SemaDeclCXX.cpp revision 16dbdce02366c372fe934c0528148fc38906f21a
1//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for C++ declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "SemaInherit.h"
16#include "clang/AST/ASTConsumer.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/DeclVisitor.h"
19#include "clang/AST/TypeOrdering.h"
20#include "clang/AST/StmtVisitor.h"
21#include "clang/Lex/Preprocessor.h"
22#include "clang/Parse/DeclSpec.h"
23#include "llvm/ADT/STLExtras.h"
24#include "llvm/Support/Compiler.h"
25#include <algorithm> // for std::equal
26#include <map>
27
28using namespace clang;
29
30//===----------------------------------------------------------------------===//
31// CheckDefaultArgumentVisitor
32//===----------------------------------------------------------------------===//
33
34namespace {
35  /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
36  /// the default argument of a parameter to determine whether it
37  /// contains any ill-formed subexpressions. For example, this will
38  /// diagnose the use of local variables or parameters within the
39  /// default argument expression.
40  class VISIBILITY_HIDDEN CheckDefaultArgumentVisitor
41    : public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
42    Expr *DefaultArg;
43    Sema *S;
44
45  public:
46    CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
47      : DefaultArg(defarg), S(s) {}
48
49    bool VisitExpr(Expr *Node);
50    bool VisitDeclRefExpr(DeclRefExpr *DRE);
51    bool VisitCXXThisExpr(CXXThisExpr *ThisE);
52  };
53
54  /// VisitExpr - Visit all of the children of this expression.
55  bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
56    bool IsInvalid = false;
57    for (Stmt::child_iterator I = Node->child_begin(),
58         E = Node->child_end(); I != E; ++I)
59      IsInvalid |= Visit(*I);
60    return IsInvalid;
61  }
62
63  /// VisitDeclRefExpr - Visit a reference to a declaration, to
64  /// determine whether this declaration can be used in the default
65  /// argument expression.
66  bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
67    NamedDecl *Decl = DRE->getDecl();
68    if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
69      // C++ [dcl.fct.default]p9
70      //   Default arguments are evaluated each time the function is
71      //   called. The order of evaluation of function arguments is
72      //   unspecified. Consequently, parameters of a function shall not
73      //   be used in default argument expressions, even if they are not
74      //   evaluated. Parameters of a function declared before a default
75      //   argument expression are in scope and can hide namespace and
76      //   class member names.
77      return S->Diag(DRE->getSourceRange().getBegin(),
78                     diag::err_param_default_argument_references_param)
79         << Param->getDeclName() << DefaultArg->getSourceRange();
80    } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
81      // C++ [dcl.fct.default]p7
82      //   Local variables shall not be used in default argument
83      //   expressions.
84      if (VDecl->isBlockVarDecl())
85        return S->Diag(DRE->getSourceRange().getBegin(),
86                       diag::err_param_default_argument_references_local)
87          << VDecl->getDeclName() << DefaultArg->getSourceRange();
88    }
89
90    return false;
91  }
92
93  /// VisitCXXThisExpr - Visit a C++ "this" expression.
94  bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
95    // C++ [dcl.fct.default]p8:
96    //   The keyword this shall not be used in a default argument of a
97    //   member function.
98    return S->Diag(ThisE->getSourceRange().getBegin(),
99                   diag::err_param_default_argument_references_this)
100               << ThisE->getSourceRange();
101  }
102}
103
104/// ActOnParamDefaultArgument - Check whether the default argument
105/// provided for a function parameter is well-formed. If so, attach it
106/// to the parameter declaration.
107void
108Sema::ActOnParamDefaultArgument(DeclPtrTy param, SourceLocation EqualLoc,
109                                ExprArg defarg) {
110  if (!param || !defarg.get())
111    return;
112
113  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
114  UnparsedDefaultArgLocs.erase(Param);
115
116  ExprOwningPtr<Expr> DefaultArg(this, defarg.takeAs<Expr>());
117  QualType ParamType = Param->getType();
118
119  // Default arguments are only permitted in C++
120  if (!getLangOptions().CPlusPlus) {
121    Diag(EqualLoc, diag::err_param_default_argument)
122      << DefaultArg->getSourceRange();
123    Param->setInvalidDecl();
124    return;
125  }
126
127  // C++ [dcl.fct.default]p5
128  //   A default argument expression is implicitly converted (clause
129  //   4) to the parameter type. The default argument expression has
130  //   the same semantic constraints as the initializer expression in
131  //   a declaration of a variable of the parameter type, using the
132  //   copy-initialization semantics (8.5).
133  Expr *DefaultArgPtr = DefaultArg.get();
134  bool DefaultInitFailed = CheckInitializerTypes(DefaultArgPtr, ParamType,
135                                                 EqualLoc,
136                                                 Param->getDeclName(),
137                                                 /*DirectInit=*/false);
138  if (DefaultArgPtr != DefaultArg.get()) {
139    DefaultArg.take();
140    DefaultArg.reset(DefaultArgPtr);
141  }
142  if (DefaultInitFailed) {
143    return;
144  }
145
146  // Check that the default argument is well-formed
147  CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg.get(), this);
148  if (DefaultArgChecker.Visit(DefaultArg.get())) {
149    Param->setInvalidDecl();
150    return;
151  }
152
153  DefaultArgPtr = MaybeCreateCXXExprWithTemporaries(DefaultArg.take(),
154                                                    /*DestroyTemps=*/false);
155
156  // Okay: add the default argument to the parameter
157  Param->setDefaultArg(DefaultArgPtr);
158}
159
160/// ActOnParamUnparsedDefaultArgument - We've seen a default
161/// argument for a function parameter, but we can't parse it yet
162/// because we're inside a class definition. Note that this default
163/// argument will be parsed later.
164void Sema::ActOnParamUnparsedDefaultArgument(DeclPtrTy param,
165                                             SourceLocation EqualLoc,
166                                             SourceLocation ArgLoc) {
167  if (!param)
168    return;
169
170  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
171  if (Param)
172    Param->setUnparsedDefaultArg();
173
174  UnparsedDefaultArgLocs[Param] = ArgLoc;
175}
176
177/// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
178/// the default argument for the parameter param failed.
179void Sema::ActOnParamDefaultArgumentError(DeclPtrTy param) {
180  if (!param)
181    return;
182
183  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
184
185  Param->setInvalidDecl();
186
187  UnparsedDefaultArgLocs.erase(Param);
188}
189
190/// CheckExtraCXXDefaultArguments - Check for any extra default
191/// arguments in the declarator, which is not a function declaration
192/// or definition and therefore is not permitted to have default
193/// arguments. This routine should be invoked for every declarator
194/// that is not a function declaration or definition.
195void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
196  // C++ [dcl.fct.default]p3
197  //   A default argument expression shall be specified only in the
198  //   parameter-declaration-clause of a function declaration or in a
199  //   template-parameter (14.1). It shall not be specified for a
200  //   parameter pack. If it is specified in a
201  //   parameter-declaration-clause, it shall not occur within a
202  //   declarator or abstract-declarator of a parameter-declaration.
203  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
204    DeclaratorChunk &chunk = D.getTypeObject(i);
205    if (chunk.Kind == DeclaratorChunk::Function) {
206      for (unsigned argIdx = 0, e = chunk.Fun.NumArgs; argIdx != e; ++argIdx) {
207        ParmVarDecl *Param =
208          cast<ParmVarDecl>(chunk.Fun.ArgInfo[argIdx].Param.getAs<Decl>());
209        if (Param->hasUnparsedDefaultArg()) {
210          CachedTokens *Toks = chunk.Fun.ArgInfo[argIdx].DefaultArgTokens;
211          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
212            << SourceRange((*Toks)[1].getLocation(), Toks->back().getLocation());
213          delete Toks;
214          chunk.Fun.ArgInfo[argIdx].DefaultArgTokens = 0;
215        } else if (Param->getDefaultArg()) {
216          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
217            << Param->getDefaultArg()->getSourceRange();
218          Param->setDefaultArg(0);
219        }
220      }
221    }
222  }
223}
224
225// MergeCXXFunctionDecl - Merge two declarations of the same C++
226// function, once we already know that they have the same
227// type. Subroutine of MergeFunctionDecl. Returns true if there was an
228// error, false otherwise.
229bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old) {
230  bool Invalid = false;
231
232  // C++ [dcl.fct.default]p4:
233  //
234  //   For non-template functions, default arguments can be added in
235  //   later declarations of a function in the same
236  //   scope. Declarations in different scopes have completely
237  //   distinct sets of default arguments. That is, declarations in
238  //   inner scopes do not acquire default arguments from
239  //   declarations in outer scopes, and vice versa. In a given
240  //   function declaration, all parameters subsequent to a
241  //   parameter with a default argument shall have default
242  //   arguments supplied in this or previous declarations. A
243  //   default argument shall not be redefined by a later
244  //   declaration (not even to the same value).
245  for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) {
246    ParmVarDecl *OldParam = Old->getParamDecl(p);
247    ParmVarDecl *NewParam = New->getParamDecl(p);
248
249    if(OldParam->getDefaultArg() && NewParam->getDefaultArg()) {
250      Diag(NewParam->getLocation(),
251           diag::err_param_default_argument_redefinition)
252        << NewParam->getDefaultArg()->getSourceRange();
253      Diag(OldParam->getLocation(), diag::note_previous_definition);
254      Invalid = true;
255    } else if (OldParam->getDefaultArg()) {
256      // Merge the old default argument into the new parameter
257      NewParam->setDefaultArg(OldParam->getDefaultArg());
258    }
259  }
260
261  return Invalid;
262}
263
264/// CheckCXXDefaultArguments - Verify that the default arguments for a
265/// function declaration are well-formed according to C++
266/// [dcl.fct.default].
267void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
268  unsigned NumParams = FD->getNumParams();
269  unsigned p;
270
271  // Find first parameter with a default argument
272  for (p = 0; p < NumParams; ++p) {
273    ParmVarDecl *Param = FD->getParamDecl(p);
274    if (Param->getDefaultArg())
275      break;
276  }
277
278  // C++ [dcl.fct.default]p4:
279  //   In a given function declaration, all parameters
280  //   subsequent to a parameter with a default argument shall
281  //   have default arguments supplied in this or previous
282  //   declarations. A default argument shall not be redefined
283  //   by a later declaration (not even to the same value).
284  unsigned LastMissingDefaultArg = 0;
285  for(; p < NumParams; ++p) {
286    ParmVarDecl *Param = FD->getParamDecl(p);
287    if (!Param->getDefaultArg()) {
288      if (Param->isInvalidDecl())
289        /* We already complained about this parameter. */;
290      else if (Param->getIdentifier())
291        Diag(Param->getLocation(),
292             diag::err_param_default_argument_missing_name)
293          << Param->getIdentifier();
294      else
295        Diag(Param->getLocation(),
296             diag::err_param_default_argument_missing);
297
298      LastMissingDefaultArg = p;
299    }
300  }
301
302  if (LastMissingDefaultArg > 0) {
303    // Some default arguments were missing. Clear out all of the
304    // default arguments up to (and including) the last missing
305    // default argument, so that we leave the function parameters
306    // in a semantically valid state.
307    for (p = 0; p <= LastMissingDefaultArg; ++p) {
308      ParmVarDecl *Param = FD->getParamDecl(p);
309      if (Param->hasDefaultArg()) {
310        if (!Param->hasUnparsedDefaultArg())
311          Param->getDefaultArg()->Destroy(Context);
312        Param->setDefaultArg(0);
313      }
314    }
315  }
316}
317
318/// isCurrentClassName - Determine whether the identifier II is the
319/// name of the class type currently being defined. In the case of
320/// nested classes, this will only return true if II is the name of
321/// the innermost class.
322bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *,
323                              const CXXScopeSpec *SS) {
324  CXXRecordDecl *CurDecl;
325  if (SS && SS->isSet() && !SS->isInvalid()) {
326    DeclContext *DC = computeDeclContext(*SS);
327    CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
328  } else
329    CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
330
331  if (CurDecl)
332    return &II == CurDecl->getIdentifier();
333  else
334    return false;
335}
336
337/// \brief Check the validity of a C++ base class specifier.
338///
339/// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
340/// and returns NULL otherwise.
341CXXBaseSpecifier *
342Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
343                         SourceRange SpecifierRange,
344                         bool Virtual, AccessSpecifier Access,
345                         QualType BaseType,
346                         SourceLocation BaseLoc) {
347  // C++ [class.union]p1:
348  //   A union shall not have base classes.
349  if (Class->isUnion()) {
350    Diag(Class->getLocation(), diag::err_base_clause_on_union)
351      << SpecifierRange;
352    return 0;
353  }
354
355  if (BaseType->isDependentType())
356    return new CXXBaseSpecifier(SpecifierRange, Virtual,
357                                Class->getTagKind() == RecordDecl::TK_class,
358                                Access, BaseType);
359
360  // Base specifiers must be record types.
361  if (!BaseType->isRecordType()) {
362    Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
363    return 0;
364  }
365
366  // C++ [class.union]p1:
367  //   A union shall not be used as a base class.
368  if (BaseType->isUnionType()) {
369    Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
370    return 0;
371  }
372
373  // C++ [class.derived]p2:
374  //   The class-name in a base-specifier shall not be an incompletely
375  //   defined class.
376  if (RequireCompleteType(BaseLoc, BaseType, diag::err_incomplete_base_class,
377                          SpecifierRange))
378    return 0;
379
380  // If the base class is polymorphic, the new one is, too.
381  RecordDecl *BaseDecl = BaseType->getAsRecordType()->getDecl();
382  assert(BaseDecl && "Record type has no declaration");
383  BaseDecl = BaseDecl->getDefinition(Context);
384  assert(BaseDecl && "Base type is not incomplete, but has no definition");
385  if (cast<CXXRecordDecl>(BaseDecl)->isPolymorphic())
386    Class->setPolymorphic(true);
387
388  // C++ [dcl.init.aggr]p1:
389  //   An aggregate is [...] a class with [...] no base classes [...].
390  Class->setAggregate(false);
391  Class->setPOD(false);
392
393  if (Virtual) {
394    // C++ [class.ctor]p5:
395    //   A constructor is trivial if its class has no virtual base classes.
396    Class->setHasTrivialConstructor(false);
397  } else {
398    // C++ [class.ctor]p5:
399    //   A constructor is trivial if all the direct base classes of its
400    //   class have trivial constructors.
401    Class->setHasTrivialConstructor(cast<CXXRecordDecl>(BaseDecl)->
402                                    hasTrivialConstructor());
403  }
404
405  // C++ [class.ctor]p3:
406  //   A destructor is trivial if all the direct base classes of its class
407  //   have trivial destructors.
408  Class->setHasTrivialDestructor(cast<CXXRecordDecl>(BaseDecl)->
409                                 hasTrivialDestructor());
410
411  // Create the base specifier.
412  // FIXME: Allocate via ASTContext?
413  return new CXXBaseSpecifier(SpecifierRange, Virtual,
414                              Class->getTagKind() == RecordDecl::TK_class,
415                              Access, BaseType);
416}
417
418/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
419/// one entry in the base class list of a class specifier, for
420/// example:
421///    class foo : public bar, virtual private baz {
422/// 'public bar' and 'virtual private baz' are each base-specifiers.
423Sema::BaseResult
424Sema::ActOnBaseSpecifier(DeclPtrTy classdecl, SourceRange SpecifierRange,
425                         bool Virtual, AccessSpecifier Access,
426                         TypeTy *basetype, SourceLocation BaseLoc) {
427  if (!classdecl)
428    return true;
429
430  AdjustDeclIfTemplate(classdecl);
431  CXXRecordDecl *Class = cast<CXXRecordDecl>(classdecl.getAs<Decl>());
432  QualType BaseType = QualType::getFromOpaquePtr(basetype);
433  if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
434                                                      Virtual, Access,
435                                                      BaseType, BaseLoc))
436    return BaseSpec;
437
438  return true;
439}
440
441/// \brief Performs the actual work of attaching the given base class
442/// specifiers to a C++ class.
443bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, CXXBaseSpecifier **Bases,
444                                unsigned NumBases) {
445 if (NumBases == 0)
446    return false;
447
448  // Used to keep track of which base types we have already seen, so
449  // that we can properly diagnose redundant direct base types. Note
450  // that the key is always the unqualified canonical type of the base
451  // class.
452  std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
453
454  // Copy non-redundant base specifiers into permanent storage.
455  unsigned NumGoodBases = 0;
456  bool Invalid = false;
457  for (unsigned idx = 0; idx < NumBases; ++idx) {
458    QualType NewBaseType
459      = Context.getCanonicalType(Bases[idx]->getType());
460    NewBaseType = NewBaseType.getUnqualifiedType();
461
462    if (KnownBaseTypes[NewBaseType]) {
463      // C++ [class.mi]p3:
464      //   A class shall not be specified as a direct base class of a
465      //   derived class more than once.
466      Diag(Bases[idx]->getSourceRange().getBegin(),
467           diag::err_duplicate_base_class)
468        << KnownBaseTypes[NewBaseType]->getType()
469        << Bases[idx]->getSourceRange();
470
471      // Delete the duplicate base class specifier; we're going to
472      // overwrite its pointer later.
473      delete Bases[idx];
474
475      Invalid = true;
476    } else {
477      // Okay, add this new base class.
478      KnownBaseTypes[NewBaseType] = Bases[idx];
479      Bases[NumGoodBases++] = Bases[idx];
480    }
481  }
482
483  // Attach the remaining base class specifiers to the derived class.
484  Class->setBases(Bases, NumGoodBases);
485
486  // Delete the remaining (good) base class specifiers, since their
487  // data has been copied into the CXXRecordDecl.
488  for (unsigned idx = 0; idx < NumGoodBases; ++idx)
489    delete Bases[idx];
490
491  return Invalid;
492}
493
494/// ActOnBaseSpecifiers - Attach the given base specifiers to the
495/// class, after checking whether there are any duplicate base
496/// classes.
497void Sema::ActOnBaseSpecifiers(DeclPtrTy ClassDecl, BaseTy **Bases,
498                               unsigned NumBases) {
499  if (!ClassDecl || !Bases || !NumBases)
500    return;
501
502  AdjustDeclIfTemplate(ClassDecl);
503  AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl.getAs<Decl>()),
504                       (CXXBaseSpecifier**)(Bases), NumBases);
505}
506
507//===----------------------------------------------------------------------===//
508// C++ class member Handling
509//===----------------------------------------------------------------------===//
510
511/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
512/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
513/// bitfield width if there is one and 'InitExpr' specifies the initializer if
514/// any.
515Sema::DeclPtrTy
516Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
517                               ExprTy *BW, ExprTy *InitExpr, bool Deleted) {
518  const DeclSpec &DS = D.getDeclSpec();
519  DeclarationName Name = GetNameForDeclarator(D);
520  Expr *BitWidth = static_cast<Expr*>(BW);
521  Expr *Init = static_cast<Expr*>(InitExpr);
522  SourceLocation Loc = D.getIdentifierLoc();
523
524  bool isFunc = D.isFunctionDeclarator();
525
526  // C++ 9.2p6: A member shall not be declared to have automatic storage
527  // duration (auto, register) or with the extern storage-class-specifier.
528  // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
529  // data members and cannot be applied to names declared const or static,
530  // and cannot be applied to reference members.
531  switch (DS.getStorageClassSpec()) {
532    case DeclSpec::SCS_unspecified:
533    case DeclSpec::SCS_typedef:
534    case DeclSpec::SCS_static:
535      // FALL THROUGH.
536      break;
537    case DeclSpec::SCS_mutable:
538      if (isFunc) {
539        if (DS.getStorageClassSpecLoc().isValid())
540          Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
541        else
542          Diag(DS.getThreadSpecLoc(), diag::err_mutable_function);
543
544        // FIXME: It would be nicer if the keyword was ignored only for this
545        // declarator. Otherwise we could get follow-up errors.
546        D.getMutableDeclSpec().ClearStorageClassSpecs();
547      } else {
548        QualType T = GetTypeForDeclarator(D, S);
549        diag::kind err = static_cast<diag::kind>(0);
550        if (T->isReferenceType())
551          err = diag::err_mutable_reference;
552        else if (T.isConstQualified())
553          err = diag::err_mutable_const;
554        if (err != 0) {
555          if (DS.getStorageClassSpecLoc().isValid())
556            Diag(DS.getStorageClassSpecLoc(), err);
557          else
558            Diag(DS.getThreadSpecLoc(), err);
559          // FIXME: It would be nicer if the keyword was ignored only for this
560          // declarator. Otherwise we could get follow-up errors.
561          D.getMutableDeclSpec().ClearStorageClassSpecs();
562        }
563      }
564      break;
565    default:
566      if (DS.getStorageClassSpecLoc().isValid())
567        Diag(DS.getStorageClassSpecLoc(),
568             diag::err_storageclass_invalid_for_member);
569      else
570        Diag(DS.getThreadSpecLoc(), diag::err_storageclass_invalid_for_member);
571      D.getMutableDeclSpec().ClearStorageClassSpecs();
572  }
573
574  if (!isFunc &&
575      D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_typename &&
576      D.getNumTypeObjects() == 0) {
577    // Check also for this case:
578    //
579    // typedef int f();
580    // f a;
581    //
582    QualType TDType = QualType::getFromOpaquePtr(DS.getTypeRep());
583    isFunc = TDType->isFunctionType();
584  }
585
586  bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
587                       DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
588                      !isFunc);
589
590  Decl *Member;
591  if (isInstField) {
592    Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D, BitWidth,
593                         AS);
594    assert(Member && "HandleField never returns null");
595  } else {
596    Member = ActOnDeclarator(S, D).getAs<Decl>();
597    if (!Member) {
598      if (BitWidth) DeleteExpr(BitWidth);
599      return DeclPtrTy();
600    }
601
602    // Non-instance-fields can't have a bitfield.
603    if (BitWidth) {
604      if (Member->isInvalidDecl()) {
605        // don't emit another diagnostic.
606      } else if (isa<VarDecl>(Member)) {
607        // C++ 9.6p3: A bit-field shall not be a static member.
608        // "static member 'A' cannot be a bit-field"
609        Diag(Loc, diag::err_static_not_bitfield)
610          << Name << BitWidth->getSourceRange();
611      } else if (isa<TypedefDecl>(Member)) {
612        // "typedef member 'x' cannot be a bit-field"
613        Diag(Loc, diag::err_typedef_not_bitfield)
614          << Name << BitWidth->getSourceRange();
615      } else {
616        // A function typedef ("typedef int f(); f a;").
617        // C++ 9.6p3: A bit-field shall have integral or enumeration type.
618        Diag(Loc, diag::err_not_integral_type_bitfield)
619          << Name << cast<ValueDecl>(Member)->getType()
620          << BitWidth->getSourceRange();
621      }
622
623      DeleteExpr(BitWidth);
624      BitWidth = 0;
625      Member->setInvalidDecl();
626    }
627
628    Member->setAccess(AS);
629  }
630
631  assert((Name || isInstField) && "No identifier for non-field ?");
632
633  if (Init)
634    AddInitializerToDecl(DeclPtrTy::make(Member), ExprArg(*this, Init), false);
635  if (Deleted) // FIXME: Source location is not very good.
636    SetDeclDeleted(DeclPtrTy::make(Member), D.getSourceRange().getBegin());
637
638  if (isInstField) {
639    FieldCollector->Add(cast<FieldDecl>(Member));
640    return DeclPtrTy();
641  }
642  return DeclPtrTy::make(Member);
643}
644
645/// ActOnMemInitializer - Handle a C++ member initializer.
646Sema::MemInitResult
647Sema::ActOnMemInitializer(DeclPtrTy ConstructorD,
648                          Scope *S,
649                          IdentifierInfo *MemberOrBase,
650                          SourceLocation IdLoc,
651                          SourceLocation LParenLoc,
652                          ExprTy **Args, unsigned NumArgs,
653                          SourceLocation *CommaLocs,
654                          SourceLocation RParenLoc) {
655  if (!ConstructorD)
656    return true;
657
658  CXXConstructorDecl *Constructor
659    = dyn_cast<CXXConstructorDecl>(ConstructorD.getAs<Decl>());
660  if (!Constructor) {
661    // The user wrote a constructor initializer on a function that is
662    // not a C++ constructor. Ignore the error for now, because we may
663    // have more member initializers coming; we'll diagnose it just
664    // once in ActOnMemInitializers.
665    return true;
666  }
667
668  CXXRecordDecl *ClassDecl = Constructor->getParent();
669
670  // C++ [class.base.init]p2:
671  //   Names in a mem-initializer-id are looked up in the scope of the
672  //   constructor’s class and, if not found in that scope, are looked
673  //   up in the scope containing the constructor’s
674  //   definition. [Note: if the constructor’s class contains a member
675  //   with the same name as a direct or virtual base class of the
676  //   class, a mem-initializer-id naming the member or base class and
677  //   composed of a single identifier refers to the class member. A
678  //   mem-initializer-id for the hidden base class may be specified
679  //   using a qualified name. ]
680  // Look for a member, first.
681  FieldDecl *Member = 0;
682  DeclContext::lookup_result Result
683    = ClassDecl->lookup(Context, MemberOrBase);
684  if (Result.first != Result.second)
685    Member = dyn_cast<FieldDecl>(*Result.first);
686
687  // FIXME: Handle members of an anonymous union.
688
689  if (Member) {
690    // FIXME: Perform direct initialization of the member.
691    return new CXXBaseOrMemberInitializer(Member, (Expr **)Args, NumArgs,
692                                          IdLoc);
693  }
694
695  // It didn't name a member, so see if it names a class.
696  TypeTy *BaseTy = getTypeName(*MemberOrBase, IdLoc, S, 0/*SS*/);
697  if (!BaseTy)
698    return Diag(IdLoc, diag::err_mem_init_not_member_or_class)
699      << MemberOrBase << SourceRange(IdLoc, RParenLoc);
700
701  QualType BaseType = QualType::getFromOpaquePtr(BaseTy);
702  if (!BaseType->isRecordType())
703    return Diag(IdLoc, diag::err_base_init_does_not_name_class)
704      << BaseType << SourceRange(IdLoc, RParenLoc);
705
706  // C++ [class.base.init]p2:
707  //   [...] Unless the mem-initializer-id names a nonstatic data
708  //   member of the constructor’s class or a direct or virtual base
709  //   of that class, the mem-initializer is ill-formed. A
710  //   mem-initializer-list can initialize a base class using any
711  //   name that denotes that base class type.
712
713  // First, check for a direct base class.
714  const CXXBaseSpecifier *DirectBaseSpec = 0;
715  for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin();
716       Base != ClassDecl->bases_end(); ++Base) {
717    if (Context.getCanonicalType(BaseType).getUnqualifiedType() ==
718        Context.getCanonicalType(Base->getType()).getUnqualifiedType()) {
719      // We found a direct base of this type. That's what we're
720      // initializing.
721      DirectBaseSpec = &*Base;
722      break;
723    }
724  }
725
726  // Check for a virtual base class.
727  // FIXME: We might be able to short-circuit this if we know in advance that
728  // there are no virtual bases.
729  const CXXBaseSpecifier *VirtualBaseSpec = 0;
730  if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
731    // We haven't found a base yet; search the class hierarchy for a
732    // virtual base class.
733    BasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
734                    /*DetectVirtual=*/false);
735    if (IsDerivedFrom(Context.getTypeDeclType(ClassDecl), BaseType, Paths)) {
736      for (BasePaths::paths_iterator Path = Paths.begin();
737           Path != Paths.end(); ++Path) {
738        if (Path->back().Base->isVirtual()) {
739          VirtualBaseSpec = Path->back().Base;
740          break;
741        }
742      }
743    }
744  }
745
746  // C++ [base.class.init]p2:
747  //   If a mem-initializer-id is ambiguous because it designates both
748  //   a direct non-virtual base class and an inherited virtual base
749  //   class, the mem-initializer is ill-formed.
750  if (DirectBaseSpec && VirtualBaseSpec)
751    return Diag(IdLoc, diag::err_base_init_direct_and_virtual)
752      << MemberOrBase << SourceRange(IdLoc, RParenLoc);
753
754  return new CXXBaseOrMemberInitializer(BaseType, (Expr **)Args, NumArgs,
755                                        IdLoc);
756}
757
758void Sema::ActOnMemInitializers(DeclPtrTy ConstructorDecl,
759                                SourceLocation ColonLoc,
760                                MemInitTy **MemInits, unsigned NumMemInits) {
761  if (!ConstructorDecl)
762    return;
763
764  CXXConstructorDecl *Constructor
765    = dyn_cast<CXXConstructorDecl>(ConstructorDecl.getAs<Decl>());
766
767  if (!Constructor) {
768    Diag(ColonLoc, diag::err_only_constructors_take_base_inits);
769    return;
770  }
771  llvm::DenseMap<void*, CXXBaseOrMemberInitializer *>Members;
772
773  for (unsigned i = 0; i < NumMemInits; i++) {
774    CXXBaseOrMemberInitializer *Member =
775      static_cast<CXXBaseOrMemberInitializer*>(MemInits[i]);
776    CXXBaseOrMemberInitializer *&PrevMember = Members[Member->getBaseOrMember()];
777    if (!PrevMember) {
778      PrevMember = Member;
779      continue;
780    }
781    if (FieldDecl *Field = Member->getMember())
782      Diag(Member->getSourceLocation(),
783           diag::error_multiple_mem_initialization)
784      << Field->getNameAsString();
785    else {
786      Type *BaseClass = Member->getBaseClass();
787      assert(BaseClass && "ActOnMemInitializers - neither field or base");
788      Diag(Member->getSourceLocation(),
789           diag::error_multiple_base_initialization)
790        << BaseClass->getDesugaredType(true);
791    }
792    Diag(PrevMember->getSourceLocation(), diag::note_previous_initializer)
793      << 0;
794  }
795}
796
797namespace {
798  /// PureVirtualMethodCollector - traverses a class and its superclasses
799  /// and determines if it has any pure virtual methods.
800  class VISIBILITY_HIDDEN PureVirtualMethodCollector {
801    ASTContext &Context;
802
803  public:
804    typedef llvm::SmallVector<const CXXMethodDecl*, 8> MethodList;
805
806  private:
807    MethodList Methods;
808
809    void Collect(const CXXRecordDecl* RD, MethodList& Methods);
810
811  public:
812    PureVirtualMethodCollector(ASTContext &Ctx, const CXXRecordDecl* RD)
813      : Context(Ctx) {
814
815      MethodList List;
816      Collect(RD, List);
817
818      // Copy the temporary list to methods, and make sure to ignore any
819      // null entries.
820      for (size_t i = 0, e = List.size(); i != e; ++i) {
821        if (List[i])
822          Methods.push_back(List[i]);
823      }
824    }
825
826    bool empty() const { return Methods.empty(); }
827
828    MethodList::const_iterator methods_begin() { return Methods.begin(); }
829    MethodList::const_iterator methods_end() { return Methods.end(); }
830  };
831
832  void PureVirtualMethodCollector::Collect(const CXXRecordDecl* RD,
833                                           MethodList& Methods) {
834    // First, collect the pure virtual methods for the base classes.
835    for (CXXRecordDecl::base_class_const_iterator Base = RD->bases_begin(),
836         BaseEnd = RD->bases_end(); Base != BaseEnd; ++Base) {
837      if (const RecordType *RT = Base->getType()->getAsRecordType()) {
838        const CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(RT->getDecl());
839        if (BaseDecl && BaseDecl->isAbstract())
840          Collect(BaseDecl, Methods);
841      }
842    }
843
844    // Next, zero out any pure virtual methods that this class overrides.
845    typedef llvm::SmallPtrSet<const CXXMethodDecl*, 4> MethodSetTy;
846
847    MethodSetTy OverriddenMethods;
848    size_t MethodsSize = Methods.size();
849
850    for (RecordDecl::decl_iterator i = RD->decls_begin(Context),
851         e = RD->decls_end(Context);
852         i != e; ++i) {
853      // Traverse the record, looking for methods.
854      if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(*i)) {
855        // If the method is pre virtual, add it to the methods vector.
856        if (MD->isPure()) {
857          Methods.push_back(MD);
858          continue;
859        }
860
861        // Otherwise, record all the overridden methods in our set.
862        for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
863             E = MD->end_overridden_methods(); I != E; ++I) {
864          // Keep track of the overridden methods.
865          OverriddenMethods.insert(*I);
866        }
867      }
868    }
869
870    // Now go through the methods and zero out all the ones we know are
871    // overridden.
872    for (size_t i = 0, e = MethodsSize; i != e; ++i) {
873      if (OverriddenMethods.count(Methods[i]))
874        Methods[i] = 0;
875    }
876
877  }
878}
879
880bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
881                                  unsigned DiagID, AbstractDiagSelID SelID,
882                                  const CXXRecordDecl *CurrentRD) {
883
884  if (!getLangOptions().CPlusPlus)
885    return false;
886
887  if (const ArrayType *AT = Context.getAsArrayType(T))
888    return RequireNonAbstractType(Loc, AT->getElementType(), DiagID, SelID,
889                                  CurrentRD);
890
891  if (const PointerType *PT = T->getAsPointerType()) {
892    // Find the innermost pointer type.
893    while (const PointerType *T = PT->getPointeeType()->getAsPointerType())
894      PT = T;
895
896    if (const ArrayType *AT = Context.getAsArrayType(PT->getPointeeType()))
897      return RequireNonAbstractType(Loc, AT->getElementType(), DiagID, SelID,
898                                    CurrentRD);
899  }
900
901  const RecordType *RT = T->getAsRecordType();
902  if (!RT)
903    return false;
904
905  const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
906  if (!RD)
907    return false;
908
909  if (CurrentRD && CurrentRD != RD)
910    return false;
911
912  if (!RD->isAbstract())
913    return false;
914
915  Diag(Loc, DiagID) << RD->getDeclName() << SelID;
916
917  // Check if we've already emitted the list of pure virtual functions for this
918  // class.
919  if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD))
920    return true;
921
922  PureVirtualMethodCollector Collector(Context, RD);
923
924  for (PureVirtualMethodCollector::MethodList::const_iterator I =
925       Collector.methods_begin(), E = Collector.methods_end(); I != E; ++I) {
926    const CXXMethodDecl *MD = *I;
927
928    Diag(MD->getLocation(), diag::note_pure_virtual_function) <<
929      MD->getDeclName();
930  }
931
932  if (!PureVirtualClassDiagSet)
933    PureVirtualClassDiagSet.reset(new RecordDeclSetTy);
934  PureVirtualClassDiagSet->insert(RD);
935
936  return true;
937}
938
939namespace {
940  class VISIBILITY_HIDDEN AbstractClassUsageDiagnoser
941    : public DeclVisitor<AbstractClassUsageDiagnoser, bool> {
942    Sema &SemaRef;
943    CXXRecordDecl *AbstractClass;
944
945    bool VisitDeclContext(const DeclContext *DC) {
946      bool Invalid = false;
947
948      for (CXXRecordDecl::decl_iterator I = DC->decls_begin(SemaRef.Context),
949           E = DC->decls_end(SemaRef.Context); I != E; ++I)
950        Invalid |= Visit(*I);
951
952      return Invalid;
953    }
954
955  public:
956    AbstractClassUsageDiagnoser(Sema& SemaRef, CXXRecordDecl *ac)
957      : SemaRef(SemaRef), AbstractClass(ac) {
958        Visit(SemaRef.Context.getTranslationUnitDecl());
959    }
960
961    bool VisitFunctionDecl(const FunctionDecl *FD) {
962      if (FD->isThisDeclarationADefinition()) {
963        // No need to do the check if we're in a definition, because it requires
964        // that the return/param types are complete.
965        // because that requires
966        return VisitDeclContext(FD);
967      }
968
969      // Check the return type.
970      QualType RTy = FD->getType()->getAsFunctionType()->getResultType();
971      bool Invalid =
972        SemaRef.RequireNonAbstractType(FD->getLocation(), RTy,
973                                       diag::err_abstract_type_in_decl,
974                                       Sema::AbstractReturnType,
975                                       AbstractClass);
976
977      for (FunctionDecl::param_const_iterator I = FD->param_begin(),
978           E = FD->param_end(); I != E; ++I) {
979        const ParmVarDecl *VD = *I;
980        Invalid |=
981          SemaRef.RequireNonAbstractType(VD->getLocation(),
982                                         VD->getOriginalType(),
983                                         diag::err_abstract_type_in_decl,
984                                         Sema::AbstractParamType,
985                                         AbstractClass);
986      }
987
988      return Invalid;
989    }
990
991    bool VisitDecl(const Decl* D) {
992      if (const DeclContext *DC = dyn_cast<DeclContext>(D))
993        return VisitDeclContext(DC);
994
995      return false;
996    }
997  };
998}
999
1000void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
1001                                             DeclPtrTy TagDecl,
1002                                             SourceLocation LBrac,
1003                                             SourceLocation RBrac) {
1004  if (!TagDecl)
1005    return;
1006
1007  AdjustDeclIfTemplate(TagDecl);
1008  ActOnFields(S, RLoc, TagDecl,
1009              (DeclPtrTy*)FieldCollector->getCurFields(),
1010              FieldCollector->getCurNumFields(), LBrac, RBrac, 0);
1011
1012  CXXRecordDecl *RD = cast<CXXRecordDecl>(TagDecl.getAs<Decl>());
1013  if (!RD->isAbstract()) {
1014    // Collect all the pure virtual methods and see if this is an abstract
1015    // class after all.
1016    PureVirtualMethodCollector Collector(Context, RD);
1017    if (!Collector.empty())
1018      RD->setAbstract(true);
1019  }
1020
1021  if (RD->isAbstract())
1022    AbstractClassUsageDiagnoser(*this, RD);
1023
1024  if (RD->hasTrivialConstructor() || RD->hasTrivialDestructor()) {
1025    for (RecordDecl::field_iterator i = RD->field_begin(Context),
1026         e = RD->field_end(Context); i != e; ++i) {
1027      // All the nonstatic data members must have trivial constructors.
1028      QualType FTy = i->getType();
1029      while (const ArrayType *AT = Context.getAsArrayType(FTy))
1030        FTy = AT->getElementType();
1031
1032      if (const RecordType *RT = FTy->getAsRecordType()) {
1033        CXXRecordDecl *FieldRD = cast<CXXRecordDecl>(RT->getDecl());
1034
1035        if (!FieldRD->hasTrivialConstructor())
1036          RD->setHasTrivialConstructor(false);
1037        if (!FieldRD->hasTrivialDestructor())
1038          RD->setHasTrivialDestructor(false);
1039
1040        // If RD has neither a trivial constructor nor a trivial destructor
1041        // we don't need to continue checking.
1042        if (!RD->hasTrivialConstructor() && !RD->hasTrivialDestructor())
1043          break;
1044      }
1045    }
1046  }
1047
1048  if (!RD->isDependentType())
1049    AddImplicitlyDeclaredMembersToClass(RD);
1050}
1051
1052/// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
1053/// special functions, such as the default constructor, copy
1054/// constructor, or destructor, to the given C++ class (C++
1055/// [special]p1).  This routine can only be executed just before the
1056/// definition of the class is complete.
1057void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) {
1058  QualType ClassType = Context.getTypeDeclType(ClassDecl);
1059  ClassType = Context.getCanonicalType(ClassType);
1060
1061  // FIXME: Implicit declarations have exception specifications, which are
1062  // the union of the specifications of the implicitly called functions.
1063
1064  if (!ClassDecl->hasUserDeclaredConstructor()) {
1065    // C++ [class.ctor]p5:
1066    //   A default constructor for a class X is a constructor of class X
1067    //   that can be called without an argument. If there is no
1068    //   user-declared constructor for class X, a default constructor is
1069    //   implicitly declared. An implicitly-declared default constructor
1070    //   is an inline public member of its class.
1071    DeclarationName Name
1072      = Context.DeclarationNames.getCXXConstructorName(ClassType);
1073    CXXConstructorDecl *DefaultCon =
1074      CXXConstructorDecl::Create(Context, ClassDecl,
1075                                 ClassDecl->getLocation(), Name,
1076                                 Context.getFunctionType(Context.VoidTy,
1077                                                         0, 0, false, 0),
1078                                 /*isExplicit=*/false,
1079                                 /*isInline=*/true,
1080                                 /*isImplicitlyDeclared=*/true);
1081    DefaultCon->setAccess(AS_public);
1082    DefaultCon->setImplicit();
1083    ClassDecl->addDecl(Context, DefaultCon);
1084  }
1085
1086  if (!ClassDecl->hasUserDeclaredCopyConstructor()) {
1087    // C++ [class.copy]p4:
1088    //   If the class definition does not explicitly declare a copy
1089    //   constructor, one is declared implicitly.
1090
1091    // C++ [class.copy]p5:
1092    //   The implicitly-declared copy constructor for a class X will
1093    //   have the form
1094    //
1095    //       X::X(const X&)
1096    //
1097    //   if
1098    bool HasConstCopyConstructor = true;
1099
1100    //     -- each direct or virtual base class B of X has a copy
1101    //        constructor whose first parameter is of type const B& or
1102    //        const volatile B&, and
1103    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
1104         HasConstCopyConstructor && Base != ClassDecl->bases_end(); ++Base) {
1105      const CXXRecordDecl *BaseClassDecl
1106        = cast<CXXRecordDecl>(Base->getType()->getAsRecordType()->getDecl());
1107      HasConstCopyConstructor
1108        = BaseClassDecl->hasConstCopyConstructor(Context);
1109    }
1110
1111    //     -- for all the nonstatic data members of X that are of a
1112    //        class type M (or array thereof), each such class type
1113    //        has a copy constructor whose first parameter is of type
1114    //        const M& or const volatile M&.
1115    for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(Context);
1116         HasConstCopyConstructor && Field != ClassDecl->field_end(Context);
1117         ++Field) {
1118      QualType FieldType = (*Field)->getType();
1119      if (const ArrayType *Array = Context.getAsArrayType(FieldType))
1120        FieldType = Array->getElementType();
1121      if (const RecordType *FieldClassType = FieldType->getAsRecordType()) {
1122        const CXXRecordDecl *FieldClassDecl
1123          = cast<CXXRecordDecl>(FieldClassType->getDecl());
1124        HasConstCopyConstructor
1125          = FieldClassDecl->hasConstCopyConstructor(Context);
1126      }
1127    }
1128
1129    //   Otherwise, the implicitly declared copy constructor will have
1130    //   the form
1131    //
1132    //       X::X(X&)
1133    QualType ArgType = ClassType;
1134    if (HasConstCopyConstructor)
1135      ArgType = ArgType.withConst();
1136    ArgType = Context.getLValueReferenceType(ArgType);
1137
1138    //   An implicitly-declared copy constructor is an inline public
1139    //   member of its class.
1140    DeclarationName Name
1141      = Context.DeclarationNames.getCXXConstructorName(ClassType);
1142    CXXConstructorDecl *CopyConstructor
1143      = CXXConstructorDecl::Create(Context, ClassDecl,
1144                                   ClassDecl->getLocation(), Name,
1145                                   Context.getFunctionType(Context.VoidTy,
1146                                                           &ArgType, 1,
1147                                                           false, 0),
1148                                   /*isExplicit=*/false,
1149                                   /*isInline=*/true,
1150                                   /*isImplicitlyDeclared=*/true);
1151    CopyConstructor->setAccess(AS_public);
1152    CopyConstructor->setImplicit();
1153
1154    // Add the parameter to the constructor.
1155    ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor,
1156                                                 ClassDecl->getLocation(),
1157                                                 /*IdentifierInfo=*/0,
1158                                                 ArgType, VarDecl::None, 0);
1159    CopyConstructor->setParams(Context, &FromParam, 1);
1160    ClassDecl->addDecl(Context, CopyConstructor);
1161  }
1162
1163  if (!ClassDecl->hasUserDeclaredCopyAssignment()) {
1164    // Note: The following rules are largely analoguous to the copy
1165    // constructor rules. Note that virtual bases are not taken into account
1166    // for determining the argument type of the operator. Note also that
1167    // operators taking an object instead of a reference are allowed.
1168    //
1169    // C++ [class.copy]p10:
1170    //   If the class definition does not explicitly declare a copy
1171    //   assignment operator, one is declared implicitly.
1172    //   The implicitly-defined copy assignment operator for a class X
1173    //   will have the form
1174    //
1175    //       X& X::operator=(const X&)
1176    //
1177    //   if
1178    bool HasConstCopyAssignment = true;
1179
1180    //       -- each direct base class B of X has a copy assignment operator
1181    //          whose parameter is of type const B&, const volatile B& or B,
1182    //          and
1183    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
1184         HasConstCopyAssignment && Base != ClassDecl->bases_end(); ++Base) {
1185      const CXXRecordDecl *BaseClassDecl
1186        = cast<CXXRecordDecl>(Base->getType()->getAsRecordType()->getDecl());
1187      HasConstCopyAssignment = BaseClassDecl->hasConstCopyAssignment(Context);
1188    }
1189
1190    //       -- for all the nonstatic data members of X that are of a class
1191    //          type M (or array thereof), each such class type has a copy
1192    //          assignment operator whose parameter is of type const M&,
1193    //          const volatile M& or M.
1194    for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(Context);
1195         HasConstCopyAssignment && Field != ClassDecl->field_end(Context);
1196         ++Field) {
1197      QualType FieldType = (*Field)->getType();
1198      if (const ArrayType *Array = Context.getAsArrayType(FieldType))
1199        FieldType = Array->getElementType();
1200      if (const RecordType *FieldClassType = FieldType->getAsRecordType()) {
1201        const CXXRecordDecl *FieldClassDecl
1202          = cast<CXXRecordDecl>(FieldClassType->getDecl());
1203        HasConstCopyAssignment
1204          = FieldClassDecl->hasConstCopyAssignment(Context);
1205      }
1206    }
1207
1208    //   Otherwise, the implicitly declared copy assignment operator will
1209    //   have the form
1210    //
1211    //       X& X::operator=(X&)
1212    QualType ArgType = ClassType;
1213    QualType RetType = Context.getLValueReferenceType(ArgType);
1214    if (HasConstCopyAssignment)
1215      ArgType = ArgType.withConst();
1216    ArgType = Context.getLValueReferenceType(ArgType);
1217
1218    //   An implicitly-declared copy assignment operator is an inline public
1219    //   member of its class.
1220    DeclarationName Name =
1221      Context.DeclarationNames.getCXXOperatorName(OO_Equal);
1222    CXXMethodDecl *CopyAssignment =
1223      CXXMethodDecl::Create(Context, ClassDecl, ClassDecl->getLocation(), Name,
1224                            Context.getFunctionType(RetType, &ArgType, 1,
1225                                                    false, 0),
1226                            /*isStatic=*/false, /*isInline=*/true);
1227    CopyAssignment->setAccess(AS_public);
1228    CopyAssignment->setImplicit();
1229
1230    // Add the parameter to the operator.
1231    ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment,
1232                                                 ClassDecl->getLocation(),
1233                                                 /*IdentifierInfo=*/0,
1234                                                 ArgType, VarDecl::None, 0);
1235    CopyAssignment->setParams(Context, &FromParam, 1);
1236
1237    // Don't call addedAssignmentOperator. There is no way to distinguish an
1238    // implicit from an explicit assignment operator.
1239    ClassDecl->addDecl(Context, CopyAssignment);
1240  }
1241
1242  if (!ClassDecl->hasUserDeclaredDestructor()) {
1243    // C++ [class.dtor]p2:
1244    //   If a class has no user-declared destructor, a destructor is
1245    //   declared implicitly. An implicitly-declared destructor is an
1246    //   inline public member of its class.
1247    DeclarationName Name
1248      = Context.DeclarationNames.getCXXDestructorName(ClassType);
1249    CXXDestructorDecl *Destructor
1250      = CXXDestructorDecl::Create(Context, ClassDecl,
1251                                  ClassDecl->getLocation(), Name,
1252                                  Context.getFunctionType(Context.VoidTy,
1253                                                          0, 0, false, 0),
1254                                  /*isInline=*/true,
1255                                  /*isImplicitlyDeclared=*/true);
1256    Destructor->setAccess(AS_public);
1257    Destructor->setImplicit();
1258    ClassDecl->addDecl(Context, Destructor);
1259  }
1260}
1261
1262void Sema::ActOnReenterTemplateScope(Scope *S, DeclPtrTy TemplateD) {
1263  TemplateDecl *Template = TemplateD.getAs<TemplateDecl>();
1264  if (!Template)
1265    return;
1266
1267  TemplateParameterList *Params = Template->getTemplateParameters();
1268  for (TemplateParameterList::iterator Param = Params->begin(),
1269                                    ParamEnd = Params->end();
1270       Param != ParamEnd; ++Param) {
1271    NamedDecl *Named = cast<NamedDecl>(*Param);
1272    if (Named->getDeclName()) {
1273      S->AddDecl(DeclPtrTy::make(Named));
1274      IdResolver.AddDecl(Named);
1275    }
1276  }
1277}
1278
1279/// ActOnStartDelayedCXXMethodDeclaration - We have completed
1280/// parsing a top-level (non-nested) C++ class, and we are now
1281/// parsing those parts of the given Method declaration that could
1282/// not be parsed earlier (C++ [class.mem]p2), such as default
1283/// arguments. This action should enter the scope of the given
1284/// Method declaration as if we had just parsed the qualified method
1285/// name. However, it should not bring the parameters into scope;
1286/// that will be performed by ActOnDelayedCXXMethodParameter.
1287void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, DeclPtrTy MethodD) {
1288  if (!MethodD)
1289    return;
1290
1291  CXXScopeSpec SS;
1292  FunctionDecl *Method = cast<FunctionDecl>(MethodD.getAs<Decl>());
1293  QualType ClassTy
1294    = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext()));
1295  SS.setScopeRep(
1296    NestedNameSpecifier::Create(Context, 0, false, ClassTy.getTypePtr()));
1297  ActOnCXXEnterDeclaratorScope(S, SS);
1298}
1299
1300/// ActOnDelayedCXXMethodParameter - We've already started a delayed
1301/// C++ method declaration. We're (re-)introducing the given
1302/// function parameter into scope for use in parsing later parts of
1303/// the method declaration. For example, we could see an
1304/// ActOnParamDefaultArgument event for this parameter.
1305void Sema::ActOnDelayedCXXMethodParameter(Scope *S, DeclPtrTy ParamD) {
1306  if (!ParamD)
1307    return;
1308
1309  ParmVarDecl *Param = cast<ParmVarDecl>(ParamD.getAs<Decl>());
1310
1311  // If this parameter has an unparsed default argument, clear it out
1312  // to make way for the parsed default argument.
1313  if (Param->hasUnparsedDefaultArg())
1314    Param->setDefaultArg(0);
1315
1316  S->AddDecl(DeclPtrTy::make(Param));
1317  if (Param->getDeclName())
1318    IdResolver.AddDecl(Param);
1319}
1320
1321/// ActOnFinishDelayedCXXMethodDeclaration - We have finished
1322/// processing the delayed method declaration for Method. The method
1323/// declaration is now considered finished. There may be a separate
1324/// ActOnStartOfFunctionDef action later (not necessarily
1325/// immediately!) for this method, if it was also defined inside the
1326/// class body.
1327void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, DeclPtrTy MethodD) {
1328  if (!MethodD)
1329    return;
1330
1331  FunctionDecl *Method = cast<FunctionDecl>(MethodD.getAs<Decl>());
1332  CXXScopeSpec SS;
1333  QualType ClassTy
1334    = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext()));
1335  SS.setScopeRep(
1336    NestedNameSpecifier::Create(Context, 0, false, ClassTy.getTypePtr()));
1337  ActOnCXXExitDeclaratorScope(S, SS);
1338
1339  // Now that we have our default arguments, check the constructor
1340  // again. It could produce additional diagnostics or affect whether
1341  // the class has implicitly-declared destructors, among other
1342  // things.
1343  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method))
1344    CheckConstructor(Constructor);
1345
1346  // Check the default arguments, which we may have added.
1347  if (!Method->isInvalidDecl())
1348    CheckCXXDefaultArguments(Method);
1349}
1350
1351/// CheckConstructorDeclarator - Called by ActOnDeclarator to check
1352/// the well-formedness of the constructor declarator @p D with type @p
1353/// R. If there are any errors in the declarator, this routine will
1354/// emit diagnostics and set the invalid bit to true.  In any case, the type
1355/// will be updated to reflect a well-formed type for the constructor and
1356/// returned.
1357QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R,
1358                                          FunctionDecl::StorageClass &SC) {
1359  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
1360
1361  // C++ [class.ctor]p3:
1362  //   A constructor shall not be virtual (10.3) or static (9.4). A
1363  //   constructor can be invoked for a const, volatile or const
1364  //   volatile object. A constructor shall not be declared const,
1365  //   volatile, or const volatile (9.3.2).
1366  if (isVirtual) {
1367    if (!D.isInvalidType())
1368      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
1369        << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
1370        << SourceRange(D.getIdentifierLoc());
1371    D.setInvalidType();
1372  }
1373  if (SC == FunctionDecl::Static) {
1374    if (!D.isInvalidType())
1375      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
1376        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
1377        << SourceRange(D.getIdentifierLoc());
1378    D.setInvalidType();
1379    SC = FunctionDecl::None;
1380  }
1381
1382  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
1383  if (FTI.TypeQuals != 0) {
1384    if (FTI.TypeQuals & QualType::Const)
1385      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
1386        << "const" << SourceRange(D.getIdentifierLoc());
1387    if (FTI.TypeQuals & QualType::Volatile)
1388      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
1389        << "volatile" << SourceRange(D.getIdentifierLoc());
1390    if (FTI.TypeQuals & QualType::Restrict)
1391      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
1392        << "restrict" << SourceRange(D.getIdentifierLoc());
1393  }
1394
1395  // Rebuild the function type "R" without any type qualifiers (in
1396  // case any of the errors above fired) and with "void" as the
1397  // return type, since constructors don't have return types. We
1398  // *always* have to do this, because GetTypeForDeclarator will
1399  // put in a result type of "int" when none was specified.
1400  const FunctionProtoType *Proto = R->getAsFunctionProtoType();
1401  return Context.getFunctionType(Context.VoidTy, Proto->arg_type_begin(),
1402                                 Proto->getNumArgs(),
1403                                 Proto->isVariadic(), 0);
1404}
1405
1406/// CheckConstructor - Checks a fully-formed constructor for
1407/// well-formedness, issuing any diagnostics required. Returns true if
1408/// the constructor declarator is invalid.
1409void Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
1410  CXXRecordDecl *ClassDecl
1411    = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext());
1412  if (!ClassDecl)
1413    return Constructor->setInvalidDecl();
1414
1415  // C++ [class.copy]p3:
1416  //   A declaration of a constructor for a class X is ill-formed if
1417  //   its first parameter is of type (optionally cv-qualified) X and
1418  //   either there are no other parameters or else all other
1419  //   parameters have default arguments.
1420  if (!Constructor->isInvalidDecl() &&
1421      ((Constructor->getNumParams() == 1) ||
1422       (Constructor->getNumParams() > 1 &&
1423        Constructor->getParamDecl(1)->hasDefaultArg()))) {
1424    QualType ParamType = Constructor->getParamDecl(0)->getType();
1425    QualType ClassTy = Context.getTagDeclType(ClassDecl);
1426    if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
1427      SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation();
1428      Diag(ParamLoc, diag::err_constructor_byvalue_arg)
1429        << CodeModificationHint::CreateInsertion(ParamLoc, " const &");
1430      Constructor->setInvalidDecl();
1431    }
1432  }
1433
1434  // Notify the class that we've added a constructor.
1435  ClassDecl->addedConstructor(Context, Constructor);
1436}
1437
1438static inline bool
1439FTIHasSingleVoidArgument(DeclaratorChunk::FunctionTypeInfo &FTI) {
1440  return (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
1441          FTI.ArgInfo[0].Param &&
1442          FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType());
1443}
1444
1445/// CheckDestructorDeclarator - Called by ActOnDeclarator to check
1446/// the well-formednes of the destructor declarator @p D with type @p
1447/// R. If there are any errors in the declarator, this routine will
1448/// emit diagnostics and set the declarator to invalid.  Even if this happens,
1449/// will be updated to reflect a well-formed type for the destructor and
1450/// returned.
1451QualType Sema::CheckDestructorDeclarator(Declarator &D,
1452                                         FunctionDecl::StorageClass& SC) {
1453  // C++ [class.dtor]p1:
1454  //   [...] A typedef-name that names a class is a class-name
1455  //   (7.1.3); however, a typedef-name that names a class shall not
1456  //   be used as the identifier in the declarator for a destructor
1457  //   declaration.
1458  QualType DeclaratorType = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1459  if (isa<TypedefType>(DeclaratorType)) {
1460    Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
1461      << DeclaratorType;
1462    D.setInvalidType();
1463  }
1464
1465  // C++ [class.dtor]p2:
1466  //   A destructor is used to destroy objects of its class type. A
1467  //   destructor takes no parameters, and no return type can be
1468  //   specified for it (not even void). The address of a destructor
1469  //   shall not be taken. A destructor shall not be static. A
1470  //   destructor can be invoked for a const, volatile or const
1471  //   volatile object. A destructor shall not be declared const,
1472  //   volatile or const volatile (9.3.2).
1473  if (SC == FunctionDecl::Static) {
1474    if (!D.isInvalidType())
1475      Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
1476        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
1477        << SourceRange(D.getIdentifierLoc());
1478    SC = FunctionDecl::None;
1479    D.setInvalidType();
1480  }
1481  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
1482    // Destructors don't have return types, but the parser will
1483    // happily parse something like:
1484    //
1485    //   class X {
1486    //     float ~X();
1487    //   };
1488    //
1489    // The return type will be eliminated later.
1490    Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
1491      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
1492      << SourceRange(D.getIdentifierLoc());
1493  }
1494
1495  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
1496  if (FTI.TypeQuals != 0 && !D.isInvalidType()) {
1497    if (FTI.TypeQuals & QualType::Const)
1498      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
1499        << "const" << SourceRange(D.getIdentifierLoc());
1500    if (FTI.TypeQuals & QualType::Volatile)
1501      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
1502        << "volatile" << SourceRange(D.getIdentifierLoc());
1503    if (FTI.TypeQuals & QualType::Restrict)
1504      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
1505        << "restrict" << SourceRange(D.getIdentifierLoc());
1506    D.setInvalidType();
1507  }
1508
1509  // Make sure we don't have any parameters.
1510  if (FTI.NumArgs > 0 && !FTIHasSingleVoidArgument(FTI)) {
1511    Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
1512
1513    // Delete the parameters.
1514    FTI.freeArgs();
1515    D.setInvalidType();
1516  }
1517
1518  // Make sure the destructor isn't variadic.
1519  if (FTI.isVariadic) {
1520    Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
1521    D.setInvalidType();
1522  }
1523
1524  // Rebuild the function type "R" without any type qualifiers or
1525  // parameters (in case any of the errors above fired) and with
1526  // "void" as the return type, since destructors don't have return
1527  // types. We *always* have to do this, because GetTypeForDeclarator
1528  // will put in a result type of "int" when none was specified.
1529  return Context.getFunctionType(Context.VoidTy, 0, 0, false, 0);
1530}
1531
1532/// CheckConversionDeclarator - Called by ActOnDeclarator to check the
1533/// well-formednes of the conversion function declarator @p D with
1534/// type @p R. If there are any errors in the declarator, this routine
1535/// will emit diagnostics and return true. Otherwise, it will return
1536/// false. Either way, the type @p R will be updated to reflect a
1537/// well-formed type for the conversion operator.
1538void Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
1539                                     FunctionDecl::StorageClass& SC) {
1540  // C++ [class.conv.fct]p1:
1541  //   Neither parameter types nor return type can be specified. The
1542  //   type of a conversion function (8.3.5) is “function taking no
1543  //   parameter returning conversion-type-id.”
1544  if (SC == FunctionDecl::Static) {
1545    if (!D.isInvalidType())
1546      Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
1547        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
1548        << SourceRange(D.getIdentifierLoc());
1549    D.setInvalidType();
1550    SC = FunctionDecl::None;
1551  }
1552  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
1553    // Conversion functions don't have return types, but the parser will
1554    // happily parse something like:
1555    //
1556    //   class X {
1557    //     float operator bool();
1558    //   };
1559    //
1560    // The return type will be changed later anyway.
1561    Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
1562      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
1563      << SourceRange(D.getIdentifierLoc());
1564  }
1565
1566  // Make sure we don't have any parameters.
1567  if (R->getAsFunctionProtoType()->getNumArgs() > 0) {
1568    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
1569
1570    // Delete the parameters.
1571    D.getTypeObject(0).Fun.freeArgs();
1572    D.setInvalidType();
1573  }
1574
1575  // Make sure the conversion function isn't variadic.
1576  if (R->getAsFunctionProtoType()->isVariadic() && !D.isInvalidType()) {
1577    Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
1578    D.setInvalidType();
1579  }
1580
1581  // C++ [class.conv.fct]p4:
1582  //   The conversion-type-id shall not represent a function type nor
1583  //   an array type.
1584  QualType ConvType = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1585  if (ConvType->isArrayType()) {
1586    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
1587    ConvType = Context.getPointerType(ConvType);
1588    D.setInvalidType();
1589  } else if (ConvType->isFunctionType()) {
1590    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
1591    ConvType = Context.getPointerType(ConvType);
1592    D.setInvalidType();
1593  }
1594
1595  // Rebuild the function type "R" without any parameters (in case any
1596  // of the errors above fired) and with the conversion type as the
1597  // return type.
1598  R = Context.getFunctionType(ConvType, 0, 0, false,
1599                              R->getAsFunctionProtoType()->getTypeQuals());
1600
1601  // C++0x explicit conversion operators.
1602  if (D.getDeclSpec().isExplicitSpecified() && !getLangOptions().CPlusPlus0x)
1603    Diag(D.getDeclSpec().getExplicitSpecLoc(),
1604         diag::warn_explicit_conversion_functions)
1605      << SourceRange(D.getDeclSpec().getExplicitSpecLoc());
1606}
1607
1608/// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
1609/// the declaration of the given C++ conversion function. This routine
1610/// is responsible for recording the conversion function in the C++
1611/// class, if possible.
1612Sema::DeclPtrTy Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
1613  assert(Conversion && "Expected to receive a conversion function declaration");
1614
1615  // Set the lexical context of this conversion function
1616  Conversion->setLexicalDeclContext(CurContext);
1617
1618  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext());
1619
1620  // Make sure we aren't redeclaring the conversion function.
1621  QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());
1622
1623  // C++ [class.conv.fct]p1:
1624  //   [...] A conversion function is never used to convert a
1625  //   (possibly cv-qualified) object to the (possibly cv-qualified)
1626  //   same object type (or a reference to it), to a (possibly
1627  //   cv-qualified) base class of that type (or a reference to it),
1628  //   or to (possibly cv-qualified) void.
1629  // FIXME: Suppress this warning if the conversion function ends up being a
1630  // virtual function that overrides a virtual function in a base class.
1631  QualType ClassType
1632    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
1633  if (const ReferenceType *ConvTypeRef = ConvType->getAsReferenceType())
1634    ConvType = ConvTypeRef->getPointeeType();
1635  if (ConvType->isRecordType()) {
1636    ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
1637    if (ConvType == ClassType)
1638      Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used)
1639        << ClassType;
1640    else if (IsDerivedFrom(ClassType, ConvType))
1641      Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used)
1642        <<  ClassType << ConvType;
1643  } else if (ConvType->isVoidType()) {
1644    Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used)
1645      << ClassType << ConvType;
1646  }
1647
1648  if (Conversion->getPreviousDeclaration()) {
1649    OverloadedFunctionDecl *Conversions = ClassDecl->getConversionFunctions();
1650    for (OverloadedFunctionDecl::function_iterator
1651           Conv = Conversions->function_begin(),
1652           ConvEnd = Conversions->function_end();
1653         Conv != ConvEnd; ++Conv) {
1654      if (*Conv
1655            == cast_or_null<NamedDecl>(Conversion->getPreviousDeclaration())) {
1656        *Conv = Conversion;
1657        return DeclPtrTy::make(Conversion);
1658      }
1659    }
1660    assert(Conversion->isInvalidDecl() && "Conversion should not get here.");
1661  } else
1662    ClassDecl->addConversionFunction(Context, Conversion);
1663
1664  return DeclPtrTy::make(Conversion);
1665}
1666
1667//===----------------------------------------------------------------------===//
1668// Namespace Handling
1669//===----------------------------------------------------------------------===//
1670
1671/// ActOnStartNamespaceDef - This is called at the start of a namespace
1672/// definition.
1673Sema::DeclPtrTy Sema::ActOnStartNamespaceDef(Scope *NamespcScope,
1674                                             SourceLocation IdentLoc,
1675                                             IdentifierInfo *II,
1676                                             SourceLocation LBrace) {
1677  NamespaceDecl *Namespc =
1678      NamespaceDecl::Create(Context, CurContext, IdentLoc, II);
1679  Namespc->setLBracLoc(LBrace);
1680
1681  Scope *DeclRegionScope = NamespcScope->getParent();
1682
1683  if (II) {
1684    // C++ [namespace.def]p2:
1685    // The identifier in an original-namespace-definition shall not have been
1686    // previously defined in the declarative region in which the
1687    // original-namespace-definition appears. The identifier in an
1688    // original-namespace-definition is the name of the namespace. Subsequently
1689    // in that declarative region, it is treated as an original-namespace-name.
1690
1691    NamedDecl *PrevDecl = LookupName(DeclRegionScope, II, LookupOrdinaryName,
1692                                     true);
1693
1694    if (NamespaceDecl *OrigNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl)) {
1695      // This is an extended namespace definition.
1696      // Attach this namespace decl to the chain of extended namespace
1697      // definitions.
1698      OrigNS->setNextNamespace(Namespc);
1699      Namespc->setOriginalNamespace(OrigNS->getOriginalNamespace());
1700
1701      // Remove the previous declaration from the scope.
1702      if (DeclRegionScope->isDeclScope(DeclPtrTy::make(OrigNS))) {
1703        IdResolver.RemoveDecl(OrigNS);
1704        DeclRegionScope->RemoveDecl(DeclPtrTy::make(OrigNS));
1705      }
1706    } else if (PrevDecl) {
1707      // This is an invalid name redefinition.
1708      Diag(Namespc->getLocation(), diag::err_redefinition_different_kind)
1709       << Namespc->getDeclName();
1710      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
1711      Namespc->setInvalidDecl();
1712      // Continue on to push Namespc as current DeclContext and return it.
1713    }
1714
1715    PushOnScopeChains(Namespc, DeclRegionScope);
1716  } else {
1717    // FIXME: Handle anonymous namespaces
1718  }
1719
1720  // Although we could have an invalid decl (i.e. the namespace name is a
1721  // redefinition), push it as current DeclContext and try to continue parsing.
1722  // FIXME: We should be able to push Namespc here, so that the each DeclContext
1723  // for the namespace has the declarations that showed up in that particular
1724  // namespace definition.
1725  PushDeclContext(NamespcScope, Namespc);
1726  return DeclPtrTy::make(Namespc);
1727}
1728
1729/// ActOnFinishNamespaceDef - This callback is called after a namespace is
1730/// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
1731void Sema::ActOnFinishNamespaceDef(DeclPtrTy D, SourceLocation RBrace) {
1732  Decl *Dcl = D.getAs<Decl>();
1733  NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
1734  assert(Namespc && "Invalid parameter, expected NamespaceDecl");
1735  Namespc->setRBracLoc(RBrace);
1736  PopDeclContext();
1737}
1738
1739Sema::DeclPtrTy Sema::ActOnUsingDirective(Scope *S,
1740                                          SourceLocation UsingLoc,
1741                                          SourceLocation NamespcLoc,
1742                                          const CXXScopeSpec &SS,
1743                                          SourceLocation IdentLoc,
1744                                          IdentifierInfo *NamespcName,
1745                                          AttributeList *AttrList) {
1746  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
1747  assert(NamespcName && "Invalid NamespcName.");
1748  assert(IdentLoc.isValid() && "Invalid NamespceName location.");
1749  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
1750
1751  UsingDirectiveDecl *UDir = 0;
1752
1753  // Lookup namespace name.
1754  LookupResult R = LookupParsedName(S, &SS, NamespcName,
1755                                    LookupNamespaceName, false);
1756  if (R.isAmbiguous()) {
1757    DiagnoseAmbiguousLookup(R, NamespcName, IdentLoc);
1758    return DeclPtrTy();
1759  }
1760  if (NamedDecl *NS = R) {
1761    assert(isa<NamespaceDecl>(NS) && "expected namespace decl");
1762    // C++ [namespace.udir]p1:
1763    //   A using-directive specifies that the names in the nominated
1764    //   namespace can be used in the scope in which the
1765    //   using-directive appears after the using-directive. During
1766    //   unqualified name lookup (3.4.1), the names appear as if they
1767    //   were declared in the nearest enclosing namespace which
1768    //   contains both the using-directive and the nominated
1769    //   namespace. [Note: in this context, “contains” means “contains
1770    //   directly or indirectly”. ]
1771
1772    // Find enclosing context containing both using-directive and
1773    // nominated namespace.
1774    DeclContext *CommonAncestor = cast<DeclContext>(NS);
1775    while (CommonAncestor && !CommonAncestor->Encloses(CurContext))
1776      CommonAncestor = CommonAncestor->getParent();
1777
1778    UDir = UsingDirectiveDecl::Create(Context,
1779                                      CurContext, UsingLoc,
1780                                      NamespcLoc,
1781                                      SS.getRange(),
1782                                      (NestedNameSpecifier *)SS.getScopeRep(),
1783                                      IdentLoc,
1784                                      cast<NamespaceDecl>(NS),
1785                                      CommonAncestor);
1786    PushUsingDirective(S, UDir);
1787  } else {
1788    Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
1789  }
1790
1791  // FIXME: We ignore attributes for now.
1792  delete AttrList;
1793  return DeclPtrTy::make(UDir);
1794}
1795
1796void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) {
1797  // If scope has associated entity, then using directive is at namespace
1798  // or translation unit scope. We add UsingDirectiveDecls, into
1799  // it's lookup structure.
1800  if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity()))
1801    Ctx->addDecl(Context, UDir);
1802  else
1803    // Otherwise it is block-sope. using-directives will affect lookup
1804    // only to the end of scope.
1805    S->PushUsingDirective(DeclPtrTy::make(UDir));
1806}
1807
1808
1809Sema::DeclPtrTy Sema::ActOnUsingDeclaration(Scope *S,
1810                                          SourceLocation UsingLoc,
1811                                          const CXXScopeSpec &SS,
1812                                          SourceLocation IdentLoc,
1813                                          IdentifierInfo *TargetName,
1814                                          OverloadedOperatorKind Op,
1815                                          AttributeList *AttrList,
1816                                          bool IsTypeName) {
1817  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
1818  assert((TargetName || Op) && "Invalid TargetName.");
1819  assert(IdentLoc.isValid() && "Invalid TargetName location.");
1820  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
1821
1822  UsingDecl *UsingAlias = 0;
1823
1824  DeclarationName Name;
1825  if (TargetName)
1826    Name = TargetName;
1827  else
1828    Name = Context.DeclarationNames.getCXXOperatorName(Op);
1829
1830  // Lookup target name.
1831  LookupResult R = LookupParsedName(S, &SS, Name, LookupOrdinaryName, false);
1832
1833  if (NamedDecl *NS = R) {
1834    if (IsTypeName && !isa<TypeDecl>(NS)) {
1835      Diag(IdentLoc, diag::err_using_typename_non_type);
1836    }
1837    UsingAlias = UsingDecl::Create(Context, CurContext, IdentLoc, SS.getRange(),
1838        NS->getLocation(), UsingLoc, NS,
1839        static_cast<NestedNameSpecifier *>(SS.getScopeRep()),
1840        IsTypeName);
1841    PushOnScopeChains(UsingAlias, S);
1842  } else {
1843    Diag(IdentLoc, diag::err_using_requires_qualname) << SS.getRange();
1844  }
1845
1846  // FIXME: We ignore attributes for now.
1847  delete AttrList;
1848  return DeclPtrTy::make(UsingAlias);
1849}
1850
1851/// getNamespaceDecl - Returns the namespace a decl represents. If the decl
1852/// is a namespace alias, returns the namespace it points to.
1853static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) {
1854  if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D))
1855    return AD->getNamespace();
1856  return dyn_cast_or_null<NamespaceDecl>(D);
1857}
1858
1859Sema::DeclPtrTy Sema::ActOnNamespaceAliasDef(Scope *S,
1860                                             SourceLocation NamespaceLoc,
1861                                             SourceLocation AliasLoc,
1862                                             IdentifierInfo *Alias,
1863                                             const CXXScopeSpec &SS,
1864                                             SourceLocation IdentLoc,
1865                                             IdentifierInfo *Ident) {
1866
1867  // Lookup the namespace name.
1868  LookupResult R = LookupParsedName(S, &SS, Ident, LookupNamespaceName, false);
1869
1870  // Check if we have a previous declaration with the same name.
1871  if (NamedDecl *PrevDecl = LookupName(S, Alias, LookupOrdinaryName, true)) {
1872    if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) {
1873      // We already have an alias with the same name that points to the same
1874      // namespace, so don't create a new one.
1875      if (!R.isAmbiguous() && AD->getNamespace() == getNamespaceDecl(R))
1876        return DeclPtrTy();
1877    }
1878
1879    unsigned DiagID = isa<NamespaceDecl>(PrevDecl) ? diag::err_redefinition :
1880      diag::err_redefinition_different_kind;
1881    Diag(AliasLoc, DiagID) << Alias;
1882    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
1883    return DeclPtrTy();
1884  }
1885
1886  if (R.isAmbiguous()) {
1887    DiagnoseAmbiguousLookup(R, Ident, IdentLoc);
1888    return DeclPtrTy();
1889  }
1890
1891  if (!R) {
1892    Diag(NamespaceLoc, diag::err_expected_namespace_name) << SS.getRange();
1893    return DeclPtrTy();
1894  }
1895
1896  NamespaceAliasDecl *AliasDecl =
1897    NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc,
1898                               Alias, SS.getRange(),
1899                               (NestedNameSpecifier *)SS.getScopeRep(),
1900                               IdentLoc, R);
1901
1902  CurContext->addDecl(Context, AliasDecl);
1903  return DeclPtrTy::make(AliasDecl);
1904}
1905
1906void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,
1907                                            CXXConstructorDecl *Constructor) {
1908  assert((Constructor->isImplicit() && Constructor->isDefaultConstructor() &&
1909          !Constructor->isUsed()) &&
1910    "DefineImplicitDefaultConstructor - call it for implicit default ctor");
1911
1912  CXXRecordDecl *ClassDecl
1913    = cast<CXXRecordDecl>(Constructor->getDeclContext());
1914  assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor");
1915  // Before the implicitly-declared default constructor for a class is
1916  // implicitly defined, all the implicitly-declared default constructors
1917  // for its base class and its non-static data members shall have been
1918  // implicitly defined.
1919  bool err = false;
1920  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
1921       Base != ClassDecl->bases_end(); ++Base) {
1922    CXXRecordDecl *BaseClassDecl
1923      = cast<CXXRecordDecl>(Base->getType()->getAsRecordType()->getDecl());
1924    if (!BaseClassDecl->hasTrivialConstructor()) {
1925      if (CXXConstructorDecl *BaseCtor =
1926            BaseClassDecl->getDefaultConstructor(Context))
1927        MarkDeclarationReferenced(CurrentLocation, BaseCtor);
1928      else {
1929        Diag(CurrentLocation, diag::err_defining_default_ctor)
1930          << Context.getTagDeclType(ClassDecl) << 1
1931          << Context.getTagDeclType(BaseClassDecl);
1932        Diag(BaseClassDecl->getLocation(), diag::note_previous_class_decl)
1933              << Context.getTagDeclType(BaseClassDecl);
1934        err = true;
1935      }
1936    }
1937  }
1938  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(Context);
1939       Field != ClassDecl->field_end(Context);
1940       ++Field) {
1941    QualType FieldType = Context.getCanonicalType((*Field)->getType());
1942    if (const ArrayType *Array = Context.getAsArrayType(FieldType))
1943      FieldType = Array->getElementType();
1944    if (const RecordType *FieldClassType = FieldType->getAsRecordType()) {
1945      CXXRecordDecl *FieldClassDecl
1946        = cast<CXXRecordDecl>(FieldClassType->getDecl());
1947      if (!FieldClassDecl->hasTrivialConstructor()) {
1948        if (CXXConstructorDecl *FieldCtor =
1949            FieldClassDecl->getDefaultConstructor(Context))
1950          MarkDeclarationReferenced(CurrentLocation, FieldCtor);
1951        else {
1952          Diag(CurrentLocation, diag::err_defining_default_ctor)
1953          << Context.getTagDeclType(ClassDecl) << 0 <<
1954              Context.getTagDeclType(FieldClassDecl);
1955          Diag(FieldClassDecl->getLocation(), diag::note_previous_class_decl)
1956          << Context.getTagDeclType(FieldClassDecl);
1957          err = true;
1958        }
1959      }
1960    }
1961    else if (FieldType->isReferenceType()) {
1962      Diag(CurrentLocation, diag::err_unintialized_member)
1963        << Context.getTagDeclType(ClassDecl) << 0 << (*Field)->getNameAsCString();
1964      Diag((*Field)->getLocation(), diag::note_declared_at);
1965      err = true;
1966    }
1967    else if (FieldType.isConstQualified()) {
1968      Diag(CurrentLocation, diag::err_unintialized_member)
1969        << Context.getTagDeclType(ClassDecl) << 1 << (*Field)->getNameAsCString();
1970       Diag((*Field)->getLocation(), diag::note_declared_at);
1971      err = true;
1972    }
1973  }
1974  if (!err)
1975    Constructor->setUsed();
1976  else
1977    Constructor->setInvalidDecl();
1978}
1979
1980void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation,
1981                                            CXXDestructorDecl *Destructor) {
1982  assert((Destructor->isImplicit() && !Destructor->isUsed()) &&
1983         "DefineImplicitDestructor - call it for implicit default dtor");
1984
1985  CXXRecordDecl *ClassDecl
1986  = cast<CXXRecordDecl>(Destructor->getDeclContext());
1987  assert(ClassDecl && "DefineImplicitDestructor - invalid destructor");
1988  // C++ [class.dtor] p5
1989  // Before the implicitly-declared default destructor for a class is
1990  // implicitly defined, all the implicitly-declared default destructors
1991  // for its base class and its non-static data members shall have been
1992  // implicitly defined.
1993  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
1994       Base != ClassDecl->bases_end(); ++Base) {
1995    CXXRecordDecl *BaseClassDecl
1996      = cast<CXXRecordDecl>(Base->getType()->getAsRecordType()->getDecl());
1997    if (!BaseClassDecl->hasTrivialDestructor()) {
1998      if (CXXDestructorDecl *BaseDtor =
1999          const_cast<CXXDestructorDecl*>(BaseClassDecl->getDestructor(Context)))
2000        MarkDeclarationReferenced(CurrentLocation, BaseDtor);
2001      else
2002        assert(false &&
2003               "DefineImplicitDestructor - missing dtor in a base class");
2004    }
2005  }
2006
2007  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(Context);
2008       Field != ClassDecl->field_end(Context);
2009       ++Field) {
2010    QualType FieldType = Context.getCanonicalType((*Field)->getType());
2011    if (const ArrayType *Array = Context.getAsArrayType(FieldType))
2012      FieldType = Array->getElementType();
2013    if (const RecordType *FieldClassType = FieldType->getAsRecordType()) {
2014      CXXRecordDecl *FieldClassDecl
2015        = cast<CXXRecordDecl>(FieldClassType->getDecl());
2016      if (!FieldClassDecl->hasTrivialDestructor()) {
2017        if (CXXDestructorDecl *FieldDtor =
2018            const_cast<CXXDestructorDecl*>(
2019                                        FieldClassDecl->getDestructor(Context)))
2020          MarkDeclarationReferenced(CurrentLocation, FieldDtor);
2021        else
2022          assert(false &&
2023          "DefineImplicitDestructor - missing dtor in class of a data member");
2024      }
2025    }
2026  }
2027  Destructor->setUsed();
2028}
2029
2030void Sema::DefineImplicitOverloadedAssign(SourceLocation CurrentLocation,
2031                                          CXXMethodDecl *MethodDecl) {
2032  assert((MethodDecl->isImplicit() && MethodDecl->isOverloadedOperator() &&
2033          MethodDecl->getOverloadedOperator() == OO_Equal &&
2034          !MethodDecl->isUsed()) &&
2035         "DefineImplicitOverloadedAssign - call it for implicit assignment op");
2036
2037  CXXRecordDecl *ClassDecl
2038    = cast<CXXRecordDecl>(MethodDecl->getDeclContext());
2039  assert(ClassDecl && "DefineImplicitOverloadedAssign - invalid constructor");
2040
2041  // C++[class.copy] p12
2042  // Before the implicitly-declared copy assignment operator for a class is
2043  // implicitly defined, all implicitly-declared copy assignment operators
2044  // for its direct base classes and its nonstatic data members shall have
2045  // been implicitly defined.
2046  bool err = false;
2047  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
2048       Base != ClassDecl->bases_end(); ++Base) {
2049    CXXRecordDecl *BaseClassDecl
2050      = cast<CXXRecordDecl>(Base->getType()->getAsRecordType()->getDecl());
2051    if (CXXMethodDecl *BaseAssignOpMethod =
2052          getAssignOperatorMethod(MethodDecl->getParamDecl(0), BaseClassDecl))
2053      MarkDeclarationReferenced(CurrentLocation, BaseAssignOpMethod);
2054  }
2055  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(Context);
2056       Field != ClassDecl->field_end(Context);
2057       ++Field) {
2058    QualType FieldType = Context.getCanonicalType((*Field)->getType());
2059    if (const ArrayType *Array = Context.getAsArrayType(FieldType))
2060      FieldType = Array->getElementType();
2061    if (const RecordType *FieldClassType = FieldType->getAsRecordType()) {
2062      CXXRecordDecl *FieldClassDecl
2063        = cast<CXXRecordDecl>(FieldClassType->getDecl());
2064      if (CXXMethodDecl *FieldAssignOpMethod =
2065          getAssignOperatorMethod(MethodDecl->getParamDecl(0), FieldClassDecl))
2066        MarkDeclarationReferenced(CurrentLocation, FieldAssignOpMethod);
2067    }
2068    else if (FieldType->isReferenceType()) {
2069      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
2070      << Context.getTagDeclType(ClassDecl) << 0 << (*Field)->getNameAsCString();
2071      Diag((*Field)->getLocation(), diag::note_declared_at);
2072      Diag(CurrentLocation, diag::note_first_required_here);
2073      err = true;
2074    }
2075    else if (FieldType.isConstQualified()) {
2076      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
2077      << Context.getTagDeclType(ClassDecl) << 1 << (*Field)->getNameAsCString();
2078      Diag((*Field)->getLocation(), diag::note_declared_at);
2079      Diag(CurrentLocation, diag::note_first_required_here);
2080      err = true;
2081    }
2082  }
2083  if (!err)
2084    MethodDecl->setUsed();
2085}
2086
2087CXXMethodDecl *
2088Sema::getAssignOperatorMethod(ParmVarDecl *ParmDecl,
2089                              CXXRecordDecl *ClassDecl) {
2090  QualType LHSType = Context.getTypeDeclType(ClassDecl);
2091  QualType RHSType(LHSType);
2092  // If class's assignment operator argument is const/volatile qualified,
2093  // look for operator = (const/volatile B&). Otherwise, look for
2094  // operator = (B&).
2095  if (ParmDecl->getType().isConstQualified())
2096    RHSType.addConst();
2097  if (ParmDecl->getType().isVolatileQualified())
2098    RHSType.addVolatile();
2099  ExprOwningPtr<Expr> LHS(this,  new (Context) DeclRefExpr(ParmDecl,
2100                                                          LHSType,
2101                                                          SourceLocation()));
2102  ExprOwningPtr<Expr> RHS(this,  new (Context) DeclRefExpr(ParmDecl,
2103                                                          RHSType,
2104                                                          SourceLocation()));
2105  Expr *Args[2] = { &*LHS, &*RHS };
2106  OverloadCandidateSet CandidateSet;
2107  AddMemberOperatorCandidates(clang::OO_Equal, SourceLocation(), Args, 2,
2108                              CandidateSet);
2109  OverloadCandidateSet::iterator Best;
2110  if (BestViableFunction(CandidateSet,
2111                         ClassDecl->getLocation(), Best) == OR_Success)
2112    return cast<CXXMethodDecl>(Best->Function);
2113  assert(false &&
2114         "getAssignOperatorMethod - copy assignment operator method not found");
2115  return 0;
2116}
2117
2118void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation,
2119                                   CXXConstructorDecl *CopyConstructor,
2120                                   unsigned TypeQuals) {
2121  assert((CopyConstructor->isImplicit() &&
2122          CopyConstructor->isCopyConstructor(Context, TypeQuals) &&
2123          !CopyConstructor->isUsed()) &&
2124         "DefineImplicitCopyConstructor - call it for implicit copy ctor");
2125
2126  CXXRecordDecl *ClassDecl
2127    = cast<CXXRecordDecl>(CopyConstructor->getDeclContext());
2128  assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor");
2129  // C++ [class.copy] p209
2130  // Before the implicitly-declared copy constructor for a class is
2131  // implicitly defined, all the implicitly-declared copy constructors
2132  // for its base class and its non-static data members shall have been
2133  // implicitly defined.
2134  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
2135       Base != ClassDecl->bases_end(); ++Base) {
2136    CXXRecordDecl *BaseClassDecl
2137      = cast<CXXRecordDecl>(Base->getType()->getAsRecordType()->getDecl());
2138    if (CXXConstructorDecl *BaseCopyCtor =
2139        BaseClassDecl->getCopyConstructor(Context, TypeQuals))
2140      MarkDeclarationReferenced(CurrentLocation, BaseCopyCtor);
2141  }
2142  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(Context);
2143       Field != ClassDecl->field_end(Context);
2144       ++Field) {
2145    QualType FieldType = Context.getCanonicalType((*Field)->getType());
2146    if (const ArrayType *Array = Context.getAsArrayType(FieldType))
2147      FieldType = Array->getElementType();
2148    if (const RecordType *FieldClassType = FieldType->getAsRecordType()) {
2149      CXXRecordDecl *FieldClassDecl
2150        = cast<CXXRecordDecl>(FieldClassType->getDecl());
2151      if (CXXConstructorDecl *FieldCopyCtor =
2152          FieldClassDecl->getCopyConstructor(Context, TypeQuals))
2153        MarkDeclarationReferenced(CurrentLocation, FieldCopyCtor);
2154    }
2155  }
2156  CopyConstructor->setUsed();
2157}
2158
2159void Sema::InitializeVarWithConstructor(VarDecl *VD,
2160                                        CXXConstructorDecl *Constructor,
2161                                        QualType DeclInitType,
2162                                        Expr **Exprs, unsigned NumExprs) {
2163  Expr *Temp = CXXConstructExpr::Create(Context, DeclInitType, Constructor,
2164                                        false, Exprs, NumExprs);
2165  MarkDeclarationReferenced(VD->getLocation(), Constructor);
2166  VD->setInit(Context, Temp);
2167}
2168
2169void Sema::MarkDestructorReferenced(SourceLocation Loc, QualType DeclInitType)
2170{
2171  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(
2172                                  DeclInitType->getAsRecordType()->getDecl());
2173  if (!ClassDecl->hasTrivialDestructor())
2174    if (CXXDestructorDecl *Destructor =
2175        const_cast<CXXDestructorDecl*>(ClassDecl->getDestructor(Context)))
2176      MarkDeclarationReferenced(Loc, Destructor);
2177}
2178
2179/// AddCXXDirectInitializerToDecl - This action is called immediately after
2180/// ActOnDeclarator, when a C++ direct initializer is present.
2181/// e.g: "int x(1);"
2182void Sema::AddCXXDirectInitializerToDecl(DeclPtrTy Dcl,
2183                                         SourceLocation LParenLoc,
2184                                         MultiExprArg Exprs,
2185                                         SourceLocation *CommaLocs,
2186                                         SourceLocation RParenLoc) {
2187  unsigned NumExprs = Exprs.size();
2188  assert(NumExprs != 0 && Exprs.get() && "missing expressions");
2189  Decl *RealDecl = Dcl.getAs<Decl>();
2190
2191  // If there is no declaration, there was an error parsing it.  Just ignore
2192  // the initializer.
2193  if (RealDecl == 0)
2194    return;
2195
2196  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
2197  if (!VDecl) {
2198    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
2199    RealDecl->setInvalidDecl();
2200    return;
2201  }
2202
2203  // FIXME: Need to handle dependent types and expressions here.
2204
2205  // We will treat direct-initialization as a copy-initialization:
2206  //    int x(1);  -as-> int x = 1;
2207  //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
2208  //
2209  // Clients that want to distinguish between the two forms, can check for
2210  // direct initializer using VarDecl::hasCXXDirectInitializer().
2211  // A major benefit is that clients that don't particularly care about which
2212  // exactly form was it (like the CodeGen) can handle both cases without
2213  // special case code.
2214
2215  // C++ 8.5p11:
2216  // The form of initialization (using parentheses or '=') is generally
2217  // insignificant, but does matter when the entity being initialized has a
2218  // class type.
2219  QualType DeclInitType = VDecl->getType();
2220  if (const ArrayType *Array = Context.getAsArrayType(DeclInitType))
2221    DeclInitType = Array->getElementType();
2222
2223  // FIXME: This isn't the right place to complete the type.
2224  if (RequireCompleteType(VDecl->getLocation(), VDecl->getType(),
2225                          diag::err_typecheck_decl_incomplete_type)) {
2226    VDecl->setInvalidDecl();
2227    return;
2228  }
2229
2230  if (VDecl->getType()->isRecordType()) {
2231    CXXConstructorDecl *Constructor
2232      = PerformInitializationByConstructor(DeclInitType,
2233                                           (Expr **)Exprs.get(), NumExprs,
2234                                           VDecl->getLocation(),
2235                                           SourceRange(VDecl->getLocation(),
2236                                                       RParenLoc),
2237                                           VDecl->getDeclName(),
2238                                           IK_Direct);
2239    if (!Constructor)
2240      RealDecl->setInvalidDecl();
2241    else {
2242      VDecl->setCXXDirectInitializer(true);
2243      InitializeVarWithConstructor(VDecl, Constructor, DeclInitType,
2244                                   (Expr**)Exprs.release(), NumExprs);
2245      // FIXME. Must do all that is needed to destroy the object
2246      // on scope exit. For now, just mark the destructor as used.
2247      MarkDestructorReferenced(VDecl->getLocation(), DeclInitType);
2248    }
2249    return;
2250  }
2251
2252  if (NumExprs > 1) {
2253    Diag(CommaLocs[0], diag::err_builtin_direct_init_more_than_one_arg)
2254      << SourceRange(VDecl->getLocation(), RParenLoc);
2255    RealDecl->setInvalidDecl();
2256    return;
2257  }
2258
2259  // Let clients know that initialization was done with a direct initializer.
2260  VDecl->setCXXDirectInitializer(true);
2261
2262  assert(NumExprs == 1 && "Expected 1 expression");
2263  // Set the init expression, handles conversions.
2264  AddInitializerToDecl(Dcl, ExprArg(*this, Exprs.release()[0]),
2265                       /*DirectInit=*/true);
2266}
2267
2268/// PerformInitializationByConstructor - Perform initialization by
2269/// constructor (C++ [dcl.init]p14), which may occur as part of
2270/// direct-initialization or copy-initialization. We are initializing
2271/// an object of type @p ClassType with the given arguments @p
2272/// Args. @p Loc is the location in the source code where the
2273/// initializer occurs (e.g., a declaration, member initializer,
2274/// functional cast, etc.) while @p Range covers the whole
2275/// initialization. @p InitEntity is the entity being initialized,
2276/// which may by the name of a declaration or a type. @p Kind is the
2277/// kind of initialization we're performing, which affects whether
2278/// explicit constructors will be considered. When successful, returns
2279/// the constructor that will be used to perform the initialization;
2280/// when the initialization fails, emits a diagnostic and returns
2281/// null.
2282CXXConstructorDecl *
2283Sema::PerformInitializationByConstructor(QualType ClassType,
2284                                         Expr **Args, unsigned NumArgs,
2285                                         SourceLocation Loc, SourceRange Range,
2286                                         DeclarationName InitEntity,
2287                                         InitializationKind Kind) {
2288  const RecordType *ClassRec = ClassType->getAsRecordType();
2289  assert(ClassRec && "Can only initialize a class type here");
2290
2291  // C++ [dcl.init]p14:
2292  //
2293  //   If the initialization is direct-initialization, or if it is
2294  //   copy-initialization where the cv-unqualified version of the
2295  //   source type is the same class as, or a derived class of, the
2296  //   class of the destination, constructors are considered. The
2297  //   applicable constructors are enumerated (13.3.1.3), and the
2298  //   best one is chosen through overload resolution (13.3). The
2299  //   constructor so selected is called to initialize the object,
2300  //   with the initializer expression(s) as its argument(s). If no
2301  //   constructor applies, or the overload resolution is ambiguous,
2302  //   the initialization is ill-formed.
2303  const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(ClassRec->getDecl());
2304  OverloadCandidateSet CandidateSet;
2305
2306  // Add constructors to the overload set.
2307  DeclarationName ConstructorName
2308    = Context.DeclarationNames.getCXXConstructorName(
2309                       Context.getCanonicalType(ClassType.getUnqualifiedType()));
2310  DeclContext::lookup_const_iterator Con, ConEnd;
2311  for (llvm::tie(Con, ConEnd) = ClassDecl->lookup(Context, ConstructorName);
2312       Con != ConEnd; ++Con) {
2313    CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
2314    if ((Kind == IK_Direct) ||
2315        (Kind == IK_Copy && Constructor->isConvertingConstructor()) ||
2316        (Kind == IK_Default && Constructor->isDefaultConstructor()))
2317      AddOverloadCandidate(Constructor, Args, NumArgs, CandidateSet);
2318  }
2319
2320  // FIXME: When we decide not to synthesize the implicitly-declared
2321  // constructors, we'll need to make them appear here.
2322
2323  OverloadCandidateSet::iterator Best;
2324  switch (BestViableFunction(CandidateSet, Loc, Best)) {
2325  case OR_Success:
2326    // We found a constructor. Return it.
2327    return cast<CXXConstructorDecl>(Best->Function);
2328
2329  case OR_No_Viable_Function:
2330    if (InitEntity)
2331      Diag(Loc, diag::err_ovl_no_viable_function_in_init)
2332        << InitEntity << Range;
2333    else
2334      Diag(Loc, diag::err_ovl_no_viable_function_in_init)
2335        << ClassType << Range;
2336    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
2337    return 0;
2338
2339  case OR_Ambiguous:
2340    if (InitEntity)
2341      Diag(Loc, diag::err_ovl_ambiguous_init) << InitEntity << Range;
2342    else
2343      Diag(Loc, diag::err_ovl_ambiguous_init) << ClassType << Range;
2344    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
2345    return 0;
2346
2347  case OR_Deleted:
2348    if (InitEntity)
2349      Diag(Loc, diag::err_ovl_deleted_init)
2350        << Best->Function->isDeleted()
2351        << InitEntity << Range;
2352    else
2353      Diag(Loc, diag::err_ovl_deleted_init)
2354        << Best->Function->isDeleted()
2355        << InitEntity << Range;
2356    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
2357    return 0;
2358  }
2359
2360  return 0;
2361}
2362
2363/// CompareReferenceRelationship - Compare the two types T1 and T2 to
2364/// determine whether they are reference-related,
2365/// reference-compatible, reference-compatible with added
2366/// qualification, or incompatible, for use in C++ initialization by
2367/// reference (C++ [dcl.ref.init]p4). Neither type can be a reference
2368/// type, and the first type (T1) is the pointee type of the reference
2369/// type being initialized.
2370Sema::ReferenceCompareResult
2371Sema::CompareReferenceRelationship(QualType T1, QualType T2,
2372                                   bool& DerivedToBase) {
2373  assert(!T1->isReferenceType() &&
2374    "T1 must be the pointee type of the reference type");
2375  assert(!T2->isReferenceType() && "T2 cannot be a reference type");
2376
2377  T1 = Context.getCanonicalType(T1);
2378  T2 = Context.getCanonicalType(T2);
2379  QualType UnqualT1 = T1.getUnqualifiedType();
2380  QualType UnqualT2 = T2.getUnqualifiedType();
2381
2382  // C++ [dcl.init.ref]p4:
2383  //   Given types “cv1 T1” and “cv2 T2,” “cv1 T1” is
2384  //   reference-related to “cv2 T2” if T1 is the same type as T2, or
2385  //   T1 is a base class of T2.
2386  if (UnqualT1 == UnqualT2)
2387    DerivedToBase = false;
2388  else if (IsDerivedFrom(UnqualT2, UnqualT1))
2389    DerivedToBase = true;
2390  else
2391    return Ref_Incompatible;
2392
2393  // At this point, we know that T1 and T2 are reference-related (at
2394  // least).
2395
2396  // C++ [dcl.init.ref]p4:
2397  //   "cv1 T1” is reference-compatible with “cv2 T2” if T1 is
2398  //   reference-related to T2 and cv1 is the same cv-qualification
2399  //   as, or greater cv-qualification than, cv2. For purposes of
2400  //   overload resolution, cases for which cv1 is greater
2401  //   cv-qualification than cv2 are identified as
2402  //   reference-compatible with added qualification (see 13.3.3.2).
2403  if (T1.getCVRQualifiers() == T2.getCVRQualifiers())
2404    return Ref_Compatible;
2405  else if (T1.isMoreQualifiedThan(T2))
2406    return Ref_Compatible_With_Added_Qualification;
2407  else
2408    return Ref_Related;
2409}
2410
2411/// CheckReferenceInit - Check the initialization of a reference
2412/// variable with the given initializer (C++ [dcl.init.ref]). Init is
2413/// the initializer (either a simple initializer or an initializer
2414/// list), and DeclType is the type of the declaration. When ICS is
2415/// non-null, this routine will compute the implicit conversion
2416/// sequence according to C++ [over.ics.ref] and will not produce any
2417/// diagnostics; when ICS is null, it will emit diagnostics when any
2418/// errors are found. Either way, a return value of true indicates
2419/// that there was a failure, a return value of false indicates that
2420/// the reference initialization succeeded.
2421///
2422/// When @p SuppressUserConversions, user-defined conversions are
2423/// suppressed.
2424/// When @p AllowExplicit, we also permit explicit user-defined
2425/// conversion functions.
2426/// When @p ForceRValue, we unconditionally treat the initializer as an rvalue.
2427bool
2428Sema::CheckReferenceInit(Expr *&Init, QualType DeclType,
2429                         ImplicitConversionSequence *ICS,
2430                         bool SuppressUserConversions,
2431                         bool AllowExplicit, bool ForceRValue) {
2432  assert(DeclType->isReferenceType() && "Reference init needs a reference");
2433
2434  QualType T1 = DeclType->getAsReferenceType()->getPointeeType();
2435  QualType T2 = Init->getType();
2436
2437  // If the initializer is the address of an overloaded function, try
2438  // to resolve the overloaded function. If all goes well, T2 is the
2439  // type of the resulting function.
2440  if (Context.getCanonicalType(T2) == Context.OverloadTy) {
2441    FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Init, DeclType,
2442                                                          ICS != 0);
2443    if (Fn) {
2444      // Since we're performing this reference-initialization for
2445      // real, update the initializer with the resulting function.
2446      if (!ICS) {
2447        if (DiagnoseUseOfDecl(Fn, Init->getSourceRange().getBegin()))
2448          return true;
2449
2450        FixOverloadedFunctionReference(Init, Fn);
2451      }
2452
2453      T2 = Fn->getType();
2454    }
2455  }
2456
2457  // Compute some basic properties of the types and the initializer.
2458  bool isRValRef = DeclType->isRValueReferenceType();
2459  bool DerivedToBase = false;
2460  Expr::isLvalueResult InitLvalue = ForceRValue ? Expr::LV_InvalidExpression :
2461                                                  Init->isLvalue(Context);
2462  ReferenceCompareResult RefRelationship
2463    = CompareReferenceRelationship(T1, T2, DerivedToBase);
2464
2465  // Most paths end in a failed conversion.
2466  if (ICS)
2467    ICS->ConversionKind = ImplicitConversionSequence::BadConversion;
2468
2469  // C++ [dcl.init.ref]p5:
2470  //   A reference to type “cv1 T1” is initialized by an expression
2471  //   of type “cv2 T2” as follows:
2472
2473  //     -- If the initializer expression
2474
2475  // Rvalue references cannot bind to lvalues (N2812).
2476  // There is absolutely no situation where they can. In particular, note that
2477  // this is ill-formed, even if B has a user-defined conversion to A&&:
2478  //   B b;
2479  //   A&& r = b;
2480  if (isRValRef && InitLvalue == Expr::LV_Valid) {
2481    if (!ICS)
2482      Diag(Init->getSourceRange().getBegin(), diag::err_lvalue_to_rvalue_ref)
2483        << Init->getSourceRange();
2484    return true;
2485  }
2486
2487  bool BindsDirectly = false;
2488  //       -- is an lvalue (but is not a bit-field), and “cv1 T1” is
2489  //          reference-compatible with “cv2 T2,” or
2490  //
2491  // Note that the bit-field check is skipped if we are just computing
2492  // the implicit conversion sequence (C++ [over.best.ics]p2).
2493  if (InitLvalue == Expr::LV_Valid && (ICS || !Init->getBitField()) &&
2494      RefRelationship >= Ref_Compatible_With_Added_Qualification) {
2495    BindsDirectly = true;
2496
2497    if (ICS) {
2498      // C++ [over.ics.ref]p1:
2499      //   When a parameter of reference type binds directly (8.5.3)
2500      //   to an argument expression, the implicit conversion sequence
2501      //   is the identity conversion, unless the argument expression
2502      //   has a type that is a derived class of the parameter type,
2503      //   in which case the implicit conversion sequence is a
2504      //   derived-to-base Conversion (13.3.3.1).
2505      ICS->ConversionKind = ImplicitConversionSequence::StandardConversion;
2506      ICS->Standard.First = ICK_Identity;
2507      ICS->Standard.Second = DerivedToBase? ICK_Derived_To_Base : ICK_Identity;
2508      ICS->Standard.Third = ICK_Identity;
2509      ICS->Standard.FromTypePtr = T2.getAsOpaquePtr();
2510      ICS->Standard.ToTypePtr = T1.getAsOpaquePtr();
2511      ICS->Standard.ReferenceBinding = true;
2512      ICS->Standard.DirectBinding = true;
2513      ICS->Standard.RRefBinding = false;
2514      ICS->Standard.CopyConstructor = 0;
2515
2516      // Nothing more to do: the inaccessibility/ambiguity check for
2517      // derived-to-base conversions is suppressed when we're
2518      // computing the implicit conversion sequence (C++
2519      // [over.best.ics]p2).
2520      return false;
2521    } else {
2522      // Perform the conversion.
2523      // FIXME: Binding to a subobject of the lvalue is going to require more
2524      // AST annotation than this.
2525      ImpCastExprToType(Init, T1, /*isLvalue=*/true);
2526    }
2527  }
2528
2529  //       -- has a class type (i.e., T2 is a class type) and can be
2530  //          implicitly converted to an lvalue of type “cv3 T3,”
2531  //          where “cv1 T1” is reference-compatible with “cv3 T3”
2532  //          92) (this conversion is selected by enumerating the
2533  //          applicable conversion functions (13.3.1.6) and choosing
2534  //          the best one through overload resolution (13.3)),
2535  if (!isRValRef && !SuppressUserConversions && T2->isRecordType()) {
2536    // FIXME: Look for conversions in base classes!
2537    CXXRecordDecl *T2RecordDecl
2538      = dyn_cast<CXXRecordDecl>(T2->getAsRecordType()->getDecl());
2539
2540    OverloadCandidateSet CandidateSet;
2541    OverloadedFunctionDecl *Conversions
2542      = T2RecordDecl->getConversionFunctions();
2543    for (OverloadedFunctionDecl::function_iterator Func
2544           = Conversions->function_begin();
2545         Func != Conversions->function_end(); ++Func) {
2546      CXXConversionDecl *Conv = cast<CXXConversionDecl>(*Func);
2547
2548      // If the conversion function doesn't return a reference type,
2549      // it can't be considered for this conversion.
2550      if (Conv->getConversionType()->isLValueReferenceType() &&
2551          (AllowExplicit || !Conv->isExplicit()))
2552        AddConversionCandidate(Conv, Init, DeclType, CandidateSet);
2553    }
2554
2555    OverloadCandidateSet::iterator Best;
2556    switch (BestViableFunction(CandidateSet, Init->getLocStart(), Best)) {
2557    case OR_Success:
2558      // This is a direct binding.
2559      BindsDirectly = true;
2560
2561      if (ICS) {
2562        // C++ [over.ics.ref]p1:
2563        //
2564        //   [...] If the parameter binds directly to the result of
2565        //   applying a conversion function to the argument
2566        //   expression, the implicit conversion sequence is a
2567        //   user-defined conversion sequence (13.3.3.1.2), with the
2568        //   second standard conversion sequence either an identity
2569        //   conversion or, if the conversion function returns an
2570        //   entity of a type that is a derived class of the parameter
2571        //   type, a derived-to-base Conversion.
2572        ICS->ConversionKind = ImplicitConversionSequence::UserDefinedConversion;
2573        ICS->UserDefined.Before = Best->Conversions[0].Standard;
2574        ICS->UserDefined.After = Best->FinalConversion;
2575        ICS->UserDefined.ConversionFunction = Best->Function;
2576        assert(ICS->UserDefined.After.ReferenceBinding &&
2577               ICS->UserDefined.After.DirectBinding &&
2578               "Expected a direct reference binding!");
2579        return false;
2580      } else {
2581        // Perform the conversion.
2582        // FIXME: Binding to a subobject of the lvalue is going to require more
2583        // AST annotation than this.
2584        ImpCastExprToType(Init, T1, /*isLvalue=*/true);
2585      }
2586      break;
2587
2588    case OR_Ambiguous:
2589      assert(false && "Ambiguous reference binding conversions not implemented.");
2590      return true;
2591
2592    case OR_No_Viable_Function:
2593    case OR_Deleted:
2594      // There was no suitable conversion, or we found a deleted
2595      // conversion; continue with other checks.
2596      break;
2597    }
2598  }
2599
2600  if (BindsDirectly) {
2601    // C++ [dcl.init.ref]p4:
2602    //   [...] In all cases where the reference-related or
2603    //   reference-compatible relationship of two types is used to
2604    //   establish the validity of a reference binding, and T1 is a
2605    //   base class of T2, a program that necessitates such a binding
2606    //   is ill-formed if T1 is an inaccessible (clause 11) or
2607    //   ambiguous (10.2) base class of T2.
2608    //
2609    // Note that we only check this condition when we're allowed to
2610    // complain about errors, because we should not be checking for
2611    // ambiguity (or inaccessibility) unless the reference binding
2612    // actually happens.
2613    if (DerivedToBase)
2614      return CheckDerivedToBaseConversion(T2, T1,
2615                                          Init->getSourceRange().getBegin(),
2616                                          Init->getSourceRange());
2617    else
2618      return false;
2619  }
2620
2621  //     -- Otherwise, the reference shall be to a non-volatile const
2622  //        type (i.e., cv1 shall be const), or the reference shall be an
2623  //        rvalue reference and the initializer expression shall be an rvalue.
2624  if (!isRValRef && T1.getCVRQualifiers() != QualType::Const) {
2625    if (!ICS)
2626      Diag(Init->getSourceRange().getBegin(),
2627           diag::err_not_reference_to_const_init)
2628        << T1 << (InitLvalue != Expr::LV_Valid? "temporary" : "value")
2629        << T2 << Init->getSourceRange();
2630    return true;
2631  }
2632
2633  //       -- If the initializer expression is an rvalue, with T2 a
2634  //          class type, and “cv1 T1” is reference-compatible with
2635  //          “cv2 T2,” the reference is bound in one of the
2636  //          following ways (the choice is implementation-defined):
2637  //
2638  //          -- The reference is bound to the object represented by
2639  //             the rvalue (see 3.10) or to a sub-object within that
2640  //             object.
2641  //
2642  //          -- A temporary of type “cv1 T2” [sic] is created, and
2643  //             a constructor is called to copy the entire rvalue
2644  //             object into the temporary. The reference is bound to
2645  //             the temporary or to a sub-object within the
2646  //             temporary.
2647  //
2648  //          The constructor that would be used to make the copy
2649  //          shall be callable whether or not the copy is actually
2650  //          done.
2651  //
2652  // Note that C++0x [dcl.init.ref]p5 takes away this implementation
2653  // freedom, so we will always take the first option and never build
2654  // a temporary in this case. FIXME: We will, however, have to check
2655  // for the presence of a copy constructor in C++98/03 mode.
2656  if (InitLvalue != Expr::LV_Valid && T2->isRecordType() &&
2657      RefRelationship >= Ref_Compatible_With_Added_Qualification) {
2658    if (ICS) {
2659      ICS->ConversionKind = ImplicitConversionSequence::StandardConversion;
2660      ICS->Standard.First = ICK_Identity;
2661      ICS->Standard.Second = DerivedToBase? ICK_Derived_To_Base : ICK_Identity;
2662      ICS->Standard.Third = ICK_Identity;
2663      ICS->Standard.FromTypePtr = T2.getAsOpaquePtr();
2664      ICS->Standard.ToTypePtr = T1.getAsOpaquePtr();
2665      ICS->Standard.ReferenceBinding = true;
2666      ICS->Standard.DirectBinding = false;
2667      ICS->Standard.RRefBinding = isRValRef;
2668      ICS->Standard.CopyConstructor = 0;
2669    } else {
2670      // FIXME: Binding to a subobject of the rvalue is going to require more
2671      // AST annotation than this.
2672      ImpCastExprToType(Init, T1, /*isLvalue=*/false);
2673    }
2674    return false;
2675  }
2676
2677  //       -- Otherwise, a temporary of type “cv1 T1” is created and
2678  //          initialized from the initializer expression using the
2679  //          rules for a non-reference copy initialization (8.5). The
2680  //          reference is then bound to the temporary. If T1 is
2681  //          reference-related to T2, cv1 must be the same
2682  //          cv-qualification as, or greater cv-qualification than,
2683  //          cv2; otherwise, the program is ill-formed.
2684  if (RefRelationship == Ref_Related) {
2685    // If cv1 == cv2 or cv1 is a greater cv-qualified than cv2, then
2686    // we would be reference-compatible or reference-compatible with
2687    // added qualification. But that wasn't the case, so the reference
2688    // initialization fails.
2689    if (!ICS)
2690      Diag(Init->getSourceRange().getBegin(),
2691           diag::err_reference_init_drops_quals)
2692        << T1 << (InitLvalue != Expr::LV_Valid? "temporary" : "value")
2693        << T2 << Init->getSourceRange();
2694    return true;
2695  }
2696
2697  // If at least one of the types is a class type, the types are not
2698  // related, and we aren't allowed any user conversions, the
2699  // reference binding fails. This case is important for breaking
2700  // recursion, since TryImplicitConversion below will attempt to
2701  // create a temporary through the use of a copy constructor.
2702  if (SuppressUserConversions && RefRelationship == Ref_Incompatible &&
2703      (T1->isRecordType() || T2->isRecordType())) {
2704    if (!ICS)
2705      Diag(Init->getSourceRange().getBegin(),
2706           diag::err_typecheck_convert_incompatible)
2707        << DeclType << Init->getType() << "initializing" << Init->getSourceRange();
2708    return true;
2709  }
2710
2711  // Actually try to convert the initializer to T1.
2712  if (ICS) {
2713    // C++ [over.ics.ref]p2:
2714    //
2715    //   When a parameter of reference type is not bound directly to
2716    //   an argument expression, the conversion sequence is the one
2717    //   required to convert the argument expression to the
2718    //   underlying type of the reference according to
2719    //   13.3.3.1. Conceptually, this conversion sequence corresponds
2720    //   to copy-initializing a temporary of the underlying type with
2721    //   the argument expression. Any difference in top-level
2722    //   cv-qualification is subsumed by the initialization itself
2723    //   and does not constitute a conversion.
2724    *ICS = TryImplicitConversion(Init, T1, SuppressUserConversions);
2725    // Of course, that's still a reference binding.
2726    if (ICS->ConversionKind == ImplicitConversionSequence::StandardConversion) {
2727      ICS->Standard.ReferenceBinding = true;
2728      ICS->Standard.RRefBinding = isRValRef;
2729    } else if(ICS->ConversionKind ==
2730              ImplicitConversionSequence::UserDefinedConversion) {
2731      ICS->UserDefined.After.ReferenceBinding = true;
2732      ICS->UserDefined.After.RRefBinding = isRValRef;
2733    }
2734    return ICS->ConversionKind == ImplicitConversionSequence::BadConversion;
2735  } else {
2736    return PerformImplicitConversion(Init, T1, "initializing");
2737  }
2738}
2739
2740/// CheckOverloadedOperatorDeclaration - Check whether the declaration
2741/// of this overloaded operator is well-formed. If so, returns false;
2742/// otherwise, emits appropriate diagnostics and returns true.
2743bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
2744  assert(FnDecl && FnDecl->isOverloadedOperator() &&
2745         "Expected an overloaded operator declaration");
2746
2747  OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
2748
2749  // C++ [over.oper]p5:
2750  //   The allocation and deallocation functions, operator new,
2751  //   operator new[], operator delete and operator delete[], are
2752  //   described completely in 3.7.3. The attributes and restrictions
2753  //   found in the rest of this subclause do not apply to them unless
2754  //   explicitly stated in 3.7.3.
2755  // FIXME: Write a separate routine for checking this. For now, just allow it.
2756  if (Op == OO_New || Op == OO_Array_New ||
2757      Op == OO_Delete || Op == OO_Array_Delete)
2758    return false;
2759
2760  // C++ [over.oper]p6:
2761  //   An operator function shall either be a non-static member
2762  //   function or be a non-member function and have at least one
2763  //   parameter whose type is a class, a reference to a class, an
2764  //   enumeration, or a reference to an enumeration.
2765  if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) {
2766    if (MethodDecl->isStatic())
2767      return Diag(FnDecl->getLocation(),
2768                  diag::err_operator_overload_static) << FnDecl->getDeclName();
2769  } else {
2770    bool ClassOrEnumParam = false;
2771    for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
2772                                   ParamEnd = FnDecl->param_end();
2773         Param != ParamEnd; ++Param) {
2774      QualType ParamType = (*Param)->getType().getNonReferenceType();
2775      if (ParamType->isDependentType() || ParamType->isRecordType() ||
2776          ParamType->isEnumeralType()) {
2777        ClassOrEnumParam = true;
2778        break;
2779      }
2780    }
2781
2782    if (!ClassOrEnumParam)
2783      return Diag(FnDecl->getLocation(),
2784                  diag::err_operator_overload_needs_class_or_enum)
2785        << FnDecl->getDeclName();
2786  }
2787
2788  // C++ [over.oper]p8:
2789  //   An operator function cannot have default arguments (8.3.6),
2790  //   except where explicitly stated below.
2791  //
2792  // Only the function-call operator allows default arguments
2793  // (C++ [over.call]p1).
2794  if (Op != OO_Call) {
2795    for (FunctionDecl::param_iterator Param = FnDecl->param_begin();
2796         Param != FnDecl->param_end(); ++Param) {
2797      if ((*Param)->hasUnparsedDefaultArg())
2798        return Diag((*Param)->getLocation(),
2799                    diag::err_operator_overload_default_arg)
2800          << FnDecl->getDeclName();
2801      else if (Expr *DefArg = (*Param)->getDefaultArg())
2802        return Diag((*Param)->getLocation(),
2803                    diag::err_operator_overload_default_arg)
2804          << FnDecl->getDeclName() << DefArg->getSourceRange();
2805    }
2806  }
2807
2808  static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
2809    { false, false, false }
2810#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
2811    , { Unary, Binary, MemberOnly }
2812#include "clang/Basic/OperatorKinds.def"
2813  };
2814
2815  bool CanBeUnaryOperator = OperatorUses[Op][0];
2816  bool CanBeBinaryOperator = OperatorUses[Op][1];
2817  bool MustBeMemberOperator = OperatorUses[Op][2];
2818
2819  // C++ [over.oper]p8:
2820  //   [...] Operator functions cannot have more or fewer parameters
2821  //   than the number required for the corresponding operator, as
2822  //   described in the rest of this subclause.
2823  unsigned NumParams = FnDecl->getNumParams()
2824                     + (isa<CXXMethodDecl>(FnDecl)? 1 : 0);
2825  if (Op != OO_Call &&
2826      ((NumParams == 1 && !CanBeUnaryOperator) ||
2827       (NumParams == 2 && !CanBeBinaryOperator) ||
2828       (NumParams < 1) || (NumParams > 2))) {
2829    // We have the wrong number of parameters.
2830    unsigned ErrorKind;
2831    if (CanBeUnaryOperator && CanBeBinaryOperator) {
2832      ErrorKind = 2;  // 2 -> unary or binary.
2833    } else if (CanBeUnaryOperator) {
2834      ErrorKind = 0;  // 0 -> unary
2835    } else {
2836      assert(CanBeBinaryOperator &&
2837             "All non-call overloaded operators are unary or binary!");
2838      ErrorKind = 1;  // 1 -> binary
2839    }
2840
2841    return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be)
2842      << FnDecl->getDeclName() << NumParams << ErrorKind;
2843  }
2844
2845  // Overloaded operators other than operator() cannot be variadic.
2846  if (Op != OO_Call &&
2847      FnDecl->getType()->getAsFunctionProtoType()->isVariadic()) {
2848    return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
2849      << FnDecl->getDeclName();
2850  }
2851
2852  // Some operators must be non-static member functions.
2853  if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) {
2854    return Diag(FnDecl->getLocation(),
2855                diag::err_operator_overload_must_be_member)
2856      << FnDecl->getDeclName();
2857  }
2858
2859  // C++ [over.inc]p1:
2860  //   The user-defined function called operator++ implements the
2861  //   prefix and postfix ++ operator. If this function is a member
2862  //   function with no parameters, or a non-member function with one
2863  //   parameter of class or enumeration type, it defines the prefix
2864  //   increment operator ++ for objects of that type. If the function
2865  //   is a member function with one parameter (which shall be of type
2866  //   int) or a non-member function with two parameters (the second
2867  //   of which shall be of type int), it defines the postfix
2868  //   increment operator ++ for objects of that type.
2869  if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
2870    ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
2871    bool ParamIsInt = false;
2872    if (const BuiltinType *BT = LastParam->getType()->getAsBuiltinType())
2873      ParamIsInt = BT->getKind() == BuiltinType::Int;
2874
2875    if (!ParamIsInt)
2876      return Diag(LastParam->getLocation(),
2877                  diag::err_operator_overload_post_incdec_must_be_int)
2878        << LastParam->getType() << (Op == OO_MinusMinus);
2879  }
2880
2881  // Notify the class if it got an assignment operator.
2882  if (Op == OO_Equal) {
2883    // Would have returned earlier otherwise.
2884    assert(isa<CXXMethodDecl>(FnDecl) &&
2885      "Overloaded = not member, but not filtered.");
2886    CXXMethodDecl *Method = cast<CXXMethodDecl>(FnDecl);
2887    Method->getParent()->addedAssignmentOperator(Context, Method);
2888  }
2889
2890  return false;
2891}
2892
2893/// ActOnStartLinkageSpecification - Parsed the beginning of a C++
2894/// linkage specification, including the language and (if present)
2895/// the '{'. ExternLoc is the location of the 'extern', LangLoc is
2896/// the location of the language string literal, which is provided
2897/// by Lang/StrSize. LBraceLoc, if valid, provides the location of
2898/// the '{' brace. Otherwise, this linkage specification does not
2899/// have any braces.
2900Sema::DeclPtrTy Sema::ActOnStartLinkageSpecification(Scope *S,
2901                                                     SourceLocation ExternLoc,
2902                                                     SourceLocation LangLoc,
2903                                                     const char *Lang,
2904                                                     unsigned StrSize,
2905                                                     SourceLocation LBraceLoc) {
2906  LinkageSpecDecl::LanguageIDs Language;
2907  if (strncmp(Lang, "\"C\"", StrSize) == 0)
2908    Language = LinkageSpecDecl::lang_c;
2909  else if (strncmp(Lang, "\"C++\"", StrSize) == 0)
2910    Language = LinkageSpecDecl::lang_cxx;
2911  else {
2912    Diag(LangLoc, diag::err_bad_language);
2913    return DeclPtrTy();
2914  }
2915
2916  // FIXME: Add all the various semantics of linkage specifications
2917
2918  LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext,
2919                                               LangLoc, Language,
2920                                               LBraceLoc.isValid());
2921  CurContext->addDecl(Context, D);
2922  PushDeclContext(S, D);
2923  return DeclPtrTy::make(D);
2924}
2925
2926/// ActOnFinishLinkageSpecification - Completely the definition of
2927/// the C++ linkage specification LinkageSpec. If RBraceLoc is
2928/// valid, it's the position of the closing '}' brace in a linkage
2929/// specification that uses braces.
2930Sema::DeclPtrTy Sema::ActOnFinishLinkageSpecification(Scope *S,
2931                                                      DeclPtrTy LinkageSpec,
2932                                                      SourceLocation RBraceLoc) {
2933  if (LinkageSpec)
2934    PopDeclContext();
2935  return LinkageSpec;
2936}
2937
2938/// \brief Perform semantic analysis for the variable declaration that
2939/// occurs within a C++ catch clause, returning the newly-created
2940/// variable.
2941VarDecl *Sema::BuildExceptionDeclaration(Scope *S, QualType ExDeclType,
2942                                         IdentifierInfo *Name,
2943                                         SourceLocation Loc,
2944                                         SourceRange Range) {
2945  bool Invalid = false;
2946
2947  // Arrays and functions decay.
2948  if (ExDeclType->isArrayType())
2949    ExDeclType = Context.getArrayDecayedType(ExDeclType);
2950  else if (ExDeclType->isFunctionType())
2951    ExDeclType = Context.getPointerType(ExDeclType);
2952
2953  // C++ 15.3p1: The exception-declaration shall not denote an incomplete type.
2954  // The exception-declaration shall not denote a pointer or reference to an
2955  // incomplete type, other than [cv] void*.
2956  // N2844 forbids rvalue references.
2957  if(!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) {
2958    Diag(Loc, diag::err_catch_rvalue_ref) << Range;
2959    Invalid = true;
2960  }
2961
2962  QualType BaseType = ExDeclType;
2963  int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference
2964  unsigned DK = diag::err_catch_incomplete;
2965  if (const PointerType *Ptr = BaseType->getAsPointerType()) {
2966    BaseType = Ptr->getPointeeType();
2967    Mode = 1;
2968    DK = diag::err_catch_incomplete_ptr;
2969  } else if(const ReferenceType *Ref = BaseType->getAsReferenceType()) {
2970    // For the purpose of error recovery, we treat rvalue refs like lvalue refs.
2971    BaseType = Ref->getPointeeType();
2972    Mode = 2;
2973    DK = diag::err_catch_incomplete_ref;
2974  }
2975  if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) &&
2976      !BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK))
2977    Invalid = true;
2978
2979  if (!Invalid && !ExDeclType->isDependentType() &&
2980      RequireNonAbstractType(Loc, ExDeclType,
2981                             diag::err_abstract_type_in_decl,
2982                             AbstractVariableType))
2983    Invalid = true;
2984
2985  // FIXME: Need to test for ability to copy-construct and destroy the
2986  // exception variable.
2987
2988  // FIXME: Need to check for abstract classes.
2989
2990  VarDecl *ExDecl = VarDecl::Create(Context, CurContext, Loc,
2991                                    Name, ExDeclType, VarDecl::None,
2992                                    Range.getBegin());
2993
2994  if (Invalid)
2995    ExDecl->setInvalidDecl();
2996
2997  return ExDecl;
2998}
2999
3000/// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch
3001/// handler.
3002Sema::DeclPtrTy Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) {
3003  QualType ExDeclType = GetTypeForDeclarator(D, S);
3004
3005  bool Invalid = D.isInvalidType();
3006  IdentifierInfo *II = D.getIdentifier();
3007  if (NamedDecl *PrevDecl = LookupName(S, II, LookupOrdinaryName)) {
3008    // The scope should be freshly made just for us. There is just no way
3009    // it contains any previous declaration.
3010    assert(!S->isDeclScope(DeclPtrTy::make(PrevDecl)));
3011    if (PrevDecl->isTemplateParameter()) {
3012      // Maybe we will complain about the shadowed template parameter.
3013      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
3014    }
3015  }
3016
3017  if (D.getCXXScopeSpec().isSet() && !Invalid) {
3018    Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator)
3019      << D.getCXXScopeSpec().getRange();
3020    Invalid = true;
3021  }
3022
3023  VarDecl *ExDecl = BuildExceptionDeclaration(S, ExDeclType,
3024                                              D.getIdentifier(),
3025                                              D.getIdentifierLoc(),
3026                                            D.getDeclSpec().getSourceRange());
3027
3028  if (Invalid)
3029    ExDecl->setInvalidDecl();
3030
3031  // Add the exception declaration into this scope.
3032  if (II)
3033    PushOnScopeChains(ExDecl, S);
3034  else
3035    CurContext->addDecl(Context, ExDecl);
3036
3037  ProcessDeclAttributes(S, ExDecl, D);
3038  return DeclPtrTy::make(ExDecl);
3039}
3040
3041Sema::DeclPtrTy Sema::ActOnStaticAssertDeclaration(SourceLocation AssertLoc,
3042                                                   ExprArg assertexpr,
3043                                                   ExprArg assertmessageexpr) {
3044  Expr *AssertExpr = (Expr *)assertexpr.get();
3045  StringLiteral *AssertMessage =
3046    cast<StringLiteral>((Expr *)assertmessageexpr.get());
3047
3048  if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent()) {
3049    llvm::APSInt Value(32);
3050    if (!AssertExpr->isIntegerConstantExpr(Value, Context)) {
3051      Diag(AssertLoc, diag::err_static_assert_expression_is_not_constant) <<
3052        AssertExpr->getSourceRange();
3053      return DeclPtrTy();
3054    }
3055
3056    if (Value == 0) {
3057      std::string str(AssertMessage->getStrData(),
3058                      AssertMessage->getByteLength());
3059      Diag(AssertLoc, diag::err_static_assert_failed)
3060        << str << AssertExpr->getSourceRange();
3061    }
3062  }
3063
3064  assertexpr.release();
3065  assertmessageexpr.release();
3066  Decl *Decl = StaticAssertDecl::Create(Context, CurContext, AssertLoc,
3067                                        AssertExpr, AssertMessage);
3068
3069  CurContext->addDecl(Context, Decl);
3070  return DeclPtrTy::make(Decl);
3071}
3072
3073bool Sema::ActOnFriendDecl(Scope *S, SourceLocation FriendLoc, DeclPtrTy Dcl) {
3074  if (!(S->getFlags() & Scope::ClassScope)) {
3075    Diag(FriendLoc, diag::err_friend_decl_outside_class);
3076    return true;
3077  }
3078
3079  return false;
3080}
3081
3082void Sema::SetDeclDeleted(DeclPtrTy dcl, SourceLocation DelLoc) {
3083  Decl *Dcl = dcl.getAs<Decl>();
3084  FunctionDecl *Fn = dyn_cast<FunctionDecl>(Dcl);
3085  if (!Fn) {
3086    Diag(DelLoc, diag::err_deleted_non_function);
3087    return;
3088  }
3089  if (const FunctionDecl *Prev = Fn->getPreviousDeclaration()) {
3090    Diag(DelLoc, diag::err_deleted_decl_not_first);
3091    Diag(Prev->getLocation(), diag::note_previous_declaration);
3092    // If the declaration wasn't the first, we delete the function anyway for
3093    // recovery.
3094  }
3095  Fn->setDeleted();
3096}
3097
3098static void SearchForReturnInStmt(Sema &Self, Stmt *S) {
3099  for (Stmt::child_iterator CI = S->child_begin(), E = S->child_end(); CI != E;
3100       ++CI) {
3101    Stmt *SubStmt = *CI;
3102    if (!SubStmt)
3103      continue;
3104    if (isa<ReturnStmt>(SubStmt))
3105      Self.Diag(SubStmt->getSourceRange().getBegin(),
3106           diag::err_return_in_constructor_handler);
3107    if (!isa<Expr>(SubStmt))
3108      SearchForReturnInStmt(Self, SubStmt);
3109  }
3110}
3111
3112void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) {
3113  for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) {
3114    CXXCatchStmt *Handler = TryBlock->getHandler(I);
3115    SearchForReturnInStmt(*this, Handler);
3116  }
3117}
3118
3119bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New,
3120                                             const CXXMethodDecl *Old) {
3121  QualType NewTy = New->getType()->getAsFunctionType()->getResultType();
3122  QualType OldTy = Old->getType()->getAsFunctionType()->getResultType();
3123
3124  QualType CNewTy = Context.getCanonicalType(NewTy);
3125  QualType COldTy = Context.getCanonicalType(OldTy);
3126
3127  if (CNewTy == COldTy &&
3128      CNewTy.getCVRQualifiers() == COldTy.getCVRQualifiers())
3129    return false;
3130
3131  // Check if the return types are covariant
3132  QualType NewClassTy, OldClassTy;
3133
3134  /// Both types must be pointers or references to classes.
3135  if (PointerType *NewPT = dyn_cast<PointerType>(NewTy)) {
3136    if (PointerType *OldPT = dyn_cast<PointerType>(OldTy)) {
3137      NewClassTy = NewPT->getPointeeType();
3138      OldClassTy = OldPT->getPointeeType();
3139    }
3140  } else if (ReferenceType *NewRT = dyn_cast<ReferenceType>(NewTy)) {
3141    if (ReferenceType *OldRT = dyn_cast<ReferenceType>(OldTy)) {
3142      NewClassTy = NewRT->getPointeeType();
3143      OldClassTy = OldRT->getPointeeType();
3144    }
3145  }
3146
3147  // The return types aren't either both pointers or references to a class type.
3148  if (NewClassTy.isNull()) {
3149    Diag(New->getLocation(),
3150         diag::err_different_return_type_for_overriding_virtual_function)
3151      << New->getDeclName() << NewTy << OldTy;
3152    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
3153
3154    return true;
3155  }
3156
3157  if (NewClassTy.getUnqualifiedType() != OldClassTy.getUnqualifiedType()) {
3158    // Check if the new class derives from the old class.
3159    if (!IsDerivedFrom(NewClassTy, OldClassTy)) {
3160      Diag(New->getLocation(),
3161           diag::err_covariant_return_not_derived)
3162      << New->getDeclName() << NewTy << OldTy;
3163      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
3164      return true;
3165    }
3166
3167    // Check if we the conversion from derived to base is valid.
3168    if (CheckDerivedToBaseConversion(NewClassTy, OldClassTy,
3169                      diag::err_covariant_return_inaccessible_base,
3170                      diag::err_covariant_return_ambiguous_derived_to_base_conv,
3171                      // FIXME: Should this point to the return type?
3172                      New->getLocation(), SourceRange(), New->getDeclName())) {
3173      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
3174      return true;
3175    }
3176  }
3177
3178  // The qualifiers of the return types must be the same.
3179  if (CNewTy.getCVRQualifiers() != COldTy.getCVRQualifiers()) {
3180    Diag(New->getLocation(),
3181         diag::err_covariant_return_type_different_qualifications)
3182    << New->getDeclName() << NewTy << OldTy;
3183    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
3184    return true;
3185  };
3186
3187
3188  // The new class type must have the same or less qualifiers as the old type.
3189  if (NewClassTy.isMoreQualifiedThan(OldClassTy)) {
3190    Diag(New->getLocation(),
3191         diag::err_covariant_return_type_class_type_more_qualified)
3192    << New->getDeclName() << NewTy << OldTy;
3193    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
3194    return true;
3195  };
3196
3197  return false;
3198}
3199
3200/// ActOnCXXEnterDeclInitializer - Invoked when we are about to parse an
3201/// initializer for the declaration 'Dcl'.
3202/// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a
3203/// static data member of class X, names should be looked up in the scope of
3204/// class X.
3205void Sema::ActOnCXXEnterDeclInitializer(Scope *S, DeclPtrTy Dcl) {
3206  Decl *D = Dcl.getAs<Decl>();
3207  // If there is no declaration, there was an error parsing it.
3208  if (D == 0)
3209    return;
3210
3211  // Check whether it is a declaration with a nested name specifier like
3212  // int foo::bar;
3213  if (!D->isOutOfLine())
3214    return;
3215
3216  // C++ [basic.lookup.unqual]p13
3217  //
3218  // A name used in the definition of a static data member of class X
3219  // (after the qualified-id of the static member) is looked up as if the name
3220  // was used in a member function of X.
3221
3222  // Change current context into the context of the initializing declaration.
3223  EnterDeclaratorContext(S, D->getDeclContext());
3224}
3225
3226/// ActOnCXXExitDeclInitializer - Invoked after we are finished parsing an
3227/// initializer for the declaration 'Dcl'.
3228void Sema::ActOnCXXExitDeclInitializer(Scope *S, DeclPtrTy Dcl) {
3229  Decl *D = Dcl.getAs<Decl>();
3230  // If there is no declaration, there was an error parsing it.
3231  if (D == 0)
3232    return;
3233
3234  // Check whether it is a declaration with a nested name specifier like
3235  // int foo::bar;
3236  if (!D->isOutOfLine())
3237    return;
3238
3239  assert(S->getEntity() == D->getDeclContext() && "Context imbalance!");
3240  ExitDeclaratorContext(S);
3241}
3242