SemaDeclCXX.cpp revision 788440378c442562497c09610939cbe6218ab43d
1//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for C++ declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/CXXFieldCollector.h"
16#include "clang/Sema/Scope.h"
17#include "clang/Sema/Initialization.h"
18#include "clang/Sema/Lookup.h"
19#include "clang/AST/ASTConsumer.h"
20#include "clang/AST/ASTContext.h"
21#include "clang/AST/CharUnits.h"
22#include "clang/AST/CXXInheritance.h"
23#include "clang/AST/DeclVisitor.h"
24#include "clang/AST/ExprCXX.h"
25#include "clang/AST/RecordLayout.h"
26#include "clang/AST/StmtVisitor.h"
27#include "clang/AST/TypeLoc.h"
28#include "clang/AST/TypeOrdering.h"
29#include "clang/Sema/DeclSpec.h"
30#include "clang/Sema/ParsedTemplate.h"
31#include "clang/Basic/PartialDiagnostic.h"
32#include "clang/Lex/Preprocessor.h"
33#include "llvm/ADT/DenseSet.h"
34#include "llvm/ADT/STLExtras.h"
35#include <map>
36#include <set>
37
38using namespace clang;
39
40//===----------------------------------------------------------------------===//
41// CheckDefaultArgumentVisitor
42//===----------------------------------------------------------------------===//
43
44namespace {
45  /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
46  /// the default argument of a parameter to determine whether it
47  /// contains any ill-formed subexpressions. For example, this will
48  /// diagnose the use of local variables or parameters within the
49  /// default argument expression.
50  class CheckDefaultArgumentVisitor
51    : public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
52    Expr *DefaultArg;
53    Sema *S;
54
55  public:
56    CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
57      : DefaultArg(defarg), S(s) {}
58
59    bool VisitExpr(Expr *Node);
60    bool VisitDeclRefExpr(DeclRefExpr *DRE);
61    bool VisitCXXThisExpr(CXXThisExpr *ThisE);
62  };
63
64  /// VisitExpr - Visit all of the children of this expression.
65  bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
66    bool IsInvalid = false;
67    for (Stmt::child_range I = Node->children(); I; ++I)
68      IsInvalid |= Visit(*I);
69    return IsInvalid;
70  }
71
72  /// VisitDeclRefExpr - Visit a reference to a declaration, to
73  /// determine whether this declaration can be used in the default
74  /// argument expression.
75  bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
76    NamedDecl *Decl = DRE->getDecl();
77    if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
78      // C++ [dcl.fct.default]p9
79      //   Default arguments are evaluated each time the function is
80      //   called. The order of evaluation of function arguments is
81      //   unspecified. Consequently, parameters of a function shall not
82      //   be used in default argument expressions, even if they are not
83      //   evaluated. Parameters of a function declared before a default
84      //   argument expression are in scope and can hide namespace and
85      //   class member names.
86      return S->Diag(DRE->getSourceRange().getBegin(),
87                     diag::err_param_default_argument_references_param)
88         << Param->getDeclName() << DefaultArg->getSourceRange();
89    } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
90      // C++ [dcl.fct.default]p7
91      //   Local variables shall not be used in default argument
92      //   expressions.
93      if (VDecl->isLocalVarDecl())
94        return S->Diag(DRE->getSourceRange().getBegin(),
95                       diag::err_param_default_argument_references_local)
96          << VDecl->getDeclName() << DefaultArg->getSourceRange();
97    }
98
99    return false;
100  }
101
102  /// VisitCXXThisExpr - Visit a C++ "this" expression.
103  bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
104    // C++ [dcl.fct.default]p8:
105    //   The keyword this shall not be used in a default argument of a
106    //   member function.
107    return S->Diag(ThisE->getSourceRange().getBegin(),
108                   diag::err_param_default_argument_references_this)
109               << ThisE->getSourceRange();
110  }
111}
112
113bool
114Sema::SetParamDefaultArgument(ParmVarDecl *Param, Expr *Arg,
115                              SourceLocation EqualLoc) {
116  if (RequireCompleteType(Param->getLocation(), Param->getType(),
117                          diag::err_typecheck_decl_incomplete_type)) {
118    Param->setInvalidDecl();
119    return true;
120  }
121
122  // C++ [dcl.fct.default]p5
123  //   A default argument expression is implicitly converted (clause
124  //   4) to the parameter type. The default argument expression has
125  //   the same semantic constraints as the initializer expression in
126  //   a declaration of a variable of the parameter type, using the
127  //   copy-initialization semantics (8.5).
128  InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
129                                                                    Param);
130  InitializationKind Kind = InitializationKind::CreateCopy(Param->getLocation(),
131                                                           EqualLoc);
132  InitializationSequence InitSeq(*this, Entity, Kind, &Arg, 1);
133  ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
134                                      MultiExprArg(*this, &Arg, 1));
135  if (Result.isInvalid())
136    return true;
137  Arg = Result.takeAs<Expr>();
138
139  CheckImplicitConversions(Arg, EqualLoc);
140  Arg = MaybeCreateExprWithCleanups(Arg);
141
142  // Okay: add the default argument to the parameter
143  Param->setDefaultArg(Arg);
144
145  // We have already instantiated this parameter; provide each of the
146  // instantiations with the uninstantiated default argument.
147  UnparsedDefaultArgInstantiationsMap::iterator InstPos
148    = UnparsedDefaultArgInstantiations.find(Param);
149  if (InstPos != UnparsedDefaultArgInstantiations.end()) {
150    for (unsigned I = 0, N = InstPos->second.size(); I != N; ++I)
151      InstPos->second[I]->setUninstantiatedDefaultArg(Arg);
152
153    // We're done tracking this parameter's instantiations.
154    UnparsedDefaultArgInstantiations.erase(InstPos);
155  }
156
157  return false;
158}
159
160/// ActOnParamDefaultArgument - Check whether the default argument
161/// provided for a function parameter is well-formed. If so, attach it
162/// to the parameter declaration.
163void
164Sema::ActOnParamDefaultArgument(Decl *param, SourceLocation EqualLoc,
165                                Expr *DefaultArg) {
166  if (!param || !DefaultArg)
167    return;
168
169  ParmVarDecl *Param = cast<ParmVarDecl>(param);
170  UnparsedDefaultArgLocs.erase(Param);
171
172  // Default arguments are only permitted in C++
173  if (!getLangOptions().CPlusPlus) {
174    Diag(EqualLoc, diag::err_param_default_argument)
175      << DefaultArg->getSourceRange();
176    Param->setInvalidDecl();
177    return;
178  }
179
180  // Check for unexpanded parameter packs.
181  if (DiagnoseUnexpandedParameterPack(DefaultArg, UPPC_DefaultArgument)) {
182    Param->setInvalidDecl();
183    return;
184  }
185
186  // Check that the default argument is well-formed
187  CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg, this);
188  if (DefaultArgChecker.Visit(DefaultArg)) {
189    Param->setInvalidDecl();
190    return;
191  }
192
193  SetParamDefaultArgument(Param, DefaultArg, EqualLoc);
194}
195
196/// ActOnParamUnparsedDefaultArgument - We've seen a default
197/// argument for a function parameter, but we can't parse it yet
198/// because we're inside a class definition. Note that this default
199/// argument will be parsed later.
200void Sema::ActOnParamUnparsedDefaultArgument(Decl *param,
201                                             SourceLocation EqualLoc,
202                                             SourceLocation ArgLoc) {
203  if (!param)
204    return;
205
206  ParmVarDecl *Param = cast<ParmVarDecl>(param);
207  if (Param)
208    Param->setUnparsedDefaultArg();
209
210  UnparsedDefaultArgLocs[Param] = ArgLoc;
211}
212
213/// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
214/// the default argument for the parameter param failed.
215void Sema::ActOnParamDefaultArgumentError(Decl *param) {
216  if (!param)
217    return;
218
219  ParmVarDecl *Param = cast<ParmVarDecl>(param);
220
221  Param->setInvalidDecl();
222
223  UnparsedDefaultArgLocs.erase(Param);
224}
225
226/// CheckExtraCXXDefaultArguments - Check for any extra default
227/// arguments in the declarator, which is not a function declaration
228/// or definition and therefore is not permitted to have default
229/// arguments. This routine should be invoked for every declarator
230/// that is not a function declaration or definition.
231void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
232  // C++ [dcl.fct.default]p3
233  //   A default argument expression shall be specified only in the
234  //   parameter-declaration-clause of a function declaration or in a
235  //   template-parameter (14.1). It shall not be specified for a
236  //   parameter pack. If it is specified in a
237  //   parameter-declaration-clause, it shall not occur within a
238  //   declarator or abstract-declarator of a parameter-declaration.
239  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
240    DeclaratorChunk &chunk = D.getTypeObject(i);
241    if (chunk.Kind == DeclaratorChunk::Function) {
242      for (unsigned argIdx = 0, e = chunk.Fun.NumArgs; argIdx != e; ++argIdx) {
243        ParmVarDecl *Param =
244          cast<ParmVarDecl>(chunk.Fun.ArgInfo[argIdx].Param);
245        if (Param->hasUnparsedDefaultArg()) {
246          CachedTokens *Toks = chunk.Fun.ArgInfo[argIdx].DefaultArgTokens;
247          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
248            << SourceRange((*Toks)[1].getLocation(), Toks->back().getLocation());
249          delete Toks;
250          chunk.Fun.ArgInfo[argIdx].DefaultArgTokens = 0;
251        } else if (Param->getDefaultArg()) {
252          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
253            << Param->getDefaultArg()->getSourceRange();
254          Param->setDefaultArg(0);
255        }
256      }
257    }
258  }
259}
260
261// MergeCXXFunctionDecl - Merge two declarations of the same C++
262// function, once we already know that they have the same
263// type. Subroutine of MergeFunctionDecl. Returns true if there was an
264// error, false otherwise.
265bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old) {
266  bool Invalid = false;
267
268  // C++ [dcl.fct.default]p4:
269  //   For non-template functions, default arguments can be added in
270  //   later declarations of a function in the same
271  //   scope. Declarations in different scopes have completely
272  //   distinct sets of default arguments. That is, declarations in
273  //   inner scopes do not acquire default arguments from
274  //   declarations in outer scopes, and vice versa. In a given
275  //   function declaration, all parameters subsequent to a
276  //   parameter with a default argument shall have default
277  //   arguments supplied in this or previous declarations. A
278  //   default argument shall not be redefined by a later
279  //   declaration (not even to the same value).
280  //
281  // C++ [dcl.fct.default]p6:
282  //   Except for member functions of class templates, the default arguments
283  //   in a member function definition that appears outside of the class
284  //   definition are added to the set of default arguments provided by the
285  //   member function declaration in the class definition.
286  for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) {
287    ParmVarDecl *OldParam = Old->getParamDecl(p);
288    ParmVarDecl *NewParam = New->getParamDecl(p);
289
290    if (OldParam->hasDefaultArg() && NewParam->hasDefaultArg()) {
291
292      unsigned DiagDefaultParamID =
293        diag::err_param_default_argument_redefinition;
294
295      // MSVC accepts that default parameters be redefined for member functions
296      // of template class. The new default parameter's value is ignored.
297      Invalid = true;
298      if (getLangOptions().Microsoft) {
299        CXXMethodDecl* MD = dyn_cast<CXXMethodDecl>(New);
300        if (MD && MD->getParent()->getDescribedClassTemplate()) {
301          // Merge the old default argument into the new parameter.
302          NewParam->setHasInheritedDefaultArg();
303          if (OldParam->hasUninstantiatedDefaultArg())
304            NewParam->setUninstantiatedDefaultArg(
305                                      OldParam->getUninstantiatedDefaultArg());
306          else
307            NewParam->setDefaultArg(OldParam->getInit());
308          DiagDefaultParamID = diag::warn_param_default_argument_redefinition;
309          Invalid = false;
310        }
311      }
312
313      // FIXME: If we knew where the '=' was, we could easily provide a fix-it
314      // hint here. Alternatively, we could walk the type-source information
315      // for NewParam to find the last source location in the type... but it
316      // isn't worth the effort right now. This is the kind of test case that
317      // is hard to get right:
318      //   int f(int);
319      //   void g(int (*fp)(int) = f);
320      //   void g(int (*fp)(int) = &f);
321      Diag(NewParam->getLocation(), DiagDefaultParamID)
322        << NewParam->getDefaultArgRange();
323
324      // Look for the function declaration where the default argument was
325      // actually written, which may be a declaration prior to Old.
326      for (FunctionDecl *Older = Old->getPreviousDeclaration();
327           Older; Older = Older->getPreviousDeclaration()) {
328        if (!Older->getParamDecl(p)->hasDefaultArg())
329          break;
330
331        OldParam = Older->getParamDecl(p);
332      }
333
334      Diag(OldParam->getLocation(), diag::note_previous_definition)
335        << OldParam->getDefaultArgRange();
336    } else if (OldParam->hasDefaultArg()) {
337      // Merge the old default argument into the new parameter.
338      // It's important to use getInit() here;  getDefaultArg()
339      // strips off any top-level ExprWithCleanups.
340      NewParam->setHasInheritedDefaultArg();
341      if (OldParam->hasUninstantiatedDefaultArg())
342        NewParam->setUninstantiatedDefaultArg(
343                                      OldParam->getUninstantiatedDefaultArg());
344      else
345        NewParam->setDefaultArg(OldParam->getInit());
346    } else if (NewParam->hasDefaultArg()) {
347      if (New->getDescribedFunctionTemplate()) {
348        // Paragraph 4, quoted above, only applies to non-template functions.
349        Diag(NewParam->getLocation(),
350             diag::err_param_default_argument_template_redecl)
351          << NewParam->getDefaultArgRange();
352        Diag(Old->getLocation(), diag::note_template_prev_declaration)
353          << false;
354      } else if (New->getTemplateSpecializationKind()
355                   != TSK_ImplicitInstantiation &&
356                 New->getTemplateSpecializationKind() != TSK_Undeclared) {
357        // C++ [temp.expr.spec]p21:
358        //   Default function arguments shall not be specified in a declaration
359        //   or a definition for one of the following explicit specializations:
360        //     - the explicit specialization of a function template;
361        //     - the explicit specialization of a member function template;
362        //     - the explicit specialization of a member function of a class
363        //       template where the class template specialization to which the
364        //       member function specialization belongs is implicitly
365        //       instantiated.
366        Diag(NewParam->getLocation(), diag::err_template_spec_default_arg)
367          << (New->getTemplateSpecializationKind() ==TSK_ExplicitSpecialization)
368          << New->getDeclName()
369          << NewParam->getDefaultArgRange();
370      } else if (New->getDeclContext()->isDependentContext()) {
371        // C++ [dcl.fct.default]p6 (DR217):
372        //   Default arguments for a member function of a class template shall
373        //   be specified on the initial declaration of the member function
374        //   within the class template.
375        //
376        // Reading the tea leaves a bit in DR217 and its reference to DR205
377        // leads me to the conclusion that one cannot add default function
378        // arguments for an out-of-line definition of a member function of a
379        // dependent type.
380        int WhichKind = 2;
381        if (CXXRecordDecl *Record
382              = dyn_cast<CXXRecordDecl>(New->getDeclContext())) {
383          if (Record->getDescribedClassTemplate())
384            WhichKind = 0;
385          else if (isa<ClassTemplatePartialSpecializationDecl>(Record))
386            WhichKind = 1;
387          else
388            WhichKind = 2;
389        }
390
391        Diag(NewParam->getLocation(),
392             diag::err_param_default_argument_member_template_redecl)
393          << WhichKind
394          << NewParam->getDefaultArgRange();
395      }
396    }
397  }
398
399  if (CheckEquivalentExceptionSpec(Old, New))
400    Invalid = true;
401
402  return Invalid;
403}
404
405/// \brief Merge the exception specifications of two variable declarations.
406///
407/// This is called when there's a redeclaration of a VarDecl. The function
408/// checks if the redeclaration might have an exception specification and
409/// validates compatibility and merges the specs if necessary.
410void Sema::MergeVarDeclExceptionSpecs(VarDecl *New, VarDecl *Old) {
411  // Shortcut if exceptions are disabled.
412  if (!getLangOptions().CXXExceptions)
413    return;
414
415  assert(Context.hasSameType(New->getType(), Old->getType()) &&
416         "Should only be called if types are otherwise the same.");
417
418  QualType NewType = New->getType();
419  QualType OldType = Old->getType();
420
421  // We're only interested in pointers and references to functions, as well
422  // as pointers to member functions.
423  if (const ReferenceType *R = NewType->getAs<ReferenceType>()) {
424    NewType = R->getPointeeType();
425    OldType = OldType->getAs<ReferenceType>()->getPointeeType();
426  } else if (const PointerType *P = NewType->getAs<PointerType>()) {
427    NewType = P->getPointeeType();
428    OldType = OldType->getAs<PointerType>()->getPointeeType();
429  } else if (const MemberPointerType *M = NewType->getAs<MemberPointerType>()) {
430    NewType = M->getPointeeType();
431    OldType = OldType->getAs<MemberPointerType>()->getPointeeType();
432  }
433
434  if (!NewType->isFunctionProtoType())
435    return;
436
437  // There's lots of special cases for functions. For function pointers, system
438  // libraries are hopefully not as broken so that we don't need these
439  // workarounds.
440  if (CheckEquivalentExceptionSpec(
441        OldType->getAs<FunctionProtoType>(), Old->getLocation(),
442        NewType->getAs<FunctionProtoType>(), New->getLocation())) {
443    New->setInvalidDecl();
444  }
445}
446
447/// CheckCXXDefaultArguments - Verify that the default arguments for a
448/// function declaration are well-formed according to C++
449/// [dcl.fct.default].
450void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
451  unsigned NumParams = FD->getNumParams();
452  unsigned p;
453
454  // Find first parameter with a default argument
455  for (p = 0; p < NumParams; ++p) {
456    ParmVarDecl *Param = FD->getParamDecl(p);
457    if (Param->hasDefaultArg())
458      break;
459  }
460
461  // C++ [dcl.fct.default]p4:
462  //   In a given function declaration, all parameters
463  //   subsequent to a parameter with a default argument shall
464  //   have default arguments supplied in this or previous
465  //   declarations. A default argument shall not be redefined
466  //   by a later declaration (not even to the same value).
467  unsigned LastMissingDefaultArg = 0;
468  for (; p < NumParams; ++p) {
469    ParmVarDecl *Param = FD->getParamDecl(p);
470    if (!Param->hasDefaultArg()) {
471      if (Param->isInvalidDecl())
472        /* We already complained about this parameter. */;
473      else if (Param->getIdentifier())
474        Diag(Param->getLocation(),
475             diag::err_param_default_argument_missing_name)
476          << Param->getIdentifier();
477      else
478        Diag(Param->getLocation(),
479             diag::err_param_default_argument_missing);
480
481      LastMissingDefaultArg = p;
482    }
483  }
484
485  if (LastMissingDefaultArg > 0) {
486    // Some default arguments were missing. Clear out all of the
487    // default arguments up to (and including) the last missing
488    // default argument, so that we leave the function parameters
489    // in a semantically valid state.
490    for (p = 0; p <= LastMissingDefaultArg; ++p) {
491      ParmVarDecl *Param = FD->getParamDecl(p);
492      if (Param->hasDefaultArg()) {
493        Param->setDefaultArg(0);
494      }
495    }
496  }
497}
498
499/// isCurrentClassName - Determine whether the identifier II is the
500/// name of the class type currently being defined. In the case of
501/// nested classes, this will only return true if II is the name of
502/// the innermost class.
503bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *,
504                              const CXXScopeSpec *SS) {
505  assert(getLangOptions().CPlusPlus && "No class names in C!");
506
507  CXXRecordDecl *CurDecl;
508  if (SS && SS->isSet() && !SS->isInvalid()) {
509    DeclContext *DC = computeDeclContext(*SS, true);
510    CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
511  } else
512    CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
513
514  if (CurDecl && CurDecl->getIdentifier())
515    return &II == CurDecl->getIdentifier();
516  else
517    return false;
518}
519
520/// \brief Check the validity of a C++ base class specifier.
521///
522/// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
523/// and returns NULL otherwise.
524CXXBaseSpecifier *
525Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
526                         SourceRange SpecifierRange,
527                         bool Virtual, AccessSpecifier Access,
528                         TypeSourceInfo *TInfo,
529                         SourceLocation EllipsisLoc) {
530  QualType BaseType = TInfo->getType();
531
532  // C++ [class.union]p1:
533  //   A union shall not have base classes.
534  if (Class->isUnion()) {
535    Diag(Class->getLocation(), diag::err_base_clause_on_union)
536      << SpecifierRange;
537    return 0;
538  }
539
540  if (EllipsisLoc.isValid() &&
541      !TInfo->getType()->containsUnexpandedParameterPack()) {
542    Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
543      << TInfo->getTypeLoc().getSourceRange();
544    EllipsisLoc = SourceLocation();
545  }
546
547  if (BaseType->isDependentType())
548    return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
549                                          Class->getTagKind() == TTK_Class,
550                                          Access, TInfo, EllipsisLoc);
551
552  SourceLocation BaseLoc = TInfo->getTypeLoc().getBeginLoc();
553
554  // Base specifiers must be record types.
555  if (!BaseType->isRecordType()) {
556    Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
557    return 0;
558  }
559
560  // C++ [class.union]p1:
561  //   A union shall not be used as a base class.
562  if (BaseType->isUnionType()) {
563    Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
564    return 0;
565  }
566
567  // C++ [class.derived]p2:
568  //   The class-name in a base-specifier shall not be an incompletely
569  //   defined class.
570  if (RequireCompleteType(BaseLoc, BaseType,
571                          PDiag(diag::err_incomplete_base_class)
572                            << SpecifierRange)) {
573    Class->setInvalidDecl();
574    return 0;
575  }
576
577  // If the base class is polymorphic or isn't empty, the new one is/isn't, too.
578  RecordDecl *BaseDecl = BaseType->getAs<RecordType>()->getDecl();
579  assert(BaseDecl && "Record type has no declaration");
580  BaseDecl = BaseDecl->getDefinition();
581  assert(BaseDecl && "Base type is not incomplete, but has no definition");
582  CXXRecordDecl * CXXBaseDecl = cast<CXXRecordDecl>(BaseDecl);
583  assert(CXXBaseDecl && "Base type is not a C++ type");
584
585  // C++ [class]p3:
586  //   If a class is marked final and it appears as a base-type-specifier in
587  //   base-clause, the program is ill-formed.
588  if (CXXBaseDecl->hasAttr<FinalAttr>()) {
589    Diag(BaseLoc, diag::err_class_marked_final_used_as_base)
590      << CXXBaseDecl->getDeclName();
591    Diag(CXXBaseDecl->getLocation(), diag::note_previous_decl)
592      << CXXBaseDecl->getDeclName();
593    return 0;
594  }
595
596  if (BaseDecl->isInvalidDecl())
597    Class->setInvalidDecl();
598
599  // Create the base specifier.
600  return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
601                                        Class->getTagKind() == TTK_Class,
602                                        Access, TInfo, EllipsisLoc);
603}
604
605/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
606/// one entry in the base class list of a class specifier, for
607/// example:
608///    class foo : public bar, virtual private baz {
609/// 'public bar' and 'virtual private baz' are each base-specifiers.
610BaseResult
611Sema::ActOnBaseSpecifier(Decl *classdecl, SourceRange SpecifierRange,
612                         bool Virtual, AccessSpecifier Access,
613                         ParsedType basetype, SourceLocation BaseLoc,
614                         SourceLocation EllipsisLoc) {
615  if (!classdecl)
616    return true;
617
618  AdjustDeclIfTemplate(classdecl);
619  CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(classdecl);
620  if (!Class)
621    return true;
622
623  TypeSourceInfo *TInfo = 0;
624  GetTypeFromParser(basetype, &TInfo);
625
626  if (EllipsisLoc.isInvalid() &&
627      DiagnoseUnexpandedParameterPack(SpecifierRange.getBegin(), TInfo,
628                                      UPPC_BaseType))
629    return true;
630
631  if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
632                                                      Virtual, Access, TInfo,
633                                                      EllipsisLoc))
634    return BaseSpec;
635
636  return true;
637}
638
639/// \brief Performs the actual work of attaching the given base class
640/// specifiers to a C++ class.
641bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, CXXBaseSpecifier **Bases,
642                                unsigned NumBases) {
643 if (NumBases == 0)
644    return false;
645
646  // Used to keep track of which base types we have already seen, so
647  // that we can properly diagnose redundant direct base types. Note
648  // that the key is always the unqualified canonical type of the base
649  // class.
650  std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
651
652  // Copy non-redundant base specifiers into permanent storage.
653  unsigned NumGoodBases = 0;
654  bool Invalid = false;
655  for (unsigned idx = 0; idx < NumBases; ++idx) {
656    QualType NewBaseType
657      = Context.getCanonicalType(Bases[idx]->getType());
658    NewBaseType = NewBaseType.getLocalUnqualifiedType();
659    if (!Class->hasObjectMember()) {
660      if (const RecordType *FDTTy =
661            NewBaseType.getTypePtr()->getAs<RecordType>())
662        if (FDTTy->getDecl()->hasObjectMember())
663          Class->setHasObjectMember(true);
664    }
665
666    if (KnownBaseTypes[NewBaseType]) {
667      // C++ [class.mi]p3:
668      //   A class shall not be specified as a direct base class of a
669      //   derived class more than once.
670      Diag(Bases[idx]->getSourceRange().getBegin(),
671           diag::err_duplicate_base_class)
672        << KnownBaseTypes[NewBaseType]->getType()
673        << Bases[idx]->getSourceRange();
674
675      // Delete the duplicate base class specifier; we're going to
676      // overwrite its pointer later.
677      Context.Deallocate(Bases[idx]);
678
679      Invalid = true;
680    } else {
681      // Okay, add this new base class.
682      KnownBaseTypes[NewBaseType] = Bases[idx];
683      Bases[NumGoodBases++] = Bases[idx];
684    }
685  }
686
687  // Attach the remaining base class specifiers to the derived class.
688  Class->setBases(Bases, NumGoodBases);
689
690  // Delete the remaining (good) base class specifiers, since their
691  // data has been copied into the CXXRecordDecl.
692  for (unsigned idx = 0; idx < NumGoodBases; ++idx)
693    Context.Deallocate(Bases[idx]);
694
695  return Invalid;
696}
697
698/// ActOnBaseSpecifiers - Attach the given base specifiers to the
699/// class, after checking whether there are any duplicate base
700/// classes.
701void Sema::ActOnBaseSpecifiers(Decl *ClassDecl, BaseTy **Bases,
702                               unsigned NumBases) {
703  if (!ClassDecl || !Bases || !NumBases)
704    return;
705
706  AdjustDeclIfTemplate(ClassDecl);
707  AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl),
708                       (CXXBaseSpecifier**)(Bases), NumBases);
709}
710
711static CXXRecordDecl *GetClassForType(QualType T) {
712  if (const RecordType *RT = T->getAs<RecordType>())
713    return cast<CXXRecordDecl>(RT->getDecl());
714  else if (const InjectedClassNameType *ICT = T->getAs<InjectedClassNameType>())
715    return ICT->getDecl();
716  else
717    return 0;
718}
719
720/// \brief Determine whether the type \p Derived is a C++ class that is
721/// derived from the type \p Base.
722bool Sema::IsDerivedFrom(QualType Derived, QualType Base) {
723  if (!getLangOptions().CPlusPlus)
724    return false;
725
726  CXXRecordDecl *DerivedRD = GetClassForType(Derived);
727  if (!DerivedRD)
728    return false;
729
730  CXXRecordDecl *BaseRD = GetClassForType(Base);
731  if (!BaseRD)
732    return false;
733
734  // FIXME: instantiate DerivedRD if necessary.  We need a PoI for this.
735  return DerivedRD->hasDefinition() && DerivedRD->isDerivedFrom(BaseRD);
736}
737
738/// \brief Determine whether the type \p Derived is a C++ class that is
739/// derived from the type \p Base.
740bool Sema::IsDerivedFrom(QualType Derived, QualType Base, CXXBasePaths &Paths) {
741  if (!getLangOptions().CPlusPlus)
742    return false;
743
744  CXXRecordDecl *DerivedRD = GetClassForType(Derived);
745  if (!DerivedRD)
746    return false;
747
748  CXXRecordDecl *BaseRD = GetClassForType(Base);
749  if (!BaseRD)
750    return false;
751
752  return DerivedRD->isDerivedFrom(BaseRD, Paths);
753}
754
755void Sema::BuildBasePathArray(const CXXBasePaths &Paths,
756                              CXXCastPath &BasePathArray) {
757  assert(BasePathArray.empty() && "Base path array must be empty!");
758  assert(Paths.isRecordingPaths() && "Must record paths!");
759
760  const CXXBasePath &Path = Paths.front();
761
762  // We first go backward and check if we have a virtual base.
763  // FIXME: It would be better if CXXBasePath had the base specifier for
764  // the nearest virtual base.
765  unsigned Start = 0;
766  for (unsigned I = Path.size(); I != 0; --I) {
767    if (Path[I - 1].Base->isVirtual()) {
768      Start = I - 1;
769      break;
770    }
771  }
772
773  // Now add all bases.
774  for (unsigned I = Start, E = Path.size(); I != E; ++I)
775    BasePathArray.push_back(const_cast<CXXBaseSpecifier*>(Path[I].Base));
776}
777
778/// \brief Determine whether the given base path includes a virtual
779/// base class.
780bool Sema::BasePathInvolvesVirtualBase(const CXXCastPath &BasePath) {
781  for (CXXCastPath::const_iterator B = BasePath.begin(),
782                                BEnd = BasePath.end();
783       B != BEnd; ++B)
784    if ((*B)->isVirtual())
785      return true;
786
787  return false;
788}
789
790/// CheckDerivedToBaseConversion - Check whether the Derived-to-Base
791/// conversion (where Derived and Base are class types) is
792/// well-formed, meaning that the conversion is unambiguous (and
793/// that all of the base classes are accessible). Returns true
794/// and emits a diagnostic if the code is ill-formed, returns false
795/// otherwise. Loc is the location where this routine should point to
796/// if there is an error, and Range is the source range to highlight
797/// if there is an error.
798bool
799Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
800                                   unsigned InaccessibleBaseID,
801                                   unsigned AmbigiousBaseConvID,
802                                   SourceLocation Loc, SourceRange Range,
803                                   DeclarationName Name,
804                                   CXXCastPath *BasePath) {
805  // First, determine whether the path from Derived to Base is
806  // ambiguous. This is slightly more expensive than checking whether
807  // the Derived to Base conversion exists, because here we need to
808  // explore multiple paths to determine if there is an ambiguity.
809  CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
810                     /*DetectVirtual=*/false);
811  bool DerivationOkay = IsDerivedFrom(Derived, Base, Paths);
812  assert(DerivationOkay &&
813         "Can only be used with a derived-to-base conversion");
814  (void)DerivationOkay;
815
816  if (!Paths.isAmbiguous(Context.getCanonicalType(Base).getUnqualifiedType())) {
817    if (InaccessibleBaseID) {
818      // Check that the base class can be accessed.
819      switch (CheckBaseClassAccess(Loc, Base, Derived, Paths.front(),
820                                   InaccessibleBaseID)) {
821        case AR_inaccessible:
822          return true;
823        case AR_accessible:
824        case AR_dependent:
825        case AR_delayed:
826          break;
827      }
828    }
829
830    // Build a base path if necessary.
831    if (BasePath)
832      BuildBasePathArray(Paths, *BasePath);
833    return false;
834  }
835
836  // We know that the derived-to-base conversion is ambiguous, and
837  // we're going to produce a diagnostic. Perform the derived-to-base
838  // search just one more time to compute all of the possible paths so
839  // that we can print them out. This is more expensive than any of
840  // the previous derived-to-base checks we've done, but at this point
841  // performance isn't as much of an issue.
842  Paths.clear();
843  Paths.setRecordingPaths(true);
844  bool StillOkay = IsDerivedFrom(Derived, Base, Paths);
845  assert(StillOkay && "Can only be used with a derived-to-base conversion");
846  (void)StillOkay;
847
848  // Build up a textual representation of the ambiguous paths, e.g.,
849  // D -> B -> A, that will be used to illustrate the ambiguous
850  // conversions in the diagnostic. We only print one of the paths
851  // to each base class subobject.
852  std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
853
854  Diag(Loc, AmbigiousBaseConvID)
855  << Derived << Base << PathDisplayStr << Range << Name;
856  return true;
857}
858
859bool
860Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
861                                   SourceLocation Loc, SourceRange Range,
862                                   CXXCastPath *BasePath,
863                                   bool IgnoreAccess) {
864  return CheckDerivedToBaseConversion(Derived, Base,
865                                      IgnoreAccess ? 0
866                                       : diag::err_upcast_to_inaccessible_base,
867                                      diag::err_ambiguous_derived_to_base_conv,
868                                      Loc, Range, DeclarationName(),
869                                      BasePath);
870}
871
872
873/// @brief Builds a string representing ambiguous paths from a
874/// specific derived class to different subobjects of the same base
875/// class.
876///
877/// This function builds a string that can be used in error messages
878/// to show the different paths that one can take through the
879/// inheritance hierarchy to go from the derived class to different
880/// subobjects of a base class. The result looks something like this:
881/// @code
882/// struct D -> struct B -> struct A
883/// struct D -> struct C -> struct A
884/// @endcode
885std::string Sema::getAmbiguousPathsDisplayString(CXXBasePaths &Paths) {
886  std::string PathDisplayStr;
887  std::set<unsigned> DisplayedPaths;
888  for (CXXBasePaths::paths_iterator Path = Paths.begin();
889       Path != Paths.end(); ++Path) {
890    if (DisplayedPaths.insert(Path->back().SubobjectNumber).second) {
891      // We haven't displayed a path to this particular base
892      // class subobject yet.
893      PathDisplayStr += "\n    ";
894      PathDisplayStr += Context.getTypeDeclType(Paths.getOrigin()).getAsString();
895      for (CXXBasePath::const_iterator Element = Path->begin();
896           Element != Path->end(); ++Element)
897        PathDisplayStr += " -> " + Element->Base->getType().getAsString();
898    }
899  }
900
901  return PathDisplayStr;
902}
903
904//===----------------------------------------------------------------------===//
905// C++ class member Handling
906//===----------------------------------------------------------------------===//
907
908/// ActOnAccessSpecifier - Parsed an access specifier followed by a colon.
909Decl *Sema::ActOnAccessSpecifier(AccessSpecifier Access,
910                                 SourceLocation ASLoc,
911                                 SourceLocation ColonLoc) {
912  assert(Access != AS_none && "Invalid kind for syntactic access specifier!");
913  AccessSpecDecl *ASDecl = AccessSpecDecl::Create(Context, Access, CurContext,
914                                                  ASLoc, ColonLoc);
915  CurContext->addHiddenDecl(ASDecl);
916  return ASDecl;
917}
918
919/// CheckOverrideControl - Check C++0x override control semantics.
920void Sema::CheckOverrideControl(const Decl *D) {
921  const CXXMethodDecl *MD = llvm::dyn_cast<CXXMethodDecl>(D);
922  if (!MD || !MD->isVirtual())
923    return;
924
925  if (MD->isDependentContext())
926    return;
927
928  // C++0x [class.virtual]p3:
929  //   If a virtual function is marked with the virt-specifier override and does
930  //   not override a member function of a base class,
931  //   the program is ill-formed.
932  bool HasOverriddenMethods =
933    MD->begin_overridden_methods() != MD->end_overridden_methods();
934  if (MD->hasAttr<OverrideAttr>() && !HasOverriddenMethods) {
935    Diag(MD->getLocation(),
936                 diag::err_function_marked_override_not_overriding)
937      << MD->getDeclName();
938    return;
939  }
940}
941
942/// CheckIfOverriddenFunctionIsMarkedFinal - Checks whether a virtual member
943/// function overrides a virtual member function marked 'final', according to
944/// C++0x [class.virtual]p3.
945bool Sema::CheckIfOverriddenFunctionIsMarkedFinal(const CXXMethodDecl *New,
946                                                  const CXXMethodDecl *Old) {
947  if (!Old->hasAttr<FinalAttr>())
948    return false;
949
950  Diag(New->getLocation(), diag::err_final_function_overridden)
951    << New->getDeclName();
952  Diag(Old->getLocation(), diag::note_overridden_virtual_function);
953  return true;
954}
955
956/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
957/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
958/// bitfield width if there is one and 'InitExpr' specifies the initializer if
959/// any.
960Decl *
961Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
962                               MultiTemplateParamsArg TemplateParameterLists,
963                               ExprTy *BW, const VirtSpecifiers &VS,
964                               ExprTy *InitExpr, bool IsDefinition,
965                               bool Deleted) {
966  const DeclSpec &DS = D.getDeclSpec();
967  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
968  DeclarationName Name = NameInfo.getName();
969  SourceLocation Loc = NameInfo.getLoc();
970
971  // For anonymous bitfields, the location should point to the type.
972  if (Loc.isInvalid())
973    Loc = D.getSourceRange().getBegin();
974
975  Expr *BitWidth = static_cast<Expr*>(BW);
976  Expr *Init = static_cast<Expr*>(InitExpr);
977
978  assert(isa<CXXRecordDecl>(CurContext));
979  assert(!DS.isFriendSpecified());
980
981  bool isFunc = false;
982  if (D.isFunctionDeclarator())
983    isFunc = true;
984  else if (D.getNumTypeObjects() == 0 &&
985           D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_typename) {
986    QualType TDType = GetTypeFromParser(DS.getRepAsType());
987    isFunc = TDType->isFunctionType();
988  }
989
990  // C++ 9.2p6: A member shall not be declared to have automatic storage
991  // duration (auto, register) or with the extern storage-class-specifier.
992  // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
993  // data members and cannot be applied to names declared const or static,
994  // and cannot be applied to reference members.
995  switch (DS.getStorageClassSpec()) {
996    case DeclSpec::SCS_unspecified:
997    case DeclSpec::SCS_typedef:
998    case DeclSpec::SCS_static:
999      // FALL THROUGH.
1000      break;
1001    case DeclSpec::SCS_mutable:
1002      if (isFunc) {
1003        if (DS.getStorageClassSpecLoc().isValid())
1004          Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
1005        else
1006          Diag(DS.getThreadSpecLoc(), diag::err_mutable_function);
1007
1008        // FIXME: It would be nicer if the keyword was ignored only for this
1009        // declarator. Otherwise we could get follow-up errors.
1010        D.getMutableDeclSpec().ClearStorageClassSpecs();
1011      }
1012      break;
1013    default:
1014      if (DS.getStorageClassSpecLoc().isValid())
1015        Diag(DS.getStorageClassSpecLoc(),
1016             diag::err_storageclass_invalid_for_member);
1017      else
1018        Diag(DS.getThreadSpecLoc(), diag::err_storageclass_invalid_for_member);
1019      D.getMutableDeclSpec().ClearStorageClassSpecs();
1020  }
1021
1022  bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
1023                       DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
1024                      !isFunc);
1025
1026  Decl *Member;
1027  if (isInstField) {
1028    CXXScopeSpec &SS = D.getCXXScopeSpec();
1029
1030
1031    if (SS.isSet() && !SS.isInvalid()) {
1032      // The user provided a superfluous scope specifier inside a class
1033      // definition:
1034      //
1035      // class X {
1036      //   int X::member;
1037      // };
1038      DeclContext *DC = 0;
1039      if ((DC = computeDeclContext(SS, false)) && DC->Equals(CurContext))
1040        Diag(D.getIdentifierLoc(), diag::warn_member_extra_qualification)
1041        << Name << FixItHint::CreateRemoval(SS.getRange());
1042      else
1043        Diag(D.getIdentifierLoc(), diag::err_member_qualification)
1044          << Name << SS.getRange();
1045
1046      SS.clear();
1047    }
1048
1049    // FIXME: Check for template parameters!
1050    // FIXME: Check that the name is an identifier!
1051    Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D, BitWidth,
1052                         AS);
1053    assert(Member && "HandleField never returns null");
1054  } else {
1055    Member = HandleDeclarator(S, D, move(TemplateParameterLists), IsDefinition);
1056    if (!Member) {
1057      return 0;
1058    }
1059
1060    // Non-instance-fields can't have a bitfield.
1061    if (BitWidth) {
1062      if (Member->isInvalidDecl()) {
1063        // don't emit another diagnostic.
1064      } else if (isa<VarDecl>(Member)) {
1065        // C++ 9.6p3: A bit-field shall not be a static member.
1066        // "static member 'A' cannot be a bit-field"
1067        Diag(Loc, diag::err_static_not_bitfield)
1068          << Name << BitWidth->getSourceRange();
1069      } else if (isa<TypedefDecl>(Member)) {
1070        // "typedef member 'x' cannot be a bit-field"
1071        Diag(Loc, diag::err_typedef_not_bitfield)
1072          << Name << BitWidth->getSourceRange();
1073      } else {
1074        // A function typedef ("typedef int f(); f a;").
1075        // C++ 9.6p3: A bit-field shall have integral or enumeration type.
1076        Diag(Loc, diag::err_not_integral_type_bitfield)
1077          << Name << cast<ValueDecl>(Member)->getType()
1078          << BitWidth->getSourceRange();
1079      }
1080
1081      BitWidth = 0;
1082      Member->setInvalidDecl();
1083    }
1084
1085    Member->setAccess(AS);
1086
1087    // If we have declared a member function template, set the access of the
1088    // templated declaration as well.
1089    if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Member))
1090      FunTmpl->getTemplatedDecl()->setAccess(AS);
1091  }
1092
1093  if (VS.isOverrideSpecified()) {
1094    CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Member);
1095    if (!MD || !MD->isVirtual()) {
1096      Diag(Member->getLocStart(),
1097           diag::override_keyword_only_allowed_on_virtual_member_functions)
1098        << "override" << FixItHint::CreateRemoval(VS.getOverrideLoc());
1099    } else
1100      MD->addAttr(new (Context) OverrideAttr(VS.getOverrideLoc(), Context));
1101  }
1102  if (VS.isFinalSpecified()) {
1103    CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Member);
1104    if (!MD || !MD->isVirtual()) {
1105      Diag(Member->getLocStart(),
1106           diag::override_keyword_only_allowed_on_virtual_member_functions)
1107      << "final" << FixItHint::CreateRemoval(VS.getFinalLoc());
1108    } else
1109      MD->addAttr(new (Context) FinalAttr(VS.getFinalLoc(), Context));
1110  }
1111
1112  if (VS.getLastLocation().isValid()) {
1113    // Update the end location of a method that has a virt-specifiers.
1114    if (CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(Member))
1115      MD->setRangeEnd(VS.getLastLocation());
1116  }
1117
1118  CheckOverrideControl(Member);
1119
1120  assert((Name || isInstField) && "No identifier for non-field ?");
1121
1122  if (Init)
1123    AddInitializerToDecl(Member, Init, false,
1124                         DS.getTypeSpecType() == DeclSpec::TST_auto);
1125  if (Deleted) // FIXME: Source location is not very good.
1126    SetDeclDeleted(Member, D.getSourceRange().getBegin());
1127
1128  FinalizeDeclaration(Member);
1129
1130  if (isInstField)
1131    FieldCollector->Add(cast<FieldDecl>(Member));
1132  return Member;
1133}
1134
1135/// \brief Find the direct and/or virtual base specifiers that
1136/// correspond to the given base type, for use in base initialization
1137/// within a constructor.
1138static bool FindBaseInitializer(Sema &SemaRef,
1139                                CXXRecordDecl *ClassDecl,
1140                                QualType BaseType,
1141                                const CXXBaseSpecifier *&DirectBaseSpec,
1142                                const CXXBaseSpecifier *&VirtualBaseSpec) {
1143  // First, check for a direct base class.
1144  DirectBaseSpec = 0;
1145  for (CXXRecordDecl::base_class_const_iterator Base
1146         = ClassDecl->bases_begin();
1147       Base != ClassDecl->bases_end(); ++Base) {
1148    if (SemaRef.Context.hasSameUnqualifiedType(BaseType, Base->getType())) {
1149      // We found a direct base of this type. That's what we're
1150      // initializing.
1151      DirectBaseSpec = &*Base;
1152      break;
1153    }
1154  }
1155
1156  // Check for a virtual base class.
1157  // FIXME: We might be able to short-circuit this if we know in advance that
1158  // there are no virtual bases.
1159  VirtualBaseSpec = 0;
1160  if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
1161    // We haven't found a base yet; search the class hierarchy for a
1162    // virtual base class.
1163    CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
1164                       /*DetectVirtual=*/false);
1165    if (SemaRef.IsDerivedFrom(SemaRef.Context.getTypeDeclType(ClassDecl),
1166                              BaseType, Paths)) {
1167      for (CXXBasePaths::paths_iterator Path = Paths.begin();
1168           Path != Paths.end(); ++Path) {
1169        if (Path->back().Base->isVirtual()) {
1170          VirtualBaseSpec = Path->back().Base;
1171          break;
1172        }
1173      }
1174    }
1175  }
1176
1177  return DirectBaseSpec || VirtualBaseSpec;
1178}
1179
1180/// ActOnMemInitializer - Handle a C++ member initializer.
1181MemInitResult
1182Sema::ActOnMemInitializer(Decl *ConstructorD,
1183                          Scope *S,
1184                          CXXScopeSpec &SS,
1185                          IdentifierInfo *MemberOrBase,
1186                          ParsedType TemplateTypeTy,
1187                          SourceLocation IdLoc,
1188                          SourceLocation LParenLoc,
1189                          ExprTy **Args, unsigned NumArgs,
1190                          SourceLocation RParenLoc,
1191                          SourceLocation EllipsisLoc) {
1192  if (!ConstructorD)
1193    return true;
1194
1195  AdjustDeclIfTemplate(ConstructorD);
1196
1197  CXXConstructorDecl *Constructor
1198    = dyn_cast<CXXConstructorDecl>(ConstructorD);
1199  if (!Constructor) {
1200    // The user wrote a constructor initializer on a function that is
1201    // not a C++ constructor. Ignore the error for now, because we may
1202    // have more member initializers coming; we'll diagnose it just
1203    // once in ActOnMemInitializers.
1204    return true;
1205  }
1206
1207  CXXRecordDecl *ClassDecl = Constructor->getParent();
1208
1209  // C++ [class.base.init]p2:
1210  //   Names in a mem-initializer-id are looked up in the scope of the
1211  //   constructor's class and, if not found in that scope, are looked
1212  //   up in the scope containing the constructor's definition.
1213  //   [Note: if the constructor's class contains a member with the
1214  //   same name as a direct or virtual base class of the class, a
1215  //   mem-initializer-id naming the member or base class and composed
1216  //   of a single identifier refers to the class member. A
1217  //   mem-initializer-id for the hidden base class may be specified
1218  //   using a qualified name. ]
1219  if (!SS.getScopeRep() && !TemplateTypeTy) {
1220    // Look for a member, first.
1221    FieldDecl *Member = 0;
1222    DeclContext::lookup_result Result
1223      = ClassDecl->lookup(MemberOrBase);
1224    if (Result.first != Result.second) {
1225      Member = dyn_cast<FieldDecl>(*Result.first);
1226
1227      if (Member) {
1228        if (EllipsisLoc.isValid())
1229          Diag(EllipsisLoc, diag::err_pack_expansion_member_init)
1230            << MemberOrBase << SourceRange(IdLoc, RParenLoc);
1231
1232        return BuildMemberInitializer(Member, (Expr**)Args, NumArgs, IdLoc,
1233                                    LParenLoc, RParenLoc);
1234      }
1235
1236      // Handle anonymous union case.
1237      if (IndirectFieldDecl* IndirectField
1238            = dyn_cast<IndirectFieldDecl>(*Result.first)) {
1239        if (EllipsisLoc.isValid())
1240          Diag(EllipsisLoc, diag::err_pack_expansion_member_init)
1241            << MemberOrBase << SourceRange(IdLoc, RParenLoc);
1242
1243         return BuildMemberInitializer(IndirectField, (Expr**)Args,
1244                                       NumArgs, IdLoc,
1245                                       LParenLoc, RParenLoc);
1246      }
1247    }
1248  }
1249  // It didn't name a member, so see if it names a class.
1250  QualType BaseType;
1251  TypeSourceInfo *TInfo = 0;
1252
1253  if (TemplateTypeTy) {
1254    BaseType = GetTypeFromParser(TemplateTypeTy, &TInfo);
1255  } else {
1256    LookupResult R(*this, MemberOrBase, IdLoc, LookupOrdinaryName);
1257    LookupParsedName(R, S, &SS);
1258
1259    TypeDecl *TyD = R.getAsSingle<TypeDecl>();
1260    if (!TyD) {
1261      if (R.isAmbiguous()) return true;
1262
1263      // We don't want access-control diagnostics here.
1264      R.suppressDiagnostics();
1265
1266      if (SS.isSet() && isDependentScopeSpecifier(SS)) {
1267        bool NotUnknownSpecialization = false;
1268        DeclContext *DC = computeDeclContext(SS, false);
1269        if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(DC))
1270          NotUnknownSpecialization = !Record->hasAnyDependentBases();
1271
1272        if (!NotUnknownSpecialization) {
1273          // When the scope specifier can refer to a member of an unknown
1274          // specialization, we take it as a type name.
1275          BaseType = CheckTypenameType(ETK_None, SourceLocation(),
1276                                       SS.getWithLocInContext(Context),
1277                                       *MemberOrBase, IdLoc);
1278          if (BaseType.isNull())
1279            return true;
1280
1281          R.clear();
1282          R.setLookupName(MemberOrBase);
1283        }
1284      }
1285
1286      // If no results were found, try to correct typos.
1287      if (R.empty() && BaseType.isNull() &&
1288          CorrectTypo(R, S, &SS, ClassDecl, 0, CTC_NoKeywords) &&
1289          R.isSingleResult()) {
1290        if (FieldDecl *Member = R.getAsSingle<FieldDecl>()) {
1291          if (Member->getDeclContext()->getRedeclContext()->Equals(ClassDecl)) {
1292            // We have found a non-static data member with a similar
1293            // name to what was typed; complain and initialize that
1294            // member.
1295            Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
1296              << MemberOrBase << true << R.getLookupName()
1297              << FixItHint::CreateReplacement(R.getNameLoc(),
1298                                              R.getLookupName().getAsString());
1299            Diag(Member->getLocation(), diag::note_previous_decl)
1300              << Member->getDeclName();
1301
1302            return BuildMemberInitializer(Member, (Expr**)Args, NumArgs, IdLoc,
1303                                          LParenLoc, RParenLoc);
1304          }
1305        } else if (TypeDecl *Type = R.getAsSingle<TypeDecl>()) {
1306          const CXXBaseSpecifier *DirectBaseSpec;
1307          const CXXBaseSpecifier *VirtualBaseSpec;
1308          if (FindBaseInitializer(*this, ClassDecl,
1309                                  Context.getTypeDeclType(Type),
1310                                  DirectBaseSpec, VirtualBaseSpec)) {
1311            // We have found a direct or virtual base class with a
1312            // similar name to what was typed; complain and initialize
1313            // that base class.
1314            Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
1315              << MemberOrBase << false << R.getLookupName()
1316              << FixItHint::CreateReplacement(R.getNameLoc(),
1317                                              R.getLookupName().getAsString());
1318
1319            const CXXBaseSpecifier *BaseSpec = DirectBaseSpec? DirectBaseSpec
1320                                                             : VirtualBaseSpec;
1321            Diag(BaseSpec->getSourceRange().getBegin(),
1322                 diag::note_base_class_specified_here)
1323              << BaseSpec->getType()
1324              << BaseSpec->getSourceRange();
1325
1326            TyD = Type;
1327          }
1328        }
1329      }
1330
1331      if (!TyD && BaseType.isNull()) {
1332        Diag(IdLoc, diag::err_mem_init_not_member_or_class)
1333          << MemberOrBase << SourceRange(IdLoc, RParenLoc);
1334        return true;
1335      }
1336    }
1337
1338    if (BaseType.isNull()) {
1339      BaseType = Context.getTypeDeclType(TyD);
1340      if (SS.isSet()) {
1341        NestedNameSpecifier *Qualifier =
1342          static_cast<NestedNameSpecifier*>(SS.getScopeRep());
1343
1344        // FIXME: preserve source range information
1345        BaseType = Context.getElaboratedType(ETK_None, Qualifier, BaseType);
1346      }
1347    }
1348  }
1349
1350  if (!TInfo)
1351    TInfo = Context.getTrivialTypeSourceInfo(BaseType, IdLoc);
1352
1353  return BuildBaseInitializer(BaseType, TInfo, (Expr **)Args, NumArgs,
1354                              LParenLoc, RParenLoc, ClassDecl, EllipsisLoc);
1355}
1356
1357/// Checks an initializer expression for use of uninitialized fields, such as
1358/// containing the field that is being initialized. Returns true if there is an
1359/// uninitialized field was used an updates the SourceLocation parameter; false
1360/// otherwise.
1361static bool InitExprContainsUninitializedFields(const Stmt *S,
1362                                                const ValueDecl *LhsField,
1363                                                SourceLocation *L) {
1364  assert(isa<FieldDecl>(LhsField) || isa<IndirectFieldDecl>(LhsField));
1365
1366  if (isa<CallExpr>(S)) {
1367    // Do not descend into function calls or constructors, as the use
1368    // of an uninitialized field may be valid. One would have to inspect
1369    // the contents of the function/ctor to determine if it is safe or not.
1370    // i.e. Pass-by-value is never safe, but pass-by-reference and pointers
1371    // may be safe, depending on what the function/ctor does.
1372    return false;
1373  }
1374  if (const MemberExpr *ME = dyn_cast<MemberExpr>(S)) {
1375    const NamedDecl *RhsField = ME->getMemberDecl();
1376
1377    if (const VarDecl *VD = dyn_cast<VarDecl>(RhsField)) {
1378      // The member expression points to a static data member.
1379      assert(VD->isStaticDataMember() &&
1380             "Member points to non-static data member!");
1381      (void)VD;
1382      return false;
1383    }
1384
1385    if (isa<EnumConstantDecl>(RhsField)) {
1386      // The member expression points to an enum.
1387      return false;
1388    }
1389
1390    if (RhsField == LhsField) {
1391      // Initializing a field with itself. Throw a warning.
1392      // But wait; there are exceptions!
1393      // Exception #1:  The field may not belong to this record.
1394      // e.g. Foo(const Foo& rhs) : A(rhs.A) {}
1395      const Expr *base = ME->getBase();
1396      if (base != NULL && !isa<CXXThisExpr>(base->IgnoreParenCasts())) {
1397        // Even though the field matches, it does not belong to this record.
1398        return false;
1399      }
1400      // None of the exceptions triggered; return true to indicate an
1401      // uninitialized field was used.
1402      *L = ME->getMemberLoc();
1403      return true;
1404    }
1405  } else if (isa<UnaryExprOrTypeTraitExpr>(S)) {
1406    // sizeof/alignof doesn't reference contents, do not warn.
1407    return false;
1408  } else if (const UnaryOperator *UOE = dyn_cast<UnaryOperator>(S)) {
1409    // address-of doesn't reference contents (the pointer may be dereferenced
1410    // in the same expression but it would be rare; and weird).
1411    if (UOE->getOpcode() == UO_AddrOf)
1412      return false;
1413  }
1414  for (Stmt::const_child_range it = S->children(); it; ++it) {
1415    if (!*it) {
1416      // An expression such as 'member(arg ?: "")' may trigger this.
1417      continue;
1418    }
1419    if (InitExprContainsUninitializedFields(*it, LhsField, L))
1420      return true;
1421  }
1422  return false;
1423}
1424
1425MemInitResult
1426Sema::BuildMemberInitializer(ValueDecl *Member, Expr **Args,
1427                             unsigned NumArgs, SourceLocation IdLoc,
1428                             SourceLocation LParenLoc,
1429                             SourceLocation RParenLoc) {
1430  FieldDecl *DirectMember = dyn_cast<FieldDecl>(Member);
1431  IndirectFieldDecl *IndirectMember = dyn_cast<IndirectFieldDecl>(Member);
1432  assert((DirectMember || IndirectMember) &&
1433         "Member must be a FieldDecl or IndirectFieldDecl");
1434
1435  if (Member->isInvalidDecl())
1436    return true;
1437
1438  // Diagnose value-uses of fields to initialize themselves, e.g.
1439  //   foo(foo)
1440  // where foo is not also a parameter to the constructor.
1441  // TODO: implement -Wuninitialized and fold this into that framework.
1442  for (unsigned i = 0; i < NumArgs; ++i) {
1443    SourceLocation L;
1444    if (InitExprContainsUninitializedFields(Args[i], Member, &L)) {
1445      // FIXME: Return true in the case when other fields are used before being
1446      // uninitialized. For example, let this field be the i'th field. When
1447      // initializing the i'th field, throw a warning if any of the >= i'th
1448      // fields are used, as they are not yet initialized.
1449      // Right now we are only handling the case where the i'th field uses
1450      // itself in its initializer.
1451      Diag(L, diag::warn_field_is_uninit);
1452    }
1453  }
1454
1455  bool HasDependentArg = false;
1456  for (unsigned i = 0; i < NumArgs; i++)
1457    HasDependentArg |= Args[i]->isTypeDependent();
1458
1459  Expr *Init;
1460  if (Member->getType()->isDependentType() || HasDependentArg) {
1461    // Can't check initialization for a member of dependent type or when
1462    // any of the arguments are type-dependent expressions.
1463    Init = new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1464                                       RParenLoc);
1465
1466    // Erase any temporaries within this evaluation context; we're not
1467    // going to track them in the AST, since we'll be rebuilding the
1468    // ASTs during template instantiation.
1469    ExprTemporaries.erase(
1470              ExprTemporaries.begin() + ExprEvalContexts.back().NumTemporaries,
1471                          ExprTemporaries.end());
1472  } else {
1473    // Initialize the member.
1474    InitializedEntity MemberEntity =
1475      DirectMember ? InitializedEntity::InitializeMember(DirectMember, 0)
1476                   : InitializedEntity::InitializeMember(IndirectMember, 0);
1477    InitializationKind Kind =
1478      InitializationKind::CreateDirect(IdLoc, LParenLoc, RParenLoc);
1479
1480    InitializationSequence InitSeq(*this, MemberEntity, Kind, Args, NumArgs);
1481
1482    ExprResult MemberInit =
1483      InitSeq.Perform(*this, MemberEntity, Kind,
1484                      MultiExprArg(*this, Args, NumArgs), 0);
1485    if (MemberInit.isInvalid())
1486      return true;
1487
1488    CheckImplicitConversions(MemberInit.get(), LParenLoc);
1489
1490    // C++0x [class.base.init]p7:
1491    //   The initialization of each base and member constitutes a
1492    //   full-expression.
1493    MemberInit = MaybeCreateExprWithCleanups(MemberInit);
1494    if (MemberInit.isInvalid())
1495      return true;
1496
1497    // If we are in a dependent context, template instantiation will
1498    // perform this type-checking again. Just save the arguments that we
1499    // received in a ParenListExpr.
1500    // FIXME: This isn't quite ideal, since our ASTs don't capture all
1501    // of the information that we have about the member
1502    // initializer. However, deconstructing the ASTs is a dicey process,
1503    // and this approach is far more likely to get the corner cases right.
1504    if (CurContext->isDependentContext())
1505      Init = new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1506                                               RParenLoc);
1507    else
1508      Init = MemberInit.get();
1509  }
1510
1511  if (DirectMember) {
1512    return new (Context) CXXCtorInitializer(Context, DirectMember,
1513                                                    IdLoc, LParenLoc, Init,
1514                                                    RParenLoc);
1515  } else {
1516    return new (Context) CXXCtorInitializer(Context, IndirectMember,
1517                                                    IdLoc, LParenLoc, Init,
1518                                                    RParenLoc);
1519  }
1520}
1521
1522MemInitResult
1523Sema::BuildDelegatingInitializer(TypeSourceInfo *TInfo,
1524                                 Expr **Args, unsigned NumArgs,
1525                                 SourceLocation NameLoc,
1526                                 SourceLocation LParenLoc,
1527                                 SourceLocation RParenLoc,
1528                                 CXXRecordDecl *ClassDecl) {
1529  SourceLocation Loc = TInfo->getTypeLoc().getLocalSourceRange().getBegin();
1530  if (!LangOpts.CPlusPlus0x)
1531    return Diag(Loc, diag::err_delegation_0x_only)
1532      << TInfo->getTypeLoc().getLocalSourceRange();
1533
1534  // Initialize the object.
1535  InitializedEntity DelegationEntity = InitializedEntity::InitializeDelegation(
1536                                     QualType(ClassDecl->getTypeForDecl(), 0));
1537  InitializationKind Kind =
1538    InitializationKind::CreateDirect(NameLoc, LParenLoc, RParenLoc);
1539
1540  InitializationSequence InitSeq(*this, DelegationEntity, Kind, Args, NumArgs);
1541
1542  ExprResult DelegationInit =
1543    InitSeq.Perform(*this, DelegationEntity, Kind,
1544                    MultiExprArg(*this, Args, NumArgs), 0);
1545  if (DelegationInit.isInvalid())
1546    return true;
1547
1548  CXXConstructExpr *ConExpr = cast<CXXConstructExpr>(DelegationInit.get());
1549  CXXConstructorDecl *Constructor = ConExpr->getConstructor();
1550  assert(Constructor && "Delegating constructor with no target?");
1551
1552  CheckImplicitConversions(DelegationInit.get(), LParenLoc);
1553
1554  // C++0x [class.base.init]p7:
1555  //   The initialization of each base and member constitutes a
1556  //   full-expression.
1557  DelegationInit = MaybeCreateExprWithCleanups(DelegationInit);
1558  if (DelegationInit.isInvalid())
1559    return true;
1560
1561  // If we are in a dependent context, template instantiation will
1562  // perform this type-checking again. Just save the arguments that we
1563  // received in a ParenListExpr.
1564  // FIXME: This isn't quite ideal, since our ASTs don't capture all
1565  // of the information that we have about the base
1566  // initializer. However, deconstructing the ASTs is a dicey process,
1567  // and this approach is far more likely to get the corner cases right.
1568  if (CurContext->isDependentContext()) {
1569    ExprResult Init
1570      = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args,
1571                                          NumArgs, RParenLoc));
1572    return new (Context) CXXCtorInitializer(Context, Loc, LParenLoc,
1573                                            Constructor, Init.takeAs<Expr>(),
1574                                            RParenLoc);
1575  }
1576
1577  return new (Context) CXXCtorInitializer(Context, Loc, LParenLoc, Constructor,
1578                                          DelegationInit.takeAs<Expr>(),
1579                                          RParenLoc);
1580}
1581
1582MemInitResult
1583Sema::BuildBaseInitializer(QualType BaseType, TypeSourceInfo *BaseTInfo,
1584                           Expr **Args, unsigned NumArgs,
1585                           SourceLocation LParenLoc, SourceLocation RParenLoc,
1586                           CXXRecordDecl *ClassDecl,
1587                           SourceLocation EllipsisLoc) {
1588  bool HasDependentArg = false;
1589  for (unsigned i = 0; i < NumArgs; i++)
1590    HasDependentArg |= Args[i]->isTypeDependent();
1591
1592  SourceLocation BaseLoc
1593    = BaseTInfo->getTypeLoc().getLocalSourceRange().getBegin();
1594
1595  if (!BaseType->isDependentType() && !BaseType->isRecordType())
1596    return Diag(BaseLoc, diag::err_base_init_does_not_name_class)
1597             << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
1598
1599  // C++ [class.base.init]p2:
1600  //   [...] Unless the mem-initializer-id names a nonstatic data
1601  //   member of the constructor's class or a direct or virtual base
1602  //   of that class, the mem-initializer is ill-formed. A
1603  //   mem-initializer-list can initialize a base class using any
1604  //   name that denotes that base class type.
1605  bool Dependent = BaseType->isDependentType() || HasDependentArg;
1606
1607  if (EllipsisLoc.isValid()) {
1608    // This is a pack expansion.
1609    if (!BaseType->containsUnexpandedParameterPack())  {
1610      Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
1611        << SourceRange(BaseLoc, RParenLoc);
1612
1613      EllipsisLoc = SourceLocation();
1614    }
1615  } else {
1616    // Check for any unexpanded parameter packs.
1617    if (DiagnoseUnexpandedParameterPack(BaseLoc, BaseTInfo, UPPC_Initializer))
1618      return true;
1619
1620    for (unsigned I = 0; I != NumArgs; ++I)
1621      if (DiagnoseUnexpandedParameterPack(Args[I]))
1622        return true;
1623  }
1624
1625  // Check for direct and virtual base classes.
1626  const CXXBaseSpecifier *DirectBaseSpec = 0;
1627  const CXXBaseSpecifier *VirtualBaseSpec = 0;
1628  if (!Dependent) {
1629    if (Context.hasSameUnqualifiedType(QualType(ClassDecl->getTypeForDecl(),0),
1630                                       BaseType))
1631      return BuildDelegatingInitializer(BaseTInfo, Args, NumArgs, BaseLoc,
1632                                        LParenLoc, RParenLoc, ClassDecl);
1633
1634    FindBaseInitializer(*this, ClassDecl, BaseType, DirectBaseSpec,
1635                        VirtualBaseSpec);
1636
1637    // C++ [base.class.init]p2:
1638    // Unless the mem-initializer-id names a nonstatic data member of the
1639    // constructor's class or a direct or virtual base of that class, the
1640    // mem-initializer is ill-formed.
1641    if (!DirectBaseSpec && !VirtualBaseSpec) {
1642      // If the class has any dependent bases, then it's possible that
1643      // one of those types will resolve to the same type as
1644      // BaseType. Therefore, just treat this as a dependent base
1645      // class initialization.  FIXME: Should we try to check the
1646      // initialization anyway? It seems odd.
1647      if (ClassDecl->hasAnyDependentBases())
1648        Dependent = true;
1649      else
1650        return Diag(BaseLoc, diag::err_not_direct_base_or_virtual)
1651          << BaseType << Context.getTypeDeclType(ClassDecl)
1652          << BaseTInfo->getTypeLoc().getLocalSourceRange();
1653    }
1654  }
1655
1656  if (Dependent) {
1657    // Can't check initialization for a base of dependent type or when
1658    // any of the arguments are type-dependent expressions.
1659    ExprResult BaseInit
1660      = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1661                                          RParenLoc));
1662
1663    // Erase any temporaries within this evaluation context; we're not
1664    // going to track them in the AST, since we'll be rebuilding the
1665    // ASTs during template instantiation.
1666    ExprTemporaries.erase(
1667              ExprTemporaries.begin() + ExprEvalContexts.back().NumTemporaries,
1668                          ExprTemporaries.end());
1669
1670    return new (Context) CXXCtorInitializer(Context, BaseTInfo,
1671                                                    /*IsVirtual=*/false,
1672                                                    LParenLoc,
1673                                                    BaseInit.takeAs<Expr>(),
1674                                                    RParenLoc,
1675                                                    EllipsisLoc);
1676  }
1677
1678  // C++ [base.class.init]p2:
1679  //   If a mem-initializer-id is ambiguous because it designates both
1680  //   a direct non-virtual base class and an inherited virtual base
1681  //   class, the mem-initializer is ill-formed.
1682  if (DirectBaseSpec && VirtualBaseSpec)
1683    return Diag(BaseLoc, diag::err_base_init_direct_and_virtual)
1684      << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
1685
1686  CXXBaseSpecifier *BaseSpec
1687    = const_cast<CXXBaseSpecifier *>(DirectBaseSpec);
1688  if (!BaseSpec)
1689    BaseSpec = const_cast<CXXBaseSpecifier *>(VirtualBaseSpec);
1690
1691  // Initialize the base.
1692  InitializedEntity BaseEntity =
1693    InitializedEntity::InitializeBase(Context, BaseSpec, VirtualBaseSpec);
1694  InitializationKind Kind =
1695    InitializationKind::CreateDirect(BaseLoc, LParenLoc, RParenLoc);
1696
1697  InitializationSequence InitSeq(*this, BaseEntity, Kind, Args, NumArgs);
1698
1699  ExprResult BaseInit =
1700    InitSeq.Perform(*this, BaseEntity, Kind,
1701                    MultiExprArg(*this, Args, NumArgs), 0);
1702  if (BaseInit.isInvalid())
1703    return true;
1704
1705  CheckImplicitConversions(BaseInit.get(), LParenLoc);
1706
1707  // C++0x [class.base.init]p7:
1708  //   The initialization of each base and member constitutes a
1709  //   full-expression.
1710  BaseInit = MaybeCreateExprWithCleanups(BaseInit);
1711  if (BaseInit.isInvalid())
1712    return true;
1713
1714  // If we are in a dependent context, template instantiation will
1715  // perform this type-checking again. Just save the arguments that we
1716  // received in a ParenListExpr.
1717  // FIXME: This isn't quite ideal, since our ASTs don't capture all
1718  // of the information that we have about the base
1719  // initializer. However, deconstructing the ASTs is a dicey process,
1720  // and this approach is far more likely to get the corner cases right.
1721  if (CurContext->isDependentContext()) {
1722    ExprResult Init
1723      = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1724                                          RParenLoc));
1725    return new (Context) CXXCtorInitializer(Context, BaseTInfo,
1726                                                    BaseSpec->isVirtual(),
1727                                                    LParenLoc,
1728                                                    Init.takeAs<Expr>(),
1729                                                    RParenLoc,
1730                                                    EllipsisLoc);
1731  }
1732
1733  return new (Context) CXXCtorInitializer(Context, BaseTInfo,
1734                                                  BaseSpec->isVirtual(),
1735                                                  LParenLoc,
1736                                                  BaseInit.takeAs<Expr>(),
1737                                                  RParenLoc,
1738                                                  EllipsisLoc);
1739}
1740
1741/// ImplicitInitializerKind - How an implicit base or member initializer should
1742/// initialize its base or member.
1743enum ImplicitInitializerKind {
1744  IIK_Default,
1745  IIK_Copy,
1746  IIK_Move
1747};
1748
1749static bool
1750BuildImplicitBaseInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
1751                             ImplicitInitializerKind ImplicitInitKind,
1752                             CXXBaseSpecifier *BaseSpec,
1753                             bool IsInheritedVirtualBase,
1754                             CXXCtorInitializer *&CXXBaseInit) {
1755  InitializedEntity InitEntity
1756    = InitializedEntity::InitializeBase(SemaRef.Context, BaseSpec,
1757                                        IsInheritedVirtualBase);
1758
1759  ExprResult BaseInit;
1760
1761  switch (ImplicitInitKind) {
1762  case IIK_Default: {
1763    InitializationKind InitKind
1764      = InitializationKind::CreateDefault(Constructor->getLocation());
1765    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
1766    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind,
1767                               MultiExprArg(SemaRef, 0, 0));
1768    break;
1769  }
1770
1771  case IIK_Copy: {
1772    ParmVarDecl *Param = Constructor->getParamDecl(0);
1773    QualType ParamType = Param->getType().getNonReferenceType();
1774
1775    Expr *CopyCtorArg =
1776      DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(), Param,
1777                          Constructor->getLocation(), ParamType,
1778                          VK_LValue, 0);
1779
1780    // Cast to the base class to avoid ambiguities.
1781    QualType ArgTy =
1782      SemaRef.Context.getQualifiedType(BaseSpec->getType().getUnqualifiedType(),
1783                                       ParamType.getQualifiers());
1784
1785    CXXCastPath BasePath;
1786    BasePath.push_back(BaseSpec);
1787    CopyCtorArg = SemaRef.ImpCastExprToType(CopyCtorArg, ArgTy,
1788                                            CK_UncheckedDerivedToBase,
1789                                            VK_LValue, &BasePath).take();
1790
1791    InitializationKind InitKind
1792      = InitializationKind::CreateDirect(Constructor->getLocation(),
1793                                         SourceLocation(), SourceLocation());
1794    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind,
1795                                   &CopyCtorArg, 1);
1796    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind,
1797                               MultiExprArg(&CopyCtorArg, 1));
1798    break;
1799  }
1800
1801  case IIK_Move:
1802    assert(false && "Unhandled initializer kind!");
1803  }
1804
1805  BaseInit = SemaRef.MaybeCreateExprWithCleanups(BaseInit);
1806  if (BaseInit.isInvalid())
1807    return true;
1808
1809  CXXBaseInit =
1810    new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
1811               SemaRef.Context.getTrivialTypeSourceInfo(BaseSpec->getType(),
1812                                                        SourceLocation()),
1813                                             BaseSpec->isVirtual(),
1814                                             SourceLocation(),
1815                                             BaseInit.takeAs<Expr>(),
1816                                             SourceLocation(),
1817                                             SourceLocation());
1818
1819  return false;
1820}
1821
1822static bool
1823BuildImplicitMemberInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
1824                               ImplicitInitializerKind ImplicitInitKind,
1825                               FieldDecl *Field,
1826                               CXXCtorInitializer *&CXXMemberInit) {
1827  if (Field->isInvalidDecl())
1828    return true;
1829
1830  SourceLocation Loc = Constructor->getLocation();
1831
1832  if (ImplicitInitKind == IIK_Copy) {
1833    ParmVarDecl *Param = Constructor->getParamDecl(0);
1834    QualType ParamType = Param->getType().getNonReferenceType();
1835
1836    Expr *MemberExprBase =
1837      DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(), Param,
1838                          Loc, ParamType, VK_LValue, 0);
1839
1840    // Build a reference to this field within the parameter.
1841    CXXScopeSpec SS;
1842    LookupResult MemberLookup(SemaRef, Field->getDeclName(), Loc,
1843                              Sema::LookupMemberName);
1844    MemberLookup.addDecl(Field, AS_public);
1845    MemberLookup.resolveKind();
1846    ExprResult CopyCtorArg
1847      = SemaRef.BuildMemberReferenceExpr(MemberExprBase,
1848                                         ParamType, Loc,
1849                                         /*IsArrow=*/false,
1850                                         SS,
1851                                         /*FirstQualifierInScope=*/0,
1852                                         MemberLookup,
1853                                         /*TemplateArgs=*/0);
1854    if (CopyCtorArg.isInvalid())
1855      return true;
1856
1857    // When the field we are copying is an array, create index variables for
1858    // each dimension of the array. We use these index variables to subscript
1859    // the source array, and other clients (e.g., CodeGen) will perform the
1860    // necessary iteration with these index variables.
1861    llvm::SmallVector<VarDecl *, 4> IndexVariables;
1862    QualType BaseType = Field->getType();
1863    QualType SizeType = SemaRef.Context.getSizeType();
1864    while (const ConstantArrayType *Array
1865                          = SemaRef.Context.getAsConstantArrayType(BaseType)) {
1866      // Create the iteration variable for this array index.
1867      IdentifierInfo *IterationVarName = 0;
1868      {
1869        llvm::SmallString<8> Str;
1870        llvm::raw_svector_ostream OS(Str);
1871        OS << "__i" << IndexVariables.size();
1872        IterationVarName = &SemaRef.Context.Idents.get(OS.str());
1873      }
1874      VarDecl *IterationVar
1875        = VarDecl::Create(SemaRef.Context, SemaRef.CurContext, Loc, Loc,
1876                          IterationVarName, SizeType,
1877                        SemaRef.Context.getTrivialTypeSourceInfo(SizeType, Loc),
1878                          SC_None, SC_None);
1879      IndexVariables.push_back(IterationVar);
1880
1881      // Create a reference to the iteration variable.
1882      ExprResult IterationVarRef
1883        = SemaRef.BuildDeclRefExpr(IterationVar, SizeType, VK_RValue, Loc);
1884      assert(!IterationVarRef.isInvalid() &&
1885             "Reference to invented variable cannot fail!");
1886
1887      // Subscript the array with this iteration variable.
1888      CopyCtorArg = SemaRef.CreateBuiltinArraySubscriptExpr(CopyCtorArg.take(),
1889                                                            Loc,
1890                                                        IterationVarRef.take(),
1891                                                            Loc);
1892      if (CopyCtorArg.isInvalid())
1893        return true;
1894
1895      BaseType = Array->getElementType();
1896    }
1897
1898    // Construct the entity that we will be initializing. For an array, this
1899    // will be first element in the array, which may require several levels
1900    // of array-subscript entities.
1901    llvm::SmallVector<InitializedEntity, 4> Entities;
1902    Entities.reserve(1 + IndexVariables.size());
1903    Entities.push_back(InitializedEntity::InitializeMember(Field));
1904    for (unsigned I = 0, N = IndexVariables.size(); I != N; ++I)
1905      Entities.push_back(InitializedEntity::InitializeElement(SemaRef.Context,
1906                                                              0,
1907                                                              Entities.back()));
1908
1909    // Direct-initialize to use the copy constructor.
1910    InitializationKind InitKind =
1911      InitializationKind::CreateDirect(Loc, SourceLocation(), SourceLocation());
1912
1913    Expr *CopyCtorArgE = CopyCtorArg.takeAs<Expr>();
1914    InitializationSequence InitSeq(SemaRef, Entities.back(), InitKind,
1915                                   &CopyCtorArgE, 1);
1916
1917    ExprResult MemberInit
1918      = InitSeq.Perform(SemaRef, Entities.back(), InitKind,
1919                        MultiExprArg(&CopyCtorArgE, 1));
1920    MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
1921    if (MemberInit.isInvalid())
1922      return true;
1923
1924    CXXMemberInit
1925      = CXXCtorInitializer::Create(SemaRef.Context, Field, Loc, Loc,
1926                                           MemberInit.takeAs<Expr>(), Loc,
1927                                           IndexVariables.data(),
1928                                           IndexVariables.size());
1929    return false;
1930  }
1931
1932  assert(ImplicitInitKind == IIK_Default && "Unhandled implicit init kind!");
1933
1934  QualType FieldBaseElementType =
1935    SemaRef.Context.getBaseElementType(Field->getType());
1936
1937  if (FieldBaseElementType->isRecordType()) {
1938    InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field);
1939    InitializationKind InitKind =
1940      InitializationKind::CreateDefault(Loc);
1941
1942    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
1943    ExprResult MemberInit =
1944      InitSeq.Perform(SemaRef, InitEntity, InitKind, MultiExprArg());
1945
1946    MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
1947    if (MemberInit.isInvalid())
1948      return true;
1949
1950    CXXMemberInit =
1951      new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
1952                                                       Field, Loc, Loc,
1953                                                       MemberInit.get(),
1954                                                       Loc);
1955    return false;
1956  }
1957
1958  if (FieldBaseElementType->isReferenceType()) {
1959    SemaRef.Diag(Constructor->getLocation(),
1960                 diag::err_uninitialized_member_in_ctor)
1961    << (int)Constructor->isImplicit()
1962    << SemaRef.Context.getTagDeclType(Constructor->getParent())
1963    << 0 << Field->getDeclName();
1964    SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
1965    return true;
1966  }
1967
1968  if (FieldBaseElementType.isConstQualified()) {
1969    SemaRef.Diag(Constructor->getLocation(),
1970                 diag::err_uninitialized_member_in_ctor)
1971    << (int)Constructor->isImplicit()
1972    << SemaRef.Context.getTagDeclType(Constructor->getParent())
1973    << 1 << Field->getDeclName();
1974    SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
1975    return true;
1976  }
1977
1978  // Nothing to initialize.
1979  CXXMemberInit = 0;
1980  return false;
1981}
1982
1983namespace {
1984struct BaseAndFieldInfo {
1985  Sema &S;
1986  CXXConstructorDecl *Ctor;
1987  bool AnyErrorsInInits;
1988  ImplicitInitializerKind IIK;
1989  llvm::DenseMap<const void *, CXXCtorInitializer*> AllBaseFields;
1990  llvm::SmallVector<CXXCtorInitializer*, 8> AllToInit;
1991
1992  BaseAndFieldInfo(Sema &S, CXXConstructorDecl *Ctor, bool ErrorsInInits)
1993    : S(S), Ctor(Ctor), AnyErrorsInInits(ErrorsInInits) {
1994    // FIXME: Handle implicit move constructors.
1995    if (Ctor->isImplicit() && Ctor->isCopyConstructor())
1996      IIK = IIK_Copy;
1997    else
1998      IIK = IIK_Default;
1999  }
2000};
2001}
2002
2003static bool CollectFieldInitializer(BaseAndFieldInfo &Info,
2004                                    FieldDecl *Top, FieldDecl *Field) {
2005
2006  // Overwhelmingly common case: we have a direct initializer for this field.
2007  if (CXXCtorInitializer *Init = Info.AllBaseFields.lookup(Field)) {
2008    Info.AllToInit.push_back(Init);
2009    return false;
2010  }
2011
2012  if (Info.IIK == IIK_Default && Field->isAnonymousStructOrUnion()) {
2013    const RecordType *FieldClassType = Field->getType()->getAs<RecordType>();
2014    assert(FieldClassType && "anonymous struct/union without record type");
2015    CXXRecordDecl *FieldClassDecl
2016      = cast<CXXRecordDecl>(FieldClassType->getDecl());
2017
2018    // Even though union members never have non-trivial default
2019    // constructions in C++03, we still build member initializers for aggregate
2020    // record types which can be union members, and C++0x allows non-trivial
2021    // default constructors for union members, so we ensure that only one
2022    // member is initialized for these.
2023    if (FieldClassDecl->isUnion()) {
2024      // First check for an explicit initializer for one field.
2025      for (RecordDecl::field_iterator FA = FieldClassDecl->field_begin(),
2026           EA = FieldClassDecl->field_end(); FA != EA; FA++) {
2027        if (CXXCtorInitializer *Init = Info.AllBaseFields.lookup(*FA)) {
2028          Info.AllToInit.push_back(Init);
2029
2030          // Once we've initialized a field of an anonymous union, the union
2031          // field in the class is also initialized, so exit immediately.
2032          return false;
2033        } else if ((*FA)->isAnonymousStructOrUnion()) {
2034          if (CollectFieldInitializer(Info, Top, *FA))
2035            return true;
2036        }
2037      }
2038
2039      // Fallthrough and construct a default initializer for the union as
2040      // a whole, which can call its default constructor if such a thing exists
2041      // (C++0x perhaps). FIXME: It's not clear that this is the correct
2042      // behavior going forward with C++0x, when anonymous unions there are
2043      // finalized, we should revisit this.
2044    } else {
2045      // For structs, we simply descend through to initialize all members where
2046      // necessary.
2047      for (RecordDecl::field_iterator FA = FieldClassDecl->field_begin(),
2048           EA = FieldClassDecl->field_end(); FA != EA; FA++) {
2049        if (CollectFieldInitializer(Info, Top, *FA))
2050          return true;
2051      }
2052    }
2053  }
2054
2055  // Don't try to build an implicit initializer if there were semantic
2056  // errors in any of the initializers (and therefore we might be
2057  // missing some that the user actually wrote).
2058  if (Info.AnyErrorsInInits)
2059    return false;
2060
2061  CXXCtorInitializer *Init = 0;
2062  if (BuildImplicitMemberInitializer(Info.S, Info.Ctor, Info.IIK, Field, Init))
2063    return true;
2064
2065  if (Init)
2066    Info.AllToInit.push_back(Init);
2067
2068  return false;
2069}
2070
2071bool
2072Sema::SetCtorInitializers(CXXConstructorDecl *Constructor,
2073                                  CXXCtorInitializer **Initializers,
2074                                  unsigned NumInitializers,
2075                                  bool AnyErrors) {
2076  if (Constructor->getDeclContext()->isDependentContext()) {
2077    // Just store the initializers as written, they will be checked during
2078    // instantiation.
2079    if (NumInitializers > 0) {
2080      Constructor->setNumCtorInitializers(NumInitializers);
2081      CXXCtorInitializer **baseOrMemberInitializers =
2082        new (Context) CXXCtorInitializer*[NumInitializers];
2083      memcpy(baseOrMemberInitializers, Initializers,
2084             NumInitializers * sizeof(CXXCtorInitializer*));
2085      Constructor->setCtorInitializers(baseOrMemberInitializers);
2086    }
2087
2088    return false;
2089  }
2090
2091  BaseAndFieldInfo Info(*this, Constructor, AnyErrors);
2092
2093  // We need to build the initializer AST according to order of construction
2094  // and not what user specified in the Initializers list.
2095  CXXRecordDecl *ClassDecl = Constructor->getParent()->getDefinition();
2096  if (!ClassDecl)
2097    return true;
2098
2099  bool HadError = false;
2100
2101  for (unsigned i = 0; i < NumInitializers; i++) {
2102    CXXCtorInitializer *Member = Initializers[i];
2103
2104    if (Member->isBaseInitializer())
2105      Info.AllBaseFields[Member->getBaseClass()->getAs<RecordType>()] = Member;
2106    else
2107      Info.AllBaseFields[Member->getAnyMember()] = Member;
2108  }
2109
2110  // Keep track of the direct virtual bases.
2111  llvm::SmallPtrSet<CXXBaseSpecifier *, 16> DirectVBases;
2112  for (CXXRecordDecl::base_class_iterator I = ClassDecl->bases_begin(),
2113       E = ClassDecl->bases_end(); I != E; ++I) {
2114    if (I->isVirtual())
2115      DirectVBases.insert(I);
2116  }
2117
2118  // Push virtual bases before others.
2119  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
2120       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
2121
2122    if (CXXCtorInitializer *Value
2123        = Info.AllBaseFields.lookup(VBase->getType()->getAs<RecordType>())) {
2124      Info.AllToInit.push_back(Value);
2125    } else if (!AnyErrors) {
2126      bool IsInheritedVirtualBase = !DirectVBases.count(VBase);
2127      CXXCtorInitializer *CXXBaseInit;
2128      if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
2129                                       VBase, IsInheritedVirtualBase,
2130                                       CXXBaseInit)) {
2131        HadError = true;
2132        continue;
2133      }
2134
2135      Info.AllToInit.push_back(CXXBaseInit);
2136    }
2137  }
2138
2139  // Non-virtual bases.
2140  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
2141       E = ClassDecl->bases_end(); Base != E; ++Base) {
2142    // Virtuals are in the virtual base list and already constructed.
2143    if (Base->isVirtual())
2144      continue;
2145
2146    if (CXXCtorInitializer *Value
2147          = Info.AllBaseFields.lookup(Base->getType()->getAs<RecordType>())) {
2148      Info.AllToInit.push_back(Value);
2149    } else if (!AnyErrors) {
2150      CXXCtorInitializer *CXXBaseInit;
2151      if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
2152                                       Base, /*IsInheritedVirtualBase=*/false,
2153                                       CXXBaseInit)) {
2154        HadError = true;
2155        continue;
2156      }
2157
2158      Info.AllToInit.push_back(CXXBaseInit);
2159    }
2160  }
2161
2162  // Fields.
2163  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
2164       E = ClassDecl->field_end(); Field != E; ++Field) {
2165    if ((*Field)->getType()->isIncompleteArrayType()) {
2166      assert(ClassDecl->hasFlexibleArrayMember() &&
2167             "Incomplete array type is not valid");
2168      continue;
2169    }
2170    if (CollectFieldInitializer(Info, *Field, *Field))
2171      HadError = true;
2172  }
2173
2174  NumInitializers = Info.AllToInit.size();
2175  if (NumInitializers > 0) {
2176    Constructor->setNumCtorInitializers(NumInitializers);
2177    CXXCtorInitializer **baseOrMemberInitializers =
2178      new (Context) CXXCtorInitializer*[NumInitializers];
2179    memcpy(baseOrMemberInitializers, Info.AllToInit.data(),
2180           NumInitializers * sizeof(CXXCtorInitializer*));
2181    Constructor->setCtorInitializers(baseOrMemberInitializers);
2182
2183    // Constructors implicitly reference the base and member
2184    // destructors.
2185    MarkBaseAndMemberDestructorsReferenced(Constructor->getLocation(),
2186                                           Constructor->getParent());
2187  }
2188
2189  return HadError;
2190}
2191
2192static void *GetKeyForTopLevelField(FieldDecl *Field) {
2193  // For anonymous unions, use the class declaration as the key.
2194  if (const RecordType *RT = Field->getType()->getAs<RecordType>()) {
2195    if (RT->getDecl()->isAnonymousStructOrUnion())
2196      return static_cast<void *>(RT->getDecl());
2197  }
2198  return static_cast<void *>(Field);
2199}
2200
2201static void *GetKeyForBase(ASTContext &Context, QualType BaseType) {
2202  return const_cast<Type*>(Context.getCanonicalType(BaseType).getTypePtr());
2203}
2204
2205static void *GetKeyForMember(ASTContext &Context,
2206                             CXXCtorInitializer *Member) {
2207  if (!Member->isAnyMemberInitializer())
2208    return GetKeyForBase(Context, QualType(Member->getBaseClass(), 0));
2209
2210  // For fields injected into the class via declaration of an anonymous union,
2211  // use its anonymous union class declaration as the unique key.
2212  FieldDecl *Field = Member->getAnyMember();
2213
2214  // If the field is a member of an anonymous struct or union, our key
2215  // is the anonymous record decl that's a direct child of the class.
2216  RecordDecl *RD = Field->getParent();
2217  if (RD->isAnonymousStructOrUnion()) {
2218    while (true) {
2219      RecordDecl *Parent = cast<RecordDecl>(RD->getDeclContext());
2220      if (Parent->isAnonymousStructOrUnion())
2221        RD = Parent;
2222      else
2223        break;
2224    }
2225
2226    return static_cast<void *>(RD);
2227  }
2228
2229  return static_cast<void *>(Field);
2230}
2231
2232static void
2233DiagnoseBaseOrMemInitializerOrder(Sema &SemaRef,
2234                                  const CXXConstructorDecl *Constructor,
2235                                  CXXCtorInitializer **Inits,
2236                                  unsigned NumInits) {
2237  if (Constructor->getDeclContext()->isDependentContext())
2238    return;
2239
2240  // Don't check initializers order unless the warning is enabled at the
2241  // location of at least one initializer.
2242  bool ShouldCheckOrder = false;
2243  for (unsigned InitIndex = 0; InitIndex != NumInits; ++InitIndex) {
2244    CXXCtorInitializer *Init = Inits[InitIndex];
2245    if (SemaRef.Diags.getDiagnosticLevel(diag::warn_initializer_out_of_order,
2246                                         Init->getSourceLocation())
2247          != Diagnostic::Ignored) {
2248      ShouldCheckOrder = true;
2249      break;
2250    }
2251  }
2252  if (!ShouldCheckOrder)
2253    return;
2254
2255  // Build the list of bases and members in the order that they'll
2256  // actually be initialized.  The explicit initializers should be in
2257  // this same order but may be missing things.
2258  llvm::SmallVector<const void*, 32> IdealInitKeys;
2259
2260  const CXXRecordDecl *ClassDecl = Constructor->getParent();
2261
2262  // 1. Virtual bases.
2263  for (CXXRecordDecl::base_class_const_iterator VBase =
2264       ClassDecl->vbases_begin(),
2265       E = ClassDecl->vbases_end(); VBase != E; ++VBase)
2266    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, VBase->getType()));
2267
2268  // 2. Non-virtual bases.
2269  for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin(),
2270       E = ClassDecl->bases_end(); Base != E; ++Base) {
2271    if (Base->isVirtual())
2272      continue;
2273    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, Base->getType()));
2274  }
2275
2276  // 3. Direct fields.
2277  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
2278       E = ClassDecl->field_end(); Field != E; ++Field)
2279    IdealInitKeys.push_back(GetKeyForTopLevelField(*Field));
2280
2281  unsigned NumIdealInits = IdealInitKeys.size();
2282  unsigned IdealIndex = 0;
2283
2284  CXXCtorInitializer *PrevInit = 0;
2285  for (unsigned InitIndex = 0; InitIndex != NumInits; ++InitIndex) {
2286    CXXCtorInitializer *Init = Inits[InitIndex];
2287    void *InitKey = GetKeyForMember(SemaRef.Context, Init);
2288
2289    // Scan forward to try to find this initializer in the idealized
2290    // initializers list.
2291    for (; IdealIndex != NumIdealInits; ++IdealIndex)
2292      if (InitKey == IdealInitKeys[IdealIndex])
2293        break;
2294
2295    // If we didn't find this initializer, it must be because we
2296    // scanned past it on a previous iteration.  That can only
2297    // happen if we're out of order;  emit a warning.
2298    if (IdealIndex == NumIdealInits && PrevInit) {
2299      Sema::SemaDiagnosticBuilder D =
2300        SemaRef.Diag(PrevInit->getSourceLocation(),
2301                     diag::warn_initializer_out_of_order);
2302
2303      if (PrevInit->isAnyMemberInitializer())
2304        D << 0 << PrevInit->getAnyMember()->getDeclName();
2305      else
2306        D << 1 << PrevInit->getBaseClassInfo()->getType();
2307
2308      if (Init->isAnyMemberInitializer())
2309        D << 0 << Init->getAnyMember()->getDeclName();
2310      else
2311        D << 1 << Init->getBaseClassInfo()->getType();
2312
2313      // Move back to the initializer's location in the ideal list.
2314      for (IdealIndex = 0; IdealIndex != NumIdealInits; ++IdealIndex)
2315        if (InitKey == IdealInitKeys[IdealIndex])
2316          break;
2317
2318      assert(IdealIndex != NumIdealInits &&
2319             "initializer not found in initializer list");
2320    }
2321
2322    PrevInit = Init;
2323  }
2324}
2325
2326namespace {
2327bool CheckRedundantInit(Sema &S,
2328                        CXXCtorInitializer *Init,
2329                        CXXCtorInitializer *&PrevInit) {
2330  if (!PrevInit) {
2331    PrevInit = Init;
2332    return false;
2333  }
2334
2335  if (FieldDecl *Field = Init->getMember())
2336    S.Diag(Init->getSourceLocation(),
2337           diag::err_multiple_mem_initialization)
2338      << Field->getDeclName()
2339      << Init->getSourceRange();
2340  else {
2341    const Type *BaseClass = Init->getBaseClass();
2342    assert(BaseClass && "neither field nor base");
2343    S.Diag(Init->getSourceLocation(),
2344           diag::err_multiple_base_initialization)
2345      << QualType(BaseClass, 0)
2346      << Init->getSourceRange();
2347  }
2348  S.Diag(PrevInit->getSourceLocation(), diag::note_previous_initializer)
2349    << 0 << PrevInit->getSourceRange();
2350
2351  return true;
2352}
2353
2354typedef std::pair<NamedDecl *, CXXCtorInitializer *> UnionEntry;
2355typedef llvm::DenseMap<RecordDecl*, UnionEntry> RedundantUnionMap;
2356
2357bool CheckRedundantUnionInit(Sema &S,
2358                             CXXCtorInitializer *Init,
2359                             RedundantUnionMap &Unions) {
2360  FieldDecl *Field = Init->getAnyMember();
2361  RecordDecl *Parent = Field->getParent();
2362  if (!Parent->isAnonymousStructOrUnion())
2363    return false;
2364
2365  NamedDecl *Child = Field;
2366  do {
2367    if (Parent->isUnion()) {
2368      UnionEntry &En = Unions[Parent];
2369      if (En.first && En.first != Child) {
2370        S.Diag(Init->getSourceLocation(),
2371               diag::err_multiple_mem_union_initialization)
2372          << Field->getDeclName()
2373          << Init->getSourceRange();
2374        S.Diag(En.second->getSourceLocation(), diag::note_previous_initializer)
2375          << 0 << En.second->getSourceRange();
2376        return true;
2377      } else if (!En.first) {
2378        En.first = Child;
2379        En.second = Init;
2380      }
2381    }
2382
2383    Child = Parent;
2384    Parent = cast<RecordDecl>(Parent->getDeclContext());
2385  } while (Parent->isAnonymousStructOrUnion());
2386
2387  return false;
2388}
2389}
2390
2391/// ActOnMemInitializers - Handle the member initializers for a constructor.
2392void Sema::ActOnMemInitializers(Decl *ConstructorDecl,
2393                                SourceLocation ColonLoc,
2394                                MemInitTy **meminits, unsigned NumMemInits,
2395                                bool AnyErrors) {
2396  if (!ConstructorDecl)
2397    return;
2398
2399  AdjustDeclIfTemplate(ConstructorDecl);
2400
2401  CXXConstructorDecl *Constructor
2402    = dyn_cast<CXXConstructorDecl>(ConstructorDecl);
2403
2404  if (!Constructor) {
2405    Diag(ColonLoc, diag::err_only_constructors_take_base_inits);
2406    return;
2407  }
2408
2409  CXXCtorInitializer **MemInits =
2410    reinterpret_cast<CXXCtorInitializer **>(meminits);
2411
2412  // Mapping for the duplicate initializers check.
2413  // For member initializers, this is keyed with a FieldDecl*.
2414  // For base initializers, this is keyed with a Type*.
2415  llvm::DenseMap<void*, CXXCtorInitializer *> Members;
2416
2417  // Mapping for the inconsistent anonymous-union initializers check.
2418  RedundantUnionMap MemberUnions;
2419
2420  bool HadError = false;
2421  for (unsigned i = 0; i < NumMemInits; i++) {
2422    CXXCtorInitializer *Init = MemInits[i];
2423
2424    // Set the source order index.
2425    Init->setSourceOrder(i);
2426
2427    if (Init->isAnyMemberInitializer()) {
2428      FieldDecl *Field = Init->getAnyMember();
2429      if (CheckRedundantInit(*this, Init, Members[Field]) ||
2430          CheckRedundantUnionInit(*this, Init, MemberUnions))
2431        HadError = true;
2432    } else if (Init->isBaseInitializer()) {
2433      void *Key = GetKeyForBase(Context, QualType(Init->getBaseClass(), 0));
2434      if (CheckRedundantInit(*this, Init, Members[Key]))
2435        HadError = true;
2436    } else {
2437      assert(Init->isDelegatingInitializer());
2438      // This must be the only initializer
2439      if (i != 0 || NumMemInits > 1) {
2440        Diag(MemInits[0]->getSourceLocation(),
2441             diag::err_delegating_initializer_alone)
2442          << MemInits[0]->getSourceRange();
2443        HadError = true;
2444      }
2445    }
2446  }
2447
2448  if (HadError)
2449    return;
2450
2451  DiagnoseBaseOrMemInitializerOrder(*this, Constructor, MemInits, NumMemInits);
2452
2453  SetCtorInitializers(Constructor, MemInits, NumMemInits, AnyErrors);
2454}
2455
2456void
2457Sema::MarkBaseAndMemberDestructorsReferenced(SourceLocation Location,
2458                                             CXXRecordDecl *ClassDecl) {
2459  // Ignore dependent contexts.
2460  if (ClassDecl->isDependentContext())
2461    return;
2462
2463  // FIXME: all the access-control diagnostics are positioned on the
2464  // field/base declaration.  That's probably good; that said, the
2465  // user might reasonably want to know why the destructor is being
2466  // emitted, and we currently don't say.
2467
2468  // Non-static data members.
2469  for (CXXRecordDecl::field_iterator I = ClassDecl->field_begin(),
2470       E = ClassDecl->field_end(); I != E; ++I) {
2471    FieldDecl *Field = *I;
2472    if (Field->isInvalidDecl())
2473      continue;
2474    QualType FieldType = Context.getBaseElementType(Field->getType());
2475
2476    const RecordType* RT = FieldType->getAs<RecordType>();
2477    if (!RT)
2478      continue;
2479
2480    CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
2481    if (FieldClassDecl->isInvalidDecl())
2482      continue;
2483    if (FieldClassDecl->hasTrivialDestructor())
2484      continue;
2485
2486    CXXDestructorDecl *Dtor = LookupDestructor(FieldClassDecl);
2487    assert(Dtor && "No dtor found for FieldClassDecl!");
2488    CheckDestructorAccess(Field->getLocation(), Dtor,
2489                          PDiag(diag::err_access_dtor_field)
2490                            << Field->getDeclName()
2491                            << FieldType);
2492
2493    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
2494  }
2495
2496  llvm::SmallPtrSet<const RecordType *, 8> DirectVirtualBases;
2497
2498  // Bases.
2499  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
2500       E = ClassDecl->bases_end(); Base != E; ++Base) {
2501    // Bases are always records in a well-formed non-dependent class.
2502    const RecordType *RT = Base->getType()->getAs<RecordType>();
2503
2504    // Remember direct virtual bases.
2505    if (Base->isVirtual())
2506      DirectVirtualBases.insert(RT);
2507
2508    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
2509    // If our base class is invalid, we probably can't get its dtor anyway.
2510    if (BaseClassDecl->isInvalidDecl())
2511      continue;
2512    // Ignore trivial destructors.
2513    if (BaseClassDecl->hasTrivialDestructor())
2514      continue;
2515
2516    CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
2517    assert(Dtor && "No dtor found for BaseClassDecl!");
2518
2519    // FIXME: caret should be on the start of the class name
2520    CheckDestructorAccess(Base->getSourceRange().getBegin(), Dtor,
2521                          PDiag(diag::err_access_dtor_base)
2522                            << Base->getType()
2523                            << Base->getSourceRange());
2524
2525    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
2526  }
2527
2528  // Virtual bases.
2529  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
2530       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
2531
2532    // Bases are always records in a well-formed non-dependent class.
2533    const RecordType *RT = VBase->getType()->getAs<RecordType>();
2534
2535    // Ignore direct virtual bases.
2536    if (DirectVirtualBases.count(RT))
2537      continue;
2538
2539    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
2540    // If our base class is invalid, we probably can't get its dtor anyway.
2541    if (BaseClassDecl->isInvalidDecl())
2542      continue;
2543    // Ignore trivial destructors.
2544    if (BaseClassDecl->hasTrivialDestructor())
2545      continue;
2546
2547    CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
2548    assert(Dtor && "No dtor found for BaseClassDecl!");
2549    CheckDestructorAccess(ClassDecl->getLocation(), Dtor,
2550                          PDiag(diag::err_access_dtor_vbase)
2551                            << VBase->getType());
2552
2553    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
2554  }
2555}
2556
2557void Sema::ActOnDefaultCtorInitializers(Decl *CDtorDecl) {
2558  if (!CDtorDecl)
2559    return;
2560
2561  if (CXXConstructorDecl *Constructor
2562      = dyn_cast<CXXConstructorDecl>(CDtorDecl))
2563    SetCtorInitializers(Constructor, 0, 0, /*AnyErrors=*/false);
2564}
2565
2566bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
2567                                  unsigned DiagID, AbstractDiagSelID SelID) {
2568  if (SelID == -1)
2569    return RequireNonAbstractType(Loc, T, PDiag(DiagID));
2570  else
2571    return RequireNonAbstractType(Loc, T, PDiag(DiagID) << SelID);
2572}
2573
2574bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
2575                                  const PartialDiagnostic &PD) {
2576  if (!getLangOptions().CPlusPlus)
2577    return false;
2578
2579  if (const ArrayType *AT = Context.getAsArrayType(T))
2580    return RequireNonAbstractType(Loc, AT->getElementType(), PD);
2581
2582  if (const PointerType *PT = T->getAs<PointerType>()) {
2583    // Find the innermost pointer type.
2584    while (const PointerType *T = PT->getPointeeType()->getAs<PointerType>())
2585      PT = T;
2586
2587    if (const ArrayType *AT = Context.getAsArrayType(PT->getPointeeType()))
2588      return RequireNonAbstractType(Loc, AT->getElementType(), PD);
2589  }
2590
2591  const RecordType *RT = T->getAs<RecordType>();
2592  if (!RT)
2593    return false;
2594
2595  const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
2596
2597  // We can't answer whether something is abstract until it has a
2598  // definition.  If it's currently being defined, we'll walk back
2599  // over all the declarations when we have a full definition.
2600  const CXXRecordDecl *Def = RD->getDefinition();
2601  if (!Def || Def->isBeingDefined())
2602    return false;
2603
2604  if (!RD->isAbstract())
2605    return false;
2606
2607  Diag(Loc, PD) << RD->getDeclName();
2608  DiagnoseAbstractType(RD);
2609
2610  return true;
2611}
2612
2613void Sema::DiagnoseAbstractType(const CXXRecordDecl *RD) {
2614  // Check if we've already emitted the list of pure virtual functions
2615  // for this class.
2616  if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD))
2617    return;
2618
2619  CXXFinalOverriderMap FinalOverriders;
2620  RD->getFinalOverriders(FinalOverriders);
2621
2622  // Keep a set of seen pure methods so we won't diagnose the same method
2623  // more than once.
2624  llvm::SmallPtrSet<const CXXMethodDecl *, 8> SeenPureMethods;
2625
2626  for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
2627                                   MEnd = FinalOverriders.end();
2628       M != MEnd;
2629       ++M) {
2630    for (OverridingMethods::iterator SO = M->second.begin(),
2631                                  SOEnd = M->second.end();
2632         SO != SOEnd; ++SO) {
2633      // C++ [class.abstract]p4:
2634      //   A class is abstract if it contains or inherits at least one
2635      //   pure virtual function for which the final overrider is pure
2636      //   virtual.
2637
2638      //
2639      if (SO->second.size() != 1)
2640        continue;
2641
2642      if (!SO->second.front().Method->isPure())
2643        continue;
2644
2645      if (!SeenPureMethods.insert(SO->second.front().Method))
2646        continue;
2647
2648      Diag(SO->second.front().Method->getLocation(),
2649           diag::note_pure_virtual_function)
2650        << SO->second.front().Method->getDeclName() << RD->getDeclName();
2651    }
2652  }
2653
2654  if (!PureVirtualClassDiagSet)
2655    PureVirtualClassDiagSet.reset(new RecordDeclSetTy);
2656  PureVirtualClassDiagSet->insert(RD);
2657}
2658
2659namespace {
2660struct AbstractUsageInfo {
2661  Sema &S;
2662  CXXRecordDecl *Record;
2663  CanQualType AbstractType;
2664  bool Invalid;
2665
2666  AbstractUsageInfo(Sema &S, CXXRecordDecl *Record)
2667    : S(S), Record(Record),
2668      AbstractType(S.Context.getCanonicalType(
2669                   S.Context.getTypeDeclType(Record))),
2670      Invalid(false) {}
2671
2672  void DiagnoseAbstractType() {
2673    if (Invalid) return;
2674    S.DiagnoseAbstractType(Record);
2675    Invalid = true;
2676  }
2677
2678  void CheckType(const NamedDecl *D, TypeLoc TL, Sema::AbstractDiagSelID Sel);
2679};
2680
2681struct CheckAbstractUsage {
2682  AbstractUsageInfo &Info;
2683  const NamedDecl *Ctx;
2684
2685  CheckAbstractUsage(AbstractUsageInfo &Info, const NamedDecl *Ctx)
2686    : Info(Info), Ctx(Ctx) {}
2687
2688  void Visit(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
2689    switch (TL.getTypeLocClass()) {
2690#define ABSTRACT_TYPELOC(CLASS, PARENT)
2691#define TYPELOC(CLASS, PARENT) \
2692    case TypeLoc::CLASS: Check(cast<CLASS##TypeLoc>(TL), Sel); break;
2693#include "clang/AST/TypeLocNodes.def"
2694    }
2695  }
2696
2697  void Check(FunctionProtoTypeLoc TL, Sema::AbstractDiagSelID Sel) {
2698    Visit(TL.getResultLoc(), Sema::AbstractReturnType);
2699    for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
2700      if (!TL.getArg(I))
2701        continue;
2702
2703      TypeSourceInfo *TSI = TL.getArg(I)->getTypeSourceInfo();
2704      if (TSI) Visit(TSI->getTypeLoc(), Sema::AbstractParamType);
2705    }
2706  }
2707
2708  void Check(ArrayTypeLoc TL, Sema::AbstractDiagSelID Sel) {
2709    Visit(TL.getElementLoc(), Sema::AbstractArrayType);
2710  }
2711
2712  void Check(TemplateSpecializationTypeLoc TL, Sema::AbstractDiagSelID Sel) {
2713    // Visit the type parameters from a permissive context.
2714    for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
2715      TemplateArgumentLoc TAL = TL.getArgLoc(I);
2716      if (TAL.getArgument().getKind() == TemplateArgument::Type)
2717        if (TypeSourceInfo *TSI = TAL.getTypeSourceInfo())
2718          Visit(TSI->getTypeLoc(), Sema::AbstractNone);
2719      // TODO: other template argument types?
2720    }
2721  }
2722
2723  // Visit pointee types from a permissive context.
2724#define CheckPolymorphic(Type) \
2725  void Check(Type TL, Sema::AbstractDiagSelID Sel) { \
2726    Visit(TL.getNextTypeLoc(), Sema::AbstractNone); \
2727  }
2728  CheckPolymorphic(PointerTypeLoc)
2729  CheckPolymorphic(ReferenceTypeLoc)
2730  CheckPolymorphic(MemberPointerTypeLoc)
2731  CheckPolymorphic(BlockPointerTypeLoc)
2732
2733  /// Handle all the types we haven't given a more specific
2734  /// implementation for above.
2735  void Check(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
2736    // Every other kind of type that we haven't called out already
2737    // that has an inner type is either (1) sugar or (2) contains that
2738    // inner type in some way as a subobject.
2739    if (TypeLoc Next = TL.getNextTypeLoc())
2740      return Visit(Next, Sel);
2741
2742    // If there's no inner type and we're in a permissive context,
2743    // don't diagnose.
2744    if (Sel == Sema::AbstractNone) return;
2745
2746    // Check whether the type matches the abstract type.
2747    QualType T = TL.getType();
2748    if (T->isArrayType()) {
2749      Sel = Sema::AbstractArrayType;
2750      T = Info.S.Context.getBaseElementType(T);
2751    }
2752    CanQualType CT = T->getCanonicalTypeUnqualified().getUnqualifiedType();
2753    if (CT != Info.AbstractType) return;
2754
2755    // It matched; do some magic.
2756    if (Sel == Sema::AbstractArrayType) {
2757      Info.S.Diag(Ctx->getLocation(), diag::err_array_of_abstract_type)
2758        << T << TL.getSourceRange();
2759    } else {
2760      Info.S.Diag(Ctx->getLocation(), diag::err_abstract_type_in_decl)
2761        << Sel << T << TL.getSourceRange();
2762    }
2763    Info.DiagnoseAbstractType();
2764  }
2765};
2766
2767void AbstractUsageInfo::CheckType(const NamedDecl *D, TypeLoc TL,
2768                                  Sema::AbstractDiagSelID Sel) {
2769  CheckAbstractUsage(*this, D).Visit(TL, Sel);
2770}
2771
2772}
2773
2774/// Check for invalid uses of an abstract type in a method declaration.
2775static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
2776                                    CXXMethodDecl *MD) {
2777  // No need to do the check on definitions, which require that
2778  // the return/param types be complete.
2779  if (MD->isThisDeclarationADefinition())
2780    return;
2781
2782  // For safety's sake, just ignore it if we don't have type source
2783  // information.  This should never happen for non-implicit methods,
2784  // but...
2785  if (TypeSourceInfo *TSI = MD->getTypeSourceInfo())
2786    Info.CheckType(MD, TSI->getTypeLoc(), Sema::AbstractNone);
2787}
2788
2789/// Check for invalid uses of an abstract type within a class definition.
2790static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
2791                                    CXXRecordDecl *RD) {
2792  for (CXXRecordDecl::decl_iterator
2793         I = RD->decls_begin(), E = RD->decls_end(); I != E; ++I) {
2794    Decl *D = *I;
2795    if (D->isImplicit()) continue;
2796
2797    // Methods and method templates.
2798    if (isa<CXXMethodDecl>(D)) {
2799      CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(D));
2800    } else if (isa<FunctionTemplateDecl>(D)) {
2801      FunctionDecl *FD = cast<FunctionTemplateDecl>(D)->getTemplatedDecl();
2802      CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(FD));
2803
2804    // Fields and static variables.
2805    } else if (isa<FieldDecl>(D)) {
2806      FieldDecl *FD = cast<FieldDecl>(D);
2807      if (TypeSourceInfo *TSI = FD->getTypeSourceInfo())
2808        Info.CheckType(FD, TSI->getTypeLoc(), Sema::AbstractFieldType);
2809    } else if (isa<VarDecl>(D)) {
2810      VarDecl *VD = cast<VarDecl>(D);
2811      if (TypeSourceInfo *TSI = VD->getTypeSourceInfo())
2812        Info.CheckType(VD, TSI->getTypeLoc(), Sema::AbstractVariableType);
2813
2814    // Nested classes and class templates.
2815    } else if (isa<CXXRecordDecl>(D)) {
2816      CheckAbstractClassUsage(Info, cast<CXXRecordDecl>(D));
2817    } else if (isa<ClassTemplateDecl>(D)) {
2818      CheckAbstractClassUsage(Info,
2819                             cast<ClassTemplateDecl>(D)->getTemplatedDecl());
2820    }
2821  }
2822}
2823
2824/// \brief Perform semantic checks on a class definition that has been
2825/// completing, introducing implicitly-declared members, checking for
2826/// abstract types, etc.
2827void Sema::CheckCompletedCXXClass(CXXRecordDecl *Record) {
2828  if (!Record)
2829    return;
2830
2831  if (Record->isAbstract() && !Record->isInvalidDecl()) {
2832    AbstractUsageInfo Info(*this, Record);
2833    CheckAbstractClassUsage(Info, Record);
2834  }
2835
2836  // If this is not an aggregate type and has no user-declared constructor,
2837  // complain about any non-static data members of reference or const scalar
2838  // type, since they will never get initializers.
2839  if (!Record->isInvalidDecl() && !Record->isDependentType() &&
2840      !Record->isAggregate() && !Record->hasUserDeclaredConstructor()) {
2841    bool Complained = false;
2842    for (RecordDecl::field_iterator F = Record->field_begin(),
2843                                 FEnd = Record->field_end();
2844         F != FEnd; ++F) {
2845      if (F->getType()->isReferenceType() ||
2846          (F->getType().isConstQualified() && F->getType()->isScalarType())) {
2847        if (!Complained) {
2848          Diag(Record->getLocation(), diag::warn_no_constructor_for_refconst)
2849            << Record->getTagKind() << Record;
2850          Complained = true;
2851        }
2852
2853        Diag(F->getLocation(), diag::note_refconst_member_not_initialized)
2854          << F->getType()->isReferenceType()
2855          << F->getDeclName();
2856      }
2857    }
2858  }
2859
2860  if (Record->isDynamicClass() && !Record->isDependentType())
2861    DynamicClasses.push_back(Record);
2862
2863  if (Record->getIdentifier()) {
2864    // C++ [class.mem]p13:
2865    //   If T is the name of a class, then each of the following shall have a
2866    //   name different from T:
2867    //     - every member of every anonymous union that is a member of class T.
2868    //
2869    // C++ [class.mem]p14:
2870    //   In addition, if class T has a user-declared constructor (12.1), every
2871    //   non-static data member of class T shall have a name different from T.
2872    for (DeclContext::lookup_result R = Record->lookup(Record->getDeclName());
2873         R.first != R.second; ++R.first) {
2874      NamedDecl *D = *R.first;
2875      if ((isa<FieldDecl>(D) && Record->hasUserDeclaredConstructor()) ||
2876          isa<IndirectFieldDecl>(D)) {
2877        Diag(D->getLocation(), diag::err_member_name_of_class)
2878          << D->getDeclName();
2879        break;
2880      }
2881    }
2882  }
2883
2884  // Warn if the class has virtual methods but non-virtual public destructor.
2885  if (Record->isPolymorphic() && !Record->isDependentType()) {
2886    CXXDestructorDecl *dtor = Record->getDestructor();
2887    if (!dtor || (!dtor->isVirtual() && dtor->getAccess() == AS_public))
2888      Diag(dtor ? dtor->getLocation() : Record->getLocation(),
2889           diag::warn_non_virtual_dtor) << Context.getRecordType(Record);
2890  }
2891
2892  // See if a method overloads virtual methods in a base
2893  /// class without overriding any.
2894  if (!Record->isDependentType()) {
2895    for (CXXRecordDecl::method_iterator M = Record->method_begin(),
2896                                     MEnd = Record->method_end();
2897         M != MEnd; ++M) {
2898      if (!(*M)->isStatic())
2899        DiagnoseHiddenVirtualMethods(Record, *M);
2900    }
2901  }
2902
2903  // Declare inherited constructors. We do this eagerly here because:
2904  // - The standard requires an eager diagnostic for conflicting inherited
2905  //   constructors from different classes.
2906  // - The lazy declaration of the other implicit constructors is so as to not
2907  //   waste space and performance on classes that are not meant to be
2908  //   instantiated (e.g. meta-functions). This doesn't apply to classes that
2909  //   have inherited constructors.
2910  DeclareInheritedConstructors(Record);
2911}
2912
2913/// \brief Data used with FindHiddenVirtualMethod
2914namespace {
2915  struct FindHiddenVirtualMethodData {
2916    Sema *S;
2917    CXXMethodDecl *Method;
2918    llvm::SmallPtrSet<const CXXMethodDecl *, 8> OverridenAndUsingBaseMethods;
2919    llvm::SmallVector<CXXMethodDecl *, 8> OverloadedMethods;
2920  };
2921}
2922
2923/// \brief Member lookup function that determines whether a given C++
2924/// method overloads virtual methods in a base class without overriding any,
2925/// to be used with CXXRecordDecl::lookupInBases().
2926static bool FindHiddenVirtualMethod(const CXXBaseSpecifier *Specifier,
2927                                    CXXBasePath &Path,
2928                                    void *UserData) {
2929  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
2930
2931  FindHiddenVirtualMethodData &Data
2932    = *static_cast<FindHiddenVirtualMethodData*>(UserData);
2933
2934  DeclarationName Name = Data.Method->getDeclName();
2935  assert(Name.getNameKind() == DeclarationName::Identifier);
2936
2937  bool foundSameNameMethod = false;
2938  llvm::SmallVector<CXXMethodDecl *, 8> overloadedMethods;
2939  for (Path.Decls = BaseRecord->lookup(Name);
2940       Path.Decls.first != Path.Decls.second;
2941       ++Path.Decls.first) {
2942    NamedDecl *D = *Path.Decls.first;
2943    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
2944      MD = MD->getCanonicalDecl();
2945      foundSameNameMethod = true;
2946      // Interested only in hidden virtual methods.
2947      if (!MD->isVirtual())
2948        continue;
2949      // If the method we are checking overrides a method from its base
2950      // don't warn about the other overloaded methods.
2951      if (!Data.S->IsOverload(Data.Method, MD, false))
2952        return true;
2953      // Collect the overload only if its hidden.
2954      if (!Data.OverridenAndUsingBaseMethods.count(MD))
2955        overloadedMethods.push_back(MD);
2956    }
2957  }
2958
2959  if (foundSameNameMethod)
2960    Data.OverloadedMethods.append(overloadedMethods.begin(),
2961                                   overloadedMethods.end());
2962  return foundSameNameMethod;
2963}
2964
2965/// \brief See if a method overloads virtual methods in a base class without
2966/// overriding any.
2967void Sema::DiagnoseHiddenVirtualMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
2968  if (Diags.getDiagnosticLevel(diag::warn_overloaded_virtual,
2969                               MD->getLocation()) == Diagnostic::Ignored)
2970    return;
2971  if (MD->getDeclName().getNameKind() != DeclarationName::Identifier)
2972    return;
2973
2974  CXXBasePaths Paths(/*FindAmbiguities=*/true, // true to look in all bases.
2975                     /*bool RecordPaths=*/false,
2976                     /*bool DetectVirtual=*/false);
2977  FindHiddenVirtualMethodData Data;
2978  Data.Method = MD;
2979  Data.S = this;
2980
2981  // Keep the base methods that were overriden or introduced in the subclass
2982  // by 'using' in a set. A base method not in this set is hidden.
2983  for (DeclContext::lookup_result res = DC->lookup(MD->getDeclName());
2984       res.first != res.second; ++res.first) {
2985    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(*res.first))
2986      for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
2987                                          E = MD->end_overridden_methods();
2988           I != E; ++I)
2989        Data.OverridenAndUsingBaseMethods.insert((*I)->getCanonicalDecl());
2990    if (UsingShadowDecl *shad = dyn_cast<UsingShadowDecl>(*res.first))
2991      if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(shad->getTargetDecl()))
2992        Data.OverridenAndUsingBaseMethods.insert(MD->getCanonicalDecl());
2993  }
2994
2995  if (DC->lookupInBases(&FindHiddenVirtualMethod, &Data, Paths) &&
2996      !Data.OverloadedMethods.empty()) {
2997    Diag(MD->getLocation(), diag::warn_overloaded_virtual)
2998      << MD << (Data.OverloadedMethods.size() > 1);
2999
3000    for (unsigned i = 0, e = Data.OverloadedMethods.size(); i != e; ++i) {
3001      CXXMethodDecl *overloadedMD = Data.OverloadedMethods[i];
3002      Diag(overloadedMD->getLocation(),
3003           diag::note_hidden_overloaded_virtual_declared_here) << overloadedMD;
3004    }
3005  }
3006}
3007
3008void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
3009                                             Decl *TagDecl,
3010                                             SourceLocation LBrac,
3011                                             SourceLocation RBrac,
3012                                             AttributeList *AttrList) {
3013  if (!TagDecl)
3014    return;
3015
3016  AdjustDeclIfTemplate(TagDecl);
3017
3018  ActOnFields(S, RLoc, TagDecl,
3019              // strict aliasing violation!
3020              reinterpret_cast<Decl**>(FieldCollector->getCurFields()),
3021              FieldCollector->getCurNumFields(), LBrac, RBrac, AttrList);
3022
3023  CheckCompletedCXXClass(
3024                        dyn_cast_or_null<CXXRecordDecl>(TagDecl));
3025}
3026
3027namespace {
3028  /// \brief Helper class that collects exception specifications for
3029  /// implicitly-declared special member functions.
3030  class ImplicitExceptionSpecification {
3031    ASTContext &Context;
3032    // We order exception specifications thus:
3033    // noexcept is the most restrictive, but is only used in C++0x.
3034    // throw() comes next.
3035    // Then a throw(collected exceptions)
3036    // Finally no specification.
3037    // throw(...) is used instead if any called function uses it.
3038    ExceptionSpecificationType ComputedEST;
3039    llvm::SmallPtrSet<CanQualType, 4> ExceptionsSeen;
3040    llvm::SmallVector<QualType, 4> Exceptions;
3041
3042    void ClearExceptions() {
3043      ExceptionsSeen.clear();
3044      Exceptions.clear();
3045    }
3046
3047  public:
3048    explicit ImplicitExceptionSpecification(ASTContext &Context)
3049      : Context(Context), ComputedEST(EST_BasicNoexcept) {
3050      if (!Context.getLangOptions().CPlusPlus0x)
3051        ComputedEST = EST_DynamicNone;
3052    }
3053
3054    /// \brief Get the computed exception specification type.
3055    ExceptionSpecificationType getExceptionSpecType() const {
3056      assert(ComputedEST != EST_ComputedNoexcept &&
3057             "noexcept(expr) should not be a possible result");
3058      return ComputedEST;
3059    }
3060
3061    /// \brief The number of exceptions in the exception specification.
3062    unsigned size() const { return Exceptions.size(); }
3063
3064    /// \brief The set of exceptions in the exception specification.
3065    const QualType *data() const { return Exceptions.data(); }
3066
3067    /// \brief Integrate another called method into the collected data.
3068    void CalledDecl(CXXMethodDecl *Method) {
3069      // If we have an MSAny spec already, don't bother.
3070      if (!Method || ComputedEST == EST_MSAny)
3071        return;
3072
3073      const FunctionProtoType *Proto
3074        = Method->getType()->getAs<FunctionProtoType>();
3075
3076      ExceptionSpecificationType EST = Proto->getExceptionSpecType();
3077
3078      // If this function can throw any exceptions, make a note of that.
3079      if (EST == EST_MSAny || EST == EST_None) {
3080        ClearExceptions();
3081        ComputedEST = EST;
3082        return;
3083      }
3084
3085      // If this function has a basic noexcept, it doesn't affect the outcome.
3086      if (EST == EST_BasicNoexcept)
3087        return;
3088
3089      // If we have a throw-all spec at this point, ignore the function.
3090      if (ComputedEST == EST_None)
3091        return;
3092
3093      // If we're still at noexcept(true) and there's a nothrow() callee,
3094      // change to that specification.
3095      if (EST == EST_DynamicNone) {
3096        if (ComputedEST == EST_BasicNoexcept)
3097          ComputedEST = EST_DynamicNone;
3098        return;
3099      }
3100
3101      // Check out noexcept specs.
3102      if (EST == EST_ComputedNoexcept) {
3103        FunctionProtoType::NoexceptResult NR = Proto->getNoexceptSpec(Context);
3104        assert(NR != FunctionProtoType::NR_NoNoexcept &&
3105               "Must have noexcept result for EST_ComputedNoexcept.");
3106        assert(NR != FunctionProtoType::NR_Dependent &&
3107               "Should not generate implicit declarations for dependent cases, "
3108               "and don't know how to handle them anyway.");
3109
3110        // noexcept(false) -> no spec on the new function
3111        if (NR == FunctionProtoType::NR_Throw) {
3112          ClearExceptions();
3113          ComputedEST = EST_None;
3114        }
3115        // noexcept(true) won't change anything either.
3116        return;
3117      }
3118
3119      assert(EST == EST_Dynamic && "EST case not considered earlier.");
3120      assert(ComputedEST != EST_None &&
3121             "Shouldn't collect exceptions when throw-all is guaranteed.");
3122      ComputedEST = EST_Dynamic;
3123      // Record the exceptions in this function's exception specification.
3124      for (FunctionProtoType::exception_iterator E = Proto->exception_begin(),
3125                                              EEnd = Proto->exception_end();
3126           E != EEnd; ++E)
3127        if (ExceptionsSeen.insert(Context.getCanonicalType(*E)))
3128          Exceptions.push_back(*E);
3129    }
3130  };
3131}
3132
3133
3134/// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
3135/// special functions, such as the default constructor, copy
3136/// constructor, or destructor, to the given C++ class (C++
3137/// [special]p1).  This routine can only be executed just before the
3138/// definition of the class is complete.
3139void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) {
3140  if (!ClassDecl->hasUserDeclaredConstructor())
3141    ++ASTContext::NumImplicitDefaultConstructors;
3142
3143  if (!ClassDecl->hasUserDeclaredCopyConstructor())
3144    ++ASTContext::NumImplicitCopyConstructors;
3145
3146  if (!ClassDecl->hasUserDeclaredCopyAssignment()) {
3147    ++ASTContext::NumImplicitCopyAssignmentOperators;
3148
3149    // If we have a dynamic class, then the copy assignment operator may be
3150    // virtual, so we have to declare it immediately. This ensures that, e.g.,
3151    // it shows up in the right place in the vtable and that we diagnose
3152    // problems with the implicit exception specification.
3153    if (ClassDecl->isDynamicClass())
3154      DeclareImplicitCopyAssignment(ClassDecl);
3155  }
3156
3157  if (!ClassDecl->hasUserDeclaredDestructor()) {
3158    ++ASTContext::NumImplicitDestructors;
3159
3160    // If we have a dynamic class, then the destructor may be virtual, so we
3161    // have to declare the destructor immediately. This ensures that, e.g., it
3162    // shows up in the right place in the vtable and that we diagnose problems
3163    // with the implicit exception specification.
3164    if (ClassDecl->isDynamicClass())
3165      DeclareImplicitDestructor(ClassDecl);
3166  }
3167}
3168
3169void Sema::ActOnReenterDeclaratorTemplateScope(Scope *S, DeclaratorDecl *D) {
3170  if (!D)
3171    return;
3172
3173  int NumParamList = D->getNumTemplateParameterLists();
3174  for (int i = 0; i < NumParamList; i++) {
3175    TemplateParameterList* Params = D->getTemplateParameterList(i);
3176    for (TemplateParameterList::iterator Param = Params->begin(),
3177                                      ParamEnd = Params->end();
3178          Param != ParamEnd; ++Param) {
3179      NamedDecl *Named = cast<NamedDecl>(*Param);
3180      if (Named->getDeclName()) {
3181        S->AddDecl(Named);
3182        IdResolver.AddDecl(Named);
3183      }
3184    }
3185  }
3186}
3187
3188void Sema::ActOnReenterTemplateScope(Scope *S, Decl *D) {
3189  if (!D)
3190    return;
3191
3192  TemplateParameterList *Params = 0;
3193  if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D))
3194    Params = Template->getTemplateParameters();
3195  else if (ClassTemplatePartialSpecializationDecl *PartialSpec
3196           = dyn_cast<ClassTemplatePartialSpecializationDecl>(D))
3197    Params = PartialSpec->getTemplateParameters();
3198  else
3199    return;
3200
3201  for (TemplateParameterList::iterator Param = Params->begin(),
3202                                    ParamEnd = Params->end();
3203       Param != ParamEnd; ++Param) {
3204    NamedDecl *Named = cast<NamedDecl>(*Param);
3205    if (Named->getDeclName()) {
3206      S->AddDecl(Named);
3207      IdResolver.AddDecl(Named);
3208    }
3209  }
3210}
3211
3212void Sema::ActOnStartDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
3213  if (!RecordD) return;
3214  AdjustDeclIfTemplate(RecordD);
3215  CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordD);
3216  PushDeclContext(S, Record);
3217}
3218
3219void Sema::ActOnFinishDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
3220  if (!RecordD) return;
3221  PopDeclContext();
3222}
3223
3224/// ActOnStartDelayedCXXMethodDeclaration - We have completed
3225/// parsing a top-level (non-nested) C++ class, and we are now
3226/// parsing those parts of the given Method declaration that could
3227/// not be parsed earlier (C++ [class.mem]p2), such as default
3228/// arguments. This action should enter the scope of the given
3229/// Method declaration as if we had just parsed the qualified method
3230/// name. However, it should not bring the parameters into scope;
3231/// that will be performed by ActOnDelayedCXXMethodParameter.
3232void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
3233}
3234
3235/// ActOnDelayedCXXMethodParameter - We've already started a delayed
3236/// C++ method declaration. We're (re-)introducing the given
3237/// function parameter into scope for use in parsing later parts of
3238/// the method declaration. For example, we could see an
3239/// ActOnParamDefaultArgument event for this parameter.
3240void Sema::ActOnDelayedCXXMethodParameter(Scope *S, Decl *ParamD) {
3241  if (!ParamD)
3242    return;
3243
3244  ParmVarDecl *Param = cast<ParmVarDecl>(ParamD);
3245
3246  // If this parameter has an unparsed default argument, clear it out
3247  // to make way for the parsed default argument.
3248  if (Param->hasUnparsedDefaultArg())
3249    Param->setDefaultArg(0);
3250
3251  S->AddDecl(Param);
3252  if (Param->getDeclName())
3253    IdResolver.AddDecl(Param);
3254}
3255
3256/// ActOnFinishDelayedCXXMethodDeclaration - We have finished
3257/// processing the delayed method declaration for Method. The method
3258/// declaration is now considered finished. There may be a separate
3259/// ActOnStartOfFunctionDef action later (not necessarily
3260/// immediately!) for this method, if it was also defined inside the
3261/// class body.
3262void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
3263  if (!MethodD)
3264    return;
3265
3266  AdjustDeclIfTemplate(MethodD);
3267
3268  FunctionDecl *Method = cast<FunctionDecl>(MethodD);
3269
3270  // Now that we have our default arguments, check the constructor
3271  // again. It could produce additional diagnostics or affect whether
3272  // the class has implicitly-declared destructors, among other
3273  // things.
3274  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method))
3275    CheckConstructor(Constructor);
3276
3277  // Check the default arguments, which we may have added.
3278  if (!Method->isInvalidDecl())
3279    CheckCXXDefaultArguments(Method);
3280}
3281
3282/// CheckConstructorDeclarator - Called by ActOnDeclarator to check
3283/// the well-formedness of the constructor declarator @p D with type @p
3284/// R. If there are any errors in the declarator, this routine will
3285/// emit diagnostics and set the invalid bit to true.  In any case, the type
3286/// will be updated to reflect a well-formed type for the constructor and
3287/// returned.
3288QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R,
3289                                          StorageClass &SC) {
3290  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
3291
3292  // C++ [class.ctor]p3:
3293  //   A constructor shall not be virtual (10.3) or static (9.4). A
3294  //   constructor can be invoked for a const, volatile or const
3295  //   volatile object. A constructor shall not be declared const,
3296  //   volatile, or const volatile (9.3.2).
3297  if (isVirtual) {
3298    if (!D.isInvalidType())
3299      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
3300        << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
3301        << SourceRange(D.getIdentifierLoc());
3302    D.setInvalidType();
3303  }
3304  if (SC == SC_Static) {
3305    if (!D.isInvalidType())
3306      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
3307        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
3308        << SourceRange(D.getIdentifierLoc());
3309    D.setInvalidType();
3310    SC = SC_None;
3311  }
3312
3313  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
3314  if (FTI.TypeQuals != 0) {
3315    if (FTI.TypeQuals & Qualifiers::Const)
3316      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
3317        << "const" << SourceRange(D.getIdentifierLoc());
3318    if (FTI.TypeQuals & Qualifiers::Volatile)
3319      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
3320        << "volatile" << SourceRange(D.getIdentifierLoc());
3321    if (FTI.TypeQuals & Qualifiers::Restrict)
3322      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
3323        << "restrict" << SourceRange(D.getIdentifierLoc());
3324    D.setInvalidType();
3325  }
3326
3327  // C++0x [class.ctor]p4:
3328  //   A constructor shall not be declared with a ref-qualifier.
3329  if (FTI.hasRefQualifier()) {
3330    Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_constructor)
3331      << FTI.RefQualifierIsLValueRef
3332      << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
3333    D.setInvalidType();
3334  }
3335
3336  // Rebuild the function type "R" without any type qualifiers (in
3337  // case any of the errors above fired) and with "void" as the
3338  // return type, since constructors don't have return types.
3339  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
3340  if (Proto->getResultType() == Context.VoidTy && !D.isInvalidType())
3341    return R;
3342
3343  FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
3344  EPI.TypeQuals = 0;
3345  EPI.RefQualifier = RQ_None;
3346
3347  return Context.getFunctionType(Context.VoidTy, Proto->arg_type_begin(),
3348                                 Proto->getNumArgs(), EPI);
3349}
3350
3351/// CheckConstructor - Checks a fully-formed constructor for
3352/// well-formedness, issuing any diagnostics required. Returns true if
3353/// the constructor declarator is invalid.
3354void Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
3355  CXXRecordDecl *ClassDecl
3356    = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext());
3357  if (!ClassDecl)
3358    return Constructor->setInvalidDecl();
3359
3360  // C++ [class.copy]p3:
3361  //   A declaration of a constructor for a class X is ill-formed if
3362  //   its first parameter is of type (optionally cv-qualified) X and
3363  //   either there are no other parameters or else all other
3364  //   parameters have default arguments.
3365  if (!Constructor->isInvalidDecl() &&
3366      ((Constructor->getNumParams() == 1) ||
3367       (Constructor->getNumParams() > 1 &&
3368        Constructor->getParamDecl(1)->hasDefaultArg())) &&
3369      Constructor->getTemplateSpecializationKind()
3370                                              != TSK_ImplicitInstantiation) {
3371    QualType ParamType = Constructor->getParamDecl(0)->getType();
3372    QualType ClassTy = Context.getTagDeclType(ClassDecl);
3373    if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
3374      SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation();
3375      const char *ConstRef
3376        = Constructor->getParamDecl(0)->getIdentifier() ? "const &"
3377                                                        : " const &";
3378      Diag(ParamLoc, diag::err_constructor_byvalue_arg)
3379        << FixItHint::CreateInsertion(ParamLoc, ConstRef);
3380
3381      // FIXME: Rather that making the constructor invalid, we should endeavor
3382      // to fix the type.
3383      Constructor->setInvalidDecl();
3384    }
3385  }
3386}
3387
3388/// CheckDestructor - Checks a fully-formed destructor definition for
3389/// well-formedness, issuing any diagnostics required.  Returns true
3390/// on error.
3391bool Sema::CheckDestructor(CXXDestructorDecl *Destructor) {
3392  CXXRecordDecl *RD = Destructor->getParent();
3393
3394  if (Destructor->isVirtual()) {
3395    SourceLocation Loc;
3396
3397    if (!Destructor->isImplicit())
3398      Loc = Destructor->getLocation();
3399    else
3400      Loc = RD->getLocation();
3401
3402    // If we have a virtual destructor, look up the deallocation function
3403    FunctionDecl *OperatorDelete = 0;
3404    DeclarationName Name =
3405    Context.DeclarationNames.getCXXOperatorName(OO_Delete);
3406    if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete))
3407      return true;
3408
3409    MarkDeclarationReferenced(Loc, OperatorDelete);
3410
3411    Destructor->setOperatorDelete(OperatorDelete);
3412  }
3413
3414  return false;
3415}
3416
3417static inline bool
3418FTIHasSingleVoidArgument(DeclaratorChunk::FunctionTypeInfo &FTI) {
3419  return (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
3420          FTI.ArgInfo[0].Param &&
3421          cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType());
3422}
3423
3424/// CheckDestructorDeclarator - Called by ActOnDeclarator to check
3425/// the well-formednes of the destructor declarator @p D with type @p
3426/// R. If there are any errors in the declarator, this routine will
3427/// emit diagnostics and set the declarator to invalid.  Even if this happens,
3428/// will be updated to reflect a well-formed type for the destructor and
3429/// returned.
3430QualType Sema::CheckDestructorDeclarator(Declarator &D, QualType R,
3431                                         StorageClass& SC) {
3432  // C++ [class.dtor]p1:
3433  //   [...] A typedef-name that names a class is a class-name
3434  //   (7.1.3); however, a typedef-name that names a class shall not
3435  //   be used as the identifier in the declarator for a destructor
3436  //   declaration.
3437  QualType DeclaratorType = GetTypeFromParser(D.getName().DestructorName);
3438  if (const TypedefType *TT = DeclaratorType->getAs<TypedefType>())
3439    Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
3440      << DeclaratorType << isa<TypeAliasDecl>(TT->getDecl());
3441
3442  // C++ [class.dtor]p2:
3443  //   A destructor is used to destroy objects of its class type. A
3444  //   destructor takes no parameters, and no return type can be
3445  //   specified for it (not even void). The address of a destructor
3446  //   shall not be taken. A destructor shall not be static. A
3447  //   destructor can be invoked for a const, volatile or const
3448  //   volatile object. A destructor shall not be declared const,
3449  //   volatile or const volatile (9.3.2).
3450  if (SC == SC_Static) {
3451    if (!D.isInvalidType())
3452      Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
3453        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
3454        << SourceRange(D.getIdentifierLoc())
3455        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
3456
3457    SC = SC_None;
3458  }
3459  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
3460    // Destructors don't have return types, but the parser will
3461    // happily parse something like:
3462    //
3463    //   class X {
3464    //     float ~X();
3465    //   };
3466    //
3467    // The return type will be eliminated later.
3468    Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
3469      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
3470      << SourceRange(D.getIdentifierLoc());
3471  }
3472
3473  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
3474  if (FTI.TypeQuals != 0 && !D.isInvalidType()) {
3475    if (FTI.TypeQuals & Qualifiers::Const)
3476      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
3477        << "const" << SourceRange(D.getIdentifierLoc());
3478    if (FTI.TypeQuals & Qualifiers::Volatile)
3479      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
3480        << "volatile" << SourceRange(D.getIdentifierLoc());
3481    if (FTI.TypeQuals & Qualifiers::Restrict)
3482      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
3483        << "restrict" << SourceRange(D.getIdentifierLoc());
3484    D.setInvalidType();
3485  }
3486
3487  // C++0x [class.dtor]p2:
3488  //   A destructor shall not be declared with a ref-qualifier.
3489  if (FTI.hasRefQualifier()) {
3490    Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_destructor)
3491      << FTI.RefQualifierIsLValueRef
3492      << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
3493    D.setInvalidType();
3494  }
3495
3496  // Make sure we don't have any parameters.
3497  if (FTI.NumArgs > 0 && !FTIHasSingleVoidArgument(FTI)) {
3498    Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
3499
3500    // Delete the parameters.
3501    FTI.freeArgs();
3502    D.setInvalidType();
3503  }
3504
3505  // Make sure the destructor isn't variadic.
3506  if (FTI.isVariadic) {
3507    Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
3508    D.setInvalidType();
3509  }
3510
3511  // Rebuild the function type "R" without any type qualifiers or
3512  // parameters (in case any of the errors above fired) and with
3513  // "void" as the return type, since destructors don't have return
3514  // types.
3515  if (!D.isInvalidType())
3516    return R;
3517
3518  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
3519  FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
3520  EPI.Variadic = false;
3521  EPI.TypeQuals = 0;
3522  EPI.RefQualifier = RQ_None;
3523  return Context.getFunctionType(Context.VoidTy, 0, 0, EPI);
3524}
3525
3526/// CheckConversionDeclarator - Called by ActOnDeclarator to check the
3527/// well-formednes of the conversion function declarator @p D with
3528/// type @p R. If there are any errors in the declarator, this routine
3529/// will emit diagnostics and return true. Otherwise, it will return
3530/// false. Either way, the type @p R will be updated to reflect a
3531/// well-formed type for the conversion operator.
3532void Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
3533                                     StorageClass& SC) {
3534  // C++ [class.conv.fct]p1:
3535  //   Neither parameter types nor return type can be specified. The
3536  //   type of a conversion function (8.3.5) is "function taking no
3537  //   parameter returning conversion-type-id."
3538  if (SC == SC_Static) {
3539    if (!D.isInvalidType())
3540      Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
3541        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
3542        << SourceRange(D.getIdentifierLoc());
3543    D.setInvalidType();
3544    SC = SC_None;
3545  }
3546
3547  QualType ConvType = GetTypeFromParser(D.getName().ConversionFunctionId);
3548
3549  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
3550    // Conversion functions don't have return types, but the parser will
3551    // happily parse something like:
3552    //
3553    //   class X {
3554    //     float operator bool();
3555    //   };
3556    //
3557    // The return type will be changed later anyway.
3558    Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
3559      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
3560      << SourceRange(D.getIdentifierLoc());
3561    D.setInvalidType();
3562  }
3563
3564  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
3565
3566  // Make sure we don't have any parameters.
3567  if (Proto->getNumArgs() > 0) {
3568    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
3569
3570    // Delete the parameters.
3571    D.getFunctionTypeInfo().freeArgs();
3572    D.setInvalidType();
3573  } else if (Proto->isVariadic()) {
3574    Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
3575    D.setInvalidType();
3576  }
3577
3578  // Diagnose "&operator bool()" and other such nonsense.  This
3579  // is actually a gcc extension which we don't support.
3580  if (Proto->getResultType() != ConvType) {
3581    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_complex_decl)
3582      << Proto->getResultType();
3583    D.setInvalidType();
3584    ConvType = Proto->getResultType();
3585  }
3586
3587  // C++ [class.conv.fct]p4:
3588  //   The conversion-type-id shall not represent a function type nor
3589  //   an array type.
3590  if (ConvType->isArrayType()) {
3591    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
3592    ConvType = Context.getPointerType(ConvType);
3593    D.setInvalidType();
3594  } else if (ConvType->isFunctionType()) {
3595    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
3596    ConvType = Context.getPointerType(ConvType);
3597    D.setInvalidType();
3598  }
3599
3600  // Rebuild the function type "R" without any parameters (in case any
3601  // of the errors above fired) and with the conversion type as the
3602  // return type.
3603  if (D.isInvalidType())
3604    R = Context.getFunctionType(ConvType, 0, 0, Proto->getExtProtoInfo());
3605
3606  // C++0x explicit conversion operators.
3607  if (D.getDeclSpec().isExplicitSpecified() && !getLangOptions().CPlusPlus0x)
3608    Diag(D.getDeclSpec().getExplicitSpecLoc(),
3609         diag::warn_explicit_conversion_functions)
3610      << SourceRange(D.getDeclSpec().getExplicitSpecLoc());
3611}
3612
3613/// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
3614/// the declaration of the given C++ conversion function. This routine
3615/// is responsible for recording the conversion function in the C++
3616/// class, if possible.
3617Decl *Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
3618  assert(Conversion && "Expected to receive a conversion function declaration");
3619
3620  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext());
3621
3622  // Make sure we aren't redeclaring the conversion function.
3623  QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());
3624
3625  // C++ [class.conv.fct]p1:
3626  //   [...] A conversion function is never used to convert a
3627  //   (possibly cv-qualified) object to the (possibly cv-qualified)
3628  //   same object type (or a reference to it), to a (possibly
3629  //   cv-qualified) base class of that type (or a reference to it),
3630  //   or to (possibly cv-qualified) void.
3631  // FIXME: Suppress this warning if the conversion function ends up being a
3632  // virtual function that overrides a virtual function in a base class.
3633  QualType ClassType
3634    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
3635  if (const ReferenceType *ConvTypeRef = ConvType->getAs<ReferenceType>())
3636    ConvType = ConvTypeRef->getPointeeType();
3637  if (Conversion->getTemplateSpecializationKind() != TSK_Undeclared &&
3638      Conversion->getTemplateSpecializationKind() != TSK_ExplicitSpecialization)
3639    /* Suppress diagnostics for instantiations. */;
3640  else if (ConvType->isRecordType()) {
3641    ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
3642    if (ConvType == ClassType)
3643      Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used)
3644        << ClassType;
3645    else if (IsDerivedFrom(ClassType, ConvType))
3646      Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used)
3647        <<  ClassType << ConvType;
3648  } else if (ConvType->isVoidType()) {
3649    Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used)
3650      << ClassType << ConvType;
3651  }
3652
3653  if (FunctionTemplateDecl *ConversionTemplate
3654                                = Conversion->getDescribedFunctionTemplate())
3655    return ConversionTemplate;
3656
3657  return Conversion;
3658}
3659
3660//===----------------------------------------------------------------------===//
3661// Namespace Handling
3662//===----------------------------------------------------------------------===//
3663
3664
3665
3666/// ActOnStartNamespaceDef - This is called at the start of a namespace
3667/// definition.
3668Decl *Sema::ActOnStartNamespaceDef(Scope *NamespcScope,
3669                                   SourceLocation InlineLoc,
3670                                   SourceLocation NamespaceLoc,
3671                                   SourceLocation IdentLoc,
3672                                   IdentifierInfo *II,
3673                                   SourceLocation LBrace,
3674                                   AttributeList *AttrList) {
3675  SourceLocation StartLoc = InlineLoc.isValid() ? InlineLoc : NamespaceLoc;
3676  // For anonymous namespace, take the location of the left brace.
3677  SourceLocation Loc = II ? IdentLoc : LBrace;
3678  NamespaceDecl *Namespc = NamespaceDecl::Create(Context, CurContext,
3679                                                 StartLoc, Loc, II);
3680  Namespc->setInline(InlineLoc.isValid());
3681
3682  Scope *DeclRegionScope = NamespcScope->getParent();
3683
3684  ProcessDeclAttributeList(DeclRegionScope, Namespc, AttrList);
3685
3686  if (const VisibilityAttr *Attr = Namespc->getAttr<VisibilityAttr>())
3687    PushNamespaceVisibilityAttr(Attr);
3688
3689  if (II) {
3690    // C++ [namespace.def]p2:
3691    //   The identifier in an original-namespace-definition shall not
3692    //   have been previously defined in the declarative region in
3693    //   which the original-namespace-definition appears. The
3694    //   identifier in an original-namespace-definition is the name of
3695    //   the namespace. Subsequently in that declarative region, it is
3696    //   treated as an original-namespace-name.
3697    //
3698    // Since namespace names are unique in their scope, and we don't
3699    // look through using directives, just
3700    DeclContext::lookup_result R = CurContext->getRedeclContext()->lookup(II);
3701    NamedDecl *PrevDecl = R.first == R.second? 0 : *R.first;
3702
3703    if (NamespaceDecl *OrigNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl)) {
3704      // This is an extended namespace definition.
3705      if (Namespc->isInline() != OrigNS->isInline()) {
3706        // inline-ness must match
3707        Diag(Namespc->getLocation(), diag::err_inline_namespace_mismatch)
3708          << Namespc->isInline();
3709        Diag(OrigNS->getLocation(), diag::note_previous_definition);
3710        Namespc->setInvalidDecl();
3711        // Recover by ignoring the new namespace's inline status.
3712        Namespc->setInline(OrigNS->isInline());
3713      }
3714
3715      // Attach this namespace decl to the chain of extended namespace
3716      // definitions.
3717      OrigNS->setNextNamespace(Namespc);
3718      Namespc->setOriginalNamespace(OrigNS->getOriginalNamespace());
3719
3720      // Remove the previous declaration from the scope.
3721      if (DeclRegionScope->isDeclScope(OrigNS)) {
3722        IdResolver.RemoveDecl(OrigNS);
3723        DeclRegionScope->RemoveDecl(OrigNS);
3724      }
3725    } else if (PrevDecl) {
3726      // This is an invalid name redefinition.
3727      Diag(Namespc->getLocation(), diag::err_redefinition_different_kind)
3728       << Namespc->getDeclName();
3729      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3730      Namespc->setInvalidDecl();
3731      // Continue on to push Namespc as current DeclContext and return it.
3732    } else if (II->isStr("std") &&
3733               CurContext->getRedeclContext()->isTranslationUnit()) {
3734      // This is the first "real" definition of the namespace "std", so update
3735      // our cache of the "std" namespace to point at this definition.
3736      if (NamespaceDecl *StdNS = getStdNamespace()) {
3737        // We had already defined a dummy namespace "std". Link this new
3738        // namespace definition to the dummy namespace "std".
3739        StdNS->setNextNamespace(Namespc);
3740        StdNS->setLocation(IdentLoc);
3741        Namespc->setOriginalNamespace(StdNS->getOriginalNamespace());
3742      }
3743
3744      // Make our StdNamespace cache point at the first real definition of the
3745      // "std" namespace.
3746      StdNamespace = Namespc;
3747    }
3748
3749    PushOnScopeChains(Namespc, DeclRegionScope);
3750  } else {
3751    // Anonymous namespaces.
3752    assert(Namespc->isAnonymousNamespace());
3753
3754    // Link the anonymous namespace into its parent.
3755    NamespaceDecl *PrevDecl;
3756    DeclContext *Parent = CurContext->getRedeclContext();
3757    if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
3758      PrevDecl = TU->getAnonymousNamespace();
3759      TU->setAnonymousNamespace(Namespc);
3760    } else {
3761      NamespaceDecl *ND = cast<NamespaceDecl>(Parent);
3762      PrevDecl = ND->getAnonymousNamespace();
3763      ND->setAnonymousNamespace(Namespc);
3764    }
3765
3766    // Link the anonymous namespace with its previous declaration.
3767    if (PrevDecl) {
3768      assert(PrevDecl->isAnonymousNamespace());
3769      assert(!PrevDecl->getNextNamespace());
3770      Namespc->setOriginalNamespace(PrevDecl->getOriginalNamespace());
3771      PrevDecl->setNextNamespace(Namespc);
3772
3773      if (Namespc->isInline() != PrevDecl->isInline()) {
3774        // inline-ness must match
3775        Diag(Namespc->getLocation(), diag::err_inline_namespace_mismatch)
3776          << Namespc->isInline();
3777        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3778        Namespc->setInvalidDecl();
3779        // Recover by ignoring the new namespace's inline status.
3780        Namespc->setInline(PrevDecl->isInline());
3781      }
3782    }
3783
3784    CurContext->addDecl(Namespc);
3785
3786    // C++ [namespace.unnamed]p1.  An unnamed-namespace-definition
3787    //   behaves as if it were replaced by
3788    //     namespace unique { /* empty body */ }
3789    //     using namespace unique;
3790    //     namespace unique { namespace-body }
3791    //   where all occurrences of 'unique' in a translation unit are
3792    //   replaced by the same identifier and this identifier differs
3793    //   from all other identifiers in the entire program.
3794
3795    // We just create the namespace with an empty name and then add an
3796    // implicit using declaration, just like the standard suggests.
3797    //
3798    // CodeGen enforces the "universally unique" aspect by giving all
3799    // declarations semantically contained within an anonymous
3800    // namespace internal linkage.
3801
3802    if (!PrevDecl) {
3803      UsingDirectiveDecl* UD
3804        = UsingDirectiveDecl::Create(Context, CurContext,
3805                                     /* 'using' */ LBrace,
3806                                     /* 'namespace' */ SourceLocation(),
3807                                     /* qualifier */ NestedNameSpecifierLoc(),
3808                                     /* identifier */ SourceLocation(),
3809                                     Namespc,
3810                                     /* Ancestor */ CurContext);
3811      UD->setImplicit();
3812      CurContext->addDecl(UD);
3813    }
3814  }
3815
3816  // Although we could have an invalid decl (i.e. the namespace name is a
3817  // redefinition), push it as current DeclContext and try to continue parsing.
3818  // FIXME: We should be able to push Namespc here, so that the each DeclContext
3819  // for the namespace has the declarations that showed up in that particular
3820  // namespace definition.
3821  PushDeclContext(NamespcScope, Namespc);
3822  return Namespc;
3823}
3824
3825/// getNamespaceDecl - Returns the namespace a decl represents. If the decl
3826/// is a namespace alias, returns the namespace it points to.
3827static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) {
3828  if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D))
3829    return AD->getNamespace();
3830  return dyn_cast_or_null<NamespaceDecl>(D);
3831}
3832
3833/// ActOnFinishNamespaceDef - This callback is called after a namespace is
3834/// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
3835void Sema::ActOnFinishNamespaceDef(Decl *Dcl, SourceLocation RBrace) {
3836  NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
3837  assert(Namespc && "Invalid parameter, expected NamespaceDecl");
3838  Namespc->setRBraceLoc(RBrace);
3839  PopDeclContext();
3840  if (Namespc->hasAttr<VisibilityAttr>())
3841    PopPragmaVisibility();
3842}
3843
3844CXXRecordDecl *Sema::getStdBadAlloc() const {
3845  return cast_or_null<CXXRecordDecl>(
3846                                  StdBadAlloc.get(Context.getExternalSource()));
3847}
3848
3849NamespaceDecl *Sema::getStdNamespace() const {
3850  return cast_or_null<NamespaceDecl>(
3851                                 StdNamespace.get(Context.getExternalSource()));
3852}
3853
3854/// \brief Retrieve the special "std" namespace, which may require us to
3855/// implicitly define the namespace.
3856NamespaceDecl *Sema::getOrCreateStdNamespace() {
3857  if (!StdNamespace) {
3858    // The "std" namespace has not yet been defined, so build one implicitly.
3859    StdNamespace = NamespaceDecl::Create(Context,
3860                                         Context.getTranslationUnitDecl(),
3861                                         SourceLocation(), SourceLocation(),
3862                                         &PP.getIdentifierTable().get("std"));
3863    getStdNamespace()->setImplicit(true);
3864  }
3865
3866  return getStdNamespace();
3867}
3868
3869/// \brief Determine whether a using statement is in a context where it will be
3870/// apply in all contexts.
3871static bool IsUsingDirectiveInToplevelContext(DeclContext *CurContext) {
3872  switch (CurContext->getDeclKind()) {
3873    case Decl::TranslationUnit:
3874      return true;
3875    case Decl::LinkageSpec:
3876      return IsUsingDirectiveInToplevelContext(CurContext->getParent());
3877    default:
3878      return false;
3879  }
3880}
3881
3882Decl *Sema::ActOnUsingDirective(Scope *S,
3883                                          SourceLocation UsingLoc,
3884                                          SourceLocation NamespcLoc,
3885                                          CXXScopeSpec &SS,
3886                                          SourceLocation IdentLoc,
3887                                          IdentifierInfo *NamespcName,
3888                                          AttributeList *AttrList) {
3889  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
3890  assert(NamespcName && "Invalid NamespcName.");
3891  assert(IdentLoc.isValid() && "Invalid NamespceName location.");
3892
3893  // This can only happen along a recovery path.
3894  while (S->getFlags() & Scope::TemplateParamScope)
3895    S = S->getParent();
3896  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
3897
3898  UsingDirectiveDecl *UDir = 0;
3899  NestedNameSpecifier *Qualifier = 0;
3900  if (SS.isSet())
3901    Qualifier = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
3902
3903  // Lookup namespace name.
3904  LookupResult R(*this, NamespcName, IdentLoc, LookupNamespaceName);
3905  LookupParsedName(R, S, &SS);
3906  if (R.isAmbiguous())
3907    return 0;
3908
3909  if (R.empty()) {
3910    // Allow "using namespace std;" or "using namespace ::std;" even if
3911    // "std" hasn't been defined yet, for GCC compatibility.
3912    if ((!Qualifier || Qualifier->getKind() == NestedNameSpecifier::Global) &&
3913        NamespcName->isStr("std")) {
3914      Diag(IdentLoc, diag::ext_using_undefined_std);
3915      R.addDecl(getOrCreateStdNamespace());
3916      R.resolveKind();
3917    }
3918    // Otherwise, attempt typo correction.
3919    else if (DeclarationName Corrected = CorrectTypo(R, S, &SS, 0, false,
3920                                                       CTC_NoKeywords, 0)) {
3921      if (R.getAsSingle<NamespaceDecl>() ||
3922          R.getAsSingle<NamespaceAliasDecl>()) {
3923        if (DeclContext *DC = computeDeclContext(SS, false))
3924          Diag(IdentLoc, diag::err_using_directive_member_suggest)
3925            << NamespcName << DC << Corrected << SS.getRange()
3926            << FixItHint::CreateReplacement(IdentLoc, Corrected.getAsString());
3927        else
3928          Diag(IdentLoc, diag::err_using_directive_suggest)
3929            << NamespcName << Corrected
3930            << FixItHint::CreateReplacement(IdentLoc, Corrected.getAsString());
3931        Diag(R.getFoundDecl()->getLocation(), diag::note_namespace_defined_here)
3932          << Corrected;
3933
3934        NamespcName = Corrected.getAsIdentifierInfo();
3935      } else {
3936        R.clear();
3937        R.setLookupName(NamespcName);
3938      }
3939    }
3940  }
3941
3942  if (!R.empty()) {
3943    NamedDecl *Named = R.getFoundDecl();
3944    assert((isa<NamespaceDecl>(Named) || isa<NamespaceAliasDecl>(Named))
3945        && "expected namespace decl");
3946    // C++ [namespace.udir]p1:
3947    //   A using-directive specifies that the names in the nominated
3948    //   namespace can be used in the scope in which the
3949    //   using-directive appears after the using-directive. During
3950    //   unqualified name lookup (3.4.1), the names appear as if they
3951    //   were declared in the nearest enclosing namespace which
3952    //   contains both the using-directive and the nominated
3953    //   namespace. [Note: in this context, "contains" means "contains
3954    //   directly or indirectly". ]
3955
3956    // Find enclosing context containing both using-directive and
3957    // nominated namespace.
3958    NamespaceDecl *NS = getNamespaceDecl(Named);
3959    DeclContext *CommonAncestor = cast<DeclContext>(NS);
3960    while (CommonAncestor && !CommonAncestor->Encloses(CurContext))
3961      CommonAncestor = CommonAncestor->getParent();
3962
3963    UDir = UsingDirectiveDecl::Create(Context, CurContext, UsingLoc, NamespcLoc,
3964                                      SS.getWithLocInContext(Context),
3965                                      IdentLoc, Named, CommonAncestor);
3966
3967    if (IsUsingDirectiveInToplevelContext(CurContext) &&
3968        !SourceMgr.isFromMainFile(SourceMgr.getInstantiationLoc(IdentLoc))) {
3969      Diag(IdentLoc, diag::warn_using_directive_in_header);
3970    }
3971
3972    PushUsingDirective(S, UDir);
3973  } else {
3974    Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
3975  }
3976
3977  // FIXME: We ignore attributes for now.
3978  return UDir;
3979}
3980
3981void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) {
3982  // If scope has associated entity, then using directive is at namespace
3983  // or translation unit scope. We add UsingDirectiveDecls, into
3984  // it's lookup structure.
3985  if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity()))
3986    Ctx->addDecl(UDir);
3987  else
3988    // Otherwise it is block-sope. using-directives will affect lookup
3989    // only to the end of scope.
3990    S->PushUsingDirective(UDir);
3991}
3992
3993
3994Decl *Sema::ActOnUsingDeclaration(Scope *S,
3995                                  AccessSpecifier AS,
3996                                  bool HasUsingKeyword,
3997                                  SourceLocation UsingLoc,
3998                                  CXXScopeSpec &SS,
3999                                  UnqualifiedId &Name,
4000                                  AttributeList *AttrList,
4001                                  bool IsTypeName,
4002                                  SourceLocation TypenameLoc) {
4003  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
4004
4005  switch (Name.getKind()) {
4006  case UnqualifiedId::IK_Identifier:
4007  case UnqualifiedId::IK_OperatorFunctionId:
4008  case UnqualifiedId::IK_LiteralOperatorId:
4009  case UnqualifiedId::IK_ConversionFunctionId:
4010    break;
4011
4012  case UnqualifiedId::IK_ConstructorName:
4013  case UnqualifiedId::IK_ConstructorTemplateId:
4014    // C++0x inherited constructors.
4015    if (getLangOptions().CPlusPlus0x) break;
4016
4017    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_constructor)
4018      << SS.getRange();
4019    return 0;
4020
4021  case UnqualifiedId::IK_DestructorName:
4022    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_destructor)
4023      << SS.getRange();
4024    return 0;
4025
4026  case UnqualifiedId::IK_TemplateId:
4027    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_template_id)
4028      << SourceRange(Name.TemplateId->LAngleLoc, Name.TemplateId->RAngleLoc);
4029    return 0;
4030  }
4031
4032  DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name);
4033  DeclarationName TargetName = TargetNameInfo.getName();
4034  if (!TargetName)
4035    return 0;
4036
4037  // Warn about using declarations.
4038  // TODO: store that the declaration was written without 'using' and
4039  // talk about access decls instead of using decls in the
4040  // diagnostics.
4041  if (!HasUsingKeyword) {
4042    UsingLoc = Name.getSourceRange().getBegin();
4043
4044    Diag(UsingLoc, diag::warn_access_decl_deprecated)
4045      << FixItHint::CreateInsertion(SS.getRange().getBegin(), "using ");
4046  }
4047
4048  if (DiagnoseUnexpandedParameterPack(SS, UPPC_UsingDeclaration) ||
4049      DiagnoseUnexpandedParameterPack(TargetNameInfo, UPPC_UsingDeclaration))
4050    return 0;
4051
4052  NamedDecl *UD = BuildUsingDeclaration(S, AS, UsingLoc, SS,
4053                                        TargetNameInfo, AttrList,
4054                                        /* IsInstantiation */ false,
4055                                        IsTypeName, TypenameLoc);
4056  if (UD)
4057    PushOnScopeChains(UD, S, /*AddToContext*/ false);
4058
4059  return UD;
4060}
4061
4062/// \brief Determine whether a using declaration considers the given
4063/// declarations as "equivalent", e.g., if they are redeclarations of
4064/// the same entity or are both typedefs of the same type.
4065static bool
4066IsEquivalentForUsingDecl(ASTContext &Context, NamedDecl *D1, NamedDecl *D2,
4067                         bool &SuppressRedeclaration) {
4068  if (D1->getCanonicalDecl() == D2->getCanonicalDecl()) {
4069    SuppressRedeclaration = false;
4070    return true;
4071  }
4072
4073  if (TypedefNameDecl *TD1 = dyn_cast<TypedefNameDecl>(D1))
4074    if (TypedefNameDecl *TD2 = dyn_cast<TypedefNameDecl>(D2)) {
4075      SuppressRedeclaration = true;
4076      return Context.hasSameType(TD1->getUnderlyingType(),
4077                                 TD2->getUnderlyingType());
4078    }
4079
4080  return false;
4081}
4082
4083
4084/// Determines whether to create a using shadow decl for a particular
4085/// decl, given the set of decls existing prior to this using lookup.
4086bool Sema::CheckUsingShadowDecl(UsingDecl *Using, NamedDecl *Orig,
4087                                const LookupResult &Previous) {
4088  // Diagnose finding a decl which is not from a base class of the
4089  // current class.  We do this now because there are cases where this
4090  // function will silently decide not to build a shadow decl, which
4091  // will pre-empt further diagnostics.
4092  //
4093  // We don't need to do this in C++0x because we do the check once on
4094  // the qualifier.
4095  //
4096  // FIXME: diagnose the following if we care enough:
4097  //   struct A { int foo; };
4098  //   struct B : A { using A::foo; };
4099  //   template <class T> struct C : A {};
4100  //   template <class T> struct D : C<T> { using B::foo; } // <---
4101  // This is invalid (during instantiation) in C++03 because B::foo
4102  // resolves to the using decl in B, which is not a base class of D<T>.
4103  // We can't diagnose it immediately because C<T> is an unknown
4104  // specialization.  The UsingShadowDecl in D<T> then points directly
4105  // to A::foo, which will look well-formed when we instantiate.
4106  // The right solution is to not collapse the shadow-decl chain.
4107  if (!getLangOptions().CPlusPlus0x && CurContext->isRecord()) {
4108    DeclContext *OrigDC = Orig->getDeclContext();
4109
4110    // Handle enums and anonymous structs.
4111    if (isa<EnumDecl>(OrigDC)) OrigDC = OrigDC->getParent();
4112    CXXRecordDecl *OrigRec = cast<CXXRecordDecl>(OrigDC);
4113    while (OrigRec->isAnonymousStructOrUnion())
4114      OrigRec = cast<CXXRecordDecl>(OrigRec->getDeclContext());
4115
4116    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(OrigRec)) {
4117      if (OrigDC == CurContext) {
4118        Diag(Using->getLocation(),
4119             diag::err_using_decl_nested_name_specifier_is_current_class)
4120          << Using->getQualifierLoc().getSourceRange();
4121        Diag(Orig->getLocation(), diag::note_using_decl_target);
4122        return true;
4123      }
4124
4125      Diag(Using->getQualifierLoc().getBeginLoc(),
4126           diag::err_using_decl_nested_name_specifier_is_not_base_class)
4127        << Using->getQualifier()
4128        << cast<CXXRecordDecl>(CurContext)
4129        << Using->getQualifierLoc().getSourceRange();
4130      Diag(Orig->getLocation(), diag::note_using_decl_target);
4131      return true;
4132    }
4133  }
4134
4135  if (Previous.empty()) return false;
4136
4137  NamedDecl *Target = Orig;
4138  if (isa<UsingShadowDecl>(Target))
4139    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
4140
4141  // If the target happens to be one of the previous declarations, we
4142  // don't have a conflict.
4143  //
4144  // FIXME: but we might be increasing its access, in which case we
4145  // should redeclare it.
4146  NamedDecl *NonTag = 0, *Tag = 0;
4147  for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
4148         I != E; ++I) {
4149    NamedDecl *D = (*I)->getUnderlyingDecl();
4150    bool Result;
4151    if (IsEquivalentForUsingDecl(Context, D, Target, Result))
4152      return Result;
4153
4154    (isa<TagDecl>(D) ? Tag : NonTag) = D;
4155  }
4156
4157  if (Target->isFunctionOrFunctionTemplate()) {
4158    FunctionDecl *FD;
4159    if (isa<FunctionTemplateDecl>(Target))
4160      FD = cast<FunctionTemplateDecl>(Target)->getTemplatedDecl();
4161    else
4162      FD = cast<FunctionDecl>(Target);
4163
4164    NamedDecl *OldDecl = 0;
4165    switch (CheckOverload(0, FD, Previous, OldDecl, /*IsForUsingDecl*/ true)) {
4166    case Ovl_Overload:
4167      return false;
4168
4169    case Ovl_NonFunction:
4170      Diag(Using->getLocation(), diag::err_using_decl_conflict);
4171      break;
4172
4173    // We found a decl with the exact signature.
4174    case Ovl_Match:
4175      // If we're in a record, we want to hide the target, so we
4176      // return true (without a diagnostic) to tell the caller not to
4177      // build a shadow decl.
4178      if (CurContext->isRecord())
4179        return true;
4180
4181      // If we're not in a record, this is an error.
4182      Diag(Using->getLocation(), diag::err_using_decl_conflict);
4183      break;
4184    }
4185
4186    Diag(Target->getLocation(), diag::note_using_decl_target);
4187    Diag(OldDecl->getLocation(), diag::note_using_decl_conflict);
4188    return true;
4189  }
4190
4191  // Target is not a function.
4192
4193  if (isa<TagDecl>(Target)) {
4194    // No conflict between a tag and a non-tag.
4195    if (!Tag) return false;
4196
4197    Diag(Using->getLocation(), diag::err_using_decl_conflict);
4198    Diag(Target->getLocation(), diag::note_using_decl_target);
4199    Diag(Tag->getLocation(), diag::note_using_decl_conflict);
4200    return true;
4201  }
4202
4203  // No conflict between a tag and a non-tag.
4204  if (!NonTag) return false;
4205
4206  Diag(Using->getLocation(), diag::err_using_decl_conflict);
4207  Diag(Target->getLocation(), diag::note_using_decl_target);
4208  Diag(NonTag->getLocation(), diag::note_using_decl_conflict);
4209  return true;
4210}
4211
4212/// Builds a shadow declaration corresponding to a 'using' declaration.
4213UsingShadowDecl *Sema::BuildUsingShadowDecl(Scope *S,
4214                                            UsingDecl *UD,
4215                                            NamedDecl *Orig) {
4216
4217  // If we resolved to another shadow declaration, just coalesce them.
4218  NamedDecl *Target = Orig;
4219  if (isa<UsingShadowDecl>(Target)) {
4220    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
4221    assert(!isa<UsingShadowDecl>(Target) && "nested shadow declaration");
4222  }
4223
4224  UsingShadowDecl *Shadow
4225    = UsingShadowDecl::Create(Context, CurContext,
4226                              UD->getLocation(), UD, Target);
4227  UD->addShadowDecl(Shadow);
4228
4229  Shadow->setAccess(UD->getAccess());
4230  if (Orig->isInvalidDecl() || UD->isInvalidDecl())
4231    Shadow->setInvalidDecl();
4232
4233  if (S)
4234    PushOnScopeChains(Shadow, S);
4235  else
4236    CurContext->addDecl(Shadow);
4237
4238
4239  return Shadow;
4240}
4241
4242/// Hides a using shadow declaration.  This is required by the current
4243/// using-decl implementation when a resolvable using declaration in a
4244/// class is followed by a declaration which would hide or override
4245/// one or more of the using decl's targets; for example:
4246///
4247///   struct Base { void foo(int); };
4248///   struct Derived : Base {
4249///     using Base::foo;
4250///     void foo(int);
4251///   };
4252///
4253/// The governing language is C++03 [namespace.udecl]p12:
4254///
4255///   When a using-declaration brings names from a base class into a
4256///   derived class scope, member functions in the derived class
4257///   override and/or hide member functions with the same name and
4258///   parameter types in a base class (rather than conflicting).
4259///
4260/// There are two ways to implement this:
4261///   (1) optimistically create shadow decls when they're not hidden
4262///       by existing declarations, or
4263///   (2) don't create any shadow decls (or at least don't make them
4264///       visible) until we've fully parsed/instantiated the class.
4265/// The problem with (1) is that we might have to retroactively remove
4266/// a shadow decl, which requires several O(n) operations because the
4267/// decl structures are (very reasonably) not designed for removal.
4268/// (2) avoids this but is very fiddly and phase-dependent.
4269void Sema::HideUsingShadowDecl(Scope *S, UsingShadowDecl *Shadow) {
4270  if (Shadow->getDeclName().getNameKind() ==
4271        DeclarationName::CXXConversionFunctionName)
4272    cast<CXXRecordDecl>(Shadow->getDeclContext())->removeConversion(Shadow);
4273
4274  // Remove it from the DeclContext...
4275  Shadow->getDeclContext()->removeDecl(Shadow);
4276
4277  // ...and the scope, if applicable...
4278  if (S) {
4279    S->RemoveDecl(Shadow);
4280    IdResolver.RemoveDecl(Shadow);
4281  }
4282
4283  // ...and the using decl.
4284  Shadow->getUsingDecl()->removeShadowDecl(Shadow);
4285
4286  // TODO: complain somehow if Shadow was used.  It shouldn't
4287  // be possible for this to happen, because...?
4288}
4289
4290/// Builds a using declaration.
4291///
4292/// \param IsInstantiation - Whether this call arises from an
4293///   instantiation of an unresolved using declaration.  We treat
4294///   the lookup differently for these declarations.
4295NamedDecl *Sema::BuildUsingDeclaration(Scope *S, AccessSpecifier AS,
4296                                       SourceLocation UsingLoc,
4297                                       CXXScopeSpec &SS,
4298                                       const DeclarationNameInfo &NameInfo,
4299                                       AttributeList *AttrList,
4300                                       bool IsInstantiation,
4301                                       bool IsTypeName,
4302                                       SourceLocation TypenameLoc) {
4303  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
4304  SourceLocation IdentLoc = NameInfo.getLoc();
4305  assert(IdentLoc.isValid() && "Invalid TargetName location.");
4306
4307  // FIXME: We ignore attributes for now.
4308
4309  if (SS.isEmpty()) {
4310    Diag(IdentLoc, diag::err_using_requires_qualname);
4311    return 0;
4312  }
4313
4314  // Do the redeclaration lookup in the current scope.
4315  LookupResult Previous(*this, NameInfo, LookupUsingDeclName,
4316                        ForRedeclaration);
4317  Previous.setHideTags(false);
4318  if (S) {
4319    LookupName(Previous, S);
4320
4321    // It is really dumb that we have to do this.
4322    LookupResult::Filter F = Previous.makeFilter();
4323    while (F.hasNext()) {
4324      NamedDecl *D = F.next();
4325      if (!isDeclInScope(D, CurContext, S))
4326        F.erase();
4327    }
4328    F.done();
4329  } else {
4330    assert(IsInstantiation && "no scope in non-instantiation");
4331    assert(CurContext->isRecord() && "scope not record in instantiation");
4332    LookupQualifiedName(Previous, CurContext);
4333  }
4334
4335  // Check for invalid redeclarations.
4336  if (CheckUsingDeclRedeclaration(UsingLoc, IsTypeName, SS, IdentLoc, Previous))
4337    return 0;
4338
4339  // Check for bad qualifiers.
4340  if (CheckUsingDeclQualifier(UsingLoc, SS, IdentLoc))
4341    return 0;
4342
4343  DeclContext *LookupContext = computeDeclContext(SS);
4344  NamedDecl *D;
4345  NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
4346  if (!LookupContext) {
4347    if (IsTypeName) {
4348      // FIXME: not all declaration name kinds are legal here
4349      D = UnresolvedUsingTypenameDecl::Create(Context, CurContext,
4350                                              UsingLoc, TypenameLoc,
4351                                              QualifierLoc,
4352                                              IdentLoc, NameInfo.getName());
4353    } else {
4354      D = UnresolvedUsingValueDecl::Create(Context, CurContext, UsingLoc,
4355                                           QualifierLoc, NameInfo);
4356    }
4357  } else {
4358    D = UsingDecl::Create(Context, CurContext, UsingLoc, QualifierLoc,
4359                          NameInfo, IsTypeName);
4360  }
4361  D->setAccess(AS);
4362  CurContext->addDecl(D);
4363
4364  if (!LookupContext) return D;
4365  UsingDecl *UD = cast<UsingDecl>(D);
4366
4367  if (RequireCompleteDeclContext(SS, LookupContext)) {
4368    UD->setInvalidDecl();
4369    return UD;
4370  }
4371
4372  // Constructor inheriting using decls get special treatment.
4373  if (NameInfo.getName().getNameKind() == DeclarationName::CXXConstructorName) {
4374    if (CheckInheritedConstructorUsingDecl(UD))
4375      UD->setInvalidDecl();
4376    return UD;
4377  }
4378
4379  // Otherwise, look up the target name.
4380
4381  LookupResult R(*this, NameInfo, LookupOrdinaryName);
4382
4383  // Unlike most lookups, we don't always want to hide tag
4384  // declarations: tag names are visible through the using declaration
4385  // even if hidden by ordinary names, *except* in a dependent context
4386  // where it's important for the sanity of two-phase lookup.
4387  if (!IsInstantiation)
4388    R.setHideTags(false);
4389
4390  LookupQualifiedName(R, LookupContext);
4391
4392  if (R.empty()) {
4393    Diag(IdentLoc, diag::err_no_member)
4394      << NameInfo.getName() << LookupContext << SS.getRange();
4395    UD->setInvalidDecl();
4396    return UD;
4397  }
4398
4399  if (R.isAmbiguous()) {
4400    UD->setInvalidDecl();
4401    return UD;
4402  }
4403
4404  if (IsTypeName) {
4405    // If we asked for a typename and got a non-type decl, error out.
4406    if (!R.getAsSingle<TypeDecl>()) {
4407      Diag(IdentLoc, diag::err_using_typename_non_type);
4408      for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
4409        Diag((*I)->getUnderlyingDecl()->getLocation(),
4410             diag::note_using_decl_target);
4411      UD->setInvalidDecl();
4412      return UD;
4413    }
4414  } else {
4415    // If we asked for a non-typename and we got a type, error out,
4416    // but only if this is an instantiation of an unresolved using
4417    // decl.  Otherwise just silently find the type name.
4418    if (IsInstantiation && R.getAsSingle<TypeDecl>()) {
4419      Diag(IdentLoc, diag::err_using_dependent_value_is_type);
4420      Diag(R.getFoundDecl()->getLocation(), diag::note_using_decl_target);
4421      UD->setInvalidDecl();
4422      return UD;
4423    }
4424  }
4425
4426  // C++0x N2914 [namespace.udecl]p6:
4427  // A using-declaration shall not name a namespace.
4428  if (R.getAsSingle<NamespaceDecl>()) {
4429    Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_namespace)
4430      << SS.getRange();
4431    UD->setInvalidDecl();
4432    return UD;
4433  }
4434
4435  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
4436    if (!CheckUsingShadowDecl(UD, *I, Previous))
4437      BuildUsingShadowDecl(S, UD, *I);
4438  }
4439
4440  return UD;
4441}
4442
4443/// Additional checks for a using declaration referring to a constructor name.
4444bool Sema::CheckInheritedConstructorUsingDecl(UsingDecl *UD) {
4445  if (UD->isTypeName()) {
4446    // FIXME: Cannot specify typename when specifying constructor
4447    return true;
4448  }
4449
4450  const Type *SourceType = UD->getQualifier()->getAsType();
4451  assert(SourceType &&
4452         "Using decl naming constructor doesn't have type in scope spec.");
4453  CXXRecordDecl *TargetClass = cast<CXXRecordDecl>(CurContext);
4454
4455  // Check whether the named type is a direct base class.
4456  CanQualType CanonicalSourceType = SourceType->getCanonicalTypeUnqualified();
4457  CXXRecordDecl::base_class_iterator BaseIt, BaseE;
4458  for (BaseIt = TargetClass->bases_begin(), BaseE = TargetClass->bases_end();
4459       BaseIt != BaseE; ++BaseIt) {
4460    CanQualType BaseType = BaseIt->getType()->getCanonicalTypeUnqualified();
4461    if (CanonicalSourceType == BaseType)
4462      break;
4463  }
4464
4465  if (BaseIt == BaseE) {
4466    // Did not find SourceType in the bases.
4467    Diag(UD->getUsingLocation(),
4468         diag::err_using_decl_constructor_not_in_direct_base)
4469      << UD->getNameInfo().getSourceRange()
4470      << QualType(SourceType, 0) << TargetClass;
4471    return true;
4472  }
4473
4474  BaseIt->setInheritConstructors();
4475
4476  return false;
4477}
4478
4479/// Checks that the given using declaration is not an invalid
4480/// redeclaration.  Note that this is checking only for the using decl
4481/// itself, not for any ill-formedness among the UsingShadowDecls.
4482bool Sema::CheckUsingDeclRedeclaration(SourceLocation UsingLoc,
4483                                       bool isTypeName,
4484                                       const CXXScopeSpec &SS,
4485                                       SourceLocation NameLoc,
4486                                       const LookupResult &Prev) {
4487  // C++03 [namespace.udecl]p8:
4488  // C++0x [namespace.udecl]p10:
4489  //   A using-declaration is a declaration and can therefore be used
4490  //   repeatedly where (and only where) multiple declarations are
4491  //   allowed.
4492  //
4493  // That's in non-member contexts.
4494  if (!CurContext->getRedeclContext()->isRecord())
4495    return false;
4496
4497  NestedNameSpecifier *Qual
4498    = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
4499
4500  for (LookupResult::iterator I = Prev.begin(), E = Prev.end(); I != E; ++I) {
4501    NamedDecl *D = *I;
4502
4503    bool DTypename;
4504    NestedNameSpecifier *DQual;
4505    if (UsingDecl *UD = dyn_cast<UsingDecl>(D)) {
4506      DTypename = UD->isTypeName();
4507      DQual = UD->getQualifier();
4508    } else if (UnresolvedUsingValueDecl *UD
4509                 = dyn_cast<UnresolvedUsingValueDecl>(D)) {
4510      DTypename = false;
4511      DQual = UD->getQualifier();
4512    } else if (UnresolvedUsingTypenameDecl *UD
4513                 = dyn_cast<UnresolvedUsingTypenameDecl>(D)) {
4514      DTypename = true;
4515      DQual = UD->getQualifier();
4516    } else continue;
4517
4518    // using decls differ if one says 'typename' and the other doesn't.
4519    // FIXME: non-dependent using decls?
4520    if (isTypeName != DTypename) continue;
4521
4522    // using decls differ if they name different scopes (but note that
4523    // template instantiation can cause this check to trigger when it
4524    // didn't before instantiation).
4525    if (Context.getCanonicalNestedNameSpecifier(Qual) !=
4526        Context.getCanonicalNestedNameSpecifier(DQual))
4527      continue;
4528
4529    Diag(NameLoc, diag::err_using_decl_redeclaration) << SS.getRange();
4530    Diag(D->getLocation(), diag::note_using_decl) << 1;
4531    return true;
4532  }
4533
4534  return false;
4535}
4536
4537
4538/// Checks that the given nested-name qualifier used in a using decl
4539/// in the current context is appropriately related to the current
4540/// scope.  If an error is found, diagnoses it and returns true.
4541bool Sema::CheckUsingDeclQualifier(SourceLocation UsingLoc,
4542                                   const CXXScopeSpec &SS,
4543                                   SourceLocation NameLoc) {
4544  DeclContext *NamedContext = computeDeclContext(SS);
4545
4546  if (!CurContext->isRecord()) {
4547    // C++03 [namespace.udecl]p3:
4548    // C++0x [namespace.udecl]p8:
4549    //   A using-declaration for a class member shall be a member-declaration.
4550
4551    // If we weren't able to compute a valid scope, it must be a
4552    // dependent class scope.
4553    if (!NamedContext || NamedContext->isRecord()) {
4554      Diag(NameLoc, diag::err_using_decl_can_not_refer_to_class_member)
4555        << SS.getRange();
4556      return true;
4557    }
4558
4559    // Otherwise, everything is known to be fine.
4560    return false;
4561  }
4562
4563  // The current scope is a record.
4564
4565  // If the named context is dependent, we can't decide much.
4566  if (!NamedContext) {
4567    // FIXME: in C++0x, we can diagnose if we can prove that the
4568    // nested-name-specifier does not refer to a base class, which is
4569    // still possible in some cases.
4570
4571    // Otherwise we have to conservatively report that things might be
4572    // okay.
4573    return false;
4574  }
4575
4576  if (!NamedContext->isRecord()) {
4577    // Ideally this would point at the last name in the specifier,
4578    // but we don't have that level of source info.
4579    Diag(SS.getRange().getBegin(),
4580         diag::err_using_decl_nested_name_specifier_is_not_class)
4581      << (NestedNameSpecifier*) SS.getScopeRep() << SS.getRange();
4582    return true;
4583  }
4584
4585  if (!NamedContext->isDependentContext() &&
4586      RequireCompleteDeclContext(const_cast<CXXScopeSpec&>(SS), NamedContext))
4587    return true;
4588
4589  if (getLangOptions().CPlusPlus0x) {
4590    // C++0x [namespace.udecl]p3:
4591    //   In a using-declaration used as a member-declaration, the
4592    //   nested-name-specifier shall name a base class of the class
4593    //   being defined.
4594
4595    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(
4596                                 cast<CXXRecordDecl>(NamedContext))) {
4597      if (CurContext == NamedContext) {
4598        Diag(NameLoc,
4599             diag::err_using_decl_nested_name_specifier_is_current_class)
4600          << SS.getRange();
4601        return true;
4602      }
4603
4604      Diag(SS.getRange().getBegin(),
4605           diag::err_using_decl_nested_name_specifier_is_not_base_class)
4606        << (NestedNameSpecifier*) SS.getScopeRep()
4607        << cast<CXXRecordDecl>(CurContext)
4608        << SS.getRange();
4609      return true;
4610    }
4611
4612    return false;
4613  }
4614
4615  // C++03 [namespace.udecl]p4:
4616  //   A using-declaration used as a member-declaration shall refer
4617  //   to a member of a base class of the class being defined [etc.].
4618
4619  // Salient point: SS doesn't have to name a base class as long as
4620  // lookup only finds members from base classes.  Therefore we can
4621  // diagnose here only if we can prove that that can't happen,
4622  // i.e. if the class hierarchies provably don't intersect.
4623
4624  // TODO: it would be nice if "definitely valid" results were cached
4625  // in the UsingDecl and UsingShadowDecl so that these checks didn't
4626  // need to be repeated.
4627
4628  struct UserData {
4629    llvm::DenseSet<const CXXRecordDecl*> Bases;
4630
4631    static bool collect(const CXXRecordDecl *Base, void *OpaqueData) {
4632      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
4633      Data->Bases.insert(Base);
4634      return true;
4635    }
4636
4637    bool hasDependentBases(const CXXRecordDecl *Class) {
4638      return !Class->forallBases(collect, this);
4639    }
4640
4641    /// Returns true if the base is dependent or is one of the
4642    /// accumulated base classes.
4643    static bool doesNotContain(const CXXRecordDecl *Base, void *OpaqueData) {
4644      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
4645      return !Data->Bases.count(Base);
4646    }
4647
4648    bool mightShareBases(const CXXRecordDecl *Class) {
4649      return Bases.count(Class) || !Class->forallBases(doesNotContain, this);
4650    }
4651  };
4652
4653  UserData Data;
4654
4655  // Returns false if we find a dependent base.
4656  if (Data.hasDependentBases(cast<CXXRecordDecl>(CurContext)))
4657    return false;
4658
4659  // Returns false if the class has a dependent base or if it or one
4660  // of its bases is present in the base set of the current context.
4661  if (Data.mightShareBases(cast<CXXRecordDecl>(NamedContext)))
4662    return false;
4663
4664  Diag(SS.getRange().getBegin(),
4665       diag::err_using_decl_nested_name_specifier_is_not_base_class)
4666    << (NestedNameSpecifier*) SS.getScopeRep()
4667    << cast<CXXRecordDecl>(CurContext)
4668    << SS.getRange();
4669
4670  return true;
4671}
4672
4673Decl *Sema::ActOnAliasDeclaration(Scope *S,
4674                                  AccessSpecifier AS,
4675                                  SourceLocation UsingLoc,
4676                                  UnqualifiedId &Name,
4677                                  TypeResult Type) {
4678  assert((S->getFlags() & Scope::DeclScope) &&
4679         "got alias-declaration outside of declaration scope");
4680
4681  if (Type.isInvalid())
4682    return 0;
4683
4684  bool Invalid = false;
4685  DeclarationNameInfo NameInfo = GetNameFromUnqualifiedId(Name);
4686  TypeSourceInfo *TInfo = 0;
4687  QualType T = GetTypeFromParser(Type.get(), &TInfo);
4688
4689  if (DiagnoseClassNameShadow(CurContext, NameInfo))
4690    return 0;
4691
4692  if (DiagnoseUnexpandedParameterPack(Name.StartLocation, TInfo,
4693                                      UPPC_DeclarationType))
4694    Invalid = true;
4695
4696  LookupResult Previous(*this, NameInfo, LookupOrdinaryName, ForRedeclaration);
4697  LookupName(Previous, S);
4698
4699  // Warn about shadowing the name of a template parameter.
4700  if (Previous.isSingleResult() &&
4701      Previous.getFoundDecl()->isTemplateParameter()) {
4702    if (DiagnoseTemplateParameterShadow(Name.StartLocation,
4703                                        Previous.getFoundDecl()))
4704      Invalid = true;
4705    Previous.clear();
4706  }
4707
4708  assert(Name.Kind == UnqualifiedId::IK_Identifier &&
4709         "name in alias declaration must be an identifier");
4710  TypeAliasDecl *NewTD = TypeAliasDecl::Create(Context, CurContext, UsingLoc,
4711                                               Name.StartLocation,
4712                                               Name.Identifier, TInfo);
4713
4714  NewTD->setAccess(AS);
4715
4716  if (Invalid)
4717    NewTD->setInvalidDecl();
4718
4719  bool Redeclaration = false;
4720  ActOnTypedefNameDecl(S, CurContext, NewTD, Previous, Redeclaration);
4721
4722  if (!Redeclaration)
4723    PushOnScopeChains(NewTD, S);
4724
4725  return NewTD;
4726}
4727
4728Decl *Sema::ActOnNamespaceAliasDef(Scope *S,
4729                                             SourceLocation NamespaceLoc,
4730                                             SourceLocation AliasLoc,
4731                                             IdentifierInfo *Alias,
4732                                             CXXScopeSpec &SS,
4733                                             SourceLocation IdentLoc,
4734                                             IdentifierInfo *Ident) {
4735
4736  // Lookup the namespace name.
4737  LookupResult R(*this, Ident, IdentLoc, LookupNamespaceName);
4738  LookupParsedName(R, S, &SS);
4739
4740  // Check if we have a previous declaration with the same name.
4741  NamedDecl *PrevDecl
4742    = LookupSingleName(S, Alias, AliasLoc, LookupOrdinaryName,
4743                       ForRedeclaration);
4744  if (PrevDecl && !isDeclInScope(PrevDecl, CurContext, S))
4745    PrevDecl = 0;
4746
4747  if (PrevDecl) {
4748    if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) {
4749      // We already have an alias with the same name that points to the same
4750      // namespace, so don't create a new one.
4751      // FIXME: At some point, we'll want to create the (redundant)
4752      // declaration to maintain better source information.
4753      if (!R.isAmbiguous() && !R.empty() &&
4754          AD->getNamespace()->Equals(getNamespaceDecl(R.getFoundDecl())))
4755        return 0;
4756    }
4757
4758    unsigned DiagID = isa<NamespaceDecl>(PrevDecl) ? diag::err_redefinition :
4759      diag::err_redefinition_different_kind;
4760    Diag(AliasLoc, DiagID) << Alias;
4761    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
4762    return 0;
4763  }
4764
4765  if (R.isAmbiguous())
4766    return 0;
4767
4768  if (R.empty()) {
4769    if (DeclarationName Corrected = CorrectTypo(R, S, &SS, 0, false,
4770                                                CTC_NoKeywords, 0)) {
4771      if (R.getAsSingle<NamespaceDecl>() ||
4772          R.getAsSingle<NamespaceAliasDecl>()) {
4773        if (DeclContext *DC = computeDeclContext(SS, false))
4774          Diag(IdentLoc, diag::err_using_directive_member_suggest)
4775            << Ident << DC << Corrected << SS.getRange()
4776            << FixItHint::CreateReplacement(IdentLoc, Corrected.getAsString());
4777        else
4778          Diag(IdentLoc, diag::err_using_directive_suggest)
4779            << Ident << Corrected
4780            << FixItHint::CreateReplacement(IdentLoc, Corrected.getAsString());
4781
4782        Diag(R.getFoundDecl()->getLocation(), diag::note_namespace_defined_here)
4783          << Corrected;
4784
4785        Ident = Corrected.getAsIdentifierInfo();
4786      } else {
4787        R.clear();
4788        R.setLookupName(Ident);
4789      }
4790    }
4791
4792    if (R.empty()) {
4793      Diag(NamespaceLoc, diag::err_expected_namespace_name) << SS.getRange();
4794      return 0;
4795    }
4796  }
4797
4798  NamespaceAliasDecl *AliasDecl =
4799    NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc,
4800                               Alias, SS.getWithLocInContext(Context),
4801                               IdentLoc, R.getFoundDecl());
4802
4803  PushOnScopeChains(AliasDecl, S);
4804  return AliasDecl;
4805}
4806
4807namespace {
4808  /// \brief Scoped object used to handle the state changes required in Sema
4809  /// to implicitly define the body of a C++ member function;
4810  class ImplicitlyDefinedFunctionScope {
4811    Sema &S;
4812    Sema::ContextRAII SavedContext;
4813
4814  public:
4815    ImplicitlyDefinedFunctionScope(Sema &S, CXXMethodDecl *Method)
4816      : S(S), SavedContext(S, Method)
4817    {
4818      S.PushFunctionScope();
4819      S.PushExpressionEvaluationContext(Sema::PotentiallyEvaluated);
4820    }
4821
4822    ~ImplicitlyDefinedFunctionScope() {
4823      S.PopExpressionEvaluationContext();
4824      S.PopFunctionOrBlockScope();
4825    }
4826  };
4827}
4828
4829static CXXConstructorDecl *getDefaultConstructorUnsafe(Sema &Self,
4830                                                       CXXRecordDecl *D) {
4831  ASTContext &Context = Self.Context;
4832  QualType ClassType = Context.getTypeDeclType(D);
4833  DeclarationName ConstructorName
4834    = Context.DeclarationNames.getCXXConstructorName(
4835                      Context.getCanonicalType(ClassType.getUnqualifiedType()));
4836
4837  DeclContext::lookup_const_iterator Con, ConEnd;
4838  for (llvm::tie(Con, ConEnd) = D->lookup(ConstructorName);
4839       Con != ConEnd; ++Con) {
4840    // FIXME: In C++0x, a constructor template can be a default constructor.
4841    if (isa<FunctionTemplateDecl>(*Con))
4842      continue;
4843
4844    CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
4845    if (Constructor->isDefaultConstructor())
4846      return Constructor;
4847  }
4848  return 0;
4849}
4850
4851CXXConstructorDecl *Sema::DeclareImplicitDefaultConstructor(
4852                                                     CXXRecordDecl *ClassDecl) {
4853  // C++ [class.ctor]p5:
4854  //   A default constructor for a class X is a constructor of class X
4855  //   that can be called without an argument. If there is no
4856  //   user-declared constructor for class X, a default constructor is
4857  //   implicitly declared. An implicitly-declared default constructor
4858  //   is an inline public member of its class.
4859  assert(!ClassDecl->hasUserDeclaredConstructor() &&
4860         "Should not build implicit default constructor!");
4861
4862  // C++ [except.spec]p14:
4863  //   An implicitly declared special member function (Clause 12) shall have an
4864  //   exception-specification. [...]
4865  ImplicitExceptionSpecification ExceptSpec(Context);
4866
4867  // Direct base-class constructors.
4868  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
4869                                       BEnd = ClassDecl->bases_end();
4870       B != BEnd; ++B) {
4871    if (B->isVirtual()) // Handled below.
4872      continue;
4873
4874    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
4875      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
4876      if (!BaseClassDecl->hasDeclaredDefaultConstructor())
4877        ExceptSpec.CalledDecl(DeclareImplicitDefaultConstructor(BaseClassDecl));
4878      else if (CXXConstructorDecl *Constructor
4879                            = getDefaultConstructorUnsafe(*this, BaseClassDecl))
4880        ExceptSpec.CalledDecl(Constructor);
4881    }
4882  }
4883
4884  // Virtual base-class constructors.
4885  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
4886                                       BEnd = ClassDecl->vbases_end();
4887       B != BEnd; ++B) {
4888    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
4889      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
4890      if (!BaseClassDecl->hasDeclaredDefaultConstructor())
4891        ExceptSpec.CalledDecl(DeclareImplicitDefaultConstructor(BaseClassDecl));
4892      else if (CXXConstructorDecl *Constructor
4893                            = getDefaultConstructorUnsafe(*this, BaseClassDecl))
4894        ExceptSpec.CalledDecl(Constructor);
4895    }
4896  }
4897
4898  // Field constructors.
4899  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
4900                               FEnd = ClassDecl->field_end();
4901       F != FEnd; ++F) {
4902    if (const RecordType *RecordTy
4903              = Context.getBaseElementType(F->getType())->getAs<RecordType>()) {
4904      CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
4905      if (!FieldClassDecl->hasDeclaredDefaultConstructor())
4906        ExceptSpec.CalledDecl(
4907                            DeclareImplicitDefaultConstructor(FieldClassDecl));
4908      else if (CXXConstructorDecl *Constructor
4909                           = getDefaultConstructorUnsafe(*this, FieldClassDecl))
4910        ExceptSpec.CalledDecl(Constructor);
4911    }
4912  }
4913
4914  FunctionProtoType::ExtProtoInfo EPI;
4915  EPI.ExceptionSpecType = ExceptSpec.getExceptionSpecType();
4916  EPI.NumExceptions = ExceptSpec.size();
4917  EPI.Exceptions = ExceptSpec.data();
4918
4919  // Create the actual constructor declaration.
4920  CanQualType ClassType
4921    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
4922  SourceLocation ClassLoc = ClassDecl->getLocation();
4923  DeclarationName Name
4924    = Context.DeclarationNames.getCXXConstructorName(ClassType);
4925  DeclarationNameInfo NameInfo(Name, ClassLoc);
4926  CXXConstructorDecl *DefaultCon
4927    = CXXConstructorDecl::Create(Context, ClassDecl, ClassLoc, NameInfo,
4928                                 Context.getFunctionType(Context.VoidTy,
4929                                                         0, 0, EPI),
4930                                 /*TInfo=*/0,
4931                                 /*isExplicit=*/false,
4932                                 /*isInline=*/true,
4933                                 /*isImplicitlyDeclared=*/true);
4934  DefaultCon->setAccess(AS_public);
4935  DefaultCon->setImplicit();
4936  DefaultCon->setTrivial(ClassDecl->hasTrivialConstructor());
4937
4938  // Note that we have declared this constructor.
4939  ++ASTContext::NumImplicitDefaultConstructorsDeclared;
4940
4941  if (Scope *S = getScopeForContext(ClassDecl))
4942    PushOnScopeChains(DefaultCon, S, false);
4943  ClassDecl->addDecl(DefaultCon);
4944
4945  return DefaultCon;
4946}
4947
4948void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,
4949                                            CXXConstructorDecl *Constructor) {
4950  assert((Constructor->isImplicit() && Constructor->isDefaultConstructor() &&
4951          !Constructor->isUsed(false)) &&
4952    "DefineImplicitDefaultConstructor - call it for implicit default ctor");
4953
4954  CXXRecordDecl *ClassDecl = Constructor->getParent();
4955  assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor");
4956
4957  ImplicitlyDefinedFunctionScope Scope(*this, Constructor);
4958  DiagnosticErrorTrap Trap(Diags);
4959  if (SetCtorInitializers(Constructor, 0, 0, /*AnyErrors=*/false) ||
4960      Trap.hasErrorOccurred()) {
4961    Diag(CurrentLocation, diag::note_member_synthesized_at)
4962      << CXXConstructor << Context.getTagDeclType(ClassDecl);
4963    Constructor->setInvalidDecl();
4964    return;
4965  }
4966
4967  SourceLocation Loc = Constructor->getLocation();
4968  Constructor->setBody(new (Context) CompoundStmt(Context, 0, 0, Loc, Loc));
4969
4970  Constructor->setUsed();
4971  MarkVTableUsed(CurrentLocation, ClassDecl);
4972}
4973
4974void Sema::DeclareInheritedConstructors(CXXRecordDecl *ClassDecl) {
4975  // We start with an initial pass over the base classes to collect those that
4976  // inherit constructors from. If there are none, we can forgo all further
4977  // processing.
4978  typedef llvm::SmallVector<const RecordType *, 4> BasesVector;
4979  BasesVector BasesToInheritFrom;
4980  for (CXXRecordDecl::base_class_iterator BaseIt = ClassDecl->bases_begin(),
4981                                          BaseE = ClassDecl->bases_end();
4982         BaseIt != BaseE; ++BaseIt) {
4983    if (BaseIt->getInheritConstructors()) {
4984      QualType Base = BaseIt->getType();
4985      if (Base->isDependentType()) {
4986        // If we inherit constructors from anything that is dependent, just
4987        // abort processing altogether. We'll get another chance for the
4988        // instantiations.
4989        return;
4990      }
4991      BasesToInheritFrom.push_back(Base->castAs<RecordType>());
4992    }
4993  }
4994  if (BasesToInheritFrom.empty())
4995    return;
4996
4997  // Now collect the constructors that we already have in the current class.
4998  // Those take precedence over inherited constructors.
4999  // C++0x [class.inhctor]p3: [...] a constructor is implicitly declared [...]
5000  //   unless there is a user-declared constructor with the same signature in
5001  //   the class where the using-declaration appears.
5002  llvm::SmallSet<const Type *, 8> ExistingConstructors;
5003  for (CXXRecordDecl::ctor_iterator CtorIt = ClassDecl->ctor_begin(),
5004                                    CtorE = ClassDecl->ctor_end();
5005       CtorIt != CtorE; ++CtorIt) {
5006    ExistingConstructors.insert(
5007        Context.getCanonicalType(CtorIt->getType()).getTypePtr());
5008  }
5009
5010  Scope *S = getScopeForContext(ClassDecl);
5011  DeclarationName CreatedCtorName =
5012      Context.DeclarationNames.getCXXConstructorName(
5013          ClassDecl->getTypeForDecl()->getCanonicalTypeUnqualified());
5014
5015  // Now comes the true work.
5016  // First, we keep a map from constructor types to the base that introduced
5017  // them. Needed for finding conflicting constructors. We also keep the
5018  // actually inserted declarations in there, for pretty diagnostics.
5019  typedef std::pair<CanQualType, CXXConstructorDecl *> ConstructorInfo;
5020  typedef llvm::DenseMap<const Type *, ConstructorInfo> ConstructorToSourceMap;
5021  ConstructorToSourceMap InheritedConstructors;
5022  for (BasesVector::iterator BaseIt = BasesToInheritFrom.begin(),
5023                             BaseE = BasesToInheritFrom.end();
5024       BaseIt != BaseE; ++BaseIt) {
5025    const RecordType *Base = *BaseIt;
5026    CanQualType CanonicalBase = Base->getCanonicalTypeUnqualified();
5027    CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(Base->getDecl());
5028    for (CXXRecordDecl::ctor_iterator CtorIt = BaseDecl->ctor_begin(),
5029                                      CtorE = BaseDecl->ctor_end();
5030         CtorIt != CtorE; ++CtorIt) {
5031      // Find the using declaration for inheriting this base's constructors.
5032      DeclarationName Name =
5033          Context.DeclarationNames.getCXXConstructorName(CanonicalBase);
5034      UsingDecl *UD = dyn_cast_or_null<UsingDecl>(
5035          LookupSingleName(S, Name,SourceLocation(), LookupUsingDeclName));
5036      SourceLocation UsingLoc = UD ? UD->getLocation() :
5037                                     ClassDecl->getLocation();
5038
5039      // C++0x [class.inhctor]p1: The candidate set of inherited constructors
5040      //   from the class X named in the using-declaration consists of actual
5041      //   constructors and notional constructors that result from the
5042      //   transformation of defaulted parameters as follows:
5043      //   - all non-template default constructors of X, and
5044      //   - for each non-template constructor of X that has at least one
5045      //     parameter with a default argument, the set of constructors that
5046      //     results from omitting any ellipsis parameter specification and
5047      //     successively omitting parameters with a default argument from the
5048      //     end of the parameter-type-list.
5049      CXXConstructorDecl *BaseCtor = *CtorIt;
5050      bool CanBeCopyOrMove = BaseCtor->isCopyOrMoveConstructor();
5051      const FunctionProtoType *BaseCtorType =
5052          BaseCtor->getType()->getAs<FunctionProtoType>();
5053
5054      for (unsigned params = BaseCtor->getMinRequiredArguments(),
5055                    maxParams = BaseCtor->getNumParams();
5056           params <= maxParams; ++params) {
5057        // Skip default constructors. They're never inherited.
5058        if (params == 0)
5059          continue;
5060        // Skip copy and move constructors for the same reason.
5061        if (CanBeCopyOrMove && params == 1)
5062          continue;
5063
5064        // Build up a function type for this particular constructor.
5065        // FIXME: The working paper does not consider that the exception spec
5066        // for the inheriting constructor might be larger than that of the
5067        // source. This code doesn't yet, either.
5068        const Type *NewCtorType;
5069        if (params == maxParams)
5070          NewCtorType = BaseCtorType;
5071        else {
5072          llvm::SmallVector<QualType, 16> Args;
5073          for (unsigned i = 0; i < params; ++i) {
5074            Args.push_back(BaseCtorType->getArgType(i));
5075          }
5076          FunctionProtoType::ExtProtoInfo ExtInfo =
5077              BaseCtorType->getExtProtoInfo();
5078          ExtInfo.Variadic = false;
5079          NewCtorType = Context.getFunctionType(BaseCtorType->getResultType(),
5080                                                Args.data(), params, ExtInfo)
5081                       .getTypePtr();
5082        }
5083        const Type *CanonicalNewCtorType =
5084            Context.getCanonicalType(NewCtorType);
5085
5086        // Now that we have the type, first check if the class already has a
5087        // constructor with this signature.
5088        if (ExistingConstructors.count(CanonicalNewCtorType))
5089          continue;
5090
5091        // Then we check if we have already declared an inherited constructor
5092        // with this signature.
5093        std::pair<ConstructorToSourceMap::iterator, bool> result =
5094            InheritedConstructors.insert(std::make_pair(
5095                CanonicalNewCtorType,
5096                std::make_pair(CanonicalBase, (CXXConstructorDecl*)0)));
5097        if (!result.second) {
5098          // Already in the map. If it came from a different class, that's an
5099          // error. Not if it's from the same.
5100          CanQualType PreviousBase = result.first->second.first;
5101          if (CanonicalBase != PreviousBase) {
5102            const CXXConstructorDecl *PrevCtor = result.first->second.second;
5103            const CXXConstructorDecl *PrevBaseCtor =
5104                PrevCtor->getInheritedConstructor();
5105            assert(PrevBaseCtor && "Conflicting constructor was not inherited");
5106
5107            Diag(UsingLoc, diag::err_using_decl_constructor_conflict);
5108            Diag(BaseCtor->getLocation(),
5109                 diag::note_using_decl_constructor_conflict_current_ctor);
5110            Diag(PrevBaseCtor->getLocation(),
5111                 diag::note_using_decl_constructor_conflict_previous_ctor);
5112            Diag(PrevCtor->getLocation(),
5113                 diag::note_using_decl_constructor_conflict_previous_using);
5114          }
5115          continue;
5116        }
5117
5118        // OK, we're there, now add the constructor.
5119        // C++0x [class.inhctor]p8: [...] that would be performed by a
5120        //   user-writtern inline constructor [...]
5121        DeclarationNameInfo DNI(CreatedCtorName, UsingLoc);
5122        CXXConstructorDecl *NewCtor = CXXConstructorDecl::Create(
5123            Context, ClassDecl, UsingLoc, DNI, QualType(NewCtorType, 0),
5124            /*TInfo=*/0, BaseCtor->isExplicit(), /*Inline=*/true,
5125            /*ImplicitlyDeclared=*/true);
5126        NewCtor->setAccess(BaseCtor->getAccess());
5127
5128        // Build up the parameter decls and add them.
5129        llvm::SmallVector<ParmVarDecl *, 16> ParamDecls;
5130        for (unsigned i = 0; i < params; ++i) {
5131          ParamDecls.push_back(ParmVarDecl::Create(Context, NewCtor,
5132                                                   UsingLoc, UsingLoc,
5133                                                   /*IdentifierInfo=*/0,
5134                                                   BaseCtorType->getArgType(i),
5135                                                   /*TInfo=*/0, SC_None,
5136                                                   SC_None, /*DefaultArg=*/0));
5137        }
5138        NewCtor->setParams(ParamDecls.data(), ParamDecls.size());
5139        NewCtor->setInheritedConstructor(BaseCtor);
5140
5141        PushOnScopeChains(NewCtor, S, false);
5142        ClassDecl->addDecl(NewCtor);
5143        result.first->second.second = NewCtor;
5144      }
5145    }
5146  }
5147}
5148
5149CXXDestructorDecl *Sema::DeclareImplicitDestructor(CXXRecordDecl *ClassDecl) {
5150  // C++ [class.dtor]p2:
5151  //   If a class has no user-declared destructor, a destructor is
5152  //   declared implicitly. An implicitly-declared destructor is an
5153  //   inline public member of its class.
5154
5155  // C++ [except.spec]p14:
5156  //   An implicitly declared special member function (Clause 12) shall have
5157  //   an exception-specification.
5158  ImplicitExceptionSpecification ExceptSpec(Context);
5159
5160  // Direct base-class destructors.
5161  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
5162                                       BEnd = ClassDecl->bases_end();
5163       B != BEnd; ++B) {
5164    if (B->isVirtual()) // Handled below.
5165      continue;
5166
5167    if (const RecordType *BaseType = B->getType()->getAs<RecordType>())
5168      ExceptSpec.CalledDecl(
5169                    LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
5170  }
5171
5172  // Virtual base-class destructors.
5173  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
5174                                       BEnd = ClassDecl->vbases_end();
5175       B != BEnd; ++B) {
5176    if (const RecordType *BaseType = B->getType()->getAs<RecordType>())
5177      ExceptSpec.CalledDecl(
5178                    LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
5179  }
5180
5181  // Field destructors.
5182  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
5183                               FEnd = ClassDecl->field_end();
5184       F != FEnd; ++F) {
5185    if (const RecordType *RecordTy
5186        = Context.getBaseElementType(F->getType())->getAs<RecordType>())
5187      ExceptSpec.CalledDecl(
5188                    LookupDestructor(cast<CXXRecordDecl>(RecordTy->getDecl())));
5189  }
5190
5191  // Create the actual destructor declaration.
5192  FunctionProtoType::ExtProtoInfo EPI;
5193  EPI.ExceptionSpecType = ExceptSpec.getExceptionSpecType();
5194  EPI.NumExceptions = ExceptSpec.size();
5195  EPI.Exceptions = ExceptSpec.data();
5196  QualType Ty = Context.getFunctionType(Context.VoidTy, 0, 0, EPI);
5197
5198  CanQualType ClassType
5199    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
5200  SourceLocation ClassLoc = ClassDecl->getLocation();
5201  DeclarationName Name
5202    = Context.DeclarationNames.getCXXDestructorName(ClassType);
5203  DeclarationNameInfo NameInfo(Name, ClassLoc);
5204  CXXDestructorDecl *Destructor
5205      = CXXDestructorDecl::Create(Context, ClassDecl, ClassLoc, NameInfo, Ty, 0,
5206                                  /*isInline=*/true,
5207                                  /*isImplicitlyDeclared=*/true);
5208  Destructor->setAccess(AS_public);
5209  Destructor->setImplicit();
5210  Destructor->setTrivial(ClassDecl->hasTrivialDestructor());
5211
5212  // Note that we have declared this destructor.
5213  ++ASTContext::NumImplicitDestructorsDeclared;
5214
5215  // Introduce this destructor into its scope.
5216  if (Scope *S = getScopeForContext(ClassDecl))
5217    PushOnScopeChains(Destructor, S, false);
5218  ClassDecl->addDecl(Destructor);
5219
5220  // This could be uniqued if it ever proves significant.
5221  Destructor->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(Ty));
5222
5223  AddOverriddenMethods(ClassDecl, Destructor);
5224
5225  return Destructor;
5226}
5227
5228void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation,
5229                                    CXXDestructorDecl *Destructor) {
5230  assert((Destructor->isImplicit() && !Destructor->isUsed(false)) &&
5231         "DefineImplicitDestructor - call it for implicit default dtor");
5232  CXXRecordDecl *ClassDecl = Destructor->getParent();
5233  assert(ClassDecl && "DefineImplicitDestructor - invalid destructor");
5234
5235  if (Destructor->isInvalidDecl())
5236    return;
5237
5238  ImplicitlyDefinedFunctionScope Scope(*this, Destructor);
5239
5240  DiagnosticErrorTrap Trap(Diags);
5241  MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
5242                                         Destructor->getParent());
5243
5244  if (CheckDestructor(Destructor) || Trap.hasErrorOccurred()) {
5245    Diag(CurrentLocation, diag::note_member_synthesized_at)
5246      << CXXDestructor << Context.getTagDeclType(ClassDecl);
5247
5248    Destructor->setInvalidDecl();
5249    return;
5250  }
5251
5252  SourceLocation Loc = Destructor->getLocation();
5253  Destructor->setBody(new (Context) CompoundStmt(Context, 0, 0, Loc, Loc));
5254
5255  Destructor->setUsed();
5256  MarkVTableUsed(CurrentLocation, ClassDecl);
5257}
5258
5259/// \brief Builds a statement that copies the given entity from \p From to
5260/// \c To.
5261///
5262/// This routine is used to copy the members of a class with an
5263/// implicitly-declared copy assignment operator. When the entities being
5264/// copied are arrays, this routine builds for loops to copy them.
5265///
5266/// \param S The Sema object used for type-checking.
5267///
5268/// \param Loc The location where the implicit copy is being generated.
5269///
5270/// \param T The type of the expressions being copied. Both expressions must
5271/// have this type.
5272///
5273/// \param To The expression we are copying to.
5274///
5275/// \param From The expression we are copying from.
5276///
5277/// \param CopyingBaseSubobject Whether we're copying a base subobject.
5278/// Otherwise, it's a non-static member subobject.
5279///
5280/// \param Depth Internal parameter recording the depth of the recursion.
5281///
5282/// \returns A statement or a loop that copies the expressions.
5283static StmtResult
5284BuildSingleCopyAssign(Sema &S, SourceLocation Loc, QualType T,
5285                      Expr *To, Expr *From,
5286                      bool CopyingBaseSubobject, unsigned Depth = 0) {
5287  // C++0x [class.copy]p30:
5288  //   Each subobject is assigned in the manner appropriate to its type:
5289  //
5290  //     - if the subobject is of class type, the copy assignment operator
5291  //       for the class is used (as if by explicit qualification; that is,
5292  //       ignoring any possible virtual overriding functions in more derived
5293  //       classes);
5294  if (const RecordType *RecordTy = T->getAs<RecordType>()) {
5295    CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
5296
5297    // Look for operator=.
5298    DeclarationName Name
5299      = S.Context.DeclarationNames.getCXXOperatorName(OO_Equal);
5300    LookupResult OpLookup(S, Name, Loc, Sema::LookupOrdinaryName);
5301    S.LookupQualifiedName(OpLookup, ClassDecl, false);
5302
5303    // Filter out any result that isn't a copy-assignment operator.
5304    LookupResult::Filter F = OpLookup.makeFilter();
5305    while (F.hasNext()) {
5306      NamedDecl *D = F.next();
5307      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
5308        if (Method->isCopyAssignmentOperator())
5309          continue;
5310
5311      F.erase();
5312    }
5313    F.done();
5314
5315    // Suppress the protected check (C++ [class.protected]) for each of the
5316    // assignment operators we found. This strange dance is required when
5317    // we're assigning via a base classes's copy-assignment operator. To
5318    // ensure that we're getting the right base class subobject (without
5319    // ambiguities), we need to cast "this" to that subobject type; to
5320    // ensure that we don't go through the virtual call mechanism, we need
5321    // to qualify the operator= name with the base class (see below). However,
5322    // this means that if the base class has a protected copy assignment
5323    // operator, the protected member access check will fail. So, we
5324    // rewrite "protected" access to "public" access in this case, since we
5325    // know by construction that we're calling from a derived class.
5326    if (CopyingBaseSubobject) {
5327      for (LookupResult::iterator L = OpLookup.begin(), LEnd = OpLookup.end();
5328           L != LEnd; ++L) {
5329        if (L.getAccess() == AS_protected)
5330          L.setAccess(AS_public);
5331      }
5332    }
5333
5334    // Create the nested-name-specifier that will be used to qualify the
5335    // reference to operator=; this is required to suppress the virtual
5336    // call mechanism.
5337    CXXScopeSpec SS;
5338    SS.MakeTrivial(S.Context,
5339                   NestedNameSpecifier::Create(S.Context, 0, false,
5340                                               T.getTypePtr()),
5341                   Loc);
5342
5343    // Create the reference to operator=.
5344    ExprResult OpEqualRef
5345      = S.BuildMemberReferenceExpr(To, T, Loc, /*isArrow=*/false, SS,
5346                                   /*FirstQualifierInScope=*/0, OpLookup,
5347                                   /*TemplateArgs=*/0,
5348                                   /*SuppressQualifierCheck=*/true);
5349    if (OpEqualRef.isInvalid())
5350      return StmtError();
5351
5352    // Build the call to the assignment operator.
5353
5354    ExprResult Call = S.BuildCallToMemberFunction(/*Scope=*/0,
5355                                                  OpEqualRef.takeAs<Expr>(),
5356                                                  Loc, &From, 1, Loc);
5357    if (Call.isInvalid())
5358      return StmtError();
5359
5360    return S.Owned(Call.takeAs<Stmt>());
5361  }
5362
5363  //     - if the subobject is of scalar type, the built-in assignment
5364  //       operator is used.
5365  const ConstantArrayType *ArrayTy = S.Context.getAsConstantArrayType(T);
5366  if (!ArrayTy) {
5367    ExprResult Assignment = S.CreateBuiltinBinOp(Loc, BO_Assign, To, From);
5368    if (Assignment.isInvalid())
5369      return StmtError();
5370
5371    return S.Owned(Assignment.takeAs<Stmt>());
5372  }
5373
5374  //     - if the subobject is an array, each element is assigned, in the
5375  //       manner appropriate to the element type;
5376
5377  // Construct a loop over the array bounds, e.g.,
5378  //
5379  //   for (__SIZE_TYPE__ i0 = 0; i0 != array-size; ++i0)
5380  //
5381  // that will copy each of the array elements.
5382  QualType SizeType = S.Context.getSizeType();
5383
5384  // Create the iteration variable.
5385  IdentifierInfo *IterationVarName = 0;
5386  {
5387    llvm::SmallString<8> Str;
5388    llvm::raw_svector_ostream OS(Str);
5389    OS << "__i" << Depth;
5390    IterationVarName = &S.Context.Idents.get(OS.str());
5391  }
5392  VarDecl *IterationVar = VarDecl::Create(S.Context, S.CurContext, Loc, Loc,
5393                                          IterationVarName, SizeType,
5394                            S.Context.getTrivialTypeSourceInfo(SizeType, Loc),
5395                                          SC_None, SC_None);
5396
5397  // Initialize the iteration variable to zero.
5398  llvm::APInt Zero(S.Context.getTypeSize(SizeType), 0);
5399  IterationVar->setInit(IntegerLiteral::Create(S.Context, Zero, SizeType, Loc));
5400
5401  // Create a reference to the iteration variable; we'll use this several
5402  // times throughout.
5403  Expr *IterationVarRef
5404    = S.BuildDeclRefExpr(IterationVar, SizeType, VK_RValue, Loc).take();
5405  assert(IterationVarRef && "Reference to invented variable cannot fail!");
5406
5407  // Create the DeclStmt that holds the iteration variable.
5408  Stmt *InitStmt = new (S.Context) DeclStmt(DeclGroupRef(IterationVar),Loc,Loc);
5409
5410  // Create the comparison against the array bound.
5411  llvm::APInt Upper
5412    = ArrayTy->getSize().zextOrTrunc(S.Context.getTypeSize(SizeType));
5413  Expr *Comparison
5414    = new (S.Context) BinaryOperator(IterationVarRef,
5415                     IntegerLiteral::Create(S.Context, Upper, SizeType, Loc),
5416                                     BO_NE, S.Context.BoolTy,
5417                                     VK_RValue, OK_Ordinary, Loc);
5418
5419  // Create the pre-increment of the iteration variable.
5420  Expr *Increment
5421    = new (S.Context) UnaryOperator(IterationVarRef, UO_PreInc, SizeType,
5422                                    VK_LValue, OK_Ordinary, Loc);
5423
5424  // Subscript the "from" and "to" expressions with the iteration variable.
5425  From = AssertSuccess(S.CreateBuiltinArraySubscriptExpr(From, Loc,
5426                                                         IterationVarRef, Loc));
5427  To = AssertSuccess(S.CreateBuiltinArraySubscriptExpr(To, Loc,
5428                                                       IterationVarRef, Loc));
5429
5430  // Build the copy for an individual element of the array.
5431  StmtResult Copy = BuildSingleCopyAssign(S, Loc, ArrayTy->getElementType(),
5432                                          To, From, CopyingBaseSubobject,
5433                                          Depth + 1);
5434  if (Copy.isInvalid())
5435    return StmtError();
5436
5437  // Construct the loop that copies all elements of this array.
5438  return S.ActOnForStmt(Loc, Loc, InitStmt,
5439                        S.MakeFullExpr(Comparison),
5440                        0, S.MakeFullExpr(Increment),
5441                        Loc, Copy.take());
5442}
5443
5444/// \brief Determine whether the given class has a copy assignment operator
5445/// that accepts a const-qualified argument.
5446static bool hasConstCopyAssignment(Sema &S, const CXXRecordDecl *CClass) {
5447  CXXRecordDecl *Class = const_cast<CXXRecordDecl *>(CClass);
5448
5449  if (!Class->hasDeclaredCopyAssignment())
5450    S.DeclareImplicitCopyAssignment(Class);
5451
5452  QualType ClassType = S.Context.getCanonicalType(S.Context.getTypeDeclType(Class));
5453  DeclarationName OpName
5454    = S.Context.DeclarationNames.getCXXOperatorName(OO_Equal);
5455
5456  DeclContext::lookup_const_iterator Op, OpEnd;
5457  for (llvm::tie(Op, OpEnd) = Class->lookup(OpName); Op != OpEnd; ++Op) {
5458    // C++ [class.copy]p9:
5459    //   A user-declared copy assignment operator is a non-static non-template
5460    //   member function of class X with exactly one parameter of type X, X&,
5461    //   const X&, volatile X& or const volatile X&.
5462    const CXXMethodDecl* Method = dyn_cast<CXXMethodDecl>(*Op);
5463    if (!Method)
5464      continue;
5465
5466    if (Method->isStatic())
5467      continue;
5468    if (Method->getPrimaryTemplate())
5469      continue;
5470    const FunctionProtoType *FnType =
5471    Method->getType()->getAs<FunctionProtoType>();
5472    assert(FnType && "Overloaded operator has no prototype.");
5473    // Don't assert on this; an invalid decl might have been left in the AST.
5474    if (FnType->getNumArgs() != 1 || FnType->isVariadic())
5475      continue;
5476    bool AcceptsConst = true;
5477    QualType ArgType = FnType->getArgType(0);
5478    if (const LValueReferenceType *Ref = ArgType->getAs<LValueReferenceType>()){
5479      ArgType = Ref->getPointeeType();
5480      // Is it a non-const lvalue reference?
5481      if (!ArgType.isConstQualified())
5482        AcceptsConst = false;
5483    }
5484    if (!S.Context.hasSameUnqualifiedType(ArgType, ClassType))
5485      continue;
5486
5487    // We have a single argument of type cv X or cv X&, i.e. we've found the
5488    // copy assignment operator. Return whether it accepts const arguments.
5489    return AcceptsConst;
5490  }
5491  assert(Class->isInvalidDecl() &&
5492         "No copy assignment operator declared in valid code.");
5493  return false;
5494}
5495
5496CXXMethodDecl *Sema::DeclareImplicitCopyAssignment(CXXRecordDecl *ClassDecl) {
5497  // Note: The following rules are largely analoguous to the copy
5498  // constructor rules. Note that virtual bases are not taken into account
5499  // for determining the argument type of the operator. Note also that
5500  // operators taking an object instead of a reference are allowed.
5501
5502
5503  // C++ [class.copy]p10:
5504  //   If the class definition does not explicitly declare a copy
5505  //   assignment operator, one is declared implicitly.
5506  //   The implicitly-defined copy assignment operator for a class X
5507  //   will have the form
5508  //
5509  //       X& X::operator=(const X&)
5510  //
5511  //   if
5512  bool HasConstCopyAssignment = true;
5513
5514  //       -- each direct base class B of X has a copy assignment operator
5515  //          whose parameter is of type const B&, const volatile B& or B,
5516  //          and
5517  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
5518                                       BaseEnd = ClassDecl->bases_end();
5519       HasConstCopyAssignment && Base != BaseEnd; ++Base) {
5520    assert(!Base->getType()->isDependentType() &&
5521           "Cannot generate implicit members for class with dependent bases.");
5522    const CXXRecordDecl *BaseClassDecl
5523      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
5524    HasConstCopyAssignment = hasConstCopyAssignment(*this, BaseClassDecl);
5525  }
5526
5527  //       -- for all the nonstatic data members of X that are of a class
5528  //          type M (or array thereof), each such class type has a copy
5529  //          assignment operator whose parameter is of type const M&,
5530  //          const volatile M& or M.
5531  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
5532                                  FieldEnd = ClassDecl->field_end();
5533       HasConstCopyAssignment && Field != FieldEnd;
5534       ++Field) {
5535    QualType FieldType = Context.getBaseElementType((*Field)->getType());
5536    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
5537      const CXXRecordDecl *FieldClassDecl
5538        = cast<CXXRecordDecl>(FieldClassType->getDecl());
5539      HasConstCopyAssignment = hasConstCopyAssignment(*this, FieldClassDecl);
5540    }
5541  }
5542
5543  //   Otherwise, the implicitly declared copy assignment operator will
5544  //   have the form
5545  //
5546  //       X& X::operator=(X&)
5547  QualType ArgType = Context.getTypeDeclType(ClassDecl);
5548  QualType RetType = Context.getLValueReferenceType(ArgType);
5549  if (HasConstCopyAssignment)
5550    ArgType = ArgType.withConst();
5551  ArgType = Context.getLValueReferenceType(ArgType);
5552
5553  // C++ [except.spec]p14:
5554  //   An implicitly declared special member function (Clause 12) shall have an
5555  //   exception-specification. [...]
5556  ImplicitExceptionSpecification ExceptSpec(Context);
5557  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
5558                                       BaseEnd = ClassDecl->bases_end();
5559       Base != BaseEnd; ++Base) {
5560    CXXRecordDecl *BaseClassDecl
5561      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
5562
5563    if (!BaseClassDecl->hasDeclaredCopyAssignment())
5564      DeclareImplicitCopyAssignment(BaseClassDecl);
5565
5566    if (CXXMethodDecl *CopyAssign
5567           = BaseClassDecl->getCopyAssignmentOperator(HasConstCopyAssignment))
5568      ExceptSpec.CalledDecl(CopyAssign);
5569  }
5570  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
5571                                  FieldEnd = ClassDecl->field_end();
5572       Field != FieldEnd;
5573       ++Field) {
5574    QualType FieldType = Context.getBaseElementType((*Field)->getType());
5575    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
5576      CXXRecordDecl *FieldClassDecl
5577        = cast<CXXRecordDecl>(FieldClassType->getDecl());
5578
5579      if (!FieldClassDecl->hasDeclaredCopyAssignment())
5580        DeclareImplicitCopyAssignment(FieldClassDecl);
5581
5582      if (CXXMethodDecl *CopyAssign
5583            = FieldClassDecl->getCopyAssignmentOperator(HasConstCopyAssignment))
5584        ExceptSpec.CalledDecl(CopyAssign);
5585    }
5586  }
5587
5588  //   An implicitly-declared copy assignment operator is an inline public
5589  //   member of its class.
5590  FunctionProtoType::ExtProtoInfo EPI;
5591  EPI.ExceptionSpecType = ExceptSpec.getExceptionSpecType();
5592  EPI.NumExceptions = ExceptSpec.size();
5593  EPI.Exceptions = ExceptSpec.data();
5594  DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
5595  SourceLocation ClassLoc = ClassDecl->getLocation();
5596  DeclarationNameInfo NameInfo(Name, ClassLoc);
5597  CXXMethodDecl *CopyAssignment
5598    = CXXMethodDecl::Create(Context, ClassDecl, ClassLoc, NameInfo,
5599                            Context.getFunctionType(RetType, &ArgType, 1, EPI),
5600                            /*TInfo=*/0, /*isStatic=*/false,
5601                            /*StorageClassAsWritten=*/SC_None,
5602                            /*isInline=*/true,
5603                            SourceLocation());
5604  CopyAssignment->setAccess(AS_public);
5605  CopyAssignment->setImplicit();
5606  CopyAssignment->setTrivial(ClassDecl->hasTrivialCopyAssignment());
5607
5608  // Add the parameter to the operator.
5609  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment,
5610                                               ClassLoc, ClassLoc, /*Id=*/0,
5611                                               ArgType, /*TInfo=*/0,
5612                                               SC_None,
5613                                               SC_None, 0);
5614  CopyAssignment->setParams(&FromParam, 1);
5615
5616  // Note that we have added this copy-assignment operator.
5617  ++ASTContext::NumImplicitCopyAssignmentOperatorsDeclared;
5618
5619  if (Scope *S = getScopeForContext(ClassDecl))
5620    PushOnScopeChains(CopyAssignment, S, false);
5621  ClassDecl->addDecl(CopyAssignment);
5622
5623  AddOverriddenMethods(ClassDecl, CopyAssignment);
5624  return CopyAssignment;
5625}
5626
5627void Sema::DefineImplicitCopyAssignment(SourceLocation CurrentLocation,
5628                                        CXXMethodDecl *CopyAssignOperator) {
5629  assert((CopyAssignOperator->isImplicit() &&
5630          CopyAssignOperator->isOverloadedOperator() &&
5631          CopyAssignOperator->getOverloadedOperator() == OO_Equal &&
5632          !CopyAssignOperator->isUsed(false)) &&
5633         "DefineImplicitCopyAssignment called for wrong function");
5634
5635  CXXRecordDecl *ClassDecl = CopyAssignOperator->getParent();
5636
5637  if (ClassDecl->isInvalidDecl() || CopyAssignOperator->isInvalidDecl()) {
5638    CopyAssignOperator->setInvalidDecl();
5639    return;
5640  }
5641
5642  CopyAssignOperator->setUsed();
5643
5644  ImplicitlyDefinedFunctionScope Scope(*this, CopyAssignOperator);
5645  DiagnosticErrorTrap Trap(Diags);
5646
5647  // C++0x [class.copy]p30:
5648  //   The implicitly-defined or explicitly-defaulted copy assignment operator
5649  //   for a non-union class X performs memberwise copy assignment of its
5650  //   subobjects. The direct base classes of X are assigned first, in the
5651  //   order of their declaration in the base-specifier-list, and then the
5652  //   immediate non-static data members of X are assigned, in the order in
5653  //   which they were declared in the class definition.
5654
5655  // The statements that form the synthesized function body.
5656  ASTOwningVector<Stmt*> Statements(*this);
5657
5658  // The parameter for the "other" object, which we are copying from.
5659  ParmVarDecl *Other = CopyAssignOperator->getParamDecl(0);
5660  Qualifiers OtherQuals = Other->getType().getQualifiers();
5661  QualType OtherRefType = Other->getType();
5662  if (const LValueReferenceType *OtherRef
5663                                = OtherRefType->getAs<LValueReferenceType>()) {
5664    OtherRefType = OtherRef->getPointeeType();
5665    OtherQuals = OtherRefType.getQualifiers();
5666  }
5667
5668  // Our location for everything implicitly-generated.
5669  SourceLocation Loc = CopyAssignOperator->getLocation();
5670
5671  // Construct a reference to the "other" object. We'll be using this
5672  // throughout the generated ASTs.
5673  Expr *OtherRef = BuildDeclRefExpr(Other, OtherRefType, VK_LValue, Loc).take();
5674  assert(OtherRef && "Reference to parameter cannot fail!");
5675
5676  // Construct the "this" pointer. We'll be using this throughout the generated
5677  // ASTs.
5678  Expr *This = ActOnCXXThis(Loc).takeAs<Expr>();
5679  assert(This && "Reference to this cannot fail!");
5680
5681  // Assign base classes.
5682  bool Invalid = false;
5683  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
5684       E = ClassDecl->bases_end(); Base != E; ++Base) {
5685    // Form the assignment:
5686    //   static_cast<Base*>(this)->Base::operator=(static_cast<Base&>(other));
5687    QualType BaseType = Base->getType().getUnqualifiedType();
5688    if (!BaseType->isRecordType()) {
5689      Invalid = true;
5690      continue;
5691    }
5692
5693    CXXCastPath BasePath;
5694    BasePath.push_back(Base);
5695
5696    // Construct the "from" expression, which is an implicit cast to the
5697    // appropriately-qualified base type.
5698    Expr *From = OtherRef;
5699    From = ImpCastExprToType(From, Context.getQualifiedType(BaseType, OtherQuals),
5700                             CK_UncheckedDerivedToBase,
5701                             VK_LValue, &BasePath).take();
5702
5703    // Dereference "this".
5704    ExprResult To = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
5705
5706    // Implicitly cast "this" to the appropriately-qualified base type.
5707    To = ImpCastExprToType(To.take(),
5708                           Context.getCVRQualifiedType(BaseType,
5709                                     CopyAssignOperator->getTypeQualifiers()),
5710                           CK_UncheckedDerivedToBase,
5711                           VK_LValue, &BasePath);
5712
5713    // Build the copy.
5714    StmtResult Copy = BuildSingleCopyAssign(*this, Loc, BaseType,
5715                                            To.get(), From,
5716                                            /*CopyingBaseSubobject=*/true);
5717    if (Copy.isInvalid()) {
5718      Diag(CurrentLocation, diag::note_member_synthesized_at)
5719        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
5720      CopyAssignOperator->setInvalidDecl();
5721      return;
5722    }
5723
5724    // Success! Record the copy.
5725    Statements.push_back(Copy.takeAs<Expr>());
5726  }
5727
5728  // \brief Reference to the __builtin_memcpy function.
5729  Expr *BuiltinMemCpyRef = 0;
5730  // \brief Reference to the __builtin_objc_memmove_collectable function.
5731  Expr *CollectableMemCpyRef = 0;
5732
5733  // Assign non-static members.
5734  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
5735                                  FieldEnd = ClassDecl->field_end();
5736       Field != FieldEnd; ++Field) {
5737    // Check for members of reference type; we can't copy those.
5738    if (Field->getType()->isReferenceType()) {
5739      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
5740        << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
5741      Diag(Field->getLocation(), diag::note_declared_at);
5742      Diag(CurrentLocation, diag::note_member_synthesized_at)
5743        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
5744      Invalid = true;
5745      continue;
5746    }
5747
5748    // Check for members of const-qualified, non-class type.
5749    QualType BaseType = Context.getBaseElementType(Field->getType());
5750    if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) {
5751      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
5752        << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
5753      Diag(Field->getLocation(), diag::note_declared_at);
5754      Diag(CurrentLocation, diag::note_member_synthesized_at)
5755        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
5756      Invalid = true;
5757      continue;
5758    }
5759
5760    QualType FieldType = Field->getType().getNonReferenceType();
5761    if (FieldType->isIncompleteArrayType()) {
5762      assert(ClassDecl->hasFlexibleArrayMember() &&
5763             "Incomplete array type is not valid");
5764      continue;
5765    }
5766
5767    // Build references to the field in the object we're copying from and to.
5768    CXXScopeSpec SS; // Intentionally empty
5769    LookupResult MemberLookup(*this, Field->getDeclName(), Loc,
5770                              LookupMemberName);
5771    MemberLookup.addDecl(*Field);
5772    MemberLookup.resolveKind();
5773    ExprResult From = BuildMemberReferenceExpr(OtherRef, OtherRefType,
5774                                               Loc, /*IsArrow=*/false,
5775                                               SS, 0, MemberLookup, 0);
5776    ExprResult To = BuildMemberReferenceExpr(This, This->getType(),
5777                                             Loc, /*IsArrow=*/true,
5778                                             SS, 0, MemberLookup, 0);
5779    assert(!From.isInvalid() && "Implicit field reference cannot fail");
5780    assert(!To.isInvalid() && "Implicit field reference cannot fail");
5781
5782    // If the field should be copied with __builtin_memcpy rather than via
5783    // explicit assignments, do so. This optimization only applies for arrays
5784    // of scalars and arrays of class type with trivial copy-assignment
5785    // operators.
5786    if (FieldType->isArrayType() &&
5787        (!BaseType->isRecordType() ||
5788         cast<CXXRecordDecl>(BaseType->getAs<RecordType>()->getDecl())
5789           ->hasTrivialCopyAssignment())) {
5790      // Compute the size of the memory buffer to be copied.
5791      QualType SizeType = Context.getSizeType();
5792      llvm::APInt Size(Context.getTypeSize(SizeType),
5793                       Context.getTypeSizeInChars(BaseType).getQuantity());
5794      for (const ConstantArrayType *Array
5795              = Context.getAsConstantArrayType(FieldType);
5796           Array;
5797           Array = Context.getAsConstantArrayType(Array->getElementType())) {
5798        llvm::APInt ArraySize
5799          = Array->getSize().zextOrTrunc(Size.getBitWidth());
5800        Size *= ArraySize;
5801      }
5802
5803      // Take the address of the field references for "from" and "to".
5804      From = CreateBuiltinUnaryOp(Loc, UO_AddrOf, From.get());
5805      To = CreateBuiltinUnaryOp(Loc, UO_AddrOf, To.get());
5806
5807      bool NeedsCollectableMemCpy =
5808          (BaseType->isRecordType() &&
5809           BaseType->getAs<RecordType>()->getDecl()->hasObjectMember());
5810
5811      if (NeedsCollectableMemCpy) {
5812        if (!CollectableMemCpyRef) {
5813          // Create a reference to the __builtin_objc_memmove_collectable function.
5814          LookupResult R(*this,
5815                         &Context.Idents.get("__builtin_objc_memmove_collectable"),
5816                         Loc, LookupOrdinaryName);
5817          LookupName(R, TUScope, true);
5818
5819          FunctionDecl *CollectableMemCpy = R.getAsSingle<FunctionDecl>();
5820          if (!CollectableMemCpy) {
5821            // Something went horribly wrong earlier, and we will have
5822            // complained about it.
5823            Invalid = true;
5824            continue;
5825          }
5826
5827          CollectableMemCpyRef = BuildDeclRefExpr(CollectableMemCpy,
5828                                                  CollectableMemCpy->getType(),
5829                                                  VK_LValue, Loc, 0).take();
5830          assert(CollectableMemCpyRef && "Builtin reference cannot fail");
5831        }
5832      }
5833      // Create a reference to the __builtin_memcpy builtin function.
5834      else if (!BuiltinMemCpyRef) {
5835        LookupResult R(*this, &Context.Idents.get("__builtin_memcpy"), Loc,
5836                       LookupOrdinaryName);
5837        LookupName(R, TUScope, true);
5838
5839        FunctionDecl *BuiltinMemCpy = R.getAsSingle<FunctionDecl>();
5840        if (!BuiltinMemCpy) {
5841          // Something went horribly wrong earlier, and we will have complained
5842          // about it.
5843          Invalid = true;
5844          continue;
5845        }
5846
5847        BuiltinMemCpyRef = BuildDeclRefExpr(BuiltinMemCpy,
5848                                            BuiltinMemCpy->getType(),
5849                                            VK_LValue, Loc, 0).take();
5850        assert(BuiltinMemCpyRef && "Builtin reference cannot fail");
5851      }
5852
5853      ASTOwningVector<Expr*> CallArgs(*this);
5854      CallArgs.push_back(To.takeAs<Expr>());
5855      CallArgs.push_back(From.takeAs<Expr>());
5856      CallArgs.push_back(IntegerLiteral::Create(Context, Size, SizeType, Loc));
5857      ExprResult Call = ExprError();
5858      if (NeedsCollectableMemCpy)
5859        Call = ActOnCallExpr(/*Scope=*/0,
5860                             CollectableMemCpyRef,
5861                             Loc, move_arg(CallArgs),
5862                             Loc);
5863      else
5864        Call = ActOnCallExpr(/*Scope=*/0,
5865                             BuiltinMemCpyRef,
5866                             Loc, move_arg(CallArgs),
5867                             Loc);
5868
5869      assert(!Call.isInvalid() && "Call to __builtin_memcpy cannot fail!");
5870      Statements.push_back(Call.takeAs<Expr>());
5871      continue;
5872    }
5873
5874    // Build the copy of this field.
5875    StmtResult Copy = BuildSingleCopyAssign(*this, Loc, FieldType,
5876                                                  To.get(), From.get(),
5877                                              /*CopyingBaseSubobject=*/false);
5878    if (Copy.isInvalid()) {
5879      Diag(CurrentLocation, diag::note_member_synthesized_at)
5880        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
5881      CopyAssignOperator->setInvalidDecl();
5882      return;
5883    }
5884
5885    // Success! Record the copy.
5886    Statements.push_back(Copy.takeAs<Stmt>());
5887  }
5888
5889  if (!Invalid) {
5890    // Add a "return *this;"
5891    ExprResult ThisObj = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
5892
5893    StmtResult Return = ActOnReturnStmt(Loc, ThisObj.get());
5894    if (Return.isInvalid())
5895      Invalid = true;
5896    else {
5897      Statements.push_back(Return.takeAs<Stmt>());
5898
5899      if (Trap.hasErrorOccurred()) {
5900        Diag(CurrentLocation, diag::note_member_synthesized_at)
5901          << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
5902        Invalid = true;
5903      }
5904    }
5905  }
5906
5907  if (Invalid) {
5908    CopyAssignOperator->setInvalidDecl();
5909    return;
5910  }
5911
5912  StmtResult Body = ActOnCompoundStmt(Loc, Loc, move_arg(Statements),
5913                                            /*isStmtExpr=*/false);
5914  assert(!Body.isInvalid() && "Compound statement creation cannot fail");
5915  CopyAssignOperator->setBody(Body.takeAs<Stmt>());
5916}
5917
5918CXXConstructorDecl *Sema::DeclareImplicitCopyConstructor(
5919                                                    CXXRecordDecl *ClassDecl) {
5920  // C++ [class.copy]p4:
5921  //   If the class definition does not explicitly declare a copy
5922  //   constructor, one is declared implicitly.
5923
5924  // C++ [class.copy]p5:
5925  //   The implicitly-declared copy constructor for a class X will
5926  //   have the form
5927  //
5928  //       X::X(const X&)
5929  //
5930  //   if
5931  bool HasConstCopyConstructor = true;
5932
5933  //     -- each direct or virtual base class B of X has a copy
5934  //        constructor whose first parameter is of type const B& or
5935  //        const volatile B&, and
5936  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
5937                                       BaseEnd = ClassDecl->bases_end();
5938       HasConstCopyConstructor && Base != BaseEnd;
5939       ++Base) {
5940    // Virtual bases are handled below.
5941    if (Base->isVirtual())
5942      continue;
5943
5944    CXXRecordDecl *BaseClassDecl
5945      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
5946    if (!BaseClassDecl->hasDeclaredCopyConstructor())
5947      DeclareImplicitCopyConstructor(BaseClassDecl);
5948
5949    HasConstCopyConstructor
5950      = BaseClassDecl->hasConstCopyConstructor(Context);
5951  }
5952
5953  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
5954                                       BaseEnd = ClassDecl->vbases_end();
5955       HasConstCopyConstructor && Base != BaseEnd;
5956       ++Base) {
5957    CXXRecordDecl *BaseClassDecl
5958      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
5959    if (!BaseClassDecl->hasDeclaredCopyConstructor())
5960      DeclareImplicitCopyConstructor(BaseClassDecl);
5961
5962    HasConstCopyConstructor
5963      = BaseClassDecl->hasConstCopyConstructor(Context);
5964  }
5965
5966  //     -- for all the nonstatic data members of X that are of a
5967  //        class type M (or array thereof), each such class type
5968  //        has a copy constructor whose first parameter is of type
5969  //        const M& or const volatile M&.
5970  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
5971                                  FieldEnd = ClassDecl->field_end();
5972       HasConstCopyConstructor && Field != FieldEnd;
5973       ++Field) {
5974    QualType FieldType = Context.getBaseElementType((*Field)->getType());
5975    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
5976      CXXRecordDecl *FieldClassDecl
5977        = cast<CXXRecordDecl>(FieldClassType->getDecl());
5978      if (!FieldClassDecl->hasDeclaredCopyConstructor())
5979        DeclareImplicitCopyConstructor(FieldClassDecl);
5980
5981      HasConstCopyConstructor
5982        = FieldClassDecl->hasConstCopyConstructor(Context);
5983    }
5984  }
5985
5986  //   Otherwise, the implicitly declared copy constructor will have
5987  //   the form
5988  //
5989  //       X::X(X&)
5990  QualType ClassType = Context.getTypeDeclType(ClassDecl);
5991  QualType ArgType = ClassType;
5992  if (HasConstCopyConstructor)
5993    ArgType = ArgType.withConst();
5994  ArgType = Context.getLValueReferenceType(ArgType);
5995
5996  // C++ [except.spec]p14:
5997  //   An implicitly declared special member function (Clause 12) shall have an
5998  //   exception-specification. [...]
5999  ImplicitExceptionSpecification ExceptSpec(Context);
6000  unsigned Quals = HasConstCopyConstructor? Qualifiers::Const : 0;
6001  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
6002                                       BaseEnd = ClassDecl->bases_end();
6003       Base != BaseEnd;
6004       ++Base) {
6005    // Virtual bases are handled below.
6006    if (Base->isVirtual())
6007      continue;
6008
6009    CXXRecordDecl *BaseClassDecl
6010      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
6011    if (!BaseClassDecl->hasDeclaredCopyConstructor())
6012      DeclareImplicitCopyConstructor(BaseClassDecl);
6013
6014    if (CXXConstructorDecl *CopyConstructor
6015                          = BaseClassDecl->getCopyConstructor(Context, Quals))
6016      ExceptSpec.CalledDecl(CopyConstructor);
6017  }
6018  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
6019                                       BaseEnd = ClassDecl->vbases_end();
6020       Base != BaseEnd;
6021       ++Base) {
6022    CXXRecordDecl *BaseClassDecl
6023      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
6024    if (!BaseClassDecl->hasDeclaredCopyConstructor())
6025      DeclareImplicitCopyConstructor(BaseClassDecl);
6026
6027    if (CXXConstructorDecl *CopyConstructor
6028                          = BaseClassDecl->getCopyConstructor(Context, Quals))
6029      ExceptSpec.CalledDecl(CopyConstructor);
6030  }
6031  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
6032                                  FieldEnd = ClassDecl->field_end();
6033       Field != FieldEnd;
6034       ++Field) {
6035    QualType FieldType = Context.getBaseElementType((*Field)->getType());
6036    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
6037      CXXRecordDecl *FieldClassDecl
6038        = cast<CXXRecordDecl>(FieldClassType->getDecl());
6039      if (!FieldClassDecl->hasDeclaredCopyConstructor())
6040        DeclareImplicitCopyConstructor(FieldClassDecl);
6041
6042      if (CXXConstructorDecl *CopyConstructor
6043                          = FieldClassDecl->getCopyConstructor(Context, Quals))
6044        ExceptSpec.CalledDecl(CopyConstructor);
6045    }
6046  }
6047
6048  //   An implicitly-declared copy constructor is an inline public
6049  //   member of its class.
6050  FunctionProtoType::ExtProtoInfo EPI;
6051  EPI.ExceptionSpecType = ExceptSpec.getExceptionSpecType();
6052  EPI.NumExceptions = ExceptSpec.size();
6053  EPI.Exceptions = ExceptSpec.data();
6054  DeclarationName Name
6055    = Context.DeclarationNames.getCXXConstructorName(
6056                                           Context.getCanonicalType(ClassType));
6057  SourceLocation ClassLoc = ClassDecl->getLocation();
6058  DeclarationNameInfo NameInfo(Name, ClassLoc);
6059  CXXConstructorDecl *CopyConstructor
6060    = CXXConstructorDecl::Create(Context, ClassDecl, ClassLoc, NameInfo,
6061                                 Context.getFunctionType(Context.VoidTy,
6062                                                         &ArgType, 1, EPI),
6063                                 /*TInfo=*/0,
6064                                 /*isExplicit=*/false,
6065                                 /*isInline=*/true,
6066                                 /*isImplicitlyDeclared=*/true);
6067  CopyConstructor->setAccess(AS_public);
6068  CopyConstructor->setTrivial(ClassDecl->hasTrivialCopyConstructor());
6069
6070  // Note that we have declared this constructor.
6071  ++ASTContext::NumImplicitCopyConstructorsDeclared;
6072
6073  // Add the parameter to the constructor.
6074  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor,
6075                                               ClassLoc, ClassLoc,
6076                                               /*IdentifierInfo=*/0,
6077                                               ArgType, /*TInfo=*/0,
6078                                               SC_None,
6079                                               SC_None, 0);
6080  CopyConstructor->setParams(&FromParam, 1);
6081  if (Scope *S = getScopeForContext(ClassDecl))
6082    PushOnScopeChains(CopyConstructor, S, false);
6083  ClassDecl->addDecl(CopyConstructor);
6084
6085  return CopyConstructor;
6086}
6087
6088void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation,
6089                                   CXXConstructorDecl *CopyConstructor,
6090                                   unsigned TypeQuals) {
6091  assert((CopyConstructor->isImplicit() &&
6092          CopyConstructor->isCopyConstructor(TypeQuals) &&
6093          !CopyConstructor->isUsed(false)) &&
6094         "DefineImplicitCopyConstructor - call it for implicit copy ctor");
6095
6096  CXXRecordDecl *ClassDecl = CopyConstructor->getParent();
6097  assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor");
6098
6099  ImplicitlyDefinedFunctionScope Scope(*this, CopyConstructor);
6100  DiagnosticErrorTrap Trap(Diags);
6101
6102  if (SetCtorInitializers(CopyConstructor, 0, 0, /*AnyErrors=*/false) ||
6103      Trap.hasErrorOccurred()) {
6104    Diag(CurrentLocation, diag::note_member_synthesized_at)
6105      << CXXCopyConstructor << Context.getTagDeclType(ClassDecl);
6106    CopyConstructor->setInvalidDecl();
6107  }  else {
6108    CopyConstructor->setBody(ActOnCompoundStmt(CopyConstructor->getLocation(),
6109                                               CopyConstructor->getLocation(),
6110                                               MultiStmtArg(*this, 0, 0),
6111                                               /*isStmtExpr=*/false)
6112                                                              .takeAs<Stmt>());
6113  }
6114
6115  CopyConstructor->setUsed();
6116}
6117
6118ExprResult
6119Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
6120                            CXXConstructorDecl *Constructor,
6121                            MultiExprArg ExprArgs,
6122                            bool RequiresZeroInit,
6123                            unsigned ConstructKind,
6124                            SourceRange ParenRange) {
6125  bool Elidable = false;
6126
6127  // C++0x [class.copy]p34:
6128  //   When certain criteria are met, an implementation is allowed to
6129  //   omit the copy/move construction of a class object, even if the
6130  //   copy/move constructor and/or destructor for the object have
6131  //   side effects. [...]
6132  //     - when a temporary class object that has not been bound to a
6133  //       reference (12.2) would be copied/moved to a class object
6134  //       with the same cv-unqualified type, the copy/move operation
6135  //       can be omitted by constructing the temporary object
6136  //       directly into the target of the omitted copy/move
6137  if (ConstructKind == CXXConstructExpr::CK_Complete &&
6138      Constructor->isCopyOrMoveConstructor() && ExprArgs.size() >= 1) {
6139    Expr *SubExpr = ((Expr **)ExprArgs.get())[0];
6140    Elidable = SubExpr->isTemporaryObject(Context, Constructor->getParent());
6141  }
6142
6143  return BuildCXXConstructExpr(ConstructLoc, DeclInitType, Constructor,
6144                               Elidable, move(ExprArgs), RequiresZeroInit,
6145                               ConstructKind, ParenRange);
6146}
6147
6148/// BuildCXXConstructExpr - Creates a complete call to a constructor,
6149/// including handling of its default argument expressions.
6150ExprResult
6151Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
6152                            CXXConstructorDecl *Constructor, bool Elidable,
6153                            MultiExprArg ExprArgs,
6154                            bool RequiresZeroInit,
6155                            unsigned ConstructKind,
6156                            SourceRange ParenRange) {
6157  unsigned NumExprs = ExprArgs.size();
6158  Expr **Exprs = (Expr **)ExprArgs.release();
6159
6160  for (specific_attr_iterator<NonNullAttr>
6161           i = Constructor->specific_attr_begin<NonNullAttr>(),
6162           e = Constructor->specific_attr_end<NonNullAttr>(); i != e; ++i) {
6163    const NonNullAttr *NonNull = *i;
6164    CheckNonNullArguments(NonNull, ExprArgs.get(), ConstructLoc);
6165  }
6166
6167  MarkDeclarationReferenced(ConstructLoc, Constructor);
6168  return Owned(CXXConstructExpr::Create(Context, DeclInitType, ConstructLoc,
6169                                        Constructor, Elidable, Exprs, NumExprs,
6170                                        RequiresZeroInit,
6171              static_cast<CXXConstructExpr::ConstructionKind>(ConstructKind),
6172                                        ParenRange));
6173}
6174
6175bool Sema::InitializeVarWithConstructor(VarDecl *VD,
6176                                        CXXConstructorDecl *Constructor,
6177                                        MultiExprArg Exprs) {
6178  // FIXME: Provide the correct paren SourceRange when available.
6179  ExprResult TempResult =
6180    BuildCXXConstructExpr(VD->getLocation(), VD->getType(), Constructor,
6181                          move(Exprs), false, CXXConstructExpr::CK_Complete,
6182                          SourceRange());
6183  if (TempResult.isInvalid())
6184    return true;
6185
6186  Expr *Temp = TempResult.takeAs<Expr>();
6187  CheckImplicitConversions(Temp, VD->getLocation());
6188  MarkDeclarationReferenced(VD->getLocation(), Constructor);
6189  Temp = MaybeCreateExprWithCleanups(Temp);
6190  VD->setInit(Temp);
6191
6192  return false;
6193}
6194
6195void Sema::FinalizeVarWithDestructor(VarDecl *VD, const RecordType *Record) {
6196  if (VD->isInvalidDecl()) return;
6197
6198  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Record->getDecl());
6199  if (ClassDecl->isInvalidDecl()) return;
6200  if (ClassDecl->hasTrivialDestructor()) return;
6201  if (ClassDecl->isDependentContext()) return;
6202
6203  CXXDestructorDecl *Destructor = LookupDestructor(ClassDecl);
6204  MarkDeclarationReferenced(VD->getLocation(), Destructor);
6205  CheckDestructorAccess(VD->getLocation(), Destructor,
6206                        PDiag(diag::err_access_dtor_var)
6207                        << VD->getDeclName()
6208                        << VD->getType());
6209
6210  if (!VD->hasGlobalStorage()) return;
6211
6212  // Emit warning for non-trivial dtor in global scope (a real global,
6213  // class-static, function-static).
6214  Diag(VD->getLocation(), diag::warn_exit_time_destructor);
6215
6216  // TODO: this should be re-enabled for static locals by !CXAAtExit
6217  if (!VD->isStaticLocal())
6218    Diag(VD->getLocation(), diag::warn_global_destructor);
6219}
6220
6221/// AddCXXDirectInitializerToDecl - This action is called immediately after
6222/// ActOnDeclarator, when a C++ direct initializer is present.
6223/// e.g: "int x(1);"
6224void Sema::AddCXXDirectInitializerToDecl(Decl *RealDecl,
6225                                         SourceLocation LParenLoc,
6226                                         MultiExprArg Exprs,
6227                                         SourceLocation RParenLoc,
6228                                         bool TypeMayContainAuto) {
6229  assert(Exprs.size() != 0 && Exprs.get() && "missing expressions");
6230
6231  // If there is no declaration, there was an error parsing it.  Just ignore
6232  // the initializer.
6233  if (RealDecl == 0)
6234    return;
6235
6236  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
6237  if (!VDecl) {
6238    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
6239    RealDecl->setInvalidDecl();
6240    return;
6241  }
6242
6243  // C++0x [decl.spec.auto]p6. Deduce the type which 'auto' stands in for.
6244  if (TypeMayContainAuto && VDecl->getType()->getContainedAutoType()) {
6245    // FIXME: n3225 doesn't actually seem to indicate this is ill-formed
6246    if (Exprs.size() > 1) {
6247      Diag(Exprs.get()[1]->getSourceRange().getBegin(),
6248           diag::err_auto_var_init_multiple_expressions)
6249        << VDecl->getDeclName() << VDecl->getType()
6250        << VDecl->getSourceRange();
6251      RealDecl->setInvalidDecl();
6252      return;
6253    }
6254
6255    Expr *Init = Exprs.get()[0];
6256    TypeSourceInfo *DeducedType = 0;
6257    if (!DeduceAutoType(VDecl->getTypeSourceInfo(), Init, DeducedType))
6258      Diag(VDecl->getLocation(), diag::err_auto_var_deduction_failure)
6259        << VDecl->getDeclName() << VDecl->getType() << Init->getType()
6260        << Init->getSourceRange();
6261    if (!DeducedType) {
6262      RealDecl->setInvalidDecl();
6263      return;
6264    }
6265    VDecl->setTypeSourceInfo(DeducedType);
6266    VDecl->setType(DeducedType->getType());
6267
6268    // If this is a redeclaration, check that the type we just deduced matches
6269    // the previously declared type.
6270    if (VarDecl *Old = VDecl->getPreviousDeclaration())
6271      MergeVarDeclTypes(VDecl, Old);
6272  }
6273
6274  // We will represent direct-initialization similarly to copy-initialization:
6275  //    int x(1);  -as-> int x = 1;
6276  //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
6277  //
6278  // Clients that want to distinguish between the two forms, can check for
6279  // direct initializer using VarDecl::hasCXXDirectInitializer().
6280  // A major benefit is that clients that don't particularly care about which
6281  // exactly form was it (like the CodeGen) can handle both cases without
6282  // special case code.
6283
6284  // C++ 8.5p11:
6285  // The form of initialization (using parentheses or '=') is generally
6286  // insignificant, but does matter when the entity being initialized has a
6287  // class type.
6288
6289  if (!VDecl->getType()->isDependentType() &&
6290      RequireCompleteType(VDecl->getLocation(), VDecl->getType(),
6291                          diag::err_typecheck_decl_incomplete_type)) {
6292    VDecl->setInvalidDecl();
6293    return;
6294  }
6295
6296  // The variable can not have an abstract class type.
6297  if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
6298                             diag::err_abstract_type_in_decl,
6299                             AbstractVariableType))
6300    VDecl->setInvalidDecl();
6301
6302  const VarDecl *Def;
6303  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
6304    Diag(VDecl->getLocation(), diag::err_redefinition)
6305    << VDecl->getDeclName();
6306    Diag(Def->getLocation(), diag::note_previous_definition);
6307    VDecl->setInvalidDecl();
6308    return;
6309  }
6310
6311  // C++ [class.static.data]p4
6312  //   If a static data member is of const integral or const
6313  //   enumeration type, its declaration in the class definition can
6314  //   specify a constant-initializer which shall be an integral
6315  //   constant expression (5.19). In that case, the member can appear
6316  //   in integral constant expressions. The member shall still be
6317  //   defined in a namespace scope if it is used in the program and the
6318  //   namespace scope definition shall not contain an initializer.
6319  //
6320  // We already performed a redefinition check above, but for static
6321  // data members we also need to check whether there was an in-class
6322  // declaration with an initializer.
6323  const VarDecl* PrevInit = 0;
6324  if (VDecl->isStaticDataMember() && VDecl->getAnyInitializer(PrevInit)) {
6325    Diag(VDecl->getLocation(), diag::err_redefinition) << VDecl->getDeclName();
6326    Diag(PrevInit->getLocation(), diag::note_previous_definition);
6327    return;
6328  }
6329
6330  bool IsDependent = false;
6331  for (unsigned I = 0, N = Exprs.size(); I != N; ++I) {
6332    if (DiagnoseUnexpandedParameterPack(Exprs.get()[I], UPPC_Expression)) {
6333      VDecl->setInvalidDecl();
6334      return;
6335    }
6336
6337    if (Exprs.get()[I]->isTypeDependent())
6338      IsDependent = true;
6339  }
6340
6341  // If either the declaration has a dependent type or if any of the
6342  // expressions is type-dependent, we represent the initialization
6343  // via a ParenListExpr for later use during template instantiation.
6344  if (VDecl->getType()->isDependentType() || IsDependent) {
6345    // Let clients know that initialization was done with a direct initializer.
6346    VDecl->setCXXDirectInitializer(true);
6347
6348    // Store the initialization expressions as a ParenListExpr.
6349    unsigned NumExprs = Exprs.size();
6350    VDecl->setInit(new (Context) ParenListExpr(Context, LParenLoc,
6351                                               (Expr **)Exprs.release(),
6352                                               NumExprs, RParenLoc));
6353    return;
6354  }
6355
6356  // Capture the variable that is being initialized and the style of
6357  // initialization.
6358  InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
6359
6360  // FIXME: Poor source location information.
6361  InitializationKind Kind
6362    = InitializationKind::CreateDirect(VDecl->getLocation(),
6363                                       LParenLoc, RParenLoc);
6364
6365  InitializationSequence InitSeq(*this, Entity, Kind,
6366                                 Exprs.get(), Exprs.size());
6367  ExprResult Result = InitSeq.Perform(*this, Entity, Kind, move(Exprs));
6368  if (Result.isInvalid()) {
6369    VDecl->setInvalidDecl();
6370    return;
6371  }
6372
6373  CheckImplicitConversions(Result.get(), LParenLoc);
6374
6375  Result = MaybeCreateExprWithCleanups(Result);
6376  VDecl->setInit(Result.takeAs<Expr>());
6377  VDecl->setCXXDirectInitializer(true);
6378
6379  CheckCompleteVariableDeclaration(VDecl);
6380}
6381
6382/// \brief Given a constructor and the set of arguments provided for the
6383/// constructor, convert the arguments and add any required default arguments
6384/// to form a proper call to this constructor.
6385///
6386/// \returns true if an error occurred, false otherwise.
6387bool
6388Sema::CompleteConstructorCall(CXXConstructorDecl *Constructor,
6389                              MultiExprArg ArgsPtr,
6390                              SourceLocation Loc,
6391                              ASTOwningVector<Expr*> &ConvertedArgs) {
6392  // FIXME: This duplicates a lot of code from Sema::ConvertArgumentsForCall.
6393  unsigned NumArgs = ArgsPtr.size();
6394  Expr **Args = (Expr **)ArgsPtr.get();
6395
6396  const FunctionProtoType *Proto
6397    = Constructor->getType()->getAs<FunctionProtoType>();
6398  assert(Proto && "Constructor without a prototype?");
6399  unsigned NumArgsInProto = Proto->getNumArgs();
6400
6401  // If too few arguments are available, we'll fill in the rest with defaults.
6402  if (NumArgs < NumArgsInProto)
6403    ConvertedArgs.reserve(NumArgsInProto);
6404  else
6405    ConvertedArgs.reserve(NumArgs);
6406
6407  VariadicCallType CallType =
6408    Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply;
6409  llvm::SmallVector<Expr *, 8> AllArgs;
6410  bool Invalid = GatherArgumentsForCall(Loc, Constructor,
6411                                        Proto, 0, Args, NumArgs, AllArgs,
6412                                        CallType);
6413  for (unsigned i =0, size = AllArgs.size(); i < size; i++)
6414    ConvertedArgs.push_back(AllArgs[i]);
6415  return Invalid;
6416}
6417
6418static inline bool
6419CheckOperatorNewDeleteDeclarationScope(Sema &SemaRef,
6420                                       const FunctionDecl *FnDecl) {
6421  const DeclContext *DC = FnDecl->getDeclContext()->getRedeclContext();
6422  if (isa<NamespaceDecl>(DC)) {
6423    return SemaRef.Diag(FnDecl->getLocation(),
6424                        diag::err_operator_new_delete_declared_in_namespace)
6425      << FnDecl->getDeclName();
6426  }
6427
6428  if (isa<TranslationUnitDecl>(DC) &&
6429      FnDecl->getStorageClass() == SC_Static) {
6430    return SemaRef.Diag(FnDecl->getLocation(),
6431                        diag::err_operator_new_delete_declared_static)
6432      << FnDecl->getDeclName();
6433  }
6434
6435  return false;
6436}
6437
6438static inline bool
6439CheckOperatorNewDeleteTypes(Sema &SemaRef, const FunctionDecl *FnDecl,
6440                            CanQualType ExpectedResultType,
6441                            CanQualType ExpectedFirstParamType,
6442                            unsigned DependentParamTypeDiag,
6443                            unsigned InvalidParamTypeDiag) {
6444  QualType ResultType =
6445    FnDecl->getType()->getAs<FunctionType>()->getResultType();
6446
6447  // Check that the result type is not dependent.
6448  if (ResultType->isDependentType())
6449    return SemaRef.Diag(FnDecl->getLocation(),
6450                        diag::err_operator_new_delete_dependent_result_type)
6451    << FnDecl->getDeclName() << ExpectedResultType;
6452
6453  // Check that the result type is what we expect.
6454  if (SemaRef.Context.getCanonicalType(ResultType) != ExpectedResultType)
6455    return SemaRef.Diag(FnDecl->getLocation(),
6456                        diag::err_operator_new_delete_invalid_result_type)
6457    << FnDecl->getDeclName() << ExpectedResultType;
6458
6459  // A function template must have at least 2 parameters.
6460  if (FnDecl->getDescribedFunctionTemplate() && FnDecl->getNumParams() < 2)
6461    return SemaRef.Diag(FnDecl->getLocation(),
6462                      diag::err_operator_new_delete_template_too_few_parameters)
6463        << FnDecl->getDeclName();
6464
6465  // The function decl must have at least 1 parameter.
6466  if (FnDecl->getNumParams() == 0)
6467    return SemaRef.Diag(FnDecl->getLocation(),
6468                        diag::err_operator_new_delete_too_few_parameters)
6469      << FnDecl->getDeclName();
6470
6471  // Check the the first parameter type is not dependent.
6472  QualType FirstParamType = FnDecl->getParamDecl(0)->getType();
6473  if (FirstParamType->isDependentType())
6474    return SemaRef.Diag(FnDecl->getLocation(), DependentParamTypeDiag)
6475      << FnDecl->getDeclName() << ExpectedFirstParamType;
6476
6477  // Check that the first parameter type is what we expect.
6478  if (SemaRef.Context.getCanonicalType(FirstParamType).getUnqualifiedType() !=
6479      ExpectedFirstParamType)
6480    return SemaRef.Diag(FnDecl->getLocation(), InvalidParamTypeDiag)
6481    << FnDecl->getDeclName() << ExpectedFirstParamType;
6482
6483  return false;
6484}
6485
6486static bool
6487CheckOperatorNewDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
6488  // C++ [basic.stc.dynamic.allocation]p1:
6489  //   A program is ill-formed if an allocation function is declared in a
6490  //   namespace scope other than global scope or declared static in global
6491  //   scope.
6492  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
6493    return true;
6494
6495  CanQualType SizeTy =
6496    SemaRef.Context.getCanonicalType(SemaRef.Context.getSizeType());
6497
6498  // C++ [basic.stc.dynamic.allocation]p1:
6499  //  The return type shall be void*. The first parameter shall have type
6500  //  std::size_t.
6501  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidPtrTy,
6502                                  SizeTy,
6503                                  diag::err_operator_new_dependent_param_type,
6504                                  diag::err_operator_new_param_type))
6505    return true;
6506
6507  // C++ [basic.stc.dynamic.allocation]p1:
6508  //  The first parameter shall not have an associated default argument.
6509  if (FnDecl->getParamDecl(0)->hasDefaultArg())
6510    return SemaRef.Diag(FnDecl->getLocation(),
6511                        diag::err_operator_new_default_arg)
6512      << FnDecl->getDeclName() << FnDecl->getParamDecl(0)->getDefaultArgRange();
6513
6514  return false;
6515}
6516
6517static bool
6518CheckOperatorDeleteDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
6519  // C++ [basic.stc.dynamic.deallocation]p1:
6520  //   A program is ill-formed if deallocation functions are declared in a
6521  //   namespace scope other than global scope or declared static in global
6522  //   scope.
6523  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
6524    return true;
6525
6526  // C++ [basic.stc.dynamic.deallocation]p2:
6527  //   Each deallocation function shall return void and its first parameter
6528  //   shall be void*.
6529  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidTy,
6530                                  SemaRef.Context.VoidPtrTy,
6531                                 diag::err_operator_delete_dependent_param_type,
6532                                 diag::err_operator_delete_param_type))
6533    return true;
6534
6535  return false;
6536}
6537
6538/// CheckOverloadedOperatorDeclaration - Check whether the declaration
6539/// of this overloaded operator is well-formed. If so, returns false;
6540/// otherwise, emits appropriate diagnostics and returns true.
6541bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
6542  assert(FnDecl && FnDecl->isOverloadedOperator() &&
6543         "Expected an overloaded operator declaration");
6544
6545  OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
6546
6547  // C++ [over.oper]p5:
6548  //   The allocation and deallocation functions, operator new,
6549  //   operator new[], operator delete and operator delete[], are
6550  //   described completely in 3.7.3. The attributes and restrictions
6551  //   found in the rest of this subclause do not apply to them unless
6552  //   explicitly stated in 3.7.3.
6553  if (Op == OO_Delete || Op == OO_Array_Delete)
6554    return CheckOperatorDeleteDeclaration(*this, FnDecl);
6555
6556  if (Op == OO_New || Op == OO_Array_New)
6557    return CheckOperatorNewDeclaration(*this, FnDecl);
6558
6559  // C++ [over.oper]p6:
6560  //   An operator function shall either be a non-static member
6561  //   function or be a non-member function and have at least one
6562  //   parameter whose type is a class, a reference to a class, an
6563  //   enumeration, or a reference to an enumeration.
6564  if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) {
6565    if (MethodDecl->isStatic())
6566      return Diag(FnDecl->getLocation(),
6567                  diag::err_operator_overload_static) << FnDecl->getDeclName();
6568  } else {
6569    bool ClassOrEnumParam = false;
6570    for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
6571                                   ParamEnd = FnDecl->param_end();
6572         Param != ParamEnd; ++Param) {
6573      QualType ParamType = (*Param)->getType().getNonReferenceType();
6574      if (ParamType->isDependentType() || ParamType->isRecordType() ||
6575          ParamType->isEnumeralType()) {
6576        ClassOrEnumParam = true;
6577        break;
6578      }
6579    }
6580
6581    if (!ClassOrEnumParam)
6582      return Diag(FnDecl->getLocation(),
6583                  diag::err_operator_overload_needs_class_or_enum)
6584        << FnDecl->getDeclName();
6585  }
6586
6587  // C++ [over.oper]p8:
6588  //   An operator function cannot have default arguments (8.3.6),
6589  //   except where explicitly stated below.
6590  //
6591  // Only the function-call operator allows default arguments
6592  // (C++ [over.call]p1).
6593  if (Op != OO_Call) {
6594    for (FunctionDecl::param_iterator Param = FnDecl->param_begin();
6595         Param != FnDecl->param_end(); ++Param) {
6596      if ((*Param)->hasDefaultArg())
6597        return Diag((*Param)->getLocation(),
6598                    diag::err_operator_overload_default_arg)
6599          << FnDecl->getDeclName() << (*Param)->getDefaultArgRange();
6600    }
6601  }
6602
6603  static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
6604    { false, false, false }
6605#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
6606    , { Unary, Binary, MemberOnly }
6607#include "clang/Basic/OperatorKinds.def"
6608  };
6609
6610  bool CanBeUnaryOperator = OperatorUses[Op][0];
6611  bool CanBeBinaryOperator = OperatorUses[Op][1];
6612  bool MustBeMemberOperator = OperatorUses[Op][2];
6613
6614  // C++ [over.oper]p8:
6615  //   [...] Operator functions cannot have more or fewer parameters
6616  //   than the number required for the corresponding operator, as
6617  //   described in the rest of this subclause.
6618  unsigned NumParams = FnDecl->getNumParams()
6619                     + (isa<CXXMethodDecl>(FnDecl)? 1 : 0);
6620  if (Op != OO_Call &&
6621      ((NumParams == 1 && !CanBeUnaryOperator) ||
6622       (NumParams == 2 && !CanBeBinaryOperator) ||
6623       (NumParams < 1) || (NumParams > 2))) {
6624    // We have the wrong number of parameters.
6625    unsigned ErrorKind;
6626    if (CanBeUnaryOperator && CanBeBinaryOperator) {
6627      ErrorKind = 2;  // 2 -> unary or binary.
6628    } else if (CanBeUnaryOperator) {
6629      ErrorKind = 0;  // 0 -> unary
6630    } else {
6631      assert(CanBeBinaryOperator &&
6632             "All non-call overloaded operators are unary or binary!");
6633      ErrorKind = 1;  // 1 -> binary
6634    }
6635
6636    return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be)
6637      << FnDecl->getDeclName() << NumParams << ErrorKind;
6638  }
6639
6640  // Overloaded operators other than operator() cannot be variadic.
6641  if (Op != OO_Call &&
6642      FnDecl->getType()->getAs<FunctionProtoType>()->isVariadic()) {
6643    return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
6644      << FnDecl->getDeclName();
6645  }
6646
6647  // Some operators must be non-static member functions.
6648  if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) {
6649    return Diag(FnDecl->getLocation(),
6650                diag::err_operator_overload_must_be_member)
6651      << FnDecl->getDeclName();
6652  }
6653
6654  // C++ [over.inc]p1:
6655  //   The user-defined function called operator++ implements the
6656  //   prefix and postfix ++ operator. If this function is a member
6657  //   function with no parameters, or a non-member function with one
6658  //   parameter of class or enumeration type, it defines the prefix
6659  //   increment operator ++ for objects of that type. If the function
6660  //   is a member function with one parameter (which shall be of type
6661  //   int) or a non-member function with two parameters (the second
6662  //   of which shall be of type int), it defines the postfix
6663  //   increment operator ++ for objects of that type.
6664  if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
6665    ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
6666    bool ParamIsInt = false;
6667    if (const BuiltinType *BT = LastParam->getType()->getAs<BuiltinType>())
6668      ParamIsInt = BT->getKind() == BuiltinType::Int;
6669
6670    if (!ParamIsInt)
6671      return Diag(LastParam->getLocation(),
6672                  diag::err_operator_overload_post_incdec_must_be_int)
6673        << LastParam->getType() << (Op == OO_MinusMinus);
6674  }
6675
6676  return false;
6677}
6678
6679/// CheckLiteralOperatorDeclaration - Check whether the declaration
6680/// of this literal operator function is well-formed. If so, returns
6681/// false; otherwise, emits appropriate diagnostics and returns true.
6682bool Sema::CheckLiteralOperatorDeclaration(FunctionDecl *FnDecl) {
6683  DeclContext *DC = FnDecl->getDeclContext();
6684  Decl::Kind Kind = DC->getDeclKind();
6685  if (Kind != Decl::TranslationUnit && Kind != Decl::Namespace &&
6686      Kind != Decl::LinkageSpec) {
6687    Diag(FnDecl->getLocation(), diag::err_literal_operator_outside_namespace)
6688      << FnDecl->getDeclName();
6689    return true;
6690  }
6691
6692  bool Valid = false;
6693
6694  // template <char...> type operator "" name() is the only valid template
6695  // signature, and the only valid signature with no parameters.
6696  if (FnDecl->param_size() == 0) {
6697    if (FunctionTemplateDecl *TpDecl = FnDecl->getDescribedFunctionTemplate()) {
6698      // Must have only one template parameter
6699      TemplateParameterList *Params = TpDecl->getTemplateParameters();
6700      if (Params->size() == 1) {
6701        NonTypeTemplateParmDecl *PmDecl =
6702          cast<NonTypeTemplateParmDecl>(Params->getParam(0));
6703
6704        // The template parameter must be a char parameter pack.
6705        if (PmDecl && PmDecl->isTemplateParameterPack() &&
6706            Context.hasSameType(PmDecl->getType(), Context.CharTy))
6707          Valid = true;
6708      }
6709    }
6710  } else {
6711    // Check the first parameter
6712    FunctionDecl::param_iterator Param = FnDecl->param_begin();
6713
6714    QualType T = (*Param)->getType();
6715
6716    // unsigned long long int, long double, and any character type are allowed
6717    // as the only parameters.
6718    if (Context.hasSameType(T, Context.UnsignedLongLongTy) ||
6719        Context.hasSameType(T, Context.LongDoubleTy) ||
6720        Context.hasSameType(T, Context.CharTy) ||
6721        Context.hasSameType(T, Context.WCharTy) ||
6722        Context.hasSameType(T, Context.Char16Ty) ||
6723        Context.hasSameType(T, Context.Char32Ty)) {
6724      if (++Param == FnDecl->param_end())
6725        Valid = true;
6726      goto FinishedParams;
6727    }
6728
6729    // Otherwise it must be a pointer to const; let's strip those qualifiers.
6730    const PointerType *PT = T->getAs<PointerType>();
6731    if (!PT)
6732      goto FinishedParams;
6733    T = PT->getPointeeType();
6734    if (!T.isConstQualified())
6735      goto FinishedParams;
6736    T = T.getUnqualifiedType();
6737
6738    // Move on to the second parameter;
6739    ++Param;
6740
6741    // If there is no second parameter, the first must be a const char *
6742    if (Param == FnDecl->param_end()) {
6743      if (Context.hasSameType(T, Context.CharTy))
6744        Valid = true;
6745      goto FinishedParams;
6746    }
6747
6748    // const char *, const wchar_t*, const char16_t*, and const char32_t*
6749    // are allowed as the first parameter to a two-parameter function
6750    if (!(Context.hasSameType(T, Context.CharTy) ||
6751          Context.hasSameType(T, Context.WCharTy) ||
6752          Context.hasSameType(T, Context.Char16Ty) ||
6753          Context.hasSameType(T, Context.Char32Ty)))
6754      goto FinishedParams;
6755
6756    // The second and final parameter must be an std::size_t
6757    T = (*Param)->getType().getUnqualifiedType();
6758    if (Context.hasSameType(T, Context.getSizeType()) &&
6759        ++Param == FnDecl->param_end())
6760      Valid = true;
6761  }
6762
6763  // FIXME: This diagnostic is absolutely terrible.
6764FinishedParams:
6765  if (!Valid) {
6766    Diag(FnDecl->getLocation(), diag::err_literal_operator_params)
6767      << FnDecl->getDeclName();
6768    return true;
6769  }
6770
6771  return false;
6772}
6773
6774/// ActOnStartLinkageSpecification - Parsed the beginning of a C++
6775/// linkage specification, including the language and (if present)
6776/// the '{'. ExternLoc is the location of the 'extern', LangLoc is
6777/// the location of the language string literal, which is provided
6778/// by Lang/StrSize. LBraceLoc, if valid, provides the location of
6779/// the '{' brace. Otherwise, this linkage specification does not
6780/// have any braces.
6781Decl *Sema::ActOnStartLinkageSpecification(Scope *S, SourceLocation ExternLoc,
6782                                           SourceLocation LangLoc,
6783                                           llvm::StringRef Lang,
6784                                           SourceLocation LBraceLoc) {
6785  LinkageSpecDecl::LanguageIDs Language;
6786  if (Lang == "\"C\"")
6787    Language = LinkageSpecDecl::lang_c;
6788  else if (Lang == "\"C++\"")
6789    Language = LinkageSpecDecl::lang_cxx;
6790  else {
6791    Diag(LangLoc, diag::err_bad_language);
6792    return 0;
6793  }
6794
6795  // FIXME: Add all the various semantics of linkage specifications
6796
6797  LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext,
6798                                               ExternLoc, LangLoc, Language);
6799  CurContext->addDecl(D);
6800  PushDeclContext(S, D);
6801  return D;
6802}
6803
6804/// ActOnFinishLinkageSpecification - Complete the definition of
6805/// the C++ linkage specification LinkageSpec. If RBraceLoc is
6806/// valid, it's the position of the closing '}' brace in a linkage
6807/// specification that uses braces.
6808Decl *Sema::ActOnFinishLinkageSpecification(Scope *S,
6809                                            Decl *LinkageSpec,
6810                                            SourceLocation RBraceLoc) {
6811  if (LinkageSpec) {
6812    if (RBraceLoc.isValid()) {
6813      LinkageSpecDecl* LSDecl = cast<LinkageSpecDecl>(LinkageSpec);
6814      LSDecl->setRBraceLoc(RBraceLoc);
6815    }
6816    PopDeclContext();
6817  }
6818  return LinkageSpec;
6819}
6820
6821/// \brief Perform semantic analysis for the variable declaration that
6822/// occurs within a C++ catch clause, returning the newly-created
6823/// variable.
6824VarDecl *Sema::BuildExceptionDeclaration(Scope *S,
6825                                         TypeSourceInfo *TInfo,
6826                                         SourceLocation StartLoc,
6827                                         SourceLocation Loc,
6828                                         IdentifierInfo *Name) {
6829  bool Invalid = false;
6830  QualType ExDeclType = TInfo->getType();
6831
6832  // Arrays and functions decay.
6833  if (ExDeclType->isArrayType())
6834    ExDeclType = Context.getArrayDecayedType(ExDeclType);
6835  else if (ExDeclType->isFunctionType())
6836    ExDeclType = Context.getPointerType(ExDeclType);
6837
6838  // C++ 15.3p1: The exception-declaration shall not denote an incomplete type.
6839  // The exception-declaration shall not denote a pointer or reference to an
6840  // incomplete type, other than [cv] void*.
6841  // N2844 forbids rvalue references.
6842  if (!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) {
6843    Diag(Loc, diag::err_catch_rvalue_ref);
6844    Invalid = true;
6845  }
6846
6847  // GCC allows catching pointers and references to incomplete types
6848  // as an extension; so do we, but we warn by default.
6849
6850  QualType BaseType = ExDeclType;
6851  int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference
6852  unsigned DK = diag::err_catch_incomplete;
6853  bool IncompleteCatchIsInvalid = true;
6854  if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
6855    BaseType = Ptr->getPointeeType();
6856    Mode = 1;
6857    DK = diag::ext_catch_incomplete_ptr;
6858    IncompleteCatchIsInvalid = false;
6859  } else if (const ReferenceType *Ref = BaseType->getAs<ReferenceType>()) {
6860    // For the purpose of error recovery, we treat rvalue refs like lvalue refs.
6861    BaseType = Ref->getPointeeType();
6862    Mode = 2;
6863    DK = diag::ext_catch_incomplete_ref;
6864    IncompleteCatchIsInvalid = false;
6865  }
6866  if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) &&
6867      !BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK) &&
6868      IncompleteCatchIsInvalid)
6869    Invalid = true;
6870
6871  if (!Invalid && !ExDeclType->isDependentType() &&
6872      RequireNonAbstractType(Loc, ExDeclType,
6873                             diag::err_abstract_type_in_decl,
6874                             AbstractVariableType))
6875    Invalid = true;
6876
6877  // Only the non-fragile NeXT runtime currently supports C++ catches
6878  // of ObjC types, and no runtime supports catching ObjC types by value.
6879  if (!Invalid && getLangOptions().ObjC1) {
6880    QualType T = ExDeclType;
6881    if (const ReferenceType *RT = T->getAs<ReferenceType>())
6882      T = RT->getPointeeType();
6883
6884    if (T->isObjCObjectType()) {
6885      Diag(Loc, diag::err_objc_object_catch);
6886      Invalid = true;
6887    } else if (T->isObjCObjectPointerType()) {
6888      if (!getLangOptions().ObjCNonFragileABI) {
6889        Diag(Loc, diag::err_objc_pointer_cxx_catch_fragile);
6890        Invalid = true;
6891      }
6892    }
6893  }
6894
6895  VarDecl *ExDecl = VarDecl::Create(Context, CurContext, StartLoc, Loc, Name,
6896                                    ExDeclType, TInfo, SC_None, SC_None);
6897  ExDecl->setExceptionVariable(true);
6898
6899  if (!Invalid) {
6900    if (const RecordType *recordType = ExDeclType->getAs<RecordType>()) {
6901      // C++ [except.handle]p16:
6902      //   The object declared in an exception-declaration or, if the
6903      //   exception-declaration does not specify a name, a temporary (12.2) is
6904      //   copy-initialized (8.5) from the exception object. [...]
6905      //   The object is destroyed when the handler exits, after the destruction
6906      //   of any automatic objects initialized within the handler.
6907      //
6908      // We just pretend to initialize the object with itself, then make sure
6909      // it can be destroyed later.
6910      QualType initType = ExDeclType;
6911
6912      InitializedEntity entity =
6913        InitializedEntity::InitializeVariable(ExDecl);
6914      InitializationKind initKind =
6915        InitializationKind::CreateCopy(Loc, SourceLocation());
6916
6917      Expr *opaqueValue =
6918        new (Context) OpaqueValueExpr(Loc, initType, VK_LValue, OK_Ordinary);
6919      InitializationSequence sequence(*this, entity, initKind, &opaqueValue, 1);
6920      ExprResult result = sequence.Perform(*this, entity, initKind,
6921                                           MultiExprArg(&opaqueValue, 1));
6922      if (result.isInvalid())
6923        Invalid = true;
6924      else {
6925        // If the constructor used was non-trivial, set this as the
6926        // "initializer".
6927        CXXConstructExpr *construct = cast<CXXConstructExpr>(result.take());
6928        if (!construct->getConstructor()->isTrivial()) {
6929          Expr *init = MaybeCreateExprWithCleanups(construct);
6930          ExDecl->setInit(init);
6931        }
6932
6933        // And make sure it's destructable.
6934        FinalizeVarWithDestructor(ExDecl, recordType);
6935      }
6936    }
6937  }
6938
6939  if (Invalid)
6940    ExDecl->setInvalidDecl();
6941
6942  return ExDecl;
6943}
6944
6945/// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch
6946/// handler.
6947Decl *Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) {
6948  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
6949  bool Invalid = D.isInvalidType();
6950
6951  // Check for unexpanded parameter packs.
6952  if (TInfo && DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
6953                                               UPPC_ExceptionType)) {
6954    TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy,
6955                                             D.getIdentifierLoc());
6956    Invalid = true;
6957  }
6958
6959  IdentifierInfo *II = D.getIdentifier();
6960  if (NamedDecl *PrevDecl = LookupSingleName(S, II, D.getIdentifierLoc(),
6961                                             LookupOrdinaryName,
6962                                             ForRedeclaration)) {
6963    // The scope should be freshly made just for us. There is just no way
6964    // it contains any previous declaration.
6965    assert(!S->isDeclScope(PrevDecl));
6966    if (PrevDecl->isTemplateParameter()) {
6967      // Maybe we will complain about the shadowed template parameter.
6968      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
6969    }
6970  }
6971
6972  if (D.getCXXScopeSpec().isSet() && !Invalid) {
6973    Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator)
6974      << D.getCXXScopeSpec().getRange();
6975    Invalid = true;
6976  }
6977
6978  VarDecl *ExDecl = BuildExceptionDeclaration(S, TInfo,
6979                                              D.getSourceRange().getBegin(),
6980                                              D.getIdentifierLoc(),
6981                                              D.getIdentifier());
6982  if (Invalid)
6983    ExDecl->setInvalidDecl();
6984
6985  // Add the exception declaration into this scope.
6986  if (II)
6987    PushOnScopeChains(ExDecl, S);
6988  else
6989    CurContext->addDecl(ExDecl);
6990
6991  ProcessDeclAttributes(S, ExDecl, D);
6992  return ExDecl;
6993}
6994
6995Decl *Sema::ActOnStaticAssertDeclaration(SourceLocation StaticAssertLoc,
6996                                         Expr *AssertExpr,
6997                                         Expr *AssertMessageExpr_,
6998                                         SourceLocation RParenLoc) {
6999  StringLiteral *AssertMessage = cast<StringLiteral>(AssertMessageExpr_);
7000
7001  if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent()) {
7002    llvm::APSInt Value(32);
7003    if (!AssertExpr->isIntegerConstantExpr(Value, Context)) {
7004      Diag(StaticAssertLoc,
7005           diag::err_static_assert_expression_is_not_constant) <<
7006        AssertExpr->getSourceRange();
7007      return 0;
7008    }
7009
7010    if (Value == 0) {
7011      Diag(StaticAssertLoc, diag::err_static_assert_failed)
7012        << AssertMessage->getString() << AssertExpr->getSourceRange();
7013    }
7014  }
7015
7016  if (DiagnoseUnexpandedParameterPack(AssertExpr, UPPC_StaticAssertExpression))
7017    return 0;
7018
7019  Decl *Decl = StaticAssertDecl::Create(Context, CurContext, StaticAssertLoc,
7020                                        AssertExpr, AssertMessage, RParenLoc);
7021
7022  CurContext->addDecl(Decl);
7023  return Decl;
7024}
7025
7026/// \brief Perform semantic analysis of the given friend type declaration.
7027///
7028/// \returns A friend declaration that.
7029FriendDecl *Sema::CheckFriendTypeDecl(SourceLocation FriendLoc,
7030                                      TypeSourceInfo *TSInfo) {
7031  assert(TSInfo && "NULL TypeSourceInfo for friend type declaration");
7032
7033  QualType T = TSInfo->getType();
7034  SourceRange TypeRange = TSInfo->getTypeLoc().getLocalSourceRange();
7035
7036  if (!getLangOptions().CPlusPlus0x) {
7037    // C++03 [class.friend]p2:
7038    //   An elaborated-type-specifier shall be used in a friend declaration
7039    //   for a class.*
7040    //
7041    //   * The class-key of the elaborated-type-specifier is required.
7042    if (!ActiveTemplateInstantiations.empty()) {
7043      // Do not complain about the form of friend template types during
7044      // template instantiation; we will already have complained when the
7045      // template was declared.
7046    } else if (!T->isElaboratedTypeSpecifier()) {
7047      // If we evaluated the type to a record type, suggest putting
7048      // a tag in front.
7049      if (const RecordType *RT = T->getAs<RecordType>()) {
7050        RecordDecl *RD = RT->getDecl();
7051
7052        std::string InsertionText = std::string(" ") + RD->getKindName();
7053
7054        Diag(TypeRange.getBegin(), diag::ext_unelaborated_friend_type)
7055          << (unsigned) RD->getTagKind()
7056          << T
7057          << FixItHint::CreateInsertion(PP.getLocForEndOfToken(FriendLoc),
7058                                        InsertionText);
7059      } else {
7060        Diag(FriendLoc, diag::ext_nonclass_type_friend)
7061          << T
7062          << SourceRange(FriendLoc, TypeRange.getEnd());
7063      }
7064    } else if (T->getAs<EnumType>()) {
7065      Diag(FriendLoc, diag::ext_enum_friend)
7066        << T
7067        << SourceRange(FriendLoc, TypeRange.getEnd());
7068    }
7069  }
7070
7071  // C++0x [class.friend]p3:
7072  //   If the type specifier in a friend declaration designates a (possibly
7073  //   cv-qualified) class type, that class is declared as a friend; otherwise,
7074  //   the friend declaration is ignored.
7075
7076  // FIXME: C++0x has some syntactic restrictions on friend type declarations
7077  // in [class.friend]p3 that we do not implement.
7078
7079  return FriendDecl::Create(Context, CurContext, FriendLoc, TSInfo, FriendLoc);
7080}
7081
7082/// Handle a friend tag declaration where the scope specifier was
7083/// templated.
7084Decl *Sema::ActOnTemplatedFriendTag(Scope *S, SourceLocation FriendLoc,
7085                                    unsigned TagSpec, SourceLocation TagLoc,
7086                                    CXXScopeSpec &SS,
7087                                    IdentifierInfo *Name, SourceLocation NameLoc,
7088                                    AttributeList *Attr,
7089                                    MultiTemplateParamsArg TempParamLists) {
7090  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
7091
7092  bool isExplicitSpecialization = false;
7093  bool Invalid = false;
7094
7095  if (TemplateParameterList *TemplateParams
7096        = MatchTemplateParametersToScopeSpecifier(TagLoc, SS,
7097                                                  TempParamLists.get(),
7098                                                  TempParamLists.size(),
7099                                                  /*friend*/ true,
7100                                                  isExplicitSpecialization,
7101                                                  Invalid)) {
7102    if (TemplateParams->size() > 0) {
7103      // This is a declaration of a class template.
7104      if (Invalid)
7105        return 0;
7106
7107      return CheckClassTemplate(S, TagSpec, TUK_Friend, TagLoc,
7108                                SS, Name, NameLoc, Attr,
7109                                TemplateParams, AS_public,
7110                                TempParamLists.size() - 1,
7111                   (TemplateParameterList**) TempParamLists.release()).take();
7112    } else {
7113      // The "template<>" header is extraneous.
7114      Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
7115        << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
7116      isExplicitSpecialization = true;
7117    }
7118  }
7119
7120  if (Invalid) return 0;
7121
7122  assert(SS.isNotEmpty() && "valid templated tag with no SS and no direct?");
7123
7124  bool isAllExplicitSpecializations = true;
7125  for (unsigned I = TempParamLists.size(); I-- > 0; ) {
7126    if (TempParamLists.get()[I]->size()) {
7127      isAllExplicitSpecializations = false;
7128      break;
7129    }
7130  }
7131
7132  // FIXME: don't ignore attributes.
7133
7134  // If it's explicit specializations all the way down, just forget
7135  // about the template header and build an appropriate non-templated
7136  // friend.  TODO: for source fidelity, remember the headers.
7137  if (isAllExplicitSpecializations) {
7138    NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
7139    ElaboratedTypeKeyword Keyword
7140      = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
7141    QualType T = CheckTypenameType(Keyword, TagLoc, QualifierLoc,
7142                                   *Name, NameLoc);
7143    if (T.isNull())
7144      return 0;
7145
7146    TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
7147    if (isa<DependentNameType>(T)) {
7148      DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc());
7149      TL.setKeywordLoc(TagLoc);
7150      TL.setQualifierLoc(QualifierLoc);
7151      TL.setNameLoc(NameLoc);
7152    } else {
7153      ElaboratedTypeLoc TL = cast<ElaboratedTypeLoc>(TSI->getTypeLoc());
7154      TL.setKeywordLoc(TagLoc);
7155      TL.setQualifierLoc(QualifierLoc);
7156      cast<TypeSpecTypeLoc>(TL.getNamedTypeLoc()).setNameLoc(NameLoc);
7157    }
7158
7159    FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
7160                                            TSI, FriendLoc);
7161    Friend->setAccess(AS_public);
7162    CurContext->addDecl(Friend);
7163    return Friend;
7164  }
7165
7166  // Handle the case of a templated-scope friend class.  e.g.
7167  //   template <class T> class A<T>::B;
7168  // FIXME: we don't support these right now.
7169  ElaboratedTypeKeyword ETK = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
7170  QualType T = Context.getDependentNameType(ETK, SS.getScopeRep(), Name);
7171  TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
7172  DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc());
7173  TL.setKeywordLoc(TagLoc);
7174  TL.setQualifierLoc(SS.getWithLocInContext(Context));
7175  TL.setNameLoc(NameLoc);
7176
7177  FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
7178                                          TSI, FriendLoc);
7179  Friend->setAccess(AS_public);
7180  Friend->setUnsupportedFriend(true);
7181  CurContext->addDecl(Friend);
7182  return Friend;
7183}
7184
7185
7186/// Handle a friend type declaration.  This works in tandem with
7187/// ActOnTag.
7188///
7189/// Notes on friend class templates:
7190///
7191/// We generally treat friend class declarations as if they were
7192/// declaring a class.  So, for example, the elaborated type specifier
7193/// in a friend declaration is required to obey the restrictions of a
7194/// class-head (i.e. no typedefs in the scope chain), template
7195/// parameters are required to match up with simple template-ids, &c.
7196/// However, unlike when declaring a template specialization, it's
7197/// okay to refer to a template specialization without an empty
7198/// template parameter declaration, e.g.
7199///   friend class A<T>::B<unsigned>;
7200/// We permit this as a special case; if there are any template
7201/// parameters present at all, require proper matching, i.e.
7202///   template <> template <class T> friend class A<int>::B;
7203Decl *Sema::ActOnFriendTypeDecl(Scope *S, const DeclSpec &DS,
7204                                MultiTemplateParamsArg TempParams) {
7205  SourceLocation Loc = DS.getSourceRange().getBegin();
7206
7207  assert(DS.isFriendSpecified());
7208  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
7209
7210  // Try to convert the decl specifier to a type.  This works for
7211  // friend templates because ActOnTag never produces a ClassTemplateDecl
7212  // for a TUK_Friend.
7213  Declarator TheDeclarator(DS, Declarator::MemberContext);
7214  TypeSourceInfo *TSI = GetTypeForDeclarator(TheDeclarator, S);
7215  QualType T = TSI->getType();
7216  if (TheDeclarator.isInvalidType())
7217    return 0;
7218
7219  if (DiagnoseUnexpandedParameterPack(Loc, TSI, UPPC_FriendDeclaration))
7220    return 0;
7221
7222  // This is definitely an error in C++98.  It's probably meant to
7223  // be forbidden in C++0x, too, but the specification is just
7224  // poorly written.
7225  //
7226  // The problem is with declarations like the following:
7227  //   template <T> friend A<T>::foo;
7228  // where deciding whether a class C is a friend or not now hinges
7229  // on whether there exists an instantiation of A that causes
7230  // 'foo' to equal C.  There are restrictions on class-heads
7231  // (which we declare (by fiat) elaborated friend declarations to
7232  // be) that makes this tractable.
7233  //
7234  // FIXME: handle "template <> friend class A<T>;", which
7235  // is possibly well-formed?  Who even knows?
7236  if (TempParams.size() && !T->isElaboratedTypeSpecifier()) {
7237    Diag(Loc, diag::err_tagless_friend_type_template)
7238      << DS.getSourceRange();
7239    return 0;
7240  }
7241
7242  // C++98 [class.friend]p1: A friend of a class is a function
7243  //   or class that is not a member of the class . . .
7244  // This is fixed in DR77, which just barely didn't make the C++03
7245  // deadline.  It's also a very silly restriction that seriously
7246  // affects inner classes and which nobody else seems to implement;
7247  // thus we never diagnose it, not even in -pedantic.
7248  //
7249  // But note that we could warn about it: it's always useless to
7250  // friend one of your own members (it's not, however, worthless to
7251  // friend a member of an arbitrary specialization of your template).
7252
7253  Decl *D;
7254  if (unsigned NumTempParamLists = TempParams.size())
7255    D = FriendTemplateDecl::Create(Context, CurContext, Loc,
7256                                   NumTempParamLists,
7257                                   TempParams.release(),
7258                                   TSI,
7259                                   DS.getFriendSpecLoc());
7260  else
7261    D = CheckFriendTypeDecl(DS.getFriendSpecLoc(), TSI);
7262
7263  if (!D)
7264    return 0;
7265
7266  D->setAccess(AS_public);
7267  CurContext->addDecl(D);
7268
7269  return D;
7270}
7271
7272Decl *Sema::ActOnFriendFunctionDecl(Scope *S, Declarator &D, bool IsDefinition,
7273                                    MultiTemplateParamsArg TemplateParams) {
7274  const DeclSpec &DS = D.getDeclSpec();
7275
7276  assert(DS.isFriendSpecified());
7277  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
7278
7279  SourceLocation Loc = D.getIdentifierLoc();
7280  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
7281  QualType T = TInfo->getType();
7282
7283  // C++ [class.friend]p1
7284  //   A friend of a class is a function or class....
7285  // Note that this sees through typedefs, which is intended.
7286  // It *doesn't* see through dependent types, which is correct
7287  // according to [temp.arg.type]p3:
7288  //   If a declaration acquires a function type through a
7289  //   type dependent on a template-parameter and this causes
7290  //   a declaration that does not use the syntactic form of a
7291  //   function declarator to have a function type, the program
7292  //   is ill-formed.
7293  if (!T->isFunctionType()) {
7294    Diag(Loc, diag::err_unexpected_friend);
7295
7296    // It might be worthwhile to try to recover by creating an
7297    // appropriate declaration.
7298    return 0;
7299  }
7300
7301  // C++ [namespace.memdef]p3
7302  //  - If a friend declaration in a non-local class first declares a
7303  //    class or function, the friend class or function is a member
7304  //    of the innermost enclosing namespace.
7305  //  - The name of the friend is not found by simple name lookup
7306  //    until a matching declaration is provided in that namespace
7307  //    scope (either before or after the class declaration granting
7308  //    friendship).
7309  //  - If a friend function is called, its name may be found by the
7310  //    name lookup that considers functions from namespaces and
7311  //    classes associated with the types of the function arguments.
7312  //  - When looking for a prior declaration of a class or a function
7313  //    declared as a friend, scopes outside the innermost enclosing
7314  //    namespace scope are not considered.
7315
7316  CXXScopeSpec &SS = D.getCXXScopeSpec();
7317  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
7318  DeclarationName Name = NameInfo.getName();
7319  assert(Name);
7320
7321  // Check for unexpanded parameter packs.
7322  if (DiagnoseUnexpandedParameterPack(Loc, TInfo, UPPC_FriendDeclaration) ||
7323      DiagnoseUnexpandedParameterPack(NameInfo, UPPC_FriendDeclaration) ||
7324      DiagnoseUnexpandedParameterPack(SS, UPPC_FriendDeclaration))
7325    return 0;
7326
7327  // The context we found the declaration in, or in which we should
7328  // create the declaration.
7329  DeclContext *DC;
7330  Scope *DCScope = S;
7331  LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
7332                        ForRedeclaration);
7333
7334  // FIXME: there are different rules in local classes
7335
7336  // There are four cases here.
7337  //   - There's no scope specifier, in which case we just go to the
7338  //     appropriate scope and look for a function or function template
7339  //     there as appropriate.
7340  // Recover from invalid scope qualifiers as if they just weren't there.
7341  if (SS.isInvalid() || !SS.isSet()) {
7342    // C++0x [namespace.memdef]p3:
7343    //   If the name in a friend declaration is neither qualified nor
7344    //   a template-id and the declaration is a function or an
7345    //   elaborated-type-specifier, the lookup to determine whether
7346    //   the entity has been previously declared shall not consider
7347    //   any scopes outside the innermost enclosing namespace.
7348    // C++0x [class.friend]p11:
7349    //   If a friend declaration appears in a local class and the name
7350    //   specified is an unqualified name, a prior declaration is
7351    //   looked up without considering scopes that are outside the
7352    //   innermost enclosing non-class scope. For a friend function
7353    //   declaration, if there is no prior declaration, the program is
7354    //   ill-formed.
7355    bool isLocal = cast<CXXRecordDecl>(CurContext)->isLocalClass();
7356    bool isTemplateId = D.getName().getKind() == UnqualifiedId::IK_TemplateId;
7357
7358    // Find the appropriate context according to the above.
7359    DC = CurContext;
7360    while (true) {
7361      // Skip class contexts.  If someone can cite chapter and verse
7362      // for this behavior, that would be nice --- it's what GCC and
7363      // EDG do, and it seems like a reasonable intent, but the spec
7364      // really only says that checks for unqualified existing
7365      // declarations should stop at the nearest enclosing namespace,
7366      // not that they should only consider the nearest enclosing
7367      // namespace.
7368      while (DC->isRecord())
7369        DC = DC->getParent();
7370
7371      LookupQualifiedName(Previous, DC);
7372
7373      // TODO: decide what we think about using declarations.
7374      if (isLocal || !Previous.empty())
7375        break;
7376
7377      if (isTemplateId) {
7378        if (isa<TranslationUnitDecl>(DC)) break;
7379      } else {
7380        if (DC->isFileContext()) break;
7381      }
7382      DC = DC->getParent();
7383    }
7384
7385    // C++ [class.friend]p1: A friend of a class is a function or
7386    //   class that is not a member of the class . . .
7387    // C++0x changes this for both friend types and functions.
7388    // Most C++ 98 compilers do seem to give an error here, so
7389    // we do, too.
7390    if (!Previous.empty() && DC->Equals(CurContext)
7391        && !getLangOptions().CPlusPlus0x)
7392      Diag(DS.getFriendSpecLoc(), diag::err_friend_is_member);
7393
7394    DCScope = getScopeForDeclContext(S, DC);
7395
7396  //   - There's a non-dependent scope specifier, in which case we
7397  //     compute it and do a previous lookup there for a function
7398  //     or function template.
7399  } else if (!SS.getScopeRep()->isDependent()) {
7400    DC = computeDeclContext(SS);
7401    if (!DC) return 0;
7402
7403    if (RequireCompleteDeclContext(SS, DC)) return 0;
7404
7405    LookupQualifiedName(Previous, DC);
7406
7407    // Ignore things found implicitly in the wrong scope.
7408    // TODO: better diagnostics for this case.  Suggesting the right
7409    // qualified scope would be nice...
7410    LookupResult::Filter F = Previous.makeFilter();
7411    while (F.hasNext()) {
7412      NamedDecl *D = F.next();
7413      if (!DC->InEnclosingNamespaceSetOf(
7414              D->getDeclContext()->getRedeclContext()))
7415        F.erase();
7416    }
7417    F.done();
7418
7419    if (Previous.empty()) {
7420      D.setInvalidType();
7421      Diag(Loc, diag::err_qualified_friend_not_found) << Name << T;
7422      return 0;
7423    }
7424
7425    // C++ [class.friend]p1: A friend of a class is a function or
7426    //   class that is not a member of the class . . .
7427    if (DC->Equals(CurContext))
7428      Diag(DS.getFriendSpecLoc(), diag::err_friend_is_member);
7429
7430  //   - There's a scope specifier that does not match any template
7431  //     parameter lists, in which case we use some arbitrary context,
7432  //     create a method or method template, and wait for instantiation.
7433  //   - There's a scope specifier that does match some template
7434  //     parameter lists, which we don't handle right now.
7435  } else {
7436    DC = CurContext;
7437    assert(isa<CXXRecordDecl>(DC) && "friend declaration not in class?");
7438  }
7439
7440  if (!DC->isRecord()) {
7441    // This implies that it has to be an operator or function.
7442    if (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ||
7443        D.getName().getKind() == UnqualifiedId::IK_DestructorName ||
7444        D.getName().getKind() == UnqualifiedId::IK_ConversionFunctionId) {
7445      Diag(Loc, diag::err_introducing_special_friend) <<
7446        (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ? 0 :
7447         D.getName().getKind() == UnqualifiedId::IK_DestructorName ? 1 : 2);
7448      return 0;
7449    }
7450  }
7451
7452  bool Redeclaration = false;
7453  NamedDecl *ND = ActOnFunctionDeclarator(DCScope, D, DC, T, TInfo, Previous,
7454                                          move(TemplateParams),
7455                                          IsDefinition,
7456                                          Redeclaration);
7457  if (!ND) return 0;
7458
7459  assert(ND->getDeclContext() == DC);
7460  assert(ND->getLexicalDeclContext() == CurContext);
7461
7462  // Add the function declaration to the appropriate lookup tables,
7463  // adjusting the redeclarations list as necessary.  We don't
7464  // want to do this yet if the friending class is dependent.
7465  //
7466  // Also update the scope-based lookup if the target context's
7467  // lookup context is in lexical scope.
7468  if (!CurContext->isDependentContext()) {
7469    DC = DC->getRedeclContext();
7470    DC->makeDeclVisibleInContext(ND, /* Recoverable=*/ false);
7471    if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
7472      PushOnScopeChains(ND, EnclosingScope, /*AddToContext=*/ false);
7473  }
7474
7475  FriendDecl *FrD = FriendDecl::Create(Context, CurContext,
7476                                       D.getIdentifierLoc(), ND,
7477                                       DS.getFriendSpecLoc());
7478  FrD->setAccess(AS_public);
7479  CurContext->addDecl(FrD);
7480
7481  if (ND->isInvalidDecl())
7482    FrD->setInvalidDecl();
7483  else {
7484    FunctionDecl *FD;
7485    if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND))
7486      FD = FTD->getTemplatedDecl();
7487    else
7488      FD = cast<FunctionDecl>(ND);
7489
7490    // Mark templated-scope function declarations as unsupported.
7491    if (FD->getNumTemplateParameterLists())
7492      FrD->setUnsupportedFriend(true);
7493  }
7494
7495  return ND;
7496}
7497
7498void Sema::SetDeclDeleted(Decl *Dcl, SourceLocation DelLoc) {
7499  AdjustDeclIfTemplate(Dcl);
7500
7501  FunctionDecl *Fn = dyn_cast<FunctionDecl>(Dcl);
7502  if (!Fn) {
7503    Diag(DelLoc, diag::err_deleted_non_function);
7504    return;
7505  }
7506  if (const FunctionDecl *Prev = Fn->getPreviousDeclaration()) {
7507    Diag(DelLoc, diag::err_deleted_decl_not_first);
7508    Diag(Prev->getLocation(), diag::note_previous_declaration);
7509    // If the declaration wasn't the first, we delete the function anyway for
7510    // recovery.
7511  }
7512  Fn->setDeleted();
7513}
7514
7515static void SearchForReturnInStmt(Sema &Self, Stmt *S) {
7516  for (Stmt::child_range CI = S->children(); CI; ++CI) {
7517    Stmt *SubStmt = *CI;
7518    if (!SubStmt)
7519      continue;
7520    if (isa<ReturnStmt>(SubStmt))
7521      Self.Diag(SubStmt->getSourceRange().getBegin(),
7522           diag::err_return_in_constructor_handler);
7523    if (!isa<Expr>(SubStmt))
7524      SearchForReturnInStmt(Self, SubStmt);
7525  }
7526}
7527
7528void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) {
7529  for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) {
7530    CXXCatchStmt *Handler = TryBlock->getHandler(I);
7531    SearchForReturnInStmt(*this, Handler);
7532  }
7533}
7534
7535bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New,
7536                                             const CXXMethodDecl *Old) {
7537  QualType NewTy = New->getType()->getAs<FunctionType>()->getResultType();
7538  QualType OldTy = Old->getType()->getAs<FunctionType>()->getResultType();
7539
7540  if (Context.hasSameType(NewTy, OldTy) ||
7541      NewTy->isDependentType() || OldTy->isDependentType())
7542    return false;
7543
7544  // Check if the return types are covariant
7545  QualType NewClassTy, OldClassTy;
7546
7547  /// Both types must be pointers or references to classes.
7548  if (const PointerType *NewPT = NewTy->getAs<PointerType>()) {
7549    if (const PointerType *OldPT = OldTy->getAs<PointerType>()) {
7550      NewClassTy = NewPT->getPointeeType();
7551      OldClassTy = OldPT->getPointeeType();
7552    }
7553  } else if (const ReferenceType *NewRT = NewTy->getAs<ReferenceType>()) {
7554    if (const ReferenceType *OldRT = OldTy->getAs<ReferenceType>()) {
7555      if (NewRT->getTypeClass() == OldRT->getTypeClass()) {
7556        NewClassTy = NewRT->getPointeeType();
7557        OldClassTy = OldRT->getPointeeType();
7558      }
7559    }
7560  }
7561
7562  // The return types aren't either both pointers or references to a class type.
7563  if (NewClassTy.isNull()) {
7564    Diag(New->getLocation(),
7565         diag::err_different_return_type_for_overriding_virtual_function)
7566      << New->getDeclName() << NewTy << OldTy;
7567    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
7568
7569    return true;
7570  }
7571
7572  // C++ [class.virtual]p6:
7573  //   If the return type of D::f differs from the return type of B::f, the
7574  //   class type in the return type of D::f shall be complete at the point of
7575  //   declaration of D::f or shall be the class type D.
7576  if (const RecordType *RT = NewClassTy->getAs<RecordType>()) {
7577    if (!RT->isBeingDefined() &&
7578        RequireCompleteType(New->getLocation(), NewClassTy,
7579                            PDiag(diag::err_covariant_return_incomplete)
7580                              << New->getDeclName()))
7581    return true;
7582  }
7583
7584  if (!Context.hasSameUnqualifiedType(NewClassTy, OldClassTy)) {
7585    // Check if the new class derives from the old class.
7586    if (!IsDerivedFrom(NewClassTy, OldClassTy)) {
7587      Diag(New->getLocation(),
7588           diag::err_covariant_return_not_derived)
7589      << New->getDeclName() << NewTy << OldTy;
7590      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
7591      return true;
7592    }
7593
7594    // Check if we the conversion from derived to base is valid.
7595    if (CheckDerivedToBaseConversion(NewClassTy, OldClassTy,
7596                    diag::err_covariant_return_inaccessible_base,
7597                    diag::err_covariant_return_ambiguous_derived_to_base_conv,
7598                    // FIXME: Should this point to the return type?
7599                    New->getLocation(), SourceRange(), New->getDeclName(), 0)) {
7600      // FIXME: this note won't trigger for delayed access control
7601      // diagnostics, and it's impossible to get an undelayed error
7602      // here from access control during the original parse because
7603      // the ParsingDeclSpec/ParsingDeclarator are still in scope.
7604      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
7605      return true;
7606    }
7607  }
7608
7609  // The qualifiers of the return types must be the same.
7610  if (NewTy.getLocalCVRQualifiers() != OldTy.getLocalCVRQualifiers()) {
7611    Diag(New->getLocation(),
7612         diag::err_covariant_return_type_different_qualifications)
7613    << New->getDeclName() << NewTy << OldTy;
7614    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
7615    return true;
7616  };
7617
7618
7619  // The new class type must have the same or less qualifiers as the old type.
7620  if (NewClassTy.isMoreQualifiedThan(OldClassTy)) {
7621    Diag(New->getLocation(),
7622         diag::err_covariant_return_type_class_type_more_qualified)
7623    << New->getDeclName() << NewTy << OldTy;
7624    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
7625    return true;
7626  };
7627
7628  return false;
7629}
7630
7631/// \brief Mark the given method pure.
7632///
7633/// \param Method the method to be marked pure.
7634///
7635/// \param InitRange the source range that covers the "0" initializer.
7636bool Sema::CheckPureMethod(CXXMethodDecl *Method, SourceRange InitRange) {
7637  SourceLocation EndLoc = InitRange.getEnd();
7638  if (EndLoc.isValid())
7639    Method->setRangeEnd(EndLoc);
7640
7641  if (Method->isVirtual() || Method->getParent()->isDependentContext()) {
7642    Method->setPure();
7643    return false;
7644  }
7645
7646  if (!Method->isInvalidDecl())
7647    Diag(Method->getLocation(), diag::err_non_virtual_pure)
7648      << Method->getDeclName() << InitRange;
7649  return true;
7650}
7651
7652/// ActOnCXXEnterDeclInitializer - Invoked when we are about to parse
7653/// an initializer for the out-of-line declaration 'Dcl'.  The scope
7654/// is a fresh scope pushed for just this purpose.
7655///
7656/// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a
7657/// static data member of class X, names should be looked up in the scope of
7658/// class X.
7659void Sema::ActOnCXXEnterDeclInitializer(Scope *S, Decl *D) {
7660  // If there is no declaration, there was an error parsing it.
7661  if (D == 0 || D->isInvalidDecl()) return;
7662
7663  // We should only get called for declarations with scope specifiers, like:
7664  //   int foo::bar;
7665  assert(D->isOutOfLine());
7666  EnterDeclaratorContext(S, D->getDeclContext());
7667}
7668
7669/// ActOnCXXExitDeclInitializer - Invoked after we are finished parsing an
7670/// initializer for the out-of-line declaration 'D'.
7671void Sema::ActOnCXXExitDeclInitializer(Scope *S, Decl *D) {
7672  // If there is no declaration, there was an error parsing it.
7673  if (D == 0 || D->isInvalidDecl()) return;
7674
7675  assert(D->isOutOfLine());
7676  ExitDeclaratorContext(S);
7677}
7678
7679/// ActOnCXXConditionDeclarationExpr - Parsed a condition declaration of a
7680/// C++ if/switch/while/for statement.
7681/// e.g: "if (int x = f()) {...}"
7682DeclResult Sema::ActOnCXXConditionDeclaration(Scope *S, Declarator &D) {
7683  // C++ 6.4p2:
7684  // The declarator shall not specify a function or an array.
7685  // The type-specifier-seq shall not contain typedef and shall not declare a
7686  // new class or enumeration.
7687  assert(D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
7688         "Parser allowed 'typedef' as storage class of condition decl.");
7689
7690  TagDecl *OwnedTag = 0;
7691  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S, &OwnedTag);
7692  QualType Ty = TInfo->getType();
7693
7694  if (Ty->isFunctionType()) { // The declarator shall not specify a function...
7695                              // We exit without creating a CXXConditionDeclExpr because a FunctionDecl
7696                              // would be created and CXXConditionDeclExpr wants a VarDecl.
7697    Diag(D.getIdentifierLoc(), diag::err_invalid_use_of_function_type)
7698      << D.getSourceRange();
7699    return DeclResult();
7700  } else if (OwnedTag && OwnedTag->isDefinition()) {
7701    // The type-specifier-seq shall not declare a new class or enumeration.
7702    Diag(OwnedTag->getLocation(), diag::err_type_defined_in_condition);
7703  }
7704
7705  Decl *Dcl = ActOnDeclarator(S, D);
7706  if (!Dcl)
7707    return DeclResult();
7708
7709  return Dcl;
7710}
7711
7712void Sema::MarkVTableUsed(SourceLocation Loc, CXXRecordDecl *Class,
7713                          bool DefinitionRequired) {
7714  // Ignore any vtable uses in unevaluated operands or for classes that do
7715  // not have a vtable.
7716  if (!Class->isDynamicClass() || Class->isDependentContext() ||
7717      CurContext->isDependentContext() ||
7718      ExprEvalContexts.back().Context == Unevaluated)
7719    return;
7720
7721  // Try to insert this class into the map.
7722  Class = cast<CXXRecordDecl>(Class->getCanonicalDecl());
7723  std::pair<llvm::DenseMap<CXXRecordDecl *, bool>::iterator, bool>
7724    Pos = VTablesUsed.insert(std::make_pair(Class, DefinitionRequired));
7725  if (!Pos.second) {
7726    // If we already had an entry, check to see if we are promoting this vtable
7727    // to required a definition. If so, we need to reappend to the VTableUses
7728    // list, since we may have already processed the first entry.
7729    if (DefinitionRequired && !Pos.first->second) {
7730      Pos.first->second = true;
7731    } else {
7732      // Otherwise, we can early exit.
7733      return;
7734    }
7735  }
7736
7737  // Local classes need to have their virtual members marked
7738  // immediately. For all other classes, we mark their virtual members
7739  // at the end of the translation unit.
7740  if (Class->isLocalClass())
7741    MarkVirtualMembersReferenced(Loc, Class);
7742  else
7743    VTableUses.push_back(std::make_pair(Class, Loc));
7744}
7745
7746bool Sema::DefineUsedVTables() {
7747  if (VTableUses.empty())
7748    return false;
7749
7750  // Note: The VTableUses vector could grow as a result of marking
7751  // the members of a class as "used", so we check the size each
7752  // time through the loop and prefer indices (with are stable) to
7753  // iterators (which are not).
7754  bool DefinedAnything = false;
7755  for (unsigned I = 0; I != VTableUses.size(); ++I) {
7756    CXXRecordDecl *Class = VTableUses[I].first->getDefinition();
7757    if (!Class)
7758      continue;
7759
7760    SourceLocation Loc = VTableUses[I].second;
7761
7762    // If this class has a key function, but that key function is
7763    // defined in another translation unit, we don't need to emit the
7764    // vtable even though we're using it.
7765    const CXXMethodDecl *KeyFunction = Context.getKeyFunction(Class);
7766    if (KeyFunction && !KeyFunction->hasBody()) {
7767      switch (KeyFunction->getTemplateSpecializationKind()) {
7768      case TSK_Undeclared:
7769      case TSK_ExplicitSpecialization:
7770      case TSK_ExplicitInstantiationDeclaration:
7771        // The key function is in another translation unit.
7772        continue;
7773
7774      case TSK_ExplicitInstantiationDefinition:
7775      case TSK_ImplicitInstantiation:
7776        // We will be instantiating the key function.
7777        break;
7778      }
7779    } else if (!KeyFunction) {
7780      // If we have a class with no key function that is the subject
7781      // of an explicit instantiation declaration, suppress the
7782      // vtable; it will live with the explicit instantiation
7783      // definition.
7784      bool IsExplicitInstantiationDeclaration
7785        = Class->getTemplateSpecializationKind()
7786                                      == TSK_ExplicitInstantiationDeclaration;
7787      for (TagDecl::redecl_iterator R = Class->redecls_begin(),
7788                                 REnd = Class->redecls_end();
7789           R != REnd; ++R) {
7790        TemplateSpecializationKind TSK
7791          = cast<CXXRecordDecl>(*R)->getTemplateSpecializationKind();
7792        if (TSK == TSK_ExplicitInstantiationDeclaration)
7793          IsExplicitInstantiationDeclaration = true;
7794        else if (TSK == TSK_ExplicitInstantiationDefinition) {
7795          IsExplicitInstantiationDeclaration = false;
7796          break;
7797        }
7798      }
7799
7800      if (IsExplicitInstantiationDeclaration)
7801        continue;
7802    }
7803
7804    // Mark all of the virtual members of this class as referenced, so
7805    // that we can build a vtable. Then, tell the AST consumer that a
7806    // vtable for this class is required.
7807    DefinedAnything = true;
7808    MarkVirtualMembersReferenced(Loc, Class);
7809    CXXRecordDecl *Canonical = cast<CXXRecordDecl>(Class->getCanonicalDecl());
7810    Consumer.HandleVTable(Class, VTablesUsed[Canonical]);
7811
7812    // Optionally warn if we're emitting a weak vtable.
7813    if (Class->getLinkage() == ExternalLinkage &&
7814        Class->getTemplateSpecializationKind() != TSK_ImplicitInstantiation) {
7815      if (!KeyFunction || (KeyFunction->hasBody() && KeyFunction->isInlined()))
7816        Diag(Class->getLocation(), diag::warn_weak_vtable) << Class;
7817    }
7818  }
7819  VTableUses.clear();
7820
7821  return DefinedAnything;
7822}
7823
7824void Sema::MarkVirtualMembersReferenced(SourceLocation Loc,
7825                                        const CXXRecordDecl *RD) {
7826  for (CXXRecordDecl::method_iterator i = RD->method_begin(),
7827       e = RD->method_end(); i != e; ++i) {
7828    CXXMethodDecl *MD = *i;
7829
7830    // C++ [basic.def.odr]p2:
7831    //   [...] A virtual member function is used if it is not pure. [...]
7832    if (MD->isVirtual() && !MD->isPure())
7833      MarkDeclarationReferenced(Loc, MD);
7834  }
7835
7836  // Only classes that have virtual bases need a VTT.
7837  if (RD->getNumVBases() == 0)
7838    return;
7839
7840  for (CXXRecordDecl::base_class_const_iterator i = RD->bases_begin(),
7841           e = RD->bases_end(); i != e; ++i) {
7842    const CXXRecordDecl *Base =
7843        cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
7844    if (Base->getNumVBases() == 0)
7845      continue;
7846    MarkVirtualMembersReferenced(Loc, Base);
7847  }
7848}
7849
7850/// SetIvarInitializers - This routine builds initialization ASTs for the
7851/// Objective-C implementation whose ivars need be initialized.
7852void Sema::SetIvarInitializers(ObjCImplementationDecl *ObjCImplementation) {
7853  if (!getLangOptions().CPlusPlus)
7854    return;
7855  if (ObjCInterfaceDecl *OID = ObjCImplementation->getClassInterface()) {
7856    llvm::SmallVector<ObjCIvarDecl*, 8> ivars;
7857    CollectIvarsToConstructOrDestruct(OID, ivars);
7858    if (ivars.empty())
7859      return;
7860    llvm::SmallVector<CXXCtorInitializer*, 32> AllToInit;
7861    for (unsigned i = 0; i < ivars.size(); i++) {
7862      FieldDecl *Field = ivars[i];
7863      if (Field->isInvalidDecl())
7864        continue;
7865
7866      CXXCtorInitializer *Member;
7867      InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field);
7868      InitializationKind InitKind =
7869        InitializationKind::CreateDefault(ObjCImplementation->getLocation());
7870
7871      InitializationSequence InitSeq(*this, InitEntity, InitKind, 0, 0);
7872      ExprResult MemberInit =
7873        InitSeq.Perform(*this, InitEntity, InitKind, MultiExprArg());
7874      MemberInit = MaybeCreateExprWithCleanups(MemberInit);
7875      // Note, MemberInit could actually come back empty if no initialization
7876      // is required (e.g., because it would call a trivial default constructor)
7877      if (!MemberInit.get() || MemberInit.isInvalid())
7878        continue;
7879
7880      Member =
7881        new (Context) CXXCtorInitializer(Context, Field, SourceLocation(),
7882                                         SourceLocation(),
7883                                         MemberInit.takeAs<Expr>(),
7884                                         SourceLocation());
7885      AllToInit.push_back(Member);
7886
7887      // Be sure that the destructor is accessible and is marked as referenced.
7888      if (const RecordType *RecordTy
7889                  = Context.getBaseElementType(Field->getType())
7890                                                        ->getAs<RecordType>()) {
7891                    CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl());
7892        if (CXXDestructorDecl *Destructor = LookupDestructor(RD)) {
7893          MarkDeclarationReferenced(Field->getLocation(), Destructor);
7894          CheckDestructorAccess(Field->getLocation(), Destructor,
7895                            PDiag(diag::err_access_dtor_ivar)
7896                              << Context.getBaseElementType(Field->getType()));
7897        }
7898      }
7899    }
7900    ObjCImplementation->setIvarInitializers(Context,
7901                                            AllToInit.data(), AllToInit.size());
7902  }
7903}
7904