SemaDeclCXX.cpp revision 3fe52ff7df93f7a928a15cc2cbf5134fdc0cec15
1//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for C++ declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/CXXFieldCollector.h"
16#include "clang/Sema/Scope.h"
17#include "clang/Sema/Initialization.h"
18#include "clang/Sema/Lookup.h"
19#include "clang/Sema/ScopeInfo.h"
20#include "clang/AST/ASTConsumer.h"
21#include "clang/AST/ASTContext.h"
22#include "clang/AST/ASTMutationListener.h"
23#include "clang/AST/CharUnits.h"
24#include "clang/AST/CXXInheritance.h"
25#include "clang/AST/DeclVisitor.h"
26#include "clang/AST/EvaluatedExprVisitor.h"
27#include "clang/AST/ExprCXX.h"
28#include "clang/AST/RecordLayout.h"
29#include "clang/AST/RecursiveASTVisitor.h"
30#include "clang/AST/StmtVisitor.h"
31#include "clang/AST/TypeLoc.h"
32#include "clang/AST/TypeOrdering.h"
33#include "clang/Sema/DeclSpec.h"
34#include "clang/Sema/ParsedTemplate.h"
35#include "clang/Basic/PartialDiagnostic.h"
36#include "clang/Lex/Preprocessor.h"
37#include "llvm/ADT/SmallString.h"
38#include "llvm/ADT/STLExtras.h"
39#include <map>
40#include <set>
41
42using namespace clang;
43
44//===----------------------------------------------------------------------===//
45// CheckDefaultArgumentVisitor
46//===----------------------------------------------------------------------===//
47
48namespace {
49  /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
50  /// the default argument of a parameter to determine whether it
51  /// contains any ill-formed subexpressions. For example, this will
52  /// diagnose the use of local variables or parameters within the
53  /// default argument expression.
54  class CheckDefaultArgumentVisitor
55    : public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
56    Expr *DefaultArg;
57    Sema *S;
58
59  public:
60    CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
61      : DefaultArg(defarg), S(s) {}
62
63    bool VisitExpr(Expr *Node);
64    bool VisitDeclRefExpr(DeclRefExpr *DRE);
65    bool VisitCXXThisExpr(CXXThisExpr *ThisE);
66    bool VisitLambdaExpr(LambdaExpr *Lambda);
67  };
68
69  /// VisitExpr - Visit all of the children of this expression.
70  bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
71    bool IsInvalid = false;
72    for (Stmt::child_range I = Node->children(); I; ++I)
73      IsInvalid |= Visit(*I);
74    return IsInvalid;
75  }
76
77  /// VisitDeclRefExpr - Visit a reference to a declaration, to
78  /// determine whether this declaration can be used in the default
79  /// argument expression.
80  bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
81    NamedDecl *Decl = DRE->getDecl();
82    if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
83      // C++ [dcl.fct.default]p9
84      //   Default arguments are evaluated each time the function is
85      //   called. The order of evaluation of function arguments is
86      //   unspecified. Consequently, parameters of a function shall not
87      //   be used in default argument expressions, even if they are not
88      //   evaluated. Parameters of a function declared before a default
89      //   argument expression are in scope and can hide namespace and
90      //   class member names.
91      return S->Diag(DRE->getLocStart(),
92                     diag::err_param_default_argument_references_param)
93         << Param->getDeclName() << DefaultArg->getSourceRange();
94    } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
95      // C++ [dcl.fct.default]p7
96      //   Local variables shall not be used in default argument
97      //   expressions.
98      if (VDecl->isLocalVarDecl())
99        return S->Diag(DRE->getLocStart(),
100                       diag::err_param_default_argument_references_local)
101          << VDecl->getDeclName() << DefaultArg->getSourceRange();
102    }
103
104    return false;
105  }
106
107  /// VisitCXXThisExpr - Visit a C++ "this" expression.
108  bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
109    // C++ [dcl.fct.default]p8:
110    //   The keyword this shall not be used in a default argument of a
111    //   member function.
112    return S->Diag(ThisE->getLocStart(),
113                   diag::err_param_default_argument_references_this)
114               << ThisE->getSourceRange();
115  }
116
117  bool CheckDefaultArgumentVisitor::VisitLambdaExpr(LambdaExpr *Lambda) {
118    // C++11 [expr.lambda.prim]p13:
119    //   A lambda-expression appearing in a default argument shall not
120    //   implicitly or explicitly capture any entity.
121    if (Lambda->capture_begin() == Lambda->capture_end())
122      return false;
123
124    return S->Diag(Lambda->getLocStart(),
125                   diag::err_lambda_capture_default_arg);
126  }
127}
128
129void Sema::ImplicitExceptionSpecification::CalledDecl(SourceLocation CallLoc,
130                                                      CXXMethodDecl *Method) {
131  // If we have an MSAny or unknown spec already, don't bother.
132  if (!Method || ComputedEST == EST_MSAny || ComputedEST == EST_Delayed)
133    return;
134
135  const FunctionProtoType *Proto
136    = Method->getType()->getAs<FunctionProtoType>();
137  Proto = Self->ResolveExceptionSpec(CallLoc, Proto);
138  if (!Proto)
139    return;
140
141  ExceptionSpecificationType EST = Proto->getExceptionSpecType();
142
143  // If this function can throw any exceptions, make a note of that.
144  if (EST == EST_Delayed || EST == EST_MSAny || EST == EST_None) {
145    ClearExceptions();
146    ComputedEST = EST;
147    return;
148  }
149
150  // FIXME: If the call to this decl is using any of its default arguments, we
151  // need to search them for potentially-throwing calls.
152
153  // If this function has a basic noexcept, it doesn't affect the outcome.
154  if (EST == EST_BasicNoexcept)
155    return;
156
157  // If we have a throw-all spec at this point, ignore the function.
158  if (ComputedEST == EST_None)
159    return;
160
161  // If we're still at noexcept(true) and there's a nothrow() callee,
162  // change to that specification.
163  if (EST == EST_DynamicNone) {
164    if (ComputedEST == EST_BasicNoexcept)
165      ComputedEST = EST_DynamicNone;
166    return;
167  }
168
169  // Check out noexcept specs.
170  if (EST == EST_ComputedNoexcept) {
171    FunctionProtoType::NoexceptResult NR =
172        Proto->getNoexceptSpec(Self->Context);
173    assert(NR != FunctionProtoType::NR_NoNoexcept &&
174           "Must have noexcept result for EST_ComputedNoexcept.");
175    assert(NR != FunctionProtoType::NR_Dependent &&
176           "Should not generate implicit declarations for dependent cases, "
177           "and don't know how to handle them anyway.");
178
179    // noexcept(false) -> no spec on the new function
180    if (NR == FunctionProtoType::NR_Throw) {
181      ClearExceptions();
182      ComputedEST = EST_None;
183    }
184    // noexcept(true) won't change anything either.
185    return;
186  }
187
188  assert(EST == EST_Dynamic && "EST case not considered earlier.");
189  assert(ComputedEST != EST_None &&
190         "Shouldn't collect exceptions when throw-all is guaranteed.");
191  ComputedEST = EST_Dynamic;
192  // Record the exceptions in this function's exception specification.
193  for (FunctionProtoType::exception_iterator E = Proto->exception_begin(),
194                                          EEnd = Proto->exception_end();
195       E != EEnd; ++E)
196    if (ExceptionsSeen.insert(Self->Context.getCanonicalType(*E)))
197      Exceptions.push_back(*E);
198}
199
200void Sema::ImplicitExceptionSpecification::CalledExpr(Expr *E) {
201  if (!E || ComputedEST == EST_MSAny || ComputedEST == EST_Delayed)
202    return;
203
204  // FIXME:
205  //
206  // C++0x [except.spec]p14:
207  //   [An] implicit exception-specification specifies the type-id T if and
208  // only if T is allowed by the exception-specification of a function directly
209  // invoked by f's implicit definition; f shall allow all exceptions if any
210  // function it directly invokes allows all exceptions, and f shall allow no
211  // exceptions if every function it directly invokes allows no exceptions.
212  //
213  // Note in particular that if an implicit exception-specification is generated
214  // for a function containing a throw-expression, that specification can still
215  // be noexcept(true).
216  //
217  // Note also that 'directly invoked' is not defined in the standard, and there
218  // is no indication that we should only consider potentially-evaluated calls.
219  //
220  // Ultimately we should implement the intent of the standard: the exception
221  // specification should be the set of exceptions which can be thrown by the
222  // implicit definition. For now, we assume that any non-nothrow expression can
223  // throw any exception.
224
225  if (Self->canThrow(E))
226    ComputedEST = EST_None;
227}
228
229bool
230Sema::SetParamDefaultArgument(ParmVarDecl *Param, Expr *Arg,
231                              SourceLocation EqualLoc) {
232  if (RequireCompleteType(Param->getLocation(), Param->getType(),
233                          diag::err_typecheck_decl_incomplete_type)) {
234    Param->setInvalidDecl();
235    return true;
236  }
237
238  // C++ [dcl.fct.default]p5
239  //   A default argument expression is implicitly converted (clause
240  //   4) to the parameter type. The default argument expression has
241  //   the same semantic constraints as the initializer expression in
242  //   a declaration of a variable of the parameter type, using the
243  //   copy-initialization semantics (8.5).
244  InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
245                                                                    Param);
246  InitializationKind Kind = InitializationKind::CreateCopy(Param->getLocation(),
247                                                           EqualLoc);
248  InitializationSequence InitSeq(*this, Entity, Kind, &Arg, 1);
249  ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
250                                      MultiExprArg(*this, &Arg, 1));
251  if (Result.isInvalid())
252    return true;
253  Arg = Result.takeAs<Expr>();
254
255  CheckImplicitConversions(Arg, EqualLoc);
256  Arg = MaybeCreateExprWithCleanups(Arg);
257
258  // Okay: add the default argument to the parameter
259  Param->setDefaultArg(Arg);
260
261  // We have already instantiated this parameter; provide each of the
262  // instantiations with the uninstantiated default argument.
263  UnparsedDefaultArgInstantiationsMap::iterator InstPos
264    = UnparsedDefaultArgInstantiations.find(Param);
265  if (InstPos != UnparsedDefaultArgInstantiations.end()) {
266    for (unsigned I = 0, N = InstPos->second.size(); I != N; ++I)
267      InstPos->second[I]->setUninstantiatedDefaultArg(Arg);
268
269    // We're done tracking this parameter's instantiations.
270    UnparsedDefaultArgInstantiations.erase(InstPos);
271  }
272
273  return false;
274}
275
276/// ActOnParamDefaultArgument - Check whether the default argument
277/// provided for a function parameter is well-formed. If so, attach it
278/// to the parameter declaration.
279void
280Sema::ActOnParamDefaultArgument(Decl *param, SourceLocation EqualLoc,
281                                Expr *DefaultArg) {
282  if (!param || !DefaultArg)
283    return;
284
285  ParmVarDecl *Param = cast<ParmVarDecl>(param);
286  UnparsedDefaultArgLocs.erase(Param);
287
288  // Default arguments are only permitted in C++
289  if (!getLangOpts().CPlusPlus) {
290    Diag(EqualLoc, diag::err_param_default_argument)
291      << DefaultArg->getSourceRange();
292    Param->setInvalidDecl();
293    return;
294  }
295
296  // Check for unexpanded parameter packs.
297  if (DiagnoseUnexpandedParameterPack(DefaultArg, UPPC_DefaultArgument)) {
298    Param->setInvalidDecl();
299    return;
300  }
301
302  // Check that the default argument is well-formed
303  CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg, this);
304  if (DefaultArgChecker.Visit(DefaultArg)) {
305    Param->setInvalidDecl();
306    return;
307  }
308
309  SetParamDefaultArgument(Param, DefaultArg, EqualLoc);
310}
311
312/// ActOnParamUnparsedDefaultArgument - We've seen a default
313/// argument for a function parameter, but we can't parse it yet
314/// because we're inside a class definition. Note that this default
315/// argument will be parsed later.
316void Sema::ActOnParamUnparsedDefaultArgument(Decl *param,
317                                             SourceLocation EqualLoc,
318                                             SourceLocation ArgLoc) {
319  if (!param)
320    return;
321
322  ParmVarDecl *Param = cast<ParmVarDecl>(param);
323  if (Param)
324    Param->setUnparsedDefaultArg();
325
326  UnparsedDefaultArgLocs[Param] = ArgLoc;
327}
328
329/// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
330/// the default argument for the parameter param failed.
331void Sema::ActOnParamDefaultArgumentError(Decl *param) {
332  if (!param)
333    return;
334
335  ParmVarDecl *Param = cast<ParmVarDecl>(param);
336
337  Param->setInvalidDecl();
338
339  UnparsedDefaultArgLocs.erase(Param);
340}
341
342/// CheckExtraCXXDefaultArguments - Check for any extra default
343/// arguments in the declarator, which is not a function declaration
344/// or definition and therefore is not permitted to have default
345/// arguments. This routine should be invoked for every declarator
346/// that is not a function declaration or definition.
347void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
348  // C++ [dcl.fct.default]p3
349  //   A default argument expression shall be specified only in the
350  //   parameter-declaration-clause of a function declaration or in a
351  //   template-parameter (14.1). It shall not be specified for a
352  //   parameter pack. If it is specified in a
353  //   parameter-declaration-clause, it shall not occur within a
354  //   declarator or abstract-declarator of a parameter-declaration.
355  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
356    DeclaratorChunk &chunk = D.getTypeObject(i);
357    if (chunk.Kind == DeclaratorChunk::Function) {
358      for (unsigned argIdx = 0, e = chunk.Fun.NumArgs; argIdx != e; ++argIdx) {
359        ParmVarDecl *Param =
360          cast<ParmVarDecl>(chunk.Fun.ArgInfo[argIdx].Param);
361        if (Param->hasUnparsedDefaultArg()) {
362          CachedTokens *Toks = chunk.Fun.ArgInfo[argIdx].DefaultArgTokens;
363          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
364            << SourceRange((*Toks)[1].getLocation(), Toks->back().getLocation());
365          delete Toks;
366          chunk.Fun.ArgInfo[argIdx].DefaultArgTokens = 0;
367        } else if (Param->getDefaultArg()) {
368          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
369            << Param->getDefaultArg()->getSourceRange();
370          Param->setDefaultArg(0);
371        }
372      }
373    }
374  }
375}
376
377// MergeCXXFunctionDecl - Merge two declarations of the same C++
378// function, once we already know that they have the same
379// type. Subroutine of MergeFunctionDecl. Returns true if there was an
380// error, false otherwise.
381bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old,
382                                Scope *S) {
383  bool Invalid = false;
384
385  // C++ [dcl.fct.default]p4:
386  //   For non-template functions, default arguments can be added in
387  //   later declarations of a function in the same
388  //   scope. Declarations in different scopes have completely
389  //   distinct sets of default arguments. That is, declarations in
390  //   inner scopes do not acquire default arguments from
391  //   declarations in outer scopes, and vice versa. In a given
392  //   function declaration, all parameters subsequent to a
393  //   parameter with a default argument shall have default
394  //   arguments supplied in this or previous declarations. A
395  //   default argument shall not be redefined by a later
396  //   declaration (not even to the same value).
397  //
398  // C++ [dcl.fct.default]p6:
399  //   Except for member functions of class templates, the default arguments
400  //   in a member function definition that appears outside of the class
401  //   definition are added to the set of default arguments provided by the
402  //   member function declaration in the class definition.
403  for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) {
404    ParmVarDecl *OldParam = Old->getParamDecl(p);
405    ParmVarDecl *NewParam = New->getParamDecl(p);
406
407    bool OldParamHasDfl = OldParam->hasDefaultArg();
408    bool NewParamHasDfl = NewParam->hasDefaultArg();
409
410    NamedDecl *ND = Old;
411    if (S && !isDeclInScope(ND, New->getDeclContext(), S))
412      // Ignore default parameters of old decl if they are not in
413      // the same scope.
414      OldParamHasDfl = false;
415
416    if (OldParamHasDfl && NewParamHasDfl) {
417
418      unsigned DiagDefaultParamID =
419        diag::err_param_default_argument_redefinition;
420
421      // MSVC accepts that default parameters be redefined for member functions
422      // of template class. The new default parameter's value is ignored.
423      Invalid = true;
424      if (getLangOpts().MicrosoftExt) {
425        CXXMethodDecl* MD = dyn_cast<CXXMethodDecl>(New);
426        if (MD && MD->getParent()->getDescribedClassTemplate()) {
427          // Merge the old default argument into the new parameter.
428          NewParam->setHasInheritedDefaultArg();
429          if (OldParam->hasUninstantiatedDefaultArg())
430            NewParam->setUninstantiatedDefaultArg(
431                                      OldParam->getUninstantiatedDefaultArg());
432          else
433            NewParam->setDefaultArg(OldParam->getInit());
434          DiagDefaultParamID = diag::warn_param_default_argument_redefinition;
435          Invalid = false;
436        }
437      }
438
439      // FIXME: If we knew where the '=' was, we could easily provide a fix-it
440      // hint here. Alternatively, we could walk the type-source information
441      // for NewParam to find the last source location in the type... but it
442      // isn't worth the effort right now. This is the kind of test case that
443      // is hard to get right:
444      //   int f(int);
445      //   void g(int (*fp)(int) = f);
446      //   void g(int (*fp)(int) = &f);
447      Diag(NewParam->getLocation(), DiagDefaultParamID)
448        << NewParam->getDefaultArgRange();
449
450      // Look for the function declaration where the default argument was
451      // actually written, which may be a declaration prior to Old.
452      for (FunctionDecl *Older = Old->getPreviousDecl();
453           Older; Older = Older->getPreviousDecl()) {
454        if (!Older->getParamDecl(p)->hasDefaultArg())
455          break;
456
457        OldParam = Older->getParamDecl(p);
458      }
459
460      Diag(OldParam->getLocation(), diag::note_previous_definition)
461        << OldParam->getDefaultArgRange();
462    } else if (OldParamHasDfl) {
463      // Merge the old default argument into the new parameter.
464      // It's important to use getInit() here;  getDefaultArg()
465      // strips off any top-level ExprWithCleanups.
466      NewParam->setHasInheritedDefaultArg();
467      if (OldParam->hasUninstantiatedDefaultArg())
468        NewParam->setUninstantiatedDefaultArg(
469                                      OldParam->getUninstantiatedDefaultArg());
470      else
471        NewParam->setDefaultArg(OldParam->getInit());
472    } else if (NewParamHasDfl) {
473      if (New->getDescribedFunctionTemplate()) {
474        // Paragraph 4, quoted above, only applies to non-template functions.
475        Diag(NewParam->getLocation(),
476             diag::err_param_default_argument_template_redecl)
477          << NewParam->getDefaultArgRange();
478        Diag(Old->getLocation(), diag::note_template_prev_declaration)
479          << false;
480      } else if (New->getTemplateSpecializationKind()
481                   != TSK_ImplicitInstantiation &&
482                 New->getTemplateSpecializationKind() != TSK_Undeclared) {
483        // C++ [temp.expr.spec]p21:
484        //   Default function arguments shall not be specified in a declaration
485        //   or a definition for one of the following explicit specializations:
486        //     - the explicit specialization of a function template;
487        //     - the explicit specialization of a member function template;
488        //     - the explicit specialization of a member function of a class
489        //       template where the class template specialization to which the
490        //       member function specialization belongs is implicitly
491        //       instantiated.
492        Diag(NewParam->getLocation(), diag::err_template_spec_default_arg)
493          << (New->getTemplateSpecializationKind() ==TSK_ExplicitSpecialization)
494          << New->getDeclName()
495          << NewParam->getDefaultArgRange();
496      } else if (New->getDeclContext()->isDependentContext()) {
497        // C++ [dcl.fct.default]p6 (DR217):
498        //   Default arguments for a member function of a class template shall
499        //   be specified on the initial declaration of the member function
500        //   within the class template.
501        //
502        // Reading the tea leaves a bit in DR217 and its reference to DR205
503        // leads me to the conclusion that one cannot add default function
504        // arguments for an out-of-line definition of a member function of a
505        // dependent type.
506        int WhichKind = 2;
507        if (CXXRecordDecl *Record
508              = dyn_cast<CXXRecordDecl>(New->getDeclContext())) {
509          if (Record->getDescribedClassTemplate())
510            WhichKind = 0;
511          else if (isa<ClassTemplatePartialSpecializationDecl>(Record))
512            WhichKind = 1;
513          else
514            WhichKind = 2;
515        }
516
517        Diag(NewParam->getLocation(),
518             diag::err_param_default_argument_member_template_redecl)
519          << WhichKind
520          << NewParam->getDefaultArgRange();
521      } else if (CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(New)) {
522        CXXSpecialMember NewSM = getSpecialMember(Ctor),
523                         OldSM = getSpecialMember(cast<CXXConstructorDecl>(Old));
524        if (NewSM != OldSM) {
525          Diag(NewParam->getLocation(),diag::warn_default_arg_makes_ctor_special)
526            << NewParam->getDefaultArgRange() << NewSM;
527          Diag(Old->getLocation(), diag::note_previous_declaration_special)
528            << OldSM;
529        }
530      }
531    }
532  }
533
534  // C++11 [dcl.constexpr]p1: If any declaration of a function or function
535  // template has a constexpr specifier then all its declarations shall
536  // contain the constexpr specifier.
537  if (New->isConstexpr() != Old->isConstexpr()) {
538    Diag(New->getLocation(), diag::err_constexpr_redecl_mismatch)
539      << New << New->isConstexpr();
540    Diag(Old->getLocation(), diag::note_previous_declaration);
541    Invalid = true;
542  }
543
544  if (CheckEquivalentExceptionSpec(Old, New))
545    Invalid = true;
546
547  return Invalid;
548}
549
550/// \brief Merge the exception specifications of two variable declarations.
551///
552/// This is called when there's a redeclaration of a VarDecl. The function
553/// checks if the redeclaration might have an exception specification and
554/// validates compatibility and merges the specs if necessary.
555void Sema::MergeVarDeclExceptionSpecs(VarDecl *New, VarDecl *Old) {
556  // Shortcut if exceptions are disabled.
557  if (!getLangOpts().CXXExceptions)
558    return;
559
560  assert(Context.hasSameType(New->getType(), Old->getType()) &&
561         "Should only be called if types are otherwise the same.");
562
563  QualType NewType = New->getType();
564  QualType OldType = Old->getType();
565
566  // We're only interested in pointers and references to functions, as well
567  // as pointers to member functions.
568  if (const ReferenceType *R = NewType->getAs<ReferenceType>()) {
569    NewType = R->getPointeeType();
570    OldType = OldType->getAs<ReferenceType>()->getPointeeType();
571  } else if (const PointerType *P = NewType->getAs<PointerType>()) {
572    NewType = P->getPointeeType();
573    OldType = OldType->getAs<PointerType>()->getPointeeType();
574  } else if (const MemberPointerType *M = NewType->getAs<MemberPointerType>()) {
575    NewType = M->getPointeeType();
576    OldType = OldType->getAs<MemberPointerType>()->getPointeeType();
577  }
578
579  if (!NewType->isFunctionProtoType())
580    return;
581
582  // There's lots of special cases for functions. For function pointers, system
583  // libraries are hopefully not as broken so that we don't need these
584  // workarounds.
585  if (CheckEquivalentExceptionSpec(
586        OldType->getAs<FunctionProtoType>(), Old->getLocation(),
587        NewType->getAs<FunctionProtoType>(), New->getLocation())) {
588    New->setInvalidDecl();
589  }
590}
591
592/// CheckCXXDefaultArguments - Verify that the default arguments for a
593/// function declaration are well-formed according to C++
594/// [dcl.fct.default].
595void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
596  unsigned NumParams = FD->getNumParams();
597  unsigned p;
598
599  bool IsLambda = FD->getOverloadedOperator() == OO_Call &&
600                  isa<CXXMethodDecl>(FD) &&
601                  cast<CXXMethodDecl>(FD)->getParent()->isLambda();
602
603  // Find first parameter with a default argument
604  for (p = 0; p < NumParams; ++p) {
605    ParmVarDecl *Param = FD->getParamDecl(p);
606    if (Param->hasDefaultArg()) {
607      // C++11 [expr.prim.lambda]p5:
608      //   [...] Default arguments (8.3.6) shall not be specified in the
609      //   parameter-declaration-clause of a lambda-declarator.
610      //
611      // FIXME: Core issue 974 strikes this sentence, we only provide an
612      // extension warning.
613      if (IsLambda)
614        Diag(Param->getLocation(), diag::ext_lambda_default_arguments)
615          << Param->getDefaultArgRange();
616      break;
617    }
618  }
619
620  // C++ [dcl.fct.default]p4:
621  //   In a given function declaration, all parameters
622  //   subsequent to a parameter with a default argument shall
623  //   have default arguments supplied in this or previous
624  //   declarations. A default argument shall not be redefined
625  //   by a later declaration (not even to the same value).
626  unsigned LastMissingDefaultArg = 0;
627  for (; p < NumParams; ++p) {
628    ParmVarDecl *Param = FD->getParamDecl(p);
629    if (!Param->hasDefaultArg()) {
630      if (Param->isInvalidDecl())
631        /* We already complained about this parameter. */;
632      else if (Param->getIdentifier())
633        Diag(Param->getLocation(),
634             diag::err_param_default_argument_missing_name)
635          << Param->getIdentifier();
636      else
637        Diag(Param->getLocation(),
638             diag::err_param_default_argument_missing);
639
640      LastMissingDefaultArg = p;
641    }
642  }
643
644  if (LastMissingDefaultArg > 0) {
645    // Some default arguments were missing. Clear out all of the
646    // default arguments up to (and including) the last missing
647    // default argument, so that we leave the function parameters
648    // in a semantically valid state.
649    for (p = 0; p <= LastMissingDefaultArg; ++p) {
650      ParmVarDecl *Param = FD->getParamDecl(p);
651      if (Param->hasDefaultArg()) {
652        Param->setDefaultArg(0);
653      }
654    }
655  }
656}
657
658// CheckConstexprParameterTypes - Check whether a function's parameter types
659// are all literal types. If so, return true. If not, produce a suitable
660// diagnostic and return false.
661static bool CheckConstexprParameterTypes(Sema &SemaRef,
662                                         const FunctionDecl *FD) {
663  unsigned ArgIndex = 0;
664  const FunctionProtoType *FT = FD->getType()->getAs<FunctionProtoType>();
665  for (FunctionProtoType::arg_type_iterator i = FT->arg_type_begin(),
666       e = FT->arg_type_end(); i != e; ++i, ++ArgIndex) {
667    const ParmVarDecl *PD = FD->getParamDecl(ArgIndex);
668    SourceLocation ParamLoc = PD->getLocation();
669    if (!(*i)->isDependentType() &&
670        SemaRef.RequireLiteralType(ParamLoc, *i,
671                                   diag::err_constexpr_non_literal_param,
672                                   ArgIndex+1, PD->getSourceRange(),
673                                   isa<CXXConstructorDecl>(FD)))
674      return false;
675  }
676  return true;
677}
678
679// CheckConstexprFunctionDecl - Check whether a function declaration satisfies
680// the requirements of a constexpr function definition or a constexpr
681// constructor definition. If so, return true. If not, produce appropriate
682// diagnostics and return false.
683//
684// This implements C++11 [dcl.constexpr]p3,4, as amended by DR1360.
685bool Sema::CheckConstexprFunctionDecl(const FunctionDecl *NewFD) {
686  const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
687  if (MD && MD->isInstance()) {
688    // C++11 [dcl.constexpr]p4:
689    //  The definition of a constexpr constructor shall satisfy the following
690    //  constraints:
691    //  - the class shall not have any virtual base classes;
692    const CXXRecordDecl *RD = MD->getParent();
693    if (RD->getNumVBases()) {
694      Diag(NewFD->getLocation(), diag::err_constexpr_virtual_base)
695        << isa<CXXConstructorDecl>(NewFD) << RD->isStruct()
696        << RD->getNumVBases();
697      for (CXXRecordDecl::base_class_const_iterator I = RD->vbases_begin(),
698             E = RD->vbases_end(); I != E; ++I)
699        Diag(I->getLocStart(),
700             diag::note_constexpr_virtual_base_here) << I->getSourceRange();
701      return false;
702    }
703  }
704
705  if (!isa<CXXConstructorDecl>(NewFD)) {
706    // C++11 [dcl.constexpr]p3:
707    //  The definition of a constexpr function shall satisfy the following
708    //  constraints:
709    // - it shall not be virtual;
710    const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD);
711    if (Method && Method->isVirtual()) {
712      Diag(NewFD->getLocation(), diag::err_constexpr_virtual);
713
714      // If it's not obvious why this function is virtual, find an overridden
715      // function which uses the 'virtual' keyword.
716      const CXXMethodDecl *WrittenVirtual = Method;
717      while (!WrittenVirtual->isVirtualAsWritten())
718        WrittenVirtual = *WrittenVirtual->begin_overridden_methods();
719      if (WrittenVirtual != Method)
720        Diag(WrittenVirtual->getLocation(),
721             diag::note_overridden_virtual_function);
722      return false;
723    }
724
725    // - its return type shall be a literal type;
726    QualType RT = NewFD->getResultType();
727    if (!RT->isDependentType() &&
728        RequireLiteralType(NewFD->getLocation(), RT,
729                           diag::err_constexpr_non_literal_return))
730      return false;
731  }
732
733  // - each of its parameter types shall be a literal type;
734  if (!CheckConstexprParameterTypes(*this, NewFD))
735    return false;
736
737  return true;
738}
739
740/// Check the given declaration statement is legal within a constexpr function
741/// body. C++0x [dcl.constexpr]p3,p4.
742///
743/// \return true if the body is OK, false if we have diagnosed a problem.
744static bool CheckConstexprDeclStmt(Sema &SemaRef, const FunctionDecl *Dcl,
745                                   DeclStmt *DS) {
746  // C++0x [dcl.constexpr]p3 and p4:
747  //  The definition of a constexpr function(p3) or constructor(p4) [...] shall
748  //  contain only
749  for (DeclStmt::decl_iterator DclIt = DS->decl_begin(),
750         DclEnd = DS->decl_end(); DclIt != DclEnd; ++DclIt) {
751    switch ((*DclIt)->getKind()) {
752    case Decl::StaticAssert:
753    case Decl::Using:
754    case Decl::UsingShadow:
755    case Decl::UsingDirective:
756    case Decl::UnresolvedUsingTypename:
757      //   - static_assert-declarations
758      //   - using-declarations,
759      //   - using-directives,
760      continue;
761
762    case Decl::Typedef:
763    case Decl::TypeAlias: {
764      //   - typedef declarations and alias-declarations that do not define
765      //     classes or enumerations,
766      TypedefNameDecl *TN = cast<TypedefNameDecl>(*DclIt);
767      if (TN->getUnderlyingType()->isVariablyModifiedType()) {
768        // Don't allow variably-modified types in constexpr functions.
769        TypeLoc TL = TN->getTypeSourceInfo()->getTypeLoc();
770        SemaRef.Diag(TL.getBeginLoc(), diag::err_constexpr_vla)
771          << TL.getSourceRange() << TL.getType()
772          << isa<CXXConstructorDecl>(Dcl);
773        return false;
774      }
775      continue;
776    }
777
778    case Decl::Enum:
779    case Decl::CXXRecord:
780      // As an extension, we allow the declaration (but not the definition) of
781      // classes and enumerations in all declarations, not just in typedef and
782      // alias declarations.
783      if (cast<TagDecl>(*DclIt)->isThisDeclarationADefinition()) {
784        SemaRef.Diag(DS->getLocStart(), diag::err_constexpr_type_definition)
785          << isa<CXXConstructorDecl>(Dcl);
786        return false;
787      }
788      continue;
789
790    case Decl::Var:
791      SemaRef.Diag(DS->getLocStart(), diag::err_constexpr_var_declaration)
792        << isa<CXXConstructorDecl>(Dcl);
793      return false;
794
795    default:
796      SemaRef.Diag(DS->getLocStart(), diag::err_constexpr_body_invalid_stmt)
797        << isa<CXXConstructorDecl>(Dcl);
798      return false;
799    }
800  }
801
802  return true;
803}
804
805/// Check that the given field is initialized within a constexpr constructor.
806///
807/// \param Dcl The constexpr constructor being checked.
808/// \param Field The field being checked. This may be a member of an anonymous
809///        struct or union nested within the class being checked.
810/// \param Inits All declarations, including anonymous struct/union members and
811///        indirect members, for which any initialization was provided.
812/// \param Diagnosed Set to true if an error is produced.
813static void CheckConstexprCtorInitializer(Sema &SemaRef,
814                                          const FunctionDecl *Dcl,
815                                          FieldDecl *Field,
816                                          llvm::SmallSet<Decl*, 16> &Inits,
817                                          bool &Diagnosed) {
818  if (Field->isUnnamedBitfield())
819    return;
820
821  if (Field->isAnonymousStructOrUnion() &&
822      Field->getType()->getAsCXXRecordDecl()->isEmpty())
823    return;
824
825  if (!Inits.count(Field)) {
826    if (!Diagnosed) {
827      SemaRef.Diag(Dcl->getLocation(), diag::err_constexpr_ctor_missing_init);
828      Diagnosed = true;
829    }
830    SemaRef.Diag(Field->getLocation(), diag::note_constexpr_ctor_missing_init);
831  } else if (Field->isAnonymousStructOrUnion()) {
832    const RecordDecl *RD = Field->getType()->castAs<RecordType>()->getDecl();
833    for (RecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end();
834         I != E; ++I)
835      // If an anonymous union contains an anonymous struct of which any member
836      // is initialized, all members must be initialized.
837      if (!RD->isUnion() || Inits.count(*I))
838        CheckConstexprCtorInitializer(SemaRef, Dcl, *I, Inits, Diagnosed);
839  }
840}
841
842/// Check the body for the given constexpr function declaration only contains
843/// the permitted types of statement. C++11 [dcl.constexpr]p3,p4.
844///
845/// \return true if the body is OK, false if we have diagnosed a problem.
846bool Sema::CheckConstexprFunctionBody(const FunctionDecl *Dcl, Stmt *Body) {
847  if (isa<CXXTryStmt>(Body)) {
848    // C++11 [dcl.constexpr]p3:
849    //  The definition of a constexpr function shall satisfy the following
850    //  constraints: [...]
851    // - its function-body shall be = delete, = default, or a
852    //   compound-statement
853    //
854    // C++11 [dcl.constexpr]p4:
855    //  In the definition of a constexpr constructor, [...]
856    // - its function-body shall not be a function-try-block;
857    Diag(Body->getLocStart(), diag::err_constexpr_function_try_block)
858      << isa<CXXConstructorDecl>(Dcl);
859    return false;
860  }
861
862  // - its function-body shall be [...] a compound-statement that contains only
863  CompoundStmt *CompBody = cast<CompoundStmt>(Body);
864
865  llvm::SmallVector<SourceLocation, 4> ReturnStmts;
866  for (CompoundStmt::body_iterator BodyIt = CompBody->body_begin(),
867         BodyEnd = CompBody->body_end(); BodyIt != BodyEnd; ++BodyIt) {
868    switch ((*BodyIt)->getStmtClass()) {
869    case Stmt::NullStmtClass:
870      //   - null statements,
871      continue;
872
873    case Stmt::DeclStmtClass:
874      //   - static_assert-declarations
875      //   - using-declarations,
876      //   - using-directives,
877      //   - typedef declarations and alias-declarations that do not define
878      //     classes or enumerations,
879      if (!CheckConstexprDeclStmt(*this, Dcl, cast<DeclStmt>(*BodyIt)))
880        return false;
881      continue;
882
883    case Stmt::ReturnStmtClass:
884      //   - and exactly one return statement;
885      if (isa<CXXConstructorDecl>(Dcl))
886        break;
887
888      ReturnStmts.push_back((*BodyIt)->getLocStart());
889      continue;
890
891    default:
892      break;
893    }
894
895    Diag((*BodyIt)->getLocStart(), diag::err_constexpr_body_invalid_stmt)
896      << isa<CXXConstructorDecl>(Dcl);
897    return false;
898  }
899
900  if (const CXXConstructorDecl *Constructor
901        = dyn_cast<CXXConstructorDecl>(Dcl)) {
902    const CXXRecordDecl *RD = Constructor->getParent();
903    // DR1359:
904    // - every non-variant non-static data member and base class sub-object
905    //   shall be initialized;
906    // - if the class is a non-empty union, or for each non-empty anonymous
907    //   union member of a non-union class, exactly one non-static data member
908    //   shall be initialized;
909    if (RD->isUnion()) {
910      if (Constructor->getNumCtorInitializers() == 0 && !RD->isEmpty()) {
911        Diag(Dcl->getLocation(), diag::err_constexpr_union_ctor_no_init);
912        return false;
913      }
914    } else if (!Constructor->isDependentContext() &&
915               !Constructor->isDelegatingConstructor()) {
916      assert(RD->getNumVBases() == 0 && "constexpr ctor with virtual bases");
917
918      // Skip detailed checking if we have enough initializers, and we would
919      // allow at most one initializer per member.
920      bool AnyAnonStructUnionMembers = false;
921      unsigned Fields = 0;
922      for (CXXRecordDecl::field_iterator I = RD->field_begin(),
923           E = RD->field_end(); I != E; ++I, ++Fields) {
924        if (I->isAnonymousStructOrUnion()) {
925          AnyAnonStructUnionMembers = true;
926          break;
927        }
928      }
929      if (AnyAnonStructUnionMembers ||
930          Constructor->getNumCtorInitializers() != RD->getNumBases() + Fields) {
931        // Check initialization of non-static data members. Base classes are
932        // always initialized so do not need to be checked. Dependent bases
933        // might not have initializers in the member initializer list.
934        llvm::SmallSet<Decl*, 16> Inits;
935        for (CXXConstructorDecl::init_const_iterator
936               I = Constructor->init_begin(), E = Constructor->init_end();
937             I != E; ++I) {
938          if (FieldDecl *FD = (*I)->getMember())
939            Inits.insert(FD);
940          else if (IndirectFieldDecl *ID = (*I)->getIndirectMember())
941            Inits.insert(ID->chain_begin(), ID->chain_end());
942        }
943
944        bool Diagnosed = false;
945        for (CXXRecordDecl::field_iterator I = RD->field_begin(),
946             E = RD->field_end(); I != E; ++I)
947          CheckConstexprCtorInitializer(*this, Dcl, *I, Inits, Diagnosed);
948        if (Diagnosed)
949          return false;
950      }
951    }
952  } else {
953    if (ReturnStmts.empty()) {
954      Diag(Dcl->getLocation(), diag::err_constexpr_body_no_return);
955      return false;
956    }
957    if (ReturnStmts.size() > 1) {
958      Diag(ReturnStmts.back(), diag::err_constexpr_body_multiple_return);
959      for (unsigned I = 0; I < ReturnStmts.size() - 1; ++I)
960        Diag(ReturnStmts[I], diag::note_constexpr_body_previous_return);
961      return false;
962    }
963  }
964
965  // C++11 [dcl.constexpr]p5:
966  //   if no function argument values exist such that the function invocation
967  //   substitution would produce a constant expression, the program is
968  //   ill-formed; no diagnostic required.
969  // C++11 [dcl.constexpr]p3:
970  //   - every constructor call and implicit conversion used in initializing the
971  //     return value shall be one of those allowed in a constant expression.
972  // C++11 [dcl.constexpr]p4:
973  //   - every constructor involved in initializing non-static data members and
974  //     base class sub-objects shall be a constexpr constructor.
975  llvm::SmallVector<PartialDiagnosticAt, 8> Diags;
976  if (!Expr::isPotentialConstantExpr(Dcl, Diags)) {
977    Diag(Dcl->getLocation(), diag::err_constexpr_function_never_constant_expr)
978      << isa<CXXConstructorDecl>(Dcl);
979    for (size_t I = 0, N = Diags.size(); I != N; ++I)
980      Diag(Diags[I].first, Diags[I].second);
981    return false;
982  }
983
984  return true;
985}
986
987/// isCurrentClassName - Determine whether the identifier II is the
988/// name of the class type currently being defined. In the case of
989/// nested classes, this will only return true if II is the name of
990/// the innermost class.
991bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *,
992                              const CXXScopeSpec *SS) {
993  assert(getLangOpts().CPlusPlus && "No class names in C!");
994
995  CXXRecordDecl *CurDecl;
996  if (SS && SS->isSet() && !SS->isInvalid()) {
997    DeclContext *DC = computeDeclContext(*SS, true);
998    CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
999  } else
1000    CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
1001
1002  if (CurDecl && CurDecl->getIdentifier())
1003    return &II == CurDecl->getIdentifier();
1004  else
1005    return false;
1006}
1007
1008/// \brief Check the validity of a C++ base class specifier.
1009///
1010/// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
1011/// and returns NULL otherwise.
1012CXXBaseSpecifier *
1013Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
1014                         SourceRange SpecifierRange,
1015                         bool Virtual, AccessSpecifier Access,
1016                         TypeSourceInfo *TInfo,
1017                         SourceLocation EllipsisLoc) {
1018  QualType BaseType = TInfo->getType();
1019
1020  // C++ [class.union]p1:
1021  //   A union shall not have base classes.
1022  if (Class->isUnion()) {
1023    Diag(Class->getLocation(), diag::err_base_clause_on_union)
1024      << SpecifierRange;
1025    return 0;
1026  }
1027
1028  if (EllipsisLoc.isValid() &&
1029      !TInfo->getType()->containsUnexpandedParameterPack()) {
1030    Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
1031      << TInfo->getTypeLoc().getSourceRange();
1032    EllipsisLoc = SourceLocation();
1033  }
1034
1035  if (BaseType->isDependentType())
1036    return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
1037                                          Class->getTagKind() == TTK_Class,
1038                                          Access, TInfo, EllipsisLoc);
1039
1040  SourceLocation BaseLoc = TInfo->getTypeLoc().getBeginLoc();
1041
1042  // Base specifiers must be record types.
1043  if (!BaseType->isRecordType()) {
1044    Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
1045    return 0;
1046  }
1047
1048  // C++ [class.union]p1:
1049  //   A union shall not be used as a base class.
1050  if (BaseType->isUnionType()) {
1051    Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
1052    return 0;
1053  }
1054
1055  // C++ [class.derived]p2:
1056  //   The class-name in a base-specifier shall not be an incompletely
1057  //   defined class.
1058  if (RequireCompleteType(BaseLoc, BaseType,
1059                          diag::err_incomplete_base_class, SpecifierRange)) {
1060    Class->setInvalidDecl();
1061    return 0;
1062  }
1063
1064  // If the base class is polymorphic or isn't empty, the new one is/isn't, too.
1065  RecordDecl *BaseDecl = BaseType->getAs<RecordType>()->getDecl();
1066  assert(BaseDecl && "Record type has no declaration");
1067  BaseDecl = BaseDecl->getDefinition();
1068  assert(BaseDecl && "Base type is not incomplete, but has no definition");
1069  CXXRecordDecl * CXXBaseDecl = cast<CXXRecordDecl>(BaseDecl);
1070  assert(CXXBaseDecl && "Base type is not a C++ type");
1071
1072  // C++ [class]p3:
1073  //   If a class is marked final and it appears as a base-type-specifier in
1074  //   base-clause, the program is ill-formed.
1075  if (CXXBaseDecl->hasAttr<FinalAttr>()) {
1076    Diag(BaseLoc, diag::err_class_marked_final_used_as_base)
1077      << CXXBaseDecl->getDeclName();
1078    Diag(CXXBaseDecl->getLocation(), diag::note_previous_decl)
1079      << CXXBaseDecl->getDeclName();
1080    return 0;
1081  }
1082
1083  if (BaseDecl->isInvalidDecl())
1084    Class->setInvalidDecl();
1085
1086  // Create the base specifier.
1087  return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
1088                                        Class->getTagKind() == TTK_Class,
1089                                        Access, TInfo, EllipsisLoc);
1090}
1091
1092/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
1093/// one entry in the base class list of a class specifier, for
1094/// example:
1095///    class foo : public bar, virtual private baz {
1096/// 'public bar' and 'virtual private baz' are each base-specifiers.
1097BaseResult
1098Sema::ActOnBaseSpecifier(Decl *classdecl, SourceRange SpecifierRange,
1099                         bool Virtual, AccessSpecifier Access,
1100                         ParsedType basetype, SourceLocation BaseLoc,
1101                         SourceLocation EllipsisLoc) {
1102  if (!classdecl)
1103    return true;
1104
1105  AdjustDeclIfTemplate(classdecl);
1106  CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(classdecl);
1107  if (!Class)
1108    return true;
1109
1110  TypeSourceInfo *TInfo = 0;
1111  GetTypeFromParser(basetype, &TInfo);
1112
1113  if (EllipsisLoc.isInvalid() &&
1114      DiagnoseUnexpandedParameterPack(SpecifierRange.getBegin(), TInfo,
1115                                      UPPC_BaseType))
1116    return true;
1117
1118  if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
1119                                                      Virtual, Access, TInfo,
1120                                                      EllipsisLoc))
1121    return BaseSpec;
1122  else
1123    Class->setInvalidDecl();
1124
1125  return true;
1126}
1127
1128/// \brief Performs the actual work of attaching the given base class
1129/// specifiers to a C++ class.
1130bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, CXXBaseSpecifier **Bases,
1131                                unsigned NumBases) {
1132 if (NumBases == 0)
1133    return false;
1134
1135  // Used to keep track of which base types we have already seen, so
1136  // that we can properly diagnose redundant direct base types. Note
1137  // that the key is always the unqualified canonical type of the base
1138  // class.
1139  std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
1140
1141  // Copy non-redundant base specifiers into permanent storage.
1142  unsigned NumGoodBases = 0;
1143  bool Invalid = false;
1144  for (unsigned idx = 0; idx < NumBases; ++idx) {
1145    QualType NewBaseType
1146      = Context.getCanonicalType(Bases[idx]->getType());
1147    NewBaseType = NewBaseType.getLocalUnqualifiedType();
1148
1149    CXXBaseSpecifier *&KnownBase = KnownBaseTypes[NewBaseType];
1150    if (KnownBase) {
1151      // C++ [class.mi]p3:
1152      //   A class shall not be specified as a direct base class of a
1153      //   derived class more than once.
1154      Diag(Bases[idx]->getLocStart(),
1155           diag::err_duplicate_base_class)
1156        << KnownBase->getType()
1157        << Bases[idx]->getSourceRange();
1158
1159      // Delete the duplicate base class specifier; we're going to
1160      // overwrite its pointer later.
1161      Context.Deallocate(Bases[idx]);
1162
1163      Invalid = true;
1164    } else {
1165      // Okay, add this new base class.
1166      KnownBase = Bases[idx];
1167      Bases[NumGoodBases++] = Bases[idx];
1168      if (const RecordType *Record = NewBaseType->getAs<RecordType>())
1169        if (const CXXRecordDecl *RD = cast<CXXRecordDecl>(Record->getDecl()))
1170          if (RD->hasAttr<WeakAttr>())
1171            Class->addAttr(::new (Context) WeakAttr(SourceRange(), Context));
1172    }
1173  }
1174
1175  // Attach the remaining base class specifiers to the derived class.
1176  Class->setBases(Bases, NumGoodBases);
1177
1178  // Delete the remaining (good) base class specifiers, since their
1179  // data has been copied into the CXXRecordDecl.
1180  for (unsigned idx = 0; idx < NumGoodBases; ++idx)
1181    Context.Deallocate(Bases[idx]);
1182
1183  return Invalid;
1184}
1185
1186/// ActOnBaseSpecifiers - Attach the given base specifiers to the
1187/// class, after checking whether there are any duplicate base
1188/// classes.
1189void Sema::ActOnBaseSpecifiers(Decl *ClassDecl, CXXBaseSpecifier **Bases,
1190                               unsigned NumBases) {
1191  if (!ClassDecl || !Bases || !NumBases)
1192    return;
1193
1194  AdjustDeclIfTemplate(ClassDecl);
1195  AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl),
1196                       (CXXBaseSpecifier**)(Bases), NumBases);
1197}
1198
1199static CXXRecordDecl *GetClassForType(QualType T) {
1200  if (const RecordType *RT = T->getAs<RecordType>())
1201    return cast<CXXRecordDecl>(RT->getDecl());
1202  else if (const InjectedClassNameType *ICT = T->getAs<InjectedClassNameType>())
1203    return ICT->getDecl();
1204  else
1205    return 0;
1206}
1207
1208/// \brief Determine whether the type \p Derived is a C++ class that is
1209/// derived from the type \p Base.
1210bool Sema::IsDerivedFrom(QualType Derived, QualType Base) {
1211  if (!getLangOpts().CPlusPlus)
1212    return false;
1213
1214  CXXRecordDecl *DerivedRD = GetClassForType(Derived);
1215  if (!DerivedRD)
1216    return false;
1217
1218  CXXRecordDecl *BaseRD = GetClassForType(Base);
1219  if (!BaseRD)
1220    return false;
1221
1222  // FIXME: instantiate DerivedRD if necessary.  We need a PoI for this.
1223  return DerivedRD->hasDefinition() && DerivedRD->isDerivedFrom(BaseRD);
1224}
1225
1226/// \brief Determine whether the type \p Derived is a C++ class that is
1227/// derived from the type \p Base.
1228bool Sema::IsDerivedFrom(QualType Derived, QualType Base, CXXBasePaths &Paths) {
1229  if (!getLangOpts().CPlusPlus)
1230    return false;
1231
1232  CXXRecordDecl *DerivedRD = GetClassForType(Derived);
1233  if (!DerivedRD)
1234    return false;
1235
1236  CXXRecordDecl *BaseRD = GetClassForType(Base);
1237  if (!BaseRD)
1238    return false;
1239
1240  return DerivedRD->isDerivedFrom(BaseRD, Paths);
1241}
1242
1243void Sema::BuildBasePathArray(const CXXBasePaths &Paths,
1244                              CXXCastPath &BasePathArray) {
1245  assert(BasePathArray.empty() && "Base path array must be empty!");
1246  assert(Paths.isRecordingPaths() && "Must record paths!");
1247
1248  const CXXBasePath &Path = Paths.front();
1249
1250  // We first go backward and check if we have a virtual base.
1251  // FIXME: It would be better if CXXBasePath had the base specifier for
1252  // the nearest virtual base.
1253  unsigned Start = 0;
1254  for (unsigned I = Path.size(); I != 0; --I) {
1255    if (Path[I - 1].Base->isVirtual()) {
1256      Start = I - 1;
1257      break;
1258    }
1259  }
1260
1261  // Now add all bases.
1262  for (unsigned I = Start, E = Path.size(); I != E; ++I)
1263    BasePathArray.push_back(const_cast<CXXBaseSpecifier*>(Path[I].Base));
1264}
1265
1266/// \brief Determine whether the given base path includes a virtual
1267/// base class.
1268bool Sema::BasePathInvolvesVirtualBase(const CXXCastPath &BasePath) {
1269  for (CXXCastPath::const_iterator B = BasePath.begin(),
1270                                BEnd = BasePath.end();
1271       B != BEnd; ++B)
1272    if ((*B)->isVirtual())
1273      return true;
1274
1275  return false;
1276}
1277
1278/// CheckDerivedToBaseConversion - Check whether the Derived-to-Base
1279/// conversion (where Derived and Base are class types) is
1280/// well-formed, meaning that the conversion is unambiguous (and
1281/// that all of the base classes are accessible). Returns true
1282/// and emits a diagnostic if the code is ill-formed, returns false
1283/// otherwise. Loc is the location where this routine should point to
1284/// if there is an error, and Range is the source range to highlight
1285/// if there is an error.
1286bool
1287Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
1288                                   unsigned InaccessibleBaseID,
1289                                   unsigned AmbigiousBaseConvID,
1290                                   SourceLocation Loc, SourceRange Range,
1291                                   DeclarationName Name,
1292                                   CXXCastPath *BasePath) {
1293  // First, determine whether the path from Derived to Base is
1294  // ambiguous. This is slightly more expensive than checking whether
1295  // the Derived to Base conversion exists, because here we need to
1296  // explore multiple paths to determine if there is an ambiguity.
1297  CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
1298                     /*DetectVirtual=*/false);
1299  bool DerivationOkay = IsDerivedFrom(Derived, Base, Paths);
1300  assert(DerivationOkay &&
1301         "Can only be used with a derived-to-base conversion");
1302  (void)DerivationOkay;
1303
1304  if (!Paths.isAmbiguous(Context.getCanonicalType(Base).getUnqualifiedType())) {
1305    if (InaccessibleBaseID) {
1306      // Check that the base class can be accessed.
1307      switch (CheckBaseClassAccess(Loc, Base, Derived, Paths.front(),
1308                                   InaccessibleBaseID)) {
1309        case AR_inaccessible:
1310          return true;
1311        case AR_accessible:
1312        case AR_dependent:
1313        case AR_delayed:
1314          break;
1315      }
1316    }
1317
1318    // Build a base path if necessary.
1319    if (BasePath)
1320      BuildBasePathArray(Paths, *BasePath);
1321    return false;
1322  }
1323
1324  // We know that the derived-to-base conversion is ambiguous, and
1325  // we're going to produce a diagnostic. Perform the derived-to-base
1326  // search just one more time to compute all of the possible paths so
1327  // that we can print them out. This is more expensive than any of
1328  // the previous derived-to-base checks we've done, but at this point
1329  // performance isn't as much of an issue.
1330  Paths.clear();
1331  Paths.setRecordingPaths(true);
1332  bool StillOkay = IsDerivedFrom(Derived, Base, Paths);
1333  assert(StillOkay && "Can only be used with a derived-to-base conversion");
1334  (void)StillOkay;
1335
1336  // Build up a textual representation of the ambiguous paths, e.g.,
1337  // D -> B -> A, that will be used to illustrate the ambiguous
1338  // conversions in the diagnostic. We only print one of the paths
1339  // to each base class subobject.
1340  std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
1341
1342  Diag(Loc, AmbigiousBaseConvID)
1343  << Derived << Base << PathDisplayStr << Range << Name;
1344  return true;
1345}
1346
1347bool
1348Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
1349                                   SourceLocation Loc, SourceRange Range,
1350                                   CXXCastPath *BasePath,
1351                                   bool IgnoreAccess) {
1352  return CheckDerivedToBaseConversion(Derived, Base,
1353                                      IgnoreAccess ? 0
1354                                       : diag::err_upcast_to_inaccessible_base,
1355                                      diag::err_ambiguous_derived_to_base_conv,
1356                                      Loc, Range, DeclarationName(),
1357                                      BasePath);
1358}
1359
1360
1361/// @brief Builds a string representing ambiguous paths from a
1362/// specific derived class to different subobjects of the same base
1363/// class.
1364///
1365/// This function builds a string that can be used in error messages
1366/// to show the different paths that one can take through the
1367/// inheritance hierarchy to go from the derived class to different
1368/// subobjects of a base class. The result looks something like this:
1369/// @code
1370/// struct D -> struct B -> struct A
1371/// struct D -> struct C -> struct A
1372/// @endcode
1373std::string Sema::getAmbiguousPathsDisplayString(CXXBasePaths &Paths) {
1374  std::string PathDisplayStr;
1375  std::set<unsigned> DisplayedPaths;
1376  for (CXXBasePaths::paths_iterator Path = Paths.begin();
1377       Path != Paths.end(); ++Path) {
1378    if (DisplayedPaths.insert(Path->back().SubobjectNumber).second) {
1379      // We haven't displayed a path to this particular base
1380      // class subobject yet.
1381      PathDisplayStr += "\n    ";
1382      PathDisplayStr += Context.getTypeDeclType(Paths.getOrigin()).getAsString();
1383      for (CXXBasePath::const_iterator Element = Path->begin();
1384           Element != Path->end(); ++Element)
1385        PathDisplayStr += " -> " + Element->Base->getType().getAsString();
1386    }
1387  }
1388
1389  return PathDisplayStr;
1390}
1391
1392//===----------------------------------------------------------------------===//
1393// C++ class member Handling
1394//===----------------------------------------------------------------------===//
1395
1396/// ActOnAccessSpecifier - Parsed an access specifier followed by a colon.
1397bool Sema::ActOnAccessSpecifier(AccessSpecifier Access,
1398                                SourceLocation ASLoc,
1399                                SourceLocation ColonLoc,
1400                                AttributeList *Attrs) {
1401  assert(Access != AS_none && "Invalid kind for syntactic access specifier!");
1402  AccessSpecDecl *ASDecl = AccessSpecDecl::Create(Context, Access, CurContext,
1403                                                  ASLoc, ColonLoc);
1404  CurContext->addHiddenDecl(ASDecl);
1405  return ProcessAccessDeclAttributeList(ASDecl, Attrs);
1406}
1407
1408/// CheckOverrideControl - Check C++0x override control semantics.
1409void Sema::CheckOverrideControl(const Decl *D) {
1410  const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D);
1411  if (!MD || !MD->isVirtual())
1412    return;
1413
1414  if (MD->isDependentContext())
1415    return;
1416
1417  // C++0x [class.virtual]p3:
1418  //   If a virtual function is marked with the virt-specifier override and does
1419  //   not override a member function of a base class,
1420  //   the program is ill-formed.
1421  bool HasOverriddenMethods =
1422    MD->begin_overridden_methods() != MD->end_overridden_methods();
1423  if (MD->hasAttr<OverrideAttr>() && !HasOverriddenMethods) {
1424    Diag(MD->getLocation(),
1425                 diag::err_function_marked_override_not_overriding)
1426      << MD->getDeclName();
1427    return;
1428  }
1429}
1430
1431/// CheckIfOverriddenFunctionIsMarkedFinal - Checks whether a virtual member
1432/// function overrides a virtual member function marked 'final', according to
1433/// C++0x [class.virtual]p3.
1434bool Sema::CheckIfOverriddenFunctionIsMarkedFinal(const CXXMethodDecl *New,
1435                                                  const CXXMethodDecl *Old) {
1436  if (!Old->hasAttr<FinalAttr>())
1437    return false;
1438
1439  Diag(New->getLocation(), diag::err_final_function_overridden)
1440    << New->getDeclName();
1441  Diag(Old->getLocation(), diag::note_overridden_virtual_function);
1442  return true;
1443}
1444
1445static bool InitializationHasSideEffects(const FieldDecl &FD) {
1446  if (!FD.getType().isNull()) {
1447    if (const CXXRecordDecl *RD = FD.getType()->getAsCXXRecordDecl()) {
1448      return !RD->isCompleteDefinition() ||
1449             !RD->hasTrivialDefaultConstructor() ||
1450             !RD->hasTrivialDestructor();
1451    }
1452  }
1453  return false;
1454}
1455
1456/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
1457/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
1458/// bitfield width if there is one, 'InitExpr' specifies the initializer if
1459/// one has been parsed, and 'InitStyle' is set if an in-class initializer is
1460/// present (but parsing it has been deferred).
1461Decl *
1462Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
1463                               MultiTemplateParamsArg TemplateParameterLists,
1464                               Expr *BW, const VirtSpecifiers &VS,
1465                               InClassInitStyle InitStyle) {
1466  const DeclSpec &DS = D.getDeclSpec();
1467  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
1468  DeclarationName Name = NameInfo.getName();
1469  SourceLocation Loc = NameInfo.getLoc();
1470
1471  // For anonymous bitfields, the location should point to the type.
1472  if (Loc.isInvalid())
1473    Loc = D.getLocStart();
1474
1475  Expr *BitWidth = static_cast<Expr*>(BW);
1476
1477  assert(isa<CXXRecordDecl>(CurContext));
1478  assert(!DS.isFriendSpecified());
1479
1480  bool isFunc = D.isDeclarationOfFunction();
1481
1482  // C++ 9.2p6: A member shall not be declared to have automatic storage
1483  // duration (auto, register) or with the extern storage-class-specifier.
1484  // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
1485  // data members and cannot be applied to names declared const or static,
1486  // and cannot be applied to reference members.
1487  switch (DS.getStorageClassSpec()) {
1488    case DeclSpec::SCS_unspecified:
1489    case DeclSpec::SCS_typedef:
1490    case DeclSpec::SCS_static:
1491      // FALL THROUGH.
1492      break;
1493    case DeclSpec::SCS_mutable:
1494      if (isFunc) {
1495        if (DS.getStorageClassSpecLoc().isValid())
1496          Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
1497        else
1498          Diag(DS.getThreadSpecLoc(), diag::err_mutable_function);
1499
1500        // FIXME: It would be nicer if the keyword was ignored only for this
1501        // declarator. Otherwise we could get follow-up errors.
1502        D.getMutableDeclSpec().ClearStorageClassSpecs();
1503      }
1504      break;
1505    default:
1506      if (DS.getStorageClassSpecLoc().isValid())
1507        Diag(DS.getStorageClassSpecLoc(),
1508             diag::err_storageclass_invalid_for_member);
1509      else
1510        Diag(DS.getThreadSpecLoc(), diag::err_storageclass_invalid_for_member);
1511      D.getMutableDeclSpec().ClearStorageClassSpecs();
1512  }
1513
1514  bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
1515                       DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
1516                      !isFunc);
1517
1518  Decl *Member;
1519  if (isInstField) {
1520    CXXScopeSpec &SS = D.getCXXScopeSpec();
1521
1522    // Data members must have identifiers for names.
1523    if (!Name.isIdentifier()) {
1524      Diag(Loc, diag::err_bad_variable_name)
1525        << Name;
1526      return 0;
1527    }
1528
1529    IdentifierInfo *II = Name.getAsIdentifierInfo();
1530
1531    // Member field could not be with "template" keyword.
1532    // So TemplateParameterLists should be empty in this case.
1533    if (TemplateParameterLists.size()) {
1534      TemplateParameterList* TemplateParams = TemplateParameterLists.get()[0];
1535      if (TemplateParams->size()) {
1536        // There is no such thing as a member field template.
1537        Diag(D.getIdentifierLoc(), diag::err_template_member)
1538            << II
1539            << SourceRange(TemplateParams->getTemplateLoc(),
1540                TemplateParams->getRAngleLoc());
1541      } else {
1542        // There is an extraneous 'template<>' for this member.
1543        Diag(TemplateParams->getTemplateLoc(),
1544            diag::err_template_member_noparams)
1545            << II
1546            << SourceRange(TemplateParams->getTemplateLoc(),
1547                TemplateParams->getRAngleLoc());
1548      }
1549      return 0;
1550    }
1551
1552    if (SS.isSet() && !SS.isInvalid()) {
1553      // The user provided a superfluous scope specifier inside a class
1554      // definition:
1555      //
1556      // class X {
1557      //   int X::member;
1558      // };
1559      if (DeclContext *DC = computeDeclContext(SS, false))
1560        diagnoseQualifiedDeclaration(SS, DC, Name, D.getIdentifierLoc());
1561      else
1562        Diag(D.getIdentifierLoc(), diag::err_member_qualification)
1563          << Name << SS.getRange();
1564
1565      SS.clear();
1566    }
1567
1568    Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D, BitWidth,
1569                         InitStyle, AS);
1570    assert(Member && "HandleField never returns null");
1571  } else {
1572    assert(InitStyle == ICIS_NoInit);
1573
1574    Member = HandleDeclarator(S, D, move(TemplateParameterLists));
1575    if (!Member) {
1576      return 0;
1577    }
1578
1579    // Non-instance-fields can't have a bitfield.
1580    if (BitWidth) {
1581      if (Member->isInvalidDecl()) {
1582        // don't emit another diagnostic.
1583      } else if (isa<VarDecl>(Member)) {
1584        // C++ 9.6p3: A bit-field shall not be a static member.
1585        // "static member 'A' cannot be a bit-field"
1586        Diag(Loc, diag::err_static_not_bitfield)
1587          << Name << BitWidth->getSourceRange();
1588      } else if (isa<TypedefDecl>(Member)) {
1589        // "typedef member 'x' cannot be a bit-field"
1590        Diag(Loc, diag::err_typedef_not_bitfield)
1591          << Name << BitWidth->getSourceRange();
1592      } else {
1593        // A function typedef ("typedef int f(); f a;").
1594        // C++ 9.6p3: A bit-field shall have integral or enumeration type.
1595        Diag(Loc, diag::err_not_integral_type_bitfield)
1596          << Name << cast<ValueDecl>(Member)->getType()
1597          << BitWidth->getSourceRange();
1598      }
1599
1600      BitWidth = 0;
1601      Member->setInvalidDecl();
1602    }
1603
1604    Member->setAccess(AS);
1605
1606    // If we have declared a member function template, set the access of the
1607    // templated declaration as well.
1608    if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Member))
1609      FunTmpl->getTemplatedDecl()->setAccess(AS);
1610  }
1611
1612  if (VS.isOverrideSpecified()) {
1613    CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Member);
1614    if (!MD || !MD->isVirtual()) {
1615      Diag(Member->getLocStart(),
1616           diag::override_keyword_only_allowed_on_virtual_member_functions)
1617        << "override" << FixItHint::CreateRemoval(VS.getOverrideLoc());
1618    } else
1619      MD->addAttr(new (Context) OverrideAttr(VS.getOverrideLoc(), Context));
1620  }
1621  if (VS.isFinalSpecified()) {
1622    CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Member);
1623    if (!MD || !MD->isVirtual()) {
1624      Diag(Member->getLocStart(),
1625           diag::override_keyword_only_allowed_on_virtual_member_functions)
1626      << "final" << FixItHint::CreateRemoval(VS.getFinalLoc());
1627    } else
1628      MD->addAttr(new (Context) FinalAttr(VS.getFinalLoc(), Context));
1629  }
1630
1631  if (VS.getLastLocation().isValid()) {
1632    // Update the end location of a method that has a virt-specifiers.
1633    if (CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(Member))
1634      MD->setRangeEnd(VS.getLastLocation());
1635  }
1636
1637  CheckOverrideControl(Member);
1638
1639  assert((Name || isInstField) && "No identifier for non-field ?");
1640
1641  if (isInstField) {
1642    FieldDecl *FD = cast<FieldDecl>(Member);
1643    FieldCollector->Add(FD);
1644
1645    if (Diags.getDiagnosticLevel(diag::warn_unused_private_field,
1646                                 FD->getLocation())
1647          != DiagnosticsEngine::Ignored) {
1648      // Remember all explicit private FieldDecls that have a name, no side
1649      // effects and are not part of a dependent type declaration.
1650      if (!FD->isImplicit() && FD->getDeclName() &&
1651          FD->getAccess() == AS_private &&
1652          !FD->hasAttr<UnusedAttr>() &&
1653          !FD->getParent()->getTypeForDecl()->isDependentType() &&
1654          !InitializationHasSideEffects(*FD))
1655        UnusedPrivateFields.insert(FD);
1656    }
1657  }
1658
1659  return Member;
1660}
1661
1662/// ActOnCXXInClassMemberInitializer - This is invoked after parsing an
1663/// in-class initializer for a non-static C++ class member, and after
1664/// instantiating an in-class initializer in a class template. Such actions
1665/// are deferred until the class is complete.
1666void
1667Sema::ActOnCXXInClassMemberInitializer(Decl *D, SourceLocation InitLoc,
1668                                       Expr *InitExpr) {
1669  FieldDecl *FD = cast<FieldDecl>(D);
1670  assert(FD->getInClassInitStyle() != ICIS_NoInit &&
1671         "must set init style when field is created");
1672
1673  if (!InitExpr) {
1674    FD->setInvalidDecl();
1675    FD->removeInClassInitializer();
1676    return;
1677  }
1678
1679  if (DiagnoseUnexpandedParameterPack(InitExpr, UPPC_Initializer)) {
1680    FD->setInvalidDecl();
1681    FD->removeInClassInitializer();
1682    return;
1683  }
1684
1685  ExprResult Init = InitExpr;
1686  if (!FD->getType()->isDependentType() && !InitExpr->isTypeDependent()) {
1687    if (isa<InitListExpr>(InitExpr) && isStdInitializerList(FD->getType(), 0)) {
1688      Diag(FD->getLocation(), diag::warn_dangling_std_initializer_list)
1689        << /*at end of ctor*/1 << InitExpr->getSourceRange();
1690    }
1691    Expr **Inits = &InitExpr;
1692    unsigned NumInits = 1;
1693    InitializedEntity Entity = InitializedEntity::InitializeMember(FD);
1694    InitializationKind Kind = FD->getInClassInitStyle() == ICIS_ListInit
1695        ? InitializationKind::CreateDirectList(InitExpr->getLocStart())
1696        : InitializationKind::CreateCopy(InitExpr->getLocStart(), InitLoc);
1697    InitializationSequence Seq(*this, Entity, Kind, Inits, NumInits);
1698    Init = Seq.Perform(*this, Entity, Kind, MultiExprArg(Inits, NumInits));
1699    if (Init.isInvalid()) {
1700      FD->setInvalidDecl();
1701      return;
1702    }
1703
1704    CheckImplicitConversions(Init.get(), InitLoc);
1705  }
1706
1707  // C++0x [class.base.init]p7:
1708  //   The initialization of each base and member constitutes a
1709  //   full-expression.
1710  Init = MaybeCreateExprWithCleanups(Init);
1711  if (Init.isInvalid()) {
1712    FD->setInvalidDecl();
1713    return;
1714  }
1715
1716  InitExpr = Init.release();
1717
1718  FD->setInClassInitializer(InitExpr);
1719}
1720
1721/// \brief Find the direct and/or virtual base specifiers that
1722/// correspond to the given base type, for use in base initialization
1723/// within a constructor.
1724static bool FindBaseInitializer(Sema &SemaRef,
1725                                CXXRecordDecl *ClassDecl,
1726                                QualType BaseType,
1727                                const CXXBaseSpecifier *&DirectBaseSpec,
1728                                const CXXBaseSpecifier *&VirtualBaseSpec) {
1729  // First, check for a direct base class.
1730  DirectBaseSpec = 0;
1731  for (CXXRecordDecl::base_class_const_iterator Base
1732         = ClassDecl->bases_begin();
1733       Base != ClassDecl->bases_end(); ++Base) {
1734    if (SemaRef.Context.hasSameUnqualifiedType(BaseType, Base->getType())) {
1735      // We found a direct base of this type. That's what we're
1736      // initializing.
1737      DirectBaseSpec = &*Base;
1738      break;
1739    }
1740  }
1741
1742  // Check for a virtual base class.
1743  // FIXME: We might be able to short-circuit this if we know in advance that
1744  // there are no virtual bases.
1745  VirtualBaseSpec = 0;
1746  if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
1747    // We haven't found a base yet; search the class hierarchy for a
1748    // virtual base class.
1749    CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
1750                       /*DetectVirtual=*/false);
1751    if (SemaRef.IsDerivedFrom(SemaRef.Context.getTypeDeclType(ClassDecl),
1752                              BaseType, Paths)) {
1753      for (CXXBasePaths::paths_iterator Path = Paths.begin();
1754           Path != Paths.end(); ++Path) {
1755        if (Path->back().Base->isVirtual()) {
1756          VirtualBaseSpec = Path->back().Base;
1757          break;
1758        }
1759      }
1760    }
1761  }
1762
1763  return DirectBaseSpec || VirtualBaseSpec;
1764}
1765
1766/// \brief Handle a C++ member initializer using braced-init-list syntax.
1767MemInitResult
1768Sema::ActOnMemInitializer(Decl *ConstructorD,
1769                          Scope *S,
1770                          CXXScopeSpec &SS,
1771                          IdentifierInfo *MemberOrBase,
1772                          ParsedType TemplateTypeTy,
1773                          const DeclSpec &DS,
1774                          SourceLocation IdLoc,
1775                          Expr *InitList,
1776                          SourceLocation EllipsisLoc) {
1777  return BuildMemInitializer(ConstructorD, S, SS, MemberOrBase, TemplateTypeTy,
1778                             DS, IdLoc, InitList,
1779                             EllipsisLoc);
1780}
1781
1782/// \brief Handle a C++ member initializer using parentheses syntax.
1783MemInitResult
1784Sema::ActOnMemInitializer(Decl *ConstructorD,
1785                          Scope *S,
1786                          CXXScopeSpec &SS,
1787                          IdentifierInfo *MemberOrBase,
1788                          ParsedType TemplateTypeTy,
1789                          const DeclSpec &DS,
1790                          SourceLocation IdLoc,
1791                          SourceLocation LParenLoc,
1792                          Expr **Args, unsigned NumArgs,
1793                          SourceLocation RParenLoc,
1794                          SourceLocation EllipsisLoc) {
1795  Expr *List = new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1796                                           RParenLoc);
1797  return BuildMemInitializer(ConstructorD, S, SS, MemberOrBase, TemplateTypeTy,
1798                             DS, IdLoc, List, EllipsisLoc);
1799}
1800
1801namespace {
1802
1803// Callback to only accept typo corrections that can be a valid C++ member
1804// intializer: either a non-static field member or a base class.
1805class MemInitializerValidatorCCC : public CorrectionCandidateCallback {
1806 public:
1807  explicit MemInitializerValidatorCCC(CXXRecordDecl *ClassDecl)
1808      : ClassDecl(ClassDecl) {}
1809
1810  virtual bool ValidateCandidate(const TypoCorrection &candidate) {
1811    if (NamedDecl *ND = candidate.getCorrectionDecl()) {
1812      if (FieldDecl *Member = dyn_cast<FieldDecl>(ND))
1813        return Member->getDeclContext()->getRedeclContext()->Equals(ClassDecl);
1814      else
1815        return isa<TypeDecl>(ND);
1816    }
1817    return false;
1818  }
1819
1820 private:
1821  CXXRecordDecl *ClassDecl;
1822};
1823
1824}
1825
1826/// \brief Handle a C++ member initializer.
1827MemInitResult
1828Sema::BuildMemInitializer(Decl *ConstructorD,
1829                          Scope *S,
1830                          CXXScopeSpec &SS,
1831                          IdentifierInfo *MemberOrBase,
1832                          ParsedType TemplateTypeTy,
1833                          const DeclSpec &DS,
1834                          SourceLocation IdLoc,
1835                          Expr *Init,
1836                          SourceLocation EllipsisLoc) {
1837  if (!ConstructorD)
1838    return true;
1839
1840  AdjustDeclIfTemplate(ConstructorD);
1841
1842  CXXConstructorDecl *Constructor
1843    = dyn_cast<CXXConstructorDecl>(ConstructorD);
1844  if (!Constructor) {
1845    // The user wrote a constructor initializer on a function that is
1846    // not a C++ constructor. Ignore the error for now, because we may
1847    // have more member initializers coming; we'll diagnose it just
1848    // once in ActOnMemInitializers.
1849    return true;
1850  }
1851
1852  CXXRecordDecl *ClassDecl = Constructor->getParent();
1853
1854  // C++ [class.base.init]p2:
1855  //   Names in a mem-initializer-id are looked up in the scope of the
1856  //   constructor's class and, if not found in that scope, are looked
1857  //   up in the scope containing the constructor's definition.
1858  //   [Note: if the constructor's class contains a member with the
1859  //   same name as a direct or virtual base class of the class, a
1860  //   mem-initializer-id naming the member or base class and composed
1861  //   of a single identifier refers to the class member. A
1862  //   mem-initializer-id for the hidden base class may be specified
1863  //   using a qualified name. ]
1864  if (!SS.getScopeRep() && !TemplateTypeTy) {
1865    // Look for a member, first.
1866    DeclContext::lookup_result Result
1867      = ClassDecl->lookup(MemberOrBase);
1868    if (Result.first != Result.second) {
1869      ValueDecl *Member;
1870      if ((Member = dyn_cast<FieldDecl>(*Result.first)) ||
1871          (Member = dyn_cast<IndirectFieldDecl>(*Result.first))) {
1872        if (EllipsisLoc.isValid())
1873          Diag(EllipsisLoc, diag::err_pack_expansion_member_init)
1874            << MemberOrBase
1875            << SourceRange(IdLoc, Init->getSourceRange().getEnd());
1876
1877        return BuildMemberInitializer(Member, Init, IdLoc);
1878      }
1879    }
1880  }
1881  // It didn't name a member, so see if it names a class.
1882  QualType BaseType;
1883  TypeSourceInfo *TInfo = 0;
1884
1885  if (TemplateTypeTy) {
1886    BaseType = GetTypeFromParser(TemplateTypeTy, &TInfo);
1887  } else if (DS.getTypeSpecType() == TST_decltype) {
1888    BaseType = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc());
1889  } else {
1890    LookupResult R(*this, MemberOrBase, IdLoc, LookupOrdinaryName);
1891    LookupParsedName(R, S, &SS);
1892
1893    TypeDecl *TyD = R.getAsSingle<TypeDecl>();
1894    if (!TyD) {
1895      if (R.isAmbiguous()) return true;
1896
1897      // We don't want access-control diagnostics here.
1898      R.suppressDiagnostics();
1899
1900      if (SS.isSet() && isDependentScopeSpecifier(SS)) {
1901        bool NotUnknownSpecialization = false;
1902        DeclContext *DC = computeDeclContext(SS, false);
1903        if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(DC))
1904          NotUnknownSpecialization = !Record->hasAnyDependentBases();
1905
1906        if (!NotUnknownSpecialization) {
1907          // When the scope specifier can refer to a member of an unknown
1908          // specialization, we take it as a type name.
1909          BaseType = CheckTypenameType(ETK_None, SourceLocation(),
1910                                       SS.getWithLocInContext(Context),
1911                                       *MemberOrBase, IdLoc);
1912          if (BaseType.isNull())
1913            return true;
1914
1915          R.clear();
1916          R.setLookupName(MemberOrBase);
1917        }
1918      }
1919
1920      // If no results were found, try to correct typos.
1921      TypoCorrection Corr;
1922      MemInitializerValidatorCCC Validator(ClassDecl);
1923      if (R.empty() && BaseType.isNull() &&
1924          (Corr = CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(), S, &SS,
1925                              Validator, ClassDecl))) {
1926        std::string CorrectedStr(Corr.getAsString(getLangOpts()));
1927        std::string CorrectedQuotedStr(Corr.getQuoted(getLangOpts()));
1928        if (FieldDecl *Member = Corr.getCorrectionDeclAs<FieldDecl>()) {
1929          // We have found a non-static data member with a similar
1930          // name to what was typed; complain and initialize that
1931          // member.
1932          Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
1933            << MemberOrBase << true << CorrectedQuotedStr
1934            << FixItHint::CreateReplacement(R.getNameLoc(), CorrectedStr);
1935          Diag(Member->getLocation(), diag::note_previous_decl)
1936            << CorrectedQuotedStr;
1937
1938          return BuildMemberInitializer(Member, Init, IdLoc);
1939        } else if (TypeDecl *Type = Corr.getCorrectionDeclAs<TypeDecl>()) {
1940          const CXXBaseSpecifier *DirectBaseSpec;
1941          const CXXBaseSpecifier *VirtualBaseSpec;
1942          if (FindBaseInitializer(*this, ClassDecl,
1943                                  Context.getTypeDeclType(Type),
1944                                  DirectBaseSpec, VirtualBaseSpec)) {
1945            // We have found a direct or virtual base class with a
1946            // similar name to what was typed; complain and initialize
1947            // that base class.
1948            Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
1949              << MemberOrBase << false << CorrectedQuotedStr
1950              << FixItHint::CreateReplacement(R.getNameLoc(), CorrectedStr);
1951
1952            const CXXBaseSpecifier *BaseSpec = DirectBaseSpec? DirectBaseSpec
1953                                                             : VirtualBaseSpec;
1954            Diag(BaseSpec->getLocStart(),
1955                 diag::note_base_class_specified_here)
1956              << BaseSpec->getType()
1957              << BaseSpec->getSourceRange();
1958
1959            TyD = Type;
1960          }
1961        }
1962      }
1963
1964      if (!TyD && BaseType.isNull()) {
1965        Diag(IdLoc, diag::err_mem_init_not_member_or_class)
1966          << MemberOrBase << SourceRange(IdLoc,Init->getSourceRange().getEnd());
1967        return true;
1968      }
1969    }
1970
1971    if (BaseType.isNull()) {
1972      BaseType = Context.getTypeDeclType(TyD);
1973      if (SS.isSet()) {
1974        NestedNameSpecifier *Qualifier =
1975          static_cast<NestedNameSpecifier*>(SS.getScopeRep());
1976
1977        // FIXME: preserve source range information
1978        BaseType = Context.getElaboratedType(ETK_None, Qualifier, BaseType);
1979      }
1980    }
1981  }
1982
1983  if (!TInfo)
1984    TInfo = Context.getTrivialTypeSourceInfo(BaseType, IdLoc);
1985
1986  return BuildBaseInitializer(BaseType, TInfo, Init, ClassDecl, EllipsisLoc);
1987}
1988
1989/// Checks a member initializer expression for cases where reference (or
1990/// pointer) members are bound to by-value parameters (or their addresses).
1991static void CheckForDanglingReferenceOrPointer(Sema &S, ValueDecl *Member,
1992                                               Expr *Init,
1993                                               SourceLocation IdLoc) {
1994  QualType MemberTy = Member->getType();
1995
1996  // We only handle pointers and references currently.
1997  // FIXME: Would this be relevant for ObjC object pointers? Or block pointers?
1998  if (!MemberTy->isReferenceType() && !MemberTy->isPointerType())
1999    return;
2000
2001  const bool IsPointer = MemberTy->isPointerType();
2002  if (IsPointer) {
2003    if (const UnaryOperator *Op
2004          = dyn_cast<UnaryOperator>(Init->IgnoreParenImpCasts())) {
2005      // The only case we're worried about with pointers requires taking the
2006      // address.
2007      if (Op->getOpcode() != UO_AddrOf)
2008        return;
2009
2010      Init = Op->getSubExpr();
2011    } else {
2012      // We only handle address-of expression initializers for pointers.
2013      return;
2014    }
2015  }
2016
2017  if (isa<MaterializeTemporaryExpr>(Init->IgnoreParens())) {
2018    // Taking the address of a temporary will be diagnosed as a hard error.
2019    if (IsPointer)
2020      return;
2021
2022    S.Diag(Init->getExprLoc(), diag::warn_bind_ref_member_to_temporary)
2023      << Member << Init->getSourceRange();
2024  } else if (const DeclRefExpr *DRE
2025               = dyn_cast<DeclRefExpr>(Init->IgnoreParens())) {
2026    // We only warn when referring to a non-reference parameter declaration.
2027    const ParmVarDecl *Parameter = dyn_cast<ParmVarDecl>(DRE->getDecl());
2028    if (!Parameter || Parameter->getType()->isReferenceType())
2029      return;
2030
2031    S.Diag(Init->getExprLoc(),
2032           IsPointer ? diag::warn_init_ptr_member_to_parameter_addr
2033                     : diag::warn_bind_ref_member_to_parameter)
2034      << Member << Parameter << Init->getSourceRange();
2035  } else {
2036    // Other initializers are fine.
2037    return;
2038  }
2039
2040  S.Diag(Member->getLocation(), diag::note_ref_or_ptr_member_declared_here)
2041    << (unsigned)IsPointer;
2042}
2043
2044namespace {
2045  class UninitializedFieldVisitor
2046      : public EvaluatedExprVisitor<UninitializedFieldVisitor> {
2047    Sema &S;
2048    ValueDecl *VD;
2049  public:
2050    typedef EvaluatedExprVisitor<UninitializedFieldVisitor> Inherited;
2051    UninitializedFieldVisitor(Sema &S, ValueDecl *VD) : Inherited(S.Context),
2052                                                        S(S), VD(VD) {
2053    }
2054
2055    void HandleExpr(Expr *E) {
2056      if (!E) return;
2057
2058      // Expressions like x(x) sometimes lack the surrounding expressions
2059      // but need to be checked anyways.
2060      HandleValue(E);
2061      Visit(E);
2062    }
2063
2064    void HandleValue(Expr *E) {
2065      E = E->IgnoreParens();
2066
2067      if (MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
2068        if (isa<EnumConstantDecl>(ME->getMemberDecl()))
2069            return;
2070        Expr *Base = E;
2071        while (isa<MemberExpr>(Base)) {
2072          ME = dyn_cast<MemberExpr>(Base);
2073          if (VarDecl *VarD = dyn_cast<VarDecl>(ME->getMemberDecl()))
2074            if (VarD->hasGlobalStorage())
2075              return;
2076          Base = ME->getBase();
2077        }
2078
2079        if (VD == ME->getMemberDecl() && isa<CXXThisExpr>(Base)) {
2080          S.Diag(ME->getExprLoc(), diag::warn_field_is_uninit);
2081          return;
2082        }
2083      }
2084
2085      if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
2086        HandleValue(CO->getTrueExpr());
2087        HandleValue(CO->getFalseExpr());
2088        return;
2089      }
2090
2091      if (BinaryConditionalOperator *BCO =
2092              dyn_cast<BinaryConditionalOperator>(E)) {
2093        HandleValue(BCO->getCommon());
2094        HandleValue(BCO->getFalseExpr());
2095        return;
2096      }
2097
2098      if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
2099        switch (BO->getOpcode()) {
2100        default:
2101          return;
2102        case(BO_PtrMemD):
2103        case(BO_PtrMemI):
2104          HandleValue(BO->getLHS());
2105          return;
2106        case(BO_Comma):
2107          HandleValue(BO->getRHS());
2108          return;
2109        }
2110      }
2111    }
2112
2113    void VisitImplicitCastExpr(ImplicitCastExpr *E) {
2114      if (E->getCastKind() == CK_LValueToRValue)
2115        HandleValue(E->getSubExpr());
2116
2117      Inherited::VisitImplicitCastExpr(E);
2118    }
2119
2120    void VisitCXXMemberCallExpr(CXXMemberCallExpr *E) {
2121      Expr *Callee = E->getCallee();
2122      if (isa<MemberExpr>(Callee))
2123        HandleValue(Callee);
2124
2125      Inherited::VisitCXXMemberCallExpr(E);
2126    }
2127  };
2128  static void CheckInitExprContainsUninitializedFields(Sema &S, Expr *E,
2129                                                       ValueDecl *VD) {
2130    UninitializedFieldVisitor(S, VD).HandleExpr(E);
2131  }
2132} // namespace
2133
2134MemInitResult
2135Sema::BuildMemberInitializer(ValueDecl *Member, Expr *Init,
2136                             SourceLocation IdLoc) {
2137  FieldDecl *DirectMember = dyn_cast<FieldDecl>(Member);
2138  IndirectFieldDecl *IndirectMember = dyn_cast<IndirectFieldDecl>(Member);
2139  assert((DirectMember || IndirectMember) &&
2140         "Member must be a FieldDecl or IndirectFieldDecl");
2141
2142  if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer))
2143    return true;
2144
2145  if (Member->isInvalidDecl())
2146    return true;
2147
2148  // Diagnose value-uses of fields to initialize themselves, e.g.
2149  //   foo(foo)
2150  // where foo is not also a parameter to the constructor.
2151  // TODO: implement -Wuninitialized and fold this into that framework.
2152  Expr **Args;
2153  unsigned NumArgs;
2154  if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) {
2155    Args = ParenList->getExprs();
2156    NumArgs = ParenList->getNumExprs();
2157  } else {
2158    InitListExpr *InitList = cast<InitListExpr>(Init);
2159    Args = InitList->getInits();
2160    NumArgs = InitList->getNumInits();
2161  }
2162
2163  // Mark FieldDecl as being used if it is a non-primitive type and the
2164  // initializer does not call the default constructor (which is trivial
2165  // for all entries in UnusedPrivateFields).
2166  // FIXME: Make this smarter once more side effect-free types can be
2167  // determined.
2168  if (NumArgs > 0) {
2169    if (Member->getType()->isRecordType()) {
2170      UnusedPrivateFields.remove(Member);
2171    } else {
2172      for (unsigned i = 0; i < NumArgs; ++i) {
2173        if (Args[i]->HasSideEffects(Context)) {
2174          UnusedPrivateFields.remove(Member);
2175          break;
2176        }
2177      }
2178    }
2179  }
2180
2181  if (getDiagnostics().getDiagnosticLevel(diag::warn_field_is_uninit, IdLoc)
2182        != DiagnosticsEngine::Ignored)
2183    for (unsigned i = 0; i < NumArgs; ++i)
2184      // FIXME: Warn about the case when other fields are used before being
2185      // uninitialized. For example, let this field be the i'th field. When
2186      // initializing the i'th field, throw a warning if any of the >= i'th
2187      // fields are used, as they are not yet initialized.
2188      // Right now we are only handling the case where the i'th field uses
2189      // itself in its initializer.
2190      CheckInitExprContainsUninitializedFields(*this, Args[i], Member);
2191
2192  SourceRange InitRange = Init->getSourceRange();
2193
2194  if (Member->getType()->isDependentType() || Init->isTypeDependent()) {
2195    // Can't check initialization for a member of dependent type or when
2196    // any of the arguments are type-dependent expressions.
2197    DiscardCleanupsInEvaluationContext();
2198  } else {
2199    bool InitList = false;
2200    if (isa<InitListExpr>(Init)) {
2201      InitList = true;
2202      Args = &Init;
2203      NumArgs = 1;
2204
2205      if (isStdInitializerList(Member->getType(), 0)) {
2206        Diag(IdLoc, diag::warn_dangling_std_initializer_list)
2207            << /*at end of ctor*/1 << InitRange;
2208      }
2209    }
2210
2211    // Initialize the member.
2212    InitializedEntity MemberEntity =
2213      DirectMember ? InitializedEntity::InitializeMember(DirectMember, 0)
2214                   : InitializedEntity::InitializeMember(IndirectMember, 0);
2215    InitializationKind Kind =
2216      InitList ? InitializationKind::CreateDirectList(IdLoc)
2217               : InitializationKind::CreateDirect(IdLoc, InitRange.getBegin(),
2218                                                  InitRange.getEnd());
2219
2220    InitializationSequence InitSeq(*this, MemberEntity, Kind, Args, NumArgs);
2221    ExprResult MemberInit = InitSeq.Perform(*this, MemberEntity, Kind,
2222                                            MultiExprArg(*this, Args, NumArgs),
2223                                            0);
2224    if (MemberInit.isInvalid())
2225      return true;
2226
2227    CheckImplicitConversions(MemberInit.get(),
2228                             InitRange.getBegin());
2229
2230    // C++0x [class.base.init]p7:
2231    //   The initialization of each base and member constitutes a
2232    //   full-expression.
2233    MemberInit = MaybeCreateExprWithCleanups(MemberInit);
2234    if (MemberInit.isInvalid())
2235      return true;
2236
2237    // If we are in a dependent context, template instantiation will
2238    // perform this type-checking again. Just save the arguments that we
2239    // received.
2240    // FIXME: This isn't quite ideal, since our ASTs don't capture all
2241    // of the information that we have about the member
2242    // initializer. However, deconstructing the ASTs is a dicey process,
2243    // and this approach is far more likely to get the corner cases right.
2244    if (CurContext->isDependentContext()) {
2245      // The existing Init will do fine.
2246    } else {
2247      Init = MemberInit.get();
2248      CheckForDanglingReferenceOrPointer(*this, Member, Init, IdLoc);
2249    }
2250  }
2251
2252  if (DirectMember) {
2253    return new (Context) CXXCtorInitializer(Context, DirectMember, IdLoc,
2254                                            InitRange.getBegin(), Init,
2255                                            InitRange.getEnd());
2256  } else {
2257    return new (Context) CXXCtorInitializer(Context, IndirectMember, IdLoc,
2258                                            InitRange.getBegin(), Init,
2259                                            InitRange.getEnd());
2260  }
2261}
2262
2263MemInitResult
2264Sema::BuildDelegatingInitializer(TypeSourceInfo *TInfo, Expr *Init,
2265                                 CXXRecordDecl *ClassDecl) {
2266  SourceLocation NameLoc = TInfo->getTypeLoc().getLocalSourceRange().getBegin();
2267  if (!LangOpts.CPlusPlus0x)
2268    return Diag(NameLoc, diag::err_delegating_ctor)
2269      << TInfo->getTypeLoc().getLocalSourceRange();
2270  Diag(NameLoc, diag::warn_cxx98_compat_delegating_ctor);
2271
2272  bool InitList = true;
2273  Expr **Args = &Init;
2274  unsigned NumArgs = 1;
2275  if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) {
2276    InitList = false;
2277    Args = ParenList->getExprs();
2278    NumArgs = ParenList->getNumExprs();
2279  }
2280
2281  SourceRange InitRange = Init->getSourceRange();
2282  // Initialize the object.
2283  InitializedEntity DelegationEntity = InitializedEntity::InitializeDelegation(
2284                                     QualType(ClassDecl->getTypeForDecl(), 0));
2285  InitializationKind Kind =
2286    InitList ? InitializationKind::CreateDirectList(NameLoc)
2287             : InitializationKind::CreateDirect(NameLoc, InitRange.getBegin(),
2288                                                InitRange.getEnd());
2289  InitializationSequence InitSeq(*this, DelegationEntity, Kind, Args, NumArgs);
2290  ExprResult DelegationInit = InitSeq.Perform(*this, DelegationEntity, Kind,
2291                                              MultiExprArg(*this, Args,NumArgs),
2292                                              0);
2293  if (DelegationInit.isInvalid())
2294    return true;
2295
2296  assert(cast<CXXConstructExpr>(DelegationInit.get())->getConstructor() &&
2297         "Delegating constructor with no target?");
2298
2299  CheckImplicitConversions(DelegationInit.get(), InitRange.getBegin());
2300
2301  // C++0x [class.base.init]p7:
2302  //   The initialization of each base and member constitutes a
2303  //   full-expression.
2304  DelegationInit = MaybeCreateExprWithCleanups(DelegationInit);
2305  if (DelegationInit.isInvalid())
2306    return true;
2307
2308  // If we are in a dependent context, template instantiation will
2309  // perform this type-checking again. Just save the arguments that we
2310  // received in a ParenListExpr.
2311  // FIXME: This isn't quite ideal, since our ASTs don't capture all
2312  // of the information that we have about the base
2313  // initializer. However, deconstructing the ASTs is a dicey process,
2314  // and this approach is far more likely to get the corner cases right.
2315  if (CurContext->isDependentContext())
2316    DelegationInit = Owned(Init);
2317
2318  return new (Context) CXXCtorInitializer(Context, TInfo, InitRange.getBegin(),
2319                                          DelegationInit.takeAs<Expr>(),
2320                                          InitRange.getEnd());
2321}
2322
2323MemInitResult
2324Sema::BuildBaseInitializer(QualType BaseType, TypeSourceInfo *BaseTInfo,
2325                           Expr *Init, CXXRecordDecl *ClassDecl,
2326                           SourceLocation EllipsisLoc) {
2327  SourceLocation BaseLoc
2328    = BaseTInfo->getTypeLoc().getLocalSourceRange().getBegin();
2329
2330  if (!BaseType->isDependentType() && !BaseType->isRecordType())
2331    return Diag(BaseLoc, diag::err_base_init_does_not_name_class)
2332             << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
2333
2334  // C++ [class.base.init]p2:
2335  //   [...] Unless the mem-initializer-id names a nonstatic data
2336  //   member of the constructor's class or a direct or virtual base
2337  //   of that class, the mem-initializer is ill-formed. A
2338  //   mem-initializer-list can initialize a base class using any
2339  //   name that denotes that base class type.
2340  bool Dependent = BaseType->isDependentType() || Init->isTypeDependent();
2341
2342  SourceRange InitRange = Init->getSourceRange();
2343  if (EllipsisLoc.isValid()) {
2344    // This is a pack expansion.
2345    if (!BaseType->containsUnexpandedParameterPack())  {
2346      Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
2347        << SourceRange(BaseLoc, InitRange.getEnd());
2348
2349      EllipsisLoc = SourceLocation();
2350    }
2351  } else {
2352    // Check for any unexpanded parameter packs.
2353    if (DiagnoseUnexpandedParameterPack(BaseLoc, BaseTInfo, UPPC_Initializer))
2354      return true;
2355
2356    if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer))
2357      return true;
2358  }
2359
2360  // Check for direct and virtual base classes.
2361  const CXXBaseSpecifier *DirectBaseSpec = 0;
2362  const CXXBaseSpecifier *VirtualBaseSpec = 0;
2363  if (!Dependent) {
2364    if (Context.hasSameUnqualifiedType(QualType(ClassDecl->getTypeForDecl(),0),
2365                                       BaseType))
2366      return BuildDelegatingInitializer(BaseTInfo, Init, ClassDecl);
2367
2368    FindBaseInitializer(*this, ClassDecl, BaseType, DirectBaseSpec,
2369                        VirtualBaseSpec);
2370
2371    // C++ [base.class.init]p2:
2372    // Unless the mem-initializer-id names a nonstatic data member of the
2373    // constructor's class or a direct or virtual base of that class, the
2374    // mem-initializer is ill-formed.
2375    if (!DirectBaseSpec && !VirtualBaseSpec) {
2376      // If the class has any dependent bases, then it's possible that
2377      // one of those types will resolve to the same type as
2378      // BaseType. Therefore, just treat this as a dependent base
2379      // class initialization.  FIXME: Should we try to check the
2380      // initialization anyway? It seems odd.
2381      if (ClassDecl->hasAnyDependentBases())
2382        Dependent = true;
2383      else
2384        return Diag(BaseLoc, diag::err_not_direct_base_or_virtual)
2385          << BaseType << Context.getTypeDeclType(ClassDecl)
2386          << BaseTInfo->getTypeLoc().getLocalSourceRange();
2387    }
2388  }
2389
2390  if (Dependent) {
2391    DiscardCleanupsInEvaluationContext();
2392
2393    return new (Context) CXXCtorInitializer(Context, BaseTInfo,
2394                                            /*IsVirtual=*/false,
2395                                            InitRange.getBegin(), Init,
2396                                            InitRange.getEnd(), EllipsisLoc);
2397  }
2398
2399  // C++ [base.class.init]p2:
2400  //   If a mem-initializer-id is ambiguous because it designates both
2401  //   a direct non-virtual base class and an inherited virtual base
2402  //   class, the mem-initializer is ill-formed.
2403  if (DirectBaseSpec && VirtualBaseSpec)
2404    return Diag(BaseLoc, diag::err_base_init_direct_and_virtual)
2405      << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
2406
2407  CXXBaseSpecifier *BaseSpec = const_cast<CXXBaseSpecifier *>(DirectBaseSpec);
2408  if (!BaseSpec)
2409    BaseSpec = const_cast<CXXBaseSpecifier *>(VirtualBaseSpec);
2410
2411  // Initialize the base.
2412  bool InitList = true;
2413  Expr **Args = &Init;
2414  unsigned NumArgs = 1;
2415  if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) {
2416    InitList = false;
2417    Args = ParenList->getExprs();
2418    NumArgs = ParenList->getNumExprs();
2419  }
2420
2421  InitializedEntity BaseEntity =
2422    InitializedEntity::InitializeBase(Context, BaseSpec, VirtualBaseSpec);
2423  InitializationKind Kind =
2424    InitList ? InitializationKind::CreateDirectList(BaseLoc)
2425             : InitializationKind::CreateDirect(BaseLoc, InitRange.getBegin(),
2426                                                InitRange.getEnd());
2427  InitializationSequence InitSeq(*this, BaseEntity, Kind, Args, NumArgs);
2428  ExprResult BaseInit = InitSeq.Perform(*this, BaseEntity, Kind,
2429                                          MultiExprArg(*this, Args, NumArgs),
2430                                          0);
2431  if (BaseInit.isInvalid())
2432    return true;
2433
2434  CheckImplicitConversions(BaseInit.get(), InitRange.getBegin());
2435
2436  // C++0x [class.base.init]p7:
2437  //   The initialization of each base and member constitutes a
2438  //   full-expression.
2439  BaseInit = MaybeCreateExprWithCleanups(BaseInit);
2440  if (BaseInit.isInvalid())
2441    return true;
2442
2443  // If we are in a dependent context, template instantiation will
2444  // perform this type-checking again. Just save the arguments that we
2445  // received in a ParenListExpr.
2446  // FIXME: This isn't quite ideal, since our ASTs don't capture all
2447  // of the information that we have about the base
2448  // initializer. However, deconstructing the ASTs is a dicey process,
2449  // and this approach is far more likely to get the corner cases right.
2450  if (CurContext->isDependentContext())
2451    BaseInit = Owned(Init);
2452
2453  return new (Context) CXXCtorInitializer(Context, BaseTInfo,
2454                                          BaseSpec->isVirtual(),
2455                                          InitRange.getBegin(),
2456                                          BaseInit.takeAs<Expr>(),
2457                                          InitRange.getEnd(), EllipsisLoc);
2458}
2459
2460// Create a static_cast\<T&&>(expr).
2461static Expr *CastForMoving(Sema &SemaRef, Expr *E) {
2462  QualType ExprType = E->getType();
2463  QualType TargetType = SemaRef.Context.getRValueReferenceType(ExprType);
2464  SourceLocation ExprLoc = E->getLocStart();
2465  TypeSourceInfo *TargetLoc = SemaRef.Context.getTrivialTypeSourceInfo(
2466      TargetType, ExprLoc);
2467
2468  return SemaRef.BuildCXXNamedCast(ExprLoc, tok::kw_static_cast, TargetLoc, E,
2469                                   SourceRange(ExprLoc, ExprLoc),
2470                                   E->getSourceRange()).take();
2471}
2472
2473/// ImplicitInitializerKind - How an implicit base or member initializer should
2474/// initialize its base or member.
2475enum ImplicitInitializerKind {
2476  IIK_Default,
2477  IIK_Copy,
2478  IIK_Move
2479};
2480
2481static bool
2482BuildImplicitBaseInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
2483                             ImplicitInitializerKind ImplicitInitKind,
2484                             CXXBaseSpecifier *BaseSpec,
2485                             bool IsInheritedVirtualBase,
2486                             CXXCtorInitializer *&CXXBaseInit) {
2487  InitializedEntity InitEntity
2488    = InitializedEntity::InitializeBase(SemaRef.Context, BaseSpec,
2489                                        IsInheritedVirtualBase);
2490
2491  ExprResult BaseInit;
2492
2493  switch (ImplicitInitKind) {
2494  case IIK_Default: {
2495    InitializationKind InitKind
2496      = InitializationKind::CreateDefault(Constructor->getLocation());
2497    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
2498    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind,
2499                               MultiExprArg(SemaRef, 0, 0));
2500    break;
2501  }
2502
2503  case IIK_Move:
2504  case IIK_Copy: {
2505    bool Moving = ImplicitInitKind == IIK_Move;
2506    ParmVarDecl *Param = Constructor->getParamDecl(0);
2507    QualType ParamType = Param->getType().getNonReferenceType();
2508
2509    Expr *CopyCtorArg =
2510      DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(),
2511                          SourceLocation(), Param, false,
2512                          Constructor->getLocation(), ParamType,
2513                          VK_LValue, 0);
2514
2515    SemaRef.MarkDeclRefReferenced(cast<DeclRefExpr>(CopyCtorArg));
2516
2517    // Cast to the base class to avoid ambiguities.
2518    QualType ArgTy =
2519      SemaRef.Context.getQualifiedType(BaseSpec->getType().getUnqualifiedType(),
2520                                       ParamType.getQualifiers());
2521
2522    if (Moving) {
2523      CopyCtorArg = CastForMoving(SemaRef, CopyCtorArg);
2524    }
2525
2526    CXXCastPath BasePath;
2527    BasePath.push_back(BaseSpec);
2528    CopyCtorArg = SemaRef.ImpCastExprToType(CopyCtorArg, ArgTy,
2529                                            CK_UncheckedDerivedToBase,
2530                                            Moving ? VK_XValue : VK_LValue,
2531                                            &BasePath).take();
2532
2533    InitializationKind InitKind
2534      = InitializationKind::CreateDirect(Constructor->getLocation(),
2535                                         SourceLocation(), SourceLocation());
2536    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind,
2537                                   &CopyCtorArg, 1);
2538    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind,
2539                               MultiExprArg(&CopyCtorArg, 1));
2540    break;
2541  }
2542  }
2543
2544  BaseInit = SemaRef.MaybeCreateExprWithCleanups(BaseInit);
2545  if (BaseInit.isInvalid())
2546    return true;
2547
2548  CXXBaseInit =
2549    new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
2550               SemaRef.Context.getTrivialTypeSourceInfo(BaseSpec->getType(),
2551                                                        SourceLocation()),
2552                                             BaseSpec->isVirtual(),
2553                                             SourceLocation(),
2554                                             BaseInit.takeAs<Expr>(),
2555                                             SourceLocation(),
2556                                             SourceLocation());
2557
2558  return false;
2559}
2560
2561static bool RefersToRValueRef(Expr *MemRef) {
2562  ValueDecl *Referenced = cast<MemberExpr>(MemRef)->getMemberDecl();
2563  return Referenced->getType()->isRValueReferenceType();
2564}
2565
2566static bool
2567BuildImplicitMemberInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
2568                               ImplicitInitializerKind ImplicitInitKind,
2569                               FieldDecl *Field, IndirectFieldDecl *Indirect,
2570                               CXXCtorInitializer *&CXXMemberInit) {
2571  if (Field->isInvalidDecl())
2572    return true;
2573
2574  SourceLocation Loc = Constructor->getLocation();
2575
2576  if (ImplicitInitKind == IIK_Copy || ImplicitInitKind == IIK_Move) {
2577    bool Moving = ImplicitInitKind == IIK_Move;
2578    ParmVarDecl *Param = Constructor->getParamDecl(0);
2579    QualType ParamType = Param->getType().getNonReferenceType();
2580
2581    // Suppress copying zero-width bitfields.
2582    if (Field->isBitField() && Field->getBitWidthValue(SemaRef.Context) == 0)
2583      return false;
2584
2585    Expr *MemberExprBase =
2586      DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(),
2587                          SourceLocation(), Param, false,
2588                          Loc, ParamType, VK_LValue, 0);
2589
2590    SemaRef.MarkDeclRefReferenced(cast<DeclRefExpr>(MemberExprBase));
2591
2592    if (Moving) {
2593      MemberExprBase = CastForMoving(SemaRef, MemberExprBase);
2594    }
2595
2596    // Build a reference to this field within the parameter.
2597    CXXScopeSpec SS;
2598    LookupResult MemberLookup(SemaRef, Field->getDeclName(), Loc,
2599                              Sema::LookupMemberName);
2600    MemberLookup.addDecl(Indirect ? cast<ValueDecl>(Indirect)
2601                                  : cast<ValueDecl>(Field), AS_public);
2602    MemberLookup.resolveKind();
2603    ExprResult CtorArg
2604      = SemaRef.BuildMemberReferenceExpr(MemberExprBase,
2605                                         ParamType, Loc,
2606                                         /*IsArrow=*/false,
2607                                         SS,
2608                                         /*TemplateKWLoc=*/SourceLocation(),
2609                                         /*FirstQualifierInScope=*/0,
2610                                         MemberLookup,
2611                                         /*TemplateArgs=*/0);
2612    if (CtorArg.isInvalid())
2613      return true;
2614
2615    // C++11 [class.copy]p15:
2616    //   - if a member m has rvalue reference type T&&, it is direct-initialized
2617    //     with static_cast<T&&>(x.m);
2618    if (RefersToRValueRef(CtorArg.get())) {
2619      CtorArg = CastForMoving(SemaRef, CtorArg.take());
2620    }
2621
2622    // When the field we are copying is an array, create index variables for
2623    // each dimension of the array. We use these index variables to subscript
2624    // the source array, and other clients (e.g., CodeGen) will perform the
2625    // necessary iteration with these index variables.
2626    SmallVector<VarDecl *, 4> IndexVariables;
2627    QualType BaseType = Field->getType();
2628    QualType SizeType = SemaRef.Context.getSizeType();
2629    bool InitializingArray = false;
2630    while (const ConstantArrayType *Array
2631                          = SemaRef.Context.getAsConstantArrayType(BaseType)) {
2632      InitializingArray = true;
2633      // Create the iteration variable for this array index.
2634      IdentifierInfo *IterationVarName = 0;
2635      {
2636        SmallString<8> Str;
2637        llvm::raw_svector_ostream OS(Str);
2638        OS << "__i" << IndexVariables.size();
2639        IterationVarName = &SemaRef.Context.Idents.get(OS.str());
2640      }
2641      VarDecl *IterationVar
2642        = VarDecl::Create(SemaRef.Context, SemaRef.CurContext, Loc, Loc,
2643                          IterationVarName, SizeType,
2644                        SemaRef.Context.getTrivialTypeSourceInfo(SizeType, Loc),
2645                          SC_None, SC_None);
2646      IndexVariables.push_back(IterationVar);
2647
2648      // Create a reference to the iteration variable.
2649      ExprResult IterationVarRef
2650        = SemaRef.BuildDeclRefExpr(IterationVar, SizeType, VK_LValue, Loc);
2651      assert(!IterationVarRef.isInvalid() &&
2652             "Reference to invented variable cannot fail!");
2653      IterationVarRef = SemaRef.DefaultLvalueConversion(IterationVarRef.take());
2654      assert(!IterationVarRef.isInvalid() &&
2655             "Conversion of invented variable cannot fail!");
2656
2657      // Subscript the array with this iteration variable.
2658      CtorArg = SemaRef.CreateBuiltinArraySubscriptExpr(CtorArg.take(), Loc,
2659                                                        IterationVarRef.take(),
2660                                                        Loc);
2661      if (CtorArg.isInvalid())
2662        return true;
2663
2664      BaseType = Array->getElementType();
2665    }
2666
2667    // The array subscript expression is an lvalue, which is wrong for moving.
2668    if (Moving && InitializingArray)
2669      CtorArg = CastForMoving(SemaRef, CtorArg.take());
2670
2671    // Construct the entity that we will be initializing. For an array, this
2672    // will be first element in the array, which may require several levels
2673    // of array-subscript entities.
2674    SmallVector<InitializedEntity, 4> Entities;
2675    Entities.reserve(1 + IndexVariables.size());
2676    if (Indirect)
2677      Entities.push_back(InitializedEntity::InitializeMember(Indirect));
2678    else
2679      Entities.push_back(InitializedEntity::InitializeMember(Field));
2680    for (unsigned I = 0, N = IndexVariables.size(); I != N; ++I)
2681      Entities.push_back(InitializedEntity::InitializeElement(SemaRef.Context,
2682                                                              0,
2683                                                              Entities.back()));
2684
2685    // Direct-initialize to use the copy constructor.
2686    InitializationKind InitKind =
2687      InitializationKind::CreateDirect(Loc, SourceLocation(), SourceLocation());
2688
2689    Expr *CtorArgE = CtorArg.takeAs<Expr>();
2690    InitializationSequence InitSeq(SemaRef, Entities.back(), InitKind,
2691                                   &CtorArgE, 1);
2692
2693    ExprResult MemberInit
2694      = InitSeq.Perform(SemaRef, Entities.back(), InitKind,
2695                        MultiExprArg(&CtorArgE, 1));
2696    MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
2697    if (MemberInit.isInvalid())
2698      return true;
2699
2700    if (Indirect) {
2701      assert(IndexVariables.size() == 0 &&
2702             "Indirect field improperly initialized");
2703      CXXMemberInit
2704        = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Indirect,
2705                                                   Loc, Loc,
2706                                                   MemberInit.takeAs<Expr>(),
2707                                                   Loc);
2708    } else
2709      CXXMemberInit = CXXCtorInitializer::Create(SemaRef.Context, Field, Loc,
2710                                                 Loc, MemberInit.takeAs<Expr>(),
2711                                                 Loc,
2712                                                 IndexVariables.data(),
2713                                                 IndexVariables.size());
2714    return false;
2715  }
2716
2717  assert(ImplicitInitKind == IIK_Default && "Unhandled implicit init kind!");
2718
2719  QualType FieldBaseElementType =
2720    SemaRef.Context.getBaseElementType(Field->getType());
2721
2722  if (FieldBaseElementType->isRecordType()) {
2723    InitializedEntity InitEntity
2724      = Indirect? InitializedEntity::InitializeMember(Indirect)
2725                : InitializedEntity::InitializeMember(Field);
2726    InitializationKind InitKind =
2727      InitializationKind::CreateDefault(Loc);
2728
2729    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
2730    ExprResult MemberInit =
2731      InitSeq.Perform(SemaRef, InitEntity, InitKind, MultiExprArg());
2732
2733    MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
2734    if (MemberInit.isInvalid())
2735      return true;
2736
2737    if (Indirect)
2738      CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
2739                                                               Indirect, Loc,
2740                                                               Loc,
2741                                                               MemberInit.get(),
2742                                                               Loc);
2743    else
2744      CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
2745                                                               Field, Loc, Loc,
2746                                                               MemberInit.get(),
2747                                                               Loc);
2748    return false;
2749  }
2750
2751  if (!Field->getParent()->isUnion()) {
2752    if (FieldBaseElementType->isReferenceType()) {
2753      SemaRef.Diag(Constructor->getLocation(),
2754                   diag::err_uninitialized_member_in_ctor)
2755      << (int)Constructor->isImplicit()
2756      << SemaRef.Context.getTagDeclType(Constructor->getParent())
2757      << 0 << Field->getDeclName();
2758      SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
2759      return true;
2760    }
2761
2762    if (FieldBaseElementType.isConstQualified()) {
2763      SemaRef.Diag(Constructor->getLocation(),
2764                   diag::err_uninitialized_member_in_ctor)
2765      << (int)Constructor->isImplicit()
2766      << SemaRef.Context.getTagDeclType(Constructor->getParent())
2767      << 1 << Field->getDeclName();
2768      SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
2769      return true;
2770    }
2771  }
2772
2773  if (SemaRef.getLangOpts().ObjCAutoRefCount &&
2774      FieldBaseElementType->isObjCRetainableType() &&
2775      FieldBaseElementType.getObjCLifetime() != Qualifiers::OCL_None &&
2776      FieldBaseElementType.getObjCLifetime() != Qualifiers::OCL_ExplicitNone) {
2777    // ARC:
2778    //   Default-initialize Objective-C pointers to NULL.
2779    CXXMemberInit
2780      = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Field,
2781                                                 Loc, Loc,
2782                 new (SemaRef.Context) ImplicitValueInitExpr(Field->getType()),
2783                                                 Loc);
2784    return false;
2785  }
2786
2787  // Nothing to initialize.
2788  CXXMemberInit = 0;
2789  return false;
2790}
2791
2792namespace {
2793struct BaseAndFieldInfo {
2794  Sema &S;
2795  CXXConstructorDecl *Ctor;
2796  bool AnyErrorsInInits;
2797  ImplicitInitializerKind IIK;
2798  llvm::DenseMap<const void *, CXXCtorInitializer*> AllBaseFields;
2799  SmallVector<CXXCtorInitializer*, 8> AllToInit;
2800
2801  BaseAndFieldInfo(Sema &S, CXXConstructorDecl *Ctor, bool ErrorsInInits)
2802    : S(S), Ctor(Ctor), AnyErrorsInInits(ErrorsInInits) {
2803    bool Generated = Ctor->isImplicit() || Ctor->isDefaulted();
2804    if (Generated && Ctor->isCopyConstructor())
2805      IIK = IIK_Copy;
2806    else if (Generated && Ctor->isMoveConstructor())
2807      IIK = IIK_Move;
2808    else
2809      IIK = IIK_Default;
2810  }
2811
2812  bool isImplicitCopyOrMove() const {
2813    switch (IIK) {
2814    case IIK_Copy:
2815    case IIK_Move:
2816      return true;
2817
2818    case IIK_Default:
2819      return false;
2820    }
2821
2822    llvm_unreachable("Invalid ImplicitInitializerKind!");
2823  }
2824};
2825}
2826
2827/// \brief Determine whether the given indirect field declaration is somewhere
2828/// within an anonymous union.
2829static bool isWithinAnonymousUnion(IndirectFieldDecl *F) {
2830  for (IndirectFieldDecl::chain_iterator C = F->chain_begin(),
2831                                      CEnd = F->chain_end();
2832       C != CEnd; ++C)
2833    if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>((*C)->getDeclContext()))
2834      if (Record->isUnion())
2835        return true;
2836
2837  return false;
2838}
2839
2840/// \brief Determine whether the given type is an incomplete or zero-lenfgth
2841/// array type.
2842static bool isIncompleteOrZeroLengthArrayType(ASTContext &Context, QualType T) {
2843  if (T->isIncompleteArrayType())
2844    return true;
2845
2846  while (const ConstantArrayType *ArrayT = Context.getAsConstantArrayType(T)) {
2847    if (!ArrayT->getSize())
2848      return true;
2849
2850    T = ArrayT->getElementType();
2851  }
2852
2853  return false;
2854}
2855
2856static bool CollectFieldInitializer(Sema &SemaRef, BaseAndFieldInfo &Info,
2857                                    FieldDecl *Field,
2858                                    IndirectFieldDecl *Indirect = 0) {
2859
2860  // Overwhelmingly common case: we have a direct initializer for this field.
2861  if (CXXCtorInitializer *Init = Info.AllBaseFields.lookup(Field)) {
2862    Info.AllToInit.push_back(Init);
2863    return false;
2864  }
2865
2866  // C++0x [class.base.init]p8: if the entity is a non-static data member that
2867  // has a brace-or-equal-initializer, the entity is initialized as specified
2868  // in [dcl.init].
2869  if (Field->hasInClassInitializer() && !Info.isImplicitCopyOrMove()) {
2870    CXXCtorInitializer *Init;
2871    if (Indirect)
2872      Init = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Indirect,
2873                                                      SourceLocation(),
2874                                                      SourceLocation(), 0,
2875                                                      SourceLocation());
2876    else
2877      Init = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Field,
2878                                                      SourceLocation(),
2879                                                      SourceLocation(), 0,
2880                                                      SourceLocation());
2881    Info.AllToInit.push_back(Init);
2882
2883    // Check whether this initializer makes the field "used".
2884    Expr *InitExpr = Field->getInClassInitializer();
2885    if (Field->getType()->isRecordType() ||
2886        (InitExpr && InitExpr->HasSideEffects(SemaRef.Context)))
2887      SemaRef.UnusedPrivateFields.remove(Field);
2888
2889    return false;
2890  }
2891
2892  // Don't build an implicit initializer for union members if none was
2893  // explicitly specified.
2894  if (Field->getParent()->isUnion() ||
2895      (Indirect && isWithinAnonymousUnion(Indirect)))
2896    return false;
2897
2898  // Don't initialize incomplete or zero-length arrays.
2899  if (isIncompleteOrZeroLengthArrayType(SemaRef.Context, Field->getType()))
2900    return false;
2901
2902  // Don't try to build an implicit initializer if there were semantic
2903  // errors in any of the initializers (and therefore we might be
2904  // missing some that the user actually wrote).
2905  if (Info.AnyErrorsInInits || Field->isInvalidDecl())
2906    return false;
2907
2908  CXXCtorInitializer *Init = 0;
2909  if (BuildImplicitMemberInitializer(Info.S, Info.Ctor, Info.IIK, Field,
2910                                     Indirect, Init))
2911    return true;
2912
2913  if (Init)
2914    Info.AllToInit.push_back(Init);
2915
2916  return false;
2917}
2918
2919bool
2920Sema::SetDelegatingInitializer(CXXConstructorDecl *Constructor,
2921                               CXXCtorInitializer *Initializer) {
2922  assert(Initializer->isDelegatingInitializer());
2923  Constructor->setNumCtorInitializers(1);
2924  CXXCtorInitializer **initializer =
2925    new (Context) CXXCtorInitializer*[1];
2926  memcpy(initializer, &Initializer, sizeof (CXXCtorInitializer*));
2927  Constructor->setCtorInitializers(initializer);
2928
2929  if (CXXDestructorDecl *Dtor = LookupDestructor(Constructor->getParent())) {
2930    MarkFunctionReferenced(Initializer->getSourceLocation(), Dtor);
2931    DiagnoseUseOfDecl(Dtor, Initializer->getSourceLocation());
2932  }
2933
2934  DelegatingCtorDecls.push_back(Constructor);
2935
2936  return false;
2937}
2938
2939bool Sema::SetCtorInitializers(CXXConstructorDecl *Constructor,
2940                               CXXCtorInitializer **Initializers,
2941                               unsigned NumInitializers,
2942                               bool AnyErrors) {
2943  if (Constructor->isDependentContext()) {
2944    // Just store the initializers as written, they will be checked during
2945    // instantiation.
2946    if (NumInitializers > 0) {
2947      Constructor->setNumCtorInitializers(NumInitializers);
2948      CXXCtorInitializer **baseOrMemberInitializers =
2949        new (Context) CXXCtorInitializer*[NumInitializers];
2950      memcpy(baseOrMemberInitializers, Initializers,
2951             NumInitializers * sizeof(CXXCtorInitializer*));
2952      Constructor->setCtorInitializers(baseOrMemberInitializers);
2953    }
2954
2955    return false;
2956  }
2957
2958  BaseAndFieldInfo Info(*this, Constructor, AnyErrors);
2959
2960  // We need to build the initializer AST according to order of construction
2961  // and not what user specified in the Initializers list.
2962  CXXRecordDecl *ClassDecl = Constructor->getParent()->getDefinition();
2963  if (!ClassDecl)
2964    return true;
2965
2966  bool HadError = false;
2967
2968  for (unsigned i = 0; i < NumInitializers; i++) {
2969    CXXCtorInitializer *Member = Initializers[i];
2970
2971    if (Member->isBaseInitializer())
2972      Info.AllBaseFields[Member->getBaseClass()->getAs<RecordType>()] = Member;
2973    else
2974      Info.AllBaseFields[Member->getAnyMember()] = Member;
2975  }
2976
2977  // Keep track of the direct virtual bases.
2978  llvm::SmallPtrSet<CXXBaseSpecifier *, 16> DirectVBases;
2979  for (CXXRecordDecl::base_class_iterator I = ClassDecl->bases_begin(),
2980       E = ClassDecl->bases_end(); I != E; ++I) {
2981    if (I->isVirtual())
2982      DirectVBases.insert(I);
2983  }
2984
2985  // Push virtual bases before others.
2986  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
2987       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
2988
2989    if (CXXCtorInitializer *Value
2990        = Info.AllBaseFields.lookup(VBase->getType()->getAs<RecordType>())) {
2991      Info.AllToInit.push_back(Value);
2992    } else if (!AnyErrors) {
2993      bool IsInheritedVirtualBase = !DirectVBases.count(VBase);
2994      CXXCtorInitializer *CXXBaseInit;
2995      if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
2996                                       VBase, IsInheritedVirtualBase,
2997                                       CXXBaseInit)) {
2998        HadError = true;
2999        continue;
3000      }
3001
3002      Info.AllToInit.push_back(CXXBaseInit);
3003    }
3004  }
3005
3006  // Non-virtual bases.
3007  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
3008       E = ClassDecl->bases_end(); Base != E; ++Base) {
3009    // Virtuals are in the virtual base list and already constructed.
3010    if (Base->isVirtual())
3011      continue;
3012
3013    if (CXXCtorInitializer *Value
3014          = Info.AllBaseFields.lookup(Base->getType()->getAs<RecordType>())) {
3015      Info.AllToInit.push_back(Value);
3016    } else if (!AnyErrors) {
3017      CXXCtorInitializer *CXXBaseInit;
3018      if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
3019                                       Base, /*IsInheritedVirtualBase=*/false,
3020                                       CXXBaseInit)) {
3021        HadError = true;
3022        continue;
3023      }
3024
3025      Info.AllToInit.push_back(CXXBaseInit);
3026    }
3027  }
3028
3029  // Fields.
3030  for (DeclContext::decl_iterator Mem = ClassDecl->decls_begin(),
3031                               MemEnd = ClassDecl->decls_end();
3032       Mem != MemEnd; ++Mem) {
3033    if (FieldDecl *F = dyn_cast<FieldDecl>(*Mem)) {
3034      // C++ [class.bit]p2:
3035      //   A declaration for a bit-field that omits the identifier declares an
3036      //   unnamed bit-field. Unnamed bit-fields are not members and cannot be
3037      //   initialized.
3038      if (F->isUnnamedBitfield())
3039        continue;
3040
3041      // If we're not generating the implicit copy/move constructor, then we'll
3042      // handle anonymous struct/union fields based on their individual
3043      // indirect fields.
3044      if (F->isAnonymousStructOrUnion() && Info.IIK == IIK_Default)
3045        continue;
3046
3047      if (CollectFieldInitializer(*this, Info, F))
3048        HadError = true;
3049      continue;
3050    }
3051
3052    // Beyond this point, we only consider default initialization.
3053    if (Info.IIK != IIK_Default)
3054      continue;
3055
3056    if (IndirectFieldDecl *F = dyn_cast<IndirectFieldDecl>(*Mem)) {
3057      if (F->getType()->isIncompleteArrayType()) {
3058        assert(ClassDecl->hasFlexibleArrayMember() &&
3059               "Incomplete array type is not valid");
3060        continue;
3061      }
3062
3063      // Initialize each field of an anonymous struct individually.
3064      if (CollectFieldInitializer(*this, Info, F->getAnonField(), F))
3065        HadError = true;
3066
3067      continue;
3068    }
3069  }
3070
3071  NumInitializers = Info.AllToInit.size();
3072  if (NumInitializers > 0) {
3073    Constructor->setNumCtorInitializers(NumInitializers);
3074    CXXCtorInitializer **baseOrMemberInitializers =
3075      new (Context) CXXCtorInitializer*[NumInitializers];
3076    memcpy(baseOrMemberInitializers, Info.AllToInit.data(),
3077           NumInitializers * sizeof(CXXCtorInitializer*));
3078    Constructor->setCtorInitializers(baseOrMemberInitializers);
3079
3080    // Constructors implicitly reference the base and member
3081    // destructors.
3082    MarkBaseAndMemberDestructorsReferenced(Constructor->getLocation(),
3083                                           Constructor->getParent());
3084  }
3085
3086  return HadError;
3087}
3088
3089static void *GetKeyForTopLevelField(FieldDecl *Field) {
3090  // For anonymous unions, use the class declaration as the key.
3091  if (const RecordType *RT = Field->getType()->getAs<RecordType>()) {
3092    if (RT->getDecl()->isAnonymousStructOrUnion())
3093      return static_cast<void *>(RT->getDecl());
3094  }
3095  return static_cast<void *>(Field);
3096}
3097
3098static void *GetKeyForBase(ASTContext &Context, QualType BaseType) {
3099  return const_cast<Type*>(Context.getCanonicalType(BaseType).getTypePtr());
3100}
3101
3102static void *GetKeyForMember(ASTContext &Context,
3103                             CXXCtorInitializer *Member) {
3104  if (!Member->isAnyMemberInitializer())
3105    return GetKeyForBase(Context, QualType(Member->getBaseClass(), 0));
3106
3107  // For fields injected into the class via declaration of an anonymous union,
3108  // use its anonymous union class declaration as the unique key.
3109  FieldDecl *Field = Member->getAnyMember();
3110
3111  // If the field is a member of an anonymous struct or union, our key
3112  // is the anonymous record decl that's a direct child of the class.
3113  RecordDecl *RD = Field->getParent();
3114  if (RD->isAnonymousStructOrUnion()) {
3115    while (true) {
3116      RecordDecl *Parent = cast<RecordDecl>(RD->getDeclContext());
3117      if (Parent->isAnonymousStructOrUnion())
3118        RD = Parent;
3119      else
3120        break;
3121    }
3122
3123    return static_cast<void *>(RD);
3124  }
3125
3126  return static_cast<void *>(Field);
3127}
3128
3129static void
3130DiagnoseBaseOrMemInitializerOrder(Sema &SemaRef,
3131                                  const CXXConstructorDecl *Constructor,
3132                                  CXXCtorInitializer **Inits,
3133                                  unsigned NumInits) {
3134  if (Constructor->getDeclContext()->isDependentContext())
3135    return;
3136
3137  // Don't check initializers order unless the warning is enabled at the
3138  // location of at least one initializer.
3139  bool ShouldCheckOrder = false;
3140  for (unsigned InitIndex = 0; InitIndex != NumInits; ++InitIndex) {
3141    CXXCtorInitializer *Init = Inits[InitIndex];
3142    if (SemaRef.Diags.getDiagnosticLevel(diag::warn_initializer_out_of_order,
3143                                         Init->getSourceLocation())
3144          != DiagnosticsEngine::Ignored) {
3145      ShouldCheckOrder = true;
3146      break;
3147    }
3148  }
3149  if (!ShouldCheckOrder)
3150    return;
3151
3152  // Build the list of bases and members in the order that they'll
3153  // actually be initialized.  The explicit initializers should be in
3154  // this same order but may be missing things.
3155  SmallVector<const void*, 32> IdealInitKeys;
3156
3157  const CXXRecordDecl *ClassDecl = Constructor->getParent();
3158
3159  // 1. Virtual bases.
3160  for (CXXRecordDecl::base_class_const_iterator VBase =
3161       ClassDecl->vbases_begin(),
3162       E = ClassDecl->vbases_end(); VBase != E; ++VBase)
3163    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, VBase->getType()));
3164
3165  // 2. Non-virtual bases.
3166  for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin(),
3167       E = ClassDecl->bases_end(); Base != E; ++Base) {
3168    if (Base->isVirtual())
3169      continue;
3170    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, Base->getType()));
3171  }
3172
3173  // 3. Direct fields.
3174  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
3175       E = ClassDecl->field_end(); Field != E; ++Field) {
3176    if (Field->isUnnamedBitfield())
3177      continue;
3178
3179    IdealInitKeys.push_back(GetKeyForTopLevelField(*Field));
3180  }
3181
3182  unsigned NumIdealInits = IdealInitKeys.size();
3183  unsigned IdealIndex = 0;
3184
3185  CXXCtorInitializer *PrevInit = 0;
3186  for (unsigned InitIndex = 0; InitIndex != NumInits; ++InitIndex) {
3187    CXXCtorInitializer *Init = Inits[InitIndex];
3188    void *InitKey = GetKeyForMember(SemaRef.Context, Init);
3189
3190    // Scan forward to try to find this initializer in the idealized
3191    // initializers list.
3192    for (; IdealIndex != NumIdealInits; ++IdealIndex)
3193      if (InitKey == IdealInitKeys[IdealIndex])
3194        break;
3195
3196    // If we didn't find this initializer, it must be because we
3197    // scanned past it on a previous iteration.  That can only
3198    // happen if we're out of order;  emit a warning.
3199    if (IdealIndex == NumIdealInits && PrevInit) {
3200      Sema::SemaDiagnosticBuilder D =
3201        SemaRef.Diag(PrevInit->getSourceLocation(),
3202                     diag::warn_initializer_out_of_order);
3203
3204      if (PrevInit->isAnyMemberInitializer())
3205        D << 0 << PrevInit->getAnyMember()->getDeclName();
3206      else
3207        D << 1 << PrevInit->getTypeSourceInfo()->getType();
3208
3209      if (Init->isAnyMemberInitializer())
3210        D << 0 << Init->getAnyMember()->getDeclName();
3211      else
3212        D << 1 << Init->getTypeSourceInfo()->getType();
3213
3214      // Move back to the initializer's location in the ideal list.
3215      for (IdealIndex = 0; IdealIndex != NumIdealInits; ++IdealIndex)
3216        if (InitKey == IdealInitKeys[IdealIndex])
3217          break;
3218
3219      assert(IdealIndex != NumIdealInits &&
3220             "initializer not found in initializer list");
3221    }
3222
3223    PrevInit = Init;
3224  }
3225}
3226
3227namespace {
3228bool CheckRedundantInit(Sema &S,
3229                        CXXCtorInitializer *Init,
3230                        CXXCtorInitializer *&PrevInit) {
3231  if (!PrevInit) {
3232    PrevInit = Init;
3233    return false;
3234  }
3235
3236  if (FieldDecl *Field = Init->getMember())
3237    S.Diag(Init->getSourceLocation(),
3238           diag::err_multiple_mem_initialization)
3239      << Field->getDeclName()
3240      << Init->getSourceRange();
3241  else {
3242    const Type *BaseClass = Init->getBaseClass();
3243    assert(BaseClass && "neither field nor base");
3244    S.Diag(Init->getSourceLocation(),
3245           diag::err_multiple_base_initialization)
3246      << QualType(BaseClass, 0)
3247      << Init->getSourceRange();
3248  }
3249  S.Diag(PrevInit->getSourceLocation(), diag::note_previous_initializer)
3250    << 0 << PrevInit->getSourceRange();
3251
3252  return true;
3253}
3254
3255typedef std::pair<NamedDecl *, CXXCtorInitializer *> UnionEntry;
3256typedef llvm::DenseMap<RecordDecl*, UnionEntry> RedundantUnionMap;
3257
3258bool CheckRedundantUnionInit(Sema &S,
3259                             CXXCtorInitializer *Init,
3260                             RedundantUnionMap &Unions) {
3261  FieldDecl *Field = Init->getAnyMember();
3262  RecordDecl *Parent = Field->getParent();
3263  NamedDecl *Child = Field;
3264
3265  while (Parent->isAnonymousStructOrUnion() || Parent->isUnion()) {
3266    if (Parent->isUnion()) {
3267      UnionEntry &En = Unions[Parent];
3268      if (En.first && En.first != Child) {
3269        S.Diag(Init->getSourceLocation(),
3270               diag::err_multiple_mem_union_initialization)
3271          << Field->getDeclName()
3272          << Init->getSourceRange();
3273        S.Diag(En.second->getSourceLocation(), diag::note_previous_initializer)
3274          << 0 << En.second->getSourceRange();
3275        return true;
3276      }
3277      if (!En.first) {
3278        En.first = Child;
3279        En.second = Init;
3280      }
3281      if (!Parent->isAnonymousStructOrUnion())
3282        return false;
3283    }
3284
3285    Child = Parent;
3286    Parent = cast<RecordDecl>(Parent->getDeclContext());
3287  }
3288
3289  return false;
3290}
3291}
3292
3293/// ActOnMemInitializers - Handle the member initializers for a constructor.
3294void Sema::ActOnMemInitializers(Decl *ConstructorDecl,
3295                                SourceLocation ColonLoc,
3296                                CXXCtorInitializer **meminits,
3297                                unsigned NumMemInits,
3298                                bool AnyErrors) {
3299  if (!ConstructorDecl)
3300    return;
3301
3302  AdjustDeclIfTemplate(ConstructorDecl);
3303
3304  CXXConstructorDecl *Constructor
3305    = dyn_cast<CXXConstructorDecl>(ConstructorDecl);
3306
3307  if (!Constructor) {
3308    Diag(ColonLoc, diag::err_only_constructors_take_base_inits);
3309    return;
3310  }
3311
3312  CXXCtorInitializer **MemInits =
3313    reinterpret_cast<CXXCtorInitializer **>(meminits);
3314
3315  // Mapping for the duplicate initializers check.
3316  // For member initializers, this is keyed with a FieldDecl*.
3317  // For base initializers, this is keyed with a Type*.
3318  llvm::DenseMap<void*, CXXCtorInitializer *> Members;
3319
3320  // Mapping for the inconsistent anonymous-union initializers check.
3321  RedundantUnionMap MemberUnions;
3322
3323  bool HadError = false;
3324  for (unsigned i = 0; i < NumMemInits; i++) {
3325    CXXCtorInitializer *Init = MemInits[i];
3326
3327    // Set the source order index.
3328    Init->setSourceOrder(i);
3329
3330    if (Init->isAnyMemberInitializer()) {
3331      FieldDecl *Field = Init->getAnyMember();
3332      if (CheckRedundantInit(*this, Init, Members[Field]) ||
3333          CheckRedundantUnionInit(*this, Init, MemberUnions))
3334        HadError = true;
3335    } else if (Init->isBaseInitializer()) {
3336      void *Key = GetKeyForBase(Context, QualType(Init->getBaseClass(), 0));
3337      if (CheckRedundantInit(*this, Init, Members[Key]))
3338        HadError = true;
3339    } else {
3340      assert(Init->isDelegatingInitializer());
3341      // This must be the only initializer
3342      if (i != 0 || NumMemInits > 1) {
3343        Diag(MemInits[0]->getSourceLocation(),
3344             diag::err_delegating_initializer_alone)
3345          << MemInits[0]->getSourceRange();
3346        HadError = true;
3347        // We will treat this as being the only initializer.
3348      }
3349      SetDelegatingInitializer(Constructor, MemInits[i]);
3350      // Return immediately as the initializer is set.
3351      return;
3352    }
3353  }
3354
3355  if (HadError)
3356    return;
3357
3358  DiagnoseBaseOrMemInitializerOrder(*this, Constructor, MemInits, NumMemInits);
3359
3360  SetCtorInitializers(Constructor, MemInits, NumMemInits, AnyErrors);
3361}
3362
3363void
3364Sema::MarkBaseAndMemberDestructorsReferenced(SourceLocation Location,
3365                                             CXXRecordDecl *ClassDecl) {
3366  // Ignore dependent contexts. Also ignore unions, since their members never
3367  // have destructors implicitly called.
3368  if (ClassDecl->isDependentContext() || ClassDecl->isUnion())
3369    return;
3370
3371  // FIXME: all the access-control diagnostics are positioned on the
3372  // field/base declaration.  That's probably good; that said, the
3373  // user might reasonably want to know why the destructor is being
3374  // emitted, and we currently don't say.
3375
3376  // Non-static data members.
3377  for (CXXRecordDecl::field_iterator I = ClassDecl->field_begin(),
3378       E = ClassDecl->field_end(); I != E; ++I) {
3379    FieldDecl *Field = *I;
3380    if (Field->isInvalidDecl())
3381      continue;
3382
3383    // Don't destroy incomplete or zero-length arrays.
3384    if (isIncompleteOrZeroLengthArrayType(Context, Field->getType()))
3385      continue;
3386
3387    QualType FieldType = Context.getBaseElementType(Field->getType());
3388
3389    const RecordType* RT = FieldType->getAs<RecordType>();
3390    if (!RT)
3391      continue;
3392
3393    CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
3394    if (FieldClassDecl->isInvalidDecl())
3395      continue;
3396    if (FieldClassDecl->hasIrrelevantDestructor())
3397      continue;
3398    // The destructor for an implicit anonymous union member is never invoked.
3399    if (FieldClassDecl->isUnion() && FieldClassDecl->isAnonymousStructOrUnion())
3400      continue;
3401
3402    CXXDestructorDecl *Dtor = LookupDestructor(FieldClassDecl);
3403    assert(Dtor && "No dtor found for FieldClassDecl!");
3404    CheckDestructorAccess(Field->getLocation(), Dtor,
3405                          PDiag(diag::err_access_dtor_field)
3406                            << Field->getDeclName()
3407                            << FieldType);
3408
3409    MarkFunctionReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
3410    DiagnoseUseOfDecl(Dtor, Location);
3411  }
3412
3413  llvm::SmallPtrSet<const RecordType *, 8> DirectVirtualBases;
3414
3415  // Bases.
3416  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
3417       E = ClassDecl->bases_end(); Base != E; ++Base) {
3418    // Bases are always records in a well-formed non-dependent class.
3419    const RecordType *RT = Base->getType()->getAs<RecordType>();
3420
3421    // Remember direct virtual bases.
3422    if (Base->isVirtual())
3423      DirectVirtualBases.insert(RT);
3424
3425    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
3426    // If our base class is invalid, we probably can't get its dtor anyway.
3427    if (BaseClassDecl->isInvalidDecl())
3428      continue;
3429    if (BaseClassDecl->hasIrrelevantDestructor())
3430      continue;
3431
3432    CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
3433    assert(Dtor && "No dtor found for BaseClassDecl!");
3434
3435    // FIXME: caret should be on the start of the class name
3436    CheckDestructorAccess(Base->getLocStart(), Dtor,
3437                          PDiag(diag::err_access_dtor_base)
3438                            << Base->getType()
3439                            << Base->getSourceRange(),
3440                          Context.getTypeDeclType(ClassDecl));
3441
3442    MarkFunctionReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
3443    DiagnoseUseOfDecl(Dtor, Location);
3444  }
3445
3446  // Virtual bases.
3447  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
3448       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
3449
3450    // Bases are always records in a well-formed non-dependent class.
3451    const RecordType *RT = VBase->getType()->castAs<RecordType>();
3452
3453    // Ignore direct virtual bases.
3454    if (DirectVirtualBases.count(RT))
3455      continue;
3456
3457    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
3458    // If our base class is invalid, we probably can't get its dtor anyway.
3459    if (BaseClassDecl->isInvalidDecl())
3460      continue;
3461    if (BaseClassDecl->hasIrrelevantDestructor())
3462      continue;
3463
3464    CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
3465    assert(Dtor && "No dtor found for BaseClassDecl!");
3466    CheckDestructorAccess(ClassDecl->getLocation(), Dtor,
3467                          PDiag(diag::err_access_dtor_vbase)
3468                            << VBase->getType(),
3469                          Context.getTypeDeclType(ClassDecl));
3470
3471    MarkFunctionReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
3472    DiagnoseUseOfDecl(Dtor, Location);
3473  }
3474}
3475
3476void Sema::ActOnDefaultCtorInitializers(Decl *CDtorDecl) {
3477  if (!CDtorDecl)
3478    return;
3479
3480  if (CXXConstructorDecl *Constructor
3481      = dyn_cast<CXXConstructorDecl>(CDtorDecl))
3482    SetCtorInitializers(Constructor, 0, 0, /*AnyErrors=*/false);
3483}
3484
3485bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
3486                                  unsigned DiagID, AbstractDiagSelID SelID) {
3487  class NonAbstractTypeDiagnoser : public TypeDiagnoser {
3488    unsigned DiagID;
3489    AbstractDiagSelID SelID;
3490
3491  public:
3492    NonAbstractTypeDiagnoser(unsigned DiagID, AbstractDiagSelID SelID)
3493      : TypeDiagnoser(DiagID == 0), DiagID(DiagID), SelID(SelID) { }
3494
3495    virtual void diagnose(Sema &S, SourceLocation Loc, QualType T) {
3496      if (SelID == -1)
3497        S.Diag(Loc, DiagID) << T;
3498      else
3499        S.Diag(Loc, DiagID) << SelID << T;
3500    }
3501  } Diagnoser(DiagID, SelID);
3502
3503  return RequireNonAbstractType(Loc, T, Diagnoser);
3504}
3505
3506bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
3507                                  TypeDiagnoser &Diagnoser) {
3508  if (!getLangOpts().CPlusPlus)
3509    return false;
3510
3511  if (const ArrayType *AT = Context.getAsArrayType(T))
3512    return RequireNonAbstractType(Loc, AT->getElementType(), Diagnoser);
3513
3514  if (const PointerType *PT = T->getAs<PointerType>()) {
3515    // Find the innermost pointer type.
3516    while (const PointerType *T = PT->getPointeeType()->getAs<PointerType>())
3517      PT = T;
3518
3519    if (const ArrayType *AT = Context.getAsArrayType(PT->getPointeeType()))
3520      return RequireNonAbstractType(Loc, AT->getElementType(), Diagnoser);
3521  }
3522
3523  const RecordType *RT = T->getAs<RecordType>();
3524  if (!RT)
3525    return false;
3526
3527  const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
3528
3529  // We can't answer whether something is abstract until it has a
3530  // definition.  If it's currently being defined, we'll walk back
3531  // over all the declarations when we have a full definition.
3532  const CXXRecordDecl *Def = RD->getDefinition();
3533  if (!Def || Def->isBeingDefined())
3534    return false;
3535
3536  if (!RD->isAbstract())
3537    return false;
3538
3539  Diagnoser.diagnose(*this, Loc, T);
3540  DiagnoseAbstractType(RD);
3541
3542  return true;
3543}
3544
3545void Sema::DiagnoseAbstractType(const CXXRecordDecl *RD) {
3546  // Check if we've already emitted the list of pure virtual functions
3547  // for this class.
3548  if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD))
3549    return;
3550
3551  CXXFinalOverriderMap FinalOverriders;
3552  RD->getFinalOverriders(FinalOverriders);
3553
3554  // Keep a set of seen pure methods so we won't diagnose the same method
3555  // more than once.
3556  llvm::SmallPtrSet<const CXXMethodDecl *, 8> SeenPureMethods;
3557
3558  for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
3559                                   MEnd = FinalOverriders.end();
3560       M != MEnd;
3561       ++M) {
3562    for (OverridingMethods::iterator SO = M->second.begin(),
3563                                  SOEnd = M->second.end();
3564         SO != SOEnd; ++SO) {
3565      // C++ [class.abstract]p4:
3566      //   A class is abstract if it contains or inherits at least one
3567      //   pure virtual function for which the final overrider is pure
3568      //   virtual.
3569
3570      //
3571      if (SO->second.size() != 1)
3572        continue;
3573
3574      if (!SO->second.front().Method->isPure())
3575        continue;
3576
3577      if (!SeenPureMethods.insert(SO->second.front().Method))
3578        continue;
3579
3580      Diag(SO->second.front().Method->getLocation(),
3581           diag::note_pure_virtual_function)
3582        << SO->second.front().Method->getDeclName() << RD->getDeclName();
3583    }
3584  }
3585
3586  if (!PureVirtualClassDiagSet)
3587    PureVirtualClassDiagSet.reset(new RecordDeclSetTy);
3588  PureVirtualClassDiagSet->insert(RD);
3589}
3590
3591namespace {
3592struct AbstractUsageInfo {
3593  Sema &S;
3594  CXXRecordDecl *Record;
3595  CanQualType AbstractType;
3596  bool Invalid;
3597
3598  AbstractUsageInfo(Sema &S, CXXRecordDecl *Record)
3599    : S(S), Record(Record),
3600      AbstractType(S.Context.getCanonicalType(
3601                   S.Context.getTypeDeclType(Record))),
3602      Invalid(false) {}
3603
3604  void DiagnoseAbstractType() {
3605    if (Invalid) return;
3606    S.DiagnoseAbstractType(Record);
3607    Invalid = true;
3608  }
3609
3610  void CheckType(const NamedDecl *D, TypeLoc TL, Sema::AbstractDiagSelID Sel);
3611};
3612
3613struct CheckAbstractUsage {
3614  AbstractUsageInfo &Info;
3615  const NamedDecl *Ctx;
3616
3617  CheckAbstractUsage(AbstractUsageInfo &Info, const NamedDecl *Ctx)
3618    : Info(Info), Ctx(Ctx) {}
3619
3620  void Visit(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
3621    switch (TL.getTypeLocClass()) {
3622#define ABSTRACT_TYPELOC(CLASS, PARENT)
3623#define TYPELOC(CLASS, PARENT) \
3624    case TypeLoc::CLASS: Check(cast<CLASS##TypeLoc>(TL), Sel); break;
3625#include "clang/AST/TypeLocNodes.def"
3626    }
3627  }
3628
3629  void Check(FunctionProtoTypeLoc TL, Sema::AbstractDiagSelID Sel) {
3630    Visit(TL.getResultLoc(), Sema::AbstractReturnType);
3631    for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
3632      if (!TL.getArg(I))
3633        continue;
3634
3635      TypeSourceInfo *TSI = TL.getArg(I)->getTypeSourceInfo();
3636      if (TSI) Visit(TSI->getTypeLoc(), Sema::AbstractParamType);
3637    }
3638  }
3639
3640  void Check(ArrayTypeLoc TL, Sema::AbstractDiagSelID Sel) {
3641    Visit(TL.getElementLoc(), Sema::AbstractArrayType);
3642  }
3643
3644  void Check(TemplateSpecializationTypeLoc TL, Sema::AbstractDiagSelID Sel) {
3645    // Visit the type parameters from a permissive context.
3646    for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
3647      TemplateArgumentLoc TAL = TL.getArgLoc(I);
3648      if (TAL.getArgument().getKind() == TemplateArgument::Type)
3649        if (TypeSourceInfo *TSI = TAL.getTypeSourceInfo())
3650          Visit(TSI->getTypeLoc(), Sema::AbstractNone);
3651      // TODO: other template argument types?
3652    }
3653  }
3654
3655  // Visit pointee types from a permissive context.
3656#define CheckPolymorphic(Type) \
3657  void Check(Type TL, Sema::AbstractDiagSelID Sel) { \
3658    Visit(TL.getNextTypeLoc(), Sema::AbstractNone); \
3659  }
3660  CheckPolymorphic(PointerTypeLoc)
3661  CheckPolymorphic(ReferenceTypeLoc)
3662  CheckPolymorphic(MemberPointerTypeLoc)
3663  CheckPolymorphic(BlockPointerTypeLoc)
3664  CheckPolymorphic(AtomicTypeLoc)
3665
3666  /// Handle all the types we haven't given a more specific
3667  /// implementation for above.
3668  void Check(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
3669    // Every other kind of type that we haven't called out already
3670    // that has an inner type is either (1) sugar or (2) contains that
3671    // inner type in some way as a subobject.
3672    if (TypeLoc Next = TL.getNextTypeLoc())
3673      return Visit(Next, Sel);
3674
3675    // If there's no inner type and we're in a permissive context,
3676    // don't diagnose.
3677    if (Sel == Sema::AbstractNone) return;
3678
3679    // Check whether the type matches the abstract type.
3680    QualType T = TL.getType();
3681    if (T->isArrayType()) {
3682      Sel = Sema::AbstractArrayType;
3683      T = Info.S.Context.getBaseElementType(T);
3684    }
3685    CanQualType CT = T->getCanonicalTypeUnqualified().getUnqualifiedType();
3686    if (CT != Info.AbstractType) return;
3687
3688    // It matched; do some magic.
3689    if (Sel == Sema::AbstractArrayType) {
3690      Info.S.Diag(Ctx->getLocation(), diag::err_array_of_abstract_type)
3691        << T << TL.getSourceRange();
3692    } else {
3693      Info.S.Diag(Ctx->getLocation(), diag::err_abstract_type_in_decl)
3694        << Sel << T << TL.getSourceRange();
3695    }
3696    Info.DiagnoseAbstractType();
3697  }
3698};
3699
3700void AbstractUsageInfo::CheckType(const NamedDecl *D, TypeLoc TL,
3701                                  Sema::AbstractDiagSelID Sel) {
3702  CheckAbstractUsage(*this, D).Visit(TL, Sel);
3703}
3704
3705}
3706
3707/// Check for invalid uses of an abstract type in a method declaration.
3708static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
3709                                    CXXMethodDecl *MD) {
3710  // No need to do the check on definitions, which require that
3711  // the return/param types be complete.
3712  if (MD->doesThisDeclarationHaveABody())
3713    return;
3714
3715  // For safety's sake, just ignore it if we don't have type source
3716  // information.  This should never happen for non-implicit methods,
3717  // but...
3718  if (TypeSourceInfo *TSI = MD->getTypeSourceInfo())
3719    Info.CheckType(MD, TSI->getTypeLoc(), Sema::AbstractNone);
3720}
3721
3722/// Check for invalid uses of an abstract type within a class definition.
3723static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
3724                                    CXXRecordDecl *RD) {
3725  for (CXXRecordDecl::decl_iterator
3726         I = RD->decls_begin(), E = RD->decls_end(); I != E; ++I) {
3727    Decl *D = *I;
3728    if (D->isImplicit()) continue;
3729
3730    // Methods and method templates.
3731    if (isa<CXXMethodDecl>(D)) {
3732      CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(D));
3733    } else if (isa<FunctionTemplateDecl>(D)) {
3734      FunctionDecl *FD = cast<FunctionTemplateDecl>(D)->getTemplatedDecl();
3735      CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(FD));
3736
3737    // Fields and static variables.
3738    } else if (isa<FieldDecl>(D)) {
3739      FieldDecl *FD = cast<FieldDecl>(D);
3740      if (TypeSourceInfo *TSI = FD->getTypeSourceInfo())
3741        Info.CheckType(FD, TSI->getTypeLoc(), Sema::AbstractFieldType);
3742    } else if (isa<VarDecl>(D)) {
3743      VarDecl *VD = cast<VarDecl>(D);
3744      if (TypeSourceInfo *TSI = VD->getTypeSourceInfo())
3745        Info.CheckType(VD, TSI->getTypeLoc(), Sema::AbstractVariableType);
3746
3747    // Nested classes and class templates.
3748    } else if (isa<CXXRecordDecl>(D)) {
3749      CheckAbstractClassUsage(Info, cast<CXXRecordDecl>(D));
3750    } else if (isa<ClassTemplateDecl>(D)) {
3751      CheckAbstractClassUsage(Info,
3752                             cast<ClassTemplateDecl>(D)->getTemplatedDecl());
3753    }
3754  }
3755}
3756
3757/// \brief Perform semantic checks on a class definition that has been
3758/// completing, introducing implicitly-declared members, checking for
3759/// abstract types, etc.
3760void Sema::CheckCompletedCXXClass(CXXRecordDecl *Record) {
3761  if (!Record)
3762    return;
3763
3764  if (Record->isAbstract() && !Record->isInvalidDecl()) {
3765    AbstractUsageInfo Info(*this, Record);
3766    CheckAbstractClassUsage(Info, Record);
3767  }
3768
3769  // If this is not an aggregate type and has no user-declared constructor,
3770  // complain about any non-static data members of reference or const scalar
3771  // type, since they will never get initializers.
3772  if (!Record->isInvalidDecl() && !Record->isDependentType() &&
3773      !Record->isAggregate() && !Record->hasUserDeclaredConstructor() &&
3774      !Record->isLambda()) {
3775    bool Complained = false;
3776    for (RecordDecl::field_iterator F = Record->field_begin(),
3777                                 FEnd = Record->field_end();
3778         F != FEnd; ++F) {
3779      if (F->hasInClassInitializer() || F->isUnnamedBitfield())
3780        continue;
3781
3782      if (F->getType()->isReferenceType() ||
3783          (F->getType().isConstQualified() && F->getType()->isScalarType())) {
3784        if (!Complained) {
3785          Diag(Record->getLocation(), diag::warn_no_constructor_for_refconst)
3786            << Record->getTagKind() << Record;
3787          Complained = true;
3788        }
3789
3790        Diag(F->getLocation(), diag::note_refconst_member_not_initialized)
3791          << F->getType()->isReferenceType()
3792          << F->getDeclName();
3793      }
3794    }
3795  }
3796
3797  if (Record->isDynamicClass() && !Record->isDependentType())
3798    DynamicClasses.push_back(Record);
3799
3800  if (Record->getIdentifier()) {
3801    // C++ [class.mem]p13:
3802    //   If T is the name of a class, then each of the following shall have a
3803    //   name different from T:
3804    //     - every member of every anonymous union that is a member of class T.
3805    //
3806    // C++ [class.mem]p14:
3807    //   In addition, if class T has a user-declared constructor (12.1), every
3808    //   non-static data member of class T shall have a name different from T.
3809    for (DeclContext::lookup_result R = Record->lookup(Record->getDeclName());
3810         R.first != R.second; ++R.first) {
3811      NamedDecl *D = *R.first;
3812      if ((isa<FieldDecl>(D) && Record->hasUserDeclaredConstructor()) ||
3813          isa<IndirectFieldDecl>(D)) {
3814        Diag(D->getLocation(), diag::err_member_name_of_class)
3815          << D->getDeclName();
3816        break;
3817      }
3818    }
3819  }
3820
3821  // Warn if the class has virtual methods but non-virtual public destructor.
3822  if (Record->isPolymorphic() && !Record->isDependentType()) {
3823    CXXDestructorDecl *dtor = Record->getDestructor();
3824    if (!dtor || (!dtor->isVirtual() && dtor->getAccess() == AS_public))
3825      Diag(dtor ? dtor->getLocation() : Record->getLocation(),
3826           diag::warn_non_virtual_dtor) << Context.getRecordType(Record);
3827  }
3828
3829  // See if a method overloads virtual methods in a base
3830  /// class without overriding any.
3831  if (!Record->isDependentType()) {
3832    for (CXXRecordDecl::method_iterator M = Record->method_begin(),
3833                                     MEnd = Record->method_end();
3834         M != MEnd; ++M) {
3835      if (!M->isStatic())
3836        DiagnoseHiddenVirtualMethods(Record, *M);
3837    }
3838  }
3839
3840  // C++0x [dcl.constexpr]p8: A constexpr specifier for a non-static member
3841  // function that is not a constructor declares that member function to be
3842  // const. [...] The class of which that function is a member shall be
3843  // a literal type.
3844  //
3845  // If the class has virtual bases, any constexpr members will already have
3846  // been diagnosed by the checks performed on the member declaration, so
3847  // suppress this (less useful) diagnostic.
3848  if (LangOpts.CPlusPlus0x && !Record->isDependentType() &&
3849      !Record->isLiteral() && !Record->getNumVBases()) {
3850    for (CXXRecordDecl::method_iterator M = Record->method_begin(),
3851                                     MEnd = Record->method_end();
3852         M != MEnd; ++M) {
3853      if (M->isConstexpr() && M->isInstance() && !isa<CXXConstructorDecl>(*M)) {
3854        switch (Record->getTemplateSpecializationKind()) {
3855        case TSK_ImplicitInstantiation:
3856        case TSK_ExplicitInstantiationDeclaration:
3857        case TSK_ExplicitInstantiationDefinition:
3858          // If a template instantiates to a non-literal type, but its members
3859          // instantiate to constexpr functions, the template is technically
3860          // ill-formed, but we allow it for sanity.
3861          continue;
3862
3863        case TSK_Undeclared:
3864        case TSK_ExplicitSpecialization:
3865          RequireLiteralType(M->getLocation(), Context.getRecordType(Record),
3866                             diag::err_constexpr_method_non_literal);
3867          break;
3868        }
3869
3870        // Only produce one error per class.
3871        break;
3872      }
3873    }
3874  }
3875
3876  // Declare inherited constructors. We do this eagerly here because:
3877  // - The standard requires an eager diagnostic for conflicting inherited
3878  //   constructors from different classes.
3879  // - The lazy declaration of the other implicit constructors is so as to not
3880  //   waste space and performance on classes that are not meant to be
3881  //   instantiated (e.g. meta-functions). This doesn't apply to classes that
3882  //   have inherited constructors.
3883  DeclareInheritedConstructors(Record);
3884
3885  if (!Record->isDependentType())
3886    CheckExplicitlyDefaultedMethods(Record);
3887}
3888
3889void Sema::CheckExplicitlyDefaultedMethods(CXXRecordDecl *Record) {
3890  for (CXXRecordDecl::method_iterator MI = Record->method_begin(),
3891                                      ME = Record->method_end();
3892       MI != ME; ++MI)
3893    if (!MI->isInvalidDecl() && MI->isExplicitlyDefaulted())
3894      CheckExplicitlyDefaultedSpecialMember(*MI);
3895}
3896
3897/// Is the special member function which would be selected to perform the
3898/// specified operation on the specified class type a constexpr constructor?
3899static bool specialMemberIsConstexpr(Sema &S, CXXRecordDecl *ClassDecl,
3900                                     Sema::CXXSpecialMember CSM,
3901                                     bool ConstArg) {
3902  Sema::SpecialMemberOverloadResult *SMOR =
3903      S.LookupSpecialMember(ClassDecl, CSM, ConstArg,
3904                            false, false, false, false);
3905  if (!SMOR || !SMOR->getMethod())
3906    // A constructor we wouldn't select can't be "involved in initializing"
3907    // anything.
3908    return true;
3909  return SMOR->getMethod()->isConstexpr();
3910}
3911
3912/// Determine whether the specified special member function would be constexpr
3913/// if it were implicitly defined.
3914static bool defaultedSpecialMemberIsConstexpr(Sema &S, CXXRecordDecl *ClassDecl,
3915                                              Sema::CXXSpecialMember CSM,
3916                                              bool ConstArg) {
3917  if (!S.getLangOpts().CPlusPlus0x)
3918    return false;
3919
3920  // C++11 [dcl.constexpr]p4:
3921  // In the definition of a constexpr constructor [...]
3922  switch (CSM) {
3923  case Sema::CXXDefaultConstructor:
3924    // Since default constructor lookup is essentially trivial (and cannot
3925    // involve, for instance, template instantiation), we compute whether a
3926    // defaulted default constructor is constexpr directly within CXXRecordDecl.
3927    //
3928    // This is important for performance; we need to know whether the default
3929    // constructor is constexpr to determine whether the type is a literal type.
3930    return ClassDecl->defaultedDefaultConstructorIsConstexpr();
3931
3932  case Sema::CXXCopyConstructor:
3933  case Sema::CXXMoveConstructor:
3934    // For copy or move constructors, we need to perform overload resolution.
3935    break;
3936
3937  case Sema::CXXCopyAssignment:
3938  case Sema::CXXMoveAssignment:
3939  case Sema::CXXDestructor:
3940  case Sema::CXXInvalid:
3941    return false;
3942  }
3943
3944  //   -- if the class is a non-empty union, or for each non-empty anonymous
3945  //      union member of a non-union class, exactly one non-static data member
3946  //      shall be initialized; [DR1359]
3947  //
3948  // If we squint, this is guaranteed, since exactly one non-static data member
3949  // will be initialized (if the constructor isn't deleted), we just don't know
3950  // which one.
3951  if (ClassDecl->isUnion())
3952    return true;
3953
3954  //   -- the class shall not have any virtual base classes;
3955  if (ClassDecl->getNumVBases())
3956    return false;
3957
3958  //   -- every constructor involved in initializing [...] base class
3959  //      sub-objects shall be a constexpr constructor;
3960  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
3961                                       BEnd = ClassDecl->bases_end();
3962       B != BEnd; ++B) {
3963    const RecordType *BaseType = B->getType()->getAs<RecordType>();
3964    if (!BaseType) continue;
3965
3966    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
3967    if (!specialMemberIsConstexpr(S, BaseClassDecl, CSM, ConstArg))
3968      return false;
3969  }
3970
3971  //   -- every constructor involved in initializing non-static data members
3972  //      [...] shall be a constexpr constructor;
3973  //   -- every non-static data member and base class sub-object shall be
3974  //      initialized
3975  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
3976                               FEnd = ClassDecl->field_end();
3977       F != FEnd; ++F) {
3978    if (F->isInvalidDecl())
3979      continue;
3980    if (const RecordType *RecordTy =
3981            S.Context.getBaseElementType(F->getType())->getAs<RecordType>()) {
3982      CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
3983      if (!specialMemberIsConstexpr(S, FieldRecDecl, CSM, ConstArg))
3984        return false;
3985    }
3986  }
3987
3988  // All OK, it's constexpr!
3989  return true;
3990}
3991
3992void Sema::CheckExplicitlyDefaultedSpecialMember(CXXMethodDecl *MD) {
3993  CXXRecordDecl *RD = MD->getParent();
3994  CXXSpecialMember CSM = getSpecialMember(MD);
3995
3996  assert(MD->isExplicitlyDefaulted() && CSM != CXXInvalid &&
3997         "not an explicitly-defaulted special member");
3998
3999  // Whether this was the first-declared instance of the constructor.
4000  // This affects whether we implicitly add an exception spec and constexpr.
4001  bool First = MD == MD->getCanonicalDecl();
4002
4003  bool HadError = false;
4004
4005  // C++11 [dcl.fct.def.default]p1:
4006  //   A function that is explicitly defaulted shall
4007  //     -- be a special member function (checked elsewhere),
4008  //     -- have the same type (except for ref-qualifiers, and except that a
4009  //        copy operation can take a non-const reference) as an implicit
4010  //        declaration, and
4011  //     -- not have default arguments.
4012  unsigned ExpectedParams = 1;
4013  if (CSM == CXXDefaultConstructor || CSM == CXXDestructor)
4014    ExpectedParams = 0;
4015  if (MD->getNumParams() != ExpectedParams) {
4016    // This also checks for default arguments: a copy or move constructor with a
4017    // default argument is classified as a default constructor, and assignment
4018    // operations and destructors can't have default arguments.
4019    Diag(MD->getLocation(), diag::err_defaulted_special_member_params)
4020      << CSM << MD->getSourceRange();
4021    HadError = true;
4022  }
4023
4024  const FunctionProtoType *Type = MD->getType()->getAs<FunctionProtoType>();
4025
4026  // Compute implicit exception specification, argument constness, constexpr
4027  // and triviality.
4028  ImplicitExceptionSpecification Spec(*this);
4029  bool CanHaveConstParam = false;
4030  bool Trivial;
4031  switch (CSM) {
4032  case CXXDefaultConstructor:
4033    Spec = ComputeDefaultedDefaultCtorExceptionSpec(RD);
4034    if (Spec.isDelayed())
4035      // Exception specification depends on some deferred part of the class.
4036      // We'll try again when the class's definition has been fully processed.
4037      return;
4038    Trivial = RD->hasTrivialDefaultConstructor();
4039    break;
4040  case CXXCopyConstructor:
4041    llvm::tie(Spec, CanHaveConstParam) =
4042      ComputeDefaultedCopyCtorExceptionSpecAndConst(RD);
4043    Trivial = RD->hasTrivialCopyConstructor();
4044    break;
4045  case CXXCopyAssignment:
4046    llvm::tie(Spec, CanHaveConstParam) =
4047      ComputeDefaultedCopyAssignmentExceptionSpecAndConst(RD);
4048    Trivial = RD->hasTrivialCopyAssignment();
4049    break;
4050  case CXXMoveConstructor:
4051    Spec = ComputeDefaultedMoveCtorExceptionSpec(RD);
4052    Trivial = RD->hasTrivialMoveConstructor();
4053    break;
4054  case CXXMoveAssignment:
4055    Spec = ComputeDefaultedMoveAssignmentExceptionSpec(RD);
4056    Trivial = RD->hasTrivialMoveAssignment();
4057    break;
4058  case CXXDestructor:
4059    Spec = ComputeDefaultedDtorExceptionSpec(RD);
4060    Trivial = RD->hasTrivialDestructor();
4061    break;
4062  case CXXInvalid:
4063    llvm_unreachable("non-special member explicitly defaulted!");
4064  }
4065
4066  QualType ReturnType = Context.VoidTy;
4067  if (CSM == CXXCopyAssignment || CSM == CXXMoveAssignment) {
4068    // Check for return type matching.
4069    ReturnType = Type->getResultType();
4070    QualType ExpectedReturnType =
4071        Context.getLValueReferenceType(Context.getTypeDeclType(RD));
4072    if (!Context.hasSameType(ReturnType, ExpectedReturnType)) {
4073      Diag(MD->getLocation(), diag::err_defaulted_special_member_return_type)
4074        << (CSM == CXXMoveAssignment) << ExpectedReturnType;
4075      HadError = true;
4076    }
4077
4078    // A defaulted special member cannot have cv-qualifiers.
4079    if (Type->getTypeQuals()) {
4080      Diag(MD->getLocation(), diag::err_defaulted_special_member_quals)
4081        << (CSM == CXXMoveAssignment);
4082      HadError = true;
4083    }
4084  }
4085
4086  // Check for parameter type matching.
4087  QualType ArgType = ExpectedParams ? Type->getArgType(0) : QualType();
4088  bool HasConstParam = false;
4089  if (ExpectedParams && ArgType->isReferenceType()) {
4090    // Argument must be reference to possibly-const T.
4091    QualType ReferentType = ArgType->getPointeeType();
4092    HasConstParam = ReferentType.isConstQualified();
4093
4094    if (ReferentType.isVolatileQualified()) {
4095      Diag(MD->getLocation(),
4096           diag::err_defaulted_special_member_volatile_param) << CSM;
4097      HadError = true;
4098    }
4099
4100    if (HasConstParam && !CanHaveConstParam) {
4101      if (CSM == CXXCopyConstructor || CSM == CXXCopyAssignment) {
4102        Diag(MD->getLocation(),
4103             diag::err_defaulted_special_member_copy_const_param)
4104          << (CSM == CXXCopyAssignment);
4105        // FIXME: Explain why this special member can't be const.
4106      } else {
4107        Diag(MD->getLocation(),
4108             diag::err_defaulted_special_member_move_const_param)
4109          << (CSM == CXXMoveAssignment);
4110      }
4111      HadError = true;
4112    }
4113
4114    // If a function is explicitly defaulted on its first declaration, it shall
4115    // have the same parameter type as if it had been implicitly declared.
4116    // (Presumably this is to prevent it from being trivial?)
4117    if (!HasConstParam && CanHaveConstParam && First)
4118      Diag(MD->getLocation(),
4119           diag::err_defaulted_special_member_copy_non_const_param)
4120        << (CSM == CXXCopyAssignment);
4121  } else if (ExpectedParams) {
4122    // A copy assignment operator can take its argument by value, but a
4123    // defaulted one cannot.
4124    assert(CSM == CXXCopyAssignment && "unexpected non-ref argument");
4125    Diag(MD->getLocation(), diag::err_defaulted_copy_assign_not_ref);
4126    HadError = true;
4127  }
4128
4129  // Rebuild the type with the implicit exception specification added.
4130  FunctionProtoType::ExtProtoInfo EPI = Type->getExtProtoInfo();
4131  Spec.getEPI(EPI);
4132  const FunctionProtoType *ImplicitType = cast<FunctionProtoType>(
4133    Context.getFunctionType(ReturnType, &ArgType, ExpectedParams, EPI));
4134
4135  // C++11 [dcl.fct.def.default]p2:
4136  //   An explicitly-defaulted function may be declared constexpr only if it
4137  //   would have been implicitly declared as constexpr,
4138  // Do not apply this rule to members of class templates, since core issue 1358
4139  // makes such functions always instantiate to constexpr functions. For
4140  // non-constructors, this is checked elsewhere.
4141  bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, RD, CSM,
4142                                                     HasConstParam);
4143  if (isa<CXXConstructorDecl>(MD) && MD->isConstexpr() && !Constexpr &&
4144      MD->getTemplatedKind() == FunctionDecl::TK_NonTemplate) {
4145    Diag(MD->getLocStart(), diag::err_incorrect_defaulted_constexpr) << CSM;
4146    // FIXME: Explain why the constructor can't be constexpr.
4147    HadError = true;
4148  }
4149  //   and may have an explicit exception-specification only if it is compatible
4150  //   with the exception-specification on the implicit declaration.
4151  if (Type->hasExceptionSpec() &&
4152      CheckEquivalentExceptionSpec(
4153        PDiag(diag::err_incorrect_defaulted_exception_spec) << CSM,
4154        PDiag(), ImplicitType, SourceLocation(), Type, MD->getLocation()))
4155    HadError = true;
4156
4157  //   If a function is explicitly defaulted on its first declaration,
4158  if (First) {
4159    //  -- it is implicitly considered to be constexpr if the implicit
4160    //     definition would be,
4161    MD->setConstexpr(Constexpr);
4162
4163    //  -- it is implicitly considered to have the same exception-specification
4164    //     as if it had been implicitly declared,
4165    MD->setType(QualType(ImplicitType, 0));
4166
4167    // Such a function is also trivial if the implicitly-declared function
4168    // would have been.
4169    MD->setTrivial(Trivial);
4170  }
4171
4172  if (ShouldDeleteSpecialMember(MD, CSM)) {
4173    if (First) {
4174      MD->setDeletedAsWritten();
4175    } else {
4176      // C++11 [dcl.fct.def.default]p4:
4177      //   [For a] user-provided explicitly-defaulted function [...] if such a
4178      //   function is implicitly defined as deleted, the program is ill-formed.
4179      Diag(MD->getLocation(), diag::err_out_of_line_default_deletes) << CSM;
4180      HadError = true;
4181    }
4182  }
4183
4184  if (HadError)
4185    MD->setInvalidDecl();
4186}
4187
4188namespace {
4189struct SpecialMemberDeletionInfo {
4190  Sema &S;
4191  CXXMethodDecl *MD;
4192  Sema::CXXSpecialMember CSM;
4193  bool Diagnose;
4194
4195  // Properties of the special member, computed for convenience.
4196  bool IsConstructor, IsAssignment, IsMove, ConstArg, VolatileArg;
4197  SourceLocation Loc;
4198
4199  bool AllFieldsAreConst;
4200
4201  SpecialMemberDeletionInfo(Sema &S, CXXMethodDecl *MD,
4202                            Sema::CXXSpecialMember CSM, bool Diagnose)
4203    : S(S), MD(MD), CSM(CSM), Diagnose(Diagnose),
4204      IsConstructor(false), IsAssignment(false), IsMove(false),
4205      ConstArg(false), VolatileArg(false), Loc(MD->getLocation()),
4206      AllFieldsAreConst(true) {
4207    switch (CSM) {
4208      case Sema::CXXDefaultConstructor:
4209      case Sema::CXXCopyConstructor:
4210        IsConstructor = true;
4211        break;
4212      case Sema::CXXMoveConstructor:
4213        IsConstructor = true;
4214        IsMove = true;
4215        break;
4216      case Sema::CXXCopyAssignment:
4217        IsAssignment = true;
4218        break;
4219      case Sema::CXXMoveAssignment:
4220        IsAssignment = true;
4221        IsMove = true;
4222        break;
4223      case Sema::CXXDestructor:
4224        break;
4225      case Sema::CXXInvalid:
4226        llvm_unreachable("invalid special member kind");
4227    }
4228
4229    if (MD->getNumParams()) {
4230      ConstArg = MD->getParamDecl(0)->getType().isConstQualified();
4231      VolatileArg = MD->getParamDecl(0)->getType().isVolatileQualified();
4232    }
4233  }
4234
4235  bool inUnion() const { return MD->getParent()->isUnion(); }
4236
4237  /// Look up the corresponding special member in the given class.
4238  Sema::SpecialMemberOverloadResult *lookupIn(CXXRecordDecl *Class,
4239                                              unsigned Quals) {
4240    unsigned TQ = MD->getTypeQualifiers();
4241    // cv-qualifiers on class members don't affect default ctor / dtor calls.
4242    if (CSM == Sema::CXXDefaultConstructor || CSM == Sema::CXXDestructor)
4243      Quals = 0;
4244    return S.LookupSpecialMember(Class, CSM,
4245                                 ConstArg || (Quals & Qualifiers::Const),
4246                                 VolatileArg || (Quals & Qualifiers::Volatile),
4247                                 MD->getRefQualifier() == RQ_RValue,
4248                                 TQ & Qualifiers::Const,
4249                                 TQ & Qualifiers::Volatile);
4250  }
4251
4252  typedef llvm::PointerUnion<CXXBaseSpecifier*, FieldDecl*> Subobject;
4253
4254  bool shouldDeleteForBase(CXXBaseSpecifier *Base);
4255  bool shouldDeleteForField(FieldDecl *FD);
4256  bool shouldDeleteForAllConstMembers();
4257
4258  bool shouldDeleteForClassSubobject(CXXRecordDecl *Class, Subobject Subobj,
4259                                     unsigned Quals);
4260  bool shouldDeleteForSubobjectCall(Subobject Subobj,
4261                                    Sema::SpecialMemberOverloadResult *SMOR,
4262                                    bool IsDtorCallInCtor);
4263
4264  bool isAccessible(Subobject Subobj, CXXMethodDecl *D);
4265};
4266}
4267
4268/// Is the given special member inaccessible when used on the given
4269/// sub-object.
4270bool SpecialMemberDeletionInfo::isAccessible(Subobject Subobj,
4271                                             CXXMethodDecl *target) {
4272  /// If we're operating on a base class, the object type is the
4273  /// type of this special member.
4274  QualType objectTy;
4275  AccessSpecifier access = target->getAccess();;
4276  if (CXXBaseSpecifier *base = Subobj.dyn_cast<CXXBaseSpecifier*>()) {
4277    objectTy = S.Context.getTypeDeclType(MD->getParent());
4278    access = CXXRecordDecl::MergeAccess(base->getAccessSpecifier(), access);
4279
4280  // If we're operating on a field, the object type is the type of the field.
4281  } else {
4282    objectTy = S.Context.getTypeDeclType(target->getParent());
4283  }
4284
4285  return S.isSpecialMemberAccessibleForDeletion(target, access, objectTy);
4286}
4287
4288/// Check whether we should delete a special member due to the implicit
4289/// definition containing a call to a special member of a subobject.
4290bool SpecialMemberDeletionInfo::shouldDeleteForSubobjectCall(
4291    Subobject Subobj, Sema::SpecialMemberOverloadResult *SMOR,
4292    bool IsDtorCallInCtor) {
4293  CXXMethodDecl *Decl = SMOR->getMethod();
4294  FieldDecl *Field = Subobj.dyn_cast<FieldDecl*>();
4295
4296  int DiagKind = -1;
4297
4298  if (SMOR->getKind() == Sema::SpecialMemberOverloadResult::NoMemberOrDeleted)
4299    DiagKind = !Decl ? 0 : 1;
4300  else if (SMOR->getKind() == Sema::SpecialMemberOverloadResult::Ambiguous)
4301    DiagKind = 2;
4302  else if (!isAccessible(Subobj, Decl))
4303    DiagKind = 3;
4304  else if (!IsDtorCallInCtor && Field && Field->getParent()->isUnion() &&
4305           !Decl->isTrivial()) {
4306    // A member of a union must have a trivial corresponding special member.
4307    // As a weird special case, a destructor call from a union's constructor
4308    // must be accessible and non-deleted, but need not be trivial. Such a
4309    // destructor is never actually called, but is semantically checked as
4310    // if it were.
4311    DiagKind = 4;
4312  }
4313
4314  if (DiagKind == -1)
4315    return false;
4316
4317  if (Diagnose) {
4318    if (Field) {
4319      S.Diag(Field->getLocation(),
4320             diag::note_deleted_special_member_class_subobject)
4321        << CSM << MD->getParent() << /*IsField*/true
4322        << Field << DiagKind << IsDtorCallInCtor;
4323    } else {
4324      CXXBaseSpecifier *Base = Subobj.get<CXXBaseSpecifier*>();
4325      S.Diag(Base->getLocStart(),
4326             diag::note_deleted_special_member_class_subobject)
4327        << CSM << MD->getParent() << /*IsField*/false
4328        << Base->getType() << DiagKind << IsDtorCallInCtor;
4329    }
4330
4331    if (DiagKind == 1)
4332      S.NoteDeletedFunction(Decl);
4333    // FIXME: Explain inaccessibility if DiagKind == 3.
4334  }
4335
4336  return true;
4337}
4338
4339/// Check whether we should delete a special member function due to having a
4340/// direct or virtual base class or non-static data member of class type M.
4341bool SpecialMemberDeletionInfo::shouldDeleteForClassSubobject(
4342    CXXRecordDecl *Class, Subobject Subobj, unsigned Quals) {
4343  FieldDecl *Field = Subobj.dyn_cast<FieldDecl*>();
4344
4345  // C++11 [class.ctor]p5:
4346  // -- any direct or virtual base class, or non-static data member with no
4347  //    brace-or-equal-initializer, has class type M (or array thereof) and
4348  //    either M has no default constructor or overload resolution as applied
4349  //    to M's default constructor results in an ambiguity or in a function
4350  //    that is deleted or inaccessible
4351  // C++11 [class.copy]p11, C++11 [class.copy]p23:
4352  // -- a direct or virtual base class B that cannot be copied/moved because
4353  //    overload resolution, as applied to B's corresponding special member,
4354  //    results in an ambiguity or a function that is deleted or inaccessible
4355  //    from the defaulted special member
4356  // C++11 [class.dtor]p5:
4357  // -- any direct or virtual base class [...] has a type with a destructor
4358  //    that is deleted or inaccessible
4359  if (!(CSM == Sema::CXXDefaultConstructor &&
4360        Field && Field->hasInClassInitializer()) &&
4361      shouldDeleteForSubobjectCall(Subobj, lookupIn(Class, Quals), false))
4362    return true;
4363
4364  // C++11 [class.ctor]p5, C++11 [class.copy]p11:
4365  // -- any direct or virtual base class or non-static data member has a
4366  //    type with a destructor that is deleted or inaccessible
4367  if (IsConstructor) {
4368    Sema::SpecialMemberOverloadResult *SMOR =
4369        S.LookupSpecialMember(Class, Sema::CXXDestructor,
4370                              false, false, false, false, false);
4371    if (shouldDeleteForSubobjectCall(Subobj, SMOR, true))
4372      return true;
4373  }
4374
4375  return false;
4376}
4377
4378/// Check whether we should delete a special member function due to the class
4379/// having a particular direct or virtual base class.
4380bool SpecialMemberDeletionInfo::shouldDeleteForBase(CXXBaseSpecifier *Base) {
4381  CXXRecordDecl *BaseClass = Base->getType()->getAsCXXRecordDecl();
4382  return shouldDeleteForClassSubobject(BaseClass, Base, 0);
4383}
4384
4385/// Check whether we should delete a special member function due to the class
4386/// having a particular non-static data member.
4387bool SpecialMemberDeletionInfo::shouldDeleteForField(FieldDecl *FD) {
4388  QualType FieldType = S.Context.getBaseElementType(FD->getType());
4389  CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl();
4390
4391  if (CSM == Sema::CXXDefaultConstructor) {
4392    // For a default constructor, all references must be initialized in-class
4393    // and, if a union, it must have a non-const member.
4394    if (FieldType->isReferenceType() && !FD->hasInClassInitializer()) {
4395      if (Diagnose)
4396        S.Diag(FD->getLocation(), diag::note_deleted_default_ctor_uninit_field)
4397          << MD->getParent() << FD << FieldType << /*Reference*/0;
4398      return true;
4399    }
4400    // C++11 [class.ctor]p5: any non-variant non-static data member of
4401    // const-qualified type (or array thereof) with no
4402    // brace-or-equal-initializer does not have a user-provided default
4403    // constructor.
4404    if (!inUnion() && FieldType.isConstQualified() &&
4405        !FD->hasInClassInitializer() &&
4406        (!FieldRecord || !FieldRecord->hasUserProvidedDefaultConstructor())) {
4407      if (Diagnose)
4408        S.Diag(FD->getLocation(), diag::note_deleted_default_ctor_uninit_field)
4409          << MD->getParent() << FD << FD->getType() << /*Const*/1;
4410      return true;
4411    }
4412
4413    if (inUnion() && !FieldType.isConstQualified())
4414      AllFieldsAreConst = false;
4415  } else if (CSM == Sema::CXXCopyConstructor) {
4416    // For a copy constructor, data members must not be of rvalue reference
4417    // type.
4418    if (FieldType->isRValueReferenceType()) {
4419      if (Diagnose)
4420        S.Diag(FD->getLocation(), diag::note_deleted_copy_ctor_rvalue_reference)
4421          << MD->getParent() << FD << FieldType;
4422      return true;
4423    }
4424  } else if (IsAssignment) {
4425    // For an assignment operator, data members must not be of reference type.
4426    if (FieldType->isReferenceType()) {
4427      if (Diagnose)
4428        S.Diag(FD->getLocation(), diag::note_deleted_assign_field)
4429          << IsMove << MD->getParent() << FD << FieldType << /*Reference*/0;
4430      return true;
4431    }
4432    if (!FieldRecord && FieldType.isConstQualified()) {
4433      // C++11 [class.copy]p23:
4434      // -- a non-static data member of const non-class type (or array thereof)
4435      if (Diagnose)
4436        S.Diag(FD->getLocation(), diag::note_deleted_assign_field)
4437          << IsMove << MD->getParent() << FD << FD->getType() << /*Const*/1;
4438      return true;
4439    }
4440  }
4441
4442  if (FieldRecord) {
4443    // Some additional restrictions exist on the variant members.
4444    if (!inUnion() && FieldRecord->isUnion() &&
4445        FieldRecord->isAnonymousStructOrUnion()) {
4446      bool AllVariantFieldsAreConst = true;
4447
4448      // FIXME: Handle anonymous unions declared within anonymous unions.
4449      for (CXXRecordDecl::field_iterator UI = FieldRecord->field_begin(),
4450                                         UE = FieldRecord->field_end();
4451           UI != UE; ++UI) {
4452        QualType UnionFieldType = S.Context.getBaseElementType(UI->getType());
4453
4454        if (!UnionFieldType.isConstQualified())
4455          AllVariantFieldsAreConst = false;
4456
4457        CXXRecordDecl *UnionFieldRecord = UnionFieldType->getAsCXXRecordDecl();
4458        if (UnionFieldRecord &&
4459            shouldDeleteForClassSubobject(UnionFieldRecord, *UI,
4460                                          UnionFieldType.getCVRQualifiers()))
4461          return true;
4462      }
4463
4464      // At least one member in each anonymous union must be non-const
4465      if (CSM == Sema::CXXDefaultConstructor && AllVariantFieldsAreConst &&
4466          FieldRecord->field_begin() != FieldRecord->field_end()) {
4467        if (Diagnose)
4468          S.Diag(FieldRecord->getLocation(),
4469                 diag::note_deleted_default_ctor_all_const)
4470            << MD->getParent() << /*anonymous union*/1;
4471        return true;
4472      }
4473
4474      // Don't check the implicit member of the anonymous union type.
4475      // This is technically non-conformant, but sanity demands it.
4476      return false;
4477    }
4478
4479    if (shouldDeleteForClassSubobject(FieldRecord, FD,
4480                                      FieldType.getCVRQualifiers()))
4481      return true;
4482  }
4483
4484  return false;
4485}
4486
4487/// C++11 [class.ctor] p5:
4488///   A defaulted default constructor for a class X is defined as deleted if
4489/// X is a union and all of its variant members are of const-qualified type.
4490bool SpecialMemberDeletionInfo::shouldDeleteForAllConstMembers() {
4491  // This is a silly definition, because it gives an empty union a deleted
4492  // default constructor. Don't do that.
4493  if (CSM == Sema::CXXDefaultConstructor && inUnion() && AllFieldsAreConst &&
4494      (MD->getParent()->field_begin() != MD->getParent()->field_end())) {
4495    if (Diagnose)
4496      S.Diag(MD->getParent()->getLocation(),
4497             diag::note_deleted_default_ctor_all_const)
4498        << MD->getParent() << /*not anonymous union*/0;
4499    return true;
4500  }
4501  return false;
4502}
4503
4504/// Determine whether a defaulted special member function should be defined as
4505/// deleted, as specified in C++11 [class.ctor]p5, C++11 [class.copy]p11,
4506/// C++11 [class.copy]p23, and C++11 [class.dtor]p5.
4507bool Sema::ShouldDeleteSpecialMember(CXXMethodDecl *MD, CXXSpecialMember CSM,
4508                                     bool Diagnose) {
4509  assert(!MD->isInvalidDecl());
4510  CXXRecordDecl *RD = MD->getParent();
4511  assert(!RD->isDependentType() && "do deletion after instantiation");
4512  if (!LangOpts.CPlusPlus0x || RD->isInvalidDecl())
4513    return false;
4514
4515  // C++11 [expr.lambda.prim]p19:
4516  //   The closure type associated with a lambda-expression has a
4517  //   deleted (8.4.3) default constructor and a deleted copy
4518  //   assignment operator.
4519  if (RD->isLambda() &&
4520      (CSM == CXXDefaultConstructor || CSM == CXXCopyAssignment)) {
4521    if (Diagnose)
4522      Diag(RD->getLocation(), diag::note_lambda_decl);
4523    return true;
4524  }
4525
4526  // For an anonymous struct or union, the copy and assignment special members
4527  // will never be used, so skip the check. For an anonymous union declared at
4528  // namespace scope, the constructor and destructor are used.
4529  if (CSM != CXXDefaultConstructor && CSM != CXXDestructor &&
4530      RD->isAnonymousStructOrUnion())
4531    return false;
4532
4533  // C++11 [class.copy]p7, p18:
4534  //   If the class definition declares a move constructor or move assignment
4535  //   operator, an implicitly declared copy constructor or copy assignment
4536  //   operator is defined as deleted.
4537  if (MD->isImplicit() &&
4538      (CSM == CXXCopyConstructor || CSM == CXXCopyAssignment)) {
4539    CXXMethodDecl *UserDeclaredMove = 0;
4540
4541    // In Microsoft mode, a user-declared move only causes the deletion of the
4542    // corresponding copy operation, not both copy operations.
4543    if (RD->hasUserDeclaredMoveConstructor() &&
4544        (!getLangOpts().MicrosoftMode || CSM == CXXCopyConstructor)) {
4545      if (!Diagnose) return true;
4546      UserDeclaredMove = RD->getMoveConstructor();
4547      assert(UserDeclaredMove);
4548    } else if (RD->hasUserDeclaredMoveAssignment() &&
4549               (!getLangOpts().MicrosoftMode || CSM == CXXCopyAssignment)) {
4550      if (!Diagnose) return true;
4551      UserDeclaredMove = RD->getMoveAssignmentOperator();
4552      assert(UserDeclaredMove);
4553    }
4554
4555    if (UserDeclaredMove) {
4556      Diag(UserDeclaredMove->getLocation(),
4557           diag::note_deleted_copy_user_declared_move)
4558        << (CSM == CXXCopyAssignment) << RD
4559        << UserDeclaredMove->isMoveAssignmentOperator();
4560      return true;
4561    }
4562  }
4563
4564  // Do access control from the special member function
4565  ContextRAII MethodContext(*this, MD);
4566
4567  // C++11 [class.dtor]p5:
4568  // -- for a virtual destructor, lookup of the non-array deallocation function
4569  //    results in an ambiguity or in a function that is deleted or inaccessible
4570  if (CSM == CXXDestructor && MD->isVirtual()) {
4571    FunctionDecl *OperatorDelete = 0;
4572    DeclarationName Name =
4573      Context.DeclarationNames.getCXXOperatorName(OO_Delete);
4574    if (FindDeallocationFunction(MD->getLocation(), MD->getParent(), Name,
4575                                 OperatorDelete, false)) {
4576      if (Diagnose)
4577        Diag(RD->getLocation(), diag::note_deleted_dtor_no_operator_delete);
4578      return true;
4579    }
4580  }
4581
4582  SpecialMemberDeletionInfo SMI(*this, MD, CSM, Diagnose);
4583
4584  for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
4585                                          BE = RD->bases_end(); BI != BE; ++BI)
4586    if (!BI->isVirtual() &&
4587        SMI.shouldDeleteForBase(BI))
4588      return true;
4589
4590  for (CXXRecordDecl::base_class_iterator BI = RD->vbases_begin(),
4591                                          BE = RD->vbases_end(); BI != BE; ++BI)
4592    if (SMI.shouldDeleteForBase(BI))
4593      return true;
4594
4595  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
4596                                     FE = RD->field_end(); FI != FE; ++FI)
4597    if (!FI->isInvalidDecl() && !FI->isUnnamedBitfield() &&
4598        SMI.shouldDeleteForField(*FI))
4599      return true;
4600
4601  if (SMI.shouldDeleteForAllConstMembers())
4602    return true;
4603
4604  return false;
4605}
4606
4607/// \brief Data used with FindHiddenVirtualMethod
4608namespace {
4609  struct FindHiddenVirtualMethodData {
4610    Sema *S;
4611    CXXMethodDecl *Method;
4612    llvm::SmallPtrSet<const CXXMethodDecl *, 8> OverridenAndUsingBaseMethods;
4613    SmallVector<CXXMethodDecl *, 8> OverloadedMethods;
4614  };
4615}
4616
4617/// \brief Member lookup function that determines whether a given C++
4618/// method overloads virtual methods in a base class without overriding any,
4619/// to be used with CXXRecordDecl::lookupInBases().
4620static bool FindHiddenVirtualMethod(const CXXBaseSpecifier *Specifier,
4621                                    CXXBasePath &Path,
4622                                    void *UserData) {
4623  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
4624
4625  FindHiddenVirtualMethodData &Data
4626    = *static_cast<FindHiddenVirtualMethodData*>(UserData);
4627
4628  DeclarationName Name = Data.Method->getDeclName();
4629  assert(Name.getNameKind() == DeclarationName::Identifier);
4630
4631  bool foundSameNameMethod = false;
4632  SmallVector<CXXMethodDecl *, 8> overloadedMethods;
4633  for (Path.Decls = BaseRecord->lookup(Name);
4634       Path.Decls.first != Path.Decls.second;
4635       ++Path.Decls.first) {
4636    NamedDecl *D = *Path.Decls.first;
4637    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
4638      MD = MD->getCanonicalDecl();
4639      foundSameNameMethod = true;
4640      // Interested only in hidden virtual methods.
4641      if (!MD->isVirtual())
4642        continue;
4643      // If the method we are checking overrides a method from its base
4644      // don't warn about the other overloaded methods.
4645      if (!Data.S->IsOverload(Data.Method, MD, false))
4646        return true;
4647      // Collect the overload only if its hidden.
4648      if (!Data.OverridenAndUsingBaseMethods.count(MD))
4649        overloadedMethods.push_back(MD);
4650    }
4651  }
4652
4653  if (foundSameNameMethod)
4654    Data.OverloadedMethods.append(overloadedMethods.begin(),
4655                                   overloadedMethods.end());
4656  return foundSameNameMethod;
4657}
4658
4659/// \brief See if a method overloads virtual methods in a base class without
4660/// overriding any.
4661void Sema::DiagnoseHiddenVirtualMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
4662  if (Diags.getDiagnosticLevel(diag::warn_overloaded_virtual,
4663                               MD->getLocation()) == DiagnosticsEngine::Ignored)
4664    return;
4665  if (!MD->getDeclName().isIdentifier())
4666    return;
4667
4668  CXXBasePaths Paths(/*FindAmbiguities=*/true, // true to look in all bases.
4669                     /*bool RecordPaths=*/false,
4670                     /*bool DetectVirtual=*/false);
4671  FindHiddenVirtualMethodData Data;
4672  Data.Method = MD;
4673  Data.S = this;
4674
4675  // Keep the base methods that were overriden or introduced in the subclass
4676  // by 'using' in a set. A base method not in this set is hidden.
4677  for (DeclContext::lookup_result res = DC->lookup(MD->getDeclName());
4678       res.first != res.second; ++res.first) {
4679    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(*res.first))
4680      for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
4681                                          E = MD->end_overridden_methods();
4682           I != E; ++I)
4683        Data.OverridenAndUsingBaseMethods.insert((*I)->getCanonicalDecl());
4684    if (UsingShadowDecl *shad = dyn_cast<UsingShadowDecl>(*res.first))
4685      if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(shad->getTargetDecl()))
4686        Data.OverridenAndUsingBaseMethods.insert(MD->getCanonicalDecl());
4687  }
4688
4689  if (DC->lookupInBases(&FindHiddenVirtualMethod, &Data, Paths) &&
4690      !Data.OverloadedMethods.empty()) {
4691    Diag(MD->getLocation(), diag::warn_overloaded_virtual)
4692      << MD << (Data.OverloadedMethods.size() > 1);
4693
4694    for (unsigned i = 0, e = Data.OverloadedMethods.size(); i != e; ++i) {
4695      CXXMethodDecl *overloadedMD = Data.OverloadedMethods[i];
4696      Diag(overloadedMD->getLocation(),
4697           diag::note_hidden_overloaded_virtual_declared_here) << overloadedMD;
4698    }
4699  }
4700}
4701
4702void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
4703                                             Decl *TagDecl,
4704                                             SourceLocation LBrac,
4705                                             SourceLocation RBrac,
4706                                             AttributeList *AttrList) {
4707  if (!TagDecl)
4708    return;
4709
4710  AdjustDeclIfTemplate(TagDecl);
4711
4712  for (const AttributeList* l = AttrList; l; l = l->getNext()) {
4713    if (l->getKind() != AttributeList::AT_Visibility)
4714      continue;
4715    l->setInvalid();
4716    Diag(l->getLoc(), diag::warn_attribute_after_definition_ignored) <<
4717      l->getName();
4718  }
4719
4720  ActOnFields(S, RLoc, TagDecl, llvm::makeArrayRef(
4721              // strict aliasing violation!
4722              reinterpret_cast<Decl**>(FieldCollector->getCurFields()),
4723              FieldCollector->getCurNumFields()), LBrac, RBrac, AttrList);
4724
4725  CheckCompletedCXXClass(
4726                        dyn_cast_or_null<CXXRecordDecl>(TagDecl));
4727}
4728
4729/// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
4730/// special functions, such as the default constructor, copy
4731/// constructor, or destructor, to the given C++ class (C++
4732/// [special]p1).  This routine can only be executed just before the
4733/// definition of the class is complete.
4734void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) {
4735  if (!ClassDecl->hasUserDeclaredConstructor())
4736    ++ASTContext::NumImplicitDefaultConstructors;
4737
4738  if (!ClassDecl->hasUserDeclaredCopyConstructor())
4739    ++ASTContext::NumImplicitCopyConstructors;
4740
4741  if (getLangOpts().CPlusPlus0x && ClassDecl->needsImplicitMoveConstructor())
4742    ++ASTContext::NumImplicitMoveConstructors;
4743
4744  if (!ClassDecl->hasUserDeclaredCopyAssignment()) {
4745    ++ASTContext::NumImplicitCopyAssignmentOperators;
4746
4747    // If we have a dynamic class, then the copy assignment operator may be
4748    // virtual, so we have to declare it immediately. This ensures that, e.g.,
4749    // it shows up in the right place in the vtable and that we diagnose
4750    // problems with the implicit exception specification.
4751    if (ClassDecl->isDynamicClass())
4752      DeclareImplicitCopyAssignment(ClassDecl);
4753  }
4754
4755  if (getLangOpts().CPlusPlus0x && ClassDecl->needsImplicitMoveAssignment()) {
4756    ++ASTContext::NumImplicitMoveAssignmentOperators;
4757
4758    // Likewise for the move assignment operator.
4759    if (ClassDecl->isDynamicClass())
4760      DeclareImplicitMoveAssignment(ClassDecl);
4761  }
4762
4763  if (!ClassDecl->hasUserDeclaredDestructor()) {
4764    ++ASTContext::NumImplicitDestructors;
4765
4766    // If we have a dynamic class, then the destructor may be virtual, so we
4767    // have to declare the destructor immediately. This ensures that, e.g., it
4768    // shows up in the right place in the vtable and that we diagnose problems
4769    // with the implicit exception specification.
4770    if (ClassDecl->isDynamicClass())
4771      DeclareImplicitDestructor(ClassDecl);
4772  }
4773}
4774
4775void Sema::ActOnReenterDeclaratorTemplateScope(Scope *S, DeclaratorDecl *D) {
4776  if (!D)
4777    return;
4778
4779  int NumParamList = D->getNumTemplateParameterLists();
4780  for (int i = 0; i < NumParamList; i++) {
4781    TemplateParameterList* Params = D->getTemplateParameterList(i);
4782    for (TemplateParameterList::iterator Param = Params->begin(),
4783                                      ParamEnd = Params->end();
4784          Param != ParamEnd; ++Param) {
4785      NamedDecl *Named = cast<NamedDecl>(*Param);
4786      if (Named->getDeclName()) {
4787        S->AddDecl(Named);
4788        IdResolver.AddDecl(Named);
4789      }
4790    }
4791  }
4792}
4793
4794void Sema::ActOnReenterTemplateScope(Scope *S, Decl *D) {
4795  if (!D)
4796    return;
4797
4798  TemplateParameterList *Params = 0;
4799  if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D))
4800    Params = Template->getTemplateParameters();
4801  else if (ClassTemplatePartialSpecializationDecl *PartialSpec
4802           = dyn_cast<ClassTemplatePartialSpecializationDecl>(D))
4803    Params = PartialSpec->getTemplateParameters();
4804  else
4805    return;
4806
4807  for (TemplateParameterList::iterator Param = Params->begin(),
4808                                    ParamEnd = Params->end();
4809       Param != ParamEnd; ++Param) {
4810    NamedDecl *Named = cast<NamedDecl>(*Param);
4811    if (Named->getDeclName()) {
4812      S->AddDecl(Named);
4813      IdResolver.AddDecl(Named);
4814    }
4815  }
4816}
4817
4818void Sema::ActOnStartDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
4819  if (!RecordD) return;
4820  AdjustDeclIfTemplate(RecordD);
4821  CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordD);
4822  PushDeclContext(S, Record);
4823}
4824
4825void Sema::ActOnFinishDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
4826  if (!RecordD) return;
4827  PopDeclContext();
4828}
4829
4830/// ActOnStartDelayedCXXMethodDeclaration - We have completed
4831/// parsing a top-level (non-nested) C++ class, and we are now
4832/// parsing those parts of the given Method declaration that could
4833/// not be parsed earlier (C++ [class.mem]p2), such as default
4834/// arguments. This action should enter the scope of the given
4835/// Method declaration as if we had just parsed the qualified method
4836/// name. However, it should not bring the parameters into scope;
4837/// that will be performed by ActOnDelayedCXXMethodParameter.
4838void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
4839}
4840
4841/// ActOnDelayedCXXMethodParameter - We've already started a delayed
4842/// C++ method declaration. We're (re-)introducing the given
4843/// function parameter into scope for use in parsing later parts of
4844/// the method declaration. For example, we could see an
4845/// ActOnParamDefaultArgument event for this parameter.
4846void Sema::ActOnDelayedCXXMethodParameter(Scope *S, Decl *ParamD) {
4847  if (!ParamD)
4848    return;
4849
4850  ParmVarDecl *Param = cast<ParmVarDecl>(ParamD);
4851
4852  // If this parameter has an unparsed default argument, clear it out
4853  // to make way for the parsed default argument.
4854  if (Param->hasUnparsedDefaultArg())
4855    Param->setDefaultArg(0);
4856
4857  S->AddDecl(Param);
4858  if (Param->getDeclName())
4859    IdResolver.AddDecl(Param);
4860}
4861
4862/// ActOnFinishDelayedCXXMethodDeclaration - We have finished
4863/// processing the delayed method declaration for Method. The method
4864/// declaration is now considered finished. There may be a separate
4865/// ActOnStartOfFunctionDef action later (not necessarily
4866/// immediately!) for this method, if it was also defined inside the
4867/// class body.
4868void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
4869  if (!MethodD)
4870    return;
4871
4872  AdjustDeclIfTemplate(MethodD);
4873
4874  FunctionDecl *Method = cast<FunctionDecl>(MethodD);
4875
4876  // Now that we have our default arguments, check the constructor
4877  // again. It could produce additional diagnostics or affect whether
4878  // the class has implicitly-declared destructors, among other
4879  // things.
4880  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method))
4881    CheckConstructor(Constructor);
4882
4883  // Check the default arguments, which we may have added.
4884  if (!Method->isInvalidDecl())
4885    CheckCXXDefaultArguments(Method);
4886}
4887
4888/// CheckConstructorDeclarator - Called by ActOnDeclarator to check
4889/// the well-formedness of the constructor declarator @p D with type @p
4890/// R. If there are any errors in the declarator, this routine will
4891/// emit diagnostics and set the invalid bit to true.  In any case, the type
4892/// will be updated to reflect a well-formed type for the constructor and
4893/// returned.
4894QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R,
4895                                          StorageClass &SC) {
4896  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
4897
4898  // C++ [class.ctor]p3:
4899  //   A constructor shall not be virtual (10.3) or static (9.4). A
4900  //   constructor can be invoked for a const, volatile or const
4901  //   volatile object. A constructor shall not be declared const,
4902  //   volatile, or const volatile (9.3.2).
4903  if (isVirtual) {
4904    if (!D.isInvalidType())
4905      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
4906        << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
4907        << SourceRange(D.getIdentifierLoc());
4908    D.setInvalidType();
4909  }
4910  if (SC == SC_Static) {
4911    if (!D.isInvalidType())
4912      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
4913        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
4914        << SourceRange(D.getIdentifierLoc());
4915    D.setInvalidType();
4916    SC = SC_None;
4917  }
4918
4919  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
4920  if (FTI.TypeQuals != 0) {
4921    if (FTI.TypeQuals & Qualifiers::Const)
4922      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
4923        << "const" << SourceRange(D.getIdentifierLoc());
4924    if (FTI.TypeQuals & Qualifiers::Volatile)
4925      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
4926        << "volatile" << SourceRange(D.getIdentifierLoc());
4927    if (FTI.TypeQuals & Qualifiers::Restrict)
4928      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
4929        << "restrict" << SourceRange(D.getIdentifierLoc());
4930    D.setInvalidType();
4931  }
4932
4933  // C++0x [class.ctor]p4:
4934  //   A constructor shall not be declared with a ref-qualifier.
4935  if (FTI.hasRefQualifier()) {
4936    Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_constructor)
4937      << FTI.RefQualifierIsLValueRef
4938      << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
4939    D.setInvalidType();
4940  }
4941
4942  // Rebuild the function type "R" without any type qualifiers (in
4943  // case any of the errors above fired) and with "void" as the
4944  // return type, since constructors don't have return types.
4945  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
4946  if (Proto->getResultType() == Context.VoidTy && !D.isInvalidType())
4947    return R;
4948
4949  FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
4950  EPI.TypeQuals = 0;
4951  EPI.RefQualifier = RQ_None;
4952
4953  return Context.getFunctionType(Context.VoidTy, Proto->arg_type_begin(),
4954                                 Proto->getNumArgs(), EPI);
4955}
4956
4957/// CheckConstructor - Checks a fully-formed constructor for
4958/// well-formedness, issuing any diagnostics required. Returns true if
4959/// the constructor declarator is invalid.
4960void Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
4961  CXXRecordDecl *ClassDecl
4962    = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext());
4963  if (!ClassDecl)
4964    return Constructor->setInvalidDecl();
4965
4966  // C++ [class.copy]p3:
4967  //   A declaration of a constructor for a class X is ill-formed if
4968  //   its first parameter is of type (optionally cv-qualified) X and
4969  //   either there are no other parameters or else all other
4970  //   parameters have default arguments.
4971  if (!Constructor->isInvalidDecl() &&
4972      ((Constructor->getNumParams() == 1) ||
4973       (Constructor->getNumParams() > 1 &&
4974        Constructor->getParamDecl(1)->hasDefaultArg())) &&
4975      Constructor->getTemplateSpecializationKind()
4976                                              != TSK_ImplicitInstantiation) {
4977    QualType ParamType = Constructor->getParamDecl(0)->getType();
4978    QualType ClassTy = Context.getTagDeclType(ClassDecl);
4979    if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
4980      SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation();
4981      const char *ConstRef
4982        = Constructor->getParamDecl(0)->getIdentifier() ? "const &"
4983                                                        : " const &";
4984      Diag(ParamLoc, diag::err_constructor_byvalue_arg)
4985        << FixItHint::CreateInsertion(ParamLoc, ConstRef);
4986
4987      // FIXME: Rather that making the constructor invalid, we should endeavor
4988      // to fix the type.
4989      Constructor->setInvalidDecl();
4990    }
4991  }
4992}
4993
4994/// CheckDestructor - Checks a fully-formed destructor definition for
4995/// well-formedness, issuing any diagnostics required.  Returns true
4996/// on error.
4997bool Sema::CheckDestructor(CXXDestructorDecl *Destructor) {
4998  CXXRecordDecl *RD = Destructor->getParent();
4999
5000  if (Destructor->isVirtual()) {
5001    SourceLocation Loc;
5002
5003    if (!Destructor->isImplicit())
5004      Loc = Destructor->getLocation();
5005    else
5006      Loc = RD->getLocation();
5007
5008    // If we have a virtual destructor, look up the deallocation function
5009    FunctionDecl *OperatorDelete = 0;
5010    DeclarationName Name =
5011    Context.DeclarationNames.getCXXOperatorName(OO_Delete);
5012    if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete))
5013      return true;
5014
5015    MarkFunctionReferenced(Loc, OperatorDelete);
5016
5017    Destructor->setOperatorDelete(OperatorDelete);
5018  }
5019
5020  return false;
5021}
5022
5023static inline bool
5024FTIHasSingleVoidArgument(DeclaratorChunk::FunctionTypeInfo &FTI) {
5025  return (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
5026          FTI.ArgInfo[0].Param &&
5027          cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType());
5028}
5029
5030/// CheckDestructorDeclarator - Called by ActOnDeclarator to check
5031/// the well-formednes of the destructor declarator @p D with type @p
5032/// R. If there are any errors in the declarator, this routine will
5033/// emit diagnostics and set the declarator to invalid.  Even if this happens,
5034/// will be updated to reflect a well-formed type for the destructor and
5035/// returned.
5036QualType Sema::CheckDestructorDeclarator(Declarator &D, QualType R,
5037                                         StorageClass& SC) {
5038  // C++ [class.dtor]p1:
5039  //   [...] A typedef-name that names a class is a class-name
5040  //   (7.1.3); however, a typedef-name that names a class shall not
5041  //   be used as the identifier in the declarator for a destructor
5042  //   declaration.
5043  QualType DeclaratorType = GetTypeFromParser(D.getName().DestructorName);
5044  if (const TypedefType *TT = DeclaratorType->getAs<TypedefType>())
5045    Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
5046      << DeclaratorType << isa<TypeAliasDecl>(TT->getDecl());
5047  else if (const TemplateSpecializationType *TST =
5048             DeclaratorType->getAs<TemplateSpecializationType>())
5049    if (TST->isTypeAlias())
5050      Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
5051        << DeclaratorType << 1;
5052
5053  // C++ [class.dtor]p2:
5054  //   A destructor is used to destroy objects of its class type. A
5055  //   destructor takes no parameters, and no return type can be
5056  //   specified for it (not even void). The address of a destructor
5057  //   shall not be taken. A destructor shall not be static. A
5058  //   destructor can be invoked for a const, volatile or const
5059  //   volatile object. A destructor shall not be declared const,
5060  //   volatile or const volatile (9.3.2).
5061  if (SC == SC_Static) {
5062    if (!D.isInvalidType())
5063      Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
5064        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
5065        << SourceRange(D.getIdentifierLoc())
5066        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
5067
5068    SC = SC_None;
5069  }
5070  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
5071    // Destructors don't have return types, but the parser will
5072    // happily parse something like:
5073    //
5074    //   class X {
5075    //     float ~X();
5076    //   };
5077    //
5078    // The return type will be eliminated later.
5079    Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
5080      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
5081      << SourceRange(D.getIdentifierLoc());
5082  }
5083
5084  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
5085  if (FTI.TypeQuals != 0 && !D.isInvalidType()) {
5086    if (FTI.TypeQuals & Qualifiers::Const)
5087      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
5088        << "const" << SourceRange(D.getIdentifierLoc());
5089    if (FTI.TypeQuals & Qualifiers::Volatile)
5090      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
5091        << "volatile" << SourceRange(D.getIdentifierLoc());
5092    if (FTI.TypeQuals & Qualifiers::Restrict)
5093      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
5094        << "restrict" << SourceRange(D.getIdentifierLoc());
5095    D.setInvalidType();
5096  }
5097
5098  // C++0x [class.dtor]p2:
5099  //   A destructor shall not be declared with a ref-qualifier.
5100  if (FTI.hasRefQualifier()) {
5101    Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_destructor)
5102      << FTI.RefQualifierIsLValueRef
5103      << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
5104    D.setInvalidType();
5105  }
5106
5107  // Make sure we don't have any parameters.
5108  if (FTI.NumArgs > 0 && !FTIHasSingleVoidArgument(FTI)) {
5109    Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
5110
5111    // Delete the parameters.
5112    FTI.freeArgs();
5113    D.setInvalidType();
5114  }
5115
5116  // Make sure the destructor isn't variadic.
5117  if (FTI.isVariadic) {
5118    Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
5119    D.setInvalidType();
5120  }
5121
5122  // Rebuild the function type "R" without any type qualifiers or
5123  // parameters (in case any of the errors above fired) and with
5124  // "void" as the return type, since destructors don't have return
5125  // types.
5126  if (!D.isInvalidType())
5127    return R;
5128
5129  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
5130  FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
5131  EPI.Variadic = false;
5132  EPI.TypeQuals = 0;
5133  EPI.RefQualifier = RQ_None;
5134  return Context.getFunctionType(Context.VoidTy, 0, 0, EPI);
5135}
5136
5137/// CheckConversionDeclarator - Called by ActOnDeclarator to check the
5138/// well-formednes of the conversion function declarator @p D with
5139/// type @p R. If there are any errors in the declarator, this routine
5140/// will emit diagnostics and return true. Otherwise, it will return
5141/// false. Either way, the type @p R will be updated to reflect a
5142/// well-formed type for the conversion operator.
5143void Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
5144                                     StorageClass& SC) {
5145  // C++ [class.conv.fct]p1:
5146  //   Neither parameter types nor return type can be specified. The
5147  //   type of a conversion function (8.3.5) is "function taking no
5148  //   parameter returning conversion-type-id."
5149  if (SC == SC_Static) {
5150    if (!D.isInvalidType())
5151      Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
5152        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
5153        << SourceRange(D.getIdentifierLoc());
5154    D.setInvalidType();
5155    SC = SC_None;
5156  }
5157
5158  QualType ConvType = GetTypeFromParser(D.getName().ConversionFunctionId);
5159
5160  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
5161    // Conversion functions don't have return types, but the parser will
5162    // happily parse something like:
5163    //
5164    //   class X {
5165    //     float operator bool();
5166    //   };
5167    //
5168    // The return type will be changed later anyway.
5169    Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
5170      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
5171      << SourceRange(D.getIdentifierLoc());
5172    D.setInvalidType();
5173  }
5174
5175  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
5176
5177  // Make sure we don't have any parameters.
5178  if (Proto->getNumArgs() > 0) {
5179    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
5180
5181    // Delete the parameters.
5182    D.getFunctionTypeInfo().freeArgs();
5183    D.setInvalidType();
5184  } else if (Proto->isVariadic()) {
5185    Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
5186    D.setInvalidType();
5187  }
5188
5189  // Diagnose "&operator bool()" and other such nonsense.  This
5190  // is actually a gcc extension which we don't support.
5191  if (Proto->getResultType() != ConvType) {
5192    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_complex_decl)
5193      << Proto->getResultType();
5194    D.setInvalidType();
5195    ConvType = Proto->getResultType();
5196  }
5197
5198  // C++ [class.conv.fct]p4:
5199  //   The conversion-type-id shall not represent a function type nor
5200  //   an array type.
5201  if (ConvType->isArrayType()) {
5202    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
5203    ConvType = Context.getPointerType(ConvType);
5204    D.setInvalidType();
5205  } else if (ConvType->isFunctionType()) {
5206    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
5207    ConvType = Context.getPointerType(ConvType);
5208    D.setInvalidType();
5209  }
5210
5211  // Rebuild the function type "R" without any parameters (in case any
5212  // of the errors above fired) and with the conversion type as the
5213  // return type.
5214  if (D.isInvalidType())
5215    R = Context.getFunctionType(ConvType, 0, 0, Proto->getExtProtoInfo());
5216
5217  // C++0x explicit conversion operators.
5218  if (D.getDeclSpec().isExplicitSpecified())
5219    Diag(D.getDeclSpec().getExplicitSpecLoc(),
5220         getLangOpts().CPlusPlus0x ?
5221           diag::warn_cxx98_compat_explicit_conversion_functions :
5222           diag::ext_explicit_conversion_functions)
5223      << SourceRange(D.getDeclSpec().getExplicitSpecLoc());
5224}
5225
5226/// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
5227/// the declaration of the given C++ conversion function. This routine
5228/// is responsible for recording the conversion function in the C++
5229/// class, if possible.
5230Decl *Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
5231  assert(Conversion && "Expected to receive a conversion function declaration");
5232
5233  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext());
5234
5235  // Make sure we aren't redeclaring the conversion function.
5236  QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());
5237
5238  // C++ [class.conv.fct]p1:
5239  //   [...] A conversion function is never used to convert a
5240  //   (possibly cv-qualified) object to the (possibly cv-qualified)
5241  //   same object type (or a reference to it), to a (possibly
5242  //   cv-qualified) base class of that type (or a reference to it),
5243  //   or to (possibly cv-qualified) void.
5244  // FIXME: Suppress this warning if the conversion function ends up being a
5245  // virtual function that overrides a virtual function in a base class.
5246  QualType ClassType
5247    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
5248  if (const ReferenceType *ConvTypeRef = ConvType->getAs<ReferenceType>())
5249    ConvType = ConvTypeRef->getPointeeType();
5250  if (Conversion->getTemplateSpecializationKind() != TSK_Undeclared &&
5251      Conversion->getTemplateSpecializationKind() != TSK_ExplicitSpecialization)
5252    /* Suppress diagnostics for instantiations. */;
5253  else if (ConvType->isRecordType()) {
5254    ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
5255    if (ConvType == ClassType)
5256      Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used)
5257        << ClassType;
5258    else if (IsDerivedFrom(ClassType, ConvType))
5259      Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used)
5260        <<  ClassType << ConvType;
5261  } else if (ConvType->isVoidType()) {
5262    Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used)
5263      << ClassType << ConvType;
5264  }
5265
5266  if (FunctionTemplateDecl *ConversionTemplate
5267                                = Conversion->getDescribedFunctionTemplate())
5268    return ConversionTemplate;
5269
5270  return Conversion;
5271}
5272
5273//===----------------------------------------------------------------------===//
5274// Namespace Handling
5275//===----------------------------------------------------------------------===//
5276
5277
5278
5279/// ActOnStartNamespaceDef - This is called at the start of a namespace
5280/// definition.
5281Decl *Sema::ActOnStartNamespaceDef(Scope *NamespcScope,
5282                                   SourceLocation InlineLoc,
5283                                   SourceLocation NamespaceLoc,
5284                                   SourceLocation IdentLoc,
5285                                   IdentifierInfo *II,
5286                                   SourceLocation LBrace,
5287                                   AttributeList *AttrList) {
5288  SourceLocation StartLoc = InlineLoc.isValid() ? InlineLoc : NamespaceLoc;
5289  // For anonymous namespace, take the location of the left brace.
5290  SourceLocation Loc = II ? IdentLoc : LBrace;
5291  bool IsInline = InlineLoc.isValid();
5292  bool IsInvalid = false;
5293  bool IsStd = false;
5294  bool AddToKnown = false;
5295  Scope *DeclRegionScope = NamespcScope->getParent();
5296
5297  NamespaceDecl *PrevNS = 0;
5298  if (II) {
5299    // C++ [namespace.def]p2:
5300    //   The identifier in an original-namespace-definition shall not
5301    //   have been previously defined in the declarative region in
5302    //   which the original-namespace-definition appears. The
5303    //   identifier in an original-namespace-definition is the name of
5304    //   the namespace. Subsequently in that declarative region, it is
5305    //   treated as an original-namespace-name.
5306    //
5307    // Since namespace names are unique in their scope, and we don't
5308    // look through using directives, just look for any ordinary names.
5309
5310    const unsigned IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Member |
5311    Decl::IDNS_Type | Decl::IDNS_Using | Decl::IDNS_Tag |
5312    Decl::IDNS_Namespace;
5313    NamedDecl *PrevDecl = 0;
5314    for (DeclContext::lookup_result R
5315         = CurContext->getRedeclContext()->lookup(II);
5316         R.first != R.second; ++R.first) {
5317      if ((*R.first)->getIdentifierNamespace() & IDNS) {
5318        PrevDecl = *R.first;
5319        break;
5320      }
5321    }
5322
5323    PrevNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl);
5324
5325    if (PrevNS) {
5326      // This is an extended namespace definition.
5327      if (IsInline != PrevNS->isInline()) {
5328        // inline-ness must match
5329        if (PrevNS->isInline()) {
5330          // The user probably just forgot the 'inline', so suggest that it
5331          // be added back.
5332          Diag(Loc, diag::warn_inline_namespace_reopened_noninline)
5333            << FixItHint::CreateInsertion(NamespaceLoc, "inline ");
5334        } else {
5335          Diag(Loc, diag::err_inline_namespace_mismatch)
5336            << IsInline;
5337        }
5338        Diag(PrevNS->getLocation(), diag::note_previous_definition);
5339
5340        IsInline = PrevNS->isInline();
5341      }
5342    } else if (PrevDecl) {
5343      // This is an invalid name redefinition.
5344      Diag(Loc, diag::err_redefinition_different_kind)
5345        << II;
5346      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
5347      IsInvalid = true;
5348      // Continue on to push Namespc as current DeclContext and return it.
5349    } else if (II->isStr("std") &&
5350               CurContext->getRedeclContext()->isTranslationUnit()) {
5351      // This is the first "real" definition of the namespace "std", so update
5352      // our cache of the "std" namespace to point at this definition.
5353      PrevNS = getStdNamespace();
5354      IsStd = true;
5355      AddToKnown = !IsInline;
5356    } else {
5357      // We've seen this namespace for the first time.
5358      AddToKnown = !IsInline;
5359    }
5360  } else {
5361    // Anonymous namespaces.
5362
5363    // Determine whether the parent already has an anonymous namespace.
5364    DeclContext *Parent = CurContext->getRedeclContext();
5365    if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
5366      PrevNS = TU->getAnonymousNamespace();
5367    } else {
5368      NamespaceDecl *ND = cast<NamespaceDecl>(Parent);
5369      PrevNS = ND->getAnonymousNamespace();
5370    }
5371
5372    if (PrevNS && IsInline != PrevNS->isInline()) {
5373      // inline-ness must match
5374      Diag(Loc, diag::err_inline_namespace_mismatch)
5375        << IsInline;
5376      Diag(PrevNS->getLocation(), diag::note_previous_definition);
5377
5378      // Recover by ignoring the new namespace's inline status.
5379      IsInline = PrevNS->isInline();
5380    }
5381  }
5382
5383  NamespaceDecl *Namespc = NamespaceDecl::Create(Context, CurContext, IsInline,
5384                                                 StartLoc, Loc, II, PrevNS);
5385  if (IsInvalid)
5386    Namespc->setInvalidDecl();
5387
5388  ProcessDeclAttributeList(DeclRegionScope, Namespc, AttrList);
5389
5390  // FIXME: Should we be merging attributes?
5391  if (const VisibilityAttr *Attr = Namespc->getAttr<VisibilityAttr>())
5392    PushNamespaceVisibilityAttr(Attr, Loc);
5393
5394  if (IsStd)
5395    StdNamespace = Namespc;
5396  if (AddToKnown)
5397    KnownNamespaces[Namespc] = false;
5398
5399  if (II) {
5400    PushOnScopeChains(Namespc, DeclRegionScope);
5401  } else {
5402    // Link the anonymous namespace into its parent.
5403    DeclContext *Parent = CurContext->getRedeclContext();
5404    if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
5405      TU->setAnonymousNamespace(Namespc);
5406    } else {
5407      cast<NamespaceDecl>(Parent)->setAnonymousNamespace(Namespc);
5408    }
5409
5410    CurContext->addDecl(Namespc);
5411
5412    // C++ [namespace.unnamed]p1.  An unnamed-namespace-definition
5413    //   behaves as if it were replaced by
5414    //     namespace unique { /* empty body */ }
5415    //     using namespace unique;
5416    //     namespace unique { namespace-body }
5417    //   where all occurrences of 'unique' in a translation unit are
5418    //   replaced by the same identifier and this identifier differs
5419    //   from all other identifiers in the entire program.
5420
5421    // We just create the namespace with an empty name and then add an
5422    // implicit using declaration, just like the standard suggests.
5423    //
5424    // CodeGen enforces the "universally unique" aspect by giving all
5425    // declarations semantically contained within an anonymous
5426    // namespace internal linkage.
5427
5428    if (!PrevNS) {
5429      UsingDirectiveDecl* UD
5430        = UsingDirectiveDecl::Create(Context, CurContext,
5431                                     /* 'using' */ LBrace,
5432                                     /* 'namespace' */ SourceLocation(),
5433                                     /* qualifier */ NestedNameSpecifierLoc(),
5434                                     /* identifier */ SourceLocation(),
5435                                     Namespc,
5436                                     /* Ancestor */ CurContext);
5437      UD->setImplicit();
5438      CurContext->addDecl(UD);
5439    }
5440  }
5441
5442  ActOnDocumentableDecl(Namespc);
5443
5444  // Although we could have an invalid decl (i.e. the namespace name is a
5445  // redefinition), push it as current DeclContext and try to continue parsing.
5446  // FIXME: We should be able to push Namespc here, so that the each DeclContext
5447  // for the namespace has the declarations that showed up in that particular
5448  // namespace definition.
5449  PushDeclContext(NamespcScope, Namespc);
5450  return Namespc;
5451}
5452
5453/// getNamespaceDecl - Returns the namespace a decl represents. If the decl
5454/// is a namespace alias, returns the namespace it points to.
5455static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) {
5456  if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D))
5457    return AD->getNamespace();
5458  return dyn_cast_or_null<NamespaceDecl>(D);
5459}
5460
5461/// ActOnFinishNamespaceDef - This callback is called after a namespace is
5462/// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
5463void Sema::ActOnFinishNamespaceDef(Decl *Dcl, SourceLocation RBrace) {
5464  NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
5465  assert(Namespc && "Invalid parameter, expected NamespaceDecl");
5466  Namespc->setRBraceLoc(RBrace);
5467  PopDeclContext();
5468  if (Namespc->hasAttr<VisibilityAttr>())
5469    PopPragmaVisibility(true, RBrace);
5470}
5471
5472CXXRecordDecl *Sema::getStdBadAlloc() const {
5473  return cast_or_null<CXXRecordDecl>(
5474                                  StdBadAlloc.get(Context.getExternalSource()));
5475}
5476
5477NamespaceDecl *Sema::getStdNamespace() const {
5478  return cast_or_null<NamespaceDecl>(
5479                                 StdNamespace.get(Context.getExternalSource()));
5480}
5481
5482/// \brief Retrieve the special "std" namespace, which may require us to
5483/// implicitly define the namespace.
5484NamespaceDecl *Sema::getOrCreateStdNamespace() {
5485  if (!StdNamespace) {
5486    // The "std" namespace has not yet been defined, so build one implicitly.
5487    StdNamespace = NamespaceDecl::Create(Context,
5488                                         Context.getTranslationUnitDecl(),
5489                                         /*Inline=*/false,
5490                                         SourceLocation(), SourceLocation(),
5491                                         &PP.getIdentifierTable().get("std"),
5492                                         /*PrevDecl=*/0);
5493    getStdNamespace()->setImplicit(true);
5494  }
5495
5496  return getStdNamespace();
5497}
5498
5499bool Sema::isStdInitializerList(QualType Ty, QualType *Element) {
5500  assert(getLangOpts().CPlusPlus &&
5501         "Looking for std::initializer_list outside of C++.");
5502
5503  // We're looking for implicit instantiations of
5504  // template <typename E> class std::initializer_list.
5505
5506  if (!StdNamespace) // If we haven't seen namespace std yet, this can't be it.
5507    return false;
5508
5509  ClassTemplateDecl *Template = 0;
5510  const TemplateArgument *Arguments = 0;
5511
5512  if (const RecordType *RT = Ty->getAs<RecordType>()) {
5513
5514    ClassTemplateSpecializationDecl *Specialization =
5515        dyn_cast<ClassTemplateSpecializationDecl>(RT->getDecl());
5516    if (!Specialization)
5517      return false;
5518
5519    Template = Specialization->getSpecializedTemplate();
5520    Arguments = Specialization->getTemplateArgs().data();
5521  } else if (const TemplateSpecializationType *TST =
5522                 Ty->getAs<TemplateSpecializationType>()) {
5523    Template = dyn_cast_or_null<ClassTemplateDecl>(
5524        TST->getTemplateName().getAsTemplateDecl());
5525    Arguments = TST->getArgs();
5526  }
5527  if (!Template)
5528    return false;
5529
5530  if (!StdInitializerList) {
5531    // Haven't recognized std::initializer_list yet, maybe this is it.
5532    CXXRecordDecl *TemplateClass = Template->getTemplatedDecl();
5533    if (TemplateClass->getIdentifier() !=
5534            &PP.getIdentifierTable().get("initializer_list") ||
5535        !getStdNamespace()->InEnclosingNamespaceSetOf(
5536            TemplateClass->getDeclContext()))
5537      return false;
5538    // This is a template called std::initializer_list, but is it the right
5539    // template?
5540    TemplateParameterList *Params = Template->getTemplateParameters();
5541    if (Params->getMinRequiredArguments() != 1)
5542      return false;
5543    if (!isa<TemplateTypeParmDecl>(Params->getParam(0)))
5544      return false;
5545
5546    // It's the right template.
5547    StdInitializerList = Template;
5548  }
5549
5550  if (Template != StdInitializerList)
5551    return false;
5552
5553  // This is an instance of std::initializer_list. Find the argument type.
5554  if (Element)
5555    *Element = Arguments[0].getAsType();
5556  return true;
5557}
5558
5559static ClassTemplateDecl *LookupStdInitializerList(Sema &S, SourceLocation Loc){
5560  NamespaceDecl *Std = S.getStdNamespace();
5561  if (!Std) {
5562    S.Diag(Loc, diag::err_implied_std_initializer_list_not_found);
5563    return 0;
5564  }
5565
5566  LookupResult Result(S, &S.PP.getIdentifierTable().get("initializer_list"),
5567                      Loc, Sema::LookupOrdinaryName);
5568  if (!S.LookupQualifiedName(Result, Std)) {
5569    S.Diag(Loc, diag::err_implied_std_initializer_list_not_found);
5570    return 0;
5571  }
5572  ClassTemplateDecl *Template = Result.getAsSingle<ClassTemplateDecl>();
5573  if (!Template) {
5574    Result.suppressDiagnostics();
5575    // We found something weird. Complain about the first thing we found.
5576    NamedDecl *Found = *Result.begin();
5577    S.Diag(Found->getLocation(), diag::err_malformed_std_initializer_list);
5578    return 0;
5579  }
5580
5581  // We found some template called std::initializer_list. Now verify that it's
5582  // correct.
5583  TemplateParameterList *Params = Template->getTemplateParameters();
5584  if (Params->getMinRequiredArguments() != 1 ||
5585      !isa<TemplateTypeParmDecl>(Params->getParam(0))) {
5586    S.Diag(Template->getLocation(), diag::err_malformed_std_initializer_list);
5587    return 0;
5588  }
5589
5590  return Template;
5591}
5592
5593QualType Sema::BuildStdInitializerList(QualType Element, SourceLocation Loc) {
5594  if (!StdInitializerList) {
5595    StdInitializerList = LookupStdInitializerList(*this, Loc);
5596    if (!StdInitializerList)
5597      return QualType();
5598  }
5599
5600  TemplateArgumentListInfo Args(Loc, Loc);
5601  Args.addArgument(TemplateArgumentLoc(TemplateArgument(Element),
5602                                       Context.getTrivialTypeSourceInfo(Element,
5603                                                                        Loc)));
5604  return Context.getCanonicalType(
5605      CheckTemplateIdType(TemplateName(StdInitializerList), Loc, Args));
5606}
5607
5608bool Sema::isInitListConstructor(const CXXConstructorDecl* Ctor) {
5609  // C++ [dcl.init.list]p2:
5610  //   A constructor is an initializer-list constructor if its first parameter
5611  //   is of type std::initializer_list<E> or reference to possibly cv-qualified
5612  //   std::initializer_list<E> for some type E, and either there are no other
5613  //   parameters or else all other parameters have default arguments.
5614  if (Ctor->getNumParams() < 1 ||
5615      (Ctor->getNumParams() > 1 && !Ctor->getParamDecl(1)->hasDefaultArg()))
5616    return false;
5617
5618  QualType ArgType = Ctor->getParamDecl(0)->getType();
5619  if (const ReferenceType *RT = ArgType->getAs<ReferenceType>())
5620    ArgType = RT->getPointeeType().getUnqualifiedType();
5621
5622  return isStdInitializerList(ArgType, 0);
5623}
5624
5625/// \brief Determine whether a using statement is in a context where it will be
5626/// apply in all contexts.
5627static bool IsUsingDirectiveInToplevelContext(DeclContext *CurContext) {
5628  switch (CurContext->getDeclKind()) {
5629    case Decl::TranslationUnit:
5630      return true;
5631    case Decl::LinkageSpec:
5632      return IsUsingDirectiveInToplevelContext(CurContext->getParent());
5633    default:
5634      return false;
5635  }
5636}
5637
5638namespace {
5639
5640// Callback to only accept typo corrections that are namespaces.
5641class NamespaceValidatorCCC : public CorrectionCandidateCallback {
5642 public:
5643  virtual bool ValidateCandidate(const TypoCorrection &candidate) {
5644    if (NamedDecl *ND = candidate.getCorrectionDecl()) {
5645      return isa<NamespaceDecl>(ND) || isa<NamespaceAliasDecl>(ND);
5646    }
5647    return false;
5648  }
5649};
5650
5651}
5652
5653static bool TryNamespaceTypoCorrection(Sema &S, LookupResult &R, Scope *Sc,
5654                                       CXXScopeSpec &SS,
5655                                       SourceLocation IdentLoc,
5656                                       IdentifierInfo *Ident) {
5657  NamespaceValidatorCCC Validator;
5658  R.clear();
5659  if (TypoCorrection Corrected = S.CorrectTypo(R.getLookupNameInfo(),
5660                                               R.getLookupKind(), Sc, &SS,
5661                                               Validator)) {
5662    std::string CorrectedStr(Corrected.getAsString(S.getLangOpts()));
5663    std::string CorrectedQuotedStr(Corrected.getQuoted(S.getLangOpts()));
5664    if (DeclContext *DC = S.computeDeclContext(SS, false))
5665      S.Diag(IdentLoc, diag::err_using_directive_member_suggest)
5666        << Ident << DC << CorrectedQuotedStr << SS.getRange()
5667        << FixItHint::CreateReplacement(IdentLoc, CorrectedStr);
5668    else
5669      S.Diag(IdentLoc, diag::err_using_directive_suggest)
5670        << Ident << CorrectedQuotedStr
5671        << FixItHint::CreateReplacement(IdentLoc, CorrectedStr);
5672
5673    S.Diag(Corrected.getCorrectionDecl()->getLocation(),
5674         diag::note_namespace_defined_here) << CorrectedQuotedStr;
5675
5676    R.addDecl(Corrected.getCorrectionDecl());
5677    return true;
5678  }
5679  return false;
5680}
5681
5682Decl *Sema::ActOnUsingDirective(Scope *S,
5683                                          SourceLocation UsingLoc,
5684                                          SourceLocation NamespcLoc,
5685                                          CXXScopeSpec &SS,
5686                                          SourceLocation IdentLoc,
5687                                          IdentifierInfo *NamespcName,
5688                                          AttributeList *AttrList) {
5689  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
5690  assert(NamespcName && "Invalid NamespcName.");
5691  assert(IdentLoc.isValid() && "Invalid NamespceName location.");
5692
5693  // This can only happen along a recovery path.
5694  while (S->getFlags() & Scope::TemplateParamScope)
5695    S = S->getParent();
5696  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
5697
5698  UsingDirectiveDecl *UDir = 0;
5699  NestedNameSpecifier *Qualifier = 0;
5700  if (SS.isSet())
5701    Qualifier = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
5702
5703  // Lookup namespace name.
5704  LookupResult R(*this, NamespcName, IdentLoc, LookupNamespaceName);
5705  LookupParsedName(R, S, &SS);
5706  if (R.isAmbiguous())
5707    return 0;
5708
5709  if (R.empty()) {
5710    R.clear();
5711    // Allow "using namespace std;" or "using namespace ::std;" even if
5712    // "std" hasn't been defined yet, for GCC compatibility.
5713    if ((!Qualifier || Qualifier->getKind() == NestedNameSpecifier::Global) &&
5714        NamespcName->isStr("std")) {
5715      Diag(IdentLoc, diag::ext_using_undefined_std);
5716      R.addDecl(getOrCreateStdNamespace());
5717      R.resolveKind();
5718    }
5719    // Otherwise, attempt typo correction.
5720    else TryNamespaceTypoCorrection(*this, R, S, SS, IdentLoc, NamespcName);
5721  }
5722
5723  if (!R.empty()) {
5724    NamedDecl *Named = R.getFoundDecl();
5725    assert((isa<NamespaceDecl>(Named) || isa<NamespaceAliasDecl>(Named))
5726        && "expected namespace decl");
5727    // C++ [namespace.udir]p1:
5728    //   A using-directive specifies that the names in the nominated
5729    //   namespace can be used in the scope in which the
5730    //   using-directive appears after the using-directive. During
5731    //   unqualified name lookup (3.4.1), the names appear as if they
5732    //   were declared in the nearest enclosing namespace which
5733    //   contains both the using-directive and the nominated
5734    //   namespace. [Note: in this context, "contains" means "contains
5735    //   directly or indirectly". ]
5736
5737    // Find enclosing context containing both using-directive and
5738    // nominated namespace.
5739    NamespaceDecl *NS = getNamespaceDecl(Named);
5740    DeclContext *CommonAncestor = cast<DeclContext>(NS);
5741    while (CommonAncestor && !CommonAncestor->Encloses(CurContext))
5742      CommonAncestor = CommonAncestor->getParent();
5743
5744    UDir = UsingDirectiveDecl::Create(Context, CurContext, UsingLoc, NamespcLoc,
5745                                      SS.getWithLocInContext(Context),
5746                                      IdentLoc, Named, CommonAncestor);
5747
5748    if (IsUsingDirectiveInToplevelContext(CurContext) &&
5749        !SourceMgr.isFromMainFile(SourceMgr.getExpansionLoc(IdentLoc))) {
5750      Diag(IdentLoc, diag::warn_using_directive_in_header);
5751    }
5752
5753    PushUsingDirective(S, UDir);
5754  } else {
5755    Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
5756  }
5757
5758  // FIXME: We ignore attributes for now.
5759  return UDir;
5760}
5761
5762void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) {
5763  // If the scope has an associated entity and the using directive is at
5764  // namespace or translation unit scope, add the UsingDirectiveDecl into
5765  // its lookup structure so qualified name lookup can find it.
5766  DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity());
5767  if (Ctx && !Ctx->isFunctionOrMethod())
5768    Ctx->addDecl(UDir);
5769  else
5770    // Otherwise, it is at block sope. The using-directives will affect lookup
5771    // only to the end of the scope.
5772    S->PushUsingDirective(UDir);
5773}
5774
5775
5776Decl *Sema::ActOnUsingDeclaration(Scope *S,
5777                                  AccessSpecifier AS,
5778                                  bool HasUsingKeyword,
5779                                  SourceLocation UsingLoc,
5780                                  CXXScopeSpec &SS,
5781                                  UnqualifiedId &Name,
5782                                  AttributeList *AttrList,
5783                                  bool IsTypeName,
5784                                  SourceLocation TypenameLoc) {
5785  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
5786
5787  switch (Name.getKind()) {
5788  case UnqualifiedId::IK_ImplicitSelfParam:
5789  case UnqualifiedId::IK_Identifier:
5790  case UnqualifiedId::IK_OperatorFunctionId:
5791  case UnqualifiedId::IK_LiteralOperatorId:
5792  case UnqualifiedId::IK_ConversionFunctionId:
5793    break;
5794
5795  case UnqualifiedId::IK_ConstructorName:
5796  case UnqualifiedId::IK_ConstructorTemplateId:
5797    // C++11 inheriting constructors.
5798    Diag(Name.getLocStart(),
5799         getLangOpts().CPlusPlus0x ?
5800           // FIXME: Produce warn_cxx98_compat_using_decl_constructor
5801           //        instead once inheriting constructors work.
5802           diag::err_using_decl_constructor_unsupported :
5803           diag::err_using_decl_constructor)
5804      << SS.getRange();
5805
5806    if (getLangOpts().CPlusPlus0x) break;
5807
5808    return 0;
5809
5810  case UnqualifiedId::IK_DestructorName:
5811    Diag(Name.getLocStart(), diag::err_using_decl_destructor)
5812      << SS.getRange();
5813    return 0;
5814
5815  case UnqualifiedId::IK_TemplateId:
5816    Diag(Name.getLocStart(), diag::err_using_decl_template_id)
5817      << SourceRange(Name.TemplateId->LAngleLoc, Name.TemplateId->RAngleLoc);
5818    return 0;
5819  }
5820
5821  DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name);
5822  DeclarationName TargetName = TargetNameInfo.getName();
5823  if (!TargetName)
5824    return 0;
5825
5826  // Warn about using declarations.
5827  // TODO: store that the declaration was written without 'using' and
5828  // talk about access decls instead of using decls in the
5829  // diagnostics.
5830  if (!HasUsingKeyword) {
5831    UsingLoc = Name.getLocStart();
5832
5833    Diag(UsingLoc, diag::warn_access_decl_deprecated)
5834      << FixItHint::CreateInsertion(SS.getRange().getBegin(), "using ");
5835  }
5836
5837  if (DiagnoseUnexpandedParameterPack(SS, UPPC_UsingDeclaration) ||
5838      DiagnoseUnexpandedParameterPack(TargetNameInfo, UPPC_UsingDeclaration))
5839    return 0;
5840
5841  NamedDecl *UD = BuildUsingDeclaration(S, AS, UsingLoc, SS,
5842                                        TargetNameInfo, AttrList,
5843                                        /* IsInstantiation */ false,
5844                                        IsTypeName, TypenameLoc);
5845  if (UD)
5846    PushOnScopeChains(UD, S, /*AddToContext*/ false);
5847
5848  return UD;
5849}
5850
5851/// \brief Determine whether a using declaration considers the given
5852/// declarations as "equivalent", e.g., if they are redeclarations of
5853/// the same entity or are both typedefs of the same type.
5854static bool
5855IsEquivalentForUsingDecl(ASTContext &Context, NamedDecl *D1, NamedDecl *D2,
5856                         bool &SuppressRedeclaration) {
5857  if (D1->getCanonicalDecl() == D2->getCanonicalDecl()) {
5858    SuppressRedeclaration = false;
5859    return true;
5860  }
5861
5862  if (TypedefNameDecl *TD1 = dyn_cast<TypedefNameDecl>(D1))
5863    if (TypedefNameDecl *TD2 = dyn_cast<TypedefNameDecl>(D2)) {
5864      SuppressRedeclaration = true;
5865      return Context.hasSameType(TD1->getUnderlyingType(),
5866                                 TD2->getUnderlyingType());
5867    }
5868
5869  return false;
5870}
5871
5872
5873/// Determines whether to create a using shadow decl for a particular
5874/// decl, given the set of decls existing prior to this using lookup.
5875bool Sema::CheckUsingShadowDecl(UsingDecl *Using, NamedDecl *Orig,
5876                                const LookupResult &Previous) {
5877  // Diagnose finding a decl which is not from a base class of the
5878  // current class.  We do this now because there are cases where this
5879  // function will silently decide not to build a shadow decl, which
5880  // will pre-empt further diagnostics.
5881  //
5882  // We don't need to do this in C++0x because we do the check once on
5883  // the qualifier.
5884  //
5885  // FIXME: diagnose the following if we care enough:
5886  //   struct A { int foo; };
5887  //   struct B : A { using A::foo; };
5888  //   template <class T> struct C : A {};
5889  //   template <class T> struct D : C<T> { using B::foo; } // <---
5890  // This is invalid (during instantiation) in C++03 because B::foo
5891  // resolves to the using decl in B, which is not a base class of D<T>.
5892  // We can't diagnose it immediately because C<T> is an unknown
5893  // specialization.  The UsingShadowDecl in D<T> then points directly
5894  // to A::foo, which will look well-formed when we instantiate.
5895  // The right solution is to not collapse the shadow-decl chain.
5896  if (!getLangOpts().CPlusPlus0x && CurContext->isRecord()) {
5897    DeclContext *OrigDC = Orig->getDeclContext();
5898
5899    // Handle enums and anonymous structs.
5900    if (isa<EnumDecl>(OrigDC)) OrigDC = OrigDC->getParent();
5901    CXXRecordDecl *OrigRec = cast<CXXRecordDecl>(OrigDC);
5902    while (OrigRec->isAnonymousStructOrUnion())
5903      OrigRec = cast<CXXRecordDecl>(OrigRec->getDeclContext());
5904
5905    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(OrigRec)) {
5906      if (OrigDC == CurContext) {
5907        Diag(Using->getLocation(),
5908             diag::err_using_decl_nested_name_specifier_is_current_class)
5909          << Using->getQualifierLoc().getSourceRange();
5910        Diag(Orig->getLocation(), diag::note_using_decl_target);
5911        return true;
5912      }
5913
5914      Diag(Using->getQualifierLoc().getBeginLoc(),
5915           diag::err_using_decl_nested_name_specifier_is_not_base_class)
5916        << Using->getQualifier()
5917        << cast<CXXRecordDecl>(CurContext)
5918        << Using->getQualifierLoc().getSourceRange();
5919      Diag(Orig->getLocation(), diag::note_using_decl_target);
5920      return true;
5921    }
5922  }
5923
5924  if (Previous.empty()) return false;
5925
5926  NamedDecl *Target = Orig;
5927  if (isa<UsingShadowDecl>(Target))
5928    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
5929
5930  // If the target happens to be one of the previous declarations, we
5931  // don't have a conflict.
5932  //
5933  // FIXME: but we might be increasing its access, in which case we
5934  // should redeclare it.
5935  NamedDecl *NonTag = 0, *Tag = 0;
5936  for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
5937         I != E; ++I) {
5938    NamedDecl *D = (*I)->getUnderlyingDecl();
5939    bool Result;
5940    if (IsEquivalentForUsingDecl(Context, D, Target, Result))
5941      return Result;
5942
5943    (isa<TagDecl>(D) ? Tag : NonTag) = D;
5944  }
5945
5946  if (Target->isFunctionOrFunctionTemplate()) {
5947    FunctionDecl *FD;
5948    if (isa<FunctionTemplateDecl>(Target))
5949      FD = cast<FunctionTemplateDecl>(Target)->getTemplatedDecl();
5950    else
5951      FD = cast<FunctionDecl>(Target);
5952
5953    NamedDecl *OldDecl = 0;
5954    switch (CheckOverload(0, FD, Previous, OldDecl, /*IsForUsingDecl*/ true)) {
5955    case Ovl_Overload:
5956      return false;
5957
5958    case Ovl_NonFunction:
5959      Diag(Using->getLocation(), diag::err_using_decl_conflict);
5960      break;
5961
5962    // We found a decl with the exact signature.
5963    case Ovl_Match:
5964      // If we're in a record, we want to hide the target, so we
5965      // return true (without a diagnostic) to tell the caller not to
5966      // build a shadow decl.
5967      if (CurContext->isRecord())
5968        return true;
5969
5970      // If we're not in a record, this is an error.
5971      Diag(Using->getLocation(), diag::err_using_decl_conflict);
5972      break;
5973    }
5974
5975    Diag(Target->getLocation(), diag::note_using_decl_target);
5976    Diag(OldDecl->getLocation(), diag::note_using_decl_conflict);
5977    return true;
5978  }
5979
5980  // Target is not a function.
5981
5982  if (isa<TagDecl>(Target)) {
5983    // No conflict between a tag and a non-tag.
5984    if (!Tag) return false;
5985
5986    Diag(Using->getLocation(), diag::err_using_decl_conflict);
5987    Diag(Target->getLocation(), diag::note_using_decl_target);
5988    Diag(Tag->getLocation(), diag::note_using_decl_conflict);
5989    return true;
5990  }
5991
5992  // No conflict between a tag and a non-tag.
5993  if (!NonTag) return false;
5994
5995  Diag(Using->getLocation(), diag::err_using_decl_conflict);
5996  Diag(Target->getLocation(), diag::note_using_decl_target);
5997  Diag(NonTag->getLocation(), diag::note_using_decl_conflict);
5998  return true;
5999}
6000
6001/// Builds a shadow declaration corresponding to a 'using' declaration.
6002UsingShadowDecl *Sema::BuildUsingShadowDecl(Scope *S,
6003                                            UsingDecl *UD,
6004                                            NamedDecl *Orig) {
6005
6006  // If we resolved to another shadow declaration, just coalesce them.
6007  NamedDecl *Target = Orig;
6008  if (isa<UsingShadowDecl>(Target)) {
6009    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
6010    assert(!isa<UsingShadowDecl>(Target) && "nested shadow declaration");
6011  }
6012
6013  UsingShadowDecl *Shadow
6014    = UsingShadowDecl::Create(Context, CurContext,
6015                              UD->getLocation(), UD, Target);
6016  UD->addShadowDecl(Shadow);
6017
6018  Shadow->setAccess(UD->getAccess());
6019  if (Orig->isInvalidDecl() || UD->isInvalidDecl())
6020    Shadow->setInvalidDecl();
6021
6022  if (S)
6023    PushOnScopeChains(Shadow, S);
6024  else
6025    CurContext->addDecl(Shadow);
6026
6027
6028  return Shadow;
6029}
6030
6031/// Hides a using shadow declaration.  This is required by the current
6032/// using-decl implementation when a resolvable using declaration in a
6033/// class is followed by a declaration which would hide or override
6034/// one or more of the using decl's targets; for example:
6035///
6036///   struct Base { void foo(int); };
6037///   struct Derived : Base {
6038///     using Base::foo;
6039///     void foo(int);
6040///   };
6041///
6042/// The governing language is C++03 [namespace.udecl]p12:
6043///
6044///   When a using-declaration brings names from a base class into a
6045///   derived class scope, member functions in the derived class
6046///   override and/or hide member functions with the same name and
6047///   parameter types in a base class (rather than conflicting).
6048///
6049/// There are two ways to implement this:
6050///   (1) optimistically create shadow decls when they're not hidden
6051///       by existing declarations, or
6052///   (2) don't create any shadow decls (or at least don't make them
6053///       visible) until we've fully parsed/instantiated the class.
6054/// The problem with (1) is that we might have to retroactively remove
6055/// a shadow decl, which requires several O(n) operations because the
6056/// decl structures are (very reasonably) not designed for removal.
6057/// (2) avoids this but is very fiddly and phase-dependent.
6058void Sema::HideUsingShadowDecl(Scope *S, UsingShadowDecl *Shadow) {
6059  if (Shadow->getDeclName().getNameKind() ==
6060        DeclarationName::CXXConversionFunctionName)
6061    cast<CXXRecordDecl>(Shadow->getDeclContext())->removeConversion(Shadow);
6062
6063  // Remove it from the DeclContext...
6064  Shadow->getDeclContext()->removeDecl(Shadow);
6065
6066  // ...and the scope, if applicable...
6067  if (S) {
6068    S->RemoveDecl(Shadow);
6069    IdResolver.RemoveDecl(Shadow);
6070  }
6071
6072  // ...and the using decl.
6073  Shadow->getUsingDecl()->removeShadowDecl(Shadow);
6074
6075  // TODO: complain somehow if Shadow was used.  It shouldn't
6076  // be possible for this to happen, because...?
6077}
6078
6079/// Builds a using declaration.
6080///
6081/// \param IsInstantiation - Whether this call arises from an
6082///   instantiation of an unresolved using declaration.  We treat
6083///   the lookup differently for these declarations.
6084NamedDecl *Sema::BuildUsingDeclaration(Scope *S, AccessSpecifier AS,
6085                                       SourceLocation UsingLoc,
6086                                       CXXScopeSpec &SS,
6087                                       const DeclarationNameInfo &NameInfo,
6088                                       AttributeList *AttrList,
6089                                       bool IsInstantiation,
6090                                       bool IsTypeName,
6091                                       SourceLocation TypenameLoc) {
6092  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
6093  SourceLocation IdentLoc = NameInfo.getLoc();
6094  assert(IdentLoc.isValid() && "Invalid TargetName location.");
6095
6096  // FIXME: We ignore attributes for now.
6097
6098  if (SS.isEmpty()) {
6099    Diag(IdentLoc, diag::err_using_requires_qualname);
6100    return 0;
6101  }
6102
6103  // Do the redeclaration lookup in the current scope.
6104  LookupResult Previous(*this, NameInfo, LookupUsingDeclName,
6105                        ForRedeclaration);
6106  Previous.setHideTags(false);
6107  if (S) {
6108    LookupName(Previous, S);
6109
6110    // It is really dumb that we have to do this.
6111    LookupResult::Filter F = Previous.makeFilter();
6112    while (F.hasNext()) {
6113      NamedDecl *D = F.next();
6114      if (!isDeclInScope(D, CurContext, S))
6115        F.erase();
6116    }
6117    F.done();
6118  } else {
6119    assert(IsInstantiation && "no scope in non-instantiation");
6120    assert(CurContext->isRecord() && "scope not record in instantiation");
6121    LookupQualifiedName(Previous, CurContext);
6122  }
6123
6124  // Check for invalid redeclarations.
6125  if (CheckUsingDeclRedeclaration(UsingLoc, IsTypeName, SS, IdentLoc, Previous))
6126    return 0;
6127
6128  // Check for bad qualifiers.
6129  if (CheckUsingDeclQualifier(UsingLoc, SS, IdentLoc))
6130    return 0;
6131
6132  DeclContext *LookupContext = computeDeclContext(SS);
6133  NamedDecl *D;
6134  NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
6135  if (!LookupContext) {
6136    if (IsTypeName) {
6137      // FIXME: not all declaration name kinds are legal here
6138      D = UnresolvedUsingTypenameDecl::Create(Context, CurContext,
6139                                              UsingLoc, TypenameLoc,
6140                                              QualifierLoc,
6141                                              IdentLoc, NameInfo.getName());
6142    } else {
6143      D = UnresolvedUsingValueDecl::Create(Context, CurContext, UsingLoc,
6144                                           QualifierLoc, NameInfo);
6145    }
6146  } else {
6147    D = UsingDecl::Create(Context, CurContext, UsingLoc, QualifierLoc,
6148                          NameInfo, IsTypeName);
6149  }
6150  D->setAccess(AS);
6151  CurContext->addDecl(D);
6152
6153  if (!LookupContext) return D;
6154  UsingDecl *UD = cast<UsingDecl>(D);
6155
6156  if (RequireCompleteDeclContext(SS, LookupContext)) {
6157    UD->setInvalidDecl();
6158    return UD;
6159  }
6160
6161  // The normal rules do not apply to inheriting constructor declarations.
6162  if (NameInfo.getName().getNameKind() == DeclarationName::CXXConstructorName) {
6163    if (CheckInheritingConstructorUsingDecl(UD))
6164      UD->setInvalidDecl();
6165    return UD;
6166  }
6167
6168  // Otherwise, look up the target name.
6169
6170  LookupResult R(*this, NameInfo, LookupOrdinaryName);
6171
6172  // Unlike most lookups, we don't always want to hide tag
6173  // declarations: tag names are visible through the using declaration
6174  // even if hidden by ordinary names, *except* in a dependent context
6175  // where it's important for the sanity of two-phase lookup.
6176  if (!IsInstantiation)
6177    R.setHideTags(false);
6178
6179  // For the purposes of this lookup, we have a base object type
6180  // equal to that of the current context.
6181  if (CurContext->isRecord()) {
6182    R.setBaseObjectType(
6183                   Context.getTypeDeclType(cast<CXXRecordDecl>(CurContext)));
6184  }
6185
6186  LookupQualifiedName(R, LookupContext);
6187
6188  if (R.empty()) {
6189    Diag(IdentLoc, diag::err_no_member)
6190      << NameInfo.getName() << LookupContext << SS.getRange();
6191    UD->setInvalidDecl();
6192    return UD;
6193  }
6194
6195  if (R.isAmbiguous()) {
6196    UD->setInvalidDecl();
6197    return UD;
6198  }
6199
6200  if (IsTypeName) {
6201    // If we asked for a typename and got a non-type decl, error out.
6202    if (!R.getAsSingle<TypeDecl>()) {
6203      Diag(IdentLoc, diag::err_using_typename_non_type);
6204      for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
6205        Diag((*I)->getUnderlyingDecl()->getLocation(),
6206             diag::note_using_decl_target);
6207      UD->setInvalidDecl();
6208      return UD;
6209    }
6210  } else {
6211    // If we asked for a non-typename and we got a type, error out,
6212    // but only if this is an instantiation of an unresolved using
6213    // decl.  Otherwise just silently find the type name.
6214    if (IsInstantiation && R.getAsSingle<TypeDecl>()) {
6215      Diag(IdentLoc, diag::err_using_dependent_value_is_type);
6216      Diag(R.getFoundDecl()->getLocation(), diag::note_using_decl_target);
6217      UD->setInvalidDecl();
6218      return UD;
6219    }
6220  }
6221
6222  // C++0x N2914 [namespace.udecl]p6:
6223  // A using-declaration shall not name a namespace.
6224  if (R.getAsSingle<NamespaceDecl>()) {
6225    Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_namespace)
6226      << SS.getRange();
6227    UD->setInvalidDecl();
6228    return UD;
6229  }
6230
6231  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
6232    if (!CheckUsingShadowDecl(UD, *I, Previous))
6233      BuildUsingShadowDecl(S, UD, *I);
6234  }
6235
6236  return UD;
6237}
6238
6239/// Additional checks for a using declaration referring to a constructor name.
6240bool Sema::CheckInheritingConstructorUsingDecl(UsingDecl *UD) {
6241  assert(!UD->isTypeName() && "expecting a constructor name");
6242
6243  const Type *SourceType = UD->getQualifier()->getAsType();
6244  assert(SourceType &&
6245         "Using decl naming constructor doesn't have type in scope spec.");
6246  CXXRecordDecl *TargetClass = cast<CXXRecordDecl>(CurContext);
6247
6248  // Check whether the named type is a direct base class.
6249  CanQualType CanonicalSourceType = SourceType->getCanonicalTypeUnqualified();
6250  CXXRecordDecl::base_class_iterator BaseIt, BaseE;
6251  for (BaseIt = TargetClass->bases_begin(), BaseE = TargetClass->bases_end();
6252       BaseIt != BaseE; ++BaseIt) {
6253    CanQualType BaseType = BaseIt->getType()->getCanonicalTypeUnqualified();
6254    if (CanonicalSourceType == BaseType)
6255      break;
6256    if (BaseIt->getType()->isDependentType())
6257      break;
6258  }
6259
6260  if (BaseIt == BaseE) {
6261    // Did not find SourceType in the bases.
6262    Diag(UD->getUsingLocation(),
6263         diag::err_using_decl_constructor_not_in_direct_base)
6264      << UD->getNameInfo().getSourceRange()
6265      << QualType(SourceType, 0) << TargetClass;
6266    return true;
6267  }
6268
6269  if (!CurContext->isDependentContext())
6270    BaseIt->setInheritConstructors();
6271
6272  return false;
6273}
6274
6275/// Checks that the given using declaration is not an invalid
6276/// redeclaration.  Note that this is checking only for the using decl
6277/// itself, not for any ill-formedness among the UsingShadowDecls.
6278bool Sema::CheckUsingDeclRedeclaration(SourceLocation UsingLoc,
6279                                       bool isTypeName,
6280                                       const CXXScopeSpec &SS,
6281                                       SourceLocation NameLoc,
6282                                       const LookupResult &Prev) {
6283  // C++03 [namespace.udecl]p8:
6284  // C++0x [namespace.udecl]p10:
6285  //   A using-declaration is a declaration and can therefore be used
6286  //   repeatedly where (and only where) multiple declarations are
6287  //   allowed.
6288  //
6289  // That's in non-member contexts.
6290  if (!CurContext->getRedeclContext()->isRecord())
6291    return false;
6292
6293  NestedNameSpecifier *Qual
6294    = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
6295
6296  for (LookupResult::iterator I = Prev.begin(), E = Prev.end(); I != E; ++I) {
6297    NamedDecl *D = *I;
6298
6299    bool DTypename;
6300    NestedNameSpecifier *DQual;
6301    if (UsingDecl *UD = dyn_cast<UsingDecl>(D)) {
6302      DTypename = UD->isTypeName();
6303      DQual = UD->getQualifier();
6304    } else if (UnresolvedUsingValueDecl *UD
6305                 = dyn_cast<UnresolvedUsingValueDecl>(D)) {
6306      DTypename = false;
6307      DQual = UD->getQualifier();
6308    } else if (UnresolvedUsingTypenameDecl *UD
6309                 = dyn_cast<UnresolvedUsingTypenameDecl>(D)) {
6310      DTypename = true;
6311      DQual = UD->getQualifier();
6312    } else continue;
6313
6314    // using decls differ if one says 'typename' and the other doesn't.
6315    // FIXME: non-dependent using decls?
6316    if (isTypeName != DTypename) continue;
6317
6318    // using decls differ if they name different scopes (but note that
6319    // template instantiation can cause this check to trigger when it
6320    // didn't before instantiation).
6321    if (Context.getCanonicalNestedNameSpecifier(Qual) !=
6322        Context.getCanonicalNestedNameSpecifier(DQual))
6323      continue;
6324
6325    Diag(NameLoc, diag::err_using_decl_redeclaration) << SS.getRange();
6326    Diag(D->getLocation(), diag::note_using_decl) << 1;
6327    return true;
6328  }
6329
6330  return false;
6331}
6332
6333
6334/// Checks that the given nested-name qualifier used in a using decl
6335/// in the current context is appropriately related to the current
6336/// scope.  If an error is found, diagnoses it and returns true.
6337bool Sema::CheckUsingDeclQualifier(SourceLocation UsingLoc,
6338                                   const CXXScopeSpec &SS,
6339                                   SourceLocation NameLoc) {
6340  DeclContext *NamedContext = computeDeclContext(SS);
6341
6342  if (!CurContext->isRecord()) {
6343    // C++03 [namespace.udecl]p3:
6344    // C++0x [namespace.udecl]p8:
6345    //   A using-declaration for a class member shall be a member-declaration.
6346
6347    // If we weren't able to compute a valid scope, it must be a
6348    // dependent class scope.
6349    if (!NamedContext || NamedContext->isRecord()) {
6350      Diag(NameLoc, diag::err_using_decl_can_not_refer_to_class_member)
6351        << SS.getRange();
6352      return true;
6353    }
6354
6355    // Otherwise, everything is known to be fine.
6356    return false;
6357  }
6358
6359  // The current scope is a record.
6360
6361  // If the named context is dependent, we can't decide much.
6362  if (!NamedContext) {
6363    // FIXME: in C++0x, we can diagnose if we can prove that the
6364    // nested-name-specifier does not refer to a base class, which is
6365    // still possible in some cases.
6366
6367    // Otherwise we have to conservatively report that things might be
6368    // okay.
6369    return false;
6370  }
6371
6372  if (!NamedContext->isRecord()) {
6373    // Ideally this would point at the last name in the specifier,
6374    // but we don't have that level of source info.
6375    Diag(SS.getRange().getBegin(),
6376         diag::err_using_decl_nested_name_specifier_is_not_class)
6377      << (NestedNameSpecifier*) SS.getScopeRep() << SS.getRange();
6378    return true;
6379  }
6380
6381  if (!NamedContext->isDependentContext() &&
6382      RequireCompleteDeclContext(const_cast<CXXScopeSpec&>(SS), NamedContext))
6383    return true;
6384
6385  if (getLangOpts().CPlusPlus0x) {
6386    // C++0x [namespace.udecl]p3:
6387    //   In a using-declaration used as a member-declaration, the
6388    //   nested-name-specifier shall name a base class of the class
6389    //   being defined.
6390
6391    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(
6392                                 cast<CXXRecordDecl>(NamedContext))) {
6393      if (CurContext == NamedContext) {
6394        Diag(NameLoc,
6395             diag::err_using_decl_nested_name_specifier_is_current_class)
6396          << SS.getRange();
6397        return true;
6398      }
6399
6400      Diag(SS.getRange().getBegin(),
6401           diag::err_using_decl_nested_name_specifier_is_not_base_class)
6402        << (NestedNameSpecifier*) SS.getScopeRep()
6403        << cast<CXXRecordDecl>(CurContext)
6404        << SS.getRange();
6405      return true;
6406    }
6407
6408    return false;
6409  }
6410
6411  // C++03 [namespace.udecl]p4:
6412  //   A using-declaration used as a member-declaration shall refer
6413  //   to a member of a base class of the class being defined [etc.].
6414
6415  // Salient point: SS doesn't have to name a base class as long as
6416  // lookup only finds members from base classes.  Therefore we can
6417  // diagnose here only if we can prove that that can't happen,
6418  // i.e. if the class hierarchies provably don't intersect.
6419
6420  // TODO: it would be nice if "definitely valid" results were cached
6421  // in the UsingDecl and UsingShadowDecl so that these checks didn't
6422  // need to be repeated.
6423
6424  struct UserData {
6425    llvm::SmallPtrSet<const CXXRecordDecl*, 4> Bases;
6426
6427    static bool collect(const CXXRecordDecl *Base, void *OpaqueData) {
6428      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
6429      Data->Bases.insert(Base);
6430      return true;
6431    }
6432
6433    bool hasDependentBases(const CXXRecordDecl *Class) {
6434      return !Class->forallBases(collect, this);
6435    }
6436
6437    /// Returns true if the base is dependent or is one of the
6438    /// accumulated base classes.
6439    static bool doesNotContain(const CXXRecordDecl *Base, void *OpaqueData) {
6440      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
6441      return !Data->Bases.count(Base);
6442    }
6443
6444    bool mightShareBases(const CXXRecordDecl *Class) {
6445      return Bases.count(Class) || !Class->forallBases(doesNotContain, this);
6446    }
6447  };
6448
6449  UserData Data;
6450
6451  // Returns false if we find a dependent base.
6452  if (Data.hasDependentBases(cast<CXXRecordDecl>(CurContext)))
6453    return false;
6454
6455  // Returns false if the class has a dependent base or if it or one
6456  // of its bases is present in the base set of the current context.
6457  if (Data.mightShareBases(cast<CXXRecordDecl>(NamedContext)))
6458    return false;
6459
6460  Diag(SS.getRange().getBegin(),
6461       diag::err_using_decl_nested_name_specifier_is_not_base_class)
6462    << (NestedNameSpecifier*) SS.getScopeRep()
6463    << cast<CXXRecordDecl>(CurContext)
6464    << SS.getRange();
6465
6466  return true;
6467}
6468
6469Decl *Sema::ActOnAliasDeclaration(Scope *S,
6470                                  AccessSpecifier AS,
6471                                  MultiTemplateParamsArg TemplateParamLists,
6472                                  SourceLocation UsingLoc,
6473                                  UnqualifiedId &Name,
6474                                  TypeResult Type) {
6475  // Skip up to the relevant declaration scope.
6476  while (S->getFlags() & Scope::TemplateParamScope)
6477    S = S->getParent();
6478  assert((S->getFlags() & Scope::DeclScope) &&
6479         "got alias-declaration outside of declaration scope");
6480
6481  if (Type.isInvalid())
6482    return 0;
6483
6484  bool Invalid = false;
6485  DeclarationNameInfo NameInfo = GetNameFromUnqualifiedId(Name);
6486  TypeSourceInfo *TInfo = 0;
6487  GetTypeFromParser(Type.get(), &TInfo);
6488
6489  if (DiagnoseClassNameShadow(CurContext, NameInfo))
6490    return 0;
6491
6492  if (DiagnoseUnexpandedParameterPack(Name.StartLocation, TInfo,
6493                                      UPPC_DeclarationType)) {
6494    Invalid = true;
6495    TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy,
6496                                             TInfo->getTypeLoc().getBeginLoc());
6497  }
6498
6499  LookupResult Previous(*this, NameInfo, LookupOrdinaryName, ForRedeclaration);
6500  LookupName(Previous, S);
6501
6502  // Warn about shadowing the name of a template parameter.
6503  if (Previous.isSingleResult() &&
6504      Previous.getFoundDecl()->isTemplateParameter()) {
6505    DiagnoseTemplateParameterShadow(Name.StartLocation,Previous.getFoundDecl());
6506    Previous.clear();
6507  }
6508
6509  assert(Name.Kind == UnqualifiedId::IK_Identifier &&
6510         "name in alias declaration must be an identifier");
6511  TypeAliasDecl *NewTD = TypeAliasDecl::Create(Context, CurContext, UsingLoc,
6512                                               Name.StartLocation,
6513                                               Name.Identifier, TInfo);
6514
6515  NewTD->setAccess(AS);
6516
6517  if (Invalid)
6518    NewTD->setInvalidDecl();
6519
6520  CheckTypedefForVariablyModifiedType(S, NewTD);
6521  Invalid |= NewTD->isInvalidDecl();
6522
6523  bool Redeclaration = false;
6524
6525  NamedDecl *NewND;
6526  if (TemplateParamLists.size()) {
6527    TypeAliasTemplateDecl *OldDecl = 0;
6528    TemplateParameterList *OldTemplateParams = 0;
6529
6530    if (TemplateParamLists.size() != 1) {
6531      Diag(UsingLoc, diag::err_alias_template_extra_headers)
6532        << SourceRange(TemplateParamLists.get()[1]->getTemplateLoc(),
6533         TemplateParamLists.get()[TemplateParamLists.size()-1]->getRAngleLoc());
6534    }
6535    TemplateParameterList *TemplateParams = TemplateParamLists.get()[0];
6536
6537    // Only consider previous declarations in the same scope.
6538    FilterLookupForScope(Previous, CurContext, S, /*ConsiderLinkage*/false,
6539                         /*ExplicitInstantiationOrSpecialization*/false);
6540    if (!Previous.empty()) {
6541      Redeclaration = true;
6542
6543      OldDecl = Previous.getAsSingle<TypeAliasTemplateDecl>();
6544      if (!OldDecl && !Invalid) {
6545        Diag(UsingLoc, diag::err_redefinition_different_kind)
6546          << Name.Identifier;
6547
6548        NamedDecl *OldD = Previous.getRepresentativeDecl();
6549        if (OldD->getLocation().isValid())
6550          Diag(OldD->getLocation(), diag::note_previous_definition);
6551
6552        Invalid = true;
6553      }
6554
6555      if (!Invalid && OldDecl && !OldDecl->isInvalidDecl()) {
6556        if (TemplateParameterListsAreEqual(TemplateParams,
6557                                           OldDecl->getTemplateParameters(),
6558                                           /*Complain=*/true,
6559                                           TPL_TemplateMatch))
6560          OldTemplateParams = OldDecl->getTemplateParameters();
6561        else
6562          Invalid = true;
6563
6564        TypeAliasDecl *OldTD = OldDecl->getTemplatedDecl();
6565        if (!Invalid &&
6566            !Context.hasSameType(OldTD->getUnderlyingType(),
6567                                 NewTD->getUnderlyingType())) {
6568          // FIXME: The C++0x standard does not clearly say this is ill-formed,
6569          // but we can't reasonably accept it.
6570          Diag(NewTD->getLocation(), diag::err_redefinition_different_typedef)
6571            << 2 << NewTD->getUnderlyingType() << OldTD->getUnderlyingType();
6572          if (OldTD->getLocation().isValid())
6573            Diag(OldTD->getLocation(), diag::note_previous_definition);
6574          Invalid = true;
6575        }
6576      }
6577    }
6578
6579    // Merge any previous default template arguments into our parameters,
6580    // and check the parameter list.
6581    if (CheckTemplateParameterList(TemplateParams, OldTemplateParams,
6582                                   TPC_TypeAliasTemplate))
6583      return 0;
6584
6585    TypeAliasTemplateDecl *NewDecl =
6586      TypeAliasTemplateDecl::Create(Context, CurContext, UsingLoc,
6587                                    Name.Identifier, TemplateParams,
6588                                    NewTD);
6589
6590    NewDecl->setAccess(AS);
6591
6592    if (Invalid)
6593      NewDecl->setInvalidDecl();
6594    else if (OldDecl)
6595      NewDecl->setPreviousDeclaration(OldDecl);
6596
6597    NewND = NewDecl;
6598  } else {
6599    ActOnTypedefNameDecl(S, CurContext, NewTD, Previous, Redeclaration);
6600    NewND = NewTD;
6601  }
6602
6603  if (!Redeclaration)
6604    PushOnScopeChains(NewND, S);
6605
6606  return NewND;
6607}
6608
6609Decl *Sema::ActOnNamespaceAliasDef(Scope *S,
6610                                             SourceLocation NamespaceLoc,
6611                                             SourceLocation AliasLoc,
6612                                             IdentifierInfo *Alias,
6613                                             CXXScopeSpec &SS,
6614                                             SourceLocation IdentLoc,
6615                                             IdentifierInfo *Ident) {
6616
6617  // Lookup the namespace name.
6618  LookupResult R(*this, Ident, IdentLoc, LookupNamespaceName);
6619  LookupParsedName(R, S, &SS);
6620
6621  // Check if we have a previous declaration with the same name.
6622  NamedDecl *PrevDecl
6623    = LookupSingleName(S, Alias, AliasLoc, LookupOrdinaryName,
6624                       ForRedeclaration);
6625  if (PrevDecl && !isDeclInScope(PrevDecl, CurContext, S))
6626    PrevDecl = 0;
6627
6628  if (PrevDecl) {
6629    if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) {
6630      // We already have an alias with the same name that points to the same
6631      // namespace, so don't create a new one.
6632      // FIXME: At some point, we'll want to create the (redundant)
6633      // declaration to maintain better source information.
6634      if (!R.isAmbiguous() && !R.empty() &&
6635          AD->getNamespace()->Equals(getNamespaceDecl(R.getFoundDecl())))
6636        return 0;
6637    }
6638
6639    unsigned DiagID = isa<NamespaceDecl>(PrevDecl) ? diag::err_redefinition :
6640      diag::err_redefinition_different_kind;
6641    Diag(AliasLoc, DiagID) << Alias;
6642    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
6643    return 0;
6644  }
6645
6646  if (R.isAmbiguous())
6647    return 0;
6648
6649  if (R.empty()) {
6650    if (!TryNamespaceTypoCorrection(*this, R, S, SS, IdentLoc, Ident)) {
6651      Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
6652      return 0;
6653    }
6654  }
6655
6656  NamespaceAliasDecl *AliasDecl =
6657    NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc,
6658                               Alias, SS.getWithLocInContext(Context),
6659                               IdentLoc, R.getFoundDecl());
6660
6661  PushOnScopeChains(AliasDecl, S);
6662  return AliasDecl;
6663}
6664
6665namespace {
6666  /// \brief Scoped object used to handle the state changes required in Sema
6667  /// to implicitly define the body of a C++ member function;
6668  class ImplicitlyDefinedFunctionScope {
6669    Sema &S;
6670    Sema::ContextRAII SavedContext;
6671
6672  public:
6673    ImplicitlyDefinedFunctionScope(Sema &S, CXXMethodDecl *Method)
6674      : S(S), SavedContext(S, Method)
6675    {
6676      S.PushFunctionScope();
6677      S.PushExpressionEvaluationContext(Sema::PotentiallyEvaluated);
6678    }
6679
6680    ~ImplicitlyDefinedFunctionScope() {
6681      S.PopExpressionEvaluationContext();
6682      S.PopFunctionScopeInfo();
6683    }
6684  };
6685}
6686
6687Sema::ImplicitExceptionSpecification
6688Sema::ComputeDefaultedDefaultCtorExceptionSpec(CXXRecordDecl *ClassDecl) {
6689  // C++ [except.spec]p14:
6690  //   An implicitly declared special member function (Clause 12) shall have an
6691  //   exception-specification. [...]
6692  ImplicitExceptionSpecification ExceptSpec(*this);
6693  if (ClassDecl->isInvalidDecl())
6694    return ExceptSpec;
6695
6696  // Direct base-class constructors.
6697  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
6698                                       BEnd = ClassDecl->bases_end();
6699       B != BEnd; ++B) {
6700    if (B->isVirtual()) // Handled below.
6701      continue;
6702
6703    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
6704      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
6705      CXXConstructorDecl *Constructor = LookupDefaultConstructor(BaseClassDecl);
6706      // If this is a deleted function, add it anyway. This might be conformant
6707      // with the standard. This might not. I'm not sure. It might not matter.
6708      if (Constructor)
6709        ExceptSpec.CalledDecl(B->getLocStart(), Constructor);
6710    }
6711  }
6712
6713  // Virtual base-class constructors.
6714  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
6715                                       BEnd = ClassDecl->vbases_end();
6716       B != BEnd; ++B) {
6717    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
6718      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
6719      CXXConstructorDecl *Constructor = LookupDefaultConstructor(BaseClassDecl);
6720      // If this is a deleted function, add it anyway. This might be conformant
6721      // with the standard. This might not. I'm not sure. It might not matter.
6722      if (Constructor)
6723        ExceptSpec.CalledDecl(B->getLocStart(), Constructor);
6724    }
6725  }
6726
6727  // Field constructors.
6728  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
6729                               FEnd = ClassDecl->field_end();
6730       F != FEnd; ++F) {
6731    if (F->hasInClassInitializer()) {
6732      if (Expr *E = F->getInClassInitializer())
6733        ExceptSpec.CalledExpr(E);
6734      else if (!F->isInvalidDecl())
6735        ExceptSpec.SetDelayed();
6736    } else if (const RecordType *RecordTy
6737              = Context.getBaseElementType(F->getType())->getAs<RecordType>()) {
6738      CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
6739      CXXConstructorDecl *Constructor = LookupDefaultConstructor(FieldRecDecl);
6740      // If this is a deleted function, add it anyway. This might be conformant
6741      // with the standard. This might not. I'm not sure. It might not matter.
6742      // In particular, the problem is that this function never gets called. It
6743      // might just be ill-formed because this function attempts to refer to
6744      // a deleted function here.
6745      if (Constructor)
6746        ExceptSpec.CalledDecl(F->getLocation(), Constructor);
6747    }
6748  }
6749
6750  return ExceptSpec;
6751}
6752
6753CXXConstructorDecl *Sema::DeclareImplicitDefaultConstructor(
6754                                                     CXXRecordDecl *ClassDecl) {
6755  // C++ [class.ctor]p5:
6756  //   A default constructor for a class X is a constructor of class X
6757  //   that can be called without an argument. If there is no
6758  //   user-declared constructor for class X, a default constructor is
6759  //   implicitly declared. An implicitly-declared default constructor
6760  //   is an inline public member of its class.
6761  assert(!ClassDecl->hasUserDeclaredConstructor() &&
6762         "Should not build implicit default constructor!");
6763
6764  ImplicitExceptionSpecification Spec =
6765    ComputeDefaultedDefaultCtorExceptionSpec(ClassDecl);
6766  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
6767
6768  bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl,
6769                                                     CXXDefaultConstructor,
6770                                                     false);
6771
6772  // Create the actual constructor declaration.
6773  CanQualType ClassType
6774    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
6775  SourceLocation ClassLoc = ClassDecl->getLocation();
6776  DeclarationName Name
6777    = Context.DeclarationNames.getCXXConstructorName(ClassType);
6778  DeclarationNameInfo NameInfo(Name, ClassLoc);
6779  CXXConstructorDecl *DefaultCon = CXXConstructorDecl::Create(
6780      Context, ClassDecl, ClassLoc, NameInfo,
6781      Context.getFunctionType(Context.VoidTy, 0, 0, EPI), /*TInfo=*/0,
6782      /*isExplicit=*/false, /*isInline=*/true, /*isImplicitlyDeclared=*/true,
6783      Constexpr);
6784  DefaultCon->setAccess(AS_public);
6785  DefaultCon->setDefaulted();
6786  DefaultCon->setImplicit();
6787  DefaultCon->setTrivial(ClassDecl->hasTrivialDefaultConstructor());
6788
6789  // Note that we have declared this constructor.
6790  ++ASTContext::NumImplicitDefaultConstructorsDeclared;
6791
6792  if (Scope *S = getScopeForContext(ClassDecl))
6793    PushOnScopeChains(DefaultCon, S, false);
6794  ClassDecl->addDecl(DefaultCon);
6795
6796  if (ShouldDeleteSpecialMember(DefaultCon, CXXDefaultConstructor))
6797    DefaultCon->setDeletedAsWritten();
6798
6799  return DefaultCon;
6800}
6801
6802void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,
6803                                            CXXConstructorDecl *Constructor) {
6804  assert((Constructor->isDefaulted() && Constructor->isDefaultConstructor() &&
6805          !Constructor->doesThisDeclarationHaveABody() &&
6806          !Constructor->isDeleted()) &&
6807    "DefineImplicitDefaultConstructor - call it for implicit default ctor");
6808
6809  CXXRecordDecl *ClassDecl = Constructor->getParent();
6810  assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor");
6811
6812  ImplicitlyDefinedFunctionScope Scope(*this, Constructor);
6813  DiagnosticErrorTrap Trap(Diags);
6814  if (SetCtorInitializers(Constructor, 0, 0, /*AnyErrors=*/false) ||
6815      Trap.hasErrorOccurred()) {
6816    Diag(CurrentLocation, diag::note_member_synthesized_at)
6817      << CXXDefaultConstructor << Context.getTagDeclType(ClassDecl);
6818    Constructor->setInvalidDecl();
6819    return;
6820  }
6821
6822  SourceLocation Loc = Constructor->getLocation();
6823  Constructor->setBody(new (Context) CompoundStmt(Loc));
6824
6825  Constructor->setUsed();
6826  MarkVTableUsed(CurrentLocation, ClassDecl);
6827
6828  if (ASTMutationListener *L = getASTMutationListener()) {
6829    L->CompletedImplicitDefinition(Constructor);
6830  }
6831}
6832
6833/// Get any existing defaulted default constructor for the given class. Do not
6834/// implicitly define one if it does not exist.
6835static CXXConstructorDecl *getDefaultedDefaultConstructorUnsafe(Sema &Self,
6836                                                             CXXRecordDecl *D) {
6837  ASTContext &Context = Self.Context;
6838  QualType ClassType = Context.getTypeDeclType(D);
6839  DeclarationName ConstructorName
6840    = Context.DeclarationNames.getCXXConstructorName(
6841                      Context.getCanonicalType(ClassType.getUnqualifiedType()));
6842
6843  DeclContext::lookup_const_iterator Con, ConEnd;
6844  for (llvm::tie(Con, ConEnd) = D->lookup(ConstructorName);
6845       Con != ConEnd; ++Con) {
6846    // A function template cannot be defaulted.
6847    if (isa<FunctionTemplateDecl>(*Con))
6848      continue;
6849
6850    CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
6851    if (Constructor->isDefaultConstructor())
6852      return Constructor->isDefaulted() ? Constructor : 0;
6853  }
6854  return 0;
6855}
6856
6857void Sema::ActOnFinishDelayedMemberInitializers(Decl *D) {
6858  if (!D) return;
6859  AdjustDeclIfTemplate(D);
6860
6861  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(D);
6862  CXXConstructorDecl *CtorDecl
6863    = getDefaultedDefaultConstructorUnsafe(*this, ClassDecl);
6864
6865  if (!CtorDecl) return;
6866
6867  // Compute the exception specification for the default constructor.
6868  const FunctionProtoType *CtorTy =
6869    CtorDecl->getType()->castAs<FunctionProtoType>();
6870  if (CtorTy->getExceptionSpecType() == EST_Delayed) {
6871    // FIXME: Don't do this unless the exception spec is needed.
6872    ImplicitExceptionSpecification Spec =
6873      ComputeDefaultedDefaultCtorExceptionSpec(ClassDecl);
6874    FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
6875    assert(EPI.ExceptionSpecType != EST_Delayed);
6876
6877    CtorDecl->setType(Context.getFunctionType(Context.VoidTy, 0, 0, EPI));
6878  }
6879
6880  // If the default constructor is explicitly defaulted, checking the exception
6881  // specification is deferred until now.
6882  if (!CtorDecl->isInvalidDecl() && CtorDecl->isExplicitlyDefaulted() &&
6883      !ClassDecl->isDependentType())
6884    CheckExplicitlyDefaultedSpecialMember(CtorDecl);
6885}
6886
6887void Sema::DeclareInheritedConstructors(CXXRecordDecl *ClassDecl) {
6888  // We start with an initial pass over the base classes to collect those that
6889  // inherit constructors from. If there are none, we can forgo all further
6890  // processing.
6891  typedef SmallVector<const RecordType *, 4> BasesVector;
6892  BasesVector BasesToInheritFrom;
6893  for (CXXRecordDecl::base_class_iterator BaseIt = ClassDecl->bases_begin(),
6894                                          BaseE = ClassDecl->bases_end();
6895         BaseIt != BaseE; ++BaseIt) {
6896    if (BaseIt->getInheritConstructors()) {
6897      QualType Base = BaseIt->getType();
6898      if (Base->isDependentType()) {
6899        // If we inherit constructors from anything that is dependent, just
6900        // abort processing altogether. We'll get another chance for the
6901        // instantiations.
6902        return;
6903      }
6904      BasesToInheritFrom.push_back(Base->castAs<RecordType>());
6905    }
6906  }
6907  if (BasesToInheritFrom.empty())
6908    return;
6909
6910  // Now collect the constructors that we already have in the current class.
6911  // Those take precedence over inherited constructors.
6912  // C++0x [class.inhctor]p3: [...] a constructor is implicitly declared [...]
6913  //   unless there is a user-declared constructor with the same signature in
6914  //   the class where the using-declaration appears.
6915  llvm::SmallSet<const Type *, 8> ExistingConstructors;
6916  for (CXXRecordDecl::ctor_iterator CtorIt = ClassDecl->ctor_begin(),
6917                                    CtorE = ClassDecl->ctor_end();
6918       CtorIt != CtorE; ++CtorIt) {
6919    ExistingConstructors.insert(
6920        Context.getCanonicalType(CtorIt->getType()).getTypePtr());
6921  }
6922
6923  DeclarationName CreatedCtorName =
6924      Context.DeclarationNames.getCXXConstructorName(
6925          ClassDecl->getTypeForDecl()->getCanonicalTypeUnqualified());
6926
6927  // Now comes the true work.
6928  // First, we keep a map from constructor types to the base that introduced
6929  // them. Needed for finding conflicting constructors. We also keep the
6930  // actually inserted declarations in there, for pretty diagnostics.
6931  typedef std::pair<CanQualType, CXXConstructorDecl *> ConstructorInfo;
6932  typedef llvm::DenseMap<const Type *, ConstructorInfo> ConstructorToSourceMap;
6933  ConstructorToSourceMap InheritedConstructors;
6934  for (BasesVector::iterator BaseIt = BasesToInheritFrom.begin(),
6935                             BaseE = BasesToInheritFrom.end();
6936       BaseIt != BaseE; ++BaseIt) {
6937    const RecordType *Base = *BaseIt;
6938    CanQualType CanonicalBase = Base->getCanonicalTypeUnqualified();
6939    CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(Base->getDecl());
6940    for (CXXRecordDecl::ctor_iterator CtorIt = BaseDecl->ctor_begin(),
6941                                      CtorE = BaseDecl->ctor_end();
6942         CtorIt != CtorE; ++CtorIt) {
6943      // Find the using declaration for inheriting this base's constructors.
6944      // FIXME: Don't perform name lookup just to obtain a source location!
6945      DeclarationName Name =
6946          Context.DeclarationNames.getCXXConstructorName(CanonicalBase);
6947      LookupResult Result(*this, Name, SourceLocation(), LookupUsingDeclName);
6948      LookupQualifiedName(Result, CurContext);
6949      UsingDecl *UD = Result.getAsSingle<UsingDecl>();
6950      SourceLocation UsingLoc = UD ? UD->getLocation() :
6951                                     ClassDecl->getLocation();
6952
6953      // C++0x [class.inhctor]p1: The candidate set of inherited constructors
6954      //   from the class X named in the using-declaration consists of actual
6955      //   constructors and notional constructors that result from the
6956      //   transformation of defaulted parameters as follows:
6957      //   - all non-template default constructors of X, and
6958      //   - for each non-template constructor of X that has at least one
6959      //     parameter with a default argument, the set of constructors that
6960      //     results from omitting any ellipsis parameter specification and
6961      //     successively omitting parameters with a default argument from the
6962      //     end of the parameter-type-list.
6963      CXXConstructorDecl *BaseCtor = *CtorIt;
6964      bool CanBeCopyOrMove = BaseCtor->isCopyOrMoveConstructor();
6965      const FunctionProtoType *BaseCtorType =
6966          BaseCtor->getType()->getAs<FunctionProtoType>();
6967
6968      for (unsigned params = BaseCtor->getMinRequiredArguments(),
6969                    maxParams = BaseCtor->getNumParams();
6970           params <= maxParams; ++params) {
6971        // Skip default constructors. They're never inherited.
6972        if (params == 0)
6973          continue;
6974        // Skip copy and move constructors for the same reason.
6975        if (CanBeCopyOrMove && params == 1)
6976          continue;
6977
6978        // Build up a function type for this particular constructor.
6979        // FIXME: The working paper does not consider that the exception spec
6980        // for the inheriting constructor might be larger than that of the
6981        // source. This code doesn't yet, either. When it does, this code will
6982        // need to be delayed until after exception specifications and in-class
6983        // member initializers are attached.
6984        const Type *NewCtorType;
6985        if (params == maxParams)
6986          NewCtorType = BaseCtorType;
6987        else {
6988          SmallVector<QualType, 16> Args;
6989          for (unsigned i = 0; i < params; ++i) {
6990            Args.push_back(BaseCtorType->getArgType(i));
6991          }
6992          FunctionProtoType::ExtProtoInfo ExtInfo =
6993              BaseCtorType->getExtProtoInfo();
6994          ExtInfo.Variadic = false;
6995          NewCtorType = Context.getFunctionType(BaseCtorType->getResultType(),
6996                                                Args.data(), params, ExtInfo)
6997                       .getTypePtr();
6998        }
6999        const Type *CanonicalNewCtorType =
7000            Context.getCanonicalType(NewCtorType);
7001
7002        // Now that we have the type, first check if the class already has a
7003        // constructor with this signature.
7004        if (ExistingConstructors.count(CanonicalNewCtorType))
7005          continue;
7006
7007        // Then we check if we have already declared an inherited constructor
7008        // with this signature.
7009        std::pair<ConstructorToSourceMap::iterator, bool> result =
7010            InheritedConstructors.insert(std::make_pair(
7011                CanonicalNewCtorType,
7012                std::make_pair(CanonicalBase, (CXXConstructorDecl*)0)));
7013        if (!result.second) {
7014          // Already in the map. If it came from a different class, that's an
7015          // error. Not if it's from the same.
7016          CanQualType PreviousBase = result.first->second.first;
7017          if (CanonicalBase != PreviousBase) {
7018            const CXXConstructorDecl *PrevCtor = result.first->second.second;
7019            const CXXConstructorDecl *PrevBaseCtor =
7020                PrevCtor->getInheritedConstructor();
7021            assert(PrevBaseCtor && "Conflicting constructor was not inherited");
7022
7023            Diag(UsingLoc, diag::err_using_decl_constructor_conflict);
7024            Diag(BaseCtor->getLocation(),
7025                 diag::note_using_decl_constructor_conflict_current_ctor);
7026            Diag(PrevBaseCtor->getLocation(),
7027                 diag::note_using_decl_constructor_conflict_previous_ctor);
7028            Diag(PrevCtor->getLocation(),
7029                 diag::note_using_decl_constructor_conflict_previous_using);
7030          }
7031          continue;
7032        }
7033
7034        // OK, we're there, now add the constructor.
7035        // C++0x [class.inhctor]p8: [...] that would be performed by a
7036        //   user-written inline constructor [...]
7037        DeclarationNameInfo DNI(CreatedCtorName, UsingLoc);
7038        CXXConstructorDecl *NewCtor = CXXConstructorDecl::Create(
7039            Context, ClassDecl, UsingLoc, DNI, QualType(NewCtorType, 0),
7040            /*TInfo=*/0, BaseCtor->isExplicit(), /*Inline=*/true,
7041            /*ImplicitlyDeclared=*/true,
7042            // FIXME: Due to a defect in the standard, we treat inherited
7043            // constructors as constexpr even if that makes them ill-formed.
7044            /*Constexpr=*/BaseCtor->isConstexpr());
7045        NewCtor->setAccess(BaseCtor->getAccess());
7046
7047        // Build up the parameter decls and add them.
7048        SmallVector<ParmVarDecl *, 16> ParamDecls;
7049        for (unsigned i = 0; i < params; ++i) {
7050          ParamDecls.push_back(ParmVarDecl::Create(Context, NewCtor,
7051                                                   UsingLoc, UsingLoc,
7052                                                   /*IdentifierInfo=*/0,
7053                                                   BaseCtorType->getArgType(i),
7054                                                   /*TInfo=*/0, SC_None,
7055                                                   SC_None, /*DefaultArg=*/0));
7056        }
7057        NewCtor->setParams(ParamDecls);
7058        NewCtor->setInheritedConstructor(BaseCtor);
7059
7060        ClassDecl->addDecl(NewCtor);
7061        result.first->second.second = NewCtor;
7062      }
7063    }
7064  }
7065}
7066
7067Sema::ImplicitExceptionSpecification
7068Sema::ComputeDefaultedDtorExceptionSpec(CXXRecordDecl *ClassDecl) {
7069  // C++ [except.spec]p14:
7070  //   An implicitly declared special member function (Clause 12) shall have
7071  //   an exception-specification.
7072  ImplicitExceptionSpecification ExceptSpec(*this);
7073  if (ClassDecl->isInvalidDecl())
7074    return ExceptSpec;
7075
7076  // Direct base-class destructors.
7077  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
7078                                       BEnd = ClassDecl->bases_end();
7079       B != BEnd; ++B) {
7080    if (B->isVirtual()) // Handled below.
7081      continue;
7082
7083    if (const RecordType *BaseType = B->getType()->getAs<RecordType>())
7084      ExceptSpec.CalledDecl(B->getLocStart(),
7085                   LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
7086  }
7087
7088  // Virtual base-class destructors.
7089  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
7090                                       BEnd = ClassDecl->vbases_end();
7091       B != BEnd; ++B) {
7092    if (const RecordType *BaseType = B->getType()->getAs<RecordType>())
7093      ExceptSpec.CalledDecl(B->getLocStart(),
7094                  LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
7095  }
7096
7097  // Field destructors.
7098  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
7099                               FEnd = ClassDecl->field_end();
7100       F != FEnd; ++F) {
7101    if (const RecordType *RecordTy
7102        = Context.getBaseElementType(F->getType())->getAs<RecordType>())
7103      ExceptSpec.CalledDecl(F->getLocation(),
7104                  LookupDestructor(cast<CXXRecordDecl>(RecordTy->getDecl())));
7105  }
7106
7107  return ExceptSpec;
7108}
7109
7110CXXDestructorDecl *Sema::DeclareImplicitDestructor(CXXRecordDecl *ClassDecl) {
7111  // C++ [class.dtor]p2:
7112  //   If a class has no user-declared destructor, a destructor is
7113  //   declared implicitly. An implicitly-declared destructor is an
7114  //   inline public member of its class.
7115
7116  ImplicitExceptionSpecification Spec =
7117      ComputeDefaultedDtorExceptionSpec(ClassDecl);
7118  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
7119
7120  // Create the actual destructor declaration.
7121  QualType Ty = Context.getFunctionType(Context.VoidTy, 0, 0, EPI);
7122
7123  CanQualType ClassType
7124    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
7125  SourceLocation ClassLoc = ClassDecl->getLocation();
7126  DeclarationName Name
7127    = Context.DeclarationNames.getCXXDestructorName(ClassType);
7128  DeclarationNameInfo NameInfo(Name, ClassLoc);
7129  CXXDestructorDecl *Destructor
7130      = CXXDestructorDecl::Create(Context, ClassDecl, ClassLoc, NameInfo, Ty, 0,
7131                                  /*isInline=*/true,
7132                                  /*isImplicitlyDeclared=*/true);
7133  Destructor->setAccess(AS_public);
7134  Destructor->setDefaulted();
7135  Destructor->setImplicit();
7136  Destructor->setTrivial(ClassDecl->hasTrivialDestructor());
7137
7138  // Note that we have declared this destructor.
7139  ++ASTContext::NumImplicitDestructorsDeclared;
7140
7141  // Introduce this destructor into its scope.
7142  if (Scope *S = getScopeForContext(ClassDecl))
7143    PushOnScopeChains(Destructor, S, false);
7144  ClassDecl->addDecl(Destructor);
7145
7146  // This could be uniqued if it ever proves significant.
7147  Destructor->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(Ty));
7148
7149  AddOverriddenMethods(ClassDecl, Destructor);
7150
7151  if (ShouldDeleteSpecialMember(Destructor, CXXDestructor))
7152    Destructor->setDeletedAsWritten();
7153
7154  return Destructor;
7155}
7156
7157void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation,
7158                                    CXXDestructorDecl *Destructor) {
7159  assert((Destructor->isDefaulted() &&
7160          !Destructor->doesThisDeclarationHaveABody() &&
7161          !Destructor->isDeleted()) &&
7162         "DefineImplicitDestructor - call it for implicit default dtor");
7163  CXXRecordDecl *ClassDecl = Destructor->getParent();
7164  assert(ClassDecl && "DefineImplicitDestructor - invalid destructor");
7165
7166  if (Destructor->isInvalidDecl())
7167    return;
7168
7169  ImplicitlyDefinedFunctionScope Scope(*this, Destructor);
7170
7171  DiagnosticErrorTrap Trap(Diags);
7172  MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
7173                                         Destructor->getParent());
7174
7175  if (CheckDestructor(Destructor) || Trap.hasErrorOccurred()) {
7176    Diag(CurrentLocation, diag::note_member_synthesized_at)
7177      << CXXDestructor << Context.getTagDeclType(ClassDecl);
7178
7179    Destructor->setInvalidDecl();
7180    return;
7181  }
7182
7183  SourceLocation Loc = Destructor->getLocation();
7184  Destructor->setBody(new (Context) CompoundStmt(Loc));
7185  Destructor->setImplicitlyDefined(true);
7186  Destructor->setUsed();
7187  MarkVTableUsed(CurrentLocation, ClassDecl);
7188
7189  if (ASTMutationListener *L = getASTMutationListener()) {
7190    L->CompletedImplicitDefinition(Destructor);
7191  }
7192}
7193
7194/// \brief Perform any semantic analysis which needs to be delayed until all
7195/// pending class member declarations have been parsed.
7196void Sema::ActOnFinishCXXMemberDecls() {
7197  // Now we have parsed all exception specifications, determine the implicit
7198  // exception specifications for destructors.
7199  for (unsigned i = 0, e = DelayedDestructorExceptionSpecs.size();
7200       i != e; ++i) {
7201    CXXDestructorDecl *Dtor = DelayedDestructorExceptionSpecs[i];
7202    AdjustDestructorExceptionSpec(Dtor->getParent(), Dtor, true);
7203  }
7204  DelayedDestructorExceptionSpecs.clear();
7205
7206  // Perform any deferred checking of exception specifications for virtual
7207  // destructors.
7208  for (unsigned i = 0, e = DelayedDestructorExceptionSpecChecks.size();
7209       i != e; ++i) {
7210    const CXXDestructorDecl *Dtor =
7211        DelayedDestructorExceptionSpecChecks[i].first;
7212    assert(!Dtor->getParent()->isDependentType() &&
7213           "Should not ever add destructors of templates into the list.");
7214    CheckOverridingFunctionExceptionSpec(Dtor,
7215        DelayedDestructorExceptionSpecChecks[i].second);
7216  }
7217  DelayedDestructorExceptionSpecChecks.clear();
7218}
7219
7220void Sema::AdjustDestructorExceptionSpec(CXXRecordDecl *classDecl,
7221                                         CXXDestructorDecl *destructor,
7222                                         bool WasDelayed) {
7223  // C++11 [class.dtor]p3:
7224  //   A declaration of a destructor that does not have an exception-
7225  //   specification is implicitly considered to have the same exception-
7226  //   specification as an implicit declaration.
7227  const FunctionProtoType *dtorType = destructor->getType()->
7228                                        getAs<FunctionProtoType>();
7229  if (!WasDelayed && dtorType->hasExceptionSpec())
7230    return;
7231
7232  ImplicitExceptionSpecification exceptSpec =
7233      ComputeDefaultedDtorExceptionSpec(classDecl);
7234
7235  // Replace the destructor's type, building off the existing one. Fortunately,
7236  // the only thing of interest in the destructor type is its extended info.
7237  // The return and arguments are fixed.
7238  FunctionProtoType::ExtProtoInfo epi = dtorType->getExtProtoInfo();
7239  epi.ExceptionSpecType = exceptSpec.getExceptionSpecType();
7240  epi.NumExceptions = exceptSpec.size();
7241  epi.Exceptions = exceptSpec.data();
7242  QualType ty = Context.getFunctionType(Context.VoidTy, 0, 0, epi);
7243
7244  destructor->setType(ty);
7245
7246  // If we can't compute the exception specification for this destructor yet
7247  // (because it depends on an exception specification which we have not parsed
7248  // yet), make a note that we need to try again when the class is complete.
7249  if (epi.ExceptionSpecType == EST_Delayed) {
7250    assert(!WasDelayed && "couldn't compute destructor exception spec");
7251    DelayedDestructorExceptionSpecs.push_back(destructor);
7252  }
7253
7254  // FIXME: If the destructor has a body that could throw, and the newly created
7255  // spec doesn't allow exceptions, we should emit a warning, because this
7256  // change in behavior can break conforming C++03 programs at runtime.
7257  // However, we don't have a body yet, so it needs to be done somewhere else.
7258}
7259
7260/// \brief Builds a statement that copies/moves the given entity from \p From to
7261/// \c To.
7262///
7263/// This routine is used to copy/move the members of a class with an
7264/// implicitly-declared copy/move assignment operator. When the entities being
7265/// copied are arrays, this routine builds for loops to copy them.
7266///
7267/// \param S The Sema object used for type-checking.
7268///
7269/// \param Loc The location where the implicit copy/move is being generated.
7270///
7271/// \param T The type of the expressions being copied/moved. Both expressions
7272/// must have this type.
7273///
7274/// \param To The expression we are copying/moving to.
7275///
7276/// \param From The expression we are copying/moving from.
7277///
7278/// \param CopyingBaseSubobject Whether we're copying/moving a base subobject.
7279/// Otherwise, it's a non-static member subobject.
7280///
7281/// \param Copying Whether we're copying or moving.
7282///
7283/// \param Depth Internal parameter recording the depth of the recursion.
7284///
7285/// \returns A statement or a loop that copies the expressions.
7286static StmtResult
7287BuildSingleCopyAssign(Sema &S, SourceLocation Loc, QualType T,
7288                      Expr *To, Expr *From,
7289                      bool CopyingBaseSubobject, bool Copying,
7290                      unsigned Depth = 0) {
7291  // C++0x [class.copy]p28:
7292  //   Each subobject is assigned in the manner appropriate to its type:
7293  //
7294  //     - if the subobject is of class type, as if by a call to operator= with
7295  //       the subobject as the object expression and the corresponding
7296  //       subobject of x as a single function argument (as if by explicit
7297  //       qualification; that is, ignoring any possible virtual overriding
7298  //       functions in more derived classes);
7299  if (const RecordType *RecordTy = T->getAs<RecordType>()) {
7300    CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
7301
7302    // Look for operator=.
7303    DeclarationName Name
7304      = S.Context.DeclarationNames.getCXXOperatorName(OO_Equal);
7305    LookupResult OpLookup(S, Name, Loc, Sema::LookupOrdinaryName);
7306    S.LookupQualifiedName(OpLookup, ClassDecl, false);
7307
7308    // Filter out any result that isn't a copy/move-assignment operator.
7309    LookupResult::Filter F = OpLookup.makeFilter();
7310    while (F.hasNext()) {
7311      NamedDecl *D = F.next();
7312      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
7313        if (Method->isCopyAssignmentOperator() ||
7314            (!Copying && Method->isMoveAssignmentOperator()))
7315          continue;
7316
7317      F.erase();
7318    }
7319    F.done();
7320
7321    // Suppress the protected check (C++ [class.protected]) for each of the
7322    // assignment operators we found. This strange dance is required when
7323    // we're assigning via a base classes's copy-assignment operator. To
7324    // ensure that we're getting the right base class subobject (without
7325    // ambiguities), we need to cast "this" to that subobject type; to
7326    // ensure that we don't go through the virtual call mechanism, we need
7327    // to qualify the operator= name with the base class (see below). However,
7328    // this means that if the base class has a protected copy assignment
7329    // operator, the protected member access check will fail. So, we
7330    // rewrite "protected" access to "public" access in this case, since we
7331    // know by construction that we're calling from a derived class.
7332    if (CopyingBaseSubobject) {
7333      for (LookupResult::iterator L = OpLookup.begin(), LEnd = OpLookup.end();
7334           L != LEnd; ++L) {
7335        if (L.getAccess() == AS_protected)
7336          L.setAccess(AS_public);
7337      }
7338    }
7339
7340    // Create the nested-name-specifier that will be used to qualify the
7341    // reference to operator=; this is required to suppress the virtual
7342    // call mechanism.
7343    CXXScopeSpec SS;
7344    const Type *CanonicalT = S.Context.getCanonicalType(T.getTypePtr());
7345    SS.MakeTrivial(S.Context,
7346                   NestedNameSpecifier::Create(S.Context, 0, false,
7347                                               CanonicalT),
7348                   Loc);
7349
7350    // Create the reference to operator=.
7351    ExprResult OpEqualRef
7352      = S.BuildMemberReferenceExpr(To, T, Loc, /*isArrow=*/false, SS,
7353                                   /*TemplateKWLoc=*/SourceLocation(),
7354                                   /*FirstQualifierInScope=*/0,
7355                                   OpLookup,
7356                                   /*TemplateArgs=*/0,
7357                                   /*SuppressQualifierCheck=*/true);
7358    if (OpEqualRef.isInvalid())
7359      return StmtError();
7360
7361    // Build the call to the assignment operator.
7362
7363    ExprResult Call = S.BuildCallToMemberFunction(/*Scope=*/0,
7364                                                  OpEqualRef.takeAs<Expr>(),
7365                                                  Loc, &From, 1, Loc);
7366    if (Call.isInvalid())
7367      return StmtError();
7368
7369    return S.Owned(Call.takeAs<Stmt>());
7370  }
7371
7372  //     - if the subobject is of scalar type, the built-in assignment
7373  //       operator is used.
7374  const ConstantArrayType *ArrayTy = S.Context.getAsConstantArrayType(T);
7375  if (!ArrayTy) {
7376    ExprResult Assignment = S.CreateBuiltinBinOp(Loc, BO_Assign, To, From);
7377    if (Assignment.isInvalid())
7378      return StmtError();
7379
7380    return S.Owned(Assignment.takeAs<Stmt>());
7381  }
7382
7383  //     - if the subobject is an array, each element is assigned, in the
7384  //       manner appropriate to the element type;
7385
7386  // Construct a loop over the array bounds, e.g.,
7387  //
7388  //   for (__SIZE_TYPE__ i0 = 0; i0 != array-size; ++i0)
7389  //
7390  // that will copy each of the array elements.
7391  QualType SizeType = S.Context.getSizeType();
7392
7393  // Create the iteration variable.
7394  IdentifierInfo *IterationVarName = 0;
7395  {
7396    SmallString<8> Str;
7397    llvm::raw_svector_ostream OS(Str);
7398    OS << "__i" << Depth;
7399    IterationVarName = &S.Context.Idents.get(OS.str());
7400  }
7401  VarDecl *IterationVar = VarDecl::Create(S.Context, S.CurContext, Loc, Loc,
7402                                          IterationVarName, SizeType,
7403                            S.Context.getTrivialTypeSourceInfo(SizeType, Loc),
7404                                          SC_None, SC_None);
7405
7406  // Initialize the iteration variable to zero.
7407  llvm::APInt Zero(S.Context.getTypeSize(SizeType), 0);
7408  IterationVar->setInit(IntegerLiteral::Create(S.Context, Zero, SizeType, Loc));
7409
7410  // Create a reference to the iteration variable; we'll use this several
7411  // times throughout.
7412  Expr *IterationVarRef
7413    = S.BuildDeclRefExpr(IterationVar, SizeType, VK_LValue, Loc).take();
7414  assert(IterationVarRef && "Reference to invented variable cannot fail!");
7415  Expr *IterationVarRefRVal = S.DefaultLvalueConversion(IterationVarRef).take();
7416  assert(IterationVarRefRVal && "Conversion of invented variable cannot fail!");
7417
7418  // Create the DeclStmt that holds the iteration variable.
7419  Stmt *InitStmt = new (S.Context) DeclStmt(DeclGroupRef(IterationVar),Loc,Loc);
7420
7421  // Create the comparison against the array bound.
7422  llvm::APInt Upper
7423    = ArrayTy->getSize().zextOrTrunc(S.Context.getTypeSize(SizeType));
7424  Expr *Comparison
7425    = new (S.Context) BinaryOperator(IterationVarRefRVal,
7426                     IntegerLiteral::Create(S.Context, Upper, SizeType, Loc),
7427                                     BO_NE, S.Context.BoolTy,
7428                                     VK_RValue, OK_Ordinary, Loc);
7429
7430  // Create the pre-increment of the iteration variable.
7431  Expr *Increment
7432    = new (S.Context) UnaryOperator(IterationVarRef, UO_PreInc, SizeType,
7433                                    VK_LValue, OK_Ordinary, Loc);
7434
7435  // Subscript the "from" and "to" expressions with the iteration variable.
7436  From = AssertSuccess(S.CreateBuiltinArraySubscriptExpr(From, Loc,
7437                                                         IterationVarRefRVal,
7438                                                         Loc));
7439  To = AssertSuccess(S.CreateBuiltinArraySubscriptExpr(To, Loc,
7440                                                       IterationVarRefRVal,
7441                                                       Loc));
7442  if (!Copying) // Cast to rvalue
7443    From = CastForMoving(S, From);
7444
7445  // Build the copy/move for an individual element of the array.
7446  StmtResult Copy = BuildSingleCopyAssign(S, Loc, ArrayTy->getElementType(),
7447                                          To, From, CopyingBaseSubobject,
7448                                          Copying, Depth + 1);
7449  if (Copy.isInvalid())
7450    return StmtError();
7451
7452  // Construct the loop that copies all elements of this array.
7453  return S.ActOnForStmt(Loc, Loc, InitStmt,
7454                        S.MakeFullExpr(Comparison),
7455                        0, S.MakeFullExpr(Increment),
7456                        Loc, Copy.take());
7457}
7458
7459std::pair<Sema::ImplicitExceptionSpecification, bool>
7460Sema::ComputeDefaultedCopyAssignmentExceptionSpecAndConst(
7461                                                   CXXRecordDecl *ClassDecl) {
7462  if (ClassDecl->isInvalidDecl())
7463    return std::make_pair(ImplicitExceptionSpecification(*this), true);
7464
7465  // C++ [class.copy]p10:
7466  //   If the class definition does not explicitly declare a copy
7467  //   assignment operator, one is declared implicitly.
7468  //   The implicitly-defined copy assignment operator for a class X
7469  //   will have the form
7470  //
7471  //       X& X::operator=(const X&)
7472  //
7473  //   if
7474  bool HasConstCopyAssignment = true;
7475
7476  //       -- each direct base class B of X has a copy assignment operator
7477  //          whose parameter is of type const B&, const volatile B& or B,
7478  //          and
7479  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
7480                                       BaseEnd = ClassDecl->bases_end();
7481       HasConstCopyAssignment && Base != BaseEnd; ++Base) {
7482    // We'll handle this below
7483    if (LangOpts.CPlusPlus0x && Base->isVirtual())
7484      continue;
7485
7486    assert(!Base->getType()->isDependentType() &&
7487           "Cannot generate implicit members for class with dependent bases.");
7488    CXXRecordDecl *BaseClassDecl = Base->getType()->getAsCXXRecordDecl();
7489    HasConstCopyAssignment &=
7490      (bool)LookupCopyingAssignment(BaseClassDecl, Qualifiers::Const,
7491                                    false, 0);
7492  }
7493
7494  // In C++11, the above citation has "or virtual" added
7495  if (LangOpts.CPlusPlus0x) {
7496    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
7497                                         BaseEnd = ClassDecl->vbases_end();
7498         HasConstCopyAssignment && Base != BaseEnd; ++Base) {
7499      assert(!Base->getType()->isDependentType() &&
7500             "Cannot generate implicit members for class with dependent bases.");
7501      CXXRecordDecl *BaseClassDecl = Base->getType()->getAsCXXRecordDecl();
7502      HasConstCopyAssignment &=
7503        (bool)LookupCopyingAssignment(BaseClassDecl, Qualifiers::Const,
7504                                      false, 0);
7505    }
7506  }
7507
7508  //       -- for all the nonstatic data members of X that are of a class
7509  //          type M (or array thereof), each such class type has a copy
7510  //          assignment operator whose parameter is of type const M&,
7511  //          const volatile M& or M.
7512  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
7513                                  FieldEnd = ClassDecl->field_end();
7514       HasConstCopyAssignment && Field != FieldEnd;
7515       ++Field) {
7516    QualType FieldType = Context.getBaseElementType(Field->getType());
7517    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
7518      HasConstCopyAssignment &=
7519        (bool)LookupCopyingAssignment(FieldClassDecl, Qualifiers::Const,
7520                                      false, 0);
7521    }
7522  }
7523
7524  //   Otherwise, the implicitly declared copy assignment operator will
7525  //   have the form
7526  //
7527  //       X& X::operator=(X&)
7528
7529  // C++ [except.spec]p14:
7530  //   An implicitly declared special member function (Clause 12) shall have an
7531  //   exception-specification. [...]
7532
7533  // It is unspecified whether or not an implicit copy assignment operator
7534  // attempts to deduplicate calls to assignment operators of virtual bases are
7535  // made. As such, this exception specification is effectively unspecified.
7536  // Based on a similar decision made for constness in C++0x, we're erring on
7537  // the side of assuming such calls to be made regardless of whether they
7538  // actually happen.
7539  ImplicitExceptionSpecification ExceptSpec(*this);
7540  unsigned ArgQuals = HasConstCopyAssignment ? Qualifiers::Const : 0;
7541  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
7542                                       BaseEnd = ClassDecl->bases_end();
7543       Base != BaseEnd; ++Base) {
7544    if (Base->isVirtual())
7545      continue;
7546
7547    CXXRecordDecl *BaseClassDecl
7548      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
7549    if (CXXMethodDecl *CopyAssign = LookupCopyingAssignment(BaseClassDecl,
7550                                                            ArgQuals, false, 0))
7551      ExceptSpec.CalledDecl(Base->getLocStart(), CopyAssign);
7552  }
7553
7554  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
7555                                       BaseEnd = ClassDecl->vbases_end();
7556       Base != BaseEnd; ++Base) {
7557    CXXRecordDecl *BaseClassDecl
7558      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
7559    if (CXXMethodDecl *CopyAssign = LookupCopyingAssignment(BaseClassDecl,
7560                                                            ArgQuals, false, 0))
7561      ExceptSpec.CalledDecl(Base->getLocStart(), CopyAssign);
7562  }
7563
7564  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
7565                                  FieldEnd = ClassDecl->field_end();
7566       Field != FieldEnd;
7567       ++Field) {
7568    QualType FieldType = Context.getBaseElementType(Field->getType());
7569    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
7570      if (CXXMethodDecl *CopyAssign =
7571          LookupCopyingAssignment(FieldClassDecl,
7572                                  ArgQuals | FieldType.getCVRQualifiers(),
7573                                  false, 0))
7574        ExceptSpec.CalledDecl(Field->getLocation(), CopyAssign);
7575    }
7576  }
7577
7578  return std::make_pair(ExceptSpec, HasConstCopyAssignment);
7579}
7580
7581CXXMethodDecl *Sema::DeclareImplicitCopyAssignment(CXXRecordDecl *ClassDecl) {
7582  // Note: The following rules are largely analoguous to the copy
7583  // constructor rules. Note that virtual bases are not taken into account
7584  // for determining the argument type of the operator. Note also that
7585  // operators taking an object instead of a reference are allowed.
7586
7587  ImplicitExceptionSpecification Spec(*this);
7588  bool Const;
7589  llvm::tie(Spec, Const) =
7590    ComputeDefaultedCopyAssignmentExceptionSpecAndConst(ClassDecl);
7591
7592  QualType ArgType = Context.getTypeDeclType(ClassDecl);
7593  QualType RetType = Context.getLValueReferenceType(ArgType);
7594  if (Const)
7595    ArgType = ArgType.withConst();
7596  ArgType = Context.getLValueReferenceType(ArgType);
7597
7598  //   An implicitly-declared copy assignment operator is an inline public
7599  //   member of its class.
7600  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
7601  DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
7602  SourceLocation ClassLoc = ClassDecl->getLocation();
7603  DeclarationNameInfo NameInfo(Name, ClassLoc);
7604  CXXMethodDecl *CopyAssignment
7605    = CXXMethodDecl::Create(Context, ClassDecl, ClassLoc, NameInfo,
7606                            Context.getFunctionType(RetType, &ArgType, 1, EPI),
7607                            /*TInfo=*/0, /*isStatic=*/false,
7608                            /*StorageClassAsWritten=*/SC_None,
7609                            /*isInline=*/true, /*isConstexpr=*/false,
7610                            SourceLocation());
7611  CopyAssignment->setAccess(AS_public);
7612  CopyAssignment->setDefaulted();
7613  CopyAssignment->setImplicit();
7614  CopyAssignment->setTrivial(ClassDecl->hasTrivialCopyAssignment());
7615
7616  // Add the parameter to the operator.
7617  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment,
7618                                               ClassLoc, ClassLoc, /*Id=*/0,
7619                                               ArgType, /*TInfo=*/0,
7620                                               SC_None,
7621                                               SC_None, 0);
7622  CopyAssignment->setParams(FromParam);
7623
7624  // Note that we have added this copy-assignment operator.
7625  ++ASTContext::NumImplicitCopyAssignmentOperatorsDeclared;
7626
7627  if (Scope *S = getScopeForContext(ClassDecl))
7628    PushOnScopeChains(CopyAssignment, S, false);
7629  ClassDecl->addDecl(CopyAssignment);
7630
7631  // C++0x [class.copy]p19:
7632  //   ....  If the class definition does not explicitly declare a copy
7633  //   assignment operator, there is no user-declared move constructor, and
7634  //   there is no user-declared move assignment operator, a copy assignment
7635  //   operator is implicitly declared as defaulted.
7636  if (ShouldDeleteSpecialMember(CopyAssignment, CXXCopyAssignment))
7637    CopyAssignment->setDeletedAsWritten();
7638
7639  AddOverriddenMethods(ClassDecl, CopyAssignment);
7640  return CopyAssignment;
7641}
7642
7643void Sema::DefineImplicitCopyAssignment(SourceLocation CurrentLocation,
7644                                        CXXMethodDecl *CopyAssignOperator) {
7645  assert((CopyAssignOperator->isDefaulted() &&
7646          CopyAssignOperator->isOverloadedOperator() &&
7647          CopyAssignOperator->getOverloadedOperator() == OO_Equal &&
7648          !CopyAssignOperator->doesThisDeclarationHaveABody() &&
7649          !CopyAssignOperator->isDeleted()) &&
7650         "DefineImplicitCopyAssignment called for wrong function");
7651
7652  CXXRecordDecl *ClassDecl = CopyAssignOperator->getParent();
7653
7654  if (ClassDecl->isInvalidDecl() || CopyAssignOperator->isInvalidDecl()) {
7655    CopyAssignOperator->setInvalidDecl();
7656    return;
7657  }
7658
7659  CopyAssignOperator->setUsed();
7660
7661  ImplicitlyDefinedFunctionScope Scope(*this, CopyAssignOperator);
7662  DiagnosticErrorTrap Trap(Diags);
7663
7664  // C++0x [class.copy]p30:
7665  //   The implicitly-defined or explicitly-defaulted copy assignment operator
7666  //   for a non-union class X performs memberwise copy assignment of its
7667  //   subobjects. The direct base classes of X are assigned first, in the
7668  //   order of their declaration in the base-specifier-list, and then the
7669  //   immediate non-static data members of X are assigned, in the order in
7670  //   which they were declared in the class definition.
7671
7672  // The statements that form the synthesized function body.
7673  ASTOwningVector<Stmt*> Statements(*this);
7674
7675  // The parameter for the "other" object, which we are copying from.
7676  ParmVarDecl *Other = CopyAssignOperator->getParamDecl(0);
7677  Qualifiers OtherQuals = Other->getType().getQualifiers();
7678  QualType OtherRefType = Other->getType();
7679  if (const LValueReferenceType *OtherRef
7680                                = OtherRefType->getAs<LValueReferenceType>()) {
7681    OtherRefType = OtherRef->getPointeeType();
7682    OtherQuals = OtherRefType.getQualifiers();
7683  }
7684
7685  // Our location for everything implicitly-generated.
7686  SourceLocation Loc = CopyAssignOperator->getLocation();
7687
7688  // Construct a reference to the "other" object. We'll be using this
7689  // throughout the generated ASTs.
7690  Expr *OtherRef = BuildDeclRefExpr(Other, OtherRefType, VK_LValue, Loc).take();
7691  assert(OtherRef && "Reference to parameter cannot fail!");
7692
7693  // Construct the "this" pointer. We'll be using this throughout the generated
7694  // ASTs.
7695  Expr *This = ActOnCXXThis(Loc).takeAs<Expr>();
7696  assert(This && "Reference to this cannot fail!");
7697
7698  // Assign base classes.
7699  bool Invalid = false;
7700  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
7701       E = ClassDecl->bases_end(); Base != E; ++Base) {
7702    // Form the assignment:
7703    //   static_cast<Base*>(this)->Base::operator=(static_cast<Base&>(other));
7704    QualType BaseType = Base->getType().getUnqualifiedType();
7705    if (!BaseType->isRecordType()) {
7706      Invalid = true;
7707      continue;
7708    }
7709
7710    CXXCastPath BasePath;
7711    BasePath.push_back(Base);
7712
7713    // Construct the "from" expression, which is an implicit cast to the
7714    // appropriately-qualified base type.
7715    Expr *From = OtherRef;
7716    From = ImpCastExprToType(From, Context.getQualifiedType(BaseType, OtherQuals),
7717                             CK_UncheckedDerivedToBase,
7718                             VK_LValue, &BasePath).take();
7719
7720    // Dereference "this".
7721    ExprResult To = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
7722
7723    // Implicitly cast "this" to the appropriately-qualified base type.
7724    To = ImpCastExprToType(To.take(),
7725                           Context.getCVRQualifiedType(BaseType,
7726                                     CopyAssignOperator->getTypeQualifiers()),
7727                           CK_UncheckedDerivedToBase,
7728                           VK_LValue, &BasePath);
7729
7730    // Build the copy.
7731    StmtResult Copy = BuildSingleCopyAssign(*this, Loc, BaseType,
7732                                            To.get(), From,
7733                                            /*CopyingBaseSubobject=*/true,
7734                                            /*Copying=*/true);
7735    if (Copy.isInvalid()) {
7736      Diag(CurrentLocation, diag::note_member_synthesized_at)
7737        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
7738      CopyAssignOperator->setInvalidDecl();
7739      return;
7740    }
7741
7742    // Success! Record the copy.
7743    Statements.push_back(Copy.takeAs<Expr>());
7744  }
7745
7746  // \brief Reference to the __builtin_memcpy function.
7747  Expr *BuiltinMemCpyRef = 0;
7748  // \brief Reference to the __builtin_objc_memmove_collectable function.
7749  Expr *CollectableMemCpyRef = 0;
7750
7751  // Assign non-static members.
7752  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
7753                                  FieldEnd = ClassDecl->field_end();
7754       Field != FieldEnd; ++Field) {
7755    if (Field->isUnnamedBitfield())
7756      continue;
7757
7758    // Check for members of reference type; we can't copy those.
7759    if (Field->getType()->isReferenceType()) {
7760      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
7761        << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
7762      Diag(Field->getLocation(), diag::note_declared_at);
7763      Diag(CurrentLocation, diag::note_member_synthesized_at)
7764        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
7765      Invalid = true;
7766      continue;
7767    }
7768
7769    // Check for members of const-qualified, non-class type.
7770    QualType BaseType = Context.getBaseElementType(Field->getType());
7771    if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) {
7772      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
7773        << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
7774      Diag(Field->getLocation(), diag::note_declared_at);
7775      Diag(CurrentLocation, diag::note_member_synthesized_at)
7776        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
7777      Invalid = true;
7778      continue;
7779    }
7780
7781    // Suppress assigning zero-width bitfields.
7782    if (Field->isBitField() && Field->getBitWidthValue(Context) == 0)
7783      continue;
7784
7785    QualType FieldType = Field->getType().getNonReferenceType();
7786    if (FieldType->isIncompleteArrayType()) {
7787      assert(ClassDecl->hasFlexibleArrayMember() &&
7788             "Incomplete array type is not valid");
7789      continue;
7790    }
7791
7792    // Build references to the field in the object we're copying from and to.
7793    CXXScopeSpec SS; // Intentionally empty
7794    LookupResult MemberLookup(*this, Field->getDeclName(), Loc,
7795                              LookupMemberName);
7796    MemberLookup.addDecl(*Field);
7797    MemberLookup.resolveKind();
7798    ExprResult From = BuildMemberReferenceExpr(OtherRef, OtherRefType,
7799                                               Loc, /*IsArrow=*/false,
7800                                               SS, SourceLocation(), 0,
7801                                               MemberLookup, 0);
7802    ExprResult To = BuildMemberReferenceExpr(This, This->getType(),
7803                                             Loc, /*IsArrow=*/true,
7804                                             SS, SourceLocation(), 0,
7805                                             MemberLookup, 0);
7806    assert(!From.isInvalid() && "Implicit field reference cannot fail");
7807    assert(!To.isInvalid() && "Implicit field reference cannot fail");
7808
7809    // If the field should be copied with __builtin_memcpy rather than via
7810    // explicit assignments, do so. This optimization only applies for arrays
7811    // of scalars and arrays of class type with trivial copy-assignment
7812    // operators.
7813    if (FieldType->isArrayType() && !FieldType.isVolatileQualified()
7814        && BaseType.hasTrivialAssignment(Context, /*Copying=*/true)) {
7815      // Compute the size of the memory buffer to be copied.
7816      QualType SizeType = Context.getSizeType();
7817      llvm::APInt Size(Context.getTypeSize(SizeType),
7818                       Context.getTypeSizeInChars(BaseType).getQuantity());
7819      for (const ConstantArrayType *Array
7820              = Context.getAsConstantArrayType(FieldType);
7821           Array;
7822           Array = Context.getAsConstantArrayType(Array->getElementType())) {
7823        llvm::APInt ArraySize
7824          = Array->getSize().zextOrTrunc(Size.getBitWidth());
7825        Size *= ArraySize;
7826      }
7827
7828      // Take the address of the field references for "from" and "to".
7829      From = CreateBuiltinUnaryOp(Loc, UO_AddrOf, From.get());
7830      To = CreateBuiltinUnaryOp(Loc, UO_AddrOf, To.get());
7831
7832      bool NeedsCollectableMemCpy =
7833          (BaseType->isRecordType() &&
7834           BaseType->getAs<RecordType>()->getDecl()->hasObjectMember());
7835
7836      if (NeedsCollectableMemCpy) {
7837        if (!CollectableMemCpyRef) {
7838          // Create a reference to the __builtin_objc_memmove_collectable function.
7839          LookupResult R(*this,
7840                         &Context.Idents.get("__builtin_objc_memmove_collectable"),
7841                         Loc, LookupOrdinaryName);
7842          LookupName(R, TUScope, true);
7843
7844          FunctionDecl *CollectableMemCpy = R.getAsSingle<FunctionDecl>();
7845          if (!CollectableMemCpy) {
7846            // Something went horribly wrong earlier, and we will have
7847            // complained about it.
7848            Invalid = true;
7849            continue;
7850          }
7851
7852          CollectableMemCpyRef = BuildDeclRefExpr(CollectableMemCpy,
7853                                                  CollectableMemCpy->getType(),
7854                                                  VK_LValue, Loc, 0).take();
7855          assert(CollectableMemCpyRef && "Builtin reference cannot fail");
7856        }
7857      }
7858      // Create a reference to the __builtin_memcpy builtin function.
7859      else if (!BuiltinMemCpyRef) {
7860        LookupResult R(*this, &Context.Idents.get("__builtin_memcpy"), Loc,
7861                       LookupOrdinaryName);
7862        LookupName(R, TUScope, true);
7863
7864        FunctionDecl *BuiltinMemCpy = R.getAsSingle<FunctionDecl>();
7865        if (!BuiltinMemCpy) {
7866          // Something went horribly wrong earlier, and we will have complained
7867          // about it.
7868          Invalid = true;
7869          continue;
7870        }
7871
7872        BuiltinMemCpyRef = BuildDeclRefExpr(BuiltinMemCpy,
7873                                            BuiltinMemCpy->getType(),
7874                                            VK_LValue, Loc, 0).take();
7875        assert(BuiltinMemCpyRef && "Builtin reference cannot fail");
7876      }
7877
7878      ASTOwningVector<Expr*> CallArgs(*this);
7879      CallArgs.push_back(To.takeAs<Expr>());
7880      CallArgs.push_back(From.takeAs<Expr>());
7881      CallArgs.push_back(IntegerLiteral::Create(Context, Size, SizeType, Loc));
7882      ExprResult Call = ExprError();
7883      if (NeedsCollectableMemCpy)
7884        Call = ActOnCallExpr(/*Scope=*/0,
7885                             CollectableMemCpyRef,
7886                             Loc, move_arg(CallArgs),
7887                             Loc);
7888      else
7889        Call = ActOnCallExpr(/*Scope=*/0,
7890                             BuiltinMemCpyRef,
7891                             Loc, move_arg(CallArgs),
7892                             Loc);
7893
7894      assert(!Call.isInvalid() && "Call to __builtin_memcpy cannot fail!");
7895      Statements.push_back(Call.takeAs<Expr>());
7896      continue;
7897    }
7898
7899    // Build the copy of this field.
7900    StmtResult Copy = BuildSingleCopyAssign(*this, Loc, FieldType,
7901                                            To.get(), From.get(),
7902                                            /*CopyingBaseSubobject=*/false,
7903                                            /*Copying=*/true);
7904    if (Copy.isInvalid()) {
7905      Diag(CurrentLocation, diag::note_member_synthesized_at)
7906        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
7907      CopyAssignOperator->setInvalidDecl();
7908      return;
7909    }
7910
7911    // Success! Record the copy.
7912    Statements.push_back(Copy.takeAs<Stmt>());
7913  }
7914
7915  if (!Invalid) {
7916    // Add a "return *this;"
7917    ExprResult ThisObj = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
7918
7919    StmtResult Return = ActOnReturnStmt(Loc, ThisObj.get());
7920    if (Return.isInvalid())
7921      Invalid = true;
7922    else {
7923      Statements.push_back(Return.takeAs<Stmt>());
7924
7925      if (Trap.hasErrorOccurred()) {
7926        Diag(CurrentLocation, diag::note_member_synthesized_at)
7927          << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
7928        Invalid = true;
7929      }
7930    }
7931  }
7932
7933  if (Invalid) {
7934    CopyAssignOperator->setInvalidDecl();
7935    return;
7936  }
7937
7938  StmtResult Body;
7939  {
7940    CompoundScopeRAII CompoundScope(*this);
7941    Body = ActOnCompoundStmt(Loc, Loc, move_arg(Statements),
7942                             /*isStmtExpr=*/false);
7943    assert(!Body.isInvalid() && "Compound statement creation cannot fail");
7944  }
7945  CopyAssignOperator->setBody(Body.takeAs<Stmt>());
7946
7947  if (ASTMutationListener *L = getASTMutationListener()) {
7948    L->CompletedImplicitDefinition(CopyAssignOperator);
7949  }
7950}
7951
7952Sema::ImplicitExceptionSpecification
7953Sema::ComputeDefaultedMoveAssignmentExceptionSpec(CXXRecordDecl *ClassDecl) {
7954  ImplicitExceptionSpecification ExceptSpec(*this);
7955
7956  if (ClassDecl->isInvalidDecl())
7957    return ExceptSpec;
7958
7959  // C++0x [except.spec]p14:
7960  //   An implicitly declared special member function (Clause 12) shall have an
7961  //   exception-specification. [...]
7962
7963  // It is unspecified whether or not an implicit move assignment operator
7964  // attempts to deduplicate calls to assignment operators of virtual bases are
7965  // made. As such, this exception specification is effectively unspecified.
7966  // Based on a similar decision made for constness in C++0x, we're erring on
7967  // the side of assuming such calls to be made regardless of whether they
7968  // actually happen.
7969  // Note that a move constructor is not implicitly declared when there are
7970  // virtual bases, but it can still be user-declared and explicitly defaulted.
7971  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
7972                                       BaseEnd = ClassDecl->bases_end();
7973       Base != BaseEnd; ++Base) {
7974    if (Base->isVirtual())
7975      continue;
7976
7977    CXXRecordDecl *BaseClassDecl
7978      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
7979    if (CXXMethodDecl *MoveAssign = LookupMovingAssignment(BaseClassDecl,
7980                                                           0, false, 0))
7981      ExceptSpec.CalledDecl(Base->getLocStart(), MoveAssign);
7982  }
7983
7984  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
7985                                       BaseEnd = ClassDecl->vbases_end();
7986       Base != BaseEnd; ++Base) {
7987    CXXRecordDecl *BaseClassDecl
7988      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
7989    if (CXXMethodDecl *MoveAssign = LookupMovingAssignment(BaseClassDecl,
7990                                                           0, false, 0))
7991      ExceptSpec.CalledDecl(Base->getLocStart(), MoveAssign);
7992  }
7993
7994  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
7995                                  FieldEnd = ClassDecl->field_end();
7996       Field != FieldEnd;
7997       ++Field) {
7998    QualType FieldType = Context.getBaseElementType(Field->getType());
7999    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
8000      if (CXXMethodDecl *MoveAssign =
8001              LookupMovingAssignment(FieldClassDecl,
8002                                     FieldType.getCVRQualifiers(),
8003                                     false, 0))
8004        ExceptSpec.CalledDecl(Field->getLocation(), MoveAssign);
8005    }
8006  }
8007
8008  return ExceptSpec;
8009}
8010
8011/// Determine whether the class type has any direct or indirect virtual base
8012/// classes which have a non-trivial move assignment operator.
8013static bool
8014hasVirtualBaseWithNonTrivialMoveAssignment(Sema &S, CXXRecordDecl *ClassDecl) {
8015  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
8016                                          BaseEnd = ClassDecl->vbases_end();
8017       Base != BaseEnd; ++Base) {
8018    CXXRecordDecl *BaseClass =
8019        cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8020
8021    // Try to declare the move assignment. If it would be deleted, then the
8022    // class does not have a non-trivial move assignment.
8023    if (BaseClass->needsImplicitMoveAssignment())
8024      S.DeclareImplicitMoveAssignment(BaseClass);
8025
8026    // If the class has both a trivial move assignment and a non-trivial move
8027    // assignment, hasTrivialMoveAssignment() is false.
8028    if (BaseClass->hasDeclaredMoveAssignment() &&
8029        !BaseClass->hasTrivialMoveAssignment())
8030      return true;
8031  }
8032
8033  return false;
8034}
8035
8036/// Determine whether the given type either has a move constructor or is
8037/// trivially copyable.
8038static bool
8039hasMoveOrIsTriviallyCopyable(Sema &S, QualType Type, bool IsConstructor) {
8040  Type = S.Context.getBaseElementType(Type);
8041
8042  // FIXME: Technically, non-trivially-copyable non-class types, such as
8043  // reference types, are supposed to return false here, but that appears
8044  // to be a standard defect.
8045  CXXRecordDecl *ClassDecl = Type->getAsCXXRecordDecl();
8046  if (!ClassDecl || !ClassDecl->getDefinition())
8047    return true;
8048
8049  if (Type.isTriviallyCopyableType(S.Context))
8050    return true;
8051
8052  if (IsConstructor) {
8053    if (ClassDecl->needsImplicitMoveConstructor())
8054      S.DeclareImplicitMoveConstructor(ClassDecl);
8055    return ClassDecl->hasDeclaredMoveConstructor();
8056  }
8057
8058  if (ClassDecl->needsImplicitMoveAssignment())
8059    S.DeclareImplicitMoveAssignment(ClassDecl);
8060  return ClassDecl->hasDeclaredMoveAssignment();
8061}
8062
8063/// Determine whether all non-static data members and direct or virtual bases
8064/// of class \p ClassDecl have either a move operation, or are trivially
8065/// copyable.
8066static bool subobjectsHaveMoveOrTrivialCopy(Sema &S, CXXRecordDecl *ClassDecl,
8067                                            bool IsConstructor) {
8068  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
8069                                          BaseEnd = ClassDecl->bases_end();
8070       Base != BaseEnd; ++Base) {
8071    if (Base->isVirtual())
8072      continue;
8073
8074    if (!hasMoveOrIsTriviallyCopyable(S, Base->getType(), IsConstructor))
8075      return false;
8076  }
8077
8078  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
8079                                          BaseEnd = ClassDecl->vbases_end();
8080       Base != BaseEnd; ++Base) {
8081    if (!hasMoveOrIsTriviallyCopyable(S, Base->getType(), IsConstructor))
8082      return false;
8083  }
8084
8085  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
8086                                     FieldEnd = ClassDecl->field_end();
8087       Field != FieldEnd; ++Field) {
8088    if (!hasMoveOrIsTriviallyCopyable(S, Field->getType(), IsConstructor))
8089      return false;
8090  }
8091
8092  return true;
8093}
8094
8095CXXMethodDecl *Sema::DeclareImplicitMoveAssignment(CXXRecordDecl *ClassDecl) {
8096  // C++11 [class.copy]p20:
8097  //   If the definition of a class X does not explicitly declare a move
8098  //   assignment operator, one will be implicitly declared as defaulted
8099  //   if and only if:
8100  //
8101  //   - [first 4 bullets]
8102  assert(ClassDecl->needsImplicitMoveAssignment());
8103
8104  // [Checked after we build the declaration]
8105  //   - the move assignment operator would not be implicitly defined as
8106  //     deleted,
8107
8108  // [DR1402]:
8109  //   - X has no direct or indirect virtual base class with a non-trivial
8110  //     move assignment operator, and
8111  //   - each of X's non-static data members and direct or virtual base classes
8112  //     has a type that either has a move assignment operator or is trivially
8113  //     copyable.
8114  if (hasVirtualBaseWithNonTrivialMoveAssignment(*this, ClassDecl) ||
8115      !subobjectsHaveMoveOrTrivialCopy(*this, ClassDecl,/*Constructor*/false)) {
8116    ClassDecl->setFailedImplicitMoveAssignment();
8117    return 0;
8118  }
8119
8120  // Note: The following rules are largely analoguous to the move
8121  // constructor rules.
8122
8123  ImplicitExceptionSpecification Spec(
8124      ComputeDefaultedMoveAssignmentExceptionSpec(ClassDecl));
8125
8126  QualType ArgType = Context.getTypeDeclType(ClassDecl);
8127  QualType RetType = Context.getLValueReferenceType(ArgType);
8128  ArgType = Context.getRValueReferenceType(ArgType);
8129
8130  //   An implicitly-declared move assignment operator is an inline public
8131  //   member of its class.
8132  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
8133  DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
8134  SourceLocation ClassLoc = ClassDecl->getLocation();
8135  DeclarationNameInfo NameInfo(Name, ClassLoc);
8136  CXXMethodDecl *MoveAssignment
8137    = CXXMethodDecl::Create(Context, ClassDecl, ClassLoc, NameInfo,
8138                            Context.getFunctionType(RetType, &ArgType, 1, EPI),
8139                            /*TInfo=*/0, /*isStatic=*/false,
8140                            /*StorageClassAsWritten=*/SC_None,
8141                            /*isInline=*/true,
8142                            /*isConstexpr=*/false,
8143                            SourceLocation());
8144  MoveAssignment->setAccess(AS_public);
8145  MoveAssignment->setDefaulted();
8146  MoveAssignment->setImplicit();
8147  MoveAssignment->setTrivial(ClassDecl->hasTrivialMoveAssignment());
8148
8149  // Add the parameter to the operator.
8150  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, MoveAssignment,
8151                                               ClassLoc, ClassLoc, /*Id=*/0,
8152                                               ArgType, /*TInfo=*/0,
8153                                               SC_None,
8154                                               SC_None, 0);
8155  MoveAssignment->setParams(FromParam);
8156
8157  // Note that we have added this copy-assignment operator.
8158  ++ASTContext::NumImplicitMoveAssignmentOperatorsDeclared;
8159
8160  // C++0x [class.copy]p9:
8161  //   If the definition of a class X does not explicitly declare a move
8162  //   assignment operator, one will be implicitly declared as defaulted if and
8163  //   only if:
8164  //   [...]
8165  //   - the move assignment operator would not be implicitly defined as
8166  //     deleted.
8167  if (ShouldDeleteSpecialMember(MoveAssignment, CXXMoveAssignment)) {
8168    // Cache this result so that we don't try to generate this over and over
8169    // on every lookup, leaking memory and wasting time.
8170    ClassDecl->setFailedImplicitMoveAssignment();
8171    return 0;
8172  }
8173
8174  if (Scope *S = getScopeForContext(ClassDecl))
8175    PushOnScopeChains(MoveAssignment, S, false);
8176  ClassDecl->addDecl(MoveAssignment);
8177
8178  AddOverriddenMethods(ClassDecl, MoveAssignment);
8179  return MoveAssignment;
8180}
8181
8182void Sema::DefineImplicitMoveAssignment(SourceLocation CurrentLocation,
8183                                        CXXMethodDecl *MoveAssignOperator) {
8184  assert((MoveAssignOperator->isDefaulted() &&
8185          MoveAssignOperator->isOverloadedOperator() &&
8186          MoveAssignOperator->getOverloadedOperator() == OO_Equal &&
8187          !MoveAssignOperator->doesThisDeclarationHaveABody() &&
8188          !MoveAssignOperator->isDeleted()) &&
8189         "DefineImplicitMoveAssignment called for wrong function");
8190
8191  CXXRecordDecl *ClassDecl = MoveAssignOperator->getParent();
8192
8193  if (ClassDecl->isInvalidDecl() || MoveAssignOperator->isInvalidDecl()) {
8194    MoveAssignOperator->setInvalidDecl();
8195    return;
8196  }
8197
8198  MoveAssignOperator->setUsed();
8199
8200  ImplicitlyDefinedFunctionScope Scope(*this, MoveAssignOperator);
8201  DiagnosticErrorTrap Trap(Diags);
8202
8203  // C++0x [class.copy]p28:
8204  //   The implicitly-defined or move assignment operator for a non-union class
8205  //   X performs memberwise move assignment of its subobjects. The direct base
8206  //   classes of X are assigned first, in the order of their declaration in the
8207  //   base-specifier-list, and then the immediate non-static data members of X
8208  //   are assigned, in the order in which they were declared in the class
8209  //   definition.
8210
8211  // The statements that form the synthesized function body.
8212  ASTOwningVector<Stmt*> Statements(*this);
8213
8214  // The parameter for the "other" object, which we are move from.
8215  ParmVarDecl *Other = MoveAssignOperator->getParamDecl(0);
8216  QualType OtherRefType = Other->getType()->
8217      getAs<RValueReferenceType>()->getPointeeType();
8218  assert(OtherRefType.getQualifiers() == 0 &&
8219         "Bad argument type of defaulted move assignment");
8220
8221  // Our location for everything implicitly-generated.
8222  SourceLocation Loc = MoveAssignOperator->getLocation();
8223
8224  // Construct a reference to the "other" object. We'll be using this
8225  // throughout the generated ASTs.
8226  Expr *OtherRef = BuildDeclRefExpr(Other, OtherRefType, VK_LValue, Loc).take();
8227  assert(OtherRef && "Reference to parameter cannot fail!");
8228  // Cast to rvalue.
8229  OtherRef = CastForMoving(*this, OtherRef);
8230
8231  // Construct the "this" pointer. We'll be using this throughout the generated
8232  // ASTs.
8233  Expr *This = ActOnCXXThis(Loc).takeAs<Expr>();
8234  assert(This && "Reference to this cannot fail!");
8235
8236  // Assign base classes.
8237  bool Invalid = false;
8238  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
8239       E = ClassDecl->bases_end(); Base != E; ++Base) {
8240    // Form the assignment:
8241    //   static_cast<Base*>(this)->Base::operator=(static_cast<Base&&>(other));
8242    QualType BaseType = Base->getType().getUnqualifiedType();
8243    if (!BaseType->isRecordType()) {
8244      Invalid = true;
8245      continue;
8246    }
8247
8248    CXXCastPath BasePath;
8249    BasePath.push_back(Base);
8250
8251    // Construct the "from" expression, which is an implicit cast to the
8252    // appropriately-qualified base type.
8253    Expr *From = OtherRef;
8254    From = ImpCastExprToType(From, BaseType, CK_UncheckedDerivedToBase,
8255                             VK_XValue, &BasePath).take();
8256
8257    // Dereference "this".
8258    ExprResult To = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
8259
8260    // Implicitly cast "this" to the appropriately-qualified base type.
8261    To = ImpCastExprToType(To.take(),
8262                           Context.getCVRQualifiedType(BaseType,
8263                                     MoveAssignOperator->getTypeQualifiers()),
8264                           CK_UncheckedDerivedToBase,
8265                           VK_LValue, &BasePath);
8266
8267    // Build the move.
8268    StmtResult Move = BuildSingleCopyAssign(*this, Loc, BaseType,
8269                                            To.get(), From,
8270                                            /*CopyingBaseSubobject=*/true,
8271                                            /*Copying=*/false);
8272    if (Move.isInvalid()) {
8273      Diag(CurrentLocation, diag::note_member_synthesized_at)
8274        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
8275      MoveAssignOperator->setInvalidDecl();
8276      return;
8277    }
8278
8279    // Success! Record the move.
8280    Statements.push_back(Move.takeAs<Expr>());
8281  }
8282
8283  // \brief Reference to the __builtin_memcpy function.
8284  Expr *BuiltinMemCpyRef = 0;
8285  // \brief Reference to the __builtin_objc_memmove_collectable function.
8286  Expr *CollectableMemCpyRef = 0;
8287
8288  // Assign non-static members.
8289  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
8290                                  FieldEnd = ClassDecl->field_end();
8291       Field != FieldEnd; ++Field) {
8292    if (Field->isUnnamedBitfield())
8293      continue;
8294
8295    // Check for members of reference type; we can't move those.
8296    if (Field->getType()->isReferenceType()) {
8297      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
8298        << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
8299      Diag(Field->getLocation(), diag::note_declared_at);
8300      Diag(CurrentLocation, diag::note_member_synthesized_at)
8301        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
8302      Invalid = true;
8303      continue;
8304    }
8305
8306    // Check for members of const-qualified, non-class type.
8307    QualType BaseType = Context.getBaseElementType(Field->getType());
8308    if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) {
8309      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
8310        << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
8311      Diag(Field->getLocation(), diag::note_declared_at);
8312      Diag(CurrentLocation, diag::note_member_synthesized_at)
8313        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
8314      Invalid = true;
8315      continue;
8316    }
8317
8318    // Suppress assigning zero-width bitfields.
8319    if (Field->isBitField() && Field->getBitWidthValue(Context) == 0)
8320      continue;
8321
8322    QualType FieldType = Field->getType().getNonReferenceType();
8323    if (FieldType->isIncompleteArrayType()) {
8324      assert(ClassDecl->hasFlexibleArrayMember() &&
8325             "Incomplete array type is not valid");
8326      continue;
8327    }
8328
8329    // Build references to the field in the object we're copying from and to.
8330    CXXScopeSpec SS; // Intentionally empty
8331    LookupResult MemberLookup(*this, Field->getDeclName(), Loc,
8332                              LookupMemberName);
8333    MemberLookup.addDecl(*Field);
8334    MemberLookup.resolveKind();
8335    ExprResult From = BuildMemberReferenceExpr(OtherRef, OtherRefType,
8336                                               Loc, /*IsArrow=*/false,
8337                                               SS, SourceLocation(), 0,
8338                                               MemberLookup, 0);
8339    ExprResult To = BuildMemberReferenceExpr(This, This->getType(),
8340                                             Loc, /*IsArrow=*/true,
8341                                             SS, SourceLocation(), 0,
8342                                             MemberLookup, 0);
8343    assert(!From.isInvalid() && "Implicit field reference cannot fail");
8344    assert(!To.isInvalid() && "Implicit field reference cannot fail");
8345
8346    assert(!From.get()->isLValue() && // could be xvalue or prvalue
8347        "Member reference with rvalue base must be rvalue except for reference "
8348        "members, which aren't allowed for move assignment.");
8349
8350    // If the field should be copied with __builtin_memcpy rather than via
8351    // explicit assignments, do so. This optimization only applies for arrays
8352    // of scalars and arrays of class type with trivial move-assignment
8353    // operators.
8354    if (FieldType->isArrayType() && !FieldType.isVolatileQualified()
8355        && BaseType.hasTrivialAssignment(Context, /*Copying=*/false)) {
8356      // Compute the size of the memory buffer to be copied.
8357      QualType SizeType = Context.getSizeType();
8358      llvm::APInt Size(Context.getTypeSize(SizeType),
8359                       Context.getTypeSizeInChars(BaseType).getQuantity());
8360      for (const ConstantArrayType *Array
8361              = Context.getAsConstantArrayType(FieldType);
8362           Array;
8363           Array = Context.getAsConstantArrayType(Array->getElementType())) {
8364        llvm::APInt ArraySize
8365          = Array->getSize().zextOrTrunc(Size.getBitWidth());
8366        Size *= ArraySize;
8367      }
8368
8369      // Take the address of the field references for "from" and "to". We
8370      // directly construct UnaryOperators here because semantic analysis
8371      // does not permit us to take the address of an xvalue.
8372      From = new (Context) UnaryOperator(From.get(), UO_AddrOf,
8373                             Context.getPointerType(From.get()->getType()),
8374                             VK_RValue, OK_Ordinary, Loc);
8375      To = new (Context) UnaryOperator(To.get(), UO_AddrOf,
8376                           Context.getPointerType(To.get()->getType()),
8377                           VK_RValue, OK_Ordinary, Loc);
8378
8379      bool NeedsCollectableMemCpy =
8380          (BaseType->isRecordType() &&
8381           BaseType->getAs<RecordType>()->getDecl()->hasObjectMember());
8382
8383      if (NeedsCollectableMemCpy) {
8384        if (!CollectableMemCpyRef) {
8385          // Create a reference to the __builtin_objc_memmove_collectable function.
8386          LookupResult R(*this,
8387                         &Context.Idents.get("__builtin_objc_memmove_collectable"),
8388                         Loc, LookupOrdinaryName);
8389          LookupName(R, TUScope, true);
8390
8391          FunctionDecl *CollectableMemCpy = R.getAsSingle<FunctionDecl>();
8392          if (!CollectableMemCpy) {
8393            // Something went horribly wrong earlier, and we will have
8394            // complained about it.
8395            Invalid = true;
8396            continue;
8397          }
8398
8399          CollectableMemCpyRef = BuildDeclRefExpr(CollectableMemCpy,
8400                                                  CollectableMemCpy->getType(),
8401                                                  VK_LValue, Loc, 0).take();
8402          assert(CollectableMemCpyRef && "Builtin reference cannot fail");
8403        }
8404      }
8405      // Create a reference to the __builtin_memcpy builtin function.
8406      else if (!BuiltinMemCpyRef) {
8407        LookupResult R(*this, &Context.Idents.get("__builtin_memcpy"), Loc,
8408                       LookupOrdinaryName);
8409        LookupName(R, TUScope, true);
8410
8411        FunctionDecl *BuiltinMemCpy = R.getAsSingle<FunctionDecl>();
8412        if (!BuiltinMemCpy) {
8413          // Something went horribly wrong earlier, and we will have complained
8414          // about it.
8415          Invalid = true;
8416          continue;
8417        }
8418
8419        BuiltinMemCpyRef = BuildDeclRefExpr(BuiltinMemCpy,
8420                                            BuiltinMemCpy->getType(),
8421                                            VK_LValue, Loc, 0).take();
8422        assert(BuiltinMemCpyRef && "Builtin reference cannot fail");
8423      }
8424
8425      ASTOwningVector<Expr*> CallArgs(*this);
8426      CallArgs.push_back(To.takeAs<Expr>());
8427      CallArgs.push_back(From.takeAs<Expr>());
8428      CallArgs.push_back(IntegerLiteral::Create(Context, Size, SizeType, Loc));
8429      ExprResult Call = ExprError();
8430      if (NeedsCollectableMemCpy)
8431        Call = ActOnCallExpr(/*Scope=*/0,
8432                             CollectableMemCpyRef,
8433                             Loc, move_arg(CallArgs),
8434                             Loc);
8435      else
8436        Call = ActOnCallExpr(/*Scope=*/0,
8437                             BuiltinMemCpyRef,
8438                             Loc, move_arg(CallArgs),
8439                             Loc);
8440
8441      assert(!Call.isInvalid() && "Call to __builtin_memcpy cannot fail!");
8442      Statements.push_back(Call.takeAs<Expr>());
8443      continue;
8444    }
8445
8446    // Build the move of this field.
8447    StmtResult Move = BuildSingleCopyAssign(*this, Loc, FieldType,
8448                                            To.get(), From.get(),
8449                                            /*CopyingBaseSubobject=*/false,
8450                                            /*Copying=*/false);
8451    if (Move.isInvalid()) {
8452      Diag(CurrentLocation, diag::note_member_synthesized_at)
8453        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
8454      MoveAssignOperator->setInvalidDecl();
8455      return;
8456    }
8457
8458    // Success! Record the copy.
8459    Statements.push_back(Move.takeAs<Stmt>());
8460  }
8461
8462  if (!Invalid) {
8463    // Add a "return *this;"
8464    ExprResult ThisObj = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
8465
8466    StmtResult Return = ActOnReturnStmt(Loc, ThisObj.get());
8467    if (Return.isInvalid())
8468      Invalid = true;
8469    else {
8470      Statements.push_back(Return.takeAs<Stmt>());
8471
8472      if (Trap.hasErrorOccurred()) {
8473        Diag(CurrentLocation, diag::note_member_synthesized_at)
8474          << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
8475        Invalid = true;
8476      }
8477    }
8478  }
8479
8480  if (Invalid) {
8481    MoveAssignOperator->setInvalidDecl();
8482    return;
8483  }
8484
8485  StmtResult Body;
8486  {
8487    CompoundScopeRAII CompoundScope(*this);
8488    Body = ActOnCompoundStmt(Loc, Loc, move_arg(Statements),
8489                             /*isStmtExpr=*/false);
8490    assert(!Body.isInvalid() && "Compound statement creation cannot fail");
8491  }
8492  MoveAssignOperator->setBody(Body.takeAs<Stmt>());
8493
8494  if (ASTMutationListener *L = getASTMutationListener()) {
8495    L->CompletedImplicitDefinition(MoveAssignOperator);
8496  }
8497}
8498
8499std::pair<Sema::ImplicitExceptionSpecification, bool>
8500Sema::ComputeDefaultedCopyCtorExceptionSpecAndConst(CXXRecordDecl *ClassDecl) {
8501  if (ClassDecl->isInvalidDecl())
8502    return std::make_pair(ImplicitExceptionSpecification(*this), true);
8503
8504  // C++ [class.copy]p5:
8505  //   The implicitly-declared copy constructor for a class X will
8506  //   have the form
8507  //
8508  //       X::X(const X&)
8509  //
8510  //   if
8511  // FIXME: It ought to be possible to store this on the record.
8512  bool HasConstCopyConstructor = true;
8513
8514  //     -- each direct or virtual base class B of X has a copy
8515  //        constructor whose first parameter is of type const B& or
8516  //        const volatile B&, and
8517  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
8518                                       BaseEnd = ClassDecl->bases_end();
8519       HasConstCopyConstructor && Base != BaseEnd;
8520       ++Base) {
8521    // Virtual bases are handled below.
8522    if (Base->isVirtual())
8523      continue;
8524
8525    CXXRecordDecl *BaseClassDecl
8526      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8527    HasConstCopyConstructor &=
8528      (bool)LookupCopyingConstructor(BaseClassDecl, Qualifiers::Const);
8529  }
8530
8531  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
8532                                       BaseEnd = ClassDecl->vbases_end();
8533       HasConstCopyConstructor && Base != BaseEnd;
8534       ++Base) {
8535    CXXRecordDecl *BaseClassDecl
8536      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8537    HasConstCopyConstructor &=
8538      (bool)LookupCopyingConstructor(BaseClassDecl, Qualifiers::Const);
8539  }
8540
8541  //     -- for all the nonstatic data members of X that are of a
8542  //        class type M (or array thereof), each such class type
8543  //        has a copy constructor whose first parameter is of type
8544  //        const M& or const volatile M&.
8545  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
8546                                  FieldEnd = ClassDecl->field_end();
8547       HasConstCopyConstructor && Field != FieldEnd;
8548       ++Field) {
8549    QualType FieldType = Context.getBaseElementType(Field->getType());
8550    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
8551      HasConstCopyConstructor &=
8552        (bool)LookupCopyingConstructor(FieldClassDecl, Qualifiers::Const);
8553    }
8554  }
8555  //   Otherwise, the implicitly declared copy constructor will have
8556  //   the form
8557  //
8558  //       X::X(X&)
8559
8560  // C++ [except.spec]p14:
8561  //   An implicitly declared special member function (Clause 12) shall have an
8562  //   exception-specification. [...]
8563  ImplicitExceptionSpecification ExceptSpec(*this);
8564  unsigned Quals = HasConstCopyConstructor? Qualifiers::Const : 0;
8565  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
8566                                       BaseEnd = ClassDecl->bases_end();
8567       Base != BaseEnd;
8568       ++Base) {
8569    // Virtual bases are handled below.
8570    if (Base->isVirtual())
8571      continue;
8572
8573    CXXRecordDecl *BaseClassDecl
8574      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8575    if (CXXConstructorDecl *CopyConstructor =
8576          LookupCopyingConstructor(BaseClassDecl, Quals))
8577      ExceptSpec.CalledDecl(Base->getLocStart(), CopyConstructor);
8578  }
8579  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
8580                                       BaseEnd = ClassDecl->vbases_end();
8581       Base != BaseEnd;
8582       ++Base) {
8583    CXXRecordDecl *BaseClassDecl
8584      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8585    if (CXXConstructorDecl *CopyConstructor =
8586          LookupCopyingConstructor(BaseClassDecl, Quals))
8587      ExceptSpec.CalledDecl(Base->getLocStart(), CopyConstructor);
8588  }
8589  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
8590                                  FieldEnd = ClassDecl->field_end();
8591       Field != FieldEnd;
8592       ++Field) {
8593    QualType FieldType = Context.getBaseElementType(Field->getType());
8594    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
8595      if (CXXConstructorDecl *CopyConstructor =
8596              LookupCopyingConstructor(FieldClassDecl,
8597                                       Quals | FieldType.getCVRQualifiers()))
8598      ExceptSpec.CalledDecl(Field->getLocation(), CopyConstructor);
8599    }
8600  }
8601
8602  return std::make_pair(ExceptSpec, HasConstCopyConstructor);
8603}
8604
8605CXXConstructorDecl *Sema::DeclareImplicitCopyConstructor(
8606                                                    CXXRecordDecl *ClassDecl) {
8607  // C++ [class.copy]p4:
8608  //   If the class definition does not explicitly declare a copy
8609  //   constructor, one is declared implicitly.
8610
8611  ImplicitExceptionSpecification Spec(*this);
8612  bool Const;
8613  llvm::tie(Spec, Const) =
8614    ComputeDefaultedCopyCtorExceptionSpecAndConst(ClassDecl);
8615
8616  QualType ClassType = Context.getTypeDeclType(ClassDecl);
8617  QualType ArgType = ClassType;
8618  if (Const)
8619    ArgType = ArgType.withConst();
8620  ArgType = Context.getLValueReferenceType(ArgType);
8621
8622  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
8623
8624  bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl,
8625                                                     CXXCopyConstructor,
8626                                                     Const);
8627
8628  DeclarationName Name
8629    = Context.DeclarationNames.getCXXConstructorName(
8630                                           Context.getCanonicalType(ClassType));
8631  SourceLocation ClassLoc = ClassDecl->getLocation();
8632  DeclarationNameInfo NameInfo(Name, ClassLoc);
8633
8634  //   An implicitly-declared copy constructor is an inline public
8635  //   member of its class.
8636  CXXConstructorDecl *CopyConstructor = CXXConstructorDecl::Create(
8637      Context, ClassDecl, ClassLoc, NameInfo,
8638      Context.getFunctionType(Context.VoidTy, &ArgType, 1, EPI), /*TInfo=*/0,
8639      /*isExplicit=*/false, /*isInline=*/true, /*isImplicitlyDeclared=*/true,
8640      Constexpr);
8641  CopyConstructor->setAccess(AS_public);
8642  CopyConstructor->setDefaulted();
8643  CopyConstructor->setTrivial(ClassDecl->hasTrivialCopyConstructor());
8644
8645  // Note that we have declared this constructor.
8646  ++ASTContext::NumImplicitCopyConstructorsDeclared;
8647
8648  // Add the parameter to the constructor.
8649  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor,
8650                                               ClassLoc, ClassLoc,
8651                                               /*IdentifierInfo=*/0,
8652                                               ArgType, /*TInfo=*/0,
8653                                               SC_None,
8654                                               SC_None, 0);
8655  CopyConstructor->setParams(FromParam);
8656
8657  if (Scope *S = getScopeForContext(ClassDecl))
8658    PushOnScopeChains(CopyConstructor, S, false);
8659  ClassDecl->addDecl(CopyConstructor);
8660
8661  // C++11 [class.copy]p8:
8662  //   ... If the class definition does not explicitly declare a copy
8663  //   constructor, there is no user-declared move constructor, and there is no
8664  //   user-declared move assignment operator, a copy constructor is implicitly
8665  //   declared as defaulted.
8666  if (ShouldDeleteSpecialMember(CopyConstructor, CXXCopyConstructor))
8667    CopyConstructor->setDeletedAsWritten();
8668
8669  return CopyConstructor;
8670}
8671
8672void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation,
8673                                   CXXConstructorDecl *CopyConstructor) {
8674  assert((CopyConstructor->isDefaulted() &&
8675          CopyConstructor->isCopyConstructor() &&
8676          !CopyConstructor->doesThisDeclarationHaveABody() &&
8677          !CopyConstructor->isDeleted()) &&
8678         "DefineImplicitCopyConstructor - call it for implicit copy ctor");
8679
8680  CXXRecordDecl *ClassDecl = CopyConstructor->getParent();
8681  assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor");
8682
8683  ImplicitlyDefinedFunctionScope Scope(*this, CopyConstructor);
8684  DiagnosticErrorTrap Trap(Diags);
8685
8686  if (SetCtorInitializers(CopyConstructor, 0, 0, /*AnyErrors=*/false) ||
8687      Trap.hasErrorOccurred()) {
8688    Diag(CurrentLocation, diag::note_member_synthesized_at)
8689      << CXXCopyConstructor << Context.getTagDeclType(ClassDecl);
8690    CopyConstructor->setInvalidDecl();
8691  }  else {
8692    Sema::CompoundScopeRAII CompoundScope(*this);
8693    CopyConstructor->setBody(ActOnCompoundStmt(CopyConstructor->getLocation(),
8694                                               CopyConstructor->getLocation(),
8695                                               MultiStmtArg(*this, 0, 0),
8696                                               /*isStmtExpr=*/false)
8697                                                              .takeAs<Stmt>());
8698    CopyConstructor->setImplicitlyDefined(true);
8699  }
8700
8701  CopyConstructor->setUsed();
8702  if (ASTMutationListener *L = getASTMutationListener()) {
8703    L->CompletedImplicitDefinition(CopyConstructor);
8704  }
8705}
8706
8707Sema::ImplicitExceptionSpecification
8708Sema::ComputeDefaultedMoveCtorExceptionSpec(CXXRecordDecl *ClassDecl) {
8709  // C++ [except.spec]p14:
8710  //   An implicitly declared special member function (Clause 12) shall have an
8711  //   exception-specification. [...]
8712  ImplicitExceptionSpecification ExceptSpec(*this);
8713  if (ClassDecl->isInvalidDecl())
8714    return ExceptSpec;
8715
8716  // Direct base-class constructors.
8717  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
8718                                       BEnd = ClassDecl->bases_end();
8719       B != BEnd; ++B) {
8720    if (B->isVirtual()) // Handled below.
8721      continue;
8722
8723    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
8724      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
8725      CXXConstructorDecl *Constructor =
8726          LookupMovingConstructor(BaseClassDecl, 0);
8727      // If this is a deleted function, add it anyway. This might be conformant
8728      // with the standard. This might not. I'm not sure. It might not matter.
8729      if (Constructor)
8730        ExceptSpec.CalledDecl(B->getLocStart(), Constructor);
8731    }
8732  }
8733
8734  // Virtual base-class constructors.
8735  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
8736                                       BEnd = ClassDecl->vbases_end();
8737       B != BEnd; ++B) {
8738    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
8739      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
8740      CXXConstructorDecl *Constructor =
8741          LookupMovingConstructor(BaseClassDecl, 0);
8742      // If this is a deleted function, add it anyway. This might be conformant
8743      // with the standard. This might not. I'm not sure. It might not matter.
8744      if (Constructor)
8745        ExceptSpec.CalledDecl(B->getLocStart(), Constructor);
8746    }
8747  }
8748
8749  // Field constructors.
8750  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
8751                               FEnd = ClassDecl->field_end();
8752       F != FEnd; ++F) {
8753    QualType FieldType = Context.getBaseElementType(F->getType());
8754    if (CXXRecordDecl *FieldRecDecl = FieldType->getAsCXXRecordDecl()) {
8755      CXXConstructorDecl *Constructor =
8756          LookupMovingConstructor(FieldRecDecl, FieldType.getCVRQualifiers());
8757      // If this is a deleted function, add it anyway. This might be conformant
8758      // with the standard. This might not. I'm not sure. It might not matter.
8759      // In particular, the problem is that this function never gets called. It
8760      // might just be ill-formed because this function attempts to refer to
8761      // a deleted function here.
8762      if (Constructor)
8763        ExceptSpec.CalledDecl(F->getLocation(), Constructor);
8764    }
8765  }
8766
8767  return ExceptSpec;
8768}
8769
8770CXXConstructorDecl *Sema::DeclareImplicitMoveConstructor(
8771                                                    CXXRecordDecl *ClassDecl) {
8772  // C++11 [class.copy]p9:
8773  //   If the definition of a class X does not explicitly declare a move
8774  //   constructor, one will be implicitly declared as defaulted if and only if:
8775  //
8776  //   - [first 4 bullets]
8777  assert(ClassDecl->needsImplicitMoveConstructor());
8778
8779  // [Checked after we build the declaration]
8780  //   - the move assignment operator would not be implicitly defined as
8781  //     deleted,
8782
8783  // [DR1402]:
8784  //   - each of X's non-static data members and direct or virtual base classes
8785  //     has a type that either has a move constructor or is trivially copyable.
8786  if (!subobjectsHaveMoveOrTrivialCopy(*this, ClassDecl, /*Constructor*/true)) {
8787    ClassDecl->setFailedImplicitMoveConstructor();
8788    return 0;
8789  }
8790
8791  ImplicitExceptionSpecification Spec(
8792      ComputeDefaultedMoveCtorExceptionSpec(ClassDecl));
8793
8794  QualType ClassType = Context.getTypeDeclType(ClassDecl);
8795  QualType ArgType = Context.getRValueReferenceType(ClassType);
8796
8797  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
8798
8799  bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl,
8800                                                     CXXMoveConstructor,
8801                                                     false);
8802
8803  DeclarationName Name
8804    = Context.DeclarationNames.getCXXConstructorName(
8805                                           Context.getCanonicalType(ClassType));
8806  SourceLocation ClassLoc = ClassDecl->getLocation();
8807  DeclarationNameInfo NameInfo(Name, ClassLoc);
8808
8809  // C++0x [class.copy]p11:
8810  //   An implicitly-declared copy/move constructor is an inline public
8811  //   member of its class.
8812  CXXConstructorDecl *MoveConstructor = CXXConstructorDecl::Create(
8813      Context, ClassDecl, ClassLoc, NameInfo,
8814      Context.getFunctionType(Context.VoidTy, &ArgType, 1, EPI), /*TInfo=*/0,
8815      /*isExplicit=*/false, /*isInline=*/true, /*isImplicitlyDeclared=*/true,
8816      Constexpr);
8817  MoveConstructor->setAccess(AS_public);
8818  MoveConstructor->setDefaulted();
8819  MoveConstructor->setTrivial(ClassDecl->hasTrivialMoveConstructor());
8820
8821  // Add the parameter to the constructor.
8822  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, MoveConstructor,
8823                                               ClassLoc, ClassLoc,
8824                                               /*IdentifierInfo=*/0,
8825                                               ArgType, /*TInfo=*/0,
8826                                               SC_None,
8827                                               SC_None, 0);
8828  MoveConstructor->setParams(FromParam);
8829
8830  // C++0x [class.copy]p9:
8831  //   If the definition of a class X does not explicitly declare a move
8832  //   constructor, one will be implicitly declared as defaulted if and only if:
8833  //   [...]
8834  //   - the move constructor would not be implicitly defined as deleted.
8835  if (ShouldDeleteSpecialMember(MoveConstructor, CXXMoveConstructor)) {
8836    // Cache this result so that we don't try to generate this over and over
8837    // on every lookup, leaking memory and wasting time.
8838    ClassDecl->setFailedImplicitMoveConstructor();
8839    return 0;
8840  }
8841
8842  // Note that we have declared this constructor.
8843  ++ASTContext::NumImplicitMoveConstructorsDeclared;
8844
8845  if (Scope *S = getScopeForContext(ClassDecl))
8846    PushOnScopeChains(MoveConstructor, S, false);
8847  ClassDecl->addDecl(MoveConstructor);
8848
8849  return MoveConstructor;
8850}
8851
8852void Sema::DefineImplicitMoveConstructor(SourceLocation CurrentLocation,
8853                                   CXXConstructorDecl *MoveConstructor) {
8854  assert((MoveConstructor->isDefaulted() &&
8855          MoveConstructor->isMoveConstructor() &&
8856          !MoveConstructor->doesThisDeclarationHaveABody() &&
8857          !MoveConstructor->isDeleted()) &&
8858         "DefineImplicitMoveConstructor - call it for implicit move ctor");
8859
8860  CXXRecordDecl *ClassDecl = MoveConstructor->getParent();
8861  assert(ClassDecl && "DefineImplicitMoveConstructor - invalid constructor");
8862
8863  ImplicitlyDefinedFunctionScope Scope(*this, MoveConstructor);
8864  DiagnosticErrorTrap Trap(Diags);
8865
8866  if (SetCtorInitializers(MoveConstructor, 0, 0, /*AnyErrors=*/false) ||
8867      Trap.hasErrorOccurred()) {
8868    Diag(CurrentLocation, diag::note_member_synthesized_at)
8869      << CXXMoveConstructor << Context.getTagDeclType(ClassDecl);
8870    MoveConstructor->setInvalidDecl();
8871  }  else {
8872    Sema::CompoundScopeRAII CompoundScope(*this);
8873    MoveConstructor->setBody(ActOnCompoundStmt(MoveConstructor->getLocation(),
8874                                               MoveConstructor->getLocation(),
8875                                               MultiStmtArg(*this, 0, 0),
8876                                               /*isStmtExpr=*/false)
8877                                                              .takeAs<Stmt>());
8878    MoveConstructor->setImplicitlyDefined(true);
8879  }
8880
8881  MoveConstructor->setUsed();
8882
8883  if (ASTMutationListener *L = getASTMutationListener()) {
8884    L->CompletedImplicitDefinition(MoveConstructor);
8885  }
8886}
8887
8888bool Sema::isImplicitlyDeleted(FunctionDecl *FD) {
8889  return FD->isDeleted() &&
8890         (FD->isDefaulted() || FD->isImplicit()) &&
8891         isa<CXXMethodDecl>(FD);
8892}
8893
8894/// \brief Mark the call operator of the given lambda closure type as "used".
8895static void markLambdaCallOperatorUsed(Sema &S, CXXRecordDecl *Lambda) {
8896  CXXMethodDecl *CallOperator
8897    = cast<CXXMethodDecl>(
8898        *Lambda->lookup(
8899          S.Context.DeclarationNames.getCXXOperatorName(OO_Call)).first);
8900  CallOperator->setReferenced();
8901  CallOperator->setUsed();
8902}
8903
8904void Sema::DefineImplicitLambdaToFunctionPointerConversion(
8905       SourceLocation CurrentLocation,
8906       CXXConversionDecl *Conv)
8907{
8908  CXXRecordDecl *Lambda = Conv->getParent();
8909
8910  // Make sure that the lambda call operator is marked used.
8911  markLambdaCallOperatorUsed(*this, Lambda);
8912
8913  Conv->setUsed();
8914
8915  ImplicitlyDefinedFunctionScope Scope(*this, Conv);
8916  DiagnosticErrorTrap Trap(Diags);
8917
8918  // Return the address of the __invoke function.
8919  DeclarationName InvokeName = &Context.Idents.get("__invoke");
8920  CXXMethodDecl *Invoke
8921    = cast<CXXMethodDecl>(*Lambda->lookup(InvokeName).first);
8922  Expr *FunctionRef = BuildDeclRefExpr(Invoke, Invoke->getType(),
8923                                       VK_LValue, Conv->getLocation()).take();
8924  assert(FunctionRef && "Can't refer to __invoke function?");
8925  Stmt *Return = ActOnReturnStmt(Conv->getLocation(), FunctionRef).take();
8926  Conv->setBody(new (Context) CompoundStmt(Context, &Return, 1,
8927                                           Conv->getLocation(),
8928                                           Conv->getLocation()));
8929
8930  // Fill in the __invoke function with a dummy implementation. IR generation
8931  // will fill in the actual details.
8932  Invoke->setUsed();
8933  Invoke->setReferenced();
8934  Invoke->setBody(new (Context) CompoundStmt(Conv->getLocation()));
8935
8936  if (ASTMutationListener *L = getASTMutationListener()) {
8937    L->CompletedImplicitDefinition(Conv);
8938    L->CompletedImplicitDefinition(Invoke);
8939  }
8940}
8941
8942void Sema::DefineImplicitLambdaToBlockPointerConversion(
8943       SourceLocation CurrentLocation,
8944       CXXConversionDecl *Conv)
8945{
8946  Conv->setUsed();
8947
8948  ImplicitlyDefinedFunctionScope Scope(*this, Conv);
8949  DiagnosticErrorTrap Trap(Diags);
8950
8951  // Copy-initialize the lambda object as needed to capture it.
8952  Expr *This = ActOnCXXThis(CurrentLocation).take();
8953  Expr *DerefThis =CreateBuiltinUnaryOp(CurrentLocation, UO_Deref, This).take();
8954
8955  ExprResult BuildBlock = BuildBlockForLambdaConversion(CurrentLocation,
8956                                                        Conv->getLocation(),
8957                                                        Conv, DerefThis);
8958
8959  // If we're not under ARC, make sure we still get the _Block_copy/autorelease
8960  // behavior.  Note that only the general conversion function does this
8961  // (since it's unusable otherwise); in the case where we inline the
8962  // block literal, it has block literal lifetime semantics.
8963  if (!BuildBlock.isInvalid() && !getLangOpts().ObjCAutoRefCount)
8964    BuildBlock = ImplicitCastExpr::Create(Context, BuildBlock.get()->getType(),
8965                                          CK_CopyAndAutoreleaseBlockObject,
8966                                          BuildBlock.get(), 0, VK_RValue);
8967
8968  if (BuildBlock.isInvalid()) {
8969    Diag(CurrentLocation, diag::note_lambda_to_block_conv);
8970    Conv->setInvalidDecl();
8971    return;
8972  }
8973
8974  // Create the return statement that returns the block from the conversion
8975  // function.
8976  StmtResult Return = ActOnReturnStmt(Conv->getLocation(), BuildBlock.get());
8977  if (Return.isInvalid()) {
8978    Diag(CurrentLocation, diag::note_lambda_to_block_conv);
8979    Conv->setInvalidDecl();
8980    return;
8981  }
8982
8983  // Set the body of the conversion function.
8984  Stmt *ReturnS = Return.take();
8985  Conv->setBody(new (Context) CompoundStmt(Context, &ReturnS, 1,
8986                                           Conv->getLocation(),
8987                                           Conv->getLocation()));
8988
8989  // We're done; notify the mutation listener, if any.
8990  if (ASTMutationListener *L = getASTMutationListener()) {
8991    L->CompletedImplicitDefinition(Conv);
8992  }
8993}
8994
8995/// \brief Determine whether the given list arguments contains exactly one
8996/// "real" (non-default) argument.
8997static bool hasOneRealArgument(MultiExprArg Args) {
8998  switch (Args.size()) {
8999  case 0:
9000    return false;
9001
9002  default:
9003    if (!Args.get()[1]->isDefaultArgument())
9004      return false;
9005
9006    // fall through
9007  case 1:
9008    return !Args.get()[0]->isDefaultArgument();
9009  }
9010
9011  return false;
9012}
9013
9014ExprResult
9015Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
9016                            CXXConstructorDecl *Constructor,
9017                            MultiExprArg ExprArgs,
9018                            bool HadMultipleCandidates,
9019                            bool RequiresZeroInit,
9020                            unsigned ConstructKind,
9021                            SourceRange ParenRange) {
9022  bool Elidable = false;
9023
9024  // C++0x [class.copy]p34:
9025  //   When certain criteria are met, an implementation is allowed to
9026  //   omit the copy/move construction of a class object, even if the
9027  //   copy/move constructor and/or destructor for the object have
9028  //   side effects. [...]
9029  //     - when a temporary class object that has not been bound to a
9030  //       reference (12.2) would be copied/moved to a class object
9031  //       with the same cv-unqualified type, the copy/move operation
9032  //       can be omitted by constructing the temporary object
9033  //       directly into the target of the omitted copy/move
9034  if (ConstructKind == CXXConstructExpr::CK_Complete &&
9035      Constructor->isCopyOrMoveConstructor() && hasOneRealArgument(ExprArgs)) {
9036    Expr *SubExpr = ((Expr **)ExprArgs.get())[0];
9037    Elidable = SubExpr->isTemporaryObject(Context, Constructor->getParent());
9038  }
9039
9040  return BuildCXXConstructExpr(ConstructLoc, DeclInitType, Constructor,
9041                               Elidable, move(ExprArgs), HadMultipleCandidates,
9042                               RequiresZeroInit, ConstructKind, ParenRange);
9043}
9044
9045/// BuildCXXConstructExpr - Creates a complete call to a constructor,
9046/// including handling of its default argument expressions.
9047ExprResult
9048Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
9049                            CXXConstructorDecl *Constructor, bool Elidable,
9050                            MultiExprArg ExprArgs,
9051                            bool HadMultipleCandidates,
9052                            bool RequiresZeroInit,
9053                            unsigned ConstructKind,
9054                            SourceRange ParenRange) {
9055  unsigned NumExprs = ExprArgs.size();
9056  Expr **Exprs = (Expr **)ExprArgs.release();
9057
9058  MarkFunctionReferenced(ConstructLoc, Constructor);
9059  return Owned(CXXConstructExpr::Create(Context, DeclInitType, ConstructLoc,
9060                                        Constructor, Elidable, Exprs, NumExprs,
9061                                        HadMultipleCandidates, /*FIXME*/false,
9062                                        RequiresZeroInit,
9063              static_cast<CXXConstructExpr::ConstructionKind>(ConstructKind),
9064                                        ParenRange));
9065}
9066
9067bool Sema::InitializeVarWithConstructor(VarDecl *VD,
9068                                        CXXConstructorDecl *Constructor,
9069                                        MultiExprArg Exprs,
9070                                        bool HadMultipleCandidates) {
9071  // FIXME: Provide the correct paren SourceRange when available.
9072  ExprResult TempResult =
9073    BuildCXXConstructExpr(VD->getLocation(), VD->getType(), Constructor,
9074                          move(Exprs), HadMultipleCandidates, false,
9075                          CXXConstructExpr::CK_Complete, SourceRange());
9076  if (TempResult.isInvalid())
9077    return true;
9078
9079  Expr *Temp = TempResult.takeAs<Expr>();
9080  CheckImplicitConversions(Temp, VD->getLocation());
9081  MarkFunctionReferenced(VD->getLocation(), Constructor);
9082  Temp = MaybeCreateExprWithCleanups(Temp);
9083  VD->setInit(Temp);
9084
9085  return false;
9086}
9087
9088void Sema::FinalizeVarWithDestructor(VarDecl *VD, const RecordType *Record) {
9089  if (VD->isInvalidDecl()) return;
9090
9091  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Record->getDecl());
9092  if (ClassDecl->isInvalidDecl()) return;
9093  if (ClassDecl->hasIrrelevantDestructor()) return;
9094  if (ClassDecl->isDependentContext()) return;
9095
9096  CXXDestructorDecl *Destructor = LookupDestructor(ClassDecl);
9097  MarkFunctionReferenced(VD->getLocation(), Destructor);
9098  CheckDestructorAccess(VD->getLocation(), Destructor,
9099                        PDiag(diag::err_access_dtor_var)
9100                        << VD->getDeclName()
9101                        << VD->getType());
9102  DiagnoseUseOfDecl(Destructor, VD->getLocation());
9103
9104  if (!VD->hasGlobalStorage()) return;
9105
9106  // Emit warning for non-trivial dtor in global scope (a real global,
9107  // class-static, function-static).
9108  Diag(VD->getLocation(), diag::warn_exit_time_destructor);
9109
9110  // TODO: this should be re-enabled for static locals by !CXAAtExit
9111  if (!VD->isStaticLocal())
9112    Diag(VD->getLocation(), diag::warn_global_destructor);
9113}
9114
9115/// \brief Given a constructor and the set of arguments provided for the
9116/// constructor, convert the arguments and add any required default arguments
9117/// to form a proper call to this constructor.
9118///
9119/// \returns true if an error occurred, false otherwise.
9120bool
9121Sema::CompleteConstructorCall(CXXConstructorDecl *Constructor,
9122                              MultiExprArg ArgsPtr,
9123                              SourceLocation Loc,
9124                              ASTOwningVector<Expr*> &ConvertedArgs,
9125                              bool AllowExplicit) {
9126  // FIXME: This duplicates a lot of code from Sema::ConvertArgumentsForCall.
9127  unsigned NumArgs = ArgsPtr.size();
9128  Expr **Args = (Expr **)ArgsPtr.get();
9129
9130  const FunctionProtoType *Proto
9131    = Constructor->getType()->getAs<FunctionProtoType>();
9132  assert(Proto && "Constructor without a prototype?");
9133  unsigned NumArgsInProto = Proto->getNumArgs();
9134
9135  // If too few arguments are available, we'll fill in the rest with defaults.
9136  if (NumArgs < NumArgsInProto)
9137    ConvertedArgs.reserve(NumArgsInProto);
9138  else
9139    ConvertedArgs.reserve(NumArgs);
9140
9141  VariadicCallType CallType =
9142    Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply;
9143  SmallVector<Expr *, 8> AllArgs;
9144  bool Invalid = GatherArgumentsForCall(Loc, Constructor,
9145                                        Proto, 0, Args, NumArgs, AllArgs,
9146                                        CallType, AllowExplicit);
9147  ConvertedArgs.append(AllArgs.begin(), AllArgs.end());
9148
9149  DiagnoseSentinelCalls(Constructor, Loc, AllArgs.data(), AllArgs.size());
9150
9151  CheckConstructorCall(Constructor, AllArgs.data(), AllArgs.size(),
9152                       Proto, Loc);
9153
9154  return Invalid;
9155}
9156
9157static inline bool
9158CheckOperatorNewDeleteDeclarationScope(Sema &SemaRef,
9159                                       const FunctionDecl *FnDecl) {
9160  const DeclContext *DC = FnDecl->getDeclContext()->getRedeclContext();
9161  if (isa<NamespaceDecl>(DC)) {
9162    return SemaRef.Diag(FnDecl->getLocation(),
9163                        diag::err_operator_new_delete_declared_in_namespace)
9164      << FnDecl->getDeclName();
9165  }
9166
9167  if (isa<TranslationUnitDecl>(DC) &&
9168      FnDecl->getStorageClass() == SC_Static) {
9169    return SemaRef.Diag(FnDecl->getLocation(),
9170                        diag::err_operator_new_delete_declared_static)
9171      << FnDecl->getDeclName();
9172  }
9173
9174  return false;
9175}
9176
9177static inline bool
9178CheckOperatorNewDeleteTypes(Sema &SemaRef, const FunctionDecl *FnDecl,
9179                            CanQualType ExpectedResultType,
9180                            CanQualType ExpectedFirstParamType,
9181                            unsigned DependentParamTypeDiag,
9182                            unsigned InvalidParamTypeDiag) {
9183  QualType ResultType =
9184    FnDecl->getType()->getAs<FunctionType>()->getResultType();
9185
9186  // Check that the result type is not dependent.
9187  if (ResultType->isDependentType())
9188    return SemaRef.Diag(FnDecl->getLocation(),
9189                        diag::err_operator_new_delete_dependent_result_type)
9190    << FnDecl->getDeclName() << ExpectedResultType;
9191
9192  // Check that the result type is what we expect.
9193  if (SemaRef.Context.getCanonicalType(ResultType) != ExpectedResultType)
9194    return SemaRef.Diag(FnDecl->getLocation(),
9195                        diag::err_operator_new_delete_invalid_result_type)
9196    << FnDecl->getDeclName() << ExpectedResultType;
9197
9198  // A function template must have at least 2 parameters.
9199  if (FnDecl->getDescribedFunctionTemplate() && FnDecl->getNumParams() < 2)
9200    return SemaRef.Diag(FnDecl->getLocation(),
9201                      diag::err_operator_new_delete_template_too_few_parameters)
9202        << FnDecl->getDeclName();
9203
9204  // The function decl must have at least 1 parameter.
9205  if (FnDecl->getNumParams() == 0)
9206    return SemaRef.Diag(FnDecl->getLocation(),
9207                        diag::err_operator_new_delete_too_few_parameters)
9208      << FnDecl->getDeclName();
9209
9210  // Check the the first parameter type is not dependent.
9211  QualType FirstParamType = FnDecl->getParamDecl(0)->getType();
9212  if (FirstParamType->isDependentType())
9213    return SemaRef.Diag(FnDecl->getLocation(), DependentParamTypeDiag)
9214      << FnDecl->getDeclName() << ExpectedFirstParamType;
9215
9216  // Check that the first parameter type is what we expect.
9217  if (SemaRef.Context.getCanonicalType(FirstParamType).getUnqualifiedType() !=
9218      ExpectedFirstParamType)
9219    return SemaRef.Diag(FnDecl->getLocation(), InvalidParamTypeDiag)
9220    << FnDecl->getDeclName() << ExpectedFirstParamType;
9221
9222  return false;
9223}
9224
9225static bool
9226CheckOperatorNewDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
9227  // C++ [basic.stc.dynamic.allocation]p1:
9228  //   A program is ill-formed if an allocation function is declared in a
9229  //   namespace scope other than global scope or declared static in global
9230  //   scope.
9231  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
9232    return true;
9233
9234  CanQualType SizeTy =
9235    SemaRef.Context.getCanonicalType(SemaRef.Context.getSizeType());
9236
9237  // C++ [basic.stc.dynamic.allocation]p1:
9238  //  The return type shall be void*. The first parameter shall have type
9239  //  std::size_t.
9240  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidPtrTy,
9241                                  SizeTy,
9242                                  diag::err_operator_new_dependent_param_type,
9243                                  diag::err_operator_new_param_type))
9244    return true;
9245
9246  // C++ [basic.stc.dynamic.allocation]p1:
9247  //  The first parameter shall not have an associated default argument.
9248  if (FnDecl->getParamDecl(0)->hasDefaultArg())
9249    return SemaRef.Diag(FnDecl->getLocation(),
9250                        diag::err_operator_new_default_arg)
9251      << FnDecl->getDeclName() << FnDecl->getParamDecl(0)->getDefaultArgRange();
9252
9253  return false;
9254}
9255
9256static bool
9257CheckOperatorDeleteDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
9258  // C++ [basic.stc.dynamic.deallocation]p1:
9259  //   A program is ill-formed if deallocation functions are declared in a
9260  //   namespace scope other than global scope or declared static in global
9261  //   scope.
9262  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
9263    return true;
9264
9265  // C++ [basic.stc.dynamic.deallocation]p2:
9266  //   Each deallocation function shall return void and its first parameter
9267  //   shall be void*.
9268  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidTy,
9269                                  SemaRef.Context.VoidPtrTy,
9270                                 diag::err_operator_delete_dependent_param_type,
9271                                 diag::err_operator_delete_param_type))
9272    return true;
9273
9274  return false;
9275}
9276
9277/// CheckOverloadedOperatorDeclaration - Check whether the declaration
9278/// of this overloaded operator is well-formed. If so, returns false;
9279/// otherwise, emits appropriate diagnostics and returns true.
9280bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
9281  assert(FnDecl && FnDecl->isOverloadedOperator() &&
9282         "Expected an overloaded operator declaration");
9283
9284  OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
9285
9286  // C++ [over.oper]p5:
9287  //   The allocation and deallocation functions, operator new,
9288  //   operator new[], operator delete and operator delete[], are
9289  //   described completely in 3.7.3. The attributes and restrictions
9290  //   found in the rest of this subclause do not apply to them unless
9291  //   explicitly stated in 3.7.3.
9292  if (Op == OO_Delete || Op == OO_Array_Delete)
9293    return CheckOperatorDeleteDeclaration(*this, FnDecl);
9294
9295  if (Op == OO_New || Op == OO_Array_New)
9296    return CheckOperatorNewDeclaration(*this, FnDecl);
9297
9298  // C++ [over.oper]p6:
9299  //   An operator function shall either be a non-static member
9300  //   function or be a non-member function and have at least one
9301  //   parameter whose type is a class, a reference to a class, an
9302  //   enumeration, or a reference to an enumeration.
9303  if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) {
9304    if (MethodDecl->isStatic())
9305      return Diag(FnDecl->getLocation(),
9306                  diag::err_operator_overload_static) << FnDecl->getDeclName();
9307  } else {
9308    bool ClassOrEnumParam = false;
9309    for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
9310                                   ParamEnd = FnDecl->param_end();
9311         Param != ParamEnd; ++Param) {
9312      QualType ParamType = (*Param)->getType().getNonReferenceType();
9313      if (ParamType->isDependentType() || ParamType->isRecordType() ||
9314          ParamType->isEnumeralType()) {
9315        ClassOrEnumParam = true;
9316        break;
9317      }
9318    }
9319
9320    if (!ClassOrEnumParam)
9321      return Diag(FnDecl->getLocation(),
9322                  diag::err_operator_overload_needs_class_or_enum)
9323        << FnDecl->getDeclName();
9324  }
9325
9326  // C++ [over.oper]p8:
9327  //   An operator function cannot have default arguments (8.3.6),
9328  //   except where explicitly stated below.
9329  //
9330  // Only the function-call operator allows default arguments
9331  // (C++ [over.call]p1).
9332  if (Op != OO_Call) {
9333    for (FunctionDecl::param_iterator Param = FnDecl->param_begin();
9334         Param != FnDecl->param_end(); ++Param) {
9335      if ((*Param)->hasDefaultArg())
9336        return Diag((*Param)->getLocation(),
9337                    diag::err_operator_overload_default_arg)
9338          << FnDecl->getDeclName() << (*Param)->getDefaultArgRange();
9339    }
9340  }
9341
9342  static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
9343    { false, false, false }
9344#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
9345    , { Unary, Binary, MemberOnly }
9346#include "clang/Basic/OperatorKinds.def"
9347  };
9348
9349  bool CanBeUnaryOperator = OperatorUses[Op][0];
9350  bool CanBeBinaryOperator = OperatorUses[Op][1];
9351  bool MustBeMemberOperator = OperatorUses[Op][2];
9352
9353  // C++ [over.oper]p8:
9354  //   [...] Operator functions cannot have more or fewer parameters
9355  //   than the number required for the corresponding operator, as
9356  //   described in the rest of this subclause.
9357  unsigned NumParams = FnDecl->getNumParams()
9358                     + (isa<CXXMethodDecl>(FnDecl)? 1 : 0);
9359  if (Op != OO_Call &&
9360      ((NumParams == 1 && !CanBeUnaryOperator) ||
9361       (NumParams == 2 && !CanBeBinaryOperator) ||
9362       (NumParams < 1) || (NumParams > 2))) {
9363    // We have the wrong number of parameters.
9364    unsigned ErrorKind;
9365    if (CanBeUnaryOperator && CanBeBinaryOperator) {
9366      ErrorKind = 2;  // 2 -> unary or binary.
9367    } else if (CanBeUnaryOperator) {
9368      ErrorKind = 0;  // 0 -> unary
9369    } else {
9370      assert(CanBeBinaryOperator &&
9371             "All non-call overloaded operators are unary or binary!");
9372      ErrorKind = 1;  // 1 -> binary
9373    }
9374
9375    return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be)
9376      << FnDecl->getDeclName() << NumParams << ErrorKind;
9377  }
9378
9379  // Overloaded operators other than operator() cannot be variadic.
9380  if (Op != OO_Call &&
9381      FnDecl->getType()->getAs<FunctionProtoType>()->isVariadic()) {
9382    return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
9383      << FnDecl->getDeclName();
9384  }
9385
9386  // Some operators must be non-static member functions.
9387  if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) {
9388    return Diag(FnDecl->getLocation(),
9389                diag::err_operator_overload_must_be_member)
9390      << FnDecl->getDeclName();
9391  }
9392
9393  // C++ [over.inc]p1:
9394  //   The user-defined function called operator++ implements the
9395  //   prefix and postfix ++ operator. If this function is a member
9396  //   function with no parameters, or a non-member function with one
9397  //   parameter of class or enumeration type, it defines the prefix
9398  //   increment operator ++ for objects of that type. If the function
9399  //   is a member function with one parameter (which shall be of type
9400  //   int) or a non-member function with two parameters (the second
9401  //   of which shall be of type int), it defines the postfix
9402  //   increment operator ++ for objects of that type.
9403  if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
9404    ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
9405    bool ParamIsInt = false;
9406    if (const BuiltinType *BT = LastParam->getType()->getAs<BuiltinType>())
9407      ParamIsInt = BT->getKind() == BuiltinType::Int;
9408
9409    if (!ParamIsInt)
9410      return Diag(LastParam->getLocation(),
9411                  diag::err_operator_overload_post_incdec_must_be_int)
9412        << LastParam->getType() << (Op == OO_MinusMinus);
9413  }
9414
9415  return false;
9416}
9417
9418/// CheckLiteralOperatorDeclaration - Check whether the declaration
9419/// of this literal operator function is well-formed. If so, returns
9420/// false; otherwise, emits appropriate diagnostics and returns true.
9421bool Sema::CheckLiteralOperatorDeclaration(FunctionDecl *FnDecl) {
9422  if (isa<CXXMethodDecl>(FnDecl)) {
9423    Diag(FnDecl->getLocation(), diag::err_literal_operator_outside_namespace)
9424      << FnDecl->getDeclName();
9425    return true;
9426  }
9427
9428  if (FnDecl->isExternC()) {
9429    Diag(FnDecl->getLocation(), diag::err_literal_operator_extern_c);
9430    return true;
9431  }
9432
9433  bool Valid = false;
9434
9435  // This might be the definition of a literal operator template.
9436  FunctionTemplateDecl *TpDecl = FnDecl->getDescribedFunctionTemplate();
9437  // This might be a specialization of a literal operator template.
9438  if (!TpDecl)
9439    TpDecl = FnDecl->getPrimaryTemplate();
9440
9441  // template <char...> type operator "" name() is the only valid template
9442  // signature, and the only valid signature with no parameters.
9443  if (TpDecl) {
9444    if (FnDecl->param_size() == 0) {
9445      // Must have only one template parameter
9446      TemplateParameterList *Params = TpDecl->getTemplateParameters();
9447      if (Params->size() == 1) {
9448        NonTypeTemplateParmDecl *PmDecl =
9449          cast<NonTypeTemplateParmDecl>(Params->getParam(0));
9450
9451        // The template parameter must be a char parameter pack.
9452        if (PmDecl && PmDecl->isTemplateParameterPack() &&
9453            Context.hasSameType(PmDecl->getType(), Context.CharTy))
9454          Valid = true;
9455      }
9456    }
9457  } else if (FnDecl->param_size()) {
9458    // Check the first parameter
9459    FunctionDecl::param_iterator Param = FnDecl->param_begin();
9460
9461    QualType T = (*Param)->getType().getUnqualifiedType();
9462
9463    // unsigned long long int, long double, and any character type are allowed
9464    // as the only parameters.
9465    if (Context.hasSameType(T, Context.UnsignedLongLongTy) ||
9466        Context.hasSameType(T, Context.LongDoubleTy) ||
9467        Context.hasSameType(T, Context.CharTy) ||
9468        Context.hasSameType(T, Context.WCharTy) ||
9469        Context.hasSameType(T, Context.Char16Ty) ||
9470        Context.hasSameType(T, Context.Char32Ty)) {
9471      if (++Param == FnDecl->param_end())
9472        Valid = true;
9473      goto FinishedParams;
9474    }
9475
9476    // Otherwise it must be a pointer to const; let's strip those qualifiers.
9477    const PointerType *PT = T->getAs<PointerType>();
9478    if (!PT)
9479      goto FinishedParams;
9480    T = PT->getPointeeType();
9481    if (!T.isConstQualified() || T.isVolatileQualified())
9482      goto FinishedParams;
9483    T = T.getUnqualifiedType();
9484
9485    // Move on to the second parameter;
9486    ++Param;
9487
9488    // If there is no second parameter, the first must be a const char *
9489    if (Param == FnDecl->param_end()) {
9490      if (Context.hasSameType(T, Context.CharTy))
9491        Valid = true;
9492      goto FinishedParams;
9493    }
9494
9495    // const char *, const wchar_t*, const char16_t*, and const char32_t*
9496    // are allowed as the first parameter to a two-parameter function
9497    if (!(Context.hasSameType(T, Context.CharTy) ||
9498          Context.hasSameType(T, Context.WCharTy) ||
9499          Context.hasSameType(T, Context.Char16Ty) ||
9500          Context.hasSameType(T, Context.Char32Ty)))
9501      goto FinishedParams;
9502
9503    // The second and final parameter must be an std::size_t
9504    T = (*Param)->getType().getUnqualifiedType();
9505    if (Context.hasSameType(T, Context.getSizeType()) &&
9506        ++Param == FnDecl->param_end())
9507      Valid = true;
9508  }
9509
9510  // FIXME: This diagnostic is absolutely terrible.
9511FinishedParams:
9512  if (!Valid) {
9513    Diag(FnDecl->getLocation(), diag::err_literal_operator_params)
9514      << FnDecl->getDeclName();
9515    return true;
9516  }
9517
9518  // A parameter-declaration-clause containing a default argument is not
9519  // equivalent to any of the permitted forms.
9520  for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
9521                                    ParamEnd = FnDecl->param_end();
9522       Param != ParamEnd; ++Param) {
9523    if ((*Param)->hasDefaultArg()) {
9524      Diag((*Param)->getDefaultArgRange().getBegin(),
9525           diag::err_literal_operator_default_argument)
9526        << (*Param)->getDefaultArgRange();
9527      break;
9528    }
9529  }
9530
9531  StringRef LiteralName
9532    = FnDecl->getDeclName().getCXXLiteralIdentifier()->getName();
9533  if (LiteralName[0] != '_') {
9534    // C++11 [usrlit.suffix]p1:
9535    //   Literal suffix identifiers that do not start with an underscore
9536    //   are reserved for future standardization.
9537    Diag(FnDecl->getLocation(), diag::warn_user_literal_reserved);
9538  }
9539
9540  return false;
9541}
9542
9543/// ActOnStartLinkageSpecification - Parsed the beginning of a C++
9544/// linkage specification, including the language and (if present)
9545/// the '{'. ExternLoc is the location of the 'extern', LangLoc is
9546/// the location of the language string literal, which is provided
9547/// by Lang/StrSize. LBraceLoc, if valid, provides the location of
9548/// the '{' brace. Otherwise, this linkage specification does not
9549/// have any braces.
9550Decl *Sema::ActOnStartLinkageSpecification(Scope *S, SourceLocation ExternLoc,
9551                                           SourceLocation LangLoc,
9552                                           StringRef Lang,
9553                                           SourceLocation LBraceLoc) {
9554  LinkageSpecDecl::LanguageIDs Language;
9555  if (Lang == "\"C\"")
9556    Language = LinkageSpecDecl::lang_c;
9557  else if (Lang == "\"C++\"")
9558    Language = LinkageSpecDecl::lang_cxx;
9559  else {
9560    Diag(LangLoc, diag::err_bad_language);
9561    return 0;
9562  }
9563
9564  // FIXME: Add all the various semantics of linkage specifications
9565
9566  LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext,
9567                                               ExternLoc, LangLoc, Language);
9568  CurContext->addDecl(D);
9569  PushDeclContext(S, D);
9570  return D;
9571}
9572
9573/// ActOnFinishLinkageSpecification - Complete the definition of
9574/// the C++ linkage specification LinkageSpec. If RBraceLoc is
9575/// valid, it's the position of the closing '}' brace in a linkage
9576/// specification that uses braces.
9577Decl *Sema::ActOnFinishLinkageSpecification(Scope *S,
9578                                            Decl *LinkageSpec,
9579                                            SourceLocation RBraceLoc) {
9580  if (LinkageSpec) {
9581    if (RBraceLoc.isValid()) {
9582      LinkageSpecDecl* LSDecl = cast<LinkageSpecDecl>(LinkageSpec);
9583      LSDecl->setRBraceLoc(RBraceLoc);
9584    }
9585    PopDeclContext();
9586  }
9587  return LinkageSpec;
9588}
9589
9590/// \brief Perform semantic analysis for the variable declaration that
9591/// occurs within a C++ catch clause, returning the newly-created
9592/// variable.
9593VarDecl *Sema::BuildExceptionDeclaration(Scope *S,
9594                                         TypeSourceInfo *TInfo,
9595                                         SourceLocation StartLoc,
9596                                         SourceLocation Loc,
9597                                         IdentifierInfo *Name) {
9598  bool Invalid = false;
9599  QualType ExDeclType = TInfo->getType();
9600
9601  // Arrays and functions decay.
9602  if (ExDeclType->isArrayType())
9603    ExDeclType = Context.getArrayDecayedType(ExDeclType);
9604  else if (ExDeclType->isFunctionType())
9605    ExDeclType = Context.getPointerType(ExDeclType);
9606
9607  // C++ 15.3p1: The exception-declaration shall not denote an incomplete type.
9608  // The exception-declaration shall not denote a pointer or reference to an
9609  // incomplete type, other than [cv] void*.
9610  // N2844 forbids rvalue references.
9611  if (!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) {
9612    Diag(Loc, diag::err_catch_rvalue_ref);
9613    Invalid = true;
9614  }
9615
9616  QualType BaseType = ExDeclType;
9617  int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference
9618  unsigned DK = diag::err_catch_incomplete;
9619  if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
9620    BaseType = Ptr->getPointeeType();
9621    Mode = 1;
9622    DK = diag::err_catch_incomplete_ptr;
9623  } else if (const ReferenceType *Ref = BaseType->getAs<ReferenceType>()) {
9624    // For the purpose of error recovery, we treat rvalue refs like lvalue refs.
9625    BaseType = Ref->getPointeeType();
9626    Mode = 2;
9627    DK = diag::err_catch_incomplete_ref;
9628  }
9629  if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) &&
9630      !BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK))
9631    Invalid = true;
9632
9633  if (!Invalid && !ExDeclType->isDependentType() &&
9634      RequireNonAbstractType(Loc, ExDeclType,
9635                             diag::err_abstract_type_in_decl,
9636                             AbstractVariableType))
9637    Invalid = true;
9638
9639  // Only the non-fragile NeXT runtime currently supports C++ catches
9640  // of ObjC types, and no runtime supports catching ObjC types by value.
9641  if (!Invalid && getLangOpts().ObjC1) {
9642    QualType T = ExDeclType;
9643    if (const ReferenceType *RT = T->getAs<ReferenceType>())
9644      T = RT->getPointeeType();
9645
9646    if (T->isObjCObjectType()) {
9647      Diag(Loc, diag::err_objc_object_catch);
9648      Invalid = true;
9649    } else if (T->isObjCObjectPointerType()) {
9650      // FIXME: should this be a test for macosx-fragile specifically?
9651      if (getLangOpts().ObjCRuntime.isFragile())
9652        Diag(Loc, diag::warn_objc_pointer_cxx_catch_fragile);
9653    }
9654  }
9655
9656  VarDecl *ExDecl = VarDecl::Create(Context, CurContext, StartLoc, Loc, Name,
9657                                    ExDeclType, TInfo, SC_None, SC_None);
9658  ExDecl->setExceptionVariable(true);
9659
9660  // In ARC, infer 'retaining' for variables of retainable type.
9661  if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(ExDecl))
9662    Invalid = true;
9663
9664  if (!Invalid && !ExDeclType->isDependentType()) {
9665    if (const RecordType *recordType = ExDeclType->getAs<RecordType>()) {
9666      // C++ [except.handle]p16:
9667      //   The object declared in an exception-declaration or, if the
9668      //   exception-declaration does not specify a name, a temporary (12.2) is
9669      //   copy-initialized (8.5) from the exception object. [...]
9670      //   The object is destroyed when the handler exits, after the destruction
9671      //   of any automatic objects initialized within the handler.
9672      //
9673      // We just pretend to initialize the object with itself, then make sure
9674      // it can be destroyed later.
9675      QualType initType = ExDeclType;
9676
9677      InitializedEntity entity =
9678        InitializedEntity::InitializeVariable(ExDecl);
9679      InitializationKind initKind =
9680        InitializationKind::CreateCopy(Loc, SourceLocation());
9681
9682      Expr *opaqueValue =
9683        new (Context) OpaqueValueExpr(Loc, initType, VK_LValue, OK_Ordinary);
9684      InitializationSequence sequence(*this, entity, initKind, &opaqueValue, 1);
9685      ExprResult result = sequence.Perform(*this, entity, initKind,
9686                                           MultiExprArg(&opaqueValue, 1));
9687      if (result.isInvalid())
9688        Invalid = true;
9689      else {
9690        // If the constructor used was non-trivial, set this as the
9691        // "initializer".
9692        CXXConstructExpr *construct = cast<CXXConstructExpr>(result.take());
9693        if (!construct->getConstructor()->isTrivial()) {
9694          Expr *init = MaybeCreateExprWithCleanups(construct);
9695          ExDecl->setInit(init);
9696        }
9697
9698        // And make sure it's destructable.
9699        FinalizeVarWithDestructor(ExDecl, recordType);
9700      }
9701    }
9702  }
9703
9704  if (Invalid)
9705    ExDecl->setInvalidDecl();
9706
9707  return ExDecl;
9708}
9709
9710/// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch
9711/// handler.
9712Decl *Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) {
9713  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
9714  bool Invalid = D.isInvalidType();
9715
9716  // Check for unexpanded parameter packs.
9717  if (TInfo && DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
9718                                               UPPC_ExceptionType)) {
9719    TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy,
9720                                             D.getIdentifierLoc());
9721    Invalid = true;
9722  }
9723
9724  IdentifierInfo *II = D.getIdentifier();
9725  if (NamedDecl *PrevDecl = LookupSingleName(S, II, D.getIdentifierLoc(),
9726                                             LookupOrdinaryName,
9727                                             ForRedeclaration)) {
9728    // The scope should be freshly made just for us. There is just no way
9729    // it contains any previous declaration.
9730    assert(!S->isDeclScope(PrevDecl));
9731    if (PrevDecl->isTemplateParameter()) {
9732      // Maybe we will complain about the shadowed template parameter.
9733      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
9734      PrevDecl = 0;
9735    }
9736  }
9737
9738  if (D.getCXXScopeSpec().isSet() && !Invalid) {
9739    Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator)
9740      << D.getCXXScopeSpec().getRange();
9741    Invalid = true;
9742  }
9743
9744  VarDecl *ExDecl = BuildExceptionDeclaration(S, TInfo,
9745                                              D.getLocStart(),
9746                                              D.getIdentifierLoc(),
9747                                              D.getIdentifier());
9748  if (Invalid)
9749    ExDecl->setInvalidDecl();
9750
9751  // Add the exception declaration into this scope.
9752  if (II)
9753    PushOnScopeChains(ExDecl, S);
9754  else
9755    CurContext->addDecl(ExDecl);
9756
9757  ProcessDeclAttributes(S, ExDecl, D);
9758  return ExDecl;
9759}
9760
9761Decl *Sema::ActOnStaticAssertDeclaration(SourceLocation StaticAssertLoc,
9762                                         Expr *AssertExpr,
9763                                         Expr *AssertMessageExpr,
9764                                         SourceLocation RParenLoc) {
9765  StringLiteral *AssertMessage = cast<StringLiteral>(AssertMessageExpr);
9766
9767  if (DiagnoseUnexpandedParameterPack(AssertExpr, UPPC_StaticAssertExpression))
9768    return 0;
9769
9770  return BuildStaticAssertDeclaration(StaticAssertLoc, AssertExpr,
9771                                      AssertMessage, RParenLoc, false);
9772}
9773
9774Decl *Sema::BuildStaticAssertDeclaration(SourceLocation StaticAssertLoc,
9775                                         Expr *AssertExpr,
9776                                         StringLiteral *AssertMessage,
9777                                         SourceLocation RParenLoc,
9778                                         bool Failed) {
9779  if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent() &&
9780      !Failed) {
9781    // In a static_assert-declaration, the constant-expression shall be a
9782    // constant expression that can be contextually converted to bool.
9783    ExprResult Converted = PerformContextuallyConvertToBool(AssertExpr);
9784    if (Converted.isInvalid())
9785      Failed = true;
9786
9787    llvm::APSInt Cond;
9788    if (!Failed && VerifyIntegerConstantExpression(Converted.get(), &Cond,
9789          diag::err_static_assert_expression_is_not_constant,
9790          /*AllowFold=*/false).isInvalid())
9791      Failed = true;
9792
9793    if (!Failed && !Cond) {
9794      llvm::SmallString<256> MsgBuffer;
9795      llvm::raw_svector_ostream Msg(MsgBuffer);
9796      AssertMessage->printPretty(Msg, Context, 0, getPrintingPolicy());
9797      Diag(StaticAssertLoc, diag::err_static_assert_failed)
9798        << Msg.str() << AssertExpr->getSourceRange();
9799      Failed = true;
9800    }
9801  }
9802
9803  Decl *Decl = StaticAssertDecl::Create(Context, CurContext, StaticAssertLoc,
9804                                        AssertExpr, AssertMessage, RParenLoc,
9805                                        Failed);
9806
9807  CurContext->addDecl(Decl);
9808  return Decl;
9809}
9810
9811/// \brief Perform semantic analysis of the given friend type declaration.
9812///
9813/// \returns A friend declaration that.
9814FriendDecl *Sema::CheckFriendTypeDecl(SourceLocation Loc,
9815                                      SourceLocation FriendLoc,
9816                                      TypeSourceInfo *TSInfo) {
9817  assert(TSInfo && "NULL TypeSourceInfo for friend type declaration");
9818
9819  QualType T = TSInfo->getType();
9820  SourceRange TypeRange = TSInfo->getTypeLoc().getLocalSourceRange();
9821
9822  // C++03 [class.friend]p2:
9823  //   An elaborated-type-specifier shall be used in a friend declaration
9824  //   for a class.*
9825  //
9826  //   * The class-key of the elaborated-type-specifier is required.
9827  if (!ActiveTemplateInstantiations.empty()) {
9828    // Do not complain about the form of friend template types during
9829    // template instantiation; we will already have complained when the
9830    // template was declared.
9831  } else if (!T->isElaboratedTypeSpecifier()) {
9832    // If we evaluated the type to a record type, suggest putting
9833    // a tag in front.
9834    if (const RecordType *RT = T->getAs<RecordType>()) {
9835      RecordDecl *RD = RT->getDecl();
9836
9837      std::string InsertionText = std::string(" ") + RD->getKindName();
9838
9839      Diag(TypeRange.getBegin(),
9840           getLangOpts().CPlusPlus0x ?
9841             diag::warn_cxx98_compat_unelaborated_friend_type :
9842             diag::ext_unelaborated_friend_type)
9843        << (unsigned) RD->getTagKind()
9844        << T
9845        << FixItHint::CreateInsertion(PP.getLocForEndOfToken(FriendLoc),
9846                                      InsertionText);
9847    } else {
9848      Diag(FriendLoc,
9849           getLangOpts().CPlusPlus0x ?
9850             diag::warn_cxx98_compat_nonclass_type_friend :
9851             diag::ext_nonclass_type_friend)
9852        << T
9853        << SourceRange(FriendLoc, TypeRange.getEnd());
9854    }
9855  } else if (T->getAs<EnumType>()) {
9856    Diag(FriendLoc,
9857         getLangOpts().CPlusPlus0x ?
9858           diag::warn_cxx98_compat_enum_friend :
9859           diag::ext_enum_friend)
9860      << T
9861      << SourceRange(FriendLoc, TypeRange.getEnd());
9862  }
9863
9864  // C++0x [class.friend]p3:
9865  //   If the type specifier in a friend declaration designates a (possibly
9866  //   cv-qualified) class type, that class is declared as a friend; otherwise,
9867  //   the friend declaration is ignored.
9868
9869  // FIXME: C++0x has some syntactic restrictions on friend type declarations
9870  // in [class.friend]p3 that we do not implement.
9871
9872  return FriendDecl::Create(Context, CurContext, Loc, TSInfo, FriendLoc);
9873}
9874
9875/// Handle a friend tag declaration where the scope specifier was
9876/// templated.
9877Decl *Sema::ActOnTemplatedFriendTag(Scope *S, SourceLocation FriendLoc,
9878                                    unsigned TagSpec, SourceLocation TagLoc,
9879                                    CXXScopeSpec &SS,
9880                                    IdentifierInfo *Name, SourceLocation NameLoc,
9881                                    AttributeList *Attr,
9882                                    MultiTemplateParamsArg TempParamLists) {
9883  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
9884
9885  bool isExplicitSpecialization = false;
9886  bool Invalid = false;
9887
9888  if (TemplateParameterList *TemplateParams
9889        = MatchTemplateParametersToScopeSpecifier(TagLoc, NameLoc, SS,
9890                                                  TempParamLists.get(),
9891                                                  TempParamLists.size(),
9892                                                  /*friend*/ true,
9893                                                  isExplicitSpecialization,
9894                                                  Invalid)) {
9895    if (TemplateParams->size() > 0) {
9896      // This is a declaration of a class template.
9897      if (Invalid)
9898        return 0;
9899
9900      return CheckClassTemplate(S, TagSpec, TUK_Friend, TagLoc,
9901                                SS, Name, NameLoc, Attr,
9902                                TemplateParams, AS_public,
9903                                /*ModulePrivateLoc=*/SourceLocation(),
9904                                TempParamLists.size() - 1,
9905                   (TemplateParameterList**) TempParamLists.release()).take();
9906    } else {
9907      // The "template<>" header is extraneous.
9908      Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
9909        << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
9910      isExplicitSpecialization = true;
9911    }
9912  }
9913
9914  if (Invalid) return 0;
9915
9916  bool isAllExplicitSpecializations = true;
9917  for (unsigned I = TempParamLists.size(); I-- > 0; ) {
9918    if (TempParamLists.get()[I]->size()) {
9919      isAllExplicitSpecializations = false;
9920      break;
9921    }
9922  }
9923
9924  // FIXME: don't ignore attributes.
9925
9926  // If it's explicit specializations all the way down, just forget
9927  // about the template header and build an appropriate non-templated
9928  // friend.  TODO: for source fidelity, remember the headers.
9929  if (isAllExplicitSpecializations) {
9930    if (SS.isEmpty()) {
9931      bool Owned = false;
9932      bool IsDependent = false;
9933      return ActOnTag(S, TagSpec, TUK_Friend, TagLoc, SS, Name, NameLoc,
9934                      Attr, AS_public,
9935                      /*ModulePrivateLoc=*/SourceLocation(),
9936                      MultiTemplateParamsArg(), Owned, IsDependent,
9937                      /*ScopedEnumKWLoc=*/SourceLocation(),
9938                      /*ScopedEnumUsesClassTag=*/false,
9939                      /*UnderlyingType=*/TypeResult());
9940    }
9941
9942    NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
9943    ElaboratedTypeKeyword Keyword
9944      = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
9945    QualType T = CheckTypenameType(Keyword, TagLoc, QualifierLoc,
9946                                   *Name, NameLoc);
9947    if (T.isNull())
9948      return 0;
9949
9950    TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
9951    if (isa<DependentNameType>(T)) {
9952      DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc());
9953      TL.setElaboratedKeywordLoc(TagLoc);
9954      TL.setQualifierLoc(QualifierLoc);
9955      TL.setNameLoc(NameLoc);
9956    } else {
9957      ElaboratedTypeLoc TL = cast<ElaboratedTypeLoc>(TSI->getTypeLoc());
9958      TL.setElaboratedKeywordLoc(TagLoc);
9959      TL.setQualifierLoc(QualifierLoc);
9960      cast<TypeSpecTypeLoc>(TL.getNamedTypeLoc()).setNameLoc(NameLoc);
9961    }
9962
9963    FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
9964                                            TSI, FriendLoc);
9965    Friend->setAccess(AS_public);
9966    CurContext->addDecl(Friend);
9967    return Friend;
9968  }
9969
9970  assert(SS.isNotEmpty() && "valid templated tag with no SS and no direct?");
9971
9972
9973
9974  // Handle the case of a templated-scope friend class.  e.g.
9975  //   template <class T> class A<T>::B;
9976  // FIXME: we don't support these right now.
9977  ElaboratedTypeKeyword ETK = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
9978  QualType T = Context.getDependentNameType(ETK, SS.getScopeRep(), Name);
9979  TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
9980  DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc());
9981  TL.setElaboratedKeywordLoc(TagLoc);
9982  TL.setQualifierLoc(SS.getWithLocInContext(Context));
9983  TL.setNameLoc(NameLoc);
9984
9985  FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
9986                                          TSI, FriendLoc);
9987  Friend->setAccess(AS_public);
9988  Friend->setUnsupportedFriend(true);
9989  CurContext->addDecl(Friend);
9990  return Friend;
9991}
9992
9993
9994/// Handle a friend type declaration.  This works in tandem with
9995/// ActOnTag.
9996///
9997/// Notes on friend class templates:
9998///
9999/// We generally treat friend class declarations as if they were
10000/// declaring a class.  So, for example, the elaborated type specifier
10001/// in a friend declaration is required to obey the restrictions of a
10002/// class-head (i.e. no typedefs in the scope chain), template
10003/// parameters are required to match up with simple template-ids, &c.
10004/// However, unlike when declaring a template specialization, it's
10005/// okay to refer to a template specialization without an empty
10006/// template parameter declaration, e.g.
10007///   friend class A<T>::B<unsigned>;
10008/// We permit this as a special case; if there are any template
10009/// parameters present at all, require proper matching, i.e.
10010///   template <> template \<class T> friend class A<int>::B;
10011Decl *Sema::ActOnFriendTypeDecl(Scope *S, const DeclSpec &DS,
10012                                MultiTemplateParamsArg TempParams) {
10013  SourceLocation Loc = DS.getLocStart();
10014
10015  assert(DS.isFriendSpecified());
10016  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
10017
10018  // Try to convert the decl specifier to a type.  This works for
10019  // friend templates because ActOnTag never produces a ClassTemplateDecl
10020  // for a TUK_Friend.
10021  Declarator TheDeclarator(DS, Declarator::MemberContext);
10022  TypeSourceInfo *TSI = GetTypeForDeclarator(TheDeclarator, S);
10023  QualType T = TSI->getType();
10024  if (TheDeclarator.isInvalidType())
10025    return 0;
10026
10027  if (DiagnoseUnexpandedParameterPack(Loc, TSI, UPPC_FriendDeclaration))
10028    return 0;
10029
10030  // This is definitely an error in C++98.  It's probably meant to
10031  // be forbidden in C++0x, too, but the specification is just
10032  // poorly written.
10033  //
10034  // The problem is with declarations like the following:
10035  //   template <T> friend A<T>::foo;
10036  // where deciding whether a class C is a friend or not now hinges
10037  // on whether there exists an instantiation of A that causes
10038  // 'foo' to equal C.  There are restrictions on class-heads
10039  // (which we declare (by fiat) elaborated friend declarations to
10040  // be) that makes this tractable.
10041  //
10042  // FIXME: handle "template <> friend class A<T>;", which
10043  // is possibly well-formed?  Who even knows?
10044  if (TempParams.size() && !T->isElaboratedTypeSpecifier()) {
10045    Diag(Loc, diag::err_tagless_friend_type_template)
10046      << DS.getSourceRange();
10047    return 0;
10048  }
10049
10050  // C++98 [class.friend]p1: A friend of a class is a function
10051  //   or class that is not a member of the class . . .
10052  // This is fixed in DR77, which just barely didn't make the C++03
10053  // deadline.  It's also a very silly restriction that seriously
10054  // affects inner classes and which nobody else seems to implement;
10055  // thus we never diagnose it, not even in -pedantic.
10056  //
10057  // But note that we could warn about it: it's always useless to
10058  // friend one of your own members (it's not, however, worthless to
10059  // friend a member of an arbitrary specialization of your template).
10060
10061  Decl *D;
10062  if (unsigned NumTempParamLists = TempParams.size())
10063    D = FriendTemplateDecl::Create(Context, CurContext, Loc,
10064                                   NumTempParamLists,
10065                                   TempParams.release(),
10066                                   TSI,
10067                                   DS.getFriendSpecLoc());
10068  else
10069    D = CheckFriendTypeDecl(Loc, DS.getFriendSpecLoc(), TSI);
10070
10071  if (!D)
10072    return 0;
10073
10074  D->setAccess(AS_public);
10075  CurContext->addDecl(D);
10076
10077  return D;
10078}
10079
10080Decl *Sema::ActOnFriendFunctionDecl(Scope *S, Declarator &D,
10081                                    MultiTemplateParamsArg TemplateParams) {
10082  const DeclSpec &DS = D.getDeclSpec();
10083
10084  assert(DS.isFriendSpecified());
10085  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
10086
10087  SourceLocation Loc = D.getIdentifierLoc();
10088  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
10089
10090  // C++ [class.friend]p1
10091  //   A friend of a class is a function or class....
10092  // Note that this sees through typedefs, which is intended.
10093  // It *doesn't* see through dependent types, which is correct
10094  // according to [temp.arg.type]p3:
10095  //   If a declaration acquires a function type through a
10096  //   type dependent on a template-parameter and this causes
10097  //   a declaration that does not use the syntactic form of a
10098  //   function declarator to have a function type, the program
10099  //   is ill-formed.
10100  if (!TInfo->getType()->isFunctionType()) {
10101    Diag(Loc, diag::err_unexpected_friend);
10102
10103    // It might be worthwhile to try to recover by creating an
10104    // appropriate declaration.
10105    return 0;
10106  }
10107
10108  // C++ [namespace.memdef]p3
10109  //  - If a friend declaration in a non-local class first declares a
10110  //    class or function, the friend class or function is a member
10111  //    of the innermost enclosing namespace.
10112  //  - The name of the friend is not found by simple name lookup
10113  //    until a matching declaration is provided in that namespace
10114  //    scope (either before or after the class declaration granting
10115  //    friendship).
10116  //  - If a friend function is called, its name may be found by the
10117  //    name lookup that considers functions from namespaces and
10118  //    classes associated with the types of the function arguments.
10119  //  - When looking for a prior declaration of a class or a function
10120  //    declared as a friend, scopes outside the innermost enclosing
10121  //    namespace scope are not considered.
10122
10123  CXXScopeSpec &SS = D.getCXXScopeSpec();
10124  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
10125  DeclarationName Name = NameInfo.getName();
10126  assert(Name);
10127
10128  // Check for unexpanded parameter packs.
10129  if (DiagnoseUnexpandedParameterPack(Loc, TInfo, UPPC_FriendDeclaration) ||
10130      DiagnoseUnexpandedParameterPack(NameInfo, UPPC_FriendDeclaration) ||
10131      DiagnoseUnexpandedParameterPack(SS, UPPC_FriendDeclaration))
10132    return 0;
10133
10134  // The context we found the declaration in, or in which we should
10135  // create the declaration.
10136  DeclContext *DC;
10137  Scope *DCScope = S;
10138  LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
10139                        ForRedeclaration);
10140
10141  // FIXME: there are different rules in local classes
10142
10143  // There are four cases here.
10144  //   - There's no scope specifier, in which case we just go to the
10145  //     appropriate scope and look for a function or function template
10146  //     there as appropriate.
10147  // Recover from invalid scope qualifiers as if they just weren't there.
10148  if (SS.isInvalid() || !SS.isSet()) {
10149    // C++0x [namespace.memdef]p3:
10150    //   If the name in a friend declaration is neither qualified nor
10151    //   a template-id and the declaration is a function or an
10152    //   elaborated-type-specifier, the lookup to determine whether
10153    //   the entity has been previously declared shall not consider
10154    //   any scopes outside the innermost enclosing namespace.
10155    // C++0x [class.friend]p11:
10156    //   If a friend declaration appears in a local class and the name
10157    //   specified is an unqualified name, a prior declaration is
10158    //   looked up without considering scopes that are outside the
10159    //   innermost enclosing non-class scope. For a friend function
10160    //   declaration, if there is no prior declaration, the program is
10161    //   ill-formed.
10162    bool isLocal = cast<CXXRecordDecl>(CurContext)->isLocalClass();
10163    bool isTemplateId = D.getName().getKind() == UnqualifiedId::IK_TemplateId;
10164
10165    // Find the appropriate context according to the above.
10166    DC = CurContext;
10167    while (true) {
10168      // Skip class contexts.  If someone can cite chapter and verse
10169      // for this behavior, that would be nice --- it's what GCC and
10170      // EDG do, and it seems like a reasonable intent, but the spec
10171      // really only says that checks for unqualified existing
10172      // declarations should stop at the nearest enclosing namespace,
10173      // not that they should only consider the nearest enclosing
10174      // namespace.
10175      while (DC->isRecord() || DC->isTransparentContext())
10176        DC = DC->getParent();
10177
10178      LookupQualifiedName(Previous, DC);
10179
10180      // TODO: decide what we think about using declarations.
10181      if (isLocal || !Previous.empty())
10182        break;
10183
10184      if (isTemplateId) {
10185        if (isa<TranslationUnitDecl>(DC)) break;
10186      } else {
10187        if (DC->isFileContext()) break;
10188      }
10189      DC = DC->getParent();
10190    }
10191
10192    // C++ [class.friend]p1: A friend of a class is a function or
10193    //   class that is not a member of the class . . .
10194    // C++11 changes this for both friend types and functions.
10195    // Most C++ 98 compilers do seem to give an error here, so
10196    // we do, too.
10197    if (!Previous.empty() && DC->Equals(CurContext))
10198      Diag(DS.getFriendSpecLoc(),
10199           getLangOpts().CPlusPlus0x ?
10200             diag::warn_cxx98_compat_friend_is_member :
10201             diag::err_friend_is_member);
10202
10203    DCScope = getScopeForDeclContext(S, DC);
10204
10205    // C++ [class.friend]p6:
10206    //   A function can be defined in a friend declaration of a class if and
10207    //   only if the class is a non-local class (9.8), the function name is
10208    //   unqualified, and the function has namespace scope.
10209    if (isLocal && D.isFunctionDefinition()) {
10210      Diag(NameInfo.getBeginLoc(), diag::err_friend_def_in_local_class);
10211    }
10212
10213  //   - There's a non-dependent scope specifier, in which case we
10214  //     compute it and do a previous lookup there for a function
10215  //     or function template.
10216  } else if (!SS.getScopeRep()->isDependent()) {
10217    DC = computeDeclContext(SS);
10218    if (!DC) return 0;
10219
10220    if (RequireCompleteDeclContext(SS, DC)) return 0;
10221
10222    LookupQualifiedName(Previous, DC);
10223
10224    // Ignore things found implicitly in the wrong scope.
10225    // TODO: better diagnostics for this case.  Suggesting the right
10226    // qualified scope would be nice...
10227    LookupResult::Filter F = Previous.makeFilter();
10228    while (F.hasNext()) {
10229      NamedDecl *D = F.next();
10230      if (!DC->InEnclosingNamespaceSetOf(
10231              D->getDeclContext()->getRedeclContext()))
10232        F.erase();
10233    }
10234    F.done();
10235
10236    if (Previous.empty()) {
10237      D.setInvalidType();
10238      Diag(Loc, diag::err_qualified_friend_not_found)
10239          << Name << TInfo->getType();
10240      return 0;
10241    }
10242
10243    // C++ [class.friend]p1: A friend of a class is a function or
10244    //   class that is not a member of the class . . .
10245    if (DC->Equals(CurContext))
10246      Diag(DS.getFriendSpecLoc(),
10247           getLangOpts().CPlusPlus0x ?
10248             diag::warn_cxx98_compat_friend_is_member :
10249             diag::err_friend_is_member);
10250
10251    if (D.isFunctionDefinition()) {
10252      // C++ [class.friend]p6:
10253      //   A function can be defined in a friend declaration of a class if and
10254      //   only if the class is a non-local class (9.8), the function name is
10255      //   unqualified, and the function has namespace scope.
10256      SemaDiagnosticBuilder DB
10257        = Diag(SS.getRange().getBegin(), diag::err_qualified_friend_def);
10258
10259      DB << SS.getScopeRep();
10260      if (DC->isFileContext())
10261        DB << FixItHint::CreateRemoval(SS.getRange());
10262      SS.clear();
10263    }
10264
10265  //   - There's a scope specifier that does not match any template
10266  //     parameter lists, in which case we use some arbitrary context,
10267  //     create a method or method template, and wait for instantiation.
10268  //   - There's a scope specifier that does match some template
10269  //     parameter lists, which we don't handle right now.
10270  } else {
10271    if (D.isFunctionDefinition()) {
10272      // C++ [class.friend]p6:
10273      //   A function can be defined in a friend declaration of a class if and
10274      //   only if the class is a non-local class (9.8), the function name is
10275      //   unqualified, and the function has namespace scope.
10276      Diag(SS.getRange().getBegin(), diag::err_qualified_friend_def)
10277        << SS.getScopeRep();
10278    }
10279
10280    DC = CurContext;
10281    assert(isa<CXXRecordDecl>(DC) && "friend declaration not in class?");
10282  }
10283
10284  if (!DC->isRecord()) {
10285    // This implies that it has to be an operator or function.
10286    if (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ||
10287        D.getName().getKind() == UnqualifiedId::IK_DestructorName ||
10288        D.getName().getKind() == UnqualifiedId::IK_ConversionFunctionId) {
10289      Diag(Loc, diag::err_introducing_special_friend) <<
10290        (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ? 0 :
10291         D.getName().getKind() == UnqualifiedId::IK_DestructorName ? 1 : 2);
10292      return 0;
10293    }
10294  }
10295
10296  // FIXME: This is an egregious hack to cope with cases where the scope stack
10297  // does not contain the declaration context, i.e., in an out-of-line
10298  // definition of a class.
10299  Scope FakeDCScope(S, Scope::DeclScope, Diags);
10300  if (!DCScope) {
10301    FakeDCScope.setEntity(DC);
10302    DCScope = &FakeDCScope;
10303  }
10304
10305  bool AddToScope = true;
10306  NamedDecl *ND = ActOnFunctionDeclarator(DCScope, D, DC, TInfo, Previous,
10307                                          move(TemplateParams), AddToScope);
10308  if (!ND) return 0;
10309
10310  assert(ND->getDeclContext() == DC);
10311  assert(ND->getLexicalDeclContext() == CurContext);
10312
10313  // Add the function declaration to the appropriate lookup tables,
10314  // adjusting the redeclarations list as necessary.  We don't
10315  // want to do this yet if the friending class is dependent.
10316  //
10317  // Also update the scope-based lookup if the target context's
10318  // lookup context is in lexical scope.
10319  if (!CurContext->isDependentContext()) {
10320    DC = DC->getRedeclContext();
10321    DC->makeDeclVisibleInContext(ND);
10322    if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
10323      PushOnScopeChains(ND, EnclosingScope, /*AddToContext=*/ false);
10324  }
10325
10326  FriendDecl *FrD = FriendDecl::Create(Context, CurContext,
10327                                       D.getIdentifierLoc(), ND,
10328                                       DS.getFriendSpecLoc());
10329  FrD->setAccess(AS_public);
10330  CurContext->addDecl(FrD);
10331
10332  if (ND->isInvalidDecl())
10333    FrD->setInvalidDecl();
10334  else {
10335    FunctionDecl *FD;
10336    if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND))
10337      FD = FTD->getTemplatedDecl();
10338    else
10339      FD = cast<FunctionDecl>(ND);
10340
10341    // Mark templated-scope function declarations as unsupported.
10342    if (FD->getNumTemplateParameterLists())
10343      FrD->setUnsupportedFriend(true);
10344  }
10345
10346  return ND;
10347}
10348
10349void Sema::SetDeclDeleted(Decl *Dcl, SourceLocation DelLoc) {
10350  AdjustDeclIfTemplate(Dcl);
10351
10352  FunctionDecl *Fn = dyn_cast<FunctionDecl>(Dcl);
10353  if (!Fn) {
10354    Diag(DelLoc, diag::err_deleted_non_function);
10355    return;
10356  }
10357  if (const FunctionDecl *Prev = Fn->getPreviousDecl()) {
10358    // Don't consider the implicit declaration we generate for explicit
10359    // specializations. FIXME: Do not generate these implicit declarations.
10360    if ((Prev->getTemplateSpecializationKind() != TSK_ExplicitSpecialization
10361        || Prev->getPreviousDecl()) && !Prev->isDefined()) {
10362      Diag(DelLoc, diag::err_deleted_decl_not_first);
10363      Diag(Prev->getLocation(), diag::note_previous_declaration);
10364    }
10365    // If the declaration wasn't the first, we delete the function anyway for
10366    // recovery.
10367  }
10368  Fn->setDeletedAsWritten();
10369
10370  CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Dcl);
10371  if (!MD)
10372    return;
10373
10374  // A deleted special member function is trivial if the corresponding
10375  // implicitly-declared function would have been.
10376  switch (getSpecialMember(MD)) {
10377  case CXXInvalid:
10378    break;
10379  case CXXDefaultConstructor:
10380    MD->setTrivial(MD->getParent()->hasTrivialDefaultConstructor());
10381    break;
10382  case CXXCopyConstructor:
10383    MD->setTrivial(MD->getParent()->hasTrivialCopyConstructor());
10384    break;
10385  case CXXMoveConstructor:
10386    MD->setTrivial(MD->getParent()->hasTrivialMoveConstructor());
10387    break;
10388  case CXXCopyAssignment:
10389    MD->setTrivial(MD->getParent()->hasTrivialCopyAssignment());
10390    break;
10391  case CXXMoveAssignment:
10392    MD->setTrivial(MD->getParent()->hasTrivialMoveAssignment());
10393    break;
10394  case CXXDestructor:
10395    MD->setTrivial(MD->getParent()->hasTrivialDestructor());
10396    break;
10397  }
10398}
10399
10400void Sema::SetDeclDefaulted(Decl *Dcl, SourceLocation DefaultLoc) {
10401  CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Dcl);
10402
10403  if (MD) {
10404    if (MD->getParent()->isDependentType()) {
10405      MD->setDefaulted();
10406      MD->setExplicitlyDefaulted();
10407      return;
10408    }
10409
10410    CXXSpecialMember Member = getSpecialMember(MD);
10411    if (Member == CXXInvalid) {
10412      Diag(DefaultLoc, diag::err_default_special_members);
10413      return;
10414    }
10415
10416    MD->setDefaulted();
10417    MD->setExplicitlyDefaulted();
10418
10419    // If this definition appears within the record, do the checking when
10420    // the record is complete.
10421    const FunctionDecl *Primary = MD;
10422    if (MD->getTemplatedKind() != FunctionDecl::TK_NonTemplate)
10423      // Find the uninstantiated declaration that actually had the '= default'
10424      // on it.
10425      MD->getTemplateInstantiationPattern()->isDefined(Primary);
10426
10427    if (Primary == Primary->getCanonicalDecl())
10428      return;
10429
10430    switch (Member) {
10431    case CXXDefaultConstructor: {
10432      CXXConstructorDecl *CD = cast<CXXConstructorDecl>(MD);
10433      CheckExplicitlyDefaultedSpecialMember(CD);
10434      if (!CD->isInvalidDecl())
10435        DefineImplicitDefaultConstructor(DefaultLoc, CD);
10436      break;
10437    }
10438
10439    case CXXCopyConstructor: {
10440      CXXConstructorDecl *CD = cast<CXXConstructorDecl>(MD);
10441      CheckExplicitlyDefaultedSpecialMember(CD);
10442      if (!CD->isInvalidDecl())
10443        DefineImplicitCopyConstructor(DefaultLoc, CD);
10444      break;
10445    }
10446
10447    case CXXCopyAssignment: {
10448      CheckExplicitlyDefaultedSpecialMember(MD);
10449      if (!MD->isInvalidDecl())
10450        DefineImplicitCopyAssignment(DefaultLoc, MD);
10451      break;
10452    }
10453
10454    case CXXDestructor: {
10455      CXXDestructorDecl *DD = cast<CXXDestructorDecl>(MD);
10456      CheckExplicitlyDefaultedSpecialMember(DD);
10457      if (!DD->isInvalidDecl())
10458        DefineImplicitDestructor(DefaultLoc, DD);
10459      break;
10460    }
10461
10462    case CXXMoveConstructor: {
10463      CXXConstructorDecl *CD = cast<CXXConstructorDecl>(MD);
10464      CheckExplicitlyDefaultedSpecialMember(CD);
10465      if (!CD->isInvalidDecl())
10466        DefineImplicitMoveConstructor(DefaultLoc, CD);
10467      break;
10468    }
10469
10470    case CXXMoveAssignment: {
10471      CheckExplicitlyDefaultedSpecialMember(MD);
10472      if (!MD->isInvalidDecl())
10473        DefineImplicitMoveAssignment(DefaultLoc, MD);
10474      break;
10475    }
10476
10477    case CXXInvalid:
10478      llvm_unreachable("Invalid special member.");
10479    }
10480  } else {
10481    Diag(DefaultLoc, diag::err_default_special_members);
10482  }
10483}
10484
10485static void SearchForReturnInStmt(Sema &Self, Stmt *S) {
10486  for (Stmt::child_range CI = S->children(); CI; ++CI) {
10487    Stmt *SubStmt = *CI;
10488    if (!SubStmt)
10489      continue;
10490    if (isa<ReturnStmt>(SubStmt))
10491      Self.Diag(SubStmt->getLocStart(),
10492           diag::err_return_in_constructor_handler);
10493    if (!isa<Expr>(SubStmt))
10494      SearchForReturnInStmt(Self, SubStmt);
10495  }
10496}
10497
10498void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) {
10499  for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) {
10500    CXXCatchStmt *Handler = TryBlock->getHandler(I);
10501    SearchForReturnInStmt(*this, Handler);
10502  }
10503}
10504
10505bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New,
10506                                             const CXXMethodDecl *Old) {
10507  QualType NewTy = New->getType()->getAs<FunctionType>()->getResultType();
10508  QualType OldTy = Old->getType()->getAs<FunctionType>()->getResultType();
10509
10510  if (Context.hasSameType(NewTy, OldTy) ||
10511      NewTy->isDependentType() || OldTy->isDependentType())
10512    return false;
10513
10514  // Check if the return types are covariant
10515  QualType NewClassTy, OldClassTy;
10516
10517  /// Both types must be pointers or references to classes.
10518  if (const PointerType *NewPT = NewTy->getAs<PointerType>()) {
10519    if (const PointerType *OldPT = OldTy->getAs<PointerType>()) {
10520      NewClassTy = NewPT->getPointeeType();
10521      OldClassTy = OldPT->getPointeeType();
10522    }
10523  } else if (const ReferenceType *NewRT = NewTy->getAs<ReferenceType>()) {
10524    if (const ReferenceType *OldRT = OldTy->getAs<ReferenceType>()) {
10525      if (NewRT->getTypeClass() == OldRT->getTypeClass()) {
10526        NewClassTy = NewRT->getPointeeType();
10527        OldClassTy = OldRT->getPointeeType();
10528      }
10529    }
10530  }
10531
10532  // The return types aren't either both pointers or references to a class type.
10533  if (NewClassTy.isNull()) {
10534    Diag(New->getLocation(),
10535         diag::err_different_return_type_for_overriding_virtual_function)
10536      << New->getDeclName() << NewTy << OldTy;
10537    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
10538
10539    return true;
10540  }
10541
10542  // C++ [class.virtual]p6:
10543  //   If the return type of D::f differs from the return type of B::f, the
10544  //   class type in the return type of D::f shall be complete at the point of
10545  //   declaration of D::f or shall be the class type D.
10546  if (const RecordType *RT = NewClassTy->getAs<RecordType>()) {
10547    if (!RT->isBeingDefined() &&
10548        RequireCompleteType(New->getLocation(), NewClassTy,
10549                            diag::err_covariant_return_incomplete,
10550                            New->getDeclName()))
10551    return true;
10552  }
10553
10554  if (!Context.hasSameUnqualifiedType(NewClassTy, OldClassTy)) {
10555    // Check if the new class derives from the old class.
10556    if (!IsDerivedFrom(NewClassTy, OldClassTy)) {
10557      Diag(New->getLocation(),
10558           diag::err_covariant_return_not_derived)
10559      << New->getDeclName() << NewTy << OldTy;
10560      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
10561      return true;
10562    }
10563
10564    // Check if we the conversion from derived to base is valid.
10565    if (CheckDerivedToBaseConversion(NewClassTy, OldClassTy,
10566                    diag::err_covariant_return_inaccessible_base,
10567                    diag::err_covariant_return_ambiguous_derived_to_base_conv,
10568                    // FIXME: Should this point to the return type?
10569                    New->getLocation(), SourceRange(), New->getDeclName(), 0)) {
10570      // FIXME: this note won't trigger for delayed access control
10571      // diagnostics, and it's impossible to get an undelayed error
10572      // here from access control during the original parse because
10573      // the ParsingDeclSpec/ParsingDeclarator are still in scope.
10574      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
10575      return true;
10576    }
10577  }
10578
10579  // The qualifiers of the return types must be the same.
10580  if (NewTy.getLocalCVRQualifiers() != OldTy.getLocalCVRQualifiers()) {
10581    Diag(New->getLocation(),
10582         diag::err_covariant_return_type_different_qualifications)
10583    << New->getDeclName() << NewTy << OldTy;
10584    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
10585    return true;
10586  };
10587
10588
10589  // The new class type must have the same or less qualifiers as the old type.
10590  if (NewClassTy.isMoreQualifiedThan(OldClassTy)) {
10591    Diag(New->getLocation(),
10592         diag::err_covariant_return_type_class_type_more_qualified)
10593    << New->getDeclName() << NewTy << OldTy;
10594    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
10595    return true;
10596  };
10597
10598  return false;
10599}
10600
10601/// \brief Mark the given method pure.
10602///
10603/// \param Method the method to be marked pure.
10604///
10605/// \param InitRange the source range that covers the "0" initializer.
10606bool Sema::CheckPureMethod(CXXMethodDecl *Method, SourceRange InitRange) {
10607  SourceLocation EndLoc = InitRange.getEnd();
10608  if (EndLoc.isValid())
10609    Method->setRangeEnd(EndLoc);
10610
10611  if (Method->isVirtual() || Method->getParent()->isDependentContext()) {
10612    Method->setPure();
10613    return false;
10614  }
10615
10616  if (!Method->isInvalidDecl())
10617    Diag(Method->getLocation(), diag::err_non_virtual_pure)
10618      << Method->getDeclName() << InitRange;
10619  return true;
10620}
10621
10622/// \brief Determine whether the given declaration is a static data member.
10623static bool isStaticDataMember(Decl *D) {
10624  VarDecl *Var = dyn_cast_or_null<VarDecl>(D);
10625  if (!Var)
10626    return false;
10627
10628  return Var->isStaticDataMember();
10629}
10630/// ActOnCXXEnterDeclInitializer - Invoked when we are about to parse
10631/// an initializer for the out-of-line declaration 'Dcl'.  The scope
10632/// is a fresh scope pushed for just this purpose.
10633///
10634/// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a
10635/// static data member of class X, names should be looked up in the scope of
10636/// class X.
10637void Sema::ActOnCXXEnterDeclInitializer(Scope *S, Decl *D) {
10638  // If there is no declaration, there was an error parsing it.
10639  if (D == 0 || D->isInvalidDecl()) return;
10640
10641  // We should only get called for declarations with scope specifiers, like:
10642  //   int foo::bar;
10643  assert(D->isOutOfLine());
10644  EnterDeclaratorContext(S, D->getDeclContext());
10645
10646  // If we are parsing the initializer for a static data member, push a
10647  // new expression evaluation context that is associated with this static
10648  // data member.
10649  if (isStaticDataMember(D))
10650    PushExpressionEvaluationContext(PotentiallyEvaluated, D);
10651}
10652
10653/// ActOnCXXExitDeclInitializer - Invoked after we are finished parsing an
10654/// initializer for the out-of-line declaration 'D'.
10655void Sema::ActOnCXXExitDeclInitializer(Scope *S, Decl *D) {
10656  // If there is no declaration, there was an error parsing it.
10657  if (D == 0 || D->isInvalidDecl()) return;
10658
10659  if (isStaticDataMember(D))
10660    PopExpressionEvaluationContext();
10661
10662  assert(D->isOutOfLine());
10663  ExitDeclaratorContext(S);
10664}
10665
10666/// ActOnCXXConditionDeclarationExpr - Parsed a condition declaration of a
10667/// C++ if/switch/while/for statement.
10668/// e.g: "if (int x = f()) {...}"
10669DeclResult Sema::ActOnCXXConditionDeclaration(Scope *S, Declarator &D) {
10670  // C++ 6.4p2:
10671  // The declarator shall not specify a function or an array.
10672  // The type-specifier-seq shall not contain typedef and shall not declare a
10673  // new class or enumeration.
10674  assert(D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
10675         "Parser allowed 'typedef' as storage class of condition decl.");
10676
10677  Decl *Dcl = ActOnDeclarator(S, D);
10678  if (!Dcl)
10679    return true;
10680
10681  if (isa<FunctionDecl>(Dcl)) { // The declarator shall not specify a function.
10682    Diag(Dcl->getLocation(), diag::err_invalid_use_of_function_type)
10683      << D.getSourceRange();
10684    return true;
10685  }
10686
10687  return Dcl;
10688}
10689
10690void Sema::LoadExternalVTableUses() {
10691  if (!ExternalSource)
10692    return;
10693
10694  SmallVector<ExternalVTableUse, 4> VTables;
10695  ExternalSource->ReadUsedVTables(VTables);
10696  SmallVector<VTableUse, 4> NewUses;
10697  for (unsigned I = 0, N = VTables.size(); I != N; ++I) {
10698    llvm::DenseMap<CXXRecordDecl *, bool>::iterator Pos
10699      = VTablesUsed.find(VTables[I].Record);
10700    // Even if a definition wasn't required before, it may be required now.
10701    if (Pos != VTablesUsed.end()) {
10702      if (!Pos->second && VTables[I].DefinitionRequired)
10703        Pos->second = true;
10704      continue;
10705    }
10706
10707    VTablesUsed[VTables[I].Record] = VTables[I].DefinitionRequired;
10708    NewUses.push_back(VTableUse(VTables[I].Record, VTables[I].Location));
10709  }
10710
10711  VTableUses.insert(VTableUses.begin(), NewUses.begin(), NewUses.end());
10712}
10713
10714void Sema::MarkVTableUsed(SourceLocation Loc, CXXRecordDecl *Class,
10715                          bool DefinitionRequired) {
10716  // Ignore any vtable uses in unevaluated operands or for classes that do
10717  // not have a vtable.
10718  if (!Class->isDynamicClass() || Class->isDependentContext() ||
10719      CurContext->isDependentContext() ||
10720      ExprEvalContexts.back().Context == Unevaluated)
10721    return;
10722
10723  // Try to insert this class into the map.
10724  LoadExternalVTableUses();
10725  Class = cast<CXXRecordDecl>(Class->getCanonicalDecl());
10726  std::pair<llvm::DenseMap<CXXRecordDecl *, bool>::iterator, bool>
10727    Pos = VTablesUsed.insert(std::make_pair(Class, DefinitionRequired));
10728  if (!Pos.second) {
10729    // If we already had an entry, check to see if we are promoting this vtable
10730    // to required a definition. If so, we need to reappend to the VTableUses
10731    // list, since we may have already processed the first entry.
10732    if (DefinitionRequired && !Pos.first->second) {
10733      Pos.first->second = true;
10734    } else {
10735      // Otherwise, we can early exit.
10736      return;
10737    }
10738  }
10739
10740  // Local classes need to have their virtual members marked
10741  // immediately. For all other classes, we mark their virtual members
10742  // at the end of the translation unit.
10743  if (Class->isLocalClass())
10744    MarkVirtualMembersReferenced(Loc, Class);
10745  else
10746    VTableUses.push_back(std::make_pair(Class, Loc));
10747}
10748
10749bool Sema::DefineUsedVTables() {
10750  LoadExternalVTableUses();
10751  if (VTableUses.empty())
10752    return false;
10753
10754  // Note: The VTableUses vector could grow as a result of marking
10755  // the members of a class as "used", so we check the size each
10756  // time through the loop and prefer indices (with are stable) to
10757  // iterators (which are not).
10758  bool DefinedAnything = false;
10759  for (unsigned I = 0; I != VTableUses.size(); ++I) {
10760    CXXRecordDecl *Class = VTableUses[I].first->getDefinition();
10761    if (!Class)
10762      continue;
10763
10764    SourceLocation Loc = VTableUses[I].second;
10765
10766    // If this class has a key function, but that key function is
10767    // defined in another translation unit, we don't need to emit the
10768    // vtable even though we're using it.
10769    const CXXMethodDecl *KeyFunction = Context.getKeyFunction(Class);
10770    if (KeyFunction && !KeyFunction->hasBody()) {
10771      switch (KeyFunction->getTemplateSpecializationKind()) {
10772      case TSK_Undeclared:
10773      case TSK_ExplicitSpecialization:
10774      case TSK_ExplicitInstantiationDeclaration:
10775        // The key function is in another translation unit.
10776        continue;
10777
10778      case TSK_ExplicitInstantiationDefinition:
10779      case TSK_ImplicitInstantiation:
10780        // We will be instantiating the key function.
10781        break;
10782      }
10783    } else if (!KeyFunction) {
10784      // If we have a class with no key function that is the subject
10785      // of an explicit instantiation declaration, suppress the
10786      // vtable; it will live with the explicit instantiation
10787      // definition.
10788      bool IsExplicitInstantiationDeclaration
10789        = Class->getTemplateSpecializationKind()
10790                                      == TSK_ExplicitInstantiationDeclaration;
10791      for (TagDecl::redecl_iterator R = Class->redecls_begin(),
10792                                 REnd = Class->redecls_end();
10793           R != REnd; ++R) {
10794        TemplateSpecializationKind TSK
10795          = cast<CXXRecordDecl>(*R)->getTemplateSpecializationKind();
10796        if (TSK == TSK_ExplicitInstantiationDeclaration)
10797          IsExplicitInstantiationDeclaration = true;
10798        else if (TSK == TSK_ExplicitInstantiationDefinition) {
10799          IsExplicitInstantiationDeclaration = false;
10800          break;
10801        }
10802      }
10803
10804      if (IsExplicitInstantiationDeclaration)
10805        continue;
10806    }
10807
10808    // Mark all of the virtual members of this class as referenced, so
10809    // that we can build a vtable. Then, tell the AST consumer that a
10810    // vtable for this class is required.
10811    DefinedAnything = true;
10812    MarkVirtualMembersReferenced(Loc, Class);
10813    CXXRecordDecl *Canonical = cast<CXXRecordDecl>(Class->getCanonicalDecl());
10814    Consumer.HandleVTable(Class, VTablesUsed[Canonical]);
10815
10816    // Optionally warn if we're emitting a weak vtable.
10817    if (Class->getLinkage() == ExternalLinkage &&
10818        Class->getTemplateSpecializationKind() != TSK_ImplicitInstantiation) {
10819      const FunctionDecl *KeyFunctionDef = 0;
10820      if (!KeyFunction ||
10821          (KeyFunction->hasBody(KeyFunctionDef) &&
10822           KeyFunctionDef->isInlined()))
10823        Diag(Class->getLocation(), Class->getTemplateSpecializationKind() ==
10824             TSK_ExplicitInstantiationDefinition
10825             ? diag::warn_weak_template_vtable : diag::warn_weak_vtable)
10826          << Class;
10827    }
10828  }
10829  VTableUses.clear();
10830
10831  return DefinedAnything;
10832}
10833
10834void Sema::MarkVirtualMembersReferenced(SourceLocation Loc,
10835                                        const CXXRecordDecl *RD) {
10836  // Mark all functions which will appear in RD's vtable as used.
10837  CXXFinalOverriderMap FinalOverriders;
10838  RD->getFinalOverriders(FinalOverriders);
10839  for (CXXFinalOverriderMap::const_iterator I = FinalOverriders.begin(),
10840                                            E = FinalOverriders.end();
10841       I != E; ++I) {
10842    for (OverridingMethods::const_iterator OI = I->second.begin(),
10843                                           OE = I->second.end();
10844         OI != OE; ++OI) {
10845      assert(OI->second.size() > 0 && "no final overrider");
10846      CXXMethodDecl *Overrider = OI->second.front().Method;
10847
10848      // C++ [basic.def.odr]p2:
10849      //   [...] A virtual member function is used if it is not pure. [...]
10850      if (!Overrider->isPure())
10851        MarkFunctionReferenced(Loc, Overrider);
10852    }
10853  }
10854
10855  // Only classes that have virtual bases need a VTT.
10856  if (RD->getNumVBases() == 0)
10857    return;
10858
10859  for (CXXRecordDecl::base_class_const_iterator i = RD->bases_begin(),
10860           e = RD->bases_end(); i != e; ++i) {
10861    const CXXRecordDecl *Base =
10862        cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
10863    if (Base->getNumVBases() == 0)
10864      continue;
10865    MarkVirtualMembersReferenced(Loc, Base);
10866  }
10867}
10868
10869/// SetIvarInitializers - This routine builds initialization ASTs for the
10870/// Objective-C implementation whose ivars need be initialized.
10871void Sema::SetIvarInitializers(ObjCImplementationDecl *ObjCImplementation) {
10872  if (!getLangOpts().CPlusPlus)
10873    return;
10874  if (ObjCInterfaceDecl *OID = ObjCImplementation->getClassInterface()) {
10875    SmallVector<ObjCIvarDecl*, 8> ivars;
10876    CollectIvarsToConstructOrDestruct(OID, ivars);
10877    if (ivars.empty())
10878      return;
10879    SmallVector<CXXCtorInitializer*, 32> AllToInit;
10880    for (unsigned i = 0; i < ivars.size(); i++) {
10881      FieldDecl *Field = ivars[i];
10882      if (Field->isInvalidDecl())
10883        continue;
10884
10885      CXXCtorInitializer *Member;
10886      InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field);
10887      InitializationKind InitKind =
10888        InitializationKind::CreateDefault(ObjCImplementation->getLocation());
10889
10890      InitializationSequence InitSeq(*this, InitEntity, InitKind, 0, 0);
10891      ExprResult MemberInit =
10892        InitSeq.Perform(*this, InitEntity, InitKind, MultiExprArg());
10893      MemberInit = MaybeCreateExprWithCleanups(MemberInit);
10894      // Note, MemberInit could actually come back empty if no initialization
10895      // is required (e.g., because it would call a trivial default constructor)
10896      if (!MemberInit.get() || MemberInit.isInvalid())
10897        continue;
10898
10899      Member =
10900        new (Context) CXXCtorInitializer(Context, Field, SourceLocation(),
10901                                         SourceLocation(),
10902                                         MemberInit.takeAs<Expr>(),
10903                                         SourceLocation());
10904      AllToInit.push_back(Member);
10905
10906      // Be sure that the destructor is accessible and is marked as referenced.
10907      if (const RecordType *RecordTy
10908                  = Context.getBaseElementType(Field->getType())
10909                                                        ->getAs<RecordType>()) {
10910                    CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl());
10911        if (CXXDestructorDecl *Destructor = LookupDestructor(RD)) {
10912          MarkFunctionReferenced(Field->getLocation(), Destructor);
10913          CheckDestructorAccess(Field->getLocation(), Destructor,
10914                            PDiag(diag::err_access_dtor_ivar)
10915                              << Context.getBaseElementType(Field->getType()));
10916        }
10917      }
10918    }
10919    ObjCImplementation->setIvarInitializers(Context,
10920                                            AllToInit.data(), AllToInit.size());
10921  }
10922}
10923
10924static
10925void DelegatingCycleHelper(CXXConstructorDecl* Ctor,
10926                           llvm::SmallSet<CXXConstructorDecl*, 4> &Valid,
10927                           llvm::SmallSet<CXXConstructorDecl*, 4> &Invalid,
10928                           llvm::SmallSet<CXXConstructorDecl*, 4> &Current,
10929                           Sema &S) {
10930  llvm::SmallSet<CXXConstructorDecl*, 4>::iterator CI = Current.begin(),
10931                                                   CE = Current.end();
10932  if (Ctor->isInvalidDecl())
10933    return;
10934
10935  const FunctionDecl *FNTarget = 0;
10936  CXXConstructorDecl *Target;
10937
10938  // We ignore the result here since if we don't have a body, Target will be
10939  // null below.
10940  (void)Ctor->getTargetConstructor()->hasBody(FNTarget);
10941  Target
10942= const_cast<CXXConstructorDecl*>(cast_or_null<CXXConstructorDecl>(FNTarget));
10943
10944  CXXConstructorDecl *Canonical = Ctor->getCanonicalDecl(),
10945                     // Avoid dereferencing a null pointer here.
10946                     *TCanonical = Target ? Target->getCanonicalDecl() : 0;
10947
10948  if (!Current.insert(Canonical))
10949    return;
10950
10951  // We know that beyond here, we aren't chaining into a cycle.
10952  if (!Target || !Target->isDelegatingConstructor() ||
10953      Target->isInvalidDecl() || Valid.count(TCanonical)) {
10954    for (CI = Current.begin(), CE = Current.end(); CI != CE; ++CI)
10955      Valid.insert(*CI);
10956    Current.clear();
10957  // We've hit a cycle.
10958  } else if (TCanonical == Canonical || Invalid.count(TCanonical) ||
10959             Current.count(TCanonical)) {
10960    // If we haven't diagnosed this cycle yet, do so now.
10961    if (!Invalid.count(TCanonical)) {
10962      S.Diag((*Ctor->init_begin())->getSourceLocation(),
10963             diag::warn_delegating_ctor_cycle)
10964        << Ctor;
10965
10966      // Don't add a note for a function delegating directo to itself.
10967      if (TCanonical != Canonical)
10968        S.Diag(Target->getLocation(), diag::note_it_delegates_to);
10969
10970      CXXConstructorDecl *C = Target;
10971      while (C->getCanonicalDecl() != Canonical) {
10972        (void)C->getTargetConstructor()->hasBody(FNTarget);
10973        assert(FNTarget && "Ctor cycle through bodiless function");
10974
10975        C
10976       = const_cast<CXXConstructorDecl*>(cast<CXXConstructorDecl>(FNTarget));
10977        S.Diag(C->getLocation(), diag::note_which_delegates_to);
10978      }
10979    }
10980
10981    for (CI = Current.begin(), CE = Current.end(); CI != CE; ++CI)
10982      Invalid.insert(*CI);
10983    Current.clear();
10984  } else {
10985    DelegatingCycleHelper(Target, Valid, Invalid, Current, S);
10986  }
10987}
10988
10989
10990void Sema::CheckDelegatingCtorCycles() {
10991  llvm::SmallSet<CXXConstructorDecl*, 4> Valid, Invalid, Current;
10992
10993  llvm::SmallSet<CXXConstructorDecl*, 4>::iterator CI = Current.begin(),
10994                                                   CE = Current.end();
10995
10996  for (DelegatingCtorDeclsType::iterator
10997         I = DelegatingCtorDecls.begin(ExternalSource),
10998         E = DelegatingCtorDecls.end();
10999       I != E; ++I) {
11000   DelegatingCycleHelper(*I, Valid, Invalid, Current, *this);
11001  }
11002
11003  for (CI = Invalid.begin(), CE = Invalid.end(); CI != CE; ++CI)
11004    (*CI)->setInvalidDecl();
11005}
11006
11007namespace {
11008  /// \brief AST visitor that finds references to the 'this' expression.
11009  class FindCXXThisExpr : public RecursiveASTVisitor<FindCXXThisExpr> {
11010    Sema &S;
11011
11012  public:
11013    explicit FindCXXThisExpr(Sema &S) : S(S) { }
11014
11015    bool VisitCXXThisExpr(CXXThisExpr *E) {
11016      S.Diag(E->getLocation(), diag::err_this_static_member_func)
11017        << E->isImplicit();
11018      return false;
11019    }
11020  };
11021}
11022
11023bool Sema::checkThisInStaticMemberFunctionType(CXXMethodDecl *Method) {
11024  TypeSourceInfo *TSInfo = Method->getTypeSourceInfo();
11025  if (!TSInfo)
11026    return false;
11027
11028  TypeLoc TL = TSInfo->getTypeLoc();
11029  FunctionProtoTypeLoc *ProtoTL = dyn_cast<FunctionProtoTypeLoc>(&TL);
11030  if (!ProtoTL)
11031    return false;
11032
11033  // C++11 [expr.prim.general]p3:
11034  //   [The expression this] shall not appear before the optional
11035  //   cv-qualifier-seq and it shall not appear within the declaration of a
11036  //   static member function (although its type and value category are defined
11037  //   within a static member function as they are within a non-static member
11038  //   function). [ Note: this is because declaration matching does not occur
11039  //  until the complete declarator is known. - end note ]
11040  const FunctionProtoType *Proto = ProtoTL->getTypePtr();
11041  FindCXXThisExpr Finder(*this);
11042
11043  // If the return type came after the cv-qualifier-seq, check it now.
11044  if (Proto->hasTrailingReturn() &&
11045      !Finder.TraverseTypeLoc(ProtoTL->getResultLoc()))
11046    return true;
11047
11048  // Check the exception specification.
11049  if (checkThisInStaticMemberFunctionExceptionSpec(Method))
11050    return true;
11051
11052  return checkThisInStaticMemberFunctionAttributes(Method);
11053}
11054
11055bool Sema::checkThisInStaticMemberFunctionExceptionSpec(CXXMethodDecl *Method) {
11056  TypeSourceInfo *TSInfo = Method->getTypeSourceInfo();
11057  if (!TSInfo)
11058    return false;
11059
11060  TypeLoc TL = TSInfo->getTypeLoc();
11061  FunctionProtoTypeLoc *ProtoTL = dyn_cast<FunctionProtoTypeLoc>(&TL);
11062  if (!ProtoTL)
11063    return false;
11064
11065  const FunctionProtoType *Proto = ProtoTL->getTypePtr();
11066  FindCXXThisExpr Finder(*this);
11067
11068  switch (Proto->getExceptionSpecType()) {
11069  case EST_Uninstantiated:
11070  case EST_BasicNoexcept:
11071  case EST_Delayed:
11072  case EST_DynamicNone:
11073  case EST_MSAny:
11074  case EST_None:
11075    break;
11076
11077  case EST_ComputedNoexcept:
11078    if (!Finder.TraverseStmt(Proto->getNoexceptExpr()))
11079      return true;
11080
11081  case EST_Dynamic:
11082    for (FunctionProtoType::exception_iterator E = Proto->exception_begin(),
11083         EEnd = Proto->exception_end();
11084         E != EEnd; ++E) {
11085      if (!Finder.TraverseType(*E))
11086        return true;
11087    }
11088    break;
11089  }
11090
11091  return false;
11092}
11093
11094bool Sema::checkThisInStaticMemberFunctionAttributes(CXXMethodDecl *Method) {
11095  FindCXXThisExpr Finder(*this);
11096
11097  // Check attributes.
11098  for (Decl::attr_iterator A = Method->attr_begin(), AEnd = Method->attr_end();
11099       A != AEnd; ++A) {
11100    // FIXME: This should be emitted by tblgen.
11101    Expr *Arg = 0;
11102    ArrayRef<Expr *> Args;
11103    if (GuardedByAttr *G = dyn_cast<GuardedByAttr>(*A))
11104      Arg = G->getArg();
11105    else if (PtGuardedByAttr *G = dyn_cast<PtGuardedByAttr>(*A))
11106      Arg = G->getArg();
11107    else if (AcquiredAfterAttr *AA = dyn_cast<AcquiredAfterAttr>(*A))
11108      Args = ArrayRef<Expr *>(AA->args_begin(), AA->args_size());
11109    else if (AcquiredBeforeAttr *AB = dyn_cast<AcquiredBeforeAttr>(*A))
11110      Args = ArrayRef<Expr *>(AB->args_begin(), AB->args_size());
11111    else if (ExclusiveLockFunctionAttr *ELF
11112               = dyn_cast<ExclusiveLockFunctionAttr>(*A))
11113      Args = ArrayRef<Expr *>(ELF->args_begin(), ELF->args_size());
11114    else if (SharedLockFunctionAttr *SLF
11115               = dyn_cast<SharedLockFunctionAttr>(*A))
11116      Args = ArrayRef<Expr *>(SLF->args_begin(), SLF->args_size());
11117    else if (ExclusiveTrylockFunctionAttr *ETLF
11118               = dyn_cast<ExclusiveTrylockFunctionAttr>(*A)) {
11119      Arg = ETLF->getSuccessValue();
11120      Args = ArrayRef<Expr *>(ETLF->args_begin(), ETLF->args_size());
11121    } else if (SharedTrylockFunctionAttr *STLF
11122                 = dyn_cast<SharedTrylockFunctionAttr>(*A)) {
11123      Arg = STLF->getSuccessValue();
11124      Args = ArrayRef<Expr *>(STLF->args_begin(), STLF->args_size());
11125    } else if (UnlockFunctionAttr *UF = dyn_cast<UnlockFunctionAttr>(*A))
11126      Args = ArrayRef<Expr *>(UF->args_begin(), UF->args_size());
11127    else if (LockReturnedAttr *LR = dyn_cast<LockReturnedAttr>(*A))
11128      Arg = LR->getArg();
11129    else if (LocksExcludedAttr *LE = dyn_cast<LocksExcludedAttr>(*A))
11130      Args = ArrayRef<Expr *>(LE->args_begin(), LE->args_size());
11131    else if (ExclusiveLocksRequiredAttr *ELR
11132               = dyn_cast<ExclusiveLocksRequiredAttr>(*A))
11133      Args = ArrayRef<Expr *>(ELR->args_begin(), ELR->args_size());
11134    else if (SharedLocksRequiredAttr *SLR
11135               = dyn_cast<SharedLocksRequiredAttr>(*A))
11136      Args = ArrayRef<Expr *>(SLR->args_begin(), SLR->args_size());
11137
11138    if (Arg && !Finder.TraverseStmt(Arg))
11139      return true;
11140
11141    for (unsigned I = 0, N = Args.size(); I != N; ++I) {
11142      if (!Finder.TraverseStmt(Args[I]))
11143        return true;
11144    }
11145  }
11146
11147  return false;
11148}
11149
11150void
11151Sema::checkExceptionSpecification(ExceptionSpecificationType EST,
11152                                  ArrayRef<ParsedType> DynamicExceptions,
11153                                  ArrayRef<SourceRange> DynamicExceptionRanges,
11154                                  Expr *NoexceptExpr,
11155                                  llvm::SmallVectorImpl<QualType> &Exceptions,
11156                                  FunctionProtoType::ExtProtoInfo &EPI) {
11157  Exceptions.clear();
11158  EPI.ExceptionSpecType = EST;
11159  if (EST == EST_Dynamic) {
11160    Exceptions.reserve(DynamicExceptions.size());
11161    for (unsigned ei = 0, ee = DynamicExceptions.size(); ei != ee; ++ei) {
11162      // FIXME: Preserve type source info.
11163      QualType ET = GetTypeFromParser(DynamicExceptions[ei]);
11164
11165      SmallVector<UnexpandedParameterPack, 2> Unexpanded;
11166      collectUnexpandedParameterPacks(ET, Unexpanded);
11167      if (!Unexpanded.empty()) {
11168        DiagnoseUnexpandedParameterPacks(DynamicExceptionRanges[ei].getBegin(),
11169                                         UPPC_ExceptionType,
11170                                         Unexpanded);
11171        continue;
11172      }
11173
11174      // Check that the type is valid for an exception spec, and
11175      // drop it if not.
11176      if (!CheckSpecifiedExceptionType(ET, DynamicExceptionRanges[ei]))
11177        Exceptions.push_back(ET);
11178    }
11179    EPI.NumExceptions = Exceptions.size();
11180    EPI.Exceptions = Exceptions.data();
11181    return;
11182  }
11183
11184  if (EST == EST_ComputedNoexcept) {
11185    // If an error occurred, there's no expression here.
11186    if (NoexceptExpr) {
11187      assert((NoexceptExpr->isTypeDependent() ||
11188              NoexceptExpr->getType()->getCanonicalTypeUnqualified() ==
11189              Context.BoolTy) &&
11190             "Parser should have made sure that the expression is boolean");
11191      if (NoexceptExpr && DiagnoseUnexpandedParameterPack(NoexceptExpr)) {
11192        EPI.ExceptionSpecType = EST_BasicNoexcept;
11193        return;
11194      }
11195
11196      if (!NoexceptExpr->isValueDependent())
11197        NoexceptExpr = VerifyIntegerConstantExpression(NoexceptExpr, 0,
11198                         diag::err_noexcept_needs_constant_expression,
11199                         /*AllowFold*/ false).take();
11200      EPI.NoexceptExpr = NoexceptExpr;
11201    }
11202    return;
11203  }
11204}
11205
11206/// IdentifyCUDATarget - Determine the CUDA compilation target for this function
11207Sema::CUDAFunctionTarget Sema::IdentifyCUDATarget(const FunctionDecl *D) {
11208  // Implicitly declared functions (e.g. copy constructors) are
11209  // __host__ __device__
11210  if (D->isImplicit())
11211    return CFT_HostDevice;
11212
11213  if (D->hasAttr<CUDAGlobalAttr>())
11214    return CFT_Global;
11215
11216  if (D->hasAttr<CUDADeviceAttr>()) {
11217    if (D->hasAttr<CUDAHostAttr>())
11218      return CFT_HostDevice;
11219    else
11220      return CFT_Device;
11221  }
11222
11223  return CFT_Host;
11224}
11225
11226bool Sema::CheckCUDATarget(CUDAFunctionTarget CallerTarget,
11227                           CUDAFunctionTarget CalleeTarget) {
11228  // CUDA B.1.1 "The __device__ qualifier declares a function that is...
11229  // Callable from the device only."
11230  if (CallerTarget == CFT_Host && CalleeTarget == CFT_Device)
11231    return true;
11232
11233  // CUDA B.1.2 "The __global__ qualifier declares a function that is...
11234  // Callable from the host only."
11235  // CUDA B.1.3 "The __host__ qualifier declares a function that is...
11236  // Callable from the host only."
11237  if ((CallerTarget == CFT_Device || CallerTarget == CFT_Global) &&
11238      (CalleeTarget == CFT_Host || CalleeTarget == CFT_Global))
11239    return true;
11240
11241  if (CallerTarget == CFT_HostDevice && CalleeTarget != CFT_HostDevice)
11242    return true;
11243
11244  return false;
11245}
11246