SemaDeclCXX.cpp revision 6fb745bdf1ff1e32caf07e42093a7920726892c1
1//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for C++ declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "SemaInit.h"
16#include "Lookup.h"
17#include "clang/AST/ASTConsumer.h"
18#include "clang/AST/ASTContext.h"
19#include "clang/AST/CharUnits.h"
20#include "clang/AST/CXXInheritance.h"
21#include "clang/AST/DeclVisitor.h"
22#include "clang/AST/RecordLayout.h"
23#include "clang/AST/StmtVisitor.h"
24#include "clang/AST/TypeLoc.h"
25#include "clang/AST/TypeOrdering.h"
26#include "clang/Parse/DeclSpec.h"
27#include "clang/Parse/Template.h"
28#include "clang/Basic/PartialDiagnostic.h"
29#include "clang/Lex/Preprocessor.h"
30#include "llvm/ADT/STLExtras.h"
31#include <map>
32#include <set>
33
34using namespace clang;
35
36//===----------------------------------------------------------------------===//
37// CheckDefaultArgumentVisitor
38//===----------------------------------------------------------------------===//
39
40namespace {
41  /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
42  /// the default argument of a parameter to determine whether it
43  /// contains any ill-formed subexpressions. For example, this will
44  /// diagnose the use of local variables or parameters within the
45  /// default argument expression.
46  class CheckDefaultArgumentVisitor
47    : public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
48    Expr *DefaultArg;
49    Sema *S;
50
51  public:
52    CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
53      : DefaultArg(defarg), S(s) {}
54
55    bool VisitExpr(Expr *Node);
56    bool VisitDeclRefExpr(DeclRefExpr *DRE);
57    bool VisitCXXThisExpr(CXXThisExpr *ThisE);
58  };
59
60  /// VisitExpr - Visit all of the children of this expression.
61  bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
62    bool IsInvalid = false;
63    for (Stmt::child_iterator I = Node->child_begin(),
64         E = Node->child_end(); I != E; ++I)
65      IsInvalid |= Visit(*I);
66    return IsInvalid;
67  }
68
69  /// VisitDeclRefExpr - Visit a reference to a declaration, to
70  /// determine whether this declaration can be used in the default
71  /// argument expression.
72  bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
73    NamedDecl *Decl = DRE->getDecl();
74    if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
75      // C++ [dcl.fct.default]p9
76      //   Default arguments are evaluated each time the function is
77      //   called. The order of evaluation of function arguments is
78      //   unspecified. Consequently, parameters of a function shall not
79      //   be used in default argument expressions, even if they are not
80      //   evaluated. Parameters of a function declared before a default
81      //   argument expression are in scope and can hide namespace and
82      //   class member names.
83      return S->Diag(DRE->getSourceRange().getBegin(),
84                     diag::err_param_default_argument_references_param)
85         << Param->getDeclName() << DefaultArg->getSourceRange();
86    } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
87      // C++ [dcl.fct.default]p7
88      //   Local variables shall not be used in default argument
89      //   expressions.
90      if (VDecl->isBlockVarDecl())
91        return S->Diag(DRE->getSourceRange().getBegin(),
92                       diag::err_param_default_argument_references_local)
93          << VDecl->getDeclName() << DefaultArg->getSourceRange();
94    }
95
96    return false;
97  }
98
99  /// VisitCXXThisExpr - Visit a C++ "this" expression.
100  bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
101    // C++ [dcl.fct.default]p8:
102    //   The keyword this shall not be used in a default argument of a
103    //   member function.
104    return S->Diag(ThisE->getSourceRange().getBegin(),
105                   diag::err_param_default_argument_references_this)
106               << ThisE->getSourceRange();
107  }
108}
109
110bool
111Sema::SetParamDefaultArgument(ParmVarDecl *Param, ExprArg DefaultArg,
112                              SourceLocation EqualLoc) {
113  if (RequireCompleteType(Param->getLocation(), Param->getType(),
114                          diag::err_typecheck_decl_incomplete_type)) {
115    Param->setInvalidDecl();
116    return true;
117  }
118
119  Expr *Arg = (Expr *)DefaultArg.get();
120
121  // C++ [dcl.fct.default]p5
122  //   A default argument expression is implicitly converted (clause
123  //   4) to the parameter type. The default argument expression has
124  //   the same semantic constraints as the initializer expression in
125  //   a declaration of a variable of the parameter type, using the
126  //   copy-initialization semantics (8.5).
127  InitializedEntity Entity = InitializedEntity::InitializeParameter(Param);
128  InitializationKind Kind = InitializationKind::CreateCopy(Param->getLocation(),
129                                                           EqualLoc);
130  InitializationSequence InitSeq(*this, Entity, Kind, &Arg, 1);
131  OwningExprResult Result = InitSeq.Perform(*this, Entity, Kind,
132                                          MultiExprArg(*this, (void**)&Arg, 1));
133  if (Result.isInvalid())
134    return true;
135  Arg = Result.takeAs<Expr>();
136
137  Arg = MaybeCreateCXXExprWithTemporaries(Arg);
138
139  // Okay: add the default argument to the parameter
140  Param->setDefaultArg(Arg);
141
142  DefaultArg.release();
143
144  return false;
145}
146
147/// ActOnParamDefaultArgument - Check whether the default argument
148/// provided for a function parameter is well-formed. If so, attach it
149/// to the parameter declaration.
150void
151Sema::ActOnParamDefaultArgument(DeclPtrTy param, SourceLocation EqualLoc,
152                                ExprArg defarg) {
153  if (!param || !defarg.get())
154    return;
155
156  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
157  UnparsedDefaultArgLocs.erase(Param);
158
159  ExprOwningPtr<Expr> DefaultArg(this, defarg.takeAs<Expr>());
160
161  // Default arguments are only permitted in C++
162  if (!getLangOptions().CPlusPlus) {
163    Diag(EqualLoc, diag::err_param_default_argument)
164      << DefaultArg->getSourceRange();
165    Param->setInvalidDecl();
166    return;
167  }
168
169  // Check that the default argument is well-formed
170  CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg.get(), this);
171  if (DefaultArgChecker.Visit(DefaultArg.get())) {
172    Param->setInvalidDecl();
173    return;
174  }
175
176  SetParamDefaultArgument(Param, move(DefaultArg), EqualLoc);
177}
178
179/// ActOnParamUnparsedDefaultArgument - We've seen a default
180/// argument for a function parameter, but we can't parse it yet
181/// because we're inside a class definition. Note that this default
182/// argument will be parsed later.
183void Sema::ActOnParamUnparsedDefaultArgument(DeclPtrTy param,
184                                             SourceLocation EqualLoc,
185                                             SourceLocation ArgLoc) {
186  if (!param)
187    return;
188
189  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
190  if (Param)
191    Param->setUnparsedDefaultArg();
192
193  UnparsedDefaultArgLocs[Param] = ArgLoc;
194}
195
196/// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
197/// the default argument for the parameter param failed.
198void Sema::ActOnParamDefaultArgumentError(DeclPtrTy param) {
199  if (!param)
200    return;
201
202  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
203
204  Param->setInvalidDecl();
205
206  UnparsedDefaultArgLocs.erase(Param);
207}
208
209/// CheckExtraCXXDefaultArguments - Check for any extra default
210/// arguments in the declarator, which is not a function declaration
211/// or definition and therefore is not permitted to have default
212/// arguments. This routine should be invoked for every declarator
213/// that is not a function declaration or definition.
214void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
215  // C++ [dcl.fct.default]p3
216  //   A default argument expression shall be specified only in the
217  //   parameter-declaration-clause of a function declaration or in a
218  //   template-parameter (14.1). It shall not be specified for a
219  //   parameter pack. If it is specified in a
220  //   parameter-declaration-clause, it shall not occur within a
221  //   declarator or abstract-declarator of a parameter-declaration.
222  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
223    DeclaratorChunk &chunk = D.getTypeObject(i);
224    if (chunk.Kind == DeclaratorChunk::Function) {
225      for (unsigned argIdx = 0, e = chunk.Fun.NumArgs; argIdx != e; ++argIdx) {
226        ParmVarDecl *Param =
227          cast<ParmVarDecl>(chunk.Fun.ArgInfo[argIdx].Param.getAs<Decl>());
228        if (Param->hasUnparsedDefaultArg()) {
229          CachedTokens *Toks = chunk.Fun.ArgInfo[argIdx].DefaultArgTokens;
230          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
231            << SourceRange((*Toks)[1].getLocation(), Toks->back().getLocation());
232          delete Toks;
233          chunk.Fun.ArgInfo[argIdx].DefaultArgTokens = 0;
234        } else if (Param->getDefaultArg()) {
235          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
236            << Param->getDefaultArg()->getSourceRange();
237          Param->setDefaultArg(0);
238        }
239      }
240    }
241  }
242}
243
244// MergeCXXFunctionDecl - Merge two declarations of the same C++
245// function, once we already know that they have the same
246// type. Subroutine of MergeFunctionDecl. Returns true if there was an
247// error, false otherwise.
248bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old) {
249  bool Invalid = false;
250
251  // C++ [dcl.fct.default]p4:
252  //   For non-template functions, default arguments can be added in
253  //   later declarations of a function in the same
254  //   scope. Declarations in different scopes have completely
255  //   distinct sets of default arguments. That is, declarations in
256  //   inner scopes do not acquire default arguments from
257  //   declarations in outer scopes, and vice versa. In a given
258  //   function declaration, all parameters subsequent to a
259  //   parameter with a default argument shall have default
260  //   arguments supplied in this or previous declarations. A
261  //   default argument shall not be redefined by a later
262  //   declaration (not even to the same value).
263  //
264  // C++ [dcl.fct.default]p6:
265  //   Except for member functions of class templates, the default arguments
266  //   in a member function definition that appears outside of the class
267  //   definition are added to the set of default arguments provided by the
268  //   member function declaration in the class definition.
269  for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) {
270    ParmVarDecl *OldParam = Old->getParamDecl(p);
271    ParmVarDecl *NewParam = New->getParamDecl(p);
272
273    if (OldParam->hasDefaultArg() && NewParam->hasDefaultArg()) {
274      // FIXME: If we knew where the '=' was, we could easily provide a fix-it
275      // hint here. Alternatively, we could walk the type-source information
276      // for NewParam to find the last source location in the type... but it
277      // isn't worth the effort right now. This is the kind of test case that
278      // is hard to get right:
279
280      //   int f(int);
281      //   void g(int (*fp)(int) = f);
282      //   void g(int (*fp)(int) = &f);
283      Diag(NewParam->getLocation(),
284           diag::err_param_default_argument_redefinition)
285        << NewParam->getDefaultArgRange();
286
287      // Look for the function declaration where the default argument was
288      // actually written, which may be a declaration prior to Old.
289      for (FunctionDecl *Older = Old->getPreviousDeclaration();
290           Older; Older = Older->getPreviousDeclaration()) {
291        if (!Older->getParamDecl(p)->hasDefaultArg())
292          break;
293
294        OldParam = Older->getParamDecl(p);
295      }
296
297      Diag(OldParam->getLocation(), diag::note_previous_definition)
298        << OldParam->getDefaultArgRange();
299      Invalid = true;
300    } else if (OldParam->hasDefaultArg()) {
301      // Merge the old default argument into the new parameter.
302      // It's important to use getInit() here;  getDefaultArg()
303      // strips off any top-level CXXExprWithTemporaries.
304      NewParam->setHasInheritedDefaultArg();
305      if (OldParam->hasUninstantiatedDefaultArg())
306        NewParam->setUninstantiatedDefaultArg(
307                                      OldParam->getUninstantiatedDefaultArg());
308      else
309        NewParam->setDefaultArg(OldParam->getInit());
310    } else if (NewParam->hasDefaultArg()) {
311      if (New->getDescribedFunctionTemplate()) {
312        // Paragraph 4, quoted above, only applies to non-template functions.
313        Diag(NewParam->getLocation(),
314             diag::err_param_default_argument_template_redecl)
315          << NewParam->getDefaultArgRange();
316        Diag(Old->getLocation(), diag::note_template_prev_declaration)
317          << false;
318      } else if (New->getTemplateSpecializationKind()
319                   != TSK_ImplicitInstantiation &&
320                 New->getTemplateSpecializationKind() != TSK_Undeclared) {
321        // C++ [temp.expr.spec]p21:
322        //   Default function arguments shall not be specified in a declaration
323        //   or a definition for one of the following explicit specializations:
324        //     - the explicit specialization of a function template;
325        //     - the explicit specialization of a member function template;
326        //     - the explicit specialization of a member function of a class
327        //       template where the class template specialization to which the
328        //       member function specialization belongs is implicitly
329        //       instantiated.
330        Diag(NewParam->getLocation(), diag::err_template_spec_default_arg)
331          << (New->getTemplateSpecializationKind() ==TSK_ExplicitSpecialization)
332          << New->getDeclName()
333          << NewParam->getDefaultArgRange();
334      } else if (New->getDeclContext()->isDependentContext()) {
335        // C++ [dcl.fct.default]p6 (DR217):
336        //   Default arguments for a member function of a class template shall
337        //   be specified on the initial declaration of the member function
338        //   within the class template.
339        //
340        // Reading the tea leaves a bit in DR217 and its reference to DR205
341        // leads me to the conclusion that one cannot add default function
342        // arguments for an out-of-line definition of a member function of a
343        // dependent type.
344        int WhichKind = 2;
345        if (CXXRecordDecl *Record
346              = dyn_cast<CXXRecordDecl>(New->getDeclContext())) {
347          if (Record->getDescribedClassTemplate())
348            WhichKind = 0;
349          else if (isa<ClassTemplatePartialSpecializationDecl>(Record))
350            WhichKind = 1;
351          else
352            WhichKind = 2;
353        }
354
355        Diag(NewParam->getLocation(),
356             diag::err_param_default_argument_member_template_redecl)
357          << WhichKind
358          << NewParam->getDefaultArgRange();
359      }
360    }
361  }
362
363  if (CheckEquivalentExceptionSpec(Old, New))
364    Invalid = true;
365
366  return Invalid;
367}
368
369/// CheckCXXDefaultArguments - Verify that the default arguments for a
370/// function declaration are well-formed according to C++
371/// [dcl.fct.default].
372void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
373  unsigned NumParams = FD->getNumParams();
374  unsigned p;
375
376  // Find first parameter with a default argument
377  for (p = 0; p < NumParams; ++p) {
378    ParmVarDecl *Param = FD->getParamDecl(p);
379    if (Param->hasDefaultArg())
380      break;
381  }
382
383  // C++ [dcl.fct.default]p4:
384  //   In a given function declaration, all parameters
385  //   subsequent to a parameter with a default argument shall
386  //   have default arguments supplied in this or previous
387  //   declarations. A default argument shall not be redefined
388  //   by a later declaration (not even to the same value).
389  unsigned LastMissingDefaultArg = 0;
390  for (; p < NumParams; ++p) {
391    ParmVarDecl *Param = FD->getParamDecl(p);
392    if (!Param->hasDefaultArg()) {
393      if (Param->isInvalidDecl())
394        /* We already complained about this parameter. */;
395      else if (Param->getIdentifier())
396        Diag(Param->getLocation(),
397             diag::err_param_default_argument_missing_name)
398          << Param->getIdentifier();
399      else
400        Diag(Param->getLocation(),
401             diag::err_param_default_argument_missing);
402
403      LastMissingDefaultArg = p;
404    }
405  }
406
407  if (LastMissingDefaultArg > 0) {
408    // Some default arguments were missing. Clear out all of the
409    // default arguments up to (and including) the last missing
410    // default argument, so that we leave the function parameters
411    // in a semantically valid state.
412    for (p = 0; p <= LastMissingDefaultArg; ++p) {
413      ParmVarDecl *Param = FD->getParamDecl(p);
414      if (Param->hasDefaultArg()) {
415        if (!Param->hasUnparsedDefaultArg())
416          Param->getDefaultArg()->Destroy(Context);
417        Param->setDefaultArg(0);
418      }
419    }
420  }
421}
422
423/// isCurrentClassName - Determine whether the identifier II is the
424/// name of the class type currently being defined. In the case of
425/// nested classes, this will only return true if II is the name of
426/// the innermost class.
427bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *,
428                              const CXXScopeSpec *SS) {
429  assert(getLangOptions().CPlusPlus && "No class names in C!");
430
431  CXXRecordDecl *CurDecl;
432  if (SS && SS->isSet() && !SS->isInvalid()) {
433    DeclContext *DC = computeDeclContext(*SS, true);
434    CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
435  } else
436    CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
437
438  if (CurDecl && CurDecl->getIdentifier())
439    return &II == CurDecl->getIdentifier();
440  else
441    return false;
442}
443
444/// \brief Check the validity of a C++ base class specifier.
445///
446/// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
447/// and returns NULL otherwise.
448CXXBaseSpecifier *
449Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
450                         SourceRange SpecifierRange,
451                         bool Virtual, AccessSpecifier Access,
452                         QualType BaseType,
453                         SourceLocation BaseLoc) {
454  // C++ [class.union]p1:
455  //   A union shall not have base classes.
456  if (Class->isUnion()) {
457    Diag(Class->getLocation(), diag::err_base_clause_on_union)
458      << SpecifierRange;
459    return 0;
460  }
461
462  if (BaseType->isDependentType())
463    return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
464                                Class->getTagKind() == TTK_Class,
465                                Access, BaseType);
466
467  // Base specifiers must be record types.
468  if (!BaseType->isRecordType()) {
469    Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
470    return 0;
471  }
472
473  // C++ [class.union]p1:
474  //   A union shall not be used as a base class.
475  if (BaseType->isUnionType()) {
476    Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
477    return 0;
478  }
479
480  // C++ [class.derived]p2:
481  //   The class-name in a base-specifier shall not be an incompletely
482  //   defined class.
483  if (RequireCompleteType(BaseLoc, BaseType,
484                          PDiag(diag::err_incomplete_base_class)
485                            << SpecifierRange))
486    return 0;
487
488  // If the base class is polymorphic or isn't empty, the new one is/isn't, too.
489  RecordDecl *BaseDecl = BaseType->getAs<RecordType>()->getDecl();
490  assert(BaseDecl && "Record type has no declaration");
491  BaseDecl = BaseDecl->getDefinition();
492  assert(BaseDecl && "Base type is not incomplete, but has no definition");
493  CXXRecordDecl * CXXBaseDecl = cast<CXXRecordDecl>(BaseDecl);
494  assert(CXXBaseDecl && "Base type is not a C++ type");
495
496  // C++0x CWG Issue #817 indicates that [[final]] classes shouldn't be bases.
497  if (CXXBaseDecl->hasAttr<FinalAttr>()) {
498    Diag(BaseLoc, diag::err_final_base) << BaseType.getAsString();
499    Diag(CXXBaseDecl->getLocation(), diag::note_previous_decl)
500      << BaseType;
501    return 0;
502  }
503
504  SetClassDeclAttributesFromBase(Class, CXXBaseDecl, Virtual);
505
506  // Create the base specifier.
507  return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
508                              Class->getTagKind() == TTK_Class,
509                              Access, BaseType);
510}
511
512void Sema::SetClassDeclAttributesFromBase(CXXRecordDecl *Class,
513                                          const CXXRecordDecl *BaseClass,
514                                          bool BaseIsVirtual) {
515  // A class with a non-empty base class is not empty.
516  // FIXME: Standard ref?
517  if (!BaseClass->isEmpty())
518    Class->setEmpty(false);
519
520  // C++ [class.virtual]p1:
521  //   A class that [...] inherits a virtual function is called a polymorphic
522  //   class.
523  if (BaseClass->isPolymorphic())
524    Class->setPolymorphic(true);
525
526  // C++ [dcl.init.aggr]p1:
527  //   An aggregate is [...] a class with [...] no base classes [...].
528  Class->setAggregate(false);
529
530  // C++ [class]p4:
531  //   A POD-struct is an aggregate class...
532  Class->setPOD(false);
533
534  if (BaseIsVirtual) {
535    // C++ [class.ctor]p5:
536    //   A constructor is trivial if its class has no virtual base classes.
537    Class->setHasTrivialConstructor(false);
538
539    // C++ [class.copy]p6:
540    //   A copy constructor is trivial if its class has no virtual base classes.
541    Class->setHasTrivialCopyConstructor(false);
542
543    // C++ [class.copy]p11:
544    //   A copy assignment operator is trivial if its class has no virtual
545    //   base classes.
546    Class->setHasTrivialCopyAssignment(false);
547
548    // C++0x [meta.unary.prop] is_empty:
549    //    T is a class type, but not a union type, with ... no virtual base
550    //    classes
551    Class->setEmpty(false);
552  } else {
553    // C++ [class.ctor]p5:
554    //   A constructor is trivial if all the direct base classes of its
555    //   class have trivial constructors.
556    if (!BaseClass->hasTrivialConstructor())
557      Class->setHasTrivialConstructor(false);
558
559    // C++ [class.copy]p6:
560    //   A copy constructor is trivial if all the direct base classes of its
561    //   class have trivial copy constructors.
562    if (!BaseClass->hasTrivialCopyConstructor())
563      Class->setHasTrivialCopyConstructor(false);
564
565    // C++ [class.copy]p11:
566    //   A copy assignment operator is trivial if all the direct base classes
567    //   of its class have trivial copy assignment operators.
568    if (!BaseClass->hasTrivialCopyAssignment())
569      Class->setHasTrivialCopyAssignment(false);
570  }
571
572  // C++ [class.ctor]p3:
573  //   A destructor is trivial if all the direct base classes of its class
574  //   have trivial destructors.
575  if (!BaseClass->hasTrivialDestructor())
576    Class->setHasTrivialDestructor(false);
577}
578
579/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
580/// one entry in the base class list of a class specifier, for
581/// example:
582///    class foo : public bar, virtual private baz {
583/// 'public bar' and 'virtual private baz' are each base-specifiers.
584Sema::BaseResult
585Sema::ActOnBaseSpecifier(DeclPtrTy classdecl, SourceRange SpecifierRange,
586                         bool Virtual, AccessSpecifier Access,
587                         TypeTy *basetype, SourceLocation BaseLoc) {
588  if (!classdecl)
589    return true;
590
591  AdjustDeclIfTemplate(classdecl);
592  CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(classdecl.getAs<Decl>());
593  if (!Class)
594    return true;
595
596  QualType BaseType = GetTypeFromParser(basetype);
597  if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
598                                                      Virtual, Access,
599                                                      BaseType, BaseLoc))
600    return BaseSpec;
601
602  return true;
603}
604
605/// \brief Performs the actual work of attaching the given base class
606/// specifiers to a C++ class.
607bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, CXXBaseSpecifier **Bases,
608                                unsigned NumBases) {
609 if (NumBases == 0)
610    return false;
611
612  // Used to keep track of which base types we have already seen, so
613  // that we can properly diagnose redundant direct base types. Note
614  // that the key is always the unqualified canonical type of the base
615  // class.
616  std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
617
618  // Copy non-redundant base specifiers into permanent storage.
619  unsigned NumGoodBases = 0;
620  bool Invalid = false;
621  for (unsigned idx = 0; idx < NumBases; ++idx) {
622    QualType NewBaseType
623      = Context.getCanonicalType(Bases[idx]->getType());
624    NewBaseType = NewBaseType.getLocalUnqualifiedType();
625
626    if (KnownBaseTypes[NewBaseType]) {
627      // C++ [class.mi]p3:
628      //   A class shall not be specified as a direct base class of a
629      //   derived class more than once.
630      Diag(Bases[idx]->getSourceRange().getBegin(),
631           diag::err_duplicate_base_class)
632        << KnownBaseTypes[NewBaseType]->getType()
633        << Bases[idx]->getSourceRange();
634
635      // Delete the duplicate base class specifier; we're going to
636      // overwrite its pointer later.
637      Context.Deallocate(Bases[idx]);
638
639      Invalid = true;
640    } else {
641      // Okay, add this new base class.
642      KnownBaseTypes[NewBaseType] = Bases[idx];
643      Bases[NumGoodBases++] = Bases[idx];
644    }
645  }
646
647  // Attach the remaining base class specifiers to the derived class.
648  Class->setBases(Bases, NumGoodBases);
649
650  // Delete the remaining (good) base class specifiers, since their
651  // data has been copied into the CXXRecordDecl.
652  for (unsigned idx = 0; idx < NumGoodBases; ++idx)
653    Context.Deallocate(Bases[idx]);
654
655  return Invalid;
656}
657
658/// ActOnBaseSpecifiers - Attach the given base specifiers to the
659/// class, after checking whether there are any duplicate base
660/// classes.
661void Sema::ActOnBaseSpecifiers(DeclPtrTy ClassDecl, BaseTy **Bases,
662                               unsigned NumBases) {
663  if (!ClassDecl || !Bases || !NumBases)
664    return;
665
666  AdjustDeclIfTemplate(ClassDecl);
667  AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl.getAs<Decl>()),
668                       (CXXBaseSpecifier**)(Bases), NumBases);
669}
670
671static CXXRecordDecl *GetClassForType(QualType T) {
672  if (const RecordType *RT = T->getAs<RecordType>())
673    return cast<CXXRecordDecl>(RT->getDecl());
674  else if (const InjectedClassNameType *ICT = T->getAs<InjectedClassNameType>())
675    return ICT->getDecl();
676  else
677    return 0;
678}
679
680/// \brief Determine whether the type \p Derived is a C++ class that is
681/// derived from the type \p Base.
682bool Sema::IsDerivedFrom(QualType Derived, QualType Base) {
683  if (!getLangOptions().CPlusPlus)
684    return false;
685
686  CXXRecordDecl *DerivedRD = GetClassForType(Derived);
687  if (!DerivedRD)
688    return false;
689
690  CXXRecordDecl *BaseRD = GetClassForType(Base);
691  if (!BaseRD)
692    return false;
693
694  // FIXME: instantiate DerivedRD if necessary.  We need a PoI for this.
695  return DerivedRD->hasDefinition() && DerivedRD->isDerivedFrom(BaseRD);
696}
697
698/// \brief Determine whether the type \p Derived is a C++ class that is
699/// derived from the type \p Base.
700bool Sema::IsDerivedFrom(QualType Derived, QualType Base, CXXBasePaths &Paths) {
701  if (!getLangOptions().CPlusPlus)
702    return false;
703
704  CXXRecordDecl *DerivedRD = GetClassForType(Derived);
705  if (!DerivedRD)
706    return false;
707
708  CXXRecordDecl *BaseRD = GetClassForType(Base);
709  if (!BaseRD)
710    return false;
711
712  return DerivedRD->isDerivedFrom(BaseRD, Paths);
713}
714
715void Sema::BuildBasePathArray(const CXXBasePaths &Paths,
716                              CXXBaseSpecifierArray &BasePathArray) {
717  assert(BasePathArray.empty() && "Base path array must be empty!");
718  assert(Paths.isRecordingPaths() && "Must record paths!");
719
720  const CXXBasePath &Path = Paths.front();
721
722  // We first go backward and check if we have a virtual base.
723  // FIXME: It would be better if CXXBasePath had the base specifier for
724  // the nearest virtual base.
725  unsigned Start = 0;
726  for (unsigned I = Path.size(); I != 0; --I) {
727    if (Path[I - 1].Base->isVirtual()) {
728      Start = I - 1;
729      break;
730    }
731  }
732
733  // Now add all bases.
734  for (unsigned I = Start, E = Path.size(); I != E; ++I)
735    BasePathArray.push_back(Path[I].Base);
736}
737
738/// \brief Determine whether the given base path includes a virtual
739/// base class.
740bool Sema::BasePathInvolvesVirtualBase(const CXXBaseSpecifierArray &BasePath) {
741  for (CXXBaseSpecifierArray::iterator B = BasePath.begin(),
742                                    BEnd = BasePath.end();
743       B != BEnd; ++B)
744    if ((*B)->isVirtual())
745      return true;
746
747  return false;
748}
749
750/// CheckDerivedToBaseConversion - Check whether the Derived-to-Base
751/// conversion (where Derived and Base are class types) is
752/// well-formed, meaning that the conversion is unambiguous (and
753/// that all of the base classes are accessible). Returns true
754/// and emits a diagnostic if the code is ill-formed, returns false
755/// otherwise. Loc is the location where this routine should point to
756/// if there is an error, and Range is the source range to highlight
757/// if there is an error.
758bool
759Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
760                                   unsigned InaccessibleBaseID,
761                                   unsigned AmbigiousBaseConvID,
762                                   SourceLocation Loc, SourceRange Range,
763                                   DeclarationName Name,
764                                   CXXBaseSpecifierArray *BasePath) {
765  // First, determine whether the path from Derived to Base is
766  // ambiguous. This is slightly more expensive than checking whether
767  // the Derived to Base conversion exists, because here we need to
768  // explore multiple paths to determine if there is an ambiguity.
769  CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
770                     /*DetectVirtual=*/false);
771  bool DerivationOkay = IsDerivedFrom(Derived, Base, Paths);
772  assert(DerivationOkay &&
773         "Can only be used with a derived-to-base conversion");
774  (void)DerivationOkay;
775
776  if (!Paths.isAmbiguous(Context.getCanonicalType(Base).getUnqualifiedType())) {
777    if (InaccessibleBaseID) {
778      // Check that the base class can be accessed.
779      switch (CheckBaseClassAccess(Loc, Base, Derived, Paths.front(),
780                                   InaccessibleBaseID)) {
781        case AR_inaccessible:
782          return true;
783        case AR_accessible:
784        case AR_dependent:
785        case AR_delayed:
786          break;
787      }
788    }
789
790    // Build a base path if necessary.
791    if (BasePath)
792      BuildBasePathArray(Paths, *BasePath);
793    return false;
794  }
795
796  // We know that the derived-to-base conversion is ambiguous, and
797  // we're going to produce a diagnostic. Perform the derived-to-base
798  // search just one more time to compute all of the possible paths so
799  // that we can print them out. This is more expensive than any of
800  // the previous derived-to-base checks we've done, but at this point
801  // performance isn't as much of an issue.
802  Paths.clear();
803  Paths.setRecordingPaths(true);
804  bool StillOkay = IsDerivedFrom(Derived, Base, Paths);
805  assert(StillOkay && "Can only be used with a derived-to-base conversion");
806  (void)StillOkay;
807
808  // Build up a textual representation of the ambiguous paths, e.g.,
809  // D -> B -> A, that will be used to illustrate the ambiguous
810  // conversions in the diagnostic. We only print one of the paths
811  // to each base class subobject.
812  std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
813
814  Diag(Loc, AmbigiousBaseConvID)
815  << Derived << Base << PathDisplayStr << Range << Name;
816  return true;
817}
818
819bool
820Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
821                                   SourceLocation Loc, SourceRange Range,
822                                   CXXBaseSpecifierArray *BasePath,
823                                   bool IgnoreAccess) {
824  return CheckDerivedToBaseConversion(Derived, Base,
825                                      IgnoreAccess ? 0
826                                       : diag::err_upcast_to_inaccessible_base,
827                                      diag::err_ambiguous_derived_to_base_conv,
828                                      Loc, Range, DeclarationName(),
829                                      BasePath);
830}
831
832
833/// @brief Builds a string representing ambiguous paths from a
834/// specific derived class to different subobjects of the same base
835/// class.
836///
837/// This function builds a string that can be used in error messages
838/// to show the different paths that one can take through the
839/// inheritance hierarchy to go from the derived class to different
840/// subobjects of a base class. The result looks something like this:
841/// @code
842/// struct D -> struct B -> struct A
843/// struct D -> struct C -> struct A
844/// @endcode
845std::string Sema::getAmbiguousPathsDisplayString(CXXBasePaths &Paths) {
846  std::string PathDisplayStr;
847  std::set<unsigned> DisplayedPaths;
848  for (CXXBasePaths::paths_iterator Path = Paths.begin();
849       Path != Paths.end(); ++Path) {
850    if (DisplayedPaths.insert(Path->back().SubobjectNumber).second) {
851      // We haven't displayed a path to this particular base
852      // class subobject yet.
853      PathDisplayStr += "\n    ";
854      PathDisplayStr += Context.getTypeDeclType(Paths.getOrigin()).getAsString();
855      for (CXXBasePath::const_iterator Element = Path->begin();
856           Element != Path->end(); ++Element)
857        PathDisplayStr += " -> " + Element->Base->getType().getAsString();
858    }
859  }
860
861  return PathDisplayStr;
862}
863
864//===----------------------------------------------------------------------===//
865// C++ class member Handling
866//===----------------------------------------------------------------------===//
867
868/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
869/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
870/// bitfield width if there is one and 'InitExpr' specifies the initializer if
871/// any.
872Sema::DeclPtrTy
873Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
874                               MultiTemplateParamsArg TemplateParameterLists,
875                               ExprTy *BW, ExprTy *InitExpr, bool IsDefinition,
876                               bool Deleted) {
877  const DeclSpec &DS = D.getDeclSpec();
878  DeclarationName Name = GetNameForDeclarator(D);
879  Expr *BitWidth = static_cast<Expr*>(BW);
880  Expr *Init = static_cast<Expr*>(InitExpr);
881  SourceLocation Loc = D.getIdentifierLoc();
882
883  bool isFunc = D.isFunctionDeclarator();
884
885  assert(!DS.isFriendSpecified());
886
887  // C++ 9.2p6: A member shall not be declared to have automatic storage
888  // duration (auto, register) or with the extern storage-class-specifier.
889  // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
890  // data members and cannot be applied to names declared const or static,
891  // and cannot be applied to reference members.
892  switch (DS.getStorageClassSpec()) {
893    case DeclSpec::SCS_unspecified:
894    case DeclSpec::SCS_typedef:
895    case DeclSpec::SCS_static:
896      // FALL THROUGH.
897      break;
898    case DeclSpec::SCS_mutable:
899      if (isFunc) {
900        if (DS.getStorageClassSpecLoc().isValid())
901          Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
902        else
903          Diag(DS.getThreadSpecLoc(), diag::err_mutable_function);
904
905        // FIXME: It would be nicer if the keyword was ignored only for this
906        // declarator. Otherwise we could get follow-up errors.
907        D.getMutableDeclSpec().ClearStorageClassSpecs();
908      } else {
909        QualType T = GetTypeForDeclarator(D, S);
910        diag::kind err = static_cast<diag::kind>(0);
911        if (T->isReferenceType())
912          err = diag::err_mutable_reference;
913        else if (T.isConstQualified())
914          err = diag::err_mutable_const;
915        if (err != 0) {
916          if (DS.getStorageClassSpecLoc().isValid())
917            Diag(DS.getStorageClassSpecLoc(), err);
918          else
919            Diag(DS.getThreadSpecLoc(), err);
920          // FIXME: It would be nicer if the keyword was ignored only for this
921          // declarator. Otherwise we could get follow-up errors.
922          D.getMutableDeclSpec().ClearStorageClassSpecs();
923        }
924      }
925      break;
926    default:
927      if (DS.getStorageClassSpecLoc().isValid())
928        Diag(DS.getStorageClassSpecLoc(),
929             diag::err_storageclass_invalid_for_member);
930      else
931        Diag(DS.getThreadSpecLoc(), diag::err_storageclass_invalid_for_member);
932      D.getMutableDeclSpec().ClearStorageClassSpecs();
933  }
934
935  if (!isFunc &&
936      D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_typename &&
937      D.getNumTypeObjects() == 0) {
938    // Check also for this case:
939    //
940    // typedef int f();
941    // f a;
942    //
943    QualType TDType = GetTypeFromParser(DS.getTypeRep());
944    isFunc = TDType->isFunctionType();
945  }
946
947  bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
948                       DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
949                      !isFunc);
950
951  Decl *Member;
952  if (isInstField) {
953    // FIXME: Check for template parameters!
954    Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D, BitWidth,
955                         AS);
956    assert(Member && "HandleField never returns null");
957  } else {
958    Member = HandleDeclarator(S, D, move(TemplateParameterLists), IsDefinition)
959               .getAs<Decl>();
960    if (!Member) {
961      if (BitWidth) DeleteExpr(BitWidth);
962      return DeclPtrTy();
963    }
964
965    // Non-instance-fields can't have a bitfield.
966    if (BitWidth) {
967      if (Member->isInvalidDecl()) {
968        // don't emit another diagnostic.
969      } else if (isa<VarDecl>(Member)) {
970        // C++ 9.6p3: A bit-field shall not be a static member.
971        // "static member 'A' cannot be a bit-field"
972        Diag(Loc, diag::err_static_not_bitfield)
973          << Name << BitWidth->getSourceRange();
974      } else if (isa<TypedefDecl>(Member)) {
975        // "typedef member 'x' cannot be a bit-field"
976        Diag(Loc, diag::err_typedef_not_bitfield)
977          << Name << BitWidth->getSourceRange();
978      } else {
979        // A function typedef ("typedef int f(); f a;").
980        // C++ 9.6p3: A bit-field shall have integral or enumeration type.
981        Diag(Loc, diag::err_not_integral_type_bitfield)
982          << Name << cast<ValueDecl>(Member)->getType()
983          << BitWidth->getSourceRange();
984      }
985
986      DeleteExpr(BitWidth);
987      BitWidth = 0;
988      Member->setInvalidDecl();
989    }
990
991    Member->setAccess(AS);
992
993    // If we have declared a member function template, set the access of the
994    // templated declaration as well.
995    if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Member))
996      FunTmpl->getTemplatedDecl()->setAccess(AS);
997  }
998
999  assert((Name || isInstField) && "No identifier for non-field ?");
1000
1001  if (Init)
1002    AddInitializerToDecl(DeclPtrTy::make(Member), ExprArg(*this, Init), false);
1003  if (Deleted) // FIXME: Source location is not very good.
1004    SetDeclDeleted(DeclPtrTy::make(Member), D.getSourceRange().getBegin());
1005
1006  if (isInstField) {
1007    FieldCollector->Add(cast<FieldDecl>(Member));
1008    return DeclPtrTy();
1009  }
1010  return DeclPtrTy::make(Member);
1011}
1012
1013/// \brief Find the direct and/or virtual base specifiers that
1014/// correspond to the given base type, for use in base initialization
1015/// within a constructor.
1016static bool FindBaseInitializer(Sema &SemaRef,
1017                                CXXRecordDecl *ClassDecl,
1018                                QualType BaseType,
1019                                const CXXBaseSpecifier *&DirectBaseSpec,
1020                                const CXXBaseSpecifier *&VirtualBaseSpec) {
1021  // First, check for a direct base class.
1022  DirectBaseSpec = 0;
1023  for (CXXRecordDecl::base_class_const_iterator Base
1024         = ClassDecl->bases_begin();
1025       Base != ClassDecl->bases_end(); ++Base) {
1026    if (SemaRef.Context.hasSameUnqualifiedType(BaseType, Base->getType())) {
1027      // We found a direct base of this type. That's what we're
1028      // initializing.
1029      DirectBaseSpec = &*Base;
1030      break;
1031    }
1032  }
1033
1034  // Check for a virtual base class.
1035  // FIXME: We might be able to short-circuit this if we know in advance that
1036  // there are no virtual bases.
1037  VirtualBaseSpec = 0;
1038  if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
1039    // We haven't found a base yet; search the class hierarchy for a
1040    // virtual base class.
1041    CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
1042                       /*DetectVirtual=*/false);
1043    if (SemaRef.IsDerivedFrom(SemaRef.Context.getTypeDeclType(ClassDecl),
1044                              BaseType, Paths)) {
1045      for (CXXBasePaths::paths_iterator Path = Paths.begin();
1046           Path != Paths.end(); ++Path) {
1047        if (Path->back().Base->isVirtual()) {
1048          VirtualBaseSpec = Path->back().Base;
1049          break;
1050        }
1051      }
1052    }
1053  }
1054
1055  return DirectBaseSpec || VirtualBaseSpec;
1056}
1057
1058/// ActOnMemInitializer - Handle a C++ member initializer.
1059Sema::MemInitResult
1060Sema::ActOnMemInitializer(DeclPtrTy ConstructorD,
1061                          Scope *S,
1062                          CXXScopeSpec &SS,
1063                          IdentifierInfo *MemberOrBase,
1064                          TypeTy *TemplateTypeTy,
1065                          SourceLocation IdLoc,
1066                          SourceLocation LParenLoc,
1067                          ExprTy **Args, unsigned NumArgs,
1068                          SourceLocation *CommaLocs,
1069                          SourceLocation RParenLoc) {
1070  if (!ConstructorD)
1071    return true;
1072
1073  AdjustDeclIfTemplate(ConstructorD);
1074
1075  CXXConstructorDecl *Constructor
1076    = dyn_cast<CXXConstructorDecl>(ConstructorD.getAs<Decl>());
1077  if (!Constructor) {
1078    // The user wrote a constructor initializer on a function that is
1079    // not a C++ constructor. Ignore the error for now, because we may
1080    // have more member initializers coming; we'll diagnose it just
1081    // once in ActOnMemInitializers.
1082    return true;
1083  }
1084
1085  CXXRecordDecl *ClassDecl = Constructor->getParent();
1086
1087  // C++ [class.base.init]p2:
1088  //   Names in a mem-initializer-id are looked up in the scope of the
1089  //   constructor’s class and, if not found in that scope, are looked
1090  //   up in the scope containing the constructor’s
1091  //   definition. [Note: if the constructor’s class contains a member
1092  //   with the same name as a direct or virtual base class of the
1093  //   class, a mem-initializer-id naming the member or base class and
1094  //   composed of a single identifier refers to the class member. A
1095  //   mem-initializer-id for the hidden base class may be specified
1096  //   using a qualified name. ]
1097  if (!SS.getScopeRep() && !TemplateTypeTy) {
1098    // Look for a member, first.
1099    FieldDecl *Member = 0;
1100    DeclContext::lookup_result Result
1101      = ClassDecl->lookup(MemberOrBase);
1102    if (Result.first != Result.second)
1103      Member = dyn_cast<FieldDecl>(*Result.first);
1104
1105    // FIXME: Handle members of an anonymous union.
1106
1107    if (Member)
1108      return BuildMemberInitializer(Member, (Expr**)Args, NumArgs, IdLoc,
1109                                    LParenLoc, RParenLoc);
1110  }
1111  // It didn't name a member, so see if it names a class.
1112  QualType BaseType;
1113  TypeSourceInfo *TInfo = 0;
1114
1115  if (TemplateTypeTy) {
1116    BaseType = GetTypeFromParser(TemplateTypeTy, &TInfo);
1117  } else {
1118    LookupResult R(*this, MemberOrBase, IdLoc, LookupOrdinaryName);
1119    LookupParsedName(R, S, &SS);
1120
1121    TypeDecl *TyD = R.getAsSingle<TypeDecl>();
1122    if (!TyD) {
1123      if (R.isAmbiguous()) return true;
1124
1125      // We don't want access-control diagnostics here.
1126      R.suppressDiagnostics();
1127
1128      if (SS.isSet() && isDependentScopeSpecifier(SS)) {
1129        bool NotUnknownSpecialization = false;
1130        DeclContext *DC = computeDeclContext(SS, false);
1131        if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(DC))
1132          NotUnknownSpecialization = !Record->hasAnyDependentBases();
1133
1134        if (!NotUnknownSpecialization) {
1135          // When the scope specifier can refer to a member of an unknown
1136          // specialization, we take it as a type name.
1137          BaseType = CheckTypenameType(ETK_None,
1138                                       (NestedNameSpecifier *)SS.getScopeRep(),
1139                                       *MemberOrBase, SS.getRange());
1140          if (BaseType.isNull())
1141            return true;
1142
1143          R.clear();
1144        }
1145      }
1146
1147      // If no results were found, try to correct typos.
1148      if (R.empty() && BaseType.isNull() &&
1149          CorrectTypo(R, S, &SS, ClassDecl, 0, CTC_NoKeywords) &&
1150          R.isSingleResult()) {
1151        if (FieldDecl *Member = R.getAsSingle<FieldDecl>()) {
1152          if (Member->getDeclContext()->getLookupContext()->Equals(ClassDecl)) {
1153            // We have found a non-static data member with a similar
1154            // name to what was typed; complain and initialize that
1155            // member.
1156            Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
1157              << MemberOrBase << true << R.getLookupName()
1158              << FixItHint::CreateReplacement(R.getNameLoc(),
1159                                              R.getLookupName().getAsString());
1160            Diag(Member->getLocation(), diag::note_previous_decl)
1161              << Member->getDeclName();
1162
1163            return BuildMemberInitializer(Member, (Expr**)Args, NumArgs, IdLoc,
1164                                          LParenLoc, RParenLoc);
1165          }
1166        } else if (TypeDecl *Type = R.getAsSingle<TypeDecl>()) {
1167          const CXXBaseSpecifier *DirectBaseSpec;
1168          const CXXBaseSpecifier *VirtualBaseSpec;
1169          if (FindBaseInitializer(*this, ClassDecl,
1170                                  Context.getTypeDeclType(Type),
1171                                  DirectBaseSpec, VirtualBaseSpec)) {
1172            // We have found a direct or virtual base class with a
1173            // similar name to what was typed; complain and initialize
1174            // that base class.
1175            Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
1176              << MemberOrBase << false << R.getLookupName()
1177              << FixItHint::CreateReplacement(R.getNameLoc(),
1178                                              R.getLookupName().getAsString());
1179
1180            const CXXBaseSpecifier *BaseSpec = DirectBaseSpec? DirectBaseSpec
1181                                                             : VirtualBaseSpec;
1182            Diag(BaseSpec->getSourceRange().getBegin(),
1183                 diag::note_base_class_specified_here)
1184              << BaseSpec->getType()
1185              << BaseSpec->getSourceRange();
1186
1187            TyD = Type;
1188          }
1189        }
1190      }
1191
1192      if (!TyD && BaseType.isNull()) {
1193        Diag(IdLoc, diag::err_mem_init_not_member_or_class)
1194          << MemberOrBase << SourceRange(IdLoc, RParenLoc);
1195        return true;
1196      }
1197    }
1198
1199    if (BaseType.isNull()) {
1200      BaseType = Context.getTypeDeclType(TyD);
1201      if (SS.isSet()) {
1202        NestedNameSpecifier *Qualifier =
1203          static_cast<NestedNameSpecifier*>(SS.getScopeRep());
1204
1205        // FIXME: preserve source range information
1206        BaseType = Context.getElaboratedType(ETK_None, Qualifier, BaseType);
1207      }
1208    }
1209  }
1210
1211  if (!TInfo)
1212    TInfo = Context.getTrivialTypeSourceInfo(BaseType, IdLoc);
1213
1214  return BuildBaseInitializer(BaseType, TInfo, (Expr **)Args, NumArgs,
1215                              LParenLoc, RParenLoc, ClassDecl);
1216}
1217
1218/// Checks an initializer expression for use of uninitialized fields, such as
1219/// containing the field that is being initialized. Returns true if there is an
1220/// uninitialized field was used an updates the SourceLocation parameter; false
1221/// otherwise.
1222static bool InitExprContainsUninitializedFields(const Stmt* S,
1223                                                const FieldDecl* LhsField,
1224                                                SourceLocation* L) {
1225  const MemberExpr* ME = dyn_cast<MemberExpr>(S);
1226  if (ME) {
1227    const NamedDecl* RhsField = ME->getMemberDecl();
1228    if (RhsField == LhsField) {
1229      // Initializing a field with itself. Throw a warning.
1230      // But wait; there are exceptions!
1231      // Exception #1:  The field may not belong to this record.
1232      // e.g. Foo(const Foo& rhs) : A(rhs.A) {}
1233      const Expr* base = ME->getBase();
1234      if (base != NULL && !isa<CXXThisExpr>(base->IgnoreParenCasts())) {
1235        // Even though the field matches, it does not belong to this record.
1236        return false;
1237      }
1238      // None of the exceptions triggered; return true to indicate an
1239      // uninitialized field was used.
1240      *L = ME->getMemberLoc();
1241      return true;
1242    }
1243  }
1244  bool found = false;
1245  for (Stmt::const_child_iterator it = S->child_begin();
1246       it != S->child_end() && found == false;
1247       ++it) {
1248    if (isa<CallExpr>(S)) {
1249      // Do not descend into function calls or constructors, as the use
1250      // of an uninitialized field may be valid. One would have to inspect
1251      // the contents of the function/ctor to determine if it is safe or not.
1252      // i.e. Pass-by-value is never safe, but pass-by-reference and pointers
1253      // may be safe, depending on what the function/ctor does.
1254      continue;
1255    }
1256    found = InitExprContainsUninitializedFields(*it, LhsField, L);
1257  }
1258  return found;
1259}
1260
1261Sema::MemInitResult
1262Sema::BuildMemberInitializer(FieldDecl *Member, Expr **Args,
1263                             unsigned NumArgs, SourceLocation IdLoc,
1264                             SourceLocation LParenLoc,
1265                             SourceLocation RParenLoc) {
1266  // Diagnose value-uses of fields to initialize themselves, e.g.
1267  //   foo(foo)
1268  // where foo is not also a parameter to the constructor.
1269  // TODO: implement -Wuninitialized and fold this into that framework.
1270  for (unsigned i = 0; i < NumArgs; ++i) {
1271    SourceLocation L;
1272    if (InitExprContainsUninitializedFields(Args[i], Member, &L)) {
1273      // FIXME: Return true in the case when other fields are used before being
1274      // uninitialized. For example, let this field be the i'th field. When
1275      // initializing the i'th field, throw a warning if any of the >= i'th
1276      // fields are used, as they are not yet initialized.
1277      // Right now we are only handling the case where the i'th field uses
1278      // itself in its initializer.
1279      Diag(L, diag::warn_field_is_uninit);
1280    }
1281  }
1282
1283  bool HasDependentArg = false;
1284  for (unsigned i = 0; i < NumArgs; i++)
1285    HasDependentArg |= Args[i]->isTypeDependent();
1286
1287  QualType FieldType = Member->getType();
1288  if (const ArrayType *Array = Context.getAsArrayType(FieldType))
1289    FieldType = Array->getElementType();
1290  if (FieldType->isDependentType() || HasDependentArg) {
1291    // Can't check initialization for a member of dependent type or when
1292    // any of the arguments are type-dependent expressions.
1293    OwningExprResult Init
1294      = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1295                                          RParenLoc));
1296
1297    // Erase any temporaries within this evaluation context; we're not
1298    // going to track them in the AST, since we'll be rebuilding the
1299    // ASTs during template instantiation.
1300    ExprTemporaries.erase(
1301              ExprTemporaries.begin() + ExprEvalContexts.back().NumTemporaries,
1302                          ExprTemporaries.end());
1303
1304    return new (Context) CXXBaseOrMemberInitializer(Context, Member, IdLoc,
1305                                                    LParenLoc,
1306                                                    Init.takeAs<Expr>(),
1307                                                    RParenLoc);
1308
1309  }
1310
1311  if (Member->isInvalidDecl())
1312    return true;
1313
1314  // Initialize the member.
1315  InitializedEntity MemberEntity =
1316    InitializedEntity::InitializeMember(Member, 0);
1317  InitializationKind Kind =
1318    InitializationKind::CreateDirect(IdLoc, LParenLoc, RParenLoc);
1319
1320  InitializationSequence InitSeq(*this, MemberEntity, Kind, Args, NumArgs);
1321
1322  OwningExprResult MemberInit =
1323    InitSeq.Perform(*this, MemberEntity, Kind,
1324                    MultiExprArg(*this, (void**)Args, NumArgs), 0);
1325  if (MemberInit.isInvalid())
1326    return true;
1327
1328  // C++0x [class.base.init]p7:
1329  //   The initialization of each base and member constitutes a
1330  //   full-expression.
1331  MemberInit = MaybeCreateCXXExprWithTemporaries(move(MemberInit));
1332  if (MemberInit.isInvalid())
1333    return true;
1334
1335  // If we are in a dependent context, template instantiation will
1336  // perform this type-checking again. Just save the arguments that we
1337  // received in a ParenListExpr.
1338  // FIXME: This isn't quite ideal, since our ASTs don't capture all
1339  // of the information that we have about the member
1340  // initializer. However, deconstructing the ASTs is a dicey process,
1341  // and this approach is far more likely to get the corner cases right.
1342  if (CurContext->isDependentContext()) {
1343    // Bump the reference count of all of the arguments.
1344    for (unsigned I = 0; I != NumArgs; ++I)
1345      Args[I]->Retain();
1346
1347    OwningExprResult Init
1348      = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1349                                          RParenLoc));
1350    return new (Context) CXXBaseOrMemberInitializer(Context, Member, IdLoc,
1351                                                    LParenLoc,
1352                                                    Init.takeAs<Expr>(),
1353                                                    RParenLoc);
1354  }
1355
1356  return new (Context) CXXBaseOrMemberInitializer(Context, Member, IdLoc,
1357                                                  LParenLoc,
1358                                                  MemberInit.takeAs<Expr>(),
1359                                                  RParenLoc);
1360}
1361
1362Sema::MemInitResult
1363Sema::BuildBaseInitializer(QualType BaseType, TypeSourceInfo *BaseTInfo,
1364                           Expr **Args, unsigned NumArgs,
1365                           SourceLocation LParenLoc, SourceLocation RParenLoc,
1366                           CXXRecordDecl *ClassDecl) {
1367  bool HasDependentArg = false;
1368  for (unsigned i = 0; i < NumArgs; i++)
1369    HasDependentArg |= Args[i]->isTypeDependent();
1370
1371  SourceLocation BaseLoc = BaseTInfo->getTypeLoc().getSourceRange().getBegin();
1372  if (BaseType->isDependentType() || HasDependentArg) {
1373    // Can't check initialization for a base of dependent type or when
1374    // any of the arguments are type-dependent expressions.
1375    OwningExprResult BaseInit
1376      = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1377                                          RParenLoc));
1378
1379    // Erase any temporaries within this evaluation context; we're not
1380    // going to track them in the AST, since we'll be rebuilding the
1381    // ASTs during template instantiation.
1382    ExprTemporaries.erase(
1383              ExprTemporaries.begin() + ExprEvalContexts.back().NumTemporaries,
1384                          ExprTemporaries.end());
1385
1386    return new (Context) CXXBaseOrMemberInitializer(Context, BaseTInfo,
1387                                                    /*IsVirtual=*/false,
1388                                                    LParenLoc,
1389                                                    BaseInit.takeAs<Expr>(),
1390                                                    RParenLoc);
1391  }
1392
1393  if (!BaseType->isRecordType())
1394    return Diag(BaseLoc, diag::err_base_init_does_not_name_class)
1395             << BaseType << BaseTInfo->getTypeLoc().getSourceRange();
1396
1397  // C++ [class.base.init]p2:
1398  //   [...] Unless the mem-initializer-id names a nonstatic data
1399  //   member of the constructor’s class or a direct or virtual base
1400  //   of that class, the mem-initializer is ill-formed. A
1401  //   mem-initializer-list can initialize a base class using any
1402  //   name that denotes that base class type.
1403
1404  // Check for direct and virtual base classes.
1405  const CXXBaseSpecifier *DirectBaseSpec = 0;
1406  const CXXBaseSpecifier *VirtualBaseSpec = 0;
1407  FindBaseInitializer(*this, ClassDecl, BaseType, DirectBaseSpec,
1408                      VirtualBaseSpec);
1409
1410  // C++ [base.class.init]p2:
1411  //   If a mem-initializer-id is ambiguous because it designates both
1412  //   a direct non-virtual base class and an inherited virtual base
1413  //   class, the mem-initializer is ill-formed.
1414  if (DirectBaseSpec && VirtualBaseSpec)
1415    return Diag(BaseLoc, diag::err_base_init_direct_and_virtual)
1416      << BaseType << BaseTInfo->getTypeLoc().getSourceRange();
1417  // C++ [base.class.init]p2:
1418  // Unless the mem-initializer-id names a nonstatic data membeer of the
1419  // constructor's class ot a direst or virtual base of that class, the
1420  // mem-initializer is ill-formed.
1421  if (!DirectBaseSpec && !VirtualBaseSpec)
1422    return Diag(BaseLoc, diag::err_not_direct_base_or_virtual)
1423      << BaseType << Context.getTypeDeclType(ClassDecl)
1424      << BaseTInfo->getTypeLoc().getSourceRange();
1425
1426  CXXBaseSpecifier *BaseSpec
1427    = const_cast<CXXBaseSpecifier *>(DirectBaseSpec);
1428  if (!BaseSpec)
1429    BaseSpec = const_cast<CXXBaseSpecifier *>(VirtualBaseSpec);
1430
1431  // Initialize the base.
1432  InitializedEntity BaseEntity =
1433    InitializedEntity::InitializeBase(Context, BaseSpec, VirtualBaseSpec);
1434  InitializationKind Kind =
1435    InitializationKind::CreateDirect(BaseLoc, LParenLoc, RParenLoc);
1436
1437  InitializationSequence InitSeq(*this, BaseEntity, Kind, Args, NumArgs);
1438
1439  OwningExprResult BaseInit =
1440    InitSeq.Perform(*this, BaseEntity, Kind,
1441                    MultiExprArg(*this, (void**)Args, NumArgs), 0);
1442  if (BaseInit.isInvalid())
1443    return true;
1444
1445  // C++0x [class.base.init]p7:
1446  //   The initialization of each base and member constitutes a
1447  //   full-expression.
1448  BaseInit = MaybeCreateCXXExprWithTemporaries(move(BaseInit));
1449  if (BaseInit.isInvalid())
1450    return true;
1451
1452  // If we are in a dependent context, template instantiation will
1453  // perform this type-checking again. Just save the arguments that we
1454  // received in a ParenListExpr.
1455  // FIXME: This isn't quite ideal, since our ASTs don't capture all
1456  // of the information that we have about the base
1457  // initializer. However, deconstructing the ASTs is a dicey process,
1458  // and this approach is far more likely to get the corner cases right.
1459  if (CurContext->isDependentContext()) {
1460    // Bump the reference count of all of the arguments.
1461    for (unsigned I = 0; I != NumArgs; ++I)
1462      Args[I]->Retain();
1463
1464    OwningExprResult Init
1465      = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1466                                          RParenLoc));
1467    return new (Context) CXXBaseOrMemberInitializer(Context, BaseTInfo,
1468                                                    BaseSpec->isVirtual(),
1469                                                    LParenLoc,
1470                                                    Init.takeAs<Expr>(),
1471                                                    RParenLoc);
1472  }
1473
1474  return new (Context) CXXBaseOrMemberInitializer(Context, BaseTInfo,
1475                                                  BaseSpec->isVirtual(),
1476                                                  LParenLoc,
1477                                                  BaseInit.takeAs<Expr>(),
1478                                                  RParenLoc);
1479}
1480
1481/// ImplicitInitializerKind - How an implicit base or member initializer should
1482/// initialize its base or member.
1483enum ImplicitInitializerKind {
1484  IIK_Default,
1485  IIK_Copy,
1486  IIK_Move
1487};
1488
1489static bool
1490BuildImplicitBaseInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
1491                             ImplicitInitializerKind ImplicitInitKind,
1492                             CXXBaseSpecifier *BaseSpec,
1493                             bool IsInheritedVirtualBase,
1494                             CXXBaseOrMemberInitializer *&CXXBaseInit) {
1495  InitializedEntity InitEntity
1496    = InitializedEntity::InitializeBase(SemaRef.Context, BaseSpec,
1497                                        IsInheritedVirtualBase);
1498
1499  Sema::OwningExprResult BaseInit(SemaRef);
1500
1501  switch (ImplicitInitKind) {
1502  case IIK_Default: {
1503    InitializationKind InitKind
1504      = InitializationKind::CreateDefault(Constructor->getLocation());
1505    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
1506    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind,
1507                               Sema::MultiExprArg(SemaRef, 0, 0));
1508    break;
1509  }
1510
1511  case IIK_Copy: {
1512    ParmVarDecl *Param = Constructor->getParamDecl(0);
1513    QualType ParamType = Param->getType().getNonReferenceType();
1514
1515    Expr *CopyCtorArg =
1516      DeclRefExpr::Create(SemaRef.Context, 0, SourceRange(), Param,
1517                          Constructor->getLocation(), ParamType, 0);
1518
1519    // Cast to the base class to avoid ambiguities.
1520    QualType ArgTy =
1521      SemaRef.Context.getQualifiedType(BaseSpec->getType().getUnqualifiedType(),
1522                                       ParamType.getQualifiers());
1523    SemaRef.ImpCastExprToType(CopyCtorArg, ArgTy,
1524                              CastExpr::CK_UncheckedDerivedToBase,
1525                              /*isLvalue=*/true,
1526                              CXXBaseSpecifierArray(BaseSpec));
1527
1528    InitializationKind InitKind
1529      = InitializationKind::CreateDirect(Constructor->getLocation(),
1530                                         SourceLocation(), SourceLocation());
1531    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind,
1532                                   &CopyCtorArg, 1);
1533    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind,
1534                               Sema::MultiExprArg(SemaRef,
1535                                                  (void**)&CopyCtorArg, 1));
1536    break;
1537  }
1538
1539  case IIK_Move:
1540    assert(false && "Unhandled initializer kind!");
1541  }
1542
1543  BaseInit = SemaRef.MaybeCreateCXXExprWithTemporaries(move(BaseInit));
1544  if (BaseInit.isInvalid())
1545    return true;
1546
1547  CXXBaseInit =
1548    new (SemaRef.Context) CXXBaseOrMemberInitializer(SemaRef.Context,
1549               SemaRef.Context.getTrivialTypeSourceInfo(BaseSpec->getType(),
1550                                                        SourceLocation()),
1551                                             BaseSpec->isVirtual(),
1552                                             SourceLocation(),
1553                                             BaseInit.takeAs<Expr>(),
1554                                             SourceLocation());
1555
1556  return false;
1557}
1558
1559static bool
1560BuildImplicitMemberInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
1561                               ImplicitInitializerKind ImplicitInitKind,
1562                               FieldDecl *Field,
1563                               CXXBaseOrMemberInitializer *&CXXMemberInit) {
1564  if (ImplicitInitKind == IIK_Copy) {
1565    SourceLocation Loc = Constructor->getLocation();
1566    ParmVarDecl *Param = Constructor->getParamDecl(0);
1567    QualType ParamType = Param->getType().getNonReferenceType();
1568
1569    Expr *MemberExprBase =
1570      DeclRefExpr::Create(SemaRef.Context, 0, SourceRange(), Param,
1571                          Loc, ParamType, 0);
1572
1573    // Build a reference to this field within the parameter.
1574    CXXScopeSpec SS;
1575    LookupResult MemberLookup(SemaRef, Field->getDeclName(), Loc,
1576                              Sema::LookupMemberName);
1577    MemberLookup.addDecl(Field, AS_public);
1578    MemberLookup.resolveKind();
1579    Sema::OwningExprResult CopyCtorArg
1580      = SemaRef.BuildMemberReferenceExpr(SemaRef.Owned(MemberExprBase),
1581                                         ParamType, Loc,
1582                                         /*IsArrow=*/false,
1583                                         SS,
1584                                         /*FirstQualifierInScope=*/0,
1585                                         MemberLookup,
1586                                         /*TemplateArgs=*/0);
1587    if (CopyCtorArg.isInvalid())
1588      return true;
1589
1590    // When the field we are copying is an array, create index variables for
1591    // each dimension of the array. We use these index variables to subscript
1592    // the source array, and other clients (e.g., CodeGen) will perform the
1593    // necessary iteration with these index variables.
1594    llvm::SmallVector<VarDecl *, 4> IndexVariables;
1595    QualType BaseType = Field->getType();
1596    QualType SizeType = SemaRef.Context.getSizeType();
1597    while (const ConstantArrayType *Array
1598                          = SemaRef.Context.getAsConstantArrayType(BaseType)) {
1599      // Create the iteration variable for this array index.
1600      IdentifierInfo *IterationVarName = 0;
1601      {
1602        llvm::SmallString<8> Str;
1603        llvm::raw_svector_ostream OS(Str);
1604        OS << "__i" << IndexVariables.size();
1605        IterationVarName = &SemaRef.Context.Idents.get(OS.str());
1606      }
1607      VarDecl *IterationVar
1608        = VarDecl::Create(SemaRef.Context, SemaRef.CurContext, Loc,
1609                          IterationVarName, SizeType,
1610                        SemaRef.Context.getTrivialTypeSourceInfo(SizeType, Loc),
1611                          VarDecl::None, VarDecl::None);
1612      IndexVariables.push_back(IterationVar);
1613
1614      // Create a reference to the iteration variable.
1615      Sema::OwningExprResult IterationVarRef
1616        = SemaRef.BuildDeclRefExpr(IterationVar, SizeType, Loc);
1617      assert(!IterationVarRef.isInvalid() &&
1618             "Reference to invented variable cannot fail!");
1619
1620      // Subscript the array with this iteration variable.
1621      CopyCtorArg = SemaRef.CreateBuiltinArraySubscriptExpr(move(CopyCtorArg),
1622                                                            Loc,
1623                                                          move(IterationVarRef),
1624                                                            Loc);
1625      if (CopyCtorArg.isInvalid())
1626        return true;
1627
1628      BaseType = Array->getElementType();
1629    }
1630
1631    // Construct the entity that we will be initializing. For an array, this
1632    // will be first element in the array, which may require several levels
1633    // of array-subscript entities.
1634    llvm::SmallVector<InitializedEntity, 4> Entities;
1635    Entities.reserve(1 + IndexVariables.size());
1636    Entities.push_back(InitializedEntity::InitializeMember(Field));
1637    for (unsigned I = 0, N = IndexVariables.size(); I != N; ++I)
1638      Entities.push_back(InitializedEntity::InitializeElement(SemaRef.Context,
1639                                                              0,
1640                                                              Entities.back()));
1641
1642    // Direct-initialize to use the copy constructor.
1643    InitializationKind InitKind =
1644      InitializationKind::CreateDirect(Loc, SourceLocation(), SourceLocation());
1645
1646    Expr *CopyCtorArgE = CopyCtorArg.takeAs<Expr>();
1647    InitializationSequence InitSeq(SemaRef, Entities.back(), InitKind,
1648                                   &CopyCtorArgE, 1);
1649
1650    Sema::OwningExprResult MemberInit
1651      = InitSeq.Perform(SemaRef, Entities.back(), InitKind,
1652                        Sema::MultiExprArg(SemaRef, (void**)&CopyCtorArgE, 1));
1653    MemberInit = SemaRef.MaybeCreateCXXExprWithTemporaries(move(MemberInit));
1654    if (MemberInit.isInvalid())
1655      return true;
1656
1657    CXXMemberInit
1658      = CXXBaseOrMemberInitializer::Create(SemaRef.Context, Field, Loc, Loc,
1659                                           MemberInit.takeAs<Expr>(), Loc,
1660                                           IndexVariables.data(),
1661                                           IndexVariables.size());
1662    return false;
1663  }
1664
1665  assert(ImplicitInitKind == IIK_Default && "Unhandled implicit init kind!");
1666
1667  QualType FieldBaseElementType =
1668    SemaRef.Context.getBaseElementType(Field->getType());
1669
1670  if (FieldBaseElementType->isRecordType()) {
1671    InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field);
1672    InitializationKind InitKind =
1673      InitializationKind::CreateDefault(Constructor->getLocation());
1674
1675    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
1676    Sema::OwningExprResult MemberInit =
1677      InitSeq.Perform(SemaRef, InitEntity, InitKind,
1678                      Sema::MultiExprArg(SemaRef, 0, 0));
1679    MemberInit = SemaRef.MaybeCreateCXXExprWithTemporaries(move(MemberInit));
1680    if (MemberInit.isInvalid())
1681      return true;
1682
1683    CXXMemberInit =
1684      new (SemaRef.Context) CXXBaseOrMemberInitializer(SemaRef.Context,
1685                                                       Field, SourceLocation(),
1686                                                       SourceLocation(),
1687                                                      MemberInit.takeAs<Expr>(),
1688                                                       SourceLocation());
1689    return false;
1690  }
1691
1692  if (FieldBaseElementType->isReferenceType()) {
1693    SemaRef.Diag(Constructor->getLocation(),
1694                 diag::err_uninitialized_member_in_ctor)
1695    << (int)Constructor->isImplicit()
1696    << SemaRef.Context.getTagDeclType(Constructor->getParent())
1697    << 0 << Field->getDeclName();
1698    SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
1699    return true;
1700  }
1701
1702  if (FieldBaseElementType.isConstQualified()) {
1703    SemaRef.Diag(Constructor->getLocation(),
1704                 diag::err_uninitialized_member_in_ctor)
1705    << (int)Constructor->isImplicit()
1706    << SemaRef.Context.getTagDeclType(Constructor->getParent())
1707    << 1 << Field->getDeclName();
1708    SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
1709    return true;
1710  }
1711
1712  // Nothing to initialize.
1713  CXXMemberInit = 0;
1714  return false;
1715}
1716
1717bool
1718Sema::SetBaseOrMemberInitializers(CXXConstructorDecl *Constructor,
1719                                  CXXBaseOrMemberInitializer **Initializers,
1720                                  unsigned NumInitializers,
1721                                  bool AnyErrors) {
1722  if (Constructor->getDeclContext()->isDependentContext()) {
1723    // Just store the initializers as written, they will be checked during
1724    // instantiation.
1725    if (NumInitializers > 0) {
1726      Constructor->setNumBaseOrMemberInitializers(NumInitializers);
1727      CXXBaseOrMemberInitializer **baseOrMemberInitializers =
1728        new (Context) CXXBaseOrMemberInitializer*[NumInitializers];
1729      memcpy(baseOrMemberInitializers, Initializers,
1730             NumInitializers * sizeof(CXXBaseOrMemberInitializer*));
1731      Constructor->setBaseOrMemberInitializers(baseOrMemberInitializers);
1732    }
1733
1734    return false;
1735  }
1736
1737  ImplicitInitializerKind ImplicitInitKind = IIK_Default;
1738
1739  // FIXME: Handle implicit move constructors.
1740  if (Constructor->isImplicit() && Constructor->isCopyConstructor())
1741    ImplicitInitKind = IIK_Copy;
1742
1743  // We need to build the initializer AST according to order of construction
1744  // and not what user specified in the Initializers list.
1745  CXXRecordDecl *ClassDecl = Constructor->getParent()->getDefinition();
1746  if (!ClassDecl)
1747    return true;
1748
1749  llvm::SmallVector<CXXBaseOrMemberInitializer*, 32> AllToInit;
1750  llvm::DenseMap<const void *, CXXBaseOrMemberInitializer*> AllBaseFields;
1751  bool HadError = false;
1752
1753  for (unsigned i = 0; i < NumInitializers; i++) {
1754    CXXBaseOrMemberInitializer *Member = Initializers[i];
1755
1756    if (Member->isBaseInitializer())
1757      AllBaseFields[Member->getBaseClass()->getAs<RecordType>()] = Member;
1758    else
1759      AllBaseFields[Member->getMember()] = Member;
1760  }
1761
1762  // Keep track of the direct virtual bases.
1763  llvm::SmallPtrSet<CXXBaseSpecifier *, 16> DirectVBases;
1764  for (CXXRecordDecl::base_class_iterator I = ClassDecl->bases_begin(),
1765       E = ClassDecl->bases_end(); I != E; ++I) {
1766    if (I->isVirtual())
1767      DirectVBases.insert(I);
1768  }
1769
1770  // Push virtual bases before others.
1771  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
1772       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
1773
1774    if (CXXBaseOrMemberInitializer *Value
1775        = AllBaseFields.lookup(VBase->getType()->getAs<RecordType>())) {
1776      AllToInit.push_back(Value);
1777    } else if (!AnyErrors) {
1778      bool IsInheritedVirtualBase = !DirectVBases.count(VBase);
1779      CXXBaseOrMemberInitializer *CXXBaseInit;
1780      if (BuildImplicitBaseInitializer(*this, Constructor, ImplicitInitKind,
1781                                       VBase, IsInheritedVirtualBase,
1782                                       CXXBaseInit)) {
1783        HadError = true;
1784        continue;
1785      }
1786
1787      AllToInit.push_back(CXXBaseInit);
1788    }
1789  }
1790
1791  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
1792       E = ClassDecl->bases_end(); Base != E; ++Base) {
1793    // Virtuals are in the virtual base list and already constructed.
1794    if (Base->isVirtual())
1795      continue;
1796
1797    if (CXXBaseOrMemberInitializer *Value
1798          = AllBaseFields.lookup(Base->getType()->getAs<RecordType>())) {
1799      AllToInit.push_back(Value);
1800    } else if (!AnyErrors) {
1801      CXXBaseOrMemberInitializer *CXXBaseInit;
1802      if (BuildImplicitBaseInitializer(*this, Constructor, ImplicitInitKind,
1803                                       Base, /*IsInheritedVirtualBase=*/false,
1804                                       CXXBaseInit)) {
1805        HadError = true;
1806        continue;
1807      }
1808
1809      AllToInit.push_back(CXXBaseInit);
1810    }
1811  }
1812
1813  // non-static data members.
1814  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
1815       E = ClassDecl->field_end(); Field != E; ++Field) {
1816    if ((*Field)->isAnonymousStructOrUnion()) {
1817      if (const RecordType *FieldClassType =
1818          Field->getType()->getAs<RecordType>()) {
1819        CXXRecordDecl *FieldClassDecl
1820          = cast<CXXRecordDecl>(FieldClassType->getDecl());
1821        for (RecordDecl::field_iterator FA = FieldClassDecl->field_begin(),
1822            EA = FieldClassDecl->field_end(); FA != EA; FA++) {
1823          if (CXXBaseOrMemberInitializer *Value = AllBaseFields.lookup(*FA)) {
1824            // 'Member' is the anonymous union field and 'AnonUnionMember' is
1825            // set to the anonymous union data member used in the initializer
1826            // list.
1827            Value->setMember(*Field);
1828            Value->setAnonUnionMember(*FA);
1829            AllToInit.push_back(Value);
1830            break;
1831          }
1832        }
1833      }
1834
1835      if (ImplicitInitKind == IIK_Default)
1836        continue;
1837    }
1838    if (CXXBaseOrMemberInitializer *Value = AllBaseFields.lookup(*Field)) {
1839      AllToInit.push_back(Value);
1840      continue;
1841    }
1842
1843    if (AnyErrors)
1844      continue;
1845
1846    CXXBaseOrMemberInitializer *Member;
1847    if (BuildImplicitMemberInitializer(*this, Constructor, ImplicitInitKind,
1848                                       *Field, Member)) {
1849      HadError = true;
1850      continue;
1851    }
1852
1853    // If the member doesn't need to be initialized, it will be null.
1854    if (Member)
1855      AllToInit.push_back(Member);
1856  }
1857
1858  NumInitializers = AllToInit.size();
1859  if (NumInitializers > 0) {
1860    Constructor->setNumBaseOrMemberInitializers(NumInitializers);
1861    CXXBaseOrMemberInitializer **baseOrMemberInitializers =
1862      new (Context) CXXBaseOrMemberInitializer*[NumInitializers];
1863    memcpy(baseOrMemberInitializers, AllToInit.data(),
1864           NumInitializers * sizeof(CXXBaseOrMemberInitializer*));
1865    Constructor->setBaseOrMemberInitializers(baseOrMemberInitializers);
1866
1867    // Constructors implicitly reference the base and member
1868    // destructors.
1869    MarkBaseAndMemberDestructorsReferenced(Constructor->getLocation(),
1870                                           Constructor->getParent());
1871  }
1872
1873  return HadError;
1874}
1875
1876static void *GetKeyForTopLevelField(FieldDecl *Field) {
1877  // For anonymous unions, use the class declaration as the key.
1878  if (const RecordType *RT = Field->getType()->getAs<RecordType>()) {
1879    if (RT->getDecl()->isAnonymousStructOrUnion())
1880      return static_cast<void *>(RT->getDecl());
1881  }
1882  return static_cast<void *>(Field);
1883}
1884
1885static void *GetKeyForBase(ASTContext &Context, QualType BaseType) {
1886  return Context.getCanonicalType(BaseType).getTypePtr();
1887}
1888
1889static void *GetKeyForMember(ASTContext &Context,
1890                             CXXBaseOrMemberInitializer *Member,
1891                             bool MemberMaybeAnon = false) {
1892  if (!Member->isMemberInitializer())
1893    return GetKeyForBase(Context, QualType(Member->getBaseClass(), 0));
1894
1895  // For fields injected into the class via declaration of an anonymous union,
1896  // use its anonymous union class declaration as the unique key.
1897  FieldDecl *Field = Member->getMember();
1898
1899  // After SetBaseOrMemberInitializers call, Field is the anonymous union
1900  // data member of the class. Data member used in the initializer list is
1901  // in AnonUnionMember field.
1902  if (MemberMaybeAnon && Field->isAnonymousStructOrUnion())
1903    Field = Member->getAnonUnionMember();
1904
1905  // If the field is a member of an anonymous struct or union, our key
1906  // is the anonymous record decl that's a direct child of the class.
1907  RecordDecl *RD = Field->getParent();
1908  if (RD->isAnonymousStructOrUnion()) {
1909    while (true) {
1910      RecordDecl *Parent = cast<RecordDecl>(RD->getDeclContext());
1911      if (Parent->isAnonymousStructOrUnion())
1912        RD = Parent;
1913      else
1914        break;
1915    }
1916
1917    return static_cast<void *>(RD);
1918  }
1919
1920  return static_cast<void *>(Field);
1921}
1922
1923static void
1924DiagnoseBaseOrMemInitializerOrder(Sema &SemaRef,
1925                                  const CXXConstructorDecl *Constructor,
1926                                  CXXBaseOrMemberInitializer **Inits,
1927                                  unsigned NumInits) {
1928  if (Constructor->getDeclContext()->isDependentContext())
1929    return;
1930
1931  if (SemaRef.Diags.getDiagnosticLevel(diag::warn_initializer_out_of_order)
1932        == Diagnostic::Ignored)
1933    return;
1934
1935  // Build the list of bases and members in the order that they'll
1936  // actually be initialized.  The explicit initializers should be in
1937  // this same order but may be missing things.
1938  llvm::SmallVector<const void*, 32> IdealInitKeys;
1939
1940  const CXXRecordDecl *ClassDecl = Constructor->getParent();
1941
1942  // 1. Virtual bases.
1943  for (CXXRecordDecl::base_class_const_iterator VBase =
1944       ClassDecl->vbases_begin(),
1945       E = ClassDecl->vbases_end(); VBase != E; ++VBase)
1946    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, VBase->getType()));
1947
1948  // 2. Non-virtual bases.
1949  for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin(),
1950       E = ClassDecl->bases_end(); Base != E; ++Base) {
1951    if (Base->isVirtual())
1952      continue;
1953    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, Base->getType()));
1954  }
1955
1956  // 3. Direct fields.
1957  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
1958       E = ClassDecl->field_end(); Field != E; ++Field)
1959    IdealInitKeys.push_back(GetKeyForTopLevelField(*Field));
1960
1961  unsigned NumIdealInits = IdealInitKeys.size();
1962  unsigned IdealIndex = 0;
1963
1964  CXXBaseOrMemberInitializer *PrevInit = 0;
1965  for (unsigned InitIndex = 0; InitIndex != NumInits; ++InitIndex) {
1966    CXXBaseOrMemberInitializer *Init = Inits[InitIndex];
1967    void *InitKey = GetKeyForMember(SemaRef.Context, Init, true);
1968
1969    // Scan forward to try to find this initializer in the idealized
1970    // initializers list.
1971    for (; IdealIndex != NumIdealInits; ++IdealIndex)
1972      if (InitKey == IdealInitKeys[IdealIndex])
1973        break;
1974
1975    // If we didn't find this initializer, it must be because we
1976    // scanned past it on a previous iteration.  That can only
1977    // happen if we're out of order;  emit a warning.
1978    if (IdealIndex == NumIdealInits) {
1979      assert(PrevInit && "initializer not found in initializer list");
1980
1981      Sema::SemaDiagnosticBuilder D =
1982        SemaRef.Diag(PrevInit->getSourceLocation(),
1983                     diag::warn_initializer_out_of_order);
1984
1985      if (PrevInit->isMemberInitializer())
1986        D << 0 << PrevInit->getMember()->getDeclName();
1987      else
1988        D << 1 << PrevInit->getBaseClassInfo()->getType();
1989
1990      if (Init->isMemberInitializer())
1991        D << 0 << Init->getMember()->getDeclName();
1992      else
1993        D << 1 << Init->getBaseClassInfo()->getType();
1994
1995      // Move back to the initializer's location in the ideal list.
1996      for (IdealIndex = 0; IdealIndex != NumIdealInits; ++IdealIndex)
1997        if (InitKey == IdealInitKeys[IdealIndex])
1998          break;
1999
2000      assert(IdealIndex != NumIdealInits &&
2001             "initializer not found in initializer list");
2002    }
2003
2004    PrevInit = Init;
2005  }
2006}
2007
2008namespace {
2009bool CheckRedundantInit(Sema &S,
2010                        CXXBaseOrMemberInitializer *Init,
2011                        CXXBaseOrMemberInitializer *&PrevInit) {
2012  if (!PrevInit) {
2013    PrevInit = Init;
2014    return false;
2015  }
2016
2017  if (FieldDecl *Field = Init->getMember())
2018    S.Diag(Init->getSourceLocation(),
2019           diag::err_multiple_mem_initialization)
2020      << Field->getDeclName()
2021      << Init->getSourceRange();
2022  else {
2023    Type *BaseClass = Init->getBaseClass();
2024    assert(BaseClass && "neither field nor base");
2025    S.Diag(Init->getSourceLocation(),
2026           diag::err_multiple_base_initialization)
2027      << QualType(BaseClass, 0)
2028      << Init->getSourceRange();
2029  }
2030  S.Diag(PrevInit->getSourceLocation(), diag::note_previous_initializer)
2031    << 0 << PrevInit->getSourceRange();
2032
2033  return true;
2034}
2035
2036typedef std::pair<NamedDecl *, CXXBaseOrMemberInitializer *> UnionEntry;
2037typedef llvm::DenseMap<RecordDecl*, UnionEntry> RedundantUnionMap;
2038
2039bool CheckRedundantUnionInit(Sema &S,
2040                             CXXBaseOrMemberInitializer *Init,
2041                             RedundantUnionMap &Unions) {
2042  FieldDecl *Field = Init->getMember();
2043  RecordDecl *Parent = Field->getParent();
2044  if (!Parent->isAnonymousStructOrUnion())
2045    return false;
2046
2047  NamedDecl *Child = Field;
2048  do {
2049    if (Parent->isUnion()) {
2050      UnionEntry &En = Unions[Parent];
2051      if (En.first && En.first != Child) {
2052        S.Diag(Init->getSourceLocation(),
2053               diag::err_multiple_mem_union_initialization)
2054          << Field->getDeclName()
2055          << Init->getSourceRange();
2056        S.Diag(En.second->getSourceLocation(), diag::note_previous_initializer)
2057          << 0 << En.second->getSourceRange();
2058        return true;
2059      } else if (!En.first) {
2060        En.first = Child;
2061        En.second = Init;
2062      }
2063    }
2064
2065    Child = Parent;
2066    Parent = cast<RecordDecl>(Parent->getDeclContext());
2067  } while (Parent->isAnonymousStructOrUnion());
2068
2069  return false;
2070}
2071}
2072
2073/// ActOnMemInitializers - Handle the member initializers for a constructor.
2074void Sema::ActOnMemInitializers(DeclPtrTy ConstructorDecl,
2075                                SourceLocation ColonLoc,
2076                                MemInitTy **meminits, unsigned NumMemInits,
2077                                bool AnyErrors) {
2078  if (!ConstructorDecl)
2079    return;
2080
2081  AdjustDeclIfTemplate(ConstructorDecl);
2082
2083  CXXConstructorDecl *Constructor
2084    = dyn_cast<CXXConstructorDecl>(ConstructorDecl.getAs<Decl>());
2085
2086  if (!Constructor) {
2087    Diag(ColonLoc, diag::err_only_constructors_take_base_inits);
2088    return;
2089  }
2090
2091  CXXBaseOrMemberInitializer **MemInits =
2092    reinterpret_cast<CXXBaseOrMemberInitializer **>(meminits);
2093
2094  // Mapping for the duplicate initializers check.
2095  // For member initializers, this is keyed with a FieldDecl*.
2096  // For base initializers, this is keyed with a Type*.
2097  llvm::DenseMap<void*, CXXBaseOrMemberInitializer *> Members;
2098
2099  // Mapping for the inconsistent anonymous-union initializers check.
2100  RedundantUnionMap MemberUnions;
2101
2102  bool HadError = false;
2103  for (unsigned i = 0; i < NumMemInits; i++) {
2104    CXXBaseOrMemberInitializer *Init = MemInits[i];
2105
2106    if (Init->isMemberInitializer()) {
2107      FieldDecl *Field = Init->getMember();
2108      if (CheckRedundantInit(*this, Init, Members[Field]) ||
2109          CheckRedundantUnionInit(*this, Init, MemberUnions))
2110        HadError = true;
2111    } else {
2112      void *Key = GetKeyForBase(Context, QualType(Init->getBaseClass(), 0));
2113      if (CheckRedundantInit(*this, Init, Members[Key]))
2114        HadError = true;
2115    }
2116  }
2117
2118  if (HadError)
2119    return;
2120
2121  DiagnoseBaseOrMemInitializerOrder(*this, Constructor, MemInits, NumMemInits);
2122
2123  SetBaseOrMemberInitializers(Constructor, MemInits, NumMemInits, AnyErrors);
2124}
2125
2126void
2127Sema::MarkBaseAndMemberDestructorsReferenced(SourceLocation Location,
2128                                             CXXRecordDecl *ClassDecl) {
2129  // Ignore dependent contexts.
2130  if (ClassDecl->isDependentContext())
2131    return;
2132
2133  // FIXME: all the access-control diagnostics are positioned on the
2134  // field/base declaration.  That's probably good; that said, the
2135  // user might reasonably want to know why the destructor is being
2136  // emitted, and we currently don't say.
2137
2138  // Non-static data members.
2139  for (CXXRecordDecl::field_iterator I = ClassDecl->field_begin(),
2140       E = ClassDecl->field_end(); I != E; ++I) {
2141    FieldDecl *Field = *I;
2142
2143    QualType FieldType = Context.getBaseElementType(Field->getType());
2144
2145    const RecordType* RT = FieldType->getAs<RecordType>();
2146    if (!RT)
2147      continue;
2148
2149    CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
2150    if (FieldClassDecl->hasTrivialDestructor())
2151      continue;
2152
2153    CXXDestructorDecl *Dtor = FieldClassDecl->getDestructor(Context);
2154    CheckDestructorAccess(Field->getLocation(), Dtor,
2155                          PDiag(diag::err_access_dtor_field)
2156                            << Field->getDeclName()
2157                            << FieldType);
2158
2159    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
2160  }
2161
2162  llvm::SmallPtrSet<const RecordType *, 8> DirectVirtualBases;
2163
2164  // Bases.
2165  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
2166       E = ClassDecl->bases_end(); Base != E; ++Base) {
2167    // Bases are always records in a well-formed non-dependent class.
2168    const RecordType *RT = Base->getType()->getAs<RecordType>();
2169
2170    // Remember direct virtual bases.
2171    if (Base->isVirtual())
2172      DirectVirtualBases.insert(RT);
2173
2174    // Ignore trivial destructors.
2175    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
2176    if (BaseClassDecl->hasTrivialDestructor())
2177      continue;
2178
2179    CXXDestructorDecl *Dtor = BaseClassDecl->getDestructor(Context);
2180
2181    // FIXME: caret should be on the start of the class name
2182    CheckDestructorAccess(Base->getSourceRange().getBegin(), Dtor,
2183                          PDiag(diag::err_access_dtor_base)
2184                            << Base->getType()
2185                            << Base->getSourceRange());
2186
2187    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
2188  }
2189
2190  // Virtual bases.
2191  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
2192       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
2193
2194    // Bases are always records in a well-formed non-dependent class.
2195    const RecordType *RT = VBase->getType()->getAs<RecordType>();
2196
2197    // Ignore direct virtual bases.
2198    if (DirectVirtualBases.count(RT))
2199      continue;
2200
2201    // Ignore trivial destructors.
2202    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
2203    if (BaseClassDecl->hasTrivialDestructor())
2204      continue;
2205
2206    CXXDestructorDecl *Dtor = BaseClassDecl->getDestructor(Context);
2207    CheckDestructorAccess(ClassDecl->getLocation(), Dtor,
2208                          PDiag(diag::err_access_dtor_vbase)
2209                            << VBase->getType());
2210
2211    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
2212  }
2213}
2214
2215void Sema::ActOnDefaultCtorInitializers(DeclPtrTy CDtorDecl) {
2216  if (!CDtorDecl)
2217    return;
2218
2219  if (CXXConstructorDecl *Constructor
2220      = dyn_cast<CXXConstructorDecl>(CDtorDecl.getAs<Decl>()))
2221    SetBaseOrMemberInitializers(Constructor, 0, 0, /*AnyErrors=*/false);
2222}
2223
2224bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
2225                                  unsigned DiagID, AbstractDiagSelID SelID,
2226                                  const CXXRecordDecl *CurrentRD) {
2227  if (SelID == -1)
2228    return RequireNonAbstractType(Loc, T,
2229                                  PDiag(DiagID), CurrentRD);
2230  else
2231    return RequireNonAbstractType(Loc, T,
2232                                  PDiag(DiagID) << SelID, CurrentRD);
2233}
2234
2235bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
2236                                  const PartialDiagnostic &PD,
2237                                  const CXXRecordDecl *CurrentRD) {
2238  if (!getLangOptions().CPlusPlus)
2239    return false;
2240
2241  if (const ArrayType *AT = Context.getAsArrayType(T))
2242    return RequireNonAbstractType(Loc, AT->getElementType(), PD,
2243                                  CurrentRD);
2244
2245  if (const PointerType *PT = T->getAs<PointerType>()) {
2246    // Find the innermost pointer type.
2247    while (const PointerType *T = PT->getPointeeType()->getAs<PointerType>())
2248      PT = T;
2249
2250    if (const ArrayType *AT = Context.getAsArrayType(PT->getPointeeType()))
2251      return RequireNonAbstractType(Loc, AT->getElementType(), PD, CurrentRD);
2252  }
2253
2254  const RecordType *RT = T->getAs<RecordType>();
2255  if (!RT)
2256    return false;
2257
2258  const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
2259
2260  if (CurrentRD && CurrentRD != RD)
2261    return false;
2262
2263  // FIXME: is this reasonable?  It matches current behavior, but....
2264  if (!RD->getDefinition())
2265    return false;
2266
2267  if (!RD->isAbstract())
2268    return false;
2269
2270  Diag(Loc, PD) << RD->getDeclName();
2271
2272  // Check if we've already emitted the list of pure virtual functions for this
2273  // class.
2274  if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD))
2275    return true;
2276
2277  CXXFinalOverriderMap FinalOverriders;
2278  RD->getFinalOverriders(FinalOverriders);
2279
2280  for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
2281                                   MEnd = FinalOverriders.end();
2282       M != MEnd;
2283       ++M) {
2284    for (OverridingMethods::iterator SO = M->second.begin(),
2285                                  SOEnd = M->second.end();
2286         SO != SOEnd; ++SO) {
2287      // C++ [class.abstract]p4:
2288      //   A class is abstract if it contains or inherits at least one
2289      //   pure virtual function for which the final overrider is pure
2290      //   virtual.
2291
2292      //
2293      if (SO->second.size() != 1)
2294        continue;
2295
2296      if (!SO->second.front().Method->isPure())
2297        continue;
2298
2299      Diag(SO->second.front().Method->getLocation(),
2300           diag::note_pure_virtual_function)
2301        << SO->second.front().Method->getDeclName();
2302    }
2303  }
2304
2305  if (!PureVirtualClassDiagSet)
2306    PureVirtualClassDiagSet.reset(new RecordDeclSetTy);
2307  PureVirtualClassDiagSet->insert(RD);
2308
2309  return true;
2310}
2311
2312namespace {
2313  class AbstractClassUsageDiagnoser
2314    : public DeclVisitor<AbstractClassUsageDiagnoser, bool> {
2315    Sema &SemaRef;
2316    CXXRecordDecl *AbstractClass;
2317
2318    bool VisitDeclContext(const DeclContext *DC) {
2319      bool Invalid = false;
2320
2321      for (CXXRecordDecl::decl_iterator I = DC->decls_begin(),
2322           E = DC->decls_end(); I != E; ++I)
2323        Invalid |= Visit(*I);
2324
2325      return Invalid;
2326    }
2327
2328  public:
2329    AbstractClassUsageDiagnoser(Sema& SemaRef, CXXRecordDecl *ac)
2330      : SemaRef(SemaRef), AbstractClass(ac) {
2331        Visit(SemaRef.Context.getTranslationUnitDecl());
2332    }
2333
2334    bool VisitFunctionDecl(const FunctionDecl *FD) {
2335      if (FD->isThisDeclarationADefinition()) {
2336        // No need to do the check if we're in a definition, because it requires
2337        // that the return/param types are complete.
2338        // because that requires
2339        return VisitDeclContext(FD);
2340      }
2341
2342      // Check the return type.
2343      QualType RTy = FD->getType()->getAs<FunctionType>()->getResultType();
2344      bool Invalid =
2345        SemaRef.RequireNonAbstractType(FD->getLocation(), RTy,
2346                                       diag::err_abstract_type_in_decl,
2347                                       Sema::AbstractReturnType,
2348                                       AbstractClass);
2349
2350      for (FunctionDecl::param_const_iterator I = FD->param_begin(),
2351           E = FD->param_end(); I != E; ++I) {
2352        const ParmVarDecl *VD = *I;
2353        Invalid |=
2354          SemaRef.RequireNonAbstractType(VD->getLocation(),
2355                                         VD->getOriginalType(),
2356                                         diag::err_abstract_type_in_decl,
2357                                         Sema::AbstractParamType,
2358                                         AbstractClass);
2359      }
2360
2361      return Invalid;
2362    }
2363
2364    bool VisitDecl(const Decl* D) {
2365      if (const DeclContext *DC = dyn_cast<DeclContext>(D))
2366        return VisitDeclContext(DC);
2367
2368      return false;
2369    }
2370  };
2371}
2372
2373/// \brief Perform semantic checks on a class definition that has been
2374/// completing, introducing implicitly-declared members, checking for
2375/// abstract types, etc.
2376void Sema::CheckCompletedCXXClass(Scope *S, CXXRecordDecl *Record) {
2377  if (!Record || Record->isInvalidDecl())
2378    return;
2379
2380  if (!Record->isDependentType())
2381    AddImplicitlyDeclaredMembersToClass(S, Record);
2382
2383  if (Record->isInvalidDecl())
2384    return;
2385
2386  // Set access bits correctly on the directly-declared conversions.
2387  UnresolvedSetImpl *Convs = Record->getConversionFunctions();
2388  for (UnresolvedSetIterator I = Convs->begin(), E = Convs->end(); I != E; ++I)
2389    Convs->setAccess(I, (*I)->getAccess());
2390
2391  // Determine whether we need to check for final overriders. We do
2392  // this either when there are virtual base classes (in which case we
2393  // may end up finding multiple final overriders for a given virtual
2394  // function) or any of the base classes is abstract (in which case
2395  // we might detect that this class is abstract).
2396  bool CheckFinalOverriders = false;
2397  if (Record->isPolymorphic() && !Record->isInvalidDecl() &&
2398      !Record->isDependentType()) {
2399    if (Record->getNumVBases())
2400      CheckFinalOverriders = true;
2401    else if (!Record->isAbstract()) {
2402      for (CXXRecordDecl::base_class_const_iterator B = Record->bases_begin(),
2403                                                 BEnd = Record->bases_end();
2404           B != BEnd; ++B) {
2405        CXXRecordDecl *BaseDecl
2406          = cast<CXXRecordDecl>(B->getType()->getAs<RecordType>()->getDecl());
2407        if (BaseDecl->isAbstract()) {
2408          CheckFinalOverriders = true;
2409          break;
2410        }
2411      }
2412    }
2413  }
2414
2415  if (CheckFinalOverriders) {
2416    CXXFinalOverriderMap FinalOverriders;
2417    Record->getFinalOverriders(FinalOverriders);
2418
2419    for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
2420                                     MEnd = FinalOverriders.end();
2421         M != MEnd; ++M) {
2422      for (OverridingMethods::iterator SO = M->second.begin(),
2423                                    SOEnd = M->second.end();
2424           SO != SOEnd; ++SO) {
2425        assert(SO->second.size() > 0 &&
2426               "All virtual functions have overridding virtual functions");
2427        if (SO->second.size() == 1) {
2428          // C++ [class.abstract]p4:
2429          //   A class is abstract if it contains or inherits at least one
2430          //   pure virtual function for which the final overrider is pure
2431          //   virtual.
2432          if (SO->second.front().Method->isPure())
2433            Record->setAbstract(true);
2434          continue;
2435        }
2436
2437        // C++ [class.virtual]p2:
2438        //   In a derived class, if a virtual member function of a base
2439        //   class subobject has more than one final overrider the
2440        //   program is ill-formed.
2441        Diag(Record->getLocation(), diag::err_multiple_final_overriders)
2442          << (NamedDecl *)M->first << Record;
2443        Diag(M->first->getLocation(), diag::note_overridden_virtual_function);
2444        for (OverridingMethods::overriding_iterator OM = SO->second.begin(),
2445                                                 OMEnd = SO->second.end();
2446             OM != OMEnd; ++OM)
2447          Diag(OM->Method->getLocation(), diag::note_final_overrider)
2448            << (NamedDecl *)M->first << OM->Method->getParent();
2449
2450        Record->setInvalidDecl();
2451      }
2452    }
2453  }
2454
2455  if (Record->isAbstract() && !Record->isInvalidDecl())
2456    (void)AbstractClassUsageDiagnoser(*this, Record);
2457
2458  // If this is not an aggregate type and has no user-declared constructor,
2459  // complain about any non-static data members of reference or const scalar
2460  // type, since they will never get initializers.
2461  if (!Record->isInvalidDecl() && !Record->isDependentType() &&
2462      !Record->isAggregate() && !Record->hasUserDeclaredConstructor()) {
2463    bool Complained = false;
2464    for (RecordDecl::field_iterator F = Record->field_begin(),
2465                                 FEnd = Record->field_end();
2466         F != FEnd; ++F) {
2467      if (F->getType()->isReferenceType() ||
2468          (F->getType().isConstQualified() && F->getType()->isScalarType())) {
2469        if (!Complained) {
2470          Diag(Record->getLocation(), diag::warn_no_constructor_for_refconst)
2471            << Record->getTagKind() << Record;
2472          Complained = true;
2473        }
2474
2475        Diag(F->getLocation(), diag::note_refconst_member_not_initialized)
2476          << F->getType()->isReferenceType()
2477          << F->getDeclName();
2478      }
2479    }
2480  }
2481
2482  if (Record->isDynamicClass())
2483    DynamicClasses.push_back(Record);
2484}
2485
2486void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
2487                                             DeclPtrTy TagDecl,
2488                                             SourceLocation LBrac,
2489                                             SourceLocation RBrac,
2490                                             AttributeList *AttrList) {
2491  if (!TagDecl)
2492    return;
2493
2494  AdjustDeclIfTemplate(TagDecl);
2495
2496  ActOnFields(S, RLoc, TagDecl,
2497              (DeclPtrTy*)FieldCollector->getCurFields(),
2498              FieldCollector->getCurNumFields(), LBrac, RBrac, AttrList);
2499
2500  CheckCompletedCXXClass(S,
2501                      dyn_cast_or_null<CXXRecordDecl>(TagDecl.getAs<Decl>()));
2502}
2503
2504/// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
2505/// special functions, such as the default constructor, copy
2506/// constructor, or destructor, to the given C++ class (C++
2507/// [special]p1).  This routine can only be executed just before the
2508/// definition of the class is complete.
2509///
2510/// The scope, if provided, is the class scope.
2511void Sema::AddImplicitlyDeclaredMembersToClass(Scope *S,
2512                                               CXXRecordDecl *ClassDecl) {
2513  CanQualType ClassType
2514    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
2515
2516  // FIXME: Implicit declarations have exception specifications, which are
2517  // the union of the specifications of the implicitly called functions.
2518
2519  if (!ClassDecl->hasUserDeclaredConstructor()) {
2520    // C++ [class.ctor]p5:
2521    //   A default constructor for a class X is a constructor of class X
2522    //   that can be called without an argument. If there is no
2523    //   user-declared constructor for class X, a default constructor is
2524    //   implicitly declared. An implicitly-declared default constructor
2525    //   is an inline public member of its class.
2526    DeclarationName Name
2527      = Context.DeclarationNames.getCXXConstructorName(ClassType);
2528    CXXConstructorDecl *DefaultCon =
2529      CXXConstructorDecl::Create(Context, ClassDecl,
2530                                 ClassDecl->getLocation(), Name,
2531                                 Context.getFunctionType(Context.VoidTy,
2532                                                         0, 0, false, 0,
2533                                                         /*FIXME*/false, false,
2534                                                         0, 0,
2535                                                       FunctionType::ExtInfo()),
2536                                 /*TInfo=*/0,
2537                                 /*isExplicit=*/false,
2538                                 /*isInline=*/true,
2539                                 /*isImplicitlyDeclared=*/true);
2540    DefaultCon->setAccess(AS_public);
2541    DefaultCon->setImplicit();
2542    DefaultCon->setTrivial(ClassDecl->hasTrivialConstructor());
2543    if (S)
2544      PushOnScopeChains(DefaultCon, S, true);
2545    else
2546      ClassDecl->addDecl(DefaultCon);
2547  }
2548
2549  if (!ClassDecl->hasUserDeclaredCopyConstructor()) {
2550    // C++ [class.copy]p4:
2551    //   If the class definition does not explicitly declare a copy
2552    //   constructor, one is declared implicitly.
2553
2554    // C++ [class.copy]p5:
2555    //   The implicitly-declared copy constructor for a class X will
2556    //   have the form
2557    //
2558    //       X::X(const X&)
2559    //
2560    //   if
2561    bool HasConstCopyConstructor = true;
2562
2563    //     -- each direct or virtual base class B of X has a copy
2564    //        constructor whose first parameter is of type const B& or
2565    //        const volatile B&, and
2566    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
2567         HasConstCopyConstructor && Base != ClassDecl->bases_end(); ++Base) {
2568      const CXXRecordDecl *BaseClassDecl
2569        = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
2570      HasConstCopyConstructor
2571        = BaseClassDecl->hasConstCopyConstructor(Context);
2572    }
2573
2574    //     -- for all the nonstatic data members of X that are of a
2575    //        class type M (or array thereof), each such class type
2576    //        has a copy constructor whose first parameter is of type
2577    //        const M& or const volatile M&.
2578    for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin();
2579         HasConstCopyConstructor && Field != ClassDecl->field_end();
2580         ++Field) {
2581      QualType FieldType = (*Field)->getType();
2582      if (const ArrayType *Array = Context.getAsArrayType(FieldType))
2583        FieldType = Array->getElementType();
2584      if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
2585        const CXXRecordDecl *FieldClassDecl
2586          = cast<CXXRecordDecl>(FieldClassType->getDecl());
2587        HasConstCopyConstructor
2588          = FieldClassDecl->hasConstCopyConstructor(Context);
2589      }
2590    }
2591
2592    //   Otherwise, the implicitly declared copy constructor will have
2593    //   the form
2594    //
2595    //       X::X(X&)
2596    QualType ArgType = ClassType;
2597    if (HasConstCopyConstructor)
2598      ArgType = ArgType.withConst();
2599    ArgType = Context.getLValueReferenceType(ArgType);
2600
2601    //   An implicitly-declared copy constructor is an inline public
2602    //   member of its class.
2603    DeclarationName Name
2604      = Context.DeclarationNames.getCXXConstructorName(ClassType);
2605    CXXConstructorDecl *CopyConstructor
2606      = CXXConstructorDecl::Create(Context, ClassDecl,
2607                                   ClassDecl->getLocation(), Name,
2608                                   Context.getFunctionType(Context.VoidTy,
2609                                                           &ArgType, 1,
2610                                                           false, 0,
2611                                               /*FIXME: hasExceptionSpec*/false,
2612                                                           false, 0, 0,
2613                                                       FunctionType::ExtInfo()),
2614                                   /*TInfo=*/0,
2615                                   /*isExplicit=*/false,
2616                                   /*isInline=*/true,
2617                                   /*isImplicitlyDeclared=*/true);
2618    CopyConstructor->setAccess(AS_public);
2619    CopyConstructor->setImplicit();
2620    CopyConstructor->setTrivial(ClassDecl->hasTrivialCopyConstructor());
2621
2622    // Add the parameter to the constructor.
2623    ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor,
2624                                                 ClassDecl->getLocation(),
2625                                                 /*IdentifierInfo=*/0,
2626                                                 ArgType, /*TInfo=*/0,
2627                                                 VarDecl::None,
2628                                                 VarDecl::None, 0);
2629    CopyConstructor->setParams(&FromParam, 1);
2630    if (S)
2631      PushOnScopeChains(CopyConstructor, S, true);
2632    else
2633      ClassDecl->addDecl(CopyConstructor);
2634  }
2635
2636  if (!ClassDecl->hasUserDeclaredCopyAssignment()) {
2637    // Note: The following rules are largely analoguous to the copy
2638    // constructor rules. Note that virtual bases are not taken into account
2639    // for determining the argument type of the operator. Note also that
2640    // operators taking an object instead of a reference are allowed.
2641    //
2642    // C++ [class.copy]p10:
2643    //   If the class definition does not explicitly declare a copy
2644    //   assignment operator, one is declared implicitly.
2645    //   The implicitly-defined copy assignment operator for a class X
2646    //   will have the form
2647    //
2648    //       X& X::operator=(const X&)
2649    //
2650    //   if
2651    bool HasConstCopyAssignment = true;
2652
2653    //       -- each direct base class B of X has a copy assignment operator
2654    //          whose parameter is of type const B&, const volatile B& or B,
2655    //          and
2656    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
2657         HasConstCopyAssignment && Base != ClassDecl->bases_end(); ++Base) {
2658      assert(!Base->getType()->isDependentType() &&
2659            "Cannot generate implicit members for class with dependent bases.");
2660      const CXXRecordDecl *BaseClassDecl
2661        = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
2662      const CXXMethodDecl *MD = 0;
2663      HasConstCopyAssignment = BaseClassDecl->hasConstCopyAssignment(Context,
2664                                                                     MD);
2665    }
2666
2667    //       -- for all the nonstatic data members of X that are of a class
2668    //          type M (or array thereof), each such class type has a copy
2669    //          assignment operator whose parameter is of type const M&,
2670    //          const volatile M& or M.
2671    for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin();
2672         HasConstCopyAssignment && Field != ClassDecl->field_end();
2673         ++Field) {
2674      QualType FieldType = (*Field)->getType();
2675      if (const ArrayType *Array = Context.getAsArrayType(FieldType))
2676        FieldType = Array->getElementType();
2677      if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
2678        const CXXRecordDecl *FieldClassDecl
2679          = cast<CXXRecordDecl>(FieldClassType->getDecl());
2680        const CXXMethodDecl *MD = 0;
2681        HasConstCopyAssignment
2682          = FieldClassDecl->hasConstCopyAssignment(Context, MD);
2683      }
2684    }
2685
2686    //   Otherwise, the implicitly declared copy assignment operator will
2687    //   have the form
2688    //
2689    //       X& X::operator=(X&)
2690    QualType ArgType = ClassType;
2691    QualType RetType = Context.getLValueReferenceType(ArgType);
2692    if (HasConstCopyAssignment)
2693      ArgType = ArgType.withConst();
2694    ArgType = Context.getLValueReferenceType(ArgType);
2695
2696    //   An implicitly-declared copy assignment operator is an inline public
2697    //   member of its class.
2698    DeclarationName Name =
2699      Context.DeclarationNames.getCXXOperatorName(OO_Equal);
2700    CXXMethodDecl *CopyAssignment =
2701      CXXMethodDecl::Create(Context, ClassDecl, ClassDecl->getLocation(), Name,
2702                            Context.getFunctionType(RetType, &ArgType, 1,
2703                                                    false, 0,
2704                                              /*FIXME: hasExceptionSpec*/false,
2705                                                    false, 0, 0,
2706                                                    FunctionType::ExtInfo()),
2707                            /*TInfo=*/0, /*isStatic=*/false,
2708                            /*StorageClassAsWritten=*/FunctionDecl::None,
2709                            /*isInline=*/true);
2710    CopyAssignment->setAccess(AS_public);
2711    CopyAssignment->setImplicit();
2712    CopyAssignment->setTrivial(ClassDecl->hasTrivialCopyAssignment());
2713    CopyAssignment->setCopyAssignment(true);
2714
2715    // Add the parameter to the operator.
2716    ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment,
2717                                                 ClassDecl->getLocation(),
2718                                                 /*Id=*/0,
2719                                                 ArgType, /*TInfo=*/0,
2720                                                 VarDecl::None,
2721                                                 VarDecl::None, 0);
2722    CopyAssignment->setParams(&FromParam, 1);
2723
2724    // Don't call addedAssignmentOperator. There is no way to distinguish an
2725    // implicit from an explicit assignment operator.
2726    if (S)
2727      PushOnScopeChains(CopyAssignment, S, true);
2728    else
2729      ClassDecl->addDecl(CopyAssignment);
2730    AddOverriddenMethods(ClassDecl, CopyAssignment);
2731  }
2732
2733  if (!ClassDecl->hasUserDeclaredDestructor()) {
2734    // C++ [class.dtor]p2:
2735    //   If a class has no user-declared destructor, a destructor is
2736    //   declared implicitly. An implicitly-declared destructor is an
2737    //   inline public member of its class.
2738    QualType Ty = Context.getFunctionType(Context.VoidTy,
2739                                          0, 0, false, 0,
2740                                          /*FIXME: hasExceptionSpec*/false,
2741                                          false, 0, 0, FunctionType::ExtInfo());
2742
2743    DeclarationName Name
2744      = Context.DeclarationNames.getCXXDestructorName(ClassType);
2745    CXXDestructorDecl *Destructor
2746      = CXXDestructorDecl::Create(Context, ClassDecl,
2747                                  ClassDecl->getLocation(), Name, Ty,
2748                                  /*isInline=*/true,
2749                                  /*isImplicitlyDeclared=*/true);
2750    Destructor->setAccess(AS_public);
2751    Destructor->setImplicit();
2752    Destructor->setTrivial(ClassDecl->hasTrivialDestructor());
2753    if (S)
2754      PushOnScopeChains(Destructor, S, true);
2755    else
2756      ClassDecl->addDecl(Destructor);
2757
2758    // This could be uniqued if it ever proves significant.
2759    Destructor->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(Ty));
2760
2761    AddOverriddenMethods(ClassDecl, Destructor);
2762  }
2763}
2764
2765void Sema::ActOnReenterTemplateScope(Scope *S, DeclPtrTy TemplateD) {
2766  Decl *D = TemplateD.getAs<Decl>();
2767  if (!D)
2768    return;
2769
2770  TemplateParameterList *Params = 0;
2771  if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D))
2772    Params = Template->getTemplateParameters();
2773  else if (ClassTemplatePartialSpecializationDecl *PartialSpec
2774           = dyn_cast<ClassTemplatePartialSpecializationDecl>(D))
2775    Params = PartialSpec->getTemplateParameters();
2776  else
2777    return;
2778
2779  for (TemplateParameterList::iterator Param = Params->begin(),
2780                                    ParamEnd = Params->end();
2781       Param != ParamEnd; ++Param) {
2782    NamedDecl *Named = cast<NamedDecl>(*Param);
2783    if (Named->getDeclName()) {
2784      S->AddDecl(DeclPtrTy::make(Named));
2785      IdResolver.AddDecl(Named);
2786    }
2787  }
2788}
2789
2790void Sema::ActOnStartDelayedMemberDeclarations(Scope *S, DeclPtrTy RecordD) {
2791  if (!RecordD) return;
2792  AdjustDeclIfTemplate(RecordD);
2793  CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordD.getAs<Decl>());
2794  PushDeclContext(S, Record);
2795}
2796
2797void Sema::ActOnFinishDelayedMemberDeclarations(Scope *S, DeclPtrTy RecordD) {
2798  if (!RecordD) return;
2799  PopDeclContext();
2800}
2801
2802/// ActOnStartDelayedCXXMethodDeclaration - We have completed
2803/// parsing a top-level (non-nested) C++ class, and we are now
2804/// parsing those parts of the given Method declaration that could
2805/// not be parsed earlier (C++ [class.mem]p2), such as default
2806/// arguments. This action should enter the scope of the given
2807/// Method declaration as if we had just parsed the qualified method
2808/// name. However, it should not bring the parameters into scope;
2809/// that will be performed by ActOnDelayedCXXMethodParameter.
2810void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, DeclPtrTy MethodD) {
2811}
2812
2813/// ActOnDelayedCXXMethodParameter - We've already started a delayed
2814/// C++ method declaration. We're (re-)introducing the given
2815/// function parameter into scope for use in parsing later parts of
2816/// the method declaration. For example, we could see an
2817/// ActOnParamDefaultArgument event for this parameter.
2818void Sema::ActOnDelayedCXXMethodParameter(Scope *S, DeclPtrTy ParamD) {
2819  if (!ParamD)
2820    return;
2821
2822  ParmVarDecl *Param = cast<ParmVarDecl>(ParamD.getAs<Decl>());
2823
2824  // If this parameter has an unparsed default argument, clear it out
2825  // to make way for the parsed default argument.
2826  if (Param->hasUnparsedDefaultArg())
2827    Param->setDefaultArg(0);
2828
2829  S->AddDecl(DeclPtrTy::make(Param));
2830  if (Param->getDeclName())
2831    IdResolver.AddDecl(Param);
2832}
2833
2834/// ActOnFinishDelayedCXXMethodDeclaration - We have finished
2835/// processing the delayed method declaration for Method. The method
2836/// declaration is now considered finished. There may be a separate
2837/// ActOnStartOfFunctionDef action later (not necessarily
2838/// immediately!) for this method, if it was also defined inside the
2839/// class body.
2840void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, DeclPtrTy MethodD) {
2841  if (!MethodD)
2842    return;
2843
2844  AdjustDeclIfTemplate(MethodD);
2845
2846  FunctionDecl *Method = cast<FunctionDecl>(MethodD.getAs<Decl>());
2847
2848  // Now that we have our default arguments, check the constructor
2849  // again. It could produce additional diagnostics or affect whether
2850  // the class has implicitly-declared destructors, among other
2851  // things.
2852  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method))
2853    CheckConstructor(Constructor);
2854
2855  // Check the default arguments, which we may have added.
2856  if (!Method->isInvalidDecl())
2857    CheckCXXDefaultArguments(Method);
2858}
2859
2860/// CheckConstructorDeclarator - Called by ActOnDeclarator to check
2861/// the well-formedness of the constructor declarator @p D with type @p
2862/// R. If there are any errors in the declarator, this routine will
2863/// emit diagnostics and set the invalid bit to true.  In any case, the type
2864/// will be updated to reflect a well-formed type for the constructor and
2865/// returned.
2866QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R,
2867                                          FunctionDecl::StorageClass &SC) {
2868  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
2869
2870  // C++ [class.ctor]p3:
2871  //   A constructor shall not be virtual (10.3) or static (9.4). A
2872  //   constructor can be invoked for a const, volatile or const
2873  //   volatile object. A constructor shall not be declared const,
2874  //   volatile, or const volatile (9.3.2).
2875  if (isVirtual) {
2876    if (!D.isInvalidType())
2877      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
2878        << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
2879        << SourceRange(D.getIdentifierLoc());
2880    D.setInvalidType();
2881  }
2882  if (SC == FunctionDecl::Static) {
2883    if (!D.isInvalidType())
2884      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
2885        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
2886        << SourceRange(D.getIdentifierLoc());
2887    D.setInvalidType();
2888    SC = FunctionDecl::None;
2889  }
2890
2891  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2892  if (FTI.TypeQuals != 0) {
2893    if (FTI.TypeQuals & Qualifiers::Const)
2894      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
2895        << "const" << SourceRange(D.getIdentifierLoc());
2896    if (FTI.TypeQuals & Qualifiers::Volatile)
2897      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
2898        << "volatile" << SourceRange(D.getIdentifierLoc());
2899    if (FTI.TypeQuals & Qualifiers::Restrict)
2900      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
2901        << "restrict" << SourceRange(D.getIdentifierLoc());
2902  }
2903
2904  // Rebuild the function type "R" without any type qualifiers (in
2905  // case any of the errors above fired) and with "void" as the
2906  // return type, since constructors don't have return types. We
2907  // *always* have to do this, because GetTypeForDeclarator will
2908  // put in a result type of "int" when none was specified.
2909  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
2910  return Context.getFunctionType(Context.VoidTy, Proto->arg_type_begin(),
2911                                 Proto->getNumArgs(),
2912                                 Proto->isVariadic(), 0,
2913                                 Proto->hasExceptionSpec(),
2914                                 Proto->hasAnyExceptionSpec(),
2915                                 Proto->getNumExceptions(),
2916                                 Proto->exception_begin(),
2917                                 Proto->getExtInfo());
2918}
2919
2920/// CheckConstructor - Checks a fully-formed constructor for
2921/// well-formedness, issuing any diagnostics required. Returns true if
2922/// the constructor declarator is invalid.
2923void Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
2924  CXXRecordDecl *ClassDecl
2925    = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext());
2926  if (!ClassDecl)
2927    return Constructor->setInvalidDecl();
2928
2929  // C++ [class.copy]p3:
2930  //   A declaration of a constructor for a class X is ill-formed if
2931  //   its first parameter is of type (optionally cv-qualified) X and
2932  //   either there are no other parameters or else all other
2933  //   parameters have default arguments.
2934  if (!Constructor->isInvalidDecl() &&
2935      ((Constructor->getNumParams() == 1) ||
2936       (Constructor->getNumParams() > 1 &&
2937        Constructor->getParamDecl(1)->hasDefaultArg())) &&
2938      Constructor->getTemplateSpecializationKind()
2939                                              != TSK_ImplicitInstantiation) {
2940    QualType ParamType = Constructor->getParamDecl(0)->getType();
2941    QualType ClassTy = Context.getTagDeclType(ClassDecl);
2942    if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
2943      SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation();
2944      Diag(ParamLoc, diag::err_constructor_byvalue_arg)
2945        << FixItHint::CreateInsertion(ParamLoc, " const &");
2946
2947      // FIXME: Rather that making the constructor invalid, we should endeavor
2948      // to fix the type.
2949      Constructor->setInvalidDecl();
2950    }
2951  }
2952
2953  // Notify the class that we've added a constructor.  In principle we
2954  // don't need to do this for out-of-line declarations; in practice
2955  // we only instantiate the most recent declaration of a method, so
2956  // we have to call this for everything but friends.
2957  if (!Constructor->getFriendObjectKind())
2958    ClassDecl->addedConstructor(Context, Constructor);
2959}
2960
2961/// CheckDestructor - Checks a fully-formed destructor for well-formedness,
2962/// issuing any diagnostics required. Returns true on error.
2963bool Sema::CheckDestructor(CXXDestructorDecl *Destructor) {
2964  CXXRecordDecl *RD = Destructor->getParent();
2965
2966  if (Destructor->isVirtual()) {
2967    SourceLocation Loc;
2968
2969    if (!Destructor->isImplicit())
2970      Loc = Destructor->getLocation();
2971    else
2972      Loc = RD->getLocation();
2973
2974    // If we have a virtual destructor, look up the deallocation function
2975    FunctionDecl *OperatorDelete = 0;
2976    DeclarationName Name =
2977    Context.DeclarationNames.getCXXOperatorName(OO_Delete);
2978    if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete))
2979      return true;
2980
2981    Destructor->setOperatorDelete(OperatorDelete);
2982  }
2983
2984  return false;
2985}
2986
2987static inline bool
2988FTIHasSingleVoidArgument(DeclaratorChunk::FunctionTypeInfo &FTI) {
2989  return (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
2990          FTI.ArgInfo[0].Param &&
2991          FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType());
2992}
2993
2994/// CheckDestructorDeclarator - Called by ActOnDeclarator to check
2995/// the well-formednes of the destructor declarator @p D with type @p
2996/// R. If there are any errors in the declarator, this routine will
2997/// emit diagnostics and set the declarator to invalid.  Even if this happens,
2998/// will be updated to reflect a well-formed type for the destructor and
2999/// returned.
3000QualType Sema::CheckDestructorDeclarator(Declarator &D,
3001                                         FunctionDecl::StorageClass& SC) {
3002  // C++ [class.dtor]p1:
3003  //   [...] A typedef-name that names a class is a class-name
3004  //   (7.1.3); however, a typedef-name that names a class shall not
3005  //   be used as the identifier in the declarator for a destructor
3006  //   declaration.
3007  QualType DeclaratorType = GetTypeFromParser(D.getName().DestructorName);
3008  if (isa<TypedefType>(DeclaratorType)) {
3009    Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
3010      << DeclaratorType;
3011    D.setInvalidType();
3012  }
3013
3014  // C++ [class.dtor]p2:
3015  //   A destructor is used to destroy objects of its class type. A
3016  //   destructor takes no parameters, and no return type can be
3017  //   specified for it (not even void). The address of a destructor
3018  //   shall not be taken. A destructor shall not be static. A
3019  //   destructor can be invoked for a const, volatile or const
3020  //   volatile object. A destructor shall not be declared const,
3021  //   volatile or const volatile (9.3.2).
3022  if (SC == FunctionDecl::Static) {
3023    if (!D.isInvalidType())
3024      Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
3025        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
3026        << SourceRange(D.getIdentifierLoc());
3027    SC = FunctionDecl::None;
3028    D.setInvalidType();
3029  }
3030  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
3031    // Destructors don't have return types, but the parser will
3032    // happily parse something like:
3033    //
3034    //   class X {
3035    //     float ~X();
3036    //   };
3037    //
3038    // The return type will be eliminated later.
3039    Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
3040      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
3041      << SourceRange(D.getIdentifierLoc());
3042  }
3043
3044  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
3045  if (FTI.TypeQuals != 0 && !D.isInvalidType()) {
3046    if (FTI.TypeQuals & Qualifiers::Const)
3047      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
3048        << "const" << SourceRange(D.getIdentifierLoc());
3049    if (FTI.TypeQuals & Qualifiers::Volatile)
3050      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
3051        << "volatile" << SourceRange(D.getIdentifierLoc());
3052    if (FTI.TypeQuals & Qualifiers::Restrict)
3053      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
3054        << "restrict" << SourceRange(D.getIdentifierLoc());
3055    D.setInvalidType();
3056  }
3057
3058  // Make sure we don't have any parameters.
3059  if (FTI.NumArgs > 0 && !FTIHasSingleVoidArgument(FTI)) {
3060    Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
3061
3062    // Delete the parameters.
3063    FTI.freeArgs();
3064    D.setInvalidType();
3065  }
3066
3067  // Make sure the destructor isn't variadic.
3068  if (FTI.isVariadic) {
3069    Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
3070    D.setInvalidType();
3071  }
3072
3073  // Rebuild the function type "R" without any type qualifiers or
3074  // parameters (in case any of the errors above fired) and with
3075  // "void" as the return type, since destructors don't have return
3076  // types. We *always* have to do this, because GetTypeForDeclarator
3077  // will put in a result type of "int" when none was specified.
3078  // FIXME: Exceptions!
3079  return Context.getFunctionType(Context.VoidTy, 0, 0, false, 0,
3080                                 false, false, 0, 0, FunctionType::ExtInfo());
3081}
3082
3083/// CheckConversionDeclarator - Called by ActOnDeclarator to check the
3084/// well-formednes of the conversion function declarator @p D with
3085/// type @p R. If there are any errors in the declarator, this routine
3086/// will emit diagnostics and return true. Otherwise, it will return
3087/// false. Either way, the type @p R will be updated to reflect a
3088/// well-formed type for the conversion operator.
3089void Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
3090                                     FunctionDecl::StorageClass& SC) {
3091  // C++ [class.conv.fct]p1:
3092  //   Neither parameter types nor return type can be specified. The
3093  //   type of a conversion function (8.3.5) is "function taking no
3094  //   parameter returning conversion-type-id."
3095  if (SC == FunctionDecl::Static) {
3096    if (!D.isInvalidType())
3097      Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
3098        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
3099        << SourceRange(D.getIdentifierLoc());
3100    D.setInvalidType();
3101    SC = FunctionDecl::None;
3102  }
3103
3104  QualType ConvType = GetTypeFromParser(D.getName().ConversionFunctionId);
3105
3106  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
3107    // Conversion functions don't have return types, but the parser will
3108    // happily parse something like:
3109    //
3110    //   class X {
3111    //     float operator bool();
3112    //   };
3113    //
3114    // The return type will be changed later anyway.
3115    Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
3116      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
3117      << SourceRange(D.getIdentifierLoc());
3118    D.setInvalidType();
3119  }
3120
3121  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
3122
3123  // Make sure we don't have any parameters.
3124  if (Proto->getNumArgs() > 0) {
3125    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
3126
3127    // Delete the parameters.
3128    D.getTypeObject(0).Fun.freeArgs();
3129    D.setInvalidType();
3130  } else if (Proto->isVariadic()) {
3131    Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
3132    D.setInvalidType();
3133  }
3134
3135  // Diagnose "&operator bool()" and other such nonsense.  This
3136  // is actually a gcc extension which we don't support.
3137  if (Proto->getResultType() != ConvType) {
3138    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_complex_decl)
3139      << Proto->getResultType();
3140    D.setInvalidType();
3141    ConvType = Proto->getResultType();
3142  }
3143
3144  // C++ [class.conv.fct]p4:
3145  //   The conversion-type-id shall not represent a function type nor
3146  //   an array type.
3147  if (ConvType->isArrayType()) {
3148    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
3149    ConvType = Context.getPointerType(ConvType);
3150    D.setInvalidType();
3151  } else if (ConvType->isFunctionType()) {
3152    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
3153    ConvType = Context.getPointerType(ConvType);
3154    D.setInvalidType();
3155  }
3156
3157  // Rebuild the function type "R" without any parameters (in case any
3158  // of the errors above fired) and with the conversion type as the
3159  // return type.
3160  if (D.isInvalidType()) {
3161    R = Context.getFunctionType(ConvType, 0, 0, false,
3162                                Proto->getTypeQuals(),
3163                                Proto->hasExceptionSpec(),
3164                                Proto->hasAnyExceptionSpec(),
3165                                Proto->getNumExceptions(),
3166                                Proto->exception_begin(),
3167                                Proto->getExtInfo());
3168  }
3169
3170  // C++0x explicit conversion operators.
3171  if (D.getDeclSpec().isExplicitSpecified() && !getLangOptions().CPlusPlus0x)
3172    Diag(D.getDeclSpec().getExplicitSpecLoc(),
3173         diag::warn_explicit_conversion_functions)
3174      << SourceRange(D.getDeclSpec().getExplicitSpecLoc());
3175}
3176
3177/// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
3178/// the declaration of the given C++ conversion function. This routine
3179/// is responsible for recording the conversion function in the C++
3180/// class, if possible.
3181Sema::DeclPtrTy Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
3182  assert(Conversion && "Expected to receive a conversion function declaration");
3183
3184  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext());
3185
3186  // Make sure we aren't redeclaring the conversion function.
3187  QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());
3188
3189  // C++ [class.conv.fct]p1:
3190  //   [...] A conversion function is never used to convert a
3191  //   (possibly cv-qualified) object to the (possibly cv-qualified)
3192  //   same object type (or a reference to it), to a (possibly
3193  //   cv-qualified) base class of that type (or a reference to it),
3194  //   or to (possibly cv-qualified) void.
3195  // FIXME: Suppress this warning if the conversion function ends up being a
3196  // virtual function that overrides a virtual function in a base class.
3197  QualType ClassType
3198    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
3199  if (const ReferenceType *ConvTypeRef = ConvType->getAs<ReferenceType>())
3200    ConvType = ConvTypeRef->getPointeeType();
3201  if (ConvType->isRecordType()) {
3202    ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
3203    if (ConvType == ClassType)
3204      Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used)
3205        << ClassType;
3206    else if (IsDerivedFrom(ClassType, ConvType))
3207      Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used)
3208        <<  ClassType << ConvType;
3209  } else if (ConvType->isVoidType()) {
3210    Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used)
3211      << ClassType << ConvType;
3212  }
3213
3214  if (Conversion->getPrimaryTemplate()) {
3215    // ignore specializations
3216  } else if (Conversion->getPreviousDeclaration()) {
3217    if (FunctionTemplateDecl *ConversionTemplate
3218                                  = Conversion->getDescribedFunctionTemplate()) {
3219      if (ClassDecl->replaceConversion(
3220                                   ConversionTemplate->getPreviousDeclaration(),
3221                                       ConversionTemplate))
3222        return DeclPtrTy::make(ConversionTemplate);
3223    } else if (ClassDecl->replaceConversion(Conversion->getPreviousDeclaration(),
3224                                            Conversion))
3225      return DeclPtrTy::make(Conversion);
3226    assert(Conversion->isInvalidDecl() && "Conversion should not get here.");
3227  } else if (FunctionTemplateDecl *ConversionTemplate
3228               = Conversion->getDescribedFunctionTemplate())
3229    ClassDecl->addConversionFunction(ConversionTemplate);
3230  else
3231    ClassDecl->addConversionFunction(Conversion);
3232
3233  return DeclPtrTy::make(Conversion);
3234}
3235
3236//===----------------------------------------------------------------------===//
3237// Namespace Handling
3238//===----------------------------------------------------------------------===//
3239
3240/// ActOnStartNamespaceDef - This is called at the start of a namespace
3241/// definition.
3242Sema::DeclPtrTy Sema::ActOnStartNamespaceDef(Scope *NamespcScope,
3243                                             SourceLocation IdentLoc,
3244                                             IdentifierInfo *II,
3245                                             SourceLocation LBrace,
3246                                             AttributeList *AttrList) {
3247  NamespaceDecl *Namespc =
3248      NamespaceDecl::Create(Context, CurContext, IdentLoc, II);
3249  Namespc->setLBracLoc(LBrace);
3250
3251  Scope *DeclRegionScope = NamespcScope->getParent();
3252
3253  ProcessDeclAttributeList(DeclRegionScope, Namespc, AttrList);
3254
3255  if (II) {
3256    // C++ [namespace.def]p2:
3257    // The identifier in an original-namespace-definition shall not have been
3258    // previously defined in the declarative region in which the
3259    // original-namespace-definition appears. The identifier in an
3260    // original-namespace-definition is the name of the namespace. Subsequently
3261    // in that declarative region, it is treated as an original-namespace-name.
3262
3263    NamedDecl *PrevDecl
3264      = LookupSingleName(DeclRegionScope, II, IdentLoc, LookupOrdinaryName,
3265                         ForRedeclaration);
3266
3267    if (NamespaceDecl *OrigNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl)) {
3268      // This is an extended namespace definition.
3269      // Attach this namespace decl to the chain of extended namespace
3270      // definitions.
3271      OrigNS->setNextNamespace(Namespc);
3272      Namespc->setOriginalNamespace(OrigNS->getOriginalNamespace());
3273
3274      // Remove the previous declaration from the scope.
3275      if (DeclRegionScope->isDeclScope(DeclPtrTy::make(OrigNS))) {
3276        IdResolver.RemoveDecl(OrigNS);
3277        DeclRegionScope->RemoveDecl(DeclPtrTy::make(OrigNS));
3278      }
3279    } else if (PrevDecl) {
3280      // This is an invalid name redefinition.
3281      Diag(Namespc->getLocation(), diag::err_redefinition_different_kind)
3282       << Namespc->getDeclName();
3283      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3284      Namespc->setInvalidDecl();
3285      // Continue on to push Namespc as current DeclContext and return it.
3286    } else if (II->isStr("std") &&
3287               CurContext->getLookupContext()->isTranslationUnit()) {
3288      // This is the first "real" definition of the namespace "std", so update
3289      // our cache of the "std" namespace to point at this definition.
3290      if (StdNamespace) {
3291        // We had already defined a dummy namespace "std". Link this new
3292        // namespace definition to the dummy namespace "std".
3293        StdNamespace->setNextNamespace(Namespc);
3294        StdNamespace->setLocation(IdentLoc);
3295        Namespc->setOriginalNamespace(StdNamespace->getOriginalNamespace());
3296      }
3297
3298      // Make our StdNamespace cache point at the first real definition of the
3299      // "std" namespace.
3300      StdNamespace = Namespc;
3301    }
3302
3303    PushOnScopeChains(Namespc, DeclRegionScope);
3304  } else {
3305    // Anonymous namespaces.
3306    assert(Namespc->isAnonymousNamespace());
3307
3308    // Link the anonymous namespace into its parent.
3309    NamespaceDecl *PrevDecl;
3310    DeclContext *Parent = CurContext->getLookupContext();
3311    if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
3312      PrevDecl = TU->getAnonymousNamespace();
3313      TU->setAnonymousNamespace(Namespc);
3314    } else {
3315      NamespaceDecl *ND = cast<NamespaceDecl>(Parent);
3316      PrevDecl = ND->getAnonymousNamespace();
3317      ND->setAnonymousNamespace(Namespc);
3318    }
3319
3320    // Link the anonymous namespace with its previous declaration.
3321    if (PrevDecl) {
3322      assert(PrevDecl->isAnonymousNamespace());
3323      assert(!PrevDecl->getNextNamespace());
3324      Namespc->setOriginalNamespace(PrevDecl->getOriginalNamespace());
3325      PrevDecl->setNextNamespace(Namespc);
3326    }
3327
3328    CurContext->addDecl(Namespc);
3329
3330    // C++ [namespace.unnamed]p1.  An unnamed-namespace-definition
3331    //   behaves as if it were replaced by
3332    //     namespace unique { /* empty body */ }
3333    //     using namespace unique;
3334    //     namespace unique { namespace-body }
3335    //   where all occurrences of 'unique' in a translation unit are
3336    //   replaced by the same identifier and this identifier differs
3337    //   from all other identifiers in the entire program.
3338
3339    // We just create the namespace with an empty name and then add an
3340    // implicit using declaration, just like the standard suggests.
3341    //
3342    // CodeGen enforces the "universally unique" aspect by giving all
3343    // declarations semantically contained within an anonymous
3344    // namespace internal linkage.
3345
3346    if (!PrevDecl) {
3347      UsingDirectiveDecl* UD
3348        = UsingDirectiveDecl::Create(Context, CurContext,
3349                                     /* 'using' */ LBrace,
3350                                     /* 'namespace' */ SourceLocation(),
3351                                     /* qualifier */ SourceRange(),
3352                                     /* NNS */ NULL,
3353                                     /* identifier */ SourceLocation(),
3354                                     Namespc,
3355                                     /* Ancestor */ CurContext);
3356      UD->setImplicit();
3357      CurContext->addDecl(UD);
3358    }
3359  }
3360
3361  // Although we could have an invalid decl (i.e. the namespace name is a
3362  // redefinition), push it as current DeclContext and try to continue parsing.
3363  // FIXME: We should be able to push Namespc here, so that the each DeclContext
3364  // for the namespace has the declarations that showed up in that particular
3365  // namespace definition.
3366  PushDeclContext(NamespcScope, Namespc);
3367  return DeclPtrTy::make(Namespc);
3368}
3369
3370/// getNamespaceDecl - Returns the namespace a decl represents. If the decl
3371/// is a namespace alias, returns the namespace it points to.
3372static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) {
3373  if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D))
3374    return AD->getNamespace();
3375  return dyn_cast_or_null<NamespaceDecl>(D);
3376}
3377
3378/// ActOnFinishNamespaceDef - This callback is called after a namespace is
3379/// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
3380void Sema::ActOnFinishNamespaceDef(DeclPtrTy D, SourceLocation RBrace) {
3381  Decl *Dcl = D.getAs<Decl>();
3382  NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
3383  assert(Namespc && "Invalid parameter, expected NamespaceDecl");
3384  Namespc->setRBracLoc(RBrace);
3385  PopDeclContext();
3386}
3387
3388Sema::DeclPtrTy Sema::ActOnUsingDirective(Scope *S,
3389                                          SourceLocation UsingLoc,
3390                                          SourceLocation NamespcLoc,
3391                                          CXXScopeSpec &SS,
3392                                          SourceLocation IdentLoc,
3393                                          IdentifierInfo *NamespcName,
3394                                          AttributeList *AttrList) {
3395  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
3396  assert(NamespcName && "Invalid NamespcName.");
3397  assert(IdentLoc.isValid() && "Invalid NamespceName location.");
3398  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
3399
3400  UsingDirectiveDecl *UDir = 0;
3401
3402  // Lookup namespace name.
3403  LookupResult R(*this, NamespcName, IdentLoc, LookupNamespaceName);
3404  LookupParsedName(R, S, &SS);
3405  if (R.isAmbiguous())
3406    return DeclPtrTy();
3407
3408  if (!R.empty()) {
3409    NamedDecl *Named = R.getFoundDecl();
3410    assert((isa<NamespaceDecl>(Named) || isa<NamespaceAliasDecl>(Named))
3411        && "expected namespace decl");
3412    // C++ [namespace.udir]p1:
3413    //   A using-directive specifies that the names in the nominated
3414    //   namespace can be used in the scope in which the
3415    //   using-directive appears after the using-directive. During
3416    //   unqualified name lookup (3.4.1), the names appear as if they
3417    //   were declared in the nearest enclosing namespace which
3418    //   contains both the using-directive and the nominated
3419    //   namespace. [Note: in this context, "contains" means "contains
3420    //   directly or indirectly". ]
3421
3422    // Find enclosing context containing both using-directive and
3423    // nominated namespace.
3424    NamespaceDecl *NS = getNamespaceDecl(Named);
3425    DeclContext *CommonAncestor = cast<DeclContext>(NS);
3426    while (CommonAncestor && !CommonAncestor->Encloses(CurContext))
3427      CommonAncestor = CommonAncestor->getParent();
3428
3429    UDir = UsingDirectiveDecl::Create(Context, CurContext, UsingLoc, NamespcLoc,
3430                                      SS.getRange(),
3431                                      (NestedNameSpecifier *)SS.getScopeRep(),
3432                                      IdentLoc, Named, CommonAncestor);
3433    PushUsingDirective(S, UDir);
3434  } else {
3435    Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
3436  }
3437
3438  // FIXME: We ignore attributes for now.
3439  delete AttrList;
3440  return DeclPtrTy::make(UDir);
3441}
3442
3443void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) {
3444  // If scope has associated entity, then using directive is at namespace
3445  // or translation unit scope. We add UsingDirectiveDecls, into
3446  // it's lookup structure.
3447  if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity()))
3448    Ctx->addDecl(UDir);
3449  else
3450    // Otherwise it is block-sope. using-directives will affect lookup
3451    // only to the end of scope.
3452    S->PushUsingDirective(DeclPtrTy::make(UDir));
3453}
3454
3455
3456Sema::DeclPtrTy Sema::ActOnUsingDeclaration(Scope *S,
3457                                            AccessSpecifier AS,
3458                                            bool HasUsingKeyword,
3459                                            SourceLocation UsingLoc,
3460                                            CXXScopeSpec &SS,
3461                                            UnqualifiedId &Name,
3462                                            AttributeList *AttrList,
3463                                            bool IsTypeName,
3464                                            SourceLocation TypenameLoc) {
3465  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
3466
3467  switch (Name.getKind()) {
3468  case UnqualifiedId::IK_Identifier:
3469  case UnqualifiedId::IK_OperatorFunctionId:
3470  case UnqualifiedId::IK_LiteralOperatorId:
3471  case UnqualifiedId::IK_ConversionFunctionId:
3472    break;
3473
3474  case UnqualifiedId::IK_ConstructorName:
3475  case UnqualifiedId::IK_ConstructorTemplateId:
3476    // C++0x inherited constructors.
3477    if (getLangOptions().CPlusPlus0x) break;
3478
3479    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_constructor)
3480      << SS.getRange();
3481    return DeclPtrTy();
3482
3483  case UnqualifiedId::IK_DestructorName:
3484    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_destructor)
3485      << SS.getRange();
3486    return DeclPtrTy();
3487
3488  case UnqualifiedId::IK_TemplateId:
3489    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_template_id)
3490      << SourceRange(Name.TemplateId->LAngleLoc, Name.TemplateId->RAngleLoc);
3491    return DeclPtrTy();
3492  }
3493
3494  DeclarationName TargetName = GetNameFromUnqualifiedId(Name);
3495  if (!TargetName)
3496    return DeclPtrTy();
3497
3498  // Warn about using declarations.
3499  // TODO: store that the declaration was written without 'using' and
3500  // talk about access decls instead of using decls in the
3501  // diagnostics.
3502  if (!HasUsingKeyword) {
3503    UsingLoc = Name.getSourceRange().getBegin();
3504
3505    Diag(UsingLoc, diag::warn_access_decl_deprecated)
3506      << FixItHint::CreateInsertion(SS.getRange().getBegin(), "using ");
3507  }
3508
3509  NamedDecl *UD = BuildUsingDeclaration(S, AS, UsingLoc, SS,
3510                                        Name.getSourceRange().getBegin(),
3511                                        TargetName, AttrList,
3512                                        /* IsInstantiation */ false,
3513                                        IsTypeName, TypenameLoc);
3514  if (UD)
3515    PushOnScopeChains(UD, S, /*AddToContext*/ false);
3516
3517  return DeclPtrTy::make(UD);
3518}
3519
3520/// Determines whether to create a using shadow decl for a particular
3521/// decl, given the set of decls existing prior to this using lookup.
3522bool Sema::CheckUsingShadowDecl(UsingDecl *Using, NamedDecl *Orig,
3523                                const LookupResult &Previous) {
3524  // Diagnose finding a decl which is not from a base class of the
3525  // current class.  We do this now because there are cases where this
3526  // function will silently decide not to build a shadow decl, which
3527  // will pre-empt further diagnostics.
3528  //
3529  // We don't need to do this in C++0x because we do the check once on
3530  // the qualifier.
3531  //
3532  // FIXME: diagnose the following if we care enough:
3533  //   struct A { int foo; };
3534  //   struct B : A { using A::foo; };
3535  //   template <class T> struct C : A {};
3536  //   template <class T> struct D : C<T> { using B::foo; } // <---
3537  // This is invalid (during instantiation) in C++03 because B::foo
3538  // resolves to the using decl in B, which is not a base class of D<T>.
3539  // We can't diagnose it immediately because C<T> is an unknown
3540  // specialization.  The UsingShadowDecl in D<T> then points directly
3541  // to A::foo, which will look well-formed when we instantiate.
3542  // The right solution is to not collapse the shadow-decl chain.
3543  if (!getLangOptions().CPlusPlus0x && CurContext->isRecord()) {
3544    DeclContext *OrigDC = Orig->getDeclContext();
3545
3546    // Handle enums and anonymous structs.
3547    if (isa<EnumDecl>(OrigDC)) OrigDC = OrigDC->getParent();
3548    CXXRecordDecl *OrigRec = cast<CXXRecordDecl>(OrigDC);
3549    while (OrigRec->isAnonymousStructOrUnion())
3550      OrigRec = cast<CXXRecordDecl>(OrigRec->getDeclContext());
3551
3552    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(OrigRec)) {
3553      if (OrigDC == CurContext) {
3554        Diag(Using->getLocation(),
3555             diag::err_using_decl_nested_name_specifier_is_current_class)
3556          << Using->getNestedNameRange();
3557        Diag(Orig->getLocation(), diag::note_using_decl_target);
3558        return true;
3559      }
3560
3561      Diag(Using->getNestedNameRange().getBegin(),
3562           diag::err_using_decl_nested_name_specifier_is_not_base_class)
3563        << Using->getTargetNestedNameDecl()
3564        << cast<CXXRecordDecl>(CurContext)
3565        << Using->getNestedNameRange();
3566      Diag(Orig->getLocation(), diag::note_using_decl_target);
3567      return true;
3568    }
3569  }
3570
3571  if (Previous.empty()) return false;
3572
3573  NamedDecl *Target = Orig;
3574  if (isa<UsingShadowDecl>(Target))
3575    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
3576
3577  // If the target happens to be one of the previous declarations, we
3578  // don't have a conflict.
3579  //
3580  // FIXME: but we might be increasing its access, in which case we
3581  // should redeclare it.
3582  NamedDecl *NonTag = 0, *Tag = 0;
3583  for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
3584         I != E; ++I) {
3585    NamedDecl *D = (*I)->getUnderlyingDecl();
3586    if (D->getCanonicalDecl() == Target->getCanonicalDecl())
3587      return false;
3588
3589    (isa<TagDecl>(D) ? Tag : NonTag) = D;
3590  }
3591
3592  if (Target->isFunctionOrFunctionTemplate()) {
3593    FunctionDecl *FD;
3594    if (isa<FunctionTemplateDecl>(Target))
3595      FD = cast<FunctionTemplateDecl>(Target)->getTemplatedDecl();
3596    else
3597      FD = cast<FunctionDecl>(Target);
3598
3599    NamedDecl *OldDecl = 0;
3600    switch (CheckOverload(FD, Previous, OldDecl)) {
3601    case Ovl_Overload:
3602      return false;
3603
3604    case Ovl_NonFunction:
3605      Diag(Using->getLocation(), diag::err_using_decl_conflict);
3606      break;
3607
3608    // We found a decl with the exact signature.
3609    case Ovl_Match:
3610      if (isa<UsingShadowDecl>(OldDecl)) {
3611        // Silently ignore the possible conflict.
3612        return false;
3613      }
3614
3615      // If we're in a record, we want to hide the target, so we
3616      // return true (without a diagnostic) to tell the caller not to
3617      // build a shadow decl.
3618      if (CurContext->isRecord())
3619        return true;
3620
3621      // If we're not in a record, this is an error.
3622      Diag(Using->getLocation(), diag::err_using_decl_conflict);
3623      break;
3624    }
3625
3626    Diag(Target->getLocation(), diag::note_using_decl_target);
3627    Diag(OldDecl->getLocation(), diag::note_using_decl_conflict);
3628    return true;
3629  }
3630
3631  // Target is not a function.
3632
3633  if (isa<TagDecl>(Target)) {
3634    // No conflict between a tag and a non-tag.
3635    if (!Tag) return false;
3636
3637    Diag(Using->getLocation(), diag::err_using_decl_conflict);
3638    Diag(Target->getLocation(), diag::note_using_decl_target);
3639    Diag(Tag->getLocation(), diag::note_using_decl_conflict);
3640    return true;
3641  }
3642
3643  // No conflict between a tag and a non-tag.
3644  if (!NonTag) return false;
3645
3646  Diag(Using->getLocation(), diag::err_using_decl_conflict);
3647  Diag(Target->getLocation(), diag::note_using_decl_target);
3648  Diag(NonTag->getLocation(), diag::note_using_decl_conflict);
3649  return true;
3650}
3651
3652/// Builds a shadow declaration corresponding to a 'using' declaration.
3653UsingShadowDecl *Sema::BuildUsingShadowDecl(Scope *S,
3654                                            UsingDecl *UD,
3655                                            NamedDecl *Orig) {
3656
3657  // If we resolved to another shadow declaration, just coalesce them.
3658  NamedDecl *Target = Orig;
3659  if (isa<UsingShadowDecl>(Target)) {
3660    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
3661    assert(!isa<UsingShadowDecl>(Target) && "nested shadow declaration");
3662  }
3663
3664  UsingShadowDecl *Shadow
3665    = UsingShadowDecl::Create(Context, CurContext,
3666                              UD->getLocation(), UD, Target);
3667  UD->addShadowDecl(Shadow);
3668
3669  if (S)
3670    PushOnScopeChains(Shadow, S);
3671  else
3672    CurContext->addDecl(Shadow);
3673  Shadow->setAccess(UD->getAccess());
3674
3675  // Register it as a conversion if appropriate.
3676  if (Shadow->getDeclName().getNameKind()
3677        == DeclarationName::CXXConversionFunctionName)
3678    cast<CXXRecordDecl>(CurContext)->addConversionFunction(Shadow);
3679
3680  if (Orig->isInvalidDecl() || UD->isInvalidDecl())
3681    Shadow->setInvalidDecl();
3682
3683  return Shadow;
3684}
3685
3686/// Hides a using shadow declaration.  This is required by the current
3687/// using-decl implementation when a resolvable using declaration in a
3688/// class is followed by a declaration which would hide or override
3689/// one or more of the using decl's targets; for example:
3690///
3691///   struct Base { void foo(int); };
3692///   struct Derived : Base {
3693///     using Base::foo;
3694///     void foo(int);
3695///   };
3696///
3697/// The governing language is C++03 [namespace.udecl]p12:
3698///
3699///   When a using-declaration brings names from a base class into a
3700///   derived class scope, member functions in the derived class
3701///   override and/or hide member functions with the same name and
3702///   parameter types in a base class (rather than conflicting).
3703///
3704/// There are two ways to implement this:
3705///   (1) optimistically create shadow decls when they're not hidden
3706///       by existing declarations, or
3707///   (2) don't create any shadow decls (or at least don't make them
3708///       visible) until we've fully parsed/instantiated the class.
3709/// The problem with (1) is that we might have to retroactively remove
3710/// a shadow decl, which requires several O(n) operations because the
3711/// decl structures are (very reasonably) not designed for removal.
3712/// (2) avoids this but is very fiddly and phase-dependent.
3713void Sema::HideUsingShadowDecl(Scope *S, UsingShadowDecl *Shadow) {
3714  if (Shadow->getDeclName().getNameKind() ==
3715        DeclarationName::CXXConversionFunctionName)
3716    cast<CXXRecordDecl>(Shadow->getDeclContext())->removeConversion(Shadow);
3717
3718  // Remove it from the DeclContext...
3719  Shadow->getDeclContext()->removeDecl(Shadow);
3720
3721  // ...and the scope, if applicable...
3722  if (S) {
3723    S->RemoveDecl(DeclPtrTy::make(static_cast<Decl*>(Shadow)));
3724    IdResolver.RemoveDecl(Shadow);
3725  }
3726
3727  // ...and the using decl.
3728  Shadow->getUsingDecl()->removeShadowDecl(Shadow);
3729
3730  // TODO: complain somehow if Shadow was used.  It shouldn't
3731  // be possible for this to happen, because...?
3732}
3733
3734/// Builds a using declaration.
3735///
3736/// \param IsInstantiation - Whether this call arises from an
3737///   instantiation of an unresolved using declaration.  We treat
3738///   the lookup differently for these declarations.
3739NamedDecl *Sema::BuildUsingDeclaration(Scope *S, AccessSpecifier AS,
3740                                       SourceLocation UsingLoc,
3741                                       CXXScopeSpec &SS,
3742                                       SourceLocation IdentLoc,
3743                                       DeclarationName Name,
3744                                       AttributeList *AttrList,
3745                                       bool IsInstantiation,
3746                                       bool IsTypeName,
3747                                       SourceLocation TypenameLoc) {
3748  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
3749  assert(IdentLoc.isValid() && "Invalid TargetName location.");
3750
3751  // FIXME: We ignore attributes for now.
3752  delete AttrList;
3753
3754  if (SS.isEmpty()) {
3755    Diag(IdentLoc, diag::err_using_requires_qualname);
3756    return 0;
3757  }
3758
3759  // Do the redeclaration lookup in the current scope.
3760  LookupResult Previous(*this, Name, IdentLoc, LookupUsingDeclName,
3761                        ForRedeclaration);
3762  Previous.setHideTags(false);
3763  if (S) {
3764    LookupName(Previous, S);
3765
3766    // It is really dumb that we have to do this.
3767    LookupResult::Filter F = Previous.makeFilter();
3768    while (F.hasNext()) {
3769      NamedDecl *D = F.next();
3770      if (!isDeclInScope(D, CurContext, S))
3771        F.erase();
3772    }
3773    F.done();
3774  } else {
3775    assert(IsInstantiation && "no scope in non-instantiation");
3776    assert(CurContext->isRecord() && "scope not record in instantiation");
3777    LookupQualifiedName(Previous, CurContext);
3778  }
3779
3780  NestedNameSpecifier *NNS =
3781    static_cast<NestedNameSpecifier *>(SS.getScopeRep());
3782
3783  // Check for invalid redeclarations.
3784  if (CheckUsingDeclRedeclaration(UsingLoc, IsTypeName, SS, IdentLoc, Previous))
3785    return 0;
3786
3787  // Check for bad qualifiers.
3788  if (CheckUsingDeclQualifier(UsingLoc, SS, IdentLoc))
3789    return 0;
3790
3791  DeclContext *LookupContext = computeDeclContext(SS);
3792  NamedDecl *D;
3793  if (!LookupContext) {
3794    if (IsTypeName) {
3795      // FIXME: not all declaration name kinds are legal here
3796      D = UnresolvedUsingTypenameDecl::Create(Context, CurContext,
3797                                              UsingLoc, TypenameLoc,
3798                                              SS.getRange(), NNS,
3799                                              IdentLoc, Name);
3800    } else {
3801      D = UnresolvedUsingValueDecl::Create(Context, CurContext,
3802                                           UsingLoc, SS.getRange(), NNS,
3803                                           IdentLoc, Name);
3804    }
3805  } else {
3806    D = UsingDecl::Create(Context, CurContext, IdentLoc,
3807                          SS.getRange(), UsingLoc, NNS, Name,
3808                          IsTypeName);
3809  }
3810  D->setAccess(AS);
3811  CurContext->addDecl(D);
3812
3813  if (!LookupContext) return D;
3814  UsingDecl *UD = cast<UsingDecl>(D);
3815
3816  if (RequireCompleteDeclContext(SS, LookupContext)) {
3817    UD->setInvalidDecl();
3818    return UD;
3819  }
3820
3821  // Look up the target name.
3822
3823  LookupResult R(*this, Name, IdentLoc, LookupOrdinaryName);
3824
3825  // Unlike most lookups, we don't always want to hide tag
3826  // declarations: tag names are visible through the using declaration
3827  // even if hidden by ordinary names, *except* in a dependent context
3828  // where it's important for the sanity of two-phase lookup.
3829  if (!IsInstantiation)
3830    R.setHideTags(false);
3831
3832  LookupQualifiedName(R, LookupContext);
3833
3834  if (R.empty()) {
3835    Diag(IdentLoc, diag::err_no_member)
3836      << Name << LookupContext << SS.getRange();
3837    UD->setInvalidDecl();
3838    return UD;
3839  }
3840
3841  if (R.isAmbiguous()) {
3842    UD->setInvalidDecl();
3843    return UD;
3844  }
3845
3846  if (IsTypeName) {
3847    // If we asked for a typename and got a non-type decl, error out.
3848    if (!R.getAsSingle<TypeDecl>()) {
3849      Diag(IdentLoc, diag::err_using_typename_non_type);
3850      for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
3851        Diag((*I)->getUnderlyingDecl()->getLocation(),
3852             diag::note_using_decl_target);
3853      UD->setInvalidDecl();
3854      return UD;
3855    }
3856  } else {
3857    // If we asked for a non-typename and we got a type, error out,
3858    // but only if this is an instantiation of an unresolved using
3859    // decl.  Otherwise just silently find the type name.
3860    if (IsInstantiation && R.getAsSingle<TypeDecl>()) {
3861      Diag(IdentLoc, diag::err_using_dependent_value_is_type);
3862      Diag(R.getFoundDecl()->getLocation(), diag::note_using_decl_target);
3863      UD->setInvalidDecl();
3864      return UD;
3865    }
3866  }
3867
3868  // C++0x N2914 [namespace.udecl]p6:
3869  // A using-declaration shall not name a namespace.
3870  if (R.getAsSingle<NamespaceDecl>()) {
3871    Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_namespace)
3872      << SS.getRange();
3873    UD->setInvalidDecl();
3874    return UD;
3875  }
3876
3877  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
3878    if (!CheckUsingShadowDecl(UD, *I, Previous))
3879      BuildUsingShadowDecl(S, UD, *I);
3880  }
3881
3882  return UD;
3883}
3884
3885/// Checks that the given using declaration is not an invalid
3886/// redeclaration.  Note that this is checking only for the using decl
3887/// itself, not for any ill-formedness among the UsingShadowDecls.
3888bool Sema::CheckUsingDeclRedeclaration(SourceLocation UsingLoc,
3889                                       bool isTypeName,
3890                                       const CXXScopeSpec &SS,
3891                                       SourceLocation NameLoc,
3892                                       const LookupResult &Prev) {
3893  // C++03 [namespace.udecl]p8:
3894  // C++0x [namespace.udecl]p10:
3895  //   A using-declaration is a declaration and can therefore be used
3896  //   repeatedly where (and only where) multiple declarations are
3897  //   allowed.
3898  //
3899  // That's in non-member contexts.
3900  if (!CurContext->getLookupContext()->isRecord())
3901    return false;
3902
3903  NestedNameSpecifier *Qual
3904    = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
3905
3906  for (LookupResult::iterator I = Prev.begin(), E = Prev.end(); I != E; ++I) {
3907    NamedDecl *D = *I;
3908
3909    bool DTypename;
3910    NestedNameSpecifier *DQual;
3911    if (UsingDecl *UD = dyn_cast<UsingDecl>(D)) {
3912      DTypename = UD->isTypeName();
3913      DQual = UD->getTargetNestedNameDecl();
3914    } else if (UnresolvedUsingValueDecl *UD
3915                 = dyn_cast<UnresolvedUsingValueDecl>(D)) {
3916      DTypename = false;
3917      DQual = UD->getTargetNestedNameSpecifier();
3918    } else if (UnresolvedUsingTypenameDecl *UD
3919                 = dyn_cast<UnresolvedUsingTypenameDecl>(D)) {
3920      DTypename = true;
3921      DQual = UD->getTargetNestedNameSpecifier();
3922    } else continue;
3923
3924    // using decls differ if one says 'typename' and the other doesn't.
3925    // FIXME: non-dependent using decls?
3926    if (isTypeName != DTypename) continue;
3927
3928    // using decls differ if they name different scopes (but note that
3929    // template instantiation can cause this check to trigger when it
3930    // didn't before instantiation).
3931    if (Context.getCanonicalNestedNameSpecifier(Qual) !=
3932        Context.getCanonicalNestedNameSpecifier(DQual))
3933      continue;
3934
3935    Diag(NameLoc, diag::err_using_decl_redeclaration) << SS.getRange();
3936    Diag(D->getLocation(), diag::note_using_decl) << 1;
3937    return true;
3938  }
3939
3940  return false;
3941}
3942
3943
3944/// Checks that the given nested-name qualifier used in a using decl
3945/// in the current context is appropriately related to the current
3946/// scope.  If an error is found, diagnoses it and returns true.
3947bool Sema::CheckUsingDeclQualifier(SourceLocation UsingLoc,
3948                                   const CXXScopeSpec &SS,
3949                                   SourceLocation NameLoc) {
3950  DeclContext *NamedContext = computeDeclContext(SS);
3951
3952  if (!CurContext->isRecord()) {
3953    // C++03 [namespace.udecl]p3:
3954    // C++0x [namespace.udecl]p8:
3955    //   A using-declaration for a class member shall be a member-declaration.
3956
3957    // If we weren't able to compute a valid scope, it must be a
3958    // dependent class scope.
3959    if (!NamedContext || NamedContext->isRecord()) {
3960      Diag(NameLoc, diag::err_using_decl_can_not_refer_to_class_member)
3961        << SS.getRange();
3962      return true;
3963    }
3964
3965    // Otherwise, everything is known to be fine.
3966    return false;
3967  }
3968
3969  // The current scope is a record.
3970
3971  // If the named context is dependent, we can't decide much.
3972  if (!NamedContext) {
3973    // FIXME: in C++0x, we can diagnose if we can prove that the
3974    // nested-name-specifier does not refer to a base class, which is
3975    // still possible in some cases.
3976
3977    // Otherwise we have to conservatively report that things might be
3978    // okay.
3979    return false;
3980  }
3981
3982  if (!NamedContext->isRecord()) {
3983    // Ideally this would point at the last name in the specifier,
3984    // but we don't have that level of source info.
3985    Diag(SS.getRange().getBegin(),
3986         diag::err_using_decl_nested_name_specifier_is_not_class)
3987      << (NestedNameSpecifier*) SS.getScopeRep() << SS.getRange();
3988    return true;
3989  }
3990
3991  if (getLangOptions().CPlusPlus0x) {
3992    // C++0x [namespace.udecl]p3:
3993    //   In a using-declaration used as a member-declaration, the
3994    //   nested-name-specifier shall name a base class of the class
3995    //   being defined.
3996
3997    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(
3998                                 cast<CXXRecordDecl>(NamedContext))) {
3999      if (CurContext == NamedContext) {
4000        Diag(NameLoc,
4001             diag::err_using_decl_nested_name_specifier_is_current_class)
4002          << SS.getRange();
4003        return true;
4004      }
4005
4006      Diag(SS.getRange().getBegin(),
4007           diag::err_using_decl_nested_name_specifier_is_not_base_class)
4008        << (NestedNameSpecifier*) SS.getScopeRep()
4009        << cast<CXXRecordDecl>(CurContext)
4010        << SS.getRange();
4011      return true;
4012    }
4013
4014    return false;
4015  }
4016
4017  // C++03 [namespace.udecl]p4:
4018  //   A using-declaration used as a member-declaration shall refer
4019  //   to a member of a base class of the class being defined [etc.].
4020
4021  // Salient point: SS doesn't have to name a base class as long as
4022  // lookup only finds members from base classes.  Therefore we can
4023  // diagnose here only if we can prove that that can't happen,
4024  // i.e. if the class hierarchies provably don't intersect.
4025
4026  // TODO: it would be nice if "definitely valid" results were cached
4027  // in the UsingDecl and UsingShadowDecl so that these checks didn't
4028  // need to be repeated.
4029
4030  struct UserData {
4031    llvm::DenseSet<const CXXRecordDecl*> Bases;
4032
4033    static bool collect(const CXXRecordDecl *Base, void *OpaqueData) {
4034      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
4035      Data->Bases.insert(Base);
4036      return true;
4037    }
4038
4039    bool hasDependentBases(const CXXRecordDecl *Class) {
4040      return !Class->forallBases(collect, this);
4041    }
4042
4043    /// Returns true if the base is dependent or is one of the
4044    /// accumulated base classes.
4045    static bool doesNotContain(const CXXRecordDecl *Base, void *OpaqueData) {
4046      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
4047      return !Data->Bases.count(Base);
4048    }
4049
4050    bool mightShareBases(const CXXRecordDecl *Class) {
4051      return Bases.count(Class) || !Class->forallBases(doesNotContain, this);
4052    }
4053  };
4054
4055  UserData Data;
4056
4057  // Returns false if we find a dependent base.
4058  if (Data.hasDependentBases(cast<CXXRecordDecl>(CurContext)))
4059    return false;
4060
4061  // Returns false if the class has a dependent base or if it or one
4062  // of its bases is present in the base set of the current context.
4063  if (Data.mightShareBases(cast<CXXRecordDecl>(NamedContext)))
4064    return false;
4065
4066  Diag(SS.getRange().getBegin(),
4067       diag::err_using_decl_nested_name_specifier_is_not_base_class)
4068    << (NestedNameSpecifier*) SS.getScopeRep()
4069    << cast<CXXRecordDecl>(CurContext)
4070    << SS.getRange();
4071
4072  return true;
4073}
4074
4075Sema::DeclPtrTy Sema::ActOnNamespaceAliasDef(Scope *S,
4076                                             SourceLocation NamespaceLoc,
4077                                             SourceLocation AliasLoc,
4078                                             IdentifierInfo *Alias,
4079                                             CXXScopeSpec &SS,
4080                                             SourceLocation IdentLoc,
4081                                             IdentifierInfo *Ident) {
4082
4083  // Lookup the namespace name.
4084  LookupResult R(*this, Ident, IdentLoc, LookupNamespaceName);
4085  LookupParsedName(R, S, &SS);
4086
4087  // Check if we have a previous declaration with the same name.
4088  NamedDecl *PrevDecl
4089    = LookupSingleName(S, Alias, AliasLoc, LookupOrdinaryName,
4090                       ForRedeclaration);
4091  if (PrevDecl && !isDeclInScope(PrevDecl, CurContext, S))
4092    PrevDecl = 0;
4093
4094  if (PrevDecl) {
4095    if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) {
4096      // We already have an alias with the same name that points to the same
4097      // namespace, so don't create a new one.
4098      // FIXME: At some point, we'll want to create the (redundant)
4099      // declaration to maintain better source information.
4100      if (!R.isAmbiguous() && !R.empty() &&
4101          AD->getNamespace()->Equals(getNamespaceDecl(R.getFoundDecl())))
4102        return DeclPtrTy();
4103    }
4104
4105    unsigned DiagID = isa<NamespaceDecl>(PrevDecl) ? diag::err_redefinition :
4106      diag::err_redefinition_different_kind;
4107    Diag(AliasLoc, DiagID) << Alias;
4108    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
4109    return DeclPtrTy();
4110  }
4111
4112  if (R.isAmbiguous())
4113    return DeclPtrTy();
4114
4115  if (R.empty()) {
4116    Diag(NamespaceLoc, diag::err_expected_namespace_name) << SS.getRange();
4117    return DeclPtrTy();
4118  }
4119
4120  NamespaceAliasDecl *AliasDecl =
4121    NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc,
4122                               Alias, SS.getRange(),
4123                               (NestedNameSpecifier *)SS.getScopeRep(),
4124                               IdentLoc, R.getFoundDecl());
4125
4126  PushOnScopeChains(AliasDecl, S);
4127  return DeclPtrTy::make(AliasDecl);
4128}
4129
4130namespace {
4131  /// \brief Scoped object used to handle the state changes required in Sema
4132  /// to implicitly define the body of a C++ member function;
4133  class ImplicitlyDefinedFunctionScope {
4134    Sema &S;
4135    DeclContext *PreviousContext;
4136
4137  public:
4138    ImplicitlyDefinedFunctionScope(Sema &S, CXXMethodDecl *Method)
4139      : S(S), PreviousContext(S.CurContext)
4140    {
4141      S.CurContext = Method;
4142      S.PushFunctionScope();
4143      S.PushExpressionEvaluationContext(Sema::PotentiallyEvaluated);
4144    }
4145
4146    ~ImplicitlyDefinedFunctionScope() {
4147      S.PopExpressionEvaluationContext();
4148      S.PopFunctionOrBlockScope();
4149      S.CurContext = PreviousContext;
4150    }
4151  };
4152}
4153
4154void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,
4155                                            CXXConstructorDecl *Constructor) {
4156  assert((Constructor->isImplicit() && Constructor->isDefaultConstructor() &&
4157          !Constructor->isUsed()) &&
4158    "DefineImplicitDefaultConstructor - call it for implicit default ctor");
4159
4160  CXXRecordDecl *ClassDecl = Constructor->getParent();
4161  assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor");
4162
4163  ImplicitlyDefinedFunctionScope Scope(*this, Constructor);
4164  ErrorTrap Trap(*this);
4165  if (SetBaseOrMemberInitializers(Constructor, 0, 0, /*AnyErrors=*/false) ||
4166      Trap.hasErrorOccurred()) {
4167    Diag(CurrentLocation, diag::note_member_synthesized_at)
4168      << CXXConstructor << Context.getTagDeclType(ClassDecl);
4169    Constructor->setInvalidDecl();
4170  } else {
4171    Constructor->setUsed();
4172    MarkVTableUsed(CurrentLocation, ClassDecl);
4173  }
4174}
4175
4176void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation,
4177                                    CXXDestructorDecl *Destructor) {
4178  assert((Destructor->isImplicit() && !Destructor->isUsed()) &&
4179         "DefineImplicitDestructor - call it for implicit default dtor");
4180  CXXRecordDecl *ClassDecl = Destructor->getParent();
4181  assert(ClassDecl && "DefineImplicitDestructor - invalid destructor");
4182
4183  if (Destructor->isInvalidDecl())
4184    return;
4185
4186  ImplicitlyDefinedFunctionScope Scope(*this, Destructor);
4187
4188  ErrorTrap Trap(*this);
4189  MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
4190                                         Destructor->getParent());
4191
4192  if (CheckDestructor(Destructor) || Trap.hasErrorOccurred()) {
4193    Diag(CurrentLocation, diag::note_member_synthesized_at)
4194      << CXXDestructor << Context.getTagDeclType(ClassDecl);
4195
4196    Destructor->setInvalidDecl();
4197    return;
4198  }
4199
4200  Destructor->setUsed();
4201  MarkVTableUsed(CurrentLocation, ClassDecl);
4202}
4203
4204/// \brief Builds a statement that copies the given entity from \p From to
4205/// \c To.
4206///
4207/// This routine is used to copy the members of a class with an
4208/// implicitly-declared copy assignment operator. When the entities being
4209/// copied are arrays, this routine builds for loops to copy them.
4210///
4211/// \param S The Sema object used for type-checking.
4212///
4213/// \param Loc The location where the implicit copy is being generated.
4214///
4215/// \param T The type of the expressions being copied. Both expressions must
4216/// have this type.
4217///
4218/// \param To The expression we are copying to.
4219///
4220/// \param From The expression we are copying from.
4221///
4222/// \param CopyingBaseSubobject Whether we're copying a base subobject.
4223/// Otherwise, it's a non-static member subobject.
4224///
4225/// \param Depth Internal parameter recording the depth of the recursion.
4226///
4227/// \returns A statement or a loop that copies the expressions.
4228static Sema::OwningStmtResult
4229BuildSingleCopyAssign(Sema &S, SourceLocation Loc, QualType T,
4230                      Sema::OwningExprResult To, Sema::OwningExprResult From,
4231                      bool CopyingBaseSubobject, unsigned Depth = 0) {
4232  typedef Sema::OwningStmtResult OwningStmtResult;
4233  typedef Sema::OwningExprResult OwningExprResult;
4234
4235  // C++0x [class.copy]p30:
4236  //   Each subobject is assigned in the manner appropriate to its type:
4237  //
4238  //     - if the subobject is of class type, the copy assignment operator
4239  //       for the class is used (as if by explicit qualification; that is,
4240  //       ignoring any possible virtual overriding functions in more derived
4241  //       classes);
4242  if (const RecordType *RecordTy = T->getAs<RecordType>()) {
4243    CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
4244
4245    // Look for operator=.
4246    DeclarationName Name
4247      = S.Context.DeclarationNames.getCXXOperatorName(OO_Equal);
4248    LookupResult OpLookup(S, Name, Loc, Sema::LookupOrdinaryName);
4249    S.LookupQualifiedName(OpLookup, ClassDecl, false);
4250
4251    // Filter out any result that isn't a copy-assignment operator.
4252    LookupResult::Filter F = OpLookup.makeFilter();
4253    while (F.hasNext()) {
4254      NamedDecl *D = F.next();
4255      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
4256        if (Method->isCopyAssignmentOperator())
4257          continue;
4258
4259      F.erase();
4260    }
4261    F.done();
4262
4263    // Suppress the protected check (C++ [class.protected]) for each of the
4264    // assignment operators we found. This strange dance is required when
4265    // we're assigning via a base classes's copy-assignment operator. To
4266    // ensure that we're getting the right base class subobject (without
4267    // ambiguities), we need to cast "this" to that subobject type; to
4268    // ensure that we don't go through the virtual call mechanism, we need
4269    // to qualify the operator= name with the base class (see below). However,
4270    // this means that if the base class has a protected copy assignment
4271    // operator, the protected member access check will fail. So, we
4272    // rewrite "protected" access to "public" access in this case, since we
4273    // know by construction that we're calling from a derived class.
4274    if (CopyingBaseSubobject) {
4275      for (LookupResult::iterator L = OpLookup.begin(), LEnd = OpLookup.end();
4276           L != LEnd; ++L) {
4277        if (L.getAccess() == AS_protected)
4278          L.setAccess(AS_public);
4279      }
4280    }
4281
4282    // Create the nested-name-specifier that will be used to qualify the
4283    // reference to operator=; this is required to suppress the virtual
4284    // call mechanism.
4285    CXXScopeSpec SS;
4286    SS.setRange(Loc);
4287    SS.setScopeRep(NestedNameSpecifier::Create(S.Context, 0, false,
4288                                               T.getTypePtr()));
4289
4290    // Create the reference to operator=.
4291    OwningExprResult OpEqualRef
4292      = S.BuildMemberReferenceExpr(move(To), T, Loc, /*isArrow=*/false, SS,
4293                                   /*FirstQualifierInScope=*/0, OpLookup,
4294                                   /*TemplateArgs=*/0,
4295                                   /*SuppressQualifierCheck=*/true);
4296    if (OpEqualRef.isInvalid())
4297      return S.StmtError();
4298
4299    // Build the call to the assignment operator.
4300    Expr *FromE = From.takeAs<Expr>();
4301    OwningExprResult Call = S.BuildCallToMemberFunction(/*Scope=*/0,
4302                                                      OpEqualRef.takeAs<Expr>(),
4303                                                        Loc, &FromE, 1, 0, Loc);
4304    if (Call.isInvalid())
4305      return S.StmtError();
4306
4307    return S.Owned(Call.takeAs<Stmt>());
4308  }
4309
4310  //     - if the subobject is of scalar type, the built-in assignment
4311  //       operator is used.
4312  const ConstantArrayType *ArrayTy = S.Context.getAsConstantArrayType(T);
4313  if (!ArrayTy) {
4314    OwningExprResult Assignment = S.CreateBuiltinBinOp(Loc,
4315                                                       BinaryOperator::Assign,
4316                                                       To.takeAs<Expr>(),
4317                                                       From.takeAs<Expr>());
4318    if (Assignment.isInvalid())
4319      return S.StmtError();
4320
4321    return S.Owned(Assignment.takeAs<Stmt>());
4322  }
4323
4324  //     - if the subobject is an array, each element is assigned, in the
4325  //       manner appropriate to the element type;
4326
4327  // Construct a loop over the array bounds, e.g.,
4328  //
4329  //   for (__SIZE_TYPE__ i0 = 0; i0 != array-size; ++i0)
4330  //
4331  // that will copy each of the array elements.
4332  QualType SizeType = S.Context.getSizeType();
4333
4334  // Create the iteration variable.
4335  IdentifierInfo *IterationVarName = 0;
4336  {
4337    llvm::SmallString<8> Str;
4338    llvm::raw_svector_ostream OS(Str);
4339    OS << "__i" << Depth;
4340    IterationVarName = &S.Context.Idents.get(OS.str());
4341  }
4342  VarDecl *IterationVar = VarDecl::Create(S.Context, S.CurContext, Loc,
4343                                          IterationVarName, SizeType,
4344                            S.Context.getTrivialTypeSourceInfo(SizeType, Loc),
4345                                          VarDecl::None, VarDecl::None);
4346
4347  // Initialize the iteration variable to zero.
4348  llvm::APInt Zero(S.Context.getTypeSize(SizeType), 0);
4349  IterationVar->setInit(new (S.Context) IntegerLiteral(Zero, SizeType, Loc));
4350
4351  // Create a reference to the iteration variable; we'll use this several
4352  // times throughout.
4353  Expr *IterationVarRef
4354    = S.BuildDeclRefExpr(IterationVar, SizeType, Loc).takeAs<Expr>();
4355  assert(IterationVarRef && "Reference to invented variable cannot fail!");
4356
4357  // Create the DeclStmt that holds the iteration variable.
4358  Stmt *InitStmt = new (S.Context) DeclStmt(DeclGroupRef(IterationVar),Loc,Loc);
4359
4360  // Create the comparison against the array bound.
4361  llvm::APInt Upper = ArrayTy->getSize();
4362  Upper.zextOrTrunc(S.Context.getTypeSize(SizeType));
4363  OwningExprResult Comparison
4364    = S.Owned(new (S.Context) BinaryOperator(IterationVarRef->Retain(),
4365                           new (S.Context) IntegerLiteral(Upper, SizeType, Loc),
4366                                    BinaryOperator::NE, S.Context.BoolTy, Loc));
4367
4368  // Create the pre-increment of the iteration variable.
4369  OwningExprResult Increment
4370    = S.Owned(new (S.Context) UnaryOperator(IterationVarRef->Retain(),
4371                                            UnaryOperator::PreInc,
4372                                            SizeType, Loc));
4373
4374  // Subscript the "from" and "to" expressions with the iteration variable.
4375  From = S.CreateBuiltinArraySubscriptExpr(move(From), Loc,
4376                                           S.Owned(IterationVarRef->Retain()),
4377                                           Loc);
4378  To = S.CreateBuiltinArraySubscriptExpr(move(To), Loc,
4379                                         S.Owned(IterationVarRef->Retain()),
4380                                         Loc);
4381  assert(!From.isInvalid() && "Builtin subscripting can't fail!");
4382  assert(!To.isInvalid() && "Builtin subscripting can't fail!");
4383
4384  // Build the copy for an individual element of the array.
4385  OwningStmtResult Copy = BuildSingleCopyAssign(S, Loc,
4386                                                ArrayTy->getElementType(),
4387                                                move(To), move(From),
4388                                                CopyingBaseSubobject, Depth+1);
4389  if (Copy.isInvalid()) {
4390    InitStmt->Destroy(S.Context);
4391    return S.StmtError();
4392  }
4393
4394  // Construct the loop that copies all elements of this array.
4395  return S.ActOnForStmt(Loc, Loc, S.Owned(InitStmt),
4396                        S.MakeFullExpr(Comparison),
4397                        Sema::DeclPtrTy(),
4398                        S.MakeFullExpr(Increment),
4399                        Loc, move(Copy));
4400}
4401
4402void Sema::DefineImplicitCopyAssignment(SourceLocation CurrentLocation,
4403                                        CXXMethodDecl *CopyAssignOperator) {
4404  assert((CopyAssignOperator->isImplicit() &&
4405          CopyAssignOperator->isOverloadedOperator() &&
4406          CopyAssignOperator->getOverloadedOperator() == OO_Equal &&
4407          !CopyAssignOperator->isUsed()) &&
4408         "DefineImplicitCopyAssignment called for wrong function");
4409
4410  CXXRecordDecl *ClassDecl = CopyAssignOperator->getParent();
4411
4412  if (ClassDecl->isInvalidDecl() || CopyAssignOperator->isInvalidDecl()) {
4413    CopyAssignOperator->setInvalidDecl();
4414    return;
4415  }
4416
4417  CopyAssignOperator->setUsed();
4418
4419  ImplicitlyDefinedFunctionScope Scope(*this, CopyAssignOperator);
4420  ErrorTrap Trap(*this);
4421
4422  // C++0x [class.copy]p30:
4423  //   The implicitly-defined or explicitly-defaulted copy assignment operator
4424  //   for a non-union class X performs memberwise copy assignment of its
4425  //   subobjects. The direct base classes of X are assigned first, in the
4426  //   order of their declaration in the base-specifier-list, and then the
4427  //   immediate non-static data members of X are assigned, in the order in
4428  //   which they were declared in the class definition.
4429
4430  // The statements that form the synthesized function body.
4431  ASTOwningVector<&ActionBase::DeleteStmt> Statements(*this);
4432
4433  // The parameter for the "other" object, which we are copying from.
4434  ParmVarDecl *Other = CopyAssignOperator->getParamDecl(0);
4435  Qualifiers OtherQuals = Other->getType().getQualifiers();
4436  QualType OtherRefType = Other->getType();
4437  if (const LValueReferenceType *OtherRef
4438                                = OtherRefType->getAs<LValueReferenceType>()) {
4439    OtherRefType = OtherRef->getPointeeType();
4440    OtherQuals = OtherRefType.getQualifiers();
4441  }
4442
4443  // Our location for everything implicitly-generated.
4444  SourceLocation Loc = CopyAssignOperator->getLocation();
4445
4446  // Construct a reference to the "other" object. We'll be using this
4447  // throughout the generated ASTs.
4448  Expr *OtherRef = BuildDeclRefExpr(Other, OtherRefType, Loc).takeAs<Expr>();
4449  assert(OtherRef && "Reference to parameter cannot fail!");
4450
4451  // Construct the "this" pointer. We'll be using this throughout the generated
4452  // ASTs.
4453  Expr *This = ActOnCXXThis(Loc).takeAs<Expr>();
4454  assert(This && "Reference to this cannot fail!");
4455
4456  // Assign base classes.
4457  bool Invalid = false;
4458  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
4459       E = ClassDecl->bases_end(); Base != E; ++Base) {
4460    // Form the assignment:
4461    //   static_cast<Base*>(this)->Base::operator=(static_cast<Base&>(other));
4462    QualType BaseType = Base->getType().getUnqualifiedType();
4463    CXXRecordDecl *BaseClassDecl = 0;
4464    if (const RecordType *BaseRecordT = BaseType->getAs<RecordType>())
4465      BaseClassDecl = cast<CXXRecordDecl>(BaseRecordT->getDecl());
4466    else {
4467      Invalid = true;
4468      continue;
4469    }
4470
4471    // Construct the "from" expression, which is an implicit cast to the
4472    // appropriately-qualified base type.
4473    Expr *From = OtherRef->Retain();
4474    ImpCastExprToType(From, Context.getQualifiedType(BaseType, OtherQuals),
4475                      CastExpr::CK_UncheckedDerivedToBase, /*isLvalue=*/true,
4476                      CXXBaseSpecifierArray(Base));
4477
4478    // Dereference "this".
4479    OwningExprResult To = CreateBuiltinUnaryOp(Loc, UnaryOperator::Deref,
4480                                               Owned(This->Retain()));
4481
4482    // Implicitly cast "this" to the appropriately-qualified base type.
4483    Expr *ToE = To.takeAs<Expr>();
4484    ImpCastExprToType(ToE,
4485                      Context.getCVRQualifiedType(BaseType,
4486                                      CopyAssignOperator->getTypeQualifiers()),
4487                      CastExpr::CK_UncheckedDerivedToBase,
4488                      /*isLvalue=*/true, CXXBaseSpecifierArray(Base));
4489    To = Owned(ToE);
4490
4491    // Build the copy.
4492    OwningStmtResult Copy = BuildSingleCopyAssign(*this, Loc, BaseType,
4493                                                  move(To), Owned(From),
4494                                                /*CopyingBaseSubobject=*/true);
4495    if (Copy.isInvalid()) {
4496      Diag(CurrentLocation, diag::note_member_synthesized_at)
4497        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
4498      CopyAssignOperator->setInvalidDecl();
4499      return;
4500    }
4501
4502    // Success! Record the copy.
4503    Statements.push_back(Copy.takeAs<Expr>());
4504  }
4505
4506  // \brief Reference to the __builtin_memcpy function.
4507  Expr *BuiltinMemCpyRef = 0;
4508
4509  // Assign non-static members.
4510  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
4511                                  FieldEnd = ClassDecl->field_end();
4512       Field != FieldEnd; ++Field) {
4513    // Check for members of reference type; we can't copy those.
4514    if (Field->getType()->isReferenceType()) {
4515      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
4516        << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
4517      Diag(Field->getLocation(), diag::note_declared_at);
4518      Diag(CurrentLocation, diag::note_member_synthesized_at)
4519        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
4520      Invalid = true;
4521      continue;
4522    }
4523
4524    // Check for members of const-qualified, non-class type.
4525    QualType BaseType = Context.getBaseElementType(Field->getType());
4526    if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) {
4527      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
4528        << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
4529      Diag(Field->getLocation(), diag::note_declared_at);
4530      Diag(CurrentLocation, diag::note_member_synthesized_at)
4531        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
4532      Invalid = true;
4533      continue;
4534    }
4535
4536    QualType FieldType = Field->getType().getNonReferenceType();
4537
4538    // Build references to the field in the object we're copying from and to.
4539    CXXScopeSpec SS; // Intentionally empty
4540    LookupResult MemberLookup(*this, Field->getDeclName(), Loc,
4541                              LookupMemberName);
4542    MemberLookup.addDecl(*Field);
4543    MemberLookup.resolveKind();
4544    OwningExprResult From = BuildMemberReferenceExpr(Owned(OtherRef->Retain()),
4545                                                     OtherRefType,
4546                                                     Loc, /*IsArrow=*/false,
4547                                                     SS, 0, MemberLookup, 0);
4548    OwningExprResult To = BuildMemberReferenceExpr(Owned(This->Retain()),
4549                                                   This->getType(),
4550                                                   Loc, /*IsArrow=*/true,
4551                                                   SS, 0, MemberLookup, 0);
4552    assert(!From.isInvalid() && "Implicit field reference cannot fail");
4553    assert(!To.isInvalid() && "Implicit field reference cannot fail");
4554
4555    // If the field should be copied with __builtin_memcpy rather than via
4556    // explicit assignments, do so. This optimization only applies for arrays
4557    // of scalars and arrays of class type with trivial copy-assignment
4558    // operators.
4559    if (FieldType->isArrayType() &&
4560        (!BaseType->isRecordType() ||
4561         cast<CXXRecordDecl>(BaseType->getAs<RecordType>()->getDecl())
4562           ->hasTrivialCopyAssignment())) {
4563      // Compute the size of the memory buffer to be copied.
4564      QualType SizeType = Context.getSizeType();
4565      llvm::APInt Size(Context.getTypeSize(SizeType),
4566                       Context.getTypeSizeInChars(BaseType).getQuantity());
4567      for (const ConstantArrayType *Array
4568              = Context.getAsConstantArrayType(FieldType);
4569           Array;
4570           Array = Context.getAsConstantArrayType(Array->getElementType())) {
4571        llvm::APInt ArraySize = Array->getSize();
4572        ArraySize.zextOrTrunc(Size.getBitWidth());
4573        Size *= ArraySize;
4574      }
4575
4576      // Take the address of the field references for "from" and "to".
4577      From = CreateBuiltinUnaryOp(Loc, UnaryOperator::AddrOf, move(From));
4578      To = CreateBuiltinUnaryOp(Loc, UnaryOperator::AddrOf, move(To));
4579
4580      // Create a reference to the __builtin_memcpy builtin function.
4581      if (!BuiltinMemCpyRef) {
4582        LookupResult R(*this, &Context.Idents.get("__builtin_memcpy"), Loc,
4583                       LookupOrdinaryName);
4584        LookupName(R, TUScope, true);
4585
4586        FunctionDecl *BuiltinMemCpy = R.getAsSingle<FunctionDecl>();
4587        if (!BuiltinMemCpy) {
4588          // Something went horribly wrong earlier, and we will have complained
4589          // about it.
4590          Invalid = true;
4591          continue;
4592        }
4593
4594        BuiltinMemCpyRef = BuildDeclRefExpr(BuiltinMemCpy,
4595                                            BuiltinMemCpy->getType(),
4596                                            Loc, 0).takeAs<Expr>();
4597        assert(BuiltinMemCpyRef && "Builtin reference cannot fail");
4598      }
4599
4600      ASTOwningVector<&ActionBase::DeleteExpr> CallArgs(*this);
4601      CallArgs.push_back(To.takeAs<Expr>());
4602      CallArgs.push_back(From.takeAs<Expr>());
4603      CallArgs.push_back(new (Context) IntegerLiteral(Size, SizeType, Loc));
4604      llvm::SmallVector<SourceLocation, 4> Commas; // FIXME: Silly
4605      Commas.push_back(Loc);
4606      Commas.push_back(Loc);
4607      OwningExprResult Call = ActOnCallExpr(/*Scope=*/0,
4608                                            Owned(BuiltinMemCpyRef->Retain()),
4609                                            Loc, move_arg(CallArgs),
4610                                            Commas.data(), Loc);
4611      assert(!Call.isInvalid() && "Call to __builtin_memcpy cannot fail!");
4612      Statements.push_back(Call.takeAs<Expr>());
4613      continue;
4614    }
4615
4616    // Build the copy of this field.
4617    OwningStmtResult Copy = BuildSingleCopyAssign(*this, Loc, FieldType,
4618                                                  move(To), move(From),
4619                                              /*CopyingBaseSubobject=*/false);
4620    if (Copy.isInvalid()) {
4621      Diag(CurrentLocation, diag::note_member_synthesized_at)
4622        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
4623      CopyAssignOperator->setInvalidDecl();
4624      return;
4625    }
4626
4627    // Success! Record the copy.
4628    Statements.push_back(Copy.takeAs<Stmt>());
4629  }
4630
4631  if (!Invalid) {
4632    // Add a "return *this;"
4633    OwningExprResult ThisObj = CreateBuiltinUnaryOp(Loc, UnaryOperator::Deref,
4634                                                    Owned(This->Retain()));
4635
4636    OwningStmtResult Return = ActOnReturnStmt(Loc, move(ThisObj));
4637    if (Return.isInvalid())
4638      Invalid = true;
4639    else {
4640      Statements.push_back(Return.takeAs<Stmt>());
4641
4642      if (Trap.hasErrorOccurred()) {
4643        Diag(CurrentLocation, diag::note_member_synthesized_at)
4644          << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
4645        Invalid = true;
4646      }
4647    }
4648  }
4649
4650  if (Invalid) {
4651    CopyAssignOperator->setInvalidDecl();
4652    return;
4653  }
4654
4655  OwningStmtResult Body = ActOnCompoundStmt(Loc, Loc, move_arg(Statements),
4656                                            /*isStmtExpr=*/false);
4657  assert(!Body.isInvalid() && "Compound statement creation cannot fail");
4658  CopyAssignOperator->setBody(Body.takeAs<Stmt>());
4659}
4660
4661void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation,
4662                                   CXXConstructorDecl *CopyConstructor,
4663                                   unsigned TypeQuals) {
4664  assert((CopyConstructor->isImplicit() &&
4665          CopyConstructor->isCopyConstructor(TypeQuals) &&
4666          !CopyConstructor->isUsed()) &&
4667         "DefineImplicitCopyConstructor - call it for implicit copy ctor");
4668
4669  CXXRecordDecl *ClassDecl = CopyConstructor->getParent();
4670  assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor");
4671
4672  ImplicitlyDefinedFunctionScope Scope(*this, CopyConstructor);
4673  ErrorTrap Trap(*this);
4674
4675  if (SetBaseOrMemberInitializers(CopyConstructor, 0, 0, /*AnyErrors=*/false) ||
4676      Trap.hasErrorOccurred()) {
4677    Diag(CurrentLocation, diag::note_member_synthesized_at)
4678      << CXXCopyConstructor << Context.getTagDeclType(ClassDecl);
4679    CopyConstructor->setInvalidDecl();
4680  }  else {
4681    CopyConstructor->setBody(ActOnCompoundStmt(CopyConstructor->getLocation(),
4682                                               CopyConstructor->getLocation(),
4683                                               MultiStmtArg(*this, 0, 0),
4684                                               /*isStmtExpr=*/false)
4685                                                              .takeAs<Stmt>());
4686  }
4687
4688  CopyConstructor->setUsed();
4689}
4690
4691Sema::OwningExprResult
4692Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
4693                            CXXConstructorDecl *Constructor,
4694                            MultiExprArg ExprArgs,
4695                            bool RequiresZeroInit,
4696                            CXXConstructExpr::ConstructionKind ConstructKind) {
4697  bool Elidable = false;
4698
4699  // C++0x [class.copy]p34:
4700  //   When certain criteria are met, an implementation is allowed to
4701  //   omit the copy/move construction of a class object, even if the
4702  //   copy/move constructor and/or destructor for the object have
4703  //   side effects. [...]
4704  //     - when a temporary class object that has not been bound to a
4705  //       reference (12.2) would be copied/moved to a class object
4706  //       with the same cv-unqualified type, the copy/move operation
4707  //       can be omitted by constructing the temporary object
4708  //       directly into the target of the omitted copy/move
4709  if (Constructor->isCopyConstructor() && ExprArgs.size() >= 1) {
4710    Expr *SubExpr = ((Expr **)ExprArgs.get())[0];
4711    Elidable = SubExpr->isTemporaryObject() &&
4712      Context.hasSameUnqualifiedType(SubExpr->getType(),
4713                           Context.getTypeDeclType(Constructor->getParent()));
4714  }
4715
4716  return BuildCXXConstructExpr(ConstructLoc, DeclInitType, Constructor,
4717                               Elidable, move(ExprArgs), RequiresZeroInit,
4718                               ConstructKind);
4719}
4720
4721/// BuildCXXConstructExpr - Creates a complete call to a constructor,
4722/// including handling of its default argument expressions.
4723Sema::OwningExprResult
4724Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
4725                            CXXConstructorDecl *Constructor, bool Elidable,
4726                            MultiExprArg ExprArgs,
4727                            bool RequiresZeroInit,
4728                            CXXConstructExpr::ConstructionKind ConstructKind) {
4729  unsigned NumExprs = ExprArgs.size();
4730  Expr **Exprs = (Expr **)ExprArgs.release();
4731
4732  MarkDeclarationReferenced(ConstructLoc, Constructor);
4733  return Owned(CXXConstructExpr::Create(Context, DeclInitType, ConstructLoc,
4734                                        Constructor, Elidable, Exprs, NumExprs,
4735                                        RequiresZeroInit, ConstructKind));
4736}
4737
4738bool Sema::InitializeVarWithConstructor(VarDecl *VD,
4739                                        CXXConstructorDecl *Constructor,
4740                                        MultiExprArg Exprs) {
4741  OwningExprResult TempResult =
4742    BuildCXXConstructExpr(VD->getLocation(), VD->getType(), Constructor,
4743                          move(Exprs));
4744  if (TempResult.isInvalid())
4745    return true;
4746
4747  Expr *Temp = TempResult.takeAs<Expr>();
4748  MarkDeclarationReferenced(VD->getLocation(), Constructor);
4749  Temp = MaybeCreateCXXExprWithTemporaries(Temp);
4750  VD->setInit(Temp);
4751
4752  return false;
4753}
4754
4755void Sema::FinalizeVarWithDestructor(VarDecl *VD, const RecordType *Record) {
4756  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Record->getDecl());
4757  if (!ClassDecl->isInvalidDecl() && !VD->isInvalidDecl() &&
4758      !ClassDecl->hasTrivialDestructor()) {
4759    CXXDestructorDecl *Destructor = ClassDecl->getDestructor(Context);
4760    MarkDeclarationReferenced(VD->getLocation(), Destructor);
4761    CheckDestructorAccess(VD->getLocation(), Destructor,
4762                          PDiag(diag::err_access_dtor_var)
4763                            << VD->getDeclName()
4764                            << VD->getType());
4765  }
4766}
4767
4768/// AddCXXDirectInitializerToDecl - This action is called immediately after
4769/// ActOnDeclarator, when a C++ direct initializer is present.
4770/// e.g: "int x(1);"
4771void Sema::AddCXXDirectInitializerToDecl(DeclPtrTy Dcl,
4772                                         SourceLocation LParenLoc,
4773                                         MultiExprArg Exprs,
4774                                         SourceLocation *CommaLocs,
4775                                         SourceLocation RParenLoc) {
4776  assert(Exprs.size() != 0 && Exprs.get() && "missing expressions");
4777  Decl *RealDecl = Dcl.getAs<Decl>();
4778
4779  // If there is no declaration, there was an error parsing it.  Just ignore
4780  // the initializer.
4781  if (RealDecl == 0)
4782    return;
4783
4784  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
4785  if (!VDecl) {
4786    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
4787    RealDecl->setInvalidDecl();
4788    return;
4789  }
4790
4791  // We will represent direct-initialization similarly to copy-initialization:
4792  //    int x(1);  -as-> int x = 1;
4793  //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
4794  //
4795  // Clients that want to distinguish between the two forms, can check for
4796  // direct initializer using VarDecl::hasCXXDirectInitializer().
4797  // A major benefit is that clients that don't particularly care about which
4798  // exactly form was it (like the CodeGen) can handle both cases without
4799  // special case code.
4800
4801  // C++ 8.5p11:
4802  // The form of initialization (using parentheses or '=') is generally
4803  // insignificant, but does matter when the entity being initialized has a
4804  // class type.
4805  QualType DeclInitType = VDecl->getType();
4806  if (const ArrayType *Array = Context.getAsArrayType(DeclInitType))
4807    DeclInitType = Context.getBaseElementType(Array);
4808
4809  if (!VDecl->getType()->isDependentType() &&
4810      RequireCompleteType(VDecl->getLocation(), VDecl->getType(),
4811                          diag::err_typecheck_decl_incomplete_type)) {
4812    VDecl->setInvalidDecl();
4813    return;
4814  }
4815
4816  // The variable can not have an abstract class type.
4817  if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
4818                             diag::err_abstract_type_in_decl,
4819                             AbstractVariableType))
4820    VDecl->setInvalidDecl();
4821
4822  const VarDecl *Def;
4823  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
4824    Diag(VDecl->getLocation(), diag::err_redefinition)
4825    << VDecl->getDeclName();
4826    Diag(Def->getLocation(), diag::note_previous_definition);
4827    VDecl->setInvalidDecl();
4828    return;
4829  }
4830
4831  // If either the declaration has a dependent type or if any of the
4832  // expressions is type-dependent, we represent the initialization
4833  // via a ParenListExpr for later use during template instantiation.
4834  if (VDecl->getType()->isDependentType() ||
4835      Expr::hasAnyTypeDependentArguments((Expr **)Exprs.get(), Exprs.size())) {
4836    // Let clients know that initialization was done with a direct initializer.
4837    VDecl->setCXXDirectInitializer(true);
4838
4839    // Store the initialization expressions as a ParenListExpr.
4840    unsigned NumExprs = Exprs.size();
4841    VDecl->setInit(new (Context) ParenListExpr(Context, LParenLoc,
4842                                               (Expr **)Exprs.release(),
4843                                               NumExprs, RParenLoc));
4844    return;
4845  }
4846
4847  // Capture the variable that is being initialized and the style of
4848  // initialization.
4849  InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
4850
4851  // FIXME: Poor source location information.
4852  InitializationKind Kind
4853    = InitializationKind::CreateDirect(VDecl->getLocation(),
4854                                       LParenLoc, RParenLoc);
4855
4856  InitializationSequence InitSeq(*this, Entity, Kind,
4857                                 (Expr**)Exprs.get(), Exprs.size());
4858  OwningExprResult Result = InitSeq.Perform(*this, Entity, Kind, move(Exprs));
4859  if (Result.isInvalid()) {
4860    VDecl->setInvalidDecl();
4861    return;
4862  }
4863
4864  Result = MaybeCreateCXXExprWithTemporaries(move(Result));
4865  VDecl->setInit(Result.takeAs<Expr>());
4866  VDecl->setCXXDirectInitializer(true);
4867
4868  if (const RecordType *Record = VDecl->getType()->getAs<RecordType>())
4869    FinalizeVarWithDestructor(VDecl, Record);
4870}
4871
4872/// \brief Given a constructor and the set of arguments provided for the
4873/// constructor, convert the arguments and add any required default arguments
4874/// to form a proper call to this constructor.
4875///
4876/// \returns true if an error occurred, false otherwise.
4877bool
4878Sema::CompleteConstructorCall(CXXConstructorDecl *Constructor,
4879                              MultiExprArg ArgsPtr,
4880                              SourceLocation Loc,
4881                     ASTOwningVector<&ActionBase::DeleteExpr> &ConvertedArgs) {
4882  // FIXME: This duplicates a lot of code from Sema::ConvertArgumentsForCall.
4883  unsigned NumArgs = ArgsPtr.size();
4884  Expr **Args = (Expr **)ArgsPtr.get();
4885
4886  const FunctionProtoType *Proto
4887    = Constructor->getType()->getAs<FunctionProtoType>();
4888  assert(Proto && "Constructor without a prototype?");
4889  unsigned NumArgsInProto = Proto->getNumArgs();
4890
4891  // If too few arguments are available, we'll fill in the rest with defaults.
4892  if (NumArgs < NumArgsInProto)
4893    ConvertedArgs.reserve(NumArgsInProto);
4894  else
4895    ConvertedArgs.reserve(NumArgs);
4896
4897  VariadicCallType CallType =
4898    Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply;
4899  llvm::SmallVector<Expr *, 8> AllArgs;
4900  bool Invalid = GatherArgumentsForCall(Loc, Constructor,
4901                                        Proto, 0, Args, NumArgs, AllArgs,
4902                                        CallType);
4903  for (unsigned i =0, size = AllArgs.size(); i < size; i++)
4904    ConvertedArgs.push_back(AllArgs[i]);
4905  return Invalid;
4906}
4907
4908static inline bool
4909CheckOperatorNewDeleteDeclarationScope(Sema &SemaRef,
4910                                       const FunctionDecl *FnDecl) {
4911  const DeclContext *DC = FnDecl->getDeclContext()->getLookupContext();
4912  if (isa<NamespaceDecl>(DC)) {
4913    return SemaRef.Diag(FnDecl->getLocation(),
4914                        diag::err_operator_new_delete_declared_in_namespace)
4915      << FnDecl->getDeclName();
4916  }
4917
4918  if (isa<TranslationUnitDecl>(DC) &&
4919      FnDecl->getStorageClass() == FunctionDecl::Static) {
4920    return SemaRef.Diag(FnDecl->getLocation(),
4921                        diag::err_operator_new_delete_declared_static)
4922      << FnDecl->getDeclName();
4923  }
4924
4925  return false;
4926}
4927
4928static inline bool
4929CheckOperatorNewDeleteTypes(Sema &SemaRef, const FunctionDecl *FnDecl,
4930                            CanQualType ExpectedResultType,
4931                            CanQualType ExpectedFirstParamType,
4932                            unsigned DependentParamTypeDiag,
4933                            unsigned InvalidParamTypeDiag) {
4934  QualType ResultType =
4935    FnDecl->getType()->getAs<FunctionType>()->getResultType();
4936
4937  // Check that the result type is not dependent.
4938  if (ResultType->isDependentType())
4939    return SemaRef.Diag(FnDecl->getLocation(),
4940                        diag::err_operator_new_delete_dependent_result_type)
4941    << FnDecl->getDeclName() << ExpectedResultType;
4942
4943  // Check that the result type is what we expect.
4944  if (SemaRef.Context.getCanonicalType(ResultType) != ExpectedResultType)
4945    return SemaRef.Diag(FnDecl->getLocation(),
4946                        diag::err_operator_new_delete_invalid_result_type)
4947    << FnDecl->getDeclName() << ExpectedResultType;
4948
4949  // A function template must have at least 2 parameters.
4950  if (FnDecl->getDescribedFunctionTemplate() && FnDecl->getNumParams() < 2)
4951    return SemaRef.Diag(FnDecl->getLocation(),
4952                      diag::err_operator_new_delete_template_too_few_parameters)
4953        << FnDecl->getDeclName();
4954
4955  // The function decl must have at least 1 parameter.
4956  if (FnDecl->getNumParams() == 0)
4957    return SemaRef.Diag(FnDecl->getLocation(),
4958                        diag::err_operator_new_delete_too_few_parameters)
4959      << FnDecl->getDeclName();
4960
4961  // Check the the first parameter type is not dependent.
4962  QualType FirstParamType = FnDecl->getParamDecl(0)->getType();
4963  if (FirstParamType->isDependentType())
4964    return SemaRef.Diag(FnDecl->getLocation(), DependentParamTypeDiag)
4965      << FnDecl->getDeclName() << ExpectedFirstParamType;
4966
4967  // Check that the first parameter type is what we expect.
4968  if (SemaRef.Context.getCanonicalType(FirstParamType).getUnqualifiedType() !=
4969      ExpectedFirstParamType)
4970    return SemaRef.Diag(FnDecl->getLocation(), InvalidParamTypeDiag)
4971    << FnDecl->getDeclName() << ExpectedFirstParamType;
4972
4973  return false;
4974}
4975
4976static bool
4977CheckOperatorNewDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
4978  // C++ [basic.stc.dynamic.allocation]p1:
4979  //   A program is ill-formed if an allocation function is declared in a
4980  //   namespace scope other than global scope or declared static in global
4981  //   scope.
4982  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
4983    return true;
4984
4985  CanQualType SizeTy =
4986    SemaRef.Context.getCanonicalType(SemaRef.Context.getSizeType());
4987
4988  // C++ [basic.stc.dynamic.allocation]p1:
4989  //  The return type shall be void*. The first parameter shall have type
4990  //  std::size_t.
4991  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidPtrTy,
4992                                  SizeTy,
4993                                  diag::err_operator_new_dependent_param_type,
4994                                  diag::err_operator_new_param_type))
4995    return true;
4996
4997  // C++ [basic.stc.dynamic.allocation]p1:
4998  //  The first parameter shall not have an associated default argument.
4999  if (FnDecl->getParamDecl(0)->hasDefaultArg())
5000    return SemaRef.Diag(FnDecl->getLocation(),
5001                        diag::err_operator_new_default_arg)
5002      << FnDecl->getDeclName() << FnDecl->getParamDecl(0)->getDefaultArgRange();
5003
5004  return false;
5005}
5006
5007static bool
5008CheckOperatorDeleteDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
5009  // C++ [basic.stc.dynamic.deallocation]p1:
5010  //   A program is ill-formed if deallocation functions are declared in a
5011  //   namespace scope other than global scope or declared static in global
5012  //   scope.
5013  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
5014    return true;
5015
5016  // C++ [basic.stc.dynamic.deallocation]p2:
5017  //   Each deallocation function shall return void and its first parameter
5018  //   shall be void*.
5019  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidTy,
5020                                  SemaRef.Context.VoidPtrTy,
5021                                 diag::err_operator_delete_dependent_param_type,
5022                                 diag::err_operator_delete_param_type))
5023    return true;
5024
5025  QualType FirstParamType = FnDecl->getParamDecl(0)->getType();
5026  if (FirstParamType->isDependentType())
5027    return SemaRef.Diag(FnDecl->getLocation(),
5028                        diag::err_operator_delete_dependent_param_type)
5029    << FnDecl->getDeclName() << SemaRef.Context.VoidPtrTy;
5030
5031  if (SemaRef.Context.getCanonicalType(FirstParamType) !=
5032      SemaRef.Context.VoidPtrTy)
5033    return SemaRef.Diag(FnDecl->getLocation(),
5034                        diag::err_operator_delete_param_type)
5035      << FnDecl->getDeclName() << SemaRef.Context.VoidPtrTy;
5036
5037  return false;
5038}
5039
5040/// CheckOverloadedOperatorDeclaration - Check whether the declaration
5041/// of this overloaded operator is well-formed. If so, returns false;
5042/// otherwise, emits appropriate diagnostics and returns true.
5043bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
5044  assert(FnDecl && FnDecl->isOverloadedOperator() &&
5045         "Expected an overloaded operator declaration");
5046
5047  OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
5048
5049  // C++ [over.oper]p5:
5050  //   The allocation and deallocation functions, operator new,
5051  //   operator new[], operator delete and operator delete[], are
5052  //   described completely in 3.7.3. The attributes and restrictions
5053  //   found in the rest of this subclause do not apply to them unless
5054  //   explicitly stated in 3.7.3.
5055  if (Op == OO_Delete || Op == OO_Array_Delete)
5056    return CheckOperatorDeleteDeclaration(*this, FnDecl);
5057
5058  if (Op == OO_New || Op == OO_Array_New)
5059    return CheckOperatorNewDeclaration(*this, FnDecl);
5060
5061  // C++ [over.oper]p6:
5062  //   An operator function shall either be a non-static member
5063  //   function or be a non-member function and have at least one
5064  //   parameter whose type is a class, a reference to a class, an
5065  //   enumeration, or a reference to an enumeration.
5066  if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) {
5067    if (MethodDecl->isStatic())
5068      return Diag(FnDecl->getLocation(),
5069                  diag::err_operator_overload_static) << FnDecl->getDeclName();
5070  } else {
5071    bool ClassOrEnumParam = false;
5072    for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
5073                                   ParamEnd = FnDecl->param_end();
5074         Param != ParamEnd; ++Param) {
5075      QualType ParamType = (*Param)->getType().getNonReferenceType();
5076      if (ParamType->isDependentType() || ParamType->isRecordType() ||
5077          ParamType->isEnumeralType()) {
5078        ClassOrEnumParam = true;
5079        break;
5080      }
5081    }
5082
5083    if (!ClassOrEnumParam)
5084      return Diag(FnDecl->getLocation(),
5085                  diag::err_operator_overload_needs_class_or_enum)
5086        << FnDecl->getDeclName();
5087  }
5088
5089  // C++ [over.oper]p8:
5090  //   An operator function cannot have default arguments (8.3.6),
5091  //   except where explicitly stated below.
5092  //
5093  // Only the function-call operator allows default arguments
5094  // (C++ [over.call]p1).
5095  if (Op != OO_Call) {
5096    for (FunctionDecl::param_iterator Param = FnDecl->param_begin();
5097         Param != FnDecl->param_end(); ++Param) {
5098      if ((*Param)->hasDefaultArg())
5099        return Diag((*Param)->getLocation(),
5100                    diag::err_operator_overload_default_arg)
5101          << FnDecl->getDeclName() << (*Param)->getDefaultArgRange();
5102    }
5103  }
5104
5105  static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
5106    { false, false, false }
5107#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
5108    , { Unary, Binary, MemberOnly }
5109#include "clang/Basic/OperatorKinds.def"
5110  };
5111
5112  bool CanBeUnaryOperator = OperatorUses[Op][0];
5113  bool CanBeBinaryOperator = OperatorUses[Op][1];
5114  bool MustBeMemberOperator = OperatorUses[Op][2];
5115
5116  // C++ [over.oper]p8:
5117  //   [...] Operator functions cannot have more or fewer parameters
5118  //   than the number required for the corresponding operator, as
5119  //   described in the rest of this subclause.
5120  unsigned NumParams = FnDecl->getNumParams()
5121                     + (isa<CXXMethodDecl>(FnDecl)? 1 : 0);
5122  if (Op != OO_Call &&
5123      ((NumParams == 1 && !CanBeUnaryOperator) ||
5124       (NumParams == 2 && !CanBeBinaryOperator) ||
5125       (NumParams < 1) || (NumParams > 2))) {
5126    // We have the wrong number of parameters.
5127    unsigned ErrorKind;
5128    if (CanBeUnaryOperator && CanBeBinaryOperator) {
5129      ErrorKind = 2;  // 2 -> unary or binary.
5130    } else if (CanBeUnaryOperator) {
5131      ErrorKind = 0;  // 0 -> unary
5132    } else {
5133      assert(CanBeBinaryOperator &&
5134             "All non-call overloaded operators are unary or binary!");
5135      ErrorKind = 1;  // 1 -> binary
5136    }
5137
5138    return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be)
5139      << FnDecl->getDeclName() << NumParams << ErrorKind;
5140  }
5141
5142  // Overloaded operators other than operator() cannot be variadic.
5143  if (Op != OO_Call &&
5144      FnDecl->getType()->getAs<FunctionProtoType>()->isVariadic()) {
5145    return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
5146      << FnDecl->getDeclName();
5147  }
5148
5149  // Some operators must be non-static member functions.
5150  if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) {
5151    return Diag(FnDecl->getLocation(),
5152                diag::err_operator_overload_must_be_member)
5153      << FnDecl->getDeclName();
5154  }
5155
5156  // C++ [over.inc]p1:
5157  //   The user-defined function called operator++ implements the
5158  //   prefix and postfix ++ operator. If this function is a member
5159  //   function with no parameters, or a non-member function with one
5160  //   parameter of class or enumeration type, it defines the prefix
5161  //   increment operator ++ for objects of that type. If the function
5162  //   is a member function with one parameter (which shall be of type
5163  //   int) or a non-member function with two parameters (the second
5164  //   of which shall be of type int), it defines the postfix
5165  //   increment operator ++ for objects of that type.
5166  if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
5167    ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
5168    bool ParamIsInt = false;
5169    if (const BuiltinType *BT = LastParam->getType()->getAs<BuiltinType>())
5170      ParamIsInt = BT->getKind() == BuiltinType::Int;
5171
5172    if (!ParamIsInt)
5173      return Diag(LastParam->getLocation(),
5174                  diag::err_operator_overload_post_incdec_must_be_int)
5175        << LastParam->getType() << (Op == OO_MinusMinus);
5176  }
5177
5178  // Notify the class if it got an assignment operator.
5179  if (Op == OO_Equal) {
5180    // Would have returned earlier otherwise.
5181    assert(isa<CXXMethodDecl>(FnDecl) &&
5182      "Overloaded = not member, but not filtered.");
5183    CXXMethodDecl *Method = cast<CXXMethodDecl>(FnDecl);
5184    Method->getParent()->addedAssignmentOperator(Context, Method);
5185  }
5186
5187  return false;
5188}
5189
5190/// CheckLiteralOperatorDeclaration - Check whether the declaration
5191/// of this literal operator function is well-formed. If so, returns
5192/// false; otherwise, emits appropriate diagnostics and returns true.
5193bool Sema::CheckLiteralOperatorDeclaration(FunctionDecl *FnDecl) {
5194  DeclContext *DC = FnDecl->getDeclContext();
5195  Decl::Kind Kind = DC->getDeclKind();
5196  if (Kind != Decl::TranslationUnit && Kind != Decl::Namespace &&
5197      Kind != Decl::LinkageSpec) {
5198    Diag(FnDecl->getLocation(), diag::err_literal_operator_outside_namespace)
5199      << FnDecl->getDeclName();
5200    return true;
5201  }
5202
5203  bool Valid = false;
5204
5205  // template <char...> type operator "" name() is the only valid template
5206  // signature, and the only valid signature with no parameters.
5207  if (FnDecl->param_size() == 0) {
5208    if (FunctionTemplateDecl *TpDecl = FnDecl->getDescribedFunctionTemplate()) {
5209      // Must have only one template parameter
5210      TemplateParameterList *Params = TpDecl->getTemplateParameters();
5211      if (Params->size() == 1) {
5212        NonTypeTemplateParmDecl *PmDecl =
5213          cast<NonTypeTemplateParmDecl>(Params->getParam(0));
5214
5215        // The template parameter must be a char parameter pack.
5216        // FIXME: This test will always fail because non-type parameter packs
5217        //   have not been implemented.
5218        if (PmDecl && PmDecl->isTemplateParameterPack() &&
5219            Context.hasSameType(PmDecl->getType(), Context.CharTy))
5220          Valid = true;
5221      }
5222    }
5223  } else {
5224    // Check the first parameter
5225    FunctionDecl::param_iterator Param = FnDecl->param_begin();
5226
5227    QualType T = (*Param)->getType();
5228
5229    // unsigned long long int, long double, and any character type are allowed
5230    // as the only parameters.
5231    if (Context.hasSameType(T, Context.UnsignedLongLongTy) ||
5232        Context.hasSameType(T, Context.LongDoubleTy) ||
5233        Context.hasSameType(T, Context.CharTy) ||
5234        Context.hasSameType(T, Context.WCharTy) ||
5235        Context.hasSameType(T, Context.Char16Ty) ||
5236        Context.hasSameType(T, Context.Char32Ty)) {
5237      if (++Param == FnDecl->param_end())
5238        Valid = true;
5239      goto FinishedParams;
5240    }
5241
5242    // Otherwise it must be a pointer to const; let's strip those qualifiers.
5243    const PointerType *PT = T->getAs<PointerType>();
5244    if (!PT)
5245      goto FinishedParams;
5246    T = PT->getPointeeType();
5247    if (!T.isConstQualified())
5248      goto FinishedParams;
5249    T = T.getUnqualifiedType();
5250
5251    // Move on to the second parameter;
5252    ++Param;
5253
5254    // If there is no second parameter, the first must be a const char *
5255    if (Param == FnDecl->param_end()) {
5256      if (Context.hasSameType(T, Context.CharTy))
5257        Valid = true;
5258      goto FinishedParams;
5259    }
5260
5261    // const char *, const wchar_t*, const char16_t*, and const char32_t*
5262    // are allowed as the first parameter to a two-parameter function
5263    if (!(Context.hasSameType(T, Context.CharTy) ||
5264          Context.hasSameType(T, Context.WCharTy) ||
5265          Context.hasSameType(T, Context.Char16Ty) ||
5266          Context.hasSameType(T, Context.Char32Ty)))
5267      goto FinishedParams;
5268
5269    // The second and final parameter must be an std::size_t
5270    T = (*Param)->getType().getUnqualifiedType();
5271    if (Context.hasSameType(T, Context.getSizeType()) &&
5272        ++Param == FnDecl->param_end())
5273      Valid = true;
5274  }
5275
5276  // FIXME: This diagnostic is absolutely terrible.
5277FinishedParams:
5278  if (!Valid) {
5279    Diag(FnDecl->getLocation(), diag::err_literal_operator_params)
5280      << FnDecl->getDeclName();
5281    return true;
5282  }
5283
5284  return false;
5285}
5286
5287/// ActOnStartLinkageSpecification - Parsed the beginning of a C++
5288/// linkage specification, including the language and (if present)
5289/// the '{'. ExternLoc is the location of the 'extern', LangLoc is
5290/// the location of the language string literal, which is provided
5291/// by Lang/StrSize. LBraceLoc, if valid, provides the location of
5292/// the '{' brace. Otherwise, this linkage specification does not
5293/// have any braces.
5294Sema::DeclPtrTy Sema::ActOnStartLinkageSpecification(Scope *S,
5295                                                     SourceLocation ExternLoc,
5296                                                     SourceLocation LangLoc,
5297                                                     llvm::StringRef Lang,
5298                                                     SourceLocation LBraceLoc) {
5299  LinkageSpecDecl::LanguageIDs Language;
5300  if (Lang == "\"C\"")
5301    Language = LinkageSpecDecl::lang_c;
5302  else if (Lang == "\"C++\"")
5303    Language = LinkageSpecDecl::lang_cxx;
5304  else {
5305    Diag(LangLoc, diag::err_bad_language);
5306    return DeclPtrTy();
5307  }
5308
5309  // FIXME: Add all the various semantics of linkage specifications
5310
5311  LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext,
5312                                               LangLoc, Language,
5313                                               LBraceLoc.isValid());
5314  CurContext->addDecl(D);
5315  PushDeclContext(S, D);
5316  return DeclPtrTy::make(D);
5317}
5318
5319/// ActOnFinishLinkageSpecification - Completely the definition of
5320/// the C++ linkage specification LinkageSpec. If RBraceLoc is
5321/// valid, it's the position of the closing '}' brace in a linkage
5322/// specification that uses braces.
5323Sema::DeclPtrTy Sema::ActOnFinishLinkageSpecification(Scope *S,
5324                                                      DeclPtrTy LinkageSpec,
5325                                                      SourceLocation RBraceLoc) {
5326  if (LinkageSpec)
5327    PopDeclContext();
5328  return LinkageSpec;
5329}
5330
5331/// \brief Perform semantic analysis for the variable declaration that
5332/// occurs within a C++ catch clause, returning the newly-created
5333/// variable.
5334VarDecl *Sema::BuildExceptionDeclaration(Scope *S, QualType ExDeclType,
5335                                         TypeSourceInfo *TInfo,
5336                                         IdentifierInfo *Name,
5337                                         SourceLocation Loc,
5338                                         SourceRange Range) {
5339  bool Invalid = false;
5340
5341  // Arrays and functions decay.
5342  if (ExDeclType->isArrayType())
5343    ExDeclType = Context.getArrayDecayedType(ExDeclType);
5344  else if (ExDeclType->isFunctionType())
5345    ExDeclType = Context.getPointerType(ExDeclType);
5346
5347  // C++ 15.3p1: The exception-declaration shall not denote an incomplete type.
5348  // The exception-declaration shall not denote a pointer or reference to an
5349  // incomplete type, other than [cv] void*.
5350  // N2844 forbids rvalue references.
5351  if (!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) {
5352    Diag(Loc, diag::err_catch_rvalue_ref) << Range;
5353    Invalid = true;
5354  }
5355
5356  // GCC allows catching pointers and references to incomplete types
5357  // as an extension; so do we, but we warn by default.
5358
5359  QualType BaseType = ExDeclType;
5360  int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference
5361  unsigned DK = diag::err_catch_incomplete;
5362  bool IncompleteCatchIsInvalid = true;
5363  if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
5364    BaseType = Ptr->getPointeeType();
5365    Mode = 1;
5366    DK = diag::ext_catch_incomplete_ptr;
5367    IncompleteCatchIsInvalid = false;
5368  } else if (const ReferenceType *Ref = BaseType->getAs<ReferenceType>()) {
5369    // For the purpose of error recovery, we treat rvalue refs like lvalue refs.
5370    BaseType = Ref->getPointeeType();
5371    Mode = 2;
5372    DK = diag::ext_catch_incomplete_ref;
5373    IncompleteCatchIsInvalid = false;
5374  }
5375  if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) &&
5376      !BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK) &&
5377      IncompleteCatchIsInvalid)
5378    Invalid = true;
5379
5380  if (!Invalid && !ExDeclType->isDependentType() &&
5381      RequireNonAbstractType(Loc, ExDeclType,
5382                             diag::err_abstract_type_in_decl,
5383                             AbstractVariableType))
5384    Invalid = true;
5385
5386  VarDecl *ExDecl = VarDecl::Create(Context, CurContext, Loc,
5387                                    Name, ExDeclType, TInfo, VarDecl::None,
5388                                    VarDecl::None);
5389  ExDecl->setExceptionVariable(true);
5390
5391  if (!Invalid) {
5392    if (const RecordType *RecordTy = ExDeclType->getAs<RecordType>()) {
5393      // C++ [except.handle]p16:
5394      //   The object declared in an exception-declaration or, if the
5395      //   exception-declaration does not specify a name, a temporary (12.2) is
5396      //   copy-initialized (8.5) from the exception object. [...]
5397      //   The object is destroyed when the handler exits, after the destruction
5398      //   of any automatic objects initialized within the handler.
5399      //
5400      // We just pretend to initialize the object with itself, then make sure
5401      // it can be destroyed later.
5402      InitializedEntity Entity = InitializedEntity::InitializeVariable(ExDecl);
5403      Expr *ExDeclRef = DeclRefExpr::Create(Context, 0, SourceRange(), ExDecl,
5404                                            Loc, ExDeclType, 0);
5405      InitializationKind Kind = InitializationKind::CreateCopy(Loc,
5406                                                               SourceLocation());
5407      InitializationSequence InitSeq(*this, Entity, Kind, &ExDeclRef, 1);
5408      OwningExprResult Result = InitSeq.Perform(*this, Entity, Kind,
5409                                    MultiExprArg(*this, (void**)&ExDeclRef, 1));
5410      if (Result.isInvalid())
5411        Invalid = true;
5412      else
5413        FinalizeVarWithDestructor(ExDecl, RecordTy);
5414    }
5415  }
5416
5417  if (Invalid)
5418    ExDecl->setInvalidDecl();
5419
5420  return ExDecl;
5421}
5422
5423/// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch
5424/// handler.
5425Sema::DeclPtrTy Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) {
5426  TypeSourceInfo *TInfo = 0;
5427  QualType ExDeclType = GetTypeForDeclarator(D, S, &TInfo);
5428
5429  bool Invalid = D.isInvalidType();
5430  IdentifierInfo *II = D.getIdentifier();
5431  if (NamedDecl *PrevDecl = LookupSingleName(S, II, D.getIdentifierLoc(),
5432                                             LookupOrdinaryName,
5433                                             ForRedeclaration)) {
5434    // The scope should be freshly made just for us. There is just no way
5435    // it contains any previous declaration.
5436    assert(!S->isDeclScope(DeclPtrTy::make(PrevDecl)));
5437    if (PrevDecl->isTemplateParameter()) {
5438      // Maybe we will complain about the shadowed template parameter.
5439      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
5440    }
5441  }
5442
5443  if (D.getCXXScopeSpec().isSet() && !Invalid) {
5444    Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator)
5445      << D.getCXXScopeSpec().getRange();
5446    Invalid = true;
5447  }
5448
5449  VarDecl *ExDecl = BuildExceptionDeclaration(S, ExDeclType, TInfo,
5450                                              D.getIdentifier(),
5451                                              D.getIdentifierLoc(),
5452                                            D.getDeclSpec().getSourceRange());
5453
5454  if (Invalid)
5455    ExDecl->setInvalidDecl();
5456
5457  // Add the exception declaration into this scope.
5458  if (II)
5459    PushOnScopeChains(ExDecl, S);
5460  else
5461    CurContext->addDecl(ExDecl);
5462
5463  ProcessDeclAttributes(S, ExDecl, D);
5464  return DeclPtrTy::make(ExDecl);
5465}
5466
5467Sema::DeclPtrTy Sema::ActOnStaticAssertDeclaration(SourceLocation AssertLoc,
5468                                                   ExprArg assertexpr,
5469                                                   ExprArg assertmessageexpr) {
5470  Expr *AssertExpr = (Expr *)assertexpr.get();
5471  StringLiteral *AssertMessage =
5472    cast<StringLiteral>((Expr *)assertmessageexpr.get());
5473
5474  if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent()) {
5475    llvm::APSInt Value(32);
5476    if (!AssertExpr->isIntegerConstantExpr(Value, Context)) {
5477      Diag(AssertLoc, diag::err_static_assert_expression_is_not_constant) <<
5478        AssertExpr->getSourceRange();
5479      return DeclPtrTy();
5480    }
5481
5482    if (Value == 0) {
5483      Diag(AssertLoc, diag::err_static_assert_failed)
5484        << AssertMessage->getString() << AssertExpr->getSourceRange();
5485    }
5486  }
5487
5488  assertexpr.release();
5489  assertmessageexpr.release();
5490  Decl *Decl = StaticAssertDecl::Create(Context, CurContext, AssertLoc,
5491                                        AssertExpr, AssertMessage);
5492
5493  CurContext->addDecl(Decl);
5494  return DeclPtrTy::make(Decl);
5495}
5496
5497/// \brief Perform semantic analysis of the given friend type declaration.
5498///
5499/// \returns A friend declaration that.
5500FriendDecl *Sema::CheckFriendTypeDecl(SourceLocation FriendLoc,
5501                                      TypeSourceInfo *TSInfo) {
5502  assert(TSInfo && "NULL TypeSourceInfo for friend type declaration");
5503
5504  QualType T = TSInfo->getType();
5505  SourceRange TypeRange = TSInfo->getTypeLoc().getSourceRange();
5506
5507  if (!getLangOptions().CPlusPlus0x) {
5508    // C++03 [class.friend]p2:
5509    //   An elaborated-type-specifier shall be used in a friend declaration
5510    //   for a class.*
5511    //
5512    //   * The class-key of the elaborated-type-specifier is required.
5513    if (!ActiveTemplateInstantiations.empty()) {
5514      // Do not complain about the form of friend template types during
5515      // template instantiation; we will already have complained when the
5516      // template was declared.
5517    } else if (!T->isElaboratedTypeSpecifier()) {
5518      // If we evaluated the type to a record type, suggest putting
5519      // a tag in front.
5520      if (const RecordType *RT = T->getAs<RecordType>()) {
5521        RecordDecl *RD = RT->getDecl();
5522
5523        std::string InsertionText = std::string(" ") + RD->getKindName();
5524
5525        Diag(TypeRange.getBegin(), diag::ext_unelaborated_friend_type)
5526          << (unsigned) RD->getTagKind()
5527          << T
5528          << FixItHint::CreateInsertion(PP.getLocForEndOfToken(FriendLoc),
5529                                        InsertionText);
5530      } else {
5531        Diag(FriendLoc, diag::ext_nonclass_type_friend)
5532          << T
5533          << SourceRange(FriendLoc, TypeRange.getEnd());
5534      }
5535    } else if (T->getAs<EnumType>()) {
5536      Diag(FriendLoc, diag::ext_enum_friend)
5537        << T
5538        << SourceRange(FriendLoc, TypeRange.getEnd());
5539    }
5540  }
5541
5542  // C++0x [class.friend]p3:
5543  //   If the type specifier in a friend declaration designates a (possibly
5544  //   cv-qualified) class type, that class is declared as a friend; otherwise,
5545  //   the friend declaration is ignored.
5546
5547  // FIXME: C++0x has some syntactic restrictions on friend type declarations
5548  // in [class.friend]p3 that we do not implement.
5549
5550  return FriendDecl::Create(Context, CurContext, FriendLoc, TSInfo, FriendLoc);
5551}
5552
5553/// Handle a friend type declaration.  This works in tandem with
5554/// ActOnTag.
5555///
5556/// Notes on friend class templates:
5557///
5558/// We generally treat friend class declarations as if they were
5559/// declaring a class.  So, for example, the elaborated type specifier
5560/// in a friend declaration is required to obey the restrictions of a
5561/// class-head (i.e. no typedefs in the scope chain), template
5562/// parameters are required to match up with simple template-ids, &c.
5563/// However, unlike when declaring a template specialization, it's
5564/// okay to refer to a template specialization without an empty
5565/// template parameter declaration, e.g.
5566///   friend class A<T>::B<unsigned>;
5567/// We permit this as a special case; if there are any template
5568/// parameters present at all, require proper matching, i.e.
5569///   template <> template <class T> friend class A<int>::B;
5570Sema::DeclPtrTy Sema::ActOnFriendTypeDecl(Scope *S, const DeclSpec &DS,
5571                                          MultiTemplateParamsArg TempParams) {
5572  SourceLocation Loc = DS.getSourceRange().getBegin();
5573
5574  assert(DS.isFriendSpecified());
5575  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
5576
5577  // Try to convert the decl specifier to a type.  This works for
5578  // friend templates because ActOnTag never produces a ClassTemplateDecl
5579  // for a TUK_Friend.
5580  Declarator TheDeclarator(DS, Declarator::MemberContext);
5581  TypeSourceInfo *TSI;
5582  QualType T = GetTypeForDeclarator(TheDeclarator, S, &TSI);
5583  if (TheDeclarator.isInvalidType())
5584    return DeclPtrTy();
5585
5586  if (!TSI)
5587    TSI = Context.getTrivialTypeSourceInfo(T, DS.getSourceRange().getBegin());
5588
5589  // This is definitely an error in C++98.  It's probably meant to
5590  // be forbidden in C++0x, too, but the specification is just
5591  // poorly written.
5592  //
5593  // The problem is with declarations like the following:
5594  //   template <T> friend A<T>::foo;
5595  // where deciding whether a class C is a friend or not now hinges
5596  // on whether there exists an instantiation of A that causes
5597  // 'foo' to equal C.  There are restrictions on class-heads
5598  // (which we declare (by fiat) elaborated friend declarations to
5599  // be) that makes this tractable.
5600  //
5601  // FIXME: handle "template <> friend class A<T>;", which
5602  // is possibly well-formed?  Who even knows?
5603  if (TempParams.size() && !T->isElaboratedTypeSpecifier()) {
5604    Diag(Loc, diag::err_tagless_friend_type_template)
5605      << DS.getSourceRange();
5606    return DeclPtrTy();
5607  }
5608
5609  // C++98 [class.friend]p1: A friend of a class is a function
5610  //   or class that is not a member of the class . . .
5611  // This is fixed in DR77, which just barely didn't make the C++03
5612  // deadline.  It's also a very silly restriction that seriously
5613  // affects inner classes and which nobody else seems to implement;
5614  // thus we never diagnose it, not even in -pedantic.
5615  //
5616  // But note that we could warn about it: it's always useless to
5617  // friend one of your own members (it's not, however, worthless to
5618  // friend a member of an arbitrary specialization of your template).
5619
5620  Decl *D;
5621  if (unsigned NumTempParamLists = TempParams.size())
5622    D = FriendTemplateDecl::Create(Context, CurContext, Loc,
5623                                   NumTempParamLists,
5624                                 (TemplateParameterList**) TempParams.release(),
5625                                   TSI,
5626                                   DS.getFriendSpecLoc());
5627  else
5628    D = CheckFriendTypeDecl(DS.getFriendSpecLoc(), TSI);
5629
5630  if (!D)
5631    return DeclPtrTy();
5632
5633  D->setAccess(AS_public);
5634  CurContext->addDecl(D);
5635
5636  return DeclPtrTy::make(D);
5637}
5638
5639Sema::DeclPtrTy
5640Sema::ActOnFriendFunctionDecl(Scope *S,
5641                              Declarator &D,
5642                              bool IsDefinition,
5643                              MultiTemplateParamsArg TemplateParams) {
5644  const DeclSpec &DS = D.getDeclSpec();
5645
5646  assert(DS.isFriendSpecified());
5647  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
5648
5649  SourceLocation Loc = D.getIdentifierLoc();
5650  TypeSourceInfo *TInfo = 0;
5651  QualType T = GetTypeForDeclarator(D, S, &TInfo);
5652
5653  // C++ [class.friend]p1
5654  //   A friend of a class is a function or class....
5655  // Note that this sees through typedefs, which is intended.
5656  // It *doesn't* see through dependent types, which is correct
5657  // according to [temp.arg.type]p3:
5658  //   If a declaration acquires a function type through a
5659  //   type dependent on a template-parameter and this causes
5660  //   a declaration that does not use the syntactic form of a
5661  //   function declarator to have a function type, the program
5662  //   is ill-formed.
5663  if (!T->isFunctionType()) {
5664    Diag(Loc, diag::err_unexpected_friend);
5665
5666    // It might be worthwhile to try to recover by creating an
5667    // appropriate declaration.
5668    return DeclPtrTy();
5669  }
5670
5671  // C++ [namespace.memdef]p3
5672  //  - If a friend declaration in a non-local class first declares a
5673  //    class or function, the friend class or function is a member
5674  //    of the innermost enclosing namespace.
5675  //  - The name of the friend is not found by simple name lookup
5676  //    until a matching declaration is provided in that namespace
5677  //    scope (either before or after the class declaration granting
5678  //    friendship).
5679  //  - If a friend function is called, its name may be found by the
5680  //    name lookup that considers functions from namespaces and
5681  //    classes associated with the types of the function arguments.
5682  //  - When looking for a prior declaration of a class or a function
5683  //    declared as a friend, scopes outside the innermost enclosing
5684  //    namespace scope are not considered.
5685
5686  CXXScopeSpec &ScopeQual = D.getCXXScopeSpec();
5687  DeclarationName Name = GetNameForDeclarator(D);
5688  assert(Name);
5689
5690  // The context we found the declaration in, or in which we should
5691  // create the declaration.
5692  DeclContext *DC;
5693
5694  // FIXME: handle local classes
5695
5696  // Recover from invalid scope qualifiers as if they just weren't there.
5697  LookupResult Previous(*this, Name, D.getIdentifierLoc(), LookupOrdinaryName,
5698                        ForRedeclaration);
5699  if (!ScopeQual.isInvalid() && ScopeQual.isSet()) {
5700    DC = computeDeclContext(ScopeQual);
5701
5702    // FIXME: handle dependent contexts
5703    if (!DC) return DeclPtrTy();
5704    if (RequireCompleteDeclContext(ScopeQual, DC)) return DeclPtrTy();
5705
5706    LookupQualifiedName(Previous, DC);
5707
5708    // If searching in that context implicitly found a declaration in
5709    // a different context, treat it like it wasn't found at all.
5710    // TODO: better diagnostics for this case.  Suggesting the right
5711    // qualified scope would be nice...
5712    // FIXME: getRepresentativeDecl() is not right here at all
5713    if (Previous.empty() ||
5714        !Previous.getRepresentativeDecl()->getDeclContext()->Equals(DC)) {
5715      D.setInvalidType();
5716      Diag(Loc, diag::err_qualified_friend_not_found) << Name << T;
5717      return DeclPtrTy();
5718    }
5719
5720    // C++ [class.friend]p1: A friend of a class is a function or
5721    //   class that is not a member of the class . . .
5722    if (DC->Equals(CurContext))
5723      Diag(DS.getFriendSpecLoc(), diag::err_friend_is_member);
5724
5725  // Otherwise walk out to the nearest namespace scope looking for matches.
5726  } else {
5727    // TODO: handle local class contexts.
5728
5729    DC = CurContext;
5730    while (true) {
5731      // Skip class contexts.  If someone can cite chapter and verse
5732      // for this behavior, that would be nice --- it's what GCC and
5733      // EDG do, and it seems like a reasonable intent, but the spec
5734      // really only says that checks for unqualified existing
5735      // declarations should stop at the nearest enclosing namespace,
5736      // not that they should only consider the nearest enclosing
5737      // namespace.
5738      while (DC->isRecord())
5739        DC = DC->getParent();
5740
5741      LookupQualifiedName(Previous, DC);
5742
5743      // TODO: decide what we think about using declarations.
5744      if (!Previous.empty())
5745        break;
5746
5747      if (DC->isFileContext()) break;
5748      DC = DC->getParent();
5749    }
5750
5751    // C++ [class.friend]p1: A friend of a class is a function or
5752    //   class that is not a member of the class . . .
5753    // C++0x changes this for both friend types and functions.
5754    // Most C++ 98 compilers do seem to give an error here, so
5755    // we do, too.
5756    if (!Previous.empty() && DC->Equals(CurContext)
5757        && !getLangOptions().CPlusPlus0x)
5758      Diag(DS.getFriendSpecLoc(), diag::err_friend_is_member);
5759  }
5760
5761  if (DC->isFileContext()) {
5762    // This implies that it has to be an operator or function.
5763    if (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ||
5764        D.getName().getKind() == UnqualifiedId::IK_DestructorName ||
5765        D.getName().getKind() == UnqualifiedId::IK_ConversionFunctionId) {
5766      Diag(Loc, diag::err_introducing_special_friend) <<
5767        (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ? 0 :
5768         D.getName().getKind() == UnqualifiedId::IK_DestructorName ? 1 : 2);
5769      return DeclPtrTy();
5770    }
5771  }
5772
5773  bool Redeclaration = false;
5774  NamedDecl *ND = ActOnFunctionDeclarator(S, D, DC, T, TInfo, Previous,
5775                                          move(TemplateParams),
5776                                          IsDefinition,
5777                                          Redeclaration);
5778  if (!ND) return DeclPtrTy();
5779
5780  assert(ND->getDeclContext() == DC);
5781  assert(ND->getLexicalDeclContext() == CurContext);
5782
5783  // Add the function declaration to the appropriate lookup tables,
5784  // adjusting the redeclarations list as necessary.  We don't
5785  // want to do this yet if the friending class is dependent.
5786  //
5787  // Also update the scope-based lookup if the target context's
5788  // lookup context is in lexical scope.
5789  if (!CurContext->isDependentContext()) {
5790    DC = DC->getLookupContext();
5791    DC->makeDeclVisibleInContext(ND, /* Recoverable=*/ false);
5792    if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
5793      PushOnScopeChains(ND, EnclosingScope, /*AddToContext=*/ false);
5794  }
5795
5796  FriendDecl *FrD = FriendDecl::Create(Context, CurContext,
5797                                       D.getIdentifierLoc(), ND,
5798                                       DS.getFriendSpecLoc());
5799  FrD->setAccess(AS_public);
5800  CurContext->addDecl(FrD);
5801
5802  return DeclPtrTy::make(ND);
5803}
5804
5805void Sema::SetDeclDeleted(DeclPtrTy dcl, SourceLocation DelLoc) {
5806  AdjustDeclIfTemplate(dcl);
5807
5808  Decl *Dcl = dcl.getAs<Decl>();
5809  FunctionDecl *Fn = dyn_cast<FunctionDecl>(Dcl);
5810  if (!Fn) {
5811    Diag(DelLoc, diag::err_deleted_non_function);
5812    return;
5813  }
5814  if (const FunctionDecl *Prev = Fn->getPreviousDeclaration()) {
5815    Diag(DelLoc, diag::err_deleted_decl_not_first);
5816    Diag(Prev->getLocation(), diag::note_previous_declaration);
5817    // If the declaration wasn't the first, we delete the function anyway for
5818    // recovery.
5819  }
5820  Fn->setDeleted();
5821}
5822
5823static void SearchForReturnInStmt(Sema &Self, Stmt *S) {
5824  for (Stmt::child_iterator CI = S->child_begin(), E = S->child_end(); CI != E;
5825       ++CI) {
5826    Stmt *SubStmt = *CI;
5827    if (!SubStmt)
5828      continue;
5829    if (isa<ReturnStmt>(SubStmt))
5830      Self.Diag(SubStmt->getSourceRange().getBegin(),
5831           diag::err_return_in_constructor_handler);
5832    if (!isa<Expr>(SubStmt))
5833      SearchForReturnInStmt(Self, SubStmt);
5834  }
5835}
5836
5837void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) {
5838  for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) {
5839    CXXCatchStmt *Handler = TryBlock->getHandler(I);
5840    SearchForReturnInStmt(*this, Handler);
5841  }
5842}
5843
5844bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New,
5845                                             const CXXMethodDecl *Old) {
5846  QualType NewTy = New->getType()->getAs<FunctionType>()->getResultType();
5847  QualType OldTy = Old->getType()->getAs<FunctionType>()->getResultType();
5848
5849  if (Context.hasSameType(NewTy, OldTy) ||
5850      NewTy->isDependentType() || OldTy->isDependentType())
5851    return false;
5852
5853  // Check if the return types are covariant
5854  QualType NewClassTy, OldClassTy;
5855
5856  /// Both types must be pointers or references to classes.
5857  if (const PointerType *NewPT = NewTy->getAs<PointerType>()) {
5858    if (const PointerType *OldPT = OldTy->getAs<PointerType>()) {
5859      NewClassTy = NewPT->getPointeeType();
5860      OldClassTy = OldPT->getPointeeType();
5861    }
5862  } else if (const ReferenceType *NewRT = NewTy->getAs<ReferenceType>()) {
5863    if (const ReferenceType *OldRT = OldTy->getAs<ReferenceType>()) {
5864      if (NewRT->getTypeClass() == OldRT->getTypeClass()) {
5865        NewClassTy = NewRT->getPointeeType();
5866        OldClassTy = OldRT->getPointeeType();
5867      }
5868    }
5869  }
5870
5871  // The return types aren't either both pointers or references to a class type.
5872  if (NewClassTy.isNull()) {
5873    Diag(New->getLocation(),
5874         diag::err_different_return_type_for_overriding_virtual_function)
5875      << New->getDeclName() << NewTy << OldTy;
5876    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
5877
5878    return true;
5879  }
5880
5881  // C++ [class.virtual]p6:
5882  //   If the return type of D::f differs from the return type of B::f, the
5883  //   class type in the return type of D::f shall be complete at the point of
5884  //   declaration of D::f or shall be the class type D.
5885  if (const RecordType *RT = NewClassTy->getAs<RecordType>()) {
5886    if (!RT->isBeingDefined() &&
5887        RequireCompleteType(New->getLocation(), NewClassTy,
5888                            PDiag(diag::err_covariant_return_incomplete)
5889                              << New->getDeclName()))
5890    return true;
5891  }
5892
5893  if (!Context.hasSameUnqualifiedType(NewClassTy, OldClassTy)) {
5894    // Check if the new class derives from the old class.
5895    if (!IsDerivedFrom(NewClassTy, OldClassTy)) {
5896      Diag(New->getLocation(),
5897           diag::err_covariant_return_not_derived)
5898      << New->getDeclName() << NewTy << OldTy;
5899      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
5900      return true;
5901    }
5902
5903    // Check if we the conversion from derived to base is valid.
5904    if (CheckDerivedToBaseConversion(NewClassTy, OldClassTy,
5905                    diag::err_covariant_return_inaccessible_base,
5906                    diag::err_covariant_return_ambiguous_derived_to_base_conv,
5907                    // FIXME: Should this point to the return type?
5908                    New->getLocation(), SourceRange(), New->getDeclName(), 0)) {
5909      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
5910      return true;
5911    }
5912  }
5913
5914  // The qualifiers of the return types must be the same.
5915  if (NewTy.getLocalCVRQualifiers() != OldTy.getLocalCVRQualifiers()) {
5916    Diag(New->getLocation(),
5917         diag::err_covariant_return_type_different_qualifications)
5918    << New->getDeclName() << NewTy << OldTy;
5919    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
5920    return true;
5921  };
5922
5923
5924  // The new class type must have the same or less qualifiers as the old type.
5925  if (NewClassTy.isMoreQualifiedThan(OldClassTy)) {
5926    Diag(New->getLocation(),
5927         diag::err_covariant_return_type_class_type_more_qualified)
5928    << New->getDeclName() << NewTy << OldTy;
5929    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
5930    return true;
5931  };
5932
5933  return false;
5934}
5935
5936bool Sema::CheckOverridingFunctionAttributes(const CXXMethodDecl *New,
5937                                             const CXXMethodDecl *Old)
5938{
5939  if (Old->hasAttr<FinalAttr>()) {
5940    Diag(New->getLocation(), diag::err_final_function_overridden)
5941      << New->getDeclName();
5942    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
5943    return true;
5944  }
5945
5946  return false;
5947}
5948
5949/// \brief Mark the given method pure.
5950///
5951/// \param Method the method to be marked pure.
5952///
5953/// \param InitRange the source range that covers the "0" initializer.
5954bool Sema::CheckPureMethod(CXXMethodDecl *Method, SourceRange InitRange) {
5955  if (Method->isVirtual() || Method->getParent()->isDependentContext()) {
5956    Method->setPure();
5957
5958    // A class is abstract if at least one function is pure virtual.
5959    Method->getParent()->setAbstract(true);
5960    return false;
5961  }
5962
5963  if (!Method->isInvalidDecl())
5964    Diag(Method->getLocation(), diag::err_non_virtual_pure)
5965      << Method->getDeclName() << InitRange;
5966  return true;
5967}
5968
5969/// ActOnCXXEnterDeclInitializer - Invoked when we are about to parse
5970/// an initializer for the out-of-line declaration 'Dcl'.  The scope
5971/// is a fresh scope pushed for just this purpose.
5972///
5973/// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a
5974/// static data member of class X, names should be looked up in the scope of
5975/// class X.
5976void Sema::ActOnCXXEnterDeclInitializer(Scope *S, DeclPtrTy Dcl) {
5977  // If there is no declaration, there was an error parsing it.
5978  Decl *D = Dcl.getAs<Decl>();
5979  if (D == 0) return;
5980
5981  // We should only get called for declarations with scope specifiers, like:
5982  //   int foo::bar;
5983  assert(D->isOutOfLine());
5984  EnterDeclaratorContext(S, D->getDeclContext());
5985}
5986
5987/// ActOnCXXExitDeclInitializer - Invoked after we are finished parsing an
5988/// initializer for the out-of-line declaration 'Dcl'.
5989void Sema::ActOnCXXExitDeclInitializer(Scope *S, DeclPtrTy Dcl) {
5990  // If there is no declaration, there was an error parsing it.
5991  Decl *D = Dcl.getAs<Decl>();
5992  if (D == 0) return;
5993
5994  assert(D->isOutOfLine());
5995  ExitDeclaratorContext(S);
5996}
5997
5998/// ActOnCXXConditionDeclarationExpr - Parsed a condition declaration of a
5999/// C++ if/switch/while/for statement.
6000/// e.g: "if (int x = f()) {...}"
6001Action::DeclResult
6002Sema::ActOnCXXConditionDeclaration(Scope *S, Declarator &D) {
6003  // C++ 6.4p2:
6004  // The declarator shall not specify a function or an array.
6005  // The type-specifier-seq shall not contain typedef and shall not declare a
6006  // new class or enumeration.
6007  assert(D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
6008         "Parser allowed 'typedef' as storage class of condition decl.");
6009
6010  TypeSourceInfo *TInfo = 0;
6011  TagDecl *OwnedTag = 0;
6012  QualType Ty = GetTypeForDeclarator(D, S, &TInfo, &OwnedTag);
6013
6014  if (Ty->isFunctionType()) { // The declarator shall not specify a function...
6015                              // We exit without creating a CXXConditionDeclExpr because a FunctionDecl
6016                              // would be created and CXXConditionDeclExpr wants a VarDecl.
6017    Diag(D.getIdentifierLoc(), diag::err_invalid_use_of_function_type)
6018      << D.getSourceRange();
6019    return DeclResult();
6020  } else if (OwnedTag && OwnedTag->isDefinition()) {
6021    // The type-specifier-seq shall not declare a new class or enumeration.
6022    Diag(OwnedTag->getLocation(), diag::err_type_defined_in_condition);
6023  }
6024
6025  DeclPtrTy Dcl = ActOnDeclarator(S, D);
6026  if (!Dcl)
6027    return DeclResult();
6028
6029  VarDecl *VD = cast<VarDecl>(Dcl.getAs<Decl>());
6030  VD->setDeclaredInCondition(true);
6031  return Dcl;
6032}
6033
6034void Sema::MarkVTableUsed(SourceLocation Loc, CXXRecordDecl *Class,
6035                          bool DefinitionRequired) {
6036  // Ignore any vtable uses in unevaluated operands or for classes that do
6037  // not have a vtable.
6038  if (!Class->isDynamicClass() || Class->isDependentContext() ||
6039      CurContext->isDependentContext() ||
6040      ExprEvalContexts.back().Context == Unevaluated)
6041    return;
6042
6043  // Try to insert this class into the map.
6044  Class = cast<CXXRecordDecl>(Class->getCanonicalDecl());
6045  std::pair<llvm::DenseMap<CXXRecordDecl *, bool>::iterator, bool>
6046    Pos = VTablesUsed.insert(std::make_pair(Class, DefinitionRequired));
6047  if (!Pos.second) {
6048    Pos.first->second = Pos.first->second || DefinitionRequired;
6049    return;
6050  }
6051
6052  // Local classes need to have their virtual members marked
6053  // immediately. For all other classes, we mark their virtual members
6054  // at the end of the translation unit.
6055  if (Class->isLocalClass())
6056    MarkVirtualMembersReferenced(Loc, Class);
6057  else
6058    VTableUses.push_back(std::make_pair(Class, Loc));
6059}
6060
6061bool Sema::DefineUsedVTables() {
6062  // If any dynamic classes have their key function defined within
6063  // this translation unit, then those vtables are considered "used" and must
6064  // be emitted.
6065  for (unsigned I = 0, N = DynamicClasses.size(); I != N; ++I) {
6066    if (const CXXMethodDecl *KeyFunction
6067                             = Context.getKeyFunction(DynamicClasses[I])) {
6068      const FunctionDecl *Definition = 0;
6069      if (KeyFunction->getBody(Definition) && !Definition->isInlined() &&
6070          !Definition->isImplicit())
6071        MarkVTableUsed(Definition->getLocation(), DynamicClasses[I], true);
6072    }
6073  }
6074
6075  if (VTableUses.empty())
6076    return false;
6077
6078  // Note: The VTableUses vector could grow as a result of marking
6079  // the members of a class as "used", so we check the size each
6080  // time through the loop and prefer indices (with are stable) to
6081  // iterators (which are not).
6082  for (unsigned I = 0; I != VTableUses.size(); ++I) {
6083    CXXRecordDecl *Class
6084      = cast_or_null<CXXRecordDecl>(VTableUses[I].first)->getDefinition();
6085    if (!Class)
6086      continue;
6087
6088    SourceLocation Loc = VTableUses[I].second;
6089
6090    // If this class has a key function, but that key function is
6091    // defined in another translation unit, we don't need to emit the
6092    // vtable even though we're using it.
6093    const CXXMethodDecl *KeyFunction = Context.getKeyFunction(Class);
6094    if (KeyFunction && !KeyFunction->getBody()) {
6095      switch (KeyFunction->getTemplateSpecializationKind()) {
6096      case TSK_Undeclared:
6097      case TSK_ExplicitSpecialization:
6098      case TSK_ExplicitInstantiationDeclaration:
6099        // The key function is in another translation unit.
6100        continue;
6101
6102      case TSK_ExplicitInstantiationDefinition:
6103      case TSK_ImplicitInstantiation:
6104        // We will be instantiating the key function.
6105        break;
6106      }
6107    } else if (!KeyFunction) {
6108      // If we have a class with no key function that is the subject
6109      // of an explicit instantiation declaration, suppress the
6110      // vtable; it will live with the explicit instantiation
6111      // definition.
6112      bool IsExplicitInstantiationDeclaration
6113        = Class->getTemplateSpecializationKind()
6114                                      == TSK_ExplicitInstantiationDeclaration;
6115      for (TagDecl::redecl_iterator R = Class->redecls_begin(),
6116                                 REnd = Class->redecls_end();
6117           R != REnd; ++R) {
6118        TemplateSpecializationKind TSK
6119          = cast<CXXRecordDecl>(*R)->getTemplateSpecializationKind();
6120        if (TSK == TSK_ExplicitInstantiationDeclaration)
6121          IsExplicitInstantiationDeclaration = true;
6122        else if (TSK == TSK_ExplicitInstantiationDefinition) {
6123          IsExplicitInstantiationDeclaration = false;
6124          break;
6125        }
6126      }
6127
6128      if (IsExplicitInstantiationDeclaration)
6129        continue;
6130    }
6131
6132    // Mark all of the virtual members of this class as referenced, so
6133    // that we can build a vtable. Then, tell the AST consumer that a
6134    // vtable for this class is required.
6135    MarkVirtualMembersReferenced(Loc, Class);
6136    CXXRecordDecl *Canonical = cast<CXXRecordDecl>(Class->getCanonicalDecl());
6137    Consumer.HandleVTable(Class, VTablesUsed[Canonical]);
6138
6139    // Optionally warn if we're emitting a weak vtable.
6140    if (Class->getLinkage() == ExternalLinkage &&
6141        Class->getTemplateSpecializationKind() != TSK_ImplicitInstantiation) {
6142      if (!KeyFunction || (KeyFunction->getBody() && KeyFunction->isInlined()))
6143        Diag(Class->getLocation(), diag::warn_weak_vtable) << Class;
6144    }
6145  }
6146  VTableUses.clear();
6147
6148  return true;
6149}
6150
6151void Sema::MarkVirtualMembersReferenced(SourceLocation Loc,
6152                                        const CXXRecordDecl *RD) {
6153  for (CXXRecordDecl::method_iterator i = RD->method_begin(),
6154       e = RD->method_end(); i != e; ++i) {
6155    CXXMethodDecl *MD = *i;
6156
6157    // C++ [basic.def.odr]p2:
6158    //   [...] A virtual member function is used if it is not pure. [...]
6159    if (MD->isVirtual() && !MD->isPure())
6160      MarkDeclarationReferenced(Loc, MD);
6161  }
6162
6163  // Only classes that have virtual bases need a VTT.
6164  if (RD->getNumVBases() == 0)
6165    return;
6166
6167  for (CXXRecordDecl::base_class_const_iterator i = RD->bases_begin(),
6168           e = RD->bases_end(); i != e; ++i) {
6169    const CXXRecordDecl *Base =
6170        cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
6171    if (i->isVirtual())
6172      continue;
6173    if (Base->getNumVBases() == 0)
6174      continue;
6175    MarkVirtualMembersReferenced(Loc, Base);
6176  }
6177}
6178
6179/// SetIvarInitializers - This routine builds initialization ASTs for the
6180/// Objective-C implementation whose ivars need be initialized.
6181void Sema::SetIvarInitializers(ObjCImplementationDecl *ObjCImplementation) {
6182  if (!getLangOptions().CPlusPlus)
6183    return;
6184  if (const ObjCInterfaceDecl *OID = ObjCImplementation->getClassInterface()) {
6185    llvm::SmallVector<ObjCIvarDecl*, 8> ivars;
6186    CollectIvarsToConstructOrDestruct(OID, ivars);
6187    if (ivars.empty())
6188      return;
6189    llvm::SmallVector<CXXBaseOrMemberInitializer*, 32> AllToInit;
6190    for (unsigned i = 0; i < ivars.size(); i++) {
6191      FieldDecl *Field = ivars[i];
6192      CXXBaseOrMemberInitializer *Member;
6193      InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field);
6194      InitializationKind InitKind =
6195        InitializationKind::CreateDefault(ObjCImplementation->getLocation());
6196
6197      InitializationSequence InitSeq(*this, InitEntity, InitKind, 0, 0);
6198      Sema::OwningExprResult MemberInit =
6199        InitSeq.Perform(*this, InitEntity, InitKind,
6200                        Sema::MultiExprArg(*this, 0, 0));
6201      MemberInit = MaybeCreateCXXExprWithTemporaries(move(MemberInit));
6202      // Note, MemberInit could actually come back empty if no initialization
6203      // is required (e.g., because it would call a trivial default constructor)
6204      if (!MemberInit.get() || MemberInit.isInvalid())
6205        continue;
6206
6207      Member =
6208        new (Context) CXXBaseOrMemberInitializer(Context,
6209                                                 Field, SourceLocation(),
6210                                                 SourceLocation(),
6211                                                 MemberInit.takeAs<Expr>(),
6212                                                 SourceLocation());
6213      AllToInit.push_back(Member);
6214    }
6215    ObjCImplementation->setIvarInitializers(Context,
6216                                            AllToInit.data(), AllToInit.size());
6217  }
6218}
6219