that does not have an exception-
8059  //   specification is implicitly considered to have the same exception-
8060  //   specification as an implicit declaration.
8061  const FunctionProtoType *DtorType = Destructor->getType()->
8062                                        getAs<FunctionProtoType>();
8063  if (DtorType->hasExceptionSpec())
8064    return;
8065
8066  // Replace the destructor's type, building off the existing one. Fortunately,
8067  // the only thing of interest in the destructor type is its extended info.
8068  // The return and arguments are fixed.
8069  FunctionProtoType::ExtProtoInfo EPI = DtorType->getExtProtoInfo();
8070  EPI.ExceptionSpecType = EST_Unevaluated;
8071  EPI.ExceptionSpecDecl = Destructor;
8072  Destructor->setType(Context.getFunctionType(Context.VoidTy,
8073                                              ArrayRef<QualType>(),
8074                                              EPI));
8075
8076  // FIXME: If the destructor has a body that could throw, and the newly created
8077  // spec doesn't allow exceptions, we should emit a warning, because this
8078  // change in behavior can break conforming C++03 programs at runtime.
8079  // However, we don't have a body or an exception specification yet, so it
8080  // needs to be done somewhere else.
8081}
8082
8083/// When generating a defaulted copy or move assignment operator, if a field
8084/// should be copied with __builtin_memcpy rather than via explicit assignments,
8085/// do so. This optimization only applies for arrays of scalars, and for arrays
8086/// of class type where the selected copy/move-assignment operator is trivial.
8087static StmtResult
8088buildMemcpyForAssignmentOp(Sema &S, SourceLocation Loc, QualType T,
8089                           Expr *To, Expr *From) {
8090  // Compute the size of the memory buffer to be copied.
8091  QualType SizeType = S.Context.getSizeType();
8092  llvm::APInt Size(S.Context.getTypeSize(SizeType),
8093                   S.Context.getTypeSizeInChars(T).getQuantity());
8094
8095  // Take the address of the field references for "from" and "to". We
8096  // directly construct UnaryOperators here because semantic analysis
8097  // does not permit us to take the address of an xvalue.
8098  From = new (S.Context) UnaryOperator(From, UO_AddrOf,
8099                         S.Context.getPointerType(From->getType()),
8100                         VK_RValue, OK_Ordinary, Loc);
8101  To = new (S.Context) UnaryOperator(To, UO_AddrOf,
8102                       S.Context.getPointerType(To->getType()),
8103                       VK_RValue, OK_Ordinary, Loc);
8104
8105  const Type *E = T->getBaseElementTypeUnsafe();
8106  bool NeedsCollectableMemCpy =
8107    E->isRecordType() && E->getAs<RecordType>()->getDecl()->hasObjectMember();
8108
8109  // Create a reference to the __builtin_objc_memmove_collectable function
8110  StringRef MemCpyName = NeedsCollectableMemCpy ?
8111    "__builtin_objc_memmove_collectable" :
8112    "__builtin_memcpy";
8113  LookupResult R(S, &S.Context.Idents.get(MemCpyName), Loc,
8114                 Sema::LookupOrdinaryName);
8115  S.LookupName(R, S.TUScope, true);
8116
8117  FunctionDecl *MemCpy = R.getAsSingle<FunctionDecl>();
8118  if (!MemCpy)
8119    // Something went horribly wrong earlier, and we will have complained
8120    // about it.
8121    return StmtError();
8122
8123  ExprResult MemCpyRef = S.BuildDeclRefExpr(MemCpy, S.Context.BuiltinFnTy,
8124                                            VK_RValue, Loc, 0);
8125  assert(MemCpyRef.isUsable() && "Builtin reference cannot fail");
8126
8127  Expr *CallArgs[] = {
8128    To, From, IntegerLiteral::Create(S.Context, Size, SizeType, Loc)
8129  };
8130  ExprResult Call = S.ActOnCallExpr(/*Scope=*/0, MemCpyRef.take(),
8131                                    Loc, CallArgs, Loc);
8132
8133  assert(!Call.isInvalid() && "Call to __builtin_memcpy cannot fail!");
8134  return S.Owned(Call.takeAs<Stmt>());
8135}
8136
8137/// \brief Builds a statement that copies/moves the given entity from \p From to
8138/// \c To.
8139///
8140/// This routine is used to copy/move the members of a class with an
8141/// implicitly-declared copy/move assignment operator. When the entities being
8142/// copied are arrays, this routine builds for loops to copy them.
8143///
8144/// \param S The Sema object used for type-checking.
8145///
8146/// \param Loc The location where the implicit copy/move is being generated.
8147///
8148/// \param T The type of the expressions being copied/moved. Both expressions
8149/// must have this type.
8150///
8151/// \param To The expression we are copying/moving to.
8152///
8153/// \param From The expression we are copying/moving from.
8154///
8155/// \param CopyingBaseSubobject Whether we're copying/moving a base subobject.
8156/// Otherwise, it's a non-static member subobject.
8157///
8158/// \param Copying Whether we're copying or moving.
8159///
8160/// \param Depth Internal parameter recording the depth of the recursion.
8161///
8162/// \returns A statement or a loop that copies the expressions, or StmtResult(0)
8163/// if a memcpy should be used instead.
8164static StmtResult
8165buildSingleCopyAssignRecursively(Sema &S, SourceLocation Loc, QualType T,
8166                                 Expr *To, Expr *From,
8167                                 bool CopyingBaseSubobject, bool Copying,
8168                                 unsigned Depth = 0) {
8169  // C++11 [class.copy]p28:
8170  //   Each subobject is assigned in the manner appropriate to its type:
8171  //
8172  //     - if the subobject is of class type, as if by a call to operator= with
8173  //       the subobject as the object expression and the corresponding
8174  //       subobject of x as a single function argument (as if by explicit
8175  //       qualification; that is, ignoring any possible virtual overriding
8176  //       functions in more derived classes);
8177  //
8178  // C++03 [class.copy]p13:
8179  //     - if the subobject is of class type, the copy assignment operator for
8180  //       the class is used (as if by explicit qualification; that is,
8181  //       ignoring any possible virtual overriding functions in more derived
8182  //       classes);
8183  if (const RecordType *RecordTy = T->getAs<RecordType>()) {
8184    CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
8185
8186    // Look for operator=.
8187    DeclarationName Name
8188      = S.Context.DeclarationNames.getCXXOperatorName(OO_Equal);
8189    LookupResult OpLookup(S, Name, Loc, Sema::LookupOrdinaryName);
8190    S.LookupQualifiedName(OpLookup, ClassDecl, false);
8191
8192    // Prior to C++11, filter out any result that isn't a copy/move-assignment
8193    // operator.
8194    if (!S.getLangOpts().CPlusPlus11) {
8195      LookupResult::Filter F = OpLookup.makeFilter();
8196      while (F.hasNext()) {
8197        NamedDecl *D = F.next();
8198        if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
8199          if (Method->isCopyAssignmentOperator() ||
8200              (!Copying && Method->isMoveAssignmentOperator()))
8201            continue;
8202
8203        F.erase();
8204      }
8205      F.done();
8206    }
8207
8208    // Suppress the protected check (C++ [class.protected]) for each of the
8209    // assignment operators we found. This strange dance is required when
8210    // we're assigning via a base classes's copy-assignment operator. To
8211    // ensure that we're getting the right base class subobject (without
8212    // ambiguities), we need to cast "this" to that subobject type; to
8213    // ensure that we don't go through the virtual call mechanism, we need
8214    // to qualify the operator= name with the base class (see below). However,
8215    // this means that if the base class has a protected copy assignment
8216    // operator, the protected member access check will fail. So, we
8217    // rewrite "protected" access to "public" access in this case, since we
8218    // know by construction that we're calling from a derived class.
8219    if (CopyingBaseSubobject) {
8220      for (LookupResult::iterator L = OpLookup.begin(), LEnd = OpLookup.end();
8221           L != LEnd; ++L) {
8222        if (L.getAccess() == AS_protected)
8223          L.setAccess(AS_public);
8224      }
8225    }
8226
8227    // Create the nested-name-specifier that will be used to qualify the
8228    // reference to operator=; this is required to suppress the virtual
8229    // call mechanism.
8230    CXXScopeSpec SS;
8231    const Type *CanonicalT = S.Context.getCanonicalType(T.getTypePtr());
8232    SS.MakeTrivial(S.Context,
8233                   NestedNameSpecifier::Create(S.Context, 0, false,
8234                                               CanonicalT),
8235                   Loc);
8236
8237    // Create the reference to operator=.
8238    ExprResult OpEqualRef
8239      = S.BuildMemberReferenceExpr(To, T, Loc, /*isArrow=*/false, SS,
8240                                   /*TemplateKWLoc=*/SourceLocation(),
8241                                   /*FirstQualifierInScope=*/0,
8242                                   OpLookup,
8243                                   /*TemplateArgs=*/0,
8244                                   /*SuppressQualifierCheck=*/true);
8245    if (OpEqualRef.isInvalid())
8246      return StmtError();
8247
8248    // Build the call to the assignment operator.
8249
8250    ExprResult Call = S.BuildCallToMemberFunction(/*Scope=*/0,
8251                                                  OpEqualRef.takeAs<Expr>(),
8252                                                  Loc, &From, 1, Loc);
8253    if (Call.isInvalid())
8254      return StmtError();
8255
8256    // If we built a call to a trivial 'operator=' while copying an array,
8257    // bail out. We'll replace the whole shebang with a memcpy.
8258    CXXMemberCallExpr *CE = dyn_cast<CXXMemberCallExpr>(Call.get());
8259    if (CE && CE->getMethodDecl()->isTrivial() && Depth)
8260      return StmtResult((Stmt*)0);
8261
8262    // Convert to an expression-statement, and clean up any produced
8263    // temporaries.
8264    return S.ActOnExprStmt(Call);
8265  }
8266
8267  //     - if the subobject is of scalar type, the built-in assignment
8268  //       operator is used.
8269  const ConstantArrayType *ArrayTy = S.Context.getAsConstantArrayType(T);
8270  if (!ArrayTy) {
8271    ExprResult Assignment = S.CreateBuiltinBinOp(Loc, BO_Assign, To, From);
8272    if (Assignment.isInvalid())
8273      return StmtError();
8274    return S.ActOnExprStmt(Assignment);
8275  }
8276
8277  //     - if the subobject is an array, each element is assigned, in the
8278  //       manner appropriate to the element type;
8279
8280  // Construct a loop over the array bounds, e.g.,
8281  //
8282  //   for (__SIZE_TYPE__ i0 = 0; i0 != array-size; ++i0)
8283  //
8284  // that will copy each of the array elements.
8285  QualType SizeType = S.Context.getSizeType();
8286
8287  // Create the iteration variable.
8288  IdentifierInfo *IterationVarName = 0;
8289  {
8290    SmallString<8> Str;
8291    llvm::raw_svector_ostream OS(Str);
8292    OS << "__i" << Depth;
8293    IterationVarName = &S.Context.Idents.get(OS.str());
8294  }
8295  VarDecl *IterationVar = VarDecl::Create(S.Context, S.CurContext, Loc, Loc,
8296                                          IterationVarName, SizeType,
8297                            S.Context.getTrivialTypeSourceInfo(SizeType, Loc),
8298                                          SC_None);
8299
8300  // Initialize the iteration variable to zero.
8301  llvm::APInt Zero(S.Context.getTypeSize(SizeType), 0);
8302  IterationVar->setInit(IntegerLiteral::Create(S.Context, Zero, SizeType, Loc));
8303
8304  // Create a reference to the iteration variable; we'll use this several
8305  // times throughout.
8306  Expr *IterationVarRef
8307    = S.BuildDeclRefExpr(IterationVar, SizeType, VK_LValue, Loc).take();
8308  assert(IterationVarRef && "Reference to invented variable cannot fail!");
8309  Expr *IterationVarRefRVal = S.DefaultLvalueConversion(IterationVarRef).take();
8310  assert(IterationVarRefRVal && "Conversion of invented variable cannot fail!");
8311
8312  // Create the DeclStmt that holds the iteration variable.
8313  Stmt *InitStmt = new (S.Context) DeclStmt(DeclGroupRef(IterationVar),Loc,Loc);
8314
8315  // Subscript the "from" and "to" expressions with the iteration variable.
8316  From = AssertSuccess(S.CreateBuiltinArraySubscriptExpr(From, Loc,
8317                                                         IterationVarRefRVal,
8318                                                         Loc));
8319  To = AssertSuccess(S.CreateBuiltinArraySubscriptExpr(To, Loc,
8320                                                       IterationVarRefRVal,
8321                                                       Loc));
8322  if (!Copying) // Cast to rvalue
8323    From = CastForMoving(S, From);
8324
8325  // Build the copy/move for an individual element of the array.
8326  StmtResult Copy =
8327    buildSingleCopyAssignRecursively(S, Loc, ArrayTy->getElementType(),
8328                                     To, From, CopyingBaseSubobject,
8329                                     Copying, Depth + 1);
8330  // Bail out if copying fails or if we determined that we should use memcpy.
8331  if (Copy.isInvalid() || !Copy.get())
8332    return Copy;
8333
8334  // Create the comparison against the array bound.
8335  llvm::APInt Upper
8336    = ArrayTy->getSize().zextOrTrunc(S.Context.getTypeSize(SizeType));
8337  Expr *Comparison
8338    = new (S.Context) BinaryOperator(IterationVarRefRVal,
8339                     IntegerLiteral::Create(S.Context, Upper, SizeType, Loc),
8340                                     BO_NE, S.Context.BoolTy,
8341                                     VK_RValue, OK_Ordinary, Loc, false);
8342
8343  // Create the pre-increment of the iteration variable.
8344  Expr *Increment
8345    = new (S.Context) UnaryOperator(IterationVarRef, UO_PreInc, SizeType,
8346                                    VK_LValue, OK_Ordinary, Loc);
8347
8348  // Construct the loop that copies all elements of this array.
8349  return S.ActOnForStmt(Loc, Loc, InitStmt,
8350                        S.MakeFullExpr(Comparison),
8351                        0, S.MakeFullDiscardedValueExpr(Increment),
8352                        Loc, Copy.take());
8353}
8354
8355static StmtResult
8356buildSingleCopyAssign(Sema &S, SourceLocation Loc, QualType T,
8357                      Expr *To, Expr *From,
8358                      bool CopyingBaseSubobject, bool Copying) {
8359  // Maybe we should use a memcpy?
8360  if (T->isArrayType() && !T.isConstQualified() && !T.isVolatileQualified() &&
8361      T.isTriviallyCopyableType(S.Context))
8362    return buildMemcpyForAssignmentOp(S, Loc, T, To, From);
8363
8364  StmtResult Result(buildSingleCopyAssignRecursively(S, Loc, T, To, From,
8365                                                     CopyingBaseSubobject,
8366                                                     Copying, 0));
8367
8368  // If we ended up picking a trivial assignment operator for an array of a
8369  // non-trivially-copyable class type, just emit a memcpy.
8370  if (!Result.isInvalid() && !Result.get())
8371    return buildMemcpyForAssignmentOp(S, Loc, T, To, From);
8372
8373  return Result;
8374}
8375
8376Sema::ImplicitExceptionSpecification
8377Sema::ComputeDefaultedCopyAssignmentExceptionSpec(CXXMethodDecl *MD) {
8378  CXXRecordDecl *ClassDecl = MD->getParent();
8379
8380  ImplicitExceptionSpecification ExceptSpec(*this);
8381  if (ClassDecl->isInvalidDecl())
8382    return ExceptSpec;
8383
8384  const FunctionProtoType *T = MD->getType()->castAs<FunctionProtoType>();
8385  assert(T->getNumArgs() == 1 && "not a copy assignment op");
8386  unsigned ArgQuals = T->getArgType(0).getNonReferenceType().getCVRQualifiers();
8387
8388  // C++ [except.spec]p14:
8389  //   An implicitly declared special member function (Clause 12) shall have an
8390  //   exception-specification. [...]
8391
8392  // It is unspecified whether or not an implicit copy assignment operator
8393  // attempts to deduplicate calls to assignment operators of virtual bases are
8394  // made. As such, this exception specification is effectively unspecified.
8395  // Based on a similar decision made for constness in C++0x, we're erring on
8396  // the side of assuming such calls to be made regardless of whether they
8397  // actually happen.
8398  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
8399                                       BaseEnd = ClassDecl->bases_end();
8400       Base != BaseEnd; ++Base) {
8401    if (Base->isVirtual())
8402      continue;
8403
8404    CXXRecordDecl *BaseClassDecl
8405      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8406    if (CXXMethodDecl *CopyAssign = LookupCopyingAssignment(BaseClassDecl,
8407                                                            ArgQuals, false, 0))
8408      ExceptSpec.CalledDecl(Base->getLocStart(), CopyAssign);
8409  }
8410
8411  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
8412                                       BaseEnd = ClassDecl->vbases_end();
8413       Base != BaseEnd; ++Base) {
8414    CXXRecordDecl *BaseClassDecl
8415      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8416    if (CXXMethodDecl *CopyAssign = LookupCopyingAssignment(BaseClassDecl,
8417                                                            ArgQuals, false, 0))
8418      ExceptSpec.CalledDecl(Base->getLocStart(), CopyAssign);
8419  }
8420
8421  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
8422                                  FieldEnd = ClassDecl->field_end();
8423       Field != FieldEnd;
8424       ++Field) {
8425    QualType FieldType = Context.getBaseElementType(Field->getType());
8426    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
8427      if (CXXMethodDecl *CopyAssign =
8428          LookupCopyingAssignment(FieldClassDecl,
8429                                  ArgQuals | FieldType.getCVRQualifiers(),
8430                                  false, 0))
8431        ExceptSpec.CalledDecl(Field->getLocation(), CopyAssign);
8432    }
8433  }
8434
8435  return ExceptSpec;
8436}
8437
8438CXXMethodDecl *Sema::DeclareImplicitCopyAssignment(CXXRecordDecl *ClassDecl) {
8439  // Note: The following rules are largely analoguous to the copy
8440  // constructor rules. Note that virtual bases are not taken into account
8441  // for determining the argument type of the operator. Note also that
8442  // operators taking an object instead of a reference are allowed.
8443  assert(ClassDecl->needsImplicitCopyAssignment());
8444
8445  DeclaringSpecialMember DSM(*this, ClassDecl, CXXCopyAssignment);
8446  if (DSM.isAlreadyBeingDeclared())
8447    return 0;
8448
8449  QualType ArgType = Context.getTypeDeclType(ClassDecl);
8450  QualType RetType = Context.getLValueReferenceType(ArgType);
8451  if (ClassDecl->implicitCopyAssignmentHasConstParam())
8452    ArgType = ArgType.withConst();
8453  ArgType = Context.getLValueReferenceType(ArgType);
8454
8455  //   An implicitly-declared copy assignment operator is an inline public
8456  //   member of its class.
8457  DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
8458  SourceLocation ClassLoc = ClassDecl->getLocation();
8459  DeclarationNameInfo NameInfo(Name, ClassLoc);
8460  CXXMethodDecl *CopyAssignment
8461    = CXXMethodDecl::Create(Context, ClassDecl, ClassLoc, NameInfo, QualType(),
8462                            /*TInfo=*/0,
8463                            /*StorageClass=*/SC_None,
8464                            /*isInline=*/true, /*isConstexpr=*/false,
8465                            SourceLocation());
8466  CopyAssignment->setAccess(AS_public);
8467  CopyAssignment->setDefaulted();
8468  CopyAssignment->setImplicit();
8469
8470  // Build an exception specification pointing back at this member.
8471  FunctionProtoType::ExtProtoInfo EPI;
8472  EPI.ExceptionSpecType = EST_Unevaluated;
8473  EPI.ExceptionSpecDecl = CopyAssignment;
8474  CopyAssignment->setType(Context.getFunctionType(RetType, ArgType, EPI));
8475
8476  // Add the parameter to the operator.
8477  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment,
8478                                               ClassLoc, ClassLoc, /*Id=*/0,
8479                                               ArgType, /*TInfo=*/0,
8480                                               SC_None, 0);
8481  CopyAssignment->setParams(FromParam);
8482
8483  AddOverriddenMethods(ClassDecl, CopyAssignment);
8484
8485  CopyAssignment->setTrivial(
8486    ClassDecl->needsOverloadResolutionForCopyAssignment()
8487      ? SpecialMemberIsTrivial(CopyAssignment, CXXCopyAssignment)
8488      : ClassDecl->hasTrivialCopyAssignment());
8489
8490  // C++0x [class.copy]p19:
8491  //   ....  If the class definition does not explicitly declare a copy
8492  //   assignment operator, there is no user-declared move constructor, and
8493  //   there is no user-declared move assignment operator, a copy assignment
8494  //   operator is implicitly declared as defaulted.
8495  if (ShouldDeleteSpecialMember(CopyAssignment, CXXCopyAssignment))
8496    SetDeclDeleted(CopyAssignment, ClassLoc);
8497
8498  // Note that we have added this copy-assignment operator.
8499  ++ASTContext::NumImplicitCopyAssignmentOperatorsDeclared;
8500
8501  if (Scope *S = getScopeForContext(ClassDecl))
8502    PushOnScopeChains(CopyAssignment, S, false);
8503  ClassDecl->addDecl(CopyAssignment);
8504
8505  return CopyAssignment;
8506}
8507
8508void Sema::DefineImplicitCopyAssignment(SourceLocation CurrentLocation,
8509                                        CXXMethodDecl *CopyAssignOperator) {
8510  assert((CopyAssignOperator->isDefaulted() &&
8511          CopyAssignOperator->isOverloadedOperator() &&
8512          CopyAssignOperator->getOverloadedOperator() == OO_Equal &&
8513          !CopyAssignOperator->doesThisDeclarationHaveABody() &&
8514          !CopyAssignOperator->isDeleted()) &&
8515         "DefineImplicitCopyAssignment called for wrong function");
8516
8517  CXXRecordDecl *ClassDecl = CopyAssignOperator->getParent();
8518
8519  if (ClassDecl->isInvalidDecl() || CopyAssignOperator->isInvalidDecl()) {
8520    CopyAssignOperator->setInvalidDecl();
8521    return;
8522  }
8523
8524  CopyAssignOperator->setUsed();
8525
8526  SynthesizedFunctionScope Scope(*this, CopyAssignOperator);
8527  DiagnosticErrorTrap Trap(Diags);
8528
8529  // C++0x [class.copy]p30:
8530  //   The implicitly-defined or explicitly-defaulted copy assignment operator
8531  //   for a non-union class X performs memberwise copy assignment of its
8532  //   subobjects. The direct base classes of X are assigned first, in the
8533  //   order of their declaration in the base-specifier-list, and then the
8534  //   immediate non-static data members of X are assigned, in the order in
8535  //   which they were declared in the class definition.
8536
8537  // The statements that form the synthesized function body.
8538  SmallVector<Stmt*, 8> Statements;
8539
8540  // The parameter for the "other" object, which we are copying from.
8541  ParmVarDecl *Other = CopyAssignOperator->getParamDecl(0);
8542  Qualifiers OtherQuals = Other->getType().getQualifiers();
8543  QualType OtherRefType = Other->getType();
8544  if (const LValueReferenceType *OtherRef
8545                                = OtherRefType->getAs<LValueReferenceType>()) {
8546    OtherRefType = OtherRef->getPointeeType();
8547    OtherQuals = OtherRefType.getQualifiers();
8548  }
8549
8550  // Our location for everything implicitly-generated.
8551  SourceLocation Loc = CopyAssignOperator->getLocation();
8552
8553  // Construct a reference to the "other" object. We'll be using this
8554  // throughout the generated ASTs.
8555  Expr *OtherRef = BuildDeclRefExpr(Other, OtherRefType, VK_LValue, Loc).take();
8556  assert(OtherRef && "Reference to parameter cannot fail!");
8557
8558  // Construct the "this" pointer. We'll be using this throughout the generated
8559  // ASTs.
8560  Expr *This = ActOnCXXThis(Loc).takeAs<Expr>();
8561  assert(This && "Reference to this cannot fail!");
8562
8563  // Assign base classes.
8564  bool Invalid = false;
8565  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
8566       E = ClassDecl->bases_end(); Base != E; ++Base) {
8567    // Form the assignment:
8568    //   static_cast<Base*>(this)->Base::operator=(static_cast<Base&>(other));
8569    QualType BaseType = Base->getType().getUnqualifiedType();
8570    if (!BaseType->isRecordType()) {
8571      Invalid = true;
8572      continue;
8573    }
8574
8575    CXXCastPath BasePath;
8576    BasePath.push_back(Base);
8577
8578    // Construct the "from" expression, which is an implicit cast to the
8579    // appropriately-qualified base type.
8580    Expr *From = OtherRef;
8581    From = ImpCastExprToType(From, Context.getQualifiedType(BaseType, OtherQuals),
8582                             CK_UncheckedDerivedToBase,
8583                             VK_LValue, &BasePath).take();
8584
8585    // Dereference "this".
8586    ExprResult To = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
8587
8588    // Implicitly cast "this" to the appropriately-qualified base type.
8589    To = ImpCastExprToType(To.take(),
8590                           Context.getCVRQualifiedType(BaseType,
8591                                     CopyAssignOperator->getTypeQualifiers()),
8592                           CK_UncheckedDerivedToBase,
8593                           VK_LValue, &BasePath);
8594
8595    // Build the copy.
8596    StmtResult Copy = buildSingleCopyAssign(*this, Loc, BaseType,
8597                                            To.get(), From,
8598                                            /*CopyingBaseSubobject=*/true,
8599                                            /*Copying=*/true);
8600    if (Copy.isInvalid()) {
8601      Diag(CurrentLocation, diag::note_member_synthesized_at)
8602        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
8603      CopyAssignOperator->setInvalidDecl();
8604      return;
8605    }
8606
8607    // Success! Record the copy.
8608    Statements.push_back(Copy.takeAs<Expr>());
8609  }
8610
8611  // Assign non-static members.
8612  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
8613                                  FieldEnd = ClassDecl->field_end();
8614       Field != FieldEnd; ++Field) {
8615    if (Field->isUnnamedBitfield())
8616      continue;
8617
8618    // Check for members of reference type; we can't copy those.
8619    if (Field->getType()->isReferenceType()) {
8620      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
8621        << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
8622      Diag(Field->getLocation(), diag::note_declared_at);
8623      Diag(CurrentLocation, diag::note_member_synthesized_at)
8624        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
8625      Invalid = true;
8626      continue;
8627    }
8628
8629    // Check for members of const-qualified, non-class type.
8630    QualType BaseType = Context.getBaseElementType(Field->getType());
8631    if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) {
8632      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
8633        << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
8634      Diag(Field->getLocation(), diag::note_declared_at);
8635      Diag(CurrentLocation, diag::note_member_synthesized_at)
8636        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
8637      Invalid = true;
8638      continue;
8639    }
8640
8641    // Suppress assigning zero-width bitfields.
8642    if (Field->isBitField() && Field->getBitWidthValue(Context) == 0)
8643      continue;
8644
8645    QualType FieldType = Field->getType().getNonReferenceType();
8646    if (FieldType->isIncompleteArrayType()) {
8647      assert(ClassDecl->hasFlexibleArrayMember() &&
8648             "Incomplete array type is not valid");
8649      continue;
8650    }
8651
8652    // Build references to the field in the object we're copying from and to.
8653    CXXScopeSpec SS; // Intentionally empty
8654    LookupResult MemberLookup(*this, Field->getDeclName(), Loc,
8655                              LookupMemberName);
8656    MemberLookup.addDecl(*Field);
8657    MemberLookup.resolveKind();
8658    ExprResult From = BuildMemberReferenceExpr(OtherRef, OtherRefType,
8659                                               Loc, /*IsArrow=*/false,
8660                                               SS, SourceLocation(), 0,
8661                                               MemberLookup, 0);
8662    ExprResult To = BuildMemberReferenceExpr(This, This->getType(),
8663                                             Loc, /*IsArrow=*/true,
8664                                             SS, SourceLocation(), 0,
8665                                             MemberLookup, 0);
8666    assert(!From.isInvalid() && "Implicit field reference cannot fail");
8667    assert(!To.isInvalid() && "Implicit field reference cannot fail");
8668
8669    // Build the copy of this field.
8670    StmtResult Copy = buildSingleCopyAssign(*this, Loc, FieldType,
8671                                            To.get(), From.get(),
8672                                            /*CopyingBaseSubobject=*/false,
8673                                            /*Copying=*/true);
8674    if (Copy.isInvalid()) {
8675      Diag(CurrentLocation, diag::note_member_synthesized_at)
8676        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
8677      CopyAssignOperator->setInvalidDecl();
8678      return;
8679    }
8680
8681    // Success! Record the copy.
8682    Statements.push_back(Copy.takeAs<Stmt>());
8683  }
8684
8685  if (!Invalid) {
8686    // Add a "return *this;"
8687    ExprResult ThisObj = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
8688
8689    StmtResult Return = ActOnReturnStmt(Loc, ThisObj.get());
8690    if (Return.isInvalid())
8691      Invalid = true;
8692    else {
8693      Statements.push_back(Return.takeAs<Stmt>());
8694
8695      if (Trap.hasErrorOccurred()) {
8696        Diag(CurrentLocation, diag::note_member_synthesized_at)
8697          << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
8698        Invalid = true;
8699      }
8700    }
8701  }
8702
8703  if (Invalid) {
8704    CopyAssignOperator->setInvalidDecl();
8705    return;
8706  }
8707
8708  StmtResult Body;
8709  {
8710    CompoundScopeRAII CompoundScope(*this);
8711    Body = ActOnCompoundStmt(Loc, Loc, Statements,
8712                             /*isStmtExpr=*/false);
8713    assert(!Body.isInvalid() && "Compound statement creation cannot fail");
8714  }
8715  CopyAssignOperator->setBody(Body.takeAs<Stmt>());
8716
8717  if (ASTMutationListener *L = getASTMutationListener()) {
8718    L->CompletedImplicitDefinition(CopyAssignOperator);
8719  }
8720}
8721
8722Sema::ImplicitExceptionSpecification
8723Sema::ComputeDefaultedMoveAssignmentExceptionSpec(CXXMethodDecl *MD) {
8724  CXXRecordDecl *ClassDecl = MD->getParent();
8725
8726  ImplicitExceptionSpecification ExceptSpec(*this);
8727  if (ClassDecl->isInvalidDecl())
8728    return ExceptSpec;
8729
8730  // C++0x [except.spec]p14:
8731  //   An implicitly declared special member function (Clause 12) shall have an
8732  //   exception-specification. [...]
8733
8734  // It is unspecified whether or not an implicit move assignment operator
8735  // attempts to deduplicate calls to assignment operators of virtual bases are
8736  // made. As such, this exception specification is effectively unspecified.
8737  // Based on a similar decision made for constness in C++0x, we're erring on
8738  // the side of assuming such calls to be made regardless of whether they
8739  // actually happen.
8740  // Note that a move constructor is not implicitly declared when there are
8741  // virtual bases, but it can still be user-declared and explicitly defaulted.
8742  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
8743                                       BaseEnd = ClassDecl->bases_end();
8744       Base != BaseEnd; ++Base) {
8745    if (Base->isVirtual())
8746      continue;
8747
8748    CXXRecordDecl *BaseClassDecl
8749      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8750    if (CXXMethodDecl *MoveAssign = LookupMovingAssignment(BaseClassDecl,
8751                                                           0, false, 0))
8752      ExceptSpec.CalledDecl(Base->getLocStart(), MoveAssign);
8753  }
8754
8755  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
8756                                       BaseEnd = ClassDecl->vbases_end();
8757       Base != BaseEnd; ++Base) {
8758    CXXRecordDecl *BaseClassDecl
8759      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8760    if (CXXMethodDecl *MoveAssign = LookupMovingAssignment(BaseClassDecl,
8761                                                           0, false, 0))
8762      ExceptSpec.CalledDecl(Base->getLocStart(), MoveAssign);
8763  }
8764
8765  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
8766                                  FieldEnd = ClassDecl->field_end();
8767       Field != FieldEnd;
8768       ++Field) {
8769    QualType FieldType = Context.getBaseElementType(Field->getType());
8770    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
8771      if (CXXMethodDecl *MoveAssign =
8772              LookupMovingAssignment(FieldClassDecl,
8773                                     FieldType.getCVRQualifiers(),
8774                                     false, 0))
8775        ExceptSpec.CalledDecl(Field->getLocation(), MoveAssign);
8776    }
8777  }
8778
8779  return ExceptSpec;
8780}
8781
8782/// Determine whether the class type has any direct or indirect virtual base
8783/// classes which have a non-trivial move assignment operator.
8784static bool
8785hasVirtualBaseWithNonTrivialMoveAssignment(Sema &S, CXXRecordDecl *ClassDecl) {
8786  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
8787                                          BaseEnd = ClassDecl->vbases_end();
8788       Base != BaseEnd; ++Base) {
8789    CXXRecordDecl *BaseClass =
8790        cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8791
8792    // Try to declare the move assignment. If it would be deleted, then the
8793    // class does not have a non-trivial move assignment.
8794    if (BaseClass->needsImplicitMoveAssignment())
8795      S.DeclareImplicitMoveAssignment(BaseClass);
8796
8797    if (BaseClass->hasNonTrivialMoveAssignment())
8798      return true;
8799  }
8800
8801  return false;
8802}
8803
8804/// Determine whether the given type either has a move constructor or is
8805/// trivially copyable.
8806static bool
8807hasMoveOrIsTriviallyCopyable(Sema &S, QualType Type, bool IsConstructor) {
8808  Type = S.Context.getBaseElementType(Type);
8809
8810  // FIXME: Technically, non-trivially-copyable non-class types, such as
8811  // reference types, are supposed to return false here, but that appears
8812  // to be a standard defect.
8813  CXXRecordDecl *ClassDecl = Type->getAsCXXRecordDecl();
8814  if (!ClassDecl || !ClassDecl->getDefinition() || ClassDecl->isInvalidDecl())
8815    return true;
8816
8817  if (Type.isTriviallyCopyableType(S.Context))
8818    return true;
8819
8820  if (IsConstructor) {
8821    // FIXME: Need this because otherwise hasMoveConstructor isn't guaranteed to
8822    // give the right answer.
8823    if (ClassDecl->needsImplicitMoveConstructor())
8824      S.DeclareImplicitMoveConstructor(ClassDecl);
8825    return ClassDecl->hasMoveConstructor();
8826  }
8827
8828  // FIXME: Need this because otherwise hasMoveAssignment isn't guaranteed to
8829  // give the right answer.
8830  if (ClassDecl->needsImplicitMoveAssignment())
8831    S.DeclareImplicitMoveAssignment(ClassDecl);
8832  return ClassDecl->hasMoveAssignment();
8833}
8834
8835/// Determine whether all non-static data members and direct or virtual bases
8836/// of class \p ClassDecl have either a move operation, or are trivially
8837/// copyable.
8838static bool subobjectsHaveMoveOrTrivialCopy(Sema &S, CXXRecordDecl *ClassDecl,
8839                                            bool IsConstructor) {
8840  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
8841                                          BaseEnd = ClassDecl->bases_end();
8842       Base != BaseEnd; ++Base) {
8843    if (Base->isVirtual())
8844      continue;
8845
8846    if (!hasMoveOrIsTriviallyCopyable(S, Base->getType(), IsConstructor))
8847      return false;
8848  }
8849
8850  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
8851                                          BaseEnd = ClassDecl->vbases_end();
8852       Base != BaseEnd; ++Base) {
8853    if (!hasMoveOrIsTriviallyCopyable(S, Base->getType(), IsConstructor))
8854      return false;
8855  }
8856
8857  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
8858                                     FieldEnd = ClassDecl->field_end();
8859       Field != FieldEnd; ++Field) {
8860    if (!hasMoveOrIsTriviallyCopyable(S, Field->getType(), IsConstructor))
8861      return false;
8862  }
8863
8864  return true;
8865}
8866
8867CXXMethodDecl *Sema::DeclareImplicitMoveAssignment(CXXRecordDecl *ClassDecl) {
8868  // C++11 [class.copy]p20:
8869  //   If the definition of a class X does not explicitly declare a move
8870  //   assignment operator, one will be implicitly declared as defaulted
8871  //   if and only if:
8872  //
8873  //   - [first 4 bullets]
8874  assert(ClassDecl->needsImplicitMoveAssignment());
8875
8876  DeclaringSpecialMember DSM(*this, ClassDecl, CXXMoveAssignment);
8877  if (DSM.isAlreadyBeingDeclared())
8878    return 0;
8879
8880  // [Checked after we build the declaration]
8881  //   - the move assignment operator would not be implicitly defined as
8882  //     deleted,
8883
8884  // [DR1402]:
8885  //   - X has no direct or indirect virtual base class with a non-trivial
8886  //     move assignment operator, and
8887  //   - each of X's non-static data members and direct or virtual base classes
8888  //     has a type that either has a move assignment operator or is trivially
8889  //     copyable.
8890  if (hasVirtualBaseWithNonTrivialMoveAssignment(*this, ClassDecl) ||
8891      !subobjectsHaveMoveOrTrivialCopy(*this, ClassDecl,/*Constructor*/false)) {
8892    ClassDecl->setFailedImplicitMoveAssignment();
8893    return 0;
8894  }
8895
8896  // Note: The following rules are largely analoguous to the move
8897  // constructor rules.
8898
8899  QualType ArgType = Context.getTypeDeclType(ClassDecl);
8900  QualType RetType = Context.getLValueReferenceType(ArgType);
8901  ArgType = Context.getRValueReferenceType(ArgType);
8902
8903  //   An implicitly-declared move assignment operator is an inline public
8904  //   member of its class.
8905  DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
8906  SourceLocation ClassLoc = ClassDecl->getLocation();
8907  DeclarationNameInfo NameInfo(Name, ClassLoc);
8908  CXXMethodDecl *MoveAssignment
8909    = CXXMethodDecl::Create(Context, ClassDecl, ClassLoc, NameInfo, QualType(),
8910                            /*TInfo=*/0,
8911                            /*StorageClass=*/SC_None,
8912                            /*isInline=*/true,
8913                            /*isConstexpr=*/false,
8914                            SourceLocation());
8915  MoveAssignment->setAccess(AS_public);
8916  MoveAssignment->setDefaulted();
8917  MoveAssignment->setImplicit();
8918
8919  // Build an exception specification pointing back at this member.
8920  FunctionProtoType::ExtProtoInfo EPI;
8921  EPI.ExceptionSpecType = EST_Unevaluated;
8922  EPI.ExceptionSpecDecl = MoveAssignment;
8923  MoveAssignment->setType(Context.getFunctionType(RetType, ArgType, EPI));
8924
8925  // Add the parameter to the operator.
8926  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, MoveAssignment,
8927                                               ClassLoc, ClassLoc, /*Id=*/0,
8928                                               ArgType, /*TInfo=*/0,
8929                                               SC_None, 0);
8930  MoveAssignment->setParams(FromParam);
8931
8932  AddOverriddenMethods(ClassDecl, MoveAssignment);
8933
8934  MoveAssignment->setTrivial(
8935    ClassDecl->needsOverloadResolutionForMoveAssignment()
8936      ? SpecialMemberIsTrivial(MoveAssignment, CXXMoveAssignment)
8937      : ClassDecl->hasTrivialMoveAssignment());
8938
8939  // C++0x [class.copy]p9:
8940  //   If the definition of a class X does not explicitly declare a move
8941  //   assignment operator, one will be implicitly declared as defaulted if and
8942  //   only if:
8943  //   [...]
8944  //   - the move assignment operator would not be implicitly defined as
8945  //     deleted.
8946  if (ShouldDeleteSpecialMember(MoveAssignment, CXXMoveAssignment)) {
8947    // Cache this result so that we don't try to generate this over and over
8948    // on every lookup, leaking memory and wasting time.
8949    ClassDecl->setFailedImplicitMoveAssignment();
8950    return 0;
8951  }
8952
8953  // Note that we have added this copy-assignment operator.
8954  ++ASTContext::NumImplicitMoveAssignmentOperatorsDeclared;
8955
8956  if (Scope *S = getScopeForContext(ClassDecl))
8957    PushOnScopeChains(MoveAssignment, S, false);
8958  ClassDecl->addDecl(MoveAssignment);
8959
8960  return MoveAssignment;
8961}
8962
8963void Sema::DefineImplicitMoveAssignment(SourceLocation CurrentLocation,
8964                                        CXXMethodDecl *MoveAssignOperator) {
8965  assert((MoveAssignOperator->isDefaulted() &&
8966          MoveAssignOperator->isOverloadedOperator() &&
8967          MoveAssignOperator->getOverloadedOperator() == OO_Equal &&
8968          !MoveAssignOperator->doesThisDeclarationHaveABody() &&
8969          !MoveAssignOperator->isDeleted()) &&
8970         "DefineImplicitMoveAssignment called for wrong function");
8971
8972  CXXRecordDecl *ClassDecl = MoveAssignOperator->getParent();
8973
8974  if (ClassDecl->isInvalidDecl() || MoveAssignOperator->isInvalidDecl()) {
8975    MoveAssignOperator->setInvalidDecl();
8976    return;
8977  }
8978
8979  MoveAssignOperator->setUsed();
8980
8981  SynthesizedFunctionScope Scope(*this, MoveAssignOperator);
8982  DiagnosticErrorTrap Trap(Diags);
8983
8984  // C++0x [class.copy]p28:
8985  //   The implicitly-defined or move assignment operator for a non-union class
8986  //   X performs memberwise move assignment of its subobjects. The direct base
8987  //   classes of X are assigned first, in the order of their declaration in the
8988  //   base-specifier-list, and then the immediate non-static data members of X
8989  //   are assigned, in the order in which they were declared in the class
8990  //   definition.
8991
8992  // The statements that form the synthesized function body.
8993  SmallVector<Stmt*, 8> Statements;
8994
8995  // The parameter for the "other" object, which we are move from.
8996  ParmVarDecl *Other = MoveAssignOperator->getParamDecl(0);
8997  QualType OtherRefType = Other->getType()->
8998      getAs<RValueReferenceType>()->getPointeeType();
8999  assert(OtherRefType.getQualifiers() == 0 &&
9000         "Bad argument type of defaulted move assignment");
9001
9002  // Our location for everything implicitly-generated.
9003  SourceLocation Loc = MoveAssignOperator->getLocation();
9004
9005  // Construct a reference to the "other" object. We'll be using this
9006  // throughout the generated ASTs.
9007  Expr *OtherRef = BuildDeclRefExpr(Other, OtherRefType, VK_LValue, Loc).take();
9008  assert(OtherRef && "Reference to parameter cannot fail!");
9009  // Cast to rvalue.
9010  OtherRef = CastForMoving(*this, OtherRef);
9011
9012  // Construct the "this" pointer. We'll be using this throughout the generated
9013  // ASTs.
9014  Expr *This = ActOnCXXThis(Loc).takeAs<Expr>();
9015  assert(This && "Reference to this cannot fail!");
9016
9017  // Assign base classes.
9018  bool Invalid = false;
9019  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
9020       E = ClassDecl->bases_end(); Base != E; ++Base) {
9021    // Form the assignment:
9022    //   static_cast<Base*>(this)->Base::operator=(static_cast<Base&&>(other));
9023    QualType BaseType = Base->getType().getUnqualifiedType();
9024    if (!BaseType->isRecordType()) {
9025      Invalid = true;
9026      continue;
9027    }
9028
9029    CXXCastPath BasePath;
9030    BasePath.push_back(Base);
9031
9032    // Construct the "from" expression, which is an implicit cast to the
9033    // appropriately-qualified base type.
9034    Expr *From = OtherRef;
9035    From = ImpCastExprToType(From, BaseType, CK_UncheckedDerivedToBase,
9036                             VK_XValue, &BasePath).take();
9037
9038    // Dereference "this".
9039    ExprResult To = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
9040
9041    // Implicitly cast "this" to the appropriately-qualified base type.
9042    To = ImpCastExprToType(To.take(),
9043                           Context.getCVRQualifiedType(BaseType,
9044                                     MoveAssignOperator->getTypeQualifiers()),
9045                           CK_UncheckedDerivedToBase,
9046                           VK_LValue, &BasePath);
9047
9048    // Build the move.
9049    StmtResult Move = buildSingleCopyAssign(*this, Loc, BaseType,
9050                                            To.get(), From,
9051                                            /*CopyingBaseSubobject=*/true,
9052                                            /*Copying=*/false);
9053    if (Move.isInvalid()) {
9054      Diag(CurrentLocation, diag::note_member_synthesized_at)
9055        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
9056      MoveAssignOperator->setInvalidDecl();
9057      return;
9058    }
9059
9060    // Success! Record the move.
9061    Statements.push_back(Move.takeAs<Expr>());
9062  }
9063
9064  // Assign non-static members.
9065  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
9066                                  FieldEnd = ClassDecl->field_end();
9067       Field != FieldEnd; ++Field) {
9068    if (Field->isUnnamedBitfield())
9069      continue;
9070
9071    // Check for members of reference type; we can't move those.
9072    if (Field->getType()->isReferenceType()) {
9073      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
9074        << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
9075      Diag(Field->getLocation(), diag::note_declared_at);
9076      Diag(CurrentLocation, diag::note_member_synthesized_at)
9077        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
9078      Invalid = true;
9079      continue;
9080    }
9081
9082    // Check for members of const-qualified, non-class type.
9083    QualType BaseType = Context.getBaseElementType(Field->getType());
9084    if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) {
9085      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
9086        << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
9087      Diag(Field->getLocation(), diag::note_declared_at);
9088      Diag(CurrentLocation, diag::note_member_synthesized_at)
9089        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
9090      Invalid = true;
9091      continue;
9092    }
9093
9094    // Suppress assigning zero-width bitfields.
9095    if (Field->isBitField() && Field->getBitWidthValue(Context) == 0)
9096      continue;
9097
9098    QualType FieldType = Field->getType().getNonReferenceType();
9099    if (FieldType->isIncompleteArrayType()) {
9100      assert(ClassDecl->hasFlexibleArrayMember() &&
9101             "Incomplete array type is not valid");
9102      continue;
9103    }
9104
9105    // Build references to the field in the object we're copying from and to.
9106    CXXScopeSpec SS; // Intentionally empty
9107    LookupResult MemberLookup(*this, Field->getDeclName(), Loc,
9108                              LookupMemberName);
9109    MemberLookup.addDecl(*Field);
9110    MemberLookup.resolveKind();
9111    ExprResult From = BuildMemberReferenceExpr(OtherRef, OtherRefType,
9112                                               Loc, /*IsArrow=*/false,
9113                                               SS, SourceLocation(), 0,
9114                                               MemberLookup, 0);
9115    ExprResult To = BuildMemberReferenceExpr(This, This->getType(),
9116                                             Loc, /*IsArrow=*/true,
9117                                             SS, SourceLocation(), 0,
9118                                             MemberLookup, 0);
9119    assert(!From.isInvalid() && "Implicit field reference cannot fail");
9120    assert(!To.isInvalid() && "Implicit field reference cannot fail");
9121
9122    assert(!From.get()->isLValue() && // could be xvalue or prvalue
9123        "Member reference with rvalue base must be rvalue except for reference "
9124        "members, which aren't allowed for move assignment.");
9125
9126    // Build the move of this field.
9127    StmtResult Move = buildSingleCopyAssign(*this, Loc, FieldType,
9128                                            To.get(), From.get(),
9129                                            /*CopyingBaseSubobject=*/false,
9130                                            /*Copying=*/false);
9131    if (Move.isInvalid()) {
9132      Diag(CurrentLocation, diag::note_member_synthesized_at)
9133        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
9134      MoveAssignOperator->setInvalidDecl();
9135      return;
9136    }
9137
9138    // Success! Record the copy.
9139    Statements.push_back(Move.takeAs<Stmt>());
9140  }
9141
9142  if (!Invalid) {
9143    // Add a "return *this;"
9144    ExprResult ThisObj = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
9145
9146    StmtResult Return = ActOnReturnStmt(Loc, ThisObj.get());
9147    if (Return.isInvalid())
9148      Invalid = true;
9149    else {
9150      Statements.push_back(Return.takeAs<Stmt>());
9151
9152      if (Trap.hasErrorOccurred()) {
9153        Diag(CurrentLocation, diag::note_member_synthesized_at)
9154          << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
9155        Invalid = true;
9156      }
9157    }
9158  }
9159
9160  if (Invalid) {
9161    MoveAssignOperator->setInvalidDecl();
9162    return;
9163  }
9164
9165  StmtResult Body;
9166  {
9167    CompoundScopeRAII CompoundScope(*this);
9168    Body = ActOnCompoundStmt(Loc, Loc, Statements,
9169                             /*isStmtExpr=*/false);
9170    assert(!Body.isInvalid() && "Compound statement creation cannot fail");
9171  }
9172  MoveAssignOperator->setBody(Body.takeAs<Stmt>());
9173
9174  if (ASTMutationListener *L = getASTMutationListener()) {
9175    L->CompletedImplicitDefinition(MoveAssignOperator);
9176  }
9177}
9178
9179Sema::ImplicitExceptionSpecification
9180Sema::ComputeDefaultedCopyCtorExceptionSpec(CXXMethodDecl *MD) {
9181  CXXRecordDecl *ClassDecl = MD->getParent();
9182
9183  ImplicitExceptionSpecification ExceptSpec(*this);
9184  if (ClassDecl->isInvalidDecl())
9185    return ExceptSpec;
9186
9187  const FunctionProtoType *T = MD->getType()->castAs<FunctionProtoType>();
9188  assert(T->getNumArgs() >= 1 && "not a copy ctor");
9189  unsigned Quals = T->getArgType(0).getNonReferenceType().getCVRQualifiers();
9190
9191  // C++ [except.spec]p14:
9192  //   An implicitly declared special member function (Clause 12) shall have an
9193  //   exception-specification. [...]
9194  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
9195                                       BaseEnd = ClassDecl->bases_end();
9196       Base != BaseEnd;
9197       ++Base) {
9198    // Virtual bases are handled below.
9199    if (Base->isVirtual())
9200      continue;
9201
9202    CXXRecordDecl *BaseClassDecl
9203      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
9204    if (CXXConstructorDecl *CopyConstructor =
9205          LookupCopyingConstructor(BaseClassDecl, Quals))
9206      ExceptSpec.CalledDecl(Base->getLocStart(), CopyConstructor);
9207  }
9208  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
9209                                       BaseEnd = ClassDecl->vbases_end();
9210       Base != BaseEnd;
9211       ++Base) {
9212    CXXRecordDecl *BaseClassDecl
9213      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
9214    if (CXXConstructorDecl *CopyConstructor =
9215          LookupCopyingConstructor(BaseClassDecl, Quals))
9216      ExceptSpec.CalledDecl(Base->getLocStart(), CopyConstructor);
9217  }
9218  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
9219                                  FieldEnd = ClassDecl->field_end();
9220       Field != FieldEnd;
9221       ++Field) {
9222    QualType FieldType = Context.getBaseElementType(Field->getType());
9223    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
9224      if (CXXConstructorDecl *CopyConstructor =
9225              LookupCopyingConstructor(FieldClassDecl,
9226                                       Quals | FieldType.getCVRQualifiers()))
9227      ExceptSpec.CalledDecl(Field->getLocation(), CopyConstructor);
9228    }
9229  }
9230
9231  return ExceptSpec;
9232}
9233
9234CXXConstructorDecl *Sema::DeclareImplicitCopyConstructor(
9235                                                    CXXRecordDecl *ClassDecl) {
9236  // C++ [class.copy]p4:
9237  //   If the class definition does not explicitly declare a copy
9238  //   constructor, one is declared implicitly.
9239  assert(ClassDecl->needsImplicitCopyConstructor());
9240
9241  DeclaringSpecialMember DSM(*this, ClassDecl, CXXCopyConstructor);
9242  if (DSM.isAlreadyBeingDeclared())
9243    return 0;
9244
9245  QualType ClassType = Context.getTypeDeclType(ClassDecl);
9246  QualType ArgType = ClassType;
9247  bool Const = ClassDecl->implicitCopyConstructorHasConstParam();
9248  if (Const)
9249    ArgType = ArgType.withConst();
9250  ArgType = Context.getLValueReferenceType(ArgType);
9251
9252  bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl,
9253                                                     CXXCopyConstructor,
9254                                                     Const);
9255
9256  DeclarationName Name
9257    = Context.DeclarationNames.getCXXConstructorName(
9258                                           Context.getCanonicalType(ClassType));
9259  SourceLocation ClassLoc = ClassDecl->getLocation();
9260  DeclarationNameInfo NameInfo(Name, ClassLoc);
9261
9262  //   An implicitly-declared copy constructor is an inline public
9263  //   member of its class.
9264  CXXConstructorDecl *CopyConstructor = CXXConstructorDecl::Create(
9265      Context, ClassDecl, ClassLoc, NameInfo, QualType(), /*TInfo=*/0,
9266      /*isExplicit=*/false, /*isInline=*/true, /*isImplicitlyDeclared=*/true,
9267      Constexpr);
9268  CopyConstructor->setAccess(AS_public);
9269  CopyConstructor->setDefaulted();
9270
9271  // Build an exception specification pointing back at this member.
9272  FunctionProtoType::ExtProtoInfo EPI;
9273  EPI.ExceptionSpecType = EST_Unevaluated;
9274  EPI.ExceptionSpecDecl = CopyConstructor;
9275  CopyConstructor->setType(
9276      Context.getFunctionType(Context.VoidTy, ArgType, EPI));
9277
9278  // Add the parameter to the constructor.
9279  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor,
9280                                               ClassLoc, ClassLoc,
9281                                               /*IdentifierInfo=*/0,
9282                                               ArgType, /*TInfo=*/0,
9283                                               SC_None, 0);
9284  CopyConstructor->setParams(FromParam);
9285
9286  CopyConstructor->setTrivial(
9287    ClassDecl->needsOverloadResolutionForCopyConstructor()
9288      ? SpecialMemberIsTrivial(CopyConstructor, CXXCopyConstructor)
9289      : ClassDecl->hasTrivialCopyConstructor());
9290
9291  // C++11 [class.copy]p8:
9292  //   ... If the class definition does not explicitly declare a copy
9293  //   constructor, there is no user-declared move constructor, and there is no
9294  //   user-declared move assignment operator, a copy constructor is implicitly
9295  //   declared as defaulted.
9296  if (ShouldDeleteSpecialMember(CopyConstructor, CXXCopyConstructor))
9297    SetDeclDeleted(CopyConstructor, ClassLoc);
9298
9299  // Note that we have declared this constructor.
9300  ++ASTContext::NumImplicitCopyConstructorsDeclared;
9301
9302  if (Scope *S = getScopeForContext(ClassDecl))
9303    PushOnScopeChains(CopyConstructor, S, false);
9304  ClassDecl->addDecl(CopyConstructor);
9305
9306  return CopyConstructor;
9307}
9308
9309void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation,
9310                                   CXXConstructorDecl *CopyConstructor) {
9311  assert((CopyConstructor->isDefaulted() &&
9312          CopyConstructor->isCopyConstructor() &&
9313          !CopyConstructor->doesThisDeclarationHaveABody() &&
9314          !CopyConstructor->isDeleted()) &&
9315         "DefineImplicitCopyConstructor - call it for implicit copy ctor");
9316
9317  CXXRecordDecl *ClassDecl = CopyConstructor->getParent();
9318  assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor");
9319
9320  SynthesizedFunctionScope Scope(*this, CopyConstructor);
9321  DiagnosticErrorTrap Trap(Diags);
9322
9323  if (SetCtorInitializers(CopyConstructor, /*AnyErrors=*/false) ||
9324      Trap.hasErrorOccurred()) {
9325    Diag(CurrentLocation, diag::note_member_synthesized_at)
9326      << CXXCopyConstructor << Context.getTagDeclType(ClassDecl);
9327    CopyConstructor->setInvalidDecl();
9328  }  else {
9329    Sema::CompoundScopeRAII CompoundScope(*this);
9330    CopyConstructor->setBody(ActOnCompoundStmt(CopyConstructor->getLocation(),
9331                                               CopyConstructor->getLocation(),
9332                                               MultiStmtArg(),
9333                                               /*isStmtExpr=*/false)
9334                                                              .takeAs<Stmt>());
9335    CopyConstructor->setImplicitlyDefined(true);
9336  }
9337
9338  CopyConstructor->setUsed();
9339  if (ASTMutationListener *L = getASTMutationListener()) {
9340    L->CompletedImplicitDefinition(CopyConstructor);
9341  }
9342}
9343
9344Sema::ImplicitExceptionSpecification
9345Sema::ComputeDefaultedMoveCtorExceptionSpec(CXXMethodDecl *MD) {
9346  CXXRecordDecl *ClassDecl = MD->getParent();
9347
9348  // C++ [except.spec]p14:
9349  //   An implicitly declared special member function (Clause 12) shall have an
9350  //   exception-specification. [...]
9351  ImplicitExceptionSpecification ExceptSpec(*this);
9352  if (ClassDecl->isInvalidDecl())
9353    return ExceptSpec;
9354
9355  // Direct base-class constructors.
9356  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
9357                                       BEnd = ClassDecl->bases_end();
9358       B != BEnd; ++B) {
9359    if (B->isVirtual()) // Handled below.
9360      continue;
9361
9362    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
9363      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
9364      CXXConstructorDecl *Constructor =
9365          LookupMovingConstructor(BaseClassDecl, 0);
9366      // If this is a deleted function, add it anyway. This might be conformant
9367      // with the standard. This might not. I'm not sure. It might not matter.
9368      if (Constructor)
9369        ExceptSpec.CalledDecl(B->getLocStart(), Constructor);
9370    }
9371  }
9372
9373  // Virtual base-class constructors.
9374  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
9375                                       BEnd = ClassDecl->vbases_end();
9376       B != BEnd; ++B) {
9377    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
9378      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
9379      CXXConstructorDecl *Constructor =
9380          LookupMovingConstructor(BaseClassDecl, 0);
9381      // If this is a deleted function, add it anyway. This might be conformant
9382      // with the standard. This might not. I'm not sure. It might not matter.
9383      if (Constructor)
9384        ExceptSpec.CalledDecl(B->getLocStart(), Constructor);
9385    }
9386  }
9387
9388  // Field constructors.
9389  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
9390                               FEnd = ClassDecl->field_end();
9391       F != FEnd; ++F) {
9392    QualType FieldType = Context.getBaseElementType(F->getType());
9393    if (CXXRecordDecl *FieldRecDecl = FieldType->getAsCXXRecordDecl()) {
9394      CXXConstructorDecl *Constructor =
9395          LookupMovingConstructor(FieldRecDecl, FieldType.getCVRQualifiers());
9396      // If this is a deleted function, add it anyway. This might be conformant
9397      // with the standard. This might not. I'm not sure. It might not matter.
9398      // In particular, the problem is that this function never gets called. It
9399      // might just be ill-formed because this function attempts to refer to
9400      // a deleted function here.
9401      if (Constructor)
9402        ExceptSpec.CalledDecl(F->getLocation(), Constructor);
9403    }
9404  }
9405
9406  return ExceptSpec;
9407}
9408
9409CXXConstructorDecl *Sema::DeclareImplicitMoveConstructor(
9410                                                    CXXRecordDecl *ClassDecl) {
9411  // C++11 [class.copy]p9:
9412  //   If the definition of a class X does not explicitly declare a move
9413  //   constructor, one will be implicitly declared as defaulted if and only if:
9414  //
9415  //   - [first 4 bullets]
9416  assert(ClassDecl->needsImplicitMoveConstructor());
9417
9418  DeclaringSpecialMember DSM(*this, ClassDecl, CXXMoveConstructor);
9419  if (DSM.isAlreadyBeingDeclared())
9420    return 0;
9421
9422  // [Checked after we build the declaration]
9423  //   - the move assignment operator would not be implicitly defined as
9424  //     deleted,
9425
9426  // [DR1402]:
9427  //   - each of X's non-static data members and direct or virtual base classes
9428  //     has a type that either has a move constructor or is trivially copyable.
9429  if (!subobjectsHaveMoveOrTrivialCopy(*this, ClassDecl, /*Constructor*/true)) {
9430    ClassDecl->setFailedImplicitMoveConstructor();
9431    return 0;
9432  }
9433
9434  QualType ClassType = Context.getTypeDeclType(ClassDecl);
9435  QualType ArgType = Context.getRValueReferenceType(ClassType);
9436
9437  bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl,
9438                                                     CXXMoveConstructor,
9439                                                     false);
9440
9441  DeclarationName Name
9442    = Context.DeclarationNames.getCXXConstructorName(
9443                                           Context.getCanonicalType(ClassType));
9444  SourceLocation ClassLoc = ClassDecl->getLocation();
9445  DeclarationNameInfo NameInfo(Name, ClassLoc);
9446
9447  // C++0x [class.copy]p11:
9448  //   An implicitly-declared copy/move constructor is an inline public
9449  //   member of its class.
9450  CXXConstructorDecl *MoveConstructor = CXXConstructorDecl::Create(
9451      Context, ClassDecl, ClassLoc, NameInfo, QualType(), /*TInfo=*/0,
9452      /*isExplicit=*/false, /*isInline=*/true, /*isImplicitlyDeclared=*/true,
9453      Constexpr);
9454  MoveConstructor->setAccess(AS_public);
9455  MoveConstructor->setDefaulted();
9456
9457  // Build an exception specification pointing back at this member.
9458  FunctionProtoType::ExtProtoInfo EPI;
9459  EPI.ExceptionSpecType = EST_Unevaluated;
9460  EPI.ExceptionSpecDecl = MoveConstructor;
9461  MoveConstructor->setType(
9462      Context.getFunctionType(Context.VoidTy, ArgType, EPI));
9463
9464  // Add the parameter to the constructor.
9465  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, MoveConstructor,
9466                                               ClassLoc, ClassLoc,
9467                                               /*IdentifierInfo=*/0,
9468                                               ArgType, /*TInfo=*/0,
9469                                               SC_None, 0);
9470  MoveConstructor->setParams(FromParam);
9471
9472  MoveConstructor->setTrivial(
9473    ClassDecl->needsOverloadResolutionForMoveConstructor()
9474      ? SpecialMemberIsTrivial(MoveConstructor, CXXMoveConstructor)
9475      : ClassDecl->hasTrivialMoveConstructor());
9476
9477  // C++0x [class.copy]p9:
9478  //   If the definition of a class X does not explicitly declare a move
9479  //   constructor, one will be implicitly declared as defaulted if and only if:
9480  //   [...]
9481  //   - the move constructor would not be implicitly defined as deleted.
9482  if (ShouldDeleteSpecialMember(MoveConstructor, CXXMoveConstructor)) {
9483    // Cache this result so that we don't try to generate this over and over
9484    // on every lookup, leaking memory and wasting time.
9485    ClassDecl->setFailedImplicitMoveConstructor();
9486    return 0;
9487  }
9488
9489  // Note that we have declared this constructor.
9490  ++ASTContext::NumImplicitMoveConstructorsDeclared;
9491
9492  if (Scope *S = getScopeForContext(ClassDecl))
9493    PushOnScopeChains(MoveConstructor, S, false);
9494  ClassDecl->addDecl(MoveConstructor);
9495
9496  return MoveConstructor;
9497}
9498
9499void Sema::DefineImplicitMoveConstructor(SourceLocation CurrentLocation,
9500                                   CXXConstructorDecl *MoveConstructor) {
9501  assert((MoveConstructor->isDefaulted() &&
9502          MoveConstructor->isMoveConstructor() &&
9503          !MoveConstructor->doesThisDeclarationHaveABody() &&
9504          !MoveConstructor->isDeleted()) &&
9505         "DefineImplicitMoveConstructor - call it for implicit move ctor");
9506
9507  CXXRecordDecl *ClassDecl = MoveConstructor->getParent();
9508  assert(ClassDecl && "DefineImplicitMoveConstructor - invalid constructor");
9509
9510  SynthesizedFunctionScope Scope(*this, MoveConstructor);
9511  DiagnosticErrorTrap Trap(Diags);
9512
9513  if (SetCtorInitializers(MoveConstructor, /*AnyErrors=*/false) ||
9514      Trap.hasErrorOccurred()) {
9515    Diag(CurrentLocation, diag::note_member_synthesized_at)
9516      << CXXMoveConstructor << Context.getTagDeclType(ClassDecl);
9517    MoveConstructor->setInvalidDecl();
9518  }  else {
9519    Sema::CompoundScopeRAII CompoundScope(*this);
9520    MoveConstructor->setBody(ActOnCompoundStmt(MoveConstructor->getLocation(),
9521                                               MoveConstructor->getLocation(),
9522                                               MultiStmtArg(),
9523                                               /*isStmtExpr=*/false)
9524                                                              .takeAs<Stmt>());
9525    MoveConstructor->setImplicitlyDefined(true);
9526  }
9527
9528  MoveConstructor->setUsed();
9529
9530  if (ASTMutationListener *L = getASTMutationListener()) {
9531    L->CompletedImplicitDefinition(MoveConstructor);
9532  }
9533}
9534
9535bool Sema::isImplicitlyDeleted(FunctionDecl *FD) {
9536  return FD->isDeleted() &&
9537         (FD->isDefaulted() || FD->isImplicit()) &&
9538         isa<CXXMethodDecl>(FD);
9539}
9540
9541/// \brief Mark the call operator of the given lambda closure type as "used".
9542static void markLambdaCallOperatorUsed(Sema &S, CXXRecordDecl *Lambda) {
9543  CXXMethodDecl *CallOperator
9544    = cast<CXXMethodDecl>(
9545        Lambda->lookup(
9546          S.Context.DeclarationNames.getCXXOperatorName(OO_Call)).front());
9547  CallOperator->setReferenced();
9548  CallOperator->setUsed();
9549}
9550
9551void Sema::DefineImplicitLambdaToFunctionPointerConversion(
9552       SourceLocation CurrentLocation,
9553       CXXConversionDecl *Conv)
9554{
9555  CXXRecordDecl *Lambda = Conv->getParent();
9556
9557  // Make sure that the lambda call operator is marked used.
9558  markLambdaCallOperatorUsed(*this, Lambda);
9559
9560  Conv->setUsed();
9561
9562  SynthesizedFunctionScope Scope(*this, Conv);
9563  DiagnosticErrorTrap Trap(Diags);
9564
9565  // Return the address of the __invoke function.
9566  DeclarationName InvokeName = &Context.Idents.get("__invoke");
9567  CXXMethodDecl *Invoke
9568    = cast<CXXMethodDecl>(Lambda->lookup(InvokeName).front());
9569  Expr *FunctionRef = BuildDeclRefExpr(Invoke, Invoke->getType(),
9570                                       VK_LValue, Conv->getLocation()).take();
9571  assert(FunctionRef && "Can't refer to __invoke function?");
9572  Stmt *Return = ActOnReturnStmt(Conv->getLocation(), FunctionRef).take();
9573  Conv->setBody(new (Context) CompoundStmt(Context, Return,
9574                                           Conv->getLocation(),
9575                                           Conv->getLocation()));
9576
9577  // Fill in the __invoke function with a dummy implementation. IR generation
9578  // will fill in the actual details.
9579  Invoke->setUsed();
9580  Invoke->setReferenced();
9581  Invoke->setBody(new (Context) CompoundStmt(Conv->getLocation()));
9582
9583  if (ASTMutationListener *L = getASTMutationListener()) {
9584    L->CompletedImplicitDefinition(Conv);
9585    L->CompletedImplicitDefinition(Invoke);
9586  }
9587}
9588
9589void Sema::DefineImplicitLambdaToBlockPointerConversion(
9590       SourceLocation CurrentLocation,
9591       CXXConversionDecl *Conv)
9592{
9593  Conv->setUsed();
9594
9595  SynthesizedFunctionScope Scope(*this, Conv);
9596  DiagnosticErrorTrap Trap(Diags);
9597
9598  // Copy-initialize the lambda object as needed to capture it.
9599  Expr *This = ActOnCXXThis(CurrentLocation).take();
9600  Expr *DerefThis =CreateBuiltinUnaryOp(CurrentLocation, UO_Deref, This).take();
9601
9602  ExprResult BuildBlock = BuildBlockForLambdaConversion(CurrentLocation,
9603                                                        Conv->getLocation(),
9604                                                        Conv, DerefThis);
9605
9606  // If we're not under ARC, make sure we still get the _Block_copy/autorelease
9607  // behavior.  Note that only the general conversion function does this
9608  // (since it's unusable otherwise); in the case where we inline the
9609  // block literal, it has block literal lifetime semantics.
9610  if (!BuildBlock.isInvalid() && !getLangOpts().ObjCAutoRefCount)
9611    BuildBlock = ImplicitCastExpr::Create(Context, BuildBlock.get()->getType(),
9612                                          CK_CopyAndAutoreleaseBlockObject,
9613                                          BuildBlock.get(), 0, VK_RValue);
9614
9615  if (BuildBlock.isInvalid()) {
9616    Diag(CurrentLocation, diag::note_lambda_to_block_conv);
9617    Conv->setInvalidDecl();
9618    return;
9619  }
9620
9621  // Create the return statement that returns the block from the conversion
9622  // function.
9623  StmtResult Return = ActOnReturnStmt(Conv->getLocation(), BuildBlock.get());
9624  if (Return.isInvalid()) {
9625    Diag(CurrentLocation, diag::note_lambda_to_block_conv);
9626    Conv->setInvalidDecl();
9627    return;
9628  }
9629
9630  // Set the body of the conversion function.
9631  Stmt *ReturnS = Return.take();
9632  Conv->setBody(new (Context) CompoundStmt(Context, ReturnS,
9633                                           Conv->getLocation(),
9634                                           Conv->getLocation()));
9635
9636  // We're done; notify the mutation listener, if any.
9637  if (ASTMutationListener *L = getASTMutationListener()) {
9638    L->CompletedImplicitDefinition(Conv);
9639  }
9640}
9641
9642/// \brief Determine whether the given list arguments contains exactly one
9643/// "real" (non-default) argument.
9644static bool hasOneRealArgument(MultiExprArg Args) {
9645  switch (Args.size()) {
9646  case 0:
9647    return false;
9648
9649  default:
9650    if (!Args[1]->isDefaultArgument())
9651      return false;
9652
9653    // fall through
9654  case 1:
9655    return !Args[0]->isDefaultArgument();
9656  }
9657
9658  return false;
9659}
9660
9661ExprResult
9662Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
9663                            CXXConstructorDecl *Constructor,
9664                            MultiExprArg ExprArgs,
9665                            bool HadMultipleCandidates,
9666                            bool IsListInitialization,
9667                            bool RequiresZeroInit,
9668                            unsigned ConstructKind,
9669                            SourceRange ParenRange) {
9670  bool Elidable = false;
9671
9672  // C++0x [class.copy]p34:
9673  //   When certain criteria are met, an implementation is allowed to
9674  //   omit the copy/move construction of a class object, even if the
9675  //   copy/move constructor and/or destructor for the object have
9676  //   side effects. [...]
9677  //     - when a temporary class object that has not been bound to a
9678  //       reference (12.2) would be copied/moved to a class object
9679  //       with the same cv-unqualified type, the copy/move operation
9680  //       can be omitted by constructing the temporary object
9681  //       directly into the target of the omitted copy/move
9682  if (ConstructKind == CXXConstructExpr::CK_Complete &&
9683      Constructor->isCopyOrMoveConstructor() && hasOneRealArgument(ExprArgs)) {
9684    Expr *SubExpr = ExprArgs[0];
9685    Elidable = SubExpr->isTemporaryObject(Context, Constructor->getParent());
9686  }
9687
9688  return BuildCXXConstructExpr(ConstructLoc, DeclInitType, Constructor,
9689                               Elidable, ExprArgs, HadMultipleCandidates,
9690                               IsListInitialization, RequiresZeroInit,
9691                               ConstructKind, ParenRange);
9692}
9693
9694/// BuildCXXConstructExpr - Creates a complete call to a constructor,
9695/// including handling of its default argument expressions.
9696ExprResult
9697Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
9698                            CXXConstructorDecl *Constructor, bool Elidable,
9699                            MultiExprArg ExprArgs,
9700                            bool HadMultipleCandidates,
9701                            bool IsListInitialization,
9702                            bool RequiresZeroInit,
9703                            unsigned ConstructKind,
9704                            SourceRange ParenRange) {
9705  MarkFunctionReferenced(ConstructLoc, Constructor);
9706  return Owned(CXXConstructExpr::Create(Context, DeclInitType, ConstructLoc,
9707                                        Constructor, Elidable, ExprArgs,
9708                                        HadMultipleCandidates,
9709                                        IsListInitialization, RequiresZeroInit,
9710              static_cast<CXXConstructExpr::ConstructionKind>(ConstructKind),
9711                                        ParenRange));
9712}
9713
9714void Sema::FinalizeVarWithDestructor(VarDecl *VD, const RecordType *Record) {
9715  if (VD->isInvalidDecl()) return;
9716
9717  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Record->getDecl());
9718  if (ClassDecl->isInvalidDecl()) return;
9719  if (ClassDecl->hasIrrelevantDestructor()) return;
9720  if (ClassDecl->isDependentContext()) return;
9721
9722  CXXDestructorDecl *Destructor = LookupDestructor(ClassDecl);
9723  MarkFunctionReferenced(VD->getLocation(), Destructor);
9724  CheckDestructorAccess(VD->getLocation(), Destructor,
9725                        PDiag(diag::err_access_dtor_var)
9726                        << VD->getDeclName()
9727                        << VD->getType());
9728  DiagnoseUseOfDecl(Destructor, VD->getLocation());
9729
9730  if (!VD->hasGlobalStorage()) return;
9731
9732  // Emit warning for non-trivial dtor in global scope (a real global,
9733  // class-static, function-static).
9734  Diag(VD->getLocation(), diag::warn_exit_time_destructor);
9735
9736  // TODO: this should be re-enabled for static locals by !CXAAtExit
9737  if (!VD->isStaticLocal())
9738    Diag(VD->getLocation(), diag::warn_global_destructor);
9739}
9740
9741/// \brief Given a constructor and the set of arguments provided for the
9742/// constructor, convert the arguments and add any required default arguments
9743/// to form a proper call to this constructor.
9744///
9745/// \returns true if an error occurred, false otherwise.
9746bool
9747Sema::CompleteConstructorCall(CXXConstructorDecl *Constructor,
9748                              MultiExprArg ArgsPtr,
9749                              SourceLocation Loc,
9750                              SmallVectorImpl<Expr*> &ConvertedArgs,
9751                              bool AllowExplicit,
9752                              bool IsListInitialization) {
9753  // FIXME: This duplicates a lot of code from Sema::ConvertArgumentsForCall.
9754  unsigned NumArgs = ArgsPtr.size();
9755  Expr **Args = ArgsPtr.data();
9756
9757  const FunctionProtoType *Proto
9758    = Constructor->getType()->getAs<FunctionProtoType>();
9759  assert(Proto && "Constructor without a prototype?");
9760  unsigned NumArgsInProto = Proto->getNumArgs();
9761
9762  // If too few arguments are available, we'll fill in the rest with defaults.
9763  if (NumArgs < NumArgsInProto)
9764    ConvertedArgs.reserve(NumArgsInProto);
9765  else
9766    ConvertedArgs.reserve(NumArgs);
9767
9768  VariadicCallType CallType =
9769    Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply;
9770  SmallVector<Expr *, 8> AllArgs;
9771  bool Invalid = GatherArgumentsForCall(Loc, Constructor,
9772                                        Proto, 0, Args, NumArgs, AllArgs,
9773                                        CallType, AllowExplicit,
9774                                        IsListInitialization);
9775  ConvertedArgs.append(AllArgs.begin(), AllArgs.end());
9776
9777  DiagnoseSentinelCalls(Constructor, Loc, AllArgs.data(), AllArgs.size());
9778
9779  CheckConstructorCall(Constructor,
9780                       llvm::makeArrayRef<const Expr *>(AllArgs.data(),
9781                                                        AllArgs.size()),
9782                       Proto, Loc);
9783
9784  return Invalid;
9785}
9786
9787static inline bool
9788CheckOperatorNewDeleteDeclarationScope(Sema &SemaRef,
9789                                       const FunctionDecl *FnDecl) {
9790  const DeclContext *DC = FnDecl->getDeclContext()->getRedeclContext();
9791  if (isa<NamespaceDecl>(DC)) {
9792    return SemaRef.Diag(FnDecl->getLocation(),
9793                        diag::err_operator_new_delete_declared_in_namespace)
9794      << FnDecl->getDeclName();
9795  }
9796
9797  if (isa<TranslationUnitDecl>(DC) &&
9798      FnDecl->getStorageClass() == SC_Static) {
9799    return SemaRef.Diag(FnDecl->getLocation(),
9800                        diag::err_operator_new_delete_declared_static)
9801      << FnDecl->getDeclName();
9802  }
9803
9804  return false;
9805}
9806
9807static inline bool
9808CheckOperatorNewDeleteTypes(Sema &SemaRef, const FunctionDecl *FnDecl,
9809                            CanQualType ExpectedResultType,
9810                            CanQualType ExpectedFirstParamType,
9811                            unsigned DependentParamTypeDiag,
9812                            unsigned InvalidParamTypeDiag) {
9813  QualType ResultType =
9814    FnDecl->getType()->getAs<FunctionType>()->getResultType();
9815
9816  // Check that the result type is not dependent.
9817  if (ResultType->isDependentType())
9818    return SemaRef.Diag(FnDecl->getLocation(),
9819                        diag::err_operator_new_delete_dependent_result_type)
9820    << FnDecl->getDeclName() << ExpectedResultType;
9821
9822  // Check that the result type is what we expect.
9823  if (SemaRef.Context.getCanonicalType(ResultType) != ExpectedResultType)
9824    return SemaRef.Diag(FnDecl->getLocation(),
9825                        diag::err_operator_new_delete_invalid_result_type)
9826    << FnDecl->getDeclName() << ExpectedResultType;
9827
9828  // A function template must have at least 2 parameters.
9829  if (FnDecl->getDescribedFunctionTemplate() && FnDecl->getNumParams() < 2)
9830    return SemaRef.Diag(FnDecl->getLocation(),
9831                      diag::err_operator_new_delete_template_too_few_parameters)
9832        << FnDecl->getDeclName();
9833
9834  // The function decl must have at least 1 parameter.
9835  if (FnDecl->getNumParams() == 0)
9836    return SemaRef.Diag(FnDecl->getLocation(),
9837                        diag::err_operator_new_delete_too_few_parameters)
9838      << FnDecl->getDeclName();
9839
9840  // Check the first parameter type is not dependent.
9841  QualType FirstParamType = FnDecl->getParamDecl(0)->getType();
9842  if (FirstParamType->isDependentType())
9843    return SemaRef.Diag(FnDecl->getLocation(), DependentParamTypeDiag)
9844      << FnDecl->getDeclName() << ExpectedFirstParamType;
9845
9846  // Check that the first parameter type is what we expect.
9847  if (SemaRef.Context.getCanonicalType(FirstParamType).getUnqualifiedType() !=
9848      ExpectedFirstParamType)
9849    return SemaRef.Diag(FnDecl->getLocation(), InvalidParamTypeDiag)
9850    << FnDecl->getDeclName() << ExpectedFirstParamType;
9851
9852  return false;
9853}
9854
9855static bool
9856CheckOperatorNewDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
9857  // C++ [basic.stc.dynamic.allocation]p1:
9858  //   A program is ill-formed if an allocation function is declared in a
9859  //   namespace scope other than global scope or declared static in global
9860  //   scope.
9861  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
9862    return true;
9863
9864  CanQualType SizeTy =
9865    SemaRef.Context.getCanonicalType(SemaRef.Context.getSizeType());
9866
9867  // C++ [basic.stc.dynamic.allocation]p1:
9868  //  The return type shall be void*. The first parameter shall have type
9869  //  std::size_t.
9870  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidPtrTy,
9871                                  SizeTy,
9872                                  diag::err_operator_new_dependent_param_type,
9873                                  diag::err_operator_new_param_type))
9874    return true;
9875
9876  // C++ [basic.stc.dynamic.allocation]p1:
9877  //  The first parameter shall not have an associated default argument.
9878  if (FnDecl->getParamDecl(0)->hasDefaultArg())
9879    return SemaRef.Diag(FnDecl->getLocation(),
9880                        diag::err_operator_new_default_arg)
9881      << FnDecl->getDeclName() << FnDecl->getParamDecl(0)->getDefaultArgRange();
9882
9883  return false;
9884}
9885
9886static bool
9887CheckOperatorDeleteDeclaration(Sema &SemaRef, FunctionDecl *FnDecl) {
9888  // C++ [basic.stc.dynamic.deallocation]p1:
9889  //   A program is ill-formed if deallocation functions are declared in a
9890  //   namespace scope other than global scope or declared static in global
9891  //   scope.
9892  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
9893    return true;
9894
9895  // C++ [basic.stc.dynamic.deallocation]p2:
9896  //   Each deallocation function shall return void and its first parameter
9897  //   shall be void*.
9898  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidTy,
9899                                  SemaRef.Context.VoidPtrTy,
9900                                 diag::err_operator_delete_dependent_param_type,
9901                                 diag::err_operator_delete_param_type))
9902    return true;
9903
9904  return false;
9905}
9906
9907/// CheckOverloadedOperatorDeclaration - Check whether the declaration
9908/// of this overloaded operator is well-formed. If so, returns false;
9909/// otherwise, emits appropriate diagnostics and returns true.
9910bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
9911  assert(FnDecl && FnDecl->isOverloadedOperator() &&
9912         "Expected an overloaded operator declaration");
9913
9914  OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
9915
9916  // C++ [over.oper]p5:
9917  //   The allocation and deallocation functions, operator new,
9918  //   operator new[], operator delete and operator delete[], are
9919  //   described completely in 3.7.3. The attributes and restrictions
9920  //   found in the rest of this subclause do not apply to them unless
9921  //   explicitly stated in 3.7.3.
9922  if (Op == OO_Delete || Op == OO_Array_Delete)
9923    return CheckOperatorDeleteDeclaration(*this, FnDecl);
9924
9925  if (Op == OO_New || Op == OO_Array_New)
9926    return CheckOperatorNewDeclaration(*this, FnDecl);
9927
9928  // C++ [over.oper]p6:
9929  //   An operator function shall either be a non-static member
9930  //   function or be a non-member function and have at least one
9931  //   parameter whose type is a class, a reference to a class, an
9932  //   enumeration, or a reference to an enumeration.
9933  if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) {
9934    if (MethodDecl->isStatic())
9935      return Diag(FnDecl->getLocation(),
9936                  diag::err_operator_overload_static) << FnDecl->getDeclName();
9937  } else {
9938    bool ClassOrEnumParam = false;
9939    for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
9940                                   ParamEnd = FnDecl->param_end();
9941         Param != ParamEnd; ++Param) {
9942      QualType ParamType = (*Param)->getType().getNonReferenceType();
9943      if (ParamType->isDependentType() || ParamType->isRecordType() ||
9944          ParamType->isEnumeralType()) {
9945        ClassOrEnumParam = true;
9946        break;
9947      }
9948    }
9949
9950    if (!ClassOrEnumParam)
9951      return Diag(FnDecl->getLocation(),
9952                  diag::err_operator_overload_needs_class_or_enum)
9953        << FnDecl->getDeclName();
9954  }
9955
9956  // C++ [over.oper]p8:
9957  //   An operator function cannot have default arguments (8.3.6),
9958  //   except where explicitly stated below.
9959  //
9960  // Only the function-call operator allows default arguments
9961  // (C++ [over.call]p1).
9962  if (Op != OO_Call) {
9963    for (FunctionDecl::param_iterator Param = FnDecl->param_begin();
9964         Param != FnDecl->param_end(); ++Param) {
9965      if ((*Param)->hasDefaultArg())
9966        return Diag((*Param)->getLocation(),
9967                    diag::err_operator_overload_default_arg)
9968          << FnDecl->getDeclName() << (*Param)->getDefaultArgRange();
9969    }
9970  }
9971
9972  static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
9973    { false, false, false }
9974#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
9975    , { Unary, Binary, MemberOnly }
9976#include "clang/Basic/OperatorKinds.def"
9977  };
9978
9979  bool CanBeUnaryOperator = OperatorUses[Op][0];
9980  bool CanBeBinaryOperator = OperatorUses[Op][1];
9981  bool MustBeMemberOperator = OperatorUses[Op][2];
9982
9983  // C++ [over.oper]p8:
9984  //   [...] Operator functions cannot have more or fewer parameters
9985  //   than the number required for the corresponding operator, as
9986  //   described in the rest of this subclause.
9987  unsigned NumParams = FnDecl->getNumParams()
9988                     + (isa<CXXMethodDecl>(FnDecl)? 1 : 0);
9989  if (Op != OO_Call &&
9990      ((NumParams == 1 && !CanBeUnaryOperator) ||
9991       (NumParams == 2 && !CanBeBinaryOperator) ||
9992       (NumParams < 1) || (NumParams > 2))) {
9993    // We have the wrong number of parameters.
9994    unsigned ErrorKind;
9995    if (CanBeUnaryOperator && CanBeBinaryOperator) {
9996      ErrorKind = 2;  // 2 -> unary or binary.
9997    } else if (CanBeUnaryOperator) {
9998      ErrorKind = 0;  // 0 -> unary
9999    } else {
10000      assert(CanBeBinaryOperator &&
10001             "All non-call overloaded operators are unary or binary!");
10002      ErrorKind = 1;  // 1 -> binary
10003    }
10004
10005    return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be)
10006      << FnDecl->getDeclName() << NumParams << ErrorKind;
10007  }
10008
10009  // Overloaded operators other than operator() cannot be variadic.
10010  if (Op != OO_Call &&
10011      FnDecl->getType()->getAs<FunctionProtoType>()->isVariadic()) {
10012    return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
10013      << FnDecl->getDeclName();
10014  }
10015
10016  // Some operators must be non-static member functions.
10017  if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) {
10018    return Diag(FnDecl->getLocation(),
10019                diag::err_operator_overload_must_be_member)
10020      << FnDecl->getDeclName();
10021  }
10022
10023  // C++ [over.inc]p1:
10024  //   The user-defined function called operator++ implements the
10025  //   prefix and postfix ++ operator. If this function is a member
10026  //   function with no parameters, or a non-member function with one
10027  //   parameter of class or enumeration type, it defines the prefix
10028  //   increment operator ++ for objects of that type. If the function
10029  //   is a member function with one parameter (which shall be of type
10030  //   int) or a non-member function with two parameters (the second
10031  //   of which shall be of type int), it defines the postfix
10032  //   increment operator ++ for objects of that type.
10033  if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
10034    ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
10035    bool ParamIsInt = false;
10036    if (const BuiltinType *BT = LastParam->getType()->getAs<BuiltinType>())
10037      ParamIsInt = BT->getKind() == BuiltinType::Int;
10038
10039    if (!ParamIsInt)
10040      return Diag(LastParam->getLocation(),
10041                  diag::err_operator_overload_post_incdec_must_be_int)
10042        << LastParam->getType() << (Op == OO_MinusMinus);
10043  }
10044
10045  return false;
10046}
10047
10048/// CheckLiteralOperatorDeclaration - Check whether the declaration
10049/// of this literal operator function is well-formed. If so, returns
10050/// false; otherwise, emits appropriate diagnostics and returns true.
10051bool Sema::CheckLiteralOperatorDeclaration(FunctionDecl *FnDecl) {
10052  if (isa<CXXMethodDecl>(FnDecl)) {
10053    Diag(FnDecl->getLocation(), diag::err_literal_operator_outside_namespace)
10054      << FnDecl->getDeclName();
10055    return true;
10056  }
10057
10058  if (FnDecl->isExternC()) {
10059    Diag(FnDecl->getLocation(), diag::err_literal_operator_extern_c);
10060    return true;
10061  }
10062
10063  bool Valid = false;
10064
10065  // This might be the definition of a literal operator template.
10066  FunctionTemplateDecl *TpDecl = FnDecl->getDescribedFunctionTemplate();
10067  // This might be a specialization of a literal operator template.
10068  if (!TpDecl)
10069    TpDecl = FnDecl->getPrimaryTemplate();
10070
10071  // template <char...> type operator "" name() is the only valid template
10072  // signature, and the only valid signature with no parameters.
10073  if (TpDecl) {
10074    if (FnDecl->param_size() == 0) {
10075      // Must have only one template parameter
10076      TemplateParameterList *Params = TpDecl->getTemplateParameters();
10077      if (Params->size() == 1) {
10078        NonTypeTemplateParmDecl *PmDecl =
10079          dyn_cast<NonTypeTemplateParmDecl>(Params->getParam(0));
10080
10081        // The template parameter must be a char parameter pack.
10082        if (PmDecl && PmDecl->isTemplateParameterPack() &&
10083            Context.hasSameType(PmDecl->getType(), Context.CharTy))
10084          Valid = true;
10085      }
10086    }
10087  } else if (FnDecl->param_size()) {
10088    // Check the first parameter
10089    FunctionDecl::param_iterator Param = FnDecl->param_begin();
10090
10091    QualType T = (*Param)->getType().getUnqualifiedType();
10092
10093    // unsigned long long int, long double, and any character type are allowed
10094    // as the only parameters.
10095    if (Context.hasSameType(T, Context.UnsignedLongLongTy) ||
10096        Context.hasSameType(T, Context.LongDoubleTy) ||
10097        Context.hasSameType(T, Context.CharTy) ||
10098        Context.hasSameType(T, Context.WCharTy) ||
10099        Context.hasSameType(T, Context.Char16Ty) ||
10100        Context.hasSameType(T, Context.Char32Ty)) {
10101      if (++Param == FnDecl->param_end())
10102        Valid = true;
10103      goto FinishedParams;
10104    }
10105
10106    // Otherwise it must be a pointer to const; let's strip those qualifiers.
10107    const PointerType *PT = T->getAs<PointerType>();
10108    if (!PT)
10109      goto FinishedParams;
10110    T = PT->getPointeeType();
10111    if (!T.isConstQualified() || T.isVolatileQualified())
10112      goto FinishedParams;
10113    T = T.getUnqualifiedType();
10114
10115    // Move on to the second parameter;
10116    ++Param;
10117
10118    // If there is no second parameter, the first must be a const char *
10119    if (Param == FnDecl->param_end()) {
10120      if (Context.hasSameType(T, Context.CharTy))
10121        Valid = true;
10122      goto FinishedParams;
10123    }
10124
10125    // const char *, const wchar_t*, const char16_t*, and const char32_t*
10126    // are allowed as the first parameter to a two-parameter function
10127    if (!(Context.hasSameType(T, Context.CharTy) ||
10128          Context.hasSameType(T, Context.WCharTy) ||
10129          Context.hasSameType(T, Context.Char16Ty) ||
10130          Context.hasSameType(T, Context.Char32Ty)))
10131      goto FinishedParams;
10132
10133    // The second and final parameter must be an std::size_t
10134    T = (*Param)->getType().getUnqualifiedType();
10135    if (Context.hasSameType(T, Context.getSizeType()) &&
10136        ++Param == FnDecl->param_end())
10137      Valid = true;
10138  }
10139
10140  // FIXME: This diagnostic is absolutely terrible.
10141FinishedParams:
10142  if (!Valid) {
10143    Diag(FnDecl->getLocation(), diag::err_literal_operator_params)
10144      << FnDecl->getDeclName();
10145    return true;
10146  }
10147
10148  // A parameter-declaration-clause containing a default argument is not
10149  // equivalent to any of the permitted forms.
10150  for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
10151                                    ParamEnd = FnDecl->param_end();
10152       Param != ParamEnd; ++Param) {
10153    if ((*Param)->hasDefaultArg()) {
10154      Diag((*Param)->getDefaultArgRange().getBegin(),
10155           diag::err_literal_operator_default_argument)
10156        << (*Param)->getDefaultArgRange();
10157      break;
10158    }
10159  }
10160
10161  StringRef LiteralName
10162    = FnDecl->getDeclName().getCXXLiteralIdentifier()->getName();
10163  if (LiteralName[0] != '_') {
10164    // C++11 [usrlit.suffix]p1:
10165    //   Literal suffix identifiers that do not start with an underscore
10166    //   are reserved for future standardization.
10167    Diag(FnDecl->getLocation(), diag::warn_user_literal_reserved);
10168  }
10169
10170  return false;
10171}
10172
10173/// ActOnStartLinkageSpecification - Parsed the beginning of a C++
10174/// linkage specification, including the language and (if present)
10175/// the '{'. ExternLoc is the location of the 'extern', LangLoc is
10176/// the location of the language string literal, which is provided
10177/// by Lang/StrSize. LBraceLoc, if valid, provides the location of
10178/// the '{' brace. Otherwise, this linkage specification does not
10179/// have any braces.
10180Decl *Sema::ActOnStartLinkageSpecification(Scope *S, SourceLocation ExternLoc,
10181                                           SourceLocation LangLoc,
10182                                           StringRef Lang,
10183                                           SourceLocation LBraceLoc) {
10184  LinkageSpecDecl::LanguageIDs Language;
10185  if (Lang == "\"C\"")
10186    Language = LinkageSpecDecl::lang_c;
10187  else if (Lang == "\"C++\"")
10188    Language = LinkageSpecDecl::lang_cxx;
10189  else {
10190    Diag(LangLoc, diag::err_bad_language);
10191    return 0;
10192  }
10193
10194  // FIXME: Add all the various semantics of linkage specifications
10195
10196  LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext,
10197                                               ExternLoc, LangLoc, Language);
10198  CurContext->addDecl(D);
10199  PushDeclContext(S, D);
10200  return D;
10201}
10202
10203/// ActOnFinishLinkageSpecification - Complete the definition of
10204/// the C++ linkage specification LinkageSpec. If RBraceLoc is
10205/// valid, it's the position of the closing '}' brace in a linkage
10206/// specification that uses braces.
10207Decl *Sema::ActOnFinishLinkageSpecification(Scope *S,
10208                                            Decl *LinkageSpec,
10209                                            SourceLocation RBraceLoc) {
10210  if (LinkageSpec) {
10211    if (RBraceLoc.isValid()) {
10212      LinkageSpecDecl* LSDecl = cast<LinkageSpecDecl>(LinkageSpec);
10213      LSDecl->setRBraceLoc(RBraceLoc);
10214    }
10215    PopDeclContext();
10216  }
10217  return LinkageSpec;
10218}
10219
10220Decl *Sema::ActOnEmptyDeclaration(Scope *S,
10221                                  AttributeList *AttrList,
10222                                  SourceLocation SemiLoc) {
10223  Decl *ED = EmptyDecl::Create(Context, CurContext, SemiLoc);
10224  // Attribute declarations appertain to empty declaration so we handle
10225  // them here.
10226  if (AttrList)
10227    ProcessDeclAttributeList(S, ED, AttrList);
10228
10229  CurContext->addDecl(ED);
10230  return ED;
10231}
10232
10233/// \brief Perform semantic analysis for the variable declaration that
10234/// occurs within a C++ catch clause, returning the newly-created
10235/// variable.
10236VarDecl *Sema::BuildExceptionDeclaration(Scope *S,
10237                                         TypeSourceInfo *TInfo,
10238                                         SourceLocation StartLoc,
10239                                         SourceLocation Loc,
10240                                         IdentifierInfo *Name) {
10241  bool Invalid = false;
10242  QualType ExDeclType = TInfo->getType();
10243
10244  // Arrays and functions decay.
10245  if (ExDeclType->isArrayType())
10246    ExDeclType = Context.getArrayDecayedType(ExDeclType);
10247  else if (ExDeclType->isFunctionType())
10248    ExDeclType = Context.getPointerType(ExDeclType);
10249
10250  // C++ 15.3p1: The exception-declaration shall not denote an incomplete type.
10251  // The exception-declaration shall not denote a pointer or reference to an
10252  // incomplete type, other than [cv] void*.
10253  // N2844 forbids rvalue references.
10254  if (!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) {
10255    Diag(Loc, diag::err_catch_rvalue_ref);
10256    Invalid = true;
10257  }
10258
10259  QualType BaseType = ExDeclType;
10260  int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference
10261  unsigned DK = diag::err_catch_incomplete;
10262  if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
10263    BaseType = Ptr->getPointeeType();
10264    Mode = 1;
10265    DK = diag::err_catch_incomplete_ptr;
10266  } else if (const ReferenceType *Ref = BaseType->getAs<ReferenceType>()) {
10267    // For the purpose of error recovery, we treat rvalue refs like lvalue refs.
10268    BaseType = Ref->getPointeeType();
10269    Mode = 2;
10270    DK = diag::err_catch_incomplete_ref;
10271  }
10272  if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) &&
10273      !BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK))
10274    Invalid = true;
10275
10276  if (!Invalid && !ExDeclType->isDependentType() &&
10277      RequireNonAbstractType(Loc, ExDeclType,
10278                             diag::err_abstract_type_in_decl,
10279                             AbstractVariableType))
10280    Invalid = true;
10281
10282  // Only the non-fragile NeXT runtime currently supports C++ catches
10283  // of ObjC types, and no runtime supports catching ObjC types by value.
10284  if (!Invalid && getLangOpts().ObjC1) {
10285    QualType T = ExDeclType;
10286    if (const ReferenceType *RT = T->getAs<ReferenceType>())
10287      T = RT->getPointeeType();
10288
10289    if (T->isObjCObjectType()) {
10290      Diag(Loc, diag::err_objc_object_catch);
10291      Invalid = true;
10292    } else if (T->isObjCObjectPointerType()) {
10293      // FIXME: should this be a test for macosx-fragile specifically?
10294      if (getLangOpts().ObjCRuntime.isFragile())
10295        Diag(Loc, diag::warn_objc_pointer_cxx_catch_fragile);
10296    }
10297  }
10298
10299  VarDecl *ExDecl = VarDecl::Create(Context, CurContext, StartLoc, Loc, Name,
10300                                    ExDeclType, TInfo, SC_None);
10301  ExDecl->setExceptionVariable(true);
10302
10303  // In ARC, infer 'retaining' for variables of retainable type.
10304  if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(ExDecl))
10305    Invalid = true;
10306
10307  if (!Invalid && !ExDeclType->isDependentType()) {
10308    if (const RecordType *recordType = ExDeclType->getAs<RecordType>()) {
10309      // Insulate this from anything else we might currently be parsing.
10310      EnterExpressionEvaluationContext scope(*this, PotentiallyEvaluated);
10311
10312      // C++ [except.handle]p16:
10313      //   The object declared in an exception-declaration or, if the
10314      //   exception-declaration does not specify a name, a temporary (12.2) is
10315      //   copy-initialized (8.5) from the exception object. [...]
10316      //   The object is destroyed when the handler exits, after the destruction
10317      //   of any automatic objects initialized within the handler.
10318      //
10319      // We just pretend to initialize the object with itself, then make sure
10320      // it can be destroyed later.
10321      QualType initType = ExDeclType;
10322
10323      InitializedEntity entity =
10324        InitializedEntity::InitializeVariable(ExDecl);
10325      InitializationKind initKind =
10326        InitializationKind::CreateCopy(Loc, SourceLocation());
10327
10328      Expr *opaqueValue =
10329        new (Context) OpaqueValueExpr(Loc, initType, VK_LValue, OK_Ordinary);
10330      InitializationSequence sequence(*this, entity, initKind, &opaqueValue, 1);
10331      ExprResult result = sequence.Perform(*this, entity, initKind,
10332                                           MultiExprArg(&opaqueValue, 1));
10333      if (result.isInvalid())
10334        Invalid = true;
10335      else {
10336        // If the constructor used was non-trivial, set this as the
10337        // "initializer".
10338        CXXConstructExpr *construct = cast<CXXConstructExpr>(result.take());
10339        if (!construct->getConstructor()->isTrivial()) {
10340          Expr *init = MaybeCreateExprWithCleanups(construct);
10341          ExDecl->setInit(init);
10342        }
10343
10344        // And make sure it's destructable.
10345        FinalizeVarWithDestructor(ExDecl, recordType);
10346      }
10347    }
10348  }
10349
10350  if (Invalid)
10351    ExDecl->setInvalidDecl();
10352
10353  return ExDecl;
10354}
10355
10356/// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch
10357/// handler.
10358Decl *Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) {
10359  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
10360  bool Invalid = D.isInvalidType();
10361
10362  // Check for unexpanded parameter packs.
10363  if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
10364                                      UPPC_ExceptionType)) {
10365    TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy,
10366                                             D.getIdentifierLoc());
10367    Invalid = true;
10368  }
10369
10370  IdentifierInfo *II = D.getIdentifier();
10371  if (NamedDecl *PrevDecl = LookupSingleName(S, II, D.getIdentifierLoc(),
10372                                             LookupOrdinaryName,
10373                                             ForRedeclaration)) {
10374    // The scope should be freshly made just for us. There is just no way
10375    // it contains any previous declaration.
10376    assert(!S->isDeclScope(PrevDecl));
10377    if (PrevDecl->isTemplateParameter()) {
10378      // Maybe we will complain about the shadowed template parameter.
10379      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
10380      PrevDecl = 0;
10381    }
10382  }
10383
10384  if (D.getCXXScopeSpec().isSet() && !Invalid) {
10385    Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator)
10386      << D.getCXXScopeSpec().getRange();
10387    Invalid = true;
10388  }
10389
10390  VarDecl *ExDecl = BuildExceptionDeclaration(S, TInfo,
10391                                              D.getLocStart(),
10392                                              D.getIdentifierLoc(),
10393                                              D.getIdentifier());
10394  if (Invalid)
10395    ExDecl->setInvalidDecl();
10396
10397  // Add the exception declaration into this scope.
10398  if (II)
10399    PushOnScopeChains(ExDecl, S);
10400  else
10401    CurContext->addDecl(ExDecl);
10402
10403  ProcessDeclAttributes(S, ExDecl, D);
10404  return ExDecl;
10405}
10406
10407Decl *Sema::ActOnStaticAssertDeclaration(SourceLocation StaticAssertLoc,
10408                                         Expr *AssertExpr,
10409                                         Expr *AssertMessageExpr,
10410                                         SourceLocation RParenLoc) {
10411  StringLiteral *AssertMessage = cast<StringLiteral>(AssertMessageExpr);
10412
10413  if (DiagnoseUnexpandedParameterPack(AssertExpr, UPPC_StaticAssertExpression))
10414    return 0;
10415
10416  return BuildStaticAssertDeclaration(StaticAssertLoc, AssertExpr,
10417                                      AssertMessage, RParenLoc, false);
10418}
10419
10420Decl *Sema::BuildStaticAssertDeclaration(SourceLocation StaticAssertLoc,
10421                                         Expr *AssertExpr,
10422                                         StringLiteral *AssertMessage,
10423                                         SourceLocation RParenLoc,
10424                                         bool Failed) {
10425  if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent() &&
10426      !Failed) {
10427    // In a static_assert-declaration, the constant-expression shall be a
10428    // constant expression that can be contextually converted to bool.
10429    ExprResult Converted = PerformContextuallyConvertToBool(AssertExpr);
10430    if (Converted.isInvalid())
10431      Failed = true;
10432
10433    llvm::APSInt Cond;
10434    if (!Failed && VerifyIntegerConstantExpression(Converted.get(), &Cond,
10435          diag::err_static_assert_expression_is_not_constant,
10436          /*AllowFold=*/false).isInvalid())
10437      Failed = true;
10438
10439    if (!Failed && !Cond) {
10440      SmallString<256> MsgBuffer;
10441      llvm::raw_svector_ostream Msg(MsgBuffer);
10442      AssertMessage->printPretty(Msg, 0, getPrintingPolicy());
10443      Diag(StaticAssertLoc, diag::err_static_assert_failed)
10444        << Msg.str() << AssertExpr->getSourceRange();
10445      Failed = true;
10446    }
10447  }
10448
10449  Decl *Decl = StaticAssertDecl::Create(Context, CurContext, StaticAssertLoc,
10450                                        AssertExpr, AssertMessage, RParenLoc,
10451                                        Failed);
10452
10453  CurContext->addDecl(Decl);
10454  return Decl;
10455}
10456
10457/// \brief Perform semantic analysis of the given friend type declaration.
10458///
10459/// \returns A friend declaration that.
10460FriendDecl *Sema::CheckFriendTypeDecl(SourceLocation LocStart,
10461                                      SourceLocation FriendLoc,
10462                                      TypeSourceInfo *TSInfo) {
10463  assert(TSInfo && "NULL TypeSourceInfo for friend type declaration");
10464
10465  QualType T = TSInfo->getType();
10466  SourceRange TypeRange = TSInfo->getTypeLoc().getLocalSourceRange();
10467
10468  // C++03 [class.friend]p2:
10469  //   An elaborated-type-specifier shall be used in a friend declaration
10470  //   for a class.*
10471  //
10472  //   * The class-key of the elaborated-type-specifier is required.
10473  if (!ActiveTemplateInstantiations.empty()) {
10474    // Do not complain about the form of friend template types during
10475    // template instantiation; we will already have complained when the
10476    // template was declared.
10477  } else {
10478    if (!T->isElaboratedTypeSpecifier()) {
10479      // If we evaluated the type to a record type, suggest putting
10480      // a tag in front.
10481      if (const RecordType *RT = T->getAs<RecordType>()) {
10482        RecordDecl *RD = RT->getDecl();
10483
10484        std::string InsertionText = std::string(" ") + RD->getKindName();
10485
10486        Diag(TypeRange.getBegin(),
10487             getLangOpts().CPlusPlus11 ?
10488               diag::warn_cxx98_compat_unelaborated_friend_type :
10489               diag::ext_unelaborated_friend_type)
10490          << (unsigned) RD->getTagKind()
10491          << T
10492          << FixItHint::CreateInsertion(PP.getLocForEndOfToken(FriendLoc),
10493                                        InsertionText);
10494      } else {
10495        Diag(FriendLoc,
10496             getLangOpts().CPlusPlus11 ?
10497               diag::warn_cxx98_compat_nonclass_type_friend :
10498               diag::ext_nonclass_type_friend)
10499          << T
10500          << TypeRange;
10501      }
10502    } else if (T->getAs<EnumType>()) {
10503      Diag(FriendLoc,
10504           getLangOpts().CPlusPlus11 ?
10505             diag::warn_cxx98_compat_enum_friend :
10506             diag::ext_enum_friend)
10507        << T
10508        << TypeRange;
10509    }
10510
10511    // C++11 [class.friend]p3:
10512    //   A friend declaration that does not declare a function shall have one
10513    //   of the following forms:
10514    //     friend elaborated-type-specifier ;
10515    //     friend simple-type-specifier ;
10516    //     friend typename-specifier ;
10517    if (getLangOpts().CPlusPlus11 && LocStart != FriendLoc)
10518      Diag(FriendLoc, diag::err_friend_not_first_in_declaration) << T;
10519  }
10520
10521  //   If the type specifier in a friend declaration designates a (possibly
10522  //   cv-qualified) class type, that class is declared as a friend; otherwise,
10523  //   the friend declaration is ignored.
10524  return FriendDecl::Create(Context, CurContext, LocStart, TSInfo, FriendLoc);
10525}
10526
10527/// Handle a friend tag declaration where the scope specifier was
10528/// templated.
10529Decl *Sema::ActOnTemplatedFriendTag(Scope *S, SourceLocation FriendLoc,
10530                                    unsigned TagSpec, SourceLocation TagLoc,
10531                                    CXXScopeSpec &SS,
10532                                    IdentifierInfo *Name,
10533                                    SourceLocation NameLoc,
10534                                    AttributeList *Attr,
10535                                    MultiTemplateParamsArg TempParamLists) {
10536  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
10537
10538  bool isExplicitSpecialization = false;
10539  bool Invalid = false;
10540
10541  if (TemplateParameterList *TemplateParams
10542        = MatchTemplateParametersToScopeSpecifier(TagLoc, NameLoc, SS,
10543                                                  TempParamLists.data(),
10544                                                  TempParamLists.size(),
10545                                                  /*friend*/ true,
10546                                                  isExplicitSpecialization,
10547                                                  Invalid)) {
10548    if (TemplateParams->size() > 0) {
10549      // This is a declaration of a class template.
10550      if (Invalid)
10551        return 0;
10552
10553      return CheckClassTemplate(S, TagSpec, TUK_Friend, TagLoc,
10554                                SS, Name, NameLoc, Attr,
10555                                TemplateParams, AS_public,
10556                                /*ModulePrivateLoc=*/SourceLocation(),
10557                                TempParamLists.size() - 1,
10558                                TempParamLists.data()).take();
10559    } else {
10560      // The "template<>" header is extraneous.
10561      Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
10562        << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
10563      isExplicitSpecialization = true;
10564    }
10565  }
10566
10567  if (Invalid) return 0;
10568
10569  bool isAllExplicitSpecializations = true;
10570  for (unsigned I = TempParamLists.size(); I-- > 0; ) {
10571    if (TempParamLists[I]->size()) {
10572      isAllExplicitSpecializations = false;
10573      break;
10574    }
10575  }
10576
10577  // FIXME: don't ignore attributes.
10578
10579  // If it's explicit specializations all the way down, just forget
10580  // about the template header and build an appropriate non-templated
10581  // friend.  TODO: for source fidelity, remember the headers.
10582  if (isAllExplicitSpecializations) {
10583    if (SS.isEmpty()) {
10584      bool Owned = false;
10585      bool IsDependent = false;
10586      return ActOnTag(S, TagSpec, TUK_Friend, TagLoc, SS, Name, NameLoc,
10587                      Attr, AS_public,
10588                      /*ModulePrivateLoc=*/SourceLocation(),
10589                      MultiTemplateParamsArg(), Owned, IsDependent,
10590                      /*ScopedEnumKWLoc=*/SourceLocation(),
10591                      /*ScopedEnumUsesClassTag=*/false,
10592                      /*UnderlyingType=*/TypeResult());
10593    }
10594
10595    NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
10596    ElaboratedTypeKeyword Keyword
10597      = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
10598    QualType T = CheckTypenameType(Keyword, TagLoc, QualifierLoc,
10599                                   *Name, NameLoc);
10600    if (T.isNull())
10601      return 0;
10602
10603    TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
10604    if (isa<DependentNameType>(T)) {
10605      DependentNameTypeLoc TL =
10606          TSI->getTypeLoc().castAs<DependentNameTypeLoc>();
10607      TL.setElaboratedKeywordLoc(TagLoc);
10608      TL.setQualifierLoc(QualifierLoc);
10609      TL.setNameLoc(NameLoc);
10610    } else {
10611      ElaboratedTypeLoc TL = TSI->getTypeLoc().castAs<ElaboratedTypeLoc>();
10612      TL.setElaboratedKeywordLoc(TagLoc);
10613      TL.setQualifierLoc(QualifierLoc);
10614      TL.getNamedTypeLoc().castAs<TypeSpecTypeLoc>().setNameLoc(NameLoc);
10615    }
10616
10617    FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
10618                                            TSI, FriendLoc, TempParamLists);
10619    Friend->setAccess(AS_public);
10620    CurContext->addDecl(Friend);
10621    return Friend;
10622  }
10623
10624  assert(SS.isNotEmpty() && "valid templated tag with no SS and no direct?");
10625
10626
10627
10628  // Handle the case of a templated-scope friend class.  e.g.
10629  //   template <class T> class A<T>::B;
10630  // FIXME: we don't support these right now.
10631  ElaboratedTypeKeyword ETK = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
10632  QualType T = Context.getDependentNameType(ETK, SS.getScopeRep(), Name);
10633  TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
10634  DependentNameTypeLoc TL = TSI->getTypeLoc().castAs<DependentNameTypeLoc>();
10635  TL.setElaboratedKeywordLoc(TagLoc);
10636  TL.setQualifierLoc(SS.getWithLocInContext(Context));
10637  TL.setNameLoc(NameLoc);
10638
10639  FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
10640                                          TSI, FriendLoc, TempParamLists);
10641  Friend->setAccess(AS_public);
10642  Friend->setUnsupportedFriend(true);
10643  CurContext->addDecl(Friend);
10644  return Friend;
10645}
10646
10647
10648/// Handle a friend type declaration.  This works in tandem with
10649/// ActOnTag.
10650///
10651/// Notes on friend class templates:
10652///
10653/// We generally treat friend class declarations as if they were
10654/// declaring a class.  So, for example, the elaborated type specifier
10655/// in a friend declaration is required to obey the restrictions of a
10656/// class-head (i.e. no typedefs in the scope chain), template
10657/// parameters are required to match up with simple template-ids, &c.
10658/// However, unlike when declaring a template specialization, it's
10659/// okay to refer to a template specialization without an empty
10660/// template parameter declaration, e.g.
10661///   friend class A<T>::B<unsigned>;
10662/// We permit this as a special case; if there are any template
10663/// parameters present at all, require proper matching, i.e.
10664///   template <> template \<class T> friend class A<int>::B;
10665Decl *Sema::ActOnFriendTypeDecl(Scope *S, const DeclSpec &DS,
10666                                MultiTemplateParamsArg TempParams) {
10667  SourceLocation Loc = DS.getLocStart();
10668
10669  assert(DS.isFriendSpecified());
10670  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
10671
10672  // Try to convert the decl specifier to a type.  This works for
10673  // friend templates because ActOnTag never produces a ClassTemplateDecl
10674  // for a TUK_Friend.
10675  Declarator TheDeclarator(DS, Declarator::MemberContext);
10676  TypeSourceInfo *TSI = GetTypeForDeclarator(TheDeclarator, S);
10677  QualType T = TSI->getType();
10678  if (TheDeclarator.isInvalidType())
10679    return 0;
10680
10681  if (DiagnoseUnexpandedParameterPack(Loc, TSI, UPPC_FriendDeclaration))
10682    return 0;
10683
10684  // This is definitely an error in C++98.  It's probably meant to
10685  // be forbidden in C++0x, too, but the specification is just
10686  // poorly written.
10687  //
10688  // The problem is with declarations like the following:
10689  //   template <T> friend A<T>::foo;
10690  // where deciding whether a class C is a friend or not now hinges
10691  // on whether there exists an instantiation of A that causes
10692  // 'foo' to equal C.  There are restrictions on class-heads
10693  // (which we declare (by fiat) elaborated friend declarations to
10694  // be) that makes this tractable.
10695  //
10696  // FIXME: handle "template <> friend class A<T>;", which
10697  // is possibly well-formed?  Who even knows?
10698  if (TempParams.size() && !T->isElaboratedTypeSpecifier()) {
10699    Diag(Loc, diag::err_tagless_friend_type_template)
10700      << DS.getSourceRange();
10701    return 0;
10702  }
10703
10704  // C++98 [class.friend]p1: A friend of a class is a function
10705  //   or class that is not a member of the class . . .
10706  // This is fixed in DR77, which just barely didn't make the C++03
10707  // deadline.  It's also a very silly restriction that seriously
10708  // affects inner classes and which nobody else seems to implement;
10709  // thus we never diagnose it, not even in -pedantic.
10710  //
10711  // But note that we could warn about it: it's always useless to
10712  // friend one of your own members (it's not, however, worthless to
10713  // friend a member of an arbitrary specialization of your template).
10714
10715  Decl *D;
10716  if (unsigned NumTempParamLists = TempParams.size())
10717    D = FriendTemplateDecl::Create(Context, CurContext, Loc,
10718                                   NumTempParamLists,
10719                                   TempParams.data(),
10720                                   TSI,
10721                                   DS.getFriendSpecLoc());
10722  else
10723    D = CheckFriendTypeDecl(Loc, DS.getFriendSpecLoc(), TSI);
10724
10725  if (!D)
10726    return 0;
10727
10728  D->setAccess(AS_public);
10729  CurContext->addDecl(D);
10730
10731  return D;
10732}
10733
10734NamedDecl *Sema::ActOnFriendFunctionDecl(Scope *S, Declarator &D,
10735                                        MultiTemplateParamsArg TemplateParams) {
10736  const DeclSpec &DS = D.getDeclSpec();
10737
10738  assert(DS.isFriendSpecified());
10739  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
10740
10741  SourceLocation Loc = D.getIdentifierLoc();
10742  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
10743
10744  // C++ [class.friend]p1
10745  //   A friend of a class is a function or class....
10746  // Note that this sees through typedefs, which is intended.
10747  // It *doesn't* see through dependent types, which is correct
10748  // according to [temp.arg.type]p3:
10749  //   If a declaration acquires a function type through a
10750  //   type dependent on a template-parameter and this causes
10751  //   a declaration that does not use the syntactic form of a
10752  //   function declarator to have a function type, the program
10753  //   is ill-formed.
10754  if (!TInfo->getType()->isFunctionType()) {
10755    Diag(Loc, diag::err_unexpected_friend);
10756
10757    // It might be worthwhile to try to recover by creating an
10758    // appropriate declaration.
10759    return 0;
10760  }
10761
10762  // C++ [namespace.memdef]p3
10763  //  - If a friend declaration in a non-local class first declares a
10764  //    class or function, the friend class or function is a member
10765  //    of the innermost enclosing namespace.
10766  //  - The name of the friend is not found by simple name lookup
10767  //    until a matching declaration is provided in that namespace
10768  //    scope (either before or after the class declaration granting
10769  //    friendship).
10770  //  - If a friend function is called, its name may be found by the
10771  //    name lookup that considers functions from namespaces and
10772  //    classes associated with the types of the function arguments.
10773  //  - When looking for a prior declaration of a class or a function
10774  //    declared as a friend, scopes outside the innermost enclosing
10775  //    namespace scope are not considered.
10776
10777  CXXScopeSpec &SS = D.getCXXScopeSpec();
10778  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
10779  DeclarationName Name = NameInfo.getName();
10780  assert(Name);
10781
10782  // Check for unexpanded parameter packs.
10783  if (DiagnoseUnexpandedParameterPack(Loc, TInfo, UPPC_FriendDeclaration) ||
10784      DiagnoseUnexpandedParameterPack(NameInfo, UPPC_FriendDeclaration) ||
10785      DiagnoseUnexpandedParameterPack(SS, UPPC_FriendDeclaration))
10786    return 0;
10787
10788  // The context we found the declaration in, or in which we should
10789  // create the declaration.
10790  DeclContext *DC;
10791  Scope *DCScope = S;
10792  LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
10793                        ForRedeclaration);
10794
10795  // FIXME: there are different rules in local classes
10796
10797  // There are four cases here.
10798  //   - There's no scope specifier, in which case we just go to the
10799  //     appropriate scope and look for a function or function template
10800  //     there as appropriate.
10801  // Recover from invalid scope qualifiers as if they just weren't there.
10802  if (SS.isInvalid() || !SS.isSet()) {
10803    // C++0x [namespace.memdef]p3:
10804    //   If the name in a friend declaration is neither qualified nor
10805    //   a template-id and the declaration is a function or an
10806    //   elaborated-type-specifier, the lookup to determine whether
10807    //   the entity has been previously declared shall not consider
10808    //   any scopes outside the innermost enclosing namespace.
10809    // C++0x [class.friend]p11:
10810    //   If a friend declaration appears in a local class and the name
10811    //   specified is an unqualified name, a prior declaration is
10812    //   looked up without considering scopes that are outside the
10813    //   innermost enclosing non-class scope. For a friend function
10814    //   declaration, if there is no prior declaration, the program is
10815    //   ill-formed.
10816    bool isLocal = cast<CXXRecordDecl>(CurContext)->isLocalClass();
10817    bool isTemplateId = D.getName().getKind() == UnqualifiedId::IK_TemplateId;
10818
10819    // Find the appropriate context according to the above.
10820    DC = CurContext;
10821    while (true) {
10822      // Skip class contexts.  If someone can cite chapter and verse
10823      // for this behavior, that would be nice --- it's what GCC and
10824      // EDG do, and it seems like a reasonable intent, but the spec
10825      // really only says that checks for unqualified existing
10826      // declarations should stop at the nearest enclosing namespace,
10827      // not that they should only consider the nearest enclosing
10828      // namespace.
10829      while (DC->isRecord() || DC->isTransparentContext())
10830        DC = DC->getParent();
10831
10832      LookupQualifiedName(Previous, DC);
10833
10834      // TODO: decide what we think about using declarations.
10835      if (isLocal || !Previous.empty())
10836        break;
10837
10838      if (isTemplateId) {
10839        if (isa<TranslationUnitDecl>(DC)) break;
10840      } else {
10841        if (DC->isFileContext()) break;
10842      }
10843      DC = DC->getParent();
10844    }
10845
10846    DCScope = getScopeForDeclContext(S, DC);
10847
10848    // C++ [class.friend]p6:
10849    //   A function can be defined in a friend declaration of a class if and
10850    //   only if the class is a non-local class (9.8), the function name is
10851    //   unqualified, and the function has namespace scope.
10852    if (isLocal && D.isFunctionDefinition()) {
10853      Diag(NameInfo.getBeginLoc(), diag::err_friend_def_in_local_class);
10854    }
10855
10856  //   - There's a non-dependent scope specifier, in which case we
10857  //     compute it and do a previous lookup there for a function
10858  //     or function template.
10859  } else if (!SS.getScopeRep()->isDependent()) {
10860    DC = computeDeclContext(SS);
10861    if (!DC) return 0;
10862
10863    if (RequireCompleteDeclContext(SS, DC)) return 0;
10864
10865    LookupQualifiedName(Previous, DC);
10866
10867    // Ignore things found implicitly in the wrong scope.
10868    // TODO: better diagnostics for this case.  Suggesting the right
10869    // qualified scope would be nice...
10870    LookupResult::Filter F = Previous.makeFilter();
10871    while (F.hasNext()) {
10872      NamedDecl *D = F.next();
10873      if (!DC->InEnclosingNamespaceSetOf(
10874              D->getDeclContext()->getRedeclContext()))
10875        F.erase();
10876    }
10877    F.done();
10878
10879    if (Previous.empty()) {
10880      D.setInvalidType();
10881      Diag(Loc, diag::err_qualified_friend_not_found)
10882          << Name << TInfo->getType();
10883      return 0;
10884    }
10885
10886    // C++ [class.friend]p1: A friend of a class is a function or
10887    //   class that is not a member of the class . . .
10888    if (DC->Equals(CurContext))
10889      Diag(DS.getFriendSpecLoc(),
10890           getLangOpts().CPlusPlus11 ?
10891             diag::warn_cxx98_compat_friend_is_member :
10892             diag::err_friend_is_member);
10893
10894    if (D.isFunctionDefinition()) {
10895      // C++ [class.friend]p6:
10896      //   A function can be defined in a friend declaration of a class if and
10897      //   only if the class is a non-local class (9.8), the function name is
10898      //   unqualified, and the function has namespace scope.
10899      SemaDiagnosticBuilder DB
10900        = Diag(SS.getRange().getBegin(), diag::err_qualified_friend_def);
10901
10902      DB << SS.getScopeRep();
10903      if (DC->isFileContext())
10904        DB << FixItHint::CreateRemoval(SS.getRange());
10905      SS.clear();
10906    }
10907
10908  //   - There's a scope specifier that does not match any template
10909  //     parameter lists, in which case we use some arbitrary context,
10910  //     create a method or method template, and wait for instantiation.
10911  //   - There's a scope specifier that does match some template
10912  //     parameter lists, which we don't handle right now.
10913  } else {
10914    if (D.isFunctionDefinition()) {
10915      // C++ [class.friend]p6:
10916      //   A function can be defined in a friend declaration of a class if and
10917      //   only if the class is a non-local class (9.8), the function name is
10918      //   unqualified, and the function has namespace scope.
10919      Diag(SS.getRange().getBegin(), diag::err_qualified_friend_def)
10920        << SS.getScopeRep();
10921    }
10922
10923    DC = CurContext;
10924    assert(isa<CXXRecordDecl>(DC) && "friend declaration not in class?");
10925  }
10926
10927  if (!DC->isRecord()) {
10928    // This implies that it has to be an operator or function.
10929    if (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ||
10930        D.getName().getKind() == UnqualifiedId::IK_DestructorName ||
10931        D.getName().getKind() == UnqualifiedId::IK_ConversionFunctionId) {
10932      Diag(Loc, diag::err_introducing_special_friend) <<
10933        (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ? 0 :
10934         D.getName().getKind() == UnqualifiedId::IK_DestructorName ? 1 : 2);
10935      return 0;
10936    }
10937  }
10938
10939  // FIXME: This is an egregious hack to cope with cases where the scope stack
10940  // does not contain the declaration context, i.e., in an out-of-line
10941  // definition of a class.
10942  Scope FakeDCScope(S, Scope::DeclScope, Diags);
10943  if (!DCScope) {
10944    FakeDCScope.setEntity(DC);
10945    DCScope = &FakeDCScope;
10946  }
10947
10948  bool AddToScope = true;
10949  NamedDecl *ND = ActOnFunctionDeclarator(DCScope, D, DC, TInfo, Previous,
10950                                          TemplateParams, AddToScope);
10951  if (!ND) return 0;
10952
10953  assert(ND->getDeclContext() == DC);
10954  assert(ND->getLexicalDeclContext() == CurContext);
10955
10956  // Add the function declaration to the appropriate lookup tables,
10957  // adjusting the redeclarations list as necessary.  We don't
10958  // want to do this yet if the friending class is dependent.
10959  //
10960  // Also update the scope-based lookup if the target context's
10961  // lookup context is in lexical scope.
10962  if (!CurContext->isDependentContext()) {
10963    DC = DC->getRedeclContext();
10964    DC->makeDeclVisibleInContext(ND);
10965    if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
10966      PushOnScopeChains(ND, EnclosingScope, /*AddToContext=*/ false);
10967  }
10968
10969  FriendDecl *FrD = FriendDecl::Create(Context, CurContext,
10970                                       D.getIdentifierLoc(), ND,
10971                                       DS.getFriendSpecLoc());
10972  FrD->setAccess(AS_public);
10973  CurContext->addDecl(FrD);
10974
10975  if (ND->isInvalidDecl()) {
10976    FrD->setInvalidDecl();
10977  } else {
10978    if (DC->isRecord()) CheckFriendAccess(ND);
10979
10980    FunctionDecl *FD;
10981    if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND))
10982      FD = FTD->getTemplatedDecl();
10983    else
10984      FD = cast<FunctionDecl>(ND);
10985
10986    // Mark templated-scope function declarations as unsupported.
10987    if (FD->getNumTemplateParameterLists())
10988      FrD->setUnsupportedFriend(true);
10989  }
10990
10991  return ND;
10992}
10993
10994void Sema::SetDeclDeleted(Decl *Dcl, SourceLocation DelLoc) {
10995  AdjustDeclIfTemplate(Dcl);
10996
10997  FunctionDecl *Fn = dyn_cast_or_null<FunctionDecl>(Dcl);
10998  if (!Fn) {
10999    Diag(DelLoc, diag::err_deleted_non_function);
11000    return;
11001  }
11002
11003  if (const FunctionDecl *Prev = Fn->getPreviousDecl()) {
11004    // Don't consider the implicit declaration we generate for explicit
11005    // specializations. FIXME: Do not generate these implicit declarations.
11006    if ((Prev->getTemplateSpecializationKind() != TSK_ExplicitSpecialization
11007        || Prev->getPreviousDecl()) && !Prev->isDefined()) {
11008      Diag(DelLoc, diag::err_deleted_decl_not_first);
11009      Diag(Prev->getLocation(), diag::note_previous_declaration);
11010    }
11011    // If the declaration wasn't the first, we delete the function anyway for
11012    // recovery.
11013    Fn = Fn->getCanonicalDecl();
11014  }
11015
11016  if (Fn->isDeleted())
11017    return;
11018
11019  // See if we're deleting a function which is already known to override a
11020  // non-deleted virtual function.
11021  if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Fn)) {
11022    bool IssuedDiagnostic = false;
11023    for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
11024                                        E = MD->end_overridden_methods();
11025         I != E; ++I) {
11026      if (!(*MD->begin_overridden_methods())->isDeleted()) {
11027        if (!IssuedDiagnostic) {
11028          Diag(DelLoc, diag::err_deleted_override) << MD->getDeclName();
11029          IssuedDiagnostic = true;
11030        }
11031        Diag((*I)->getLocation(), diag::note_overridden_virtual_function);
11032      }
11033    }
11034  }
11035
11036  Fn->setDeletedAsWritten();
11037}
11038
11039void Sema::SetDeclDefaulted(Decl *Dcl, SourceLocation DefaultLoc) {
11040  CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(Dcl);
11041
11042  if (MD) {
11043    if (MD->getParent()->isDependentType()) {
11044      MD->setDefaulted();
11045      MD->setExplicitlyDefaulted();
11046      return;
11047    }
11048
11049    CXXSpecialMember Member = getSpecialMember(MD);
11050    if (Member == CXXInvalid) {
11051      Diag(DefaultLoc, diag::err_default_special_members);
11052      return;
11053    }
11054
11055    MD->setDefaulted();
11056    MD->setExplicitlyDefaulted();
11057
11058    // If this definition appears within the record, do the checking when
11059    // the record is complete.
11060    const FunctionDecl *Primary = MD;
11061    if (const FunctionDecl *Pattern = MD->getTemplateInstantiationPattern())
11062      // Find the uninstantiated declaration that actually had the '= default'
11063      // on it.
11064      Pattern->isDefined(Primary);
11065
11066    // If the method was defaulted on its first declaration, we will have
11067    // already performed the checking in CheckCompletedCXXClass. Such a
11068    // declaration doesn't trigger an implicit definition.
11069    if (Primary == Primary->getCanonicalDecl())
11070      return;
11071
11072    CheckExplicitlyDefaultedSpecialMember(MD);
11073
11074    // The exception specification is needed because we are defining the
11075    // function.
11076    ResolveExceptionSpec(DefaultLoc,
11077                         MD->getType()->castAs<FunctionProtoType>());
11078
11079    switch (Member) {
11080    case CXXDefaultConstructor: {
11081      CXXConstructorDecl *CD = cast<CXXConstructorDecl>(MD);
11082      if (!CD->isInvalidDecl())
11083        DefineImplicitDefaultConstructor(DefaultLoc, CD);
11084      break;
11085    }
11086
11087    case CXXCopyConstructor: {
11088      CXXConstructorDecl *CD = cast<CXXConstructorDecl>(MD);
11089      if (!CD->isInvalidDecl())
11090        DefineImplicitCopyConstructor(DefaultLoc, CD);
11091      break;
11092    }
11093
11094    case CXXCopyAssignment: {
11095      if (!MD->isInvalidDecl())
11096        DefineImplicitCopyAssignment(DefaultLoc, MD);
11097      break;
11098    }
11099
11100    case CXXDestructor: {
11101      CXXDestructorDecl *DD = cast<CXXDestructorDecl>(MD);
11102      if (!DD->isInvalidDecl())
11103        DefineImplicitDestructor(DefaultLoc, DD);
11104      break;
11105    }
11106
11107    case CXXMoveConstructor: {
11108      CXXConstructorDecl *CD = cast<CXXConstructorDecl>(MD);
11109      if (!CD->isInvalidDecl())
11110        DefineImplicitMoveConstructor(DefaultLoc, CD);
11111      break;
11112    }
11113
11114    case CXXMoveAssignment: {
11115      if (!MD->isInvalidDecl())
11116        DefineImplicitMoveAssignment(DefaultLoc, MD);
11117      break;
11118    }
11119
11120    case CXXInvalid:
11121      llvm_unreachable("Invalid special member.");
11122    }
11123  } else {
11124    Diag(DefaultLoc, diag::err_default_special_members);
11125  }
11126}
11127
11128static void SearchForReturnInStmt(Sema &Self, Stmt *S) {
11129  for (Stmt::child_range CI = S->children(); CI; ++CI) {
11130    Stmt *SubStmt = *CI;
11131    if (!SubStmt)
11132      continue;
11133    if (isa<ReturnStmt>(SubStmt))
11134      Self.Diag(SubStmt->getLocStart(),
11135           diag::err_return_in_constructor_handler);
11136    if (!isa<Expr>(SubStmt))
11137      SearchForReturnInStmt(Self, SubStmt);
11138  }
11139}
11140
11141void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) {
11142  for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) {
11143    CXXCatchStmt *Handler = TryBlock->getHandler(I);
11144    SearchForReturnInStmt(*this, Handler);
11145  }
11146}
11147
11148bool Sema::CheckOverridingFunctionAttributes(const CXXMethodDecl *New,
11149                                             const CXXMethodDecl *Old) {
11150  const FunctionType *NewFT = New->getType()->getAs<FunctionType>();
11151  const FunctionType *OldFT = Old->getType()->getAs<FunctionType>();
11152
11153  CallingConv NewCC = NewFT->getCallConv(), OldCC = OldFT->getCallConv();
11154
11155  // If the calling conventions match, everything is fine
11156  if (NewCC == OldCC)
11157    return false;
11158
11159  // If either of the calling conventions are set to "default", we need to pick
11160  // something more sensible based on the target. This supports code where the
11161  // one method explicitly sets thiscall, and another has no explicit calling
11162  // convention.
11163  CallingConv Default =
11164    Context.getTargetInfo().getDefaultCallingConv(TargetInfo::CCMT_Member);
11165  if (NewCC == CC_Default)
11166    NewCC = Default;
11167  if (OldCC == CC_Default)
11168    OldCC = Default;
11169
11170  // If the calling conventions still don't match, then report the error
11171  if (NewCC != OldCC) {
11172    Diag(New->getLocation(),
11173         diag::err_conflicting_overriding_cc_attributes)
11174      << New->getDeclName() << New->getType() << Old->getType();
11175    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
11176    return true;
11177  }
11178
11179  return false;
11180}
11181
11182bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New,
11183                                             const CXXMethodDecl *Old) {
11184  QualType NewTy = New->getType()->getAs<FunctionType>()->getResultType();
11185  QualType OldTy = Old->getType()->getAs<FunctionType>()->getResultType();
11186
11187  if (Context.hasSameType(NewTy, OldTy) ||
11188      NewTy->isDependentType() || OldTy->isDependentType())
11189    return false;
11190
11191  // Check if the return types are covariant
11192  QualType NewClassTy, OldClassTy;
11193
11194  /// Both types must be pointers or references to classes.
11195  if (const PointerType *NewPT = NewTy->getAs<PointerType>()) {
11196    if (const PointerType *OldPT = OldTy->getAs<PointerType>()) {
11197      NewClassTy = NewPT->getPointeeType();
11198      OldClassTy = OldPT->getPointeeType();
11199    }
11200  } else if (const ReferenceType *NewRT = NewTy->getAs<ReferenceType>()) {
11201    if (const ReferenceType *OldRT = OldTy->getAs<ReferenceType>()) {
11202      if (NewRT->getTypeClass() == OldRT->getTypeClass()) {
11203        NewClassTy = NewRT->getPointeeType();
11204        OldClassTy = OldRT->getPointeeType();
11205      }
11206    }
11207  }
11208
11209  // The return types aren't either both pointers or references to a class type.
11210  if (NewClassTy.isNull()) {
11211    Diag(New->getLocation(),
11212         diag::err_different_return_type_for_overriding_virtual_function)
11213      << New->getDeclName() << NewTy << OldTy;
11214    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
11215
11216    return true;
11217  }
11218
11219  // C++ [class.virtual]p6:
11220  //   If the return type of D::f differs from the return type of B::f, the
11221  //   class type in the return type of D::f shall be complete at the point of
11222  //   declaration of D::f or shall be the class type D.
11223  if (const RecordType *RT = NewClassTy->getAs<RecordType>()) {
11224    if (!RT->isBeingDefined() &&
11225        RequireCompleteType(New->getLocation(), NewClassTy,
11226                            diag::err_covariant_return_incomplete,
11227                            New->getDeclName()))
11228    return true;
11229  }
11230
11231  if (!Context.hasSameUnqualifiedType(NewClassTy, OldClassTy)) {
11232    // Check if the new class derives from the old class.
11233    if (!IsDerivedFrom(NewClassTy, OldClassTy)) {
11234      Diag(New->getLocation(),
11235           diag::err_covariant_return_not_derived)
11236      << New->getDeclName() << NewTy << OldTy;
11237      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
11238      return true;
11239    }
11240
11241    // Check if we the conversion from derived to base is valid.
11242    if (CheckDerivedToBaseConversion(NewClassTy, OldClassTy,
11243                    diag::err_covariant_return_inaccessible_base,
11244                    diag::err_covariant_return_ambiguous_derived_to_base_conv,
11245                    // FIXME: Should this point to the return type?
11246                    New->getLocation(), SourceRange(), New->getDeclName(), 0)) {
11247      // FIXME: this note won't trigger for delayed access control
11248      // diagnostics, and it's impossible to get an undelayed error
11249      // here from access control during the original parse because
11250      // the ParsingDeclSpec/ParsingDeclarator are still in scope.
11251      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
11252      return true;
11253    }
11254  }
11255
11256  // The qualifiers of the return types must be the same.
11257  if (NewTy.getLocalCVRQualifiers() != OldTy.getLocalCVRQualifiers()) {
11258    Diag(New->getLocation(),
11259         diag::err_covariant_return_type_different_qualifications)
11260    << New->getDeclName() << NewTy << OldTy;
11261    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
11262    return true;
11263  };
11264
11265
11266  // The new class type must have the same or less qualifiers as the old type.
11267  if (NewClassTy.isMoreQualifiedThan(OldClassTy)) {
11268    Diag(New->getLocation(),
11269         diag::err_covariant_return_type_class_type_more_qualified)
11270    << New->getDeclName() << NewTy << OldTy;
11271    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
11272    return true;
11273  };
11274
11275  return false;
11276}
11277
11278/// \brief Mark the given method pure.
11279///
11280/// \param Method the method to be marked pure.
11281///
11282/// \param InitRange the source range that covers the "0" initializer.
11283bool Sema::CheckPureMethod(CXXMethodDecl *Method, SourceRange InitRange) {
11284  SourceLocation EndLoc = InitRange.getEnd();
11285  if (EndLoc.isValid())
11286    Method->setRangeEnd(EndLoc);
11287
11288  if (Method->isVirtual() || Method->getParent()->isDependentContext()) {
11289    Method->setPure();
11290    return false;
11291  }
11292
11293  if (!Method->isInvalidDecl())
11294    Diag(Method->getLocation(), diag::err_non_virtual_pure)
11295      << Method->getDeclName() << InitRange;
11296  return true;
11297}
11298
11299/// \brief Determine whether the given declaration is a static data member.
11300static bool isStaticDataMember(Decl *D) {
11301  VarDecl *Var = dyn_cast_or_null<VarDecl>(D);
11302  if (!Var)
11303    return false;
11304
11305  return Var->isStaticDataMember();
11306}
11307/// ActOnCXXEnterDeclInitializer - Invoked when we are about to parse
11308/// an initializer for the out-of-line declaration 'Dcl'.  The scope
11309/// is a fresh scope pushed for just this purpose.
11310///
11311/// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a
11312/// static data member of class X, names should be looked up in the scope of
11313/// class X.
11314void Sema::ActOnCXXEnterDeclInitializer(Scope *S, Decl *D) {
11315  // If there is no declaration, there was an error parsing it.
11316  if (D == 0 || D->isInvalidDecl()) return;
11317
11318  // We should only get called for declarations with scope specifiers, like:
11319  //   int foo::bar;
11320  assert(D->isOutOfLine());
11321  EnterDeclaratorContext(S, D->getDeclContext());
11322
11323  // If we are parsing the initializer for a static data member, push a
11324  // new expression evaluation context that is associated with this static
11325  // data member.
11326  if (isStaticDataMember(D))
11327    PushExpressionEvaluationContext(PotentiallyEvaluated, D);
11328}
11329
11330/// ActOnCXXExitDeclInitializer - Invoked after we are finished parsing an
11331/// initializer for the out-of-line declaration 'D'.
11332void Sema::ActOnCXXExitDeclInitializer(Scope *S, Decl *D) {
11333  // If there is no declaration, there was an error parsing it.
11334  if (D == 0 || D->isInvalidDecl()) return;
11335
11336  if (isStaticDataMember(D))
11337    PopExpressionEvaluationContext();
11338
11339  assert(D->isOutOfLine());
11340  ExitDeclaratorContext(S);
11341}
11342
11343/// ActOnCXXConditionDeclarationExpr - Parsed a condition declaration of a
11344/// C++ if/switch/while/for statement.
11345/// e.g: "if (int x = f()) {...}"
11346DeclResult Sema::ActOnCXXConditionDeclaration(Scope *S, Declarator &D) {
11347  // C++ 6.4p2:
11348  // The declarator shall not specify a function or an array.
11349  // The type-specifier-seq shall not contain typedef and shall not declare a
11350  // new class or enumeration.
11351  assert(D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
11352         "Parser allowed 'typedef' as storage class of condition decl.");
11353
11354  Decl *Dcl = ActOnDeclarator(S, D);
11355  if (!Dcl)
11356    return true;
11357
11358  if (isa<FunctionDecl>(Dcl)) { // The declarator shall not specify a function.
11359    Diag(Dcl->getLocation(), diag::err_invalid_use_of_function_type)
11360      << D.getSourceRange();
11361    return true;
11362  }
11363
11364  return Dcl;
11365}
11366
11367void Sema::LoadExternalVTableUses() {
11368  if (!ExternalSource)
11369    return;
11370
11371  SmallVector<ExternalVTableUse, 4> VTables;
11372  ExternalSource->ReadUsedVTables(VTables);
11373  SmallVector<VTableUse, 4> NewUses;
11374  for (unsigned I = 0, N = VTables.size(); I != N; ++I) {
11375    llvm::DenseMap<CXXRecordDecl *, bool>::iterator Pos
11376      = VTablesUsed.find(VTables[I].Record);
11377    // Even if a definition wasn't required before, it may be required now.
11378    if (Pos != VTablesUsed.end()) {
11379      if (!Pos->second && VTables[I].DefinitionRequired)
11380        Pos->second = true;
11381      continue;
11382    }
11383
11384    VTablesUsed[VTables[I].Record] = VTables[I].DefinitionRequired;
11385    NewUses.push_back(VTableUse(VTables[I].Record, VTables[I].Location));
11386  }
11387
11388  VTableUses.insert(VTableUses.begin(), NewUses.begin(), NewUses.end());
11389}
11390
11391void Sema::MarkVTableUsed(SourceLocation Loc, CXXRecordDecl *Class,
11392                          bool DefinitionRequired) {
11393  // Ignore any vtable uses in unevaluated operands or for classes that do
11394  // not have a vtable.
11395  if (!Class->isDynamicClass() || Class->isDependentContext() ||
11396      CurContext->isDependentContext() ||
11397      ExprEvalContexts.back().Context == Unevaluated)
11398    return;
11399
11400  // Try to insert this class into the map.
11401  LoadExternalVTableUses();
11402  Class = cast<CXXRecordDecl>(Class->getCanonicalDecl());
11403  std::pair<llvm::DenseMap<CXXRecordDecl *, bool>::iterator, bool>
11404    Pos = VTablesUsed.insert(std::make_pair(Class, DefinitionRequired));
11405  if (!Pos.second) {
11406    // If we already had an entry, check to see if we are promoting this vtable
11407    // to required a definition. If so, we need to reappend to the VTableUses
11408    // list, since we may have already processed the first entry.
11409    if (DefinitionRequired && !Pos.first->second) {
11410      Pos.first->second = true;
11411    } else {
11412      // Otherwise, we can early exit.
11413      return;
11414    }
11415  }
11416
11417  // Local classes need to have their virtual members marked
11418  // immediately. For all other classes, we mark their virtual members
11419  // at the end of the translation unit.
11420  if (Class->isLocalClass())
11421    MarkVirtualMembersReferenced(Loc, Class);
11422  else
11423    VTableUses.push_back(std::make_pair(Class, Loc));
11424}
11425
11426bool Sema::DefineUsedVTables() {
11427  LoadExternalVTableUses();
11428  if (VTableUses.empty())
11429    return false;
11430
11431  // Note: The VTableUses vector could grow as a result of marking
11432  // the members of a class as "used", so we check the size each
11433  // time through the loop and prefer indices (which are stable) to
11434  // iterators (which are not).
11435  bool DefinedAnything = false;
11436  for (unsigned I = 0; I != VTableUses.size(); ++I) {
11437    CXXRecordDecl *Class = VTableUses[I].first->getDefinition();
11438    if (!Class)
11439      continue;
11440
11441    SourceLocation Loc = VTableUses[I].second;
11442
11443    bool DefineVTable = true;
11444
11445    // If this class has a key function, but that key function is
11446    // defined in another translation unit, we don't need to emit the
11447    // vtable even though we're using it.
11448    const CXXMethodDecl *KeyFunction = Context.getCurrentKeyFunction(Class);
11449    if (KeyFunction && !KeyFunction->hasBody()) {
11450      switch (KeyFunction->getTemplateSpecializationKind()) {
11451      case TSK_Undeclared:
11452      case TSK_ExplicitSpecialization:
11453      case TSK_ExplicitInstantiationDeclaration:
11454        // The key function is in another translation unit.
11455        DefineVTable = false;
11456        break;
11457
11458      case TSK_ExplicitInstantiationDefinition:
11459      case TSK_ImplicitInstantiation:
11460        // We will be instantiating the key function.
11461        break;
11462      }
11463    } else if (!KeyFunction) {
11464      // If we have a class with no key function that is the subject
11465      // of an explicit instantiation declaration, suppress the
11466      // vtable; it will live with the explicit instantiation
11467      // definition.
11468      bool IsExplicitInstantiationDeclaration
11469        = Class->getTemplateSpecializationKind()
11470                                      == TSK_ExplicitInstantiationDeclaration;
11471      for (TagDecl::redecl_iterator R = Class->redecls_begin(),
11472                                 REnd = Class->redecls_end();
11473           R != REnd; ++R) {
11474        TemplateSpecializationKind TSK
11475          = cast<CXXRecordDecl>(*R)->getTemplateSpecializationKind();
11476        if (TSK == TSK_ExplicitInstantiationDeclaration)
11477          IsExplicitInstantiationDeclaration = true;
11478        else if (TSK == TSK_ExplicitInstantiationDefinition) {
11479          IsExplicitInstantiationDeclaration = false;
11480          break;
11481        }
11482      }
11483
11484      if (IsExplicitInstantiationDeclaration)
11485        DefineVTable = false;
11486    }
11487
11488    // The exception specifications for all virtual members may be needed even
11489    // if we are not providing an authoritative form of the vtable in this TU.
11490    // We may choose to emit it available_externally anyway.
11491    if (!DefineVTable) {
11492      MarkVirtualMemberExceptionSpecsNeeded(Loc, Class);
11493      continue;
11494    }
11495
11496    // Mark all of the virtual members of this class as referenced, so
11497    // that we can build a vtable. Then, tell the AST consumer that a
11498    // vtable for this class is required.
11499    DefinedAnything = true;
11500    MarkVirtualMembersReferenced(Loc, Class);
11501    CXXRecordDecl *Canonical = cast<CXXRecordDecl>(Class->getCanonicalDecl());
11502    Consumer.HandleVTable(Class, VTablesUsed[Canonical]);
11503
11504    // Optionally warn if we're emitting a weak vtable.
11505    if (Class->hasExternalLinkage() &&
11506        Class->getTemplateSpecializationKind() != TSK_ImplicitInstantiation) {
11507      const FunctionDecl *KeyFunctionDef = 0;
11508      if (!KeyFunction ||
11509          (KeyFunction->hasBody(KeyFunctionDef) &&
11510           KeyFunctionDef->isInlined()))
11511        Diag(Class->getLocation(), Class->getTemplateSpecializationKind() ==
11512             TSK_ExplicitInstantiationDefinition
11513             ? diag::warn_weak_template_vtable : diag::warn_weak_vtable)
11514          << Class;
11515    }
11516  }
11517  VTableUses.clear();
11518
11519  return DefinedAnything;
11520}
11521
11522void Sema::MarkVirtualMemberExceptionSpecsNeeded(SourceLocation Loc,
11523                                                 const CXXRecordDecl *RD) {
11524  for (CXXRecordDecl::method_iterator I = RD->method_begin(),
11525                                      E = RD->method_end(); I != E; ++I)
11526    if ((*I)->isVirtual() && !(*I)->isPure())
11527      ResolveExceptionSpec(Loc, (*I)->getType()->castAs<FunctionProtoType>());
11528}
11529
11530void Sema::MarkVirtualMembersReferenced(SourceLocation Loc,
11531                                        const CXXRecordDecl *RD) {
11532  // Mark all functions which will appear in RD's vtable as used.
11533  CXXFinalOverriderMap FinalOverriders;
11534  RD->getFinalOverriders(FinalOverriders);
11535  for (CXXFinalOverriderMap::const_iterator I = FinalOverriders.begin(),
11536                                            E = FinalOverriders.end();
11537       I != E; ++I) {
11538    for (OverridingMethods::const_iterator OI = I->second.begin(),
11539                                           OE = I->second.end();
11540         OI != OE; ++OI) {
11541      assert(OI->second.size() > 0 && "no final overrider");
11542      CXXMethodDecl *Overrider = OI->second.front().Method;
11543
11544      // C++ [basic.def.odr]p2:
11545      //   [...] A virtual member function is used if it is not pure. [...]
11546      if (!Overrider->isPure())
11547        MarkFunctionReferenced(Loc, Overrider);
11548    }
11549  }
11550
11551  // Only classes that have virtual bases need a VTT.
11552  if (RD->getNumVBases() == 0)
11553    return;
11554
11555  for (CXXRecordDecl::base_class_const_iterator i = RD->bases_begin(),
11556           e = RD->bases_end(); i != e; ++i) {
11557    const CXXRecordDecl *Base =
11558        cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
11559    if (Base->getNumVBases() == 0)
11560      continue;
11561    MarkVirtualMembersReferenced(Loc, Base);
11562  }
11563}
11564
11565/// SetIvarInitializers - This routine builds initialization ASTs for the
11566/// Objective-C implementation whose ivars need be initialized.
11567void Sema::SetIvarInitializers(ObjCImplementationDecl *ObjCImplementation) {
11568  if (!getLangOpts().CPlusPlus)
11569    return;
11570  if (ObjCInterfaceDecl *OID = ObjCImplementation->getClassInterface()) {
11571    SmallVector<ObjCIvarDecl*, 8> ivars;
11572    CollectIvarsToConstructOrDestruct(OID, ivars);
11573    if (ivars.empty())
11574      return;
11575    SmallVector<CXXCtorInitializer*, 32> AllToInit;
11576    for (unsigned i = 0; i < ivars.size(); i++) {
11577      FieldDecl *Field = ivars[i];
11578      if (Field->isInvalidDecl())
11579        continue;
11580
11581      CXXCtorInitializer *Member;
11582      InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field);
11583      InitializationKind InitKind =
11584        InitializationKind::CreateDefault(ObjCImplementation->getLocation());
11585
11586      InitializationSequence InitSeq(*this, InitEntity, InitKind, 0, 0);
11587      ExprResult MemberInit =
11588        InitSeq.Perform(*this, InitEntity, InitKind, MultiExprArg());
11589      MemberInit = MaybeCreateExprWithCleanups(MemberInit);
11590      // Note, MemberInit could actually come back empty if no initialization
11591      // is required (e.g., because it would call a trivial default constructor)
11592      if (!MemberInit.get() || MemberInit.isInvalid())
11593        continue;
11594
11595      Member =
11596        new (Context) CXXCtorInitializer(Context, Field, SourceLocation(),
11597                                         SourceLocation(),
11598                                         MemberInit.takeAs<Expr>(),
11599                                         SourceLocation());
11600      AllToInit.push_back(Member);
11601
11602      // Be sure that the destructor is accessible and is marked as referenced.
11603      if (const RecordType *RecordTy
11604                  = Context.getBaseElementType(Field->getType())
11605                                                        ->getAs<RecordType>()) {
11606                    CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl());
11607        if (CXXDestructorDecl *Destructor = LookupDestructor(RD)) {
11608          MarkFunctionReferenced(Field->getLocation(), Destructor);
11609          CheckDestructorAccess(Field->getLocation(), Destructor,
11610                            PDiag(diag::err_access_dtor_ivar)
11611                              << Context.getBaseElementType(Field->getType()));
11612        }
11613      }
11614    }
11615    ObjCImplementation->setIvarInitializers(Context,
11616                                            AllToInit.data(), AllToInit.size());
11617  }
11618}
11619
11620static
11621void DelegatingCycleHelper(CXXConstructorDecl* Ctor,
11622                           llvm::SmallSet<CXXConstructorDecl*, 4> &Valid,
11623                           llvm::SmallSet<CXXConstructorDecl*, 4> &Invalid,
11624                           llvm::SmallSet<CXXConstructorDecl*, 4> &Current,
11625                           Sema &S) {
11626  llvm::SmallSet<CXXConstructorDecl*, 4>::iterator CI = Current.begin(),
11627                                                   CE = Current.end();
11628  if (Ctor->isInvalidDecl())
11629    return;
11630
11631  CXXConstructorDecl *Target = Ctor->getTargetConstructor();
11632
11633  // Target may not be determinable yet, for instance if this is a dependent
11634  // call in an uninstantiated template.
11635  if (Target) {
11636    const FunctionDecl *FNTarget = 0;
11637    (void)Target->hasBody(FNTarget);
11638    Target = const_cast<CXXConstructorDecl*>(
11639      cast_or_null<CXXConstructorDecl>(FNTarget));
11640  }
11641
11642  CXXConstructorDecl *Canonical = Ctor->getCanonicalDecl(),
11643                     // Avoid dereferencing a null pointer here.
11644                     *TCanonical = Target ? Target->getCanonicalDecl() : 0;
11645
11646  if (!Current.insert(Canonical))
11647    return;
11648
11649  // We know that beyond here, we aren't chaining into a cycle.
11650  if (!Target || !Target->isDelegatingConstructor() ||
11651      Target->isInvalidDecl() || Valid.count(TCanonical)) {
11652    for (CI = Current.begin(), CE = Current.end(); CI != CE; ++CI)
11653      Valid.insert(*CI);
11654    Current.clear();
11655  // We've hit a cycle.
11656  } else if (TCanonical == Canonical || Invalid.count(TCanonical) ||
11657             Current.count(TCanonical)) {
11658    // If we haven't diagnosed this cycle yet, do so now.
11659    if (!Invalid.count(TCanonical)) {
11660      S.Diag((*Ctor->init_begin())->getSourceLocation(),
11661             diag::warn_delegating_ctor_cycle)
11662        << Ctor;
11663
11664      // Don't add a note for a function delegating directly to itself.
11665      if (TCanonical != Canonical)
11666        S.Diag(Target->getLocation(), diag::note_it_delegates_to);
11667
11668      CXXConstructorDecl *C = Target;
11669      while (C->getCanonicalDecl() != Canonical) {
11670        const FunctionDecl *FNTarget = 0;
11671        (void)C->getTargetConstructor()->hasBody(FNTarget);
11672        assert(FNTarget && "Ctor cycle through bodiless function");
11673
11674        C = const_cast<CXXConstructorDecl*>(
11675          cast<CXXConstructorDecl>(FNTarget));
11676        S.Diag(C->getLocation(), diag::note_which_delegates_to);
11677      }
11678    }
11679
11680    for (CI = Current.begin(), CE = Current.end(); CI != CE; ++CI)
11681      Invalid.insert(*CI);
11682    Current.clear();
11683  } else {
11684    DelegatingCycleHelper(Target, Valid, Invalid, Current, S);
11685  }
11686}
11687
11688
11689void Sema::CheckDelegatingCtorCycles() {
11690  llvm::SmallSet<CXXConstructorDecl*, 4> Valid, Invalid, Current;
11691
11692  llvm::SmallSet<CXXConstructorDecl*, 4>::iterator CI = Current.begin(),
11693                                                   CE = Current.end();
11694
11695  for (DelegatingCtorDeclsType::iterator
11696         I = DelegatingCtorDecls.begin(ExternalSource),
11697         E = DelegatingCtorDecls.end();
11698       I != E; ++I)
11699    DelegatingCycleHelper(*I, Valid, Invalid, Current, *this);
11700
11701  for (CI = Invalid.begin(), CE = Invalid.end(); CI != CE; ++CI)
11702    (*CI)->setInvalidDecl();
11703}
11704
11705namespace {
11706  /// \brief AST visitor that finds references to the 'this' expression.
11707  class FindCXXThisExpr : public RecursiveASTVisitor<FindCXXThisExpr> {
11708    Sema &S;
11709
11710  public:
11711    explicit FindCXXThisExpr(Sema &S) : S(S) { }
11712
11713    bool VisitCXXThisExpr(CXXThisExpr *E) {
11714      S.Diag(E->getLocation(), diag::err_this_static_member_func)
11715        << E->isImplicit();
11716      return false;
11717    }
11718  };
11719}
11720
11721bool Sema::checkThisInStaticMemberFunctionType(CXXMethodDecl *Method) {
11722  TypeSourceInfo *TSInfo = Method->getTypeSourceInfo();
11723  if (!TSInfo)
11724    return false;
11725
11726  TypeLoc TL = TSInfo->getTypeLoc();
11727  FunctionProtoTypeLoc ProtoTL = TL.getAs<FunctionProtoTypeLoc>();
11728  if (!ProtoTL)
11729    return false;
11730
11731  // C++11 [expr.prim.general]p3:
11732  //   [The expression this] shall not appear before the optional
11733  //   cv-qualifier-seq and it shall not appear within the declaration of a
11734  //   static member function (although its type and value category are defined
11735  //   within a static member function as they are within a non-static member
11736  //   function). [ Note: this is because declaration matching does not occur
11737  //  until the complete declarator is known. - end note ]
11738  const FunctionProtoType *Proto = ProtoTL.getTypePtr();
11739  FindCXXThisExpr Finder(*this);
11740
11741  // If the return type came after the cv-qualifier-seq, check it now.
11742  if (Proto->hasTrailingReturn() &&
11743      !Finder.TraverseTypeLoc(ProtoTL.getResultLoc()))
11744    return true;
11745
11746  // Check the exception specification.
11747  if (checkThisInStaticMemberFunctionExceptionSpec(Method))
11748    return true;
11749
11750  return checkThisInStaticMemberFunctionAttributes(Method);
11751}
11752
11753bool Sema::checkThisInStaticMemberFunctionExceptionSpec(CXXMethodDecl *Method) {
11754  TypeSourceInfo *TSInfo = Method->getTypeSourceInfo();
11755  if (!TSInfo)
11756    return false;
11757
11758  TypeLoc TL = TSInfo->getTypeLoc();
11759  FunctionProtoTypeLoc ProtoTL = TL.getAs<FunctionProtoTypeLoc>();
11760  if (!ProtoTL)
11761    return false;
11762
11763  const FunctionProtoType *Proto = ProtoTL.getTypePtr();
11764  FindCXXThisExpr Finder(*this);
11765
11766  switch (Proto->getExceptionSpecType()) {
11767  case EST_Uninstantiated:
11768  case EST_Unevaluated:
11769  case EST_BasicNoexcept:
11770  case EST_DynamicNone:
11771  case EST_MSAny:
11772  case EST_None:
11773    break;
11774
11775  case EST_ComputedNoexcept:
11776    if (!Finder.TraverseStmt(Proto->getNoexceptExpr()))
11777      return true;
11778
11779  case EST_Dynamic:
11780    for (FunctionProtoType::exception_iterator E = Proto->exception_begin(),
11781         EEnd = Proto->exception_end();
11782         E != EEnd; ++E) {
11783      if (!Finder.TraverseType(*E))
11784        return true;
11785    }
11786    break;
11787  }
11788
11789  return false;
11790}
11791
11792bool Sema::checkThisInStaticMemberFunctionAttributes(CXXMethodDecl *Method) {
11793  FindCXXThisExpr Finder(*this);
11794
11795  // Check attributes.
11796  for (Decl::attr_iterator A = Method->attr_begin(), AEnd = Method->attr_end();
11797       A != AEnd; ++A) {
11798    // FIXME: This should be emitted by tblgen.
11799    Expr *Arg = 0;
11800    ArrayRef<Expr *> Args;
11801    if (GuardedByAttr *G = dyn_cast<GuardedByAttr>(*A))
11802      Arg = G->getArg();
11803    else if (PtGuardedByAttr *G = dyn_cast<PtGuardedByAttr>(*A))
11804      Arg = G->getArg();
11805    else if (AcquiredAfterAttr *AA = dyn_cast<AcquiredAfterAttr>(*A))
11806      Args = ArrayRef<Expr *>(AA->args_begin(), AA->args_size());
11807    else if (AcquiredBeforeAttr *AB = dyn_cast<AcquiredBeforeAttr>(*A))
11808      Args = ArrayRef<Expr *>(AB->args_begin(), AB->args_size());
11809    else if (ExclusiveLockFunctionAttr *ELF
11810               = dyn_cast<ExclusiveLockFunctionAttr>(*A))
11811      Args = ArrayRef<Expr *>(ELF->args_begin(), ELF->args_size());
11812    else if (SharedLockFunctionAttr *SLF
11813               = dyn_cast<SharedLockFunctionAttr>(*A))
11814      Args = ArrayRef<Expr *>(SLF->args_begin(), SLF->args_size());
11815    else if (ExclusiveTrylockFunctionAttr *ETLF
11816               = dyn_cast<ExclusiveTrylockFunctionAttr>(*A)) {
11817      Arg = ETLF->getSuccessValue();
11818      Args = ArrayRef<Expr *>(ETLF->args_begin(), ETLF->args_size());
11819    } else if (SharedTrylockFunctionAttr *STLF
11820                 = dyn_cast<SharedTrylockFunctionAttr>(*A)) {
11821      Arg = STLF->getSuccessValue();
11822      Args = ArrayRef<Expr *>(STLF->args_begin(), STLF->args_size());
11823    } else if (UnlockFunctionAttr *UF = dyn_cast<UnlockFunctionAttr>(*A))
11824      Args = ArrayRef<Expr *>(UF->args_begin(), UF->args_size());
11825    else if (LockReturnedAttr *LR = dyn_cast<LockReturnedAttr>(*A))
11826      Arg = LR->getArg();
11827    else if (LocksExcludedAttr *LE = dyn_cast<LocksExcludedAttr>(*A))
11828      Args = ArrayRef<Expr *>(LE->args_begin(), LE->args_size());
11829    else if (ExclusiveLocksRequiredAttr *ELR
11830               = dyn_cast<ExclusiveLocksRequiredAttr>(*A))
11831      Args = ArrayRef<Expr *>(ELR->args_begin(), ELR->args_size());
11832    else if (SharedLocksRequiredAttr *SLR
11833               = dyn_cast<SharedLocksRequiredAttr>(*A))
11834      Args = ArrayRef<Expr *>(SLR->args_begin(), SLR->args_size());
11835
11836    if (Arg && !Finder.TraverseStmt(Arg))
11837      return true;
11838
11839    for (unsigned I = 0, N = Args.size(); I != N; ++I) {
11840      if (!Finder.TraverseStmt(Args[I]))
11841        return true;
11842    }
11843  }
11844
11845  return false;
11846}
11847
11848void
11849Sema::checkExceptionSpecification(ExceptionSpecificationType EST,
11850                                  ArrayRef<ParsedType> DynamicExceptions,
11851                                  ArrayRef<SourceRange> DynamicExceptionRanges,
11852                                  Expr *NoexceptExpr,
11853                                  SmallVectorImpl<QualType> &Exceptions,
11854                                  FunctionProtoType::ExtProtoInfo &EPI) {
11855  Exceptions.clear();
11856  EPI.ExceptionSpecType = EST;
11857  if (EST == EST_Dynamic) {
11858    Exceptions.reserve(DynamicExceptions.size());
11859    for (unsigned ei = 0, ee = DynamicExceptions.size(); ei != ee; ++ei) {
11860      // FIXME: Preserve type source info.
11861      QualType ET = GetTypeFromParser(DynamicExceptions[ei]);
11862
11863      SmallVector<UnexpandedParameterPack, 2> Unexpanded;
11864      collectUnexpandedParameterPacks(ET, Unexpanded);
11865      if (!Unexpanded.empty()) {
11866        DiagnoseUnexpandedParameterPacks(DynamicExceptionRanges[ei].getBegin(),
11867                                         UPPC_ExceptionType,
11868                                         Unexpanded);
11869        continue;
11870      }
11871
11872      // Check that the type is valid for an exception spec, and
11873      // drop it if not.
11874      if (!CheckSpecifiedExceptionType(ET, DynamicExceptionRanges[ei]))
11875        Exceptions.push_back(ET);
11876    }
11877    EPI.NumExceptions = Exceptions.size();
11878    EPI.Exceptions = Exceptions.data();
11879    return;
11880  }
11881
11882  if (EST == EST_ComputedNoexcept) {
11883    // If an error occurred, there's no expression here.
11884    if (NoexceptExpr) {
11885      assert((NoexceptExpr->isTypeDependent() ||
11886              NoexceptExpr->getType()->getCanonicalTypeUnqualified() ==
11887              Context.BoolTy) &&
11888             "Parser should have made sure that the expression is boolean");
11889      if (NoexceptExpr && DiagnoseUnexpandedParameterPack(NoexceptExpr)) {
11890        EPI.ExceptionSpecType = EST_BasicNoexcept;
11891        return;
11892      }
11893
11894      if (!NoexceptExpr->isValueDependent())
11895        NoexceptExpr = VerifyIntegerConstantExpression(NoexceptExpr, 0,
11896                         diag::err_noexcept_needs_constant_expression,
11897                         /*AllowFold*/ false).take();
11898      EPI.NoexceptExpr = NoexceptExpr;
11899    }
11900    return;
11901  }
11902}
11903
11904/// IdentifyCUDATarget - Determine the CUDA compilation target for this function
11905Sema::CUDAFunctionTarget Sema::IdentifyCUDATarget(const FunctionDecl *D) {
11906  // Implicitly declared functions (e.g. copy constructors) are
11907  // __host__ __device__
11908  if (D->isImplicit())
11909    return CFT_HostDevice;
11910
11911  if (D->hasAttr<CUDAGlobalAttr>())
11912    return CFT_Global;
11913
11914  if (D->hasAttr<CUDADeviceAttr>()) {
11915    if (D->hasAttr<CUDAHostAttr>())
11916      return CFT_HostDevice;
11917    else
11918      return CFT_Device;
11919  }
11920
11921  return CFT_Host;
11922}
11923
11924bool Sema::CheckCUDATarget(CUDAFunctionTarget CallerTarget,
11925                           CUDAFunctionTarget CalleeTarget) {
11926  // CUDA B.1.1 "The __device__ qualifier declares a function that is...
11927  // Callable from the device only."
11928  if (CallerTarget == CFT_Host && CalleeTarget == CFT_Device)
11929    return true;
11930
11931  // CUDA B.1.2 "The __global__ qualifier declares a function that is...
11932  // Callable from the host only."
11933  // CUDA B.1.3 "The __host__ qualifier declares a function that is...
11934  // Callable from the host only."
11935  if ((CallerTarget == CFT_Device || CallerTarget == CFT_Global) &&
11936      (CalleeTarget == CFT_Host || CalleeTarget == CFT_Global))
11937    return true;
11938
11939  if (CallerTarget == CFT_HostDevice && CalleeTarget != CFT_HostDevice)
11940    return true;
11941
11942  return false;
11943}
11944