SemaDeclCXX.cpp revision 30ecfad3af057bff74d1c98099eda0677525574e
1//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for C++ declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/CXXFieldCollector.h"
16#include "clang/Sema/Scope.h"
17#include "clang/Sema/Initialization.h"
18#include "clang/Sema/Lookup.h"
19#include "clang/AST/ASTConsumer.h"
20#include "clang/AST/ASTContext.h"
21#include "clang/AST/ASTMutationListener.h"
22#include "clang/AST/CharUnits.h"
23#include "clang/AST/CXXInheritance.h"
24#include "clang/AST/DeclVisitor.h"
25#include "clang/AST/ExprCXX.h"
26#include "clang/AST/RecordLayout.h"
27#include "clang/AST/StmtVisitor.h"
28#include "clang/AST/TypeLoc.h"
29#include "clang/AST/TypeOrdering.h"
30#include "clang/Sema/DeclSpec.h"
31#include "clang/Sema/ParsedTemplate.h"
32#include "clang/Basic/PartialDiagnostic.h"
33#include "clang/Lex/Preprocessor.h"
34#include "llvm/ADT/DenseSet.h"
35#include "llvm/ADT/SmallString.h"
36#include "llvm/ADT/STLExtras.h"
37#include <map>
38#include <set>
39
40using namespace clang;
41
42//===----------------------------------------------------------------------===//
43// CheckDefaultArgumentVisitor
44//===----------------------------------------------------------------------===//
45
46namespace {
47  /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
48  /// the default argument of a parameter to determine whether it
49  /// contains any ill-formed subexpressions. For example, this will
50  /// diagnose the use of local variables or parameters within the
51  /// default argument expression.
52  class CheckDefaultArgumentVisitor
53    : public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
54    Expr *DefaultArg;
55    Sema *S;
56
57  public:
58    CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
59      : DefaultArg(defarg), S(s) {}
60
61    bool VisitExpr(Expr *Node);
62    bool VisitDeclRefExpr(DeclRefExpr *DRE);
63    bool VisitCXXThisExpr(CXXThisExpr *ThisE);
64  };
65
66  /// VisitExpr - Visit all of the children of this expression.
67  bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
68    bool IsInvalid = false;
69    for (Stmt::child_range I = Node->children(); I; ++I)
70      IsInvalid |= Visit(*I);
71    return IsInvalid;
72  }
73
74  /// VisitDeclRefExpr - Visit a reference to a declaration, to
75  /// determine whether this declaration can be used in the default
76  /// argument expression.
77  bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
78    NamedDecl *Decl = DRE->getDecl();
79    if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
80      // C++ [dcl.fct.default]p9
81      //   Default arguments are evaluated each time the function is
82      //   called. The order of evaluation of function arguments is
83      //   unspecified. Consequently, parameters of a function shall not
84      //   be used in default argument expressions, even if they are not
85      //   evaluated. Parameters of a function declared before a default
86      //   argument expression are in scope and can hide namespace and
87      //   class member names.
88      return S->Diag(DRE->getSourceRange().getBegin(),
89                     diag::err_param_default_argument_references_param)
90         << Param->getDeclName() << DefaultArg->getSourceRange();
91    } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
92      // C++ [dcl.fct.default]p7
93      //   Local variables shall not be used in default argument
94      //   expressions.
95      if (VDecl->isLocalVarDecl())
96        return S->Diag(DRE->getSourceRange().getBegin(),
97                       diag::err_param_default_argument_references_local)
98          << VDecl->getDeclName() << DefaultArg->getSourceRange();
99    }
100
101    return false;
102  }
103
104  /// VisitCXXThisExpr - Visit a C++ "this" expression.
105  bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
106    // C++ [dcl.fct.default]p8:
107    //   The keyword this shall not be used in a default argument of a
108    //   member function.
109    return S->Diag(ThisE->getSourceRange().getBegin(),
110                   diag::err_param_default_argument_references_this)
111               << ThisE->getSourceRange();
112  }
113}
114
115void Sema::ImplicitExceptionSpecification::CalledDecl(CXXMethodDecl *Method) {
116  assert(Context && "ImplicitExceptionSpecification without an ASTContext");
117  // If we have an MSAny or unknown spec already, don't bother.
118  if (!Method || ComputedEST == EST_MSAny || ComputedEST == EST_Delayed)
119    return;
120
121  const FunctionProtoType *Proto
122    = Method->getType()->getAs<FunctionProtoType>();
123
124  ExceptionSpecificationType EST = Proto->getExceptionSpecType();
125
126  // If this function can throw any exceptions, make a note of that.
127  if (EST == EST_Delayed || EST == EST_MSAny || EST == EST_None) {
128    ClearExceptions();
129    ComputedEST = EST;
130    return;
131  }
132
133  // FIXME: If the call to this decl is using any of its default arguments, we
134  // need to search them for potentially-throwing calls.
135
136  // If this function has a basic noexcept, it doesn't affect the outcome.
137  if (EST == EST_BasicNoexcept)
138    return;
139
140  // If we have a throw-all spec at this point, ignore the function.
141  if (ComputedEST == EST_None)
142    return;
143
144  // If we're still at noexcept(true) and there's a nothrow() callee,
145  // change to that specification.
146  if (EST == EST_DynamicNone) {
147    if (ComputedEST == EST_BasicNoexcept)
148      ComputedEST = EST_DynamicNone;
149    return;
150  }
151
152  // Check out noexcept specs.
153  if (EST == EST_ComputedNoexcept) {
154    FunctionProtoType::NoexceptResult NR = Proto->getNoexceptSpec(*Context);
155    assert(NR != FunctionProtoType::NR_NoNoexcept &&
156           "Must have noexcept result for EST_ComputedNoexcept.");
157    assert(NR != FunctionProtoType::NR_Dependent &&
158           "Should not generate implicit declarations for dependent cases, "
159           "and don't know how to handle them anyway.");
160
161    // noexcept(false) -> no spec on the new function
162    if (NR == FunctionProtoType::NR_Throw) {
163      ClearExceptions();
164      ComputedEST = EST_None;
165    }
166    // noexcept(true) won't change anything either.
167    return;
168  }
169
170  assert(EST == EST_Dynamic && "EST case not considered earlier.");
171  assert(ComputedEST != EST_None &&
172         "Shouldn't collect exceptions when throw-all is guaranteed.");
173  ComputedEST = EST_Dynamic;
174  // Record the exceptions in this function's exception specification.
175  for (FunctionProtoType::exception_iterator E = Proto->exception_begin(),
176                                          EEnd = Proto->exception_end();
177       E != EEnd; ++E)
178    if (ExceptionsSeen.insert(Context->getCanonicalType(*E)))
179      Exceptions.push_back(*E);
180}
181
182void Sema::ImplicitExceptionSpecification::CalledExpr(Expr *E) {
183  if (!E || ComputedEST == EST_MSAny || ComputedEST == EST_Delayed)
184    return;
185
186  // FIXME:
187  //
188  // C++0x [except.spec]p14:
189  //   [An] implicit exception-specification specifies the type-id T if and
190  // only if T is allowed by the exception-specification of a function directly
191  // invoked by f's implicit definition; f shall allow all exceptions if any
192  // function it directly invokes allows all exceptions, and f shall allow no
193  // exceptions if every function it directly invokes allows no exceptions.
194  //
195  // Note in particular that if an implicit exception-specification is generated
196  // for a function containing a throw-expression, that specification can still
197  // be noexcept(true).
198  //
199  // Note also that 'directly invoked' is not defined in the standard, and there
200  // is no indication that we should only consider potentially-evaluated calls.
201  //
202  // Ultimately we should implement the intent of the standard: the exception
203  // specification should be the set of exceptions which can be thrown by the
204  // implicit definition. For now, we assume that any non-nothrow expression can
205  // throw any exception.
206
207  if (E->CanThrow(*Context))
208    ComputedEST = EST_None;
209}
210
211bool
212Sema::SetParamDefaultArgument(ParmVarDecl *Param, Expr *Arg,
213                              SourceLocation EqualLoc) {
214  if (RequireCompleteType(Param->getLocation(), Param->getType(),
215                          diag::err_typecheck_decl_incomplete_type)) {
216    Param->setInvalidDecl();
217    return true;
218  }
219
220  // C++ [dcl.fct.default]p5
221  //   A default argument expression is implicitly converted (clause
222  //   4) to the parameter type. The default argument expression has
223  //   the same semantic constraints as the initializer expression in
224  //   a declaration of a variable of the parameter type, using the
225  //   copy-initialization semantics (8.5).
226  InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
227                                                                    Param);
228  InitializationKind Kind = InitializationKind::CreateCopy(Param->getLocation(),
229                                                           EqualLoc);
230  InitializationSequence InitSeq(*this, Entity, Kind, &Arg, 1);
231  ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
232                                      MultiExprArg(*this, &Arg, 1));
233  if (Result.isInvalid())
234    return true;
235  Arg = Result.takeAs<Expr>();
236
237  CheckImplicitConversions(Arg, EqualLoc);
238  Arg = MaybeCreateExprWithCleanups(Arg);
239
240  // Okay: add the default argument to the parameter
241  Param->setDefaultArg(Arg);
242
243  // We have already instantiated this parameter; provide each of the
244  // instantiations with the uninstantiated default argument.
245  UnparsedDefaultArgInstantiationsMap::iterator InstPos
246    = UnparsedDefaultArgInstantiations.find(Param);
247  if (InstPos != UnparsedDefaultArgInstantiations.end()) {
248    for (unsigned I = 0, N = InstPos->second.size(); I != N; ++I)
249      InstPos->second[I]->setUninstantiatedDefaultArg(Arg);
250
251    // We're done tracking this parameter's instantiations.
252    UnparsedDefaultArgInstantiations.erase(InstPos);
253  }
254
255  return false;
256}
257
258/// ActOnParamDefaultArgument - Check whether the default argument
259/// provided for a function parameter is well-formed. If so, attach it
260/// to the parameter declaration.
261void
262Sema::ActOnParamDefaultArgument(Decl *param, SourceLocation EqualLoc,
263                                Expr *DefaultArg) {
264  if (!param || !DefaultArg)
265    return;
266
267  ParmVarDecl *Param = cast<ParmVarDecl>(param);
268  UnparsedDefaultArgLocs.erase(Param);
269
270  // Default arguments are only permitted in C++
271  if (!getLangOptions().CPlusPlus) {
272    Diag(EqualLoc, diag::err_param_default_argument)
273      << DefaultArg->getSourceRange();
274    Param->setInvalidDecl();
275    return;
276  }
277
278  // Check for unexpanded parameter packs.
279  if (DiagnoseUnexpandedParameterPack(DefaultArg, UPPC_DefaultArgument)) {
280    Param->setInvalidDecl();
281    return;
282  }
283
284  // Check that the default argument is well-formed
285  CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg, this);
286  if (DefaultArgChecker.Visit(DefaultArg)) {
287    Param->setInvalidDecl();
288    return;
289  }
290
291  SetParamDefaultArgument(Param, DefaultArg, EqualLoc);
292}
293
294/// ActOnParamUnparsedDefaultArgument - We've seen a default
295/// argument for a function parameter, but we can't parse it yet
296/// because we're inside a class definition. Note that this default
297/// argument will be parsed later.
298void Sema::ActOnParamUnparsedDefaultArgument(Decl *param,
299                                             SourceLocation EqualLoc,
300                                             SourceLocation ArgLoc) {
301  if (!param)
302    return;
303
304  ParmVarDecl *Param = cast<ParmVarDecl>(param);
305  if (Param)
306    Param->setUnparsedDefaultArg();
307
308  UnparsedDefaultArgLocs[Param] = ArgLoc;
309}
310
311/// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
312/// the default argument for the parameter param failed.
313void Sema::ActOnParamDefaultArgumentError(Decl *param) {
314  if (!param)
315    return;
316
317  ParmVarDecl *Param = cast<ParmVarDecl>(param);
318
319  Param->setInvalidDecl();
320
321  UnparsedDefaultArgLocs.erase(Param);
322}
323
324/// CheckExtraCXXDefaultArguments - Check for any extra default
325/// arguments in the declarator, which is not a function declaration
326/// or definition and therefore is not permitted to have default
327/// arguments. This routine should be invoked for every declarator
328/// that is not a function declaration or definition.
329void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
330  // C++ [dcl.fct.default]p3
331  //   A default argument expression shall be specified only in the
332  //   parameter-declaration-clause of a function declaration or in a
333  //   template-parameter (14.1). It shall not be specified for a
334  //   parameter pack. If it is specified in a
335  //   parameter-declaration-clause, it shall not occur within a
336  //   declarator or abstract-declarator of a parameter-declaration.
337  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
338    DeclaratorChunk &chunk = D.getTypeObject(i);
339    if (chunk.Kind == DeclaratorChunk::Function) {
340      for (unsigned argIdx = 0, e = chunk.Fun.NumArgs; argIdx != e; ++argIdx) {
341        ParmVarDecl *Param =
342          cast<ParmVarDecl>(chunk.Fun.ArgInfo[argIdx].Param);
343        if (Param->hasUnparsedDefaultArg()) {
344          CachedTokens *Toks = chunk.Fun.ArgInfo[argIdx].DefaultArgTokens;
345          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
346            << SourceRange((*Toks)[1].getLocation(), Toks->back().getLocation());
347          delete Toks;
348          chunk.Fun.ArgInfo[argIdx].DefaultArgTokens = 0;
349        } else if (Param->getDefaultArg()) {
350          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
351            << Param->getDefaultArg()->getSourceRange();
352          Param->setDefaultArg(0);
353        }
354      }
355    }
356  }
357}
358
359// MergeCXXFunctionDecl - Merge two declarations of the same C++
360// function, once we already know that they have the same
361// type. Subroutine of MergeFunctionDecl. Returns true if there was an
362// error, false otherwise.
363bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old) {
364  bool Invalid = false;
365
366  // C++ [dcl.fct.default]p4:
367  //   For non-template functions, default arguments can be added in
368  //   later declarations of a function in the same
369  //   scope. Declarations in different scopes have completely
370  //   distinct sets of default arguments. That is, declarations in
371  //   inner scopes do not acquire default arguments from
372  //   declarations in outer scopes, and vice versa. In a given
373  //   function declaration, all parameters subsequent to a
374  //   parameter with a default argument shall have default
375  //   arguments supplied in this or previous declarations. A
376  //   default argument shall not be redefined by a later
377  //   declaration (not even to the same value).
378  //
379  // C++ [dcl.fct.default]p6:
380  //   Except for member functions of class templates, the default arguments
381  //   in a member function definition that appears outside of the class
382  //   definition are added to the set of default arguments provided by the
383  //   member function declaration in the class definition.
384  for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) {
385    ParmVarDecl *OldParam = Old->getParamDecl(p);
386    ParmVarDecl *NewParam = New->getParamDecl(p);
387
388    if (OldParam->hasDefaultArg() && NewParam->hasDefaultArg()) {
389
390      unsigned DiagDefaultParamID =
391        diag::err_param_default_argument_redefinition;
392
393      // MSVC accepts that default parameters be redefined for member functions
394      // of template class. The new default parameter's value is ignored.
395      Invalid = true;
396      if (getLangOptions().MicrosoftExt) {
397        CXXMethodDecl* MD = dyn_cast<CXXMethodDecl>(New);
398        if (MD && MD->getParent()->getDescribedClassTemplate()) {
399          // Merge the old default argument into the new parameter.
400          NewParam->setHasInheritedDefaultArg();
401          if (OldParam->hasUninstantiatedDefaultArg())
402            NewParam->setUninstantiatedDefaultArg(
403                                      OldParam->getUninstantiatedDefaultArg());
404          else
405            NewParam->setDefaultArg(OldParam->getInit());
406          DiagDefaultParamID = diag::warn_param_default_argument_redefinition;
407          Invalid = false;
408        }
409      }
410
411      // FIXME: If we knew where the '=' was, we could easily provide a fix-it
412      // hint here. Alternatively, we could walk the type-source information
413      // for NewParam to find the last source location in the type... but it
414      // isn't worth the effort right now. This is the kind of test case that
415      // is hard to get right:
416      //   int f(int);
417      //   void g(int (*fp)(int) = f);
418      //   void g(int (*fp)(int) = &f);
419      Diag(NewParam->getLocation(), DiagDefaultParamID)
420        << NewParam->getDefaultArgRange();
421
422      // Look for the function declaration where the default argument was
423      // actually written, which may be a declaration prior to Old.
424      for (FunctionDecl *Older = Old->getPreviousDecl();
425           Older; Older = Older->getPreviousDecl()) {
426        if (!Older->getParamDecl(p)->hasDefaultArg())
427          break;
428
429        OldParam = Older->getParamDecl(p);
430      }
431
432      Diag(OldParam->getLocation(), diag::note_previous_definition)
433        << OldParam->getDefaultArgRange();
434    } else if (OldParam->hasDefaultArg()) {
435      // Merge the old default argument into the new parameter.
436      // It's important to use getInit() here;  getDefaultArg()
437      // strips off any top-level ExprWithCleanups.
438      NewParam->setHasInheritedDefaultArg();
439      if (OldParam->hasUninstantiatedDefaultArg())
440        NewParam->setUninstantiatedDefaultArg(
441                                      OldParam->getUninstantiatedDefaultArg());
442      else
443        NewParam->setDefaultArg(OldParam->getInit());
444    } else if (NewParam->hasDefaultArg()) {
445      if (New->getDescribedFunctionTemplate()) {
446        // Paragraph 4, quoted above, only applies to non-template functions.
447        Diag(NewParam->getLocation(),
448             diag::err_param_default_argument_template_redecl)
449          << NewParam->getDefaultArgRange();
450        Diag(Old->getLocation(), diag::note_template_prev_declaration)
451          << false;
452      } else if (New->getTemplateSpecializationKind()
453                   != TSK_ImplicitInstantiation &&
454                 New->getTemplateSpecializationKind() != TSK_Undeclared) {
455        // C++ [temp.expr.spec]p21:
456        //   Default function arguments shall not be specified in a declaration
457        //   or a definition for one of the following explicit specializations:
458        //     - the explicit specialization of a function template;
459        //     - the explicit specialization of a member function template;
460        //     - the explicit specialization of a member function of a class
461        //       template where the class template specialization to which the
462        //       member function specialization belongs is implicitly
463        //       instantiated.
464        Diag(NewParam->getLocation(), diag::err_template_spec_default_arg)
465          << (New->getTemplateSpecializationKind() ==TSK_ExplicitSpecialization)
466          << New->getDeclName()
467          << NewParam->getDefaultArgRange();
468      } else if (New->getDeclContext()->isDependentContext()) {
469        // C++ [dcl.fct.default]p6 (DR217):
470        //   Default arguments for a member function of a class template shall
471        //   be specified on the initial declaration of the member function
472        //   within the class template.
473        //
474        // Reading the tea leaves a bit in DR217 and its reference to DR205
475        // leads me to the conclusion that one cannot add default function
476        // arguments for an out-of-line definition of a member function of a
477        // dependent type.
478        int WhichKind = 2;
479        if (CXXRecordDecl *Record
480              = dyn_cast<CXXRecordDecl>(New->getDeclContext())) {
481          if (Record->getDescribedClassTemplate())
482            WhichKind = 0;
483          else if (isa<ClassTemplatePartialSpecializationDecl>(Record))
484            WhichKind = 1;
485          else
486            WhichKind = 2;
487        }
488
489        Diag(NewParam->getLocation(),
490             diag::err_param_default_argument_member_template_redecl)
491          << WhichKind
492          << NewParam->getDefaultArgRange();
493      } else if (CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(New)) {
494        CXXSpecialMember NewSM = getSpecialMember(Ctor),
495                         OldSM = getSpecialMember(cast<CXXConstructorDecl>(Old));
496        if (NewSM != OldSM) {
497          Diag(NewParam->getLocation(),diag::warn_default_arg_makes_ctor_special)
498            << NewParam->getDefaultArgRange() << NewSM;
499          Diag(Old->getLocation(), diag::note_previous_declaration_special)
500            << OldSM;
501        }
502      }
503    }
504  }
505
506  // C++0x [dcl.constexpr]p1: If any declaration of a function or function
507  // template has a constexpr specifier then all its declarations shall
508  // contain the constexpr specifier. [Note: An explicit specialization can
509  // differ from the template declaration with respect to the constexpr
510  // specifier. -- end note]
511  //
512  // FIXME: Don't reject changes in constexpr in explicit specializations.
513  if (New->isConstexpr() != Old->isConstexpr()) {
514    Diag(New->getLocation(), diag::err_constexpr_redecl_mismatch)
515      << New << New->isConstexpr();
516    Diag(Old->getLocation(), diag::note_previous_declaration);
517    Invalid = true;
518  }
519
520  if (CheckEquivalentExceptionSpec(Old, New))
521    Invalid = true;
522
523  return Invalid;
524}
525
526/// \brief Merge the exception specifications of two variable declarations.
527///
528/// This is called when there's a redeclaration of a VarDecl. The function
529/// checks if the redeclaration might have an exception specification and
530/// validates compatibility and merges the specs if necessary.
531void Sema::MergeVarDeclExceptionSpecs(VarDecl *New, VarDecl *Old) {
532  // Shortcut if exceptions are disabled.
533  if (!getLangOptions().CXXExceptions)
534    return;
535
536  assert(Context.hasSameType(New->getType(), Old->getType()) &&
537         "Should only be called if types are otherwise the same.");
538
539  QualType NewType = New->getType();
540  QualType OldType = Old->getType();
541
542  // We're only interested in pointers and references to functions, as well
543  // as pointers to member functions.
544  if (const ReferenceType *R = NewType->getAs<ReferenceType>()) {
545    NewType = R->getPointeeType();
546    OldType = OldType->getAs<ReferenceType>()->getPointeeType();
547  } else if (const PointerType *P = NewType->getAs<PointerType>()) {
548    NewType = P->getPointeeType();
549    OldType = OldType->getAs<PointerType>()->getPointeeType();
550  } else if (const MemberPointerType *M = NewType->getAs<MemberPointerType>()) {
551    NewType = M->getPointeeType();
552    OldType = OldType->getAs<MemberPointerType>()->getPointeeType();
553  }
554
555  if (!NewType->isFunctionProtoType())
556    return;
557
558  // There's lots of special cases for functions. For function pointers, system
559  // libraries are hopefully not as broken so that we don't need these
560  // workarounds.
561  if (CheckEquivalentExceptionSpec(
562        OldType->getAs<FunctionProtoType>(), Old->getLocation(),
563        NewType->getAs<FunctionProtoType>(), New->getLocation())) {
564    New->setInvalidDecl();
565  }
566}
567
568/// CheckCXXDefaultArguments - Verify that the default arguments for a
569/// function declaration are well-formed according to C++
570/// [dcl.fct.default].
571void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
572  unsigned NumParams = FD->getNumParams();
573  unsigned p;
574
575  // Find first parameter with a default argument
576  for (p = 0; p < NumParams; ++p) {
577    ParmVarDecl *Param = FD->getParamDecl(p);
578    if (Param->hasDefaultArg())
579      break;
580  }
581
582  // C++ [dcl.fct.default]p4:
583  //   In a given function declaration, all parameters
584  //   subsequent to a parameter with a default argument shall
585  //   have default arguments supplied in this or previous
586  //   declarations. A default argument shall not be redefined
587  //   by a later declaration (not even to the same value).
588  unsigned LastMissingDefaultArg = 0;
589  for (; p < NumParams; ++p) {
590    ParmVarDecl *Param = FD->getParamDecl(p);
591    if (!Param->hasDefaultArg()) {
592      if (Param->isInvalidDecl())
593        /* We already complained about this parameter. */;
594      else if (Param->getIdentifier())
595        Diag(Param->getLocation(),
596             diag::err_param_default_argument_missing_name)
597          << Param->getIdentifier();
598      else
599        Diag(Param->getLocation(),
600             diag::err_param_default_argument_missing);
601
602      LastMissingDefaultArg = p;
603    }
604  }
605
606  if (LastMissingDefaultArg > 0) {
607    // Some default arguments were missing. Clear out all of the
608    // default arguments up to (and including) the last missing
609    // default argument, so that we leave the function parameters
610    // in a semantically valid state.
611    for (p = 0; p <= LastMissingDefaultArg; ++p) {
612      ParmVarDecl *Param = FD->getParamDecl(p);
613      if (Param->hasDefaultArg()) {
614        Param->setDefaultArg(0);
615      }
616    }
617  }
618}
619
620// CheckConstexprParameterTypes - Check whether a function's parameter types
621// are all literal types. If so, return true. If not, produce a suitable
622// diagnostic depending on @p CCK and return false.
623static bool CheckConstexprParameterTypes(Sema &SemaRef, const FunctionDecl *FD,
624                                         Sema::CheckConstexprKind CCK) {
625  unsigned ArgIndex = 0;
626  const FunctionProtoType *FT = FD->getType()->getAs<FunctionProtoType>();
627  for (FunctionProtoType::arg_type_iterator i = FT->arg_type_begin(),
628       e = FT->arg_type_end(); i != e; ++i, ++ArgIndex) {
629    const ParmVarDecl *PD = FD->getParamDecl(ArgIndex);
630    SourceLocation ParamLoc = PD->getLocation();
631    if (!(*i)->isDependentType() &&
632        SemaRef.RequireLiteralType(ParamLoc, *i, CCK == Sema::CCK_Declaration ?
633                            SemaRef.PDiag(diag::err_constexpr_non_literal_param)
634                                     << ArgIndex+1 << PD->getSourceRange()
635                                     << isa<CXXConstructorDecl>(FD) :
636                                   SemaRef.PDiag(),
637                                   /*AllowIncompleteType*/ true)) {
638      if (CCK == Sema::CCK_NoteNonConstexprInstantiation)
639        SemaRef.Diag(ParamLoc, diag::note_constexpr_tmpl_non_literal_param)
640          << ArgIndex+1 << PD->getSourceRange()
641          << isa<CXXConstructorDecl>(FD) << *i;
642      return false;
643    }
644  }
645  return true;
646}
647
648// CheckConstexprFunctionDecl - Check whether a function declaration satisfies
649// the requirements of a constexpr function declaration or a constexpr
650// constructor declaration. Return true if it does, false if not.
651//
652// This implements C++11 [dcl.constexpr]p3,4, as amended by N3308.
653//
654// \param CCK Specifies whether to produce diagnostics if the function does not
655// satisfy the requirements.
656bool Sema::CheckConstexprFunctionDecl(const FunctionDecl *NewFD,
657                                      CheckConstexprKind CCK) {
658  assert((CCK != CCK_NoteNonConstexprInstantiation ||
659          (NewFD->getTemplateInstantiationPattern() &&
660           NewFD->getTemplateInstantiationPattern()->isConstexpr())) &&
661         "only constexpr templates can be instantiated non-constexpr");
662
663  const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
664  if (MD && MD->isInstance()) {
665    // C++11 [dcl.constexpr]p4: In the definition of a constexpr constructor...
666    //  In addition, either its function-body shall be = delete or = default or
667    //  it shall satisfy the following constraints:
668    //  - the class shall not have any virtual base classes;
669    //
670    // We apply this to constexpr member functions too: the class cannot be a
671    // literal type, so the members are not permitted to be constexpr.
672    const CXXRecordDecl *RD = MD->getParent();
673    if (RD->getNumVBases()) {
674      // Note, this is still illegal if the body is = default, since the
675      // implicit body does not satisfy the requirements of a constexpr
676      // constructor. We also reject cases where the body is = delete, as
677      // required by N3308.
678      if (CCK != CCK_Instantiation) {
679        Diag(NewFD->getLocation(),
680             CCK == CCK_Declaration ? diag::err_constexpr_virtual_base
681                                    : diag::note_constexpr_tmpl_virtual_base)
682          << isa<CXXConstructorDecl>(NewFD) << RD->isStruct()
683          << RD->getNumVBases();
684        for (CXXRecordDecl::base_class_const_iterator I = RD->vbases_begin(),
685               E = RD->vbases_end(); I != E; ++I)
686          Diag(I->getSourceRange().getBegin(),
687               diag::note_constexpr_virtual_base_here) << I->getSourceRange();
688      }
689      return false;
690    }
691  }
692
693  if (!isa<CXXConstructorDecl>(NewFD)) {
694    // C++11 [dcl.constexpr]p3:
695    //  The definition of a constexpr function shall satisfy the following
696    //  constraints:
697    // - it shall not be virtual;
698    const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD);
699    if (Method && Method->isVirtual()) {
700      if (CCK != CCK_Instantiation) {
701        Diag(NewFD->getLocation(),
702             CCK == CCK_Declaration ? diag::err_constexpr_virtual
703                                    : diag::note_constexpr_tmpl_virtual);
704
705        // If it's not obvious why this function is virtual, find an overridden
706        // function which uses the 'virtual' keyword.
707        const CXXMethodDecl *WrittenVirtual = Method;
708        while (!WrittenVirtual->isVirtualAsWritten())
709          WrittenVirtual = *WrittenVirtual->begin_overridden_methods();
710        if (WrittenVirtual != Method)
711          Diag(WrittenVirtual->getLocation(),
712               diag::note_overridden_virtual_function);
713      }
714      return false;
715    }
716
717    // - its return type shall be a literal type;
718    QualType RT = NewFD->getResultType();
719    if (!RT->isDependentType() &&
720        RequireLiteralType(NewFD->getLocation(), RT, CCK == CCK_Declaration ?
721                           PDiag(diag::err_constexpr_non_literal_return) :
722                           PDiag(),
723                           /*AllowIncompleteType*/ true)) {
724      if (CCK == CCK_NoteNonConstexprInstantiation)
725        Diag(NewFD->getLocation(),
726             diag::note_constexpr_tmpl_non_literal_return) << RT;
727      return false;
728    }
729  }
730
731  // - each of its parameter types shall be a literal type;
732  if (!CheckConstexprParameterTypes(*this, NewFD, CCK))
733    return false;
734
735  return true;
736}
737
738/// Check the given declaration statement is legal within a constexpr function
739/// body. C++0x [dcl.constexpr]p3,p4.
740///
741/// \return true if the body is OK, false if we have diagnosed a problem.
742static bool CheckConstexprDeclStmt(Sema &SemaRef, const FunctionDecl *Dcl,
743                                   DeclStmt *DS) {
744  // C++0x [dcl.constexpr]p3 and p4:
745  //  The definition of a constexpr function(p3) or constructor(p4) [...] shall
746  //  contain only
747  for (DeclStmt::decl_iterator DclIt = DS->decl_begin(),
748         DclEnd = DS->decl_end(); DclIt != DclEnd; ++DclIt) {
749    switch ((*DclIt)->getKind()) {
750    case Decl::StaticAssert:
751    case Decl::Using:
752    case Decl::UsingShadow:
753    case Decl::UsingDirective:
754    case Decl::UnresolvedUsingTypename:
755      //   - static_assert-declarations
756      //   - using-declarations,
757      //   - using-directives,
758      continue;
759
760    case Decl::Typedef:
761    case Decl::TypeAlias: {
762      //   - typedef declarations and alias-declarations that do not define
763      //     classes or enumerations,
764      TypedefNameDecl *TN = cast<TypedefNameDecl>(*DclIt);
765      if (TN->getUnderlyingType()->isVariablyModifiedType()) {
766        // Don't allow variably-modified types in constexpr functions.
767        TypeLoc TL = TN->getTypeSourceInfo()->getTypeLoc();
768        SemaRef.Diag(TL.getBeginLoc(), diag::err_constexpr_vla)
769          << TL.getSourceRange() << TL.getType()
770          << isa<CXXConstructorDecl>(Dcl);
771        return false;
772      }
773      continue;
774    }
775
776    case Decl::Enum:
777    case Decl::CXXRecord:
778      // As an extension, we allow the declaration (but not the definition) of
779      // classes and enumerations in all declarations, not just in typedef and
780      // alias declarations.
781      if (cast<TagDecl>(*DclIt)->isThisDeclarationADefinition()) {
782        SemaRef.Diag(DS->getLocStart(), diag::err_constexpr_type_definition)
783          << isa<CXXConstructorDecl>(Dcl);
784        return false;
785      }
786      continue;
787
788    case Decl::Var:
789      SemaRef.Diag(DS->getLocStart(), diag::err_constexpr_var_declaration)
790        << isa<CXXConstructorDecl>(Dcl);
791      return false;
792
793    default:
794      SemaRef.Diag(DS->getLocStart(), diag::err_constexpr_body_invalid_stmt)
795        << isa<CXXConstructorDecl>(Dcl);
796      return false;
797    }
798  }
799
800  return true;
801}
802
803/// Check that the given field is initialized within a constexpr constructor.
804///
805/// \param Dcl The constexpr constructor being checked.
806/// \param Field The field being checked. This may be a member of an anonymous
807///        struct or union nested within the class being checked.
808/// \param Inits All declarations, including anonymous struct/union members and
809///        indirect members, for which any initialization was provided.
810/// \param Diagnosed Set to true if an error is produced.
811static void CheckConstexprCtorInitializer(Sema &SemaRef,
812                                          const FunctionDecl *Dcl,
813                                          FieldDecl *Field,
814                                          llvm::SmallSet<Decl*, 16> &Inits,
815                                          bool &Diagnosed) {
816  if (Field->isUnnamedBitfield())
817    return;
818
819  if (Field->isAnonymousStructOrUnion() &&
820      Field->getType()->getAsCXXRecordDecl()->isEmpty())
821    return;
822
823  if (!Inits.count(Field)) {
824    if (!Diagnosed) {
825      SemaRef.Diag(Dcl->getLocation(), diag::err_constexpr_ctor_missing_init);
826      Diagnosed = true;
827    }
828    SemaRef.Diag(Field->getLocation(), diag::note_constexpr_ctor_missing_init);
829  } else if (Field->isAnonymousStructOrUnion()) {
830    const RecordDecl *RD = Field->getType()->castAs<RecordType>()->getDecl();
831    for (RecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end();
832         I != E; ++I)
833      // If an anonymous union contains an anonymous struct of which any member
834      // is initialized, all members must be initialized.
835      if (!RD->isUnion() || Inits.count(*I))
836        CheckConstexprCtorInitializer(SemaRef, Dcl, *I, Inits, Diagnosed);
837  }
838}
839
840/// Check the body for the given constexpr function declaration only contains
841/// the permitted types of statement. C++11 [dcl.constexpr]p3,p4.
842///
843/// \return true if the body is OK, false if we have diagnosed a problem.
844bool Sema::CheckConstexprFunctionBody(const FunctionDecl *Dcl, Stmt *Body,
845                                      bool IsInstantiation) {
846  if (isa<CXXTryStmt>(Body)) {
847    // C++11 [dcl.constexpr]p3:
848    //  The definition of a constexpr function shall satisfy the following
849    //  constraints: [...]
850    // - its function-body shall be = delete, = default, or a
851    //   compound-statement
852    //
853    // C++11 [dcl.constexpr]p4:
854    //  In the definition of a constexpr constructor, [...]
855    // - its function-body shall not be a function-try-block;
856    Diag(Body->getLocStart(), diag::err_constexpr_function_try_block)
857      << isa<CXXConstructorDecl>(Dcl);
858    return false;
859  }
860
861  // - its function-body shall be [...] a compound-statement that contains only
862  CompoundStmt *CompBody = cast<CompoundStmt>(Body);
863
864  llvm::SmallVector<SourceLocation, 4> ReturnStmts;
865  for (CompoundStmt::body_iterator BodyIt = CompBody->body_begin(),
866         BodyEnd = CompBody->body_end(); BodyIt != BodyEnd; ++BodyIt) {
867    switch ((*BodyIt)->getStmtClass()) {
868    case Stmt::NullStmtClass:
869      //   - null statements,
870      continue;
871
872    case Stmt::DeclStmtClass:
873      //   - static_assert-declarations
874      //   - using-declarations,
875      //   - using-directives,
876      //   - typedef declarations and alias-declarations that do not define
877      //     classes or enumerations,
878      if (!CheckConstexprDeclStmt(*this, Dcl, cast<DeclStmt>(*BodyIt)))
879        return false;
880      continue;
881
882    case Stmt::ReturnStmtClass:
883      //   - and exactly one return statement;
884      if (isa<CXXConstructorDecl>(Dcl))
885        break;
886
887      ReturnStmts.push_back((*BodyIt)->getLocStart());
888      // FIXME
889      // - every constructor call and implicit conversion used in initializing
890      //   the return value shall be one of those allowed in a constant
891      //   expression.
892      // Deal with this as part of a general check that the function can produce
893      // a constant expression (for [dcl.constexpr]p5).
894      continue;
895
896    default:
897      break;
898    }
899
900    Diag((*BodyIt)->getLocStart(), diag::err_constexpr_body_invalid_stmt)
901      << isa<CXXConstructorDecl>(Dcl);
902    return false;
903  }
904
905  if (const CXXConstructorDecl *Constructor
906        = dyn_cast<CXXConstructorDecl>(Dcl)) {
907    const CXXRecordDecl *RD = Constructor->getParent();
908    // DR1359:
909    // - every non-variant non-static data member and base class sub-object
910    //   shall be initialized;
911    // - if the class is a non-empty union, or for each non-empty anonymous
912    //   union member of a non-union class, exactly one non-static data member
913    //   shall be initialized;
914    if (RD->isUnion()) {
915      if (Constructor->getNumCtorInitializers() == 0 && !RD->isEmpty()) {
916        Diag(Dcl->getLocation(), diag::err_constexpr_union_ctor_no_init);
917        return false;
918      }
919    } else if (!Constructor->isDependentContext() &&
920               !Constructor->isDelegatingConstructor()) {
921      assert(RD->getNumVBases() == 0 && "constexpr ctor with virtual bases");
922
923      // Skip detailed checking if we have enough initializers, and we would
924      // allow at most one initializer per member.
925      bool AnyAnonStructUnionMembers = false;
926      unsigned Fields = 0;
927      for (CXXRecordDecl::field_iterator I = RD->field_begin(),
928           E = RD->field_end(); I != E; ++I, ++Fields) {
929        if ((*I)->isAnonymousStructOrUnion()) {
930          AnyAnonStructUnionMembers = true;
931          break;
932        }
933      }
934      if (AnyAnonStructUnionMembers ||
935          Constructor->getNumCtorInitializers() != RD->getNumBases() + Fields) {
936        // Check initialization of non-static data members. Base classes are
937        // always initialized so do not need to be checked. Dependent bases
938        // might not have initializers in the member initializer list.
939        llvm::SmallSet<Decl*, 16> Inits;
940        for (CXXConstructorDecl::init_const_iterator
941               I = Constructor->init_begin(), E = Constructor->init_end();
942             I != E; ++I) {
943          if (FieldDecl *FD = (*I)->getMember())
944            Inits.insert(FD);
945          else if (IndirectFieldDecl *ID = (*I)->getIndirectMember())
946            Inits.insert(ID->chain_begin(), ID->chain_end());
947        }
948
949        bool Diagnosed = false;
950        for (CXXRecordDecl::field_iterator I = RD->field_begin(),
951             E = RD->field_end(); I != E; ++I)
952          CheckConstexprCtorInitializer(*this, Dcl, *I, Inits, Diagnosed);
953        if (Diagnosed)
954          return false;
955      }
956    }
957
958    // FIXME
959    // - every constructor involved in initializing non-static data members
960    //   and base class sub-objects shall be a constexpr constructor;
961    // - every assignment-expression that is an initializer-clause appearing
962    //   directly or indirectly within a brace-or-equal-initializer for
963    //   a non-static data member that is not named by a mem-initializer-id
964    //   shall be a constant expression; and
965    // - every implicit conversion used in converting a constructor argument
966    //   to the corresponding parameter type and converting
967    //   a full-expression to the corresponding member type shall be one of
968    //   those allowed in a constant expression.
969    // Deal with these as part of a general check that the function can produce
970    // a constant expression (for [dcl.constexpr]p5).
971  } else {
972    if (ReturnStmts.empty()) {
973      Diag(Dcl->getLocation(), diag::err_constexpr_body_no_return);
974      return false;
975    }
976    if (ReturnStmts.size() > 1) {
977      Diag(ReturnStmts.back(), diag::err_constexpr_body_multiple_return);
978      for (unsigned I = 0; I < ReturnStmts.size() - 1; ++I)
979        Diag(ReturnStmts[I], diag::note_constexpr_body_previous_return);
980      return false;
981    }
982  }
983
984  // C++11 [dcl.constexpr]p5:
985  //   if no function argument values exist such that the function invocation
986  //   substitution would produce a constant expression, the program is
987  //   ill-formed; no diagnostic required.
988  // C++11 [dcl.constexpr]p3:
989  //   - every constructor call and implicit conversion used in initializing the
990  //     return value shall be one of those allowed in a constant expression.
991  // C++11 [dcl.constexpr]p4:
992  //   - every constructor involved in initializing non-static data members and
993  //     base class sub-objects shall be a constexpr constructor.
994  llvm::SmallVector<PartialDiagnosticAt, 8> Diags;
995  if (!IsInstantiation && !Expr::isPotentialConstantExpr(Dcl, Diags)) {
996    Diag(Dcl->getLocation(), diag::err_constexpr_function_never_constant_expr)
997      << isa<CXXConstructorDecl>(Dcl);
998    for (size_t I = 0, N = Diags.size(); I != N; ++I)
999      Diag(Diags[I].first, Diags[I].second);
1000    return false;
1001  }
1002
1003  return true;
1004}
1005
1006/// isCurrentClassName - Determine whether the identifier II is the
1007/// name of the class type currently being defined. In the case of
1008/// nested classes, this will only return true if II is the name of
1009/// the innermost class.
1010bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *,
1011                              const CXXScopeSpec *SS) {
1012  assert(getLangOptions().CPlusPlus && "No class names in C!");
1013
1014  CXXRecordDecl *CurDecl;
1015  if (SS && SS->isSet() && !SS->isInvalid()) {
1016    DeclContext *DC = computeDeclContext(*SS, true);
1017    CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
1018  } else
1019    CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
1020
1021  if (CurDecl && CurDecl->getIdentifier())
1022    return &II == CurDecl->getIdentifier();
1023  else
1024    return false;
1025}
1026
1027/// \brief Check the validity of a C++ base class specifier.
1028///
1029/// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
1030/// and returns NULL otherwise.
1031CXXBaseSpecifier *
1032Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
1033                         SourceRange SpecifierRange,
1034                         bool Virtual, AccessSpecifier Access,
1035                         TypeSourceInfo *TInfo,
1036                         SourceLocation EllipsisLoc) {
1037  QualType BaseType = TInfo->getType();
1038
1039  // C++ [class.union]p1:
1040  //   A union shall not have base classes.
1041  if (Class->isUnion()) {
1042    Diag(Class->getLocation(), diag::err_base_clause_on_union)
1043      << SpecifierRange;
1044    return 0;
1045  }
1046
1047  if (EllipsisLoc.isValid() &&
1048      !TInfo->getType()->containsUnexpandedParameterPack()) {
1049    Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
1050      << TInfo->getTypeLoc().getSourceRange();
1051    EllipsisLoc = SourceLocation();
1052  }
1053
1054  if (BaseType->isDependentType())
1055    return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
1056                                          Class->getTagKind() == TTK_Class,
1057                                          Access, TInfo, EllipsisLoc);
1058
1059  SourceLocation BaseLoc = TInfo->getTypeLoc().getBeginLoc();
1060
1061  // Base specifiers must be record types.
1062  if (!BaseType->isRecordType()) {
1063    Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
1064    return 0;
1065  }
1066
1067  // C++ [class.union]p1:
1068  //   A union shall not be used as a base class.
1069  if (BaseType->isUnionType()) {
1070    Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
1071    return 0;
1072  }
1073
1074  // C++ [class.derived]p2:
1075  //   The class-name in a base-specifier shall not be an incompletely
1076  //   defined class.
1077  if (RequireCompleteType(BaseLoc, BaseType,
1078                          PDiag(diag::err_incomplete_base_class)
1079                            << SpecifierRange)) {
1080    Class->setInvalidDecl();
1081    return 0;
1082  }
1083
1084  // If the base class is polymorphic or isn't empty, the new one is/isn't, too.
1085  RecordDecl *BaseDecl = BaseType->getAs<RecordType>()->getDecl();
1086  assert(BaseDecl && "Record type has no declaration");
1087  BaseDecl = BaseDecl->getDefinition();
1088  assert(BaseDecl && "Base type is not incomplete, but has no definition");
1089  CXXRecordDecl * CXXBaseDecl = cast<CXXRecordDecl>(BaseDecl);
1090  assert(CXXBaseDecl && "Base type is not a C++ type");
1091
1092  // C++ [class]p3:
1093  //   If a class is marked final and it appears as a base-type-specifier in
1094  //   base-clause, the program is ill-formed.
1095  if (CXXBaseDecl->hasAttr<FinalAttr>()) {
1096    Diag(BaseLoc, diag::err_class_marked_final_used_as_base)
1097      << CXXBaseDecl->getDeclName();
1098    Diag(CXXBaseDecl->getLocation(), diag::note_previous_decl)
1099      << CXXBaseDecl->getDeclName();
1100    return 0;
1101  }
1102
1103  if (BaseDecl->isInvalidDecl())
1104    Class->setInvalidDecl();
1105
1106  // Create the base specifier.
1107  return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
1108                                        Class->getTagKind() == TTK_Class,
1109                                        Access, TInfo, EllipsisLoc);
1110}
1111
1112/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
1113/// one entry in the base class list of a class specifier, for
1114/// example:
1115///    class foo : public bar, virtual private baz {
1116/// 'public bar' and 'virtual private baz' are each base-specifiers.
1117BaseResult
1118Sema::ActOnBaseSpecifier(Decl *classdecl, SourceRange SpecifierRange,
1119                         bool Virtual, AccessSpecifier Access,
1120                         ParsedType basetype, SourceLocation BaseLoc,
1121                         SourceLocation EllipsisLoc) {
1122  if (!classdecl)
1123    return true;
1124
1125  AdjustDeclIfTemplate(classdecl);
1126  CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(classdecl);
1127  if (!Class)
1128    return true;
1129
1130  TypeSourceInfo *TInfo = 0;
1131  GetTypeFromParser(basetype, &TInfo);
1132
1133  if (EllipsisLoc.isInvalid() &&
1134      DiagnoseUnexpandedParameterPack(SpecifierRange.getBegin(), TInfo,
1135                                      UPPC_BaseType))
1136    return true;
1137
1138  if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
1139                                                      Virtual, Access, TInfo,
1140                                                      EllipsisLoc))
1141    return BaseSpec;
1142
1143  return true;
1144}
1145
1146/// \brief Performs the actual work of attaching the given base class
1147/// specifiers to a C++ class.
1148bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, CXXBaseSpecifier **Bases,
1149                                unsigned NumBases) {
1150 if (NumBases == 0)
1151    return false;
1152
1153  // Used to keep track of which base types we have already seen, so
1154  // that we can properly diagnose redundant direct base types. Note
1155  // that the key is always the unqualified canonical type of the base
1156  // class.
1157  std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
1158
1159  // Copy non-redundant base specifiers into permanent storage.
1160  unsigned NumGoodBases = 0;
1161  bool Invalid = false;
1162  for (unsigned idx = 0; idx < NumBases; ++idx) {
1163    QualType NewBaseType
1164      = Context.getCanonicalType(Bases[idx]->getType());
1165    NewBaseType = NewBaseType.getLocalUnqualifiedType();
1166    if (KnownBaseTypes[NewBaseType]) {
1167      // C++ [class.mi]p3:
1168      //   A class shall not be specified as a direct base class of a
1169      //   derived class more than once.
1170      Diag(Bases[idx]->getSourceRange().getBegin(),
1171           diag::err_duplicate_base_class)
1172        << KnownBaseTypes[NewBaseType]->getType()
1173        << Bases[idx]->getSourceRange();
1174
1175      // Delete the duplicate base class specifier; we're going to
1176      // overwrite its pointer later.
1177      Context.Deallocate(Bases[idx]);
1178
1179      Invalid = true;
1180    } else {
1181      // Okay, add this new base class.
1182      KnownBaseTypes[NewBaseType] = Bases[idx];
1183      Bases[NumGoodBases++] = Bases[idx];
1184      if (const RecordType *Record = NewBaseType->getAs<RecordType>())
1185        if (const CXXRecordDecl *RD = cast<CXXRecordDecl>(Record->getDecl()))
1186          if (RD->hasAttr<WeakAttr>())
1187            Class->addAttr(::new (Context) WeakAttr(SourceRange(), Context));
1188    }
1189  }
1190
1191  // Attach the remaining base class specifiers to the derived class.
1192  Class->setBases(Bases, NumGoodBases);
1193
1194  // Delete the remaining (good) base class specifiers, since their
1195  // data has been copied into the CXXRecordDecl.
1196  for (unsigned idx = 0; idx < NumGoodBases; ++idx)
1197    Context.Deallocate(Bases[idx]);
1198
1199  return Invalid;
1200}
1201
1202/// ActOnBaseSpecifiers - Attach the given base specifiers to the
1203/// class, after checking whether there are any duplicate base
1204/// classes.
1205void Sema::ActOnBaseSpecifiers(Decl *ClassDecl, CXXBaseSpecifier **Bases,
1206                               unsigned NumBases) {
1207  if (!ClassDecl || !Bases || !NumBases)
1208    return;
1209
1210  AdjustDeclIfTemplate(ClassDecl);
1211  AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl),
1212                       (CXXBaseSpecifier**)(Bases), NumBases);
1213}
1214
1215static CXXRecordDecl *GetClassForType(QualType T) {
1216  if (const RecordType *RT = T->getAs<RecordType>())
1217    return cast<CXXRecordDecl>(RT->getDecl());
1218  else if (const InjectedClassNameType *ICT = T->getAs<InjectedClassNameType>())
1219    return ICT->getDecl();
1220  else
1221    return 0;
1222}
1223
1224/// \brief Determine whether the type \p Derived is a C++ class that is
1225/// derived from the type \p Base.
1226bool Sema::IsDerivedFrom(QualType Derived, QualType Base) {
1227  if (!getLangOptions().CPlusPlus)
1228    return false;
1229
1230  CXXRecordDecl *DerivedRD = GetClassForType(Derived);
1231  if (!DerivedRD)
1232    return false;
1233
1234  CXXRecordDecl *BaseRD = GetClassForType(Base);
1235  if (!BaseRD)
1236    return false;
1237
1238  // FIXME: instantiate DerivedRD if necessary.  We need a PoI for this.
1239  return DerivedRD->hasDefinition() && DerivedRD->isDerivedFrom(BaseRD);
1240}
1241
1242/// \brief Determine whether the type \p Derived is a C++ class that is
1243/// derived from the type \p Base.
1244bool Sema::IsDerivedFrom(QualType Derived, QualType Base, CXXBasePaths &Paths) {
1245  if (!getLangOptions().CPlusPlus)
1246    return false;
1247
1248  CXXRecordDecl *DerivedRD = GetClassForType(Derived);
1249  if (!DerivedRD)
1250    return false;
1251
1252  CXXRecordDecl *BaseRD = GetClassForType(Base);
1253  if (!BaseRD)
1254    return false;
1255
1256  return DerivedRD->isDerivedFrom(BaseRD, Paths);
1257}
1258
1259void Sema::BuildBasePathArray(const CXXBasePaths &Paths,
1260                              CXXCastPath &BasePathArray) {
1261  assert(BasePathArray.empty() && "Base path array must be empty!");
1262  assert(Paths.isRecordingPaths() && "Must record paths!");
1263
1264  const CXXBasePath &Path = Paths.front();
1265
1266  // We first go backward and check if we have a virtual base.
1267  // FIXME: It would be better if CXXBasePath had the base specifier for
1268  // the nearest virtual base.
1269  unsigned Start = 0;
1270  for (unsigned I = Path.size(); I != 0; --I) {
1271    if (Path[I - 1].Base->isVirtual()) {
1272      Start = I - 1;
1273      break;
1274    }
1275  }
1276
1277  // Now add all bases.
1278  for (unsigned I = Start, E = Path.size(); I != E; ++I)
1279    BasePathArray.push_back(const_cast<CXXBaseSpecifier*>(Path[I].Base));
1280}
1281
1282/// \brief Determine whether the given base path includes a virtual
1283/// base class.
1284bool Sema::BasePathInvolvesVirtualBase(const CXXCastPath &BasePath) {
1285  for (CXXCastPath::const_iterator B = BasePath.begin(),
1286                                BEnd = BasePath.end();
1287       B != BEnd; ++B)
1288    if ((*B)->isVirtual())
1289      return true;
1290
1291  return false;
1292}
1293
1294/// CheckDerivedToBaseConversion - Check whether the Derived-to-Base
1295/// conversion (where Derived and Base are class types) is
1296/// well-formed, meaning that the conversion is unambiguous (and
1297/// that all of the base classes are accessible). Returns true
1298/// and emits a diagnostic if the code is ill-formed, returns false
1299/// otherwise. Loc is the location where this routine should point to
1300/// if there is an error, and Range is the source range to highlight
1301/// if there is an error.
1302bool
1303Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
1304                                   unsigned InaccessibleBaseID,
1305                                   unsigned AmbigiousBaseConvID,
1306                                   SourceLocation Loc, SourceRange Range,
1307                                   DeclarationName Name,
1308                                   CXXCastPath *BasePath) {
1309  // First, determine whether the path from Derived to Base is
1310  // ambiguous. This is slightly more expensive than checking whether
1311  // the Derived to Base conversion exists, because here we need to
1312  // explore multiple paths to determine if there is an ambiguity.
1313  CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
1314                     /*DetectVirtual=*/false);
1315  bool DerivationOkay = IsDerivedFrom(Derived, Base, Paths);
1316  assert(DerivationOkay &&
1317         "Can only be used with a derived-to-base conversion");
1318  (void)DerivationOkay;
1319
1320  if (!Paths.isAmbiguous(Context.getCanonicalType(Base).getUnqualifiedType())) {
1321    if (InaccessibleBaseID) {
1322      // Check that the base class can be accessed.
1323      switch (CheckBaseClassAccess(Loc, Base, Derived, Paths.front(),
1324                                   InaccessibleBaseID)) {
1325        case AR_inaccessible:
1326          return true;
1327        case AR_accessible:
1328        case AR_dependent:
1329        case AR_delayed:
1330          break;
1331      }
1332    }
1333
1334    // Build a base path if necessary.
1335    if (BasePath)
1336      BuildBasePathArray(Paths, *BasePath);
1337    return false;
1338  }
1339
1340  // We know that the derived-to-base conversion is ambiguous, and
1341  // we're going to produce a diagnostic. Perform the derived-to-base
1342  // search just one more time to compute all of the possible paths so
1343  // that we can print them out. This is more expensive than any of
1344  // the previous derived-to-base checks we've done, but at this point
1345  // performance isn't as much of an issue.
1346  Paths.clear();
1347  Paths.setRecordingPaths(true);
1348  bool StillOkay = IsDerivedFrom(Derived, Base, Paths);
1349  assert(StillOkay && "Can only be used with a derived-to-base conversion");
1350  (void)StillOkay;
1351
1352  // Build up a textual representation of the ambiguous paths, e.g.,
1353  // D -> B -> A, that will be used to illustrate the ambiguous
1354  // conversions in the diagnostic. We only print one of the paths
1355  // to each base class subobject.
1356  std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
1357
1358  Diag(Loc, AmbigiousBaseConvID)
1359  << Derived << Base << PathDisplayStr << Range << Name;
1360  return true;
1361}
1362
1363bool
1364Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
1365                                   SourceLocation Loc, SourceRange Range,
1366                                   CXXCastPath *BasePath,
1367                                   bool IgnoreAccess) {
1368  return CheckDerivedToBaseConversion(Derived, Base,
1369                                      IgnoreAccess ? 0
1370                                       : diag::err_upcast_to_inaccessible_base,
1371                                      diag::err_ambiguous_derived_to_base_conv,
1372                                      Loc, Range, DeclarationName(),
1373                                      BasePath);
1374}
1375
1376
1377/// @brief Builds a string representing ambiguous paths from a
1378/// specific derived class to different subobjects of the same base
1379/// class.
1380///
1381/// This function builds a string that can be used in error messages
1382/// to show the different paths that one can take through the
1383/// inheritance hierarchy to go from the derived class to different
1384/// subobjects of a base class. The result looks something like this:
1385/// @code
1386/// struct D -> struct B -> struct A
1387/// struct D -> struct C -> struct A
1388/// @endcode
1389std::string Sema::getAmbiguousPathsDisplayString(CXXBasePaths &Paths) {
1390  std::string PathDisplayStr;
1391  std::set<unsigned> DisplayedPaths;
1392  for (CXXBasePaths::paths_iterator Path = Paths.begin();
1393       Path != Paths.end(); ++Path) {
1394    if (DisplayedPaths.insert(Path->back().SubobjectNumber).second) {
1395      // We haven't displayed a path to this particular base
1396      // class subobject yet.
1397      PathDisplayStr += "\n    ";
1398      PathDisplayStr += Context.getTypeDeclType(Paths.getOrigin()).getAsString();
1399      for (CXXBasePath::const_iterator Element = Path->begin();
1400           Element != Path->end(); ++Element)
1401        PathDisplayStr += " -> " + Element->Base->getType().getAsString();
1402    }
1403  }
1404
1405  return PathDisplayStr;
1406}
1407
1408//===----------------------------------------------------------------------===//
1409// C++ class member Handling
1410//===----------------------------------------------------------------------===//
1411
1412/// ActOnAccessSpecifier - Parsed an access specifier followed by a colon.
1413bool Sema::ActOnAccessSpecifier(AccessSpecifier Access,
1414                                SourceLocation ASLoc,
1415                                SourceLocation ColonLoc,
1416                                AttributeList *Attrs) {
1417  assert(Access != AS_none && "Invalid kind for syntactic access specifier!");
1418  AccessSpecDecl *ASDecl = AccessSpecDecl::Create(Context, Access, CurContext,
1419                                                  ASLoc, ColonLoc);
1420  CurContext->addHiddenDecl(ASDecl);
1421  return ProcessAccessDeclAttributeList(ASDecl, Attrs);
1422}
1423
1424/// CheckOverrideControl - Check C++0x override control semantics.
1425void Sema::CheckOverrideControl(const Decl *D) {
1426  const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D);
1427  if (!MD || !MD->isVirtual())
1428    return;
1429
1430  if (MD->isDependentContext())
1431    return;
1432
1433  // C++0x [class.virtual]p3:
1434  //   If a virtual function is marked with the virt-specifier override and does
1435  //   not override a member function of a base class,
1436  //   the program is ill-formed.
1437  bool HasOverriddenMethods =
1438    MD->begin_overridden_methods() != MD->end_overridden_methods();
1439  if (MD->hasAttr<OverrideAttr>() && !HasOverriddenMethods) {
1440    Diag(MD->getLocation(),
1441                 diag::err_function_marked_override_not_overriding)
1442      << MD->getDeclName();
1443    return;
1444  }
1445}
1446
1447/// CheckIfOverriddenFunctionIsMarkedFinal - Checks whether a virtual member
1448/// function overrides a virtual member function marked 'final', according to
1449/// C++0x [class.virtual]p3.
1450bool Sema::CheckIfOverriddenFunctionIsMarkedFinal(const CXXMethodDecl *New,
1451                                                  const CXXMethodDecl *Old) {
1452  if (!Old->hasAttr<FinalAttr>())
1453    return false;
1454
1455  Diag(New->getLocation(), diag::err_final_function_overridden)
1456    << New->getDeclName();
1457  Diag(Old->getLocation(), diag::note_overridden_virtual_function);
1458  return true;
1459}
1460
1461/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
1462/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
1463/// bitfield width if there is one, 'InitExpr' specifies the initializer if
1464/// one has been parsed, and 'HasDeferredInit' is true if an initializer is
1465/// present but parsing it has been deferred.
1466Decl *
1467Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
1468                               MultiTemplateParamsArg TemplateParameterLists,
1469                               Expr *BW, const VirtSpecifiers &VS,
1470                               bool HasDeferredInit) {
1471  const DeclSpec &DS = D.getDeclSpec();
1472  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
1473  DeclarationName Name = NameInfo.getName();
1474  SourceLocation Loc = NameInfo.getLoc();
1475
1476  // For anonymous bitfields, the location should point to the type.
1477  if (Loc.isInvalid())
1478    Loc = D.getSourceRange().getBegin();
1479
1480  Expr *BitWidth = static_cast<Expr*>(BW);
1481
1482  assert(isa<CXXRecordDecl>(CurContext));
1483  assert(!DS.isFriendSpecified());
1484
1485  bool isFunc = D.isDeclarationOfFunction();
1486
1487  // C++ 9.2p6: A member shall not be declared to have automatic storage
1488  // duration (auto, register) or with the extern storage-class-specifier.
1489  // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
1490  // data members and cannot be applied to names declared const or static,
1491  // and cannot be applied to reference members.
1492  switch (DS.getStorageClassSpec()) {
1493    case DeclSpec::SCS_unspecified:
1494    case DeclSpec::SCS_typedef:
1495    case DeclSpec::SCS_static:
1496      // FALL THROUGH.
1497      break;
1498    case DeclSpec::SCS_mutable:
1499      if (isFunc) {
1500        if (DS.getStorageClassSpecLoc().isValid())
1501          Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
1502        else
1503          Diag(DS.getThreadSpecLoc(), diag::err_mutable_function);
1504
1505        // FIXME: It would be nicer if the keyword was ignored only for this
1506        // declarator. Otherwise we could get follow-up errors.
1507        D.getMutableDeclSpec().ClearStorageClassSpecs();
1508      }
1509      break;
1510    default:
1511      if (DS.getStorageClassSpecLoc().isValid())
1512        Diag(DS.getStorageClassSpecLoc(),
1513             diag::err_storageclass_invalid_for_member);
1514      else
1515        Diag(DS.getThreadSpecLoc(), diag::err_storageclass_invalid_for_member);
1516      D.getMutableDeclSpec().ClearStorageClassSpecs();
1517  }
1518
1519  bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
1520                       DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
1521                      !isFunc);
1522
1523  Decl *Member;
1524  if (isInstField) {
1525    CXXScopeSpec &SS = D.getCXXScopeSpec();
1526
1527    // Data members must have identifiers for names.
1528    if (Name.getNameKind() != DeclarationName::Identifier) {
1529      Diag(Loc, diag::err_bad_variable_name)
1530        << Name;
1531      return 0;
1532    }
1533
1534    IdentifierInfo *II = Name.getAsIdentifierInfo();
1535
1536    // Member field could not be with "template" keyword.
1537    // So TemplateParameterLists should be empty in this case.
1538    if (TemplateParameterLists.size()) {
1539      TemplateParameterList* TemplateParams = TemplateParameterLists.get()[0];
1540      if (TemplateParams->size()) {
1541        // There is no such thing as a member field template.
1542        Diag(D.getIdentifierLoc(), diag::err_template_member)
1543            << II
1544            << SourceRange(TemplateParams->getTemplateLoc(),
1545                TemplateParams->getRAngleLoc());
1546      } else {
1547        // There is an extraneous 'template<>' for this member.
1548        Diag(TemplateParams->getTemplateLoc(),
1549            diag::err_template_member_noparams)
1550            << II
1551            << SourceRange(TemplateParams->getTemplateLoc(),
1552                TemplateParams->getRAngleLoc());
1553      }
1554      return 0;
1555    }
1556
1557    if (SS.isSet() && !SS.isInvalid()) {
1558      // The user provided a superfluous scope specifier inside a class
1559      // definition:
1560      //
1561      // class X {
1562      //   int X::member;
1563      // };
1564      DeclContext *DC = 0;
1565      if ((DC = computeDeclContext(SS, false)) && DC->Equals(CurContext))
1566        Diag(D.getIdentifierLoc(), diag::warn_member_extra_qualification)
1567          << Name << FixItHint::CreateRemoval(SS.getRange());
1568      else
1569        Diag(D.getIdentifierLoc(), diag::err_member_qualification)
1570          << Name << SS.getRange();
1571
1572      SS.clear();
1573    }
1574
1575    Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D, BitWidth,
1576                         HasDeferredInit, AS);
1577    assert(Member && "HandleField never returns null");
1578  } else {
1579    assert(!HasDeferredInit);
1580
1581    Member = HandleDeclarator(S, D, move(TemplateParameterLists));
1582    if (!Member) {
1583      return 0;
1584    }
1585
1586    // Non-instance-fields can't have a bitfield.
1587    if (BitWidth) {
1588      if (Member->isInvalidDecl()) {
1589        // don't emit another diagnostic.
1590      } else if (isa<VarDecl>(Member)) {
1591        // C++ 9.6p3: A bit-field shall not be a static member.
1592        // "static member 'A' cannot be a bit-field"
1593        Diag(Loc, diag::err_static_not_bitfield)
1594          << Name << BitWidth->getSourceRange();
1595      } else if (isa<TypedefDecl>(Member)) {
1596        // "typedef member 'x' cannot be a bit-field"
1597        Diag(Loc, diag::err_typedef_not_bitfield)
1598          << Name << BitWidth->getSourceRange();
1599      } else {
1600        // A function typedef ("typedef int f(); f a;").
1601        // C++ 9.6p3: A bit-field shall have integral or enumeration type.
1602        Diag(Loc, diag::err_not_integral_type_bitfield)
1603          << Name << cast<ValueDecl>(Member)->getType()
1604          << BitWidth->getSourceRange();
1605      }
1606
1607      BitWidth = 0;
1608      Member->setInvalidDecl();
1609    }
1610
1611    Member->setAccess(AS);
1612
1613    // If we have declared a member function template, set the access of the
1614    // templated declaration as well.
1615    if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Member))
1616      FunTmpl->getTemplatedDecl()->setAccess(AS);
1617  }
1618
1619  if (VS.isOverrideSpecified()) {
1620    CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Member);
1621    if (!MD || !MD->isVirtual()) {
1622      Diag(Member->getLocStart(),
1623           diag::override_keyword_only_allowed_on_virtual_member_functions)
1624        << "override" << FixItHint::CreateRemoval(VS.getOverrideLoc());
1625    } else
1626      MD->addAttr(new (Context) OverrideAttr(VS.getOverrideLoc(), Context));
1627  }
1628  if (VS.isFinalSpecified()) {
1629    CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Member);
1630    if (!MD || !MD->isVirtual()) {
1631      Diag(Member->getLocStart(),
1632           diag::override_keyword_only_allowed_on_virtual_member_functions)
1633      << "final" << FixItHint::CreateRemoval(VS.getFinalLoc());
1634    } else
1635      MD->addAttr(new (Context) FinalAttr(VS.getFinalLoc(), Context));
1636  }
1637
1638  if (VS.getLastLocation().isValid()) {
1639    // Update the end location of a method that has a virt-specifiers.
1640    if (CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(Member))
1641      MD->setRangeEnd(VS.getLastLocation());
1642  }
1643
1644  CheckOverrideControl(Member);
1645
1646  assert((Name || isInstField) && "No identifier for non-field ?");
1647
1648  if (isInstField)
1649    FieldCollector->Add(cast<FieldDecl>(Member));
1650  return Member;
1651}
1652
1653/// ActOnCXXInClassMemberInitializer - This is invoked after parsing an
1654/// in-class initializer for a non-static C++ class member, and after
1655/// instantiating an in-class initializer in a class template. Such actions
1656/// are deferred until the class is complete.
1657void
1658Sema::ActOnCXXInClassMemberInitializer(Decl *D, SourceLocation EqualLoc,
1659                                       Expr *InitExpr) {
1660  FieldDecl *FD = cast<FieldDecl>(D);
1661
1662  if (!InitExpr) {
1663    FD->setInvalidDecl();
1664    FD->removeInClassInitializer();
1665    return;
1666  }
1667
1668  if (DiagnoseUnexpandedParameterPack(InitExpr, UPPC_Initializer)) {
1669    FD->setInvalidDecl();
1670    FD->removeInClassInitializer();
1671    return;
1672  }
1673
1674  ExprResult Init = InitExpr;
1675  if (!FD->getType()->isDependentType() && !InitExpr->isTypeDependent()) {
1676    // FIXME: if there is no EqualLoc, this is list-initialization.
1677    Init = PerformCopyInitialization(
1678      InitializedEntity::InitializeMember(FD), EqualLoc, InitExpr);
1679    if (Init.isInvalid()) {
1680      FD->setInvalidDecl();
1681      return;
1682    }
1683
1684    CheckImplicitConversions(Init.get(), EqualLoc);
1685  }
1686
1687  // C++0x [class.base.init]p7:
1688  //   The initialization of each base and member constitutes a
1689  //   full-expression.
1690  Init = MaybeCreateExprWithCleanups(Init);
1691  if (Init.isInvalid()) {
1692    FD->setInvalidDecl();
1693    return;
1694  }
1695
1696  InitExpr = Init.release();
1697
1698  FD->setInClassInitializer(InitExpr);
1699}
1700
1701/// \brief Find the direct and/or virtual base specifiers that
1702/// correspond to the given base type, for use in base initialization
1703/// within a constructor.
1704static bool FindBaseInitializer(Sema &SemaRef,
1705                                CXXRecordDecl *ClassDecl,
1706                                QualType BaseType,
1707                                const CXXBaseSpecifier *&DirectBaseSpec,
1708                                const CXXBaseSpecifier *&VirtualBaseSpec) {
1709  // First, check for a direct base class.
1710  DirectBaseSpec = 0;
1711  for (CXXRecordDecl::base_class_const_iterator Base
1712         = ClassDecl->bases_begin();
1713       Base != ClassDecl->bases_end(); ++Base) {
1714    if (SemaRef.Context.hasSameUnqualifiedType(BaseType, Base->getType())) {
1715      // We found a direct base of this type. That's what we're
1716      // initializing.
1717      DirectBaseSpec = &*Base;
1718      break;
1719    }
1720  }
1721
1722  // Check for a virtual base class.
1723  // FIXME: We might be able to short-circuit this if we know in advance that
1724  // there are no virtual bases.
1725  VirtualBaseSpec = 0;
1726  if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
1727    // We haven't found a base yet; search the class hierarchy for a
1728    // virtual base class.
1729    CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
1730                       /*DetectVirtual=*/false);
1731    if (SemaRef.IsDerivedFrom(SemaRef.Context.getTypeDeclType(ClassDecl),
1732                              BaseType, Paths)) {
1733      for (CXXBasePaths::paths_iterator Path = Paths.begin();
1734           Path != Paths.end(); ++Path) {
1735        if (Path->back().Base->isVirtual()) {
1736          VirtualBaseSpec = Path->back().Base;
1737          break;
1738        }
1739      }
1740    }
1741  }
1742
1743  return DirectBaseSpec || VirtualBaseSpec;
1744}
1745
1746/// \brief Handle a C++ member initializer using braced-init-list syntax.
1747MemInitResult
1748Sema::ActOnMemInitializer(Decl *ConstructorD,
1749                          Scope *S,
1750                          CXXScopeSpec &SS,
1751                          IdentifierInfo *MemberOrBase,
1752                          ParsedType TemplateTypeTy,
1753                          const DeclSpec &DS,
1754                          SourceLocation IdLoc,
1755                          Expr *InitList,
1756                          SourceLocation EllipsisLoc) {
1757  return BuildMemInitializer(ConstructorD, S, SS, MemberOrBase, TemplateTypeTy,
1758                             DS, IdLoc, MultiInitializer(InitList),
1759                             EllipsisLoc);
1760}
1761
1762/// \brief Handle a C++ member initializer using parentheses syntax.
1763MemInitResult
1764Sema::ActOnMemInitializer(Decl *ConstructorD,
1765                          Scope *S,
1766                          CXXScopeSpec &SS,
1767                          IdentifierInfo *MemberOrBase,
1768                          ParsedType TemplateTypeTy,
1769                          const DeclSpec &DS,
1770                          SourceLocation IdLoc,
1771                          SourceLocation LParenLoc,
1772                          Expr **Args, unsigned NumArgs,
1773                          SourceLocation RParenLoc,
1774                          SourceLocation EllipsisLoc) {
1775  return BuildMemInitializer(ConstructorD, S, SS, MemberOrBase, TemplateTypeTy,
1776                             DS, IdLoc, MultiInitializer(LParenLoc, Args,
1777                                                         NumArgs, RParenLoc),
1778                             EllipsisLoc);
1779}
1780
1781namespace {
1782
1783// Callback to only accept typo corrections that can be a valid C++ member
1784// intializer: either a non-static field member or a base class.
1785class MemInitializerValidatorCCC : public CorrectionCandidateCallback {
1786 public:
1787  explicit MemInitializerValidatorCCC(CXXRecordDecl *ClassDecl)
1788      : ClassDecl(ClassDecl) {}
1789
1790  virtual bool ValidateCandidate(const TypoCorrection &candidate) {
1791    if (NamedDecl *ND = candidate.getCorrectionDecl()) {
1792      if (FieldDecl *Member = dyn_cast<FieldDecl>(ND))
1793        return Member->getDeclContext()->getRedeclContext()->Equals(ClassDecl);
1794      else
1795        return isa<TypeDecl>(ND);
1796    }
1797    return false;
1798  }
1799
1800 private:
1801  CXXRecordDecl *ClassDecl;
1802};
1803
1804}
1805
1806/// \brief Handle a C++ member initializer.
1807MemInitResult
1808Sema::BuildMemInitializer(Decl *ConstructorD,
1809                          Scope *S,
1810                          CXXScopeSpec &SS,
1811                          IdentifierInfo *MemberOrBase,
1812                          ParsedType TemplateTypeTy,
1813                          const DeclSpec &DS,
1814                          SourceLocation IdLoc,
1815                          const MultiInitializer &Args,
1816                          SourceLocation EllipsisLoc) {
1817  if (!ConstructorD)
1818    return true;
1819
1820  AdjustDeclIfTemplate(ConstructorD);
1821
1822  CXXConstructorDecl *Constructor
1823    = dyn_cast<CXXConstructorDecl>(ConstructorD);
1824  if (!Constructor) {
1825    // The user wrote a constructor initializer on a function that is
1826    // not a C++ constructor. Ignore the error for now, because we may
1827    // have more member initializers coming; we'll diagnose it just
1828    // once in ActOnMemInitializers.
1829    return true;
1830  }
1831
1832  CXXRecordDecl *ClassDecl = Constructor->getParent();
1833
1834  // C++ [class.base.init]p2:
1835  //   Names in a mem-initializer-id are looked up in the scope of the
1836  //   constructor's class and, if not found in that scope, are looked
1837  //   up in the scope containing the constructor's definition.
1838  //   [Note: if the constructor's class contains a member with the
1839  //   same name as a direct or virtual base class of the class, a
1840  //   mem-initializer-id naming the member or base class and composed
1841  //   of a single identifier refers to the class member. A
1842  //   mem-initializer-id for the hidden base class may be specified
1843  //   using a qualified name. ]
1844  if (!SS.getScopeRep() && !TemplateTypeTy) {
1845    // Look for a member, first.
1846    DeclContext::lookup_result Result
1847      = ClassDecl->lookup(MemberOrBase);
1848    if (Result.first != Result.second) {
1849      ValueDecl *Member;
1850      if ((Member = dyn_cast<FieldDecl>(*Result.first)) ||
1851          (Member = dyn_cast<IndirectFieldDecl>(*Result.first))) {
1852        if (EllipsisLoc.isValid())
1853          Diag(EllipsisLoc, diag::err_pack_expansion_member_init)
1854            << MemberOrBase << SourceRange(IdLoc, Args.getEndLoc());
1855
1856        return BuildMemberInitializer(Member, Args, IdLoc);
1857      }
1858    }
1859  }
1860  // It didn't name a member, so see if it names a class.
1861  QualType BaseType;
1862  TypeSourceInfo *TInfo = 0;
1863
1864  if (TemplateTypeTy) {
1865    BaseType = GetTypeFromParser(TemplateTypeTy, &TInfo);
1866  } else if (DS.getTypeSpecType() == TST_decltype) {
1867    BaseType = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc());
1868  } else {
1869    LookupResult R(*this, MemberOrBase, IdLoc, LookupOrdinaryName);
1870    LookupParsedName(R, S, &SS);
1871
1872    TypeDecl *TyD = R.getAsSingle<TypeDecl>();
1873    if (!TyD) {
1874      if (R.isAmbiguous()) return true;
1875
1876      // We don't want access-control diagnostics here.
1877      R.suppressDiagnostics();
1878
1879      if (SS.isSet() && isDependentScopeSpecifier(SS)) {
1880        bool NotUnknownSpecialization = false;
1881        DeclContext *DC = computeDeclContext(SS, false);
1882        if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(DC))
1883          NotUnknownSpecialization = !Record->hasAnyDependentBases();
1884
1885        if (!NotUnknownSpecialization) {
1886          // When the scope specifier can refer to a member of an unknown
1887          // specialization, we take it as a type name.
1888          BaseType = CheckTypenameType(ETK_None, SourceLocation(),
1889                                       SS.getWithLocInContext(Context),
1890                                       *MemberOrBase, IdLoc);
1891          if (BaseType.isNull())
1892            return true;
1893
1894          R.clear();
1895          R.setLookupName(MemberOrBase);
1896        }
1897      }
1898
1899      // If no results were found, try to correct typos.
1900      TypoCorrection Corr;
1901      MemInitializerValidatorCCC Validator(ClassDecl);
1902      if (R.empty() && BaseType.isNull() &&
1903          (Corr = CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(), S, &SS,
1904                              Validator, ClassDecl))) {
1905        std::string CorrectedStr(Corr.getAsString(getLangOptions()));
1906        std::string CorrectedQuotedStr(Corr.getQuoted(getLangOptions()));
1907        if (FieldDecl *Member = Corr.getCorrectionDeclAs<FieldDecl>()) {
1908          // We have found a non-static data member with a similar
1909          // name to what was typed; complain and initialize that
1910          // member.
1911          Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
1912            << MemberOrBase << true << CorrectedQuotedStr
1913            << FixItHint::CreateReplacement(R.getNameLoc(), CorrectedStr);
1914          Diag(Member->getLocation(), diag::note_previous_decl)
1915            << CorrectedQuotedStr;
1916
1917          return BuildMemberInitializer(Member, Args, IdLoc);
1918        } else if (TypeDecl *Type = Corr.getCorrectionDeclAs<TypeDecl>()) {
1919          const CXXBaseSpecifier *DirectBaseSpec;
1920          const CXXBaseSpecifier *VirtualBaseSpec;
1921          if (FindBaseInitializer(*this, ClassDecl,
1922                                  Context.getTypeDeclType(Type),
1923                                  DirectBaseSpec, VirtualBaseSpec)) {
1924            // We have found a direct or virtual base class with a
1925            // similar name to what was typed; complain and initialize
1926            // that base class.
1927            Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
1928              << MemberOrBase << false << CorrectedQuotedStr
1929              << FixItHint::CreateReplacement(R.getNameLoc(), CorrectedStr);
1930
1931            const CXXBaseSpecifier *BaseSpec = DirectBaseSpec? DirectBaseSpec
1932                                                             : VirtualBaseSpec;
1933            Diag(BaseSpec->getSourceRange().getBegin(),
1934                 diag::note_base_class_specified_here)
1935              << BaseSpec->getType()
1936              << BaseSpec->getSourceRange();
1937
1938            TyD = Type;
1939          }
1940        }
1941      }
1942
1943      if (!TyD && BaseType.isNull()) {
1944        Diag(IdLoc, diag::err_mem_init_not_member_or_class)
1945          << MemberOrBase << SourceRange(IdLoc, Args.getEndLoc());
1946        return true;
1947      }
1948    }
1949
1950    if (BaseType.isNull()) {
1951      BaseType = Context.getTypeDeclType(TyD);
1952      if (SS.isSet()) {
1953        NestedNameSpecifier *Qualifier =
1954          static_cast<NestedNameSpecifier*>(SS.getScopeRep());
1955
1956        // FIXME: preserve source range information
1957        BaseType = Context.getElaboratedType(ETK_None, Qualifier, BaseType);
1958      }
1959    }
1960  }
1961
1962  if (!TInfo)
1963    TInfo = Context.getTrivialTypeSourceInfo(BaseType, IdLoc);
1964
1965  return BuildBaseInitializer(BaseType, TInfo, Args, ClassDecl, EllipsisLoc);
1966}
1967
1968/// Checks a member initializer expression for cases where reference (or
1969/// pointer) members are bound to by-value parameters (or their addresses).
1970static void CheckForDanglingReferenceOrPointer(Sema &S, ValueDecl *Member,
1971                                               Expr *Init,
1972                                               SourceLocation IdLoc) {
1973  QualType MemberTy = Member->getType();
1974
1975  // We only handle pointers and references currently.
1976  // FIXME: Would this be relevant for ObjC object pointers? Or block pointers?
1977  if (!MemberTy->isReferenceType() && !MemberTy->isPointerType())
1978    return;
1979
1980  const bool IsPointer = MemberTy->isPointerType();
1981  if (IsPointer) {
1982    if (const UnaryOperator *Op
1983          = dyn_cast<UnaryOperator>(Init->IgnoreParenImpCasts())) {
1984      // The only case we're worried about with pointers requires taking the
1985      // address.
1986      if (Op->getOpcode() != UO_AddrOf)
1987        return;
1988
1989      Init = Op->getSubExpr();
1990    } else {
1991      // We only handle address-of expression initializers for pointers.
1992      return;
1993    }
1994  }
1995
1996  if (isa<MaterializeTemporaryExpr>(Init->IgnoreParens())) {
1997    // Taking the address of a temporary will be diagnosed as a hard error.
1998    if (IsPointer)
1999      return;
2000
2001    S.Diag(Init->getExprLoc(), diag::warn_bind_ref_member_to_temporary)
2002      << Member << Init->getSourceRange();
2003  } else if (const DeclRefExpr *DRE
2004               = dyn_cast<DeclRefExpr>(Init->IgnoreParens())) {
2005    // We only warn when referring to a non-reference parameter declaration.
2006    const ParmVarDecl *Parameter = dyn_cast<ParmVarDecl>(DRE->getDecl());
2007    if (!Parameter || Parameter->getType()->isReferenceType())
2008      return;
2009
2010    S.Diag(Init->getExprLoc(),
2011           IsPointer ? diag::warn_init_ptr_member_to_parameter_addr
2012                     : diag::warn_bind_ref_member_to_parameter)
2013      << Member << Parameter << Init->getSourceRange();
2014  } else {
2015    // Other initializers are fine.
2016    return;
2017  }
2018
2019  S.Diag(Member->getLocation(), diag::note_ref_or_ptr_member_declared_here)
2020    << (unsigned)IsPointer;
2021}
2022
2023/// Checks an initializer expression for use of uninitialized fields, such as
2024/// containing the field that is being initialized. Returns true if there is an
2025/// uninitialized field was used an updates the SourceLocation parameter; false
2026/// otherwise.
2027static bool InitExprContainsUninitializedFields(const Stmt *S,
2028                                                const ValueDecl *LhsField,
2029                                                SourceLocation *L) {
2030  assert(isa<FieldDecl>(LhsField) || isa<IndirectFieldDecl>(LhsField));
2031
2032  if (isa<CallExpr>(S)) {
2033    // Do not descend into function calls or constructors, as the use
2034    // of an uninitialized field may be valid. One would have to inspect
2035    // the contents of the function/ctor to determine if it is safe or not.
2036    // i.e. Pass-by-value is never safe, but pass-by-reference and pointers
2037    // may be safe, depending on what the function/ctor does.
2038    return false;
2039  }
2040  if (const MemberExpr *ME = dyn_cast<MemberExpr>(S)) {
2041    const NamedDecl *RhsField = ME->getMemberDecl();
2042
2043    if (const VarDecl *VD = dyn_cast<VarDecl>(RhsField)) {
2044      // The member expression points to a static data member.
2045      assert(VD->isStaticDataMember() &&
2046             "Member points to non-static data member!");
2047      (void)VD;
2048      return false;
2049    }
2050
2051    if (isa<EnumConstantDecl>(RhsField)) {
2052      // The member expression points to an enum.
2053      return false;
2054    }
2055
2056    if (RhsField == LhsField) {
2057      // Initializing a field with itself. Throw a warning.
2058      // But wait; there are exceptions!
2059      // Exception #1:  The field may not belong to this record.
2060      // e.g. Foo(const Foo& rhs) : A(rhs.A) {}
2061      const Expr *base = ME->getBase();
2062      if (base != NULL && !isa<CXXThisExpr>(base->IgnoreParenCasts())) {
2063        // Even though the field matches, it does not belong to this record.
2064        return false;
2065      }
2066      // None of the exceptions triggered; return true to indicate an
2067      // uninitialized field was used.
2068      *L = ME->getMemberLoc();
2069      return true;
2070    }
2071  } else if (isa<UnaryExprOrTypeTraitExpr>(S)) {
2072    // sizeof/alignof doesn't reference contents, do not warn.
2073    return false;
2074  } else if (const UnaryOperator *UOE = dyn_cast<UnaryOperator>(S)) {
2075    // address-of doesn't reference contents (the pointer may be dereferenced
2076    // in the same expression but it would be rare; and weird).
2077    if (UOE->getOpcode() == UO_AddrOf)
2078      return false;
2079  }
2080  for (Stmt::const_child_range it = S->children(); it; ++it) {
2081    if (!*it) {
2082      // An expression such as 'member(arg ?: "")' may trigger this.
2083      continue;
2084    }
2085    if (InitExprContainsUninitializedFields(*it, LhsField, L))
2086      return true;
2087  }
2088  return false;
2089}
2090
2091MemInitResult
2092Sema::BuildMemberInitializer(ValueDecl *Member,
2093                             const MultiInitializer &Args,
2094                             SourceLocation IdLoc) {
2095  FieldDecl *DirectMember = dyn_cast<FieldDecl>(Member);
2096  IndirectFieldDecl *IndirectMember = dyn_cast<IndirectFieldDecl>(Member);
2097  assert((DirectMember || IndirectMember) &&
2098         "Member must be a FieldDecl or IndirectFieldDecl");
2099
2100  if (Args.DiagnoseUnexpandedParameterPack(*this))
2101    return true;
2102
2103  if (Member->isInvalidDecl())
2104    return true;
2105
2106  // Diagnose value-uses of fields to initialize themselves, e.g.
2107  //   foo(foo)
2108  // where foo is not also a parameter to the constructor.
2109  // TODO: implement -Wuninitialized and fold this into that framework.
2110  for (MultiInitializer::iterator I = Args.begin(), E = Args.end();
2111       I != E; ++I) {
2112    SourceLocation L;
2113    Expr *Arg = *I;
2114    if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Arg))
2115      Arg = DIE->getInit();
2116    if (InitExprContainsUninitializedFields(Arg, Member, &L)) {
2117      // FIXME: Return true in the case when other fields are used before being
2118      // uninitialized. For example, let this field be the i'th field. When
2119      // initializing the i'th field, throw a warning if any of the >= i'th
2120      // fields are used, as they are not yet initialized.
2121      // Right now we are only handling the case where the i'th field uses
2122      // itself in its initializer.
2123      Diag(L, diag::warn_field_is_uninit);
2124    }
2125  }
2126
2127  bool HasDependentArg = Args.isTypeDependent();
2128
2129  Expr *Init;
2130  if (Member->getType()->isDependentType() || HasDependentArg) {
2131    // Can't check initialization for a member of dependent type or when
2132    // any of the arguments are type-dependent expressions.
2133    Init = Args.CreateInitExpr(Context,Member->getType().getNonReferenceType());
2134
2135    DiscardCleanupsInEvaluationContext();
2136  } else {
2137    // Initialize the member.
2138    InitializedEntity MemberEntity =
2139      DirectMember ? InitializedEntity::InitializeMember(DirectMember, 0)
2140                   : InitializedEntity::InitializeMember(IndirectMember, 0);
2141    InitializationKind Kind =
2142      InitializationKind::CreateDirect(IdLoc, Args.getStartLoc(),
2143                                       Args.getEndLoc());
2144
2145    ExprResult MemberInit = Args.PerformInit(*this, MemberEntity, Kind);
2146    if (MemberInit.isInvalid())
2147      return true;
2148
2149    CheckImplicitConversions(MemberInit.get(), Args.getStartLoc());
2150
2151    // C++0x [class.base.init]p7:
2152    //   The initialization of each base and member constitutes a
2153    //   full-expression.
2154    MemberInit = MaybeCreateExprWithCleanups(MemberInit);
2155    if (MemberInit.isInvalid())
2156      return true;
2157
2158    // If we are in a dependent context, template instantiation will
2159    // perform this type-checking again. Just save the arguments that we
2160    // received in a ParenListExpr.
2161    // FIXME: This isn't quite ideal, since our ASTs don't capture all
2162    // of the information that we have about the member
2163    // initializer. However, deconstructing the ASTs is a dicey process,
2164    // and this approach is far more likely to get the corner cases right.
2165    if (CurContext->isDependentContext()) {
2166      Init = Args.CreateInitExpr(Context,
2167                                 Member->getType().getNonReferenceType());
2168    } else {
2169      Init = MemberInit.get();
2170      CheckForDanglingReferenceOrPointer(*this, Member, Init, IdLoc);
2171    }
2172  }
2173
2174  if (DirectMember) {
2175    return new (Context) CXXCtorInitializer(Context, DirectMember,
2176                                                    IdLoc, Args.getStartLoc(),
2177                                                    Init, Args.getEndLoc());
2178  } else {
2179    return new (Context) CXXCtorInitializer(Context, IndirectMember,
2180                                                    IdLoc, Args.getStartLoc(),
2181                                                    Init, Args.getEndLoc());
2182  }
2183}
2184
2185MemInitResult
2186Sema::BuildDelegatingInitializer(TypeSourceInfo *TInfo,
2187                                 const MultiInitializer &Args,
2188                                 CXXRecordDecl *ClassDecl) {
2189  SourceLocation NameLoc = TInfo->getTypeLoc().getLocalSourceRange().getBegin();
2190  if (!LangOpts.CPlusPlus0x)
2191    return Diag(NameLoc, diag::err_delegating_ctor)
2192      << TInfo->getTypeLoc().getLocalSourceRange();
2193  Diag(NameLoc, diag::warn_cxx98_compat_delegating_ctor);
2194
2195  // Initialize the object.
2196  InitializedEntity DelegationEntity = InitializedEntity::InitializeDelegation(
2197                                     QualType(ClassDecl->getTypeForDecl(), 0));
2198  InitializationKind Kind =
2199    InitializationKind::CreateDirect(NameLoc, Args.getStartLoc(),
2200                                     Args.getEndLoc());
2201
2202  ExprResult DelegationInit = Args.PerformInit(*this, DelegationEntity, Kind);
2203  if (DelegationInit.isInvalid())
2204    return true;
2205
2206  assert(cast<CXXConstructExpr>(DelegationInit.get())->getConstructor() &&
2207         "Delegating constructor with no target?");
2208
2209  CheckImplicitConversions(DelegationInit.get(), Args.getStartLoc());
2210
2211  // C++0x [class.base.init]p7:
2212  //   The initialization of each base and member constitutes a
2213  //   full-expression.
2214  DelegationInit = MaybeCreateExprWithCleanups(DelegationInit);
2215  if (DelegationInit.isInvalid())
2216    return true;
2217
2218  return new (Context) CXXCtorInitializer(Context, TInfo, Args.getStartLoc(),
2219                                          DelegationInit.takeAs<Expr>(),
2220                                          Args.getEndLoc());
2221}
2222
2223MemInitResult
2224Sema::BuildBaseInitializer(QualType BaseType, TypeSourceInfo *BaseTInfo,
2225                           const MultiInitializer &Args,
2226                           CXXRecordDecl *ClassDecl,
2227                           SourceLocation EllipsisLoc) {
2228  bool HasDependentArg = Args.isTypeDependent();
2229
2230  SourceLocation BaseLoc
2231    = BaseTInfo->getTypeLoc().getLocalSourceRange().getBegin();
2232
2233  if (!BaseType->isDependentType() && !BaseType->isRecordType())
2234    return Diag(BaseLoc, diag::err_base_init_does_not_name_class)
2235             << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
2236
2237  // C++ [class.base.init]p2:
2238  //   [...] Unless the mem-initializer-id names a nonstatic data
2239  //   member of the constructor's class or a direct or virtual base
2240  //   of that class, the mem-initializer is ill-formed. A
2241  //   mem-initializer-list can initialize a base class using any
2242  //   name that denotes that base class type.
2243  bool Dependent = BaseType->isDependentType() || HasDependentArg;
2244
2245  if (EllipsisLoc.isValid()) {
2246    // This is a pack expansion.
2247    if (!BaseType->containsUnexpandedParameterPack())  {
2248      Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
2249        << SourceRange(BaseLoc, Args.getEndLoc());
2250
2251      EllipsisLoc = SourceLocation();
2252    }
2253  } else {
2254    // Check for any unexpanded parameter packs.
2255    if (DiagnoseUnexpandedParameterPack(BaseLoc, BaseTInfo, UPPC_Initializer))
2256      return true;
2257
2258    if (Args.DiagnoseUnexpandedParameterPack(*this))
2259      return true;
2260  }
2261
2262  // Check for direct and virtual base classes.
2263  const CXXBaseSpecifier *DirectBaseSpec = 0;
2264  const CXXBaseSpecifier *VirtualBaseSpec = 0;
2265  if (!Dependent) {
2266    if (Context.hasSameUnqualifiedType(QualType(ClassDecl->getTypeForDecl(),0),
2267                                       BaseType))
2268      return BuildDelegatingInitializer(BaseTInfo, Args, ClassDecl);
2269
2270    FindBaseInitializer(*this, ClassDecl, BaseType, DirectBaseSpec,
2271                        VirtualBaseSpec);
2272
2273    // C++ [base.class.init]p2:
2274    // Unless the mem-initializer-id names a nonstatic data member of the
2275    // constructor's class or a direct or virtual base of that class, the
2276    // mem-initializer is ill-formed.
2277    if (!DirectBaseSpec && !VirtualBaseSpec) {
2278      // If the class has any dependent bases, then it's possible that
2279      // one of those types will resolve to the same type as
2280      // BaseType. Therefore, just treat this as a dependent base
2281      // class initialization.  FIXME: Should we try to check the
2282      // initialization anyway? It seems odd.
2283      if (ClassDecl->hasAnyDependentBases())
2284        Dependent = true;
2285      else
2286        return Diag(BaseLoc, diag::err_not_direct_base_or_virtual)
2287          << BaseType << Context.getTypeDeclType(ClassDecl)
2288          << BaseTInfo->getTypeLoc().getLocalSourceRange();
2289    }
2290  }
2291
2292  if (Dependent) {
2293    // Can't check initialization for a base of dependent type or when
2294    // any of the arguments are type-dependent expressions.
2295    Expr *BaseInit = Args.CreateInitExpr(Context, BaseType);
2296
2297    DiscardCleanupsInEvaluationContext();
2298
2299    return new (Context) CXXCtorInitializer(Context, BaseTInfo,
2300                                            /*IsVirtual=*/false,
2301                                            Args.getStartLoc(), BaseInit,
2302                                            Args.getEndLoc(), EllipsisLoc);
2303  }
2304
2305  // C++ [base.class.init]p2:
2306  //   If a mem-initializer-id is ambiguous because it designates both
2307  //   a direct non-virtual base class and an inherited virtual base
2308  //   class, the mem-initializer is ill-formed.
2309  if (DirectBaseSpec && VirtualBaseSpec)
2310    return Diag(BaseLoc, diag::err_base_init_direct_and_virtual)
2311      << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
2312
2313  CXXBaseSpecifier *BaseSpec
2314    = const_cast<CXXBaseSpecifier *>(DirectBaseSpec);
2315  if (!BaseSpec)
2316    BaseSpec = const_cast<CXXBaseSpecifier *>(VirtualBaseSpec);
2317
2318  // Initialize the base.
2319  InitializedEntity BaseEntity =
2320    InitializedEntity::InitializeBase(Context, BaseSpec, VirtualBaseSpec);
2321  InitializationKind Kind =
2322    InitializationKind::CreateDirect(BaseLoc, Args.getStartLoc(),
2323                                     Args.getEndLoc());
2324
2325  ExprResult BaseInit = Args.PerformInit(*this, BaseEntity, Kind);
2326  if (BaseInit.isInvalid())
2327    return true;
2328
2329  CheckImplicitConversions(BaseInit.get(), Args.getStartLoc());
2330
2331  // C++0x [class.base.init]p7:
2332  //   The initialization of each base and member constitutes a
2333  //   full-expression.
2334  BaseInit = MaybeCreateExprWithCleanups(BaseInit);
2335  if (BaseInit.isInvalid())
2336    return true;
2337
2338  // If we are in a dependent context, template instantiation will
2339  // perform this type-checking again. Just save the arguments that we
2340  // received in a ParenListExpr.
2341  // FIXME: This isn't quite ideal, since our ASTs don't capture all
2342  // of the information that we have about the base
2343  // initializer. However, deconstructing the ASTs is a dicey process,
2344  // and this approach is far more likely to get the corner cases right.
2345  if (CurContext->isDependentContext())
2346    BaseInit = Owned(Args.CreateInitExpr(Context, BaseType));
2347
2348  return new (Context) CXXCtorInitializer(Context, BaseTInfo,
2349                                          BaseSpec->isVirtual(),
2350                                          Args.getStartLoc(),
2351                                          BaseInit.takeAs<Expr>(),
2352                                          Args.getEndLoc(), EllipsisLoc);
2353}
2354
2355// Create a static_cast\<T&&>(expr).
2356static Expr *CastForMoving(Sema &SemaRef, Expr *E) {
2357  QualType ExprType = E->getType();
2358  QualType TargetType = SemaRef.Context.getRValueReferenceType(ExprType);
2359  SourceLocation ExprLoc = E->getLocStart();
2360  TypeSourceInfo *TargetLoc = SemaRef.Context.getTrivialTypeSourceInfo(
2361      TargetType, ExprLoc);
2362
2363  return SemaRef.BuildCXXNamedCast(ExprLoc, tok::kw_static_cast, TargetLoc, E,
2364                                   SourceRange(ExprLoc, ExprLoc),
2365                                   E->getSourceRange()).take();
2366}
2367
2368/// ImplicitInitializerKind - How an implicit base or member initializer should
2369/// initialize its base or member.
2370enum ImplicitInitializerKind {
2371  IIK_Default,
2372  IIK_Copy,
2373  IIK_Move
2374};
2375
2376static bool
2377BuildImplicitBaseInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
2378                             ImplicitInitializerKind ImplicitInitKind,
2379                             CXXBaseSpecifier *BaseSpec,
2380                             bool IsInheritedVirtualBase,
2381                             CXXCtorInitializer *&CXXBaseInit) {
2382  InitializedEntity InitEntity
2383    = InitializedEntity::InitializeBase(SemaRef.Context, BaseSpec,
2384                                        IsInheritedVirtualBase);
2385
2386  ExprResult BaseInit;
2387
2388  switch (ImplicitInitKind) {
2389  case IIK_Default: {
2390    InitializationKind InitKind
2391      = InitializationKind::CreateDefault(Constructor->getLocation());
2392    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
2393    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind,
2394                               MultiExprArg(SemaRef, 0, 0));
2395    break;
2396  }
2397
2398  case IIK_Move:
2399  case IIK_Copy: {
2400    bool Moving = ImplicitInitKind == IIK_Move;
2401    ParmVarDecl *Param = Constructor->getParamDecl(0);
2402    QualType ParamType = Param->getType().getNonReferenceType();
2403
2404    Expr *CopyCtorArg =
2405      DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(),
2406                          SourceLocation(), Param,
2407                          Constructor->getLocation(), ParamType,
2408                          VK_LValue, 0);
2409
2410    SemaRef.MarkDeclRefReferenced(cast<DeclRefExpr>(CopyCtorArg));
2411
2412    // Cast to the base class to avoid ambiguities.
2413    QualType ArgTy =
2414      SemaRef.Context.getQualifiedType(BaseSpec->getType().getUnqualifiedType(),
2415                                       ParamType.getQualifiers());
2416
2417    if (Moving) {
2418      CopyCtorArg = CastForMoving(SemaRef, CopyCtorArg);
2419    }
2420
2421    CXXCastPath BasePath;
2422    BasePath.push_back(BaseSpec);
2423    CopyCtorArg = SemaRef.ImpCastExprToType(CopyCtorArg, ArgTy,
2424                                            CK_UncheckedDerivedToBase,
2425                                            Moving ? VK_XValue : VK_LValue,
2426                                            &BasePath).take();
2427
2428    InitializationKind InitKind
2429      = InitializationKind::CreateDirect(Constructor->getLocation(),
2430                                         SourceLocation(), SourceLocation());
2431    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind,
2432                                   &CopyCtorArg, 1);
2433    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind,
2434                               MultiExprArg(&CopyCtorArg, 1));
2435    break;
2436  }
2437  }
2438
2439  BaseInit = SemaRef.MaybeCreateExprWithCleanups(BaseInit);
2440  if (BaseInit.isInvalid())
2441    return true;
2442
2443  CXXBaseInit =
2444    new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
2445               SemaRef.Context.getTrivialTypeSourceInfo(BaseSpec->getType(),
2446                                                        SourceLocation()),
2447                                             BaseSpec->isVirtual(),
2448                                             SourceLocation(),
2449                                             BaseInit.takeAs<Expr>(),
2450                                             SourceLocation(),
2451                                             SourceLocation());
2452
2453  return false;
2454}
2455
2456static bool RefersToRValueRef(Expr *MemRef) {
2457  ValueDecl *Referenced = cast<MemberExpr>(MemRef)->getMemberDecl();
2458  return Referenced->getType()->isRValueReferenceType();
2459}
2460
2461static bool
2462BuildImplicitMemberInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
2463                               ImplicitInitializerKind ImplicitInitKind,
2464                               FieldDecl *Field, IndirectFieldDecl *Indirect,
2465                               CXXCtorInitializer *&CXXMemberInit) {
2466  if (Field->isInvalidDecl())
2467    return true;
2468
2469  SourceLocation Loc = Constructor->getLocation();
2470
2471  if (ImplicitInitKind == IIK_Copy || ImplicitInitKind == IIK_Move) {
2472    bool Moving = ImplicitInitKind == IIK_Move;
2473    ParmVarDecl *Param = Constructor->getParamDecl(0);
2474    QualType ParamType = Param->getType().getNonReferenceType();
2475
2476    // Suppress copying zero-width bitfields.
2477    if (Field->isBitField() && Field->getBitWidthValue(SemaRef.Context) == 0)
2478      return false;
2479
2480    Expr *MemberExprBase =
2481      DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(),
2482                          SourceLocation(), Param,
2483                          Loc, ParamType, VK_LValue, 0);
2484
2485    SemaRef.MarkDeclRefReferenced(cast<DeclRefExpr>(MemberExprBase));
2486
2487    if (Moving) {
2488      MemberExprBase = CastForMoving(SemaRef, MemberExprBase);
2489    }
2490
2491    // Build a reference to this field within the parameter.
2492    CXXScopeSpec SS;
2493    LookupResult MemberLookup(SemaRef, Field->getDeclName(), Loc,
2494                              Sema::LookupMemberName);
2495    MemberLookup.addDecl(Indirect ? cast<ValueDecl>(Indirect)
2496                                  : cast<ValueDecl>(Field), AS_public);
2497    MemberLookup.resolveKind();
2498    ExprResult CtorArg
2499      = SemaRef.BuildMemberReferenceExpr(MemberExprBase,
2500                                         ParamType, Loc,
2501                                         /*IsArrow=*/false,
2502                                         SS,
2503                                         /*TemplateKWLoc=*/SourceLocation(),
2504                                         /*FirstQualifierInScope=*/0,
2505                                         MemberLookup,
2506                                         /*TemplateArgs=*/0);
2507    if (CtorArg.isInvalid())
2508      return true;
2509
2510    // C++11 [class.copy]p15:
2511    //   - if a member m has rvalue reference type T&&, it is direct-initialized
2512    //     with static_cast<T&&>(x.m);
2513    if (RefersToRValueRef(CtorArg.get())) {
2514      CtorArg = CastForMoving(SemaRef, CtorArg.take());
2515    }
2516
2517    // When the field we are copying is an array, create index variables for
2518    // each dimension of the array. We use these index variables to subscript
2519    // the source array, and other clients (e.g., CodeGen) will perform the
2520    // necessary iteration with these index variables.
2521    SmallVector<VarDecl *, 4> IndexVariables;
2522    QualType BaseType = Field->getType();
2523    QualType SizeType = SemaRef.Context.getSizeType();
2524    bool InitializingArray = false;
2525    while (const ConstantArrayType *Array
2526                          = SemaRef.Context.getAsConstantArrayType(BaseType)) {
2527      InitializingArray = true;
2528      // Create the iteration variable for this array index.
2529      IdentifierInfo *IterationVarName = 0;
2530      {
2531        SmallString<8> Str;
2532        llvm::raw_svector_ostream OS(Str);
2533        OS << "__i" << IndexVariables.size();
2534        IterationVarName = &SemaRef.Context.Idents.get(OS.str());
2535      }
2536      VarDecl *IterationVar
2537        = VarDecl::Create(SemaRef.Context, SemaRef.CurContext, Loc, Loc,
2538                          IterationVarName, SizeType,
2539                        SemaRef.Context.getTrivialTypeSourceInfo(SizeType, Loc),
2540                          SC_None, SC_None);
2541      IndexVariables.push_back(IterationVar);
2542
2543      // Create a reference to the iteration variable.
2544      ExprResult IterationVarRef
2545        = SemaRef.BuildDeclRefExpr(IterationVar, SizeType, VK_LValue, Loc);
2546      assert(!IterationVarRef.isInvalid() &&
2547             "Reference to invented variable cannot fail!");
2548      IterationVarRef = SemaRef.DefaultLvalueConversion(IterationVarRef.take());
2549      assert(!IterationVarRef.isInvalid() &&
2550             "Conversion of invented variable cannot fail!");
2551
2552      // Subscript the array with this iteration variable.
2553      CtorArg = SemaRef.CreateBuiltinArraySubscriptExpr(CtorArg.take(), Loc,
2554                                                        IterationVarRef.take(),
2555                                                        Loc);
2556      if (CtorArg.isInvalid())
2557        return true;
2558
2559      BaseType = Array->getElementType();
2560    }
2561
2562    // The array subscript expression is an lvalue, which is wrong for moving.
2563    if (Moving && InitializingArray)
2564      CtorArg = CastForMoving(SemaRef, CtorArg.take());
2565
2566    // Construct the entity that we will be initializing. For an array, this
2567    // will be first element in the array, which may require several levels
2568    // of array-subscript entities.
2569    SmallVector<InitializedEntity, 4> Entities;
2570    Entities.reserve(1 + IndexVariables.size());
2571    if (Indirect)
2572      Entities.push_back(InitializedEntity::InitializeMember(Indirect));
2573    else
2574      Entities.push_back(InitializedEntity::InitializeMember(Field));
2575    for (unsigned I = 0, N = IndexVariables.size(); I != N; ++I)
2576      Entities.push_back(InitializedEntity::InitializeElement(SemaRef.Context,
2577                                                              0,
2578                                                              Entities.back()));
2579
2580    // Direct-initialize to use the copy constructor.
2581    InitializationKind InitKind =
2582      InitializationKind::CreateDirect(Loc, SourceLocation(), SourceLocation());
2583
2584    Expr *CtorArgE = CtorArg.takeAs<Expr>();
2585    InitializationSequence InitSeq(SemaRef, Entities.back(), InitKind,
2586                                   &CtorArgE, 1);
2587
2588    ExprResult MemberInit
2589      = InitSeq.Perform(SemaRef, Entities.back(), InitKind,
2590                        MultiExprArg(&CtorArgE, 1));
2591    MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
2592    if (MemberInit.isInvalid())
2593      return true;
2594
2595    if (Indirect) {
2596      assert(IndexVariables.size() == 0 &&
2597             "Indirect field improperly initialized");
2598      CXXMemberInit
2599        = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Indirect,
2600                                                   Loc, Loc,
2601                                                   MemberInit.takeAs<Expr>(),
2602                                                   Loc);
2603    } else
2604      CXXMemberInit = CXXCtorInitializer::Create(SemaRef.Context, Field, Loc,
2605                                                 Loc, MemberInit.takeAs<Expr>(),
2606                                                 Loc,
2607                                                 IndexVariables.data(),
2608                                                 IndexVariables.size());
2609    return false;
2610  }
2611
2612  assert(ImplicitInitKind == IIK_Default && "Unhandled implicit init kind!");
2613
2614  QualType FieldBaseElementType =
2615    SemaRef.Context.getBaseElementType(Field->getType());
2616
2617  if (FieldBaseElementType->isRecordType()) {
2618    InitializedEntity InitEntity
2619      = Indirect? InitializedEntity::InitializeMember(Indirect)
2620                : InitializedEntity::InitializeMember(Field);
2621    InitializationKind InitKind =
2622      InitializationKind::CreateDefault(Loc);
2623
2624    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
2625    ExprResult MemberInit =
2626      InitSeq.Perform(SemaRef, InitEntity, InitKind, MultiExprArg());
2627
2628    MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
2629    if (MemberInit.isInvalid())
2630      return true;
2631
2632    if (Indirect)
2633      CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
2634                                                               Indirect, Loc,
2635                                                               Loc,
2636                                                               MemberInit.get(),
2637                                                               Loc);
2638    else
2639      CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
2640                                                               Field, Loc, Loc,
2641                                                               MemberInit.get(),
2642                                                               Loc);
2643    return false;
2644  }
2645
2646  if (!Field->getParent()->isUnion()) {
2647    if (FieldBaseElementType->isReferenceType()) {
2648      SemaRef.Diag(Constructor->getLocation(),
2649                   diag::err_uninitialized_member_in_ctor)
2650      << (int)Constructor->isImplicit()
2651      << SemaRef.Context.getTagDeclType(Constructor->getParent())
2652      << 0 << Field->getDeclName();
2653      SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
2654      return true;
2655    }
2656
2657    if (FieldBaseElementType.isConstQualified()) {
2658      SemaRef.Diag(Constructor->getLocation(),
2659                   diag::err_uninitialized_member_in_ctor)
2660      << (int)Constructor->isImplicit()
2661      << SemaRef.Context.getTagDeclType(Constructor->getParent())
2662      << 1 << Field->getDeclName();
2663      SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
2664      return true;
2665    }
2666  }
2667
2668  if (SemaRef.getLangOptions().ObjCAutoRefCount &&
2669      FieldBaseElementType->isObjCRetainableType() &&
2670      FieldBaseElementType.getObjCLifetime() != Qualifiers::OCL_None &&
2671      FieldBaseElementType.getObjCLifetime() != Qualifiers::OCL_ExplicitNone) {
2672    // Instant objects:
2673    //   Default-initialize Objective-C pointers to NULL.
2674    CXXMemberInit
2675      = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Field,
2676                                                 Loc, Loc,
2677                 new (SemaRef.Context) ImplicitValueInitExpr(Field->getType()),
2678                                                 Loc);
2679    return false;
2680  }
2681
2682  // Nothing to initialize.
2683  CXXMemberInit = 0;
2684  return false;
2685}
2686
2687namespace {
2688struct BaseAndFieldInfo {
2689  Sema &S;
2690  CXXConstructorDecl *Ctor;
2691  bool AnyErrorsInInits;
2692  ImplicitInitializerKind IIK;
2693  llvm::DenseMap<const void *, CXXCtorInitializer*> AllBaseFields;
2694  SmallVector<CXXCtorInitializer*, 8> AllToInit;
2695
2696  BaseAndFieldInfo(Sema &S, CXXConstructorDecl *Ctor, bool ErrorsInInits)
2697    : S(S), Ctor(Ctor), AnyErrorsInInits(ErrorsInInits) {
2698    bool Generated = Ctor->isImplicit() || Ctor->isDefaulted();
2699    if (Generated && Ctor->isCopyConstructor())
2700      IIK = IIK_Copy;
2701    else if (Generated && Ctor->isMoveConstructor())
2702      IIK = IIK_Move;
2703    else
2704      IIK = IIK_Default;
2705  }
2706
2707  bool isImplicitCopyOrMove() const {
2708    switch (IIK) {
2709    case IIK_Copy:
2710    case IIK_Move:
2711      return true;
2712
2713    case IIK_Default:
2714      return false;
2715    }
2716
2717    llvm_unreachable("Invalid ImplicitInitializerKind!");
2718  }
2719};
2720}
2721
2722/// \brief Determine whether the given indirect field declaration is somewhere
2723/// within an anonymous union.
2724static bool isWithinAnonymousUnion(IndirectFieldDecl *F) {
2725  for (IndirectFieldDecl::chain_iterator C = F->chain_begin(),
2726                                      CEnd = F->chain_end();
2727       C != CEnd; ++C)
2728    if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>((*C)->getDeclContext()))
2729      if (Record->isUnion())
2730        return true;
2731
2732  return false;
2733}
2734
2735/// \brief Determine whether the given type is an incomplete or zero-lenfgth
2736/// array type.
2737static bool isIncompleteOrZeroLengthArrayType(ASTContext &Context, QualType T) {
2738  if (T->isIncompleteArrayType())
2739    return true;
2740
2741  while (const ConstantArrayType *ArrayT = Context.getAsConstantArrayType(T)) {
2742    if (!ArrayT->getSize())
2743      return true;
2744
2745    T = ArrayT->getElementType();
2746  }
2747
2748  return false;
2749}
2750
2751static bool CollectFieldInitializer(Sema &SemaRef, BaseAndFieldInfo &Info,
2752                                    FieldDecl *Field,
2753                                    IndirectFieldDecl *Indirect = 0) {
2754
2755  // Overwhelmingly common case: we have a direct initializer for this field.
2756  if (CXXCtorInitializer *Init = Info.AllBaseFields.lookup(Field)) {
2757    Info.AllToInit.push_back(Init);
2758    return false;
2759  }
2760
2761  // C++0x [class.base.init]p8: if the entity is a non-static data member that
2762  // has a brace-or-equal-initializer, the entity is initialized as specified
2763  // in [dcl.init].
2764  if (Field->hasInClassInitializer() && !Info.isImplicitCopyOrMove()) {
2765    CXXCtorInitializer *Init;
2766    if (Indirect)
2767      Init = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Indirect,
2768                                                      SourceLocation(),
2769                                                      SourceLocation(), 0,
2770                                                      SourceLocation());
2771    else
2772      Init = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Field,
2773                                                      SourceLocation(),
2774                                                      SourceLocation(), 0,
2775                                                      SourceLocation());
2776    Info.AllToInit.push_back(Init);
2777    return false;
2778  }
2779
2780  // Don't build an implicit initializer for union members if none was
2781  // explicitly specified.
2782  if (Field->getParent()->isUnion() ||
2783      (Indirect && isWithinAnonymousUnion(Indirect)))
2784    return false;
2785
2786  // Don't initialize incomplete or zero-length arrays.
2787  if (isIncompleteOrZeroLengthArrayType(SemaRef.Context, Field->getType()))
2788    return false;
2789
2790  // Don't try to build an implicit initializer if there were semantic
2791  // errors in any of the initializers (and therefore we might be
2792  // missing some that the user actually wrote).
2793  if (Info.AnyErrorsInInits || Field->isInvalidDecl())
2794    return false;
2795
2796  CXXCtorInitializer *Init = 0;
2797  if (BuildImplicitMemberInitializer(Info.S, Info.Ctor, Info.IIK, Field,
2798                                     Indirect, Init))
2799    return true;
2800
2801  if (Init)
2802    Info.AllToInit.push_back(Init);
2803
2804  return false;
2805}
2806
2807bool
2808Sema::SetDelegatingInitializer(CXXConstructorDecl *Constructor,
2809                               CXXCtorInitializer *Initializer) {
2810  assert(Initializer->isDelegatingInitializer());
2811  Constructor->setNumCtorInitializers(1);
2812  CXXCtorInitializer **initializer =
2813    new (Context) CXXCtorInitializer*[1];
2814  memcpy(initializer, &Initializer, sizeof (CXXCtorInitializer*));
2815  Constructor->setCtorInitializers(initializer);
2816
2817  if (CXXDestructorDecl *Dtor = LookupDestructor(Constructor->getParent())) {
2818    MarkFunctionReferenced(Initializer->getSourceLocation(), Dtor);
2819    DiagnoseUseOfDecl(Dtor, Initializer->getSourceLocation());
2820  }
2821
2822  DelegatingCtorDecls.push_back(Constructor);
2823
2824  return false;
2825}
2826
2827bool Sema::SetCtorInitializers(CXXConstructorDecl *Constructor,
2828                               CXXCtorInitializer **Initializers,
2829                               unsigned NumInitializers,
2830                               bool AnyErrors) {
2831  if (Constructor->isDependentContext()) {
2832    // Just store the initializers as written, they will be checked during
2833    // instantiation.
2834    if (NumInitializers > 0) {
2835      Constructor->setNumCtorInitializers(NumInitializers);
2836      CXXCtorInitializer **baseOrMemberInitializers =
2837        new (Context) CXXCtorInitializer*[NumInitializers];
2838      memcpy(baseOrMemberInitializers, Initializers,
2839             NumInitializers * sizeof(CXXCtorInitializer*));
2840      Constructor->setCtorInitializers(baseOrMemberInitializers);
2841    }
2842
2843    return false;
2844  }
2845
2846  BaseAndFieldInfo Info(*this, Constructor, AnyErrors);
2847
2848  // We need to build the initializer AST according to order of construction
2849  // and not what user specified in the Initializers list.
2850  CXXRecordDecl *ClassDecl = Constructor->getParent()->getDefinition();
2851  if (!ClassDecl)
2852    return true;
2853
2854  bool HadError = false;
2855
2856  for (unsigned i = 0; i < NumInitializers; i++) {
2857    CXXCtorInitializer *Member = Initializers[i];
2858
2859    if (Member->isBaseInitializer())
2860      Info.AllBaseFields[Member->getBaseClass()->getAs<RecordType>()] = Member;
2861    else
2862      Info.AllBaseFields[Member->getAnyMember()] = Member;
2863  }
2864
2865  // Keep track of the direct virtual bases.
2866  llvm::SmallPtrSet<CXXBaseSpecifier *, 16> DirectVBases;
2867  for (CXXRecordDecl::base_class_iterator I = ClassDecl->bases_begin(),
2868       E = ClassDecl->bases_end(); I != E; ++I) {
2869    if (I->isVirtual())
2870      DirectVBases.insert(I);
2871  }
2872
2873  // Push virtual bases before others.
2874  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
2875       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
2876
2877    if (CXXCtorInitializer *Value
2878        = Info.AllBaseFields.lookup(VBase->getType()->getAs<RecordType>())) {
2879      Info.AllToInit.push_back(Value);
2880    } else if (!AnyErrors) {
2881      bool IsInheritedVirtualBase = !DirectVBases.count(VBase);
2882      CXXCtorInitializer *CXXBaseInit;
2883      if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
2884                                       VBase, IsInheritedVirtualBase,
2885                                       CXXBaseInit)) {
2886        HadError = true;
2887        continue;
2888      }
2889
2890      Info.AllToInit.push_back(CXXBaseInit);
2891    }
2892  }
2893
2894  // Non-virtual bases.
2895  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
2896       E = ClassDecl->bases_end(); Base != E; ++Base) {
2897    // Virtuals are in the virtual base list and already constructed.
2898    if (Base->isVirtual())
2899      continue;
2900
2901    if (CXXCtorInitializer *Value
2902          = Info.AllBaseFields.lookup(Base->getType()->getAs<RecordType>())) {
2903      Info.AllToInit.push_back(Value);
2904    } else if (!AnyErrors) {
2905      CXXCtorInitializer *CXXBaseInit;
2906      if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
2907                                       Base, /*IsInheritedVirtualBase=*/false,
2908                                       CXXBaseInit)) {
2909        HadError = true;
2910        continue;
2911      }
2912
2913      Info.AllToInit.push_back(CXXBaseInit);
2914    }
2915  }
2916
2917  // Fields.
2918  for (DeclContext::decl_iterator Mem = ClassDecl->decls_begin(),
2919                               MemEnd = ClassDecl->decls_end();
2920       Mem != MemEnd; ++Mem) {
2921    if (FieldDecl *F = dyn_cast<FieldDecl>(*Mem)) {
2922      // C++ [class.bit]p2:
2923      //   A declaration for a bit-field that omits the identifier declares an
2924      //   unnamed bit-field. Unnamed bit-fields are not members and cannot be
2925      //   initialized.
2926      if (F->isUnnamedBitfield())
2927        continue;
2928
2929      // If we're not generating the implicit copy/move constructor, then we'll
2930      // handle anonymous struct/union fields based on their individual
2931      // indirect fields.
2932      if (F->isAnonymousStructOrUnion() && Info.IIK == IIK_Default)
2933        continue;
2934
2935      if (CollectFieldInitializer(*this, Info, F))
2936        HadError = true;
2937      continue;
2938    }
2939
2940    // Beyond this point, we only consider default initialization.
2941    if (Info.IIK != IIK_Default)
2942      continue;
2943
2944    if (IndirectFieldDecl *F = dyn_cast<IndirectFieldDecl>(*Mem)) {
2945      if (F->getType()->isIncompleteArrayType()) {
2946        assert(ClassDecl->hasFlexibleArrayMember() &&
2947               "Incomplete array type is not valid");
2948        continue;
2949      }
2950
2951      // Initialize each field of an anonymous struct individually.
2952      if (CollectFieldInitializer(*this, Info, F->getAnonField(), F))
2953        HadError = true;
2954
2955      continue;
2956    }
2957  }
2958
2959  NumInitializers = Info.AllToInit.size();
2960  if (NumInitializers > 0) {
2961    Constructor->setNumCtorInitializers(NumInitializers);
2962    CXXCtorInitializer **baseOrMemberInitializers =
2963      new (Context) CXXCtorInitializer*[NumInitializers];
2964    memcpy(baseOrMemberInitializers, Info.AllToInit.data(),
2965           NumInitializers * sizeof(CXXCtorInitializer*));
2966    Constructor->setCtorInitializers(baseOrMemberInitializers);
2967
2968    // Constructors implicitly reference the base and member
2969    // destructors.
2970    MarkBaseAndMemberDestructorsReferenced(Constructor->getLocation(),
2971                                           Constructor->getParent());
2972  }
2973
2974  return HadError;
2975}
2976
2977static void *GetKeyForTopLevelField(FieldDecl *Field) {
2978  // For anonymous unions, use the class declaration as the key.
2979  if (const RecordType *RT = Field->getType()->getAs<RecordType>()) {
2980    if (RT->getDecl()->isAnonymousStructOrUnion())
2981      return static_cast<void *>(RT->getDecl());
2982  }
2983  return static_cast<void *>(Field);
2984}
2985
2986static void *GetKeyForBase(ASTContext &Context, QualType BaseType) {
2987  return const_cast<Type*>(Context.getCanonicalType(BaseType).getTypePtr());
2988}
2989
2990static void *GetKeyForMember(ASTContext &Context,
2991                             CXXCtorInitializer *Member) {
2992  if (!Member->isAnyMemberInitializer())
2993    return GetKeyForBase(Context, QualType(Member->getBaseClass(), 0));
2994
2995  // For fields injected into the class via declaration of an anonymous union,
2996  // use its anonymous union class declaration as the unique key.
2997  FieldDecl *Field = Member->getAnyMember();
2998
2999  // If the field is a member of an anonymous struct or union, our key
3000  // is the anonymous record decl that's a direct child of the class.
3001  RecordDecl *RD = Field->getParent();
3002  if (RD->isAnonymousStructOrUnion()) {
3003    while (true) {
3004      RecordDecl *Parent = cast<RecordDecl>(RD->getDeclContext());
3005      if (Parent->isAnonymousStructOrUnion())
3006        RD = Parent;
3007      else
3008        break;
3009    }
3010
3011    return static_cast<void *>(RD);
3012  }
3013
3014  return static_cast<void *>(Field);
3015}
3016
3017static void
3018DiagnoseBaseOrMemInitializerOrder(Sema &SemaRef,
3019                                  const CXXConstructorDecl *Constructor,
3020                                  CXXCtorInitializer **Inits,
3021                                  unsigned NumInits) {
3022  if (Constructor->getDeclContext()->isDependentContext())
3023    return;
3024
3025  // Don't check initializers order unless the warning is enabled at the
3026  // location of at least one initializer.
3027  bool ShouldCheckOrder = false;
3028  for (unsigned InitIndex = 0; InitIndex != NumInits; ++InitIndex) {
3029    CXXCtorInitializer *Init = Inits[InitIndex];
3030    if (SemaRef.Diags.getDiagnosticLevel(diag::warn_initializer_out_of_order,
3031                                         Init->getSourceLocation())
3032          != DiagnosticsEngine::Ignored) {
3033      ShouldCheckOrder = true;
3034      break;
3035    }
3036  }
3037  if (!ShouldCheckOrder)
3038    return;
3039
3040  // Build the list of bases and members in the order that they'll
3041  // actually be initialized.  The explicit initializers should be in
3042  // this same order but may be missing things.
3043  SmallVector<const void*, 32> IdealInitKeys;
3044
3045  const CXXRecordDecl *ClassDecl = Constructor->getParent();
3046
3047  // 1. Virtual bases.
3048  for (CXXRecordDecl::base_class_const_iterator VBase =
3049       ClassDecl->vbases_begin(),
3050       E = ClassDecl->vbases_end(); VBase != E; ++VBase)
3051    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, VBase->getType()));
3052
3053  // 2. Non-virtual bases.
3054  for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin(),
3055       E = ClassDecl->bases_end(); Base != E; ++Base) {
3056    if (Base->isVirtual())
3057      continue;
3058    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, Base->getType()));
3059  }
3060
3061  // 3. Direct fields.
3062  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
3063       E = ClassDecl->field_end(); Field != E; ++Field) {
3064    if (Field->isUnnamedBitfield())
3065      continue;
3066
3067    IdealInitKeys.push_back(GetKeyForTopLevelField(*Field));
3068  }
3069
3070  unsigned NumIdealInits = IdealInitKeys.size();
3071  unsigned IdealIndex = 0;
3072
3073  CXXCtorInitializer *PrevInit = 0;
3074  for (unsigned InitIndex = 0; InitIndex != NumInits; ++InitIndex) {
3075    CXXCtorInitializer *Init = Inits[InitIndex];
3076    void *InitKey = GetKeyForMember(SemaRef.Context, Init);
3077
3078    // Scan forward to try to find this initializer in the idealized
3079    // initializers list.
3080    for (; IdealIndex != NumIdealInits; ++IdealIndex)
3081      if (InitKey == IdealInitKeys[IdealIndex])
3082        break;
3083
3084    // If we didn't find this initializer, it must be because we
3085    // scanned past it on a previous iteration.  That can only
3086    // happen if we're out of order;  emit a warning.
3087    if (IdealIndex == NumIdealInits && PrevInit) {
3088      Sema::SemaDiagnosticBuilder D =
3089        SemaRef.Diag(PrevInit->getSourceLocation(),
3090                     diag::warn_initializer_out_of_order);
3091
3092      if (PrevInit->isAnyMemberInitializer())
3093        D << 0 << PrevInit->getAnyMember()->getDeclName();
3094      else
3095        D << 1 << PrevInit->getTypeSourceInfo()->getType();
3096
3097      if (Init->isAnyMemberInitializer())
3098        D << 0 << Init->getAnyMember()->getDeclName();
3099      else
3100        D << 1 << Init->getTypeSourceInfo()->getType();
3101
3102      // Move back to the initializer's location in the ideal list.
3103      for (IdealIndex = 0; IdealIndex != NumIdealInits; ++IdealIndex)
3104        if (InitKey == IdealInitKeys[IdealIndex])
3105          break;
3106
3107      assert(IdealIndex != NumIdealInits &&
3108             "initializer not found in initializer list");
3109    }
3110
3111    PrevInit = Init;
3112  }
3113}
3114
3115namespace {
3116bool CheckRedundantInit(Sema &S,
3117                        CXXCtorInitializer *Init,
3118                        CXXCtorInitializer *&PrevInit) {
3119  if (!PrevInit) {
3120    PrevInit = Init;
3121    return false;
3122  }
3123
3124  if (FieldDecl *Field = Init->getMember())
3125    S.Diag(Init->getSourceLocation(),
3126           diag::err_multiple_mem_initialization)
3127      << Field->getDeclName()
3128      << Init->getSourceRange();
3129  else {
3130    const Type *BaseClass = Init->getBaseClass();
3131    assert(BaseClass && "neither field nor base");
3132    S.Diag(Init->getSourceLocation(),
3133           diag::err_multiple_base_initialization)
3134      << QualType(BaseClass, 0)
3135      << Init->getSourceRange();
3136  }
3137  S.Diag(PrevInit->getSourceLocation(), diag::note_previous_initializer)
3138    << 0 << PrevInit->getSourceRange();
3139
3140  return true;
3141}
3142
3143typedef std::pair<NamedDecl *, CXXCtorInitializer *> UnionEntry;
3144typedef llvm::DenseMap<RecordDecl*, UnionEntry> RedundantUnionMap;
3145
3146bool CheckRedundantUnionInit(Sema &S,
3147                             CXXCtorInitializer *Init,
3148                             RedundantUnionMap &Unions) {
3149  FieldDecl *Field = Init->getAnyMember();
3150  RecordDecl *Parent = Field->getParent();
3151  NamedDecl *Child = Field;
3152
3153  while (Parent->isAnonymousStructOrUnion() || Parent->isUnion()) {
3154    if (Parent->isUnion()) {
3155      UnionEntry &En = Unions[Parent];
3156      if (En.first && En.first != Child) {
3157        S.Diag(Init->getSourceLocation(),
3158               diag::err_multiple_mem_union_initialization)
3159          << Field->getDeclName()
3160          << Init->getSourceRange();
3161        S.Diag(En.second->getSourceLocation(), diag::note_previous_initializer)
3162          << 0 << En.second->getSourceRange();
3163        return true;
3164      }
3165      if (!En.first) {
3166        En.first = Child;
3167        En.second = Init;
3168      }
3169      if (!Parent->isAnonymousStructOrUnion())
3170        return false;
3171    }
3172
3173    Child = Parent;
3174    Parent = cast<RecordDecl>(Parent->getDeclContext());
3175  }
3176
3177  return false;
3178}
3179}
3180
3181/// ActOnMemInitializers - Handle the member initializers for a constructor.
3182void Sema::ActOnMemInitializers(Decl *ConstructorDecl,
3183                                SourceLocation ColonLoc,
3184                                CXXCtorInitializer **meminits,
3185                                unsigned NumMemInits,
3186                                bool AnyErrors) {
3187  if (!ConstructorDecl)
3188    return;
3189
3190  AdjustDeclIfTemplate(ConstructorDecl);
3191
3192  CXXConstructorDecl *Constructor
3193    = dyn_cast<CXXConstructorDecl>(ConstructorDecl);
3194
3195  if (!Constructor) {
3196    Diag(ColonLoc, diag::err_only_constructors_take_base_inits);
3197    return;
3198  }
3199
3200  CXXCtorInitializer **MemInits =
3201    reinterpret_cast<CXXCtorInitializer **>(meminits);
3202
3203  // Mapping for the duplicate initializers check.
3204  // For member initializers, this is keyed with a FieldDecl*.
3205  // For base initializers, this is keyed with a Type*.
3206  llvm::DenseMap<void*, CXXCtorInitializer *> Members;
3207
3208  // Mapping for the inconsistent anonymous-union initializers check.
3209  RedundantUnionMap MemberUnions;
3210
3211  bool HadError = false;
3212  for (unsigned i = 0; i < NumMemInits; i++) {
3213    CXXCtorInitializer *Init = MemInits[i];
3214
3215    // Set the source order index.
3216    Init->setSourceOrder(i);
3217
3218    if (Init->isAnyMemberInitializer()) {
3219      FieldDecl *Field = Init->getAnyMember();
3220      if (CheckRedundantInit(*this, Init, Members[Field]) ||
3221          CheckRedundantUnionInit(*this, Init, MemberUnions))
3222        HadError = true;
3223    } else if (Init->isBaseInitializer()) {
3224      void *Key = GetKeyForBase(Context, QualType(Init->getBaseClass(), 0));
3225      if (CheckRedundantInit(*this, Init, Members[Key]))
3226        HadError = true;
3227    } else {
3228      assert(Init->isDelegatingInitializer());
3229      // This must be the only initializer
3230      if (i != 0 || NumMemInits > 1) {
3231        Diag(MemInits[0]->getSourceLocation(),
3232             diag::err_delegating_initializer_alone)
3233          << MemInits[0]->getSourceRange();
3234        HadError = true;
3235        // We will treat this as being the only initializer.
3236      }
3237      SetDelegatingInitializer(Constructor, MemInits[i]);
3238      // Return immediately as the initializer is set.
3239      return;
3240    }
3241  }
3242
3243  if (HadError)
3244    return;
3245
3246  DiagnoseBaseOrMemInitializerOrder(*this, Constructor, MemInits, NumMemInits);
3247
3248  SetCtorInitializers(Constructor, MemInits, NumMemInits, AnyErrors);
3249}
3250
3251void
3252Sema::MarkBaseAndMemberDestructorsReferenced(SourceLocation Location,
3253                                             CXXRecordDecl *ClassDecl) {
3254  // Ignore dependent contexts. Also ignore unions, since their members never
3255  // have destructors implicitly called.
3256  if (ClassDecl->isDependentContext() || ClassDecl->isUnion())
3257    return;
3258
3259  // FIXME: all the access-control diagnostics are positioned on the
3260  // field/base declaration.  That's probably good; that said, the
3261  // user might reasonably want to know why the destructor is being
3262  // emitted, and we currently don't say.
3263
3264  // Non-static data members.
3265  for (CXXRecordDecl::field_iterator I = ClassDecl->field_begin(),
3266       E = ClassDecl->field_end(); I != E; ++I) {
3267    FieldDecl *Field = *I;
3268    if (Field->isInvalidDecl())
3269      continue;
3270
3271    // Don't destroy incomplete or zero-length arrays.
3272    if (isIncompleteOrZeroLengthArrayType(Context, Field->getType()))
3273      continue;
3274
3275    QualType FieldType = Context.getBaseElementType(Field->getType());
3276
3277    const RecordType* RT = FieldType->getAs<RecordType>();
3278    if (!RT)
3279      continue;
3280
3281    CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
3282    if (FieldClassDecl->isInvalidDecl())
3283      continue;
3284    if (FieldClassDecl->hasTrivialDestructor())
3285      continue;
3286
3287    CXXDestructorDecl *Dtor = LookupDestructor(FieldClassDecl);
3288    assert(Dtor && "No dtor found for FieldClassDecl!");
3289    CheckDestructorAccess(Field->getLocation(), Dtor,
3290                          PDiag(diag::err_access_dtor_field)
3291                            << Field->getDeclName()
3292                            << FieldType);
3293
3294    MarkFunctionReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
3295  }
3296
3297  llvm::SmallPtrSet<const RecordType *, 8> DirectVirtualBases;
3298
3299  // Bases.
3300  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
3301       E = ClassDecl->bases_end(); Base != E; ++Base) {
3302    // Bases are always records in a well-formed non-dependent class.
3303    const RecordType *RT = Base->getType()->getAs<RecordType>();
3304
3305    // Remember direct virtual bases.
3306    if (Base->isVirtual())
3307      DirectVirtualBases.insert(RT);
3308
3309    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
3310    // If our base class is invalid, we probably can't get its dtor anyway.
3311    if (BaseClassDecl->isInvalidDecl())
3312      continue;
3313    // Ignore trivial destructors.
3314    if (BaseClassDecl->hasTrivialDestructor())
3315      continue;
3316
3317    CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
3318    assert(Dtor && "No dtor found for BaseClassDecl!");
3319
3320    // FIXME: caret should be on the start of the class name
3321    CheckDestructorAccess(Base->getSourceRange().getBegin(), Dtor,
3322                          PDiag(diag::err_access_dtor_base)
3323                            << Base->getType()
3324                            << Base->getSourceRange());
3325
3326    MarkFunctionReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
3327  }
3328
3329  // Virtual bases.
3330  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
3331       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
3332
3333    // Bases are always records in a well-formed non-dependent class.
3334    const RecordType *RT = VBase->getType()->getAs<RecordType>();
3335
3336    // Ignore direct virtual bases.
3337    if (DirectVirtualBases.count(RT))
3338      continue;
3339
3340    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
3341    // If our base class is invalid, we probably can't get its dtor anyway.
3342    if (BaseClassDecl->isInvalidDecl())
3343      continue;
3344    // Ignore trivial destructors.
3345    if (BaseClassDecl->hasTrivialDestructor())
3346      continue;
3347
3348    CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
3349    assert(Dtor && "No dtor found for BaseClassDecl!");
3350    CheckDestructorAccess(ClassDecl->getLocation(), Dtor,
3351                          PDiag(diag::err_access_dtor_vbase)
3352                            << VBase->getType());
3353
3354    MarkFunctionReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
3355  }
3356}
3357
3358void Sema::ActOnDefaultCtorInitializers(Decl *CDtorDecl) {
3359  if (!CDtorDecl)
3360    return;
3361
3362  if (CXXConstructorDecl *Constructor
3363      = dyn_cast<CXXConstructorDecl>(CDtorDecl))
3364    SetCtorInitializers(Constructor, 0, 0, /*AnyErrors=*/false);
3365}
3366
3367bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
3368                                  unsigned DiagID, AbstractDiagSelID SelID) {
3369  if (SelID == -1)
3370    return RequireNonAbstractType(Loc, T, PDiag(DiagID));
3371  else
3372    return RequireNonAbstractType(Loc, T, PDiag(DiagID) << SelID);
3373}
3374
3375bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
3376                                  const PartialDiagnostic &PD) {
3377  if (!getLangOptions().CPlusPlus)
3378    return false;
3379
3380  if (const ArrayType *AT = Context.getAsArrayType(T))
3381    return RequireNonAbstractType(Loc, AT->getElementType(), PD);
3382
3383  if (const PointerType *PT = T->getAs<PointerType>()) {
3384    // Find the innermost pointer type.
3385    while (const PointerType *T = PT->getPointeeType()->getAs<PointerType>())
3386      PT = T;
3387
3388    if (const ArrayType *AT = Context.getAsArrayType(PT->getPointeeType()))
3389      return RequireNonAbstractType(Loc, AT->getElementType(), PD);
3390  }
3391
3392  const RecordType *RT = T->getAs<RecordType>();
3393  if (!RT)
3394    return false;
3395
3396  const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
3397
3398  // We can't answer whether something is abstract until it has a
3399  // definition.  If it's currently being defined, we'll walk back
3400  // over all the declarations when we have a full definition.
3401  const CXXRecordDecl *Def = RD->getDefinition();
3402  if (!Def || Def->isBeingDefined())
3403    return false;
3404
3405  if (!RD->isAbstract())
3406    return false;
3407
3408  Diag(Loc, PD) << RD->getDeclName();
3409  DiagnoseAbstractType(RD);
3410
3411  return true;
3412}
3413
3414void Sema::DiagnoseAbstractType(const CXXRecordDecl *RD) {
3415  // Check if we've already emitted the list of pure virtual functions
3416  // for this class.
3417  if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD))
3418    return;
3419
3420  CXXFinalOverriderMap FinalOverriders;
3421  RD->getFinalOverriders(FinalOverriders);
3422
3423  // Keep a set of seen pure methods so we won't diagnose the same method
3424  // more than once.
3425  llvm::SmallPtrSet<const CXXMethodDecl *, 8> SeenPureMethods;
3426
3427  for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
3428                                   MEnd = FinalOverriders.end();
3429       M != MEnd;
3430       ++M) {
3431    for (OverridingMethods::iterator SO = M->second.begin(),
3432                                  SOEnd = M->second.end();
3433         SO != SOEnd; ++SO) {
3434      // C++ [class.abstract]p4:
3435      //   A class is abstract if it contains or inherits at least one
3436      //   pure virtual function for which the final overrider is pure
3437      //   virtual.
3438
3439      //
3440      if (SO->second.size() != 1)
3441        continue;
3442
3443      if (!SO->second.front().Method->isPure())
3444        continue;
3445
3446      if (!SeenPureMethods.insert(SO->second.front().Method))
3447        continue;
3448
3449      Diag(SO->second.front().Method->getLocation(),
3450           diag::note_pure_virtual_function)
3451        << SO->second.front().Method->getDeclName() << RD->getDeclName();
3452    }
3453  }
3454
3455  if (!PureVirtualClassDiagSet)
3456    PureVirtualClassDiagSet.reset(new RecordDeclSetTy);
3457  PureVirtualClassDiagSet->insert(RD);
3458}
3459
3460namespace {
3461struct AbstractUsageInfo {
3462  Sema &S;
3463  CXXRecordDecl *Record;
3464  CanQualType AbstractType;
3465  bool Invalid;
3466
3467  AbstractUsageInfo(Sema &S, CXXRecordDecl *Record)
3468    : S(S), Record(Record),
3469      AbstractType(S.Context.getCanonicalType(
3470                   S.Context.getTypeDeclType(Record))),
3471      Invalid(false) {}
3472
3473  void DiagnoseAbstractType() {
3474    if (Invalid) return;
3475    S.DiagnoseAbstractType(Record);
3476    Invalid = true;
3477  }
3478
3479  void CheckType(const NamedDecl *D, TypeLoc TL, Sema::AbstractDiagSelID Sel);
3480};
3481
3482struct CheckAbstractUsage {
3483  AbstractUsageInfo &Info;
3484  const NamedDecl *Ctx;
3485
3486  CheckAbstractUsage(AbstractUsageInfo &Info, const NamedDecl *Ctx)
3487    : Info(Info), Ctx(Ctx) {}
3488
3489  void Visit(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
3490    switch (TL.getTypeLocClass()) {
3491#define ABSTRACT_TYPELOC(CLASS, PARENT)
3492#define TYPELOC(CLASS, PARENT) \
3493    case TypeLoc::CLASS: Check(cast<CLASS##TypeLoc>(TL), Sel); break;
3494#include "clang/AST/TypeLocNodes.def"
3495    }
3496  }
3497
3498  void Check(FunctionProtoTypeLoc TL, Sema::AbstractDiagSelID Sel) {
3499    Visit(TL.getResultLoc(), Sema::AbstractReturnType);
3500    for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
3501      if (!TL.getArg(I))
3502        continue;
3503
3504      TypeSourceInfo *TSI = TL.getArg(I)->getTypeSourceInfo();
3505      if (TSI) Visit(TSI->getTypeLoc(), Sema::AbstractParamType);
3506    }
3507  }
3508
3509  void Check(ArrayTypeLoc TL, Sema::AbstractDiagSelID Sel) {
3510    Visit(TL.getElementLoc(), Sema::AbstractArrayType);
3511  }
3512
3513  void Check(TemplateSpecializationTypeLoc TL, Sema::AbstractDiagSelID Sel) {
3514    // Visit the type parameters from a permissive context.
3515    for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
3516      TemplateArgumentLoc TAL = TL.getArgLoc(I);
3517      if (TAL.getArgument().getKind() == TemplateArgument::Type)
3518        if (TypeSourceInfo *TSI = TAL.getTypeSourceInfo())
3519          Visit(TSI->getTypeLoc(), Sema::AbstractNone);
3520      // TODO: other template argument types?
3521    }
3522  }
3523
3524  // Visit pointee types from a permissive context.
3525#define CheckPolymorphic(Type) \
3526  void Check(Type TL, Sema::AbstractDiagSelID Sel) { \
3527    Visit(TL.getNextTypeLoc(), Sema::AbstractNone); \
3528  }
3529  CheckPolymorphic(PointerTypeLoc)
3530  CheckPolymorphic(ReferenceTypeLoc)
3531  CheckPolymorphic(MemberPointerTypeLoc)
3532  CheckPolymorphic(BlockPointerTypeLoc)
3533  CheckPolymorphic(AtomicTypeLoc)
3534
3535  /// Handle all the types we haven't given a more specific
3536  /// implementation for above.
3537  void Check(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
3538    // Every other kind of type that we haven't called out already
3539    // that has an inner type is either (1) sugar or (2) contains that
3540    // inner type in some way as a subobject.
3541    if (TypeLoc Next = TL.getNextTypeLoc())
3542      return Visit(Next, Sel);
3543
3544    // If there's no inner type and we're in a permissive context,
3545    // don't diagnose.
3546    if (Sel == Sema::AbstractNone) return;
3547
3548    // Check whether the type matches the abstract type.
3549    QualType T = TL.getType();
3550    if (T->isArrayType()) {
3551      Sel = Sema::AbstractArrayType;
3552      T = Info.S.Context.getBaseElementType(T);
3553    }
3554    CanQualType CT = T->getCanonicalTypeUnqualified().getUnqualifiedType();
3555    if (CT != Info.AbstractType) return;
3556
3557    // It matched; do some magic.
3558    if (Sel == Sema::AbstractArrayType) {
3559      Info.S.Diag(Ctx->getLocation(), diag::err_array_of_abstract_type)
3560        << T << TL.getSourceRange();
3561    } else {
3562      Info.S.Diag(Ctx->getLocation(), diag::err_abstract_type_in_decl)
3563        << Sel << T << TL.getSourceRange();
3564    }
3565    Info.DiagnoseAbstractType();
3566  }
3567};
3568
3569void AbstractUsageInfo::CheckType(const NamedDecl *D, TypeLoc TL,
3570                                  Sema::AbstractDiagSelID Sel) {
3571  CheckAbstractUsage(*this, D).Visit(TL, Sel);
3572}
3573
3574}
3575
3576/// Check for invalid uses of an abstract type in a method declaration.
3577static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
3578                                    CXXMethodDecl *MD) {
3579  // No need to do the check on definitions, which require that
3580  // the return/param types be complete.
3581  if (MD->doesThisDeclarationHaveABody())
3582    return;
3583
3584  // For safety's sake, just ignore it if we don't have type source
3585  // information.  This should never happen for non-implicit methods,
3586  // but...
3587  if (TypeSourceInfo *TSI = MD->getTypeSourceInfo())
3588    Info.CheckType(MD, TSI->getTypeLoc(), Sema::AbstractNone);
3589}
3590
3591/// Check for invalid uses of an abstract type within a class definition.
3592static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
3593                                    CXXRecordDecl *RD) {
3594  for (CXXRecordDecl::decl_iterator
3595         I = RD->decls_begin(), E = RD->decls_end(); I != E; ++I) {
3596    Decl *D = *I;
3597    if (D->isImplicit()) continue;
3598
3599    // Methods and method templates.
3600    if (isa<CXXMethodDecl>(D)) {
3601      CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(D));
3602    } else if (isa<FunctionTemplateDecl>(D)) {
3603      FunctionDecl *FD = cast<FunctionTemplateDecl>(D)->getTemplatedDecl();
3604      CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(FD));
3605
3606    // Fields and static variables.
3607    } else if (isa<FieldDecl>(D)) {
3608      FieldDecl *FD = cast<FieldDecl>(D);
3609      if (TypeSourceInfo *TSI = FD->getTypeSourceInfo())
3610        Info.CheckType(FD, TSI->getTypeLoc(), Sema::AbstractFieldType);
3611    } else if (isa<VarDecl>(D)) {
3612      VarDecl *VD = cast<VarDecl>(D);
3613      if (TypeSourceInfo *TSI = VD->getTypeSourceInfo())
3614        Info.CheckType(VD, TSI->getTypeLoc(), Sema::AbstractVariableType);
3615
3616    // Nested classes and class templates.
3617    } else if (isa<CXXRecordDecl>(D)) {
3618      CheckAbstractClassUsage(Info, cast<CXXRecordDecl>(D));
3619    } else if (isa<ClassTemplateDecl>(D)) {
3620      CheckAbstractClassUsage(Info,
3621                             cast<ClassTemplateDecl>(D)->getTemplatedDecl());
3622    }
3623  }
3624}
3625
3626/// \brief Perform semantic checks on a class definition that has been
3627/// completing, introducing implicitly-declared members, checking for
3628/// abstract types, etc.
3629void Sema::CheckCompletedCXXClass(CXXRecordDecl *Record) {
3630  if (!Record)
3631    return;
3632
3633  if (Record->isAbstract() && !Record->isInvalidDecl()) {
3634    AbstractUsageInfo Info(*this, Record);
3635    CheckAbstractClassUsage(Info, Record);
3636  }
3637
3638  // If this is not an aggregate type and has no user-declared constructor,
3639  // complain about any non-static data members of reference or const scalar
3640  // type, since they will never get initializers.
3641  if (!Record->isInvalidDecl() && !Record->isDependentType() &&
3642      !Record->isAggregate() && !Record->hasUserDeclaredConstructor() &&
3643      !Record->isLambda()) {
3644    bool Complained = false;
3645    for (RecordDecl::field_iterator F = Record->field_begin(),
3646                                 FEnd = Record->field_end();
3647         F != FEnd; ++F) {
3648      if (F->hasInClassInitializer() || F->isUnnamedBitfield())
3649        continue;
3650
3651      if (F->getType()->isReferenceType() ||
3652          (F->getType().isConstQualified() && F->getType()->isScalarType())) {
3653        if (!Complained) {
3654          Diag(Record->getLocation(), diag::warn_no_constructor_for_refconst)
3655            << Record->getTagKind() << Record;
3656          Complained = true;
3657        }
3658
3659        Diag(F->getLocation(), diag::note_refconst_member_not_initialized)
3660          << F->getType()->isReferenceType()
3661          << F->getDeclName();
3662      }
3663    }
3664  }
3665
3666  if (Record->isDynamicClass() && !Record->isDependentType())
3667    DynamicClasses.push_back(Record);
3668
3669  if (Record->getIdentifier()) {
3670    // C++ [class.mem]p13:
3671    //   If T is the name of a class, then each of the following shall have a
3672    //   name different from T:
3673    //     - every member of every anonymous union that is a member of class T.
3674    //
3675    // C++ [class.mem]p14:
3676    //   In addition, if class T has a user-declared constructor (12.1), every
3677    //   non-static data member of class T shall have a name different from T.
3678    for (DeclContext::lookup_result R = Record->lookup(Record->getDeclName());
3679         R.first != R.second; ++R.first) {
3680      NamedDecl *D = *R.first;
3681      if ((isa<FieldDecl>(D) && Record->hasUserDeclaredConstructor()) ||
3682          isa<IndirectFieldDecl>(D)) {
3683        Diag(D->getLocation(), diag::err_member_name_of_class)
3684          << D->getDeclName();
3685        break;
3686      }
3687    }
3688  }
3689
3690  // Warn if the class has virtual methods but non-virtual public destructor.
3691  if (Record->isPolymorphic() && !Record->isDependentType()) {
3692    CXXDestructorDecl *dtor = Record->getDestructor();
3693    if (!dtor || (!dtor->isVirtual() && dtor->getAccess() == AS_public))
3694      Diag(dtor ? dtor->getLocation() : Record->getLocation(),
3695           diag::warn_non_virtual_dtor) << Context.getRecordType(Record);
3696  }
3697
3698  // See if a method overloads virtual methods in a base
3699  /// class without overriding any.
3700  if (!Record->isDependentType()) {
3701    for (CXXRecordDecl::method_iterator M = Record->method_begin(),
3702                                     MEnd = Record->method_end();
3703         M != MEnd; ++M) {
3704      if (!(*M)->isStatic())
3705        DiagnoseHiddenVirtualMethods(Record, *M);
3706    }
3707  }
3708
3709  // C++0x [dcl.constexpr]p8: A constexpr specifier for a non-static member
3710  // function that is not a constructor declares that member function to be
3711  // const. [...] The class of which that function is a member shall be
3712  // a literal type.
3713  //
3714  // It's fine to diagnose constructors here too: such constructors cannot
3715  // produce a constant expression, so are ill-formed (no diagnostic required).
3716  //
3717  // If the class has virtual bases, any constexpr members will already have
3718  // been diagnosed by the checks performed on the member declaration, so
3719  // suppress this (less useful) diagnostic.
3720  if (LangOpts.CPlusPlus0x && !Record->isDependentType() &&
3721      !Record->isLiteral() && !Record->getNumVBases()) {
3722    for (CXXRecordDecl::method_iterator M = Record->method_begin(),
3723                                     MEnd = Record->method_end();
3724         M != MEnd; ++M) {
3725      if (M->isConstexpr() && M->isInstance()) {
3726        switch (Record->getTemplateSpecializationKind()) {
3727        case TSK_ImplicitInstantiation:
3728        case TSK_ExplicitInstantiationDeclaration:
3729        case TSK_ExplicitInstantiationDefinition:
3730          // If a template instantiates to a non-literal type, but its members
3731          // instantiate to constexpr functions, the template is technically
3732          // ill-formed, but we allow it for sanity. Such members are treated as
3733          // non-constexpr.
3734          (*M)->setConstexpr(false);
3735          continue;
3736
3737        case TSK_Undeclared:
3738        case TSK_ExplicitSpecialization:
3739          RequireLiteralType((*M)->getLocation(), Context.getRecordType(Record),
3740                             PDiag(diag::err_constexpr_method_non_literal));
3741          break;
3742        }
3743
3744        // Only produce one error per class.
3745        break;
3746      }
3747    }
3748  }
3749
3750  // Declare inherited constructors. We do this eagerly here because:
3751  // - The standard requires an eager diagnostic for conflicting inherited
3752  //   constructors from different classes.
3753  // - The lazy declaration of the other implicit constructors is so as to not
3754  //   waste space and performance on classes that are not meant to be
3755  //   instantiated (e.g. meta-functions). This doesn't apply to classes that
3756  //   have inherited constructors.
3757  DeclareInheritedConstructors(Record);
3758
3759  if (!Record->isDependentType())
3760    CheckExplicitlyDefaultedMethods(Record);
3761}
3762
3763void Sema::CheckExplicitlyDefaultedMethods(CXXRecordDecl *Record) {
3764  for (CXXRecordDecl::method_iterator MI = Record->method_begin(),
3765                                      ME = Record->method_end();
3766       MI != ME; ++MI) {
3767    if (!MI->isInvalidDecl() && MI->isExplicitlyDefaulted()) {
3768      switch (getSpecialMember(*MI)) {
3769      case CXXDefaultConstructor:
3770        CheckExplicitlyDefaultedDefaultConstructor(
3771                                                  cast<CXXConstructorDecl>(*MI));
3772        break;
3773
3774      case CXXDestructor:
3775        CheckExplicitlyDefaultedDestructor(cast<CXXDestructorDecl>(*MI));
3776        break;
3777
3778      case CXXCopyConstructor:
3779        CheckExplicitlyDefaultedCopyConstructor(cast<CXXConstructorDecl>(*MI));
3780        break;
3781
3782      case CXXCopyAssignment:
3783        CheckExplicitlyDefaultedCopyAssignment(*MI);
3784        break;
3785
3786      case CXXMoveConstructor:
3787        CheckExplicitlyDefaultedMoveConstructor(cast<CXXConstructorDecl>(*MI));
3788        break;
3789
3790      case CXXMoveAssignment:
3791        CheckExplicitlyDefaultedMoveAssignment(*MI);
3792        break;
3793
3794      case CXXInvalid:
3795        llvm_unreachable("non-special member explicitly defaulted!");
3796      }
3797    }
3798  }
3799
3800}
3801
3802void Sema::CheckExplicitlyDefaultedDefaultConstructor(CXXConstructorDecl *CD) {
3803  assert(CD->isExplicitlyDefaulted() && CD->isDefaultConstructor());
3804
3805  // Whether this was the first-declared instance of the constructor.
3806  // This affects whether we implicitly add an exception spec (and, eventually,
3807  // constexpr). It is also ill-formed to explicitly default a constructor such
3808  // that it would be deleted. (C++0x [decl.fct.def.default])
3809  bool First = CD == CD->getCanonicalDecl();
3810
3811  bool HadError = false;
3812  if (CD->getNumParams() != 0) {
3813    Diag(CD->getLocation(), diag::err_defaulted_default_ctor_params)
3814      << CD->getSourceRange();
3815    HadError = true;
3816  }
3817
3818  ImplicitExceptionSpecification Spec
3819    = ComputeDefaultedDefaultCtorExceptionSpec(CD->getParent());
3820  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
3821  if (EPI.ExceptionSpecType == EST_Delayed) {
3822    // Exception specification depends on some deferred part of the class. We'll
3823    // try again when the class's definition has been fully processed.
3824    return;
3825  }
3826  const FunctionProtoType *CtorType = CD->getType()->getAs<FunctionProtoType>(),
3827                          *ExceptionType = Context.getFunctionType(
3828                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
3829
3830  // C++11 [dcl.fct.def.default]p2:
3831  //   An explicitly-defaulted function may be declared constexpr only if it
3832  //   would have been implicitly declared as constexpr,
3833  if (CD->isConstexpr()) {
3834    if (!CD->getParent()->defaultedDefaultConstructorIsConstexpr()) {
3835      Diag(CD->getLocStart(), diag::err_incorrect_defaulted_constexpr)
3836        << CXXDefaultConstructor;
3837      HadError = true;
3838    }
3839  }
3840  //   and may have an explicit exception-specification only if it is compatible
3841  //   with the exception-specification on the implicit declaration.
3842  if (CtorType->hasExceptionSpec()) {
3843    if (CheckEquivalentExceptionSpec(
3844          PDiag(diag::err_incorrect_defaulted_exception_spec)
3845            << CXXDefaultConstructor,
3846          PDiag(),
3847          ExceptionType, SourceLocation(),
3848          CtorType, CD->getLocation())) {
3849      HadError = true;
3850    }
3851  }
3852
3853  //   If a function is explicitly defaulted on its first declaration,
3854  if (First) {
3855    //  -- it is implicitly considered to be constexpr if the implicit
3856    //     definition would be,
3857    CD->setConstexpr(CD->getParent()->defaultedDefaultConstructorIsConstexpr());
3858
3859    //  -- it is implicitly considered to have the same
3860    //     exception-specification as if it had been implicitly declared
3861    //
3862    // FIXME: a compatible, but different, explicit exception specification
3863    // will be silently overridden. We should issue a warning if this happens.
3864    EPI.ExtInfo = CtorType->getExtInfo();
3865  }
3866
3867  if (HadError) {
3868    CD->setInvalidDecl();
3869    return;
3870  }
3871
3872  if (ShouldDeleteSpecialMember(CD, CXXDefaultConstructor)) {
3873    if (First) {
3874      CD->setDeletedAsWritten();
3875    } else {
3876      Diag(CD->getLocation(), diag::err_out_of_line_default_deletes)
3877        << CXXDefaultConstructor;
3878      CD->setInvalidDecl();
3879    }
3880  }
3881}
3882
3883void Sema::CheckExplicitlyDefaultedCopyConstructor(CXXConstructorDecl *CD) {
3884  assert(CD->isExplicitlyDefaulted() && CD->isCopyConstructor());
3885
3886  // Whether this was the first-declared instance of the constructor.
3887  bool First = CD == CD->getCanonicalDecl();
3888
3889  bool HadError = false;
3890  if (CD->getNumParams() != 1) {
3891    Diag(CD->getLocation(), diag::err_defaulted_copy_ctor_params)
3892      << CD->getSourceRange();
3893    HadError = true;
3894  }
3895
3896  ImplicitExceptionSpecification Spec(Context);
3897  bool Const;
3898  llvm::tie(Spec, Const) =
3899    ComputeDefaultedCopyCtorExceptionSpecAndConst(CD->getParent());
3900
3901  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
3902  const FunctionProtoType *CtorType = CD->getType()->getAs<FunctionProtoType>(),
3903                          *ExceptionType = Context.getFunctionType(
3904                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
3905
3906  // Check for parameter type matching.
3907  // This is a copy ctor so we know it's a cv-qualified reference to T.
3908  QualType ArgType = CtorType->getArgType(0);
3909  if (ArgType->getPointeeType().isVolatileQualified()) {
3910    Diag(CD->getLocation(), diag::err_defaulted_copy_ctor_volatile_param);
3911    HadError = true;
3912  }
3913  if (ArgType->getPointeeType().isConstQualified() && !Const) {
3914    Diag(CD->getLocation(), diag::err_defaulted_copy_ctor_const_param);
3915    HadError = true;
3916  }
3917
3918  // C++11 [dcl.fct.def.default]p2:
3919  //   An explicitly-defaulted function may be declared constexpr only if it
3920  //   would have been implicitly declared as constexpr,
3921  if (CD->isConstexpr()) {
3922    if (!CD->getParent()->defaultedCopyConstructorIsConstexpr()) {
3923      Diag(CD->getLocStart(), diag::err_incorrect_defaulted_constexpr)
3924        << CXXCopyConstructor;
3925      HadError = true;
3926    }
3927  }
3928  //   and may have an explicit exception-specification only if it is compatible
3929  //   with the exception-specification on the implicit declaration.
3930  if (CtorType->hasExceptionSpec()) {
3931    if (CheckEquivalentExceptionSpec(
3932          PDiag(diag::err_incorrect_defaulted_exception_spec)
3933            << CXXCopyConstructor,
3934          PDiag(),
3935          ExceptionType, SourceLocation(),
3936          CtorType, CD->getLocation())) {
3937      HadError = true;
3938    }
3939  }
3940
3941  //   If a function is explicitly defaulted on its first declaration,
3942  if (First) {
3943    //  -- it is implicitly considered to be constexpr if the implicit
3944    //     definition would be,
3945    CD->setConstexpr(CD->getParent()->defaultedCopyConstructorIsConstexpr());
3946
3947    //  -- it is implicitly considered to have the same
3948    //     exception-specification as if it had been implicitly declared, and
3949    //
3950    // FIXME: a compatible, but different, explicit exception specification
3951    // will be silently overridden. We should issue a warning if this happens.
3952    EPI.ExtInfo = CtorType->getExtInfo();
3953
3954    //  -- [...] it shall have the same parameter type as if it had been
3955    //     implicitly declared.
3956    CD->setType(Context.getFunctionType(Context.VoidTy, &ArgType, 1, EPI));
3957  }
3958
3959  if (HadError) {
3960    CD->setInvalidDecl();
3961    return;
3962  }
3963
3964  if (ShouldDeleteSpecialMember(CD, CXXCopyConstructor)) {
3965    if (First) {
3966      CD->setDeletedAsWritten();
3967    } else {
3968      Diag(CD->getLocation(), diag::err_out_of_line_default_deletes)
3969        << CXXCopyConstructor;
3970      CD->setInvalidDecl();
3971    }
3972  }
3973}
3974
3975void Sema::CheckExplicitlyDefaultedCopyAssignment(CXXMethodDecl *MD) {
3976  assert(MD->isExplicitlyDefaulted());
3977
3978  // Whether this was the first-declared instance of the operator
3979  bool First = MD == MD->getCanonicalDecl();
3980
3981  bool HadError = false;
3982  if (MD->getNumParams() != 1) {
3983    Diag(MD->getLocation(), diag::err_defaulted_copy_assign_params)
3984      << MD->getSourceRange();
3985    HadError = true;
3986  }
3987
3988  QualType ReturnType =
3989    MD->getType()->getAs<FunctionType>()->getResultType();
3990  if (!ReturnType->isLValueReferenceType() ||
3991      !Context.hasSameType(
3992        Context.getCanonicalType(ReturnType->getPointeeType()),
3993        Context.getCanonicalType(Context.getTypeDeclType(MD->getParent())))) {
3994    Diag(MD->getLocation(), diag::err_defaulted_copy_assign_return_type);
3995    HadError = true;
3996  }
3997
3998  ImplicitExceptionSpecification Spec(Context);
3999  bool Const;
4000  llvm::tie(Spec, Const) =
4001    ComputeDefaultedCopyCtorExceptionSpecAndConst(MD->getParent());
4002
4003  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
4004  const FunctionProtoType *OperType = MD->getType()->getAs<FunctionProtoType>(),
4005                          *ExceptionType = Context.getFunctionType(
4006                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
4007
4008  QualType ArgType = OperType->getArgType(0);
4009  if (!ArgType->isLValueReferenceType()) {
4010    Diag(MD->getLocation(), diag::err_defaulted_copy_assign_not_ref);
4011    HadError = true;
4012  } else {
4013    if (ArgType->getPointeeType().isVolatileQualified()) {
4014      Diag(MD->getLocation(), diag::err_defaulted_copy_assign_volatile_param);
4015      HadError = true;
4016    }
4017    if (ArgType->getPointeeType().isConstQualified() && !Const) {
4018      Diag(MD->getLocation(), diag::err_defaulted_copy_assign_const_param);
4019      HadError = true;
4020    }
4021  }
4022
4023  if (OperType->getTypeQuals()) {
4024    Diag(MD->getLocation(), diag::err_defaulted_copy_assign_quals);
4025    HadError = true;
4026  }
4027
4028  if (OperType->hasExceptionSpec()) {
4029    if (CheckEquivalentExceptionSpec(
4030          PDiag(diag::err_incorrect_defaulted_exception_spec)
4031            << CXXCopyAssignment,
4032          PDiag(),
4033          ExceptionType, SourceLocation(),
4034          OperType, MD->getLocation())) {
4035      HadError = true;
4036    }
4037  }
4038  if (First) {
4039    // We set the declaration to have the computed exception spec here.
4040    // We duplicate the one parameter type.
4041    EPI.RefQualifier = OperType->getRefQualifier();
4042    EPI.ExtInfo = OperType->getExtInfo();
4043    MD->setType(Context.getFunctionType(ReturnType, &ArgType, 1, EPI));
4044  }
4045
4046  if (HadError) {
4047    MD->setInvalidDecl();
4048    return;
4049  }
4050
4051  if (ShouldDeleteCopyAssignmentOperator(MD)) {
4052    if (First) {
4053      MD->setDeletedAsWritten();
4054    } else {
4055      Diag(MD->getLocation(), diag::err_out_of_line_default_deletes)
4056        << CXXCopyAssignment;
4057      MD->setInvalidDecl();
4058    }
4059  }
4060}
4061
4062void Sema::CheckExplicitlyDefaultedMoveConstructor(CXXConstructorDecl *CD) {
4063  assert(CD->isExplicitlyDefaulted() && CD->isMoveConstructor());
4064
4065  // Whether this was the first-declared instance of the constructor.
4066  bool First = CD == CD->getCanonicalDecl();
4067
4068  bool HadError = false;
4069  if (CD->getNumParams() != 1) {
4070    Diag(CD->getLocation(), diag::err_defaulted_move_ctor_params)
4071      << CD->getSourceRange();
4072    HadError = true;
4073  }
4074
4075  ImplicitExceptionSpecification Spec(
4076      ComputeDefaultedMoveCtorExceptionSpec(CD->getParent()));
4077
4078  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
4079  const FunctionProtoType *CtorType = CD->getType()->getAs<FunctionProtoType>(),
4080                          *ExceptionType = Context.getFunctionType(
4081                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
4082
4083  // Check for parameter type matching.
4084  // This is a move ctor so we know it's a cv-qualified rvalue reference to T.
4085  QualType ArgType = CtorType->getArgType(0);
4086  if (ArgType->getPointeeType().isVolatileQualified()) {
4087    Diag(CD->getLocation(), diag::err_defaulted_move_ctor_volatile_param);
4088    HadError = true;
4089  }
4090  if (ArgType->getPointeeType().isConstQualified()) {
4091    Diag(CD->getLocation(), diag::err_defaulted_move_ctor_const_param);
4092    HadError = true;
4093  }
4094
4095  // C++11 [dcl.fct.def.default]p2:
4096  //   An explicitly-defaulted function may be declared constexpr only if it
4097  //   would have been implicitly declared as constexpr,
4098  if (CD->isConstexpr()) {
4099    if (!CD->getParent()->defaultedMoveConstructorIsConstexpr()) {
4100      Diag(CD->getLocStart(), diag::err_incorrect_defaulted_constexpr)
4101        << CXXMoveConstructor;
4102      HadError = true;
4103    }
4104  }
4105  //   and may have an explicit exception-specification only if it is compatible
4106  //   with the exception-specification on the implicit declaration.
4107  if (CtorType->hasExceptionSpec()) {
4108    if (CheckEquivalentExceptionSpec(
4109          PDiag(diag::err_incorrect_defaulted_exception_spec)
4110            << CXXMoveConstructor,
4111          PDiag(),
4112          ExceptionType, SourceLocation(),
4113          CtorType, CD->getLocation())) {
4114      HadError = true;
4115    }
4116  }
4117
4118  //   If a function is explicitly defaulted on its first declaration,
4119  if (First) {
4120    //  -- it is implicitly considered to be constexpr if the implicit
4121    //     definition would be,
4122    CD->setConstexpr(CD->getParent()->defaultedMoveConstructorIsConstexpr());
4123
4124    //  -- it is implicitly considered to have the same
4125    //     exception-specification as if it had been implicitly declared, and
4126    //
4127    // FIXME: a compatible, but different, explicit exception specification
4128    // will be silently overridden. We should issue a warning if this happens.
4129    EPI.ExtInfo = CtorType->getExtInfo();
4130
4131    //  -- [...] it shall have the same parameter type as if it had been
4132    //     implicitly declared.
4133    CD->setType(Context.getFunctionType(Context.VoidTy, &ArgType, 1, EPI));
4134  }
4135
4136  if (HadError) {
4137    CD->setInvalidDecl();
4138    return;
4139  }
4140
4141  if (ShouldDeleteSpecialMember(CD, CXXMoveConstructor)) {
4142    if (First) {
4143      CD->setDeletedAsWritten();
4144    } else {
4145      Diag(CD->getLocation(), diag::err_out_of_line_default_deletes)
4146        << CXXMoveConstructor;
4147      CD->setInvalidDecl();
4148    }
4149  }
4150}
4151
4152void Sema::CheckExplicitlyDefaultedMoveAssignment(CXXMethodDecl *MD) {
4153  assert(MD->isExplicitlyDefaulted());
4154
4155  // Whether this was the first-declared instance of the operator
4156  bool First = MD == MD->getCanonicalDecl();
4157
4158  bool HadError = false;
4159  if (MD->getNumParams() != 1) {
4160    Diag(MD->getLocation(), diag::err_defaulted_move_assign_params)
4161      << MD->getSourceRange();
4162    HadError = true;
4163  }
4164
4165  QualType ReturnType =
4166    MD->getType()->getAs<FunctionType>()->getResultType();
4167  if (!ReturnType->isLValueReferenceType() ||
4168      !Context.hasSameType(
4169        Context.getCanonicalType(ReturnType->getPointeeType()),
4170        Context.getCanonicalType(Context.getTypeDeclType(MD->getParent())))) {
4171    Diag(MD->getLocation(), diag::err_defaulted_move_assign_return_type);
4172    HadError = true;
4173  }
4174
4175  ImplicitExceptionSpecification Spec(
4176      ComputeDefaultedMoveCtorExceptionSpec(MD->getParent()));
4177
4178  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
4179  const FunctionProtoType *OperType = MD->getType()->getAs<FunctionProtoType>(),
4180                          *ExceptionType = Context.getFunctionType(
4181                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
4182
4183  QualType ArgType = OperType->getArgType(0);
4184  if (!ArgType->isRValueReferenceType()) {
4185    Diag(MD->getLocation(), diag::err_defaulted_move_assign_not_ref);
4186    HadError = true;
4187  } else {
4188    if (ArgType->getPointeeType().isVolatileQualified()) {
4189      Diag(MD->getLocation(), diag::err_defaulted_move_assign_volatile_param);
4190      HadError = true;
4191    }
4192    if (ArgType->getPointeeType().isConstQualified()) {
4193      Diag(MD->getLocation(), diag::err_defaulted_move_assign_const_param);
4194      HadError = true;
4195    }
4196  }
4197
4198  if (OperType->getTypeQuals()) {
4199    Diag(MD->getLocation(), diag::err_defaulted_move_assign_quals);
4200    HadError = true;
4201  }
4202
4203  if (OperType->hasExceptionSpec()) {
4204    if (CheckEquivalentExceptionSpec(
4205          PDiag(diag::err_incorrect_defaulted_exception_spec)
4206            << CXXMoveAssignment,
4207          PDiag(),
4208          ExceptionType, SourceLocation(),
4209          OperType, MD->getLocation())) {
4210      HadError = true;
4211    }
4212  }
4213  if (First) {
4214    // We set the declaration to have the computed exception spec here.
4215    // We duplicate the one parameter type.
4216    EPI.RefQualifier = OperType->getRefQualifier();
4217    EPI.ExtInfo = OperType->getExtInfo();
4218    MD->setType(Context.getFunctionType(ReturnType, &ArgType, 1, EPI));
4219  }
4220
4221  if (HadError) {
4222    MD->setInvalidDecl();
4223    return;
4224  }
4225
4226  if (ShouldDeleteMoveAssignmentOperator(MD)) {
4227    if (First) {
4228      MD->setDeletedAsWritten();
4229    } else {
4230      Diag(MD->getLocation(), diag::err_out_of_line_default_deletes)
4231        << CXXMoveAssignment;
4232      MD->setInvalidDecl();
4233    }
4234  }
4235}
4236
4237void Sema::CheckExplicitlyDefaultedDestructor(CXXDestructorDecl *DD) {
4238  assert(DD->isExplicitlyDefaulted());
4239
4240  // Whether this was the first-declared instance of the destructor.
4241  bool First = DD == DD->getCanonicalDecl();
4242
4243  ImplicitExceptionSpecification Spec
4244    = ComputeDefaultedDtorExceptionSpec(DD->getParent());
4245  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
4246  const FunctionProtoType *DtorType = DD->getType()->getAs<FunctionProtoType>(),
4247                          *ExceptionType = Context.getFunctionType(
4248                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
4249
4250  if (DtorType->hasExceptionSpec()) {
4251    if (CheckEquivalentExceptionSpec(
4252          PDiag(diag::err_incorrect_defaulted_exception_spec)
4253            << CXXDestructor,
4254          PDiag(),
4255          ExceptionType, SourceLocation(),
4256          DtorType, DD->getLocation())) {
4257      DD->setInvalidDecl();
4258      return;
4259    }
4260  }
4261  if (First) {
4262    // We set the declaration to have the computed exception spec here.
4263    // There are no parameters.
4264    EPI.ExtInfo = DtorType->getExtInfo();
4265    DD->setType(Context.getFunctionType(Context.VoidTy, 0, 0, EPI));
4266  }
4267
4268  if (ShouldDeleteDestructor(DD)) {
4269    if (First) {
4270      DD->setDeletedAsWritten();
4271    } else {
4272      Diag(DD->getLocation(), diag::err_out_of_line_default_deletes)
4273        << CXXDestructor;
4274      DD->setInvalidDecl();
4275    }
4276  }
4277}
4278
4279/// This function implements the following C++0x paragraphs:
4280///  - [class.ctor]/5
4281///  - [class.copy]/11
4282bool Sema::ShouldDeleteSpecialMember(CXXMethodDecl *MD, CXXSpecialMember CSM) {
4283  assert(!MD->isInvalidDecl());
4284  CXXRecordDecl *RD = MD->getParent();
4285  assert(!RD->isDependentType() && "do deletion after instantiation");
4286  if (!LangOpts.CPlusPlus0x || RD->isInvalidDecl())
4287    return false;
4288
4289  bool IsUnion = RD->isUnion();
4290  bool IsConstructor = false;
4291  bool IsAssignment = false;
4292  bool IsMove = false;
4293
4294  bool ConstArg = false;
4295
4296  switch (CSM) {
4297  case CXXDefaultConstructor:
4298    IsConstructor = true;
4299    break;
4300  case CXXCopyConstructor:
4301    IsConstructor = true;
4302    ConstArg = MD->getParamDecl(0)->getType().isConstQualified();
4303    break;
4304  case CXXMoveConstructor:
4305    IsConstructor = true;
4306    IsMove = true;
4307    break;
4308  default:
4309    llvm_unreachable("function only currently implemented for default ctors");
4310  }
4311
4312  SourceLocation Loc = MD->getLocation();
4313
4314  // Do access control from the special member function
4315  ContextRAII MethodContext(*this, MD);
4316
4317  bool AllConst = true;
4318
4319  // We do this because we should never actually use an anonymous
4320  // union's constructor.
4321  if (IsUnion && RD->isAnonymousStructOrUnion())
4322    return false;
4323
4324  // FIXME: We should put some diagnostic logic right into this function.
4325
4326  for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
4327                                          BE = RD->bases_end();
4328       BI != BE; ++BI) {
4329    // We'll handle this one later
4330    if (BI->isVirtual())
4331      continue;
4332
4333    CXXRecordDecl *BaseDecl = BI->getType()->getAsCXXRecordDecl();
4334    assert(BaseDecl && "base isn't a CXXRecordDecl");
4335
4336    // Unless we have an assignment operator, the base's destructor must
4337    // be accessible and not deleted.
4338    if (!IsAssignment) {
4339      CXXDestructorDecl *BaseDtor = LookupDestructor(BaseDecl);
4340      if (BaseDtor->isDeleted())
4341        return true;
4342      if (CheckDestructorAccess(Loc, BaseDtor, PDiag()) !=
4343          AR_accessible)
4344        return true;
4345    }
4346
4347    // Finding the corresponding member in the base should lead to a
4348    // unique, accessible, non-deleted function. If we are doing
4349    // a destructor, we have already checked this case.
4350    if (CSM != CXXDestructor) {
4351      SpecialMemberOverloadResult *SMOR =
4352        LookupSpecialMember(BaseDecl, CSM, ConstArg, false, false, false,
4353                            false);
4354      if (!SMOR->hasSuccess())
4355        return true;
4356      CXXMethodDecl *BaseMember = SMOR->getMethod();
4357      if (IsConstructor) {
4358        CXXConstructorDecl *BaseCtor = cast<CXXConstructorDecl>(BaseMember);
4359        if (CheckConstructorAccess(Loc, BaseCtor, BaseCtor->getAccess(),
4360                                   PDiag()) != AR_accessible)
4361          return true;
4362
4363        // For a move operation, the corresponding operation must actually
4364        // be a move operation (and not a copy selected by overload
4365        // resolution) unless we are working on a trivially copyable class.
4366        if (IsMove && !BaseCtor->isMoveConstructor() &&
4367            !BaseDecl->isTriviallyCopyable())
4368          return true;
4369      }
4370    }
4371  }
4372
4373  for (CXXRecordDecl::base_class_iterator BI = RD->vbases_begin(),
4374                                          BE = RD->vbases_end();
4375       BI != BE; ++BI) {
4376    CXXRecordDecl *BaseDecl = BI->getType()->getAsCXXRecordDecl();
4377    assert(BaseDecl && "base isn't a CXXRecordDecl");
4378
4379    // Unless we have an assignment operator, the base's destructor must
4380    // be accessible and not deleted.
4381    if (!IsAssignment) {
4382      CXXDestructorDecl *BaseDtor = LookupDestructor(BaseDecl);
4383      if (BaseDtor->isDeleted())
4384        return true;
4385      if (CheckDestructorAccess(Loc, BaseDtor, PDiag()) !=
4386          AR_accessible)
4387        return true;
4388    }
4389
4390    // Finding the corresponding member in the base should lead to a
4391    // unique, accessible, non-deleted function.
4392    if (CSM != CXXDestructor) {
4393      SpecialMemberOverloadResult *SMOR =
4394        LookupSpecialMember(BaseDecl, CSM, ConstArg, false, false, false,
4395                            false);
4396      if (!SMOR->hasSuccess())
4397        return true;
4398      CXXMethodDecl *BaseMember = SMOR->getMethod();
4399      if (IsConstructor) {
4400        CXXConstructorDecl *BaseCtor = cast<CXXConstructorDecl>(BaseMember);
4401        if (CheckConstructorAccess(Loc, BaseCtor, BaseCtor->getAccess(),
4402                                   PDiag()) != AR_accessible)
4403          return true;
4404
4405        // For a move operation, the corresponding operation must actually
4406        // be a move operation (and not a copy selected by overload
4407        // resolution) unless we are working on a trivially copyable class.
4408        if (IsMove && !BaseCtor->isMoveConstructor() &&
4409            !BaseDecl->isTriviallyCopyable())
4410          return true;
4411      }
4412    }
4413  }
4414
4415  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
4416                                     FE = RD->field_end();
4417       FI != FE; ++FI) {
4418    if (FI->isInvalidDecl() || FI->isUnnamedBitfield())
4419      continue;
4420
4421    QualType FieldType = Context.getBaseElementType(FI->getType());
4422    CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl();
4423
4424    // For a default constructor, all references must be initialized in-class
4425    // and, if a union, it must have a non-const member.
4426    if (CSM == CXXDefaultConstructor) {
4427      if (FieldType->isReferenceType() && !FI->hasInClassInitializer())
4428        return true;
4429
4430      if (IsUnion && !FieldType.isConstQualified())
4431        AllConst = false;
4432    // For a copy constructor, data members must not be of rvalue reference
4433    // type.
4434    } else if (CSM == CXXCopyConstructor) {
4435      if (FieldType->isRValueReferenceType())
4436        return true;
4437    }
4438
4439    if (FieldRecord) {
4440      // For a default constructor, a const member must have a user-provided
4441      // default constructor or else be explicitly initialized.
4442      if (CSM == CXXDefaultConstructor && FieldType.isConstQualified() &&
4443          !FI->hasInClassInitializer() &&
4444          !FieldRecord->hasUserProvidedDefaultConstructor())
4445        return true;
4446
4447      // Some additional restrictions exist on the variant members.
4448      if (!IsUnion && FieldRecord->isUnion() &&
4449          FieldRecord->isAnonymousStructOrUnion()) {
4450        // We're okay to reuse AllConst here since we only care about the
4451        // value otherwise if we're in a union.
4452        AllConst = true;
4453
4454        for (CXXRecordDecl::field_iterator UI = FieldRecord->field_begin(),
4455                                           UE = FieldRecord->field_end();
4456             UI != UE; ++UI) {
4457          QualType UnionFieldType = Context.getBaseElementType(UI->getType());
4458          CXXRecordDecl *UnionFieldRecord =
4459            UnionFieldType->getAsCXXRecordDecl();
4460
4461          if (!UnionFieldType.isConstQualified())
4462            AllConst = false;
4463
4464          if (UnionFieldRecord) {
4465            // FIXME: Checking for accessibility and validity of this
4466            //        destructor is technically going beyond the
4467            //        standard, but this is believed to be a defect.
4468            if (!IsAssignment) {
4469              CXXDestructorDecl *FieldDtor = LookupDestructor(UnionFieldRecord);
4470              if (FieldDtor->isDeleted())
4471                return true;
4472              if (CheckDestructorAccess(Loc, FieldDtor, PDiag()) !=
4473                  AR_accessible)
4474                return true;
4475              if (!FieldDtor->isTrivial())
4476                return true;
4477            }
4478
4479            if (CSM != CXXDestructor) {
4480              SpecialMemberOverloadResult *SMOR =
4481                LookupSpecialMember(UnionFieldRecord, CSM, ConstArg, false,
4482                                    false, false, false);
4483              // FIXME: Checking for accessibility and validity of this
4484              //        corresponding member is technically going beyond the
4485              //        standard, but this is believed to be a defect.
4486              if (!SMOR->hasSuccess())
4487                return true;
4488
4489              CXXMethodDecl *FieldMember = SMOR->getMethod();
4490              // A member of a union must have a trivial corresponding
4491              // constructor.
4492              if (!FieldMember->isTrivial())
4493                return true;
4494
4495              if (IsConstructor) {
4496                CXXConstructorDecl *FieldCtor = cast<CXXConstructorDecl>(FieldMember);
4497                if (CheckConstructorAccess(Loc, FieldCtor, FieldCtor->getAccess(),
4498                                           PDiag()) != AR_accessible)
4499                return true;
4500              }
4501            }
4502          }
4503        }
4504
4505        // At least one member in each anonymous union must be non-const
4506        if (CSM == CXXDefaultConstructor && AllConst)
4507          return true;
4508
4509        // Don't try to initialize the anonymous union
4510        // This is technically non-conformant, but sanity demands it.
4511        continue;
4512      }
4513
4514      // Unless we're doing assignment, the field's destructor must be
4515      // accessible and not deleted.
4516      if (!IsAssignment) {
4517        CXXDestructorDecl *FieldDtor = LookupDestructor(FieldRecord);
4518        if (FieldDtor->isDeleted())
4519          return true;
4520        if (CheckDestructorAccess(Loc, FieldDtor, PDiag()) !=
4521            AR_accessible)
4522          return true;
4523      }
4524
4525      // Check that the corresponding member of the field is accessible,
4526      // unique, and non-deleted. We don't do this if it has an explicit
4527      // initialization when default-constructing.
4528      if (CSM != CXXDestructor &&
4529          (CSM != CXXDefaultConstructor || !FI->hasInClassInitializer())) {
4530        SpecialMemberOverloadResult *SMOR =
4531          LookupSpecialMember(FieldRecord, CSM, ConstArg, false, false, false,
4532                              false);
4533        if (!SMOR->hasSuccess())
4534          return true;
4535
4536        CXXMethodDecl *FieldMember = SMOR->getMethod();
4537        if (IsConstructor) {
4538          CXXConstructorDecl *FieldCtor = cast<CXXConstructorDecl>(FieldMember);
4539          if (CheckConstructorAccess(Loc, FieldCtor, FieldCtor->getAccess(),
4540                                     PDiag()) != AR_accessible)
4541          return true;
4542
4543          // For a move operation, the corresponding operation must actually
4544          // be a move operation (and not a copy selected by overload
4545          // resolution) unless we are working on a trivially copyable class.
4546          if (IsMove && !FieldCtor->isMoveConstructor() &&
4547              !FieldRecord->isTriviallyCopyable())
4548            return true;
4549        }
4550
4551        // We need the corresponding member of a union to be trivial so that
4552        // we can safely copy them all simultaneously.
4553        // FIXME: Note that performing the check here (where we rely on the lack
4554        // of an in-class initializer) is technically ill-formed. However, this
4555        // seems most obviously to be a bug in the standard.
4556        if (IsUnion && !FieldMember->isTrivial())
4557          return true;
4558      }
4559    } else if (CSM == CXXDefaultConstructor && !IsUnion &&
4560               FieldType.isConstQualified() && !FI->hasInClassInitializer()) {
4561      // We can't initialize a const member of non-class type to any value.
4562      return true;
4563    }
4564  }
4565
4566  // We can't have all const members in a union when default-constructing,
4567  // or else they're all nonsensical garbage values that can't be changed.
4568  if (CSM == CXXDefaultConstructor && IsUnion && AllConst)
4569    return true;
4570
4571  return false;
4572}
4573
4574bool Sema::ShouldDeleteCopyAssignmentOperator(CXXMethodDecl *MD) {
4575  CXXRecordDecl *RD = MD->getParent();
4576  assert(!RD->isDependentType() && "do deletion after instantiation");
4577  if (!LangOpts.CPlusPlus0x || RD->isInvalidDecl())
4578    return false;
4579
4580  SourceLocation Loc = MD->getLocation();
4581
4582  // Do access control from the constructor
4583  ContextRAII MethodContext(*this, MD);
4584
4585  bool Union = RD->isUnion();
4586
4587  unsigned ArgQuals =
4588    MD->getParamDecl(0)->getType()->getPointeeType().isConstQualified() ?
4589      Qualifiers::Const : 0;
4590
4591  // We do this because we should never actually use an anonymous
4592  // union's constructor.
4593  if (Union && RD->isAnonymousStructOrUnion())
4594    return false;
4595
4596  // FIXME: We should put some diagnostic logic right into this function.
4597
4598  // C++0x [class.copy]/20
4599  //    A defaulted [copy] assignment operator for class X is defined as deleted
4600  //    if X has:
4601
4602  for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
4603                                          BE = RD->bases_end();
4604       BI != BE; ++BI) {
4605    // We'll handle this one later
4606    if (BI->isVirtual())
4607      continue;
4608
4609    QualType BaseType = BI->getType();
4610    CXXRecordDecl *BaseDecl = BaseType->getAsCXXRecordDecl();
4611    assert(BaseDecl && "base isn't a CXXRecordDecl");
4612
4613    // -- a [direct base class] B that cannot be [copied] because overload
4614    //    resolution, as applied to B's [copy] assignment operator, results in
4615    //    an ambiguity or a function that is deleted or inaccessible from the
4616    //    assignment operator
4617    CXXMethodDecl *CopyOper = LookupCopyingAssignment(BaseDecl, ArgQuals, false,
4618                                                      0);
4619    if (!CopyOper || CopyOper->isDeleted())
4620      return true;
4621    if (CheckDirectMemberAccess(Loc, CopyOper, PDiag()) != AR_accessible)
4622      return true;
4623  }
4624
4625  for (CXXRecordDecl::base_class_iterator BI = RD->vbases_begin(),
4626                                          BE = RD->vbases_end();
4627       BI != BE; ++BI) {
4628    QualType BaseType = BI->getType();
4629    CXXRecordDecl *BaseDecl = BaseType->getAsCXXRecordDecl();
4630    assert(BaseDecl && "base isn't a CXXRecordDecl");
4631
4632    // -- a [virtual base class] B that cannot be [copied] because overload
4633    //    resolution, as applied to B's [copy] assignment operator, results in
4634    //    an ambiguity or a function that is deleted or inaccessible from the
4635    //    assignment operator
4636    CXXMethodDecl *CopyOper = LookupCopyingAssignment(BaseDecl, ArgQuals, false,
4637                                                      0);
4638    if (!CopyOper || CopyOper->isDeleted())
4639      return true;
4640    if (CheckDirectMemberAccess(Loc, CopyOper, PDiag()) != AR_accessible)
4641      return true;
4642  }
4643
4644  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
4645                                     FE = RD->field_end();
4646       FI != FE; ++FI) {
4647    if (FI->isUnnamedBitfield())
4648      continue;
4649
4650    QualType FieldType = Context.getBaseElementType(FI->getType());
4651
4652    // -- a non-static data member of reference type
4653    if (FieldType->isReferenceType())
4654      return true;
4655
4656    // -- a non-static data member of const non-class type (or array thereof)
4657    if (FieldType.isConstQualified() && !FieldType->isRecordType())
4658      return true;
4659
4660    CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl();
4661
4662    if (FieldRecord) {
4663      // This is an anonymous union
4664      if (FieldRecord->isUnion() && FieldRecord->isAnonymousStructOrUnion()) {
4665        // Anonymous unions inside unions do not variant members create
4666        if (!Union) {
4667          for (CXXRecordDecl::field_iterator UI = FieldRecord->field_begin(),
4668                                             UE = FieldRecord->field_end();
4669               UI != UE; ++UI) {
4670            QualType UnionFieldType = Context.getBaseElementType(UI->getType());
4671            CXXRecordDecl *UnionFieldRecord =
4672              UnionFieldType->getAsCXXRecordDecl();
4673
4674            // -- a variant member with a non-trivial [copy] assignment operator
4675            //    and X is a union-like class
4676            if (UnionFieldRecord &&
4677                !UnionFieldRecord->hasTrivialCopyAssignment())
4678              return true;
4679          }
4680        }
4681
4682        // Don't try to initalize an anonymous union
4683        continue;
4684      // -- a variant member with a non-trivial [copy] assignment operator
4685      //    and X is a union-like class
4686      } else if (Union && !FieldRecord->hasTrivialCopyAssignment()) {
4687          return true;
4688      }
4689
4690      CXXMethodDecl *CopyOper = LookupCopyingAssignment(FieldRecord, ArgQuals,
4691                                                        false, 0);
4692      if (!CopyOper || CopyOper->isDeleted())
4693        return true;
4694      if (CheckDirectMemberAccess(Loc, CopyOper, PDiag()) != AR_accessible)
4695        return true;
4696    }
4697  }
4698
4699  return false;
4700}
4701
4702bool Sema::ShouldDeleteMoveAssignmentOperator(CXXMethodDecl *MD) {
4703  CXXRecordDecl *RD = MD->getParent();
4704  assert(!RD->isDependentType() && "do deletion after instantiation");
4705  if (!LangOpts.CPlusPlus0x || RD->isInvalidDecl())
4706    return false;
4707
4708  SourceLocation Loc = MD->getLocation();
4709
4710  // Do access control from the constructor
4711  ContextRAII MethodContext(*this, MD);
4712
4713  bool Union = RD->isUnion();
4714
4715  // We do this because we should never actually use an anonymous
4716  // union's constructor.
4717  if (Union && RD->isAnonymousStructOrUnion())
4718    return false;
4719
4720  // C++0x [class.copy]/20
4721  //    A defaulted [move] assignment operator for class X is defined as deleted
4722  //    if X has:
4723
4724  //    -- for the move constructor, [...] any direct or indirect virtual base
4725  //       class.
4726  if (RD->getNumVBases() != 0)
4727    return true;
4728
4729  for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
4730                                          BE = RD->bases_end();
4731       BI != BE; ++BI) {
4732
4733    QualType BaseType = BI->getType();
4734    CXXRecordDecl *BaseDecl = BaseType->getAsCXXRecordDecl();
4735    assert(BaseDecl && "base isn't a CXXRecordDecl");
4736
4737    // -- a [direct base class] B that cannot be [moved] because overload
4738    //    resolution, as applied to B's [move] assignment operator, results in
4739    //    an ambiguity or a function that is deleted or inaccessible from the
4740    //    assignment operator
4741    CXXMethodDecl *MoveOper = LookupMovingAssignment(BaseDecl, false, 0);
4742    if (!MoveOper || MoveOper->isDeleted())
4743      return true;
4744    if (CheckDirectMemberAccess(Loc, MoveOper, PDiag()) != AR_accessible)
4745      return true;
4746
4747    // -- for the move assignment operator, a [direct base class] with a type
4748    //    that does not have a move assignment operator and is not trivially
4749    //    copyable.
4750    if (!MoveOper->isMoveAssignmentOperator() &&
4751        !BaseDecl->isTriviallyCopyable())
4752      return true;
4753  }
4754
4755  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
4756                                     FE = RD->field_end();
4757       FI != FE; ++FI) {
4758    if (FI->isUnnamedBitfield())
4759      continue;
4760
4761    QualType FieldType = Context.getBaseElementType(FI->getType());
4762
4763    // -- a non-static data member of reference type
4764    if (FieldType->isReferenceType())
4765      return true;
4766
4767    // -- a non-static data member of const non-class type (or array thereof)
4768    if (FieldType.isConstQualified() && !FieldType->isRecordType())
4769      return true;
4770
4771    CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl();
4772
4773    if (FieldRecord) {
4774      // This is an anonymous union
4775      if (FieldRecord->isUnion() && FieldRecord->isAnonymousStructOrUnion()) {
4776        // Anonymous unions inside unions do not variant members create
4777        if (!Union) {
4778          for (CXXRecordDecl::field_iterator UI = FieldRecord->field_begin(),
4779                                             UE = FieldRecord->field_end();
4780               UI != UE; ++UI) {
4781            QualType UnionFieldType = Context.getBaseElementType(UI->getType());
4782            CXXRecordDecl *UnionFieldRecord =
4783              UnionFieldType->getAsCXXRecordDecl();
4784
4785            // -- a variant member with a non-trivial [move] assignment operator
4786            //    and X is a union-like class
4787            if (UnionFieldRecord &&
4788                !UnionFieldRecord->hasTrivialMoveAssignment())
4789              return true;
4790          }
4791        }
4792
4793        // Don't try to initalize an anonymous union
4794        continue;
4795      // -- a variant member with a non-trivial [move] assignment operator
4796      //    and X is a union-like class
4797      } else if (Union && !FieldRecord->hasTrivialMoveAssignment()) {
4798          return true;
4799      }
4800
4801      CXXMethodDecl *MoveOper = LookupMovingAssignment(FieldRecord, false, 0);
4802      if (!MoveOper || MoveOper->isDeleted())
4803        return true;
4804      if (CheckDirectMemberAccess(Loc, MoveOper, PDiag()) != AR_accessible)
4805        return true;
4806
4807      // -- for the move assignment operator, a [non-static data member] with a
4808      //    type that does not have a move assignment operator and is not
4809      //    trivially copyable.
4810      if (!MoveOper->isMoveAssignmentOperator() &&
4811          !FieldRecord->isTriviallyCopyable())
4812        return true;
4813    }
4814  }
4815
4816  return false;
4817}
4818
4819bool Sema::ShouldDeleteDestructor(CXXDestructorDecl *DD) {
4820  CXXRecordDecl *RD = DD->getParent();
4821  assert(!RD->isDependentType() && "do deletion after instantiation");
4822  if (!LangOpts.CPlusPlus0x || RD->isInvalidDecl())
4823    return false;
4824
4825  SourceLocation Loc = DD->getLocation();
4826
4827  // Do access control from the destructor
4828  ContextRAII CtorContext(*this, DD);
4829
4830  bool Union = RD->isUnion();
4831
4832  // We do this because we should never actually use an anonymous
4833  // union's destructor.
4834  if (Union && RD->isAnonymousStructOrUnion())
4835    return false;
4836
4837  // C++0x [class.dtor]p5
4838  //    A defaulted destructor for a class X is defined as deleted if:
4839  for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
4840                                          BE = RD->bases_end();
4841       BI != BE; ++BI) {
4842    // We'll handle this one later
4843    if (BI->isVirtual())
4844      continue;
4845
4846    CXXRecordDecl *BaseDecl = BI->getType()->getAsCXXRecordDecl();
4847    CXXDestructorDecl *BaseDtor = LookupDestructor(BaseDecl);
4848    assert(BaseDtor && "base has no destructor");
4849
4850    // -- any direct or virtual base class has a deleted destructor or
4851    //    a destructor that is inaccessible from the defaulted destructor
4852    if (BaseDtor->isDeleted())
4853      return true;
4854    if (CheckDestructorAccess(Loc, BaseDtor, PDiag()) !=
4855        AR_accessible)
4856      return true;
4857  }
4858
4859  for (CXXRecordDecl::base_class_iterator BI = RD->vbases_begin(),
4860                                          BE = RD->vbases_end();
4861       BI != BE; ++BI) {
4862    CXXRecordDecl *BaseDecl = BI->getType()->getAsCXXRecordDecl();
4863    CXXDestructorDecl *BaseDtor = LookupDestructor(BaseDecl);
4864    assert(BaseDtor && "base has no destructor");
4865
4866    // -- any direct or virtual base class has a deleted destructor or
4867    //    a destructor that is inaccessible from the defaulted destructor
4868    if (BaseDtor->isDeleted())
4869      return true;
4870    if (CheckDestructorAccess(Loc, BaseDtor, PDiag()) !=
4871        AR_accessible)
4872      return true;
4873  }
4874
4875  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
4876                                     FE = RD->field_end();
4877       FI != FE; ++FI) {
4878    QualType FieldType = Context.getBaseElementType(FI->getType());
4879    CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl();
4880    if (FieldRecord) {
4881      if (FieldRecord->isUnion() && FieldRecord->isAnonymousStructOrUnion()) {
4882         for (CXXRecordDecl::field_iterator UI = FieldRecord->field_begin(),
4883                                            UE = FieldRecord->field_end();
4884              UI != UE; ++UI) {
4885           QualType UnionFieldType = Context.getBaseElementType(FI->getType());
4886           CXXRecordDecl *UnionFieldRecord =
4887             UnionFieldType->getAsCXXRecordDecl();
4888
4889           // -- X is a union-like class that has a variant member with a non-
4890           //    trivial destructor.
4891           if (UnionFieldRecord && !UnionFieldRecord->hasTrivialDestructor())
4892             return true;
4893         }
4894      // Technically we are supposed to do this next check unconditionally.
4895      // But that makes absolutely no sense.
4896      } else {
4897        CXXDestructorDecl *FieldDtor = LookupDestructor(FieldRecord);
4898
4899        // -- any of the non-static data members has class type M (or array
4900        //    thereof) and M has a deleted destructor or a destructor that is
4901        //    inaccessible from the defaulted destructor
4902        if (FieldDtor->isDeleted())
4903          return true;
4904        if (CheckDestructorAccess(Loc, FieldDtor, PDiag()) !=
4905          AR_accessible)
4906        return true;
4907
4908        // -- X is a union-like class that has a variant member with a non-
4909        //    trivial destructor.
4910        if (Union && !FieldDtor->isTrivial())
4911          return true;
4912      }
4913    }
4914  }
4915
4916  if (DD->isVirtual()) {
4917    FunctionDecl *OperatorDelete = 0;
4918    DeclarationName Name =
4919      Context.DeclarationNames.getCXXOperatorName(OO_Delete);
4920    if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete,
4921          false))
4922      return true;
4923  }
4924
4925
4926  return false;
4927}
4928
4929/// \brief Data used with FindHiddenVirtualMethod
4930namespace {
4931  struct FindHiddenVirtualMethodData {
4932    Sema *S;
4933    CXXMethodDecl *Method;
4934    llvm::SmallPtrSet<const CXXMethodDecl *, 8> OverridenAndUsingBaseMethods;
4935    SmallVector<CXXMethodDecl *, 8> OverloadedMethods;
4936  };
4937}
4938
4939/// \brief Member lookup function that determines whether a given C++
4940/// method overloads virtual methods in a base class without overriding any,
4941/// to be used with CXXRecordDecl::lookupInBases().
4942static bool FindHiddenVirtualMethod(const CXXBaseSpecifier *Specifier,
4943                                    CXXBasePath &Path,
4944                                    void *UserData) {
4945  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
4946
4947  FindHiddenVirtualMethodData &Data
4948    = *static_cast<FindHiddenVirtualMethodData*>(UserData);
4949
4950  DeclarationName Name = Data.Method->getDeclName();
4951  assert(Name.getNameKind() == DeclarationName::Identifier);
4952
4953  bool foundSameNameMethod = false;
4954  SmallVector<CXXMethodDecl *, 8> overloadedMethods;
4955  for (Path.Decls = BaseRecord->lookup(Name);
4956       Path.Decls.first != Path.Decls.second;
4957       ++Path.Decls.first) {
4958    NamedDecl *D = *Path.Decls.first;
4959    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
4960      MD = MD->getCanonicalDecl();
4961      foundSameNameMethod = true;
4962      // Interested only in hidden virtual methods.
4963      if (!MD->isVirtual())
4964        continue;
4965      // If the method we are checking overrides a method from its base
4966      // don't warn about the other overloaded methods.
4967      if (!Data.S->IsOverload(Data.Method, MD, false))
4968        return true;
4969      // Collect the overload only if its hidden.
4970      if (!Data.OverridenAndUsingBaseMethods.count(MD))
4971        overloadedMethods.push_back(MD);
4972    }
4973  }
4974
4975  if (foundSameNameMethod)
4976    Data.OverloadedMethods.append(overloadedMethods.begin(),
4977                                   overloadedMethods.end());
4978  return foundSameNameMethod;
4979}
4980
4981/// \brief See if a method overloads virtual methods in a base class without
4982/// overriding any.
4983void Sema::DiagnoseHiddenVirtualMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
4984  if (Diags.getDiagnosticLevel(diag::warn_overloaded_virtual,
4985                               MD->getLocation()) == DiagnosticsEngine::Ignored)
4986    return;
4987  if (MD->getDeclName().getNameKind() != DeclarationName::Identifier)
4988    return;
4989
4990  CXXBasePaths Paths(/*FindAmbiguities=*/true, // true to look in all bases.
4991                     /*bool RecordPaths=*/false,
4992                     /*bool DetectVirtual=*/false);
4993  FindHiddenVirtualMethodData Data;
4994  Data.Method = MD;
4995  Data.S = this;
4996
4997  // Keep the base methods that were overriden or introduced in the subclass
4998  // by 'using' in a set. A base method not in this set is hidden.
4999  for (DeclContext::lookup_result res = DC->lookup(MD->getDeclName());
5000       res.first != res.second; ++res.first) {
5001    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(*res.first))
5002      for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
5003                                          E = MD->end_overridden_methods();
5004           I != E; ++I)
5005        Data.OverridenAndUsingBaseMethods.insert((*I)->getCanonicalDecl());
5006    if (UsingShadowDecl *shad = dyn_cast<UsingShadowDecl>(*res.first))
5007      if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(shad->getTargetDecl()))
5008        Data.OverridenAndUsingBaseMethods.insert(MD->getCanonicalDecl());
5009  }
5010
5011  if (DC->lookupInBases(&FindHiddenVirtualMethod, &Data, Paths) &&
5012      !Data.OverloadedMethods.empty()) {
5013    Diag(MD->getLocation(), diag::warn_overloaded_virtual)
5014      << MD << (Data.OverloadedMethods.size() > 1);
5015
5016    for (unsigned i = 0, e = Data.OverloadedMethods.size(); i != e; ++i) {
5017      CXXMethodDecl *overloadedMD = Data.OverloadedMethods[i];
5018      Diag(overloadedMD->getLocation(),
5019           diag::note_hidden_overloaded_virtual_declared_here) << overloadedMD;
5020    }
5021  }
5022}
5023
5024void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
5025                                             Decl *TagDecl,
5026                                             SourceLocation LBrac,
5027                                             SourceLocation RBrac,
5028                                             AttributeList *AttrList) {
5029  if (!TagDecl)
5030    return;
5031
5032  AdjustDeclIfTemplate(TagDecl);
5033
5034  ActOnFields(S, RLoc, TagDecl, llvm::makeArrayRef(
5035              // strict aliasing violation!
5036              reinterpret_cast<Decl**>(FieldCollector->getCurFields()),
5037              FieldCollector->getCurNumFields()), LBrac, RBrac, AttrList);
5038
5039  CheckCompletedCXXClass(
5040                        dyn_cast_or_null<CXXRecordDecl>(TagDecl));
5041}
5042
5043/// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
5044/// special functions, such as the default constructor, copy
5045/// constructor, or destructor, to the given C++ class (C++
5046/// [special]p1).  This routine can only be executed just before the
5047/// definition of the class is complete.
5048void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) {
5049  if (!ClassDecl->hasUserDeclaredConstructor())
5050    ++ASTContext::NumImplicitDefaultConstructors;
5051
5052  if (!ClassDecl->hasUserDeclaredCopyConstructor())
5053    ++ASTContext::NumImplicitCopyConstructors;
5054
5055  if (getLangOptions().CPlusPlus0x && ClassDecl->needsImplicitMoveConstructor())
5056    ++ASTContext::NumImplicitMoveConstructors;
5057
5058  if (!ClassDecl->hasUserDeclaredCopyAssignment()) {
5059    ++ASTContext::NumImplicitCopyAssignmentOperators;
5060
5061    // If we have a dynamic class, then the copy assignment operator may be
5062    // virtual, so we have to declare it immediately. This ensures that, e.g.,
5063    // it shows up in the right place in the vtable and that we diagnose
5064    // problems with the implicit exception specification.
5065    if (ClassDecl->isDynamicClass())
5066      DeclareImplicitCopyAssignment(ClassDecl);
5067  }
5068
5069  if (getLangOptions().CPlusPlus0x && ClassDecl->needsImplicitMoveAssignment()){
5070    ++ASTContext::NumImplicitMoveAssignmentOperators;
5071
5072    // Likewise for the move assignment operator.
5073    if (ClassDecl->isDynamicClass())
5074      DeclareImplicitMoveAssignment(ClassDecl);
5075  }
5076
5077  if (!ClassDecl->hasUserDeclaredDestructor()) {
5078    ++ASTContext::NumImplicitDestructors;
5079
5080    // If we have a dynamic class, then the destructor may be virtual, so we
5081    // have to declare the destructor immediately. This ensures that, e.g., it
5082    // shows up in the right place in the vtable and that we diagnose problems
5083    // with the implicit exception specification.
5084    if (ClassDecl->isDynamicClass())
5085      DeclareImplicitDestructor(ClassDecl);
5086  }
5087}
5088
5089void Sema::ActOnReenterDeclaratorTemplateScope(Scope *S, DeclaratorDecl *D) {
5090  if (!D)
5091    return;
5092
5093  int NumParamList = D->getNumTemplateParameterLists();
5094  for (int i = 0; i < NumParamList; i++) {
5095    TemplateParameterList* Params = D->getTemplateParameterList(i);
5096    for (TemplateParameterList::iterator Param = Params->begin(),
5097                                      ParamEnd = Params->end();
5098          Param != ParamEnd; ++Param) {
5099      NamedDecl *Named = cast<NamedDecl>(*Param);
5100      if (Named->getDeclName()) {
5101        S->AddDecl(Named);
5102        IdResolver.AddDecl(Named);
5103      }
5104    }
5105  }
5106}
5107
5108void Sema::ActOnReenterTemplateScope(Scope *S, Decl *D) {
5109  if (!D)
5110    return;
5111
5112  TemplateParameterList *Params = 0;
5113  if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D))
5114    Params = Template->getTemplateParameters();
5115  else if (ClassTemplatePartialSpecializationDecl *PartialSpec
5116           = dyn_cast<ClassTemplatePartialSpecializationDecl>(D))
5117    Params = PartialSpec->getTemplateParameters();
5118  else
5119    return;
5120
5121  for (TemplateParameterList::iterator Param = Params->begin(),
5122                                    ParamEnd = Params->end();
5123       Param != ParamEnd; ++Param) {
5124    NamedDecl *Named = cast<NamedDecl>(*Param);
5125    if (Named->getDeclName()) {
5126      S->AddDecl(Named);
5127      IdResolver.AddDecl(Named);
5128    }
5129  }
5130}
5131
5132void Sema::ActOnStartDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
5133  if (!RecordD) return;
5134  AdjustDeclIfTemplate(RecordD);
5135  CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordD);
5136  PushDeclContext(S, Record);
5137}
5138
5139void Sema::ActOnFinishDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
5140  if (!RecordD) return;
5141  PopDeclContext();
5142}
5143
5144/// ActOnStartDelayedCXXMethodDeclaration - We have completed
5145/// parsing a top-level (non-nested) C++ class, and we are now
5146/// parsing those parts of the given Method declaration that could
5147/// not be parsed earlier (C++ [class.mem]p2), such as default
5148/// arguments. This action should enter the scope of the given
5149/// Method declaration as if we had just parsed the qualified method
5150/// name. However, it should not bring the parameters into scope;
5151/// that will be performed by ActOnDelayedCXXMethodParameter.
5152void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
5153}
5154
5155/// ActOnDelayedCXXMethodParameter - We've already started a delayed
5156/// C++ method declaration. We're (re-)introducing the given
5157/// function parameter into scope for use in parsing later parts of
5158/// the method declaration. For example, we could see an
5159/// ActOnParamDefaultArgument event for this parameter.
5160void Sema::ActOnDelayedCXXMethodParameter(Scope *S, Decl *ParamD) {
5161  if (!ParamD)
5162    return;
5163
5164  ParmVarDecl *Param = cast<ParmVarDecl>(ParamD);
5165
5166  // If this parameter has an unparsed default argument, clear it out
5167  // to make way for the parsed default argument.
5168  if (Param->hasUnparsedDefaultArg())
5169    Param->setDefaultArg(0);
5170
5171  S->AddDecl(Param);
5172  if (Param->getDeclName())
5173    IdResolver.AddDecl(Param);
5174}
5175
5176/// ActOnFinishDelayedCXXMethodDeclaration - We have finished
5177/// processing the delayed method declaration for Method. The method
5178/// declaration is now considered finished. There may be a separate
5179/// ActOnStartOfFunctionDef action later (not necessarily
5180/// immediately!) for this method, if it was also defined inside the
5181/// class body.
5182void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
5183  if (!MethodD)
5184    return;
5185
5186  AdjustDeclIfTemplate(MethodD);
5187
5188  FunctionDecl *Method = cast<FunctionDecl>(MethodD);
5189
5190  // Now that we have our default arguments, check the constructor
5191  // again. It could produce additional diagnostics or affect whether
5192  // the class has implicitly-declared destructors, among other
5193  // things.
5194  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method))
5195    CheckConstructor(Constructor);
5196
5197  // Check the default arguments, which we may have added.
5198  if (!Method->isInvalidDecl())
5199    CheckCXXDefaultArguments(Method);
5200}
5201
5202/// CheckConstructorDeclarator - Called by ActOnDeclarator to check
5203/// the well-formedness of the constructor declarator @p D with type @p
5204/// R. If there are any errors in the declarator, this routine will
5205/// emit diagnostics and set the invalid bit to true.  In any case, the type
5206/// will be updated to reflect a well-formed type for the constructor and
5207/// returned.
5208QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R,
5209                                          StorageClass &SC) {
5210  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
5211
5212  // C++ [class.ctor]p3:
5213  //   A constructor shall not be virtual (10.3) or static (9.4). A
5214  //   constructor can be invoked for a const, volatile or const
5215  //   volatile object. A constructor shall not be declared const,
5216  //   volatile, or const volatile (9.3.2).
5217  if (isVirtual) {
5218    if (!D.isInvalidType())
5219      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
5220        << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
5221        << SourceRange(D.getIdentifierLoc());
5222    D.setInvalidType();
5223  }
5224  if (SC == SC_Static) {
5225    if (!D.isInvalidType())
5226      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
5227        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
5228        << SourceRange(D.getIdentifierLoc());
5229    D.setInvalidType();
5230    SC = SC_None;
5231  }
5232
5233  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
5234  if (FTI.TypeQuals != 0) {
5235    if (FTI.TypeQuals & Qualifiers::Const)
5236      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
5237        << "const" << SourceRange(D.getIdentifierLoc());
5238    if (FTI.TypeQuals & Qualifiers::Volatile)
5239      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
5240        << "volatile" << SourceRange(D.getIdentifierLoc());
5241    if (FTI.TypeQuals & Qualifiers::Restrict)
5242      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
5243        << "restrict" << SourceRange(D.getIdentifierLoc());
5244    D.setInvalidType();
5245  }
5246
5247  // C++0x [class.ctor]p4:
5248  //   A constructor shall not be declared with a ref-qualifier.
5249  if (FTI.hasRefQualifier()) {
5250    Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_constructor)
5251      << FTI.RefQualifierIsLValueRef
5252      << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
5253    D.setInvalidType();
5254  }
5255
5256  // Rebuild the function type "R" without any type qualifiers (in
5257  // case any of the errors above fired) and with "void" as the
5258  // return type, since constructors don't have return types.
5259  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
5260  if (Proto->getResultType() == Context.VoidTy && !D.isInvalidType())
5261    return R;
5262
5263  FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
5264  EPI.TypeQuals = 0;
5265  EPI.RefQualifier = RQ_None;
5266
5267  return Context.getFunctionType(Context.VoidTy, Proto->arg_type_begin(),
5268                                 Proto->getNumArgs(), EPI);
5269}
5270
5271/// CheckConstructor - Checks a fully-formed constructor for
5272/// well-formedness, issuing any diagnostics required. Returns true if
5273/// the constructor declarator is invalid.
5274void Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
5275  CXXRecordDecl *ClassDecl
5276    = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext());
5277  if (!ClassDecl)
5278    return Constructor->setInvalidDecl();
5279
5280  // C++ [class.copy]p3:
5281  //   A declaration of a constructor for a class X is ill-formed if
5282  //   its first parameter is of type (optionally cv-qualified) X and
5283  //   either there are no other parameters or else all other
5284  //   parameters have default arguments.
5285  if (!Constructor->isInvalidDecl() &&
5286      ((Constructor->getNumParams() == 1) ||
5287       (Constructor->getNumParams() > 1 &&
5288        Constructor->getParamDecl(1)->hasDefaultArg())) &&
5289      Constructor->getTemplateSpecializationKind()
5290                                              != TSK_ImplicitInstantiation) {
5291    QualType ParamType = Constructor->getParamDecl(0)->getType();
5292    QualType ClassTy = Context.getTagDeclType(ClassDecl);
5293    if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
5294      SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation();
5295      const char *ConstRef
5296        = Constructor->getParamDecl(0)->getIdentifier() ? "const &"
5297                                                        : " const &";
5298      Diag(ParamLoc, diag::err_constructor_byvalue_arg)
5299        << FixItHint::CreateInsertion(ParamLoc, ConstRef);
5300
5301      // FIXME: Rather that making the constructor invalid, we should endeavor
5302      // to fix the type.
5303      Constructor->setInvalidDecl();
5304    }
5305  }
5306}
5307
5308/// CheckDestructor - Checks a fully-formed destructor definition for
5309/// well-formedness, issuing any diagnostics required.  Returns true
5310/// on error.
5311bool Sema::CheckDestructor(CXXDestructorDecl *Destructor) {
5312  CXXRecordDecl *RD = Destructor->getParent();
5313
5314  if (Destructor->isVirtual()) {
5315    SourceLocation Loc;
5316
5317    if (!Destructor->isImplicit())
5318      Loc = Destructor->getLocation();
5319    else
5320      Loc = RD->getLocation();
5321
5322    // If we have a virtual destructor, look up the deallocation function
5323    FunctionDecl *OperatorDelete = 0;
5324    DeclarationName Name =
5325    Context.DeclarationNames.getCXXOperatorName(OO_Delete);
5326    if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete))
5327      return true;
5328
5329    MarkFunctionReferenced(Loc, OperatorDelete);
5330
5331    Destructor->setOperatorDelete(OperatorDelete);
5332  }
5333
5334  return false;
5335}
5336
5337static inline bool
5338FTIHasSingleVoidArgument(DeclaratorChunk::FunctionTypeInfo &FTI) {
5339  return (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
5340          FTI.ArgInfo[0].Param &&
5341          cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType());
5342}
5343
5344/// CheckDestructorDeclarator - Called by ActOnDeclarator to check
5345/// the well-formednes of the destructor declarator @p D with type @p
5346/// R. If there are any errors in the declarator, this routine will
5347/// emit diagnostics and set the declarator to invalid.  Even if this happens,
5348/// will be updated to reflect a well-formed type for the destructor and
5349/// returned.
5350QualType Sema::CheckDestructorDeclarator(Declarator &D, QualType R,
5351                                         StorageClass& SC) {
5352  // C++ [class.dtor]p1:
5353  //   [...] A typedef-name that names a class is a class-name
5354  //   (7.1.3); however, a typedef-name that names a class shall not
5355  //   be used as the identifier in the declarator for a destructor
5356  //   declaration.
5357  QualType DeclaratorType = GetTypeFromParser(D.getName().DestructorName);
5358  if (const TypedefType *TT = DeclaratorType->getAs<TypedefType>())
5359    Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
5360      << DeclaratorType << isa<TypeAliasDecl>(TT->getDecl());
5361  else if (const TemplateSpecializationType *TST =
5362             DeclaratorType->getAs<TemplateSpecializationType>())
5363    if (TST->isTypeAlias())
5364      Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
5365        << DeclaratorType << 1;
5366
5367  // C++ [class.dtor]p2:
5368  //   A destructor is used to destroy objects of its class type. A
5369  //   destructor takes no parameters, and no return type can be
5370  //   specified for it (not even void). The address of a destructor
5371  //   shall not be taken. A destructor shall not be static. A
5372  //   destructor can be invoked for a const, volatile or const
5373  //   volatile object. A destructor shall not be declared const,
5374  //   volatile or const volatile (9.3.2).
5375  if (SC == SC_Static) {
5376    if (!D.isInvalidType())
5377      Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
5378        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
5379        << SourceRange(D.getIdentifierLoc())
5380        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
5381
5382    SC = SC_None;
5383  }
5384  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
5385    // Destructors don't have return types, but the parser will
5386    // happily parse something like:
5387    //
5388    //   class X {
5389    //     float ~X();
5390    //   };
5391    //
5392    // The return type will be eliminated later.
5393    Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
5394      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
5395      << SourceRange(D.getIdentifierLoc());
5396  }
5397
5398  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
5399  if (FTI.TypeQuals != 0 && !D.isInvalidType()) {
5400    if (FTI.TypeQuals & Qualifiers::Const)
5401      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
5402        << "const" << SourceRange(D.getIdentifierLoc());
5403    if (FTI.TypeQuals & Qualifiers::Volatile)
5404      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
5405        << "volatile" << SourceRange(D.getIdentifierLoc());
5406    if (FTI.TypeQuals & Qualifiers::Restrict)
5407      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
5408        << "restrict" << SourceRange(D.getIdentifierLoc());
5409    D.setInvalidType();
5410  }
5411
5412  // C++0x [class.dtor]p2:
5413  //   A destructor shall not be declared with a ref-qualifier.
5414  if (FTI.hasRefQualifier()) {
5415    Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_destructor)
5416      << FTI.RefQualifierIsLValueRef
5417      << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
5418    D.setInvalidType();
5419  }
5420
5421  // Make sure we don't have any parameters.
5422  if (FTI.NumArgs > 0 && !FTIHasSingleVoidArgument(FTI)) {
5423    Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
5424
5425    // Delete the parameters.
5426    FTI.freeArgs();
5427    D.setInvalidType();
5428  }
5429
5430  // Make sure the destructor isn't variadic.
5431  if (FTI.isVariadic) {
5432    Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
5433    D.setInvalidType();
5434  }
5435
5436  // Rebuild the function type "R" without any type qualifiers or
5437  // parameters (in case any of the errors above fired) and with
5438  // "void" as the return type, since destructors don't have return
5439  // types.
5440  if (!D.isInvalidType())
5441    return R;
5442
5443  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
5444  FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
5445  EPI.Variadic = false;
5446  EPI.TypeQuals = 0;
5447  EPI.RefQualifier = RQ_None;
5448  return Context.getFunctionType(Context.VoidTy, 0, 0, EPI);
5449}
5450
5451/// CheckConversionDeclarator - Called by ActOnDeclarator to check the
5452/// well-formednes of the conversion function declarator @p D with
5453/// type @p R. If there are any errors in the declarator, this routine
5454/// will emit diagnostics and return true. Otherwise, it will return
5455/// false. Either way, the type @p R will be updated to reflect a
5456/// well-formed type for the conversion operator.
5457void Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
5458                                     StorageClass& SC) {
5459  // C++ [class.conv.fct]p1:
5460  //   Neither parameter types nor return type can be specified. The
5461  //   type of a conversion function (8.3.5) is "function taking no
5462  //   parameter returning conversion-type-id."
5463  if (SC == SC_Static) {
5464    if (!D.isInvalidType())
5465      Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
5466        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
5467        << SourceRange(D.getIdentifierLoc());
5468    D.setInvalidType();
5469    SC = SC_None;
5470  }
5471
5472  QualType ConvType = GetTypeFromParser(D.getName().ConversionFunctionId);
5473
5474  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
5475    // Conversion functions don't have return types, but the parser will
5476    // happily parse something like:
5477    //
5478    //   class X {
5479    //     float operator bool();
5480    //   };
5481    //
5482    // The return type will be changed later anyway.
5483    Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
5484      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
5485      << SourceRange(D.getIdentifierLoc());
5486    D.setInvalidType();
5487  }
5488
5489  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
5490
5491  // Make sure we don't have any parameters.
5492  if (Proto->getNumArgs() > 0) {
5493    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
5494
5495    // Delete the parameters.
5496    D.getFunctionTypeInfo().freeArgs();
5497    D.setInvalidType();
5498  } else if (Proto->isVariadic()) {
5499    Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
5500    D.setInvalidType();
5501  }
5502
5503  // Diagnose "&operator bool()" and other such nonsense.  This
5504  // is actually a gcc extension which we don't support.
5505  if (Proto->getResultType() != ConvType) {
5506    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_complex_decl)
5507      << Proto->getResultType();
5508    D.setInvalidType();
5509    ConvType = Proto->getResultType();
5510  }
5511
5512  // C++ [class.conv.fct]p4:
5513  //   The conversion-type-id shall not represent a function type nor
5514  //   an array type.
5515  if (ConvType->isArrayType()) {
5516    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
5517    ConvType = Context.getPointerType(ConvType);
5518    D.setInvalidType();
5519  } else if (ConvType->isFunctionType()) {
5520    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
5521    ConvType = Context.getPointerType(ConvType);
5522    D.setInvalidType();
5523  }
5524
5525  // Rebuild the function type "R" without any parameters (in case any
5526  // of the errors above fired) and with the conversion type as the
5527  // return type.
5528  if (D.isInvalidType())
5529    R = Context.getFunctionType(ConvType, 0, 0, Proto->getExtProtoInfo());
5530
5531  // C++0x explicit conversion operators.
5532  if (D.getDeclSpec().isExplicitSpecified())
5533    Diag(D.getDeclSpec().getExplicitSpecLoc(),
5534         getLangOptions().CPlusPlus0x ?
5535           diag::warn_cxx98_compat_explicit_conversion_functions :
5536           diag::ext_explicit_conversion_functions)
5537      << SourceRange(D.getDeclSpec().getExplicitSpecLoc());
5538}
5539
5540/// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
5541/// the declaration of the given C++ conversion function. This routine
5542/// is responsible for recording the conversion function in the C++
5543/// class, if possible.
5544Decl *Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
5545  assert(Conversion && "Expected to receive a conversion function declaration");
5546
5547  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext());
5548
5549  // Make sure we aren't redeclaring the conversion function.
5550  QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());
5551
5552  // C++ [class.conv.fct]p1:
5553  //   [...] A conversion function is never used to convert a
5554  //   (possibly cv-qualified) object to the (possibly cv-qualified)
5555  //   same object type (or a reference to it), to a (possibly
5556  //   cv-qualified) base class of that type (or a reference to it),
5557  //   or to (possibly cv-qualified) void.
5558  // FIXME: Suppress this warning if the conversion function ends up being a
5559  // virtual function that overrides a virtual function in a base class.
5560  QualType ClassType
5561    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
5562  if (const ReferenceType *ConvTypeRef = ConvType->getAs<ReferenceType>())
5563    ConvType = ConvTypeRef->getPointeeType();
5564  if (Conversion->getTemplateSpecializationKind() != TSK_Undeclared &&
5565      Conversion->getTemplateSpecializationKind() != TSK_ExplicitSpecialization)
5566    /* Suppress diagnostics for instantiations. */;
5567  else if (ConvType->isRecordType()) {
5568    ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
5569    if (ConvType == ClassType)
5570      Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used)
5571        << ClassType;
5572    else if (IsDerivedFrom(ClassType, ConvType))
5573      Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used)
5574        <<  ClassType << ConvType;
5575  } else if (ConvType->isVoidType()) {
5576    Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used)
5577      << ClassType << ConvType;
5578  }
5579
5580  if (FunctionTemplateDecl *ConversionTemplate
5581                                = Conversion->getDescribedFunctionTemplate())
5582    return ConversionTemplate;
5583
5584  return Conversion;
5585}
5586
5587//===----------------------------------------------------------------------===//
5588// Namespace Handling
5589//===----------------------------------------------------------------------===//
5590
5591
5592
5593/// ActOnStartNamespaceDef - This is called at the start of a namespace
5594/// definition.
5595Decl *Sema::ActOnStartNamespaceDef(Scope *NamespcScope,
5596                                   SourceLocation InlineLoc,
5597                                   SourceLocation NamespaceLoc,
5598                                   SourceLocation IdentLoc,
5599                                   IdentifierInfo *II,
5600                                   SourceLocation LBrace,
5601                                   AttributeList *AttrList) {
5602  SourceLocation StartLoc = InlineLoc.isValid() ? InlineLoc : NamespaceLoc;
5603  // For anonymous namespace, take the location of the left brace.
5604  SourceLocation Loc = II ? IdentLoc : LBrace;
5605  bool IsInline = InlineLoc.isValid();
5606  bool IsInvalid = false;
5607  bool IsStd = false;
5608  bool AddToKnown = false;
5609  Scope *DeclRegionScope = NamespcScope->getParent();
5610
5611  NamespaceDecl *PrevNS = 0;
5612  if (II) {
5613    // C++ [namespace.def]p2:
5614    //   The identifier in an original-namespace-definition shall not
5615    //   have been previously defined in the declarative region in
5616    //   which the original-namespace-definition appears. The
5617    //   identifier in an original-namespace-definition is the name of
5618    //   the namespace. Subsequently in that declarative region, it is
5619    //   treated as an original-namespace-name.
5620    //
5621    // Since namespace names are unique in their scope, and we don't
5622    // look through using directives, just look for any ordinary names.
5623
5624    const unsigned IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Member |
5625    Decl::IDNS_Type | Decl::IDNS_Using | Decl::IDNS_Tag |
5626    Decl::IDNS_Namespace;
5627    NamedDecl *PrevDecl = 0;
5628    for (DeclContext::lookup_result R
5629         = CurContext->getRedeclContext()->lookup(II);
5630         R.first != R.second; ++R.first) {
5631      if ((*R.first)->getIdentifierNamespace() & IDNS) {
5632        PrevDecl = *R.first;
5633        break;
5634      }
5635    }
5636
5637    PrevNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl);
5638
5639    if (PrevNS) {
5640      // This is an extended namespace definition.
5641      if (IsInline != PrevNS->isInline()) {
5642        // inline-ness must match
5643        if (PrevNS->isInline()) {
5644          // The user probably just forgot the 'inline', so suggest that it
5645          // be added back.
5646          Diag(Loc, diag::warn_inline_namespace_reopened_noninline)
5647            << FixItHint::CreateInsertion(NamespaceLoc, "inline ");
5648        } else {
5649          Diag(Loc, diag::err_inline_namespace_mismatch)
5650            << IsInline;
5651        }
5652        Diag(PrevNS->getLocation(), diag::note_previous_definition);
5653
5654        IsInline = PrevNS->isInline();
5655      }
5656    } else if (PrevDecl) {
5657      // This is an invalid name redefinition.
5658      Diag(Loc, diag::err_redefinition_different_kind)
5659        << II;
5660      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
5661      IsInvalid = true;
5662      // Continue on to push Namespc as current DeclContext and return it.
5663    } else if (II->isStr("std") &&
5664               CurContext->getRedeclContext()->isTranslationUnit()) {
5665      // This is the first "real" definition of the namespace "std", so update
5666      // our cache of the "std" namespace to point at this definition.
5667      PrevNS = getStdNamespace();
5668      IsStd = true;
5669      AddToKnown = !IsInline;
5670    } else {
5671      // We've seen this namespace for the first time.
5672      AddToKnown = !IsInline;
5673    }
5674  } else {
5675    // Anonymous namespaces.
5676
5677    // Determine whether the parent already has an anonymous namespace.
5678    DeclContext *Parent = CurContext->getRedeclContext();
5679    if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
5680      PrevNS = TU->getAnonymousNamespace();
5681    } else {
5682      NamespaceDecl *ND = cast<NamespaceDecl>(Parent);
5683      PrevNS = ND->getAnonymousNamespace();
5684    }
5685
5686    if (PrevNS && IsInline != PrevNS->isInline()) {
5687      // inline-ness must match
5688      Diag(Loc, diag::err_inline_namespace_mismatch)
5689        << IsInline;
5690      Diag(PrevNS->getLocation(), diag::note_previous_definition);
5691
5692      // Recover by ignoring the new namespace's inline status.
5693      IsInline = PrevNS->isInline();
5694    }
5695  }
5696
5697  NamespaceDecl *Namespc = NamespaceDecl::Create(Context, CurContext, IsInline,
5698                                                 StartLoc, Loc, II, PrevNS);
5699  if (IsInvalid)
5700    Namespc->setInvalidDecl();
5701
5702  ProcessDeclAttributeList(DeclRegionScope, Namespc, AttrList);
5703
5704  // FIXME: Should we be merging attributes?
5705  if (const VisibilityAttr *Attr = Namespc->getAttr<VisibilityAttr>())
5706    PushNamespaceVisibilityAttr(Attr, Loc);
5707
5708  if (IsStd)
5709    StdNamespace = Namespc;
5710  if (AddToKnown)
5711    KnownNamespaces[Namespc] = false;
5712
5713  if (II) {
5714    PushOnScopeChains(Namespc, DeclRegionScope);
5715  } else {
5716    // Link the anonymous namespace into its parent.
5717    DeclContext *Parent = CurContext->getRedeclContext();
5718    if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
5719      TU->setAnonymousNamespace(Namespc);
5720    } else {
5721      cast<NamespaceDecl>(Parent)->setAnonymousNamespace(Namespc);
5722    }
5723
5724    CurContext->addDecl(Namespc);
5725
5726    // C++ [namespace.unnamed]p1.  An unnamed-namespace-definition
5727    //   behaves as if it were replaced by
5728    //     namespace unique { /* empty body */ }
5729    //     using namespace unique;
5730    //     namespace unique { namespace-body }
5731    //   where all occurrences of 'unique' in a translation unit are
5732    //   replaced by the same identifier and this identifier differs
5733    //   from all other identifiers in the entire program.
5734
5735    // We just create the namespace with an empty name and then add an
5736    // implicit using declaration, just like the standard suggests.
5737    //
5738    // CodeGen enforces the "universally unique" aspect by giving all
5739    // declarations semantically contained within an anonymous
5740    // namespace internal linkage.
5741
5742    if (!PrevNS) {
5743      UsingDirectiveDecl* UD
5744        = UsingDirectiveDecl::Create(Context, CurContext,
5745                                     /* 'using' */ LBrace,
5746                                     /* 'namespace' */ SourceLocation(),
5747                                     /* qualifier */ NestedNameSpecifierLoc(),
5748                                     /* identifier */ SourceLocation(),
5749                                     Namespc,
5750                                     /* Ancestor */ CurContext);
5751      UD->setImplicit();
5752      CurContext->addDecl(UD);
5753    }
5754  }
5755
5756  // Although we could have an invalid decl (i.e. the namespace name is a
5757  // redefinition), push it as current DeclContext and try to continue parsing.
5758  // FIXME: We should be able to push Namespc here, so that the each DeclContext
5759  // for the namespace has the declarations that showed up in that particular
5760  // namespace definition.
5761  PushDeclContext(NamespcScope, Namespc);
5762  return Namespc;
5763}
5764
5765/// getNamespaceDecl - Returns the namespace a decl represents. If the decl
5766/// is a namespace alias, returns the namespace it points to.
5767static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) {
5768  if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D))
5769    return AD->getNamespace();
5770  return dyn_cast_or_null<NamespaceDecl>(D);
5771}
5772
5773/// ActOnFinishNamespaceDef - This callback is called after a namespace is
5774/// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
5775void Sema::ActOnFinishNamespaceDef(Decl *Dcl, SourceLocation RBrace) {
5776  NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
5777  assert(Namespc && "Invalid parameter, expected NamespaceDecl");
5778  Namespc->setRBraceLoc(RBrace);
5779  PopDeclContext();
5780  if (Namespc->hasAttr<VisibilityAttr>())
5781    PopPragmaVisibility(true, RBrace);
5782}
5783
5784CXXRecordDecl *Sema::getStdBadAlloc() const {
5785  return cast_or_null<CXXRecordDecl>(
5786                                  StdBadAlloc.get(Context.getExternalSource()));
5787}
5788
5789NamespaceDecl *Sema::getStdNamespace() const {
5790  return cast_or_null<NamespaceDecl>(
5791                                 StdNamespace.get(Context.getExternalSource()));
5792}
5793
5794/// \brief Retrieve the special "std" namespace, which may require us to
5795/// implicitly define the namespace.
5796NamespaceDecl *Sema::getOrCreateStdNamespace() {
5797  if (!StdNamespace) {
5798    // The "std" namespace has not yet been defined, so build one implicitly.
5799    StdNamespace = NamespaceDecl::Create(Context,
5800                                         Context.getTranslationUnitDecl(),
5801                                         /*Inline=*/false,
5802                                         SourceLocation(), SourceLocation(),
5803                                         &PP.getIdentifierTable().get("std"),
5804                                         /*PrevDecl=*/0);
5805    getStdNamespace()->setImplicit(true);
5806  }
5807
5808  return getStdNamespace();
5809}
5810
5811bool Sema::isStdInitializerList(QualType Ty, QualType *Element) {
5812  assert(getLangOptions().CPlusPlus &&
5813         "Looking for std::initializer_list outside of C++.");
5814
5815  // We're looking for implicit instantiations of
5816  // template <typename E> class std::initializer_list.
5817
5818  if (!StdNamespace) // If we haven't seen namespace std yet, this can't be it.
5819    return false;
5820
5821  ClassTemplateDecl *Template = 0;
5822  const TemplateArgument *Arguments = 0;
5823
5824  if (const RecordType *RT = Ty->getAs<RecordType>()) {
5825
5826    ClassTemplateSpecializationDecl *Specialization =
5827        dyn_cast<ClassTemplateSpecializationDecl>(RT->getDecl());
5828    if (!Specialization)
5829      return false;
5830
5831    Template = Specialization->getSpecializedTemplate();
5832    Arguments = Specialization->getTemplateArgs().data();
5833  } else if (const TemplateSpecializationType *TST =
5834                 Ty->getAs<TemplateSpecializationType>()) {
5835    Template = dyn_cast_or_null<ClassTemplateDecl>(
5836        TST->getTemplateName().getAsTemplateDecl());
5837    Arguments = TST->getArgs();
5838  }
5839  if (!Template)
5840    return false;
5841
5842  if (!StdInitializerList) {
5843    // Haven't recognized std::initializer_list yet, maybe this is it.
5844    CXXRecordDecl *TemplateClass = Template->getTemplatedDecl();
5845    if (TemplateClass->getIdentifier() !=
5846            &PP.getIdentifierTable().get("initializer_list") ||
5847        !getStdNamespace()->InEnclosingNamespaceSetOf(
5848            TemplateClass->getDeclContext()))
5849      return false;
5850    // This is a template called std::initializer_list, but is it the right
5851    // template?
5852    TemplateParameterList *Params = Template->getTemplateParameters();
5853    if (Params->getMinRequiredArguments() != 1)
5854      return false;
5855    if (!isa<TemplateTypeParmDecl>(Params->getParam(0)))
5856      return false;
5857
5858    // It's the right template.
5859    StdInitializerList = Template;
5860  }
5861
5862  if (Template != StdInitializerList)
5863    return false;
5864
5865  // This is an instance of std::initializer_list. Find the argument type.
5866  if (Element)
5867    *Element = Arguments[0].getAsType();
5868  return true;
5869}
5870
5871static ClassTemplateDecl *LookupStdInitializerList(Sema &S, SourceLocation Loc){
5872  NamespaceDecl *Std = S.getStdNamespace();
5873  if (!Std) {
5874    S.Diag(Loc, diag::err_implied_std_initializer_list_not_found);
5875    return 0;
5876  }
5877
5878  LookupResult Result(S, &S.PP.getIdentifierTable().get("initializer_list"),
5879                      Loc, Sema::LookupOrdinaryName);
5880  if (!S.LookupQualifiedName(Result, Std)) {
5881    S.Diag(Loc, diag::err_implied_std_initializer_list_not_found);
5882    return 0;
5883  }
5884  ClassTemplateDecl *Template = Result.getAsSingle<ClassTemplateDecl>();
5885  if (!Template) {
5886    Result.suppressDiagnostics();
5887    // We found something weird. Complain about the first thing we found.
5888    NamedDecl *Found = *Result.begin();
5889    S.Diag(Found->getLocation(), diag::err_malformed_std_initializer_list);
5890    return 0;
5891  }
5892
5893  // We found some template called std::initializer_list. Now verify that it's
5894  // correct.
5895  TemplateParameterList *Params = Template->getTemplateParameters();
5896  if (Params->getMinRequiredArguments() != 1 ||
5897      !isa<TemplateTypeParmDecl>(Params->getParam(0))) {
5898    S.Diag(Template->getLocation(), diag::err_malformed_std_initializer_list);
5899    return 0;
5900  }
5901
5902  return Template;
5903}
5904
5905QualType Sema::BuildStdInitializerList(QualType Element, SourceLocation Loc) {
5906  if (!StdInitializerList) {
5907    StdInitializerList = LookupStdInitializerList(*this, Loc);
5908    if (!StdInitializerList)
5909      return QualType();
5910  }
5911
5912  TemplateArgumentListInfo Args(Loc, Loc);
5913  Args.addArgument(TemplateArgumentLoc(TemplateArgument(Element),
5914                                       Context.getTrivialTypeSourceInfo(Element,
5915                                                                        Loc)));
5916  return Context.getCanonicalType(
5917      CheckTemplateIdType(TemplateName(StdInitializerList), Loc, Args));
5918}
5919
5920bool Sema::isInitListConstructor(const CXXConstructorDecl* Ctor) {
5921  // C++ [dcl.init.list]p2:
5922  //   A constructor is an initializer-list constructor if its first parameter
5923  //   is of type std::initializer_list<E> or reference to possibly cv-qualified
5924  //   std::initializer_list<E> for some type E, and either there are no other
5925  //   parameters or else all other parameters have default arguments.
5926  if (Ctor->getNumParams() < 1 ||
5927      (Ctor->getNumParams() > 1 && !Ctor->getParamDecl(1)->hasDefaultArg()))
5928    return false;
5929
5930  QualType ArgType = Ctor->getParamDecl(0)->getType();
5931  if (const ReferenceType *RT = ArgType->getAs<ReferenceType>())
5932    ArgType = RT->getPointeeType().getUnqualifiedType();
5933
5934  return isStdInitializerList(ArgType, 0);
5935}
5936
5937/// \brief Determine whether a using statement is in a context where it will be
5938/// apply in all contexts.
5939static bool IsUsingDirectiveInToplevelContext(DeclContext *CurContext) {
5940  switch (CurContext->getDeclKind()) {
5941    case Decl::TranslationUnit:
5942      return true;
5943    case Decl::LinkageSpec:
5944      return IsUsingDirectiveInToplevelContext(CurContext->getParent());
5945    default:
5946      return false;
5947  }
5948}
5949
5950namespace {
5951
5952// Callback to only accept typo corrections that are namespaces.
5953class NamespaceValidatorCCC : public CorrectionCandidateCallback {
5954 public:
5955  virtual bool ValidateCandidate(const TypoCorrection &candidate) {
5956    if (NamedDecl *ND = candidate.getCorrectionDecl()) {
5957      return isa<NamespaceDecl>(ND) || isa<NamespaceAliasDecl>(ND);
5958    }
5959    return false;
5960  }
5961};
5962
5963}
5964
5965static bool TryNamespaceTypoCorrection(Sema &S, LookupResult &R, Scope *Sc,
5966                                       CXXScopeSpec &SS,
5967                                       SourceLocation IdentLoc,
5968                                       IdentifierInfo *Ident) {
5969  NamespaceValidatorCCC Validator;
5970  R.clear();
5971  if (TypoCorrection Corrected = S.CorrectTypo(R.getLookupNameInfo(),
5972                                               R.getLookupKind(), Sc, &SS,
5973                                               Validator)) {
5974    std::string CorrectedStr(Corrected.getAsString(S.getLangOptions()));
5975    std::string CorrectedQuotedStr(Corrected.getQuoted(S.getLangOptions()));
5976    if (DeclContext *DC = S.computeDeclContext(SS, false))
5977      S.Diag(IdentLoc, diag::err_using_directive_member_suggest)
5978        << Ident << DC << CorrectedQuotedStr << SS.getRange()
5979        << FixItHint::CreateReplacement(IdentLoc, CorrectedStr);
5980    else
5981      S.Diag(IdentLoc, diag::err_using_directive_suggest)
5982        << Ident << CorrectedQuotedStr
5983        << FixItHint::CreateReplacement(IdentLoc, CorrectedStr);
5984
5985    S.Diag(Corrected.getCorrectionDecl()->getLocation(),
5986         diag::note_namespace_defined_here) << CorrectedQuotedStr;
5987
5988    Ident = Corrected.getCorrectionAsIdentifierInfo();
5989    R.addDecl(Corrected.getCorrectionDecl());
5990    return true;
5991  }
5992  return false;
5993}
5994
5995Decl *Sema::ActOnUsingDirective(Scope *S,
5996                                          SourceLocation UsingLoc,
5997                                          SourceLocation NamespcLoc,
5998                                          CXXScopeSpec &SS,
5999                                          SourceLocation IdentLoc,
6000                                          IdentifierInfo *NamespcName,
6001                                          AttributeList *AttrList) {
6002  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
6003  assert(NamespcName && "Invalid NamespcName.");
6004  assert(IdentLoc.isValid() && "Invalid NamespceName location.");
6005
6006  // This can only happen along a recovery path.
6007  while (S->getFlags() & Scope::TemplateParamScope)
6008    S = S->getParent();
6009  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
6010
6011  UsingDirectiveDecl *UDir = 0;
6012  NestedNameSpecifier *Qualifier = 0;
6013  if (SS.isSet())
6014    Qualifier = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
6015
6016  // Lookup namespace name.
6017  LookupResult R(*this, NamespcName, IdentLoc, LookupNamespaceName);
6018  LookupParsedName(R, S, &SS);
6019  if (R.isAmbiguous())
6020    return 0;
6021
6022  if (R.empty()) {
6023    R.clear();
6024    // Allow "using namespace std;" or "using namespace ::std;" even if
6025    // "std" hasn't been defined yet, for GCC compatibility.
6026    if ((!Qualifier || Qualifier->getKind() == NestedNameSpecifier::Global) &&
6027        NamespcName->isStr("std")) {
6028      Diag(IdentLoc, diag::ext_using_undefined_std);
6029      R.addDecl(getOrCreateStdNamespace());
6030      R.resolveKind();
6031    }
6032    // Otherwise, attempt typo correction.
6033    else TryNamespaceTypoCorrection(*this, R, S, SS, IdentLoc, NamespcName);
6034  }
6035
6036  if (!R.empty()) {
6037    NamedDecl *Named = R.getFoundDecl();
6038    assert((isa<NamespaceDecl>(Named) || isa<NamespaceAliasDecl>(Named))
6039        && "expected namespace decl");
6040    // C++ [namespace.udir]p1:
6041    //   A using-directive specifies that the names in the nominated
6042    //   namespace can be used in the scope in which the
6043    //   using-directive appears after the using-directive. During
6044    //   unqualified name lookup (3.4.1), the names appear as if they
6045    //   were declared in the nearest enclosing namespace which
6046    //   contains both the using-directive and the nominated
6047    //   namespace. [Note: in this context, "contains" means "contains
6048    //   directly or indirectly". ]
6049
6050    // Find enclosing context containing both using-directive and
6051    // nominated namespace.
6052    NamespaceDecl *NS = getNamespaceDecl(Named);
6053    DeclContext *CommonAncestor = cast<DeclContext>(NS);
6054    while (CommonAncestor && !CommonAncestor->Encloses(CurContext))
6055      CommonAncestor = CommonAncestor->getParent();
6056
6057    UDir = UsingDirectiveDecl::Create(Context, CurContext, UsingLoc, NamespcLoc,
6058                                      SS.getWithLocInContext(Context),
6059                                      IdentLoc, Named, CommonAncestor);
6060
6061    if (IsUsingDirectiveInToplevelContext(CurContext) &&
6062        !SourceMgr.isFromMainFile(SourceMgr.getExpansionLoc(IdentLoc))) {
6063      Diag(IdentLoc, diag::warn_using_directive_in_header);
6064    }
6065
6066    PushUsingDirective(S, UDir);
6067  } else {
6068    Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
6069  }
6070
6071  // FIXME: We ignore attributes for now.
6072  return UDir;
6073}
6074
6075void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) {
6076  // If scope has associated entity, then using directive is at namespace
6077  // or translation unit scope. We add UsingDirectiveDecls, into
6078  // it's lookup structure.
6079  if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity()))
6080    Ctx->addDecl(UDir);
6081  else
6082    // Otherwise it is block-sope. using-directives will affect lookup
6083    // only to the end of scope.
6084    S->PushUsingDirective(UDir);
6085}
6086
6087
6088Decl *Sema::ActOnUsingDeclaration(Scope *S,
6089                                  AccessSpecifier AS,
6090                                  bool HasUsingKeyword,
6091                                  SourceLocation UsingLoc,
6092                                  CXXScopeSpec &SS,
6093                                  UnqualifiedId &Name,
6094                                  AttributeList *AttrList,
6095                                  bool IsTypeName,
6096                                  SourceLocation TypenameLoc) {
6097  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
6098
6099  switch (Name.getKind()) {
6100  case UnqualifiedId::IK_ImplicitSelfParam:
6101  case UnqualifiedId::IK_Identifier:
6102  case UnqualifiedId::IK_OperatorFunctionId:
6103  case UnqualifiedId::IK_LiteralOperatorId:
6104  case UnqualifiedId::IK_ConversionFunctionId:
6105    break;
6106
6107  case UnqualifiedId::IK_ConstructorName:
6108  case UnqualifiedId::IK_ConstructorTemplateId:
6109    // C++0x inherited constructors.
6110    Diag(Name.getSourceRange().getBegin(),
6111         getLangOptions().CPlusPlus0x ?
6112           diag::warn_cxx98_compat_using_decl_constructor :
6113           diag::err_using_decl_constructor)
6114      << SS.getRange();
6115
6116    if (getLangOptions().CPlusPlus0x) break;
6117
6118    return 0;
6119
6120  case UnqualifiedId::IK_DestructorName:
6121    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_destructor)
6122      << SS.getRange();
6123    return 0;
6124
6125  case UnqualifiedId::IK_TemplateId:
6126    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_template_id)
6127      << SourceRange(Name.TemplateId->LAngleLoc, Name.TemplateId->RAngleLoc);
6128    return 0;
6129  }
6130
6131  DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name);
6132  DeclarationName TargetName = TargetNameInfo.getName();
6133  if (!TargetName)
6134    return 0;
6135
6136  // Warn about using declarations.
6137  // TODO: store that the declaration was written without 'using' and
6138  // talk about access decls instead of using decls in the
6139  // diagnostics.
6140  if (!HasUsingKeyword) {
6141    UsingLoc = Name.getSourceRange().getBegin();
6142
6143    Diag(UsingLoc, diag::warn_access_decl_deprecated)
6144      << FixItHint::CreateInsertion(SS.getRange().getBegin(), "using ");
6145  }
6146
6147  if (DiagnoseUnexpandedParameterPack(SS, UPPC_UsingDeclaration) ||
6148      DiagnoseUnexpandedParameterPack(TargetNameInfo, UPPC_UsingDeclaration))
6149    return 0;
6150
6151  NamedDecl *UD = BuildUsingDeclaration(S, AS, UsingLoc, SS,
6152                                        TargetNameInfo, AttrList,
6153                                        /* IsInstantiation */ false,
6154                                        IsTypeName, TypenameLoc);
6155  if (UD)
6156    PushOnScopeChains(UD, S, /*AddToContext*/ false);
6157
6158  return UD;
6159}
6160
6161/// \brief Determine whether a using declaration considers the given
6162/// declarations as "equivalent", e.g., if they are redeclarations of
6163/// the same entity or are both typedefs of the same type.
6164static bool
6165IsEquivalentForUsingDecl(ASTContext &Context, NamedDecl *D1, NamedDecl *D2,
6166                         bool &SuppressRedeclaration) {
6167  if (D1->getCanonicalDecl() == D2->getCanonicalDecl()) {
6168    SuppressRedeclaration = false;
6169    return true;
6170  }
6171
6172  if (TypedefNameDecl *TD1 = dyn_cast<TypedefNameDecl>(D1))
6173    if (TypedefNameDecl *TD2 = dyn_cast<TypedefNameDecl>(D2)) {
6174      SuppressRedeclaration = true;
6175      return Context.hasSameType(TD1->getUnderlyingType(),
6176                                 TD2->getUnderlyingType());
6177    }
6178
6179  return false;
6180}
6181
6182
6183/// Determines whether to create a using shadow decl for a particular
6184/// decl, given the set of decls existing prior to this using lookup.
6185bool Sema::CheckUsingShadowDecl(UsingDecl *Using, NamedDecl *Orig,
6186                                const LookupResult &Previous) {
6187  // Diagnose finding a decl which is not from a base class of the
6188  // current class.  We do this now because there are cases where this
6189  // function will silently decide not to build a shadow decl, which
6190  // will pre-empt further diagnostics.
6191  //
6192  // We don't need to do this in C++0x because we do the check once on
6193  // the qualifier.
6194  //
6195  // FIXME: diagnose the following if we care enough:
6196  //   struct A { int foo; };
6197  //   struct B : A { using A::foo; };
6198  //   template <class T> struct C : A {};
6199  //   template <class T> struct D : C<T> { using B::foo; } // <---
6200  // This is invalid (during instantiation) in C++03 because B::foo
6201  // resolves to the using decl in B, which is not a base class of D<T>.
6202  // We can't diagnose it immediately because C<T> is an unknown
6203  // specialization.  The UsingShadowDecl in D<T> then points directly
6204  // to A::foo, which will look well-formed when we instantiate.
6205  // The right solution is to not collapse the shadow-decl chain.
6206  if (!getLangOptions().CPlusPlus0x && CurContext->isRecord()) {
6207    DeclContext *OrigDC = Orig->getDeclContext();
6208
6209    // Handle enums and anonymous structs.
6210    if (isa<EnumDecl>(OrigDC)) OrigDC = OrigDC->getParent();
6211    CXXRecordDecl *OrigRec = cast<CXXRecordDecl>(OrigDC);
6212    while (OrigRec->isAnonymousStructOrUnion())
6213      OrigRec = cast<CXXRecordDecl>(OrigRec->getDeclContext());
6214
6215    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(OrigRec)) {
6216      if (OrigDC == CurContext) {
6217        Diag(Using->getLocation(),
6218             diag::err_using_decl_nested_name_specifier_is_current_class)
6219          << Using->getQualifierLoc().getSourceRange();
6220        Diag(Orig->getLocation(), diag::note_using_decl_target);
6221        return true;
6222      }
6223
6224      Diag(Using->getQualifierLoc().getBeginLoc(),
6225           diag::err_using_decl_nested_name_specifier_is_not_base_class)
6226        << Using->getQualifier()
6227        << cast<CXXRecordDecl>(CurContext)
6228        << Using->getQualifierLoc().getSourceRange();
6229      Diag(Orig->getLocation(), diag::note_using_decl_target);
6230      return true;
6231    }
6232  }
6233
6234  if (Previous.empty()) return false;
6235
6236  NamedDecl *Target = Orig;
6237  if (isa<UsingShadowDecl>(Target))
6238    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
6239
6240  // If the target happens to be one of the previous declarations, we
6241  // don't have a conflict.
6242  //
6243  // FIXME: but we might be increasing its access, in which case we
6244  // should redeclare it.
6245  NamedDecl *NonTag = 0, *Tag = 0;
6246  for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
6247         I != E; ++I) {
6248    NamedDecl *D = (*I)->getUnderlyingDecl();
6249    bool Result;
6250    if (IsEquivalentForUsingDecl(Context, D, Target, Result))
6251      return Result;
6252
6253    (isa<TagDecl>(D) ? Tag : NonTag) = D;
6254  }
6255
6256  if (Target->isFunctionOrFunctionTemplate()) {
6257    FunctionDecl *FD;
6258    if (isa<FunctionTemplateDecl>(Target))
6259      FD = cast<FunctionTemplateDecl>(Target)->getTemplatedDecl();
6260    else
6261      FD = cast<FunctionDecl>(Target);
6262
6263    NamedDecl *OldDecl = 0;
6264    switch (CheckOverload(0, FD, Previous, OldDecl, /*IsForUsingDecl*/ true)) {
6265    case Ovl_Overload:
6266      return false;
6267
6268    case Ovl_NonFunction:
6269      Diag(Using->getLocation(), diag::err_using_decl_conflict);
6270      break;
6271
6272    // We found a decl with the exact signature.
6273    case Ovl_Match:
6274      // If we're in a record, we want to hide the target, so we
6275      // return true (without a diagnostic) to tell the caller not to
6276      // build a shadow decl.
6277      if (CurContext->isRecord())
6278        return true;
6279
6280      // If we're not in a record, this is an error.
6281      Diag(Using->getLocation(), diag::err_using_decl_conflict);
6282      break;
6283    }
6284
6285    Diag(Target->getLocation(), diag::note_using_decl_target);
6286    Diag(OldDecl->getLocation(), diag::note_using_decl_conflict);
6287    return true;
6288  }
6289
6290  // Target is not a function.
6291
6292  if (isa<TagDecl>(Target)) {
6293    // No conflict between a tag and a non-tag.
6294    if (!Tag) return false;
6295
6296    Diag(Using->getLocation(), diag::err_using_decl_conflict);
6297    Diag(Target->getLocation(), diag::note_using_decl_target);
6298    Diag(Tag->getLocation(), diag::note_using_decl_conflict);
6299    return true;
6300  }
6301
6302  // No conflict between a tag and a non-tag.
6303  if (!NonTag) return false;
6304
6305  Diag(Using->getLocation(), diag::err_using_decl_conflict);
6306  Diag(Target->getLocation(), diag::note_using_decl_target);
6307  Diag(NonTag->getLocation(), diag::note_using_decl_conflict);
6308  return true;
6309}
6310
6311/// Builds a shadow declaration corresponding to a 'using' declaration.
6312UsingShadowDecl *Sema::BuildUsingShadowDecl(Scope *S,
6313                                            UsingDecl *UD,
6314                                            NamedDecl *Orig) {
6315
6316  // If we resolved to another shadow declaration, just coalesce them.
6317  NamedDecl *Target = Orig;
6318  if (isa<UsingShadowDecl>(Target)) {
6319    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
6320    assert(!isa<UsingShadowDecl>(Target) && "nested shadow declaration");
6321  }
6322
6323  UsingShadowDecl *Shadow
6324    = UsingShadowDecl::Create(Context, CurContext,
6325                              UD->getLocation(), UD, Target);
6326  UD->addShadowDecl(Shadow);
6327
6328  Shadow->setAccess(UD->getAccess());
6329  if (Orig->isInvalidDecl() || UD->isInvalidDecl())
6330    Shadow->setInvalidDecl();
6331
6332  if (S)
6333    PushOnScopeChains(Shadow, S);
6334  else
6335    CurContext->addDecl(Shadow);
6336
6337
6338  return Shadow;
6339}
6340
6341/// Hides a using shadow declaration.  This is required by the current
6342/// using-decl implementation when a resolvable using declaration in a
6343/// class is followed by a declaration which would hide or override
6344/// one or more of the using decl's targets; for example:
6345///
6346///   struct Base { void foo(int); };
6347///   struct Derived : Base {
6348///     using Base::foo;
6349///     void foo(int);
6350///   };
6351///
6352/// The governing language is C++03 [namespace.udecl]p12:
6353///
6354///   When a using-declaration brings names from a base class into a
6355///   derived class scope, member functions in the derived class
6356///   override and/or hide member functions with the same name and
6357///   parameter types in a base class (rather than conflicting).
6358///
6359/// There are two ways to implement this:
6360///   (1) optimistically create shadow decls when they're not hidden
6361///       by existing declarations, or
6362///   (2) don't create any shadow decls (or at least don't make them
6363///       visible) until we've fully parsed/instantiated the class.
6364/// The problem with (1) is that we might have to retroactively remove
6365/// a shadow decl, which requires several O(n) operations because the
6366/// decl structures are (very reasonably) not designed for removal.
6367/// (2) avoids this but is very fiddly and phase-dependent.
6368void Sema::HideUsingShadowDecl(Scope *S, UsingShadowDecl *Shadow) {
6369  if (Shadow->getDeclName().getNameKind() ==
6370        DeclarationName::CXXConversionFunctionName)
6371    cast<CXXRecordDecl>(Shadow->getDeclContext())->removeConversion(Shadow);
6372
6373  // Remove it from the DeclContext...
6374  Shadow->getDeclContext()->removeDecl(Shadow);
6375
6376  // ...and the scope, if applicable...
6377  if (S) {
6378    S->RemoveDecl(Shadow);
6379    IdResolver.RemoveDecl(Shadow);
6380  }
6381
6382  // ...and the using decl.
6383  Shadow->getUsingDecl()->removeShadowDecl(Shadow);
6384
6385  // TODO: complain somehow if Shadow was used.  It shouldn't
6386  // be possible for this to happen, because...?
6387}
6388
6389/// Builds a using declaration.
6390///
6391/// \param IsInstantiation - Whether this call arises from an
6392///   instantiation of an unresolved using declaration.  We treat
6393///   the lookup differently for these declarations.
6394NamedDecl *Sema::BuildUsingDeclaration(Scope *S, AccessSpecifier AS,
6395                                       SourceLocation UsingLoc,
6396                                       CXXScopeSpec &SS,
6397                                       const DeclarationNameInfo &NameInfo,
6398                                       AttributeList *AttrList,
6399                                       bool IsInstantiation,
6400                                       bool IsTypeName,
6401                                       SourceLocation TypenameLoc) {
6402  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
6403  SourceLocation IdentLoc = NameInfo.getLoc();
6404  assert(IdentLoc.isValid() && "Invalid TargetName location.");
6405
6406  // FIXME: We ignore attributes for now.
6407
6408  if (SS.isEmpty()) {
6409    Diag(IdentLoc, diag::err_using_requires_qualname);
6410    return 0;
6411  }
6412
6413  // Do the redeclaration lookup in the current scope.
6414  LookupResult Previous(*this, NameInfo, LookupUsingDeclName,
6415                        ForRedeclaration);
6416  Previous.setHideTags(false);
6417  if (S) {
6418    LookupName(Previous, S);
6419
6420    // It is really dumb that we have to do this.
6421    LookupResult::Filter F = Previous.makeFilter();
6422    while (F.hasNext()) {
6423      NamedDecl *D = F.next();
6424      if (!isDeclInScope(D, CurContext, S))
6425        F.erase();
6426    }
6427    F.done();
6428  } else {
6429    assert(IsInstantiation && "no scope in non-instantiation");
6430    assert(CurContext->isRecord() && "scope not record in instantiation");
6431    LookupQualifiedName(Previous, CurContext);
6432  }
6433
6434  // Check for invalid redeclarations.
6435  if (CheckUsingDeclRedeclaration(UsingLoc, IsTypeName, SS, IdentLoc, Previous))
6436    return 0;
6437
6438  // Check for bad qualifiers.
6439  if (CheckUsingDeclQualifier(UsingLoc, SS, IdentLoc))
6440    return 0;
6441
6442  DeclContext *LookupContext = computeDeclContext(SS);
6443  NamedDecl *D;
6444  NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
6445  if (!LookupContext) {
6446    if (IsTypeName) {
6447      // FIXME: not all declaration name kinds are legal here
6448      D = UnresolvedUsingTypenameDecl::Create(Context, CurContext,
6449                                              UsingLoc, TypenameLoc,
6450                                              QualifierLoc,
6451                                              IdentLoc, NameInfo.getName());
6452    } else {
6453      D = UnresolvedUsingValueDecl::Create(Context, CurContext, UsingLoc,
6454                                           QualifierLoc, NameInfo);
6455    }
6456  } else {
6457    D = UsingDecl::Create(Context, CurContext, UsingLoc, QualifierLoc,
6458                          NameInfo, IsTypeName);
6459  }
6460  D->setAccess(AS);
6461  CurContext->addDecl(D);
6462
6463  if (!LookupContext) return D;
6464  UsingDecl *UD = cast<UsingDecl>(D);
6465
6466  if (RequireCompleteDeclContext(SS, LookupContext)) {
6467    UD->setInvalidDecl();
6468    return UD;
6469  }
6470
6471  // Constructor inheriting using decls get special treatment.
6472  if (NameInfo.getName().getNameKind() == DeclarationName::CXXConstructorName) {
6473    if (CheckInheritedConstructorUsingDecl(UD))
6474      UD->setInvalidDecl();
6475    return UD;
6476  }
6477
6478  // Otherwise, look up the target name.
6479
6480  LookupResult R(*this, NameInfo, LookupOrdinaryName);
6481
6482  // Unlike most lookups, we don't always want to hide tag
6483  // declarations: tag names are visible through the using declaration
6484  // even if hidden by ordinary names, *except* in a dependent context
6485  // where it's important for the sanity of two-phase lookup.
6486  if (!IsInstantiation)
6487    R.setHideTags(false);
6488
6489  LookupQualifiedName(R, LookupContext);
6490
6491  if (R.empty()) {
6492    Diag(IdentLoc, diag::err_no_member)
6493      << NameInfo.getName() << LookupContext << SS.getRange();
6494    UD->setInvalidDecl();
6495    return UD;
6496  }
6497
6498  if (R.isAmbiguous()) {
6499    UD->setInvalidDecl();
6500    return UD;
6501  }
6502
6503  if (IsTypeName) {
6504    // If we asked for a typename and got a non-type decl, error out.
6505    if (!R.getAsSingle<TypeDecl>()) {
6506      Diag(IdentLoc, diag::err_using_typename_non_type);
6507      for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
6508        Diag((*I)->getUnderlyingDecl()->getLocation(),
6509             diag::note_using_decl_target);
6510      UD->setInvalidDecl();
6511      return UD;
6512    }
6513  } else {
6514    // If we asked for a non-typename and we got a type, error out,
6515    // but only if this is an instantiation of an unresolved using
6516    // decl.  Otherwise just silently find the type name.
6517    if (IsInstantiation && R.getAsSingle<TypeDecl>()) {
6518      Diag(IdentLoc, diag::err_using_dependent_value_is_type);
6519      Diag(R.getFoundDecl()->getLocation(), diag::note_using_decl_target);
6520      UD->setInvalidDecl();
6521      return UD;
6522    }
6523  }
6524
6525  // C++0x N2914 [namespace.udecl]p6:
6526  // A using-declaration shall not name a namespace.
6527  if (R.getAsSingle<NamespaceDecl>()) {
6528    Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_namespace)
6529      << SS.getRange();
6530    UD->setInvalidDecl();
6531    return UD;
6532  }
6533
6534  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
6535    if (!CheckUsingShadowDecl(UD, *I, Previous))
6536      BuildUsingShadowDecl(S, UD, *I);
6537  }
6538
6539  return UD;
6540}
6541
6542/// Additional checks for a using declaration referring to a constructor name.
6543bool Sema::CheckInheritedConstructorUsingDecl(UsingDecl *UD) {
6544  if (UD->isTypeName()) {
6545    // FIXME: Cannot specify typename when specifying constructor
6546    return true;
6547  }
6548
6549  const Type *SourceType = UD->getQualifier()->getAsType();
6550  assert(SourceType &&
6551         "Using decl naming constructor doesn't have type in scope spec.");
6552  CXXRecordDecl *TargetClass = cast<CXXRecordDecl>(CurContext);
6553
6554  // Check whether the named type is a direct base class.
6555  CanQualType CanonicalSourceType = SourceType->getCanonicalTypeUnqualified();
6556  CXXRecordDecl::base_class_iterator BaseIt, BaseE;
6557  for (BaseIt = TargetClass->bases_begin(), BaseE = TargetClass->bases_end();
6558       BaseIt != BaseE; ++BaseIt) {
6559    CanQualType BaseType = BaseIt->getType()->getCanonicalTypeUnqualified();
6560    if (CanonicalSourceType == BaseType)
6561      break;
6562  }
6563
6564  if (BaseIt == BaseE) {
6565    // Did not find SourceType in the bases.
6566    Diag(UD->getUsingLocation(),
6567         diag::err_using_decl_constructor_not_in_direct_base)
6568      << UD->getNameInfo().getSourceRange()
6569      << QualType(SourceType, 0) << TargetClass;
6570    return true;
6571  }
6572
6573  BaseIt->setInheritConstructors();
6574
6575  return false;
6576}
6577
6578/// Checks that the given using declaration is not an invalid
6579/// redeclaration.  Note that this is checking only for the using decl
6580/// itself, not for any ill-formedness among the UsingShadowDecls.
6581bool Sema::CheckUsingDeclRedeclaration(SourceLocation UsingLoc,
6582                                       bool isTypeName,
6583                                       const CXXScopeSpec &SS,
6584                                       SourceLocation NameLoc,
6585                                       const LookupResult &Prev) {
6586  // C++03 [namespace.udecl]p8:
6587  // C++0x [namespace.udecl]p10:
6588  //   A using-declaration is a declaration and can therefore be used
6589  //   repeatedly where (and only where) multiple declarations are
6590  //   allowed.
6591  //
6592  // That's in non-member contexts.
6593  if (!CurContext->getRedeclContext()->isRecord())
6594    return false;
6595
6596  NestedNameSpecifier *Qual
6597    = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
6598
6599  for (LookupResult::iterator I = Prev.begin(), E = Prev.end(); I != E; ++I) {
6600    NamedDecl *D = *I;
6601
6602    bool DTypename;
6603    NestedNameSpecifier *DQual;
6604    if (UsingDecl *UD = dyn_cast<UsingDecl>(D)) {
6605      DTypename = UD->isTypeName();
6606      DQual = UD->getQualifier();
6607    } else if (UnresolvedUsingValueDecl *UD
6608                 = dyn_cast<UnresolvedUsingValueDecl>(D)) {
6609      DTypename = false;
6610      DQual = UD->getQualifier();
6611    } else if (UnresolvedUsingTypenameDecl *UD
6612                 = dyn_cast<UnresolvedUsingTypenameDecl>(D)) {
6613      DTypename = true;
6614      DQual = UD->getQualifier();
6615    } else continue;
6616
6617    // using decls differ if one says 'typename' and the other doesn't.
6618    // FIXME: non-dependent using decls?
6619    if (isTypeName != DTypename) continue;
6620
6621    // using decls differ if they name different scopes (but note that
6622    // template instantiation can cause this check to trigger when it
6623    // didn't before instantiation).
6624    if (Context.getCanonicalNestedNameSpecifier(Qual) !=
6625        Context.getCanonicalNestedNameSpecifier(DQual))
6626      continue;
6627
6628    Diag(NameLoc, diag::err_using_decl_redeclaration) << SS.getRange();
6629    Diag(D->getLocation(), diag::note_using_decl) << 1;
6630    return true;
6631  }
6632
6633  return false;
6634}
6635
6636
6637/// Checks that the given nested-name qualifier used in a using decl
6638/// in the current context is appropriately related to the current
6639/// scope.  If an error is found, diagnoses it and returns true.
6640bool Sema::CheckUsingDeclQualifier(SourceLocation UsingLoc,
6641                                   const CXXScopeSpec &SS,
6642                                   SourceLocation NameLoc) {
6643  DeclContext *NamedContext = computeDeclContext(SS);
6644
6645  if (!CurContext->isRecord()) {
6646    // C++03 [namespace.udecl]p3:
6647    // C++0x [namespace.udecl]p8:
6648    //   A using-declaration for a class member shall be a member-declaration.
6649
6650    // If we weren't able to compute a valid scope, it must be a
6651    // dependent class scope.
6652    if (!NamedContext || NamedContext->isRecord()) {
6653      Diag(NameLoc, diag::err_using_decl_can_not_refer_to_class_member)
6654        << SS.getRange();
6655      return true;
6656    }
6657
6658    // Otherwise, everything is known to be fine.
6659    return false;
6660  }
6661
6662  // The current scope is a record.
6663
6664  // If the named context is dependent, we can't decide much.
6665  if (!NamedContext) {
6666    // FIXME: in C++0x, we can diagnose if we can prove that the
6667    // nested-name-specifier does not refer to a base class, which is
6668    // still possible in some cases.
6669
6670    // Otherwise we have to conservatively report that things might be
6671    // okay.
6672    return false;
6673  }
6674
6675  if (!NamedContext->isRecord()) {
6676    // Ideally this would point at the last name in the specifier,
6677    // but we don't have that level of source info.
6678    Diag(SS.getRange().getBegin(),
6679         diag::err_using_decl_nested_name_specifier_is_not_class)
6680      << (NestedNameSpecifier*) SS.getScopeRep() << SS.getRange();
6681    return true;
6682  }
6683
6684  if (!NamedContext->isDependentContext() &&
6685      RequireCompleteDeclContext(const_cast<CXXScopeSpec&>(SS), NamedContext))
6686    return true;
6687
6688  if (getLangOptions().CPlusPlus0x) {
6689    // C++0x [namespace.udecl]p3:
6690    //   In a using-declaration used as a member-declaration, the
6691    //   nested-name-specifier shall name a base class of the class
6692    //   being defined.
6693
6694    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(
6695                                 cast<CXXRecordDecl>(NamedContext))) {
6696      if (CurContext == NamedContext) {
6697        Diag(NameLoc,
6698             diag::err_using_decl_nested_name_specifier_is_current_class)
6699          << SS.getRange();
6700        return true;
6701      }
6702
6703      Diag(SS.getRange().getBegin(),
6704           diag::err_using_decl_nested_name_specifier_is_not_base_class)
6705        << (NestedNameSpecifier*) SS.getScopeRep()
6706        << cast<CXXRecordDecl>(CurContext)
6707        << SS.getRange();
6708      return true;
6709    }
6710
6711    return false;
6712  }
6713
6714  // C++03 [namespace.udecl]p4:
6715  //   A using-declaration used as a member-declaration shall refer
6716  //   to a member of a base class of the class being defined [etc.].
6717
6718  // Salient point: SS doesn't have to name a base class as long as
6719  // lookup only finds members from base classes.  Therefore we can
6720  // diagnose here only if we can prove that that can't happen,
6721  // i.e. if the class hierarchies provably don't intersect.
6722
6723  // TODO: it would be nice if "definitely valid" results were cached
6724  // in the UsingDecl and UsingShadowDecl so that these checks didn't
6725  // need to be repeated.
6726
6727  struct UserData {
6728    llvm::DenseSet<const CXXRecordDecl*> Bases;
6729
6730    static bool collect(const CXXRecordDecl *Base, void *OpaqueData) {
6731      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
6732      Data->Bases.insert(Base);
6733      return true;
6734    }
6735
6736    bool hasDependentBases(const CXXRecordDecl *Class) {
6737      return !Class->forallBases(collect, this);
6738    }
6739
6740    /// Returns true if the base is dependent or is one of the
6741    /// accumulated base classes.
6742    static bool doesNotContain(const CXXRecordDecl *Base, void *OpaqueData) {
6743      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
6744      return !Data->Bases.count(Base);
6745    }
6746
6747    bool mightShareBases(const CXXRecordDecl *Class) {
6748      return Bases.count(Class) || !Class->forallBases(doesNotContain, this);
6749    }
6750  };
6751
6752  UserData Data;
6753
6754  // Returns false if we find a dependent base.
6755  if (Data.hasDependentBases(cast<CXXRecordDecl>(CurContext)))
6756    return false;
6757
6758  // Returns false if the class has a dependent base or if it or one
6759  // of its bases is present in the base set of the current context.
6760  if (Data.mightShareBases(cast<CXXRecordDecl>(NamedContext)))
6761    return false;
6762
6763  Diag(SS.getRange().getBegin(),
6764       diag::err_using_decl_nested_name_specifier_is_not_base_class)
6765    << (NestedNameSpecifier*) SS.getScopeRep()
6766    << cast<CXXRecordDecl>(CurContext)
6767    << SS.getRange();
6768
6769  return true;
6770}
6771
6772Decl *Sema::ActOnAliasDeclaration(Scope *S,
6773                                  AccessSpecifier AS,
6774                                  MultiTemplateParamsArg TemplateParamLists,
6775                                  SourceLocation UsingLoc,
6776                                  UnqualifiedId &Name,
6777                                  TypeResult Type) {
6778  // Skip up to the relevant declaration scope.
6779  while (S->getFlags() & Scope::TemplateParamScope)
6780    S = S->getParent();
6781  assert((S->getFlags() & Scope::DeclScope) &&
6782         "got alias-declaration outside of declaration scope");
6783
6784  if (Type.isInvalid())
6785    return 0;
6786
6787  bool Invalid = false;
6788  DeclarationNameInfo NameInfo = GetNameFromUnqualifiedId(Name);
6789  TypeSourceInfo *TInfo = 0;
6790  GetTypeFromParser(Type.get(), &TInfo);
6791
6792  if (DiagnoseClassNameShadow(CurContext, NameInfo))
6793    return 0;
6794
6795  if (DiagnoseUnexpandedParameterPack(Name.StartLocation, TInfo,
6796                                      UPPC_DeclarationType)) {
6797    Invalid = true;
6798    TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy,
6799                                             TInfo->getTypeLoc().getBeginLoc());
6800  }
6801
6802  LookupResult Previous(*this, NameInfo, LookupOrdinaryName, ForRedeclaration);
6803  LookupName(Previous, S);
6804
6805  // Warn about shadowing the name of a template parameter.
6806  if (Previous.isSingleResult() &&
6807      Previous.getFoundDecl()->isTemplateParameter()) {
6808    DiagnoseTemplateParameterShadow(Name.StartLocation,Previous.getFoundDecl());
6809    Previous.clear();
6810  }
6811
6812  assert(Name.Kind == UnqualifiedId::IK_Identifier &&
6813         "name in alias declaration must be an identifier");
6814  TypeAliasDecl *NewTD = TypeAliasDecl::Create(Context, CurContext, UsingLoc,
6815                                               Name.StartLocation,
6816                                               Name.Identifier, TInfo);
6817
6818  NewTD->setAccess(AS);
6819
6820  if (Invalid)
6821    NewTD->setInvalidDecl();
6822
6823  CheckTypedefForVariablyModifiedType(S, NewTD);
6824  Invalid |= NewTD->isInvalidDecl();
6825
6826  bool Redeclaration = false;
6827
6828  NamedDecl *NewND;
6829  if (TemplateParamLists.size()) {
6830    TypeAliasTemplateDecl *OldDecl = 0;
6831    TemplateParameterList *OldTemplateParams = 0;
6832
6833    if (TemplateParamLists.size() != 1) {
6834      Diag(UsingLoc, diag::err_alias_template_extra_headers)
6835        << SourceRange(TemplateParamLists.get()[1]->getTemplateLoc(),
6836         TemplateParamLists.get()[TemplateParamLists.size()-1]->getRAngleLoc());
6837    }
6838    TemplateParameterList *TemplateParams = TemplateParamLists.get()[0];
6839
6840    // Only consider previous declarations in the same scope.
6841    FilterLookupForScope(Previous, CurContext, S, /*ConsiderLinkage*/false,
6842                         /*ExplicitInstantiationOrSpecialization*/false);
6843    if (!Previous.empty()) {
6844      Redeclaration = true;
6845
6846      OldDecl = Previous.getAsSingle<TypeAliasTemplateDecl>();
6847      if (!OldDecl && !Invalid) {
6848        Diag(UsingLoc, diag::err_redefinition_different_kind)
6849          << Name.Identifier;
6850
6851        NamedDecl *OldD = Previous.getRepresentativeDecl();
6852        if (OldD->getLocation().isValid())
6853          Diag(OldD->getLocation(), diag::note_previous_definition);
6854
6855        Invalid = true;
6856      }
6857
6858      if (!Invalid && OldDecl && !OldDecl->isInvalidDecl()) {
6859        if (TemplateParameterListsAreEqual(TemplateParams,
6860                                           OldDecl->getTemplateParameters(),
6861                                           /*Complain=*/true,
6862                                           TPL_TemplateMatch))
6863          OldTemplateParams = OldDecl->getTemplateParameters();
6864        else
6865          Invalid = true;
6866
6867        TypeAliasDecl *OldTD = OldDecl->getTemplatedDecl();
6868        if (!Invalid &&
6869            !Context.hasSameType(OldTD->getUnderlyingType(),
6870                                 NewTD->getUnderlyingType())) {
6871          // FIXME: The C++0x standard does not clearly say this is ill-formed,
6872          // but we can't reasonably accept it.
6873          Diag(NewTD->getLocation(), diag::err_redefinition_different_typedef)
6874            << 2 << NewTD->getUnderlyingType() << OldTD->getUnderlyingType();
6875          if (OldTD->getLocation().isValid())
6876            Diag(OldTD->getLocation(), diag::note_previous_definition);
6877          Invalid = true;
6878        }
6879      }
6880    }
6881
6882    // Merge any previous default template arguments into our parameters,
6883    // and check the parameter list.
6884    if (CheckTemplateParameterList(TemplateParams, OldTemplateParams,
6885                                   TPC_TypeAliasTemplate))
6886      return 0;
6887
6888    TypeAliasTemplateDecl *NewDecl =
6889      TypeAliasTemplateDecl::Create(Context, CurContext, UsingLoc,
6890                                    Name.Identifier, TemplateParams,
6891                                    NewTD);
6892
6893    NewDecl->setAccess(AS);
6894
6895    if (Invalid)
6896      NewDecl->setInvalidDecl();
6897    else if (OldDecl)
6898      NewDecl->setPreviousDeclaration(OldDecl);
6899
6900    NewND = NewDecl;
6901  } else {
6902    ActOnTypedefNameDecl(S, CurContext, NewTD, Previous, Redeclaration);
6903    NewND = NewTD;
6904  }
6905
6906  if (!Redeclaration)
6907    PushOnScopeChains(NewND, S);
6908
6909  return NewND;
6910}
6911
6912Decl *Sema::ActOnNamespaceAliasDef(Scope *S,
6913                                             SourceLocation NamespaceLoc,
6914                                             SourceLocation AliasLoc,
6915                                             IdentifierInfo *Alias,
6916                                             CXXScopeSpec &SS,
6917                                             SourceLocation IdentLoc,
6918                                             IdentifierInfo *Ident) {
6919
6920  // Lookup the namespace name.
6921  LookupResult R(*this, Ident, IdentLoc, LookupNamespaceName);
6922  LookupParsedName(R, S, &SS);
6923
6924  // Check if we have a previous declaration with the same name.
6925  NamedDecl *PrevDecl
6926    = LookupSingleName(S, Alias, AliasLoc, LookupOrdinaryName,
6927                       ForRedeclaration);
6928  if (PrevDecl && !isDeclInScope(PrevDecl, CurContext, S))
6929    PrevDecl = 0;
6930
6931  if (PrevDecl) {
6932    if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) {
6933      // We already have an alias with the same name that points to the same
6934      // namespace, so don't create a new one.
6935      // FIXME: At some point, we'll want to create the (redundant)
6936      // declaration to maintain better source information.
6937      if (!R.isAmbiguous() && !R.empty() &&
6938          AD->getNamespace()->Equals(getNamespaceDecl(R.getFoundDecl())))
6939        return 0;
6940    }
6941
6942    unsigned DiagID = isa<NamespaceDecl>(PrevDecl) ? diag::err_redefinition :
6943      diag::err_redefinition_different_kind;
6944    Diag(AliasLoc, DiagID) << Alias;
6945    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
6946    return 0;
6947  }
6948
6949  if (R.isAmbiguous())
6950    return 0;
6951
6952  if (R.empty()) {
6953    if (!TryNamespaceTypoCorrection(*this, R, S, SS, IdentLoc, Ident)) {
6954      Diag(NamespaceLoc, diag::err_expected_namespace_name) << SS.getRange();
6955      return 0;
6956    }
6957  }
6958
6959  NamespaceAliasDecl *AliasDecl =
6960    NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc,
6961                               Alias, SS.getWithLocInContext(Context),
6962                               IdentLoc, R.getFoundDecl());
6963
6964  PushOnScopeChains(AliasDecl, S);
6965  return AliasDecl;
6966}
6967
6968namespace {
6969  /// \brief Scoped object used to handle the state changes required in Sema
6970  /// to implicitly define the body of a C++ member function;
6971  class ImplicitlyDefinedFunctionScope {
6972    Sema &S;
6973    Sema::ContextRAII SavedContext;
6974
6975  public:
6976    ImplicitlyDefinedFunctionScope(Sema &S, CXXMethodDecl *Method)
6977      : S(S), SavedContext(S, Method)
6978    {
6979      S.PushFunctionScope();
6980      S.PushExpressionEvaluationContext(Sema::PotentiallyEvaluated);
6981    }
6982
6983    ~ImplicitlyDefinedFunctionScope() {
6984      S.PopExpressionEvaluationContext();
6985      S.PopFunctionScopeInfo();
6986    }
6987  };
6988}
6989
6990Sema::ImplicitExceptionSpecification
6991Sema::ComputeDefaultedDefaultCtorExceptionSpec(CXXRecordDecl *ClassDecl) {
6992  // C++ [except.spec]p14:
6993  //   An implicitly declared special member function (Clause 12) shall have an
6994  //   exception-specification. [...]
6995  ImplicitExceptionSpecification ExceptSpec(Context);
6996  if (ClassDecl->isInvalidDecl())
6997    return ExceptSpec;
6998
6999  // Direct base-class constructors.
7000  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
7001                                       BEnd = ClassDecl->bases_end();
7002       B != BEnd; ++B) {
7003    if (B->isVirtual()) // Handled below.
7004      continue;
7005
7006    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
7007      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
7008      CXXConstructorDecl *Constructor = LookupDefaultConstructor(BaseClassDecl);
7009      // If this is a deleted function, add it anyway. This might be conformant
7010      // with the standard. This might not. I'm not sure. It might not matter.
7011      if (Constructor)
7012        ExceptSpec.CalledDecl(Constructor);
7013    }
7014  }
7015
7016  // Virtual base-class constructors.
7017  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
7018                                       BEnd = ClassDecl->vbases_end();
7019       B != BEnd; ++B) {
7020    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
7021      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
7022      CXXConstructorDecl *Constructor = LookupDefaultConstructor(BaseClassDecl);
7023      // If this is a deleted function, add it anyway. This might be conformant
7024      // with the standard. This might not. I'm not sure. It might not matter.
7025      if (Constructor)
7026        ExceptSpec.CalledDecl(Constructor);
7027    }
7028  }
7029
7030  // Field constructors.
7031  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
7032                               FEnd = ClassDecl->field_end();
7033       F != FEnd; ++F) {
7034    if (F->hasInClassInitializer()) {
7035      if (Expr *E = F->getInClassInitializer())
7036        ExceptSpec.CalledExpr(E);
7037      else if (!F->isInvalidDecl())
7038        ExceptSpec.SetDelayed();
7039    } else if (const RecordType *RecordTy
7040              = Context.getBaseElementType(F->getType())->getAs<RecordType>()) {
7041      CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
7042      CXXConstructorDecl *Constructor = LookupDefaultConstructor(FieldRecDecl);
7043      // If this is a deleted function, add it anyway. This might be conformant
7044      // with the standard. This might not. I'm not sure. It might not matter.
7045      // In particular, the problem is that this function never gets called. It
7046      // might just be ill-formed because this function attempts to refer to
7047      // a deleted function here.
7048      if (Constructor)
7049        ExceptSpec.CalledDecl(Constructor);
7050    }
7051  }
7052
7053  return ExceptSpec;
7054}
7055
7056CXXConstructorDecl *Sema::DeclareImplicitDefaultConstructor(
7057                                                     CXXRecordDecl *ClassDecl) {
7058  // C++ [class.ctor]p5:
7059  //   A default constructor for a class X is a constructor of class X
7060  //   that can be called without an argument. If there is no
7061  //   user-declared constructor for class X, a default constructor is
7062  //   implicitly declared. An implicitly-declared default constructor
7063  //   is an inline public member of its class.
7064  assert(!ClassDecl->hasUserDeclaredConstructor() &&
7065         "Should not build implicit default constructor!");
7066
7067  ImplicitExceptionSpecification Spec =
7068    ComputeDefaultedDefaultCtorExceptionSpec(ClassDecl);
7069  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
7070
7071  // Create the actual constructor declaration.
7072  CanQualType ClassType
7073    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
7074  SourceLocation ClassLoc = ClassDecl->getLocation();
7075  DeclarationName Name
7076    = Context.DeclarationNames.getCXXConstructorName(ClassType);
7077  DeclarationNameInfo NameInfo(Name, ClassLoc);
7078  CXXConstructorDecl *DefaultCon = CXXConstructorDecl::Create(
7079      Context, ClassDecl, ClassLoc, NameInfo,
7080      Context.getFunctionType(Context.VoidTy, 0, 0, EPI), /*TInfo=*/0,
7081      /*isExplicit=*/false, /*isInline=*/true, /*isImplicitlyDeclared=*/true,
7082      /*isConstexpr=*/ClassDecl->defaultedDefaultConstructorIsConstexpr() &&
7083        getLangOptions().CPlusPlus0x);
7084  DefaultCon->setAccess(AS_public);
7085  DefaultCon->setDefaulted();
7086  DefaultCon->setImplicit();
7087  DefaultCon->setTrivial(ClassDecl->hasTrivialDefaultConstructor());
7088
7089  // Note that we have declared this constructor.
7090  ++ASTContext::NumImplicitDefaultConstructorsDeclared;
7091
7092  if (Scope *S = getScopeForContext(ClassDecl))
7093    PushOnScopeChains(DefaultCon, S, false);
7094  ClassDecl->addDecl(DefaultCon);
7095
7096  if (ShouldDeleteSpecialMember(DefaultCon, CXXDefaultConstructor))
7097    DefaultCon->setDeletedAsWritten();
7098
7099  return DefaultCon;
7100}
7101
7102void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,
7103                                            CXXConstructorDecl *Constructor) {
7104  assert((Constructor->isDefaulted() && Constructor->isDefaultConstructor() &&
7105          !Constructor->doesThisDeclarationHaveABody() &&
7106          !Constructor->isDeleted()) &&
7107    "DefineImplicitDefaultConstructor - call it for implicit default ctor");
7108
7109  CXXRecordDecl *ClassDecl = Constructor->getParent();
7110  assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor");
7111
7112  ImplicitlyDefinedFunctionScope Scope(*this, Constructor);
7113  DiagnosticErrorTrap Trap(Diags);
7114  if (SetCtorInitializers(Constructor, 0, 0, /*AnyErrors=*/false) ||
7115      Trap.hasErrorOccurred()) {
7116    Diag(CurrentLocation, diag::note_member_synthesized_at)
7117      << CXXDefaultConstructor << Context.getTagDeclType(ClassDecl);
7118    Constructor->setInvalidDecl();
7119    return;
7120  }
7121
7122  SourceLocation Loc = Constructor->getLocation();
7123  Constructor->setBody(new (Context) CompoundStmt(Context, 0, 0, Loc, Loc));
7124
7125  Constructor->setUsed();
7126  MarkVTableUsed(CurrentLocation, ClassDecl);
7127
7128  if (ASTMutationListener *L = getASTMutationListener()) {
7129    L->CompletedImplicitDefinition(Constructor);
7130  }
7131}
7132
7133/// Get any existing defaulted default constructor for the given class. Do not
7134/// implicitly define one if it does not exist.
7135static CXXConstructorDecl *getDefaultedDefaultConstructorUnsafe(Sema &Self,
7136                                                             CXXRecordDecl *D) {
7137  ASTContext &Context = Self.Context;
7138  QualType ClassType = Context.getTypeDeclType(D);
7139  DeclarationName ConstructorName
7140    = Context.DeclarationNames.getCXXConstructorName(
7141                      Context.getCanonicalType(ClassType.getUnqualifiedType()));
7142
7143  DeclContext::lookup_const_iterator Con, ConEnd;
7144  for (llvm::tie(Con, ConEnd) = D->lookup(ConstructorName);
7145       Con != ConEnd; ++Con) {
7146    // A function template cannot be defaulted.
7147    if (isa<FunctionTemplateDecl>(*Con))
7148      continue;
7149
7150    CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
7151    if (Constructor->isDefaultConstructor())
7152      return Constructor->isDefaulted() ? Constructor : 0;
7153  }
7154  return 0;
7155}
7156
7157void Sema::ActOnFinishDelayedMemberInitializers(Decl *D) {
7158  if (!D) return;
7159  AdjustDeclIfTemplate(D);
7160
7161  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(D);
7162  CXXConstructorDecl *CtorDecl
7163    = getDefaultedDefaultConstructorUnsafe(*this, ClassDecl);
7164
7165  if (!CtorDecl) return;
7166
7167  // Compute the exception specification for the default constructor.
7168  const FunctionProtoType *CtorTy =
7169    CtorDecl->getType()->castAs<FunctionProtoType>();
7170  if (CtorTy->getExceptionSpecType() == EST_Delayed) {
7171    ImplicitExceptionSpecification Spec =
7172      ComputeDefaultedDefaultCtorExceptionSpec(ClassDecl);
7173    FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
7174    assert(EPI.ExceptionSpecType != EST_Delayed);
7175
7176    CtorDecl->setType(Context.getFunctionType(Context.VoidTy, 0, 0, EPI));
7177  }
7178
7179  // If the default constructor is explicitly defaulted, checking the exception
7180  // specification is deferred until now.
7181  if (!CtorDecl->isInvalidDecl() && CtorDecl->isExplicitlyDefaulted() &&
7182      !ClassDecl->isDependentType())
7183    CheckExplicitlyDefaultedDefaultConstructor(CtorDecl);
7184}
7185
7186void Sema::DeclareInheritedConstructors(CXXRecordDecl *ClassDecl) {
7187  // We start with an initial pass over the base classes to collect those that
7188  // inherit constructors from. If there are none, we can forgo all further
7189  // processing.
7190  typedef SmallVector<const RecordType *, 4> BasesVector;
7191  BasesVector BasesToInheritFrom;
7192  for (CXXRecordDecl::base_class_iterator BaseIt = ClassDecl->bases_begin(),
7193                                          BaseE = ClassDecl->bases_end();
7194         BaseIt != BaseE; ++BaseIt) {
7195    if (BaseIt->getInheritConstructors()) {
7196      QualType Base = BaseIt->getType();
7197      if (Base->isDependentType()) {
7198        // If we inherit constructors from anything that is dependent, just
7199        // abort processing altogether. We'll get another chance for the
7200        // instantiations.
7201        return;
7202      }
7203      BasesToInheritFrom.push_back(Base->castAs<RecordType>());
7204    }
7205  }
7206  if (BasesToInheritFrom.empty())
7207    return;
7208
7209  // Now collect the constructors that we already have in the current class.
7210  // Those take precedence over inherited constructors.
7211  // C++0x [class.inhctor]p3: [...] a constructor is implicitly declared [...]
7212  //   unless there is a user-declared constructor with the same signature in
7213  //   the class where the using-declaration appears.
7214  llvm::SmallSet<const Type *, 8> ExistingConstructors;
7215  for (CXXRecordDecl::ctor_iterator CtorIt = ClassDecl->ctor_begin(),
7216                                    CtorE = ClassDecl->ctor_end();
7217       CtorIt != CtorE; ++CtorIt) {
7218    ExistingConstructors.insert(
7219        Context.getCanonicalType(CtorIt->getType()).getTypePtr());
7220  }
7221
7222  Scope *S = getScopeForContext(ClassDecl);
7223  DeclarationName CreatedCtorName =
7224      Context.DeclarationNames.getCXXConstructorName(
7225          ClassDecl->getTypeForDecl()->getCanonicalTypeUnqualified());
7226
7227  // Now comes the true work.
7228  // First, we keep a map from constructor types to the base that introduced
7229  // them. Needed for finding conflicting constructors. We also keep the
7230  // actually inserted declarations in there, for pretty diagnostics.
7231  typedef std::pair<CanQualType, CXXConstructorDecl *> ConstructorInfo;
7232  typedef llvm::DenseMap<const Type *, ConstructorInfo> ConstructorToSourceMap;
7233  ConstructorToSourceMap InheritedConstructors;
7234  for (BasesVector::iterator BaseIt = BasesToInheritFrom.begin(),
7235                             BaseE = BasesToInheritFrom.end();
7236       BaseIt != BaseE; ++BaseIt) {
7237    const RecordType *Base = *BaseIt;
7238    CanQualType CanonicalBase = Base->getCanonicalTypeUnqualified();
7239    CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(Base->getDecl());
7240    for (CXXRecordDecl::ctor_iterator CtorIt = BaseDecl->ctor_begin(),
7241                                      CtorE = BaseDecl->ctor_end();
7242         CtorIt != CtorE; ++CtorIt) {
7243      // Find the using declaration for inheriting this base's constructors.
7244      DeclarationName Name =
7245          Context.DeclarationNames.getCXXConstructorName(CanonicalBase);
7246      UsingDecl *UD = dyn_cast_or_null<UsingDecl>(
7247          LookupSingleName(S, Name,SourceLocation(), LookupUsingDeclName));
7248      SourceLocation UsingLoc = UD ? UD->getLocation() :
7249                                     ClassDecl->getLocation();
7250
7251      // C++0x [class.inhctor]p1: The candidate set of inherited constructors
7252      //   from the class X named in the using-declaration consists of actual
7253      //   constructors and notional constructors that result from the
7254      //   transformation of defaulted parameters as follows:
7255      //   - all non-template default constructors of X, and
7256      //   - for each non-template constructor of X that has at least one
7257      //     parameter with a default argument, the set of constructors that
7258      //     results from omitting any ellipsis parameter specification and
7259      //     successively omitting parameters with a default argument from the
7260      //     end of the parameter-type-list.
7261      CXXConstructorDecl *BaseCtor = *CtorIt;
7262      bool CanBeCopyOrMove = BaseCtor->isCopyOrMoveConstructor();
7263      const FunctionProtoType *BaseCtorType =
7264          BaseCtor->getType()->getAs<FunctionProtoType>();
7265
7266      for (unsigned params = BaseCtor->getMinRequiredArguments(),
7267                    maxParams = BaseCtor->getNumParams();
7268           params <= maxParams; ++params) {
7269        // Skip default constructors. They're never inherited.
7270        if (params == 0)
7271          continue;
7272        // Skip copy and move constructors for the same reason.
7273        if (CanBeCopyOrMove && params == 1)
7274          continue;
7275
7276        // Build up a function type for this particular constructor.
7277        // FIXME: The working paper does not consider that the exception spec
7278        // for the inheriting constructor might be larger than that of the
7279        // source. This code doesn't yet, either. When it does, this code will
7280        // need to be delayed until after exception specifications and in-class
7281        // member initializers are attached.
7282        const Type *NewCtorType;
7283        if (params == maxParams)
7284          NewCtorType = BaseCtorType;
7285        else {
7286          SmallVector<QualType, 16> Args;
7287          for (unsigned i = 0; i < params; ++i) {
7288            Args.push_back(BaseCtorType->getArgType(i));
7289          }
7290          FunctionProtoType::ExtProtoInfo ExtInfo =
7291              BaseCtorType->getExtProtoInfo();
7292          ExtInfo.Variadic = false;
7293          NewCtorType = Context.getFunctionType(BaseCtorType->getResultType(),
7294                                                Args.data(), params, ExtInfo)
7295                       .getTypePtr();
7296        }
7297        const Type *CanonicalNewCtorType =
7298            Context.getCanonicalType(NewCtorType);
7299
7300        // Now that we have the type, first check if the class already has a
7301        // constructor with this signature.
7302        if (ExistingConstructors.count(CanonicalNewCtorType))
7303          continue;
7304
7305        // Then we check if we have already declared an inherited constructor
7306        // with this signature.
7307        std::pair<ConstructorToSourceMap::iterator, bool> result =
7308            InheritedConstructors.insert(std::make_pair(
7309                CanonicalNewCtorType,
7310                std::make_pair(CanonicalBase, (CXXConstructorDecl*)0)));
7311        if (!result.second) {
7312          // Already in the map. If it came from a different class, that's an
7313          // error. Not if it's from the same.
7314          CanQualType PreviousBase = result.first->second.first;
7315          if (CanonicalBase != PreviousBase) {
7316            const CXXConstructorDecl *PrevCtor = result.first->second.second;
7317            const CXXConstructorDecl *PrevBaseCtor =
7318                PrevCtor->getInheritedConstructor();
7319            assert(PrevBaseCtor && "Conflicting constructor was not inherited");
7320
7321            Diag(UsingLoc, diag::err_using_decl_constructor_conflict);
7322            Diag(BaseCtor->getLocation(),
7323                 diag::note_using_decl_constructor_conflict_current_ctor);
7324            Diag(PrevBaseCtor->getLocation(),
7325                 diag::note_using_decl_constructor_conflict_previous_ctor);
7326            Diag(PrevCtor->getLocation(),
7327                 diag::note_using_decl_constructor_conflict_previous_using);
7328          }
7329          continue;
7330        }
7331
7332        // OK, we're there, now add the constructor.
7333        // C++0x [class.inhctor]p8: [...] that would be performed by a
7334        //   user-written inline constructor [...]
7335        DeclarationNameInfo DNI(CreatedCtorName, UsingLoc);
7336        CXXConstructorDecl *NewCtor = CXXConstructorDecl::Create(
7337            Context, ClassDecl, UsingLoc, DNI, QualType(NewCtorType, 0),
7338            /*TInfo=*/0, BaseCtor->isExplicit(), /*Inline=*/true,
7339            /*ImplicitlyDeclared=*/true,
7340            // FIXME: Due to a defect in the standard, we treat inherited
7341            // constructors as constexpr even if that makes them ill-formed.
7342            /*Constexpr=*/BaseCtor->isConstexpr());
7343        NewCtor->setAccess(BaseCtor->getAccess());
7344
7345        // Build up the parameter decls and add them.
7346        SmallVector<ParmVarDecl *, 16> ParamDecls;
7347        for (unsigned i = 0; i < params; ++i) {
7348          ParamDecls.push_back(ParmVarDecl::Create(Context, NewCtor,
7349                                                   UsingLoc, UsingLoc,
7350                                                   /*IdentifierInfo=*/0,
7351                                                   BaseCtorType->getArgType(i),
7352                                                   /*TInfo=*/0, SC_None,
7353                                                   SC_None, /*DefaultArg=*/0));
7354        }
7355        NewCtor->setParams(ParamDecls);
7356        NewCtor->setInheritedConstructor(BaseCtor);
7357
7358        PushOnScopeChains(NewCtor, S, false);
7359        ClassDecl->addDecl(NewCtor);
7360        result.first->second.second = NewCtor;
7361      }
7362    }
7363  }
7364}
7365
7366Sema::ImplicitExceptionSpecification
7367Sema::ComputeDefaultedDtorExceptionSpec(CXXRecordDecl *ClassDecl) {
7368  // C++ [except.spec]p14:
7369  //   An implicitly declared special member function (Clause 12) shall have
7370  //   an exception-specification.
7371  ImplicitExceptionSpecification ExceptSpec(Context);
7372  if (ClassDecl->isInvalidDecl())
7373    return ExceptSpec;
7374
7375  // Direct base-class destructors.
7376  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
7377                                       BEnd = ClassDecl->bases_end();
7378       B != BEnd; ++B) {
7379    if (B->isVirtual()) // Handled below.
7380      continue;
7381
7382    if (const RecordType *BaseType = B->getType()->getAs<RecordType>())
7383      ExceptSpec.CalledDecl(
7384                   LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
7385  }
7386
7387  // Virtual base-class destructors.
7388  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
7389                                       BEnd = ClassDecl->vbases_end();
7390       B != BEnd; ++B) {
7391    if (const RecordType *BaseType = B->getType()->getAs<RecordType>())
7392      ExceptSpec.CalledDecl(
7393                  LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
7394  }
7395
7396  // Field destructors.
7397  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
7398                               FEnd = ClassDecl->field_end();
7399       F != FEnd; ++F) {
7400    if (const RecordType *RecordTy
7401        = Context.getBaseElementType(F->getType())->getAs<RecordType>())
7402      ExceptSpec.CalledDecl(
7403                  LookupDestructor(cast<CXXRecordDecl>(RecordTy->getDecl())));
7404  }
7405
7406  return ExceptSpec;
7407}
7408
7409CXXDestructorDecl *Sema::DeclareImplicitDestructor(CXXRecordDecl *ClassDecl) {
7410  // C++ [class.dtor]p2:
7411  //   If a class has no user-declared destructor, a destructor is
7412  //   declared implicitly. An implicitly-declared destructor is an
7413  //   inline public member of its class.
7414
7415  ImplicitExceptionSpecification Spec =
7416      ComputeDefaultedDtorExceptionSpec(ClassDecl);
7417  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
7418
7419  // Create the actual destructor declaration.
7420  QualType Ty = Context.getFunctionType(Context.VoidTy, 0, 0, EPI);
7421
7422  CanQualType ClassType
7423    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
7424  SourceLocation ClassLoc = ClassDecl->getLocation();
7425  DeclarationName Name
7426    = Context.DeclarationNames.getCXXDestructorName(ClassType);
7427  DeclarationNameInfo NameInfo(Name, ClassLoc);
7428  CXXDestructorDecl *Destructor
7429      = CXXDestructorDecl::Create(Context, ClassDecl, ClassLoc, NameInfo, Ty, 0,
7430                                  /*isInline=*/true,
7431                                  /*isImplicitlyDeclared=*/true);
7432  Destructor->setAccess(AS_public);
7433  Destructor->setDefaulted();
7434  Destructor->setImplicit();
7435  Destructor->setTrivial(ClassDecl->hasTrivialDestructor());
7436
7437  // Note that we have declared this destructor.
7438  ++ASTContext::NumImplicitDestructorsDeclared;
7439
7440  // Introduce this destructor into its scope.
7441  if (Scope *S = getScopeForContext(ClassDecl))
7442    PushOnScopeChains(Destructor, S, false);
7443  ClassDecl->addDecl(Destructor);
7444
7445  // This could be uniqued if it ever proves significant.
7446  Destructor->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(Ty));
7447
7448  if (ShouldDeleteDestructor(Destructor))
7449    Destructor->setDeletedAsWritten();
7450
7451  AddOverriddenMethods(ClassDecl, Destructor);
7452
7453  return Destructor;
7454}
7455
7456void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation,
7457                                    CXXDestructorDecl *Destructor) {
7458  assert((Destructor->isDefaulted() &&
7459          !Destructor->doesThisDeclarationHaveABody()) &&
7460         "DefineImplicitDestructor - call it for implicit default dtor");
7461  CXXRecordDecl *ClassDecl = Destructor->getParent();
7462  assert(ClassDecl && "DefineImplicitDestructor - invalid destructor");
7463
7464  if (Destructor->isInvalidDecl())
7465    return;
7466
7467  ImplicitlyDefinedFunctionScope Scope(*this, Destructor);
7468
7469  DiagnosticErrorTrap Trap(Diags);
7470  MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
7471                                         Destructor->getParent());
7472
7473  if (CheckDestructor(Destructor) || Trap.hasErrorOccurred()) {
7474    Diag(CurrentLocation, diag::note_member_synthesized_at)
7475      << CXXDestructor << Context.getTagDeclType(ClassDecl);
7476
7477    Destructor->setInvalidDecl();
7478    return;
7479  }
7480
7481  SourceLocation Loc = Destructor->getLocation();
7482  Destructor->setBody(new (Context) CompoundStmt(Context, 0, 0, Loc, Loc));
7483  Destructor->setImplicitlyDefined(true);
7484  Destructor->setUsed();
7485  MarkVTableUsed(CurrentLocation, ClassDecl);
7486
7487  if (ASTMutationListener *L = getASTMutationListener()) {
7488    L->CompletedImplicitDefinition(Destructor);
7489  }
7490}
7491
7492void Sema::AdjustDestructorExceptionSpec(CXXRecordDecl *classDecl,
7493                                         CXXDestructorDecl *destructor) {
7494  // C++11 [class.dtor]p3:
7495  //   A declaration of a destructor that does not have an exception-
7496  //   specification is implicitly considered to have the same exception-
7497  //   specification as an implicit declaration.
7498  const FunctionProtoType *dtorType = destructor->getType()->
7499                                        getAs<FunctionProtoType>();
7500  if (dtorType->hasExceptionSpec())
7501    return;
7502
7503  ImplicitExceptionSpecification exceptSpec =
7504      ComputeDefaultedDtorExceptionSpec(classDecl);
7505
7506  // Replace the destructor's type, building off the existing one. Fortunately,
7507  // the only thing of interest in the destructor type is its extended info.
7508  // The return and arguments are fixed.
7509  FunctionProtoType::ExtProtoInfo epi = dtorType->getExtProtoInfo();
7510  epi.ExceptionSpecType = exceptSpec.getExceptionSpecType();
7511  epi.NumExceptions = exceptSpec.size();
7512  epi.Exceptions = exceptSpec.data();
7513  QualType ty = Context.getFunctionType(Context.VoidTy, 0, 0, epi);
7514
7515  destructor->setType(ty);
7516
7517  // FIXME: If the destructor has a body that could throw, and the newly created
7518  // spec doesn't allow exceptions, we should emit a warning, because this
7519  // change in behavior can break conforming C++03 programs at runtime.
7520  // However, we don't have a body yet, so it needs to be done somewhere else.
7521}
7522
7523/// \brief Builds a statement that copies/moves the given entity from \p From to
7524/// \c To.
7525///
7526/// This routine is used to copy/move the members of a class with an
7527/// implicitly-declared copy/move assignment operator. When the entities being
7528/// copied are arrays, this routine builds for loops to copy them.
7529///
7530/// \param S The Sema object used for type-checking.
7531///
7532/// \param Loc The location where the implicit copy/move is being generated.
7533///
7534/// \param T The type of the expressions being copied/moved. Both expressions
7535/// must have this type.
7536///
7537/// \param To The expression we are copying/moving to.
7538///
7539/// \param From The expression we are copying/moving from.
7540///
7541/// \param CopyingBaseSubobject Whether we're copying/moving a base subobject.
7542/// Otherwise, it's a non-static member subobject.
7543///
7544/// \param Copying Whether we're copying or moving.
7545///
7546/// \param Depth Internal parameter recording the depth of the recursion.
7547///
7548/// \returns A statement or a loop that copies the expressions.
7549static StmtResult
7550BuildSingleCopyAssign(Sema &S, SourceLocation Loc, QualType T,
7551                      Expr *To, Expr *From,
7552                      bool CopyingBaseSubobject, bool Copying,
7553                      unsigned Depth = 0) {
7554  // C++0x [class.copy]p28:
7555  //   Each subobject is assigned in the manner appropriate to its type:
7556  //
7557  //     - if the subobject is of class type, as if by a call to operator= with
7558  //       the subobject as the object expression and the corresponding
7559  //       subobject of x as a single function argument (as if by explicit
7560  //       qualification; that is, ignoring any possible virtual overriding
7561  //       functions in more derived classes);
7562  if (const RecordType *RecordTy = T->getAs<RecordType>()) {
7563    CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
7564
7565    // Look for operator=.
7566    DeclarationName Name
7567      = S.Context.DeclarationNames.getCXXOperatorName(OO_Equal);
7568    LookupResult OpLookup(S, Name, Loc, Sema::LookupOrdinaryName);
7569    S.LookupQualifiedName(OpLookup, ClassDecl, false);
7570
7571    // Filter out any result that isn't a copy/move-assignment operator.
7572    LookupResult::Filter F = OpLookup.makeFilter();
7573    while (F.hasNext()) {
7574      NamedDecl *D = F.next();
7575      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
7576        if (Copying ? Method->isCopyAssignmentOperator() :
7577                      Method->isMoveAssignmentOperator())
7578          continue;
7579
7580      F.erase();
7581    }
7582    F.done();
7583
7584    // Suppress the protected check (C++ [class.protected]) for each of the
7585    // assignment operators we found. This strange dance is required when
7586    // we're assigning via a base classes's copy-assignment operator. To
7587    // ensure that we're getting the right base class subobject (without
7588    // ambiguities), we need to cast "this" to that subobject type; to
7589    // ensure that we don't go through the virtual call mechanism, we need
7590    // to qualify the operator= name with the base class (see below). However,
7591    // this means that if the base class has a protected copy assignment
7592    // operator, the protected member access check will fail. So, we
7593    // rewrite "protected" access to "public" access in this case, since we
7594    // know by construction that we're calling from a derived class.
7595    if (CopyingBaseSubobject) {
7596      for (LookupResult::iterator L = OpLookup.begin(), LEnd = OpLookup.end();
7597           L != LEnd; ++L) {
7598        if (L.getAccess() == AS_protected)
7599          L.setAccess(AS_public);
7600      }
7601    }
7602
7603    // Create the nested-name-specifier that will be used to qualify the
7604    // reference to operator=; this is required to suppress the virtual
7605    // call mechanism.
7606    CXXScopeSpec SS;
7607    const Type *CanonicalT = S.Context.getCanonicalType(T.getTypePtr());
7608    SS.MakeTrivial(S.Context,
7609                   NestedNameSpecifier::Create(S.Context, 0, false,
7610                                               CanonicalT),
7611                   Loc);
7612
7613    // Create the reference to operator=.
7614    ExprResult OpEqualRef
7615      = S.BuildMemberReferenceExpr(To, T, Loc, /*isArrow=*/false, SS,
7616                                   /*TemplateKWLoc=*/SourceLocation(),
7617                                   /*FirstQualifierInScope=*/0,
7618                                   OpLookup,
7619                                   /*TemplateArgs=*/0,
7620                                   /*SuppressQualifierCheck=*/true);
7621    if (OpEqualRef.isInvalid())
7622      return StmtError();
7623
7624    // Build the call to the assignment operator.
7625
7626    ExprResult Call = S.BuildCallToMemberFunction(/*Scope=*/0,
7627                                                  OpEqualRef.takeAs<Expr>(),
7628                                                  Loc, &From, 1, Loc);
7629    if (Call.isInvalid())
7630      return StmtError();
7631
7632    return S.Owned(Call.takeAs<Stmt>());
7633  }
7634
7635  //     - if the subobject is of scalar type, the built-in assignment
7636  //       operator is used.
7637  const ConstantArrayType *ArrayTy = S.Context.getAsConstantArrayType(T);
7638  if (!ArrayTy) {
7639    ExprResult Assignment = S.CreateBuiltinBinOp(Loc, BO_Assign, To, From);
7640    if (Assignment.isInvalid())
7641      return StmtError();
7642
7643    return S.Owned(Assignment.takeAs<Stmt>());
7644  }
7645
7646  //     - if the subobject is an array, each element is assigned, in the
7647  //       manner appropriate to the element type;
7648
7649  // Construct a loop over the array bounds, e.g.,
7650  //
7651  //   for (__SIZE_TYPE__ i0 = 0; i0 != array-size; ++i0)
7652  //
7653  // that will copy each of the array elements.
7654  QualType SizeType = S.Context.getSizeType();
7655
7656  // Create the iteration variable.
7657  IdentifierInfo *IterationVarName = 0;
7658  {
7659    SmallString<8> Str;
7660    llvm::raw_svector_ostream OS(Str);
7661    OS << "__i" << Depth;
7662    IterationVarName = &S.Context.Idents.get(OS.str());
7663  }
7664  VarDecl *IterationVar = VarDecl::Create(S.Context, S.CurContext, Loc, Loc,
7665                                          IterationVarName, SizeType,
7666                            S.Context.getTrivialTypeSourceInfo(SizeType, Loc),
7667                                          SC_None, SC_None);
7668
7669  // Initialize the iteration variable to zero.
7670  llvm::APInt Zero(S.Context.getTypeSize(SizeType), 0);
7671  IterationVar->setInit(IntegerLiteral::Create(S.Context, Zero, SizeType, Loc));
7672
7673  // Create a reference to the iteration variable; we'll use this several
7674  // times throughout.
7675  Expr *IterationVarRef
7676    = S.BuildDeclRefExpr(IterationVar, SizeType, VK_LValue, Loc).take();
7677  assert(IterationVarRef && "Reference to invented variable cannot fail!");
7678  Expr *IterationVarRefRVal = S.DefaultLvalueConversion(IterationVarRef).take();
7679  assert(IterationVarRefRVal && "Conversion of invented variable cannot fail!");
7680
7681  // Create the DeclStmt that holds the iteration variable.
7682  Stmt *InitStmt = new (S.Context) DeclStmt(DeclGroupRef(IterationVar),Loc,Loc);
7683
7684  // Create the comparison against the array bound.
7685  llvm::APInt Upper
7686    = ArrayTy->getSize().zextOrTrunc(S.Context.getTypeSize(SizeType));
7687  Expr *Comparison
7688    = new (S.Context) BinaryOperator(IterationVarRefRVal,
7689                     IntegerLiteral::Create(S.Context, Upper, SizeType, Loc),
7690                                     BO_NE, S.Context.BoolTy,
7691                                     VK_RValue, OK_Ordinary, Loc);
7692
7693  // Create the pre-increment of the iteration variable.
7694  Expr *Increment
7695    = new (S.Context) UnaryOperator(IterationVarRef, UO_PreInc, SizeType,
7696                                    VK_LValue, OK_Ordinary, Loc);
7697
7698  // Subscript the "from" and "to" expressions with the iteration variable.
7699  From = AssertSuccess(S.CreateBuiltinArraySubscriptExpr(From, Loc,
7700                                                         IterationVarRefRVal,
7701                                                         Loc));
7702  To = AssertSuccess(S.CreateBuiltinArraySubscriptExpr(To, Loc,
7703                                                       IterationVarRefRVal,
7704                                                       Loc));
7705  if (!Copying) // Cast to rvalue
7706    From = CastForMoving(S, From);
7707
7708  // Build the copy/move for an individual element of the array.
7709  StmtResult Copy = BuildSingleCopyAssign(S, Loc, ArrayTy->getElementType(),
7710                                          To, From, CopyingBaseSubobject,
7711                                          Copying, Depth + 1);
7712  if (Copy.isInvalid())
7713    return StmtError();
7714
7715  // Construct the loop that copies all elements of this array.
7716  return S.ActOnForStmt(Loc, Loc, InitStmt,
7717                        S.MakeFullExpr(Comparison),
7718                        0, S.MakeFullExpr(Increment),
7719                        Loc, Copy.take());
7720}
7721
7722std::pair<Sema::ImplicitExceptionSpecification, bool>
7723Sema::ComputeDefaultedCopyAssignmentExceptionSpecAndConst(
7724                                                   CXXRecordDecl *ClassDecl) {
7725  if (ClassDecl->isInvalidDecl())
7726    return std::make_pair(ImplicitExceptionSpecification(Context), false);
7727
7728  // C++ [class.copy]p10:
7729  //   If the class definition does not explicitly declare a copy
7730  //   assignment operator, one is declared implicitly.
7731  //   The implicitly-defined copy assignment operator for a class X
7732  //   will have the form
7733  //
7734  //       X& X::operator=(const X&)
7735  //
7736  //   if
7737  bool HasConstCopyAssignment = true;
7738
7739  //       -- each direct base class B of X has a copy assignment operator
7740  //          whose parameter is of type const B&, const volatile B& or B,
7741  //          and
7742  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
7743                                       BaseEnd = ClassDecl->bases_end();
7744       HasConstCopyAssignment && Base != BaseEnd; ++Base) {
7745    // We'll handle this below
7746    if (LangOpts.CPlusPlus0x && Base->isVirtual())
7747      continue;
7748
7749    assert(!Base->getType()->isDependentType() &&
7750           "Cannot generate implicit members for class with dependent bases.");
7751    CXXRecordDecl *BaseClassDecl = Base->getType()->getAsCXXRecordDecl();
7752    LookupCopyingAssignment(BaseClassDecl, Qualifiers::Const, false, 0,
7753                            &HasConstCopyAssignment);
7754  }
7755
7756  // In C++11, the above citation has "or virtual" added
7757  if (LangOpts.CPlusPlus0x) {
7758    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
7759                                         BaseEnd = ClassDecl->vbases_end();
7760         HasConstCopyAssignment && Base != BaseEnd; ++Base) {
7761      assert(!Base->getType()->isDependentType() &&
7762             "Cannot generate implicit members for class with dependent bases.");
7763      CXXRecordDecl *BaseClassDecl = Base->getType()->getAsCXXRecordDecl();
7764      LookupCopyingAssignment(BaseClassDecl, Qualifiers::Const, false, 0,
7765                              &HasConstCopyAssignment);
7766    }
7767  }
7768
7769  //       -- for all the nonstatic data members of X that are of a class
7770  //          type M (or array thereof), each such class type has a copy
7771  //          assignment operator whose parameter is of type const M&,
7772  //          const volatile M& or M.
7773  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
7774                                  FieldEnd = ClassDecl->field_end();
7775       HasConstCopyAssignment && Field != FieldEnd;
7776       ++Field) {
7777    QualType FieldType = Context.getBaseElementType((*Field)->getType());
7778    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
7779      LookupCopyingAssignment(FieldClassDecl, Qualifiers::Const, false, 0,
7780                              &HasConstCopyAssignment);
7781    }
7782  }
7783
7784  //   Otherwise, the implicitly declared copy assignment operator will
7785  //   have the form
7786  //
7787  //       X& X::operator=(X&)
7788
7789  // C++ [except.spec]p14:
7790  //   An implicitly declared special member function (Clause 12) shall have an
7791  //   exception-specification. [...]
7792
7793  // It is unspecified whether or not an implicit copy assignment operator
7794  // attempts to deduplicate calls to assignment operators of virtual bases are
7795  // made. As such, this exception specification is effectively unspecified.
7796  // Based on a similar decision made for constness in C++0x, we're erring on
7797  // the side of assuming such calls to be made regardless of whether they
7798  // actually happen.
7799  ImplicitExceptionSpecification ExceptSpec(Context);
7800  unsigned ArgQuals = HasConstCopyAssignment ? Qualifiers::Const : 0;
7801  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
7802                                       BaseEnd = ClassDecl->bases_end();
7803       Base != BaseEnd; ++Base) {
7804    if (Base->isVirtual())
7805      continue;
7806
7807    CXXRecordDecl *BaseClassDecl
7808      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
7809    if (CXXMethodDecl *CopyAssign = LookupCopyingAssignment(BaseClassDecl,
7810                                                            ArgQuals, false, 0))
7811      ExceptSpec.CalledDecl(CopyAssign);
7812  }
7813
7814  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
7815                                       BaseEnd = ClassDecl->vbases_end();
7816       Base != BaseEnd; ++Base) {
7817    CXXRecordDecl *BaseClassDecl
7818      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
7819    if (CXXMethodDecl *CopyAssign = LookupCopyingAssignment(BaseClassDecl,
7820                                                            ArgQuals, false, 0))
7821      ExceptSpec.CalledDecl(CopyAssign);
7822  }
7823
7824  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
7825                                  FieldEnd = ClassDecl->field_end();
7826       Field != FieldEnd;
7827       ++Field) {
7828    QualType FieldType = Context.getBaseElementType((*Field)->getType());
7829    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
7830      if (CXXMethodDecl *CopyAssign =
7831          LookupCopyingAssignment(FieldClassDecl, ArgQuals, false, 0))
7832        ExceptSpec.CalledDecl(CopyAssign);
7833    }
7834  }
7835
7836  return std::make_pair(ExceptSpec, HasConstCopyAssignment);
7837}
7838
7839CXXMethodDecl *Sema::DeclareImplicitCopyAssignment(CXXRecordDecl *ClassDecl) {
7840  // Note: The following rules are largely analoguous to the copy
7841  // constructor rules. Note that virtual bases are not taken into account
7842  // for determining the argument type of the operator. Note also that
7843  // operators taking an object instead of a reference are allowed.
7844
7845  ImplicitExceptionSpecification Spec(Context);
7846  bool Const;
7847  llvm::tie(Spec, Const) =
7848    ComputeDefaultedCopyAssignmentExceptionSpecAndConst(ClassDecl);
7849
7850  QualType ArgType = Context.getTypeDeclType(ClassDecl);
7851  QualType RetType = Context.getLValueReferenceType(ArgType);
7852  if (Const)
7853    ArgType = ArgType.withConst();
7854  ArgType = Context.getLValueReferenceType(ArgType);
7855
7856  //   An implicitly-declared copy assignment operator is an inline public
7857  //   member of its class.
7858  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
7859  DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
7860  SourceLocation ClassLoc = ClassDecl->getLocation();
7861  DeclarationNameInfo NameInfo(Name, ClassLoc);
7862  CXXMethodDecl *CopyAssignment
7863    = CXXMethodDecl::Create(Context, ClassDecl, ClassLoc, NameInfo,
7864                            Context.getFunctionType(RetType, &ArgType, 1, EPI),
7865                            /*TInfo=*/0, /*isStatic=*/false,
7866                            /*StorageClassAsWritten=*/SC_None,
7867                            /*isInline=*/true, /*isConstexpr=*/false,
7868                            SourceLocation());
7869  CopyAssignment->setAccess(AS_public);
7870  CopyAssignment->setDefaulted();
7871  CopyAssignment->setImplicit();
7872  CopyAssignment->setTrivial(ClassDecl->hasTrivialCopyAssignment());
7873
7874  // Add the parameter to the operator.
7875  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment,
7876                                               ClassLoc, ClassLoc, /*Id=*/0,
7877                                               ArgType, /*TInfo=*/0,
7878                                               SC_None,
7879                                               SC_None, 0);
7880  CopyAssignment->setParams(FromParam);
7881
7882  // Note that we have added this copy-assignment operator.
7883  ++ASTContext::NumImplicitCopyAssignmentOperatorsDeclared;
7884
7885  if (Scope *S = getScopeForContext(ClassDecl))
7886    PushOnScopeChains(CopyAssignment, S, false);
7887  ClassDecl->addDecl(CopyAssignment);
7888
7889  // C++0x [class.copy]p19:
7890  //   ....  If the class definition does not explicitly declare a copy
7891  //   assignment operator, there is no user-declared move constructor, and
7892  //   there is no user-declared move assignment operator, a copy assignment
7893  //   operator is implicitly declared as defaulted.
7894  if ((ClassDecl->hasUserDeclaredMoveConstructor() &&
7895          !getLangOptions().MicrosoftMode) ||
7896      ClassDecl->hasUserDeclaredMoveAssignment() ||
7897      ShouldDeleteCopyAssignmentOperator(CopyAssignment))
7898    CopyAssignment->setDeletedAsWritten();
7899
7900  AddOverriddenMethods(ClassDecl, CopyAssignment);
7901  return CopyAssignment;
7902}
7903
7904void Sema::DefineImplicitCopyAssignment(SourceLocation CurrentLocation,
7905                                        CXXMethodDecl *CopyAssignOperator) {
7906  assert((CopyAssignOperator->isDefaulted() &&
7907          CopyAssignOperator->isOverloadedOperator() &&
7908          CopyAssignOperator->getOverloadedOperator() == OO_Equal &&
7909          !CopyAssignOperator->doesThisDeclarationHaveABody()) &&
7910         "DefineImplicitCopyAssignment called for wrong function");
7911
7912  CXXRecordDecl *ClassDecl = CopyAssignOperator->getParent();
7913
7914  if (ClassDecl->isInvalidDecl() || CopyAssignOperator->isInvalidDecl()) {
7915    CopyAssignOperator->setInvalidDecl();
7916    return;
7917  }
7918
7919  CopyAssignOperator->setUsed();
7920
7921  ImplicitlyDefinedFunctionScope Scope(*this, CopyAssignOperator);
7922  DiagnosticErrorTrap Trap(Diags);
7923
7924  // C++0x [class.copy]p30:
7925  //   The implicitly-defined or explicitly-defaulted copy assignment operator
7926  //   for a non-union class X performs memberwise copy assignment of its
7927  //   subobjects. The direct base classes of X are assigned first, in the
7928  //   order of their declaration in the base-specifier-list, and then the
7929  //   immediate non-static data members of X are assigned, in the order in
7930  //   which they were declared in the class definition.
7931
7932  // The statements that form the synthesized function body.
7933  ASTOwningVector<Stmt*> Statements(*this);
7934
7935  // The parameter for the "other" object, which we are copying from.
7936  ParmVarDecl *Other = CopyAssignOperator->getParamDecl(0);
7937  Qualifiers OtherQuals = Other->getType().getQualifiers();
7938  QualType OtherRefType = Other->getType();
7939  if (const LValueReferenceType *OtherRef
7940                                = OtherRefType->getAs<LValueReferenceType>()) {
7941    OtherRefType = OtherRef->getPointeeType();
7942    OtherQuals = OtherRefType.getQualifiers();
7943  }
7944
7945  // Our location for everything implicitly-generated.
7946  SourceLocation Loc = CopyAssignOperator->getLocation();
7947
7948  // Construct a reference to the "other" object. We'll be using this
7949  // throughout the generated ASTs.
7950  Expr *OtherRef = BuildDeclRefExpr(Other, OtherRefType, VK_LValue, Loc).take();
7951  assert(OtherRef && "Reference to parameter cannot fail!");
7952
7953  // Construct the "this" pointer. We'll be using this throughout the generated
7954  // ASTs.
7955  Expr *This = ActOnCXXThis(Loc).takeAs<Expr>();
7956  assert(This && "Reference to this cannot fail!");
7957
7958  // Assign base classes.
7959  bool Invalid = false;
7960  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
7961       E = ClassDecl->bases_end(); Base != E; ++Base) {
7962    // Form the assignment:
7963    //   static_cast<Base*>(this)->Base::operator=(static_cast<Base&>(other));
7964    QualType BaseType = Base->getType().getUnqualifiedType();
7965    if (!BaseType->isRecordType()) {
7966      Invalid = true;
7967      continue;
7968    }
7969
7970    CXXCastPath BasePath;
7971    BasePath.push_back(Base);
7972
7973    // Construct the "from" expression, which is an implicit cast to the
7974    // appropriately-qualified base type.
7975    Expr *From = OtherRef;
7976    From = ImpCastExprToType(From, Context.getQualifiedType(BaseType, OtherQuals),
7977                             CK_UncheckedDerivedToBase,
7978                             VK_LValue, &BasePath).take();
7979
7980    // Dereference "this".
7981    ExprResult To = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
7982
7983    // Implicitly cast "this" to the appropriately-qualified base type.
7984    To = ImpCastExprToType(To.take(),
7985                           Context.getCVRQualifiedType(BaseType,
7986                                     CopyAssignOperator->getTypeQualifiers()),
7987                           CK_UncheckedDerivedToBase,
7988                           VK_LValue, &BasePath);
7989
7990    // Build the copy.
7991    StmtResult Copy = BuildSingleCopyAssign(*this, Loc, BaseType,
7992                                            To.get(), From,
7993                                            /*CopyingBaseSubobject=*/true,
7994                                            /*Copying=*/true);
7995    if (Copy.isInvalid()) {
7996      Diag(CurrentLocation, diag::note_member_synthesized_at)
7997        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
7998      CopyAssignOperator->setInvalidDecl();
7999      return;
8000    }
8001
8002    // Success! Record the copy.
8003    Statements.push_back(Copy.takeAs<Expr>());
8004  }
8005
8006  // \brief Reference to the __builtin_memcpy function.
8007  Expr *BuiltinMemCpyRef = 0;
8008  // \brief Reference to the __builtin_objc_memmove_collectable function.
8009  Expr *CollectableMemCpyRef = 0;
8010
8011  // Assign non-static members.
8012  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
8013                                  FieldEnd = ClassDecl->field_end();
8014       Field != FieldEnd; ++Field) {
8015    if (Field->isUnnamedBitfield())
8016      continue;
8017
8018    // Check for members of reference type; we can't copy those.
8019    if (Field->getType()->isReferenceType()) {
8020      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
8021        << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
8022      Diag(Field->getLocation(), diag::note_declared_at);
8023      Diag(CurrentLocation, diag::note_member_synthesized_at)
8024        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
8025      Invalid = true;
8026      continue;
8027    }
8028
8029    // Check for members of const-qualified, non-class type.
8030    QualType BaseType = Context.getBaseElementType(Field->getType());
8031    if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) {
8032      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
8033        << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
8034      Diag(Field->getLocation(), diag::note_declared_at);
8035      Diag(CurrentLocation, diag::note_member_synthesized_at)
8036        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
8037      Invalid = true;
8038      continue;
8039    }
8040
8041    // Suppress assigning zero-width bitfields.
8042    if (Field->isBitField() && Field->getBitWidthValue(Context) == 0)
8043      continue;
8044
8045    QualType FieldType = Field->getType().getNonReferenceType();
8046    if (FieldType->isIncompleteArrayType()) {
8047      assert(ClassDecl->hasFlexibleArrayMember() &&
8048             "Incomplete array type is not valid");
8049      continue;
8050    }
8051
8052    // Build references to the field in the object we're copying from and to.
8053    CXXScopeSpec SS; // Intentionally empty
8054    LookupResult MemberLookup(*this, Field->getDeclName(), Loc,
8055                              LookupMemberName);
8056    MemberLookup.addDecl(*Field);
8057    MemberLookup.resolveKind();
8058    ExprResult From = BuildMemberReferenceExpr(OtherRef, OtherRefType,
8059                                               Loc, /*IsArrow=*/false,
8060                                               SS, SourceLocation(), 0,
8061                                               MemberLookup, 0);
8062    ExprResult To = BuildMemberReferenceExpr(This, This->getType(),
8063                                             Loc, /*IsArrow=*/true,
8064                                             SS, SourceLocation(), 0,
8065                                             MemberLookup, 0);
8066    assert(!From.isInvalid() && "Implicit field reference cannot fail");
8067    assert(!To.isInvalid() && "Implicit field reference cannot fail");
8068
8069    // If the field should be copied with __builtin_memcpy rather than via
8070    // explicit assignments, do so. This optimization only applies for arrays
8071    // of scalars and arrays of class type with trivial copy-assignment
8072    // operators.
8073    if (FieldType->isArrayType() && !FieldType.isVolatileQualified()
8074        && BaseType.hasTrivialAssignment(Context, /*Copying=*/true)) {
8075      // Compute the size of the memory buffer to be copied.
8076      QualType SizeType = Context.getSizeType();
8077      llvm::APInt Size(Context.getTypeSize(SizeType),
8078                       Context.getTypeSizeInChars(BaseType).getQuantity());
8079      for (const ConstantArrayType *Array
8080              = Context.getAsConstantArrayType(FieldType);
8081           Array;
8082           Array = Context.getAsConstantArrayType(Array->getElementType())) {
8083        llvm::APInt ArraySize
8084          = Array->getSize().zextOrTrunc(Size.getBitWidth());
8085        Size *= ArraySize;
8086      }
8087
8088      // Take the address of the field references for "from" and "to".
8089      From = CreateBuiltinUnaryOp(Loc, UO_AddrOf, From.get());
8090      To = CreateBuiltinUnaryOp(Loc, UO_AddrOf, To.get());
8091
8092      bool NeedsCollectableMemCpy =
8093          (BaseType->isRecordType() &&
8094           BaseType->getAs<RecordType>()->getDecl()->hasObjectMember());
8095
8096      if (NeedsCollectableMemCpy) {
8097        if (!CollectableMemCpyRef) {
8098          // Create a reference to the __builtin_objc_memmove_collectable function.
8099          LookupResult R(*this,
8100                         &Context.Idents.get("__builtin_objc_memmove_collectable"),
8101                         Loc, LookupOrdinaryName);
8102          LookupName(R, TUScope, true);
8103
8104          FunctionDecl *CollectableMemCpy = R.getAsSingle<FunctionDecl>();
8105          if (!CollectableMemCpy) {
8106            // Something went horribly wrong earlier, and we will have
8107            // complained about it.
8108            Invalid = true;
8109            continue;
8110          }
8111
8112          CollectableMemCpyRef = BuildDeclRefExpr(CollectableMemCpy,
8113                                                  CollectableMemCpy->getType(),
8114                                                  VK_LValue, Loc, 0).take();
8115          assert(CollectableMemCpyRef && "Builtin reference cannot fail");
8116        }
8117      }
8118      // Create a reference to the __builtin_memcpy builtin function.
8119      else if (!BuiltinMemCpyRef) {
8120        LookupResult R(*this, &Context.Idents.get("__builtin_memcpy"), Loc,
8121                       LookupOrdinaryName);
8122        LookupName(R, TUScope, true);
8123
8124        FunctionDecl *BuiltinMemCpy = R.getAsSingle<FunctionDecl>();
8125        if (!BuiltinMemCpy) {
8126          // Something went horribly wrong earlier, and we will have complained
8127          // about it.
8128          Invalid = true;
8129          continue;
8130        }
8131
8132        BuiltinMemCpyRef = BuildDeclRefExpr(BuiltinMemCpy,
8133                                            BuiltinMemCpy->getType(),
8134                                            VK_LValue, Loc, 0).take();
8135        assert(BuiltinMemCpyRef && "Builtin reference cannot fail");
8136      }
8137
8138      ASTOwningVector<Expr*> CallArgs(*this);
8139      CallArgs.push_back(To.takeAs<Expr>());
8140      CallArgs.push_back(From.takeAs<Expr>());
8141      CallArgs.push_back(IntegerLiteral::Create(Context, Size, SizeType, Loc));
8142      ExprResult Call = ExprError();
8143      if (NeedsCollectableMemCpy)
8144        Call = ActOnCallExpr(/*Scope=*/0,
8145                             CollectableMemCpyRef,
8146                             Loc, move_arg(CallArgs),
8147                             Loc);
8148      else
8149        Call = ActOnCallExpr(/*Scope=*/0,
8150                             BuiltinMemCpyRef,
8151                             Loc, move_arg(CallArgs),
8152                             Loc);
8153
8154      assert(!Call.isInvalid() && "Call to __builtin_memcpy cannot fail!");
8155      Statements.push_back(Call.takeAs<Expr>());
8156      continue;
8157    }
8158
8159    // Build the copy of this field.
8160    StmtResult Copy = BuildSingleCopyAssign(*this, Loc, FieldType,
8161                                            To.get(), From.get(),
8162                                            /*CopyingBaseSubobject=*/false,
8163                                            /*Copying=*/true);
8164    if (Copy.isInvalid()) {
8165      Diag(CurrentLocation, diag::note_member_synthesized_at)
8166        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
8167      CopyAssignOperator->setInvalidDecl();
8168      return;
8169    }
8170
8171    // Success! Record the copy.
8172    Statements.push_back(Copy.takeAs<Stmt>());
8173  }
8174
8175  if (!Invalid) {
8176    // Add a "return *this;"
8177    ExprResult ThisObj = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
8178
8179    StmtResult Return = ActOnReturnStmt(Loc, ThisObj.get());
8180    if (Return.isInvalid())
8181      Invalid = true;
8182    else {
8183      Statements.push_back(Return.takeAs<Stmt>());
8184
8185      if (Trap.hasErrorOccurred()) {
8186        Diag(CurrentLocation, diag::note_member_synthesized_at)
8187          << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
8188        Invalid = true;
8189      }
8190    }
8191  }
8192
8193  if (Invalid) {
8194    CopyAssignOperator->setInvalidDecl();
8195    return;
8196  }
8197
8198  StmtResult Body = ActOnCompoundStmt(Loc, Loc, move_arg(Statements),
8199                                            /*isStmtExpr=*/false);
8200  assert(!Body.isInvalid() && "Compound statement creation cannot fail");
8201  CopyAssignOperator->setBody(Body.takeAs<Stmt>());
8202
8203  if (ASTMutationListener *L = getASTMutationListener()) {
8204    L->CompletedImplicitDefinition(CopyAssignOperator);
8205  }
8206}
8207
8208Sema::ImplicitExceptionSpecification
8209Sema::ComputeDefaultedMoveAssignmentExceptionSpec(CXXRecordDecl *ClassDecl) {
8210  ImplicitExceptionSpecification ExceptSpec(Context);
8211
8212  if (ClassDecl->isInvalidDecl())
8213    return ExceptSpec;
8214
8215  // C++0x [except.spec]p14:
8216  //   An implicitly declared special member function (Clause 12) shall have an
8217  //   exception-specification. [...]
8218
8219  // It is unspecified whether or not an implicit move assignment operator
8220  // attempts to deduplicate calls to assignment operators of virtual bases are
8221  // made. As such, this exception specification is effectively unspecified.
8222  // Based on a similar decision made for constness in C++0x, we're erring on
8223  // the side of assuming such calls to be made regardless of whether they
8224  // actually happen.
8225  // Note that a move constructor is not implicitly declared when there are
8226  // virtual bases, but it can still be user-declared and explicitly defaulted.
8227  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
8228                                       BaseEnd = ClassDecl->bases_end();
8229       Base != BaseEnd; ++Base) {
8230    if (Base->isVirtual())
8231      continue;
8232
8233    CXXRecordDecl *BaseClassDecl
8234      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8235    if (CXXMethodDecl *MoveAssign = LookupMovingAssignment(BaseClassDecl,
8236                                                           false, 0))
8237      ExceptSpec.CalledDecl(MoveAssign);
8238  }
8239
8240  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
8241                                       BaseEnd = ClassDecl->vbases_end();
8242       Base != BaseEnd; ++Base) {
8243    CXXRecordDecl *BaseClassDecl
8244      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8245    if (CXXMethodDecl *MoveAssign = LookupMovingAssignment(BaseClassDecl,
8246                                                           false, 0))
8247      ExceptSpec.CalledDecl(MoveAssign);
8248  }
8249
8250  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
8251                                  FieldEnd = ClassDecl->field_end();
8252       Field != FieldEnd;
8253       ++Field) {
8254    QualType FieldType = Context.getBaseElementType((*Field)->getType());
8255    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
8256      if (CXXMethodDecl *MoveAssign = LookupMovingAssignment(FieldClassDecl,
8257                                                             false, 0))
8258        ExceptSpec.CalledDecl(MoveAssign);
8259    }
8260  }
8261
8262  return ExceptSpec;
8263}
8264
8265CXXMethodDecl *Sema::DeclareImplicitMoveAssignment(CXXRecordDecl *ClassDecl) {
8266  // Note: The following rules are largely analoguous to the move
8267  // constructor rules.
8268
8269  ImplicitExceptionSpecification Spec(
8270      ComputeDefaultedMoveAssignmentExceptionSpec(ClassDecl));
8271
8272  QualType ArgType = Context.getTypeDeclType(ClassDecl);
8273  QualType RetType = Context.getLValueReferenceType(ArgType);
8274  ArgType = Context.getRValueReferenceType(ArgType);
8275
8276  //   An implicitly-declared move assignment operator is an inline public
8277  //   member of its class.
8278  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
8279  DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
8280  SourceLocation ClassLoc = ClassDecl->getLocation();
8281  DeclarationNameInfo NameInfo(Name, ClassLoc);
8282  CXXMethodDecl *MoveAssignment
8283    = CXXMethodDecl::Create(Context, ClassDecl, ClassLoc, NameInfo,
8284                            Context.getFunctionType(RetType, &ArgType, 1, EPI),
8285                            /*TInfo=*/0, /*isStatic=*/false,
8286                            /*StorageClassAsWritten=*/SC_None,
8287                            /*isInline=*/true,
8288                            /*isConstexpr=*/false,
8289                            SourceLocation());
8290  MoveAssignment->setAccess(AS_public);
8291  MoveAssignment->setDefaulted();
8292  MoveAssignment->setImplicit();
8293  MoveAssignment->setTrivial(ClassDecl->hasTrivialMoveAssignment());
8294
8295  // Add the parameter to the operator.
8296  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, MoveAssignment,
8297                                               ClassLoc, ClassLoc, /*Id=*/0,
8298                                               ArgType, /*TInfo=*/0,
8299                                               SC_None,
8300                                               SC_None, 0);
8301  MoveAssignment->setParams(FromParam);
8302
8303  // Note that we have added this copy-assignment operator.
8304  ++ASTContext::NumImplicitMoveAssignmentOperatorsDeclared;
8305
8306  // C++0x [class.copy]p9:
8307  //   If the definition of a class X does not explicitly declare a move
8308  //   assignment operator, one will be implicitly declared as defaulted if and
8309  //   only if:
8310  //   [...]
8311  //   - the move assignment operator would not be implicitly defined as
8312  //     deleted.
8313  if (ShouldDeleteMoveAssignmentOperator(MoveAssignment)) {
8314    // Cache this result so that we don't try to generate this over and over
8315    // on every lookup, leaking memory and wasting time.
8316    ClassDecl->setFailedImplicitMoveAssignment();
8317    return 0;
8318  }
8319
8320  if (Scope *S = getScopeForContext(ClassDecl))
8321    PushOnScopeChains(MoveAssignment, S, false);
8322  ClassDecl->addDecl(MoveAssignment);
8323
8324  AddOverriddenMethods(ClassDecl, MoveAssignment);
8325  return MoveAssignment;
8326}
8327
8328void Sema::DefineImplicitMoveAssignment(SourceLocation CurrentLocation,
8329                                        CXXMethodDecl *MoveAssignOperator) {
8330  assert((MoveAssignOperator->isDefaulted() &&
8331          MoveAssignOperator->isOverloadedOperator() &&
8332          MoveAssignOperator->getOverloadedOperator() == OO_Equal &&
8333          !MoveAssignOperator->doesThisDeclarationHaveABody()) &&
8334         "DefineImplicitMoveAssignment called for wrong function");
8335
8336  CXXRecordDecl *ClassDecl = MoveAssignOperator->getParent();
8337
8338  if (ClassDecl->isInvalidDecl() || MoveAssignOperator->isInvalidDecl()) {
8339    MoveAssignOperator->setInvalidDecl();
8340    return;
8341  }
8342
8343  MoveAssignOperator->setUsed();
8344
8345  ImplicitlyDefinedFunctionScope Scope(*this, MoveAssignOperator);
8346  DiagnosticErrorTrap Trap(Diags);
8347
8348  // C++0x [class.copy]p28:
8349  //   The implicitly-defined or move assignment operator for a non-union class
8350  //   X performs memberwise move assignment of its subobjects. The direct base
8351  //   classes of X are assigned first, in the order of their declaration in the
8352  //   base-specifier-list, and then the immediate non-static data members of X
8353  //   are assigned, in the order in which they were declared in the class
8354  //   definition.
8355
8356  // The statements that form the synthesized function body.
8357  ASTOwningVector<Stmt*> Statements(*this);
8358
8359  // The parameter for the "other" object, which we are move from.
8360  ParmVarDecl *Other = MoveAssignOperator->getParamDecl(0);
8361  QualType OtherRefType = Other->getType()->
8362      getAs<RValueReferenceType>()->getPointeeType();
8363  assert(OtherRefType.getQualifiers() == 0 &&
8364         "Bad argument type of defaulted move assignment");
8365
8366  // Our location for everything implicitly-generated.
8367  SourceLocation Loc = MoveAssignOperator->getLocation();
8368
8369  // Construct a reference to the "other" object. We'll be using this
8370  // throughout the generated ASTs.
8371  Expr *OtherRef = BuildDeclRefExpr(Other, OtherRefType, VK_LValue, Loc).take();
8372  assert(OtherRef && "Reference to parameter cannot fail!");
8373  // Cast to rvalue.
8374  OtherRef = CastForMoving(*this, OtherRef);
8375
8376  // Construct the "this" pointer. We'll be using this throughout the generated
8377  // ASTs.
8378  Expr *This = ActOnCXXThis(Loc).takeAs<Expr>();
8379  assert(This && "Reference to this cannot fail!");
8380
8381  // Assign base classes.
8382  bool Invalid = false;
8383  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
8384       E = ClassDecl->bases_end(); Base != E; ++Base) {
8385    // Form the assignment:
8386    //   static_cast<Base*>(this)->Base::operator=(static_cast<Base&&>(other));
8387    QualType BaseType = Base->getType().getUnqualifiedType();
8388    if (!BaseType->isRecordType()) {
8389      Invalid = true;
8390      continue;
8391    }
8392
8393    CXXCastPath BasePath;
8394    BasePath.push_back(Base);
8395
8396    // Construct the "from" expression, which is an implicit cast to the
8397    // appropriately-qualified base type.
8398    Expr *From = OtherRef;
8399    From = ImpCastExprToType(From, BaseType, CK_UncheckedDerivedToBase,
8400                             VK_XValue, &BasePath).take();
8401
8402    // Dereference "this".
8403    ExprResult To = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
8404
8405    // Implicitly cast "this" to the appropriately-qualified base type.
8406    To = ImpCastExprToType(To.take(),
8407                           Context.getCVRQualifiedType(BaseType,
8408                                     MoveAssignOperator->getTypeQualifiers()),
8409                           CK_UncheckedDerivedToBase,
8410                           VK_LValue, &BasePath);
8411
8412    // Build the move.
8413    StmtResult Move = BuildSingleCopyAssign(*this, Loc, BaseType,
8414                                            To.get(), From,
8415                                            /*CopyingBaseSubobject=*/true,
8416                                            /*Copying=*/false);
8417    if (Move.isInvalid()) {
8418      Diag(CurrentLocation, diag::note_member_synthesized_at)
8419        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
8420      MoveAssignOperator->setInvalidDecl();
8421      return;
8422    }
8423
8424    // Success! Record the move.
8425    Statements.push_back(Move.takeAs<Expr>());
8426  }
8427
8428  // \brief Reference to the __builtin_memcpy function.
8429  Expr *BuiltinMemCpyRef = 0;
8430  // \brief Reference to the __builtin_objc_memmove_collectable function.
8431  Expr *CollectableMemCpyRef = 0;
8432
8433  // Assign non-static members.
8434  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
8435                                  FieldEnd = ClassDecl->field_end();
8436       Field != FieldEnd; ++Field) {
8437    if (Field->isUnnamedBitfield())
8438      continue;
8439
8440    // Check for members of reference type; we can't move those.
8441    if (Field->getType()->isReferenceType()) {
8442      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
8443        << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
8444      Diag(Field->getLocation(), diag::note_declared_at);
8445      Diag(CurrentLocation, diag::note_member_synthesized_at)
8446        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
8447      Invalid = true;
8448      continue;
8449    }
8450
8451    // Check for members of const-qualified, non-class type.
8452    QualType BaseType = Context.getBaseElementType(Field->getType());
8453    if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) {
8454      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
8455        << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
8456      Diag(Field->getLocation(), diag::note_declared_at);
8457      Diag(CurrentLocation, diag::note_member_synthesized_at)
8458        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
8459      Invalid = true;
8460      continue;
8461    }
8462
8463    // Suppress assigning zero-width bitfields.
8464    if (Field->isBitField() && Field->getBitWidthValue(Context) == 0)
8465      continue;
8466
8467    QualType FieldType = Field->getType().getNonReferenceType();
8468    if (FieldType->isIncompleteArrayType()) {
8469      assert(ClassDecl->hasFlexibleArrayMember() &&
8470             "Incomplete array type is not valid");
8471      continue;
8472    }
8473
8474    // Build references to the field in the object we're copying from and to.
8475    CXXScopeSpec SS; // Intentionally empty
8476    LookupResult MemberLookup(*this, Field->getDeclName(), Loc,
8477                              LookupMemberName);
8478    MemberLookup.addDecl(*Field);
8479    MemberLookup.resolveKind();
8480    ExprResult From = BuildMemberReferenceExpr(OtherRef, OtherRefType,
8481                                               Loc, /*IsArrow=*/false,
8482                                               SS, SourceLocation(), 0,
8483                                               MemberLookup, 0);
8484    ExprResult To = BuildMemberReferenceExpr(This, This->getType(),
8485                                             Loc, /*IsArrow=*/true,
8486                                             SS, SourceLocation(), 0,
8487                                             MemberLookup, 0);
8488    assert(!From.isInvalid() && "Implicit field reference cannot fail");
8489    assert(!To.isInvalid() && "Implicit field reference cannot fail");
8490
8491    assert(!From.get()->isLValue() && // could be xvalue or prvalue
8492        "Member reference with rvalue base must be rvalue except for reference "
8493        "members, which aren't allowed for move assignment.");
8494
8495    // If the field should be copied with __builtin_memcpy rather than via
8496    // explicit assignments, do so. This optimization only applies for arrays
8497    // of scalars and arrays of class type with trivial move-assignment
8498    // operators.
8499    if (FieldType->isArrayType() && !FieldType.isVolatileQualified()
8500        && BaseType.hasTrivialAssignment(Context, /*Copying=*/false)) {
8501      // Compute the size of the memory buffer to be copied.
8502      QualType SizeType = Context.getSizeType();
8503      llvm::APInt Size(Context.getTypeSize(SizeType),
8504                       Context.getTypeSizeInChars(BaseType).getQuantity());
8505      for (const ConstantArrayType *Array
8506              = Context.getAsConstantArrayType(FieldType);
8507           Array;
8508           Array = Context.getAsConstantArrayType(Array->getElementType())) {
8509        llvm::APInt ArraySize
8510          = Array->getSize().zextOrTrunc(Size.getBitWidth());
8511        Size *= ArraySize;
8512      }
8513
8514      // Take the address of the field references for "from" and "to". We
8515      // directly construct UnaryOperators here because semantic analysis
8516      // does not permit us to take the address of an xvalue.
8517      From = new (Context) UnaryOperator(From.get(), UO_AddrOf,
8518                             Context.getPointerType(From.get()->getType()),
8519                             VK_RValue, OK_Ordinary, Loc);
8520      To = new (Context) UnaryOperator(To.get(), UO_AddrOf,
8521                           Context.getPointerType(To.get()->getType()),
8522                           VK_RValue, OK_Ordinary, Loc);
8523
8524      bool NeedsCollectableMemCpy =
8525          (BaseType->isRecordType() &&
8526           BaseType->getAs<RecordType>()->getDecl()->hasObjectMember());
8527
8528      if (NeedsCollectableMemCpy) {
8529        if (!CollectableMemCpyRef) {
8530          // Create a reference to the __builtin_objc_memmove_collectable function.
8531          LookupResult R(*this,
8532                         &Context.Idents.get("__builtin_objc_memmove_collectable"),
8533                         Loc, LookupOrdinaryName);
8534          LookupName(R, TUScope, true);
8535
8536          FunctionDecl *CollectableMemCpy = R.getAsSingle<FunctionDecl>();
8537          if (!CollectableMemCpy) {
8538            // Something went horribly wrong earlier, and we will have
8539            // complained about it.
8540            Invalid = true;
8541            continue;
8542          }
8543
8544          CollectableMemCpyRef = BuildDeclRefExpr(CollectableMemCpy,
8545                                                  CollectableMemCpy->getType(),
8546                                                  VK_LValue, Loc, 0).take();
8547          assert(CollectableMemCpyRef && "Builtin reference cannot fail");
8548        }
8549      }
8550      // Create a reference to the __builtin_memcpy builtin function.
8551      else if (!BuiltinMemCpyRef) {
8552        LookupResult R(*this, &Context.Idents.get("__builtin_memcpy"), Loc,
8553                       LookupOrdinaryName);
8554        LookupName(R, TUScope, true);
8555
8556        FunctionDecl *BuiltinMemCpy = R.getAsSingle<FunctionDecl>();
8557        if (!BuiltinMemCpy) {
8558          // Something went horribly wrong earlier, and we will have complained
8559          // about it.
8560          Invalid = true;
8561          continue;
8562        }
8563
8564        BuiltinMemCpyRef = BuildDeclRefExpr(BuiltinMemCpy,
8565                                            BuiltinMemCpy->getType(),
8566                                            VK_LValue, Loc, 0).take();
8567        assert(BuiltinMemCpyRef && "Builtin reference cannot fail");
8568      }
8569
8570      ASTOwningVector<Expr*> CallArgs(*this);
8571      CallArgs.push_back(To.takeAs<Expr>());
8572      CallArgs.push_back(From.takeAs<Expr>());
8573      CallArgs.push_back(IntegerLiteral::Create(Context, Size, SizeType, Loc));
8574      ExprResult Call = ExprError();
8575      if (NeedsCollectableMemCpy)
8576        Call = ActOnCallExpr(/*Scope=*/0,
8577                             CollectableMemCpyRef,
8578                             Loc, move_arg(CallArgs),
8579                             Loc);
8580      else
8581        Call = ActOnCallExpr(/*Scope=*/0,
8582                             BuiltinMemCpyRef,
8583                             Loc, move_arg(CallArgs),
8584                             Loc);
8585
8586      assert(!Call.isInvalid() && "Call to __builtin_memcpy cannot fail!");
8587      Statements.push_back(Call.takeAs<Expr>());
8588      continue;
8589    }
8590
8591    // Build the move of this field.
8592    StmtResult Move = BuildSingleCopyAssign(*this, Loc, FieldType,
8593                                            To.get(), From.get(),
8594                                            /*CopyingBaseSubobject=*/false,
8595                                            /*Copying=*/false);
8596    if (Move.isInvalid()) {
8597      Diag(CurrentLocation, diag::note_member_synthesized_at)
8598        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
8599      MoveAssignOperator->setInvalidDecl();
8600      return;
8601    }
8602
8603    // Success! Record the copy.
8604    Statements.push_back(Move.takeAs<Stmt>());
8605  }
8606
8607  if (!Invalid) {
8608    // Add a "return *this;"
8609    ExprResult ThisObj = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
8610
8611    StmtResult Return = ActOnReturnStmt(Loc, ThisObj.get());
8612    if (Return.isInvalid())
8613      Invalid = true;
8614    else {
8615      Statements.push_back(Return.takeAs<Stmt>());
8616
8617      if (Trap.hasErrorOccurred()) {
8618        Diag(CurrentLocation, diag::note_member_synthesized_at)
8619          << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
8620        Invalid = true;
8621      }
8622    }
8623  }
8624
8625  if (Invalid) {
8626    MoveAssignOperator->setInvalidDecl();
8627    return;
8628  }
8629
8630  StmtResult Body = ActOnCompoundStmt(Loc, Loc, move_arg(Statements),
8631                                            /*isStmtExpr=*/false);
8632  assert(!Body.isInvalid() && "Compound statement creation cannot fail");
8633  MoveAssignOperator->setBody(Body.takeAs<Stmt>());
8634
8635  if (ASTMutationListener *L = getASTMutationListener()) {
8636    L->CompletedImplicitDefinition(MoveAssignOperator);
8637  }
8638}
8639
8640std::pair<Sema::ImplicitExceptionSpecification, bool>
8641Sema::ComputeDefaultedCopyCtorExceptionSpecAndConst(CXXRecordDecl *ClassDecl) {
8642  if (ClassDecl->isInvalidDecl())
8643    return std::make_pair(ImplicitExceptionSpecification(Context), false);
8644
8645  // C++ [class.copy]p5:
8646  //   The implicitly-declared copy constructor for a class X will
8647  //   have the form
8648  //
8649  //       X::X(const X&)
8650  //
8651  //   if
8652  // FIXME: It ought to be possible to store this on the record.
8653  bool HasConstCopyConstructor = true;
8654
8655  //     -- each direct or virtual base class B of X has a copy
8656  //        constructor whose first parameter is of type const B& or
8657  //        const volatile B&, and
8658  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
8659                                       BaseEnd = ClassDecl->bases_end();
8660       HasConstCopyConstructor && Base != BaseEnd;
8661       ++Base) {
8662    // Virtual bases are handled below.
8663    if (Base->isVirtual())
8664      continue;
8665
8666    CXXRecordDecl *BaseClassDecl
8667      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8668    LookupCopyingConstructor(BaseClassDecl, Qualifiers::Const,
8669                             &HasConstCopyConstructor);
8670  }
8671
8672  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
8673                                       BaseEnd = ClassDecl->vbases_end();
8674       HasConstCopyConstructor && Base != BaseEnd;
8675       ++Base) {
8676    CXXRecordDecl *BaseClassDecl
8677      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8678    LookupCopyingConstructor(BaseClassDecl, Qualifiers::Const,
8679                             &HasConstCopyConstructor);
8680  }
8681
8682  //     -- for all the nonstatic data members of X that are of a
8683  //        class type M (or array thereof), each such class type
8684  //        has a copy constructor whose first parameter is of type
8685  //        const M& or const volatile M&.
8686  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
8687                                  FieldEnd = ClassDecl->field_end();
8688       HasConstCopyConstructor && Field != FieldEnd;
8689       ++Field) {
8690    QualType FieldType = Context.getBaseElementType((*Field)->getType());
8691    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
8692      LookupCopyingConstructor(FieldClassDecl, Qualifiers::Const,
8693                               &HasConstCopyConstructor);
8694    }
8695  }
8696  //   Otherwise, the implicitly declared copy constructor will have
8697  //   the form
8698  //
8699  //       X::X(X&)
8700
8701  // C++ [except.spec]p14:
8702  //   An implicitly declared special member function (Clause 12) shall have an
8703  //   exception-specification. [...]
8704  ImplicitExceptionSpecification ExceptSpec(Context);
8705  unsigned Quals = HasConstCopyConstructor? Qualifiers::Const : 0;
8706  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
8707                                       BaseEnd = ClassDecl->bases_end();
8708       Base != BaseEnd;
8709       ++Base) {
8710    // Virtual bases are handled below.
8711    if (Base->isVirtual())
8712      continue;
8713
8714    CXXRecordDecl *BaseClassDecl
8715      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8716    if (CXXConstructorDecl *CopyConstructor =
8717          LookupCopyingConstructor(BaseClassDecl, Quals))
8718      ExceptSpec.CalledDecl(CopyConstructor);
8719  }
8720  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
8721                                       BaseEnd = ClassDecl->vbases_end();
8722       Base != BaseEnd;
8723       ++Base) {
8724    CXXRecordDecl *BaseClassDecl
8725      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8726    if (CXXConstructorDecl *CopyConstructor =
8727          LookupCopyingConstructor(BaseClassDecl, Quals))
8728      ExceptSpec.CalledDecl(CopyConstructor);
8729  }
8730  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
8731                                  FieldEnd = ClassDecl->field_end();
8732       Field != FieldEnd;
8733       ++Field) {
8734    QualType FieldType = Context.getBaseElementType((*Field)->getType());
8735    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
8736      if (CXXConstructorDecl *CopyConstructor =
8737        LookupCopyingConstructor(FieldClassDecl, Quals))
8738      ExceptSpec.CalledDecl(CopyConstructor);
8739    }
8740  }
8741
8742  return std::make_pair(ExceptSpec, HasConstCopyConstructor);
8743}
8744
8745CXXConstructorDecl *Sema::DeclareImplicitCopyConstructor(
8746                                                    CXXRecordDecl *ClassDecl) {
8747  // C++ [class.copy]p4:
8748  //   If the class definition does not explicitly declare a copy
8749  //   constructor, one is declared implicitly.
8750
8751  ImplicitExceptionSpecification Spec(Context);
8752  bool Const;
8753  llvm::tie(Spec, Const) =
8754    ComputeDefaultedCopyCtorExceptionSpecAndConst(ClassDecl);
8755
8756  QualType ClassType = Context.getTypeDeclType(ClassDecl);
8757  QualType ArgType = ClassType;
8758  if (Const)
8759    ArgType = ArgType.withConst();
8760  ArgType = Context.getLValueReferenceType(ArgType);
8761
8762  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
8763
8764  DeclarationName Name
8765    = Context.DeclarationNames.getCXXConstructorName(
8766                                           Context.getCanonicalType(ClassType));
8767  SourceLocation ClassLoc = ClassDecl->getLocation();
8768  DeclarationNameInfo NameInfo(Name, ClassLoc);
8769
8770  //   An implicitly-declared copy constructor is an inline public
8771  //   member of its class.
8772  CXXConstructorDecl *CopyConstructor = CXXConstructorDecl::Create(
8773      Context, ClassDecl, ClassLoc, NameInfo,
8774      Context.getFunctionType(Context.VoidTy, &ArgType, 1, EPI), /*TInfo=*/0,
8775      /*isExplicit=*/false, /*isInline=*/true, /*isImplicitlyDeclared=*/true,
8776      /*isConstexpr=*/ClassDecl->defaultedCopyConstructorIsConstexpr() &&
8777        getLangOptions().CPlusPlus0x);
8778  CopyConstructor->setAccess(AS_public);
8779  CopyConstructor->setDefaulted();
8780  CopyConstructor->setTrivial(ClassDecl->hasTrivialCopyConstructor());
8781
8782  // Note that we have declared this constructor.
8783  ++ASTContext::NumImplicitCopyConstructorsDeclared;
8784
8785  // Add the parameter to the constructor.
8786  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor,
8787                                               ClassLoc, ClassLoc,
8788                                               /*IdentifierInfo=*/0,
8789                                               ArgType, /*TInfo=*/0,
8790                                               SC_None,
8791                                               SC_None, 0);
8792  CopyConstructor->setParams(FromParam);
8793
8794  if (Scope *S = getScopeForContext(ClassDecl))
8795    PushOnScopeChains(CopyConstructor, S, false);
8796  ClassDecl->addDecl(CopyConstructor);
8797
8798  // C++11 [class.copy]p8:
8799  //   ... If the class definition does not explicitly declare a copy
8800  //   constructor, there is no user-declared move constructor, and there is no
8801  //   user-declared move assignment operator, a copy constructor is implicitly
8802  //   declared as defaulted.
8803  if (ClassDecl->hasUserDeclaredMoveConstructor() ||
8804      (ClassDecl->hasUserDeclaredMoveAssignment() &&
8805          !getLangOptions().MicrosoftMode) ||
8806      ShouldDeleteSpecialMember(CopyConstructor, CXXCopyConstructor))
8807    CopyConstructor->setDeletedAsWritten();
8808
8809  return CopyConstructor;
8810}
8811
8812void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation,
8813                                   CXXConstructorDecl *CopyConstructor) {
8814  assert((CopyConstructor->isDefaulted() &&
8815          CopyConstructor->isCopyConstructor() &&
8816          !CopyConstructor->doesThisDeclarationHaveABody()) &&
8817         "DefineImplicitCopyConstructor - call it for implicit copy ctor");
8818
8819  CXXRecordDecl *ClassDecl = CopyConstructor->getParent();
8820  assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor");
8821
8822  ImplicitlyDefinedFunctionScope Scope(*this, CopyConstructor);
8823  DiagnosticErrorTrap Trap(Diags);
8824
8825  if (SetCtorInitializers(CopyConstructor, 0, 0, /*AnyErrors=*/false) ||
8826      Trap.hasErrorOccurred()) {
8827    Diag(CurrentLocation, diag::note_member_synthesized_at)
8828      << CXXCopyConstructor << Context.getTagDeclType(ClassDecl);
8829    CopyConstructor->setInvalidDecl();
8830  }  else {
8831    CopyConstructor->setBody(ActOnCompoundStmt(CopyConstructor->getLocation(),
8832                                               CopyConstructor->getLocation(),
8833                                               MultiStmtArg(*this, 0, 0),
8834                                               /*isStmtExpr=*/false)
8835                                                              .takeAs<Stmt>());
8836    CopyConstructor->setImplicitlyDefined(true);
8837  }
8838
8839  CopyConstructor->setUsed();
8840  if (ASTMutationListener *L = getASTMutationListener()) {
8841    L->CompletedImplicitDefinition(CopyConstructor);
8842  }
8843}
8844
8845Sema::ImplicitExceptionSpecification
8846Sema::ComputeDefaultedMoveCtorExceptionSpec(CXXRecordDecl *ClassDecl) {
8847  // C++ [except.spec]p14:
8848  //   An implicitly declared special member function (Clause 12) shall have an
8849  //   exception-specification. [...]
8850  ImplicitExceptionSpecification ExceptSpec(Context);
8851  if (ClassDecl->isInvalidDecl())
8852    return ExceptSpec;
8853
8854  // Direct base-class constructors.
8855  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
8856                                       BEnd = ClassDecl->bases_end();
8857       B != BEnd; ++B) {
8858    if (B->isVirtual()) // Handled below.
8859      continue;
8860
8861    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
8862      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
8863      CXXConstructorDecl *Constructor = LookupMovingConstructor(BaseClassDecl);
8864      // If this is a deleted function, add it anyway. This might be conformant
8865      // with the standard. This might not. I'm not sure. It might not matter.
8866      if (Constructor)
8867        ExceptSpec.CalledDecl(Constructor);
8868    }
8869  }
8870
8871  // Virtual base-class constructors.
8872  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
8873                                       BEnd = ClassDecl->vbases_end();
8874       B != BEnd; ++B) {
8875    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
8876      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
8877      CXXConstructorDecl *Constructor = LookupMovingConstructor(BaseClassDecl);
8878      // If this is a deleted function, add it anyway. This might be conformant
8879      // with the standard. This might not. I'm not sure. It might not matter.
8880      if (Constructor)
8881        ExceptSpec.CalledDecl(Constructor);
8882    }
8883  }
8884
8885  // Field constructors.
8886  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
8887                               FEnd = ClassDecl->field_end();
8888       F != FEnd; ++F) {
8889    if (const RecordType *RecordTy
8890              = Context.getBaseElementType(F->getType())->getAs<RecordType>()) {
8891      CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
8892      CXXConstructorDecl *Constructor = LookupMovingConstructor(FieldRecDecl);
8893      // If this is a deleted function, add it anyway. This might be conformant
8894      // with the standard. This might not. I'm not sure. It might not matter.
8895      // In particular, the problem is that this function never gets called. It
8896      // might just be ill-formed because this function attempts to refer to
8897      // a deleted function here.
8898      if (Constructor)
8899        ExceptSpec.CalledDecl(Constructor);
8900    }
8901  }
8902
8903  return ExceptSpec;
8904}
8905
8906CXXConstructorDecl *Sema::DeclareImplicitMoveConstructor(
8907                                                    CXXRecordDecl *ClassDecl) {
8908  ImplicitExceptionSpecification Spec(
8909      ComputeDefaultedMoveCtorExceptionSpec(ClassDecl));
8910
8911  QualType ClassType = Context.getTypeDeclType(ClassDecl);
8912  QualType ArgType = Context.getRValueReferenceType(ClassType);
8913
8914  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
8915
8916  DeclarationName Name
8917    = Context.DeclarationNames.getCXXConstructorName(
8918                                           Context.getCanonicalType(ClassType));
8919  SourceLocation ClassLoc = ClassDecl->getLocation();
8920  DeclarationNameInfo NameInfo(Name, ClassLoc);
8921
8922  // C++0x [class.copy]p11:
8923  //   An implicitly-declared copy/move constructor is an inline public
8924  //   member of its class.
8925  CXXConstructorDecl *MoveConstructor = CXXConstructorDecl::Create(
8926      Context, ClassDecl, ClassLoc, NameInfo,
8927      Context.getFunctionType(Context.VoidTy, &ArgType, 1, EPI), /*TInfo=*/0,
8928      /*isExplicit=*/false, /*isInline=*/true, /*isImplicitlyDeclared=*/true,
8929      /*isConstexpr=*/ClassDecl->defaultedMoveConstructorIsConstexpr() &&
8930        getLangOptions().CPlusPlus0x);
8931  MoveConstructor->setAccess(AS_public);
8932  MoveConstructor->setDefaulted();
8933  MoveConstructor->setTrivial(ClassDecl->hasTrivialMoveConstructor());
8934
8935  // Add the parameter to the constructor.
8936  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, MoveConstructor,
8937                                               ClassLoc, ClassLoc,
8938                                               /*IdentifierInfo=*/0,
8939                                               ArgType, /*TInfo=*/0,
8940                                               SC_None,
8941                                               SC_None, 0);
8942  MoveConstructor->setParams(FromParam);
8943
8944  // C++0x [class.copy]p9:
8945  //   If the definition of a class X does not explicitly declare a move
8946  //   constructor, one will be implicitly declared as defaulted if and only if:
8947  //   [...]
8948  //   - the move constructor would not be implicitly defined as deleted.
8949  if (ShouldDeleteSpecialMember(MoveConstructor, CXXMoveConstructor)) {
8950    // Cache this result so that we don't try to generate this over and over
8951    // on every lookup, leaking memory and wasting time.
8952    ClassDecl->setFailedImplicitMoveConstructor();
8953    return 0;
8954  }
8955
8956  // Note that we have declared this constructor.
8957  ++ASTContext::NumImplicitMoveConstructorsDeclared;
8958
8959  if (Scope *S = getScopeForContext(ClassDecl))
8960    PushOnScopeChains(MoveConstructor, S, false);
8961  ClassDecl->addDecl(MoveConstructor);
8962
8963  return MoveConstructor;
8964}
8965
8966void Sema::DefineImplicitMoveConstructor(SourceLocation CurrentLocation,
8967                                   CXXConstructorDecl *MoveConstructor) {
8968  assert((MoveConstructor->isDefaulted() &&
8969          MoveConstructor->isMoveConstructor() &&
8970          !MoveConstructor->doesThisDeclarationHaveABody()) &&
8971         "DefineImplicitMoveConstructor - call it for implicit move ctor");
8972
8973  CXXRecordDecl *ClassDecl = MoveConstructor->getParent();
8974  assert(ClassDecl && "DefineImplicitMoveConstructor - invalid constructor");
8975
8976  ImplicitlyDefinedFunctionScope Scope(*this, MoveConstructor);
8977  DiagnosticErrorTrap Trap(Diags);
8978
8979  if (SetCtorInitializers(MoveConstructor, 0, 0, /*AnyErrors=*/false) ||
8980      Trap.hasErrorOccurred()) {
8981    Diag(CurrentLocation, diag::note_member_synthesized_at)
8982      << CXXMoveConstructor << Context.getTagDeclType(ClassDecl);
8983    MoveConstructor->setInvalidDecl();
8984  }  else {
8985    MoveConstructor->setBody(ActOnCompoundStmt(MoveConstructor->getLocation(),
8986                                               MoveConstructor->getLocation(),
8987                                               MultiStmtArg(*this, 0, 0),
8988                                               /*isStmtExpr=*/false)
8989                                                              .takeAs<Stmt>());
8990    MoveConstructor->setImplicitlyDefined(true);
8991  }
8992
8993  MoveConstructor->setUsed();
8994
8995  if (ASTMutationListener *L = getASTMutationListener()) {
8996    L->CompletedImplicitDefinition(MoveConstructor);
8997  }
8998}
8999
9000ExprResult
9001Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
9002                            CXXConstructorDecl *Constructor,
9003                            MultiExprArg ExprArgs,
9004                            bool HadMultipleCandidates,
9005                            bool RequiresZeroInit,
9006                            unsigned ConstructKind,
9007                            SourceRange ParenRange) {
9008  bool Elidable = false;
9009
9010  // C++0x [class.copy]p34:
9011  //   When certain criteria are met, an implementation is allowed to
9012  //   omit the copy/move construction of a class object, even if the
9013  //   copy/move constructor and/or destructor for the object have
9014  //   side effects. [...]
9015  //     - when a temporary class object that has not been bound to a
9016  //       reference (12.2) would be copied/moved to a class object
9017  //       with the same cv-unqualified type, the copy/move operation
9018  //       can be omitted by constructing the temporary object
9019  //       directly into the target of the omitted copy/move
9020  if (ConstructKind == CXXConstructExpr::CK_Complete &&
9021      Constructor->isCopyOrMoveConstructor() && ExprArgs.size() >= 1) {
9022    Expr *SubExpr = ((Expr **)ExprArgs.get())[0];
9023    Elidable = SubExpr->isTemporaryObject(Context, Constructor->getParent());
9024  }
9025
9026  return BuildCXXConstructExpr(ConstructLoc, DeclInitType, Constructor,
9027                               Elidable, move(ExprArgs), HadMultipleCandidates,
9028                               RequiresZeroInit, ConstructKind, ParenRange);
9029}
9030
9031/// BuildCXXConstructExpr - Creates a complete call to a constructor,
9032/// including handling of its default argument expressions.
9033ExprResult
9034Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
9035                            CXXConstructorDecl *Constructor, bool Elidable,
9036                            MultiExprArg ExprArgs,
9037                            bool HadMultipleCandidates,
9038                            bool RequiresZeroInit,
9039                            unsigned ConstructKind,
9040                            SourceRange ParenRange) {
9041  unsigned NumExprs = ExprArgs.size();
9042  Expr **Exprs = (Expr **)ExprArgs.release();
9043
9044  for (specific_attr_iterator<NonNullAttr>
9045           i = Constructor->specific_attr_begin<NonNullAttr>(),
9046           e = Constructor->specific_attr_end<NonNullAttr>(); i != e; ++i) {
9047    const NonNullAttr *NonNull = *i;
9048    CheckNonNullArguments(NonNull, ExprArgs.get(), ConstructLoc);
9049  }
9050
9051  MarkFunctionReferenced(ConstructLoc, Constructor);
9052  return Owned(CXXConstructExpr::Create(Context, DeclInitType, ConstructLoc,
9053                                        Constructor, Elidable, Exprs, NumExprs,
9054                                        HadMultipleCandidates, RequiresZeroInit,
9055              static_cast<CXXConstructExpr::ConstructionKind>(ConstructKind),
9056                                        ParenRange));
9057}
9058
9059bool Sema::InitializeVarWithConstructor(VarDecl *VD,
9060                                        CXXConstructorDecl *Constructor,
9061                                        MultiExprArg Exprs,
9062                                        bool HadMultipleCandidates) {
9063  // FIXME: Provide the correct paren SourceRange when available.
9064  ExprResult TempResult =
9065    BuildCXXConstructExpr(VD->getLocation(), VD->getType(), Constructor,
9066                          move(Exprs), HadMultipleCandidates, false,
9067                          CXXConstructExpr::CK_Complete, SourceRange());
9068  if (TempResult.isInvalid())
9069    return true;
9070
9071  Expr *Temp = TempResult.takeAs<Expr>();
9072  CheckImplicitConversions(Temp, VD->getLocation());
9073  MarkFunctionReferenced(VD->getLocation(), Constructor);
9074  Temp = MaybeCreateExprWithCleanups(Temp);
9075  VD->setInit(Temp);
9076
9077  return false;
9078}
9079
9080void Sema::FinalizeVarWithDestructor(VarDecl *VD, const RecordType *Record) {
9081  if (VD->isInvalidDecl()) return;
9082
9083  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Record->getDecl());
9084  if (ClassDecl->isInvalidDecl()) return;
9085  if (ClassDecl->hasTrivialDestructor()) return;
9086  if (ClassDecl->isDependentContext()) return;
9087
9088  CXXDestructorDecl *Destructor = LookupDestructor(ClassDecl);
9089  MarkFunctionReferenced(VD->getLocation(), Destructor);
9090  CheckDestructorAccess(VD->getLocation(), Destructor,
9091                        PDiag(diag::err_access_dtor_var)
9092                        << VD->getDeclName()
9093                        << VD->getType());
9094
9095  if (!VD->hasGlobalStorage()) return;
9096
9097  // Emit warning for non-trivial dtor in global scope (a real global,
9098  // class-static, function-static).
9099  Diag(VD->getLocation(), diag::warn_exit_time_destructor);
9100
9101  // TODO: this should be re-enabled for static locals by !CXAAtExit
9102  if (!VD->isStaticLocal())
9103    Diag(VD->getLocation(), diag::warn_global_destructor);
9104}
9105
9106/// AddCXXDirectInitializerToDecl - This action is called immediately after
9107/// ActOnDeclarator, when a C++ direct initializer is present.
9108/// e.g: "int x(1);"
9109void Sema::AddCXXDirectInitializerToDecl(Decl *RealDecl,
9110                                         SourceLocation LParenLoc,
9111                                         MultiExprArg Exprs,
9112                                         SourceLocation RParenLoc,
9113                                         bool TypeMayContainAuto) {
9114  // If there is no declaration, there was an error parsing it.  Just ignore
9115  // the initializer.
9116  if (RealDecl == 0)
9117    return;
9118
9119  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
9120  if (!VDecl) {
9121    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
9122    RealDecl->setInvalidDecl();
9123    return;
9124  }
9125
9126  // C++0x [dcl.spec.auto]p6. Deduce the type which 'auto' stands in for.
9127  if (TypeMayContainAuto && VDecl->getType()->getContainedAutoType()) {
9128    if (Exprs.size() == 0) {
9129      // It isn't possible to write this directly, but it is possible to
9130      // end up in this situation with "auto x(some_pack...);"
9131      Diag(LParenLoc, diag::err_auto_var_init_no_expression)
9132        << VDecl->getDeclName() << VDecl->getType()
9133        << VDecl->getSourceRange();
9134      RealDecl->setInvalidDecl();
9135      return;
9136    }
9137
9138    if (Exprs.size() > 1) {
9139      Diag(Exprs.get()[1]->getSourceRange().getBegin(),
9140           diag::err_auto_var_init_multiple_expressions)
9141        << VDecl->getDeclName() << VDecl->getType()
9142        << VDecl->getSourceRange();
9143      RealDecl->setInvalidDecl();
9144      return;
9145    }
9146
9147    Expr *Init = Exprs.get()[0];
9148    TypeSourceInfo *DeducedType = 0;
9149    if (DeduceAutoType(VDecl->getTypeSourceInfo(), Init, DeducedType) ==
9150            DAR_Failed)
9151      DiagnoseAutoDeductionFailure(VDecl, Init);
9152    if (!DeducedType) {
9153      RealDecl->setInvalidDecl();
9154      return;
9155    }
9156    VDecl->setTypeSourceInfo(DeducedType);
9157    VDecl->setType(DeducedType->getType());
9158
9159    // In ARC, infer lifetime.
9160    if (getLangOptions().ObjCAutoRefCount && inferObjCARCLifetime(VDecl))
9161      VDecl->setInvalidDecl();
9162
9163    // If this is a redeclaration, check that the type we just deduced matches
9164    // the previously declared type.
9165    if (VarDecl *Old = VDecl->getPreviousDecl())
9166      MergeVarDeclTypes(VDecl, Old);
9167  }
9168
9169  // We will represent direct-initialization similarly to copy-initialization:
9170  //    int x(1);  -as-> int x = 1;
9171  //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
9172  //
9173  // Clients that want to distinguish between the two forms, can check for
9174  // direct initializer using VarDecl::hasCXXDirectInitializer().
9175  // A major benefit is that clients that don't particularly care about which
9176  // exactly form was it (like the CodeGen) can handle both cases without
9177  // special case code.
9178
9179  // C++ 8.5p11:
9180  // The form of initialization (using parentheses or '=') is generally
9181  // insignificant, but does matter when the entity being initialized has a
9182  // class type.
9183
9184  if (!VDecl->getType()->isDependentType() &&
9185      !VDecl->getType()->isIncompleteArrayType() &&
9186      RequireCompleteType(VDecl->getLocation(), VDecl->getType(),
9187                          diag::err_typecheck_decl_incomplete_type)) {
9188    VDecl->setInvalidDecl();
9189    return;
9190  }
9191
9192  // The variable can not have an abstract class type.
9193  if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
9194                             diag::err_abstract_type_in_decl,
9195                             AbstractVariableType))
9196    VDecl->setInvalidDecl();
9197
9198  const VarDecl *Def;
9199  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
9200    Diag(VDecl->getLocation(), diag::err_redefinition)
9201    << VDecl->getDeclName();
9202    Diag(Def->getLocation(), diag::note_previous_definition);
9203    VDecl->setInvalidDecl();
9204    return;
9205  }
9206
9207  // C++ [class.static.data]p4
9208  //   If a static data member is of const integral or const
9209  //   enumeration type, its declaration in the class definition can
9210  //   specify a constant-initializer which shall be an integral
9211  //   constant expression (5.19). In that case, the member can appear
9212  //   in integral constant expressions. The member shall still be
9213  //   defined in a namespace scope if it is used in the program and the
9214  //   namespace scope definition shall not contain an initializer.
9215  //
9216  // We already performed a redefinition check above, but for static
9217  // data members we also need to check whether there was an in-class
9218  // declaration with an initializer.
9219  const VarDecl* PrevInit = 0;
9220  if (VDecl->isStaticDataMember() && VDecl->getAnyInitializer(PrevInit)) {
9221    Diag(VDecl->getLocation(), diag::err_redefinition) << VDecl->getDeclName();
9222    Diag(PrevInit->getLocation(), diag::note_previous_definition);
9223    return;
9224  }
9225
9226  bool IsDependent = false;
9227  for (unsigned I = 0, N = Exprs.size(); I != N; ++I) {
9228    if (DiagnoseUnexpandedParameterPack(Exprs.get()[I], UPPC_Expression)) {
9229      VDecl->setInvalidDecl();
9230      return;
9231    }
9232
9233    if (Exprs.get()[I]->isTypeDependent())
9234      IsDependent = true;
9235  }
9236
9237  // If either the declaration has a dependent type or if any of the
9238  // expressions is type-dependent, we represent the initialization
9239  // via a ParenListExpr for later use during template instantiation.
9240  if (VDecl->getType()->isDependentType() || IsDependent) {
9241    // Let clients know that initialization was done with a direct initializer.
9242    VDecl->setCXXDirectInitializer(true);
9243
9244    // Store the initialization expressions as a ParenListExpr.
9245    unsigned NumExprs = Exprs.size();
9246    VDecl->setInit(new (Context) ParenListExpr(
9247        Context, LParenLoc, (Expr **)Exprs.release(), NumExprs, RParenLoc,
9248        VDecl->getType().getNonReferenceType()));
9249    return;
9250  }
9251
9252  // Capture the variable that is being initialized and the style of
9253  // initialization.
9254  InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
9255
9256  // FIXME: Poor source location information.
9257  InitializationKind Kind
9258    = InitializationKind::CreateDirect(VDecl->getLocation(),
9259                                       LParenLoc, RParenLoc);
9260
9261  QualType T = VDecl->getType();
9262  InitializationSequence InitSeq(*this, Entity, Kind,
9263                                 Exprs.get(), Exprs.size());
9264  ExprResult Result = InitSeq.Perform(*this, Entity, Kind, move(Exprs), &T);
9265  if (Result.isInvalid()) {
9266    VDecl->setInvalidDecl();
9267    return;
9268  } else if (T != VDecl->getType()) {
9269    VDecl->setType(T);
9270    Result.get()->setType(T);
9271  }
9272
9273
9274  Expr *Init = Result.get();
9275  CheckImplicitConversions(Init, LParenLoc);
9276
9277  Init = MaybeCreateExprWithCleanups(Init);
9278  VDecl->setInit(Init);
9279  VDecl->setCXXDirectInitializer(true);
9280
9281  CheckCompleteVariableDeclaration(VDecl);
9282}
9283
9284/// \brief Given a constructor and the set of arguments provided for the
9285/// constructor, convert the arguments and add any required default arguments
9286/// to form a proper call to this constructor.
9287///
9288/// \returns true if an error occurred, false otherwise.
9289bool
9290Sema::CompleteConstructorCall(CXXConstructorDecl *Constructor,
9291                              MultiExprArg ArgsPtr,
9292                              SourceLocation Loc,
9293                              ASTOwningVector<Expr*> &ConvertedArgs) {
9294  // FIXME: This duplicates a lot of code from Sema::ConvertArgumentsForCall.
9295  unsigned NumArgs = ArgsPtr.size();
9296  Expr **Args = (Expr **)ArgsPtr.get();
9297
9298  const FunctionProtoType *Proto
9299    = Constructor->getType()->getAs<FunctionProtoType>();
9300  assert(Proto && "Constructor without a prototype?");
9301  unsigned NumArgsInProto = Proto->getNumArgs();
9302
9303  // If too few arguments are available, we'll fill in the rest with defaults.
9304  if (NumArgs < NumArgsInProto)
9305    ConvertedArgs.reserve(NumArgsInProto);
9306  else
9307    ConvertedArgs.reserve(NumArgs);
9308
9309  VariadicCallType CallType =
9310    Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply;
9311  SmallVector<Expr *, 8> AllArgs;
9312  bool Invalid = GatherArgumentsForCall(Loc, Constructor,
9313                                        Proto, 0, Args, NumArgs, AllArgs,
9314                                        CallType);
9315  for (unsigned i =0, size = AllArgs.size(); i < size; i++)
9316    ConvertedArgs.push_back(AllArgs[i]);
9317  return Invalid;
9318}
9319
9320static inline bool
9321CheckOperatorNewDeleteDeclarationScope(Sema &SemaRef,
9322                                       const FunctionDecl *FnDecl) {
9323  const DeclContext *DC = FnDecl->getDeclContext()->getRedeclContext();
9324  if (isa<NamespaceDecl>(DC)) {
9325    return SemaRef.Diag(FnDecl->getLocation(),
9326                        diag::err_operator_new_delete_declared_in_namespace)
9327      << FnDecl->getDeclName();
9328  }
9329
9330  if (isa<TranslationUnitDecl>(DC) &&
9331      FnDecl->getStorageClass() == SC_Static) {
9332    return SemaRef.Diag(FnDecl->getLocation(),
9333                        diag::err_operator_new_delete_declared_static)
9334      << FnDecl->getDeclName();
9335  }
9336
9337  return false;
9338}
9339
9340static inline bool
9341CheckOperatorNewDeleteTypes(Sema &SemaRef, const FunctionDecl *FnDecl,
9342                            CanQualType ExpectedResultType,
9343                            CanQualType ExpectedFirstParamType,
9344                            unsigned DependentParamTypeDiag,
9345                            unsigned InvalidParamTypeDiag) {
9346  QualType ResultType =
9347    FnDecl->getType()->getAs<FunctionType>()->getResultType();
9348
9349  // Check that the result type is not dependent.
9350  if (ResultType->isDependentType())
9351    return SemaRef.Diag(FnDecl->getLocation(),
9352                        diag::err_operator_new_delete_dependent_result_type)
9353    << FnDecl->getDeclName() << ExpectedResultType;
9354
9355  // Check that the result type is what we expect.
9356  if (SemaRef.Context.getCanonicalType(ResultType) != ExpectedResultType)
9357    return SemaRef.Diag(FnDecl->getLocation(),
9358                        diag::err_operator_new_delete_invalid_result_type)
9359    << FnDecl->getDeclName() << ExpectedResultType;
9360
9361  // A function template must have at least 2 parameters.
9362  if (FnDecl->getDescribedFunctionTemplate() && FnDecl->getNumParams() < 2)
9363    return SemaRef.Diag(FnDecl->getLocation(),
9364                      diag::err_operator_new_delete_template_too_few_parameters)
9365        << FnDecl->getDeclName();
9366
9367  // The function decl must have at least 1 parameter.
9368  if (FnDecl->getNumParams() == 0)
9369    return SemaRef.Diag(FnDecl->getLocation(),
9370                        diag::err_operator_new_delete_too_few_parameters)
9371      << FnDecl->getDeclName();
9372
9373  // Check the the first parameter type is not dependent.
9374  QualType FirstParamType = FnDecl->getParamDecl(0)->getType();
9375  if (FirstParamType->isDependentType())
9376    return SemaRef.Diag(FnDecl->getLocation(), DependentParamTypeDiag)
9377      << FnDecl->getDeclName() << ExpectedFirstParamType;
9378
9379  // Check that the first parameter type is what we expect.
9380  if (SemaRef.Context.getCanonicalType(FirstParamType).getUnqualifiedType() !=
9381      ExpectedFirstParamType)
9382    return SemaRef.Diag(FnDecl->getLocation(), InvalidParamTypeDiag)
9383    << FnDecl->getDeclName() << ExpectedFirstParamType;
9384
9385  return false;
9386}
9387
9388static bool
9389CheckOperatorNewDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
9390  // C++ [basic.stc.dynamic.allocation]p1:
9391  //   A program is ill-formed if an allocation function is declared in a
9392  //   namespace scope other than global scope or declared static in global
9393  //   scope.
9394  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
9395    return true;
9396
9397  CanQualType SizeTy =
9398    SemaRef.Context.getCanonicalType(SemaRef.Context.getSizeType());
9399
9400  // C++ [basic.stc.dynamic.allocation]p1:
9401  //  The return type shall be void*. The first parameter shall have type
9402  //  std::size_t.
9403  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidPtrTy,
9404                                  SizeTy,
9405                                  diag::err_operator_new_dependent_param_type,
9406                                  diag::err_operator_new_param_type))
9407    return true;
9408
9409  // C++ [basic.stc.dynamic.allocation]p1:
9410  //  The first parameter shall not have an associated default argument.
9411  if (FnDecl->getParamDecl(0)->hasDefaultArg())
9412    return SemaRef.Diag(FnDecl->getLocation(),
9413                        diag::err_operator_new_default_arg)
9414      << FnDecl->getDeclName() << FnDecl->getParamDecl(0)->getDefaultArgRange();
9415
9416  return false;
9417}
9418
9419static bool
9420CheckOperatorDeleteDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
9421  // C++ [basic.stc.dynamic.deallocation]p1:
9422  //   A program is ill-formed if deallocation functions are declared in a
9423  //   namespace scope other than global scope or declared static in global
9424  //   scope.
9425  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
9426    return true;
9427
9428  // C++ [basic.stc.dynamic.deallocation]p2:
9429  //   Each deallocation function shall return void and its first parameter
9430  //   shall be void*.
9431  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidTy,
9432                                  SemaRef.Context.VoidPtrTy,
9433                                 diag::err_operator_delete_dependent_param_type,
9434                                 diag::err_operator_delete_param_type))
9435    return true;
9436
9437  return false;
9438}
9439
9440/// CheckOverloadedOperatorDeclaration - Check whether the declaration
9441/// of this overloaded operator is well-formed. If so, returns false;
9442/// otherwise, emits appropriate diagnostics and returns true.
9443bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
9444  assert(FnDecl && FnDecl->isOverloadedOperator() &&
9445         "Expected an overloaded operator declaration");
9446
9447  OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
9448
9449  // C++ [over.oper]p5:
9450  //   The allocation and deallocation functions, operator new,
9451  //   operator new[], operator delete and operator delete[], are
9452  //   described completely in 3.7.3. The attributes and restrictions
9453  //   found in the rest of this subclause do not apply to them unless
9454  //   explicitly stated in 3.7.3.
9455  if (Op == OO_Delete || Op == OO_Array_Delete)
9456    return CheckOperatorDeleteDeclaration(*this, FnDecl);
9457
9458  if (Op == OO_New || Op == OO_Array_New)
9459    return CheckOperatorNewDeclaration(*this, FnDecl);
9460
9461  // C++ [over.oper]p6:
9462  //   An operator function shall either be a non-static member
9463  //   function or be a non-member function and have at least one
9464  //   parameter whose type is a class, a reference to a class, an
9465  //   enumeration, or a reference to an enumeration.
9466  if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) {
9467    if (MethodDecl->isStatic())
9468      return Diag(FnDecl->getLocation(),
9469                  diag::err_operator_overload_static) << FnDecl->getDeclName();
9470  } else {
9471    bool ClassOrEnumParam = false;
9472    for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
9473                                   ParamEnd = FnDecl->param_end();
9474         Param != ParamEnd; ++Param) {
9475      QualType ParamType = (*Param)->getType().getNonReferenceType();
9476      if (ParamType->isDependentType() || ParamType->isRecordType() ||
9477          ParamType->isEnumeralType()) {
9478        ClassOrEnumParam = true;
9479        break;
9480      }
9481    }
9482
9483    if (!ClassOrEnumParam)
9484      return Diag(FnDecl->getLocation(),
9485                  diag::err_operator_overload_needs_class_or_enum)
9486        << FnDecl->getDeclName();
9487  }
9488
9489  // C++ [over.oper]p8:
9490  //   An operator function cannot have default arguments (8.3.6),
9491  //   except where explicitly stated below.
9492  //
9493  // Only the function-call operator allows default arguments
9494  // (C++ [over.call]p1).
9495  if (Op != OO_Call) {
9496    for (FunctionDecl::param_iterator Param = FnDecl->param_begin();
9497         Param != FnDecl->param_end(); ++Param) {
9498      if ((*Param)->hasDefaultArg())
9499        return Diag((*Param)->getLocation(),
9500                    diag::err_operator_overload_default_arg)
9501          << FnDecl->getDeclName() << (*Param)->getDefaultArgRange();
9502    }
9503  }
9504
9505  static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
9506    { false, false, false }
9507#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
9508    , { Unary, Binary, MemberOnly }
9509#include "clang/Basic/OperatorKinds.def"
9510  };
9511
9512  bool CanBeUnaryOperator = OperatorUses[Op][0];
9513  bool CanBeBinaryOperator = OperatorUses[Op][1];
9514  bool MustBeMemberOperator = OperatorUses[Op][2];
9515
9516  // C++ [over.oper]p8:
9517  //   [...] Operator functions cannot have more or fewer parameters
9518  //   than the number required for the corresponding operator, as
9519  //   described in the rest of this subclause.
9520  unsigned NumParams = FnDecl->getNumParams()
9521                     + (isa<CXXMethodDecl>(FnDecl)? 1 : 0);
9522  if (Op != OO_Call &&
9523      ((NumParams == 1 && !CanBeUnaryOperator) ||
9524       (NumParams == 2 && !CanBeBinaryOperator) ||
9525       (NumParams < 1) || (NumParams > 2))) {
9526    // We have the wrong number of parameters.
9527    unsigned ErrorKind;
9528    if (CanBeUnaryOperator && CanBeBinaryOperator) {
9529      ErrorKind = 2;  // 2 -> unary or binary.
9530    } else if (CanBeUnaryOperator) {
9531      ErrorKind = 0;  // 0 -> unary
9532    } else {
9533      assert(CanBeBinaryOperator &&
9534             "All non-call overloaded operators are unary or binary!");
9535      ErrorKind = 1;  // 1 -> binary
9536    }
9537
9538    return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be)
9539      << FnDecl->getDeclName() << NumParams << ErrorKind;
9540  }
9541
9542  // Overloaded operators other than operator() cannot be variadic.
9543  if (Op != OO_Call &&
9544      FnDecl->getType()->getAs<FunctionProtoType>()->isVariadic()) {
9545    return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
9546      << FnDecl->getDeclName();
9547  }
9548
9549  // Some operators must be non-static member functions.
9550  if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) {
9551    return Diag(FnDecl->getLocation(),
9552                diag::err_operator_overload_must_be_member)
9553      << FnDecl->getDeclName();
9554  }
9555
9556  // C++ [over.inc]p1:
9557  //   The user-defined function called operator++ implements the
9558  //   prefix and postfix ++ operator. If this function is a member
9559  //   function with no parameters, or a non-member function with one
9560  //   parameter of class or enumeration type, it defines the prefix
9561  //   increment operator ++ for objects of that type. If the function
9562  //   is a member function with one parameter (which shall be of type
9563  //   int) or a non-member function with two parameters (the second
9564  //   of which shall be of type int), it defines the postfix
9565  //   increment operator ++ for objects of that type.
9566  if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
9567    ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
9568    bool ParamIsInt = false;
9569    if (const BuiltinType *BT = LastParam->getType()->getAs<BuiltinType>())
9570      ParamIsInt = BT->getKind() == BuiltinType::Int;
9571
9572    if (!ParamIsInt)
9573      return Diag(LastParam->getLocation(),
9574                  diag::err_operator_overload_post_incdec_must_be_int)
9575        << LastParam->getType() << (Op == OO_MinusMinus);
9576  }
9577
9578  return false;
9579}
9580
9581/// CheckLiteralOperatorDeclaration - Check whether the declaration
9582/// of this literal operator function is well-formed. If so, returns
9583/// false; otherwise, emits appropriate diagnostics and returns true.
9584bool Sema::CheckLiteralOperatorDeclaration(FunctionDecl *FnDecl) {
9585  DeclContext *DC = FnDecl->getDeclContext();
9586  Decl::Kind Kind = DC->getDeclKind();
9587  if (Kind != Decl::TranslationUnit && Kind != Decl::Namespace &&
9588      Kind != Decl::LinkageSpec) {
9589    Diag(FnDecl->getLocation(), diag::err_literal_operator_outside_namespace)
9590      << FnDecl->getDeclName();
9591    return true;
9592  }
9593
9594  bool Valid = false;
9595
9596  // template <char...> type operator "" name() is the only valid template
9597  // signature, and the only valid signature with no parameters.
9598  if (FnDecl->param_size() == 0) {
9599    if (FunctionTemplateDecl *TpDecl = FnDecl->getDescribedFunctionTemplate()) {
9600      // Must have only one template parameter
9601      TemplateParameterList *Params = TpDecl->getTemplateParameters();
9602      if (Params->size() == 1) {
9603        NonTypeTemplateParmDecl *PmDecl =
9604          cast<NonTypeTemplateParmDecl>(Params->getParam(0));
9605
9606        // The template parameter must be a char parameter pack.
9607        if (PmDecl && PmDecl->isTemplateParameterPack() &&
9608            Context.hasSameType(PmDecl->getType(), Context.CharTy))
9609          Valid = true;
9610      }
9611    }
9612  } else {
9613    // Check the first parameter
9614    FunctionDecl::param_iterator Param = FnDecl->param_begin();
9615
9616    QualType T = (*Param)->getType();
9617
9618    // unsigned long long int, long double, and any character type are allowed
9619    // as the only parameters.
9620    if (Context.hasSameType(T, Context.UnsignedLongLongTy) ||
9621        Context.hasSameType(T, Context.LongDoubleTy) ||
9622        Context.hasSameType(T, Context.CharTy) ||
9623        Context.hasSameType(T, Context.WCharTy) ||
9624        Context.hasSameType(T, Context.Char16Ty) ||
9625        Context.hasSameType(T, Context.Char32Ty)) {
9626      if (++Param == FnDecl->param_end())
9627        Valid = true;
9628      goto FinishedParams;
9629    }
9630
9631    // Otherwise it must be a pointer to const; let's strip those qualifiers.
9632    const PointerType *PT = T->getAs<PointerType>();
9633    if (!PT)
9634      goto FinishedParams;
9635    T = PT->getPointeeType();
9636    if (!T.isConstQualified())
9637      goto FinishedParams;
9638    T = T.getUnqualifiedType();
9639
9640    // Move on to the second parameter;
9641    ++Param;
9642
9643    // If there is no second parameter, the first must be a const char *
9644    if (Param == FnDecl->param_end()) {
9645      if (Context.hasSameType(T, Context.CharTy))
9646        Valid = true;
9647      goto FinishedParams;
9648    }
9649
9650    // const char *, const wchar_t*, const char16_t*, and const char32_t*
9651    // are allowed as the first parameter to a two-parameter function
9652    if (!(Context.hasSameType(T, Context.CharTy) ||
9653          Context.hasSameType(T, Context.WCharTy) ||
9654          Context.hasSameType(T, Context.Char16Ty) ||
9655          Context.hasSameType(T, Context.Char32Ty)))
9656      goto FinishedParams;
9657
9658    // The second and final parameter must be an std::size_t
9659    T = (*Param)->getType().getUnqualifiedType();
9660    if (Context.hasSameType(T, Context.getSizeType()) &&
9661        ++Param == FnDecl->param_end())
9662      Valid = true;
9663  }
9664
9665  // FIXME: This diagnostic is absolutely terrible.
9666FinishedParams:
9667  if (!Valid) {
9668    Diag(FnDecl->getLocation(), diag::err_literal_operator_params)
9669      << FnDecl->getDeclName();
9670    return true;
9671  }
9672
9673  StringRef LiteralName
9674    = FnDecl->getDeclName().getCXXLiteralIdentifier()->getName();
9675  if (LiteralName[0] != '_') {
9676    // C++0x [usrlit.suffix]p1:
9677    //   Literal suffix identifiers that do not start with an underscore are
9678    //   reserved for future standardization.
9679    bool IsHexFloat = true;
9680    if (LiteralName.size() > 1 &&
9681        (LiteralName[0] == 'P' || LiteralName[0] == 'p')) {
9682      for (unsigned I = 1, N = LiteralName.size(); I < N; ++I) {
9683        if (!isdigit(LiteralName[I])) {
9684          IsHexFloat = false;
9685          break;
9686        }
9687      }
9688    }
9689
9690    if (IsHexFloat)
9691      Diag(FnDecl->getLocation(), diag::warn_user_literal_hexfloat)
9692        << LiteralName;
9693    else
9694      Diag(FnDecl->getLocation(), diag::warn_user_literal_reserved);
9695  }
9696
9697  return false;
9698}
9699
9700/// ActOnStartLinkageSpecification - Parsed the beginning of a C++
9701/// linkage specification, including the language and (if present)
9702/// the '{'. ExternLoc is the location of the 'extern', LangLoc is
9703/// the location of the language string literal, which is provided
9704/// by Lang/StrSize. LBraceLoc, if valid, provides the location of
9705/// the '{' brace. Otherwise, this linkage specification does not
9706/// have any braces.
9707Decl *Sema::ActOnStartLinkageSpecification(Scope *S, SourceLocation ExternLoc,
9708                                           SourceLocation LangLoc,
9709                                           StringRef Lang,
9710                                           SourceLocation LBraceLoc) {
9711  LinkageSpecDecl::LanguageIDs Language;
9712  if (Lang == "\"C\"")
9713    Language = LinkageSpecDecl::lang_c;
9714  else if (Lang == "\"C++\"")
9715    Language = LinkageSpecDecl::lang_cxx;
9716  else {
9717    Diag(LangLoc, diag::err_bad_language);
9718    return 0;
9719  }
9720
9721  // FIXME: Add all the various semantics of linkage specifications
9722
9723  LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext,
9724                                               ExternLoc, LangLoc, Language);
9725  CurContext->addDecl(D);
9726  PushDeclContext(S, D);
9727  return D;
9728}
9729
9730/// ActOnFinishLinkageSpecification - Complete the definition of
9731/// the C++ linkage specification LinkageSpec. If RBraceLoc is
9732/// valid, it's the position of the closing '}' brace in a linkage
9733/// specification that uses braces.
9734Decl *Sema::ActOnFinishLinkageSpecification(Scope *S,
9735                                            Decl *LinkageSpec,
9736                                            SourceLocation RBraceLoc) {
9737  if (LinkageSpec) {
9738    if (RBraceLoc.isValid()) {
9739      LinkageSpecDecl* LSDecl = cast<LinkageSpecDecl>(LinkageSpec);
9740      LSDecl->setRBraceLoc(RBraceLoc);
9741    }
9742    PopDeclContext();
9743  }
9744  return LinkageSpec;
9745}
9746
9747/// \brief Perform semantic analysis for the variable declaration that
9748/// occurs within a C++ catch clause, returning the newly-created
9749/// variable.
9750VarDecl *Sema::BuildExceptionDeclaration(Scope *S,
9751                                         TypeSourceInfo *TInfo,
9752                                         SourceLocation StartLoc,
9753                                         SourceLocation Loc,
9754                                         IdentifierInfo *Name) {
9755  bool Invalid = false;
9756  QualType ExDeclType = TInfo->getType();
9757
9758  // Arrays and functions decay.
9759  if (ExDeclType->isArrayType())
9760    ExDeclType = Context.getArrayDecayedType(ExDeclType);
9761  else if (ExDeclType->isFunctionType())
9762    ExDeclType = Context.getPointerType(ExDeclType);
9763
9764  // C++ 15.3p1: The exception-declaration shall not denote an incomplete type.
9765  // The exception-declaration shall not denote a pointer or reference to an
9766  // incomplete type, other than [cv] void*.
9767  // N2844 forbids rvalue references.
9768  if (!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) {
9769    Diag(Loc, diag::err_catch_rvalue_ref);
9770    Invalid = true;
9771  }
9772
9773  QualType BaseType = ExDeclType;
9774  int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference
9775  unsigned DK = diag::err_catch_incomplete;
9776  if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
9777    BaseType = Ptr->getPointeeType();
9778    Mode = 1;
9779    DK = diag::err_catch_incomplete_ptr;
9780  } else if (const ReferenceType *Ref = BaseType->getAs<ReferenceType>()) {
9781    // For the purpose of error recovery, we treat rvalue refs like lvalue refs.
9782    BaseType = Ref->getPointeeType();
9783    Mode = 2;
9784    DK = diag::err_catch_incomplete_ref;
9785  }
9786  if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) &&
9787      !BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK))
9788    Invalid = true;
9789
9790  if (!Invalid && !ExDeclType->isDependentType() &&
9791      RequireNonAbstractType(Loc, ExDeclType,
9792                             diag::err_abstract_type_in_decl,
9793                             AbstractVariableType))
9794    Invalid = true;
9795
9796  // Only the non-fragile NeXT runtime currently supports C++ catches
9797  // of ObjC types, and no runtime supports catching ObjC types by value.
9798  if (!Invalid && getLangOptions().ObjC1) {
9799    QualType T = ExDeclType;
9800    if (const ReferenceType *RT = T->getAs<ReferenceType>())
9801      T = RT->getPointeeType();
9802
9803    if (T->isObjCObjectType()) {
9804      Diag(Loc, diag::err_objc_object_catch);
9805      Invalid = true;
9806    } else if (T->isObjCObjectPointerType()) {
9807      if (!getLangOptions().ObjCNonFragileABI)
9808        Diag(Loc, diag::warn_objc_pointer_cxx_catch_fragile);
9809    }
9810  }
9811
9812  VarDecl *ExDecl = VarDecl::Create(Context, CurContext, StartLoc, Loc, Name,
9813                                    ExDeclType, TInfo, SC_None, SC_None);
9814  ExDecl->setExceptionVariable(true);
9815
9816  // In ARC, infer 'retaining' for variables of retainable type.
9817  if (getLangOptions().ObjCAutoRefCount && inferObjCARCLifetime(ExDecl))
9818    Invalid = true;
9819
9820  if (!Invalid && !ExDeclType->isDependentType()) {
9821    if (const RecordType *recordType = ExDeclType->getAs<RecordType>()) {
9822      // C++ [except.handle]p16:
9823      //   The object declared in an exception-declaration or, if the
9824      //   exception-declaration does not specify a name, a temporary (12.2) is
9825      //   copy-initialized (8.5) from the exception object. [...]
9826      //   The object is destroyed when the handler exits, after the destruction
9827      //   of any automatic objects initialized within the handler.
9828      //
9829      // We just pretend to initialize the object with itself, then make sure
9830      // it can be destroyed later.
9831      QualType initType = ExDeclType;
9832
9833      InitializedEntity entity =
9834        InitializedEntity::InitializeVariable(ExDecl);
9835      InitializationKind initKind =
9836        InitializationKind::CreateCopy(Loc, SourceLocation());
9837
9838      Expr *opaqueValue =
9839        new (Context) OpaqueValueExpr(Loc, initType, VK_LValue, OK_Ordinary);
9840      InitializationSequence sequence(*this, entity, initKind, &opaqueValue, 1);
9841      ExprResult result = sequence.Perform(*this, entity, initKind,
9842                                           MultiExprArg(&opaqueValue, 1));
9843      if (result.isInvalid())
9844        Invalid = true;
9845      else {
9846        // If the constructor used was non-trivial, set this as the
9847        // "initializer".
9848        CXXConstructExpr *construct = cast<CXXConstructExpr>(result.take());
9849        if (!construct->getConstructor()->isTrivial()) {
9850          Expr *init = MaybeCreateExprWithCleanups(construct);
9851          ExDecl->setInit(init);
9852        }
9853
9854        // And make sure it's destructable.
9855        FinalizeVarWithDestructor(ExDecl, recordType);
9856      }
9857    }
9858  }
9859
9860  if (Invalid)
9861    ExDecl->setInvalidDecl();
9862
9863  return ExDecl;
9864}
9865
9866/// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch
9867/// handler.
9868Decl *Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) {
9869  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
9870  bool Invalid = D.isInvalidType();
9871
9872  // Check for unexpanded parameter packs.
9873  if (TInfo && DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
9874                                               UPPC_ExceptionType)) {
9875    TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy,
9876                                             D.getIdentifierLoc());
9877    Invalid = true;
9878  }
9879
9880  IdentifierInfo *II = D.getIdentifier();
9881  if (NamedDecl *PrevDecl = LookupSingleName(S, II, D.getIdentifierLoc(),
9882                                             LookupOrdinaryName,
9883                                             ForRedeclaration)) {
9884    // The scope should be freshly made just for us. There is just no way
9885    // it contains any previous declaration.
9886    assert(!S->isDeclScope(PrevDecl));
9887    if (PrevDecl->isTemplateParameter()) {
9888      // Maybe we will complain about the shadowed template parameter.
9889      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
9890      PrevDecl = 0;
9891    }
9892  }
9893
9894  if (D.getCXXScopeSpec().isSet() && !Invalid) {
9895    Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator)
9896      << D.getCXXScopeSpec().getRange();
9897    Invalid = true;
9898  }
9899
9900  VarDecl *ExDecl = BuildExceptionDeclaration(S, TInfo,
9901                                              D.getSourceRange().getBegin(),
9902                                              D.getIdentifierLoc(),
9903                                              D.getIdentifier());
9904  if (Invalid)
9905    ExDecl->setInvalidDecl();
9906
9907  // Add the exception declaration into this scope.
9908  if (II)
9909    PushOnScopeChains(ExDecl, S);
9910  else
9911    CurContext->addDecl(ExDecl);
9912
9913  ProcessDeclAttributes(S, ExDecl, D);
9914  return ExDecl;
9915}
9916
9917Decl *Sema::ActOnStaticAssertDeclaration(SourceLocation StaticAssertLoc,
9918                                         Expr *AssertExpr,
9919                                         Expr *AssertMessageExpr_,
9920                                         SourceLocation RParenLoc) {
9921  StringLiteral *AssertMessage = cast<StringLiteral>(AssertMessageExpr_);
9922
9923  if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent()) {
9924    // In a static_assert-declaration, the constant-expression shall be a
9925    // constant expression that can be contextually converted to bool.
9926    ExprResult Converted = PerformContextuallyConvertToBool(AssertExpr);
9927    if (Converted.isInvalid())
9928      return 0;
9929
9930    llvm::APSInt Cond;
9931    if (VerifyIntegerConstantExpression(Converted.get(), &Cond,
9932          PDiag(diag::err_static_assert_expression_is_not_constant),
9933          /*AllowFold=*/false).isInvalid())
9934      return 0;
9935
9936    if (!Cond)
9937      Diag(StaticAssertLoc, diag::err_static_assert_failed)
9938        << AssertMessage->getString() << AssertExpr->getSourceRange();
9939  }
9940
9941  if (DiagnoseUnexpandedParameterPack(AssertExpr, UPPC_StaticAssertExpression))
9942    return 0;
9943
9944  Decl *Decl = StaticAssertDecl::Create(Context, CurContext, StaticAssertLoc,
9945                                        AssertExpr, AssertMessage, RParenLoc);
9946
9947  CurContext->addDecl(Decl);
9948  return Decl;
9949}
9950
9951/// \brief Perform semantic analysis of the given friend type declaration.
9952///
9953/// \returns A friend declaration that.
9954FriendDecl *Sema::CheckFriendTypeDecl(SourceLocation Loc,
9955                                      SourceLocation FriendLoc,
9956                                      TypeSourceInfo *TSInfo) {
9957  assert(TSInfo && "NULL TypeSourceInfo for friend type declaration");
9958
9959  QualType T = TSInfo->getType();
9960  SourceRange TypeRange = TSInfo->getTypeLoc().getLocalSourceRange();
9961
9962  // C++03 [class.friend]p2:
9963  //   An elaborated-type-specifier shall be used in a friend declaration
9964  //   for a class.*
9965  //
9966  //   * The class-key of the elaborated-type-specifier is required.
9967  if (!ActiveTemplateInstantiations.empty()) {
9968    // Do not complain about the form of friend template types during
9969    // template instantiation; we will already have complained when the
9970    // template was declared.
9971  } else if (!T->isElaboratedTypeSpecifier()) {
9972    // If we evaluated the type to a record type, suggest putting
9973    // a tag in front.
9974    if (const RecordType *RT = T->getAs<RecordType>()) {
9975      RecordDecl *RD = RT->getDecl();
9976
9977      std::string InsertionText = std::string(" ") + RD->getKindName();
9978
9979      Diag(TypeRange.getBegin(),
9980           getLangOptions().CPlusPlus0x ?
9981             diag::warn_cxx98_compat_unelaborated_friend_type :
9982             diag::ext_unelaborated_friend_type)
9983        << (unsigned) RD->getTagKind()
9984        << T
9985        << FixItHint::CreateInsertion(PP.getLocForEndOfToken(FriendLoc),
9986                                      InsertionText);
9987    } else {
9988      Diag(FriendLoc,
9989           getLangOptions().CPlusPlus0x ?
9990             diag::warn_cxx98_compat_nonclass_type_friend :
9991             diag::ext_nonclass_type_friend)
9992        << T
9993        << SourceRange(FriendLoc, TypeRange.getEnd());
9994    }
9995  } else if (T->getAs<EnumType>()) {
9996    Diag(FriendLoc,
9997         getLangOptions().CPlusPlus0x ?
9998           diag::warn_cxx98_compat_enum_friend :
9999           diag::ext_enum_friend)
10000      << T
10001      << SourceRange(FriendLoc, TypeRange.getEnd());
10002  }
10003
10004  // C++0x [class.friend]p3:
10005  //   If the type specifier in a friend declaration designates a (possibly
10006  //   cv-qualified) class type, that class is declared as a friend; otherwise,
10007  //   the friend declaration is ignored.
10008
10009  // FIXME: C++0x has some syntactic restrictions on friend type declarations
10010  // in [class.friend]p3 that we do not implement.
10011
10012  return FriendDecl::Create(Context, CurContext, Loc, TSInfo, FriendLoc);
10013}
10014
10015/// Handle a friend tag declaration where the scope specifier was
10016/// templated.
10017Decl *Sema::ActOnTemplatedFriendTag(Scope *S, SourceLocation FriendLoc,
10018                                    unsigned TagSpec, SourceLocation TagLoc,
10019                                    CXXScopeSpec &SS,
10020                                    IdentifierInfo *Name, SourceLocation NameLoc,
10021                                    AttributeList *Attr,
10022                                    MultiTemplateParamsArg TempParamLists) {
10023  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
10024
10025  bool isExplicitSpecialization = false;
10026  bool Invalid = false;
10027
10028  if (TemplateParameterList *TemplateParams
10029        = MatchTemplateParametersToScopeSpecifier(TagLoc, NameLoc, SS,
10030                                                  TempParamLists.get(),
10031                                                  TempParamLists.size(),
10032                                                  /*friend*/ true,
10033                                                  isExplicitSpecialization,
10034                                                  Invalid)) {
10035    if (TemplateParams->size() > 0) {
10036      // This is a declaration of a class template.
10037      if (Invalid)
10038        return 0;
10039
10040      return CheckClassTemplate(S, TagSpec, TUK_Friend, TagLoc,
10041                                SS, Name, NameLoc, Attr,
10042                                TemplateParams, AS_public,
10043                                /*ModulePrivateLoc=*/SourceLocation(),
10044                                TempParamLists.size() - 1,
10045                   (TemplateParameterList**) TempParamLists.release()).take();
10046    } else {
10047      // The "template<>" header is extraneous.
10048      Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
10049        << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
10050      isExplicitSpecialization = true;
10051    }
10052  }
10053
10054  if (Invalid) return 0;
10055
10056  bool isAllExplicitSpecializations = true;
10057  for (unsigned I = TempParamLists.size(); I-- > 0; ) {
10058    if (TempParamLists.get()[I]->size()) {
10059      isAllExplicitSpecializations = false;
10060      break;
10061    }
10062  }
10063
10064  // FIXME: don't ignore attributes.
10065
10066  // If it's explicit specializations all the way down, just forget
10067  // about the template header and build an appropriate non-templated
10068  // friend.  TODO: for source fidelity, remember the headers.
10069  if (isAllExplicitSpecializations) {
10070    if (SS.isEmpty()) {
10071      bool Owned = false;
10072      bool IsDependent = false;
10073      return ActOnTag(S, TagSpec, TUK_Friend, TagLoc, SS, Name, NameLoc,
10074                      Attr, AS_public,
10075                      /*ModulePrivateLoc=*/SourceLocation(),
10076                      MultiTemplateParamsArg(), Owned, IsDependent,
10077                      /*ScopedEnumKWLoc=*/SourceLocation(),
10078                      /*ScopedEnumUsesClassTag=*/false,
10079                      /*UnderlyingType=*/TypeResult());
10080    }
10081
10082    NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
10083    ElaboratedTypeKeyword Keyword
10084      = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
10085    QualType T = CheckTypenameType(Keyword, TagLoc, QualifierLoc,
10086                                   *Name, NameLoc);
10087    if (T.isNull())
10088      return 0;
10089
10090    TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
10091    if (isa<DependentNameType>(T)) {
10092      DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc());
10093      TL.setElaboratedKeywordLoc(TagLoc);
10094      TL.setQualifierLoc(QualifierLoc);
10095      TL.setNameLoc(NameLoc);
10096    } else {
10097      ElaboratedTypeLoc TL = cast<ElaboratedTypeLoc>(TSI->getTypeLoc());
10098      TL.setElaboratedKeywordLoc(TagLoc);
10099      TL.setQualifierLoc(QualifierLoc);
10100      cast<TypeSpecTypeLoc>(TL.getNamedTypeLoc()).setNameLoc(NameLoc);
10101    }
10102
10103    FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
10104                                            TSI, FriendLoc);
10105    Friend->setAccess(AS_public);
10106    CurContext->addDecl(Friend);
10107    return Friend;
10108  }
10109
10110  assert(SS.isNotEmpty() && "valid templated tag with no SS and no direct?");
10111
10112
10113
10114  // Handle the case of a templated-scope friend class.  e.g.
10115  //   template <class T> class A<T>::B;
10116  // FIXME: we don't support these right now.
10117  ElaboratedTypeKeyword ETK = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
10118  QualType T = Context.getDependentNameType(ETK, SS.getScopeRep(), Name);
10119  TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
10120  DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc());
10121  TL.setElaboratedKeywordLoc(TagLoc);
10122  TL.setQualifierLoc(SS.getWithLocInContext(Context));
10123  TL.setNameLoc(NameLoc);
10124
10125  FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
10126                                          TSI, FriendLoc);
10127  Friend->setAccess(AS_public);
10128  Friend->setUnsupportedFriend(true);
10129  CurContext->addDecl(Friend);
10130  return Friend;
10131}
10132
10133
10134/// Handle a friend type declaration.  This works in tandem with
10135/// ActOnTag.
10136///
10137/// Notes on friend class templates:
10138///
10139/// We generally treat friend class declarations as if they were
10140/// declaring a class.  So, for example, the elaborated type specifier
10141/// in a friend declaration is required to obey the restrictions of a
10142/// class-head (i.e. no typedefs in the scope chain), template
10143/// parameters are required to match up with simple template-ids, &c.
10144/// However, unlike when declaring a template specialization, it's
10145/// okay to refer to a template specialization without an empty
10146/// template parameter declaration, e.g.
10147///   friend class A<T>::B<unsigned>;
10148/// We permit this as a special case; if there are any template
10149/// parameters present at all, require proper matching, i.e.
10150///   template <> template <class T> friend class A<int>::B;
10151Decl *Sema::ActOnFriendTypeDecl(Scope *S, const DeclSpec &DS,
10152                                MultiTemplateParamsArg TempParams) {
10153  SourceLocation Loc = DS.getSourceRange().getBegin();
10154
10155  assert(DS.isFriendSpecified());
10156  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
10157
10158  // Try to convert the decl specifier to a type.  This works for
10159  // friend templates because ActOnTag never produces a ClassTemplateDecl
10160  // for a TUK_Friend.
10161  Declarator TheDeclarator(DS, Declarator::MemberContext);
10162  TypeSourceInfo *TSI = GetTypeForDeclarator(TheDeclarator, S);
10163  QualType T = TSI->getType();
10164  if (TheDeclarator.isInvalidType())
10165    return 0;
10166
10167  if (DiagnoseUnexpandedParameterPack(Loc, TSI, UPPC_FriendDeclaration))
10168    return 0;
10169
10170  // This is definitely an error in C++98.  It's probably meant to
10171  // be forbidden in C++0x, too, but the specification is just
10172  // poorly written.
10173  //
10174  // The problem is with declarations like the following:
10175  //   template <T> friend A<T>::foo;
10176  // where deciding whether a class C is a friend or not now hinges
10177  // on whether there exists an instantiation of A that causes
10178  // 'foo' to equal C.  There are restrictions on class-heads
10179  // (which we declare (by fiat) elaborated friend declarations to
10180  // be) that makes this tractable.
10181  //
10182  // FIXME: handle "template <> friend class A<T>;", which
10183  // is possibly well-formed?  Who even knows?
10184  if (TempParams.size() && !T->isElaboratedTypeSpecifier()) {
10185    Diag(Loc, diag::err_tagless_friend_type_template)
10186      << DS.getSourceRange();
10187    return 0;
10188  }
10189
10190  // C++98 [class.friend]p1: A friend of a class is a function
10191  //   or class that is not a member of the class . . .
10192  // This is fixed in DR77, which just barely didn't make the C++03
10193  // deadline.  It's also a very silly restriction that seriously
10194  // affects inner classes and which nobody else seems to implement;
10195  // thus we never diagnose it, not even in -pedantic.
10196  //
10197  // But note that we could warn about it: it's always useless to
10198  // friend one of your own members (it's not, however, worthless to
10199  // friend a member of an arbitrary specialization of your template).
10200
10201  Decl *D;
10202  if (unsigned NumTempParamLists = TempParams.size())
10203    D = FriendTemplateDecl::Create(Context, CurContext, Loc,
10204                                   NumTempParamLists,
10205                                   TempParams.release(),
10206                                   TSI,
10207                                   DS.getFriendSpecLoc());
10208  else
10209    D = CheckFriendTypeDecl(Loc, DS.getFriendSpecLoc(), TSI);
10210
10211  if (!D)
10212    return 0;
10213
10214  D->setAccess(AS_public);
10215  CurContext->addDecl(D);
10216
10217  return D;
10218}
10219
10220Decl *Sema::ActOnFriendFunctionDecl(Scope *S, Declarator &D,
10221                                    MultiTemplateParamsArg TemplateParams) {
10222  const DeclSpec &DS = D.getDeclSpec();
10223
10224  assert(DS.isFriendSpecified());
10225  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
10226
10227  SourceLocation Loc = D.getIdentifierLoc();
10228  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
10229
10230  // C++ [class.friend]p1
10231  //   A friend of a class is a function or class....
10232  // Note that this sees through typedefs, which is intended.
10233  // It *doesn't* see through dependent types, which is correct
10234  // according to [temp.arg.type]p3:
10235  //   If a declaration acquires a function type through a
10236  //   type dependent on a template-parameter and this causes
10237  //   a declaration that does not use the syntactic form of a
10238  //   function declarator to have a function type, the program
10239  //   is ill-formed.
10240  if (!TInfo->getType()->isFunctionType()) {
10241    Diag(Loc, diag::err_unexpected_friend);
10242
10243    // It might be worthwhile to try to recover by creating an
10244    // appropriate declaration.
10245    return 0;
10246  }
10247
10248  // C++ [namespace.memdef]p3
10249  //  - If a friend declaration in a non-local class first declares a
10250  //    class or function, the friend class or function is a member
10251  //    of the innermost enclosing namespace.
10252  //  - The name of the friend is not found by simple name lookup
10253  //    until a matching declaration is provided in that namespace
10254  //    scope (either before or after the class declaration granting
10255  //    friendship).
10256  //  - If a friend function is called, its name may be found by the
10257  //    name lookup that considers functions from namespaces and
10258  //    classes associated with the types of the function arguments.
10259  //  - When looking for a prior declaration of a class or a function
10260  //    declared as a friend, scopes outside the innermost enclosing
10261  //    namespace scope are not considered.
10262
10263  CXXScopeSpec &SS = D.getCXXScopeSpec();
10264  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
10265  DeclarationName Name = NameInfo.getName();
10266  assert(Name);
10267
10268  // Check for unexpanded parameter packs.
10269  if (DiagnoseUnexpandedParameterPack(Loc, TInfo, UPPC_FriendDeclaration) ||
10270      DiagnoseUnexpandedParameterPack(NameInfo, UPPC_FriendDeclaration) ||
10271      DiagnoseUnexpandedParameterPack(SS, UPPC_FriendDeclaration))
10272    return 0;
10273
10274  // The context we found the declaration in, or in which we should
10275  // create the declaration.
10276  DeclContext *DC;
10277  Scope *DCScope = S;
10278  LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
10279                        ForRedeclaration);
10280
10281  // FIXME: there are different rules in local classes
10282
10283  // There are four cases here.
10284  //   - There's no scope specifier, in which case we just go to the
10285  //     appropriate scope and look for a function or function template
10286  //     there as appropriate.
10287  // Recover from invalid scope qualifiers as if they just weren't there.
10288  if (SS.isInvalid() || !SS.isSet()) {
10289    // C++0x [namespace.memdef]p3:
10290    //   If the name in a friend declaration is neither qualified nor
10291    //   a template-id and the declaration is a function or an
10292    //   elaborated-type-specifier, the lookup to determine whether
10293    //   the entity has been previously declared shall not consider
10294    //   any scopes outside the innermost enclosing namespace.
10295    // C++0x [class.friend]p11:
10296    //   If a friend declaration appears in a local class and the name
10297    //   specified is an unqualified name, a prior declaration is
10298    //   looked up without considering scopes that are outside the
10299    //   innermost enclosing non-class scope. For a friend function
10300    //   declaration, if there is no prior declaration, the program is
10301    //   ill-formed.
10302    bool isLocal = cast<CXXRecordDecl>(CurContext)->isLocalClass();
10303    bool isTemplateId = D.getName().getKind() == UnqualifiedId::IK_TemplateId;
10304
10305    // Find the appropriate context according to the above.
10306    DC = CurContext;
10307    while (true) {
10308      // Skip class contexts.  If someone can cite chapter and verse
10309      // for this behavior, that would be nice --- it's what GCC and
10310      // EDG do, and it seems like a reasonable intent, but the spec
10311      // really only says that checks for unqualified existing
10312      // declarations should stop at the nearest enclosing namespace,
10313      // not that they should only consider the nearest enclosing
10314      // namespace.
10315      while (DC->isRecord())
10316        DC = DC->getParent();
10317
10318      LookupQualifiedName(Previous, DC);
10319
10320      // TODO: decide what we think about using declarations.
10321      if (isLocal || !Previous.empty())
10322        break;
10323
10324      if (isTemplateId) {
10325        if (isa<TranslationUnitDecl>(DC)) break;
10326      } else {
10327        if (DC->isFileContext()) break;
10328      }
10329      DC = DC->getParent();
10330    }
10331
10332    // C++ [class.friend]p1: A friend of a class is a function or
10333    //   class that is not a member of the class . . .
10334    // C++11 changes this for both friend types and functions.
10335    // Most C++ 98 compilers do seem to give an error here, so
10336    // we do, too.
10337    if (!Previous.empty() && DC->Equals(CurContext))
10338      Diag(DS.getFriendSpecLoc(),
10339           getLangOptions().CPlusPlus0x ?
10340             diag::warn_cxx98_compat_friend_is_member :
10341             diag::err_friend_is_member);
10342
10343    DCScope = getScopeForDeclContext(S, DC);
10344
10345    // C++ [class.friend]p6:
10346    //   A function can be defined in a friend declaration of a class if and
10347    //   only if the class is a non-local class (9.8), the function name is
10348    //   unqualified, and the function has namespace scope.
10349    if (isLocal && D.isFunctionDefinition()) {
10350      Diag(NameInfo.getBeginLoc(), diag::err_friend_def_in_local_class);
10351    }
10352
10353  //   - There's a non-dependent scope specifier, in which case we
10354  //     compute it and do a previous lookup there for a function
10355  //     or function template.
10356  } else if (!SS.getScopeRep()->isDependent()) {
10357    DC = computeDeclContext(SS);
10358    if (!DC) return 0;
10359
10360    if (RequireCompleteDeclContext(SS, DC)) return 0;
10361
10362    LookupQualifiedName(Previous, DC);
10363
10364    // Ignore things found implicitly in the wrong scope.
10365    // TODO: better diagnostics for this case.  Suggesting the right
10366    // qualified scope would be nice...
10367    LookupResult::Filter F = Previous.makeFilter();
10368    while (F.hasNext()) {
10369      NamedDecl *D = F.next();
10370      if (!DC->InEnclosingNamespaceSetOf(
10371              D->getDeclContext()->getRedeclContext()))
10372        F.erase();
10373    }
10374    F.done();
10375
10376    if (Previous.empty()) {
10377      D.setInvalidType();
10378      Diag(Loc, diag::err_qualified_friend_not_found)
10379          << Name << TInfo->getType();
10380      return 0;
10381    }
10382
10383    // C++ [class.friend]p1: A friend of a class is a function or
10384    //   class that is not a member of the class . . .
10385    if (DC->Equals(CurContext))
10386      Diag(DS.getFriendSpecLoc(),
10387           getLangOptions().CPlusPlus0x ?
10388             diag::warn_cxx98_compat_friend_is_member :
10389             diag::err_friend_is_member);
10390
10391    if (D.isFunctionDefinition()) {
10392      // C++ [class.friend]p6:
10393      //   A function can be defined in a friend declaration of a class if and
10394      //   only if the class is a non-local class (9.8), the function name is
10395      //   unqualified, and the function has namespace scope.
10396      SemaDiagnosticBuilder DB
10397        = Diag(SS.getRange().getBegin(), diag::err_qualified_friend_def);
10398
10399      DB << SS.getScopeRep();
10400      if (DC->isFileContext())
10401        DB << FixItHint::CreateRemoval(SS.getRange());
10402      SS.clear();
10403    }
10404
10405  //   - There's a scope specifier that does not match any template
10406  //     parameter lists, in which case we use some arbitrary context,
10407  //     create a method or method template, and wait for instantiation.
10408  //   - There's a scope specifier that does match some template
10409  //     parameter lists, which we don't handle right now.
10410  } else {
10411    if (D.isFunctionDefinition()) {
10412      // C++ [class.friend]p6:
10413      //   A function can be defined in a friend declaration of a class if and
10414      //   only if the class is a non-local class (9.8), the function name is
10415      //   unqualified, and the function has namespace scope.
10416      Diag(SS.getRange().getBegin(), diag::err_qualified_friend_def)
10417        << SS.getScopeRep();
10418    }
10419
10420    DC = CurContext;
10421    assert(isa<CXXRecordDecl>(DC) && "friend declaration not in class?");
10422  }
10423
10424  if (!DC->isRecord()) {
10425    // This implies that it has to be an operator or function.
10426    if (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ||
10427        D.getName().getKind() == UnqualifiedId::IK_DestructorName ||
10428        D.getName().getKind() == UnqualifiedId::IK_ConversionFunctionId) {
10429      Diag(Loc, diag::err_introducing_special_friend) <<
10430        (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ? 0 :
10431         D.getName().getKind() == UnqualifiedId::IK_DestructorName ? 1 : 2);
10432      return 0;
10433    }
10434  }
10435
10436  // FIXME: This is an egregious hack to cope with cases where the scope stack
10437  // does not contain the declaration context, i.e., in an out-of-line
10438  // definition of a class.
10439  Scope FakeDCScope(S, Scope::DeclScope, Diags);
10440  if (!DCScope) {
10441    FakeDCScope.setEntity(DC);
10442    DCScope = &FakeDCScope;
10443  }
10444
10445  bool AddToScope = true;
10446  NamedDecl *ND = ActOnFunctionDeclarator(DCScope, D, DC, TInfo, Previous,
10447                                          move(TemplateParams), AddToScope);
10448  if (!ND) return 0;
10449
10450  assert(ND->getDeclContext() == DC);
10451  assert(ND->getLexicalDeclContext() == CurContext);
10452
10453  // Add the function declaration to the appropriate lookup tables,
10454  // adjusting the redeclarations list as necessary.  We don't
10455  // want to do this yet if the friending class is dependent.
10456  //
10457  // Also update the scope-based lookup if the target context's
10458  // lookup context is in lexical scope.
10459  if (!CurContext->isDependentContext()) {
10460    DC = DC->getRedeclContext();
10461    DC->makeDeclVisibleInContext(ND, /* Recoverable=*/ false);
10462    if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
10463      PushOnScopeChains(ND, EnclosingScope, /*AddToContext=*/ false);
10464  }
10465
10466  FriendDecl *FrD = FriendDecl::Create(Context, CurContext,
10467                                       D.getIdentifierLoc(), ND,
10468                                       DS.getFriendSpecLoc());
10469  FrD->setAccess(AS_public);
10470  CurContext->addDecl(FrD);
10471
10472  if (ND->isInvalidDecl())
10473    FrD->setInvalidDecl();
10474  else {
10475    FunctionDecl *FD;
10476    if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND))
10477      FD = FTD->getTemplatedDecl();
10478    else
10479      FD = cast<FunctionDecl>(ND);
10480
10481    // Mark templated-scope function declarations as unsupported.
10482    if (FD->getNumTemplateParameterLists())
10483      FrD->setUnsupportedFriend(true);
10484  }
10485
10486  return ND;
10487}
10488
10489void Sema::SetDeclDeleted(Decl *Dcl, SourceLocation DelLoc) {
10490  AdjustDeclIfTemplate(Dcl);
10491
10492  FunctionDecl *Fn = dyn_cast<FunctionDecl>(Dcl);
10493  if (!Fn) {
10494    Diag(DelLoc, diag::err_deleted_non_function);
10495    return;
10496  }
10497  if (const FunctionDecl *Prev = Fn->getPreviousDecl()) {
10498    Diag(DelLoc, diag::err_deleted_decl_not_first);
10499    Diag(Prev->getLocation(), diag::note_previous_declaration);
10500    // If the declaration wasn't the first, we delete the function anyway for
10501    // recovery.
10502  }
10503  Fn->setDeletedAsWritten();
10504}
10505
10506void Sema::SetDeclDefaulted(Decl *Dcl, SourceLocation DefaultLoc) {
10507  CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Dcl);
10508
10509  if (MD) {
10510    if (MD->getParent()->isDependentType()) {
10511      MD->setDefaulted();
10512      MD->setExplicitlyDefaulted();
10513      return;
10514    }
10515
10516    CXXSpecialMember Member = getSpecialMember(MD);
10517    if (Member == CXXInvalid) {
10518      Diag(DefaultLoc, diag::err_default_special_members);
10519      return;
10520    }
10521
10522    MD->setDefaulted();
10523    MD->setExplicitlyDefaulted();
10524
10525    // If this definition appears within the record, do the checking when
10526    // the record is complete.
10527    const FunctionDecl *Primary = MD;
10528    if (MD->getTemplatedKind() != FunctionDecl::TK_NonTemplate)
10529      // Find the uninstantiated declaration that actually had the '= default'
10530      // on it.
10531      MD->getTemplateInstantiationPattern()->isDefined(Primary);
10532
10533    if (Primary == Primary->getCanonicalDecl())
10534      return;
10535
10536    switch (Member) {
10537    case CXXDefaultConstructor: {
10538      CXXConstructorDecl *CD = cast<CXXConstructorDecl>(MD);
10539      CheckExplicitlyDefaultedDefaultConstructor(CD);
10540      if (!CD->isInvalidDecl())
10541        DefineImplicitDefaultConstructor(DefaultLoc, CD);
10542      break;
10543    }
10544
10545    case CXXCopyConstructor: {
10546      CXXConstructorDecl *CD = cast<CXXConstructorDecl>(MD);
10547      CheckExplicitlyDefaultedCopyConstructor(CD);
10548      if (!CD->isInvalidDecl())
10549        DefineImplicitCopyConstructor(DefaultLoc, CD);
10550      break;
10551    }
10552
10553    case CXXCopyAssignment: {
10554      CheckExplicitlyDefaultedCopyAssignment(MD);
10555      if (!MD->isInvalidDecl())
10556        DefineImplicitCopyAssignment(DefaultLoc, MD);
10557      break;
10558    }
10559
10560    case CXXDestructor: {
10561      CXXDestructorDecl *DD = cast<CXXDestructorDecl>(MD);
10562      CheckExplicitlyDefaultedDestructor(DD);
10563      if (!DD->isInvalidDecl())
10564        DefineImplicitDestructor(DefaultLoc, DD);
10565      break;
10566    }
10567
10568    case CXXMoveConstructor: {
10569      CXXConstructorDecl *CD = cast<CXXConstructorDecl>(MD);
10570      CheckExplicitlyDefaultedMoveConstructor(CD);
10571      if (!CD->isInvalidDecl())
10572        DefineImplicitMoveConstructor(DefaultLoc, CD);
10573      break;
10574    }
10575
10576    case CXXMoveAssignment: {
10577      CheckExplicitlyDefaultedMoveAssignment(MD);
10578      if (!MD->isInvalidDecl())
10579        DefineImplicitMoveAssignment(DefaultLoc, MD);
10580      break;
10581    }
10582
10583    case CXXInvalid:
10584      llvm_unreachable("Invalid special member.");
10585    }
10586  } else {
10587    Diag(DefaultLoc, diag::err_default_special_members);
10588  }
10589}
10590
10591static void SearchForReturnInStmt(Sema &Self, Stmt *S) {
10592  for (Stmt::child_range CI = S->children(); CI; ++CI) {
10593    Stmt *SubStmt = *CI;
10594    if (!SubStmt)
10595      continue;
10596    if (isa<ReturnStmt>(SubStmt))
10597      Self.Diag(SubStmt->getSourceRange().getBegin(),
10598           diag::err_return_in_constructor_handler);
10599    if (!isa<Expr>(SubStmt))
10600      SearchForReturnInStmt(Self, SubStmt);
10601  }
10602}
10603
10604void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) {
10605  for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) {
10606    CXXCatchStmt *Handler = TryBlock->getHandler(I);
10607    SearchForReturnInStmt(*this, Handler);
10608  }
10609}
10610
10611bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New,
10612                                             const CXXMethodDecl *Old) {
10613  QualType NewTy = New->getType()->getAs<FunctionType>()->getResultType();
10614  QualType OldTy = Old->getType()->getAs<FunctionType>()->getResultType();
10615
10616  if (Context.hasSameType(NewTy, OldTy) ||
10617      NewTy->isDependentType() || OldTy->isDependentType())
10618    return false;
10619
10620  // Check if the return types are covariant
10621  QualType NewClassTy, OldClassTy;
10622
10623  /// Both types must be pointers or references to classes.
10624  if (const PointerType *NewPT = NewTy->getAs<PointerType>()) {
10625    if (const PointerType *OldPT = OldTy->getAs<PointerType>()) {
10626      NewClassTy = NewPT->getPointeeType();
10627      OldClassTy = OldPT->getPointeeType();
10628    }
10629  } else if (const ReferenceType *NewRT = NewTy->getAs<ReferenceType>()) {
10630    if (const ReferenceType *OldRT = OldTy->getAs<ReferenceType>()) {
10631      if (NewRT->getTypeClass() == OldRT->getTypeClass()) {
10632        NewClassTy = NewRT->getPointeeType();
10633        OldClassTy = OldRT->getPointeeType();
10634      }
10635    }
10636  }
10637
10638  // The return types aren't either both pointers or references to a class type.
10639  if (NewClassTy.isNull()) {
10640    Diag(New->getLocation(),
10641         diag::err_different_return_type_for_overriding_virtual_function)
10642      << New->getDeclName() << NewTy << OldTy;
10643    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
10644
10645    return true;
10646  }
10647
10648  // C++ [class.virtual]p6:
10649  //   If the return type of D::f differs from the return type of B::f, the
10650  //   class type in the return type of D::f shall be complete at the point of
10651  //   declaration of D::f or shall be the class type D.
10652  if (const RecordType *RT = NewClassTy->getAs<RecordType>()) {
10653    if (!RT->isBeingDefined() &&
10654        RequireCompleteType(New->getLocation(), NewClassTy,
10655                            PDiag(diag::err_covariant_return_incomplete)
10656                              << New->getDeclName()))
10657    return true;
10658  }
10659
10660  if (!Context.hasSameUnqualifiedType(NewClassTy, OldClassTy)) {
10661    // Check if the new class derives from the old class.
10662    if (!IsDerivedFrom(NewClassTy, OldClassTy)) {
10663      Diag(New->getLocation(),
10664           diag::err_covariant_return_not_derived)
10665      << New->getDeclName() << NewTy << OldTy;
10666      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
10667      return true;
10668    }
10669
10670    // Check if we the conversion from derived to base is valid.
10671    if (CheckDerivedToBaseConversion(NewClassTy, OldClassTy,
10672                    diag::err_covariant_return_inaccessible_base,
10673                    diag::err_covariant_return_ambiguous_derived_to_base_conv,
10674                    // FIXME: Should this point to the return type?
10675                    New->getLocation(), SourceRange(), New->getDeclName(), 0)) {
10676      // FIXME: this note won't trigger for delayed access control
10677      // diagnostics, and it's impossible to get an undelayed error
10678      // here from access control during the original parse because
10679      // the ParsingDeclSpec/ParsingDeclarator are still in scope.
10680      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
10681      return true;
10682    }
10683  }
10684
10685  // The qualifiers of the return types must be the same.
10686  if (NewTy.getLocalCVRQualifiers() != OldTy.getLocalCVRQualifiers()) {
10687    Diag(New->getLocation(),
10688         diag::err_covariant_return_type_different_qualifications)
10689    << New->getDeclName() << NewTy << OldTy;
10690    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
10691    return true;
10692  };
10693
10694
10695  // The new class type must have the same or less qualifiers as the old type.
10696  if (NewClassTy.isMoreQualifiedThan(OldClassTy)) {
10697    Diag(New->getLocation(),
10698         diag::err_covariant_return_type_class_type_more_qualified)
10699    << New->getDeclName() << NewTy << OldTy;
10700    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
10701    return true;
10702  };
10703
10704  return false;
10705}
10706
10707/// \brief Mark the given method pure.
10708///
10709/// \param Method the method to be marked pure.
10710///
10711/// \param InitRange the source range that covers the "0" initializer.
10712bool Sema::CheckPureMethod(CXXMethodDecl *Method, SourceRange InitRange) {
10713  SourceLocation EndLoc = InitRange.getEnd();
10714  if (EndLoc.isValid())
10715    Method->setRangeEnd(EndLoc);
10716
10717  if (Method->isVirtual() || Method->getParent()->isDependentContext()) {
10718    Method->setPure();
10719    return false;
10720  }
10721
10722  if (!Method->isInvalidDecl())
10723    Diag(Method->getLocation(), diag::err_non_virtual_pure)
10724      << Method->getDeclName() << InitRange;
10725  return true;
10726}
10727
10728/// ActOnCXXEnterDeclInitializer - Invoked when we are about to parse
10729/// an initializer for the out-of-line declaration 'Dcl'.  The scope
10730/// is a fresh scope pushed for just this purpose.
10731///
10732/// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a
10733/// static data member of class X, names should be looked up in the scope of
10734/// class X.
10735void Sema::ActOnCXXEnterDeclInitializer(Scope *S, Decl *D) {
10736  // If there is no declaration, there was an error parsing it.
10737  if (D == 0 || D->isInvalidDecl()) return;
10738
10739  // We should only get called for declarations with scope specifiers, like:
10740  //   int foo::bar;
10741  assert(D->isOutOfLine());
10742  EnterDeclaratorContext(S, D->getDeclContext());
10743}
10744
10745/// ActOnCXXExitDeclInitializer - Invoked after we are finished parsing an
10746/// initializer for the out-of-line declaration 'D'.
10747void Sema::ActOnCXXExitDeclInitializer(Scope *S, Decl *D) {
10748  // If there is no declaration, there was an error parsing it.
10749  if (D == 0 || D->isInvalidDecl()) return;
10750
10751  assert(D->isOutOfLine());
10752  ExitDeclaratorContext(S);
10753}
10754
10755/// ActOnCXXConditionDeclarationExpr - Parsed a condition declaration of a
10756/// C++ if/switch/while/for statement.
10757/// e.g: "if (int x = f()) {...}"
10758DeclResult Sema::ActOnCXXConditionDeclaration(Scope *S, Declarator &D) {
10759  // C++ 6.4p2:
10760  // The declarator shall not specify a function or an array.
10761  // The type-specifier-seq shall not contain typedef and shall not declare a
10762  // new class or enumeration.
10763  assert(D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
10764         "Parser allowed 'typedef' as storage class of condition decl.");
10765
10766  Decl *Dcl = ActOnDeclarator(S, D);
10767  if (!Dcl)
10768    return true;
10769
10770  if (isa<FunctionDecl>(Dcl)) { // The declarator shall not specify a function.
10771    Diag(Dcl->getLocation(), diag::err_invalid_use_of_function_type)
10772      << D.getSourceRange();
10773    return true;
10774  }
10775
10776  return Dcl;
10777}
10778
10779void Sema::LoadExternalVTableUses() {
10780  if (!ExternalSource)
10781    return;
10782
10783  SmallVector<ExternalVTableUse, 4> VTables;
10784  ExternalSource->ReadUsedVTables(VTables);
10785  SmallVector<VTableUse, 4> NewUses;
10786  for (unsigned I = 0, N = VTables.size(); I != N; ++I) {
10787    llvm::DenseMap<CXXRecordDecl *, bool>::iterator Pos
10788      = VTablesUsed.find(VTables[I].Record);
10789    // Even if a definition wasn't required before, it may be required now.
10790    if (Pos != VTablesUsed.end()) {
10791      if (!Pos->second && VTables[I].DefinitionRequired)
10792        Pos->second = true;
10793      continue;
10794    }
10795
10796    VTablesUsed[VTables[I].Record] = VTables[I].DefinitionRequired;
10797    NewUses.push_back(VTableUse(VTables[I].Record, VTables[I].Location));
10798  }
10799
10800  VTableUses.insert(VTableUses.begin(), NewUses.begin(), NewUses.end());
10801}
10802
10803void Sema::MarkVTableUsed(SourceLocation Loc, CXXRecordDecl *Class,
10804                          bool DefinitionRequired) {
10805  // Ignore any vtable uses in unevaluated operands or for classes that do
10806  // not have a vtable.
10807  if (!Class->isDynamicClass() || Class->isDependentContext() ||
10808      CurContext->isDependentContext() ||
10809      ExprEvalContexts.back().Context == Unevaluated)
10810    return;
10811
10812  // Try to insert this class into the map.
10813  LoadExternalVTableUses();
10814  Class = cast<CXXRecordDecl>(Class->getCanonicalDecl());
10815  std::pair<llvm::DenseMap<CXXRecordDecl *, bool>::iterator, bool>
10816    Pos = VTablesUsed.insert(std::make_pair(Class, DefinitionRequired));
10817  if (!Pos.second) {
10818    // If we already had an entry, check to see if we are promoting this vtable
10819    // to required a definition. If so, we need to reappend to the VTableUses
10820    // list, since we may have already processed the first entry.
10821    if (DefinitionRequired && !Pos.first->second) {
10822      Pos.first->second = true;
10823    } else {
10824      // Otherwise, we can early exit.
10825      return;
10826    }
10827  }
10828
10829  // Local classes need to have their virtual members marked
10830  // immediately. For all other classes, we mark their virtual members
10831  // at the end of the translation unit.
10832  if (Class->isLocalClass())
10833    MarkVirtualMembersReferenced(Loc, Class);
10834  else
10835    VTableUses.push_back(std::make_pair(Class, Loc));
10836}
10837
10838bool Sema::DefineUsedVTables() {
10839  LoadExternalVTableUses();
10840  if (VTableUses.empty())
10841    return false;
10842
10843  // Note: The VTableUses vector could grow as a result of marking
10844  // the members of a class as "used", so we check the size each
10845  // time through the loop and prefer indices (with are stable) to
10846  // iterators (which are not).
10847  bool DefinedAnything = false;
10848  for (unsigned I = 0; I != VTableUses.size(); ++I) {
10849    CXXRecordDecl *Class = VTableUses[I].first->getDefinition();
10850    if (!Class)
10851      continue;
10852
10853    SourceLocation Loc = VTableUses[I].second;
10854
10855    // If this class has a key function, but that key function is
10856    // defined in another translation unit, we don't need to emit the
10857    // vtable even though we're using it.
10858    const CXXMethodDecl *KeyFunction = Context.getKeyFunction(Class);
10859    if (KeyFunction && !KeyFunction->hasBody()) {
10860      switch (KeyFunction->getTemplateSpecializationKind()) {
10861      case TSK_Undeclared:
10862      case TSK_ExplicitSpecialization:
10863      case TSK_ExplicitInstantiationDeclaration:
10864        // The key function is in another translation unit.
10865        continue;
10866
10867      case TSK_ExplicitInstantiationDefinition:
10868      case TSK_ImplicitInstantiation:
10869        // We will be instantiating the key function.
10870        break;
10871      }
10872    } else if (!KeyFunction) {
10873      // If we have a class with no key function that is the subject
10874      // of an explicit instantiation declaration, suppress the
10875      // vtable; it will live with the explicit instantiation
10876      // definition.
10877      bool IsExplicitInstantiationDeclaration
10878        = Class->getTemplateSpecializationKind()
10879                                      == TSK_ExplicitInstantiationDeclaration;
10880      for (TagDecl::redecl_iterator R = Class->redecls_begin(),
10881                                 REnd = Class->redecls_end();
10882           R != REnd; ++R) {
10883        TemplateSpecializationKind TSK
10884          = cast<CXXRecordDecl>(*R)->getTemplateSpecializationKind();
10885        if (TSK == TSK_ExplicitInstantiationDeclaration)
10886          IsExplicitInstantiationDeclaration = true;
10887        else if (TSK == TSK_ExplicitInstantiationDefinition) {
10888          IsExplicitInstantiationDeclaration = false;
10889          break;
10890        }
10891      }
10892
10893      if (IsExplicitInstantiationDeclaration)
10894        continue;
10895    }
10896
10897    // Mark all of the virtual members of this class as referenced, so
10898    // that we can build a vtable. Then, tell the AST consumer that a
10899    // vtable for this class is required.
10900    DefinedAnything = true;
10901    MarkVirtualMembersReferenced(Loc, Class);
10902    CXXRecordDecl *Canonical = cast<CXXRecordDecl>(Class->getCanonicalDecl());
10903    Consumer.HandleVTable(Class, VTablesUsed[Canonical]);
10904
10905    // Optionally warn if we're emitting a weak vtable.
10906    if (Class->getLinkage() == ExternalLinkage &&
10907        Class->getTemplateSpecializationKind() != TSK_ImplicitInstantiation) {
10908      const FunctionDecl *KeyFunctionDef = 0;
10909      if (!KeyFunction ||
10910          (KeyFunction->hasBody(KeyFunctionDef) &&
10911           KeyFunctionDef->isInlined()))
10912        Diag(Class->getLocation(), Class->getTemplateSpecializationKind() ==
10913             TSK_ExplicitInstantiationDefinition
10914             ? diag::warn_weak_template_vtable : diag::warn_weak_vtable)
10915          << Class;
10916    }
10917  }
10918  VTableUses.clear();
10919
10920  return DefinedAnything;
10921}
10922
10923void Sema::MarkVirtualMembersReferenced(SourceLocation Loc,
10924                                        const CXXRecordDecl *RD) {
10925  for (CXXRecordDecl::method_iterator i = RD->method_begin(),
10926       e = RD->method_end(); i != e; ++i) {
10927    CXXMethodDecl *MD = *i;
10928
10929    // C++ [basic.def.odr]p2:
10930    //   [...] A virtual member function is used if it is not pure. [...]
10931    if (MD->isVirtual() && !MD->isPure())
10932      MarkFunctionReferenced(Loc, MD);
10933  }
10934
10935  // Only classes that have virtual bases need a VTT.
10936  if (RD->getNumVBases() == 0)
10937    return;
10938
10939  for (CXXRecordDecl::base_class_const_iterator i = RD->bases_begin(),
10940           e = RD->bases_end(); i != e; ++i) {
10941    const CXXRecordDecl *Base =
10942        cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
10943    if (Base->getNumVBases() == 0)
10944      continue;
10945    MarkVirtualMembersReferenced(Loc, Base);
10946  }
10947}
10948
10949/// SetIvarInitializers - This routine builds initialization ASTs for the
10950/// Objective-C implementation whose ivars need be initialized.
10951void Sema::SetIvarInitializers(ObjCImplementationDecl *ObjCImplementation) {
10952  if (!getLangOptions().CPlusPlus)
10953    return;
10954  if (ObjCInterfaceDecl *OID = ObjCImplementation->getClassInterface()) {
10955    SmallVector<ObjCIvarDecl*, 8> ivars;
10956    CollectIvarsToConstructOrDestruct(OID, ivars);
10957    if (ivars.empty())
10958      return;
10959    SmallVector<CXXCtorInitializer*, 32> AllToInit;
10960    for (unsigned i = 0; i < ivars.size(); i++) {
10961      FieldDecl *Field = ivars[i];
10962      if (Field->isInvalidDecl())
10963        continue;
10964
10965      CXXCtorInitializer *Member;
10966      InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field);
10967      InitializationKind InitKind =
10968        InitializationKind::CreateDefault(ObjCImplementation->getLocation());
10969
10970      InitializationSequence InitSeq(*this, InitEntity, InitKind, 0, 0);
10971      ExprResult MemberInit =
10972        InitSeq.Perform(*this, InitEntity, InitKind, MultiExprArg());
10973      MemberInit = MaybeCreateExprWithCleanups(MemberInit);
10974      // Note, MemberInit could actually come back empty if no initialization
10975      // is required (e.g., because it would call a trivial default constructor)
10976      if (!MemberInit.get() || MemberInit.isInvalid())
10977        continue;
10978
10979      Member =
10980        new (Context) CXXCtorInitializer(Context, Field, SourceLocation(),
10981                                         SourceLocation(),
10982                                         MemberInit.takeAs<Expr>(),
10983                                         SourceLocation());
10984      AllToInit.push_back(Member);
10985
10986      // Be sure that the destructor is accessible and is marked as referenced.
10987      if (const RecordType *RecordTy
10988                  = Context.getBaseElementType(Field->getType())
10989                                                        ->getAs<RecordType>()) {
10990                    CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl());
10991        if (CXXDestructorDecl *Destructor = LookupDestructor(RD)) {
10992          MarkFunctionReferenced(Field->getLocation(), Destructor);
10993          CheckDestructorAccess(Field->getLocation(), Destructor,
10994                            PDiag(diag::err_access_dtor_ivar)
10995                              << Context.getBaseElementType(Field->getType()));
10996        }
10997      }
10998    }
10999    ObjCImplementation->setIvarInitializers(Context,
11000                                            AllToInit.data(), AllToInit.size());
11001  }
11002}
11003
11004static
11005void DelegatingCycleHelper(CXXConstructorDecl* Ctor,
11006                           llvm::SmallSet<CXXConstructorDecl*, 4> &Valid,
11007                           llvm::SmallSet<CXXConstructorDecl*, 4> &Invalid,
11008                           llvm::SmallSet<CXXConstructorDecl*, 4> &Current,
11009                           Sema &S) {
11010  llvm::SmallSet<CXXConstructorDecl*, 4>::iterator CI = Current.begin(),
11011                                                   CE = Current.end();
11012  if (Ctor->isInvalidDecl())
11013    return;
11014
11015  const FunctionDecl *FNTarget = 0;
11016  CXXConstructorDecl *Target;
11017
11018  // We ignore the result here since if we don't have a body, Target will be
11019  // null below.
11020  (void)Ctor->getTargetConstructor()->hasBody(FNTarget);
11021  Target
11022= const_cast<CXXConstructorDecl*>(cast_or_null<CXXConstructorDecl>(FNTarget));
11023
11024  CXXConstructorDecl *Canonical = Ctor->getCanonicalDecl(),
11025                     // Avoid dereferencing a null pointer here.
11026                     *TCanonical = Target ? Target->getCanonicalDecl() : 0;
11027
11028  if (!Current.insert(Canonical))
11029    return;
11030
11031  // We know that beyond here, we aren't chaining into a cycle.
11032  if (!Target || !Target->isDelegatingConstructor() ||
11033      Target->isInvalidDecl() || Valid.count(TCanonical)) {
11034    for (CI = Current.begin(), CE = Current.end(); CI != CE; ++CI)
11035      Valid.insert(*CI);
11036    Current.clear();
11037  // We've hit a cycle.
11038  } else if (TCanonical == Canonical || Invalid.count(TCanonical) ||
11039             Current.count(TCanonical)) {
11040    // If we haven't diagnosed this cycle yet, do so now.
11041    if (!Invalid.count(TCanonical)) {
11042      S.Diag((*Ctor->init_begin())->getSourceLocation(),
11043             diag::warn_delegating_ctor_cycle)
11044        << Ctor;
11045
11046      // Don't add a note for a function delegating directo to itself.
11047      if (TCanonical != Canonical)
11048        S.Diag(Target->getLocation(), diag::note_it_delegates_to);
11049
11050      CXXConstructorDecl *C = Target;
11051      while (C->getCanonicalDecl() != Canonical) {
11052        (void)C->getTargetConstructor()->hasBody(FNTarget);
11053        assert(FNTarget && "Ctor cycle through bodiless function");
11054
11055        C
11056       = const_cast<CXXConstructorDecl*>(cast<CXXConstructorDecl>(FNTarget));
11057        S.Diag(C->getLocation(), diag::note_which_delegates_to);
11058      }
11059    }
11060
11061    for (CI = Current.begin(), CE = Current.end(); CI != CE; ++CI)
11062      Invalid.insert(*CI);
11063    Current.clear();
11064  } else {
11065    DelegatingCycleHelper(Target, Valid, Invalid, Current, S);
11066  }
11067}
11068
11069
11070void Sema::CheckDelegatingCtorCycles() {
11071  llvm::SmallSet<CXXConstructorDecl*, 4> Valid, Invalid, Current;
11072
11073  llvm::SmallSet<CXXConstructorDecl*, 4>::iterator CI = Current.begin(),
11074                                                   CE = Current.end();
11075
11076  for (DelegatingCtorDeclsType::iterator
11077         I = DelegatingCtorDecls.begin(ExternalSource),
11078         E = DelegatingCtorDecls.end();
11079       I != E; ++I) {
11080   DelegatingCycleHelper(*I, Valid, Invalid, Current, *this);
11081  }
11082
11083  for (CI = Invalid.begin(), CE = Invalid.end(); CI != CE; ++CI)
11084    (*CI)->setInvalidDecl();
11085}
11086
11087/// IdentifyCUDATarget - Determine the CUDA compilation target for this function
11088Sema::CUDAFunctionTarget Sema::IdentifyCUDATarget(const FunctionDecl *D) {
11089  // Implicitly declared functions (e.g. copy constructors) are
11090  // __host__ __device__
11091  if (D->isImplicit())
11092    return CFT_HostDevice;
11093
11094  if (D->hasAttr<CUDAGlobalAttr>())
11095    return CFT_Global;
11096
11097  if (D->hasAttr<CUDADeviceAttr>()) {
11098    if (D->hasAttr<CUDAHostAttr>())
11099      return CFT_HostDevice;
11100    else
11101      return CFT_Device;
11102  }
11103
11104  return CFT_Host;
11105}
11106
11107bool Sema::CheckCUDATarget(CUDAFunctionTarget CallerTarget,
11108                           CUDAFunctionTarget CalleeTarget) {
11109  // CUDA B.1.1 "The __device__ qualifier declares a function that is...
11110  // Callable from the device only."
11111  if (CallerTarget == CFT_Host && CalleeTarget == CFT_Device)
11112    return true;
11113
11114  // CUDA B.1.2 "The __global__ qualifier declares a function that is...
11115  // Callable from the host only."
11116  // CUDA B.1.3 "The __host__ qualifier declares a function that is...
11117  // Callable from the host only."
11118  if ((CallerTarget == CFT_Device || CallerTarget == CFT_Global) &&
11119      (CalleeTarget == CFT_Host || CalleeTarget == CFT_Global))
11120    return true;
11121
11122  if (CallerTarget == CFT_HostDevice && CalleeTarget != CFT_HostDevice)
11123    return true;
11124
11125  return false;
11126}
11127