SemaDeclCXX.cpp revision 8f411c39283caf2a403739b0c5dd398a6df511dc
1//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for C++ declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/CXXFieldCollector.h"
16#include "clang/Sema/Scope.h"
17#include "clang/Sema/Initialization.h"
18#include "clang/Sema/Lookup.h"
19#include "clang/Sema/ScopeInfo.h"
20#include "clang/AST/ASTConsumer.h"
21#include "clang/AST/ASTContext.h"
22#include "clang/AST/ASTMutationListener.h"
23#include "clang/AST/CharUnits.h"
24#include "clang/AST/CXXInheritance.h"
25#include "clang/AST/DeclVisitor.h"
26#include "clang/AST/EvaluatedExprVisitor.h"
27#include "clang/AST/ExprCXX.h"
28#include "clang/AST/RecordLayout.h"
29#include "clang/AST/RecursiveASTVisitor.h"
30#include "clang/AST/StmtVisitor.h"
31#include "clang/AST/TypeLoc.h"
32#include "clang/AST/TypeOrdering.h"
33#include "clang/Sema/DeclSpec.h"
34#include "clang/Sema/ParsedTemplate.h"
35#include "clang/Basic/PartialDiagnostic.h"
36#include "clang/Lex/Preprocessor.h"
37#include "llvm/ADT/SmallString.h"
38#include "llvm/ADT/STLExtras.h"
39#include <map>
40#include <set>
41
42using namespace clang;
43
44//===----------------------------------------------------------------------===//
45// CheckDefaultArgumentVisitor
46//===----------------------------------------------------------------------===//
47
48namespace {
49  /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
50  /// the default argument of a parameter to determine whether it
51  /// contains any ill-formed subexpressions. For example, this will
52  /// diagnose the use of local variables or parameters within the
53  /// default argument expression.
54  class CheckDefaultArgumentVisitor
55    : public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
56    Expr *DefaultArg;
57    Sema *S;
58
59  public:
60    CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
61      : DefaultArg(defarg), S(s) {}
62
63    bool VisitExpr(Expr *Node);
64    bool VisitDeclRefExpr(DeclRefExpr *DRE);
65    bool VisitCXXThisExpr(CXXThisExpr *ThisE);
66    bool VisitLambdaExpr(LambdaExpr *Lambda);
67  };
68
69  /// VisitExpr - Visit all of the children of this expression.
70  bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
71    bool IsInvalid = false;
72    for (Stmt::child_range I = Node->children(); I; ++I)
73      IsInvalid |= Visit(*I);
74    return IsInvalid;
75  }
76
77  /// VisitDeclRefExpr - Visit a reference to a declaration, to
78  /// determine whether this declaration can be used in the default
79  /// argument expression.
80  bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
81    NamedDecl *Decl = DRE->getDecl();
82    if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
83      // C++ [dcl.fct.default]p9
84      //   Default arguments are evaluated each time the function is
85      //   called. The order of evaluation of function arguments is
86      //   unspecified. Consequently, parameters of a function shall not
87      //   be used in default argument expressions, even if they are not
88      //   evaluated. Parameters of a function declared before a default
89      //   argument expression are in scope and can hide namespace and
90      //   class member names.
91      return S->Diag(DRE->getLocStart(),
92                     diag::err_param_default_argument_references_param)
93         << Param->getDeclName() << DefaultArg->getSourceRange();
94    } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
95      // C++ [dcl.fct.default]p7
96      //   Local variables shall not be used in default argument
97      //   expressions.
98      if (VDecl->isLocalVarDecl())
99        return S->Diag(DRE->getLocStart(),
100                       diag::err_param_default_argument_references_local)
101          << VDecl->getDeclName() << DefaultArg->getSourceRange();
102    }
103
104    return false;
105  }
106
107  /// VisitCXXThisExpr - Visit a C++ "this" expression.
108  bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
109    // C++ [dcl.fct.default]p8:
110    //   The keyword this shall not be used in a default argument of a
111    //   member function.
112    return S->Diag(ThisE->getLocStart(),
113                   diag::err_param_default_argument_references_this)
114               << ThisE->getSourceRange();
115  }
116
117  bool CheckDefaultArgumentVisitor::VisitLambdaExpr(LambdaExpr *Lambda) {
118    // C++11 [expr.lambda.prim]p13:
119    //   A lambda-expression appearing in a default argument shall not
120    //   implicitly or explicitly capture any entity.
121    if (Lambda->capture_begin() == Lambda->capture_end())
122      return false;
123
124    return S->Diag(Lambda->getLocStart(),
125                   diag::err_lambda_capture_default_arg);
126  }
127}
128
129void Sema::ImplicitExceptionSpecification::CalledDecl(SourceLocation CallLoc,
130                                                      CXXMethodDecl *Method) {
131  // If we have an MSAny spec already, don't bother.
132  if (!Method || ComputedEST == EST_MSAny)
133    return;
134
135  const FunctionProtoType *Proto
136    = Method->getType()->getAs<FunctionProtoType>();
137  Proto = Self->ResolveExceptionSpec(CallLoc, Proto);
138  if (!Proto)
139    return;
140
141  ExceptionSpecificationType EST = Proto->getExceptionSpecType();
142
143  // If this function can throw any exceptions, make a note of that.
144  if (EST == EST_MSAny || EST == EST_None) {
145    ClearExceptions();
146    ComputedEST = EST;
147    return;
148  }
149
150  // FIXME: If the call to this decl is using any of its default arguments, we
151  // need to search them for potentially-throwing calls.
152
153  // If this function has a basic noexcept, it doesn't affect the outcome.
154  if (EST == EST_BasicNoexcept)
155    return;
156
157  // If we have a throw-all spec at this point, ignore the function.
158  if (ComputedEST == EST_None)
159    return;
160
161  // If we're still at noexcept(true) and there's a nothrow() callee,
162  // change to that specification.
163  if (EST == EST_DynamicNone) {
164    if (ComputedEST == EST_BasicNoexcept)
165      ComputedEST = EST_DynamicNone;
166    return;
167  }
168
169  // Check out noexcept specs.
170  if (EST == EST_ComputedNoexcept) {
171    FunctionProtoType::NoexceptResult NR =
172        Proto->getNoexceptSpec(Self->Context);
173    assert(NR != FunctionProtoType::NR_NoNoexcept &&
174           "Must have noexcept result for EST_ComputedNoexcept.");
175    assert(NR != FunctionProtoType::NR_Dependent &&
176           "Should not generate implicit declarations for dependent cases, "
177           "and don't know how to handle them anyway.");
178
179    // noexcept(false) -> no spec on the new function
180    if (NR == FunctionProtoType::NR_Throw) {
181      ClearExceptions();
182      ComputedEST = EST_None;
183    }
184    // noexcept(true) won't change anything either.
185    return;
186  }
187
188  assert(EST == EST_Dynamic && "EST case not considered earlier.");
189  assert(ComputedEST != EST_None &&
190         "Shouldn't collect exceptions when throw-all is guaranteed.");
191  ComputedEST = EST_Dynamic;
192  // Record the exceptions in this function's exception specification.
193  for (FunctionProtoType::exception_iterator E = Proto->exception_begin(),
194                                          EEnd = Proto->exception_end();
195       E != EEnd; ++E)
196    if (ExceptionsSeen.insert(Self->Context.getCanonicalType(*E)))
197      Exceptions.push_back(*E);
198}
199
200void Sema::ImplicitExceptionSpecification::CalledExpr(Expr *E) {
201  if (!E || ComputedEST == EST_MSAny)
202    return;
203
204  // FIXME:
205  //
206  // C++0x [except.spec]p14:
207  //   [An] implicit exception-specification specifies the type-id T if and
208  // only if T is allowed by the exception-specification of a function directly
209  // invoked by f's implicit definition; f shall allow all exceptions if any
210  // function it directly invokes allows all exceptions, and f shall allow no
211  // exceptions if every function it directly invokes allows no exceptions.
212  //
213  // Note in particular that if an implicit exception-specification is generated
214  // for a function containing a throw-expression, that specification can still
215  // be noexcept(true).
216  //
217  // Note also that 'directly invoked' is not defined in the standard, and there
218  // is no indication that we should only consider potentially-evaluated calls.
219  //
220  // Ultimately we should implement the intent of the standard: the exception
221  // specification should be the set of exceptions which can be thrown by the
222  // implicit definition. For now, we assume that any non-nothrow expression can
223  // throw any exception.
224
225  if (Self->canThrow(E))
226    ComputedEST = EST_None;
227}
228
229bool
230Sema::SetParamDefaultArgument(ParmVarDecl *Param, Expr *Arg,
231                              SourceLocation EqualLoc) {
232  if (RequireCompleteType(Param->getLocation(), Param->getType(),
233                          diag::err_typecheck_decl_incomplete_type)) {
234    Param->setInvalidDecl();
235    return true;
236  }
237
238  // C++ [dcl.fct.default]p5
239  //   A default argument expression is implicitly converted (clause
240  //   4) to the parameter type. The default argument expression has
241  //   the same semantic constraints as the initializer expression in
242  //   a declaration of a variable of the parameter type, using the
243  //   copy-initialization semantics (8.5).
244  InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
245                                                                    Param);
246  InitializationKind Kind = InitializationKind::CreateCopy(Param->getLocation(),
247                                                           EqualLoc);
248  InitializationSequence InitSeq(*this, Entity, Kind, &Arg, 1);
249  ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Arg);
250  if (Result.isInvalid())
251    return true;
252  Arg = Result.takeAs<Expr>();
253
254  CheckImplicitConversions(Arg, EqualLoc);
255  Arg = MaybeCreateExprWithCleanups(Arg);
256
257  // Okay: add the default argument to the parameter
258  Param->setDefaultArg(Arg);
259
260  // We have already instantiated this parameter; provide each of the
261  // instantiations with the uninstantiated default argument.
262  UnparsedDefaultArgInstantiationsMap::iterator InstPos
263    = UnparsedDefaultArgInstantiations.find(Param);
264  if (InstPos != UnparsedDefaultArgInstantiations.end()) {
265    for (unsigned I = 0, N = InstPos->second.size(); I != N; ++I)
266      InstPos->second[I]->setUninstantiatedDefaultArg(Arg);
267
268    // We're done tracking this parameter's instantiations.
269    UnparsedDefaultArgInstantiations.erase(InstPos);
270  }
271
272  return false;
273}
274
275/// ActOnParamDefaultArgument - Check whether the default argument
276/// provided for a function parameter is well-formed. If so, attach it
277/// to the parameter declaration.
278void
279Sema::ActOnParamDefaultArgument(Decl *param, SourceLocation EqualLoc,
280                                Expr *DefaultArg) {
281  if (!param || !DefaultArg)
282    return;
283
284  ParmVarDecl *Param = cast<ParmVarDecl>(param);
285  UnparsedDefaultArgLocs.erase(Param);
286
287  // Default arguments are only permitted in C++
288  if (!getLangOpts().CPlusPlus) {
289    Diag(EqualLoc, diag::err_param_default_argument)
290      << DefaultArg->getSourceRange();
291    Param->setInvalidDecl();
292    return;
293  }
294
295  // Check for unexpanded parameter packs.
296  if (DiagnoseUnexpandedParameterPack(DefaultArg, UPPC_DefaultArgument)) {
297    Param->setInvalidDecl();
298    return;
299  }
300
301  // Check that the default argument is well-formed
302  CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg, this);
303  if (DefaultArgChecker.Visit(DefaultArg)) {
304    Param->setInvalidDecl();
305    return;
306  }
307
308  SetParamDefaultArgument(Param, DefaultArg, EqualLoc);
309}
310
311/// ActOnParamUnparsedDefaultArgument - We've seen a default
312/// argument for a function parameter, but we can't parse it yet
313/// because we're inside a class definition. Note that this default
314/// argument will be parsed later.
315void Sema::ActOnParamUnparsedDefaultArgument(Decl *param,
316                                             SourceLocation EqualLoc,
317                                             SourceLocation ArgLoc) {
318  if (!param)
319    return;
320
321  ParmVarDecl *Param = cast<ParmVarDecl>(param);
322  if (Param)
323    Param->setUnparsedDefaultArg();
324
325  UnparsedDefaultArgLocs[Param] = ArgLoc;
326}
327
328/// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
329/// the default argument for the parameter param failed.
330void Sema::ActOnParamDefaultArgumentError(Decl *param) {
331  if (!param)
332    return;
333
334  ParmVarDecl *Param = cast<ParmVarDecl>(param);
335
336  Param->setInvalidDecl();
337
338  UnparsedDefaultArgLocs.erase(Param);
339}
340
341/// CheckExtraCXXDefaultArguments - Check for any extra default
342/// arguments in the declarator, which is not a function declaration
343/// or definition and therefore is not permitted to have default
344/// arguments. This routine should be invoked for every declarator
345/// that is not a function declaration or definition.
346void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
347  // C++ [dcl.fct.default]p3
348  //   A default argument expression shall be specified only in the
349  //   parameter-declaration-clause of a function declaration or in a
350  //   template-parameter (14.1). It shall not be specified for a
351  //   parameter pack. If it is specified in a
352  //   parameter-declaration-clause, it shall not occur within a
353  //   declarator or abstract-declarator of a parameter-declaration.
354  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
355    DeclaratorChunk &chunk = D.getTypeObject(i);
356    if (chunk.Kind == DeclaratorChunk::Function) {
357      for (unsigned argIdx = 0, e = chunk.Fun.NumArgs; argIdx != e; ++argIdx) {
358        ParmVarDecl *Param =
359          cast<ParmVarDecl>(chunk.Fun.ArgInfo[argIdx].Param);
360        if (Param->hasUnparsedDefaultArg()) {
361          CachedTokens *Toks = chunk.Fun.ArgInfo[argIdx].DefaultArgTokens;
362          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
363            << SourceRange((*Toks)[1].getLocation(), Toks->back().getLocation());
364          delete Toks;
365          chunk.Fun.ArgInfo[argIdx].DefaultArgTokens = 0;
366        } else if (Param->getDefaultArg()) {
367          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
368            << Param->getDefaultArg()->getSourceRange();
369          Param->setDefaultArg(0);
370        }
371      }
372    }
373  }
374}
375
376// MergeCXXFunctionDecl - Merge two declarations of the same C++
377// function, once we already know that they have the same
378// type. Subroutine of MergeFunctionDecl. Returns true if there was an
379// error, false otherwise.
380bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old,
381                                Scope *S) {
382  bool Invalid = false;
383
384  // C++ [dcl.fct.default]p4:
385  //   For non-template functions, default arguments can be added in
386  //   later declarations of a function in the same
387  //   scope. Declarations in different scopes have completely
388  //   distinct sets of default arguments. That is, declarations in
389  //   inner scopes do not acquire default arguments from
390  //   declarations in outer scopes, and vice versa. In a given
391  //   function declaration, all parameters subsequent to a
392  //   parameter with a default argument shall have default
393  //   arguments supplied in this or previous declarations. A
394  //   default argument shall not be redefined by a later
395  //   declaration (not even to the same value).
396  //
397  // C++ [dcl.fct.default]p6:
398  //   Except for member functions of class templates, the default arguments
399  //   in a member function definition that appears outside of the class
400  //   definition are added to the set of default arguments provided by the
401  //   member function declaration in the class definition.
402  for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) {
403    ParmVarDecl *OldParam = Old->getParamDecl(p);
404    ParmVarDecl *NewParam = New->getParamDecl(p);
405
406    bool OldParamHasDfl = OldParam->hasDefaultArg();
407    bool NewParamHasDfl = NewParam->hasDefaultArg();
408
409    NamedDecl *ND = Old;
410    if (S && !isDeclInScope(ND, New->getDeclContext(), S))
411      // Ignore default parameters of old decl if they are not in
412      // the same scope.
413      OldParamHasDfl = false;
414
415    if (OldParamHasDfl && NewParamHasDfl) {
416
417      unsigned DiagDefaultParamID =
418        diag::err_param_default_argument_redefinition;
419
420      // MSVC accepts that default parameters be redefined for member functions
421      // of template class. The new default parameter's value is ignored.
422      Invalid = true;
423      if (getLangOpts().MicrosoftExt) {
424        CXXMethodDecl* MD = dyn_cast<CXXMethodDecl>(New);
425        if (MD && MD->getParent()->getDescribedClassTemplate()) {
426          // Merge the old default argument into the new parameter.
427          NewParam->setHasInheritedDefaultArg();
428          if (OldParam->hasUninstantiatedDefaultArg())
429            NewParam->setUninstantiatedDefaultArg(
430                                      OldParam->getUninstantiatedDefaultArg());
431          else
432            NewParam->setDefaultArg(OldParam->getInit());
433          DiagDefaultParamID = diag::warn_param_default_argument_redefinition;
434          Invalid = false;
435        }
436      }
437
438      // FIXME: If we knew where the '=' was, we could easily provide a fix-it
439      // hint here. Alternatively, we could walk the type-source information
440      // for NewParam to find the last source location in the type... but it
441      // isn't worth the effort right now. This is the kind of test case that
442      // is hard to get right:
443      //   int f(int);
444      //   void g(int (*fp)(int) = f);
445      //   void g(int (*fp)(int) = &f);
446      Diag(NewParam->getLocation(), DiagDefaultParamID)
447        << NewParam->getDefaultArgRange();
448
449      // Look for the function declaration where the default argument was
450      // actually written, which may be a declaration prior to Old.
451      for (FunctionDecl *Older = Old->getPreviousDecl();
452           Older; Older = Older->getPreviousDecl()) {
453        if (!Older->getParamDecl(p)->hasDefaultArg())
454          break;
455
456        OldParam = Older->getParamDecl(p);
457      }
458
459      Diag(OldParam->getLocation(), diag::note_previous_definition)
460        << OldParam->getDefaultArgRange();
461    } else if (OldParamHasDfl) {
462      // Merge the old default argument into the new parameter.
463      // It's important to use getInit() here;  getDefaultArg()
464      // strips off any top-level ExprWithCleanups.
465      NewParam->setHasInheritedDefaultArg();
466      if (OldParam->hasUninstantiatedDefaultArg())
467        NewParam->setUninstantiatedDefaultArg(
468                                      OldParam->getUninstantiatedDefaultArg());
469      else
470        NewParam->setDefaultArg(OldParam->getInit());
471    } else if (NewParamHasDfl) {
472      if (New->getDescribedFunctionTemplate()) {
473        // Paragraph 4, quoted above, only applies to non-template functions.
474        Diag(NewParam->getLocation(),
475             diag::err_param_default_argument_template_redecl)
476          << NewParam->getDefaultArgRange();
477        Diag(Old->getLocation(), diag::note_template_prev_declaration)
478          << false;
479      } else if (New->getTemplateSpecializationKind()
480                   != TSK_ImplicitInstantiation &&
481                 New->getTemplateSpecializationKind() != TSK_Undeclared) {
482        // C++ [temp.expr.spec]p21:
483        //   Default function arguments shall not be specified in a declaration
484        //   or a definition for one of the following explicit specializations:
485        //     - the explicit specialization of a function template;
486        //     - the explicit specialization of a member function template;
487        //     - the explicit specialization of a member function of a class
488        //       template where the class template specialization to which the
489        //       member function specialization belongs is implicitly
490        //       instantiated.
491        Diag(NewParam->getLocation(), diag::err_template_spec_default_arg)
492          << (New->getTemplateSpecializationKind() ==TSK_ExplicitSpecialization)
493          << New->getDeclName()
494          << NewParam->getDefaultArgRange();
495      } else if (New->getDeclContext()->isDependentContext()) {
496        // C++ [dcl.fct.default]p6 (DR217):
497        //   Default arguments for a member function of a class template shall
498        //   be specified on the initial declaration of the member function
499        //   within the class template.
500        //
501        // Reading the tea leaves a bit in DR217 and its reference to DR205
502        // leads me to the conclusion that one cannot add default function
503        // arguments for an out-of-line definition of a member function of a
504        // dependent type.
505        int WhichKind = 2;
506        if (CXXRecordDecl *Record
507              = dyn_cast<CXXRecordDecl>(New->getDeclContext())) {
508          if (Record->getDescribedClassTemplate())
509            WhichKind = 0;
510          else if (isa<ClassTemplatePartialSpecializationDecl>(Record))
511            WhichKind = 1;
512          else
513            WhichKind = 2;
514        }
515
516        Diag(NewParam->getLocation(),
517             diag::err_param_default_argument_member_template_redecl)
518          << WhichKind
519          << NewParam->getDefaultArgRange();
520      } else if (CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(New)) {
521        CXXSpecialMember NewSM = getSpecialMember(Ctor),
522                         OldSM = getSpecialMember(cast<CXXConstructorDecl>(Old));
523        if (NewSM != OldSM) {
524          Diag(NewParam->getLocation(),diag::warn_default_arg_makes_ctor_special)
525            << NewParam->getDefaultArgRange() << NewSM;
526          Diag(Old->getLocation(), diag::note_previous_declaration_special)
527            << OldSM;
528        }
529      }
530    }
531  }
532
533  // C++11 [dcl.constexpr]p1: If any declaration of a function or function
534  // template has a constexpr specifier then all its declarations shall
535  // contain the constexpr specifier.
536  if (New->isConstexpr() != Old->isConstexpr()) {
537    Diag(New->getLocation(), diag::err_constexpr_redecl_mismatch)
538      << New << New->isConstexpr();
539    Diag(Old->getLocation(), diag::note_previous_declaration);
540    Invalid = true;
541  }
542
543  if (CheckEquivalentExceptionSpec(Old, New))
544    Invalid = true;
545
546  return Invalid;
547}
548
549/// \brief Merge the exception specifications of two variable declarations.
550///
551/// This is called when there's a redeclaration of a VarDecl. The function
552/// checks if the redeclaration might have an exception specification and
553/// validates compatibility and merges the specs if necessary.
554void Sema::MergeVarDeclExceptionSpecs(VarDecl *New, VarDecl *Old) {
555  // Shortcut if exceptions are disabled.
556  if (!getLangOpts().CXXExceptions)
557    return;
558
559  assert(Context.hasSameType(New->getType(), Old->getType()) &&
560         "Should only be called if types are otherwise the same.");
561
562  QualType NewType = New->getType();
563  QualType OldType = Old->getType();
564
565  // We're only interested in pointers and references to functions, as well
566  // as pointers to member functions.
567  if (const ReferenceType *R = NewType->getAs<ReferenceType>()) {
568    NewType = R->getPointeeType();
569    OldType = OldType->getAs<ReferenceType>()->getPointeeType();
570  } else if (const PointerType *P = NewType->getAs<PointerType>()) {
571    NewType = P->getPointeeType();
572    OldType = OldType->getAs<PointerType>()->getPointeeType();
573  } else if (const MemberPointerType *M = NewType->getAs<MemberPointerType>()) {
574    NewType = M->getPointeeType();
575    OldType = OldType->getAs<MemberPointerType>()->getPointeeType();
576  }
577
578  if (!NewType->isFunctionProtoType())
579    return;
580
581  // There's lots of special cases for functions. For function pointers, system
582  // libraries are hopefully not as broken so that we don't need these
583  // workarounds.
584  if (CheckEquivalentExceptionSpec(
585        OldType->getAs<FunctionProtoType>(), Old->getLocation(),
586        NewType->getAs<FunctionProtoType>(), New->getLocation())) {
587    New->setInvalidDecl();
588  }
589}
590
591/// CheckCXXDefaultArguments - Verify that the default arguments for a
592/// function declaration are well-formed according to C++
593/// [dcl.fct.default].
594void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
595  unsigned NumParams = FD->getNumParams();
596  unsigned p;
597
598  bool IsLambda = FD->getOverloadedOperator() == OO_Call &&
599                  isa<CXXMethodDecl>(FD) &&
600                  cast<CXXMethodDecl>(FD)->getParent()->isLambda();
601
602  // Find first parameter with a default argument
603  for (p = 0; p < NumParams; ++p) {
604    ParmVarDecl *Param = FD->getParamDecl(p);
605    if (Param->hasDefaultArg()) {
606      // C++11 [expr.prim.lambda]p5:
607      //   [...] Default arguments (8.3.6) shall not be specified in the
608      //   parameter-declaration-clause of a lambda-declarator.
609      //
610      // FIXME: Core issue 974 strikes this sentence, we only provide an
611      // extension warning.
612      if (IsLambda)
613        Diag(Param->getLocation(), diag::ext_lambda_default_arguments)
614          << Param->getDefaultArgRange();
615      break;
616    }
617  }
618
619  // C++ [dcl.fct.default]p4:
620  //   In a given function declaration, all parameters
621  //   subsequent to a parameter with a default argument shall
622  //   have default arguments supplied in this or previous
623  //   declarations. A default argument shall not be redefined
624  //   by a later declaration (not even to the same value).
625  unsigned LastMissingDefaultArg = 0;
626  for (; p < NumParams; ++p) {
627    ParmVarDecl *Param = FD->getParamDecl(p);
628    if (!Param->hasDefaultArg()) {
629      if (Param->isInvalidDecl())
630        /* We already complained about this parameter. */;
631      else if (Param->getIdentifier())
632        Diag(Param->getLocation(),
633             diag::err_param_default_argument_missing_name)
634          << Param->getIdentifier();
635      else
636        Diag(Param->getLocation(),
637             diag::err_param_default_argument_missing);
638
639      LastMissingDefaultArg = p;
640    }
641  }
642
643  if (LastMissingDefaultArg > 0) {
644    // Some default arguments were missing. Clear out all of the
645    // default arguments up to (and including) the last missing
646    // default argument, so that we leave the function parameters
647    // in a semantically valid state.
648    for (p = 0; p <= LastMissingDefaultArg; ++p) {
649      ParmVarDecl *Param = FD->getParamDecl(p);
650      if (Param->hasDefaultArg()) {
651        Param->setDefaultArg(0);
652      }
653    }
654  }
655}
656
657// CheckConstexprParameterTypes - Check whether a function's parameter types
658// are all literal types. If so, return true. If not, produce a suitable
659// diagnostic and return false.
660static bool CheckConstexprParameterTypes(Sema &SemaRef,
661                                         const FunctionDecl *FD) {
662  unsigned ArgIndex = 0;
663  const FunctionProtoType *FT = FD->getType()->getAs<FunctionProtoType>();
664  for (FunctionProtoType::arg_type_iterator i = FT->arg_type_begin(),
665       e = FT->arg_type_end(); i != e; ++i, ++ArgIndex) {
666    const ParmVarDecl *PD = FD->getParamDecl(ArgIndex);
667    SourceLocation ParamLoc = PD->getLocation();
668    if (!(*i)->isDependentType() &&
669        SemaRef.RequireLiteralType(ParamLoc, *i,
670                                   diag::err_constexpr_non_literal_param,
671                                   ArgIndex+1, PD->getSourceRange(),
672                                   isa<CXXConstructorDecl>(FD)))
673      return false;
674  }
675  return true;
676}
677
678/// \brief Get diagnostic %select index for tag kind for
679/// record diagnostic message.
680/// WARNING: Indexes apply to particular diagnostics only!
681///
682/// \returns diagnostic %select index.
683static unsigned getRecordDiagFromTagKind(TagTypeKind Tag) {
684  switch (Tag) {
685  case TTK_Struct: return 0;
686  case TTK_Interface: return 1;
687  case TTK_Class:  return 2;
688  default: llvm_unreachable("Invalid tag kind for record diagnostic!");
689  }
690}
691
692// CheckConstexprFunctionDecl - Check whether a function declaration satisfies
693// the requirements of a constexpr function definition or a constexpr
694// constructor definition. If so, return true. If not, produce appropriate
695// diagnostics and return false.
696//
697// This implements C++11 [dcl.constexpr]p3,4, as amended by DR1360.
698bool Sema::CheckConstexprFunctionDecl(const FunctionDecl *NewFD) {
699  const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
700  if (MD && MD->isInstance()) {
701    // C++11 [dcl.constexpr]p4:
702    //  The definition of a constexpr constructor shall satisfy the following
703    //  constraints:
704    //  - the class shall not have any virtual base classes;
705    const CXXRecordDecl *RD = MD->getParent();
706    if (RD->getNumVBases()) {
707      Diag(NewFD->getLocation(), diag::err_constexpr_virtual_base)
708        << isa<CXXConstructorDecl>(NewFD)
709        << getRecordDiagFromTagKind(RD->getTagKind()) << RD->getNumVBases();
710      for (CXXRecordDecl::base_class_const_iterator I = RD->vbases_begin(),
711             E = RD->vbases_end(); I != E; ++I)
712        Diag(I->getLocStart(),
713             diag::note_constexpr_virtual_base_here) << I->getSourceRange();
714      return false;
715    }
716  }
717
718  if (!isa<CXXConstructorDecl>(NewFD)) {
719    // C++11 [dcl.constexpr]p3:
720    //  The definition of a constexpr function shall satisfy the following
721    //  constraints:
722    // - it shall not be virtual;
723    const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD);
724    if (Method && Method->isVirtual()) {
725      Diag(NewFD->getLocation(), diag::err_constexpr_virtual);
726
727      // If it's not obvious why this function is virtual, find an overridden
728      // function which uses the 'virtual' keyword.
729      const CXXMethodDecl *WrittenVirtual = Method;
730      while (!WrittenVirtual->isVirtualAsWritten())
731        WrittenVirtual = *WrittenVirtual->begin_overridden_methods();
732      if (WrittenVirtual != Method)
733        Diag(WrittenVirtual->getLocation(),
734             diag::note_overridden_virtual_function);
735      return false;
736    }
737
738    // - its return type shall be a literal type;
739    QualType RT = NewFD->getResultType();
740    if (!RT->isDependentType() &&
741        RequireLiteralType(NewFD->getLocation(), RT,
742                           diag::err_constexpr_non_literal_return))
743      return false;
744  }
745
746  // - each of its parameter types shall be a literal type;
747  if (!CheckConstexprParameterTypes(*this, NewFD))
748    return false;
749
750  return true;
751}
752
753/// Check the given declaration statement is legal within a constexpr function
754/// body. C++0x [dcl.constexpr]p3,p4.
755///
756/// \return true if the body is OK, false if we have diagnosed a problem.
757static bool CheckConstexprDeclStmt(Sema &SemaRef, const FunctionDecl *Dcl,
758                                   DeclStmt *DS) {
759  // C++0x [dcl.constexpr]p3 and p4:
760  //  The definition of a constexpr function(p3) or constructor(p4) [...] shall
761  //  contain only
762  for (DeclStmt::decl_iterator DclIt = DS->decl_begin(),
763         DclEnd = DS->decl_end(); DclIt != DclEnd; ++DclIt) {
764    switch ((*DclIt)->getKind()) {
765    case Decl::StaticAssert:
766    case Decl::Using:
767    case Decl::UsingShadow:
768    case Decl::UsingDirective:
769    case Decl::UnresolvedUsingTypename:
770      //   - static_assert-declarations
771      //   - using-declarations,
772      //   - using-directives,
773      continue;
774
775    case Decl::Typedef:
776    case Decl::TypeAlias: {
777      //   - typedef declarations and alias-declarations that do not define
778      //     classes or enumerations,
779      TypedefNameDecl *TN = cast<TypedefNameDecl>(*DclIt);
780      if (TN->getUnderlyingType()->isVariablyModifiedType()) {
781        // Don't allow variably-modified types in constexpr functions.
782        TypeLoc TL = TN->getTypeSourceInfo()->getTypeLoc();
783        SemaRef.Diag(TL.getBeginLoc(), diag::err_constexpr_vla)
784          << TL.getSourceRange() << TL.getType()
785          << isa<CXXConstructorDecl>(Dcl);
786        return false;
787      }
788      continue;
789    }
790
791    case Decl::Enum:
792    case Decl::CXXRecord:
793      // As an extension, we allow the declaration (but not the definition) of
794      // classes and enumerations in all declarations, not just in typedef and
795      // alias declarations.
796      if (cast<TagDecl>(*DclIt)->isThisDeclarationADefinition()) {
797        SemaRef.Diag(DS->getLocStart(), diag::err_constexpr_type_definition)
798          << isa<CXXConstructorDecl>(Dcl);
799        return false;
800      }
801      continue;
802
803    case Decl::Var:
804      SemaRef.Diag(DS->getLocStart(), diag::err_constexpr_var_declaration)
805        << isa<CXXConstructorDecl>(Dcl);
806      return false;
807
808    default:
809      SemaRef.Diag(DS->getLocStart(), diag::err_constexpr_body_invalid_stmt)
810        << isa<CXXConstructorDecl>(Dcl);
811      return false;
812    }
813  }
814
815  return true;
816}
817
818/// Check that the given field is initialized within a constexpr constructor.
819///
820/// \param Dcl The constexpr constructor being checked.
821/// \param Field The field being checked. This may be a member of an anonymous
822///        struct or union nested within the class being checked.
823/// \param Inits All declarations, including anonymous struct/union members and
824///        indirect members, for which any initialization was provided.
825/// \param Diagnosed Set to true if an error is produced.
826static void CheckConstexprCtorInitializer(Sema &SemaRef,
827                                          const FunctionDecl *Dcl,
828                                          FieldDecl *Field,
829                                          llvm::SmallSet<Decl*, 16> &Inits,
830                                          bool &Diagnosed) {
831  if (Field->isUnnamedBitfield())
832    return;
833
834  if (Field->isAnonymousStructOrUnion() &&
835      Field->getType()->getAsCXXRecordDecl()->isEmpty())
836    return;
837
838  if (!Inits.count(Field)) {
839    if (!Diagnosed) {
840      SemaRef.Diag(Dcl->getLocation(), diag::err_constexpr_ctor_missing_init);
841      Diagnosed = true;
842    }
843    SemaRef.Diag(Field->getLocation(), diag::note_constexpr_ctor_missing_init);
844  } else if (Field->isAnonymousStructOrUnion()) {
845    const RecordDecl *RD = Field->getType()->castAs<RecordType>()->getDecl();
846    for (RecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end();
847         I != E; ++I)
848      // If an anonymous union contains an anonymous struct of which any member
849      // is initialized, all members must be initialized.
850      if (!RD->isUnion() || Inits.count(*I))
851        CheckConstexprCtorInitializer(SemaRef, Dcl, *I, Inits, Diagnosed);
852  }
853}
854
855/// Check the body for the given constexpr function declaration only contains
856/// the permitted types of statement. C++11 [dcl.constexpr]p3,p4.
857///
858/// \return true if the body is OK, false if we have diagnosed a problem.
859bool Sema::CheckConstexprFunctionBody(const FunctionDecl *Dcl, Stmt *Body) {
860  if (isa<CXXTryStmt>(Body)) {
861    // C++11 [dcl.constexpr]p3:
862    //  The definition of a constexpr function shall satisfy the following
863    //  constraints: [...]
864    // - its function-body shall be = delete, = default, or a
865    //   compound-statement
866    //
867    // C++11 [dcl.constexpr]p4:
868    //  In the definition of a constexpr constructor, [...]
869    // - its function-body shall not be a function-try-block;
870    Diag(Body->getLocStart(), diag::err_constexpr_function_try_block)
871      << isa<CXXConstructorDecl>(Dcl);
872    return false;
873  }
874
875  // - its function-body shall be [...] a compound-statement that contains only
876  CompoundStmt *CompBody = cast<CompoundStmt>(Body);
877
878  llvm::SmallVector<SourceLocation, 4> ReturnStmts;
879  for (CompoundStmt::body_iterator BodyIt = CompBody->body_begin(),
880         BodyEnd = CompBody->body_end(); BodyIt != BodyEnd; ++BodyIt) {
881    switch ((*BodyIt)->getStmtClass()) {
882    case Stmt::NullStmtClass:
883      //   - null statements,
884      continue;
885
886    case Stmt::DeclStmtClass:
887      //   - static_assert-declarations
888      //   - using-declarations,
889      //   - using-directives,
890      //   - typedef declarations and alias-declarations that do not define
891      //     classes or enumerations,
892      if (!CheckConstexprDeclStmt(*this, Dcl, cast<DeclStmt>(*BodyIt)))
893        return false;
894      continue;
895
896    case Stmt::ReturnStmtClass:
897      //   - and exactly one return statement;
898      if (isa<CXXConstructorDecl>(Dcl))
899        break;
900
901      ReturnStmts.push_back((*BodyIt)->getLocStart());
902      continue;
903
904    default:
905      break;
906    }
907
908    Diag((*BodyIt)->getLocStart(), diag::err_constexpr_body_invalid_stmt)
909      << isa<CXXConstructorDecl>(Dcl);
910    return false;
911  }
912
913  if (const CXXConstructorDecl *Constructor
914        = dyn_cast<CXXConstructorDecl>(Dcl)) {
915    const CXXRecordDecl *RD = Constructor->getParent();
916    // DR1359:
917    // - every non-variant non-static data member and base class sub-object
918    //   shall be initialized;
919    // - if the class is a non-empty union, or for each non-empty anonymous
920    //   union member of a non-union class, exactly one non-static data member
921    //   shall be initialized;
922    if (RD->isUnion()) {
923      if (Constructor->getNumCtorInitializers() == 0 && !RD->isEmpty()) {
924        Diag(Dcl->getLocation(), diag::err_constexpr_union_ctor_no_init);
925        return false;
926      }
927    } else if (!Constructor->isDependentContext() &&
928               !Constructor->isDelegatingConstructor()) {
929      assert(RD->getNumVBases() == 0 && "constexpr ctor with virtual bases");
930
931      // Skip detailed checking if we have enough initializers, and we would
932      // allow at most one initializer per member.
933      bool AnyAnonStructUnionMembers = false;
934      unsigned Fields = 0;
935      for (CXXRecordDecl::field_iterator I = RD->field_begin(),
936           E = RD->field_end(); I != E; ++I, ++Fields) {
937        if (I->isAnonymousStructOrUnion()) {
938          AnyAnonStructUnionMembers = true;
939          break;
940        }
941      }
942      if (AnyAnonStructUnionMembers ||
943          Constructor->getNumCtorInitializers() != RD->getNumBases() + Fields) {
944        // Check initialization of non-static data members. Base classes are
945        // always initialized so do not need to be checked. Dependent bases
946        // might not have initializers in the member initializer list.
947        llvm::SmallSet<Decl*, 16> Inits;
948        for (CXXConstructorDecl::init_const_iterator
949               I = Constructor->init_begin(), E = Constructor->init_end();
950             I != E; ++I) {
951          if (FieldDecl *FD = (*I)->getMember())
952            Inits.insert(FD);
953          else if (IndirectFieldDecl *ID = (*I)->getIndirectMember())
954            Inits.insert(ID->chain_begin(), ID->chain_end());
955        }
956
957        bool Diagnosed = false;
958        for (CXXRecordDecl::field_iterator I = RD->field_begin(),
959             E = RD->field_end(); I != E; ++I)
960          CheckConstexprCtorInitializer(*this, Dcl, *I, Inits, Diagnosed);
961        if (Diagnosed)
962          return false;
963      }
964    }
965  } else {
966    if (ReturnStmts.empty()) {
967      Diag(Dcl->getLocation(), diag::err_constexpr_body_no_return);
968      return false;
969    }
970    if (ReturnStmts.size() > 1) {
971      Diag(ReturnStmts.back(), diag::err_constexpr_body_multiple_return);
972      for (unsigned I = 0; I < ReturnStmts.size() - 1; ++I)
973        Diag(ReturnStmts[I], diag::note_constexpr_body_previous_return);
974      return false;
975    }
976  }
977
978  // C++11 [dcl.constexpr]p5:
979  //   if no function argument values exist such that the function invocation
980  //   substitution would produce a constant expression, the program is
981  //   ill-formed; no diagnostic required.
982  // C++11 [dcl.constexpr]p3:
983  //   - every constructor call and implicit conversion used in initializing the
984  //     return value shall be one of those allowed in a constant expression.
985  // C++11 [dcl.constexpr]p4:
986  //   - every constructor involved in initializing non-static data members and
987  //     base class sub-objects shall be a constexpr constructor.
988  llvm::SmallVector<PartialDiagnosticAt, 8> Diags;
989  if (!Expr::isPotentialConstantExpr(Dcl, Diags)) {
990    Diag(Dcl->getLocation(), diag::err_constexpr_function_never_constant_expr)
991      << isa<CXXConstructorDecl>(Dcl);
992    for (size_t I = 0, N = Diags.size(); I != N; ++I)
993      Diag(Diags[I].first, Diags[I].second);
994    return false;
995  }
996
997  return true;
998}
999
1000/// isCurrentClassName - Determine whether the identifier II is the
1001/// name of the class type currently being defined. In the case of
1002/// nested classes, this will only return true if II is the name of
1003/// the innermost class.
1004bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *,
1005                              const CXXScopeSpec *SS) {
1006  assert(getLangOpts().CPlusPlus && "No class names in C!");
1007
1008  CXXRecordDecl *CurDecl;
1009  if (SS && SS->isSet() && !SS->isInvalid()) {
1010    DeclContext *DC = computeDeclContext(*SS, true);
1011    CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
1012  } else
1013    CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
1014
1015  if (CurDecl && CurDecl->getIdentifier())
1016    return &II == CurDecl->getIdentifier();
1017  else
1018    return false;
1019}
1020
1021/// \brief Check the validity of a C++ base class specifier.
1022///
1023/// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
1024/// and returns NULL otherwise.
1025CXXBaseSpecifier *
1026Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
1027                         SourceRange SpecifierRange,
1028                         bool Virtual, AccessSpecifier Access,
1029                         TypeSourceInfo *TInfo,
1030                         SourceLocation EllipsisLoc) {
1031  QualType BaseType = TInfo->getType();
1032
1033  // C++ [class.union]p1:
1034  //   A union shall not have base classes.
1035  if (Class->isUnion()) {
1036    Diag(Class->getLocation(), diag::err_base_clause_on_union)
1037      << SpecifierRange;
1038    return 0;
1039  }
1040
1041  if (EllipsisLoc.isValid() &&
1042      !TInfo->getType()->containsUnexpandedParameterPack()) {
1043    Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
1044      << TInfo->getTypeLoc().getSourceRange();
1045    EllipsisLoc = SourceLocation();
1046  }
1047
1048  if (BaseType->isDependentType())
1049    return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
1050                                          Class->getTagKind() == TTK_Class,
1051                                          Access, TInfo, EllipsisLoc);
1052
1053  SourceLocation BaseLoc = TInfo->getTypeLoc().getBeginLoc();
1054
1055  // Base specifiers must be record types.
1056  if (!BaseType->isRecordType()) {
1057    Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
1058    return 0;
1059  }
1060
1061  // C++ [class.union]p1:
1062  //   A union shall not be used as a base class.
1063  if (BaseType->isUnionType()) {
1064    Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
1065    return 0;
1066  }
1067
1068  // C++ [class.derived]p2:
1069  //   The class-name in a base-specifier shall not be an incompletely
1070  //   defined class.
1071  if (RequireCompleteType(BaseLoc, BaseType,
1072                          diag::err_incomplete_base_class, SpecifierRange)) {
1073    Class->setInvalidDecl();
1074    return 0;
1075  }
1076
1077  // If the base class is polymorphic or isn't empty, the new one is/isn't, too.
1078  RecordDecl *BaseDecl = BaseType->getAs<RecordType>()->getDecl();
1079  assert(BaseDecl && "Record type has no declaration");
1080  BaseDecl = BaseDecl->getDefinition();
1081  assert(BaseDecl && "Base type is not incomplete, but has no definition");
1082  CXXRecordDecl * CXXBaseDecl = cast<CXXRecordDecl>(BaseDecl);
1083  assert(CXXBaseDecl && "Base type is not a C++ type");
1084
1085  // C++ [class]p3:
1086  //   If a class is marked final and it appears as a base-type-specifier in
1087  //   base-clause, the program is ill-formed.
1088  if (CXXBaseDecl->hasAttr<FinalAttr>()) {
1089    Diag(BaseLoc, diag::err_class_marked_final_used_as_base)
1090      << CXXBaseDecl->getDeclName();
1091    Diag(CXXBaseDecl->getLocation(), diag::note_previous_decl)
1092      << CXXBaseDecl->getDeclName();
1093    return 0;
1094  }
1095
1096  if (BaseDecl->isInvalidDecl())
1097    Class->setInvalidDecl();
1098
1099  // Create the base specifier.
1100  return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
1101                                        Class->getTagKind() == TTK_Class,
1102                                        Access, TInfo, EllipsisLoc);
1103}
1104
1105/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
1106/// one entry in the base class list of a class specifier, for
1107/// example:
1108///    class foo : public bar, virtual private baz {
1109/// 'public bar' and 'virtual private baz' are each base-specifiers.
1110BaseResult
1111Sema::ActOnBaseSpecifier(Decl *classdecl, SourceRange SpecifierRange,
1112                         bool Virtual, AccessSpecifier Access,
1113                         ParsedType basetype, SourceLocation BaseLoc,
1114                         SourceLocation EllipsisLoc) {
1115  if (!classdecl)
1116    return true;
1117
1118  AdjustDeclIfTemplate(classdecl);
1119  CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(classdecl);
1120  if (!Class)
1121    return true;
1122
1123  TypeSourceInfo *TInfo = 0;
1124  GetTypeFromParser(basetype, &TInfo);
1125
1126  if (EllipsisLoc.isInvalid() &&
1127      DiagnoseUnexpandedParameterPack(SpecifierRange.getBegin(), TInfo,
1128                                      UPPC_BaseType))
1129    return true;
1130
1131  if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
1132                                                      Virtual, Access, TInfo,
1133                                                      EllipsisLoc))
1134    return BaseSpec;
1135  else
1136    Class->setInvalidDecl();
1137
1138  return true;
1139}
1140
1141/// \brief Performs the actual work of attaching the given base class
1142/// specifiers to a C++ class.
1143bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, CXXBaseSpecifier **Bases,
1144                                unsigned NumBases) {
1145 if (NumBases == 0)
1146    return false;
1147
1148  // Used to keep track of which base types we have already seen, so
1149  // that we can properly diagnose redundant direct base types. Note
1150  // that the key is always the unqualified canonical type of the base
1151  // class.
1152  std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
1153
1154  // Copy non-redundant base specifiers into permanent storage.
1155  unsigned NumGoodBases = 0;
1156  bool Invalid = false;
1157  for (unsigned idx = 0; idx < NumBases; ++idx) {
1158    QualType NewBaseType
1159      = Context.getCanonicalType(Bases[idx]->getType());
1160    NewBaseType = NewBaseType.getLocalUnqualifiedType();
1161
1162    CXXBaseSpecifier *&KnownBase = KnownBaseTypes[NewBaseType];
1163    if (KnownBase) {
1164      // C++ [class.mi]p3:
1165      //   A class shall not be specified as a direct base class of a
1166      //   derived class more than once.
1167      Diag(Bases[idx]->getLocStart(),
1168           diag::err_duplicate_base_class)
1169        << KnownBase->getType()
1170        << Bases[idx]->getSourceRange();
1171
1172      // Delete the duplicate base class specifier; we're going to
1173      // overwrite its pointer later.
1174      Context.Deallocate(Bases[idx]);
1175
1176      Invalid = true;
1177    } else {
1178      // Okay, add this new base class.
1179      KnownBase = Bases[idx];
1180      Bases[NumGoodBases++] = Bases[idx];
1181      if (const RecordType *Record = NewBaseType->getAs<RecordType>())
1182        if (const CXXRecordDecl *RD = cast<CXXRecordDecl>(Record->getDecl()))
1183          if (RD->hasAttr<WeakAttr>())
1184            Class->addAttr(::new (Context) WeakAttr(SourceRange(), Context));
1185    }
1186  }
1187
1188  // Attach the remaining base class specifiers to the derived class.
1189  Class->setBases(Bases, NumGoodBases);
1190
1191  // Delete the remaining (good) base class specifiers, since their
1192  // data has been copied into the CXXRecordDecl.
1193  for (unsigned idx = 0; idx < NumGoodBases; ++idx)
1194    Context.Deallocate(Bases[idx]);
1195
1196  return Invalid;
1197}
1198
1199/// ActOnBaseSpecifiers - Attach the given base specifiers to the
1200/// class, after checking whether there are any duplicate base
1201/// classes.
1202void Sema::ActOnBaseSpecifiers(Decl *ClassDecl, CXXBaseSpecifier **Bases,
1203                               unsigned NumBases) {
1204  if (!ClassDecl || !Bases || !NumBases)
1205    return;
1206
1207  AdjustDeclIfTemplate(ClassDecl);
1208  AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl),
1209                       (CXXBaseSpecifier**)(Bases), NumBases);
1210}
1211
1212static CXXRecordDecl *GetClassForType(QualType T) {
1213  if (const RecordType *RT = T->getAs<RecordType>())
1214    return cast<CXXRecordDecl>(RT->getDecl());
1215  else if (const InjectedClassNameType *ICT = T->getAs<InjectedClassNameType>())
1216    return ICT->getDecl();
1217  else
1218    return 0;
1219}
1220
1221/// \brief Determine whether the type \p Derived is a C++ class that is
1222/// derived from the type \p Base.
1223bool Sema::IsDerivedFrom(QualType Derived, QualType Base) {
1224  if (!getLangOpts().CPlusPlus)
1225    return false;
1226
1227  CXXRecordDecl *DerivedRD = GetClassForType(Derived);
1228  if (!DerivedRD)
1229    return false;
1230
1231  CXXRecordDecl *BaseRD = GetClassForType(Base);
1232  if (!BaseRD)
1233    return false;
1234
1235  // FIXME: instantiate DerivedRD if necessary.  We need a PoI for this.
1236  return DerivedRD->hasDefinition() && DerivedRD->isDerivedFrom(BaseRD);
1237}
1238
1239/// \brief Determine whether the type \p Derived is a C++ class that is
1240/// derived from the type \p Base.
1241bool Sema::IsDerivedFrom(QualType Derived, QualType Base, CXXBasePaths &Paths) {
1242  if (!getLangOpts().CPlusPlus)
1243    return false;
1244
1245  CXXRecordDecl *DerivedRD = GetClassForType(Derived);
1246  if (!DerivedRD)
1247    return false;
1248
1249  CXXRecordDecl *BaseRD = GetClassForType(Base);
1250  if (!BaseRD)
1251    return false;
1252
1253  return DerivedRD->isDerivedFrom(BaseRD, Paths);
1254}
1255
1256void Sema::BuildBasePathArray(const CXXBasePaths &Paths,
1257                              CXXCastPath &BasePathArray) {
1258  assert(BasePathArray.empty() && "Base path array must be empty!");
1259  assert(Paths.isRecordingPaths() && "Must record paths!");
1260
1261  const CXXBasePath &Path = Paths.front();
1262
1263  // We first go backward and check if we have a virtual base.
1264  // FIXME: It would be better if CXXBasePath had the base specifier for
1265  // the nearest virtual base.
1266  unsigned Start = 0;
1267  for (unsigned I = Path.size(); I != 0; --I) {
1268    if (Path[I - 1].Base->isVirtual()) {
1269      Start = I - 1;
1270      break;
1271    }
1272  }
1273
1274  // Now add all bases.
1275  for (unsigned I = Start, E = Path.size(); I != E; ++I)
1276    BasePathArray.push_back(const_cast<CXXBaseSpecifier*>(Path[I].Base));
1277}
1278
1279/// \brief Determine whether the given base path includes a virtual
1280/// base class.
1281bool Sema::BasePathInvolvesVirtualBase(const CXXCastPath &BasePath) {
1282  for (CXXCastPath::const_iterator B = BasePath.begin(),
1283                                BEnd = BasePath.end();
1284       B != BEnd; ++B)
1285    if ((*B)->isVirtual())
1286      return true;
1287
1288  return false;
1289}
1290
1291/// CheckDerivedToBaseConversion - Check whether the Derived-to-Base
1292/// conversion (where Derived and Base are class types) is
1293/// well-formed, meaning that the conversion is unambiguous (and
1294/// that all of the base classes are accessible). Returns true
1295/// and emits a diagnostic if the code is ill-formed, returns false
1296/// otherwise. Loc is the location where this routine should point to
1297/// if there is an error, and Range is the source range to highlight
1298/// if there is an error.
1299bool
1300Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
1301                                   unsigned InaccessibleBaseID,
1302                                   unsigned AmbigiousBaseConvID,
1303                                   SourceLocation Loc, SourceRange Range,
1304                                   DeclarationName Name,
1305                                   CXXCastPath *BasePath) {
1306  // First, determine whether the path from Derived to Base is
1307  // ambiguous. This is slightly more expensive than checking whether
1308  // the Derived to Base conversion exists, because here we need to
1309  // explore multiple paths to determine if there is an ambiguity.
1310  CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
1311                     /*DetectVirtual=*/false);
1312  bool DerivationOkay = IsDerivedFrom(Derived, Base, Paths);
1313  assert(DerivationOkay &&
1314         "Can only be used with a derived-to-base conversion");
1315  (void)DerivationOkay;
1316
1317  if (!Paths.isAmbiguous(Context.getCanonicalType(Base).getUnqualifiedType())) {
1318    if (InaccessibleBaseID) {
1319      // Check that the base class can be accessed.
1320      switch (CheckBaseClassAccess(Loc, Base, Derived, Paths.front(),
1321                                   InaccessibleBaseID)) {
1322        case AR_inaccessible:
1323          return true;
1324        case AR_accessible:
1325        case AR_dependent:
1326        case AR_delayed:
1327          break;
1328      }
1329    }
1330
1331    // Build a base path if necessary.
1332    if (BasePath)
1333      BuildBasePathArray(Paths, *BasePath);
1334    return false;
1335  }
1336
1337  // We know that the derived-to-base conversion is ambiguous, and
1338  // we're going to produce a diagnostic. Perform the derived-to-base
1339  // search just one more time to compute all of the possible paths so
1340  // that we can print them out. This is more expensive than any of
1341  // the previous derived-to-base checks we've done, but at this point
1342  // performance isn't as much of an issue.
1343  Paths.clear();
1344  Paths.setRecordingPaths(true);
1345  bool StillOkay = IsDerivedFrom(Derived, Base, Paths);
1346  assert(StillOkay && "Can only be used with a derived-to-base conversion");
1347  (void)StillOkay;
1348
1349  // Build up a textual representation of the ambiguous paths, e.g.,
1350  // D -> B -> A, that will be used to illustrate the ambiguous
1351  // conversions in the diagnostic. We only print one of the paths
1352  // to each base class subobject.
1353  std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
1354
1355  Diag(Loc, AmbigiousBaseConvID)
1356  << Derived << Base << PathDisplayStr << Range << Name;
1357  return true;
1358}
1359
1360bool
1361Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
1362                                   SourceLocation Loc, SourceRange Range,
1363                                   CXXCastPath *BasePath,
1364                                   bool IgnoreAccess) {
1365  return CheckDerivedToBaseConversion(Derived, Base,
1366                                      IgnoreAccess ? 0
1367                                       : diag::err_upcast_to_inaccessible_base,
1368                                      diag::err_ambiguous_derived_to_base_conv,
1369                                      Loc, Range, DeclarationName(),
1370                                      BasePath);
1371}
1372
1373
1374/// @brief Builds a string representing ambiguous paths from a
1375/// specific derived class to different subobjects of the same base
1376/// class.
1377///
1378/// This function builds a string that can be used in error messages
1379/// to show the different paths that one can take through the
1380/// inheritance hierarchy to go from the derived class to different
1381/// subobjects of a base class. The result looks something like this:
1382/// @code
1383/// struct D -> struct B -> struct A
1384/// struct D -> struct C -> struct A
1385/// @endcode
1386std::string Sema::getAmbiguousPathsDisplayString(CXXBasePaths &Paths) {
1387  std::string PathDisplayStr;
1388  std::set<unsigned> DisplayedPaths;
1389  for (CXXBasePaths::paths_iterator Path = Paths.begin();
1390       Path != Paths.end(); ++Path) {
1391    if (DisplayedPaths.insert(Path->back().SubobjectNumber).second) {
1392      // We haven't displayed a path to this particular base
1393      // class subobject yet.
1394      PathDisplayStr += "\n    ";
1395      PathDisplayStr += Context.getTypeDeclType(Paths.getOrigin()).getAsString();
1396      for (CXXBasePath::const_iterator Element = Path->begin();
1397           Element != Path->end(); ++Element)
1398        PathDisplayStr += " -> " + Element->Base->getType().getAsString();
1399    }
1400  }
1401
1402  return PathDisplayStr;
1403}
1404
1405//===----------------------------------------------------------------------===//
1406// C++ class member Handling
1407//===----------------------------------------------------------------------===//
1408
1409/// ActOnAccessSpecifier - Parsed an access specifier followed by a colon.
1410bool Sema::ActOnAccessSpecifier(AccessSpecifier Access,
1411                                SourceLocation ASLoc,
1412                                SourceLocation ColonLoc,
1413                                AttributeList *Attrs) {
1414  assert(Access != AS_none && "Invalid kind for syntactic access specifier!");
1415  AccessSpecDecl *ASDecl = AccessSpecDecl::Create(Context, Access, CurContext,
1416                                                  ASLoc, ColonLoc);
1417  CurContext->addHiddenDecl(ASDecl);
1418  return ProcessAccessDeclAttributeList(ASDecl, Attrs);
1419}
1420
1421/// CheckOverrideControl - Check C++11 override control semantics.
1422void Sema::CheckOverrideControl(Decl *D) {
1423  if (D->isInvalidDecl())
1424    return;
1425
1426  const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D);
1427
1428  // Do we know which functions this declaration might be overriding?
1429  bool OverridesAreKnown = !MD ||
1430      (!MD->getParent()->hasAnyDependentBases() &&
1431       !MD->getType()->isDependentType());
1432
1433  if (!MD || !MD->isVirtual()) {
1434    if (OverridesAreKnown) {
1435      if (OverrideAttr *OA = D->getAttr<OverrideAttr>()) {
1436        Diag(OA->getLocation(),
1437             diag::override_keyword_only_allowed_on_virtual_member_functions)
1438          << "override" << FixItHint::CreateRemoval(OA->getLocation());
1439        D->dropAttr<OverrideAttr>();
1440      }
1441      if (FinalAttr *FA = D->getAttr<FinalAttr>()) {
1442        Diag(FA->getLocation(),
1443             diag::override_keyword_only_allowed_on_virtual_member_functions)
1444          << "final" << FixItHint::CreateRemoval(FA->getLocation());
1445        D->dropAttr<FinalAttr>();
1446      }
1447    }
1448    return;
1449  }
1450
1451  if (!OverridesAreKnown)
1452    return;
1453
1454  // C++11 [class.virtual]p5:
1455  //   If a virtual function is marked with the virt-specifier override and
1456  //   does not override a member function of a base class, the program is
1457  //   ill-formed.
1458  bool HasOverriddenMethods =
1459    MD->begin_overridden_methods() != MD->end_overridden_methods();
1460  if (MD->hasAttr<OverrideAttr>() && !HasOverriddenMethods)
1461    Diag(MD->getLocation(), diag::err_function_marked_override_not_overriding)
1462      << MD->getDeclName();
1463}
1464
1465/// CheckIfOverriddenFunctionIsMarkedFinal - Checks whether a virtual member
1466/// function overrides a virtual member function marked 'final', according to
1467/// C++11 [class.virtual]p4.
1468bool Sema::CheckIfOverriddenFunctionIsMarkedFinal(const CXXMethodDecl *New,
1469                                                  const CXXMethodDecl *Old) {
1470  if (!Old->hasAttr<FinalAttr>())
1471    return false;
1472
1473  Diag(New->getLocation(), diag::err_final_function_overridden)
1474    << New->getDeclName();
1475  Diag(Old->getLocation(), diag::note_overridden_virtual_function);
1476  return true;
1477}
1478
1479static bool InitializationHasSideEffects(const FieldDecl &FD) {
1480  const Type *T = FD.getType()->getBaseElementTypeUnsafe();
1481  // FIXME: Destruction of ObjC lifetime types has side-effects.
1482  if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
1483    return !RD->isCompleteDefinition() ||
1484           !RD->hasTrivialDefaultConstructor() ||
1485           !RD->hasTrivialDestructor();
1486  return false;
1487}
1488
1489/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
1490/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
1491/// bitfield width if there is one, 'InitExpr' specifies the initializer if
1492/// one has been parsed, and 'InitStyle' is set if an in-class initializer is
1493/// present (but parsing it has been deferred).
1494Decl *
1495Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
1496                               MultiTemplateParamsArg TemplateParameterLists,
1497                               Expr *BW, const VirtSpecifiers &VS,
1498                               InClassInitStyle InitStyle) {
1499  const DeclSpec &DS = D.getDeclSpec();
1500  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
1501  DeclarationName Name = NameInfo.getName();
1502  SourceLocation Loc = NameInfo.getLoc();
1503
1504  // For anonymous bitfields, the location should point to the type.
1505  if (Loc.isInvalid())
1506    Loc = D.getLocStart();
1507
1508  Expr *BitWidth = static_cast<Expr*>(BW);
1509
1510  assert(isa<CXXRecordDecl>(CurContext));
1511  assert(!DS.isFriendSpecified());
1512
1513  bool isFunc = D.isDeclarationOfFunction();
1514
1515  // C++ 9.2p6: A member shall not be declared to have automatic storage
1516  // duration (auto, register) or with the extern storage-class-specifier.
1517  // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
1518  // data members and cannot be applied to names declared const or static,
1519  // and cannot be applied to reference members.
1520  switch (DS.getStorageClassSpec()) {
1521    case DeclSpec::SCS_unspecified:
1522    case DeclSpec::SCS_typedef:
1523    case DeclSpec::SCS_static:
1524      // FALL THROUGH.
1525      break;
1526    case DeclSpec::SCS_mutable:
1527      if (isFunc) {
1528        if (DS.getStorageClassSpecLoc().isValid())
1529          Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
1530        else
1531          Diag(DS.getThreadSpecLoc(), diag::err_mutable_function);
1532
1533        // FIXME: It would be nicer if the keyword was ignored only for this
1534        // declarator. Otherwise we could get follow-up errors.
1535        D.getMutableDeclSpec().ClearStorageClassSpecs();
1536      }
1537      break;
1538    default:
1539      if (DS.getStorageClassSpecLoc().isValid())
1540        Diag(DS.getStorageClassSpecLoc(),
1541             diag::err_storageclass_invalid_for_member);
1542      else
1543        Diag(DS.getThreadSpecLoc(), diag::err_storageclass_invalid_for_member);
1544      D.getMutableDeclSpec().ClearStorageClassSpecs();
1545  }
1546
1547  bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
1548                       DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
1549                      !isFunc);
1550
1551  Decl *Member;
1552  if (isInstField) {
1553    CXXScopeSpec &SS = D.getCXXScopeSpec();
1554
1555    // Data members must have identifiers for names.
1556    if (!Name.isIdentifier()) {
1557      Diag(Loc, diag::err_bad_variable_name)
1558        << Name;
1559      return 0;
1560    }
1561
1562    IdentifierInfo *II = Name.getAsIdentifierInfo();
1563
1564    // Member field could not be with "template" keyword.
1565    // So TemplateParameterLists should be empty in this case.
1566    if (TemplateParameterLists.size()) {
1567      TemplateParameterList* TemplateParams = TemplateParameterLists[0];
1568      if (TemplateParams->size()) {
1569        // There is no such thing as a member field template.
1570        Diag(D.getIdentifierLoc(), diag::err_template_member)
1571            << II
1572            << SourceRange(TemplateParams->getTemplateLoc(),
1573                TemplateParams->getRAngleLoc());
1574      } else {
1575        // There is an extraneous 'template<>' for this member.
1576        Diag(TemplateParams->getTemplateLoc(),
1577            diag::err_template_member_noparams)
1578            << II
1579            << SourceRange(TemplateParams->getTemplateLoc(),
1580                TemplateParams->getRAngleLoc());
1581      }
1582      return 0;
1583    }
1584
1585    if (SS.isSet() && !SS.isInvalid()) {
1586      // The user provided a superfluous scope specifier inside a class
1587      // definition:
1588      //
1589      // class X {
1590      //   int X::member;
1591      // };
1592      if (DeclContext *DC = computeDeclContext(SS, false))
1593        diagnoseQualifiedDeclaration(SS, DC, Name, D.getIdentifierLoc());
1594      else
1595        Diag(D.getIdentifierLoc(), diag::err_member_qualification)
1596          << Name << SS.getRange();
1597
1598      SS.clear();
1599    }
1600
1601    Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D, BitWidth,
1602                         InitStyle, AS);
1603    assert(Member && "HandleField never returns null");
1604  } else {
1605    assert(InitStyle == ICIS_NoInit);
1606
1607    Member = HandleDeclarator(S, D, TemplateParameterLists);
1608    if (!Member) {
1609      return 0;
1610    }
1611
1612    // Non-instance-fields can't have a bitfield.
1613    if (BitWidth) {
1614      if (Member->isInvalidDecl()) {
1615        // don't emit another diagnostic.
1616      } else if (isa<VarDecl>(Member)) {
1617        // C++ 9.6p3: A bit-field shall not be a static member.
1618        // "static member 'A' cannot be a bit-field"
1619        Diag(Loc, diag::err_static_not_bitfield)
1620          << Name << BitWidth->getSourceRange();
1621      } else if (isa<TypedefDecl>(Member)) {
1622        // "typedef member 'x' cannot be a bit-field"
1623        Diag(Loc, diag::err_typedef_not_bitfield)
1624          << Name << BitWidth->getSourceRange();
1625      } else {
1626        // A function typedef ("typedef int f(); f a;").
1627        // C++ 9.6p3: A bit-field shall have integral or enumeration type.
1628        Diag(Loc, diag::err_not_integral_type_bitfield)
1629          << Name << cast<ValueDecl>(Member)->getType()
1630          << BitWidth->getSourceRange();
1631      }
1632
1633      BitWidth = 0;
1634      Member->setInvalidDecl();
1635    }
1636
1637    Member->setAccess(AS);
1638
1639    // If we have declared a member function template, set the access of the
1640    // templated declaration as well.
1641    if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Member))
1642      FunTmpl->getTemplatedDecl()->setAccess(AS);
1643  }
1644
1645  if (VS.isOverrideSpecified())
1646    Member->addAttr(new (Context) OverrideAttr(VS.getOverrideLoc(), Context));
1647  if (VS.isFinalSpecified())
1648    Member->addAttr(new (Context) FinalAttr(VS.getFinalLoc(), Context));
1649
1650  if (VS.getLastLocation().isValid()) {
1651    // Update the end location of a method that has a virt-specifiers.
1652    if (CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(Member))
1653      MD->setRangeEnd(VS.getLastLocation());
1654  }
1655
1656  CheckOverrideControl(Member);
1657
1658  assert((Name || isInstField) && "No identifier for non-field ?");
1659
1660  if (isInstField) {
1661    FieldDecl *FD = cast<FieldDecl>(Member);
1662    FieldCollector->Add(FD);
1663
1664    if (Diags.getDiagnosticLevel(diag::warn_unused_private_field,
1665                                 FD->getLocation())
1666          != DiagnosticsEngine::Ignored) {
1667      // Remember all explicit private FieldDecls that have a name, no side
1668      // effects and are not part of a dependent type declaration.
1669      if (!FD->isImplicit() && FD->getDeclName() &&
1670          FD->getAccess() == AS_private &&
1671          !FD->hasAttr<UnusedAttr>() &&
1672          !FD->getParent()->isDependentContext() &&
1673          !InitializationHasSideEffects(*FD))
1674        UnusedPrivateFields.insert(FD);
1675    }
1676  }
1677
1678  return Member;
1679}
1680
1681/// ActOnCXXInClassMemberInitializer - This is invoked after parsing an
1682/// in-class initializer for a non-static C++ class member, and after
1683/// instantiating an in-class initializer in a class template. Such actions
1684/// are deferred until the class is complete.
1685void
1686Sema::ActOnCXXInClassMemberInitializer(Decl *D, SourceLocation InitLoc,
1687                                       Expr *InitExpr) {
1688  FieldDecl *FD = cast<FieldDecl>(D);
1689  assert(FD->getInClassInitStyle() != ICIS_NoInit &&
1690         "must set init style when field is created");
1691
1692  if (!InitExpr) {
1693    FD->setInvalidDecl();
1694    FD->removeInClassInitializer();
1695    return;
1696  }
1697
1698  if (DiagnoseUnexpandedParameterPack(InitExpr, UPPC_Initializer)) {
1699    FD->setInvalidDecl();
1700    FD->removeInClassInitializer();
1701    return;
1702  }
1703
1704  ExprResult Init = InitExpr;
1705  if (!FD->getType()->isDependentType() && !InitExpr->isTypeDependent() &&
1706      !FD->getDeclContext()->isDependentContext()) {
1707    // Note: We don't type-check when we're in a dependent context, because
1708    // the initialization-substitution code does not properly handle direct
1709    // list initialization. We have the same hackaround for ctor-initializers.
1710    if (isa<InitListExpr>(InitExpr) && isStdInitializerList(FD->getType(), 0)) {
1711      Diag(FD->getLocation(), diag::warn_dangling_std_initializer_list)
1712        << /*at end of ctor*/1 << InitExpr->getSourceRange();
1713    }
1714    Expr **Inits = &InitExpr;
1715    unsigned NumInits = 1;
1716    InitializedEntity Entity = InitializedEntity::InitializeMember(FD);
1717    InitializationKind Kind = FD->getInClassInitStyle() == ICIS_ListInit
1718        ? InitializationKind::CreateDirectList(InitExpr->getLocStart())
1719        : InitializationKind::CreateCopy(InitExpr->getLocStart(), InitLoc);
1720    InitializationSequence Seq(*this, Entity, Kind, Inits, NumInits);
1721    Init = Seq.Perform(*this, Entity, Kind, MultiExprArg(Inits, NumInits));
1722    if (Init.isInvalid()) {
1723      FD->setInvalidDecl();
1724      return;
1725    }
1726
1727    CheckImplicitConversions(Init.get(), InitLoc);
1728  }
1729
1730  // C++0x [class.base.init]p7:
1731  //   The initialization of each base and member constitutes a
1732  //   full-expression.
1733  Init = MaybeCreateExprWithCleanups(Init);
1734  if (Init.isInvalid()) {
1735    FD->setInvalidDecl();
1736    return;
1737  }
1738
1739  InitExpr = Init.release();
1740
1741  FD->setInClassInitializer(InitExpr);
1742}
1743
1744/// \brief Find the direct and/or virtual base specifiers that
1745/// correspond to the given base type, for use in base initialization
1746/// within a constructor.
1747static bool FindBaseInitializer(Sema &SemaRef,
1748                                CXXRecordDecl *ClassDecl,
1749                                QualType BaseType,
1750                                const CXXBaseSpecifier *&DirectBaseSpec,
1751                                const CXXBaseSpecifier *&VirtualBaseSpec) {
1752  // First, check for a direct base class.
1753  DirectBaseSpec = 0;
1754  for (CXXRecordDecl::base_class_const_iterator Base
1755         = ClassDecl->bases_begin();
1756       Base != ClassDecl->bases_end(); ++Base) {
1757    if (SemaRef.Context.hasSameUnqualifiedType(BaseType, Base->getType())) {
1758      // We found a direct base of this type. That's what we're
1759      // initializing.
1760      DirectBaseSpec = &*Base;
1761      break;
1762    }
1763  }
1764
1765  // Check for a virtual base class.
1766  // FIXME: We might be able to short-circuit this if we know in advance that
1767  // there are no virtual bases.
1768  VirtualBaseSpec = 0;
1769  if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
1770    // We haven't found a base yet; search the class hierarchy for a
1771    // virtual base class.
1772    CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
1773                       /*DetectVirtual=*/false);
1774    if (SemaRef.IsDerivedFrom(SemaRef.Context.getTypeDeclType(ClassDecl),
1775                              BaseType, Paths)) {
1776      for (CXXBasePaths::paths_iterator Path = Paths.begin();
1777           Path != Paths.end(); ++Path) {
1778        if (Path->back().Base->isVirtual()) {
1779          VirtualBaseSpec = Path->back().Base;
1780          break;
1781        }
1782      }
1783    }
1784  }
1785
1786  return DirectBaseSpec || VirtualBaseSpec;
1787}
1788
1789/// \brief Handle a C++ member initializer using braced-init-list syntax.
1790MemInitResult
1791Sema::ActOnMemInitializer(Decl *ConstructorD,
1792                          Scope *S,
1793                          CXXScopeSpec &SS,
1794                          IdentifierInfo *MemberOrBase,
1795                          ParsedType TemplateTypeTy,
1796                          const DeclSpec &DS,
1797                          SourceLocation IdLoc,
1798                          Expr *InitList,
1799                          SourceLocation EllipsisLoc) {
1800  return BuildMemInitializer(ConstructorD, S, SS, MemberOrBase, TemplateTypeTy,
1801                             DS, IdLoc, InitList,
1802                             EllipsisLoc);
1803}
1804
1805/// \brief Handle a C++ member initializer using parentheses syntax.
1806MemInitResult
1807Sema::ActOnMemInitializer(Decl *ConstructorD,
1808                          Scope *S,
1809                          CXXScopeSpec &SS,
1810                          IdentifierInfo *MemberOrBase,
1811                          ParsedType TemplateTypeTy,
1812                          const DeclSpec &DS,
1813                          SourceLocation IdLoc,
1814                          SourceLocation LParenLoc,
1815                          Expr **Args, unsigned NumArgs,
1816                          SourceLocation RParenLoc,
1817                          SourceLocation EllipsisLoc) {
1818  Expr *List = new (Context) ParenListExpr(Context, LParenLoc,
1819                                           llvm::makeArrayRef(Args, NumArgs),
1820                                           RParenLoc);
1821  return BuildMemInitializer(ConstructorD, S, SS, MemberOrBase, TemplateTypeTy,
1822                             DS, IdLoc, List, EllipsisLoc);
1823}
1824
1825namespace {
1826
1827// Callback to only accept typo corrections that can be a valid C++ member
1828// intializer: either a non-static field member or a base class.
1829class MemInitializerValidatorCCC : public CorrectionCandidateCallback {
1830 public:
1831  explicit MemInitializerValidatorCCC(CXXRecordDecl *ClassDecl)
1832      : ClassDecl(ClassDecl) {}
1833
1834  virtual bool ValidateCandidate(const TypoCorrection &candidate) {
1835    if (NamedDecl *ND = candidate.getCorrectionDecl()) {
1836      if (FieldDecl *Member = dyn_cast<FieldDecl>(ND))
1837        return Member->getDeclContext()->getRedeclContext()->Equals(ClassDecl);
1838      else
1839        return isa<TypeDecl>(ND);
1840    }
1841    return false;
1842  }
1843
1844 private:
1845  CXXRecordDecl *ClassDecl;
1846};
1847
1848}
1849
1850/// \brief Handle a C++ member initializer.
1851MemInitResult
1852Sema::BuildMemInitializer(Decl *ConstructorD,
1853                          Scope *S,
1854                          CXXScopeSpec &SS,
1855                          IdentifierInfo *MemberOrBase,
1856                          ParsedType TemplateTypeTy,
1857                          const DeclSpec &DS,
1858                          SourceLocation IdLoc,
1859                          Expr *Init,
1860                          SourceLocation EllipsisLoc) {
1861  if (!ConstructorD)
1862    return true;
1863
1864  AdjustDeclIfTemplate(ConstructorD);
1865
1866  CXXConstructorDecl *Constructor
1867    = dyn_cast<CXXConstructorDecl>(ConstructorD);
1868  if (!Constructor) {
1869    // The user wrote a constructor initializer on a function that is
1870    // not a C++ constructor. Ignore the error for now, because we may
1871    // have more member initializers coming; we'll diagnose it just
1872    // once in ActOnMemInitializers.
1873    return true;
1874  }
1875
1876  CXXRecordDecl *ClassDecl = Constructor->getParent();
1877
1878  // C++ [class.base.init]p2:
1879  //   Names in a mem-initializer-id are looked up in the scope of the
1880  //   constructor's class and, if not found in that scope, are looked
1881  //   up in the scope containing the constructor's definition.
1882  //   [Note: if the constructor's class contains a member with the
1883  //   same name as a direct or virtual base class of the class, a
1884  //   mem-initializer-id naming the member or base class and composed
1885  //   of a single identifier refers to the class member. A
1886  //   mem-initializer-id for the hidden base class may be specified
1887  //   using a qualified name. ]
1888  if (!SS.getScopeRep() && !TemplateTypeTy) {
1889    // Look for a member, first.
1890    DeclContext::lookup_result Result
1891      = ClassDecl->lookup(MemberOrBase);
1892    if (Result.first != Result.second) {
1893      ValueDecl *Member;
1894      if ((Member = dyn_cast<FieldDecl>(*Result.first)) ||
1895          (Member = dyn_cast<IndirectFieldDecl>(*Result.first))) {
1896        if (EllipsisLoc.isValid())
1897          Diag(EllipsisLoc, diag::err_pack_expansion_member_init)
1898            << MemberOrBase
1899            << SourceRange(IdLoc, Init->getSourceRange().getEnd());
1900
1901        return BuildMemberInitializer(Member, Init, IdLoc);
1902      }
1903    }
1904  }
1905  // It didn't name a member, so see if it names a class.
1906  QualType BaseType;
1907  TypeSourceInfo *TInfo = 0;
1908
1909  if (TemplateTypeTy) {
1910    BaseType = GetTypeFromParser(TemplateTypeTy, &TInfo);
1911  } else if (DS.getTypeSpecType() == TST_decltype) {
1912    BaseType = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc());
1913  } else {
1914    LookupResult R(*this, MemberOrBase, IdLoc, LookupOrdinaryName);
1915    LookupParsedName(R, S, &SS);
1916
1917    TypeDecl *TyD = R.getAsSingle<TypeDecl>();
1918    if (!TyD) {
1919      if (R.isAmbiguous()) return true;
1920
1921      // We don't want access-control diagnostics here.
1922      R.suppressDiagnostics();
1923
1924      if (SS.isSet() && isDependentScopeSpecifier(SS)) {
1925        bool NotUnknownSpecialization = false;
1926        DeclContext *DC = computeDeclContext(SS, false);
1927        if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(DC))
1928          NotUnknownSpecialization = !Record->hasAnyDependentBases();
1929
1930        if (!NotUnknownSpecialization) {
1931          // When the scope specifier can refer to a member of an unknown
1932          // specialization, we take it as a type name.
1933          BaseType = CheckTypenameType(ETK_None, SourceLocation(),
1934                                       SS.getWithLocInContext(Context),
1935                                       *MemberOrBase, IdLoc);
1936          if (BaseType.isNull())
1937            return true;
1938
1939          R.clear();
1940          R.setLookupName(MemberOrBase);
1941        }
1942      }
1943
1944      // If no results were found, try to correct typos.
1945      TypoCorrection Corr;
1946      MemInitializerValidatorCCC Validator(ClassDecl);
1947      if (R.empty() && BaseType.isNull() &&
1948          (Corr = CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(), S, &SS,
1949                              Validator, ClassDecl))) {
1950        std::string CorrectedStr(Corr.getAsString(getLangOpts()));
1951        std::string CorrectedQuotedStr(Corr.getQuoted(getLangOpts()));
1952        if (FieldDecl *Member = Corr.getCorrectionDeclAs<FieldDecl>()) {
1953          // We have found a non-static data member with a similar
1954          // name to what was typed; complain and initialize that
1955          // member.
1956          Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
1957            << MemberOrBase << true << CorrectedQuotedStr
1958            << FixItHint::CreateReplacement(R.getNameLoc(), CorrectedStr);
1959          Diag(Member->getLocation(), diag::note_previous_decl)
1960            << CorrectedQuotedStr;
1961
1962          return BuildMemberInitializer(Member, Init, IdLoc);
1963        } else if (TypeDecl *Type = Corr.getCorrectionDeclAs<TypeDecl>()) {
1964          const CXXBaseSpecifier *DirectBaseSpec;
1965          const CXXBaseSpecifier *VirtualBaseSpec;
1966          if (FindBaseInitializer(*this, ClassDecl,
1967                                  Context.getTypeDeclType(Type),
1968                                  DirectBaseSpec, VirtualBaseSpec)) {
1969            // We have found a direct or virtual base class with a
1970            // similar name to what was typed; complain and initialize
1971            // that base class.
1972            Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
1973              << MemberOrBase << false << CorrectedQuotedStr
1974              << FixItHint::CreateReplacement(R.getNameLoc(), CorrectedStr);
1975
1976            const CXXBaseSpecifier *BaseSpec = DirectBaseSpec? DirectBaseSpec
1977                                                             : VirtualBaseSpec;
1978            Diag(BaseSpec->getLocStart(),
1979                 diag::note_base_class_specified_here)
1980              << BaseSpec->getType()
1981              << BaseSpec->getSourceRange();
1982
1983            TyD = Type;
1984          }
1985        }
1986      }
1987
1988      if (!TyD && BaseType.isNull()) {
1989        Diag(IdLoc, diag::err_mem_init_not_member_or_class)
1990          << MemberOrBase << SourceRange(IdLoc,Init->getSourceRange().getEnd());
1991        return true;
1992      }
1993    }
1994
1995    if (BaseType.isNull()) {
1996      BaseType = Context.getTypeDeclType(TyD);
1997      if (SS.isSet()) {
1998        NestedNameSpecifier *Qualifier =
1999          static_cast<NestedNameSpecifier*>(SS.getScopeRep());
2000
2001        // FIXME: preserve source range information
2002        BaseType = Context.getElaboratedType(ETK_None, Qualifier, BaseType);
2003      }
2004    }
2005  }
2006
2007  if (!TInfo)
2008    TInfo = Context.getTrivialTypeSourceInfo(BaseType, IdLoc);
2009
2010  return BuildBaseInitializer(BaseType, TInfo, Init, ClassDecl, EllipsisLoc);
2011}
2012
2013/// Checks a member initializer expression for cases where reference (or
2014/// pointer) members are bound to by-value parameters (or their addresses).
2015static void CheckForDanglingReferenceOrPointer(Sema &S, ValueDecl *Member,
2016                                               Expr *Init,
2017                                               SourceLocation IdLoc) {
2018  QualType MemberTy = Member->getType();
2019
2020  // We only handle pointers and references currently.
2021  // FIXME: Would this be relevant for ObjC object pointers? Or block pointers?
2022  if (!MemberTy->isReferenceType() && !MemberTy->isPointerType())
2023    return;
2024
2025  const bool IsPointer = MemberTy->isPointerType();
2026  if (IsPointer) {
2027    if (const UnaryOperator *Op
2028          = dyn_cast<UnaryOperator>(Init->IgnoreParenImpCasts())) {
2029      // The only case we're worried about with pointers requires taking the
2030      // address.
2031      if (Op->getOpcode() != UO_AddrOf)
2032        return;
2033
2034      Init = Op->getSubExpr();
2035    } else {
2036      // We only handle address-of expression initializers for pointers.
2037      return;
2038    }
2039  }
2040
2041  if (isa<MaterializeTemporaryExpr>(Init->IgnoreParens())) {
2042    // Taking the address of a temporary will be diagnosed as a hard error.
2043    if (IsPointer)
2044      return;
2045
2046    S.Diag(Init->getExprLoc(), diag::warn_bind_ref_member_to_temporary)
2047      << Member << Init->getSourceRange();
2048  } else if (const DeclRefExpr *DRE
2049               = dyn_cast<DeclRefExpr>(Init->IgnoreParens())) {
2050    // We only warn when referring to a non-reference parameter declaration.
2051    const ParmVarDecl *Parameter = dyn_cast<ParmVarDecl>(DRE->getDecl());
2052    if (!Parameter || Parameter->getType()->isReferenceType())
2053      return;
2054
2055    S.Diag(Init->getExprLoc(),
2056           IsPointer ? diag::warn_init_ptr_member_to_parameter_addr
2057                     : diag::warn_bind_ref_member_to_parameter)
2058      << Member << Parameter << Init->getSourceRange();
2059  } else {
2060    // Other initializers are fine.
2061    return;
2062  }
2063
2064  S.Diag(Member->getLocation(), diag::note_ref_or_ptr_member_declared_here)
2065    << (unsigned)IsPointer;
2066}
2067
2068namespace {
2069  class UninitializedFieldVisitor
2070      : public EvaluatedExprVisitor<UninitializedFieldVisitor> {
2071    Sema &S;
2072    ValueDecl *VD;
2073  public:
2074    typedef EvaluatedExprVisitor<UninitializedFieldVisitor> Inherited;
2075    UninitializedFieldVisitor(Sema &S, ValueDecl *VD) : Inherited(S.Context),
2076                                                        S(S), VD(VD) {
2077    }
2078
2079    void HandleExpr(Expr *E) {
2080      if (!E) return;
2081
2082      // Expressions like x(x) sometimes lack the surrounding expressions
2083      // but need to be checked anyways.
2084      HandleValue(E);
2085      Visit(E);
2086    }
2087
2088    void HandleValue(Expr *E) {
2089      E = E->IgnoreParens();
2090
2091      if (MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
2092        if (isa<EnumConstantDecl>(ME->getMemberDecl()))
2093            return;
2094        Expr *Base = E;
2095        while (isa<MemberExpr>(Base)) {
2096          ME = dyn_cast<MemberExpr>(Base);
2097          if (VarDecl *VarD = dyn_cast<VarDecl>(ME->getMemberDecl()))
2098            if (VarD->hasGlobalStorage())
2099              return;
2100          Base = ME->getBase();
2101        }
2102
2103        if (VD == ME->getMemberDecl() && isa<CXXThisExpr>(Base)) {
2104          unsigned diag = VD->getType()->isReferenceType()
2105              ? diag::warn_reference_field_is_uninit
2106              : diag::warn_field_is_uninit;
2107          S.Diag(ME->getExprLoc(), diag);
2108          return;
2109        }
2110      }
2111
2112      if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
2113        HandleValue(CO->getTrueExpr());
2114        HandleValue(CO->getFalseExpr());
2115        return;
2116      }
2117
2118      if (BinaryConditionalOperator *BCO =
2119              dyn_cast<BinaryConditionalOperator>(E)) {
2120        HandleValue(BCO->getCommon());
2121        HandleValue(BCO->getFalseExpr());
2122        return;
2123      }
2124
2125      if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
2126        switch (BO->getOpcode()) {
2127        default:
2128          return;
2129        case(BO_PtrMemD):
2130        case(BO_PtrMemI):
2131          HandleValue(BO->getLHS());
2132          return;
2133        case(BO_Comma):
2134          HandleValue(BO->getRHS());
2135          return;
2136        }
2137      }
2138    }
2139
2140    void VisitImplicitCastExpr(ImplicitCastExpr *E) {
2141      if (E->getCastKind() == CK_LValueToRValue)
2142        HandleValue(E->getSubExpr());
2143
2144      Inherited::VisitImplicitCastExpr(E);
2145    }
2146
2147    void VisitCXXMemberCallExpr(CXXMemberCallExpr *E) {
2148      Expr *Callee = E->getCallee();
2149      if (isa<MemberExpr>(Callee))
2150        HandleValue(Callee);
2151
2152      Inherited::VisitCXXMemberCallExpr(E);
2153    }
2154  };
2155  static void CheckInitExprContainsUninitializedFields(Sema &S, Expr *E,
2156                                                       ValueDecl *VD) {
2157    UninitializedFieldVisitor(S, VD).HandleExpr(E);
2158  }
2159} // namespace
2160
2161MemInitResult
2162Sema::BuildMemberInitializer(ValueDecl *Member, Expr *Init,
2163                             SourceLocation IdLoc) {
2164  FieldDecl *DirectMember = dyn_cast<FieldDecl>(Member);
2165  IndirectFieldDecl *IndirectMember = dyn_cast<IndirectFieldDecl>(Member);
2166  assert((DirectMember || IndirectMember) &&
2167         "Member must be a FieldDecl or IndirectFieldDecl");
2168
2169  if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer))
2170    return true;
2171
2172  if (Member->isInvalidDecl())
2173    return true;
2174
2175  // Diagnose value-uses of fields to initialize themselves, e.g.
2176  //   foo(foo)
2177  // where foo is not also a parameter to the constructor.
2178  // TODO: implement -Wuninitialized and fold this into that framework.
2179  Expr **Args;
2180  unsigned NumArgs;
2181  if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) {
2182    Args = ParenList->getExprs();
2183    NumArgs = ParenList->getNumExprs();
2184  } else {
2185    InitListExpr *InitList = cast<InitListExpr>(Init);
2186    Args = InitList->getInits();
2187    NumArgs = InitList->getNumInits();
2188  }
2189
2190  if (getDiagnostics().getDiagnosticLevel(diag::warn_field_is_uninit, IdLoc)
2191        != DiagnosticsEngine::Ignored)
2192    for (unsigned i = 0; i < NumArgs; ++i)
2193      // FIXME: Warn about the case when other fields are used before being
2194      // uninitialized. For example, let this field be the i'th field. When
2195      // initializing the i'th field, throw a warning if any of the >= i'th
2196      // fields are used, as they are not yet initialized.
2197      // Right now we are only handling the case where the i'th field uses
2198      // itself in its initializer.
2199      CheckInitExprContainsUninitializedFields(*this, Args[i], Member);
2200
2201  SourceRange InitRange = Init->getSourceRange();
2202
2203  if (Member->getType()->isDependentType() || Init->isTypeDependent()) {
2204    // Can't check initialization for a member of dependent type or when
2205    // any of the arguments are type-dependent expressions.
2206    DiscardCleanupsInEvaluationContext();
2207  } else {
2208    bool InitList = false;
2209    if (isa<InitListExpr>(Init)) {
2210      InitList = true;
2211      Args = &Init;
2212      NumArgs = 1;
2213
2214      if (isStdInitializerList(Member->getType(), 0)) {
2215        Diag(IdLoc, diag::warn_dangling_std_initializer_list)
2216            << /*at end of ctor*/1 << InitRange;
2217      }
2218    }
2219
2220    // Initialize the member.
2221    InitializedEntity MemberEntity =
2222      DirectMember ? InitializedEntity::InitializeMember(DirectMember, 0)
2223                   : InitializedEntity::InitializeMember(IndirectMember, 0);
2224    InitializationKind Kind =
2225      InitList ? InitializationKind::CreateDirectList(IdLoc)
2226               : InitializationKind::CreateDirect(IdLoc, InitRange.getBegin(),
2227                                                  InitRange.getEnd());
2228
2229    InitializationSequence InitSeq(*this, MemberEntity, Kind, Args, NumArgs);
2230    ExprResult MemberInit = InitSeq.Perform(*this, MemberEntity, Kind,
2231                                            MultiExprArg(Args, NumArgs),
2232                                            0);
2233    if (MemberInit.isInvalid())
2234      return true;
2235
2236    CheckImplicitConversions(MemberInit.get(),
2237                             InitRange.getBegin());
2238
2239    // C++0x [class.base.init]p7:
2240    //   The initialization of each base and member constitutes a
2241    //   full-expression.
2242    MemberInit = MaybeCreateExprWithCleanups(MemberInit);
2243    if (MemberInit.isInvalid())
2244      return true;
2245
2246    // If we are in a dependent context, template instantiation will
2247    // perform this type-checking again. Just save the arguments that we
2248    // received.
2249    // FIXME: This isn't quite ideal, since our ASTs don't capture all
2250    // of the information that we have about the member
2251    // initializer. However, deconstructing the ASTs is a dicey process,
2252    // and this approach is far more likely to get the corner cases right.
2253    if (CurContext->isDependentContext()) {
2254      // The existing Init will do fine.
2255    } else {
2256      Init = MemberInit.get();
2257      CheckForDanglingReferenceOrPointer(*this, Member, Init, IdLoc);
2258    }
2259  }
2260
2261  if (DirectMember) {
2262    return new (Context) CXXCtorInitializer(Context, DirectMember, IdLoc,
2263                                            InitRange.getBegin(), Init,
2264                                            InitRange.getEnd());
2265  } else {
2266    return new (Context) CXXCtorInitializer(Context, IndirectMember, IdLoc,
2267                                            InitRange.getBegin(), Init,
2268                                            InitRange.getEnd());
2269  }
2270}
2271
2272MemInitResult
2273Sema::BuildDelegatingInitializer(TypeSourceInfo *TInfo, Expr *Init,
2274                                 CXXRecordDecl *ClassDecl) {
2275  SourceLocation NameLoc = TInfo->getTypeLoc().getLocalSourceRange().getBegin();
2276  if (!LangOpts.CPlusPlus0x)
2277    return Diag(NameLoc, diag::err_delegating_ctor)
2278      << TInfo->getTypeLoc().getLocalSourceRange();
2279  Diag(NameLoc, diag::warn_cxx98_compat_delegating_ctor);
2280
2281  bool InitList = true;
2282  Expr **Args = &Init;
2283  unsigned NumArgs = 1;
2284  if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) {
2285    InitList = false;
2286    Args = ParenList->getExprs();
2287    NumArgs = ParenList->getNumExprs();
2288  }
2289
2290  SourceRange InitRange = Init->getSourceRange();
2291  // Initialize the object.
2292  InitializedEntity DelegationEntity = InitializedEntity::InitializeDelegation(
2293                                     QualType(ClassDecl->getTypeForDecl(), 0));
2294  InitializationKind Kind =
2295    InitList ? InitializationKind::CreateDirectList(NameLoc)
2296             : InitializationKind::CreateDirect(NameLoc, InitRange.getBegin(),
2297                                                InitRange.getEnd());
2298  InitializationSequence InitSeq(*this, DelegationEntity, Kind, Args, NumArgs);
2299  ExprResult DelegationInit = InitSeq.Perform(*this, DelegationEntity, Kind,
2300                                              MultiExprArg(Args, NumArgs),
2301                                              0);
2302  if (DelegationInit.isInvalid())
2303    return true;
2304
2305  assert(cast<CXXConstructExpr>(DelegationInit.get())->getConstructor() &&
2306         "Delegating constructor with no target?");
2307
2308  CheckImplicitConversions(DelegationInit.get(), InitRange.getBegin());
2309
2310  // C++0x [class.base.init]p7:
2311  //   The initialization of each base and member constitutes a
2312  //   full-expression.
2313  DelegationInit = MaybeCreateExprWithCleanups(DelegationInit);
2314  if (DelegationInit.isInvalid())
2315    return true;
2316
2317  // If we are in a dependent context, template instantiation will
2318  // perform this type-checking again. Just save the arguments that we
2319  // received in a ParenListExpr.
2320  // FIXME: This isn't quite ideal, since our ASTs don't capture all
2321  // of the information that we have about the base
2322  // initializer. However, deconstructing the ASTs is a dicey process,
2323  // and this approach is far more likely to get the corner cases right.
2324  if (CurContext->isDependentContext())
2325    DelegationInit = Owned(Init);
2326
2327  return new (Context) CXXCtorInitializer(Context, TInfo, InitRange.getBegin(),
2328                                          DelegationInit.takeAs<Expr>(),
2329                                          InitRange.getEnd());
2330}
2331
2332MemInitResult
2333Sema::BuildBaseInitializer(QualType BaseType, TypeSourceInfo *BaseTInfo,
2334                           Expr *Init, CXXRecordDecl *ClassDecl,
2335                           SourceLocation EllipsisLoc) {
2336  SourceLocation BaseLoc
2337    = BaseTInfo->getTypeLoc().getLocalSourceRange().getBegin();
2338
2339  if (!BaseType->isDependentType() && !BaseType->isRecordType())
2340    return Diag(BaseLoc, diag::err_base_init_does_not_name_class)
2341             << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
2342
2343  // C++ [class.base.init]p2:
2344  //   [...] Unless the mem-initializer-id names a nonstatic data
2345  //   member of the constructor's class or a direct or virtual base
2346  //   of that class, the mem-initializer is ill-formed. A
2347  //   mem-initializer-list can initialize a base class using any
2348  //   name that denotes that base class type.
2349  bool Dependent = BaseType->isDependentType() || Init->isTypeDependent();
2350
2351  SourceRange InitRange = Init->getSourceRange();
2352  if (EllipsisLoc.isValid()) {
2353    // This is a pack expansion.
2354    if (!BaseType->containsUnexpandedParameterPack())  {
2355      Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
2356        << SourceRange(BaseLoc, InitRange.getEnd());
2357
2358      EllipsisLoc = SourceLocation();
2359    }
2360  } else {
2361    // Check for any unexpanded parameter packs.
2362    if (DiagnoseUnexpandedParameterPack(BaseLoc, BaseTInfo, UPPC_Initializer))
2363      return true;
2364
2365    if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer))
2366      return true;
2367  }
2368
2369  // Check for direct and virtual base classes.
2370  const CXXBaseSpecifier *DirectBaseSpec = 0;
2371  const CXXBaseSpecifier *VirtualBaseSpec = 0;
2372  if (!Dependent) {
2373    if (Context.hasSameUnqualifiedType(QualType(ClassDecl->getTypeForDecl(),0),
2374                                       BaseType))
2375      return BuildDelegatingInitializer(BaseTInfo, Init, ClassDecl);
2376
2377    FindBaseInitializer(*this, ClassDecl, BaseType, DirectBaseSpec,
2378                        VirtualBaseSpec);
2379
2380    // C++ [base.class.init]p2:
2381    // Unless the mem-initializer-id names a nonstatic data member of the
2382    // constructor's class or a direct or virtual base of that class, the
2383    // mem-initializer is ill-formed.
2384    if (!DirectBaseSpec && !VirtualBaseSpec) {
2385      // If the class has any dependent bases, then it's possible that
2386      // one of those types will resolve to the same type as
2387      // BaseType. Therefore, just treat this as a dependent base
2388      // class initialization.  FIXME: Should we try to check the
2389      // initialization anyway? It seems odd.
2390      if (ClassDecl->hasAnyDependentBases())
2391        Dependent = true;
2392      else
2393        return Diag(BaseLoc, diag::err_not_direct_base_or_virtual)
2394          << BaseType << Context.getTypeDeclType(ClassDecl)
2395          << BaseTInfo->getTypeLoc().getLocalSourceRange();
2396    }
2397  }
2398
2399  if (Dependent) {
2400    DiscardCleanupsInEvaluationContext();
2401
2402    return new (Context) CXXCtorInitializer(Context, BaseTInfo,
2403                                            /*IsVirtual=*/false,
2404                                            InitRange.getBegin(), Init,
2405                                            InitRange.getEnd(), EllipsisLoc);
2406  }
2407
2408  // C++ [base.class.init]p2:
2409  //   If a mem-initializer-id is ambiguous because it designates both
2410  //   a direct non-virtual base class and an inherited virtual base
2411  //   class, the mem-initializer is ill-formed.
2412  if (DirectBaseSpec && VirtualBaseSpec)
2413    return Diag(BaseLoc, diag::err_base_init_direct_and_virtual)
2414      << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
2415
2416  CXXBaseSpecifier *BaseSpec = const_cast<CXXBaseSpecifier *>(DirectBaseSpec);
2417  if (!BaseSpec)
2418    BaseSpec = const_cast<CXXBaseSpecifier *>(VirtualBaseSpec);
2419
2420  // Initialize the base.
2421  bool InitList = true;
2422  Expr **Args = &Init;
2423  unsigned NumArgs = 1;
2424  if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) {
2425    InitList = false;
2426    Args = ParenList->getExprs();
2427    NumArgs = ParenList->getNumExprs();
2428  }
2429
2430  InitializedEntity BaseEntity =
2431    InitializedEntity::InitializeBase(Context, BaseSpec, VirtualBaseSpec);
2432  InitializationKind Kind =
2433    InitList ? InitializationKind::CreateDirectList(BaseLoc)
2434             : InitializationKind::CreateDirect(BaseLoc, InitRange.getBegin(),
2435                                                InitRange.getEnd());
2436  InitializationSequence InitSeq(*this, BaseEntity, Kind, Args, NumArgs);
2437  ExprResult BaseInit = InitSeq.Perform(*this, BaseEntity, Kind,
2438                                        MultiExprArg(Args, NumArgs), 0);
2439  if (BaseInit.isInvalid())
2440    return true;
2441
2442  CheckImplicitConversions(BaseInit.get(), InitRange.getBegin());
2443
2444  // C++0x [class.base.init]p7:
2445  //   The initialization of each base and member constitutes a
2446  //   full-expression.
2447  BaseInit = MaybeCreateExprWithCleanups(BaseInit);
2448  if (BaseInit.isInvalid())
2449    return true;
2450
2451  // If we are in a dependent context, template instantiation will
2452  // perform this type-checking again. Just save the arguments that we
2453  // received in a ParenListExpr.
2454  // FIXME: This isn't quite ideal, since our ASTs don't capture all
2455  // of the information that we have about the base
2456  // initializer. However, deconstructing the ASTs is a dicey process,
2457  // and this approach is far more likely to get the corner cases right.
2458  if (CurContext->isDependentContext())
2459    BaseInit = Owned(Init);
2460
2461  return new (Context) CXXCtorInitializer(Context, BaseTInfo,
2462                                          BaseSpec->isVirtual(),
2463                                          InitRange.getBegin(),
2464                                          BaseInit.takeAs<Expr>(),
2465                                          InitRange.getEnd(), EllipsisLoc);
2466}
2467
2468// Create a static_cast\<T&&>(expr).
2469static Expr *CastForMoving(Sema &SemaRef, Expr *E) {
2470  QualType ExprType = E->getType();
2471  QualType TargetType = SemaRef.Context.getRValueReferenceType(ExprType);
2472  SourceLocation ExprLoc = E->getLocStart();
2473  TypeSourceInfo *TargetLoc = SemaRef.Context.getTrivialTypeSourceInfo(
2474      TargetType, ExprLoc);
2475
2476  return SemaRef.BuildCXXNamedCast(ExprLoc, tok::kw_static_cast, TargetLoc, E,
2477                                   SourceRange(ExprLoc, ExprLoc),
2478                                   E->getSourceRange()).take();
2479}
2480
2481/// ImplicitInitializerKind - How an implicit base or member initializer should
2482/// initialize its base or member.
2483enum ImplicitInitializerKind {
2484  IIK_Default,
2485  IIK_Copy,
2486  IIK_Move
2487};
2488
2489static bool
2490BuildImplicitBaseInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
2491                             ImplicitInitializerKind ImplicitInitKind,
2492                             CXXBaseSpecifier *BaseSpec,
2493                             bool IsInheritedVirtualBase,
2494                             CXXCtorInitializer *&CXXBaseInit) {
2495  InitializedEntity InitEntity
2496    = InitializedEntity::InitializeBase(SemaRef.Context, BaseSpec,
2497                                        IsInheritedVirtualBase);
2498
2499  ExprResult BaseInit;
2500
2501  switch (ImplicitInitKind) {
2502  case IIK_Default: {
2503    InitializationKind InitKind
2504      = InitializationKind::CreateDefault(Constructor->getLocation());
2505    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
2506    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind, MultiExprArg());
2507    break;
2508  }
2509
2510  case IIK_Move:
2511  case IIK_Copy: {
2512    bool Moving = ImplicitInitKind == IIK_Move;
2513    ParmVarDecl *Param = Constructor->getParamDecl(0);
2514    QualType ParamType = Param->getType().getNonReferenceType();
2515
2516    Expr *CopyCtorArg =
2517      DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(),
2518                          SourceLocation(), Param, false,
2519                          Constructor->getLocation(), ParamType,
2520                          VK_LValue, 0);
2521
2522    SemaRef.MarkDeclRefReferenced(cast<DeclRefExpr>(CopyCtorArg));
2523
2524    // Cast to the base class to avoid ambiguities.
2525    QualType ArgTy =
2526      SemaRef.Context.getQualifiedType(BaseSpec->getType().getUnqualifiedType(),
2527                                       ParamType.getQualifiers());
2528
2529    if (Moving) {
2530      CopyCtorArg = CastForMoving(SemaRef, CopyCtorArg);
2531    }
2532
2533    CXXCastPath BasePath;
2534    BasePath.push_back(BaseSpec);
2535    CopyCtorArg = SemaRef.ImpCastExprToType(CopyCtorArg, ArgTy,
2536                                            CK_UncheckedDerivedToBase,
2537                                            Moving ? VK_XValue : VK_LValue,
2538                                            &BasePath).take();
2539
2540    InitializationKind InitKind
2541      = InitializationKind::CreateDirect(Constructor->getLocation(),
2542                                         SourceLocation(), SourceLocation());
2543    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind,
2544                                   &CopyCtorArg, 1);
2545    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind,
2546                               MultiExprArg(&CopyCtorArg, 1));
2547    break;
2548  }
2549  }
2550
2551  BaseInit = SemaRef.MaybeCreateExprWithCleanups(BaseInit);
2552  if (BaseInit.isInvalid())
2553    return true;
2554
2555  CXXBaseInit =
2556    new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
2557               SemaRef.Context.getTrivialTypeSourceInfo(BaseSpec->getType(),
2558                                                        SourceLocation()),
2559                                             BaseSpec->isVirtual(),
2560                                             SourceLocation(),
2561                                             BaseInit.takeAs<Expr>(),
2562                                             SourceLocation(),
2563                                             SourceLocation());
2564
2565  return false;
2566}
2567
2568static bool RefersToRValueRef(Expr *MemRef) {
2569  ValueDecl *Referenced = cast<MemberExpr>(MemRef)->getMemberDecl();
2570  return Referenced->getType()->isRValueReferenceType();
2571}
2572
2573static bool
2574BuildImplicitMemberInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
2575                               ImplicitInitializerKind ImplicitInitKind,
2576                               FieldDecl *Field, IndirectFieldDecl *Indirect,
2577                               CXXCtorInitializer *&CXXMemberInit) {
2578  if (Field->isInvalidDecl())
2579    return true;
2580
2581  SourceLocation Loc = Constructor->getLocation();
2582
2583  if (ImplicitInitKind == IIK_Copy || ImplicitInitKind == IIK_Move) {
2584    bool Moving = ImplicitInitKind == IIK_Move;
2585    ParmVarDecl *Param = Constructor->getParamDecl(0);
2586    QualType ParamType = Param->getType().getNonReferenceType();
2587
2588    // Suppress copying zero-width bitfields.
2589    if (Field->isBitField() && Field->getBitWidthValue(SemaRef.Context) == 0)
2590      return false;
2591
2592    Expr *MemberExprBase =
2593      DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(),
2594                          SourceLocation(), Param, false,
2595                          Loc, ParamType, VK_LValue, 0);
2596
2597    SemaRef.MarkDeclRefReferenced(cast<DeclRefExpr>(MemberExprBase));
2598
2599    if (Moving) {
2600      MemberExprBase = CastForMoving(SemaRef, MemberExprBase);
2601    }
2602
2603    // Build a reference to this field within the parameter.
2604    CXXScopeSpec SS;
2605    LookupResult MemberLookup(SemaRef, Field->getDeclName(), Loc,
2606                              Sema::LookupMemberName);
2607    MemberLookup.addDecl(Indirect ? cast<ValueDecl>(Indirect)
2608                                  : cast<ValueDecl>(Field), AS_public);
2609    MemberLookup.resolveKind();
2610    ExprResult CtorArg
2611      = SemaRef.BuildMemberReferenceExpr(MemberExprBase,
2612                                         ParamType, Loc,
2613                                         /*IsArrow=*/false,
2614                                         SS,
2615                                         /*TemplateKWLoc=*/SourceLocation(),
2616                                         /*FirstQualifierInScope=*/0,
2617                                         MemberLookup,
2618                                         /*TemplateArgs=*/0);
2619    if (CtorArg.isInvalid())
2620      return true;
2621
2622    // C++11 [class.copy]p15:
2623    //   - if a member m has rvalue reference type T&&, it is direct-initialized
2624    //     with static_cast<T&&>(x.m);
2625    if (RefersToRValueRef(CtorArg.get())) {
2626      CtorArg = CastForMoving(SemaRef, CtorArg.take());
2627    }
2628
2629    // When the field we are copying is an array, create index variables for
2630    // each dimension of the array. We use these index variables to subscript
2631    // the source array, and other clients (e.g., CodeGen) will perform the
2632    // necessary iteration with these index variables.
2633    SmallVector<VarDecl *, 4> IndexVariables;
2634    QualType BaseType = Field->getType();
2635    QualType SizeType = SemaRef.Context.getSizeType();
2636    bool InitializingArray = false;
2637    while (const ConstantArrayType *Array
2638                          = SemaRef.Context.getAsConstantArrayType(BaseType)) {
2639      InitializingArray = true;
2640      // Create the iteration variable for this array index.
2641      IdentifierInfo *IterationVarName = 0;
2642      {
2643        SmallString<8> Str;
2644        llvm::raw_svector_ostream OS(Str);
2645        OS << "__i" << IndexVariables.size();
2646        IterationVarName = &SemaRef.Context.Idents.get(OS.str());
2647      }
2648      VarDecl *IterationVar
2649        = VarDecl::Create(SemaRef.Context, SemaRef.CurContext, Loc, Loc,
2650                          IterationVarName, SizeType,
2651                        SemaRef.Context.getTrivialTypeSourceInfo(SizeType, Loc),
2652                          SC_None, SC_None);
2653      IndexVariables.push_back(IterationVar);
2654
2655      // Create a reference to the iteration variable.
2656      ExprResult IterationVarRef
2657        = SemaRef.BuildDeclRefExpr(IterationVar, SizeType, VK_LValue, Loc);
2658      assert(!IterationVarRef.isInvalid() &&
2659             "Reference to invented variable cannot fail!");
2660      IterationVarRef = SemaRef.DefaultLvalueConversion(IterationVarRef.take());
2661      assert(!IterationVarRef.isInvalid() &&
2662             "Conversion of invented variable cannot fail!");
2663
2664      // Subscript the array with this iteration variable.
2665      CtorArg = SemaRef.CreateBuiltinArraySubscriptExpr(CtorArg.take(), Loc,
2666                                                        IterationVarRef.take(),
2667                                                        Loc);
2668      if (CtorArg.isInvalid())
2669        return true;
2670
2671      BaseType = Array->getElementType();
2672    }
2673
2674    // The array subscript expression is an lvalue, which is wrong for moving.
2675    if (Moving && InitializingArray)
2676      CtorArg = CastForMoving(SemaRef, CtorArg.take());
2677
2678    // Construct the entity that we will be initializing. For an array, this
2679    // will be first element in the array, which may require several levels
2680    // of array-subscript entities.
2681    SmallVector<InitializedEntity, 4> Entities;
2682    Entities.reserve(1 + IndexVariables.size());
2683    if (Indirect)
2684      Entities.push_back(InitializedEntity::InitializeMember(Indirect));
2685    else
2686      Entities.push_back(InitializedEntity::InitializeMember(Field));
2687    for (unsigned I = 0, N = IndexVariables.size(); I != N; ++I)
2688      Entities.push_back(InitializedEntity::InitializeElement(SemaRef.Context,
2689                                                              0,
2690                                                              Entities.back()));
2691
2692    // Direct-initialize to use the copy constructor.
2693    InitializationKind InitKind =
2694      InitializationKind::CreateDirect(Loc, SourceLocation(), SourceLocation());
2695
2696    Expr *CtorArgE = CtorArg.takeAs<Expr>();
2697    InitializationSequence InitSeq(SemaRef, Entities.back(), InitKind,
2698                                   &CtorArgE, 1);
2699
2700    ExprResult MemberInit
2701      = InitSeq.Perform(SemaRef, Entities.back(), InitKind,
2702                        MultiExprArg(&CtorArgE, 1));
2703    MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
2704    if (MemberInit.isInvalid())
2705      return true;
2706
2707    if (Indirect) {
2708      assert(IndexVariables.size() == 0 &&
2709             "Indirect field improperly initialized");
2710      CXXMemberInit
2711        = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Indirect,
2712                                                   Loc, Loc,
2713                                                   MemberInit.takeAs<Expr>(),
2714                                                   Loc);
2715    } else
2716      CXXMemberInit = CXXCtorInitializer::Create(SemaRef.Context, Field, Loc,
2717                                                 Loc, MemberInit.takeAs<Expr>(),
2718                                                 Loc,
2719                                                 IndexVariables.data(),
2720                                                 IndexVariables.size());
2721    return false;
2722  }
2723
2724  assert(ImplicitInitKind == IIK_Default && "Unhandled implicit init kind!");
2725
2726  QualType FieldBaseElementType =
2727    SemaRef.Context.getBaseElementType(Field->getType());
2728
2729  if (FieldBaseElementType->isRecordType()) {
2730    InitializedEntity InitEntity
2731      = Indirect? InitializedEntity::InitializeMember(Indirect)
2732                : InitializedEntity::InitializeMember(Field);
2733    InitializationKind InitKind =
2734      InitializationKind::CreateDefault(Loc);
2735
2736    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
2737    ExprResult MemberInit =
2738      InitSeq.Perform(SemaRef, InitEntity, InitKind, MultiExprArg());
2739
2740    MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
2741    if (MemberInit.isInvalid())
2742      return true;
2743
2744    if (Indirect)
2745      CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
2746                                                               Indirect, Loc,
2747                                                               Loc,
2748                                                               MemberInit.get(),
2749                                                               Loc);
2750    else
2751      CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
2752                                                               Field, Loc, Loc,
2753                                                               MemberInit.get(),
2754                                                               Loc);
2755    return false;
2756  }
2757
2758  if (!Field->getParent()->isUnion()) {
2759    if (FieldBaseElementType->isReferenceType()) {
2760      SemaRef.Diag(Constructor->getLocation(),
2761                   diag::err_uninitialized_member_in_ctor)
2762      << (int)Constructor->isImplicit()
2763      << SemaRef.Context.getTagDeclType(Constructor->getParent())
2764      << 0 << Field->getDeclName();
2765      SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
2766      return true;
2767    }
2768
2769    if (FieldBaseElementType.isConstQualified()) {
2770      SemaRef.Diag(Constructor->getLocation(),
2771                   diag::err_uninitialized_member_in_ctor)
2772      << (int)Constructor->isImplicit()
2773      << SemaRef.Context.getTagDeclType(Constructor->getParent())
2774      << 1 << Field->getDeclName();
2775      SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
2776      return true;
2777    }
2778  }
2779
2780  if (SemaRef.getLangOpts().ObjCAutoRefCount &&
2781      FieldBaseElementType->isObjCRetainableType() &&
2782      FieldBaseElementType.getObjCLifetime() != Qualifiers::OCL_None &&
2783      FieldBaseElementType.getObjCLifetime() != Qualifiers::OCL_ExplicitNone) {
2784    // ARC:
2785    //   Default-initialize Objective-C pointers to NULL.
2786    CXXMemberInit
2787      = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Field,
2788                                                 Loc, Loc,
2789                 new (SemaRef.Context) ImplicitValueInitExpr(Field->getType()),
2790                                                 Loc);
2791    return false;
2792  }
2793
2794  // Nothing to initialize.
2795  CXXMemberInit = 0;
2796  return false;
2797}
2798
2799namespace {
2800struct BaseAndFieldInfo {
2801  Sema &S;
2802  CXXConstructorDecl *Ctor;
2803  bool AnyErrorsInInits;
2804  ImplicitInitializerKind IIK;
2805  llvm::DenseMap<const void *, CXXCtorInitializer*> AllBaseFields;
2806  SmallVector<CXXCtorInitializer*, 8> AllToInit;
2807
2808  BaseAndFieldInfo(Sema &S, CXXConstructorDecl *Ctor, bool ErrorsInInits)
2809    : S(S), Ctor(Ctor), AnyErrorsInInits(ErrorsInInits) {
2810    bool Generated = Ctor->isImplicit() || Ctor->isDefaulted();
2811    if (Generated && Ctor->isCopyConstructor())
2812      IIK = IIK_Copy;
2813    else if (Generated && Ctor->isMoveConstructor())
2814      IIK = IIK_Move;
2815    else
2816      IIK = IIK_Default;
2817  }
2818
2819  bool isImplicitCopyOrMove() const {
2820    switch (IIK) {
2821    case IIK_Copy:
2822    case IIK_Move:
2823      return true;
2824
2825    case IIK_Default:
2826      return false;
2827    }
2828
2829    llvm_unreachable("Invalid ImplicitInitializerKind!");
2830  }
2831
2832  bool addFieldInitializer(CXXCtorInitializer *Init) {
2833    AllToInit.push_back(Init);
2834
2835    // Check whether this initializer makes the field "used".
2836    if (Init->getInit() && Init->getInit()->HasSideEffects(S.Context))
2837      S.UnusedPrivateFields.remove(Init->getAnyMember());
2838
2839    return false;
2840  }
2841};
2842}
2843
2844/// \brief Determine whether the given indirect field declaration is somewhere
2845/// within an anonymous union.
2846static bool isWithinAnonymousUnion(IndirectFieldDecl *F) {
2847  for (IndirectFieldDecl::chain_iterator C = F->chain_begin(),
2848                                      CEnd = F->chain_end();
2849       C != CEnd; ++C)
2850    if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>((*C)->getDeclContext()))
2851      if (Record->isUnion())
2852        return true;
2853
2854  return false;
2855}
2856
2857/// \brief Determine whether the given type is an incomplete or zero-lenfgth
2858/// array type.
2859static bool isIncompleteOrZeroLengthArrayType(ASTContext &Context, QualType T) {
2860  if (T->isIncompleteArrayType())
2861    return true;
2862
2863  while (const ConstantArrayType *ArrayT = Context.getAsConstantArrayType(T)) {
2864    if (!ArrayT->getSize())
2865      return true;
2866
2867    T = ArrayT->getElementType();
2868  }
2869
2870  return false;
2871}
2872
2873static bool CollectFieldInitializer(Sema &SemaRef, BaseAndFieldInfo &Info,
2874                                    FieldDecl *Field,
2875                                    IndirectFieldDecl *Indirect = 0) {
2876
2877  // Overwhelmingly common case: we have a direct initializer for this field.
2878  if (CXXCtorInitializer *Init = Info.AllBaseFields.lookup(Field))
2879    return Info.addFieldInitializer(Init);
2880
2881  // C++11 [class.base.init]p8: if the entity is a non-static data member that
2882  // has a brace-or-equal-initializer, the entity is initialized as specified
2883  // in [dcl.init].
2884  if (Field->hasInClassInitializer() && !Info.isImplicitCopyOrMove()) {
2885    CXXCtorInitializer *Init;
2886    if (Indirect)
2887      Init = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Indirect,
2888                                                      SourceLocation(),
2889                                                      SourceLocation(), 0,
2890                                                      SourceLocation());
2891    else
2892      Init = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Field,
2893                                                      SourceLocation(),
2894                                                      SourceLocation(), 0,
2895                                                      SourceLocation());
2896    return Info.addFieldInitializer(Init);
2897  }
2898
2899  // Don't build an implicit initializer for union members if none was
2900  // explicitly specified.
2901  if (Field->getParent()->isUnion() ||
2902      (Indirect && isWithinAnonymousUnion(Indirect)))
2903    return false;
2904
2905  // Don't initialize incomplete or zero-length arrays.
2906  if (isIncompleteOrZeroLengthArrayType(SemaRef.Context, Field->getType()))
2907    return false;
2908
2909  // Don't try to build an implicit initializer if there were semantic
2910  // errors in any of the initializers (and therefore we might be
2911  // missing some that the user actually wrote).
2912  if (Info.AnyErrorsInInits || Field->isInvalidDecl())
2913    return false;
2914
2915  CXXCtorInitializer *Init = 0;
2916  if (BuildImplicitMemberInitializer(Info.S, Info.Ctor, Info.IIK, Field,
2917                                     Indirect, Init))
2918    return true;
2919
2920  if (!Init)
2921    return false;
2922
2923  return Info.addFieldInitializer(Init);
2924}
2925
2926bool
2927Sema::SetDelegatingInitializer(CXXConstructorDecl *Constructor,
2928                               CXXCtorInitializer *Initializer) {
2929  assert(Initializer->isDelegatingInitializer());
2930  Constructor->setNumCtorInitializers(1);
2931  CXXCtorInitializer **initializer =
2932    new (Context) CXXCtorInitializer*[1];
2933  memcpy(initializer, &Initializer, sizeof (CXXCtorInitializer*));
2934  Constructor->setCtorInitializers(initializer);
2935
2936  if (CXXDestructorDecl *Dtor = LookupDestructor(Constructor->getParent())) {
2937    MarkFunctionReferenced(Initializer->getSourceLocation(), Dtor);
2938    DiagnoseUseOfDecl(Dtor, Initializer->getSourceLocation());
2939  }
2940
2941  DelegatingCtorDecls.push_back(Constructor);
2942
2943  return false;
2944}
2945
2946bool Sema::SetCtorInitializers(CXXConstructorDecl *Constructor,
2947                               CXXCtorInitializer **Initializers,
2948                               unsigned NumInitializers,
2949                               bool AnyErrors) {
2950  if (Constructor->isDependentContext()) {
2951    // Just store the initializers as written, they will be checked during
2952    // instantiation.
2953    if (NumInitializers > 0) {
2954      Constructor->setNumCtorInitializers(NumInitializers);
2955      CXXCtorInitializer **baseOrMemberInitializers =
2956        new (Context) CXXCtorInitializer*[NumInitializers];
2957      memcpy(baseOrMemberInitializers, Initializers,
2958             NumInitializers * sizeof(CXXCtorInitializer*));
2959      Constructor->setCtorInitializers(baseOrMemberInitializers);
2960    }
2961
2962    return false;
2963  }
2964
2965  BaseAndFieldInfo Info(*this, Constructor, AnyErrors);
2966
2967  // We need to build the initializer AST according to order of construction
2968  // and not what user specified in the Initializers list.
2969  CXXRecordDecl *ClassDecl = Constructor->getParent()->getDefinition();
2970  if (!ClassDecl)
2971    return true;
2972
2973  bool HadError = false;
2974
2975  for (unsigned i = 0; i < NumInitializers; i++) {
2976    CXXCtorInitializer *Member = Initializers[i];
2977
2978    if (Member->isBaseInitializer())
2979      Info.AllBaseFields[Member->getBaseClass()->getAs<RecordType>()] = Member;
2980    else
2981      Info.AllBaseFields[Member->getAnyMember()] = Member;
2982  }
2983
2984  // Keep track of the direct virtual bases.
2985  llvm::SmallPtrSet<CXXBaseSpecifier *, 16> DirectVBases;
2986  for (CXXRecordDecl::base_class_iterator I = ClassDecl->bases_begin(),
2987       E = ClassDecl->bases_end(); I != E; ++I) {
2988    if (I->isVirtual())
2989      DirectVBases.insert(I);
2990  }
2991
2992  // Push virtual bases before others.
2993  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
2994       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
2995
2996    if (CXXCtorInitializer *Value
2997        = Info.AllBaseFields.lookup(VBase->getType()->getAs<RecordType>())) {
2998      Info.AllToInit.push_back(Value);
2999    } else if (!AnyErrors) {
3000      bool IsInheritedVirtualBase = !DirectVBases.count(VBase);
3001      CXXCtorInitializer *CXXBaseInit;
3002      if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
3003                                       VBase, IsInheritedVirtualBase,
3004                                       CXXBaseInit)) {
3005        HadError = true;
3006        continue;
3007      }
3008
3009      Info.AllToInit.push_back(CXXBaseInit);
3010    }
3011  }
3012
3013  // Non-virtual bases.
3014  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
3015       E = ClassDecl->bases_end(); Base != E; ++Base) {
3016    // Virtuals are in the virtual base list and already constructed.
3017    if (Base->isVirtual())
3018      continue;
3019
3020    if (CXXCtorInitializer *Value
3021          = Info.AllBaseFields.lookup(Base->getType()->getAs<RecordType>())) {
3022      Info.AllToInit.push_back(Value);
3023    } else if (!AnyErrors) {
3024      CXXCtorInitializer *CXXBaseInit;
3025      if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
3026                                       Base, /*IsInheritedVirtualBase=*/false,
3027                                       CXXBaseInit)) {
3028        HadError = true;
3029        continue;
3030      }
3031
3032      Info.AllToInit.push_back(CXXBaseInit);
3033    }
3034  }
3035
3036  // Fields.
3037  for (DeclContext::decl_iterator Mem = ClassDecl->decls_begin(),
3038                               MemEnd = ClassDecl->decls_end();
3039       Mem != MemEnd; ++Mem) {
3040    if (FieldDecl *F = dyn_cast<FieldDecl>(*Mem)) {
3041      // C++ [class.bit]p2:
3042      //   A declaration for a bit-field that omits the identifier declares an
3043      //   unnamed bit-field. Unnamed bit-fields are not members and cannot be
3044      //   initialized.
3045      if (F->isUnnamedBitfield())
3046        continue;
3047
3048      // If we're not generating the implicit copy/move constructor, then we'll
3049      // handle anonymous struct/union fields based on their individual
3050      // indirect fields.
3051      if (F->isAnonymousStructOrUnion() && Info.IIK == IIK_Default)
3052        continue;
3053
3054      if (CollectFieldInitializer(*this, Info, F))
3055        HadError = true;
3056      continue;
3057    }
3058
3059    // Beyond this point, we only consider default initialization.
3060    if (Info.IIK != IIK_Default)
3061      continue;
3062
3063    if (IndirectFieldDecl *F = dyn_cast<IndirectFieldDecl>(*Mem)) {
3064      if (F->getType()->isIncompleteArrayType()) {
3065        assert(ClassDecl->hasFlexibleArrayMember() &&
3066               "Incomplete array type is not valid");
3067        continue;
3068      }
3069
3070      // Initialize each field of an anonymous struct individually.
3071      if (CollectFieldInitializer(*this, Info, F->getAnonField(), F))
3072        HadError = true;
3073
3074      continue;
3075    }
3076  }
3077
3078  NumInitializers = Info.AllToInit.size();
3079  if (NumInitializers > 0) {
3080    Constructor->setNumCtorInitializers(NumInitializers);
3081    CXXCtorInitializer **baseOrMemberInitializers =
3082      new (Context) CXXCtorInitializer*[NumInitializers];
3083    memcpy(baseOrMemberInitializers, Info.AllToInit.data(),
3084           NumInitializers * sizeof(CXXCtorInitializer*));
3085    Constructor->setCtorInitializers(baseOrMemberInitializers);
3086
3087    // Constructors implicitly reference the base and member
3088    // destructors.
3089    MarkBaseAndMemberDestructorsReferenced(Constructor->getLocation(),
3090                                           Constructor->getParent());
3091  }
3092
3093  return HadError;
3094}
3095
3096static void *GetKeyForTopLevelField(FieldDecl *Field) {
3097  // For anonymous unions, use the class declaration as the key.
3098  if (const RecordType *RT = Field->getType()->getAs<RecordType>()) {
3099    if (RT->getDecl()->isAnonymousStructOrUnion())
3100      return static_cast<void *>(RT->getDecl());
3101  }
3102  return static_cast<void *>(Field);
3103}
3104
3105static void *GetKeyForBase(ASTContext &Context, QualType BaseType) {
3106  return const_cast<Type*>(Context.getCanonicalType(BaseType).getTypePtr());
3107}
3108
3109static void *GetKeyForMember(ASTContext &Context,
3110                             CXXCtorInitializer *Member) {
3111  if (!Member->isAnyMemberInitializer())
3112    return GetKeyForBase(Context, QualType(Member->getBaseClass(), 0));
3113
3114  // For fields injected into the class via declaration of an anonymous union,
3115  // use its anonymous union class declaration as the unique key.
3116  FieldDecl *Field = Member->getAnyMember();
3117
3118  // If the field is a member of an anonymous struct or union, our key
3119  // is the anonymous record decl that's a direct child of the class.
3120  RecordDecl *RD = Field->getParent();
3121  if (RD->isAnonymousStructOrUnion()) {
3122    while (true) {
3123      RecordDecl *Parent = cast<RecordDecl>(RD->getDeclContext());
3124      if (Parent->isAnonymousStructOrUnion())
3125        RD = Parent;
3126      else
3127        break;
3128    }
3129
3130    return static_cast<void *>(RD);
3131  }
3132
3133  return static_cast<void *>(Field);
3134}
3135
3136static void
3137DiagnoseBaseOrMemInitializerOrder(Sema &SemaRef,
3138                                  const CXXConstructorDecl *Constructor,
3139                                  CXXCtorInitializer **Inits,
3140                                  unsigned NumInits) {
3141  if (Constructor->getDeclContext()->isDependentContext())
3142    return;
3143
3144  // Don't check initializers order unless the warning is enabled at the
3145  // location of at least one initializer.
3146  bool ShouldCheckOrder = false;
3147  for (unsigned InitIndex = 0; InitIndex != NumInits; ++InitIndex) {
3148    CXXCtorInitializer *Init = Inits[InitIndex];
3149    if (SemaRef.Diags.getDiagnosticLevel(diag::warn_initializer_out_of_order,
3150                                         Init->getSourceLocation())
3151          != DiagnosticsEngine::Ignored) {
3152      ShouldCheckOrder = true;
3153      break;
3154    }
3155  }
3156  if (!ShouldCheckOrder)
3157    return;
3158
3159  // Build the list of bases and members in the order that they'll
3160  // actually be initialized.  The explicit initializers should be in
3161  // this same order but may be missing things.
3162  SmallVector<const void*, 32> IdealInitKeys;
3163
3164  const CXXRecordDecl *ClassDecl = Constructor->getParent();
3165
3166  // 1. Virtual bases.
3167  for (CXXRecordDecl::base_class_const_iterator VBase =
3168       ClassDecl->vbases_begin(),
3169       E = ClassDecl->vbases_end(); VBase != E; ++VBase)
3170    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, VBase->getType()));
3171
3172  // 2. Non-virtual bases.
3173  for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin(),
3174       E = ClassDecl->bases_end(); Base != E; ++Base) {
3175    if (Base->isVirtual())
3176      continue;
3177    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, Base->getType()));
3178  }
3179
3180  // 3. Direct fields.
3181  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
3182       E = ClassDecl->field_end(); Field != E; ++Field) {
3183    if (Field->isUnnamedBitfield())
3184      continue;
3185
3186    IdealInitKeys.push_back(GetKeyForTopLevelField(*Field));
3187  }
3188
3189  unsigned NumIdealInits = IdealInitKeys.size();
3190  unsigned IdealIndex = 0;
3191
3192  CXXCtorInitializer *PrevInit = 0;
3193  for (unsigned InitIndex = 0; InitIndex != NumInits; ++InitIndex) {
3194    CXXCtorInitializer *Init = Inits[InitIndex];
3195    void *InitKey = GetKeyForMember(SemaRef.Context, Init);
3196
3197    // Scan forward to try to find this initializer in the idealized
3198    // initializers list.
3199    for (; IdealIndex != NumIdealInits; ++IdealIndex)
3200      if (InitKey == IdealInitKeys[IdealIndex])
3201        break;
3202
3203    // If we didn't find this initializer, it must be because we
3204    // scanned past it on a previous iteration.  That can only
3205    // happen if we're out of order;  emit a warning.
3206    if (IdealIndex == NumIdealInits && PrevInit) {
3207      Sema::SemaDiagnosticBuilder D =
3208        SemaRef.Diag(PrevInit->getSourceLocation(),
3209                     diag::warn_initializer_out_of_order);
3210
3211      if (PrevInit->isAnyMemberInitializer())
3212        D << 0 << PrevInit->getAnyMember()->getDeclName();
3213      else
3214        D << 1 << PrevInit->getTypeSourceInfo()->getType();
3215
3216      if (Init->isAnyMemberInitializer())
3217        D << 0 << Init->getAnyMember()->getDeclName();
3218      else
3219        D << 1 << Init->getTypeSourceInfo()->getType();
3220
3221      // Move back to the initializer's location in the ideal list.
3222      for (IdealIndex = 0; IdealIndex != NumIdealInits; ++IdealIndex)
3223        if (InitKey == IdealInitKeys[IdealIndex])
3224          break;
3225
3226      assert(IdealIndex != NumIdealInits &&
3227             "initializer not found in initializer list");
3228    }
3229
3230    PrevInit = Init;
3231  }
3232}
3233
3234namespace {
3235bool CheckRedundantInit(Sema &S,
3236                        CXXCtorInitializer *Init,
3237                        CXXCtorInitializer *&PrevInit) {
3238  if (!PrevInit) {
3239    PrevInit = Init;
3240    return false;
3241  }
3242
3243  if (FieldDecl *Field = Init->getMember())
3244    S.Diag(Init->getSourceLocation(),
3245           diag::err_multiple_mem_initialization)
3246      << Field->getDeclName()
3247      << Init->getSourceRange();
3248  else {
3249    const Type *BaseClass = Init->getBaseClass();
3250    assert(BaseClass && "neither field nor base");
3251    S.Diag(Init->getSourceLocation(),
3252           diag::err_multiple_base_initialization)
3253      << QualType(BaseClass, 0)
3254      << Init->getSourceRange();
3255  }
3256  S.Diag(PrevInit->getSourceLocation(), diag::note_previous_initializer)
3257    << 0 << PrevInit->getSourceRange();
3258
3259  return true;
3260}
3261
3262typedef std::pair<NamedDecl *, CXXCtorInitializer *> UnionEntry;
3263typedef llvm::DenseMap<RecordDecl*, UnionEntry> RedundantUnionMap;
3264
3265bool CheckRedundantUnionInit(Sema &S,
3266                             CXXCtorInitializer *Init,
3267                             RedundantUnionMap &Unions) {
3268  FieldDecl *Field = Init->getAnyMember();
3269  RecordDecl *Parent = Field->getParent();
3270  NamedDecl *Child = Field;
3271
3272  while (Parent->isAnonymousStructOrUnion() || Parent->isUnion()) {
3273    if (Parent->isUnion()) {
3274      UnionEntry &En = Unions[Parent];
3275      if (En.first && En.first != Child) {
3276        S.Diag(Init->getSourceLocation(),
3277               diag::err_multiple_mem_union_initialization)
3278          << Field->getDeclName()
3279          << Init->getSourceRange();
3280        S.Diag(En.second->getSourceLocation(), diag::note_previous_initializer)
3281          << 0 << En.second->getSourceRange();
3282        return true;
3283      }
3284      if (!En.first) {
3285        En.first = Child;
3286        En.second = Init;
3287      }
3288      if (!Parent->isAnonymousStructOrUnion())
3289        return false;
3290    }
3291
3292    Child = Parent;
3293    Parent = cast<RecordDecl>(Parent->getDeclContext());
3294  }
3295
3296  return false;
3297}
3298}
3299
3300/// ActOnMemInitializers - Handle the member initializers for a constructor.
3301void Sema::ActOnMemInitializers(Decl *ConstructorDecl,
3302                                SourceLocation ColonLoc,
3303                                CXXCtorInitializer **meminits,
3304                                unsigned NumMemInits,
3305                                bool AnyErrors) {
3306  if (!ConstructorDecl)
3307    return;
3308
3309  AdjustDeclIfTemplate(ConstructorDecl);
3310
3311  CXXConstructorDecl *Constructor
3312    = dyn_cast<CXXConstructorDecl>(ConstructorDecl);
3313
3314  if (!Constructor) {
3315    Diag(ColonLoc, diag::err_only_constructors_take_base_inits);
3316    return;
3317  }
3318
3319  CXXCtorInitializer **MemInits =
3320    reinterpret_cast<CXXCtorInitializer **>(meminits);
3321
3322  // Mapping for the duplicate initializers check.
3323  // For member initializers, this is keyed with a FieldDecl*.
3324  // For base initializers, this is keyed with a Type*.
3325  llvm::DenseMap<void*, CXXCtorInitializer *> Members;
3326
3327  // Mapping for the inconsistent anonymous-union initializers check.
3328  RedundantUnionMap MemberUnions;
3329
3330  bool HadError = false;
3331  for (unsigned i = 0; i < NumMemInits; i++) {
3332    CXXCtorInitializer *Init = MemInits[i];
3333
3334    // Set the source order index.
3335    Init->setSourceOrder(i);
3336
3337    if (Init->isAnyMemberInitializer()) {
3338      FieldDecl *Field = Init->getAnyMember();
3339      if (CheckRedundantInit(*this, Init, Members[Field]) ||
3340          CheckRedundantUnionInit(*this, Init, MemberUnions))
3341        HadError = true;
3342    } else if (Init->isBaseInitializer()) {
3343      void *Key = GetKeyForBase(Context, QualType(Init->getBaseClass(), 0));
3344      if (CheckRedundantInit(*this, Init, Members[Key]))
3345        HadError = true;
3346    } else {
3347      assert(Init->isDelegatingInitializer());
3348      // This must be the only initializer
3349      if (NumMemInits != 1) {
3350        Diag(Init->getSourceLocation(),
3351             diag::err_delegating_initializer_alone)
3352          << Init->getSourceRange() << MemInits[i ? 0 : 1]->getSourceRange();
3353        // We will treat this as being the only initializer.
3354      }
3355      SetDelegatingInitializer(Constructor, MemInits[i]);
3356      // Return immediately as the initializer is set.
3357      return;
3358    }
3359  }
3360
3361  if (HadError)
3362    return;
3363
3364  DiagnoseBaseOrMemInitializerOrder(*this, Constructor, MemInits, NumMemInits);
3365
3366  SetCtorInitializers(Constructor, MemInits, NumMemInits, AnyErrors);
3367}
3368
3369void
3370Sema::MarkBaseAndMemberDestructorsReferenced(SourceLocation Location,
3371                                             CXXRecordDecl *ClassDecl) {
3372  // Ignore dependent contexts. Also ignore unions, since their members never
3373  // have destructors implicitly called.
3374  if (ClassDecl->isDependentContext() || ClassDecl->isUnion())
3375    return;
3376
3377  // FIXME: all the access-control diagnostics are positioned on the
3378  // field/base declaration.  That's probably good; that said, the
3379  // user might reasonably want to know why the destructor is being
3380  // emitted, and we currently don't say.
3381
3382  // Non-static data members.
3383  for (CXXRecordDecl::field_iterator I = ClassDecl->field_begin(),
3384       E = ClassDecl->field_end(); I != E; ++I) {
3385    FieldDecl *Field = *I;
3386    if (Field->isInvalidDecl())
3387      continue;
3388
3389    // Don't destroy incomplete or zero-length arrays.
3390    if (isIncompleteOrZeroLengthArrayType(Context, Field->getType()))
3391      continue;
3392
3393    QualType FieldType = Context.getBaseElementType(Field->getType());
3394
3395    const RecordType* RT = FieldType->getAs<RecordType>();
3396    if (!RT)
3397      continue;
3398
3399    CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
3400    if (FieldClassDecl->isInvalidDecl())
3401      continue;
3402    if (FieldClassDecl->hasIrrelevantDestructor())
3403      continue;
3404    // The destructor for an implicit anonymous union member is never invoked.
3405    if (FieldClassDecl->isUnion() && FieldClassDecl->isAnonymousStructOrUnion())
3406      continue;
3407
3408    CXXDestructorDecl *Dtor = LookupDestructor(FieldClassDecl);
3409    assert(Dtor && "No dtor found for FieldClassDecl!");
3410    CheckDestructorAccess(Field->getLocation(), Dtor,
3411                          PDiag(diag::err_access_dtor_field)
3412                            << Field->getDeclName()
3413                            << FieldType);
3414
3415    MarkFunctionReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
3416    DiagnoseUseOfDecl(Dtor, Location);
3417  }
3418
3419  llvm::SmallPtrSet<const RecordType *, 8> DirectVirtualBases;
3420
3421  // Bases.
3422  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
3423       E = ClassDecl->bases_end(); Base != E; ++Base) {
3424    // Bases are always records in a well-formed non-dependent class.
3425    const RecordType *RT = Base->getType()->getAs<RecordType>();
3426
3427    // Remember direct virtual bases.
3428    if (Base->isVirtual())
3429      DirectVirtualBases.insert(RT);
3430
3431    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
3432    // If our base class is invalid, we probably can't get its dtor anyway.
3433    if (BaseClassDecl->isInvalidDecl())
3434      continue;
3435    if (BaseClassDecl->hasIrrelevantDestructor())
3436      continue;
3437
3438    CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
3439    assert(Dtor && "No dtor found for BaseClassDecl!");
3440
3441    // FIXME: caret should be on the start of the class name
3442    CheckDestructorAccess(Base->getLocStart(), Dtor,
3443                          PDiag(diag::err_access_dtor_base)
3444                            << Base->getType()
3445                            << Base->getSourceRange(),
3446                          Context.getTypeDeclType(ClassDecl));
3447
3448    MarkFunctionReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
3449    DiagnoseUseOfDecl(Dtor, Location);
3450  }
3451
3452  // Virtual bases.
3453  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
3454       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
3455
3456    // Bases are always records in a well-formed non-dependent class.
3457    const RecordType *RT = VBase->getType()->castAs<RecordType>();
3458
3459    // Ignore direct virtual bases.
3460    if (DirectVirtualBases.count(RT))
3461      continue;
3462
3463    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
3464    // If our base class is invalid, we probably can't get its dtor anyway.
3465    if (BaseClassDecl->isInvalidDecl())
3466      continue;
3467    if (BaseClassDecl->hasIrrelevantDestructor())
3468      continue;
3469
3470    CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
3471    assert(Dtor && "No dtor found for BaseClassDecl!");
3472    CheckDestructorAccess(ClassDecl->getLocation(), Dtor,
3473                          PDiag(diag::err_access_dtor_vbase)
3474                            << VBase->getType(),
3475                          Context.getTypeDeclType(ClassDecl));
3476
3477    MarkFunctionReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
3478    DiagnoseUseOfDecl(Dtor, Location);
3479  }
3480}
3481
3482void Sema::ActOnDefaultCtorInitializers(Decl *CDtorDecl) {
3483  if (!CDtorDecl)
3484    return;
3485
3486  if (CXXConstructorDecl *Constructor
3487      = dyn_cast<CXXConstructorDecl>(CDtorDecl))
3488    SetCtorInitializers(Constructor, 0, 0, /*AnyErrors=*/false);
3489}
3490
3491bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
3492                                  unsigned DiagID, AbstractDiagSelID SelID) {
3493  class NonAbstractTypeDiagnoser : public TypeDiagnoser {
3494    unsigned DiagID;
3495    AbstractDiagSelID SelID;
3496
3497  public:
3498    NonAbstractTypeDiagnoser(unsigned DiagID, AbstractDiagSelID SelID)
3499      : TypeDiagnoser(DiagID == 0), DiagID(DiagID), SelID(SelID) { }
3500
3501    virtual void diagnose(Sema &S, SourceLocation Loc, QualType T) {
3502      if (Suppressed) return;
3503      if (SelID == -1)
3504        S.Diag(Loc, DiagID) << T;
3505      else
3506        S.Diag(Loc, DiagID) << SelID << T;
3507    }
3508  } Diagnoser(DiagID, SelID);
3509
3510  return RequireNonAbstractType(Loc, T, Diagnoser);
3511}
3512
3513bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
3514                                  TypeDiagnoser &Diagnoser) {
3515  if (!getLangOpts().CPlusPlus)
3516    return false;
3517
3518  if (const ArrayType *AT = Context.getAsArrayType(T))
3519    return RequireNonAbstractType(Loc, AT->getElementType(), Diagnoser);
3520
3521  if (const PointerType *PT = T->getAs<PointerType>()) {
3522    // Find the innermost pointer type.
3523    while (const PointerType *T = PT->getPointeeType()->getAs<PointerType>())
3524      PT = T;
3525
3526    if (const ArrayType *AT = Context.getAsArrayType(PT->getPointeeType()))
3527      return RequireNonAbstractType(Loc, AT->getElementType(), Diagnoser);
3528  }
3529
3530  const RecordType *RT = T->getAs<RecordType>();
3531  if (!RT)
3532    return false;
3533
3534  const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
3535
3536  // We can't answer whether something is abstract until it has a
3537  // definition.  If it's currently being defined, we'll walk back
3538  // over all the declarations when we have a full definition.
3539  const CXXRecordDecl *Def = RD->getDefinition();
3540  if (!Def || Def->isBeingDefined())
3541    return false;
3542
3543  if (!RD->isAbstract())
3544    return false;
3545
3546  Diagnoser.diagnose(*this, Loc, T);
3547  DiagnoseAbstractType(RD);
3548
3549  return true;
3550}
3551
3552void Sema::DiagnoseAbstractType(const CXXRecordDecl *RD) {
3553  // Check if we've already emitted the list of pure virtual functions
3554  // for this class.
3555  if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD))
3556    return;
3557
3558  CXXFinalOverriderMap FinalOverriders;
3559  RD->getFinalOverriders(FinalOverriders);
3560
3561  // Keep a set of seen pure methods so we won't diagnose the same method
3562  // more than once.
3563  llvm::SmallPtrSet<const CXXMethodDecl *, 8> SeenPureMethods;
3564
3565  for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
3566                                   MEnd = FinalOverriders.end();
3567       M != MEnd;
3568       ++M) {
3569    for (OverridingMethods::iterator SO = M->second.begin(),
3570                                  SOEnd = M->second.end();
3571         SO != SOEnd; ++SO) {
3572      // C++ [class.abstract]p4:
3573      //   A class is abstract if it contains or inherits at least one
3574      //   pure virtual function for which the final overrider is pure
3575      //   virtual.
3576
3577      //
3578      if (SO->second.size() != 1)
3579        continue;
3580
3581      if (!SO->second.front().Method->isPure())
3582        continue;
3583
3584      if (!SeenPureMethods.insert(SO->second.front().Method))
3585        continue;
3586
3587      Diag(SO->second.front().Method->getLocation(),
3588           diag::note_pure_virtual_function)
3589        << SO->second.front().Method->getDeclName() << RD->getDeclName();
3590    }
3591  }
3592
3593  if (!PureVirtualClassDiagSet)
3594    PureVirtualClassDiagSet.reset(new RecordDeclSetTy);
3595  PureVirtualClassDiagSet->insert(RD);
3596}
3597
3598namespace {
3599struct AbstractUsageInfo {
3600  Sema &S;
3601  CXXRecordDecl *Record;
3602  CanQualType AbstractType;
3603  bool Invalid;
3604
3605  AbstractUsageInfo(Sema &S, CXXRecordDecl *Record)
3606    : S(S), Record(Record),
3607      AbstractType(S.Context.getCanonicalType(
3608                   S.Context.getTypeDeclType(Record))),
3609      Invalid(false) {}
3610
3611  void DiagnoseAbstractType() {
3612    if (Invalid) return;
3613    S.DiagnoseAbstractType(Record);
3614    Invalid = true;
3615  }
3616
3617  void CheckType(const NamedDecl *D, TypeLoc TL, Sema::AbstractDiagSelID Sel);
3618};
3619
3620struct CheckAbstractUsage {
3621  AbstractUsageInfo &Info;
3622  const NamedDecl *Ctx;
3623
3624  CheckAbstractUsage(AbstractUsageInfo &Info, const NamedDecl *Ctx)
3625    : Info(Info), Ctx(Ctx) {}
3626
3627  void Visit(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
3628    switch (TL.getTypeLocClass()) {
3629#define ABSTRACT_TYPELOC(CLASS, PARENT)
3630#define TYPELOC(CLASS, PARENT) \
3631    case TypeLoc::CLASS: Check(cast<CLASS##TypeLoc>(TL), Sel); break;
3632#include "clang/AST/TypeLocNodes.def"
3633    }
3634  }
3635
3636  void Check(FunctionProtoTypeLoc TL, Sema::AbstractDiagSelID Sel) {
3637    Visit(TL.getResultLoc(), Sema::AbstractReturnType);
3638    for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
3639      if (!TL.getArg(I))
3640        continue;
3641
3642      TypeSourceInfo *TSI = TL.getArg(I)->getTypeSourceInfo();
3643      if (TSI) Visit(TSI->getTypeLoc(), Sema::AbstractParamType);
3644    }
3645  }
3646
3647  void Check(ArrayTypeLoc TL, Sema::AbstractDiagSelID Sel) {
3648    Visit(TL.getElementLoc(), Sema::AbstractArrayType);
3649  }
3650
3651  void Check(TemplateSpecializationTypeLoc TL, Sema::AbstractDiagSelID Sel) {
3652    // Visit the type parameters from a permissive context.
3653    for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
3654      TemplateArgumentLoc TAL = TL.getArgLoc(I);
3655      if (TAL.getArgument().getKind() == TemplateArgument::Type)
3656        if (TypeSourceInfo *TSI = TAL.getTypeSourceInfo())
3657          Visit(TSI->getTypeLoc(), Sema::AbstractNone);
3658      // TODO: other template argument types?
3659    }
3660  }
3661
3662  // Visit pointee types from a permissive context.
3663#define CheckPolymorphic(Type) \
3664  void Check(Type TL, Sema::AbstractDiagSelID Sel) { \
3665    Visit(TL.getNextTypeLoc(), Sema::AbstractNone); \
3666  }
3667  CheckPolymorphic(PointerTypeLoc)
3668  CheckPolymorphic(ReferenceTypeLoc)
3669  CheckPolymorphic(MemberPointerTypeLoc)
3670  CheckPolymorphic(BlockPointerTypeLoc)
3671  CheckPolymorphic(AtomicTypeLoc)
3672
3673  /// Handle all the types we haven't given a more specific
3674  /// implementation for above.
3675  void Check(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
3676    // Every other kind of type that we haven't called out already
3677    // that has an inner type is either (1) sugar or (2) contains that
3678    // inner type in some way as a subobject.
3679    if (TypeLoc Next = TL.getNextTypeLoc())
3680      return Visit(Next, Sel);
3681
3682    // If there's no inner type and we're in a permissive context,
3683    // don't diagnose.
3684    if (Sel == Sema::AbstractNone) return;
3685
3686    // Check whether the type matches the abstract type.
3687    QualType T = TL.getType();
3688    if (T->isArrayType()) {
3689      Sel = Sema::AbstractArrayType;
3690      T = Info.S.Context.getBaseElementType(T);
3691    }
3692    CanQualType CT = T->getCanonicalTypeUnqualified().getUnqualifiedType();
3693    if (CT != Info.AbstractType) return;
3694
3695    // It matched; do some magic.
3696    if (Sel == Sema::AbstractArrayType) {
3697      Info.S.Diag(Ctx->getLocation(), diag::err_array_of_abstract_type)
3698        << T << TL.getSourceRange();
3699    } else {
3700      Info.S.Diag(Ctx->getLocation(), diag::err_abstract_type_in_decl)
3701        << Sel << T << TL.getSourceRange();
3702    }
3703    Info.DiagnoseAbstractType();
3704  }
3705};
3706
3707void AbstractUsageInfo::CheckType(const NamedDecl *D, TypeLoc TL,
3708                                  Sema::AbstractDiagSelID Sel) {
3709  CheckAbstractUsage(*this, D).Visit(TL, Sel);
3710}
3711
3712}
3713
3714/// Check for invalid uses of an abstract type in a method declaration.
3715static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
3716                                    CXXMethodDecl *MD) {
3717  // No need to do the check on definitions, which require that
3718  // the return/param types be complete.
3719  if (MD->doesThisDeclarationHaveABody())
3720    return;
3721
3722  // For safety's sake, just ignore it if we don't have type source
3723  // information.  This should never happen for non-implicit methods,
3724  // but...
3725  if (TypeSourceInfo *TSI = MD->getTypeSourceInfo())
3726    Info.CheckType(MD, TSI->getTypeLoc(), Sema::AbstractNone);
3727}
3728
3729/// Check for invalid uses of an abstract type within a class definition.
3730static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
3731                                    CXXRecordDecl *RD) {
3732  for (CXXRecordDecl::decl_iterator
3733         I = RD->decls_begin(), E = RD->decls_end(); I != E; ++I) {
3734    Decl *D = *I;
3735    if (D->isImplicit()) continue;
3736
3737    // Methods and method templates.
3738    if (isa<CXXMethodDecl>(D)) {
3739      CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(D));
3740    } else if (isa<FunctionTemplateDecl>(D)) {
3741      FunctionDecl *FD = cast<FunctionTemplateDecl>(D)->getTemplatedDecl();
3742      CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(FD));
3743
3744    // Fields and static variables.
3745    } else if (isa<FieldDecl>(D)) {
3746      FieldDecl *FD = cast<FieldDecl>(D);
3747      if (TypeSourceInfo *TSI = FD->getTypeSourceInfo())
3748        Info.CheckType(FD, TSI->getTypeLoc(), Sema::AbstractFieldType);
3749    } else if (isa<VarDecl>(D)) {
3750      VarDecl *VD = cast<VarDecl>(D);
3751      if (TypeSourceInfo *TSI = VD->getTypeSourceInfo())
3752        Info.CheckType(VD, TSI->getTypeLoc(), Sema::AbstractVariableType);
3753
3754    // Nested classes and class templates.
3755    } else if (isa<CXXRecordDecl>(D)) {
3756      CheckAbstractClassUsage(Info, cast<CXXRecordDecl>(D));
3757    } else if (isa<ClassTemplateDecl>(D)) {
3758      CheckAbstractClassUsage(Info,
3759                             cast<ClassTemplateDecl>(D)->getTemplatedDecl());
3760    }
3761  }
3762}
3763
3764/// \brief Perform semantic checks on a class definition that has been
3765/// completing, introducing implicitly-declared members, checking for
3766/// abstract types, etc.
3767void Sema::CheckCompletedCXXClass(CXXRecordDecl *Record) {
3768  if (!Record)
3769    return;
3770
3771  if (Record->isAbstract() && !Record->isInvalidDecl()) {
3772    AbstractUsageInfo Info(*this, Record);
3773    CheckAbstractClassUsage(Info, Record);
3774  }
3775
3776  // If this is not an aggregate type and has no user-declared constructor,
3777  // complain about any non-static data members of reference or const scalar
3778  // type, since they will never get initializers.
3779  if (!Record->isInvalidDecl() && !Record->isDependentType() &&
3780      !Record->isAggregate() && !Record->hasUserDeclaredConstructor() &&
3781      !Record->isLambda()) {
3782    bool Complained = false;
3783    for (RecordDecl::field_iterator F = Record->field_begin(),
3784                                 FEnd = Record->field_end();
3785         F != FEnd; ++F) {
3786      if (F->hasInClassInitializer() || F->isUnnamedBitfield())
3787        continue;
3788
3789      if (F->getType()->isReferenceType() ||
3790          (F->getType().isConstQualified() && F->getType()->isScalarType())) {
3791        if (!Complained) {
3792          Diag(Record->getLocation(), diag::warn_no_constructor_for_refconst)
3793            << Record->getTagKind() << Record;
3794          Complained = true;
3795        }
3796
3797        Diag(F->getLocation(), diag::note_refconst_member_not_initialized)
3798          << F->getType()->isReferenceType()
3799          << F->getDeclName();
3800      }
3801    }
3802  }
3803
3804  if (Record->isDynamicClass() && !Record->isDependentType())
3805    DynamicClasses.push_back(Record);
3806
3807  if (Record->getIdentifier()) {
3808    // C++ [class.mem]p13:
3809    //   If T is the name of a class, then each of the following shall have a
3810    //   name different from T:
3811    //     - every member of every anonymous union that is a member of class T.
3812    //
3813    // C++ [class.mem]p14:
3814    //   In addition, if class T has a user-declared constructor (12.1), every
3815    //   non-static data member of class T shall have a name different from T.
3816    for (DeclContext::lookup_result R = Record->lookup(Record->getDeclName());
3817         R.first != R.second; ++R.first) {
3818      NamedDecl *D = *R.first;
3819      if ((isa<FieldDecl>(D) && Record->hasUserDeclaredConstructor()) ||
3820          isa<IndirectFieldDecl>(D)) {
3821        Diag(D->getLocation(), diag::err_member_name_of_class)
3822          << D->getDeclName();
3823        break;
3824      }
3825    }
3826  }
3827
3828  // Warn if the class has virtual methods but non-virtual public destructor.
3829  if (Record->isPolymorphic() && !Record->isDependentType()) {
3830    CXXDestructorDecl *dtor = Record->getDestructor();
3831    if (!dtor || (!dtor->isVirtual() && dtor->getAccess() == AS_public))
3832      Diag(dtor ? dtor->getLocation() : Record->getLocation(),
3833           diag::warn_non_virtual_dtor) << Context.getRecordType(Record);
3834  }
3835
3836  // See if a method overloads virtual methods in a base
3837  /// class without overriding any.
3838  if (!Record->isDependentType()) {
3839    for (CXXRecordDecl::method_iterator M = Record->method_begin(),
3840                                     MEnd = Record->method_end();
3841         M != MEnd; ++M) {
3842      if (!M->isStatic())
3843        DiagnoseHiddenVirtualMethods(Record, *M);
3844    }
3845  }
3846
3847  // C++0x [dcl.constexpr]p8: A constexpr specifier for a non-static member
3848  // function that is not a constructor declares that member function to be
3849  // const. [...] The class of which that function is a member shall be
3850  // a literal type.
3851  //
3852  // If the class has virtual bases, any constexpr members will already have
3853  // been diagnosed by the checks performed on the member declaration, so
3854  // suppress this (less useful) diagnostic.
3855  if (LangOpts.CPlusPlus0x && !Record->isDependentType() &&
3856      !Record->isLiteral() && !Record->getNumVBases()) {
3857    for (CXXRecordDecl::method_iterator M = Record->method_begin(),
3858                                     MEnd = Record->method_end();
3859         M != MEnd; ++M) {
3860      if (M->isConstexpr() && M->isInstance() && !isa<CXXConstructorDecl>(*M)) {
3861        switch (Record->getTemplateSpecializationKind()) {
3862        case TSK_ImplicitInstantiation:
3863        case TSK_ExplicitInstantiationDeclaration:
3864        case TSK_ExplicitInstantiationDefinition:
3865          // If a template instantiates to a non-literal type, but its members
3866          // instantiate to constexpr functions, the template is technically
3867          // ill-formed, but we allow it for sanity.
3868          continue;
3869
3870        case TSK_Undeclared:
3871        case TSK_ExplicitSpecialization:
3872          RequireLiteralType(M->getLocation(), Context.getRecordType(Record),
3873                             diag::err_constexpr_method_non_literal);
3874          break;
3875        }
3876
3877        // Only produce one error per class.
3878        break;
3879      }
3880    }
3881  }
3882
3883  // Declare inherited constructors. We do this eagerly here because:
3884  // - The standard requires an eager diagnostic for conflicting inherited
3885  //   constructors from different classes.
3886  // - The lazy declaration of the other implicit constructors is so as to not
3887  //   waste space and performance on classes that are not meant to be
3888  //   instantiated (e.g. meta-functions). This doesn't apply to classes that
3889  //   have inherited constructors.
3890  DeclareInheritedConstructors(Record);
3891}
3892
3893void Sema::CheckExplicitlyDefaultedMethods(CXXRecordDecl *Record) {
3894  for (CXXRecordDecl::method_iterator MI = Record->method_begin(),
3895                                      ME = Record->method_end();
3896       MI != ME; ++MI)
3897    if (!MI->isInvalidDecl() && MI->isExplicitlyDefaulted())
3898      CheckExplicitlyDefaultedSpecialMember(*MI);
3899}
3900
3901/// Is the special member function which would be selected to perform the
3902/// specified operation on the specified class type a constexpr constructor?
3903static bool specialMemberIsConstexpr(Sema &S, CXXRecordDecl *ClassDecl,
3904                                     Sema::CXXSpecialMember CSM,
3905                                     bool ConstArg) {
3906  Sema::SpecialMemberOverloadResult *SMOR =
3907      S.LookupSpecialMember(ClassDecl, CSM, ConstArg,
3908                            false, false, false, false);
3909  if (!SMOR || !SMOR->getMethod())
3910    // A constructor we wouldn't select can't be "involved in initializing"
3911    // anything.
3912    return true;
3913  return SMOR->getMethod()->isConstexpr();
3914}
3915
3916/// Determine whether the specified special member function would be constexpr
3917/// if it were implicitly defined.
3918static bool defaultedSpecialMemberIsConstexpr(Sema &S, CXXRecordDecl *ClassDecl,
3919                                              Sema::CXXSpecialMember CSM,
3920                                              bool ConstArg) {
3921  if (!S.getLangOpts().CPlusPlus0x)
3922    return false;
3923
3924  // C++11 [dcl.constexpr]p4:
3925  // In the definition of a constexpr constructor [...]
3926  switch (CSM) {
3927  case Sema::CXXDefaultConstructor:
3928    // Since default constructor lookup is essentially trivial (and cannot
3929    // involve, for instance, template instantiation), we compute whether a
3930    // defaulted default constructor is constexpr directly within CXXRecordDecl.
3931    //
3932    // This is important for performance; we need to know whether the default
3933    // constructor is constexpr to determine whether the type is a literal type.
3934    return ClassDecl->defaultedDefaultConstructorIsConstexpr();
3935
3936  case Sema::CXXCopyConstructor:
3937  case Sema::CXXMoveConstructor:
3938    // For copy or move constructors, we need to perform overload resolution.
3939    break;
3940
3941  case Sema::CXXCopyAssignment:
3942  case Sema::CXXMoveAssignment:
3943  case Sema::CXXDestructor:
3944  case Sema::CXXInvalid:
3945    return false;
3946  }
3947
3948  //   -- if the class is a non-empty union, or for each non-empty anonymous
3949  //      union member of a non-union class, exactly one non-static data member
3950  //      shall be initialized; [DR1359]
3951  //
3952  // If we squint, this is guaranteed, since exactly one non-static data member
3953  // will be initialized (if the constructor isn't deleted), we just don't know
3954  // which one.
3955  if (ClassDecl->isUnion())
3956    return true;
3957
3958  //   -- the class shall not have any virtual base classes;
3959  if (ClassDecl->getNumVBases())
3960    return false;
3961
3962  //   -- every constructor involved in initializing [...] base class
3963  //      sub-objects shall be a constexpr constructor;
3964  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
3965                                       BEnd = ClassDecl->bases_end();
3966       B != BEnd; ++B) {
3967    const RecordType *BaseType = B->getType()->getAs<RecordType>();
3968    if (!BaseType) continue;
3969
3970    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
3971    if (!specialMemberIsConstexpr(S, BaseClassDecl, CSM, ConstArg))
3972      return false;
3973  }
3974
3975  //   -- every constructor involved in initializing non-static data members
3976  //      [...] shall be a constexpr constructor;
3977  //   -- every non-static data member and base class sub-object shall be
3978  //      initialized
3979  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
3980                               FEnd = ClassDecl->field_end();
3981       F != FEnd; ++F) {
3982    if (F->isInvalidDecl())
3983      continue;
3984    if (const RecordType *RecordTy =
3985            S.Context.getBaseElementType(F->getType())->getAs<RecordType>()) {
3986      CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
3987      if (!specialMemberIsConstexpr(S, FieldRecDecl, CSM, ConstArg))
3988        return false;
3989    }
3990  }
3991
3992  // All OK, it's constexpr!
3993  return true;
3994}
3995
3996static Sema::ImplicitExceptionSpecification
3997computeImplicitExceptionSpec(Sema &S, SourceLocation Loc, CXXMethodDecl *MD) {
3998  switch (S.getSpecialMember(MD)) {
3999  case Sema::CXXDefaultConstructor:
4000    return S.ComputeDefaultedDefaultCtorExceptionSpec(Loc, MD);
4001  case Sema::CXXCopyConstructor:
4002    return S.ComputeDefaultedCopyCtorExceptionSpec(MD);
4003  case Sema::CXXCopyAssignment:
4004    return S.ComputeDefaultedCopyAssignmentExceptionSpec(MD);
4005  case Sema::CXXMoveConstructor:
4006    return S.ComputeDefaultedMoveCtorExceptionSpec(MD);
4007  case Sema::CXXMoveAssignment:
4008    return S.ComputeDefaultedMoveAssignmentExceptionSpec(MD);
4009  case Sema::CXXDestructor:
4010    return S.ComputeDefaultedDtorExceptionSpec(MD);
4011  case Sema::CXXInvalid:
4012    break;
4013  }
4014  llvm_unreachable("only special members have implicit exception specs");
4015}
4016
4017static void
4018updateExceptionSpec(Sema &S, FunctionDecl *FD, const FunctionProtoType *FPT,
4019                    const Sema::ImplicitExceptionSpecification &ExceptSpec) {
4020  FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
4021  ExceptSpec.getEPI(EPI);
4022  const FunctionProtoType *NewFPT = cast<FunctionProtoType>(
4023    S.Context.getFunctionType(FPT->getResultType(), FPT->arg_type_begin(),
4024                              FPT->getNumArgs(), EPI));
4025  FD->setType(QualType(NewFPT, 0));
4026}
4027
4028void Sema::EvaluateImplicitExceptionSpec(SourceLocation Loc, CXXMethodDecl *MD) {
4029  const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
4030  if (FPT->getExceptionSpecType() != EST_Unevaluated)
4031    return;
4032
4033  // Evaluate the exception specification.
4034  ImplicitExceptionSpecification ExceptSpec =
4035      computeImplicitExceptionSpec(*this, Loc, MD);
4036
4037  // Update the type of the special member to use it.
4038  updateExceptionSpec(*this, MD, FPT, ExceptSpec);
4039
4040  // A user-provided destructor can be defined outside the class. When that
4041  // happens, be sure to update the exception specification on both
4042  // declarations.
4043  const FunctionProtoType *CanonicalFPT =
4044    MD->getCanonicalDecl()->getType()->castAs<FunctionProtoType>();
4045  if (CanonicalFPT->getExceptionSpecType() == EST_Unevaluated)
4046    updateExceptionSpec(*this, MD->getCanonicalDecl(),
4047                        CanonicalFPT, ExceptSpec);
4048}
4049
4050static bool isImplicitCopyCtorArgConst(Sema &S, CXXRecordDecl *ClassDecl);
4051static bool isImplicitCopyAssignmentArgConst(Sema &S, CXXRecordDecl *ClassDecl);
4052
4053void Sema::CheckExplicitlyDefaultedSpecialMember(CXXMethodDecl *MD) {
4054  CXXRecordDecl *RD = MD->getParent();
4055  CXXSpecialMember CSM = getSpecialMember(MD);
4056
4057  assert(MD->isExplicitlyDefaulted() && CSM != CXXInvalid &&
4058         "not an explicitly-defaulted special member");
4059
4060  // Whether this was the first-declared instance of the constructor.
4061  // This affects whether we implicitly add an exception spec and constexpr.
4062  bool First = MD == MD->getCanonicalDecl();
4063
4064  bool HadError = false;
4065
4066  // C++11 [dcl.fct.def.default]p1:
4067  //   A function that is explicitly defaulted shall
4068  //     -- be a special member function (checked elsewhere),
4069  //     -- have the same type (except for ref-qualifiers, and except that a
4070  //        copy operation can take a non-const reference) as an implicit
4071  //        declaration, and
4072  //     -- not have default arguments.
4073  unsigned ExpectedParams = 1;
4074  if (CSM == CXXDefaultConstructor || CSM == CXXDestructor)
4075    ExpectedParams = 0;
4076  if (MD->getNumParams() != ExpectedParams) {
4077    // This also checks for default arguments: a copy or move constructor with a
4078    // default argument is classified as a default constructor, and assignment
4079    // operations and destructors can't have default arguments.
4080    Diag(MD->getLocation(), diag::err_defaulted_special_member_params)
4081      << CSM << MD->getSourceRange();
4082    HadError = true;
4083  }
4084
4085  const FunctionProtoType *Type = MD->getType()->getAs<FunctionProtoType>();
4086
4087  // Compute argument constness, constexpr, and triviality.
4088  bool CanHaveConstParam = false;
4089  bool Trivial = false;
4090  switch (CSM) {
4091  case CXXDefaultConstructor:
4092    Trivial = RD->hasTrivialDefaultConstructor();
4093    break;
4094  case CXXCopyConstructor:
4095    CanHaveConstParam = isImplicitCopyCtorArgConst(*this, RD);
4096    Trivial = RD->hasTrivialCopyConstructor();
4097    break;
4098  case CXXCopyAssignment:
4099    CanHaveConstParam = isImplicitCopyAssignmentArgConst(*this, RD);
4100    Trivial = RD->hasTrivialCopyAssignment();
4101    break;
4102  case CXXMoveConstructor:
4103    Trivial = RD->hasTrivialMoveConstructor();
4104    break;
4105  case CXXMoveAssignment:
4106    Trivial = RD->hasTrivialMoveAssignment();
4107    break;
4108  case CXXDestructor:
4109    Trivial = RD->hasTrivialDestructor();
4110    break;
4111  case CXXInvalid:
4112    llvm_unreachable("non-special member explicitly defaulted!");
4113  }
4114
4115  QualType ReturnType = Context.VoidTy;
4116  if (CSM == CXXCopyAssignment || CSM == CXXMoveAssignment) {
4117    // Check for return type matching.
4118    ReturnType = Type->getResultType();
4119    QualType ExpectedReturnType =
4120        Context.getLValueReferenceType(Context.getTypeDeclType(RD));
4121    if (!Context.hasSameType(ReturnType, ExpectedReturnType)) {
4122      Diag(MD->getLocation(), diag::err_defaulted_special_member_return_type)
4123        << (CSM == CXXMoveAssignment) << ExpectedReturnType;
4124      HadError = true;
4125    }
4126
4127    // A defaulted special member cannot have cv-qualifiers.
4128    if (Type->getTypeQuals()) {
4129      Diag(MD->getLocation(), diag::err_defaulted_special_member_quals)
4130        << (CSM == CXXMoveAssignment);
4131      HadError = true;
4132    }
4133  }
4134
4135  // Check for parameter type matching.
4136  QualType ArgType = ExpectedParams ? Type->getArgType(0) : QualType();
4137  bool HasConstParam = false;
4138  if (ExpectedParams && ArgType->isReferenceType()) {
4139    // Argument must be reference to possibly-const T.
4140    QualType ReferentType = ArgType->getPointeeType();
4141    HasConstParam = ReferentType.isConstQualified();
4142
4143    if (ReferentType.isVolatileQualified()) {
4144      Diag(MD->getLocation(),
4145           diag::err_defaulted_special_member_volatile_param) << CSM;
4146      HadError = true;
4147    }
4148
4149    if (HasConstParam && !CanHaveConstParam) {
4150      if (CSM == CXXCopyConstructor || CSM == CXXCopyAssignment) {
4151        Diag(MD->getLocation(),
4152             diag::err_defaulted_special_member_copy_const_param)
4153          << (CSM == CXXCopyAssignment);
4154        // FIXME: Explain why this special member can't be const.
4155      } else {
4156        Diag(MD->getLocation(),
4157             diag::err_defaulted_special_member_move_const_param)
4158          << (CSM == CXXMoveAssignment);
4159      }
4160      HadError = true;
4161    }
4162
4163    // If a function is explicitly defaulted on its first declaration, it shall
4164    // have the same parameter type as if it had been implicitly declared.
4165    // (Presumably this is to prevent it from being trivial?)
4166    if (!HasConstParam && CanHaveConstParam && First)
4167      Diag(MD->getLocation(),
4168           diag::err_defaulted_special_member_copy_non_const_param)
4169        << (CSM == CXXCopyAssignment);
4170  } else if (ExpectedParams) {
4171    // A copy assignment operator can take its argument by value, but a
4172    // defaulted one cannot.
4173    assert(CSM == CXXCopyAssignment && "unexpected non-ref argument");
4174    Diag(MD->getLocation(), diag::err_defaulted_copy_assign_not_ref);
4175    HadError = true;
4176  }
4177
4178  // Rebuild the type with the implicit exception specification added, if we
4179  // are going to need it.
4180  const FunctionProtoType *ImplicitType = 0;
4181  if (First || Type->hasExceptionSpec()) {
4182    FunctionProtoType::ExtProtoInfo EPI = Type->getExtProtoInfo();
4183    computeImplicitExceptionSpec(*this, MD->getLocation(), MD).getEPI(EPI);
4184    ImplicitType = cast<FunctionProtoType>(
4185      Context.getFunctionType(ReturnType, &ArgType, ExpectedParams, EPI));
4186  }
4187
4188  // C++11 [dcl.fct.def.default]p2:
4189  //   An explicitly-defaulted function may be declared constexpr only if it
4190  //   would have been implicitly declared as constexpr,
4191  // Do not apply this rule to members of class templates, since core issue 1358
4192  // makes such functions always instantiate to constexpr functions. For
4193  // non-constructors, this is checked elsewhere.
4194  bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, RD, CSM,
4195                                                     HasConstParam);
4196  if (isa<CXXConstructorDecl>(MD) && MD->isConstexpr() && !Constexpr &&
4197      MD->getTemplatedKind() == FunctionDecl::TK_NonTemplate) {
4198    Diag(MD->getLocStart(), diag::err_incorrect_defaulted_constexpr) << CSM;
4199    // FIXME: Explain why the constructor can't be constexpr.
4200    HadError = true;
4201  }
4202  //   and may have an explicit exception-specification only if it is compatible
4203  //   with the exception-specification on the implicit declaration.
4204  if (Type->hasExceptionSpec() &&
4205      CheckEquivalentExceptionSpec(
4206        PDiag(diag::err_incorrect_defaulted_exception_spec) << CSM,
4207        PDiag(), ImplicitType, SourceLocation(), Type, MD->getLocation()))
4208    HadError = true;
4209
4210  //   If a function is explicitly defaulted on its first declaration,
4211  if (First) {
4212    //  -- it is implicitly considered to be constexpr if the implicit
4213    //     definition would be,
4214    MD->setConstexpr(Constexpr);
4215
4216    //  -- it is implicitly considered to have the same exception-specification
4217    //     as if it had been implicitly declared,
4218    MD->setType(QualType(ImplicitType, 0));
4219
4220    // Such a function is also trivial if the implicitly-declared function
4221    // would have been.
4222    MD->setTrivial(Trivial);
4223  }
4224
4225  if (ShouldDeleteSpecialMember(MD, CSM)) {
4226    if (First) {
4227      MD->setDeletedAsWritten();
4228    } else {
4229      // C++11 [dcl.fct.def.default]p4:
4230      //   [For a] user-provided explicitly-defaulted function [...] if such a
4231      //   function is implicitly defined as deleted, the program is ill-formed.
4232      Diag(MD->getLocation(), diag::err_out_of_line_default_deletes) << CSM;
4233      HadError = true;
4234    }
4235  }
4236
4237  if (HadError)
4238    MD->setInvalidDecl();
4239}
4240
4241namespace {
4242struct SpecialMemberDeletionInfo {
4243  Sema &S;
4244  CXXMethodDecl *MD;
4245  Sema::CXXSpecialMember CSM;
4246  bool Diagnose;
4247
4248  // Properties of the special member, computed for convenience.
4249  bool IsConstructor, IsAssignment, IsMove, ConstArg, VolatileArg;
4250  SourceLocation Loc;
4251
4252  bool AllFieldsAreConst;
4253
4254  SpecialMemberDeletionInfo(Sema &S, CXXMethodDecl *MD,
4255                            Sema::CXXSpecialMember CSM, bool Diagnose)
4256    : S(S), MD(MD), CSM(CSM), Diagnose(Diagnose),
4257      IsConstructor(false), IsAssignment(false), IsMove(false),
4258      ConstArg(false), VolatileArg(false), Loc(MD->getLocation()),
4259      AllFieldsAreConst(true) {
4260    switch (CSM) {
4261      case Sema::CXXDefaultConstructor:
4262      case Sema::CXXCopyConstructor:
4263        IsConstructor = true;
4264        break;
4265      case Sema::CXXMoveConstructor:
4266        IsConstructor = true;
4267        IsMove = true;
4268        break;
4269      case Sema::CXXCopyAssignment:
4270        IsAssignment = true;
4271        break;
4272      case Sema::CXXMoveAssignment:
4273        IsAssignment = true;
4274        IsMove = true;
4275        break;
4276      case Sema::CXXDestructor:
4277        break;
4278      case Sema::CXXInvalid:
4279        llvm_unreachable("invalid special member kind");
4280    }
4281
4282    if (MD->getNumParams()) {
4283      ConstArg = MD->getParamDecl(0)->getType().isConstQualified();
4284      VolatileArg = MD->getParamDecl(0)->getType().isVolatileQualified();
4285    }
4286  }
4287
4288  bool inUnion() const { return MD->getParent()->isUnion(); }
4289
4290  /// Look up the corresponding special member in the given class.
4291  Sema::SpecialMemberOverloadResult *lookupIn(CXXRecordDecl *Class,
4292                                              unsigned Quals) {
4293    unsigned TQ = MD->getTypeQualifiers();
4294    // cv-qualifiers on class members don't affect default ctor / dtor calls.
4295    if (CSM == Sema::CXXDefaultConstructor || CSM == Sema::CXXDestructor)
4296      Quals = 0;
4297    return S.LookupSpecialMember(Class, CSM,
4298                                 ConstArg || (Quals & Qualifiers::Const),
4299                                 VolatileArg || (Quals & Qualifiers::Volatile),
4300                                 MD->getRefQualifier() == RQ_RValue,
4301                                 TQ & Qualifiers::Const,
4302                                 TQ & Qualifiers::Volatile);
4303  }
4304
4305  typedef llvm::PointerUnion<CXXBaseSpecifier*, FieldDecl*> Subobject;
4306
4307  bool shouldDeleteForBase(CXXBaseSpecifier *Base);
4308  bool shouldDeleteForField(FieldDecl *FD);
4309  bool shouldDeleteForAllConstMembers();
4310
4311  bool shouldDeleteForClassSubobject(CXXRecordDecl *Class, Subobject Subobj,
4312                                     unsigned Quals);
4313  bool shouldDeleteForSubobjectCall(Subobject Subobj,
4314                                    Sema::SpecialMemberOverloadResult *SMOR,
4315                                    bool IsDtorCallInCtor);
4316
4317  bool isAccessible(Subobject Subobj, CXXMethodDecl *D);
4318};
4319}
4320
4321/// Is the given special member inaccessible when used on the given
4322/// sub-object.
4323bool SpecialMemberDeletionInfo::isAccessible(Subobject Subobj,
4324                                             CXXMethodDecl *target) {
4325  /// If we're operating on a base class, the object type is the
4326  /// type of this special member.
4327  QualType objectTy;
4328  AccessSpecifier access = target->getAccess();
4329  if (CXXBaseSpecifier *base = Subobj.dyn_cast<CXXBaseSpecifier*>()) {
4330    objectTy = S.Context.getTypeDeclType(MD->getParent());
4331    access = CXXRecordDecl::MergeAccess(base->getAccessSpecifier(), access);
4332
4333  // If we're operating on a field, the object type is the type of the field.
4334  } else {
4335    objectTy = S.Context.getTypeDeclType(target->getParent());
4336  }
4337
4338  return S.isSpecialMemberAccessibleForDeletion(target, access, objectTy);
4339}
4340
4341/// Check whether we should delete a special member due to the implicit
4342/// definition containing a call to a special member of a subobject.
4343bool SpecialMemberDeletionInfo::shouldDeleteForSubobjectCall(
4344    Subobject Subobj, Sema::SpecialMemberOverloadResult *SMOR,
4345    bool IsDtorCallInCtor) {
4346  CXXMethodDecl *Decl = SMOR->getMethod();
4347  FieldDecl *Field = Subobj.dyn_cast<FieldDecl*>();
4348
4349  int DiagKind = -1;
4350
4351  if (SMOR->getKind() == Sema::SpecialMemberOverloadResult::NoMemberOrDeleted)
4352    DiagKind = !Decl ? 0 : 1;
4353  else if (SMOR->getKind() == Sema::SpecialMemberOverloadResult::Ambiguous)
4354    DiagKind = 2;
4355  else if (!isAccessible(Subobj, Decl))
4356    DiagKind = 3;
4357  else if (!IsDtorCallInCtor && Field && Field->getParent()->isUnion() &&
4358           !Decl->isTrivial()) {
4359    // A member of a union must have a trivial corresponding special member.
4360    // As a weird special case, a destructor call from a union's constructor
4361    // must be accessible and non-deleted, but need not be trivial. Such a
4362    // destructor is never actually called, but is semantically checked as
4363    // if it were.
4364    DiagKind = 4;
4365  }
4366
4367  if (DiagKind == -1)
4368    return false;
4369
4370  if (Diagnose) {
4371    if (Field) {
4372      S.Diag(Field->getLocation(),
4373             diag::note_deleted_special_member_class_subobject)
4374        << CSM << MD->getParent() << /*IsField*/true
4375        << Field << DiagKind << IsDtorCallInCtor;
4376    } else {
4377      CXXBaseSpecifier *Base = Subobj.get<CXXBaseSpecifier*>();
4378      S.Diag(Base->getLocStart(),
4379             diag::note_deleted_special_member_class_subobject)
4380        << CSM << MD->getParent() << /*IsField*/false
4381        << Base->getType() << DiagKind << IsDtorCallInCtor;
4382    }
4383
4384    if (DiagKind == 1)
4385      S.NoteDeletedFunction(Decl);
4386    // FIXME: Explain inaccessibility if DiagKind == 3.
4387  }
4388
4389  return true;
4390}
4391
4392/// Check whether we should delete a special member function due to having a
4393/// direct or virtual base class or non-static data member of class type M.
4394bool SpecialMemberDeletionInfo::shouldDeleteForClassSubobject(
4395    CXXRecordDecl *Class, Subobject Subobj, unsigned Quals) {
4396  FieldDecl *Field = Subobj.dyn_cast<FieldDecl*>();
4397
4398  // C++11 [class.ctor]p5:
4399  // -- any direct or virtual base class, or non-static data member with no
4400  //    brace-or-equal-initializer, has class type M (or array thereof) and
4401  //    either M has no default constructor or overload resolution as applied
4402  //    to M's default constructor results in an ambiguity or in a function
4403  //    that is deleted or inaccessible
4404  // C++11 [class.copy]p11, C++11 [class.copy]p23:
4405  // -- a direct or virtual base class B that cannot be copied/moved because
4406  //    overload resolution, as applied to B's corresponding special member,
4407  //    results in an ambiguity or a function that is deleted or inaccessible
4408  //    from the defaulted special member
4409  // C++11 [class.dtor]p5:
4410  // -- any direct or virtual base class [...] has a type with a destructor
4411  //    that is deleted or inaccessible
4412  if (!(CSM == Sema::CXXDefaultConstructor &&
4413        Field && Field->hasInClassInitializer()) &&
4414      shouldDeleteForSubobjectCall(Subobj, lookupIn(Class, Quals), false))
4415    return true;
4416
4417  // C++11 [class.ctor]p5, C++11 [class.copy]p11:
4418  // -- any direct or virtual base class or non-static data member has a
4419  //    type with a destructor that is deleted or inaccessible
4420  if (IsConstructor) {
4421    Sema::SpecialMemberOverloadResult *SMOR =
4422        S.LookupSpecialMember(Class, Sema::CXXDestructor,
4423                              false, false, false, false, false);
4424    if (shouldDeleteForSubobjectCall(Subobj, SMOR, true))
4425      return true;
4426  }
4427
4428  return false;
4429}
4430
4431/// Check whether we should delete a special member function due to the class
4432/// having a particular direct or virtual base class.
4433bool SpecialMemberDeletionInfo::shouldDeleteForBase(CXXBaseSpecifier *Base) {
4434  CXXRecordDecl *BaseClass = Base->getType()->getAsCXXRecordDecl();
4435  return shouldDeleteForClassSubobject(BaseClass, Base, 0);
4436}
4437
4438/// Check whether we should delete a special member function due to the class
4439/// having a particular non-static data member.
4440bool SpecialMemberDeletionInfo::shouldDeleteForField(FieldDecl *FD) {
4441  QualType FieldType = S.Context.getBaseElementType(FD->getType());
4442  CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl();
4443
4444  if (CSM == Sema::CXXDefaultConstructor) {
4445    // For a default constructor, all references must be initialized in-class
4446    // and, if a union, it must have a non-const member.
4447    if (FieldType->isReferenceType() && !FD->hasInClassInitializer()) {
4448      if (Diagnose)
4449        S.Diag(FD->getLocation(), diag::note_deleted_default_ctor_uninit_field)
4450          << MD->getParent() << FD << FieldType << /*Reference*/0;
4451      return true;
4452    }
4453    // C++11 [class.ctor]p5: any non-variant non-static data member of
4454    // const-qualified type (or array thereof) with no
4455    // brace-or-equal-initializer does not have a user-provided default
4456    // constructor.
4457    if (!inUnion() && FieldType.isConstQualified() &&
4458        !FD->hasInClassInitializer() &&
4459        (!FieldRecord || !FieldRecord->hasUserProvidedDefaultConstructor())) {
4460      if (Diagnose)
4461        S.Diag(FD->getLocation(), diag::note_deleted_default_ctor_uninit_field)
4462          << MD->getParent() << FD << FD->getType() << /*Const*/1;
4463      return true;
4464    }
4465
4466    if (inUnion() && !FieldType.isConstQualified())
4467      AllFieldsAreConst = false;
4468  } else if (CSM == Sema::CXXCopyConstructor) {
4469    // For a copy constructor, data members must not be of rvalue reference
4470    // type.
4471    if (FieldType->isRValueReferenceType()) {
4472      if (Diagnose)
4473        S.Diag(FD->getLocation(), diag::note_deleted_copy_ctor_rvalue_reference)
4474          << MD->getParent() << FD << FieldType;
4475      return true;
4476    }
4477  } else if (IsAssignment) {
4478    // For an assignment operator, data members must not be of reference type.
4479    if (FieldType->isReferenceType()) {
4480      if (Diagnose)
4481        S.Diag(FD->getLocation(), diag::note_deleted_assign_field)
4482          << IsMove << MD->getParent() << FD << FieldType << /*Reference*/0;
4483      return true;
4484    }
4485    if (!FieldRecord && FieldType.isConstQualified()) {
4486      // C++11 [class.copy]p23:
4487      // -- a non-static data member of const non-class type (or array thereof)
4488      if (Diagnose)
4489        S.Diag(FD->getLocation(), diag::note_deleted_assign_field)
4490          << IsMove << MD->getParent() << FD << FD->getType() << /*Const*/1;
4491      return true;
4492    }
4493  }
4494
4495  if (FieldRecord) {
4496    // Some additional restrictions exist on the variant members.
4497    if (!inUnion() && FieldRecord->isUnion() &&
4498        FieldRecord->isAnonymousStructOrUnion()) {
4499      bool AllVariantFieldsAreConst = true;
4500
4501      // FIXME: Handle anonymous unions declared within anonymous unions.
4502      for (CXXRecordDecl::field_iterator UI = FieldRecord->field_begin(),
4503                                         UE = FieldRecord->field_end();
4504           UI != UE; ++UI) {
4505        QualType UnionFieldType = S.Context.getBaseElementType(UI->getType());
4506
4507        if (!UnionFieldType.isConstQualified())
4508          AllVariantFieldsAreConst = false;
4509
4510        CXXRecordDecl *UnionFieldRecord = UnionFieldType->getAsCXXRecordDecl();
4511        if (UnionFieldRecord &&
4512            shouldDeleteForClassSubobject(UnionFieldRecord, *UI,
4513                                          UnionFieldType.getCVRQualifiers()))
4514          return true;
4515      }
4516
4517      // At least one member in each anonymous union must be non-const
4518      if (CSM == Sema::CXXDefaultConstructor && AllVariantFieldsAreConst &&
4519          FieldRecord->field_begin() != FieldRecord->field_end()) {
4520        if (Diagnose)
4521          S.Diag(FieldRecord->getLocation(),
4522                 diag::note_deleted_default_ctor_all_const)
4523            << MD->getParent() << /*anonymous union*/1;
4524        return true;
4525      }
4526
4527      // Don't check the implicit member of the anonymous union type.
4528      // This is technically non-conformant, but sanity demands it.
4529      return false;
4530    }
4531
4532    if (shouldDeleteForClassSubobject(FieldRecord, FD,
4533                                      FieldType.getCVRQualifiers()))
4534      return true;
4535  }
4536
4537  return false;
4538}
4539
4540/// C++11 [class.ctor] p5:
4541///   A defaulted default constructor for a class X is defined as deleted if
4542/// X is a union and all of its variant members are of const-qualified type.
4543bool SpecialMemberDeletionInfo::shouldDeleteForAllConstMembers() {
4544  // This is a silly definition, because it gives an empty union a deleted
4545  // default constructor. Don't do that.
4546  if (CSM == Sema::CXXDefaultConstructor && inUnion() && AllFieldsAreConst &&
4547      (MD->getParent()->field_begin() != MD->getParent()->field_end())) {
4548    if (Diagnose)
4549      S.Diag(MD->getParent()->getLocation(),
4550             diag::note_deleted_default_ctor_all_const)
4551        << MD->getParent() << /*not anonymous union*/0;
4552    return true;
4553  }
4554  return false;
4555}
4556
4557/// Determine whether a defaulted special member function should be defined as
4558/// deleted, as specified in C++11 [class.ctor]p5, C++11 [class.copy]p11,
4559/// C++11 [class.copy]p23, and C++11 [class.dtor]p5.
4560bool Sema::ShouldDeleteSpecialMember(CXXMethodDecl *MD, CXXSpecialMember CSM,
4561                                     bool Diagnose) {
4562  if (MD->isInvalidDecl())
4563    return false;
4564  CXXRecordDecl *RD = MD->getParent();
4565  assert(!RD->isDependentType() && "do deletion after instantiation");
4566  if (!LangOpts.CPlusPlus0x || RD->isInvalidDecl())
4567    return false;
4568
4569  // C++11 [expr.lambda.prim]p19:
4570  //   The closure type associated with a lambda-expression has a
4571  //   deleted (8.4.3) default constructor and a deleted copy
4572  //   assignment operator.
4573  if (RD->isLambda() &&
4574      (CSM == CXXDefaultConstructor || CSM == CXXCopyAssignment)) {
4575    if (Diagnose)
4576      Diag(RD->getLocation(), diag::note_lambda_decl);
4577    return true;
4578  }
4579
4580  // For an anonymous struct or union, the copy and assignment special members
4581  // will never be used, so skip the check. For an anonymous union declared at
4582  // namespace scope, the constructor and destructor are used.
4583  if (CSM != CXXDefaultConstructor && CSM != CXXDestructor &&
4584      RD->isAnonymousStructOrUnion())
4585    return false;
4586
4587  // C++11 [class.copy]p7, p18:
4588  //   If the class definition declares a move constructor or move assignment
4589  //   operator, an implicitly declared copy constructor or copy assignment
4590  //   operator is defined as deleted.
4591  if (MD->isImplicit() &&
4592      (CSM == CXXCopyConstructor || CSM == CXXCopyAssignment)) {
4593    CXXMethodDecl *UserDeclaredMove = 0;
4594
4595    // In Microsoft mode, a user-declared move only causes the deletion of the
4596    // corresponding copy operation, not both copy operations.
4597    if (RD->hasUserDeclaredMoveConstructor() &&
4598        (!getLangOpts().MicrosoftMode || CSM == CXXCopyConstructor)) {
4599      if (!Diagnose) return true;
4600      UserDeclaredMove = RD->getMoveConstructor();
4601      assert(UserDeclaredMove);
4602    } else if (RD->hasUserDeclaredMoveAssignment() &&
4603               (!getLangOpts().MicrosoftMode || CSM == CXXCopyAssignment)) {
4604      if (!Diagnose) return true;
4605      UserDeclaredMove = RD->getMoveAssignmentOperator();
4606      assert(UserDeclaredMove);
4607    }
4608
4609    if (UserDeclaredMove) {
4610      Diag(UserDeclaredMove->getLocation(),
4611           diag::note_deleted_copy_user_declared_move)
4612        << (CSM == CXXCopyAssignment) << RD
4613        << UserDeclaredMove->isMoveAssignmentOperator();
4614      return true;
4615    }
4616  }
4617
4618  // Do access control from the special member function
4619  ContextRAII MethodContext(*this, MD);
4620
4621  // C++11 [class.dtor]p5:
4622  // -- for a virtual destructor, lookup of the non-array deallocation function
4623  //    results in an ambiguity or in a function that is deleted or inaccessible
4624  if (CSM == CXXDestructor && MD->isVirtual()) {
4625    FunctionDecl *OperatorDelete = 0;
4626    DeclarationName Name =
4627      Context.DeclarationNames.getCXXOperatorName(OO_Delete);
4628    if (FindDeallocationFunction(MD->getLocation(), MD->getParent(), Name,
4629                                 OperatorDelete, false)) {
4630      if (Diagnose)
4631        Diag(RD->getLocation(), diag::note_deleted_dtor_no_operator_delete);
4632      return true;
4633    }
4634  }
4635
4636  SpecialMemberDeletionInfo SMI(*this, MD, CSM, Diagnose);
4637
4638  for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
4639                                          BE = RD->bases_end(); BI != BE; ++BI)
4640    if (!BI->isVirtual() &&
4641        SMI.shouldDeleteForBase(BI))
4642      return true;
4643
4644  for (CXXRecordDecl::base_class_iterator BI = RD->vbases_begin(),
4645                                          BE = RD->vbases_end(); BI != BE; ++BI)
4646    if (SMI.shouldDeleteForBase(BI))
4647      return true;
4648
4649  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
4650                                     FE = RD->field_end(); FI != FE; ++FI)
4651    if (!FI->isInvalidDecl() && !FI->isUnnamedBitfield() &&
4652        SMI.shouldDeleteForField(*FI))
4653      return true;
4654
4655  if (SMI.shouldDeleteForAllConstMembers())
4656    return true;
4657
4658  return false;
4659}
4660
4661/// \brief Data used with FindHiddenVirtualMethod
4662namespace {
4663  struct FindHiddenVirtualMethodData {
4664    Sema *S;
4665    CXXMethodDecl *Method;
4666    llvm::SmallPtrSet<const CXXMethodDecl *, 8> OverridenAndUsingBaseMethods;
4667    SmallVector<CXXMethodDecl *, 8> OverloadedMethods;
4668  };
4669}
4670
4671/// \brief Member lookup function that determines whether a given C++
4672/// method overloads virtual methods in a base class without overriding any,
4673/// to be used with CXXRecordDecl::lookupInBases().
4674static bool FindHiddenVirtualMethod(const CXXBaseSpecifier *Specifier,
4675                                    CXXBasePath &Path,
4676                                    void *UserData) {
4677  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
4678
4679  FindHiddenVirtualMethodData &Data
4680    = *static_cast<FindHiddenVirtualMethodData*>(UserData);
4681
4682  DeclarationName Name = Data.Method->getDeclName();
4683  assert(Name.getNameKind() == DeclarationName::Identifier);
4684
4685  bool foundSameNameMethod = false;
4686  SmallVector<CXXMethodDecl *, 8> overloadedMethods;
4687  for (Path.Decls = BaseRecord->lookup(Name);
4688       Path.Decls.first != Path.Decls.second;
4689       ++Path.Decls.first) {
4690    NamedDecl *D = *Path.Decls.first;
4691    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
4692      MD = MD->getCanonicalDecl();
4693      foundSameNameMethod = true;
4694      // Interested only in hidden virtual methods.
4695      if (!MD->isVirtual())
4696        continue;
4697      // If the method we are checking overrides a method from its base
4698      // don't warn about the other overloaded methods.
4699      if (!Data.S->IsOverload(Data.Method, MD, false))
4700        return true;
4701      // Collect the overload only if its hidden.
4702      if (!Data.OverridenAndUsingBaseMethods.count(MD))
4703        overloadedMethods.push_back(MD);
4704    }
4705  }
4706
4707  if (foundSameNameMethod)
4708    Data.OverloadedMethods.append(overloadedMethods.begin(),
4709                                   overloadedMethods.end());
4710  return foundSameNameMethod;
4711}
4712
4713/// \brief See if a method overloads virtual methods in a base class without
4714/// overriding any.
4715void Sema::DiagnoseHiddenVirtualMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
4716  if (Diags.getDiagnosticLevel(diag::warn_overloaded_virtual,
4717                               MD->getLocation()) == DiagnosticsEngine::Ignored)
4718    return;
4719  if (!MD->getDeclName().isIdentifier())
4720    return;
4721
4722  CXXBasePaths Paths(/*FindAmbiguities=*/true, // true to look in all bases.
4723                     /*bool RecordPaths=*/false,
4724                     /*bool DetectVirtual=*/false);
4725  FindHiddenVirtualMethodData Data;
4726  Data.Method = MD;
4727  Data.S = this;
4728
4729  // Keep the base methods that were overriden or introduced in the subclass
4730  // by 'using' in a set. A base method not in this set is hidden.
4731  for (DeclContext::lookup_result res = DC->lookup(MD->getDeclName());
4732       res.first != res.second; ++res.first) {
4733    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(*res.first))
4734      for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
4735                                          E = MD->end_overridden_methods();
4736           I != E; ++I)
4737        Data.OverridenAndUsingBaseMethods.insert((*I)->getCanonicalDecl());
4738    if (UsingShadowDecl *shad = dyn_cast<UsingShadowDecl>(*res.first))
4739      if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(shad->getTargetDecl()))
4740        Data.OverridenAndUsingBaseMethods.insert(MD->getCanonicalDecl());
4741  }
4742
4743  if (DC->lookupInBases(&FindHiddenVirtualMethod, &Data, Paths) &&
4744      !Data.OverloadedMethods.empty()) {
4745    Diag(MD->getLocation(), diag::warn_overloaded_virtual)
4746      << MD << (Data.OverloadedMethods.size() > 1);
4747
4748    for (unsigned i = 0, e = Data.OverloadedMethods.size(); i != e; ++i) {
4749      CXXMethodDecl *overloadedMD = Data.OverloadedMethods[i];
4750      Diag(overloadedMD->getLocation(),
4751           diag::note_hidden_overloaded_virtual_declared_here) << overloadedMD;
4752    }
4753  }
4754}
4755
4756void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
4757                                             Decl *TagDecl,
4758                                             SourceLocation LBrac,
4759                                             SourceLocation RBrac,
4760                                             AttributeList *AttrList) {
4761  if (!TagDecl)
4762    return;
4763
4764  AdjustDeclIfTemplate(TagDecl);
4765
4766  for (const AttributeList* l = AttrList; l; l = l->getNext()) {
4767    if (l->getKind() != AttributeList::AT_Visibility)
4768      continue;
4769    l->setInvalid();
4770    Diag(l->getLoc(), diag::warn_attribute_after_definition_ignored) <<
4771      l->getName();
4772  }
4773
4774  ActOnFields(S, RLoc, TagDecl, llvm::makeArrayRef(
4775              // strict aliasing violation!
4776              reinterpret_cast<Decl**>(FieldCollector->getCurFields()),
4777              FieldCollector->getCurNumFields()), LBrac, RBrac, AttrList);
4778
4779  CheckCompletedCXXClass(
4780                        dyn_cast_or_null<CXXRecordDecl>(TagDecl));
4781}
4782
4783/// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
4784/// special functions, such as the default constructor, copy
4785/// constructor, or destructor, to the given C++ class (C++
4786/// [special]p1).  This routine can only be executed just before the
4787/// definition of the class is complete.
4788void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) {
4789  if (!ClassDecl->hasUserDeclaredConstructor())
4790    ++ASTContext::NumImplicitDefaultConstructors;
4791
4792  if (!ClassDecl->hasUserDeclaredCopyConstructor())
4793    ++ASTContext::NumImplicitCopyConstructors;
4794
4795  if (getLangOpts().CPlusPlus0x && ClassDecl->needsImplicitMoveConstructor())
4796    ++ASTContext::NumImplicitMoveConstructors;
4797
4798  if (!ClassDecl->hasUserDeclaredCopyAssignment()) {
4799    ++ASTContext::NumImplicitCopyAssignmentOperators;
4800
4801    // If we have a dynamic class, then the copy assignment operator may be
4802    // virtual, so we have to declare it immediately. This ensures that, e.g.,
4803    // it shows up in the right place in the vtable and that we diagnose
4804    // problems with the implicit exception specification.
4805    if (ClassDecl->isDynamicClass())
4806      DeclareImplicitCopyAssignment(ClassDecl);
4807  }
4808
4809  if (getLangOpts().CPlusPlus0x && ClassDecl->needsImplicitMoveAssignment()) {
4810    ++ASTContext::NumImplicitMoveAssignmentOperators;
4811
4812    // Likewise for the move assignment operator.
4813    if (ClassDecl->isDynamicClass())
4814      DeclareImplicitMoveAssignment(ClassDecl);
4815  }
4816
4817  if (!ClassDecl->hasUserDeclaredDestructor()) {
4818    ++ASTContext::NumImplicitDestructors;
4819
4820    // If we have a dynamic class, then the destructor may be virtual, so we
4821    // have to declare the destructor immediately. This ensures that, e.g., it
4822    // shows up in the right place in the vtable and that we diagnose problems
4823    // with the implicit exception specification.
4824    if (ClassDecl->isDynamicClass())
4825      DeclareImplicitDestructor(ClassDecl);
4826  }
4827}
4828
4829void Sema::ActOnReenterDeclaratorTemplateScope(Scope *S, DeclaratorDecl *D) {
4830  if (!D)
4831    return;
4832
4833  int NumParamList = D->getNumTemplateParameterLists();
4834  for (int i = 0; i < NumParamList; i++) {
4835    TemplateParameterList* Params = D->getTemplateParameterList(i);
4836    for (TemplateParameterList::iterator Param = Params->begin(),
4837                                      ParamEnd = Params->end();
4838          Param != ParamEnd; ++Param) {
4839      NamedDecl *Named = cast<NamedDecl>(*Param);
4840      if (Named->getDeclName()) {
4841        S->AddDecl(Named);
4842        IdResolver.AddDecl(Named);
4843      }
4844    }
4845  }
4846}
4847
4848void Sema::ActOnReenterTemplateScope(Scope *S, Decl *D) {
4849  if (!D)
4850    return;
4851
4852  TemplateParameterList *Params = 0;
4853  if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D))
4854    Params = Template->getTemplateParameters();
4855  else if (ClassTemplatePartialSpecializationDecl *PartialSpec
4856           = dyn_cast<ClassTemplatePartialSpecializationDecl>(D))
4857    Params = PartialSpec->getTemplateParameters();
4858  else
4859    return;
4860
4861  for (TemplateParameterList::iterator Param = Params->begin(),
4862                                    ParamEnd = Params->end();
4863       Param != ParamEnd; ++Param) {
4864    NamedDecl *Named = cast<NamedDecl>(*Param);
4865    if (Named->getDeclName()) {
4866      S->AddDecl(Named);
4867      IdResolver.AddDecl(Named);
4868    }
4869  }
4870}
4871
4872void Sema::ActOnStartDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
4873  if (!RecordD) return;
4874  AdjustDeclIfTemplate(RecordD);
4875  CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordD);
4876  PushDeclContext(S, Record);
4877}
4878
4879void Sema::ActOnFinishDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
4880  if (!RecordD) return;
4881  PopDeclContext();
4882}
4883
4884/// ActOnStartDelayedCXXMethodDeclaration - We have completed
4885/// parsing a top-level (non-nested) C++ class, and we are now
4886/// parsing those parts of the given Method declaration that could
4887/// not be parsed earlier (C++ [class.mem]p2), such as default
4888/// arguments. This action should enter the scope of the given
4889/// Method declaration as if we had just parsed the qualified method
4890/// name. However, it should not bring the parameters into scope;
4891/// that will be performed by ActOnDelayedCXXMethodParameter.
4892void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
4893}
4894
4895/// ActOnDelayedCXXMethodParameter - We've already started a delayed
4896/// C++ method declaration. We're (re-)introducing the given
4897/// function parameter into scope for use in parsing later parts of
4898/// the method declaration. For example, we could see an
4899/// ActOnParamDefaultArgument event for this parameter.
4900void Sema::ActOnDelayedCXXMethodParameter(Scope *S, Decl *ParamD) {
4901  if (!ParamD)
4902    return;
4903
4904  ParmVarDecl *Param = cast<ParmVarDecl>(ParamD);
4905
4906  // If this parameter has an unparsed default argument, clear it out
4907  // to make way for the parsed default argument.
4908  if (Param->hasUnparsedDefaultArg())
4909    Param->setDefaultArg(0);
4910
4911  S->AddDecl(Param);
4912  if (Param->getDeclName())
4913    IdResolver.AddDecl(Param);
4914}
4915
4916/// ActOnFinishDelayedCXXMethodDeclaration - We have finished
4917/// processing the delayed method declaration for Method. The method
4918/// declaration is now considered finished. There may be a separate
4919/// ActOnStartOfFunctionDef action later (not necessarily
4920/// immediately!) for this method, if it was also defined inside the
4921/// class body.
4922void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
4923  if (!MethodD)
4924    return;
4925
4926  AdjustDeclIfTemplate(MethodD);
4927
4928  FunctionDecl *Method = cast<FunctionDecl>(MethodD);
4929
4930  // Now that we have our default arguments, check the constructor
4931  // again. It could produce additional diagnostics or affect whether
4932  // the class has implicitly-declared destructors, among other
4933  // things.
4934  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method))
4935    CheckConstructor(Constructor);
4936
4937  // Check the default arguments, which we may have added.
4938  if (!Method->isInvalidDecl())
4939    CheckCXXDefaultArguments(Method);
4940}
4941
4942/// CheckConstructorDeclarator - Called by ActOnDeclarator to check
4943/// the well-formedness of the constructor declarator @p D with type @p
4944/// R. If there are any errors in the declarator, this routine will
4945/// emit diagnostics and set the invalid bit to true.  In any case, the type
4946/// will be updated to reflect a well-formed type for the constructor and
4947/// returned.
4948QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R,
4949                                          StorageClass &SC) {
4950  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
4951
4952  // C++ [class.ctor]p3:
4953  //   A constructor shall not be virtual (10.3) or static (9.4). A
4954  //   constructor can be invoked for a const, volatile or const
4955  //   volatile object. A constructor shall not be declared const,
4956  //   volatile, or const volatile (9.3.2).
4957  if (isVirtual) {
4958    if (!D.isInvalidType())
4959      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
4960        << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
4961        << SourceRange(D.getIdentifierLoc());
4962    D.setInvalidType();
4963  }
4964  if (SC == SC_Static) {
4965    if (!D.isInvalidType())
4966      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
4967        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
4968        << SourceRange(D.getIdentifierLoc());
4969    D.setInvalidType();
4970    SC = SC_None;
4971  }
4972
4973  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
4974  if (FTI.TypeQuals != 0) {
4975    if (FTI.TypeQuals & Qualifiers::Const)
4976      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
4977        << "const" << SourceRange(D.getIdentifierLoc());
4978    if (FTI.TypeQuals & Qualifiers::Volatile)
4979      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
4980        << "volatile" << SourceRange(D.getIdentifierLoc());
4981    if (FTI.TypeQuals & Qualifiers::Restrict)
4982      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
4983        << "restrict" << SourceRange(D.getIdentifierLoc());
4984    D.setInvalidType();
4985  }
4986
4987  // C++0x [class.ctor]p4:
4988  //   A constructor shall not be declared with a ref-qualifier.
4989  if (FTI.hasRefQualifier()) {
4990    Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_constructor)
4991      << FTI.RefQualifierIsLValueRef
4992      << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
4993    D.setInvalidType();
4994  }
4995
4996  // Rebuild the function type "R" without any type qualifiers (in
4997  // case any of the errors above fired) and with "void" as the
4998  // return type, since constructors don't have return types.
4999  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
5000  if (Proto->getResultType() == Context.VoidTy && !D.isInvalidType())
5001    return R;
5002
5003  FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
5004  EPI.TypeQuals = 0;
5005  EPI.RefQualifier = RQ_None;
5006
5007  return Context.getFunctionType(Context.VoidTy, Proto->arg_type_begin(),
5008                                 Proto->getNumArgs(), EPI);
5009}
5010
5011/// CheckConstructor - Checks a fully-formed constructor for
5012/// well-formedness, issuing any diagnostics required. Returns true if
5013/// the constructor declarator is invalid.
5014void Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
5015  CXXRecordDecl *ClassDecl
5016    = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext());
5017  if (!ClassDecl)
5018    return Constructor->setInvalidDecl();
5019
5020  // C++ [class.copy]p3:
5021  //   A declaration of a constructor for a class X is ill-formed if
5022  //   its first parameter is of type (optionally cv-qualified) X and
5023  //   either there are no other parameters or else all other
5024  //   parameters have default arguments.
5025  if (!Constructor->isInvalidDecl() &&
5026      ((Constructor->getNumParams() == 1) ||
5027       (Constructor->getNumParams() > 1 &&
5028        Constructor->getParamDecl(1)->hasDefaultArg())) &&
5029      Constructor->getTemplateSpecializationKind()
5030                                              != TSK_ImplicitInstantiation) {
5031    QualType ParamType = Constructor->getParamDecl(0)->getType();
5032    QualType ClassTy = Context.getTagDeclType(ClassDecl);
5033    if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
5034      SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation();
5035      const char *ConstRef
5036        = Constructor->getParamDecl(0)->getIdentifier() ? "const &"
5037                                                        : " const &";
5038      Diag(ParamLoc, diag::err_constructor_byvalue_arg)
5039        << FixItHint::CreateInsertion(ParamLoc, ConstRef);
5040
5041      // FIXME: Rather that making the constructor invalid, we should endeavor
5042      // to fix the type.
5043      Constructor->setInvalidDecl();
5044    }
5045  }
5046}
5047
5048/// CheckDestructor - Checks a fully-formed destructor definition for
5049/// well-formedness, issuing any diagnostics required.  Returns true
5050/// on error.
5051bool Sema::CheckDestructor(CXXDestructorDecl *Destructor) {
5052  CXXRecordDecl *RD = Destructor->getParent();
5053
5054  if (Destructor->isVirtual()) {
5055    SourceLocation Loc;
5056
5057    if (!Destructor->isImplicit())
5058      Loc = Destructor->getLocation();
5059    else
5060      Loc = RD->getLocation();
5061
5062    // If we have a virtual destructor, look up the deallocation function
5063    FunctionDecl *OperatorDelete = 0;
5064    DeclarationName Name =
5065    Context.DeclarationNames.getCXXOperatorName(OO_Delete);
5066    if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete))
5067      return true;
5068
5069    MarkFunctionReferenced(Loc, OperatorDelete);
5070
5071    Destructor->setOperatorDelete(OperatorDelete);
5072  }
5073
5074  return false;
5075}
5076
5077static inline bool
5078FTIHasSingleVoidArgument(DeclaratorChunk::FunctionTypeInfo &FTI) {
5079  return (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
5080          FTI.ArgInfo[0].Param &&
5081          cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType());
5082}
5083
5084/// CheckDestructorDeclarator - Called by ActOnDeclarator to check
5085/// the well-formednes of the destructor declarator @p D with type @p
5086/// R. If there are any errors in the declarator, this routine will
5087/// emit diagnostics and set the declarator to invalid.  Even if this happens,
5088/// will be updated to reflect a well-formed type for the destructor and
5089/// returned.
5090QualType Sema::CheckDestructorDeclarator(Declarator &D, QualType R,
5091                                         StorageClass& SC) {
5092  // C++ [class.dtor]p1:
5093  //   [...] A typedef-name that names a class is a class-name
5094  //   (7.1.3); however, a typedef-name that names a class shall not
5095  //   be used as the identifier in the declarator for a destructor
5096  //   declaration.
5097  QualType DeclaratorType = GetTypeFromParser(D.getName().DestructorName);
5098  if (const TypedefType *TT = DeclaratorType->getAs<TypedefType>())
5099    Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
5100      << DeclaratorType << isa<TypeAliasDecl>(TT->getDecl());
5101  else if (const TemplateSpecializationType *TST =
5102             DeclaratorType->getAs<TemplateSpecializationType>())
5103    if (TST->isTypeAlias())
5104      Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
5105        << DeclaratorType << 1;
5106
5107  // C++ [class.dtor]p2:
5108  //   A destructor is used to destroy objects of its class type. A
5109  //   destructor takes no parameters, and no return type can be
5110  //   specified for it (not even void). The address of a destructor
5111  //   shall not be taken. A destructor shall not be static. A
5112  //   destructor can be invoked for a const, volatile or const
5113  //   volatile object. A destructor shall not be declared const,
5114  //   volatile or const volatile (9.3.2).
5115  if (SC == SC_Static) {
5116    if (!D.isInvalidType())
5117      Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
5118        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
5119        << SourceRange(D.getIdentifierLoc())
5120        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
5121
5122    SC = SC_None;
5123  }
5124  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
5125    // Destructors don't have return types, but the parser will
5126    // happily parse something like:
5127    //
5128    //   class X {
5129    //     float ~X();
5130    //   };
5131    //
5132    // The return type will be eliminated later.
5133    Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
5134      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
5135      << SourceRange(D.getIdentifierLoc());
5136  }
5137
5138  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
5139  if (FTI.TypeQuals != 0 && !D.isInvalidType()) {
5140    if (FTI.TypeQuals & Qualifiers::Const)
5141      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
5142        << "const" << SourceRange(D.getIdentifierLoc());
5143    if (FTI.TypeQuals & Qualifiers::Volatile)
5144      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
5145        << "volatile" << SourceRange(D.getIdentifierLoc());
5146    if (FTI.TypeQuals & Qualifiers::Restrict)
5147      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
5148        << "restrict" << SourceRange(D.getIdentifierLoc());
5149    D.setInvalidType();
5150  }
5151
5152  // C++0x [class.dtor]p2:
5153  //   A destructor shall not be declared with a ref-qualifier.
5154  if (FTI.hasRefQualifier()) {
5155    Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_destructor)
5156      << FTI.RefQualifierIsLValueRef
5157      << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
5158    D.setInvalidType();
5159  }
5160
5161  // Make sure we don't have any parameters.
5162  if (FTI.NumArgs > 0 && !FTIHasSingleVoidArgument(FTI)) {
5163    Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
5164
5165    // Delete the parameters.
5166    FTI.freeArgs();
5167    D.setInvalidType();
5168  }
5169
5170  // Make sure the destructor isn't variadic.
5171  if (FTI.isVariadic) {
5172    Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
5173    D.setInvalidType();
5174  }
5175
5176  // Rebuild the function type "R" without any type qualifiers or
5177  // parameters (in case any of the errors above fired) and with
5178  // "void" as the return type, since destructors don't have return
5179  // types.
5180  if (!D.isInvalidType())
5181    return R;
5182
5183  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
5184  FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
5185  EPI.Variadic = false;
5186  EPI.TypeQuals = 0;
5187  EPI.RefQualifier = RQ_None;
5188  return Context.getFunctionType(Context.VoidTy, 0, 0, EPI);
5189}
5190
5191/// CheckConversionDeclarator - Called by ActOnDeclarator to check the
5192/// well-formednes of the conversion function declarator @p D with
5193/// type @p R. If there are any errors in the declarator, this routine
5194/// will emit diagnostics and return true. Otherwise, it will return
5195/// false. Either way, the type @p R will be updated to reflect a
5196/// well-formed type for the conversion operator.
5197void Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
5198                                     StorageClass& SC) {
5199  // C++ [class.conv.fct]p1:
5200  //   Neither parameter types nor return type can be specified. The
5201  //   type of a conversion function (8.3.5) is "function taking no
5202  //   parameter returning conversion-type-id."
5203  if (SC == SC_Static) {
5204    if (!D.isInvalidType())
5205      Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
5206        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
5207        << SourceRange(D.getIdentifierLoc());
5208    D.setInvalidType();
5209    SC = SC_None;
5210  }
5211
5212  QualType ConvType = GetTypeFromParser(D.getName().ConversionFunctionId);
5213
5214  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
5215    // Conversion functions don't have return types, but the parser will
5216    // happily parse something like:
5217    //
5218    //   class X {
5219    //     float operator bool();
5220    //   };
5221    //
5222    // The return type will be changed later anyway.
5223    Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
5224      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
5225      << SourceRange(D.getIdentifierLoc());
5226    D.setInvalidType();
5227  }
5228
5229  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
5230
5231  // Make sure we don't have any parameters.
5232  if (Proto->getNumArgs() > 0) {
5233    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
5234
5235    // Delete the parameters.
5236    D.getFunctionTypeInfo().freeArgs();
5237    D.setInvalidType();
5238  } else if (Proto->isVariadic()) {
5239    Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
5240    D.setInvalidType();
5241  }
5242
5243  // Diagnose "&operator bool()" and other such nonsense.  This
5244  // is actually a gcc extension which we don't support.
5245  if (Proto->getResultType() != ConvType) {
5246    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_complex_decl)
5247      << Proto->getResultType();
5248    D.setInvalidType();
5249    ConvType = Proto->getResultType();
5250  }
5251
5252  // C++ [class.conv.fct]p4:
5253  //   The conversion-type-id shall not represent a function type nor
5254  //   an array type.
5255  if (ConvType->isArrayType()) {
5256    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
5257    ConvType = Context.getPointerType(ConvType);
5258    D.setInvalidType();
5259  } else if (ConvType->isFunctionType()) {
5260    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
5261    ConvType = Context.getPointerType(ConvType);
5262    D.setInvalidType();
5263  }
5264
5265  // Rebuild the function type "R" without any parameters (in case any
5266  // of the errors above fired) and with the conversion type as the
5267  // return type.
5268  if (D.isInvalidType())
5269    R = Context.getFunctionType(ConvType, 0, 0, Proto->getExtProtoInfo());
5270
5271  // C++0x explicit conversion operators.
5272  if (D.getDeclSpec().isExplicitSpecified())
5273    Diag(D.getDeclSpec().getExplicitSpecLoc(),
5274         getLangOpts().CPlusPlus0x ?
5275           diag::warn_cxx98_compat_explicit_conversion_functions :
5276           diag::ext_explicit_conversion_functions)
5277      << SourceRange(D.getDeclSpec().getExplicitSpecLoc());
5278}
5279
5280/// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
5281/// the declaration of the given C++ conversion function. This routine
5282/// is responsible for recording the conversion function in the C++
5283/// class, if possible.
5284Decl *Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
5285  assert(Conversion && "Expected to receive a conversion function declaration");
5286
5287  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext());
5288
5289  // Make sure we aren't redeclaring the conversion function.
5290  QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());
5291
5292  // C++ [class.conv.fct]p1:
5293  //   [...] A conversion function is never used to convert a
5294  //   (possibly cv-qualified) object to the (possibly cv-qualified)
5295  //   same object type (or a reference to it), to a (possibly
5296  //   cv-qualified) base class of that type (or a reference to it),
5297  //   or to (possibly cv-qualified) void.
5298  // FIXME: Suppress this warning if the conversion function ends up being a
5299  // virtual function that overrides a virtual function in a base class.
5300  QualType ClassType
5301    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
5302  if (const ReferenceType *ConvTypeRef = ConvType->getAs<ReferenceType>())
5303    ConvType = ConvTypeRef->getPointeeType();
5304  if (Conversion->getTemplateSpecializationKind() != TSK_Undeclared &&
5305      Conversion->getTemplateSpecializationKind() != TSK_ExplicitSpecialization)
5306    /* Suppress diagnostics for instantiations. */;
5307  else if (ConvType->isRecordType()) {
5308    ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
5309    if (ConvType == ClassType)
5310      Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used)
5311        << ClassType;
5312    else if (IsDerivedFrom(ClassType, ConvType))
5313      Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used)
5314        <<  ClassType << ConvType;
5315  } else if (ConvType->isVoidType()) {
5316    Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used)
5317      << ClassType << ConvType;
5318  }
5319
5320  if (FunctionTemplateDecl *ConversionTemplate
5321                                = Conversion->getDescribedFunctionTemplate())
5322    return ConversionTemplate;
5323
5324  return Conversion;
5325}
5326
5327//===----------------------------------------------------------------------===//
5328// Namespace Handling
5329//===----------------------------------------------------------------------===//
5330
5331
5332
5333/// ActOnStartNamespaceDef - This is called at the start of a namespace
5334/// definition.
5335Decl *Sema::ActOnStartNamespaceDef(Scope *NamespcScope,
5336                                   SourceLocation InlineLoc,
5337                                   SourceLocation NamespaceLoc,
5338                                   SourceLocation IdentLoc,
5339                                   IdentifierInfo *II,
5340                                   SourceLocation LBrace,
5341                                   AttributeList *AttrList) {
5342  SourceLocation StartLoc = InlineLoc.isValid() ? InlineLoc : NamespaceLoc;
5343  // For anonymous namespace, take the location of the left brace.
5344  SourceLocation Loc = II ? IdentLoc : LBrace;
5345  bool IsInline = InlineLoc.isValid();
5346  bool IsInvalid = false;
5347  bool IsStd = false;
5348  bool AddToKnown = false;
5349  Scope *DeclRegionScope = NamespcScope->getParent();
5350
5351  NamespaceDecl *PrevNS = 0;
5352  if (II) {
5353    // C++ [namespace.def]p2:
5354    //   The identifier in an original-namespace-definition shall not
5355    //   have been previously defined in the declarative region in
5356    //   which the original-namespace-definition appears. The
5357    //   identifier in an original-namespace-definition is the name of
5358    //   the namespace. Subsequently in that declarative region, it is
5359    //   treated as an original-namespace-name.
5360    //
5361    // Since namespace names are unique in their scope, and we don't
5362    // look through using directives, just look for any ordinary names.
5363
5364    const unsigned IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Member |
5365    Decl::IDNS_Type | Decl::IDNS_Using | Decl::IDNS_Tag |
5366    Decl::IDNS_Namespace;
5367    NamedDecl *PrevDecl = 0;
5368    for (DeclContext::lookup_result R
5369         = CurContext->getRedeclContext()->lookup(II);
5370         R.first != R.second; ++R.first) {
5371      if ((*R.first)->getIdentifierNamespace() & IDNS) {
5372        PrevDecl = *R.first;
5373        break;
5374      }
5375    }
5376
5377    PrevNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl);
5378
5379    if (PrevNS) {
5380      // This is an extended namespace definition.
5381      if (IsInline != PrevNS->isInline()) {
5382        // inline-ness must match
5383        if (PrevNS->isInline()) {
5384          // The user probably just forgot the 'inline', so suggest that it
5385          // be added back.
5386          Diag(Loc, diag::warn_inline_namespace_reopened_noninline)
5387            << FixItHint::CreateInsertion(NamespaceLoc, "inline ");
5388        } else {
5389          Diag(Loc, diag::err_inline_namespace_mismatch)
5390            << IsInline;
5391        }
5392        Diag(PrevNS->getLocation(), diag::note_previous_definition);
5393
5394        IsInline = PrevNS->isInline();
5395      }
5396    } else if (PrevDecl) {
5397      // This is an invalid name redefinition.
5398      Diag(Loc, diag::err_redefinition_different_kind)
5399        << II;
5400      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
5401      IsInvalid = true;
5402      // Continue on to push Namespc as current DeclContext and return it.
5403    } else if (II->isStr("std") &&
5404               CurContext->getRedeclContext()->isTranslationUnit()) {
5405      // This is the first "real" definition of the namespace "std", so update
5406      // our cache of the "std" namespace to point at this definition.
5407      PrevNS = getStdNamespace();
5408      IsStd = true;
5409      AddToKnown = !IsInline;
5410    } else {
5411      // We've seen this namespace for the first time.
5412      AddToKnown = !IsInline;
5413    }
5414  } else {
5415    // Anonymous namespaces.
5416
5417    // Determine whether the parent already has an anonymous namespace.
5418    DeclContext *Parent = CurContext->getRedeclContext();
5419    if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
5420      PrevNS = TU->getAnonymousNamespace();
5421    } else {
5422      NamespaceDecl *ND = cast<NamespaceDecl>(Parent);
5423      PrevNS = ND->getAnonymousNamespace();
5424    }
5425
5426    if (PrevNS && IsInline != PrevNS->isInline()) {
5427      // inline-ness must match
5428      Diag(Loc, diag::err_inline_namespace_mismatch)
5429        << IsInline;
5430      Diag(PrevNS->getLocation(), diag::note_previous_definition);
5431
5432      // Recover by ignoring the new namespace's inline status.
5433      IsInline = PrevNS->isInline();
5434    }
5435  }
5436
5437  NamespaceDecl *Namespc = NamespaceDecl::Create(Context, CurContext, IsInline,
5438                                                 StartLoc, Loc, II, PrevNS);
5439  if (IsInvalid)
5440    Namespc->setInvalidDecl();
5441
5442  ProcessDeclAttributeList(DeclRegionScope, Namespc, AttrList);
5443
5444  // FIXME: Should we be merging attributes?
5445  if (const VisibilityAttr *Attr = Namespc->getAttr<VisibilityAttr>())
5446    PushNamespaceVisibilityAttr(Attr, Loc);
5447
5448  if (IsStd)
5449    StdNamespace = Namespc;
5450  if (AddToKnown)
5451    KnownNamespaces[Namespc] = false;
5452
5453  if (II) {
5454    PushOnScopeChains(Namespc, DeclRegionScope);
5455  } else {
5456    // Link the anonymous namespace into its parent.
5457    DeclContext *Parent = CurContext->getRedeclContext();
5458    if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
5459      TU->setAnonymousNamespace(Namespc);
5460    } else {
5461      cast<NamespaceDecl>(Parent)->setAnonymousNamespace(Namespc);
5462    }
5463
5464    CurContext->addDecl(Namespc);
5465
5466    // C++ [namespace.unnamed]p1.  An unnamed-namespace-definition
5467    //   behaves as if it were replaced by
5468    //     namespace unique { /* empty body */ }
5469    //     using namespace unique;
5470    //     namespace unique { namespace-body }
5471    //   where all occurrences of 'unique' in a translation unit are
5472    //   replaced by the same identifier and this identifier differs
5473    //   from all other identifiers in the entire program.
5474
5475    // We just create the namespace with an empty name and then add an
5476    // implicit using declaration, just like the standard suggests.
5477    //
5478    // CodeGen enforces the "universally unique" aspect by giving all
5479    // declarations semantically contained within an anonymous
5480    // namespace internal linkage.
5481
5482    if (!PrevNS) {
5483      UsingDirectiveDecl* UD
5484        = UsingDirectiveDecl::Create(Context, CurContext,
5485                                     /* 'using' */ LBrace,
5486                                     /* 'namespace' */ SourceLocation(),
5487                                     /* qualifier */ NestedNameSpecifierLoc(),
5488                                     /* identifier */ SourceLocation(),
5489                                     Namespc,
5490                                     /* Ancestor */ CurContext);
5491      UD->setImplicit();
5492      CurContext->addDecl(UD);
5493    }
5494  }
5495
5496  ActOnDocumentableDecl(Namespc);
5497
5498  // Although we could have an invalid decl (i.e. the namespace name is a
5499  // redefinition), push it as current DeclContext and try to continue parsing.
5500  // FIXME: We should be able to push Namespc here, so that the each DeclContext
5501  // for the namespace has the declarations that showed up in that particular
5502  // namespace definition.
5503  PushDeclContext(NamespcScope, Namespc);
5504  return Namespc;
5505}
5506
5507/// getNamespaceDecl - Returns the namespace a decl represents. If the decl
5508/// is a namespace alias, returns the namespace it points to.
5509static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) {
5510  if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D))
5511    return AD->getNamespace();
5512  return dyn_cast_or_null<NamespaceDecl>(D);
5513}
5514
5515/// ActOnFinishNamespaceDef - This callback is called after a namespace is
5516/// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
5517void Sema::ActOnFinishNamespaceDef(Decl *Dcl, SourceLocation RBrace) {
5518  NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
5519  assert(Namespc && "Invalid parameter, expected NamespaceDecl");
5520  Namespc->setRBraceLoc(RBrace);
5521  PopDeclContext();
5522  if (Namespc->hasAttr<VisibilityAttr>())
5523    PopPragmaVisibility(true, RBrace);
5524}
5525
5526CXXRecordDecl *Sema::getStdBadAlloc() const {
5527  return cast_or_null<CXXRecordDecl>(
5528                                  StdBadAlloc.get(Context.getExternalSource()));
5529}
5530
5531NamespaceDecl *Sema::getStdNamespace() const {
5532  return cast_or_null<NamespaceDecl>(
5533                                 StdNamespace.get(Context.getExternalSource()));
5534}
5535
5536/// \brief Retrieve the special "std" namespace, which may require us to
5537/// implicitly define the namespace.
5538NamespaceDecl *Sema::getOrCreateStdNamespace() {
5539  if (!StdNamespace) {
5540    // The "std" namespace has not yet been defined, so build one implicitly.
5541    StdNamespace = NamespaceDecl::Create(Context,
5542                                         Context.getTranslationUnitDecl(),
5543                                         /*Inline=*/false,
5544                                         SourceLocation(), SourceLocation(),
5545                                         &PP.getIdentifierTable().get("std"),
5546                                         /*PrevDecl=*/0);
5547    getStdNamespace()->setImplicit(true);
5548  }
5549
5550  return getStdNamespace();
5551}
5552
5553bool Sema::isStdInitializerList(QualType Ty, QualType *Element) {
5554  assert(getLangOpts().CPlusPlus &&
5555         "Looking for std::initializer_list outside of C++.");
5556
5557  // We're looking for implicit instantiations of
5558  // template <typename E> class std::initializer_list.
5559
5560  if (!StdNamespace) // If we haven't seen namespace std yet, this can't be it.
5561    return false;
5562
5563  ClassTemplateDecl *Template = 0;
5564  const TemplateArgument *Arguments = 0;
5565
5566  if (const RecordType *RT = Ty->getAs<RecordType>()) {
5567
5568    ClassTemplateSpecializationDecl *Specialization =
5569        dyn_cast<ClassTemplateSpecializationDecl>(RT->getDecl());
5570    if (!Specialization)
5571      return false;
5572
5573    Template = Specialization->getSpecializedTemplate();
5574    Arguments = Specialization->getTemplateArgs().data();
5575  } else if (const TemplateSpecializationType *TST =
5576                 Ty->getAs<TemplateSpecializationType>()) {
5577    Template = dyn_cast_or_null<ClassTemplateDecl>(
5578        TST->getTemplateName().getAsTemplateDecl());
5579    Arguments = TST->getArgs();
5580  }
5581  if (!Template)
5582    return false;
5583
5584  if (!StdInitializerList) {
5585    // Haven't recognized std::initializer_list yet, maybe this is it.
5586    CXXRecordDecl *TemplateClass = Template->getTemplatedDecl();
5587    if (TemplateClass->getIdentifier() !=
5588            &PP.getIdentifierTable().get("initializer_list") ||
5589        !getStdNamespace()->InEnclosingNamespaceSetOf(
5590            TemplateClass->getDeclContext()))
5591      return false;
5592    // This is a template called std::initializer_list, but is it the right
5593    // template?
5594    TemplateParameterList *Params = Template->getTemplateParameters();
5595    if (Params->getMinRequiredArguments() != 1)
5596      return false;
5597    if (!isa<TemplateTypeParmDecl>(Params->getParam(0)))
5598      return false;
5599
5600    // It's the right template.
5601    StdInitializerList = Template;
5602  }
5603
5604  if (Template != StdInitializerList)
5605    return false;
5606
5607  // This is an instance of std::initializer_list. Find the argument type.
5608  if (Element)
5609    *Element = Arguments[0].getAsType();
5610  return true;
5611}
5612
5613static ClassTemplateDecl *LookupStdInitializerList(Sema &S, SourceLocation Loc){
5614  NamespaceDecl *Std = S.getStdNamespace();
5615  if (!Std) {
5616    S.Diag(Loc, diag::err_implied_std_initializer_list_not_found);
5617    return 0;
5618  }
5619
5620  LookupResult Result(S, &S.PP.getIdentifierTable().get("initializer_list"),
5621                      Loc, Sema::LookupOrdinaryName);
5622  if (!S.LookupQualifiedName(Result, Std)) {
5623    S.Diag(Loc, diag::err_implied_std_initializer_list_not_found);
5624    return 0;
5625  }
5626  ClassTemplateDecl *Template = Result.getAsSingle<ClassTemplateDecl>();
5627  if (!Template) {
5628    Result.suppressDiagnostics();
5629    // We found something weird. Complain about the first thing we found.
5630    NamedDecl *Found = *Result.begin();
5631    S.Diag(Found->getLocation(), diag::err_malformed_std_initializer_list);
5632    return 0;
5633  }
5634
5635  // We found some template called std::initializer_list. Now verify that it's
5636  // correct.
5637  TemplateParameterList *Params = Template->getTemplateParameters();
5638  if (Params->getMinRequiredArguments() != 1 ||
5639      !isa<TemplateTypeParmDecl>(Params->getParam(0))) {
5640    S.Diag(Template->getLocation(), diag::err_malformed_std_initializer_list);
5641    return 0;
5642  }
5643
5644  return Template;
5645}
5646
5647QualType Sema::BuildStdInitializerList(QualType Element, SourceLocation Loc) {
5648  if (!StdInitializerList) {
5649    StdInitializerList = LookupStdInitializerList(*this, Loc);
5650    if (!StdInitializerList)
5651      return QualType();
5652  }
5653
5654  TemplateArgumentListInfo Args(Loc, Loc);
5655  Args.addArgument(TemplateArgumentLoc(TemplateArgument(Element),
5656                                       Context.getTrivialTypeSourceInfo(Element,
5657                                                                        Loc)));
5658  return Context.getCanonicalType(
5659      CheckTemplateIdType(TemplateName(StdInitializerList), Loc, Args));
5660}
5661
5662bool Sema::isInitListConstructor(const CXXConstructorDecl* Ctor) {
5663  // C++ [dcl.init.list]p2:
5664  //   A constructor is an initializer-list constructor if its first parameter
5665  //   is of type std::initializer_list<E> or reference to possibly cv-qualified
5666  //   std::initializer_list<E> for some type E, and either there are no other
5667  //   parameters or else all other parameters have default arguments.
5668  if (Ctor->getNumParams() < 1 ||
5669      (Ctor->getNumParams() > 1 && !Ctor->getParamDecl(1)->hasDefaultArg()))
5670    return false;
5671
5672  QualType ArgType = Ctor->getParamDecl(0)->getType();
5673  if (const ReferenceType *RT = ArgType->getAs<ReferenceType>())
5674    ArgType = RT->getPointeeType().getUnqualifiedType();
5675
5676  return isStdInitializerList(ArgType, 0);
5677}
5678
5679/// \brief Determine whether a using statement is in a context where it will be
5680/// apply in all contexts.
5681static bool IsUsingDirectiveInToplevelContext(DeclContext *CurContext) {
5682  switch (CurContext->getDeclKind()) {
5683    case Decl::TranslationUnit:
5684      return true;
5685    case Decl::LinkageSpec:
5686      return IsUsingDirectiveInToplevelContext(CurContext->getParent());
5687    default:
5688      return false;
5689  }
5690}
5691
5692namespace {
5693
5694// Callback to only accept typo corrections that are namespaces.
5695class NamespaceValidatorCCC : public CorrectionCandidateCallback {
5696 public:
5697  virtual bool ValidateCandidate(const TypoCorrection &candidate) {
5698    if (NamedDecl *ND = candidate.getCorrectionDecl()) {
5699      return isa<NamespaceDecl>(ND) || isa<NamespaceAliasDecl>(ND);
5700    }
5701    return false;
5702  }
5703};
5704
5705}
5706
5707static bool TryNamespaceTypoCorrection(Sema &S, LookupResult &R, Scope *Sc,
5708                                       CXXScopeSpec &SS,
5709                                       SourceLocation IdentLoc,
5710                                       IdentifierInfo *Ident) {
5711  NamespaceValidatorCCC Validator;
5712  R.clear();
5713  if (TypoCorrection Corrected = S.CorrectTypo(R.getLookupNameInfo(),
5714                                               R.getLookupKind(), Sc, &SS,
5715                                               Validator)) {
5716    std::string CorrectedStr(Corrected.getAsString(S.getLangOpts()));
5717    std::string CorrectedQuotedStr(Corrected.getQuoted(S.getLangOpts()));
5718    if (DeclContext *DC = S.computeDeclContext(SS, false))
5719      S.Diag(IdentLoc, diag::err_using_directive_member_suggest)
5720        << Ident << DC << CorrectedQuotedStr << SS.getRange()
5721        << FixItHint::CreateReplacement(IdentLoc, CorrectedStr);
5722    else
5723      S.Diag(IdentLoc, diag::err_using_directive_suggest)
5724        << Ident << CorrectedQuotedStr
5725        << FixItHint::CreateReplacement(IdentLoc, CorrectedStr);
5726
5727    S.Diag(Corrected.getCorrectionDecl()->getLocation(),
5728         diag::note_namespace_defined_here) << CorrectedQuotedStr;
5729
5730    R.addDecl(Corrected.getCorrectionDecl());
5731    return true;
5732  }
5733  return false;
5734}
5735
5736Decl *Sema::ActOnUsingDirective(Scope *S,
5737                                          SourceLocation UsingLoc,
5738                                          SourceLocation NamespcLoc,
5739                                          CXXScopeSpec &SS,
5740                                          SourceLocation IdentLoc,
5741                                          IdentifierInfo *NamespcName,
5742                                          AttributeList *AttrList) {
5743  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
5744  assert(NamespcName && "Invalid NamespcName.");
5745  assert(IdentLoc.isValid() && "Invalid NamespceName location.");
5746
5747  // This can only happen along a recovery path.
5748  while (S->getFlags() & Scope::TemplateParamScope)
5749    S = S->getParent();
5750  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
5751
5752  UsingDirectiveDecl *UDir = 0;
5753  NestedNameSpecifier *Qualifier = 0;
5754  if (SS.isSet())
5755    Qualifier = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
5756
5757  // Lookup namespace name.
5758  LookupResult R(*this, NamespcName, IdentLoc, LookupNamespaceName);
5759  LookupParsedName(R, S, &SS);
5760  if (R.isAmbiguous())
5761    return 0;
5762
5763  if (R.empty()) {
5764    R.clear();
5765    // Allow "using namespace std;" or "using namespace ::std;" even if
5766    // "std" hasn't been defined yet, for GCC compatibility.
5767    if ((!Qualifier || Qualifier->getKind() == NestedNameSpecifier::Global) &&
5768        NamespcName->isStr("std")) {
5769      Diag(IdentLoc, diag::ext_using_undefined_std);
5770      R.addDecl(getOrCreateStdNamespace());
5771      R.resolveKind();
5772    }
5773    // Otherwise, attempt typo correction.
5774    else TryNamespaceTypoCorrection(*this, R, S, SS, IdentLoc, NamespcName);
5775  }
5776
5777  if (!R.empty()) {
5778    NamedDecl *Named = R.getFoundDecl();
5779    assert((isa<NamespaceDecl>(Named) || isa<NamespaceAliasDecl>(Named))
5780        && "expected namespace decl");
5781    // C++ [namespace.udir]p1:
5782    //   A using-directive specifies that the names in the nominated
5783    //   namespace can be used in the scope in which the
5784    //   using-directive appears after the using-directive. During
5785    //   unqualified name lookup (3.4.1), the names appear as if they
5786    //   were declared in the nearest enclosing namespace which
5787    //   contains both the using-directive and the nominated
5788    //   namespace. [Note: in this context, "contains" means "contains
5789    //   directly or indirectly". ]
5790
5791    // Find enclosing context containing both using-directive and
5792    // nominated namespace.
5793    NamespaceDecl *NS = getNamespaceDecl(Named);
5794    DeclContext *CommonAncestor = cast<DeclContext>(NS);
5795    while (CommonAncestor && !CommonAncestor->Encloses(CurContext))
5796      CommonAncestor = CommonAncestor->getParent();
5797
5798    UDir = UsingDirectiveDecl::Create(Context, CurContext, UsingLoc, NamespcLoc,
5799                                      SS.getWithLocInContext(Context),
5800                                      IdentLoc, Named, CommonAncestor);
5801
5802    if (IsUsingDirectiveInToplevelContext(CurContext) &&
5803        !SourceMgr.isFromMainFile(SourceMgr.getExpansionLoc(IdentLoc))) {
5804      Diag(IdentLoc, diag::warn_using_directive_in_header);
5805    }
5806
5807    PushUsingDirective(S, UDir);
5808  } else {
5809    Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
5810  }
5811
5812  // FIXME: We ignore attributes for now.
5813  return UDir;
5814}
5815
5816void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) {
5817  // If the scope has an associated entity and the using directive is at
5818  // namespace or translation unit scope, add the UsingDirectiveDecl into
5819  // its lookup structure so qualified name lookup can find it.
5820  DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity());
5821  if (Ctx && !Ctx->isFunctionOrMethod())
5822    Ctx->addDecl(UDir);
5823  else
5824    // Otherwise, it is at block sope. The using-directives will affect lookup
5825    // only to the end of the scope.
5826    S->PushUsingDirective(UDir);
5827}
5828
5829
5830Decl *Sema::ActOnUsingDeclaration(Scope *S,
5831                                  AccessSpecifier AS,
5832                                  bool HasUsingKeyword,
5833                                  SourceLocation UsingLoc,
5834                                  CXXScopeSpec &SS,
5835                                  UnqualifiedId &Name,
5836                                  AttributeList *AttrList,
5837                                  bool IsTypeName,
5838                                  SourceLocation TypenameLoc) {
5839  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
5840
5841  switch (Name.getKind()) {
5842  case UnqualifiedId::IK_ImplicitSelfParam:
5843  case UnqualifiedId::IK_Identifier:
5844  case UnqualifiedId::IK_OperatorFunctionId:
5845  case UnqualifiedId::IK_LiteralOperatorId:
5846  case UnqualifiedId::IK_ConversionFunctionId:
5847    break;
5848
5849  case UnqualifiedId::IK_ConstructorName:
5850  case UnqualifiedId::IK_ConstructorTemplateId:
5851    // C++11 inheriting constructors.
5852    Diag(Name.getLocStart(),
5853         getLangOpts().CPlusPlus0x ?
5854           // FIXME: Produce warn_cxx98_compat_using_decl_constructor
5855           //        instead once inheriting constructors work.
5856           diag::err_using_decl_constructor_unsupported :
5857           diag::err_using_decl_constructor)
5858      << SS.getRange();
5859
5860    if (getLangOpts().CPlusPlus0x) break;
5861
5862    return 0;
5863
5864  case UnqualifiedId::IK_DestructorName:
5865    Diag(Name.getLocStart(), diag::err_using_decl_destructor)
5866      << SS.getRange();
5867    return 0;
5868
5869  case UnqualifiedId::IK_TemplateId:
5870    Diag(Name.getLocStart(), diag::err_using_decl_template_id)
5871      << SourceRange(Name.TemplateId->LAngleLoc, Name.TemplateId->RAngleLoc);
5872    return 0;
5873  }
5874
5875  DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name);
5876  DeclarationName TargetName = TargetNameInfo.getName();
5877  if (!TargetName)
5878    return 0;
5879
5880  // Warn about using declarations.
5881  // TODO: store that the declaration was written without 'using' and
5882  // talk about access decls instead of using decls in the
5883  // diagnostics.
5884  if (!HasUsingKeyword) {
5885    UsingLoc = Name.getLocStart();
5886
5887    Diag(UsingLoc, diag::warn_access_decl_deprecated)
5888      << FixItHint::CreateInsertion(SS.getRange().getBegin(), "using ");
5889  }
5890
5891  if (DiagnoseUnexpandedParameterPack(SS, UPPC_UsingDeclaration) ||
5892      DiagnoseUnexpandedParameterPack(TargetNameInfo, UPPC_UsingDeclaration))
5893    return 0;
5894
5895  NamedDecl *UD = BuildUsingDeclaration(S, AS, UsingLoc, SS,
5896                                        TargetNameInfo, AttrList,
5897                                        /* IsInstantiation */ false,
5898                                        IsTypeName, TypenameLoc);
5899  if (UD)
5900    PushOnScopeChains(UD, S, /*AddToContext*/ false);
5901
5902  return UD;
5903}
5904
5905/// \brief Determine whether a using declaration considers the given
5906/// declarations as "equivalent", e.g., if they are redeclarations of
5907/// the same entity or are both typedefs of the same type.
5908static bool
5909IsEquivalentForUsingDecl(ASTContext &Context, NamedDecl *D1, NamedDecl *D2,
5910                         bool &SuppressRedeclaration) {
5911  if (D1->getCanonicalDecl() == D2->getCanonicalDecl()) {
5912    SuppressRedeclaration = false;
5913    return true;
5914  }
5915
5916  if (TypedefNameDecl *TD1 = dyn_cast<TypedefNameDecl>(D1))
5917    if (TypedefNameDecl *TD2 = dyn_cast<TypedefNameDecl>(D2)) {
5918      SuppressRedeclaration = true;
5919      return Context.hasSameType(TD1->getUnderlyingType(),
5920                                 TD2->getUnderlyingType());
5921    }
5922
5923  return false;
5924}
5925
5926
5927/// Determines whether to create a using shadow decl for a particular
5928/// decl, given the set of decls existing prior to this using lookup.
5929bool Sema::CheckUsingShadowDecl(UsingDecl *Using, NamedDecl *Orig,
5930                                const LookupResult &Previous) {
5931  // Diagnose finding a decl which is not from a base class of the
5932  // current class.  We do this now because there are cases where this
5933  // function will silently decide not to build a shadow decl, which
5934  // will pre-empt further diagnostics.
5935  //
5936  // We don't need to do this in C++0x because we do the check once on
5937  // the qualifier.
5938  //
5939  // FIXME: diagnose the following if we care enough:
5940  //   struct A { int foo; };
5941  //   struct B : A { using A::foo; };
5942  //   template <class T> struct C : A {};
5943  //   template <class T> struct D : C<T> { using B::foo; } // <---
5944  // This is invalid (during instantiation) in C++03 because B::foo
5945  // resolves to the using decl in B, which is not a base class of D<T>.
5946  // We can't diagnose it immediately because C<T> is an unknown
5947  // specialization.  The UsingShadowDecl in D<T> then points directly
5948  // to A::foo, which will look well-formed when we instantiate.
5949  // The right solution is to not collapse the shadow-decl chain.
5950  if (!getLangOpts().CPlusPlus0x && CurContext->isRecord()) {
5951    DeclContext *OrigDC = Orig->getDeclContext();
5952
5953    // Handle enums and anonymous structs.
5954    if (isa<EnumDecl>(OrigDC)) OrigDC = OrigDC->getParent();
5955    CXXRecordDecl *OrigRec = cast<CXXRecordDecl>(OrigDC);
5956    while (OrigRec->isAnonymousStructOrUnion())
5957      OrigRec = cast<CXXRecordDecl>(OrigRec->getDeclContext());
5958
5959    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(OrigRec)) {
5960      if (OrigDC == CurContext) {
5961        Diag(Using->getLocation(),
5962             diag::err_using_decl_nested_name_specifier_is_current_class)
5963          << Using->getQualifierLoc().getSourceRange();
5964        Diag(Orig->getLocation(), diag::note_using_decl_target);
5965        return true;
5966      }
5967
5968      Diag(Using->getQualifierLoc().getBeginLoc(),
5969           diag::err_using_decl_nested_name_specifier_is_not_base_class)
5970        << Using->getQualifier()
5971        << cast<CXXRecordDecl>(CurContext)
5972        << Using->getQualifierLoc().getSourceRange();
5973      Diag(Orig->getLocation(), diag::note_using_decl_target);
5974      return true;
5975    }
5976  }
5977
5978  if (Previous.empty()) return false;
5979
5980  NamedDecl *Target = Orig;
5981  if (isa<UsingShadowDecl>(Target))
5982    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
5983
5984  // If the target happens to be one of the previous declarations, we
5985  // don't have a conflict.
5986  //
5987  // FIXME: but we might be increasing its access, in which case we
5988  // should redeclare it.
5989  NamedDecl *NonTag = 0, *Tag = 0;
5990  for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
5991         I != E; ++I) {
5992    NamedDecl *D = (*I)->getUnderlyingDecl();
5993    bool Result;
5994    if (IsEquivalentForUsingDecl(Context, D, Target, Result))
5995      return Result;
5996
5997    (isa<TagDecl>(D) ? Tag : NonTag) = D;
5998  }
5999
6000  if (Target->isFunctionOrFunctionTemplate()) {
6001    FunctionDecl *FD;
6002    if (isa<FunctionTemplateDecl>(Target))
6003      FD = cast<FunctionTemplateDecl>(Target)->getTemplatedDecl();
6004    else
6005      FD = cast<FunctionDecl>(Target);
6006
6007    NamedDecl *OldDecl = 0;
6008    switch (CheckOverload(0, FD, Previous, OldDecl, /*IsForUsingDecl*/ true)) {
6009    case Ovl_Overload:
6010      return false;
6011
6012    case Ovl_NonFunction:
6013      Diag(Using->getLocation(), diag::err_using_decl_conflict);
6014      break;
6015
6016    // We found a decl with the exact signature.
6017    case Ovl_Match:
6018      // If we're in a record, we want to hide the target, so we
6019      // return true (without a diagnostic) to tell the caller not to
6020      // build a shadow decl.
6021      if (CurContext->isRecord())
6022        return true;
6023
6024      // If we're not in a record, this is an error.
6025      Diag(Using->getLocation(), diag::err_using_decl_conflict);
6026      break;
6027    }
6028
6029    Diag(Target->getLocation(), diag::note_using_decl_target);
6030    Diag(OldDecl->getLocation(), diag::note_using_decl_conflict);
6031    return true;
6032  }
6033
6034  // Target is not a function.
6035
6036  if (isa<TagDecl>(Target)) {
6037    // No conflict between a tag and a non-tag.
6038    if (!Tag) return false;
6039
6040    Diag(Using->getLocation(), diag::err_using_decl_conflict);
6041    Diag(Target->getLocation(), diag::note_using_decl_target);
6042    Diag(Tag->getLocation(), diag::note_using_decl_conflict);
6043    return true;
6044  }
6045
6046  // No conflict between a tag and a non-tag.
6047  if (!NonTag) return false;
6048
6049  Diag(Using->getLocation(), diag::err_using_decl_conflict);
6050  Diag(Target->getLocation(), diag::note_using_decl_target);
6051  Diag(NonTag->getLocation(), diag::note_using_decl_conflict);
6052  return true;
6053}
6054
6055/// Builds a shadow declaration corresponding to a 'using' declaration.
6056UsingShadowDecl *Sema::BuildUsingShadowDecl(Scope *S,
6057                                            UsingDecl *UD,
6058                                            NamedDecl *Orig) {
6059
6060  // If we resolved to another shadow declaration, just coalesce them.
6061  NamedDecl *Target = Orig;
6062  if (isa<UsingShadowDecl>(Target)) {
6063    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
6064    assert(!isa<UsingShadowDecl>(Target) && "nested shadow declaration");
6065  }
6066
6067  UsingShadowDecl *Shadow
6068    = UsingShadowDecl::Create(Context, CurContext,
6069                              UD->getLocation(), UD, Target);
6070  UD->addShadowDecl(Shadow);
6071
6072  Shadow->setAccess(UD->getAccess());
6073  if (Orig->isInvalidDecl() || UD->isInvalidDecl())
6074    Shadow->setInvalidDecl();
6075
6076  if (S)
6077    PushOnScopeChains(Shadow, S);
6078  else
6079    CurContext->addDecl(Shadow);
6080
6081
6082  return Shadow;
6083}
6084
6085/// Hides a using shadow declaration.  This is required by the current
6086/// using-decl implementation when a resolvable using declaration in a
6087/// class is followed by a declaration which would hide or override
6088/// one or more of the using decl's targets; for example:
6089///
6090///   struct Base { void foo(int); };
6091///   struct Derived : Base {
6092///     using Base::foo;
6093///     void foo(int);
6094///   };
6095///
6096/// The governing language is C++03 [namespace.udecl]p12:
6097///
6098///   When a using-declaration brings names from a base class into a
6099///   derived class scope, member functions in the derived class
6100///   override and/or hide member functions with the same name and
6101///   parameter types in a base class (rather than conflicting).
6102///
6103/// There are two ways to implement this:
6104///   (1) optimistically create shadow decls when they're not hidden
6105///       by existing declarations, or
6106///   (2) don't create any shadow decls (or at least don't make them
6107///       visible) until we've fully parsed/instantiated the class.
6108/// The problem with (1) is that we might have to retroactively remove
6109/// a shadow decl, which requires several O(n) operations because the
6110/// decl structures are (very reasonably) not designed for removal.
6111/// (2) avoids this but is very fiddly and phase-dependent.
6112void Sema::HideUsingShadowDecl(Scope *S, UsingShadowDecl *Shadow) {
6113  if (Shadow->getDeclName().getNameKind() ==
6114        DeclarationName::CXXConversionFunctionName)
6115    cast<CXXRecordDecl>(Shadow->getDeclContext())->removeConversion(Shadow);
6116
6117  // Remove it from the DeclContext...
6118  Shadow->getDeclContext()->removeDecl(Shadow);
6119
6120  // ...and the scope, if applicable...
6121  if (S) {
6122    S->RemoveDecl(Shadow);
6123    IdResolver.RemoveDecl(Shadow);
6124  }
6125
6126  // ...and the using decl.
6127  Shadow->getUsingDecl()->removeShadowDecl(Shadow);
6128
6129  // TODO: complain somehow if Shadow was used.  It shouldn't
6130  // be possible for this to happen, because...?
6131}
6132
6133/// Builds a using declaration.
6134///
6135/// \param IsInstantiation - Whether this call arises from an
6136///   instantiation of an unresolved using declaration.  We treat
6137///   the lookup differently for these declarations.
6138NamedDecl *Sema::BuildUsingDeclaration(Scope *S, AccessSpecifier AS,
6139                                       SourceLocation UsingLoc,
6140                                       CXXScopeSpec &SS,
6141                                       const DeclarationNameInfo &NameInfo,
6142                                       AttributeList *AttrList,
6143                                       bool IsInstantiation,
6144                                       bool IsTypeName,
6145                                       SourceLocation TypenameLoc) {
6146  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
6147  SourceLocation IdentLoc = NameInfo.getLoc();
6148  assert(IdentLoc.isValid() && "Invalid TargetName location.");
6149
6150  // FIXME: We ignore attributes for now.
6151
6152  if (SS.isEmpty()) {
6153    Diag(IdentLoc, diag::err_using_requires_qualname);
6154    return 0;
6155  }
6156
6157  // Do the redeclaration lookup in the current scope.
6158  LookupResult Previous(*this, NameInfo, LookupUsingDeclName,
6159                        ForRedeclaration);
6160  Previous.setHideTags(false);
6161  if (S) {
6162    LookupName(Previous, S);
6163
6164    // It is really dumb that we have to do this.
6165    LookupResult::Filter F = Previous.makeFilter();
6166    while (F.hasNext()) {
6167      NamedDecl *D = F.next();
6168      if (!isDeclInScope(D, CurContext, S))
6169        F.erase();
6170    }
6171    F.done();
6172  } else {
6173    assert(IsInstantiation && "no scope in non-instantiation");
6174    assert(CurContext->isRecord() && "scope not record in instantiation");
6175    LookupQualifiedName(Previous, CurContext);
6176  }
6177
6178  // Check for invalid redeclarations.
6179  if (CheckUsingDeclRedeclaration(UsingLoc, IsTypeName, SS, IdentLoc, Previous))
6180    return 0;
6181
6182  // Check for bad qualifiers.
6183  if (CheckUsingDeclQualifier(UsingLoc, SS, IdentLoc))
6184    return 0;
6185
6186  DeclContext *LookupContext = computeDeclContext(SS);
6187  NamedDecl *D;
6188  NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
6189  if (!LookupContext) {
6190    if (IsTypeName) {
6191      // FIXME: not all declaration name kinds are legal here
6192      D = UnresolvedUsingTypenameDecl::Create(Context, CurContext,
6193                                              UsingLoc, TypenameLoc,
6194                                              QualifierLoc,
6195                                              IdentLoc, NameInfo.getName());
6196    } else {
6197      D = UnresolvedUsingValueDecl::Create(Context, CurContext, UsingLoc,
6198                                           QualifierLoc, NameInfo);
6199    }
6200  } else {
6201    D = UsingDecl::Create(Context, CurContext, UsingLoc, QualifierLoc,
6202                          NameInfo, IsTypeName);
6203  }
6204  D->setAccess(AS);
6205  CurContext->addDecl(D);
6206
6207  if (!LookupContext) return D;
6208  UsingDecl *UD = cast<UsingDecl>(D);
6209
6210  if (RequireCompleteDeclContext(SS, LookupContext)) {
6211    UD->setInvalidDecl();
6212    return UD;
6213  }
6214
6215  // The normal rules do not apply to inheriting constructor declarations.
6216  if (NameInfo.getName().getNameKind() == DeclarationName::CXXConstructorName) {
6217    if (CheckInheritingConstructorUsingDecl(UD))
6218      UD->setInvalidDecl();
6219    return UD;
6220  }
6221
6222  // Otherwise, look up the target name.
6223
6224  LookupResult R(*this, NameInfo, LookupOrdinaryName);
6225
6226  // Unlike most lookups, we don't always want to hide tag
6227  // declarations: tag names are visible through the using declaration
6228  // even if hidden by ordinary names, *except* in a dependent context
6229  // where it's important for the sanity of two-phase lookup.
6230  if (!IsInstantiation)
6231    R.setHideTags(false);
6232
6233  // For the purposes of this lookup, we have a base object type
6234  // equal to that of the current context.
6235  if (CurContext->isRecord()) {
6236    R.setBaseObjectType(
6237                   Context.getTypeDeclType(cast<CXXRecordDecl>(CurContext)));
6238  }
6239
6240  LookupQualifiedName(R, LookupContext);
6241
6242  if (R.empty()) {
6243    Diag(IdentLoc, diag::err_no_member)
6244      << NameInfo.getName() << LookupContext << SS.getRange();
6245    UD->setInvalidDecl();
6246    return UD;
6247  }
6248
6249  if (R.isAmbiguous()) {
6250    UD->setInvalidDecl();
6251    return UD;
6252  }
6253
6254  if (IsTypeName) {
6255    // If we asked for a typename and got a non-type decl, error out.
6256    if (!R.getAsSingle<TypeDecl>()) {
6257      Diag(IdentLoc, diag::err_using_typename_non_type);
6258      for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
6259        Diag((*I)->getUnderlyingDecl()->getLocation(),
6260             diag::note_using_decl_target);
6261      UD->setInvalidDecl();
6262      return UD;
6263    }
6264  } else {
6265    // If we asked for a non-typename and we got a type, error out,
6266    // but only if this is an instantiation of an unresolved using
6267    // decl.  Otherwise just silently find the type name.
6268    if (IsInstantiation && R.getAsSingle<TypeDecl>()) {
6269      Diag(IdentLoc, diag::err_using_dependent_value_is_type);
6270      Diag(R.getFoundDecl()->getLocation(), diag::note_using_decl_target);
6271      UD->setInvalidDecl();
6272      return UD;
6273    }
6274  }
6275
6276  // C++0x N2914 [namespace.udecl]p6:
6277  // A using-declaration shall not name a namespace.
6278  if (R.getAsSingle<NamespaceDecl>()) {
6279    Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_namespace)
6280      << SS.getRange();
6281    UD->setInvalidDecl();
6282    return UD;
6283  }
6284
6285  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
6286    if (!CheckUsingShadowDecl(UD, *I, Previous))
6287      BuildUsingShadowDecl(S, UD, *I);
6288  }
6289
6290  return UD;
6291}
6292
6293/// Additional checks for a using declaration referring to a constructor name.
6294bool Sema::CheckInheritingConstructorUsingDecl(UsingDecl *UD) {
6295  assert(!UD->isTypeName() && "expecting a constructor name");
6296
6297  const Type *SourceType = UD->getQualifier()->getAsType();
6298  assert(SourceType &&
6299         "Using decl naming constructor doesn't have type in scope spec.");
6300  CXXRecordDecl *TargetClass = cast<CXXRecordDecl>(CurContext);
6301
6302  // Check whether the named type is a direct base class.
6303  CanQualType CanonicalSourceType = SourceType->getCanonicalTypeUnqualified();
6304  CXXRecordDecl::base_class_iterator BaseIt, BaseE;
6305  for (BaseIt = TargetClass->bases_begin(), BaseE = TargetClass->bases_end();
6306       BaseIt != BaseE; ++BaseIt) {
6307    CanQualType BaseType = BaseIt->getType()->getCanonicalTypeUnqualified();
6308    if (CanonicalSourceType == BaseType)
6309      break;
6310    if (BaseIt->getType()->isDependentType())
6311      break;
6312  }
6313
6314  if (BaseIt == BaseE) {
6315    // Did not find SourceType in the bases.
6316    Diag(UD->getUsingLocation(),
6317         diag::err_using_decl_constructor_not_in_direct_base)
6318      << UD->getNameInfo().getSourceRange()
6319      << QualType(SourceType, 0) << TargetClass;
6320    return true;
6321  }
6322
6323  if (!CurContext->isDependentContext())
6324    BaseIt->setInheritConstructors();
6325
6326  return false;
6327}
6328
6329/// Checks that the given using declaration is not an invalid
6330/// redeclaration.  Note that this is checking only for the using decl
6331/// itself, not for any ill-formedness among the UsingShadowDecls.
6332bool Sema::CheckUsingDeclRedeclaration(SourceLocation UsingLoc,
6333                                       bool isTypeName,
6334                                       const CXXScopeSpec &SS,
6335                                       SourceLocation NameLoc,
6336                                       const LookupResult &Prev) {
6337  // C++03 [namespace.udecl]p8:
6338  // C++0x [namespace.udecl]p10:
6339  //   A using-declaration is a declaration and can therefore be used
6340  //   repeatedly where (and only where) multiple declarations are
6341  //   allowed.
6342  //
6343  // That's in non-member contexts.
6344  if (!CurContext->getRedeclContext()->isRecord())
6345    return false;
6346
6347  NestedNameSpecifier *Qual
6348    = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
6349
6350  for (LookupResult::iterator I = Prev.begin(), E = Prev.end(); I != E; ++I) {
6351    NamedDecl *D = *I;
6352
6353    bool DTypename;
6354    NestedNameSpecifier *DQual;
6355    if (UsingDecl *UD = dyn_cast<UsingDecl>(D)) {
6356      DTypename = UD->isTypeName();
6357      DQual = UD->getQualifier();
6358    } else if (UnresolvedUsingValueDecl *UD
6359                 = dyn_cast<UnresolvedUsingValueDecl>(D)) {
6360      DTypename = false;
6361      DQual = UD->getQualifier();
6362    } else if (UnresolvedUsingTypenameDecl *UD
6363                 = dyn_cast<UnresolvedUsingTypenameDecl>(D)) {
6364      DTypename = true;
6365      DQual = UD->getQualifier();
6366    } else continue;
6367
6368    // using decls differ if one says 'typename' and the other doesn't.
6369    // FIXME: non-dependent using decls?
6370    if (isTypeName != DTypename) continue;
6371
6372    // using decls differ if they name different scopes (but note that
6373    // template instantiation can cause this check to trigger when it
6374    // didn't before instantiation).
6375    if (Context.getCanonicalNestedNameSpecifier(Qual) !=
6376        Context.getCanonicalNestedNameSpecifier(DQual))
6377      continue;
6378
6379    Diag(NameLoc, diag::err_using_decl_redeclaration) << SS.getRange();
6380    Diag(D->getLocation(), diag::note_using_decl) << 1;
6381    return true;
6382  }
6383
6384  return false;
6385}
6386
6387
6388/// Checks that the given nested-name qualifier used in a using decl
6389/// in the current context is appropriately related to the current
6390/// scope.  If an error is found, diagnoses it and returns true.
6391bool Sema::CheckUsingDeclQualifier(SourceLocation UsingLoc,
6392                                   const CXXScopeSpec &SS,
6393                                   SourceLocation NameLoc) {
6394  DeclContext *NamedContext = computeDeclContext(SS);
6395
6396  if (!CurContext->isRecord()) {
6397    // C++03 [namespace.udecl]p3:
6398    // C++0x [namespace.udecl]p8:
6399    //   A using-declaration for a class member shall be a member-declaration.
6400
6401    // If we weren't able to compute a valid scope, it must be a
6402    // dependent class scope.
6403    if (!NamedContext || NamedContext->isRecord()) {
6404      Diag(NameLoc, diag::err_using_decl_can_not_refer_to_class_member)
6405        << SS.getRange();
6406      return true;
6407    }
6408
6409    // Otherwise, everything is known to be fine.
6410    return false;
6411  }
6412
6413  // The current scope is a record.
6414
6415  // If the named context is dependent, we can't decide much.
6416  if (!NamedContext) {
6417    // FIXME: in C++0x, we can diagnose if we can prove that the
6418    // nested-name-specifier does not refer to a base class, which is
6419    // still possible in some cases.
6420
6421    // Otherwise we have to conservatively report that things might be
6422    // okay.
6423    return false;
6424  }
6425
6426  if (!NamedContext->isRecord()) {
6427    // Ideally this would point at the last name in the specifier,
6428    // but we don't have that level of source info.
6429    Diag(SS.getRange().getBegin(),
6430         diag::err_using_decl_nested_name_specifier_is_not_class)
6431      << (NestedNameSpecifier*) SS.getScopeRep() << SS.getRange();
6432    return true;
6433  }
6434
6435  if (!NamedContext->isDependentContext() &&
6436      RequireCompleteDeclContext(const_cast<CXXScopeSpec&>(SS), NamedContext))
6437    return true;
6438
6439  if (getLangOpts().CPlusPlus0x) {
6440    // C++0x [namespace.udecl]p3:
6441    //   In a using-declaration used as a member-declaration, the
6442    //   nested-name-specifier shall name a base class of the class
6443    //   being defined.
6444
6445    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(
6446                                 cast<CXXRecordDecl>(NamedContext))) {
6447      if (CurContext == NamedContext) {
6448        Diag(NameLoc,
6449             diag::err_using_decl_nested_name_specifier_is_current_class)
6450          << SS.getRange();
6451        return true;
6452      }
6453
6454      Diag(SS.getRange().getBegin(),
6455           diag::err_using_decl_nested_name_specifier_is_not_base_class)
6456        << (NestedNameSpecifier*) SS.getScopeRep()
6457        << cast<CXXRecordDecl>(CurContext)
6458        << SS.getRange();
6459      return true;
6460    }
6461
6462    return false;
6463  }
6464
6465  // C++03 [namespace.udecl]p4:
6466  //   A using-declaration used as a member-declaration shall refer
6467  //   to a member of a base class of the class being defined [etc.].
6468
6469  // Salient point: SS doesn't have to name a base class as long as
6470  // lookup only finds members from base classes.  Therefore we can
6471  // diagnose here only if we can prove that that can't happen,
6472  // i.e. if the class hierarchies provably don't intersect.
6473
6474  // TODO: it would be nice if "definitely valid" results were cached
6475  // in the UsingDecl and UsingShadowDecl so that these checks didn't
6476  // need to be repeated.
6477
6478  struct UserData {
6479    llvm::SmallPtrSet<const CXXRecordDecl*, 4> Bases;
6480
6481    static bool collect(const CXXRecordDecl *Base, void *OpaqueData) {
6482      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
6483      Data->Bases.insert(Base);
6484      return true;
6485    }
6486
6487    bool hasDependentBases(const CXXRecordDecl *Class) {
6488      return !Class->forallBases(collect, this);
6489    }
6490
6491    /// Returns true if the base is dependent or is one of the
6492    /// accumulated base classes.
6493    static bool doesNotContain(const CXXRecordDecl *Base, void *OpaqueData) {
6494      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
6495      return !Data->Bases.count(Base);
6496    }
6497
6498    bool mightShareBases(const CXXRecordDecl *Class) {
6499      return Bases.count(Class) || !Class->forallBases(doesNotContain, this);
6500    }
6501  };
6502
6503  UserData Data;
6504
6505  // Returns false if we find a dependent base.
6506  if (Data.hasDependentBases(cast<CXXRecordDecl>(CurContext)))
6507    return false;
6508
6509  // Returns false if the class has a dependent base or if it or one
6510  // of its bases is present in the base set of the current context.
6511  if (Data.mightShareBases(cast<CXXRecordDecl>(NamedContext)))
6512    return false;
6513
6514  Diag(SS.getRange().getBegin(),
6515       diag::err_using_decl_nested_name_specifier_is_not_base_class)
6516    << (NestedNameSpecifier*) SS.getScopeRep()
6517    << cast<CXXRecordDecl>(CurContext)
6518    << SS.getRange();
6519
6520  return true;
6521}
6522
6523Decl *Sema::ActOnAliasDeclaration(Scope *S,
6524                                  AccessSpecifier AS,
6525                                  MultiTemplateParamsArg TemplateParamLists,
6526                                  SourceLocation UsingLoc,
6527                                  UnqualifiedId &Name,
6528                                  TypeResult Type) {
6529  // Skip up to the relevant declaration scope.
6530  while (S->getFlags() & Scope::TemplateParamScope)
6531    S = S->getParent();
6532  assert((S->getFlags() & Scope::DeclScope) &&
6533         "got alias-declaration outside of declaration scope");
6534
6535  if (Type.isInvalid())
6536    return 0;
6537
6538  bool Invalid = false;
6539  DeclarationNameInfo NameInfo = GetNameFromUnqualifiedId(Name);
6540  TypeSourceInfo *TInfo = 0;
6541  GetTypeFromParser(Type.get(), &TInfo);
6542
6543  if (DiagnoseClassNameShadow(CurContext, NameInfo))
6544    return 0;
6545
6546  if (DiagnoseUnexpandedParameterPack(Name.StartLocation, TInfo,
6547                                      UPPC_DeclarationType)) {
6548    Invalid = true;
6549    TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy,
6550                                             TInfo->getTypeLoc().getBeginLoc());
6551  }
6552
6553  LookupResult Previous(*this, NameInfo, LookupOrdinaryName, ForRedeclaration);
6554  LookupName(Previous, S);
6555
6556  // Warn about shadowing the name of a template parameter.
6557  if (Previous.isSingleResult() &&
6558      Previous.getFoundDecl()->isTemplateParameter()) {
6559    DiagnoseTemplateParameterShadow(Name.StartLocation,Previous.getFoundDecl());
6560    Previous.clear();
6561  }
6562
6563  assert(Name.Kind == UnqualifiedId::IK_Identifier &&
6564         "name in alias declaration must be an identifier");
6565  TypeAliasDecl *NewTD = TypeAliasDecl::Create(Context, CurContext, UsingLoc,
6566                                               Name.StartLocation,
6567                                               Name.Identifier, TInfo);
6568
6569  NewTD->setAccess(AS);
6570
6571  if (Invalid)
6572    NewTD->setInvalidDecl();
6573
6574  CheckTypedefForVariablyModifiedType(S, NewTD);
6575  Invalid |= NewTD->isInvalidDecl();
6576
6577  bool Redeclaration = false;
6578
6579  NamedDecl *NewND;
6580  if (TemplateParamLists.size()) {
6581    TypeAliasTemplateDecl *OldDecl = 0;
6582    TemplateParameterList *OldTemplateParams = 0;
6583
6584    if (TemplateParamLists.size() != 1) {
6585      Diag(UsingLoc, diag::err_alias_template_extra_headers)
6586        << SourceRange(TemplateParamLists[1]->getTemplateLoc(),
6587         TemplateParamLists[TemplateParamLists.size()-1]->getRAngleLoc());
6588    }
6589    TemplateParameterList *TemplateParams = TemplateParamLists[0];
6590
6591    // Only consider previous declarations in the same scope.
6592    FilterLookupForScope(Previous, CurContext, S, /*ConsiderLinkage*/false,
6593                         /*ExplicitInstantiationOrSpecialization*/false);
6594    if (!Previous.empty()) {
6595      Redeclaration = true;
6596
6597      OldDecl = Previous.getAsSingle<TypeAliasTemplateDecl>();
6598      if (!OldDecl && !Invalid) {
6599        Diag(UsingLoc, diag::err_redefinition_different_kind)
6600          << Name.Identifier;
6601
6602        NamedDecl *OldD = Previous.getRepresentativeDecl();
6603        if (OldD->getLocation().isValid())
6604          Diag(OldD->getLocation(), diag::note_previous_definition);
6605
6606        Invalid = true;
6607      }
6608
6609      if (!Invalid && OldDecl && !OldDecl->isInvalidDecl()) {
6610        if (TemplateParameterListsAreEqual(TemplateParams,
6611                                           OldDecl->getTemplateParameters(),
6612                                           /*Complain=*/true,
6613                                           TPL_TemplateMatch))
6614          OldTemplateParams = OldDecl->getTemplateParameters();
6615        else
6616          Invalid = true;
6617
6618        TypeAliasDecl *OldTD = OldDecl->getTemplatedDecl();
6619        if (!Invalid &&
6620            !Context.hasSameType(OldTD->getUnderlyingType(),
6621                                 NewTD->getUnderlyingType())) {
6622          // FIXME: The C++0x standard does not clearly say this is ill-formed,
6623          // but we can't reasonably accept it.
6624          Diag(NewTD->getLocation(), diag::err_redefinition_different_typedef)
6625            << 2 << NewTD->getUnderlyingType() << OldTD->getUnderlyingType();
6626          if (OldTD->getLocation().isValid())
6627            Diag(OldTD->getLocation(), diag::note_previous_definition);
6628          Invalid = true;
6629        }
6630      }
6631    }
6632
6633    // Merge any previous default template arguments into our parameters,
6634    // and check the parameter list.
6635    if (CheckTemplateParameterList(TemplateParams, OldTemplateParams,
6636                                   TPC_TypeAliasTemplate))
6637      return 0;
6638
6639    TypeAliasTemplateDecl *NewDecl =
6640      TypeAliasTemplateDecl::Create(Context, CurContext, UsingLoc,
6641                                    Name.Identifier, TemplateParams,
6642                                    NewTD);
6643
6644    NewDecl->setAccess(AS);
6645
6646    if (Invalid)
6647      NewDecl->setInvalidDecl();
6648    else if (OldDecl)
6649      NewDecl->setPreviousDeclaration(OldDecl);
6650
6651    NewND = NewDecl;
6652  } else {
6653    ActOnTypedefNameDecl(S, CurContext, NewTD, Previous, Redeclaration);
6654    NewND = NewTD;
6655  }
6656
6657  if (!Redeclaration)
6658    PushOnScopeChains(NewND, S);
6659
6660  ActOnDocumentableDecl(NewND);
6661  return NewND;
6662}
6663
6664Decl *Sema::ActOnNamespaceAliasDef(Scope *S,
6665                                             SourceLocation NamespaceLoc,
6666                                             SourceLocation AliasLoc,
6667                                             IdentifierInfo *Alias,
6668                                             CXXScopeSpec &SS,
6669                                             SourceLocation IdentLoc,
6670                                             IdentifierInfo *Ident) {
6671
6672  // Lookup the namespace name.
6673  LookupResult R(*this, Ident, IdentLoc, LookupNamespaceName);
6674  LookupParsedName(R, S, &SS);
6675
6676  // Check if we have a previous declaration with the same name.
6677  NamedDecl *PrevDecl
6678    = LookupSingleName(S, Alias, AliasLoc, LookupOrdinaryName,
6679                       ForRedeclaration);
6680  if (PrevDecl && !isDeclInScope(PrevDecl, CurContext, S))
6681    PrevDecl = 0;
6682
6683  if (PrevDecl) {
6684    if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) {
6685      // We already have an alias with the same name that points to the same
6686      // namespace, so don't create a new one.
6687      // FIXME: At some point, we'll want to create the (redundant)
6688      // declaration to maintain better source information.
6689      if (!R.isAmbiguous() && !R.empty() &&
6690          AD->getNamespace()->Equals(getNamespaceDecl(R.getFoundDecl())))
6691        return 0;
6692    }
6693
6694    unsigned DiagID = isa<NamespaceDecl>(PrevDecl) ? diag::err_redefinition :
6695      diag::err_redefinition_different_kind;
6696    Diag(AliasLoc, DiagID) << Alias;
6697    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
6698    return 0;
6699  }
6700
6701  if (R.isAmbiguous())
6702    return 0;
6703
6704  if (R.empty()) {
6705    if (!TryNamespaceTypoCorrection(*this, R, S, SS, IdentLoc, Ident)) {
6706      Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
6707      return 0;
6708    }
6709  }
6710
6711  NamespaceAliasDecl *AliasDecl =
6712    NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc,
6713                               Alias, SS.getWithLocInContext(Context),
6714                               IdentLoc, R.getFoundDecl());
6715
6716  PushOnScopeChains(AliasDecl, S);
6717  return AliasDecl;
6718}
6719
6720namespace {
6721  /// \brief Scoped object used to handle the state changes required in Sema
6722  /// to implicitly define the body of a C++ member function;
6723  class ImplicitlyDefinedFunctionScope {
6724    Sema &S;
6725    Sema::ContextRAII SavedContext;
6726
6727  public:
6728    ImplicitlyDefinedFunctionScope(Sema &S, CXXMethodDecl *Method)
6729      : S(S), SavedContext(S, Method)
6730    {
6731      S.PushFunctionScope();
6732      S.PushExpressionEvaluationContext(Sema::PotentiallyEvaluated);
6733    }
6734
6735    ~ImplicitlyDefinedFunctionScope() {
6736      S.PopExpressionEvaluationContext();
6737      S.PopFunctionScopeInfo();
6738    }
6739  };
6740}
6741
6742Sema::ImplicitExceptionSpecification
6743Sema::ComputeDefaultedDefaultCtorExceptionSpec(SourceLocation Loc,
6744                                               CXXMethodDecl *MD) {
6745  CXXRecordDecl *ClassDecl = MD->getParent();
6746
6747  // C++ [except.spec]p14:
6748  //   An implicitly declared special member function (Clause 12) shall have an
6749  //   exception-specification. [...]
6750  ImplicitExceptionSpecification ExceptSpec(*this);
6751  if (ClassDecl->isInvalidDecl())
6752    return ExceptSpec;
6753
6754  // Direct base-class constructors.
6755  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
6756                                       BEnd = ClassDecl->bases_end();
6757       B != BEnd; ++B) {
6758    if (B->isVirtual()) // Handled below.
6759      continue;
6760
6761    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
6762      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
6763      CXXConstructorDecl *Constructor = LookupDefaultConstructor(BaseClassDecl);
6764      // If this is a deleted function, add it anyway. This might be conformant
6765      // with the standard. This might not. I'm not sure. It might not matter.
6766      if (Constructor)
6767        ExceptSpec.CalledDecl(B->getLocStart(), Constructor);
6768    }
6769  }
6770
6771  // Virtual base-class constructors.
6772  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
6773                                       BEnd = ClassDecl->vbases_end();
6774       B != BEnd; ++B) {
6775    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
6776      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
6777      CXXConstructorDecl *Constructor = LookupDefaultConstructor(BaseClassDecl);
6778      // If this is a deleted function, add it anyway. This might be conformant
6779      // with the standard. This might not. I'm not sure. It might not matter.
6780      if (Constructor)
6781        ExceptSpec.CalledDecl(B->getLocStart(), Constructor);
6782    }
6783  }
6784
6785  // Field constructors.
6786  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
6787                               FEnd = ClassDecl->field_end();
6788       F != FEnd; ++F) {
6789    if (F->hasInClassInitializer()) {
6790      if (Expr *E = F->getInClassInitializer())
6791        ExceptSpec.CalledExpr(E);
6792      else if (!F->isInvalidDecl())
6793        // DR1351:
6794        //   If the brace-or-equal-initializer of a non-static data member
6795        //   invokes a defaulted default constructor of its class or of an
6796        //   enclosing class in a potentially evaluated subexpression, the
6797        //   program is ill-formed.
6798        //
6799        // This resolution is unworkable: the exception specification of the
6800        // default constructor can be needed in an unevaluated context, in
6801        // particular, in the operand of a noexcept-expression, and we can be
6802        // unable to compute an exception specification for an enclosed class.
6803        //
6804        // We do not allow an in-class initializer to require the evaluation
6805        // of the exception specification for any in-class initializer whose
6806        // definition is not lexically complete.
6807        Diag(Loc, diag::err_in_class_initializer_references_def_ctor) << MD;
6808    } else if (const RecordType *RecordTy
6809              = Context.getBaseElementType(F->getType())->getAs<RecordType>()) {
6810      CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
6811      CXXConstructorDecl *Constructor = LookupDefaultConstructor(FieldRecDecl);
6812      // If this is a deleted function, add it anyway. This might be conformant
6813      // with the standard. This might not. I'm not sure. It might not matter.
6814      // In particular, the problem is that this function never gets called. It
6815      // might just be ill-formed because this function attempts to refer to
6816      // a deleted function here.
6817      if (Constructor)
6818        ExceptSpec.CalledDecl(F->getLocation(), Constructor);
6819    }
6820  }
6821
6822  return ExceptSpec;
6823}
6824
6825CXXConstructorDecl *Sema::DeclareImplicitDefaultConstructor(
6826                                                     CXXRecordDecl *ClassDecl) {
6827  // C++ [class.ctor]p5:
6828  //   A default constructor for a class X is a constructor of class X
6829  //   that can be called without an argument. If there is no
6830  //   user-declared constructor for class X, a default constructor is
6831  //   implicitly declared. An implicitly-declared default constructor
6832  //   is an inline public member of its class.
6833  assert(!ClassDecl->hasUserDeclaredConstructor() &&
6834         "Should not build implicit default constructor!");
6835
6836  bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl,
6837                                                     CXXDefaultConstructor,
6838                                                     false);
6839
6840  // Create the actual constructor declaration.
6841  CanQualType ClassType
6842    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
6843  SourceLocation ClassLoc = ClassDecl->getLocation();
6844  DeclarationName Name
6845    = Context.DeclarationNames.getCXXConstructorName(ClassType);
6846  DeclarationNameInfo NameInfo(Name, ClassLoc);
6847  CXXConstructorDecl *DefaultCon = CXXConstructorDecl::Create(
6848      Context, ClassDecl, ClassLoc, NameInfo, /*Type*/QualType(), /*TInfo=*/0,
6849      /*isExplicit=*/false, /*isInline=*/true, /*isImplicitlyDeclared=*/true,
6850      Constexpr);
6851  DefaultCon->setAccess(AS_public);
6852  DefaultCon->setDefaulted();
6853  DefaultCon->setImplicit();
6854  DefaultCon->setTrivial(ClassDecl->hasTrivialDefaultConstructor());
6855
6856  // Build an exception specification pointing back at this constructor.
6857  FunctionProtoType::ExtProtoInfo EPI;
6858  EPI.ExceptionSpecType = EST_Unevaluated;
6859  EPI.ExceptionSpecDecl = DefaultCon;
6860  DefaultCon->setType(Context.getFunctionType(Context.VoidTy, 0, 0, EPI));
6861
6862  // Note that we have declared this constructor.
6863  ++ASTContext::NumImplicitDefaultConstructorsDeclared;
6864
6865  if (Scope *S = getScopeForContext(ClassDecl))
6866    PushOnScopeChains(DefaultCon, S, false);
6867  ClassDecl->addDecl(DefaultCon);
6868
6869  if (ShouldDeleteSpecialMember(DefaultCon, CXXDefaultConstructor))
6870    DefaultCon->setDeletedAsWritten();
6871
6872  return DefaultCon;
6873}
6874
6875void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,
6876                                            CXXConstructorDecl *Constructor) {
6877  assert((Constructor->isDefaulted() && Constructor->isDefaultConstructor() &&
6878          !Constructor->doesThisDeclarationHaveABody() &&
6879          !Constructor->isDeleted()) &&
6880    "DefineImplicitDefaultConstructor - call it for implicit default ctor");
6881
6882  CXXRecordDecl *ClassDecl = Constructor->getParent();
6883  assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor");
6884
6885  ImplicitlyDefinedFunctionScope Scope(*this, Constructor);
6886  DiagnosticErrorTrap Trap(Diags);
6887  if (SetCtorInitializers(Constructor, 0, 0, /*AnyErrors=*/false) ||
6888      Trap.hasErrorOccurred()) {
6889    Diag(CurrentLocation, diag::note_member_synthesized_at)
6890      << CXXDefaultConstructor << Context.getTagDeclType(ClassDecl);
6891    Constructor->setInvalidDecl();
6892    return;
6893  }
6894
6895  SourceLocation Loc = Constructor->getLocation();
6896  Constructor->setBody(new (Context) CompoundStmt(Loc));
6897
6898  Constructor->setUsed();
6899  MarkVTableUsed(CurrentLocation, ClassDecl);
6900
6901  if (ASTMutationListener *L = getASTMutationListener()) {
6902    L->CompletedImplicitDefinition(Constructor);
6903  }
6904}
6905
6906void Sema::ActOnFinishDelayedMemberInitializers(Decl *D) {
6907  if (!D) return;
6908  AdjustDeclIfTemplate(D);
6909
6910  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(D);
6911
6912  if (!ClassDecl->isDependentType())
6913    CheckExplicitlyDefaultedMethods(ClassDecl);
6914}
6915
6916void Sema::DeclareInheritedConstructors(CXXRecordDecl *ClassDecl) {
6917  // We start with an initial pass over the base classes to collect those that
6918  // inherit constructors from. If there are none, we can forgo all further
6919  // processing.
6920  typedef SmallVector<const RecordType *, 4> BasesVector;
6921  BasesVector BasesToInheritFrom;
6922  for (CXXRecordDecl::base_class_iterator BaseIt = ClassDecl->bases_begin(),
6923                                          BaseE = ClassDecl->bases_end();
6924         BaseIt != BaseE; ++BaseIt) {
6925    if (BaseIt->getInheritConstructors()) {
6926      QualType Base = BaseIt->getType();
6927      if (Base->isDependentType()) {
6928        // If we inherit constructors from anything that is dependent, just
6929        // abort processing altogether. We'll get another chance for the
6930        // instantiations.
6931        return;
6932      }
6933      BasesToInheritFrom.push_back(Base->castAs<RecordType>());
6934    }
6935  }
6936  if (BasesToInheritFrom.empty())
6937    return;
6938
6939  // Now collect the constructors that we already have in the current class.
6940  // Those take precedence over inherited constructors.
6941  // C++0x [class.inhctor]p3: [...] a constructor is implicitly declared [...]
6942  //   unless there is a user-declared constructor with the same signature in
6943  //   the class where the using-declaration appears.
6944  llvm::SmallSet<const Type *, 8> ExistingConstructors;
6945  for (CXXRecordDecl::ctor_iterator CtorIt = ClassDecl->ctor_begin(),
6946                                    CtorE = ClassDecl->ctor_end();
6947       CtorIt != CtorE; ++CtorIt) {
6948    ExistingConstructors.insert(
6949        Context.getCanonicalType(CtorIt->getType()).getTypePtr());
6950  }
6951
6952  DeclarationName CreatedCtorName =
6953      Context.DeclarationNames.getCXXConstructorName(
6954          ClassDecl->getTypeForDecl()->getCanonicalTypeUnqualified());
6955
6956  // Now comes the true work.
6957  // First, we keep a map from constructor types to the base that introduced
6958  // them. Needed for finding conflicting constructors. We also keep the
6959  // actually inserted declarations in there, for pretty diagnostics.
6960  typedef std::pair<CanQualType, CXXConstructorDecl *> ConstructorInfo;
6961  typedef llvm::DenseMap<const Type *, ConstructorInfo> ConstructorToSourceMap;
6962  ConstructorToSourceMap InheritedConstructors;
6963  for (BasesVector::iterator BaseIt = BasesToInheritFrom.begin(),
6964                             BaseE = BasesToInheritFrom.end();
6965       BaseIt != BaseE; ++BaseIt) {
6966    const RecordType *Base = *BaseIt;
6967    CanQualType CanonicalBase = Base->getCanonicalTypeUnqualified();
6968    CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(Base->getDecl());
6969    for (CXXRecordDecl::ctor_iterator CtorIt = BaseDecl->ctor_begin(),
6970                                      CtorE = BaseDecl->ctor_end();
6971         CtorIt != CtorE; ++CtorIt) {
6972      // Find the using declaration for inheriting this base's constructors.
6973      // FIXME: Don't perform name lookup just to obtain a source location!
6974      DeclarationName Name =
6975          Context.DeclarationNames.getCXXConstructorName(CanonicalBase);
6976      LookupResult Result(*this, Name, SourceLocation(), LookupUsingDeclName);
6977      LookupQualifiedName(Result, CurContext);
6978      UsingDecl *UD = Result.getAsSingle<UsingDecl>();
6979      SourceLocation UsingLoc = UD ? UD->getLocation() :
6980                                     ClassDecl->getLocation();
6981
6982      // C++0x [class.inhctor]p1: The candidate set of inherited constructors
6983      //   from the class X named in the using-declaration consists of actual
6984      //   constructors and notional constructors that result from the
6985      //   transformation of defaulted parameters as follows:
6986      //   - all non-template default constructors of X, and
6987      //   - for each non-template constructor of X that has at least one
6988      //     parameter with a default argument, the set of constructors that
6989      //     results from omitting any ellipsis parameter specification and
6990      //     successively omitting parameters with a default argument from the
6991      //     end of the parameter-type-list.
6992      CXXConstructorDecl *BaseCtor = *CtorIt;
6993      bool CanBeCopyOrMove = BaseCtor->isCopyOrMoveConstructor();
6994      const FunctionProtoType *BaseCtorType =
6995          BaseCtor->getType()->getAs<FunctionProtoType>();
6996
6997      for (unsigned params = BaseCtor->getMinRequiredArguments(),
6998                    maxParams = BaseCtor->getNumParams();
6999           params <= maxParams; ++params) {
7000        // Skip default constructors. They're never inherited.
7001        if (params == 0)
7002          continue;
7003        // Skip copy and move constructors for the same reason.
7004        if (CanBeCopyOrMove && params == 1)
7005          continue;
7006
7007        // Build up a function type for this particular constructor.
7008        // FIXME: The working paper does not consider that the exception spec
7009        // for the inheriting constructor might be larger than that of the
7010        // source. This code doesn't yet, either. When it does, this code will
7011        // need to be delayed until after exception specifications and in-class
7012        // member initializers are attached.
7013        const Type *NewCtorType;
7014        if (params == maxParams)
7015          NewCtorType = BaseCtorType;
7016        else {
7017          SmallVector<QualType, 16> Args;
7018          for (unsigned i = 0; i < params; ++i) {
7019            Args.push_back(BaseCtorType->getArgType(i));
7020          }
7021          FunctionProtoType::ExtProtoInfo ExtInfo =
7022              BaseCtorType->getExtProtoInfo();
7023          ExtInfo.Variadic = false;
7024          NewCtorType = Context.getFunctionType(BaseCtorType->getResultType(),
7025                                                Args.data(), params, ExtInfo)
7026                       .getTypePtr();
7027        }
7028        const Type *CanonicalNewCtorType =
7029            Context.getCanonicalType(NewCtorType);
7030
7031        // Now that we have the type, first check if the class already has a
7032        // constructor with this signature.
7033        if (ExistingConstructors.count(CanonicalNewCtorType))
7034          continue;
7035
7036        // Then we check if we have already declared an inherited constructor
7037        // with this signature.
7038        std::pair<ConstructorToSourceMap::iterator, bool> result =
7039            InheritedConstructors.insert(std::make_pair(
7040                CanonicalNewCtorType,
7041                std::make_pair(CanonicalBase, (CXXConstructorDecl*)0)));
7042        if (!result.second) {
7043          // Already in the map. If it came from a different class, that's an
7044          // error. Not if it's from the same.
7045          CanQualType PreviousBase = result.first->second.first;
7046          if (CanonicalBase != PreviousBase) {
7047            const CXXConstructorDecl *PrevCtor = result.first->second.second;
7048            const CXXConstructorDecl *PrevBaseCtor =
7049                PrevCtor->getInheritedConstructor();
7050            assert(PrevBaseCtor && "Conflicting constructor was not inherited");
7051
7052            Diag(UsingLoc, diag::err_using_decl_constructor_conflict);
7053            Diag(BaseCtor->getLocation(),
7054                 diag::note_using_decl_constructor_conflict_current_ctor);
7055            Diag(PrevBaseCtor->getLocation(),
7056                 diag::note_using_decl_constructor_conflict_previous_ctor);
7057            Diag(PrevCtor->getLocation(),
7058                 diag::note_using_decl_constructor_conflict_previous_using);
7059          }
7060          continue;
7061        }
7062
7063        // OK, we're there, now add the constructor.
7064        // C++0x [class.inhctor]p8: [...] that would be performed by a
7065        //   user-written inline constructor [...]
7066        DeclarationNameInfo DNI(CreatedCtorName, UsingLoc);
7067        CXXConstructorDecl *NewCtor = CXXConstructorDecl::Create(
7068            Context, ClassDecl, UsingLoc, DNI, QualType(NewCtorType, 0),
7069            /*TInfo=*/0, BaseCtor->isExplicit(), /*Inline=*/true,
7070            /*ImplicitlyDeclared=*/true,
7071            // FIXME: Due to a defect in the standard, we treat inherited
7072            // constructors as constexpr even if that makes them ill-formed.
7073            /*Constexpr=*/BaseCtor->isConstexpr());
7074        NewCtor->setAccess(BaseCtor->getAccess());
7075
7076        // Build up the parameter decls and add them.
7077        SmallVector<ParmVarDecl *, 16> ParamDecls;
7078        for (unsigned i = 0; i < params; ++i) {
7079          ParamDecls.push_back(ParmVarDecl::Create(Context, NewCtor,
7080                                                   UsingLoc, UsingLoc,
7081                                                   /*IdentifierInfo=*/0,
7082                                                   BaseCtorType->getArgType(i),
7083                                                   /*TInfo=*/0, SC_None,
7084                                                   SC_None, /*DefaultArg=*/0));
7085        }
7086        NewCtor->setParams(ParamDecls);
7087        NewCtor->setInheritedConstructor(BaseCtor);
7088
7089        ClassDecl->addDecl(NewCtor);
7090        result.first->second.second = NewCtor;
7091      }
7092    }
7093  }
7094}
7095
7096Sema::ImplicitExceptionSpecification
7097Sema::ComputeDefaultedDtorExceptionSpec(CXXMethodDecl *MD) {
7098  CXXRecordDecl *ClassDecl = MD->getParent();
7099
7100  // C++ [except.spec]p14:
7101  //   An implicitly declared special member function (Clause 12) shall have
7102  //   an exception-specification.
7103  ImplicitExceptionSpecification ExceptSpec(*this);
7104  if (ClassDecl->isInvalidDecl())
7105    return ExceptSpec;
7106
7107  // Direct base-class destructors.
7108  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
7109                                       BEnd = ClassDecl->bases_end();
7110       B != BEnd; ++B) {
7111    if (B->isVirtual()) // Handled below.
7112      continue;
7113
7114    if (const RecordType *BaseType = B->getType()->getAs<RecordType>())
7115      ExceptSpec.CalledDecl(B->getLocStart(),
7116                   LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
7117  }
7118
7119  // Virtual base-class destructors.
7120  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
7121                                       BEnd = ClassDecl->vbases_end();
7122       B != BEnd; ++B) {
7123    if (const RecordType *BaseType = B->getType()->getAs<RecordType>())
7124      ExceptSpec.CalledDecl(B->getLocStart(),
7125                  LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
7126  }
7127
7128  // Field destructors.
7129  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
7130                               FEnd = ClassDecl->field_end();
7131       F != FEnd; ++F) {
7132    if (const RecordType *RecordTy
7133        = Context.getBaseElementType(F->getType())->getAs<RecordType>())
7134      ExceptSpec.CalledDecl(F->getLocation(),
7135                  LookupDestructor(cast<CXXRecordDecl>(RecordTy->getDecl())));
7136  }
7137
7138  return ExceptSpec;
7139}
7140
7141CXXDestructorDecl *Sema::DeclareImplicitDestructor(CXXRecordDecl *ClassDecl) {
7142  // C++ [class.dtor]p2:
7143  //   If a class has no user-declared destructor, a destructor is
7144  //   declared implicitly. An implicitly-declared destructor is an
7145  //   inline public member of its class.
7146
7147  // Create the actual destructor declaration.
7148  CanQualType ClassType
7149    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
7150  SourceLocation ClassLoc = ClassDecl->getLocation();
7151  DeclarationName Name
7152    = Context.DeclarationNames.getCXXDestructorName(ClassType);
7153  DeclarationNameInfo NameInfo(Name, ClassLoc);
7154  CXXDestructorDecl *Destructor
7155      = CXXDestructorDecl::Create(Context, ClassDecl, ClassLoc, NameInfo,
7156                                  QualType(), 0, /*isInline=*/true,
7157                                  /*isImplicitlyDeclared=*/true);
7158  Destructor->setAccess(AS_public);
7159  Destructor->setDefaulted();
7160  Destructor->setImplicit();
7161  Destructor->setTrivial(ClassDecl->hasTrivialDestructor());
7162
7163  // Build an exception specification pointing back at this destructor.
7164  FunctionProtoType::ExtProtoInfo EPI;
7165  EPI.ExceptionSpecType = EST_Unevaluated;
7166  EPI.ExceptionSpecDecl = Destructor;
7167  Destructor->setType(Context.getFunctionType(Context.VoidTy, 0, 0, EPI));
7168
7169  // Note that we have declared this destructor.
7170  ++ASTContext::NumImplicitDestructorsDeclared;
7171
7172  // Introduce this destructor into its scope.
7173  if (Scope *S = getScopeForContext(ClassDecl))
7174    PushOnScopeChains(Destructor, S, false);
7175  ClassDecl->addDecl(Destructor);
7176
7177  AddOverriddenMethods(ClassDecl, Destructor);
7178
7179  if (ShouldDeleteSpecialMember(Destructor, CXXDestructor))
7180    Destructor->setDeletedAsWritten();
7181
7182  return Destructor;
7183}
7184
7185void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation,
7186                                    CXXDestructorDecl *Destructor) {
7187  assert((Destructor->isDefaulted() &&
7188          !Destructor->doesThisDeclarationHaveABody() &&
7189          !Destructor->isDeleted()) &&
7190         "DefineImplicitDestructor - call it for implicit default dtor");
7191  CXXRecordDecl *ClassDecl = Destructor->getParent();
7192  assert(ClassDecl && "DefineImplicitDestructor - invalid destructor");
7193
7194  if (Destructor->isInvalidDecl())
7195    return;
7196
7197  ImplicitlyDefinedFunctionScope Scope(*this, Destructor);
7198
7199  DiagnosticErrorTrap Trap(Diags);
7200  MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
7201                                         Destructor->getParent());
7202
7203  if (CheckDestructor(Destructor) || Trap.hasErrorOccurred()) {
7204    Diag(CurrentLocation, diag::note_member_synthesized_at)
7205      << CXXDestructor << Context.getTagDeclType(ClassDecl);
7206
7207    Destructor->setInvalidDecl();
7208    return;
7209  }
7210
7211  SourceLocation Loc = Destructor->getLocation();
7212  Destructor->setBody(new (Context) CompoundStmt(Loc));
7213  Destructor->setImplicitlyDefined(true);
7214  Destructor->setUsed();
7215  MarkVTableUsed(CurrentLocation, ClassDecl);
7216
7217  if (ASTMutationListener *L = getASTMutationListener()) {
7218    L->CompletedImplicitDefinition(Destructor);
7219  }
7220}
7221
7222/// \brief Perform any semantic analysis which needs to be delayed until all
7223/// pending class member declarations have been parsed.
7224void Sema::ActOnFinishCXXMemberDecls() {
7225  // Perform any deferred checking of exception specifications for virtual
7226  // destructors.
7227  for (unsigned i = 0, e = DelayedDestructorExceptionSpecChecks.size();
7228       i != e; ++i) {
7229    const CXXDestructorDecl *Dtor =
7230        DelayedDestructorExceptionSpecChecks[i].first;
7231    assert(!Dtor->getParent()->isDependentType() &&
7232           "Should not ever add destructors of templates into the list.");
7233    CheckOverridingFunctionExceptionSpec(Dtor,
7234        DelayedDestructorExceptionSpecChecks[i].second);
7235  }
7236  DelayedDestructorExceptionSpecChecks.clear();
7237}
7238
7239void Sema::AdjustDestructorExceptionSpec(CXXRecordDecl *ClassDecl,
7240                                         CXXDestructorDecl *Destructor) {
7241  assert(getLangOpts().CPlusPlus0x &&
7242         "adjusting dtor exception specs was introduced in c++11");
7243
7244  // C++11 [class.dtor]p3:
7245  //   A declaration of a destructor that does not have an exception-
7246  //   specification is implicitly considered to have the same exception-
7247  //   specification as an implicit declaration.
7248  const FunctionProtoType *DtorType = Destructor->getType()->
7249                                        getAs<FunctionProtoType>();
7250  if (DtorType->hasExceptionSpec())
7251    return;
7252
7253  // Replace the destructor's type, building off the existing one. Fortunately,
7254  // the only thing of interest in the destructor type is its extended info.
7255  // The return and arguments are fixed.
7256  FunctionProtoType::ExtProtoInfo EPI = DtorType->getExtProtoInfo();
7257  EPI.ExceptionSpecType = EST_Unevaluated;
7258  EPI.ExceptionSpecDecl = Destructor;
7259  Destructor->setType(Context.getFunctionType(Context.VoidTy, 0, 0, EPI));
7260
7261  // FIXME: If the destructor has a body that could throw, and the newly created
7262  // spec doesn't allow exceptions, we should emit a warning, because this
7263  // change in behavior can break conforming C++03 programs at runtime.
7264  // However, we don't have a body or an exception specification yet, so it
7265  // needs to be done somewhere else.
7266}
7267
7268/// \brief Builds a statement that copies/moves the given entity from \p From to
7269/// \c To.
7270///
7271/// This routine is used to copy/move the members of a class with an
7272/// implicitly-declared copy/move assignment operator. When the entities being
7273/// copied are arrays, this routine builds for loops to copy them.
7274///
7275/// \param S The Sema object used for type-checking.
7276///
7277/// \param Loc The location where the implicit copy/move is being generated.
7278///
7279/// \param T The type of the expressions being copied/moved. Both expressions
7280/// must have this type.
7281///
7282/// \param To The expression we are copying/moving to.
7283///
7284/// \param From The expression we are copying/moving from.
7285///
7286/// \param CopyingBaseSubobject Whether we're copying/moving a base subobject.
7287/// Otherwise, it's a non-static member subobject.
7288///
7289/// \param Copying Whether we're copying or moving.
7290///
7291/// \param Depth Internal parameter recording the depth of the recursion.
7292///
7293/// \returns A statement or a loop that copies the expressions.
7294static StmtResult
7295BuildSingleCopyAssign(Sema &S, SourceLocation Loc, QualType T,
7296                      Expr *To, Expr *From,
7297                      bool CopyingBaseSubobject, bool Copying,
7298                      unsigned Depth = 0) {
7299  // C++0x [class.copy]p28:
7300  //   Each subobject is assigned in the manner appropriate to its type:
7301  //
7302  //     - if the subobject is of class type, as if by a call to operator= with
7303  //       the subobject as the object expression and the corresponding
7304  //       subobject of x as a single function argument (as if by explicit
7305  //       qualification; that is, ignoring any possible virtual overriding
7306  //       functions in more derived classes);
7307  if (const RecordType *RecordTy = T->getAs<RecordType>()) {
7308    CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
7309
7310    // Look for operator=.
7311    DeclarationName Name
7312      = S.Context.DeclarationNames.getCXXOperatorName(OO_Equal);
7313    LookupResult OpLookup(S, Name, Loc, Sema::LookupOrdinaryName);
7314    S.LookupQualifiedName(OpLookup, ClassDecl, false);
7315
7316    // Filter out any result that isn't a copy/move-assignment operator.
7317    LookupResult::Filter F = OpLookup.makeFilter();
7318    while (F.hasNext()) {
7319      NamedDecl *D = F.next();
7320      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
7321        if (Method->isCopyAssignmentOperator() ||
7322            (!Copying && Method->isMoveAssignmentOperator()))
7323          continue;
7324
7325      F.erase();
7326    }
7327    F.done();
7328
7329    // Suppress the protected check (C++ [class.protected]) for each of the
7330    // assignment operators we found. This strange dance is required when
7331    // we're assigning via a base classes's copy-assignment operator. To
7332    // ensure that we're getting the right base class subobject (without
7333    // ambiguities), we need to cast "this" to that subobject type; to
7334    // ensure that we don't go through the virtual call mechanism, we need
7335    // to qualify the operator= name with the base class (see below). However,
7336    // this means that if the base class has a protected copy assignment
7337    // operator, the protected member access check will fail. So, we
7338    // rewrite "protected" access to "public" access in this case, since we
7339    // know by construction that we're calling from a derived class.
7340    if (CopyingBaseSubobject) {
7341      for (LookupResult::iterator L = OpLookup.begin(), LEnd = OpLookup.end();
7342           L != LEnd; ++L) {
7343        if (L.getAccess() == AS_protected)
7344          L.setAccess(AS_public);
7345      }
7346    }
7347
7348    // Create the nested-name-specifier that will be used to qualify the
7349    // reference to operator=; this is required to suppress the virtual
7350    // call mechanism.
7351    CXXScopeSpec SS;
7352    const Type *CanonicalT = S.Context.getCanonicalType(T.getTypePtr());
7353    SS.MakeTrivial(S.Context,
7354                   NestedNameSpecifier::Create(S.Context, 0, false,
7355                                               CanonicalT),
7356                   Loc);
7357
7358    // Create the reference to operator=.
7359    ExprResult OpEqualRef
7360      = S.BuildMemberReferenceExpr(To, T, Loc, /*isArrow=*/false, SS,
7361                                   /*TemplateKWLoc=*/SourceLocation(),
7362                                   /*FirstQualifierInScope=*/0,
7363                                   OpLookup,
7364                                   /*TemplateArgs=*/0,
7365                                   /*SuppressQualifierCheck=*/true);
7366    if (OpEqualRef.isInvalid())
7367      return StmtError();
7368
7369    // Build the call to the assignment operator.
7370
7371    ExprResult Call = S.BuildCallToMemberFunction(/*Scope=*/0,
7372                                                  OpEqualRef.takeAs<Expr>(),
7373                                                  Loc, &From, 1, Loc);
7374    if (Call.isInvalid())
7375      return StmtError();
7376
7377    return S.Owned(Call.takeAs<Stmt>());
7378  }
7379
7380  //     - if the subobject is of scalar type, the built-in assignment
7381  //       operator is used.
7382  const ConstantArrayType *ArrayTy = S.Context.getAsConstantArrayType(T);
7383  if (!ArrayTy) {
7384    ExprResult Assignment = S.CreateBuiltinBinOp(Loc, BO_Assign, To, From);
7385    if (Assignment.isInvalid())
7386      return StmtError();
7387
7388    return S.Owned(Assignment.takeAs<Stmt>());
7389  }
7390
7391  //     - if the subobject is an array, each element is assigned, in the
7392  //       manner appropriate to the element type;
7393
7394  // Construct a loop over the array bounds, e.g.,
7395  //
7396  //   for (__SIZE_TYPE__ i0 = 0; i0 != array-size; ++i0)
7397  //
7398  // that will copy each of the array elements.
7399  QualType SizeType = S.Context.getSizeType();
7400
7401  // Create the iteration variable.
7402  IdentifierInfo *IterationVarName = 0;
7403  {
7404    SmallString<8> Str;
7405    llvm::raw_svector_ostream OS(Str);
7406    OS << "__i" << Depth;
7407    IterationVarName = &S.Context.Idents.get(OS.str());
7408  }
7409  VarDecl *IterationVar = VarDecl::Create(S.Context, S.CurContext, Loc, Loc,
7410                                          IterationVarName, SizeType,
7411                            S.Context.getTrivialTypeSourceInfo(SizeType, Loc),
7412                                          SC_None, SC_None);
7413
7414  // Initialize the iteration variable to zero.
7415  llvm::APInt Zero(S.Context.getTypeSize(SizeType), 0);
7416  IterationVar->setInit(IntegerLiteral::Create(S.Context, Zero, SizeType, Loc));
7417
7418  // Create a reference to the iteration variable; we'll use this several
7419  // times throughout.
7420  Expr *IterationVarRef
7421    = S.BuildDeclRefExpr(IterationVar, SizeType, VK_LValue, Loc).take();
7422  assert(IterationVarRef && "Reference to invented variable cannot fail!");
7423  Expr *IterationVarRefRVal = S.DefaultLvalueConversion(IterationVarRef).take();
7424  assert(IterationVarRefRVal && "Conversion of invented variable cannot fail!");
7425
7426  // Create the DeclStmt that holds the iteration variable.
7427  Stmt *InitStmt = new (S.Context) DeclStmt(DeclGroupRef(IterationVar),Loc,Loc);
7428
7429  // Create the comparison against the array bound.
7430  llvm::APInt Upper
7431    = ArrayTy->getSize().zextOrTrunc(S.Context.getTypeSize(SizeType));
7432  Expr *Comparison
7433    = new (S.Context) BinaryOperator(IterationVarRefRVal,
7434                     IntegerLiteral::Create(S.Context, Upper, SizeType, Loc),
7435                                     BO_NE, S.Context.BoolTy,
7436                                     VK_RValue, OK_Ordinary, Loc);
7437
7438  // Create the pre-increment of the iteration variable.
7439  Expr *Increment
7440    = new (S.Context) UnaryOperator(IterationVarRef, UO_PreInc, SizeType,
7441                                    VK_LValue, OK_Ordinary, Loc);
7442
7443  // Subscript the "from" and "to" expressions with the iteration variable.
7444  From = AssertSuccess(S.CreateBuiltinArraySubscriptExpr(From, Loc,
7445                                                         IterationVarRefRVal,
7446                                                         Loc));
7447  To = AssertSuccess(S.CreateBuiltinArraySubscriptExpr(To, Loc,
7448                                                       IterationVarRefRVal,
7449                                                       Loc));
7450  if (!Copying) // Cast to rvalue
7451    From = CastForMoving(S, From);
7452
7453  // Build the copy/move for an individual element of the array.
7454  StmtResult Copy = BuildSingleCopyAssign(S, Loc, ArrayTy->getElementType(),
7455                                          To, From, CopyingBaseSubobject,
7456                                          Copying, Depth + 1);
7457  if (Copy.isInvalid())
7458    return StmtError();
7459
7460  // Construct the loop that copies all elements of this array.
7461  return S.ActOnForStmt(Loc, Loc, InitStmt,
7462                        S.MakeFullExpr(Comparison),
7463                        0, S.MakeFullExpr(Increment),
7464                        Loc, Copy.take());
7465}
7466
7467/// Determine whether an implicit copy assignment operator for ClassDecl has a
7468/// const argument.
7469/// FIXME: It ought to be possible to store this on the record.
7470static bool isImplicitCopyAssignmentArgConst(Sema &S,
7471                                             CXXRecordDecl *ClassDecl) {
7472  if (ClassDecl->isInvalidDecl())
7473    return true;
7474
7475  // C++ [class.copy]p10:
7476  //   If the class definition does not explicitly declare a copy
7477  //   assignment operator, one is declared implicitly.
7478  //   The implicitly-defined copy assignment operator for a class X
7479  //   will have the form
7480  //
7481  //       X& X::operator=(const X&)
7482  //
7483  //   if
7484  //       -- each direct base class B of X has a copy assignment operator
7485  //          whose parameter is of type const B&, const volatile B& or B,
7486  //          and
7487  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
7488                                       BaseEnd = ClassDecl->bases_end();
7489       Base != BaseEnd; ++Base) {
7490    // We'll handle this below
7491    if (S.getLangOpts().CPlusPlus0x && Base->isVirtual())
7492      continue;
7493
7494    assert(!Base->getType()->isDependentType() &&
7495           "Cannot generate implicit members for class with dependent bases.");
7496    CXXRecordDecl *BaseClassDecl = Base->getType()->getAsCXXRecordDecl();
7497    if (!S.LookupCopyingAssignment(BaseClassDecl, Qualifiers::Const, false, 0))
7498      return false;
7499  }
7500
7501  // In C++11, the above citation has "or virtual" added
7502  if (S.getLangOpts().CPlusPlus0x) {
7503    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
7504                                         BaseEnd = ClassDecl->vbases_end();
7505         Base != BaseEnd; ++Base) {
7506      assert(!Base->getType()->isDependentType() &&
7507             "Cannot generate implicit members for class with dependent bases.");
7508      CXXRecordDecl *BaseClassDecl = Base->getType()->getAsCXXRecordDecl();
7509      if (!S.LookupCopyingAssignment(BaseClassDecl, Qualifiers::Const,
7510                                     false, 0))
7511        return false;
7512    }
7513  }
7514
7515  //       -- for all the nonstatic data members of X that are of a class
7516  //          type M (or array thereof), each such class type has a copy
7517  //          assignment operator whose parameter is of type const M&,
7518  //          const volatile M& or M.
7519  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
7520                                  FieldEnd = ClassDecl->field_end();
7521       Field != FieldEnd; ++Field) {
7522    QualType FieldType = S.Context.getBaseElementType(Field->getType());
7523    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl())
7524      if (!S.LookupCopyingAssignment(FieldClassDecl, Qualifiers::Const,
7525                                     false, 0))
7526        return false;
7527  }
7528
7529  //   Otherwise, the implicitly declared copy assignment operator will
7530  //   have the form
7531  //
7532  //       X& X::operator=(X&)
7533
7534  return true;
7535}
7536
7537Sema::ImplicitExceptionSpecification
7538Sema::ComputeDefaultedCopyAssignmentExceptionSpec(CXXMethodDecl *MD) {
7539  CXXRecordDecl *ClassDecl = MD->getParent();
7540
7541  ImplicitExceptionSpecification ExceptSpec(*this);
7542  if (ClassDecl->isInvalidDecl())
7543    return ExceptSpec;
7544
7545  const FunctionProtoType *T = MD->getType()->castAs<FunctionProtoType>();
7546  assert(T->getNumArgs() == 1 && "not a copy assignment op");
7547  unsigned ArgQuals = T->getArgType(0).getNonReferenceType().getCVRQualifiers();
7548
7549  // C++ [except.spec]p14:
7550  //   An implicitly declared special member function (Clause 12) shall have an
7551  //   exception-specification. [...]
7552
7553  // It is unspecified whether or not an implicit copy assignment operator
7554  // attempts to deduplicate calls to assignment operators of virtual bases are
7555  // made. As such, this exception specification is effectively unspecified.
7556  // Based on a similar decision made for constness in C++0x, we're erring on
7557  // the side of assuming such calls to be made regardless of whether they
7558  // actually happen.
7559  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
7560                                       BaseEnd = ClassDecl->bases_end();
7561       Base != BaseEnd; ++Base) {
7562    if (Base->isVirtual())
7563      continue;
7564
7565    CXXRecordDecl *BaseClassDecl
7566      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
7567    if (CXXMethodDecl *CopyAssign = LookupCopyingAssignment(BaseClassDecl,
7568                                                            ArgQuals, false, 0))
7569      ExceptSpec.CalledDecl(Base->getLocStart(), CopyAssign);
7570  }
7571
7572  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
7573                                       BaseEnd = ClassDecl->vbases_end();
7574       Base != BaseEnd; ++Base) {
7575    CXXRecordDecl *BaseClassDecl
7576      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
7577    if (CXXMethodDecl *CopyAssign = LookupCopyingAssignment(BaseClassDecl,
7578                                                            ArgQuals, false, 0))
7579      ExceptSpec.CalledDecl(Base->getLocStart(), CopyAssign);
7580  }
7581
7582  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
7583                                  FieldEnd = ClassDecl->field_end();
7584       Field != FieldEnd;
7585       ++Field) {
7586    QualType FieldType = Context.getBaseElementType(Field->getType());
7587    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
7588      if (CXXMethodDecl *CopyAssign =
7589          LookupCopyingAssignment(FieldClassDecl,
7590                                  ArgQuals | FieldType.getCVRQualifiers(),
7591                                  false, 0))
7592        ExceptSpec.CalledDecl(Field->getLocation(), CopyAssign);
7593    }
7594  }
7595
7596  return ExceptSpec;
7597}
7598
7599CXXMethodDecl *Sema::DeclareImplicitCopyAssignment(CXXRecordDecl *ClassDecl) {
7600  // Note: The following rules are largely analoguous to the copy
7601  // constructor rules. Note that virtual bases are not taken into account
7602  // for determining the argument type of the operator. Note also that
7603  // operators taking an object instead of a reference are allowed.
7604
7605  QualType ArgType = Context.getTypeDeclType(ClassDecl);
7606  QualType RetType = Context.getLValueReferenceType(ArgType);
7607  if (isImplicitCopyAssignmentArgConst(*this, ClassDecl))
7608    ArgType = ArgType.withConst();
7609  ArgType = Context.getLValueReferenceType(ArgType);
7610
7611  //   An implicitly-declared copy assignment operator is an inline public
7612  //   member of its class.
7613  DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
7614  SourceLocation ClassLoc = ClassDecl->getLocation();
7615  DeclarationNameInfo NameInfo(Name, ClassLoc);
7616  CXXMethodDecl *CopyAssignment
7617    = CXXMethodDecl::Create(Context, ClassDecl, ClassLoc, NameInfo, QualType(),
7618                            /*TInfo=*/0, /*isStatic=*/false,
7619                            /*StorageClassAsWritten=*/SC_None,
7620                            /*isInline=*/true, /*isConstexpr=*/false,
7621                            SourceLocation());
7622  CopyAssignment->setAccess(AS_public);
7623  CopyAssignment->setDefaulted();
7624  CopyAssignment->setImplicit();
7625  CopyAssignment->setTrivial(ClassDecl->hasTrivialCopyAssignment());
7626
7627  // Build an exception specification pointing back at this member.
7628  FunctionProtoType::ExtProtoInfo EPI;
7629  EPI.ExceptionSpecType = EST_Unevaluated;
7630  EPI.ExceptionSpecDecl = CopyAssignment;
7631  CopyAssignment->setType(Context.getFunctionType(RetType, &ArgType, 1, EPI));
7632
7633  // Add the parameter to the operator.
7634  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment,
7635                                               ClassLoc, ClassLoc, /*Id=*/0,
7636                                               ArgType, /*TInfo=*/0,
7637                                               SC_None,
7638                                               SC_None, 0);
7639  CopyAssignment->setParams(FromParam);
7640
7641  // Note that we have added this copy-assignment operator.
7642  ++ASTContext::NumImplicitCopyAssignmentOperatorsDeclared;
7643
7644  if (Scope *S = getScopeForContext(ClassDecl))
7645    PushOnScopeChains(CopyAssignment, S, false);
7646  ClassDecl->addDecl(CopyAssignment);
7647
7648  // C++0x [class.copy]p19:
7649  //   ....  If the class definition does not explicitly declare a copy
7650  //   assignment operator, there is no user-declared move constructor, and
7651  //   there is no user-declared move assignment operator, a copy assignment
7652  //   operator is implicitly declared as defaulted.
7653  if (ShouldDeleteSpecialMember(CopyAssignment, CXXCopyAssignment))
7654    CopyAssignment->setDeletedAsWritten();
7655
7656  AddOverriddenMethods(ClassDecl, CopyAssignment);
7657  return CopyAssignment;
7658}
7659
7660void Sema::DefineImplicitCopyAssignment(SourceLocation CurrentLocation,
7661                                        CXXMethodDecl *CopyAssignOperator) {
7662  assert((CopyAssignOperator->isDefaulted() &&
7663          CopyAssignOperator->isOverloadedOperator() &&
7664          CopyAssignOperator->getOverloadedOperator() == OO_Equal &&
7665          !CopyAssignOperator->doesThisDeclarationHaveABody() &&
7666          !CopyAssignOperator->isDeleted()) &&
7667         "DefineImplicitCopyAssignment called for wrong function");
7668
7669  CXXRecordDecl *ClassDecl = CopyAssignOperator->getParent();
7670
7671  if (ClassDecl->isInvalidDecl() || CopyAssignOperator->isInvalidDecl()) {
7672    CopyAssignOperator->setInvalidDecl();
7673    return;
7674  }
7675
7676  CopyAssignOperator->setUsed();
7677
7678  ImplicitlyDefinedFunctionScope Scope(*this, CopyAssignOperator);
7679  DiagnosticErrorTrap Trap(Diags);
7680
7681  // C++0x [class.copy]p30:
7682  //   The implicitly-defined or explicitly-defaulted copy assignment operator
7683  //   for a non-union class X performs memberwise copy assignment of its
7684  //   subobjects. The direct base classes of X are assigned first, in the
7685  //   order of their declaration in the base-specifier-list, and then the
7686  //   immediate non-static data members of X are assigned, in the order in
7687  //   which they were declared in the class definition.
7688
7689  // The statements that form the synthesized function body.
7690  SmallVector<Stmt*, 8> Statements;
7691
7692  // The parameter for the "other" object, which we are copying from.
7693  ParmVarDecl *Other = CopyAssignOperator->getParamDecl(0);
7694  Qualifiers OtherQuals = Other->getType().getQualifiers();
7695  QualType OtherRefType = Other->getType();
7696  if (const LValueReferenceType *OtherRef
7697                                = OtherRefType->getAs<LValueReferenceType>()) {
7698    OtherRefType = OtherRef->getPointeeType();
7699    OtherQuals = OtherRefType.getQualifiers();
7700  }
7701
7702  // Our location for everything implicitly-generated.
7703  SourceLocation Loc = CopyAssignOperator->getLocation();
7704
7705  // Construct a reference to the "other" object. We'll be using this
7706  // throughout the generated ASTs.
7707  Expr *OtherRef = BuildDeclRefExpr(Other, OtherRefType, VK_LValue, Loc).take();
7708  assert(OtherRef && "Reference to parameter cannot fail!");
7709
7710  // Construct the "this" pointer. We'll be using this throughout the generated
7711  // ASTs.
7712  Expr *This = ActOnCXXThis(Loc).takeAs<Expr>();
7713  assert(This && "Reference to this cannot fail!");
7714
7715  // Assign base classes.
7716  bool Invalid = false;
7717  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
7718       E = ClassDecl->bases_end(); Base != E; ++Base) {
7719    // Form the assignment:
7720    //   static_cast<Base*>(this)->Base::operator=(static_cast<Base&>(other));
7721    QualType BaseType = Base->getType().getUnqualifiedType();
7722    if (!BaseType->isRecordType()) {
7723      Invalid = true;
7724      continue;
7725    }
7726
7727    CXXCastPath BasePath;
7728    BasePath.push_back(Base);
7729
7730    // Construct the "from" expression, which is an implicit cast to the
7731    // appropriately-qualified base type.
7732    Expr *From = OtherRef;
7733    From = ImpCastExprToType(From, Context.getQualifiedType(BaseType, OtherQuals),
7734                             CK_UncheckedDerivedToBase,
7735                             VK_LValue, &BasePath).take();
7736
7737    // Dereference "this".
7738    ExprResult To = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
7739
7740    // Implicitly cast "this" to the appropriately-qualified base type.
7741    To = ImpCastExprToType(To.take(),
7742                           Context.getCVRQualifiedType(BaseType,
7743                                     CopyAssignOperator->getTypeQualifiers()),
7744                           CK_UncheckedDerivedToBase,
7745                           VK_LValue, &BasePath);
7746
7747    // Build the copy.
7748    StmtResult Copy = BuildSingleCopyAssign(*this, Loc, BaseType,
7749                                            To.get(), From,
7750                                            /*CopyingBaseSubobject=*/true,
7751                                            /*Copying=*/true);
7752    if (Copy.isInvalid()) {
7753      Diag(CurrentLocation, diag::note_member_synthesized_at)
7754        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
7755      CopyAssignOperator->setInvalidDecl();
7756      return;
7757    }
7758
7759    // Success! Record the copy.
7760    Statements.push_back(Copy.takeAs<Expr>());
7761  }
7762
7763  // \brief Reference to the __builtin_memcpy function.
7764  Expr *BuiltinMemCpyRef = 0;
7765  // \brief Reference to the __builtin_objc_memmove_collectable function.
7766  Expr *CollectableMemCpyRef = 0;
7767
7768  // Assign non-static members.
7769  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
7770                                  FieldEnd = ClassDecl->field_end();
7771       Field != FieldEnd; ++Field) {
7772    if (Field->isUnnamedBitfield())
7773      continue;
7774
7775    // Check for members of reference type; we can't copy those.
7776    if (Field->getType()->isReferenceType()) {
7777      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
7778        << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
7779      Diag(Field->getLocation(), diag::note_declared_at);
7780      Diag(CurrentLocation, diag::note_member_synthesized_at)
7781        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
7782      Invalid = true;
7783      continue;
7784    }
7785
7786    // Check for members of const-qualified, non-class type.
7787    QualType BaseType = Context.getBaseElementType(Field->getType());
7788    if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) {
7789      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
7790        << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
7791      Diag(Field->getLocation(), diag::note_declared_at);
7792      Diag(CurrentLocation, diag::note_member_synthesized_at)
7793        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
7794      Invalid = true;
7795      continue;
7796    }
7797
7798    // Suppress assigning zero-width bitfields.
7799    if (Field->isBitField() && Field->getBitWidthValue(Context) == 0)
7800      continue;
7801
7802    QualType FieldType = Field->getType().getNonReferenceType();
7803    if (FieldType->isIncompleteArrayType()) {
7804      assert(ClassDecl->hasFlexibleArrayMember() &&
7805             "Incomplete array type is not valid");
7806      continue;
7807    }
7808
7809    // Build references to the field in the object we're copying from and to.
7810    CXXScopeSpec SS; // Intentionally empty
7811    LookupResult MemberLookup(*this, Field->getDeclName(), Loc,
7812                              LookupMemberName);
7813    MemberLookup.addDecl(*Field);
7814    MemberLookup.resolveKind();
7815    ExprResult From = BuildMemberReferenceExpr(OtherRef, OtherRefType,
7816                                               Loc, /*IsArrow=*/false,
7817                                               SS, SourceLocation(), 0,
7818                                               MemberLookup, 0);
7819    ExprResult To = BuildMemberReferenceExpr(This, This->getType(),
7820                                             Loc, /*IsArrow=*/true,
7821                                             SS, SourceLocation(), 0,
7822                                             MemberLookup, 0);
7823    assert(!From.isInvalid() && "Implicit field reference cannot fail");
7824    assert(!To.isInvalid() && "Implicit field reference cannot fail");
7825
7826    // If the field should be copied with __builtin_memcpy rather than via
7827    // explicit assignments, do so. This optimization only applies for arrays
7828    // of scalars and arrays of class type with trivial copy-assignment
7829    // operators.
7830    if (FieldType->isArrayType() && !FieldType.isVolatileQualified()
7831        && BaseType.hasTrivialAssignment(Context, /*Copying=*/true)) {
7832      // Compute the size of the memory buffer to be copied.
7833      QualType SizeType = Context.getSizeType();
7834      llvm::APInt Size(Context.getTypeSize(SizeType),
7835                       Context.getTypeSizeInChars(BaseType).getQuantity());
7836      for (const ConstantArrayType *Array
7837              = Context.getAsConstantArrayType(FieldType);
7838           Array;
7839           Array = Context.getAsConstantArrayType(Array->getElementType())) {
7840        llvm::APInt ArraySize
7841          = Array->getSize().zextOrTrunc(Size.getBitWidth());
7842        Size *= ArraySize;
7843      }
7844
7845      // Take the address of the field references for "from" and "to".
7846      From = CreateBuiltinUnaryOp(Loc, UO_AddrOf, From.get());
7847      To = CreateBuiltinUnaryOp(Loc, UO_AddrOf, To.get());
7848
7849      bool NeedsCollectableMemCpy =
7850          (BaseType->isRecordType() &&
7851           BaseType->getAs<RecordType>()->getDecl()->hasObjectMember());
7852
7853      if (NeedsCollectableMemCpy) {
7854        if (!CollectableMemCpyRef) {
7855          // Create a reference to the __builtin_objc_memmove_collectable function.
7856          LookupResult R(*this,
7857                         &Context.Idents.get("__builtin_objc_memmove_collectable"),
7858                         Loc, LookupOrdinaryName);
7859          LookupName(R, TUScope, true);
7860
7861          FunctionDecl *CollectableMemCpy = R.getAsSingle<FunctionDecl>();
7862          if (!CollectableMemCpy) {
7863            // Something went horribly wrong earlier, and we will have
7864            // complained about it.
7865            Invalid = true;
7866            continue;
7867          }
7868
7869          CollectableMemCpyRef = BuildDeclRefExpr(CollectableMemCpy,
7870                                                  Context.BuiltinFnTy,
7871                                                  VK_RValue, Loc, 0).take();
7872          assert(CollectableMemCpyRef && "Builtin reference cannot fail");
7873        }
7874      }
7875      // Create a reference to the __builtin_memcpy builtin function.
7876      else if (!BuiltinMemCpyRef) {
7877        LookupResult R(*this, &Context.Idents.get("__builtin_memcpy"), Loc,
7878                       LookupOrdinaryName);
7879        LookupName(R, TUScope, true);
7880
7881        FunctionDecl *BuiltinMemCpy = R.getAsSingle<FunctionDecl>();
7882        if (!BuiltinMemCpy) {
7883          // Something went horribly wrong earlier, and we will have complained
7884          // about it.
7885          Invalid = true;
7886          continue;
7887        }
7888
7889        BuiltinMemCpyRef = BuildDeclRefExpr(BuiltinMemCpy,
7890                                            Context.BuiltinFnTy,
7891                                            VK_RValue, Loc, 0).take();
7892        assert(BuiltinMemCpyRef && "Builtin reference cannot fail");
7893      }
7894
7895      SmallVector<Expr*, 8> CallArgs;
7896      CallArgs.push_back(To.takeAs<Expr>());
7897      CallArgs.push_back(From.takeAs<Expr>());
7898      CallArgs.push_back(IntegerLiteral::Create(Context, Size, SizeType, Loc));
7899      ExprResult Call = ExprError();
7900      if (NeedsCollectableMemCpy)
7901        Call = ActOnCallExpr(/*Scope=*/0,
7902                             CollectableMemCpyRef,
7903                             Loc, CallArgs,
7904                             Loc);
7905      else
7906        Call = ActOnCallExpr(/*Scope=*/0,
7907                             BuiltinMemCpyRef,
7908                             Loc, CallArgs,
7909                             Loc);
7910
7911      assert(!Call.isInvalid() && "Call to __builtin_memcpy cannot fail!");
7912      Statements.push_back(Call.takeAs<Expr>());
7913      continue;
7914    }
7915
7916    // Build the copy of this field.
7917    StmtResult Copy = BuildSingleCopyAssign(*this, Loc, FieldType,
7918                                            To.get(), From.get(),
7919                                            /*CopyingBaseSubobject=*/false,
7920                                            /*Copying=*/true);
7921    if (Copy.isInvalid()) {
7922      Diag(CurrentLocation, diag::note_member_synthesized_at)
7923        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
7924      CopyAssignOperator->setInvalidDecl();
7925      return;
7926    }
7927
7928    // Success! Record the copy.
7929    Statements.push_back(Copy.takeAs<Stmt>());
7930  }
7931
7932  if (!Invalid) {
7933    // Add a "return *this;"
7934    ExprResult ThisObj = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
7935
7936    StmtResult Return = ActOnReturnStmt(Loc, ThisObj.get());
7937    if (Return.isInvalid())
7938      Invalid = true;
7939    else {
7940      Statements.push_back(Return.takeAs<Stmt>());
7941
7942      if (Trap.hasErrorOccurred()) {
7943        Diag(CurrentLocation, diag::note_member_synthesized_at)
7944          << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
7945        Invalid = true;
7946      }
7947    }
7948  }
7949
7950  if (Invalid) {
7951    CopyAssignOperator->setInvalidDecl();
7952    return;
7953  }
7954
7955  StmtResult Body;
7956  {
7957    CompoundScopeRAII CompoundScope(*this);
7958    Body = ActOnCompoundStmt(Loc, Loc, Statements,
7959                             /*isStmtExpr=*/false);
7960    assert(!Body.isInvalid() && "Compound statement creation cannot fail");
7961  }
7962  CopyAssignOperator->setBody(Body.takeAs<Stmt>());
7963
7964  if (ASTMutationListener *L = getASTMutationListener()) {
7965    L->CompletedImplicitDefinition(CopyAssignOperator);
7966  }
7967}
7968
7969Sema::ImplicitExceptionSpecification
7970Sema::ComputeDefaultedMoveAssignmentExceptionSpec(CXXMethodDecl *MD) {
7971  CXXRecordDecl *ClassDecl = MD->getParent();
7972
7973  ImplicitExceptionSpecification ExceptSpec(*this);
7974  if (ClassDecl->isInvalidDecl())
7975    return ExceptSpec;
7976
7977  // C++0x [except.spec]p14:
7978  //   An implicitly declared special member function (Clause 12) shall have an
7979  //   exception-specification. [...]
7980
7981  // It is unspecified whether or not an implicit move assignment operator
7982  // attempts to deduplicate calls to assignment operators of virtual bases are
7983  // made. As such, this exception specification is effectively unspecified.
7984  // Based on a similar decision made for constness in C++0x, we're erring on
7985  // the side of assuming such calls to be made regardless of whether they
7986  // actually happen.
7987  // Note that a move constructor is not implicitly declared when there are
7988  // virtual bases, but it can still be user-declared and explicitly defaulted.
7989  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
7990                                       BaseEnd = ClassDecl->bases_end();
7991       Base != BaseEnd; ++Base) {
7992    if (Base->isVirtual())
7993      continue;
7994
7995    CXXRecordDecl *BaseClassDecl
7996      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
7997    if (CXXMethodDecl *MoveAssign = LookupMovingAssignment(BaseClassDecl,
7998                                                           0, false, 0))
7999      ExceptSpec.CalledDecl(Base->getLocStart(), MoveAssign);
8000  }
8001
8002  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
8003                                       BaseEnd = ClassDecl->vbases_end();
8004       Base != BaseEnd; ++Base) {
8005    CXXRecordDecl *BaseClassDecl
8006      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8007    if (CXXMethodDecl *MoveAssign = LookupMovingAssignment(BaseClassDecl,
8008                                                           0, false, 0))
8009      ExceptSpec.CalledDecl(Base->getLocStart(), MoveAssign);
8010  }
8011
8012  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
8013                                  FieldEnd = ClassDecl->field_end();
8014       Field != FieldEnd;
8015       ++Field) {
8016    QualType FieldType = Context.getBaseElementType(Field->getType());
8017    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
8018      if (CXXMethodDecl *MoveAssign =
8019              LookupMovingAssignment(FieldClassDecl,
8020                                     FieldType.getCVRQualifiers(),
8021                                     false, 0))
8022        ExceptSpec.CalledDecl(Field->getLocation(), MoveAssign);
8023    }
8024  }
8025
8026  return ExceptSpec;
8027}
8028
8029/// Determine whether the class type has any direct or indirect virtual base
8030/// classes which have a non-trivial move assignment operator.
8031static bool
8032hasVirtualBaseWithNonTrivialMoveAssignment(Sema &S, CXXRecordDecl *ClassDecl) {
8033  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
8034                                          BaseEnd = ClassDecl->vbases_end();
8035       Base != BaseEnd; ++Base) {
8036    CXXRecordDecl *BaseClass =
8037        cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8038
8039    // Try to declare the move assignment. If it would be deleted, then the
8040    // class does not have a non-trivial move assignment.
8041    if (BaseClass->needsImplicitMoveAssignment())
8042      S.DeclareImplicitMoveAssignment(BaseClass);
8043
8044    // If the class has both a trivial move assignment and a non-trivial move
8045    // assignment, hasTrivialMoveAssignment() is false.
8046    if (BaseClass->hasDeclaredMoveAssignment() &&
8047        !BaseClass->hasTrivialMoveAssignment())
8048      return true;
8049  }
8050
8051  return false;
8052}
8053
8054/// Determine whether the given type either has a move constructor or is
8055/// trivially copyable.
8056static bool
8057hasMoveOrIsTriviallyCopyable(Sema &S, QualType Type, bool IsConstructor) {
8058  Type = S.Context.getBaseElementType(Type);
8059
8060  // FIXME: Technically, non-trivially-copyable non-class types, such as
8061  // reference types, are supposed to return false here, but that appears
8062  // to be a standard defect.
8063  CXXRecordDecl *ClassDecl = Type->getAsCXXRecordDecl();
8064  if (!ClassDecl || !ClassDecl->getDefinition())
8065    return true;
8066
8067  if (Type.isTriviallyCopyableType(S.Context))
8068    return true;
8069
8070  if (IsConstructor) {
8071    if (ClassDecl->needsImplicitMoveConstructor())
8072      S.DeclareImplicitMoveConstructor(ClassDecl);
8073    return ClassDecl->hasDeclaredMoveConstructor();
8074  }
8075
8076  if (ClassDecl->needsImplicitMoveAssignment())
8077    S.DeclareImplicitMoveAssignment(ClassDecl);
8078  return ClassDecl->hasDeclaredMoveAssignment();
8079}
8080
8081/// Determine whether all non-static data members and direct or virtual bases
8082/// of class \p ClassDecl have either a move operation, or are trivially
8083/// copyable.
8084static bool subobjectsHaveMoveOrTrivialCopy(Sema &S, CXXRecordDecl *ClassDecl,
8085                                            bool IsConstructor) {
8086  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
8087                                          BaseEnd = ClassDecl->bases_end();
8088       Base != BaseEnd; ++Base) {
8089    if (Base->isVirtual())
8090      continue;
8091
8092    if (!hasMoveOrIsTriviallyCopyable(S, Base->getType(), IsConstructor))
8093      return false;
8094  }
8095
8096  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
8097                                          BaseEnd = ClassDecl->vbases_end();
8098       Base != BaseEnd; ++Base) {
8099    if (!hasMoveOrIsTriviallyCopyable(S, Base->getType(), IsConstructor))
8100      return false;
8101  }
8102
8103  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
8104                                     FieldEnd = ClassDecl->field_end();
8105       Field != FieldEnd; ++Field) {
8106    if (!hasMoveOrIsTriviallyCopyable(S, Field->getType(), IsConstructor))
8107      return false;
8108  }
8109
8110  return true;
8111}
8112
8113CXXMethodDecl *Sema::DeclareImplicitMoveAssignment(CXXRecordDecl *ClassDecl) {
8114  // C++11 [class.copy]p20:
8115  //   If the definition of a class X does not explicitly declare a move
8116  //   assignment operator, one will be implicitly declared as defaulted
8117  //   if and only if:
8118  //
8119  //   - [first 4 bullets]
8120  assert(ClassDecl->needsImplicitMoveAssignment());
8121
8122  // [Checked after we build the declaration]
8123  //   - the move assignment operator would not be implicitly defined as
8124  //     deleted,
8125
8126  // [DR1402]:
8127  //   - X has no direct or indirect virtual base class with a non-trivial
8128  //     move assignment operator, and
8129  //   - each of X's non-static data members and direct or virtual base classes
8130  //     has a type that either has a move assignment operator or is trivially
8131  //     copyable.
8132  if (hasVirtualBaseWithNonTrivialMoveAssignment(*this, ClassDecl) ||
8133      !subobjectsHaveMoveOrTrivialCopy(*this, ClassDecl,/*Constructor*/false)) {
8134    ClassDecl->setFailedImplicitMoveAssignment();
8135    return 0;
8136  }
8137
8138  // Note: The following rules are largely analoguous to the move
8139  // constructor rules.
8140
8141  QualType ArgType = Context.getTypeDeclType(ClassDecl);
8142  QualType RetType = Context.getLValueReferenceType(ArgType);
8143  ArgType = Context.getRValueReferenceType(ArgType);
8144
8145  //   An implicitly-declared move assignment operator is an inline public
8146  //   member of its class.
8147  DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
8148  SourceLocation ClassLoc = ClassDecl->getLocation();
8149  DeclarationNameInfo NameInfo(Name, ClassLoc);
8150  CXXMethodDecl *MoveAssignment
8151    = CXXMethodDecl::Create(Context, ClassDecl, ClassLoc, NameInfo, QualType(),
8152                            /*TInfo=*/0, /*isStatic=*/false,
8153                            /*StorageClassAsWritten=*/SC_None,
8154                            /*isInline=*/true,
8155                            /*isConstexpr=*/false,
8156                            SourceLocation());
8157  MoveAssignment->setAccess(AS_public);
8158  MoveAssignment->setDefaulted();
8159  MoveAssignment->setImplicit();
8160  MoveAssignment->setTrivial(ClassDecl->hasTrivialMoveAssignment());
8161
8162  // Build an exception specification pointing back at this member.
8163  FunctionProtoType::ExtProtoInfo EPI;
8164  EPI.ExceptionSpecType = EST_Unevaluated;
8165  EPI.ExceptionSpecDecl = MoveAssignment;
8166  MoveAssignment->setType(Context.getFunctionType(RetType, &ArgType, 1, EPI));
8167
8168  // Add the parameter to the operator.
8169  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, MoveAssignment,
8170                                               ClassLoc, ClassLoc, /*Id=*/0,
8171                                               ArgType, /*TInfo=*/0,
8172                                               SC_None,
8173                                               SC_None, 0);
8174  MoveAssignment->setParams(FromParam);
8175
8176  // Note that we have added this copy-assignment operator.
8177  ++ASTContext::NumImplicitMoveAssignmentOperatorsDeclared;
8178
8179  // C++0x [class.copy]p9:
8180  //   If the definition of a class X does not explicitly declare a move
8181  //   assignment operator, one will be implicitly declared as defaulted if and
8182  //   only if:
8183  //   [...]
8184  //   - the move assignment operator would not be implicitly defined as
8185  //     deleted.
8186  if (ShouldDeleteSpecialMember(MoveAssignment, CXXMoveAssignment)) {
8187    // Cache this result so that we don't try to generate this over and over
8188    // on every lookup, leaking memory and wasting time.
8189    ClassDecl->setFailedImplicitMoveAssignment();
8190    return 0;
8191  }
8192
8193  if (Scope *S = getScopeForContext(ClassDecl))
8194    PushOnScopeChains(MoveAssignment, S, false);
8195  ClassDecl->addDecl(MoveAssignment);
8196
8197  AddOverriddenMethods(ClassDecl, MoveAssignment);
8198  return MoveAssignment;
8199}
8200
8201void Sema::DefineImplicitMoveAssignment(SourceLocation CurrentLocation,
8202                                        CXXMethodDecl *MoveAssignOperator) {
8203  assert((MoveAssignOperator->isDefaulted() &&
8204          MoveAssignOperator->isOverloadedOperator() &&
8205          MoveAssignOperator->getOverloadedOperator() == OO_Equal &&
8206          !MoveAssignOperator->doesThisDeclarationHaveABody() &&
8207          !MoveAssignOperator->isDeleted()) &&
8208         "DefineImplicitMoveAssignment called for wrong function");
8209
8210  CXXRecordDecl *ClassDecl = MoveAssignOperator->getParent();
8211
8212  if (ClassDecl->isInvalidDecl() || MoveAssignOperator->isInvalidDecl()) {
8213    MoveAssignOperator->setInvalidDecl();
8214    return;
8215  }
8216
8217  MoveAssignOperator->setUsed();
8218
8219  ImplicitlyDefinedFunctionScope Scope(*this, MoveAssignOperator);
8220  DiagnosticErrorTrap Trap(Diags);
8221
8222  // C++0x [class.copy]p28:
8223  //   The implicitly-defined or move assignment operator for a non-union class
8224  //   X performs memberwise move assignment of its subobjects. The direct base
8225  //   classes of X are assigned first, in the order of their declaration in the
8226  //   base-specifier-list, and then the immediate non-static data members of X
8227  //   are assigned, in the order in which they were declared in the class
8228  //   definition.
8229
8230  // The statements that form the synthesized function body.
8231  SmallVector<Stmt*, 8> Statements;
8232
8233  // The parameter for the "other" object, which we are move from.
8234  ParmVarDecl *Other = MoveAssignOperator->getParamDecl(0);
8235  QualType OtherRefType = Other->getType()->
8236      getAs<RValueReferenceType>()->getPointeeType();
8237  assert(OtherRefType.getQualifiers() == 0 &&
8238         "Bad argument type of defaulted move assignment");
8239
8240  // Our location for everything implicitly-generated.
8241  SourceLocation Loc = MoveAssignOperator->getLocation();
8242
8243  // Construct a reference to the "other" object. We'll be using this
8244  // throughout the generated ASTs.
8245  Expr *OtherRef = BuildDeclRefExpr(Other, OtherRefType, VK_LValue, Loc).take();
8246  assert(OtherRef && "Reference to parameter cannot fail!");
8247  // Cast to rvalue.
8248  OtherRef = CastForMoving(*this, OtherRef);
8249
8250  // Construct the "this" pointer. We'll be using this throughout the generated
8251  // ASTs.
8252  Expr *This = ActOnCXXThis(Loc).takeAs<Expr>();
8253  assert(This && "Reference to this cannot fail!");
8254
8255  // Assign base classes.
8256  bool Invalid = false;
8257  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
8258       E = ClassDecl->bases_end(); Base != E; ++Base) {
8259    // Form the assignment:
8260    //   static_cast<Base*>(this)->Base::operator=(static_cast<Base&&>(other));
8261    QualType BaseType = Base->getType().getUnqualifiedType();
8262    if (!BaseType->isRecordType()) {
8263      Invalid = true;
8264      continue;
8265    }
8266
8267    CXXCastPath BasePath;
8268    BasePath.push_back(Base);
8269
8270    // Construct the "from" expression, which is an implicit cast to the
8271    // appropriately-qualified base type.
8272    Expr *From = OtherRef;
8273    From = ImpCastExprToType(From, BaseType, CK_UncheckedDerivedToBase,
8274                             VK_XValue, &BasePath).take();
8275
8276    // Dereference "this".
8277    ExprResult To = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
8278
8279    // Implicitly cast "this" to the appropriately-qualified base type.
8280    To = ImpCastExprToType(To.take(),
8281                           Context.getCVRQualifiedType(BaseType,
8282                                     MoveAssignOperator->getTypeQualifiers()),
8283                           CK_UncheckedDerivedToBase,
8284                           VK_LValue, &BasePath);
8285
8286    // Build the move.
8287    StmtResult Move = BuildSingleCopyAssign(*this, Loc, BaseType,
8288                                            To.get(), From,
8289                                            /*CopyingBaseSubobject=*/true,
8290                                            /*Copying=*/false);
8291    if (Move.isInvalid()) {
8292      Diag(CurrentLocation, diag::note_member_synthesized_at)
8293        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
8294      MoveAssignOperator->setInvalidDecl();
8295      return;
8296    }
8297
8298    // Success! Record the move.
8299    Statements.push_back(Move.takeAs<Expr>());
8300  }
8301
8302  // \brief Reference to the __builtin_memcpy function.
8303  Expr *BuiltinMemCpyRef = 0;
8304  // \brief Reference to the __builtin_objc_memmove_collectable function.
8305  Expr *CollectableMemCpyRef = 0;
8306
8307  // Assign non-static members.
8308  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
8309                                  FieldEnd = ClassDecl->field_end();
8310       Field != FieldEnd; ++Field) {
8311    if (Field->isUnnamedBitfield())
8312      continue;
8313
8314    // Check for members of reference type; we can't move those.
8315    if (Field->getType()->isReferenceType()) {
8316      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
8317        << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
8318      Diag(Field->getLocation(), diag::note_declared_at);
8319      Diag(CurrentLocation, diag::note_member_synthesized_at)
8320        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
8321      Invalid = true;
8322      continue;
8323    }
8324
8325    // Check for members of const-qualified, non-class type.
8326    QualType BaseType = Context.getBaseElementType(Field->getType());
8327    if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) {
8328      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
8329        << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
8330      Diag(Field->getLocation(), diag::note_declared_at);
8331      Diag(CurrentLocation, diag::note_member_synthesized_at)
8332        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
8333      Invalid = true;
8334      continue;
8335    }
8336
8337    // Suppress assigning zero-width bitfields.
8338    if (Field->isBitField() && Field->getBitWidthValue(Context) == 0)
8339      continue;
8340
8341    QualType FieldType = Field->getType().getNonReferenceType();
8342    if (FieldType->isIncompleteArrayType()) {
8343      assert(ClassDecl->hasFlexibleArrayMember() &&
8344             "Incomplete array type is not valid");
8345      continue;
8346    }
8347
8348    // Build references to the field in the object we're copying from and to.
8349    CXXScopeSpec SS; // Intentionally empty
8350    LookupResult MemberLookup(*this, Field->getDeclName(), Loc,
8351                              LookupMemberName);
8352    MemberLookup.addDecl(*Field);
8353    MemberLookup.resolveKind();
8354    ExprResult From = BuildMemberReferenceExpr(OtherRef, OtherRefType,
8355                                               Loc, /*IsArrow=*/false,
8356                                               SS, SourceLocation(), 0,
8357                                               MemberLookup, 0);
8358    ExprResult To = BuildMemberReferenceExpr(This, This->getType(),
8359                                             Loc, /*IsArrow=*/true,
8360                                             SS, SourceLocation(), 0,
8361                                             MemberLookup, 0);
8362    assert(!From.isInvalid() && "Implicit field reference cannot fail");
8363    assert(!To.isInvalid() && "Implicit field reference cannot fail");
8364
8365    assert(!From.get()->isLValue() && // could be xvalue or prvalue
8366        "Member reference with rvalue base must be rvalue except for reference "
8367        "members, which aren't allowed for move assignment.");
8368
8369    // If the field should be copied with __builtin_memcpy rather than via
8370    // explicit assignments, do so. This optimization only applies for arrays
8371    // of scalars and arrays of class type with trivial move-assignment
8372    // operators.
8373    if (FieldType->isArrayType() && !FieldType.isVolatileQualified()
8374        && BaseType.hasTrivialAssignment(Context, /*Copying=*/false)) {
8375      // Compute the size of the memory buffer to be copied.
8376      QualType SizeType = Context.getSizeType();
8377      llvm::APInt Size(Context.getTypeSize(SizeType),
8378                       Context.getTypeSizeInChars(BaseType).getQuantity());
8379      for (const ConstantArrayType *Array
8380              = Context.getAsConstantArrayType(FieldType);
8381           Array;
8382           Array = Context.getAsConstantArrayType(Array->getElementType())) {
8383        llvm::APInt ArraySize
8384          = Array->getSize().zextOrTrunc(Size.getBitWidth());
8385        Size *= ArraySize;
8386      }
8387
8388      // Take the address of the field references for "from" and "to". We
8389      // directly construct UnaryOperators here because semantic analysis
8390      // does not permit us to take the address of an xvalue.
8391      From = new (Context) UnaryOperator(From.get(), UO_AddrOf,
8392                             Context.getPointerType(From.get()->getType()),
8393                             VK_RValue, OK_Ordinary, Loc);
8394      To = new (Context) UnaryOperator(To.get(), UO_AddrOf,
8395                           Context.getPointerType(To.get()->getType()),
8396                           VK_RValue, OK_Ordinary, Loc);
8397
8398      bool NeedsCollectableMemCpy =
8399          (BaseType->isRecordType() &&
8400           BaseType->getAs<RecordType>()->getDecl()->hasObjectMember());
8401
8402      if (NeedsCollectableMemCpy) {
8403        if (!CollectableMemCpyRef) {
8404          // Create a reference to the __builtin_objc_memmove_collectable function.
8405          LookupResult R(*this,
8406                         &Context.Idents.get("__builtin_objc_memmove_collectable"),
8407                         Loc, LookupOrdinaryName);
8408          LookupName(R, TUScope, true);
8409
8410          FunctionDecl *CollectableMemCpy = R.getAsSingle<FunctionDecl>();
8411          if (!CollectableMemCpy) {
8412            // Something went horribly wrong earlier, and we will have
8413            // complained about it.
8414            Invalid = true;
8415            continue;
8416          }
8417
8418          CollectableMemCpyRef = BuildDeclRefExpr(CollectableMemCpy,
8419                                                  Context.BuiltinFnTy,
8420                                                  VK_RValue, Loc, 0).take();
8421          assert(CollectableMemCpyRef && "Builtin reference cannot fail");
8422        }
8423      }
8424      // Create a reference to the __builtin_memcpy builtin function.
8425      else if (!BuiltinMemCpyRef) {
8426        LookupResult R(*this, &Context.Idents.get("__builtin_memcpy"), Loc,
8427                       LookupOrdinaryName);
8428        LookupName(R, TUScope, true);
8429
8430        FunctionDecl *BuiltinMemCpy = R.getAsSingle<FunctionDecl>();
8431        if (!BuiltinMemCpy) {
8432          // Something went horribly wrong earlier, and we will have complained
8433          // about it.
8434          Invalid = true;
8435          continue;
8436        }
8437
8438        BuiltinMemCpyRef = BuildDeclRefExpr(BuiltinMemCpy,
8439                                            Context.BuiltinFnTy,
8440                                            VK_RValue, Loc, 0).take();
8441        assert(BuiltinMemCpyRef && "Builtin reference cannot fail");
8442      }
8443
8444      SmallVector<Expr*, 8> CallArgs;
8445      CallArgs.push_back(To.takeAs<Expr>());
8446      CallArgs.push_back(From.takeAs<Expr>());
8447      CallArgs.push_back(IntegerLiteral::Create(Context, Size, SizeType, Loc));
8448      ExprResult Call = ExprError();
8449      if (NeedsCollectableMemCpy)
8450        Call = ActOnCallExpr(/*Scope=*/0,
8451                             CollectableMemCpyRef,
8452                             Loc, CallArgs,
8453                             Loc);
8454      else
8455        Call = ActOnCallExpr(/*Scope=*/0,
8456                             BuiltinMemCpyRef,
8457                             Loc, CallArgs,
8458                             Loc);
8459
8460      assert(!Call.isInvalid() && "Call to __builtin_memcpy cannot fail!");
8461      Statements.push_back(Call.takeAs<Expr>());
8462      continue;
8463    }
8464
8465    // Build the move of this field.
8466    StmtResult Move = BuildSingleCopyAssign(*this, Loc, FieldType,
8467                                            To.get(), From.get(),
8468                                            /*CopyingBaseSubobject=*/false,
8469                                            /*Copying=*/false);
8470    if (Move.isInvalid()) {
8471      Diag(CurrentLocation, diag::note_member_synthesized_at)
8472        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
8473      MoveAssignOperator->setInvalidDecl();
8474      return;
8475    }
8476
8477    // Success! Record the copy.
8478    Statements.push_back(Move.takeAs<Stmt>());
8479  }
8480
8481  if (!Invalid) {
8482    // Add a "return *this;"
8483    ExprResult ThisObj = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
8484
8485    StmtResult Return = ActOnReturnStmt(Loc, ThisObj.get());
8486    if (Return.isInvalid())
8487      Invalid = true;
8488    else {
8489      Statements.push_back(Return.takeAs<Stmt>());
8490
8491      if (Trap.hasErrorOccurred()) {
8492        Diag(CurrentLocation, diag::note_member_synthesized_at)
8493          << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
8494        Invalid = true;
8495      }
8496    }
8497  }
8498
8499  if (Invalid) {
8500    MoveAssignOperator->setInvalidDecl();
8501    return;
8502  }
8503
8504  StmtResult Body;
8505  {
8506    CompoundScopeRAII CompoundScope(*this);
8507    Body = ActOnCompoundStmt(Loc, Loc, Statements,
8508                             /*isStmtExpr=*/false);
8509    assert(!Body.isInvalid() && "Compound statement creation cannot fail");
8510  }
8511  MoveAssignOperator->setBody(Body.takeAs<Stmt>());
8512
8513  if (ASTMutationListener *L = getASTMutationListener()) {
8514    L->CompletedImplicitDefinition(MoveAssignOperator);
8515  }
8516}
8517
8518/// Determine whether an implicit copy constructor for ClassDecl has a const
8519/// argument.
8520/// FIXME: It ought to be possible to store this on the record.
8521static bool isImplicitCopyCtorArgConst(Sema &S, CXXRecordDecl *ClassDecl) {
8522  if (ClassDecl->isInvalidDecl())
8523    return true;
8524
8525  // C++ [class.copy]p5:
8526  //   The implicitly-declared copy constructor for a class X will
8527  //   have the form
8528  //
8529  //       X::X(const X&)
8530  //
8531  //   if
8532  //     -- each direct or virtual base class B of X has a copy
8533  //        constructor whose first parameter is of type const B& or
8534  //        const volatile B&, and
8535  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
8536                                       BaseEnd = ClassDecl->bases_end();
8537       Base != BaseEnd; ++Base) {
8538    // Virtual bases are handled below.
8539    if (Base->isVirtual())
8540      continue;
8541
8542    CXXRecordDecl *BaseClassDecl
8543      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8544    // FIXME: This lookup is wrong. If the copy ctor for a member or base is
8545    // ambiguous, we should still produce a constructor with a const-qualified
8546    // parameter.
8547    if (!S.LookupCopyingConstructor(BaseClassDecl, Qualifiers::Const))
8548      return false;
8549  }
8550
8551  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
8552                                       BaseEnd = ClassDecl->vbases_end();
8553       Base != BaseEnd; ++Base) {
8554    CXXRecordDecl *BaseClassDecl
8555      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8556    if (!S.LookupCopyingConstructor(BaseClassDecl, Qualifiers::Const))
8557      return false;
8558  }
8559
8560  //     -- for all the nonstatic data members of X that are of a
8561  //        class type M (or array thereof), each such class type
8562  //        has a copy constructor whose first parameter is of type
8563  //        const M& or const volatile M&.
8564  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
8565                                  FieldEnd = ClassDecl->field_end();
8566       Field != FieldEnd; ++Field) {
8567    QualType FieldType = S.Context.getBaseElementType(Field->getType());
8568    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
8569      if (!S.LookupCopyingConstructor(FieldClassDecl, Qualifiers::Const))
8570        return false;
8571    }
8572  }
8573
8574  //   Otherwise, the implicitly declared copy constructor will have
8575  //   the form
8576  //
8577  //       X::X(X&)
8578
8579  return true;
8580}
8581
8582Sema::ImplicitExceptionSpecification
8583Sema::ComputeDefaultedCopyCtorExceptionSpec(CXXMethodDecl *MD) {
8584  CXXRecordDecl *ClassDecl = MD->getParent();
8585
8586  ImplicitExceptionSpecification ExceptSpec(*this);
8587  if (ClassDecl->isInvalidDecl())
8588    return ExceptSpec;
8589
8590  const FunctionProtoType *T = MD->getType()->castAs<FunctionProtoType>();
8591  assert(T->getNumArgs() >= 1 && "not a copy ctor");
8592  unsigned Quals = T->getArgType(0).getNonReferenceType().getCVRQualifiers();
8593
8594  // C++ [except.spec]p14:
8595  //   An implicitly declared special member function (Clause 12) shall have an
8596  //   exception-specification. [...]
8597  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
8598                                       BaseEnd = ClassDecl->bases_end();
8599       Base != BaseEnd;
8600       ++Base) {
8601    // Virtual bases are handled below.
8602    if (Base->isVirtual())
8603      continue;
8604
8605    CXXRecordDecl *BaseClassDecl
8606      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8607    if (CXXConstructorDecl *CopyConstructor =
8608          LookupCopyingConstructor(BaseClassDecl, Quals))
8609      ExceptSpec.CalledDecl(Base->getLocStart(), CopyConstructor);
8610  }
8611  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
8612                                       BaseEnd = ClassDecl->vbases_end();
8613       Base != BaseEnd;
8614       ++Base) {
8615    CXXRecordDecl *BaseClassDecl
8616      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8617    if (CXXConstructorDecl *CopyConstructor =
8618          LookupCopyingConstructor(BaseClassDecl, Quals))
8619      ExceptSpec.CalledDecl(Base->getLocStart(), CopyConstructor);
8620  }
8621  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
8622                                  FieldEnd = ClassDecl->field_end();
8623       Field != FieldEnd;
8624       ++Field) {
8625    QualType FieldType = Context.getBaseElementType(Field->getType());
8626    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
8627      if (CXXConstructorDecl *CopyConstructor =
8628              LookupCopyingConstructor(FieldClassDecl,
8629                                       Quals | FieldType.getCVRQualifiers()))
8630      ExceptSpec.CalledDecl(Field->getLocation(), CopyConstructor);
8631    }
8632  }
8633
8634  return ExceptSpec;
8635}
8636
8637CXXConstructorDecl *Sema::DeclareImplicitCopyConstructor(
8638                                                    CXXRecordDecl *ClassDecl) {
8639  // C++ [class.copy]p4:
8640  //   If the class definition does not explicitly declare a copy
8641  //   constructor, one is declared implicitly.
8642
8643  QualType ClassType = Context.getTypeDeclType(ClassDecl);
8644  QualType ArgType = ClassType;
8645  bool Const = isImplicitCopyCtorArgConst(*this, ClassDecl);
8646  if (Const)
8647    ArgType = ArgType.withConst();
8648  ArgType = Context.getLValueReferenceType(ArgType);
8649
8650  bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl,
8651                                                     CXXCopyConstructor,
8652                                                     Const);
8653
8654  DeclarationName Name
8655    = Context.DeclarationNames.getCXXConstructorName(
8656                                           Context.getCanonicalType(ClassType));
8657  SourceLocation ClassLoc = ClassDecl->getLocation();
8658  DeclarationNameInfo NameInfo(Name, ClassLoc);
8659
8660  //   An implicitly-declared copy constructor is an inline public
8661  //   member of its class.
8662  CXXConstructorDecl *CopyConstructor = CXXConstructorDecl::Create(
8663      Context, ClassDecl, ClassLoc, NameInfo, QualType(), /*TInfo=*/0,
8664      /*isExplicit=*/false, /*isInline=*/true, /*isImplicitlyDeclared=*/true,
8665      Constexpr);
8666  CopyConstructor->setAccess(AS_public);
8667  CopyConstructor->setDefaulted();
8668  CopyConstructor->setTrivial(ClassDecl->hasTrivialCopyConstructor());
8669
8670  // Build an exception specification pointing back at this member.
8671  FunctionProtoType::ExtProtoInfo EPI;
8672  EPI.ExceptionSpecType = EST_Unevaluated;
8673  EPI.ExceptionSpecDecl = CopyConstructor;
8674  CopyConstructor->setType(
8675      Context.getFunctionType(Context.VoidTy, &ArgType, 1, EPI));
8676
8677  // Note that we have declared this constructor.
8678  ++ASTContext::NumImplicitCopyConstructorsDeclared;
8679
8680  // Add the parameter to the constructor.
8681  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor,
8682                                               ClassLoc, ClassLoc,
8683                                               /*IdentifierInfo=*/0,
8684                                               ArgType, /*TInfo=*/0,
8685                                               SC_None,
8686                                               SC_None, 0);
8687  CopyConstructor->setParams(FromParam);
8688
8689  if (Scope *S = getScopeForContext(ClassDecl))
8690    PushOnScopeChains(CopyConstructor, S, false);
8691  ClassDecl->addDecl(CopyConstructor);
8692
8693  // C++11 [class.copy]p8:
8694  //   ... If the class definition does not explicitly declare a copy
8695  //   constructor, there is no user-declared move constructor, and there is no
8696  //   user-declared move assignment operator, a copy constructor is implicitly
8697  //   declared as defaulted.
8698  if (ShouldDeleteSpecialMember(CopyConstructor, CXXCopyConstructor))
8699    CopyConstructor->setDeletedAsWritten();
8700
8701  return CopyConstructor;
8702}
8703
8704void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation,
8705                                   CXXConstructorDecl *CopyConstructor) {
8706  assert((CopyConstructor->isDefaulted() &&
8707          CopyConstructor->isCopyConstructor() &&
8708          !CopyConstructor->doesThisDeclarationHaveABody() &&
8709          !CopyConstructor->isDeleted()) &&
8710         "DefineImplicitCopyConstructor - call it for implicit copy ctor");
8711
8712  CXXRecordDecl *ClassDecl = CopyConstructor->getParent();
8713  assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor");
8714
8715  ImplicitlyDefinedFunctionScope Scope(*this, CopyConstructor);
8716  DiagnosticErrorTrap Trap(Diags);
8717
8718  if (SetCtorInitializers(CopyConstructor, 0, 0, /*AnyErrors=*/false) ||
8719      Trap.hasErrorOccurred()) {
8720    Diag(CurrentLocation, diag::note_member_synthesized_at)
8721      << CXXCopyConstructor << Context.getTagDeclType(ClassDecl);
8722    CopyConstructor->setInvalidDecl();
8723  }  else {
8724    Sema::CompoundScopeRAII CompoundScope(*this);
8725    CopyConstructor->setBody(ActOnCompoundStmt(CopyConstructor->getLocation(),
8726                                               CopyConstructor->getLocation(),
8727                                               MultiStmtArg(),
8728                                               /*isStmtExpr=*/false)
8729                                                              .takeAs<Stmt>());
8730    CopyConstructor->setImplicitlyDefined(true);
8731  }
8732
8733  CopyConstructor->setUsed();
8734  if (ASTMutationListener *L = getASTMutationListener()) {
8735    L->CompletedImplicitDefinition(CopyConstructor);
8736  }
8737}
8738
8739Sema::ImplicitExceptionSpecification
8740Sema::ComputeDefaultedMoveCtorExceptionSpec(CXXMethodDecl *MD) {
8741  CXXRecordDecl *ClassDecl = MD->getParent();
8742
8743  // C++ [except.spec]p14:
8744  //   An implicitly declared special member function (Clause 12) shall have an
8745  //   exception-specification. [...]
8746  ImplicitExceptionSpecification ExceptSpec(*this);
8747  if (ClassDecl->isInvalidDecl())
8748    return ExceptSpec;
8749
8750  // Direct base-class constructors.
8751  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
8752                                       BEnd = ClassDecl->bases_end();
8753       B != BEnd; ++B) {
8754    if (B->isVirtual()) // Handled below.
8755      continue;
8756
8757    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
8758      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
8759      CXXConstructorDecl *Constructor =
8760          LookupMovingConstructor(BaseClassDecl, 0);
8761      // If this is a deleted function, add it anyway. This might be conformant
8762      // with the standard. This might not. I'm not sure. It might not matter.
8763      if (Constructor)
8764        ExceptSpec.CalledDecl(B->getLocStart(), Constructor);
8765    }
8766  }
8767
8768  // Virtual base-class constructors.
8769  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
8770                                       BEnd = ClassDecl->vbases_end();
8771       B != BEnd; ++B) {
8772    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
8773      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
8774      CXXConstructorDecl *Constructor =
8775          LookupMovingConstructor(BaseClassDecl, 0);
8776      // If this is a deleted function, add it anyway. This might be conformant
8777      // with the standard. This might not. I'm not sure. It might not matter.
8778      if (Constructor)
8779        ExceptSpec.CalledDecl(B->getLocStart(), Constructor);
8780    }
8781  }
8782
8783  // Field constructors.
8784  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
8785                               FEnd = ClassDecl->field_end();
8786       F != FEnd; ++F) {
8787    QualType FieldType = Context.getBaseElementType(F->getType());
8788    if (CXXRecordDecl *FieldRecDecl = FieldType->getAsCXXRecordDecl()) {
8789      CXXConstructorDecl *Constructor =
8790          LookupMovingConstructor(FieldRecDecl, FieldType.getCVRQualifiers());
8791      // If this is a deleted function, add it anyway. This might be conformant
8792      // with the standard. This might not. I'm not sure. It might not matter.
8793      // In particular, the problem is that this function never gets called. It
8794      // might just be ill-formed because this function attempts to refer to
8795      // a deleted function here.
8796      if (Constructor)
8797        ExceptSpec.CalledDecl(F->getLocation(), Constructor);
8798    }
8799  }
8800
8801  return ExceptSpec;
8802}
8803
8804CXXConstructorDecl *Sema::DeclareImplicitMoveConstructor(
8805                                                    CXXRecordDecl *ClassDecl) {
8806  // C++11 [class.copy]p9:
8807  //   If the definition of a class X does not explicitly declare a move
8808  //   constructor, one will be implicitly declared as defaulted if and only if:
8809  //
8810  //   - [first 4 bullets]
8811  assert(ClassDecl->needsImplicitMoveConstructor());
8812
8813  // [Checked after we build the declaration]
8814  //   - the move assignment operator would not be implicitly defined as
8815  //     deleted,
8816
8817  // [DR1402]:
8818  //   - each of X's non-static data members and direct or virtual base classes
8819  //     has a type that either has a move constructor or is trivially copyable.
8820  if (!subobjectsHaveMoveOrTrivialCopy(*this, ClassDecl, /*Constructor*/true)) {
8821    ClassDecl->setFailedImplicitMoveConstructor();
8822    return 0;
8823  }
8824
8825  QualType ClassType = Context.getTypeDeclType(ClassDecl);
8826  QualType ArgType = Context.getRValueReferenceType(ClassType);
8827
8828  bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl,
8829                                                     CXXMoveConstructor,
8830                                                     false);
8831
8832  DeclarationName Name
8833    = Context.DeclarationNames.getCXXConstructorName(
8834                                           Context.getCanonicalType(ClassType));
8835  SourceLocation ClassLoc = ClassDecl->getLocation();
8836  DeclarationNameInfo NameInfo(Name, ClassLoc);
8837
8838  // C++0x [class.copy]p11:
8839  //   An implicitly-declared copy/move constructor is an inline public
8840  //   member of its class.
8841  CXXConstructorDecl *MoveConstructor = CXXConstructorDecl::Create(
8842      Context, ClassDecl, ClassLoc, NameInfo, QualType(), /*TInfo=*/0,
8843      /*isExplicit=*/false, /*isInline=*/true, /*isImplicitlyDeclared=*/true,
8844      Constexpr);
8845  MoveConstructor->setAccess(AS_public);
8846  MoveConstructor->setDefaulted();
8847  MoveConstructor->setTrivial(ClassDecl->hasTrivialMoveConstructor());
8848
8849  // Build an exception specification pointing back at this member.
8850  FunctionProtoType::ExtProtoInfo EPI;
8851  EPI.ExceptionSpecType = EST_Unevaluated;
8852  EPI.ExceptionSpecDecl = MoveConstructor;
8853  MoveConstructor->setType(
8854      Context.getFunctionType(Context.VoidTy, &ArgType, 1, EPI));
8855
8856  // Add the parameter to the constructor.
8857  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, MoveConstructor,
8858                                               ClassLoc, ClassLoc,
8859                                               /*IdentifierInfo=*/0,
8860                                               ArgType, /*TInfo=*/0,
8861                                               SC_None,
8862                                               SC_None, 0);
8863  MoveConstructor->setParams(FromParam);
8864
8865  // C++0x [class.copy]p9:
8866  //   If the definition of a class X does not explicitly declare a move
8867  //   constructor, one will be implicitly declared as defaulted if and only if:
8868  //   [...]
8869  //   - the move constructor would not be implicitly defined as deleted.
8870  if (ShouldDeleteSpecialMember(MoveConstructor, CXXMoveConstructor)) {
8871    // Cache this result so that we don't try to generate this over and over
8872    // on every lookup, leaking memory and wasting time.
8873    ClassDecl->setFailedImplicitMoveConstructor();
8874    return 0;
8875  }
8876
8877  // Note that we have declared this constructor.
8878  ++ASTContext::NumImplicitMoveConstructorsDeclared;
8879
8880  if (Scope *S = getScopeForContext(ClassDecl))
8881    PushOnScopeChains(MoveConstructor, S, false);
8882  ClassDecl->addDecl(MoveConstructor);
8883
8884  return MoveConstructor;
8885}
8886
8887void Sema::DefineImplicitMoveConstructor(SourceLocation CurrentLocation,
8888                                   CXXConstructorDecl *MoveConstructor) {
8889  assert((MoveConstructor->isDefaulted() &&
8890          MoveConstructor->isMoveConstructor() &&
8891          !MoveConstructor->doesThisDeclarationHaveABody() &&
8892          !MoveConstructor->isDeleted()) &&
8893         "DefineImplicitMoveConstructor - call it for implicit move ctor");
8894
8895  CXXRecordDecl *ClassDecl = MoveConstructor->getParent();
8896  assert(ClassDecl && "DefineImplicitMoveConstructor - invalid constructor");
8897
8898  ImplicitlyDefinedFunctionScope Scope(*this, MoveConstructor);
8899  DiagnosticErrorTrap Trap(Diags);
8900
8901  if (SetCtorInitializers(MoveConstructor, 0, 0, /*AnyErrors=*/false) ||
8902      Trap.hasErrorOccurred()) {
8903    Diag(CurrentLocation, diag::note_member_synthesized_at)
8904      << CXXMoveConstructor << Context.getTagDeclType(ClassDecl);
8905    MoveConstructor->setInvalidDecl();
8906  }  else {
8907    Sema::CompoundScopeRAII CompoundScope(*this);
8908    MoveConstructor->setBody(ActOnCompoundStmt(MoveConstructor->getLocation(),
8909                                               MoveConstructor->getLocation(),
8910                                               MultiStmtArg(),
8911                                               /*isStmtExpr=*/false)
8912                                                              .takeAs<Stmt>());
8913    MoveConstructor->setImplicitlyDefined(true);
8914  }
8915
8916  MoveConstructor->setUsed();
8917
8918  if (ASTMutationListener *L = getASTMutationListener()) {
8919    L->CompletedImplicitDefinition(MoveConstructor);
8920  }
8921}
8922
8923bool Sema::isImplicitlyDeleted(FunctionDecl *FD) {
8924  return FD->isDeleted() &&
8925         (FD->isDefaulted() || FD->isImplicit()) &&
8926         isa<CXXMethodDecl>(FD);
8927}
8928
8929/// \brief Mark the call operator of the given lambda closure type as "used".
8930static void markLambdaCallOperatorUsed(Sema &S, CXXRecordDecl *Lambda) {
8931  CXXMethodDecl *CallOperator
8932    = cast<CXXMethodDecl>(
8933        *Lambda->lookup(
8934          S.Context.DeclarationNames.getCXXOperatorName(OO_Call)).first);
8935  CallOperator->setReferenced();
8936  CallOperator->setUsed();
8937}
8938
8939void Sema::DefineImplicitLambdaToFunctionPointerConversion(
8940       SourceLocation CurrentLocation,
8941       CXXConversionDecl *Conv)
8942{
8943  CXXRecordDecl *Lambda = Conv->getParent();
8944
8945  // Make sure that the lambda call operator is marked used.
8946  markLambdaCallOperatorUsed(*this, Lambda);
8947
8948  Conv->setUsed();
8949
8950  ImplicitlyDefinedFunctionScope Scope(*this, Conv);
8951  DiagnosticErrorTrap Trap(Diags);
8952
8953  // Return the address of the __invoke function.
8954  DeclarationName InvokeName = &Context.Idents.get("__invoke");
8955  CXXMethodDecl *Invoke
8956    = cast<CXXMethodDecl>(*Lambda->lookup(InvokeName).first);
8957  Expr *FunctionRef = BuildDeclRefExpr(Invoke, Invoke->getType(),
8958                                       VK_LValue, Conv->getLocation()).take();
8959  assert(FunctionRef && "Can't refer to __invoke function?");
8960  Stmt *Return = ActOnReturnStmt(Conv->getLocation(), FunctionRef).take();
8961  Conv->setBody(new (Context) CompoundStmt(Context, &Return, 1,
8962                                           Conv->getLocation(),
8963                                           Conv->getLocation()));
8964
8965  // Fill in the __invoke function with a dummy implementation. IR generation
8966  // will fill in the actual details.
8967  Invoke->setUsed();
8968  Invoke->setReferenced();
8969  Invoke->setBody(new (Context) CompoundStmt(Conv->getLocation()));
8970
8971  if (ASTMutationListener *L = getASTMutationListener()) {
8972    L->CompletedImplicitDefinition(Conv);
8973    L->CompletedImplicitDefinition(Invoke);
8974  }
8975}
8976
8977void Sema::DefineImplicitLambdaToBlockPointerConversion(
8978       SourceLocation CurrentLocation,
8979       CXXConversionDecl *Conv)
8980{
8981  Conv->setUsed();
8982
8983  ImplicitlyDefinedFunctionScope Scope(*this, Conv);
8984  DiagnosticErrorTrap Trap(Diags);
8985
8986  // Copy-initialize the lambda object as needed to capture it.
8987  Expr *This = ActOnCXXThis(CurrentLocation).take();
8988  Expr *DerefThis =CreateBuiltinUnaryOp(CurrentLocation, UO_Deref, This).take();
8989
8990  ExprResult BuildBlock = BuildBlockForLambdaConversion(CurrentLocation,
8991                                                        Conv->getLocation(),
8992                                                        Conv, DerefThis);
8993
8994  // If we're not under ARC, make sure we still get the _Block_copy/autorelease
8995  // behavior.  Note that only the general conversion function does this
8996  // (since it's unusable otherwise); in the case where we inline the
8997  // block literal, it has block literal lifetime semantics.
8998  if (!BuildBlock.isInvalid() && !getLangOpts().ObjCAutoRefCount)
8999    BuildBlock = ImplicitCastExpr::Create(Context, BuildBlock.get()->getType(),
9000                                          CK_CopyAndAutoreleaseBlockObject,
9001                                          BuildBlock.get(), 0, VK_RValue);
9002
9003  if (BuildBlock.isInvalid()) {
9004    Diag(CurrentLocation, diag::note_lambda_to_block_conv);
9005    Conv->setInvalidDecl();
9006    return;
9007  }
9008
9009  // Create the return statement that returns the block from the conversion
9010  // function.
9011  StmtResult Return = ActOnReturnStmt(Conv->getLocation(), BuildBlock.get());
9012  if (Return.isInvalid()) {
9013    Diag(CurrentLocation, diag::note_lambda_to_block_conv);
9014    Conv->setInvalidDecl();
9015    return;
9016  }
9017
9018  // Set the body of the conversion function.
9019  Stmt *ReturnS = Return.take();
9020  Conv->setBody(new (Context) CompoundStmt(Context, &ReturnS, 1,
9021                                           Conv->getLocation(),
9022                                           Conv->getLocation()));
9023
9024  // We're done; notify the mutation listener, if any.
9025  if (ASTMutationListener *L = getASTMutationListener()) {
9026    L->CompletedImplicitDefinition(Conv);
9027  }
9028}
9029
9030/// \brief Determine whether the given list arguments contains exactly one
9031/// "real" (non-default) argument.
9032static bool hasOneRealArgument(MultiExprArg Args) {
9033  switch (Args.size()) {
9034  case 0:
9035    return false;
9036
9037  default:
9038    if (!Args[1]->isDefaultArgument())
9039      return false;
9040
9041    // fall through
9042  case 1:
9043    return !Args[0]->isDefaultArgument();
9044  }
9045
9046  return false;
9047}
9048
9049ExprResult
9050Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
9051                            CXXConstructorDecl *Constructor,
9052                            MultiExprArg ExprArgs,
9053                            bool HadMultipleCandidates,
9054                            bool RequiresZeroInit,
9055                            unsigned ConstructKind,
9056                            SourceRange ParenRange) {
9057  bool Elidable = false;
9058
9059  // C++0x [class.copy]p34:
9060  //   When certain criteria are met, an implementation is allowed to
9061  //   omit the copy/move construction of a class object, even if the
9062  //   copy/move constructor and/or destructor for the object have
9063  //   side effects. [...]
9064  //     - when a temporary class object that has not been bound to a
9065  //       reference (12.2) would be copied/moved to a class object
9066  //       with the same cv-unqualified type, the copy/move operation
9067  //       can be omitted by constructing the temporary object
9068  //       directly into the target of the omitted copy/move
9069  if (ConstructKind == CXXConstructExpr::CK_Complete &&
9070      Constructor->isCopyOrMoveConstructor() && hasOneRealArgument(ExprArgs)) {
9071    Expr *SubExpr = ExprArgs[0];
9072    Elidable = SubExpr->isTemporaryObject(Context, Constructor->getParent());
9073  }
9074
9075  return BuildCXXConstructExpr(ConstructLoc, DeclInitType, Constructor,
9076                               Elidable, ExprArgs, HadMultipleCandidates,
9077                               RequiresZeroInit, ConstructKind, ParenRange);
9078}
9079
9080/// BuildCXXConstructExpr - Creates a complete call to a constructor,
9081/// including handling of its default argument expressions.
9082ExprResult
9083Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
9084                            CXXConstructorDecl *Constructor, bool Elidable,
9085                            MultiExprArg ExprArgs,
9086                            bool HadMultipleCandidates,
9087                            bool RequiresZeroInit,
9088                            unsigned ConstructKind,
9089                            SourceRange ParenRange) {
9090  MarkFunctionReferenced(ConstructLoc, Constructor);
9091  return Owned(CXXConstructExpr::Create(Context, DeclInitType, ConstructLoc,
9092                                        Constructor, Elidable, ExprArgs,
9093                                        HadMultipleCandidates, /*FIXME*/false,
9094                                        RequiresZeroInit,
9095              static_cast<CXXConstructExpr::ConstructionKind>(ConstructKind),
9096                                        ParenRange));
9097}
9098
9099bool Sema::InitializeVarWithConstructor(VarDecl *VD,
9100                                        CXXConstructorDecl *Constructor,
9101                                        MultiExprArg Exprs,
9102                                        bool HadMultipleCandidates) {
9103  // FIXME: Provide the correct paren SourceRange when available.
9104  ExprResult TempResult =
9105    BuildCXXConstructExpr(VD->getLocation(), VD->getType(), Constructor,
9106                          Exprs, HadMultipleCandidates, false,
9107                          CXXConstructExpr::CK_Complete, SourceRange());
9108  if (TempResult.isInvalid())
9109    return true;
9110
9111  Expr *Temp = TempResult.takeAs<Expr>();
9112  CheckImplicitConversions(Temp, VD->getLocation());
9113  MarkFunctionReferenced(VD->getLocation(), Constructor);
9114  Temp = MaybeCreateExprWithCleanups(Temp);
9115  VD->setInit(Temp);
9116
9117  return false;
9118}
9119
9120void Sema::FinalizeVarWithDestructor(VarDecl *VD, const RecordType *Record) {
9121  if (VD->isInvalidDecl()) return;
9122
9123  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Record->getDecl());
9124  if (ClassDecl->isInvalidDecl()) return;
9125  if (ClassDecl->hasIrrelevantDestructor()) return;
9126  if (ClassDecl->isDependentContext()) return;
9127
9128  CXXDestructorDecl *Destructor = LookupDestructor(ClassDecl);
9129  MarkFunctionReferenced(VD->getLocation(), Destructor);
9130  CheckDestructorAccess(VD->getLocation(), Destructor,
9131                        PDiag(diag::err_access_dtor_var)
9132                        << VD->getDeclName()
9133                        << VD->getType());
9134  DiagnoseUseOfDecl(Destructor, VD->getLocation());
9135
9136  if (!VD->hasGlobalStorage()) return;
9137
9138  // Emit warning for non-trivial dtor in global scope (a real global,
9139  // class-static, function-static).
9140  Diag(VD->getLocation(), diag::warn_exit_time_destructor);
9141
9142  // TODO: this should be re-enabled for static locals by !CXAAtExit
9143  if (!VD->isStaticLocal())
9144    Diag(VD->getLocation(), diag::warn_global_destructor);
9145}
9146
9147/// \brief Given a constructor and the set of arguments provided for the
9148/// constructor, convert the arguments and add any required default arguments
9149/// to form a proper call to this constructor.
9150///
9151/// \returns true if an error occurred, false otherwise.
9152bool
9153Sema::CompleteConstructorCall(CXXConstructorDecl *Constructor,
9154                              MultiExprArg ArgsPtr,
9155                              SourceLocation Loc,
9156                              SmallVectorImpl<Expr*> &ConvertedArgs,
9157                              bool AllowExplicit) {
9158  // FIXME: This duplicates a lot of code from Sema::ConvertArgumentsForCall.
9159  unsigned NumArgs = ArgsPtr.size();
9160  Expr **Args = ArgsPtr.data();
9161
9162  const FunctionProtoType *Proto
9163    = Constructor->getType()->getAs<FunctionProtoType>();
9164  assert(Proto && "Constructor without a prototype?");
9165  unsigned NumArgsInProto = Proto->getNumArgs();
9166
9167  // If too few arguments are available, we'll fill in the rest with defaults.
9168  if (NumArgs < NumArgsInProto)
9169    ConvertedArgs.reserve(NumArgsInProto);
9170  else
9171    ConvertedArgs.reserve(NumArgs);
9172
9173  VariadicCallType CallType =
9174    Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply;
9175  SmallVector<Expr *, 8> AllArgs;
9176  bool Invalid = GatherArgumentsForCall(Loc, Constructor,
9177                                        Proto, 0, Args, NumArgs, AllArgs,
9178                                        CallType, AllowExplicit);
9179  ConvertedArgs.append(AllArgs.begin(), AllArgs.end());
9180
9181  DiagnoseSentinelCalls(Constructor, Loc, AllArgs.data(), AllArgs.size());
9182
9183  CheckConstructorCall(Constructor, AllArgs.data(), AllArgs.size(),
9184                       Proto, Loc);
9185
9186  return Invalid;
9187}
9188
9189static inline bool
9190CheckOperatorNewDeleteDeclarationScope(Sema &SemaRef,
9191                                       const FunctionDecl *FnDecl) {
9192  const DeclContext *DC = FnDecl->getDeclContext()->getRedeclContext();
9193  if (isa<NamespaceDecl>(DC)) {
9194    return SemaRef.Diag(FnDecl->getLocation(),
9195                        diag::err_operator_new_delete_declared_in_namespace)
9196      << FnDecl->getDeclName();
9197  }
9198
9199  if (isa<TranslationUnitDecl>(DC) &&
9200      FnDecl->getStorageClass() == SC_Static) {
9201    return SemaRef.Diag(FnDecl->getLocation(),
9202                        diag::err_operator_new_delete_declared_static)
9203      << FnDecl->getDeclName();
9204  }
9205
9206  return false;
9207}
9208
9209static inline bool
9210CheckOperatorNewDeleteTypes(Sema &SemaRef, const FunctionDecl *FnDecl,
9211                            CanQualType ExpectedResultType,
9212                            CanQualType ExpectedFirstParamType,
9213                            unsigned DependentParamTypeDiag,
9214                            unsigned InvalidParamTypeDiag) {
9215  QualType ResultType =
9216    FnDecl->getType()->getAs<FunctionType>()->getResultType();
9217
9218  // Check that the result type is not dependent.
9219  if (ResultType->isDependentType())
9220    return SemaRef.Diag(FnDecl->getLocation(),
9221                        diag::err_operator_new_delete_dependent_result_type)
9222    << FnDecl->getDeclName() << ExpectedResultType;
9223
9224  // Check that the result type is what we expect.
9225  if (SemaRef.Context.getCanonicalType(ResultType) != ExpectedResultType)
9226    return SemaRef.Diag(FnDecl->getLocation(),
9227                        diag::err_operator_new_delete_invalid_result_type)
9228    << FnDecl->getDeclName() << ExpectedResultType;
9229
9230  // A function template must have at least 2 parameters.
9231  if (FnDecl->getDescribedFunctionTemplate() && FnDecl->getNumParams() < 2)
9232    return SemaRef.Diag(FnDecl->getLocation(),
9233                      diag::err_operator_new_delete_template_too_few_parameters)
9234        << FnDecl->getDeclName();
9235
9236  // The function decl must have at least 1 parameter.
9237  if (FnDecl->getNumParams() == 0)
9238    return SemaRef.Diag(FnDecl->getLocation(),
9239                        diag::err_operator_new_delete_too_few_parameters)
9240      << FnDecl->getDeclName();
9241
9242  // Check the first parameter type is not dependent.
9243  QualType FirstParamType = FnDecl->getParamDecl(0)->getType();
9244  if (FirstParamType->isDependentType())
9245    return SemaRef.Diag(FnDecl->getLocation(), DependentParamTypeDiag)
9246      << FnDecl->getDeclName() << ExpectedFirstParamType;
9247
9248  // Check that the first parameter type is what we expect.
9249  if (SemaRef.Context.getCanonicalType(FirstParamType).getUnqualifiedType() !=
9250      ExpectedFirstParamType)
9251    return SemaRef.Diag(FnDecl->getLocation(), InvalidParamTypeDiag)
9252    << FnDecl->getDeclName() << ExpectedFirstParamType;
9253
9254  return false;
9255}
9256
9257static bool
9258CheckOperatorNewDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
9259  // C++ [basic.stc.dynamic.allocation]p1:
9260  //   A program is ill-formed if an allocation function is declared in a
9261  //   namespace scope other than global scope or declared static in global
9262  //   scope.
9263  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
9264    return true;
9265
9266  CanQualType SizeTy =
9267    SemaRef.Context.getCanonicalType(SemaRef.Context.getSizeType());
9268
9269  // C++ [basic.stc.dynamic.allocation]p1:
9270  //  The return type shall be void*. The first parameter shall have type
9271  //  std::size_t.
9272  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidPtrTy,
9273                                  SizeTy,
9274                                  diag::err_operator_new_dependent_param_type,
9275                                  diag::err_operator_new_param_type))
9276    return true;
9277
9278  // C++ [basic.stc.dynamic.allocation]p1:
9279  //  The first parameter shall not have an associated default argument.
9280  if (FnDecl->getParamDecl(0)->hasDefaultArg())
9281    return SemaRef.Diag(FnDecl->getLocation(),
9282                        diag::err_operator_new_default_arg)
9283      << FnDecl->getDeclName() << FnDecl->getParamDecl(0)->getDefaultArgRange();
9284
9285  return false;
9286}
9287
9288static bool
9289CheckOperatorDeleteDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
9290  // C++ [basic.stc.dynamic.deallocation]p1:
9291  //   A program is ill-formed if deallocation functions are declared in a
9292  //   namespace scope other than global scope or declared static in global
9293  //   scope.
9294  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
9295    return true;
9296
9297  // C++ [basic.stc.dynamic.deallocation]p2:
9298  //   Each deallocation function shall return void and its first parameter
9299  //   shall be void*.
9300  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidTy,
9301                                  SemaRef.Context.VoidPtrTy,
9302                                 diag::err_operator_delete_dependent_param_type,
9303                                 diag::err_operator_delete_param_type))
9304    return true;
9305
9306  return false;
9307}
9308
9309/// CheckOverloadedOperatorDeclaration - Check whether the declaration
9310/// of this overloaded operator is well-formed. If so, returns false;
9311/// otherwise, emits appropriate diagnostics and returns true.
9312bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
9313  assert(FnDecl && FnDecl->isOverloadedOperator() &&
9314         "Expected an overloaded operator declaration");
9315
9316  OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
9317
9318  // C++ [over.oper]p5:
9319  //   The allocation and deallocation functions, operator new,
9320  //   operator new[], operator delete and operator delete[], are
9321  //   described completely in 3.7.3. The attributes and restrictions
9322  //   found in the rest of this subclause do not apply to them unless
9323  //   explicitly stated in 3.7.3.
9324  if (Op == OO_Delete || Op == OO_Array_Delete)
9325    return CheckOperatorDeleteDeclaration(*this, FnDecl);
9326
9327  if (Op == OO_New || Op == OO_Array_New)
9328    return CheckOperatorNewDeclaration(*this, FnDecl);
9329
9330  // C++ [over.oper]p6:
9331  //   An operator function shall either be a non-static member
9332  //   function or be a non-member function and have at least one
9333  //   parameter whose type is a class, a reference to a class, an
9334  //   enumeration, or a reference to an enumeration.
9335  if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) {
9336    if (MethodDecl->isStatic())
9337      return Diag(FnDecl->getLocation(),
9338                  diag::err_operator_overload_static) << FnDecl->getDeclName();
9339  } else {
9340    bool ClassOrEnumParam = false;
9341    for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
9342                                   ParamEnd = FnDecl->param_end();
9343         Param != ParamEnd; ++Param) {
9344      QualType ParamType = (*Param)->getType().getNonReferenceType();
9345      if (ParamType->isDependentType() || ParamType->isRecordType() ||
9346          ParamType->isEnumeralType()) {
9347        ClassOrEnumParam = true;
9348        break;
9349      }
9350    }
9351
9352    if (!ClassOrEnumParam)
9353      return Diag(FnDecl->getLocation(),
9354                  diag::err_operator_overload_needs_class_or_enum)
9355        << FnDecl->getDeclName();
9356  }
9357
9358  // C++ [over.oper]p8:
9359  //   An operator function cannot have default arguments (8.3.6),
9360  //   except where explicitly stated below.
9361  //
9362  // Only the function-call operator allows default arguments
9363  // (C++ [over.call]p1).
9364  if (Op != OO_Call) {
9365    for (FunctionDecl::param_iterator Param = FnDecl->param_begin();
9366         Param != FnDecl->param_end(); ++Param) {
9367      if ((*Param)->hasDefaultArg())
9368        return Diag((*Param)->getLocation(),
9369                    diag::err_operator_overload_default_arg)
9370          << FnDecl->getDeclName() << (*Param)->getDefaultArgRange();
9371    }
9372  }
9373
9374  static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
9375    { false, false, false }
9376#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
9377    , { Unary, Binary, MemberOnly }
9378#include "clang/Basic/OperatorKinds.def"
9379  };
9380
9381  bool CanBeUnaryOperator = OperatorUses[Op][0];
9382  bool CanBeBinaryOperator = OperatorUses[Op][1];
9383  bool MustBeMemberOperator = OperatorUses[Op][2];
9384
9385  // C++ [over.oper]p8:
9386  //   [...] Operator functions cannot have more or fewer parameters
9387  //   than the number required for the corresponding operator, as
9388  //   described in the rest of this subclause.
9389  unsigned NumParams = FnDecl->getNumParams()
9390                     + (isa<CXXMethodDecl>(FnDecl)? 1 : 0);
9391  if (Op != OO_Call &&
9392      ((NumParams == 1 && !CanBeUnaryOperator) ||
9393       (NumParams == 2 && !CanBeBinaryOperator) ||
9394       (NumParams < 1) || (NumParams > 2))) {
9395    // We have the wrong number of parameters.
9396    unsigned ErrorKind;
9397    if (CanBeUnaryOperator && CanBeBinaryOperator) {
9398      ErrorKind = 2;  // 2 -> unary or binary.
9399    } else if (CanBeUnaryOperator) {
9400      ErrorKind = 0;  // 0 -> unary
9401    } else {
9402      assert(CanBeBinaryOperator &&
9403             "All non-call overloaded operators are unary or binary!");
9404      ErrorKind = 1;  // 1 -> binary
9405    }
9406
9407    return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be)
9408      << FnDecl->getDeclName() << NumParams << ErrorKind;
9409  }
9410
9411  // Overloaded operators other than operator() cannot be variadic.
9412  if (Op != OO_Call &&
9413      FnDecl->getType()->getAs<FunctionProtoType>()->isVariadic()) {
9414    return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
9415      << FnDecl->getDeclName();
9416  }
9417
9418  // Some operators must be non-static member functions.
9419  if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) {
9420    return Diag(FnDecl->getLocation(),
9421                diag::err_operator_overload_must_be_member)
9422      << FnDecl->getDeclName();
9423  }
9424
9425  // C++ [over.inc]p1:
9426  //   The user-defined function called operator++ implements the
9427  //   prefix and postfix ++ operator. If this function is a member
9428  //   function with no parameters, or a non-member function with one
9429  //   parameter of class or enumeration type, it defines the prefix
9430  //   increment operator ++ for objects of that type. If the function
9431  //   is a member function with one parameter (which shall be of type
9432  //   int) or a non-member function with two parameters (the second
9433  //   of which shall be of type int), it defines the postfix
9434  //   increment operator ++ for objects of that type.
9435  if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
9436    ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
9437    bool ParamIsInt = false;
9438    if (const BuiltinType *BT = LastParam->getType()->getAs<BuiltinType>())
9439      ParamIsInt = BT->getKind() == BuiltinType::Int;
9440
9441    if (!ParamIsInt)
9442      return Diag(LastParam->getLocation(),
9443                  diag::err_operator_overload_post_incdec_must_be_int)
9444        << LastParam->getType() << (Op == OO_MinusMinus);
9445  }
9446
9447  return false;
9448}
9449
9450/// CheckLiteralOperatorDeclaration - Check whether the declaration
9451/// of this literal operator function is well-formed. If so, returns
9452/// false; otherwise, emits appropriate diagnostics and returns true.
9453bool Sema::CheckLiteralOperatorDeclaration(FunctionDecl *FnDecl) {
9454  if (isa<CXXMethodDecl>(FnDecl)) {
9455    Diag(FnDecl->getLocation(), diag::err_literal_operator_outside_namespace)
9456      << FnDecl->getDeclName();
9457    return true;
9458  }
9459
9460  if (FnDecl->isExternC()) {
9461    Diag(FnDecl->getLocation(), diag::err_literal_operator_extern_c);
9462    return true;
9463  }
9464
9465  bool Valid = false;
9466
9467  // This might be the definition of a literal operator template.
9468  FunctionTemplateDecl *TpDecl = FnDecl->getDescribedFunctionTemplate();
9469  // This might be a specialization of a literal operator template.
9470  if (!TpDecl)
9471    TpDecl = FnDecl->getPrimaryTemplate();
9472
9473  // template <char...> type operator "" name() is the only valid template
9474  // signature, and the only valid signature with no parameters.
9475  if (TpDecl) {
9476    if (FnDecl->param_size() == 0) {
9477      // Must have only one template parameter
9478      TemplateParameterList *Params = TpDecl->getTemplateParameters();
9479      if (Params->size() == 1) {
9480        NonTypeTemplateParmDecl *PmDecl =
9481          dyn_cast<NonTypeTemplateParmDecl>(Params->getParam(0));
9482
9483        // The template parameter must be a char parameter pack.
9484        if (PmDecl && PmDecl->isTemplateParameterPack() &&
9485            Context.hasSameType(PmDecl->getType(), Context.CharTy))
9486          Valid = true;
9487      }
9488    }
9489  } else if (FnDecl->param_size()) {
9490    // Check the first parameter
9491    FunctionDecl::param_iterator Param = FnDecl->param_begin();
9492
9493    QualType T = (*Param)->getType().getUnqualifiedType();
9494
9495    // unsigned long long int, long double, and any character type are allowed
9496    // as the only parameters.
9497    if (Context.hasSameType(T, Context.UnsignedLongLongTy) ||
9498        Context.hasSameType(T, Context.LongDoubleTy) ||
9499        Context.hasSameType(T, Context.CharTy) ||
9500        Context.hasSameType(T, Context.WCharTy) ||
9501        Context.hasSameType(T, Context.Char16Ty) ||
9502        Context.hasSameType(T, Context.Char32Ty)) {
9503      if (++Param == FnDecl->param_end())
9504        Valid = true;
9505      goto FinishedParams;
9506    }
9507
9508    // Otherwise it must be a pointer to const; let's strip those qualifiers.
9509    const PointerType *PT = T->getAs<PointerType>();
9510    if (!PT)
9511      goto FinishedParams;
9512    T = PT->getPointeeType();
9513    if (!T.isConstQualified() || T.isVolatileQualified())
9514      goto FinishedParams;
9515    T = T.getUnqualifiedType();
9516
9517    // Move on to the second parameter;
9518    ++Param;
9519
9520    // If there is no second parameter, the first must be a const char *
9521    if (Param == FnDecl->param_end()) {
9522      if (Context.hasSameType(T, Context.CharTy))
9523        Valid = true;
9524      goto FinishedParams;
9525    }
9526
9527    // const char *, const wchar_t*, const char16_t*, and const char32_t*
9528    // are allowed as the first parameter to a two-parameter function
9529    if (!(Context.hasSameType(T, Context.CharTy) ||
9530          Context.hasSameType(T, Context.WCharTy) ||
9531          Context.hasSameType(T, Context.Char16Ty) ||
9532          Context.hasSameType(T, Context.Char32Ty)))
9533      goto FinishedParams;
9534
9535    // The second and final parameter must be an std::size_t
9536    T = (*Param)->getType().getUnqualifiedType();
9537    if (Context.hasSameType(T, Context.getSizeType()) &&
9538        ++Param == FnDecl->param_end())
9539      Valid = true;
9540  }
9541
9542  // FIXME: This diagnostic is absolutely terrible.
9543FinishedParams:
9544  if (!Valid) {
9545    Diag(FnDecl->getLocation(), diag::err_literal_operator_params)
9546      << FnDecl->getDeclName();
9547    return true;
9548  }
9549
9550  // A parameter-declaration-clause containing a default argument is not
9551  // equivalent to any of the permitted forms.
9552  for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
9553                                    ParamEnd = FnDecl->param_end();
9554       Param != ParamEnd; ++Param) {
9555    if ((*Param)->hasDefaultArg()) {
9556      Diag((*Param)->getDefaultArgRange().getBegin(),
9557           diag::err_literal_operator_default_argument)
9558        << (*Param)->getDefaultArgRange();
9559      break;
9560    }
9561  }
9562
9563  StringRef LiteralName
9564    = FnDecl->getDeclName().getCXXLiteralIdentifier()->getName();
9565  if (LiteralName[0] != '_') {
9566    // C++11 [usrlit.suffix]p1:
9567    //   Literal suffix identifiers that do not start with an underscore
9568    //   are reserved for future standardization.
9569    Diag(FnDecl->getLocation(), diag::warn_user_literal_reserved);
9570  }
9571
9572  return false;
9573}
9574
9575/// ActOnStartLinkageSpecification - Parsed the beginning of a C++
9576/// linkage specification, including the language and (if present)
9577/// the '{'. ExternLoc is the location of the 'extern', LangLoc is
9578/// the location of the language string literal, which is provided
9579/// by Lang/StrSize. LBraceLoc, if valid, provides the location of
9580/// the '{' brace. Otherwise, this linkage specification does not
9581/// have any braces.
9582Decl *Sema::ActOnStartLinkageSpecification(Scope *S, SourceLocation ExternLoc,
9583                                           SourceLocation LangLoc,
9584                                           StringRef Lang,
9585                                           SourceLocation LBraceLoc) {
9586  LinkageSpecDecl::LanguageIDs Language;
9587  if (Lang == "\"C\"")
9588    Language = LinkageSpecDecl::lang_c;
9589  else if (Lang == "\"C++\"")
9590    Language = LinkageSpecDecl::lang_cxx;
9591  else {
9592    Diag(LangLoc, diag::err_bad_language);
9593    return 0;
9594  }
9595
9596  // FIXME: Add all the various semantics of linkage specifications
9597
9598  LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext,
9599                                               ExternLoc, LangLoc, Language);
9600  CurContext->addDecl(D);
9601  PushDeclContext(S, D);
9602  return D;
9603}
9604
9605/// ActOnFinishLinkageSpecification - Complete the definition of
9606/// the C++ linkage specification LinkageSpec. If RBraceLoc is
9607/// valid, it's the position of the closing '}' brace in a linkage
9608/// specification that uses braces.
9609Decl *Sema::ActOnFinishLinkageSpecification(Scope *S,
9610                                            Decl *LinkageSpec,
9611                                            SourceLocation RBraceLoc) {
9612  if (LinkageSpec) {
9613    if (RBraceLoc.isValid()) {
9614      LinkageSpecDecl* LSDecl = cast<LinkageSpecDecl>(LinkageSpec);
9615      LSDecl->setRBraceLoc(RBraceLoc);
9616    }
9617    PopDeclContext();
9618  }
9619  return LinkageSpec;
9620}
9621
9622/// \brief Perform semantic analysis for the variable declaration that
9623/// occurs within a C++ catch clause, returning the newly-created
9624/// variable.
9625VarDecl *Sema::BuildExceptionDeclaration(Scope *S,
9626                                         TypeSourceInfo *TInfo,
9627                                         SourceLocation StartLoc,
9628                                         SourceLocation Loc,
9629                                         IdentifierInfo *Name) {
9630  bool Invalid = false;
9631  QualType ExDeclType = TInfo->getType();
9632
9633  // Arrays and functions decay.
9634  if (ExDeclType->isArrayType())
9635    ExDeclType = Context.getArrayDecayedType(ExDeclType);
9636  else if (ExDeclType->isFunctionType())
9637    ExDeclType = Context.getPointerType(ExDeclType);
9638
9639  // C++ 15.3p1: The exception-declaration shall not denote an incomplete type.
9640  // The exception-declaration shall not denote a pointer or reference to an
9641  // incomplete type, other than [cv] void*.
9642  // N2844 forbids rvalue references.
9643  if (!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) {
9644    Diag(Loc, diag::err_catch_rvalue_ref);
9645    Invalid = true;
9646  }
9647
9648  QualType BaseType = ExDeclType;
9649  int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference
9650  unsigned DK = diag::err_catch_incomplete;
9651  if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
9652    BaseType = Ptr->getPointeeType();
9653    Mode = 1;
9654    DK = diag::err_catch_incomplete_ptr;
9655  } else if (const ReferenceType *Ref = BaseType->getAs<ReferenceType>()) {
9656    // For the purpose of error recovery, we treat rvalue refs like lvalue refs.
9657    BaseType = Ref->getPointeeType();
9658    Mode = 2;
9659    DK = diag::err_catch_incomplete_ref;
9660  }
9661  if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) &&
9662      !BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK))
9663    Invalid = true;
9664
9665  if (!Invalid && !ExDeclType->isDependentType() &&
9666      RequireNonAbstractType(Loc, ExDeclType,
9667                             diag::err_abstract_type_in_decl,
9668                             AbstractVariableType))
9669    Invalid = true;
9670
9671  // Only the non-fragile NeXT runtime currently supports C++ catches
9672  // of ObjC types, and no runtime supports catching ObjC types by value.
9673  if (!Invalid && getLangOpts().ObjC1) {
9674    QualType T = ExDeclType;
9675    if (const ReferenceType *RT = T->getAs<ReferenceType>())
9676      T = RT->getPointeeType();
9677
9678    if (T->isObjCObjectType()) {
9679      Diag(Loc, diag::err_objc_object_catch);
9680      Invalid = true;
9681    } else if (T->isObjCObjectPointerType()) {
9682      // FIXME: should this be a test for macosx-fragile specifically?
9683      if (getLangOpts().ObjCRuntime.isFragile())
9684        Diag(Loc, diag::warn_objc_pointer_cxx_catch_fragile);
9685    }
9686  }
9687
9688  VarDecl *ExDecl = VarDecl::Create(Context, CurContext, StartLoc, Loc, Name,
9689                                    ExDeclType, TInfo, SC_None, SC_None);
9690  ExDecl->setExceptionVariable(true);
9691
9692  // In ARC, infer 'retaining' for variables of retainable type.
9693  if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(ExDecl))
9694    Invalid = true;
9695
9696  if (!Invalid && !ExDeclType->isDependentType()) {
9697    if (const RecordType *recordType = ExDeclType->getAs<RecordType>()) {
9698      // C++ [except.handle]p16:
9699      //   The object declared in an exception-declaration or, if the
9700      //   exception-declaration does not specify a name, a temporary (12.2) is
9701      //   copy-initialized (8.5) from the exception object. [...]
9702      //   The object is destroyed when the handler exits, after the destruction
9703      //   of any automatic objects initialized within the handler.
9704      //
9705      // We just pretend to initialize the object with itself, then make sure
9706      // it can be destroyed later.
9707      QualType initType = ExDeclType;
9708
9709      InitializedEntity entity =
9710        InitializedEntity::InitializeVariable(ExDecl);
9711      InitializationKind initKind =
9712        InitializationKind::CreateCopy(Loc, SourceLocation());
9713
9714      Expr *opaqueValue =
9715        new (Context) OpaqueValueExpr(Loc, initType, VK_LValue, OK_Ordinary);
9716      InitializationSequence sequence(*this, entity, initKind, &opaqueValue, 1);
9717      ExprResult result = sequence.Perform(*this, entity, initKind,
9718                                           MultiExprArg(&opaqueValue, 1));
9719      if (result.isInvalid())
9720        Invalid = true;
9721      else {
9722        // If the constructor used was non-trivial, set this as the
9723        // "initializer".
9724        CXXConstructExpr *construct = cast<CXXConstructExpr>(result.take());
9725        if (!construct->getConstructor()->isTrivial()) {
9726          Expr *init = MaybeCreateExprWithCleanups(construct);
9727          ExDecl->setInit(init);
9728        }
9729
9730        // And make sure it's destructable.
9731        FinalizeVarWithDestructor(ExDecl, recordType);
9732      }
9733    }
9734  }
9735
9736  if (Invalid)
9737    ExDecl->setInvalidDecl();
9738
9739  return ExDecl;
9740}
9741
9742/// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch
9743/// handler.
9744Decl *Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) {
9745  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
9746  bool Invalid = D.isInvalidType();
9747
9748  // Check for unexpanded parameter packs.
9749  if (TInfo && DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
9750                                               UPPC_ExceptionType)) {
9751    TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy,
9752                                             D.getIdentifierLoc());
9753    Invalid = true;
9754  }
9755
9756  IdentifierInfo *II = D.getIdentifier();
9757  if (NamedDecl *PrevDecl = LookupSingleName(S, II, D.getIdentifierLoc(),
9758                                             LookupOrdinaryName,
9759                                             ForRedeclaration)) {
9760    // The scope should be freshly made just for us. There is just no way
9761    // it contains any previous declaration.
9762    assert(!S->isDeclScope(PrevDecl));
9763    if (PrevDecl->isTemplateParameter()) {
9764      // Maybe we will complain about the shadowed template parameter.
9765      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
9766      PrevDecl = 0;
9767    }
9768  }
9769
9770  if (D.getCXXScopeSpec().isSet() && !Invalid) {
9771    Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator)
9772      << D.getCXXScopeSpec().getRange();
9773    Invalid = true;
9774  }
9775
9776  VarDecl *ExDecl = BuildExceptionDeclaration(S, TInfo,
9777                                              D.getLocStart(),
9778                                              D.getIdentifierLoc(),
9779                                              D.getIdentifier());
9780  if (Invalid)
9781    ExDecl->setInvalidDecl();
9782
9783  // Add the exception declaration into this scope.
9784  if (II)
9785    PushOnScopeChains(ExDecl, S);
9786  else
9787    CurContext->addDecl(ExDecl);
9788
9789  ProcessDeclAttributes(S, ExDecl, D);
9790  return ExDecl;
9791}
9792
9793Decl *Sema::ActOnStaticAssertDeclaration(SourceLocation StaticAssertLoc,
9794                                         Expr *AssertExpr,
9795                                         Expr *AssertMessageExpr,
9796                                         SourceLocation RParenLoc) {
9797  StringLiteral *AssertMessage = cast<StringLiteral>(AssertMessageExpr);
9798
9799  if (DiagnoseUnexpandedParameterPack(AssertExpr, UPPC_StaticAssertExpression))
9800    return 0;
9801
9802  return BuildStaticAssertDeclaration(StaticAssertLoc, AssertExpr,
9803                                      AssertMessage, RParenLoc, false);
9804}
9805
9806Decl *Sema::BuildStaticAssertDeclaration(SourceLocation StaticAssertLoc,
9807                                         Expr *AssertExpr,
9808                                         StringLiteral *AssertMessage,
9809                                         SourceLocation RParenLoc,
9810                                         bool Failed) {
9811  if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent() &&
9812      !Failed) {
9813    // In a static_assert-declaration, the constant-expression shall be a
9814    // constant expression that can be contextually converted to bool.
9815    ExprResult Converted = PerformContextuallyConvertToBool(AssertExpr);
9816    if (Converted.isInvalid())
9817      Failed = true;
9818
9819    llvm::APSInt Cond;
9820    if (!Failed && VerifyIntegerConstantExpression(Converted.get(), &Cond,
9821          diag::err_static_assert_expression_is_not_constant,
9822          /*AllowFold=*/false).isInvalid())
9823      Failed = true;
9824
9825    if (!Failed && !Cond) {
9826      llvm::SmallString<256> MsgBuffer;
9827      llvm::raw_svector_ostream Msg(MsgBuffer);
9828      AssertMessage->printPretty(Msg, 0, getPrintingPolicy());
9829      Diag(StaticAssertLoc, diag::err_static_assert_failed)
9830        << Msg.str() << AssertExpr->getSourceRange();
9831      Failed = true;
9832    }
9833  }
9834
9835  Decl *Decl = StaticAssertDecl::Create(Context, CurContext, StaticAssertLoc,
9836                                        AssertExpr, AssertMessage, RParenLoc,
9837                                        Failed);
9838
9839  CurContext->addDecl(Decl);
9840  return Decl;
9841}
9842
9843/// \brief Perform semantic analysis of the given friend type declaration.
9844///
9845/// \returns A friend declaration that.
9846FriendDecl *Sema::CheckFriendTypeDecl(SourceLocation Loc,
9847                                      SourceLocation FriendLoc,
9848                                      TypeSourceInfo *TSInfo) {
9849  assert(TSInfo && "NULL TypeSourceInfo for friend type declaration");
9850
9851  QualType T = TSInfo->getType();
9852  SourceRange TypeRange = TSInfo->getTypeLoc().getLocalSourceRange();
9853
9854  // C++03 [class.friend]p2:
9855  //   An elaborated-type-specifier shall be used in a friend declaration
9856  //   for a class.*
9857  //
9858  //   * The class-key of the elaborated-type-specifier is required.
9859  if (!ActiveTemplateInstantiations.empty()) {
9860    // Do not complain about the form of friend template types during
9861    // template instantiation; we will already have complained when the
9862    // template was declared.
9863  } else if (!T->isElaboratedTypeSpecifier()) {
9864    // If we evaluated the type to a record type, suggest putting
9865    // a tag in front.
9866    if (const RecordType *RT = T->getAs<RecordType>()) {
9867      RecordDecl *RD = RT->getDecl();
9868
9869      std::string InsertionText = std::string(" ") + RD->getKindName();
9870
9871      Diag(TypeRange.getBegin(),
9872           getLangOpts().CPlusPlus0x ?
9873             diag::warn_cxx98_compat_unelaborated_friend_type :
9874             diag::ext_unelaborated_friend_type)
9875        << (unsigned) RD->getTagKind()
9876        << T
9877        << FixItHint::CreateInsertion(PP.getLocForEndOfToken(FriendLoc),
9878                                      InsertionText);
9879    } else {
9880      Diag(FriendLoc,
9881           getLangOpts().CPlusPlus0x ?
9882             diag::warn_cxx98_compat_nonclass_type_friend :
9883             diag::ext_nonclass_type_friend)
9884        << T
9885        << SourceRange(FriendLoc, TypeRange.getEnd());
9886    }
9887  } else if (T->getAs<EnumType>()) {
9888    Diag(FriendLoc,
9889         getLangOpts().CPlusPlus0x ?
9890           diag::warn_cxx98_compat_enum_friend :
9891           diag::ext_enum_friend)
9892      << T
9893      << SourceRange(FriendLoc, TypeRange.getEnd());
9894  }
9895
9896  // C++0x [class.friend]p3:
9897  //   If the type specifier in a friend declaration designates a (possibly
9898  //   cv-qualified) class type, that class is declared as a friend; otherwise,
9899  //   the friend declaration is ignored.
9900
9901  // FIXME: C++0x has some syntactic restrictions on friend type declarations
9902  // in [class.friend]p3 that we do not implement.
9903
9904  return FriendDecl::Create(Context, CurContext, Loc, TSInfo, FriendLoc);
9905}
9906
9907/// Handle a friend tag declaration where the scope specifier was
9908/// templated.
9909Decl *Sema::ActOnTemplatedFriendTag(Scope *S, SourceLocation FriendLoc,
9910                                    unsigned TagSpec, SourceLocation TagLoc,
9911                                    CXXScopeSpec &SS,
9912                                    IdentifierInfo *Name, SourceLocation NameLoc,
9913                                    AttributeList *Attr,
9914                                    MultiTemplateParamsArg TempParamLists) {
9915  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
9916
9917  bool isExplicitSpecialization = false;
9918  bool Invalid = false;
9919
9920  if (TemplateParameterList *TemplateParams
9921        = MatchTemplateParametersToScopeSpecifier(TagLoc, NameLoc, SS,
9922                                                  TempParamLists.data(),
9923                                                  TempParamLists.size(),
9924                                                  /*friend*/ true,
9925                                                  isExplicitSpecialization,
9926                                                  Invalid)) {
9927    if (TemplateParams->size() > 0) {
9928      // This is a declaration of a class template.
9929      if (Invalid)
9930        return 0;
9931
9932      return CheckClassTemplate(S, TagSpec, TUK_Friend, TagLoc,
9933                                SS, Name, NameLoc, Attr,
9934                                TemplateParams, AS_public,
9935                                /*ModulePrivateLoc=*/SourceLocation(),
9936                                TempParamLists.size() - 1,
9937                                TempParamLists.data()).take();
9938    } else {
9939      // The "template<>" header is extraneous.
9940      Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
9941        << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
9942      isExplicitSpecialization = true;
9943    }
9944  }
9945
9946  if (Invalid) return 0;
9947
9948  bool isAllExplicitSpecializations = true;
9949  for (unsigned I = TempParamLists.size(); I-- > 0; ) {
9950    if (TempParamLists[I]->size()) {
9951      isAllExplicitSpecializations = false;
9952      break;
9953    }
9954  }
9955
9956  // FIXME: don't ignore attributes.
9957
9958  // If it's explicit specializations all the way down, just forget
9959  // about the template header and build an appropriate non-templated
9960  // friend.  TODO: for source fidelity, remember the headers.
9961  if (isAllExplicitSpecializations) {
9962    if (SS.isEmpty()) {
9963      bool Owned = false;
9964      bool IsDependent = false;
9965      return ActOnTag(S, TagSpec, TUK_Friend, TagLoc, SS, Name, NameLoc,
9966                      Attr, AS_public,
9967                      /*ModulePrivateLoc=*/SourceLocation(),
9968                      MultiTemplateParamsArg(), Owned, IsDependent,
9969                      /*ScopedEnumKWLoc=*/SourceLocation(),
9970                      /*ScopedEnumUsesClassTag=*/false,
9971                      /*UnderlyingType=*/TypeResult());
9972    }
9973
9974    NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
9975    ElaboratedTypeKeyword Keyword
9976      = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
9977    QualType T = CheckTypenameType(Keyword, TagLoc, QualifierLoc,
9978                                   *Name, NameLoc);
9979    if (T.isNull())
9980      return 0;
9981
9982    TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
9983    if (isa<DependentNameType>(T)) {
9984      DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc());
9985      TL.setElaboratedKeywordLoc(TagLoc);
9986      TL.setQualifierLoc(QualifierLoc);
9987      TL.setNameLoc(NameLoc);
9988    } else {
9989      ElaboratedTypeLoc TL = cast<ElaboratedTypeLoc>(TSI->getTypeLoc());
9990      TL.setElaboratedKeywordLoc(TagLoc);
9991      TL.setQualifierLoc(QualifierLoc);
9992      cast<TypeSpecTypeLoc>(TL.getNamedTypeLoc()).setNameLoc(NameLoc);
9993    }
9994
9995    FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
9996                                            TSI, FriendLoc);
9997    Friend->setAccess(AS_public);
9998    CurContext->addDecl(Friend);
9999    return Friend;
10000  }
10001
10002  assert(SS.isNotEmpty() && "valid templated tag with no SS and no direct?");
10003
10004
10005
10006  // Handle the case of a templated-scope friend class.  e.g.
10007  //   template <class T> class A<T>::B;
10008  // FIXME: we don't support these right now.
10009  ElaboratedTypeKeyword ETK = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
10010  QualType T = Context.getDependentNameType(ETK, SS.getScopeRep(), Name);
10011  TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
10012  DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc());
10013  TL.setElaboratedKeywordLoc(TagLoc);
10014  TL.setQualifierLoc(SS.getWithLocInContext(Context));
10015  TL.setNameLoc(NameLoc);
10016
10017  FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
10018                                          TSI, FriendLoc);
10019  Friend->setAccess(AS_public);
10020  Friend->setUnsupportedFriend(true);
10021  CurContext->addDecl(Friend);
10022  return Friend;
10023}
10024
10025
10026/// Handle a friend type declaration.  This works in tandem with
10027/// ActOnTag.
10028///
10029/// Notes on friend class templates:
10030///
10031/// We generally treat friend class declarations as if they were
10032/// declaring a class.  So, for example, the elaborated type specifier
10033/// in a friend declaration is required to obey the restrictions of a
10034/// class-head (i.e. no typedefs in the scope chain), template
10035/// parameters are required to match up with simple template-ids, &c.
10036/// However, unlike when declaring a template specialization, it's
10037/// okay to refer to a template specialization without an empty
10038/// template parameter declaration, e.g.
10039///   friend class A<T>::B<unsigned>;
10040/// We permit this as a special case; if there are any template
10041/// parameters present at all, require proper matching, i.e.
10042///   template <> template \<class T> friend class A<int>::B;
10043Decl *Sema::ActOnFriendTypeDecl(Scope *S, const DeclSpec &DS,
10044                                MultiTemplateParamsArg TempParams) {
10045  SourceLocation Loc = DS.getLocStart();
10046
10047  assert(DS.isFriendSpecified());
10048  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
10049
10050  // Try to convert the decl specifier to a type.  This works for
10051  // friend templates because ActOnTag never produces a ClassTemplateDecl
10052  // for a TUK_Friend.
10053  Declarator TheDeclarator(DS, Declarator::MemberContext);
10054  TypeSourceInfo *TSI = GetTypeForDeclarator(TheDeclarator, S);
10055  QualType T = TSI->getType();
10056  if (TheDeclarator.isInvalidType())
10057    return 0;
10058
10059  if (DiagnoseUnexpandedParameterPack(Loc, TSI, UPPC_FriendDeclaration))
10060    return 0;
10061
10062  // This is definitely an error in C++98.  It's probably meant to
10063  // be forbidden in C++0x, too, but the specification is just
10064  // poorly written.
10065  //
10066  // The problem is with declarations like the following:
10067  //   template <T> friend A<T>::foo;
10068  // where deciding whether a class C is a friend or not now hinges
10069  // on whether there exists an instantiation of A that causes
10070  // 'foo' to equal C.  There are restrictions on class-heads
10071  // (which we declare (by fiat) elaborated friend declarations to
10072  // be) that makes this tractable.
10073  //
10074  // FIXME: handle "template <> friend class A<T>;", which
10075  // is possibly well-formed?  Who even knows?
10076  if (TempParams.size() && !T->isElaboratedTypeSpecifier()) {
10077    Diag(Loc, diag::err_tagless_friend_type_template)
10078      << DS.getSourceRange();
10079    return 0;
10080  }
10081
10082  // C++98 [class.friend]p1: A friend of a class is a function
10083  //   or class that is not a member of the class . . .
10084  // This is fixed in DR77, which just barely didn't make the C++03
10085  // deadline.  It's also a very silly restriction that seriously
10086  // affects inner classes and which nobody else seems to implement;
10087  // thus we never diagnose it, not even in -pedantic.
10088  //
10089  // But note that we could warn about it: it's always useless to
10090  // friend one of your own members (it's not, however, worthless to
10091  // friend a member of an arbitrary specialization of your template).
10092
10093  Decl *D;
10094  if (unsigned NumTempParamLists = TempParams.size())
10095    D = FriendTemplateDecl::Create(Context, CurContext, Loc,
10096                                   NumTempParamLists,
10097                                   TempParams.data(),
10098                                   TSI,
10099                                   DS.getFriendSpecLoc());
10100  else
10101    D = CheckFriendTypeDecl(Loc, DS.getFriendSpecLoc(), TSI);
10102
10103  if (!D)
10104    return 0;
10105
10106  D->setAccess(AS_public);
10107  CurContext->addDecl(D);
10108
10109  return D;
10110}
10111
10112Decl *Sema::ActOnFriendFunctionDecl(Scope *S, Declarator &D,
10113                                    MultiTemplateParamsArg TemplateParams) {
10114  const DeclSpec &DS = D.getDeclSpec();
10115
10116  assert(DS.isFriendSpecified());
10117  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
10118
10119  SourceLocation Loc = D.getIdentifierLoc();
10120  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
10121
10122  // C++ [class.friend]p1
10123  //   A friend of a class is a function or class....
10124  // Note that this sees through typedefs, which is intended.
10125  // It *doesn't* see through dependent types, which is correct
10126  // according to [temp.arg.type]p3:
10127  //   If a declaration acquires a function type through a
10128  //   type dependent on a template-parameter and this causes
10129  //   a declaration that does not use the syntactic form of a
10130  //   function declarator to have a function type, the program
10131  //   is ill-formed.
10132  if (!TInfo->getType()->isFunctionType()) {
10133    Diag(Loc, diag::err_unexpected_friend);
10134
10135    // It might be worthwhile to try to recover by creating an
10136    // appropriate declaration.
10137    return 0;
10138  }
10139
10140  // C++ [namespace.memdef]p3
10141  //  - If a friend declaration in a non-local class first declares a
10142  //    class or function, the friend class or function is a member
10143  //    of the innermost enclosing namespace.
10144  //  - The name of the friend is not found by simple name lookup
10145  //    until a matching declaration is provided in that namespace
10146  //    scope (either before or after the class declaration granting
10147  //    friendship).
10148  //  - If a friend function is called, its name may be found by the
10149  //    name lookup that considers functions from namespaces and
10150  //    classes associated with the types of the function arguments.
10151  //  - When looking for a prior declaration of a class or a function
10152  //    declared as a friend, scopes outside the innermost enclosing
10153  //    namespace scope are not considered.
10154
10155  CXXScopeSpec &SS = D.getCXXScopeSpec();
10156  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
10157  DeclarationName Name = NameInfo.getName();
10158  assert(Name);
10159
10160  // Check for unexpanded parameter packs.
10161  if (DiagnoseUnexpandedParameterPack(Loc, TInfo, UPPC_FriendDeclaration) ||
10162      DiagnoseUnexpandedParameterPack(NameInfo, UPPC_FriendDeclaration) ||
10163      DiagnoseUnexpandedParameterPack(SS, UPPC_FriendDeclaration))
10164    return 0;
10165
10166  // The context we found the declaration in, or in which we should
10167  // create the declaration.
10168  DeclContext *DC;
10169  Scope *DCScope = S;
10170  LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
10171                        ForRedeclaration);
10172
10173  // FIXME: there are different rules in local classes
10174
10175  // There are four cases here.
10176  //   - There's no scope specifier, in which case we just go to the
10177  //     appropriate scope and look for a function or function template
10178  //     there as appropriate.
10179  // Recover from invalid scope qualifiers as if they just weren't there.
10180  if (SS.isInvalid() || !SS.isSet()) {
10181    // C++0x [namespace.memdef]p3:
10182    //   If the name in a friend declaration is neither qualified nor
10183    //   a template-id and the declaration is a function or an
10184    //   elaborated-type-specifier, the lookup to determine whether
10185    //   the entity has been previously declared shall not consider
10186    //   any scopes outside the innermost enclosing namespace.
10187    // C++0x [class.friend]p11:
10188    //   If a friend declaration appears in a local class and the name
10189    //   specified is an unqualified name, a prior declaration is
10190    //   looked up without considering scopes that are outside the
10191    //   innermost enclosing non-class scope. For a friend function
10192    //   declaration, if there is no prior declaration, the program is
10193    //   ill-formed.
10194    bool isLocal = cast<CXXRecordDecl>(CurContext)->isLocalClass();
10195    bool isTemplateId = D.getName().getKind() == UnqualifiedId::IK_TemplateId;
10196
10197    // Find the appropriate context according to the above.
10198    DC = CurContext;
10199    while (true) {
10200      // Skip class contexts.  If someone can cite chapter and verse
10201      // for this behavior, that would be nice --- it's what GCC and
10202      // EDG do, and it seems like a reasonable intent, but the spec
10203      // really only says that checks for unqualified existing
10204      // declarations should stop at the nearest enclosing namespace,
10205      // not that they should only consider the nearest enclosing
10206      // namespace.
10207      while (DC->isRecord() || DC->isTransparentContext())
10208        DC = DC->getParent();
10209
10210      LookupQualifiedName(Previous, DC);
10211
10212      // TODO: decide what we think about using declarations.
10213      if (isLocal || !Previous.empty())
10214        break;
10215
10216      if (isTemplateId) {
10217        if (isa<TranslationUnitDecl>(DC)) break;
10218      } else {
10219        if (DC->isFileContext()) break;
10220      }
10221      DC = DC->getParent();
10222    }
10223
10224    // C++ [class.friend]p1: A friend of a class is a function or
10225    //   class that is not a member of the class . . .
10226    // C++11 changes this for both friend types and functions.
10227    // Most C++ 98 compilers do seem to give an error here, so
10228    // we do, too.
10229    if (!Previous.empty() && DC->Equals(CurContext))
10230      Diag(DS.getFriendSpecLoc(),
10231           getLangOpts().CPlusPlus0x ?
10232             diag::warn_cxx98_compat_friend_is_member :
10233             diag::err_friend_is_member);
10234
10235    DCScope = getScopeForDeclContext(S, DC);
10236
10237    // C++ [class.friend]p6:
10238    //   A function can be defined in a friend declaration of a class if and
10239    //   only if the class is a non-local class (9.8), the function name is
10240    //   unqualified, and the function has namespace scope.
10241    if (isLocal && D.isFunctionDefinition()) {
10242      Diag(NameInfo.getBeginLoc(), diag::err_friend_def_in_local_class);
10243    }
10244
10245  //   - There's a non-dependent scope specifier, in which case we
10246  //     compute it and do a previous lookup there for a function
10247  //     or function template.
10248  } else if (!SS.getScopeRep()->isDependent()) {
10249    DC = computeDeclContext(SS);
10250    if (!DC) return 0;
10251
10252    if (RequireCompleteDeclContext(SS, DC)) return 0;
10253
10254    LookupQualifiedName(Previous, DC);
10255
10256    // Ignore things found implicitly in the wrong scope.
10257    // TODO: better diagnostics for this case.  Suggesting the right
10258    // qualified scope would be nice...
10259    LookupResult::Filter F = Previous.makeFilter();
10260    while (F.hasNext()) {
10261      NamedDecl *D = F.next();
10262      if (!DC->InEnclosingNamespaceSetOf(
10263              D->getDeclContext()->getRedeclContext()))
10264        F.erase();
10265    }
10266    F.done();
10267
10268    if (Previous.empty()) {
10269      D.setInvalidType();
10270      Diag(Loc, diag::err_qualified_friend_not_found)
10271          << Name << TInfo->getType();
10272      return 0;
10273    }
10274
10275    // C++ [class.friend]p1: A friend of a class is a function or
10276    //   class that is not a member of the class . . .
10277    if (DC->Equals(CurContext))
10278      Diag(DS.getFriendSpecLoc(),
10279           getLangOpts().CPlusPlus0x ?
10280             diag::warn_cxx98_compat_friend_is_member :
10281             diag::err_friend_is_member);
10282
10283    if (D.isFunctionDefinition()) {
10284      // C++ [class.friend]p6:
10285      //   A function can be defined in a friend declaration of a class if and
10286      //   only if the class is a non-local class (9.8), the function name is
10287      //   unqualified, and the function has namespace scope.
10288      SemaDiagnosticBuilder DB
10289        = Diag(SS.getRange().getBegin(), diag::err_qualified_friend_def);
10290
10291      DB << SS.getScopeRep();
10292      if (DC->isFileContext())
10293        DB << FixItHint::CreateRemoval(SS.getRange());
10294      SS.clear();
10295    }
10296
10297  //   - There's a scope specifier that does not match any template
10298  //     parameter lists, in which case we use some arbitrary context,
10299  //     create a method or method template, and wait for instantiation.
10300  //   - There's a scope specifier that does match some template
10301  //     parameter lists, which we don't handle right now.
10302  } else {
10303    if (D.isFunctionDefinition()) {
10304      // C++ [class.friend]p6:
10305      //   A function can be defined in a friend declaration of a class if and
10306      //   only if the class is a non-local class (9.8), the function name is
10307      //   unqualified, and the function has namespace scope.
10308      Diag(SS.getRange().getBegin(), diag::err_qualified_friend_def)
10309        << SS.getScopeRep();
10310    }
10311
10312    DC = CurContext;
10313    assert(isa<CXXRecordDecl>(DC) && "friend declaration not in class?");
10314  }
10315
10316  if (!DC->isRecord()) {
10317    // This implies that it has to be an operator or function.
10318    if (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ||
10319        D.getName().getKind() == UnqualifiedId::IK_DestructorName ||
10320        D.getName().getKind() == UnqualifiedId::IK_ConversionFunctionId) {
10321      Diag(Loc, diag::err_introducing_special_friend) <<
10322        (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ? 0 :
10323         D.getName().getKind() == UnqualifiedId::IK_DestructorName ? 1 : 2);
10324      return 0;
10325    }
10326  }
10327
10328  // FIXME: This is an egregious hack to cope with cases where the scope stack
10329  // does not contain the declaration context, i.e., in an out-of-line
10330  // definition of a class.
10331  Scope FakeDCScope(S, Scope::DeclScope, Diags);
10332  if (!DCScope) {
10333    FakeDCScope.setEntity(DC);
10334    DCScope = &FakeDCScope;
10335  }
10336
10337  bool AddToScope = true;
10338  NamedDecl *ND = ActOnFunctionDeclarator(DCScope, D, DC, TInfo, Previous,
10339                                          TemplateParams, AddToScope);
10340  if (!ND) return 0;
10341
10342  assert(ND->getDeclContext() == DC);
10343  assert(ND->getLexicalDeclContext() == CurContext);
10344
10345  // Add the function declaration to the appropriate lookup tables,
10346  // adjusting the redeclarations list as necessary.  We don't
10347  // want to do this yet if the friending class is dependent.
10348  //
10349  // Also update the scope-based lookup if the target context's
10350  // lookup context is in lexical scope.
10351  if (!CurContext->isDependentContext()) {
10352    DC = DC->getRedeclContext();
10353    DC->makeDeclVisibleInContext(ND);
10354    if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
10355      PushOnScopeChains(ND, EnclosingScope, /*AddToContext=*/ false);
10356  }
10357
10358  FriendDecl *FrD = FriendDecl::Create(Context, CurContext,
10359                                       D.getIdentifierLoc(), ND,
10360                                       DS.getFriendSpecLoc());
10361  FrD->setAccess(AS_public);
10362  CurContext->addDecl(FrD);
10363
10364  if (ND->isInvalidDecl()) {
10365    FrD->setInvalidDecl();
10366  } else {
10367    if (DC->isRecord()) CheckFriendAccess(ND);
10368
10369    FunctionDecl *FD;
10370    if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND))
10371      FD = FTD->getTemplatedDecl();
10372    else
10373      FD = cast<FunctionDecl>(ND);
10374
10375    // Mark templated-scope function declarations as unsupported.
10376    if (FD->getNumTemplateParameterLists())
10377      FrD->setUnsupportedFriend(true);
10378  }
10379
10380  return ND;
10381}
10382
10383void Sema::SetDeclDeleted(Decl *Dcl, SourceLocation DelLoc) {
10384  AdjustDeclIfTemplate(Dcl);
10385
10386  FunctionDecl *Fn = dyn_cast<FunctionDecl>(Dcl);
10387  if (!Fn) {
10388    Diag(DelLoc, diag::err_deleted_non_function);
10389    return;
10390  }
10391  if (const FunctionDecl *Prev = Fn->getPreviousDecl()) {
10392    // Don't consider the implicit declaration we generate for explicit
10393    // specializations. FIXME: Do not generate these implicit declarations.
10394    if ((Prev->getTemplateSpecializationKind() != TSK_ExplicitSpecialization
10395        || Prev->getPreviousDecl()) && !Prev->isDefined()) {
10396      Diag(DelLoc, diag::err_deleted_decl_not_first);
10397      Diag(Prev->getLocation(), diag::note_previous_declaration);
10398    }
10399    // If the declaration wasn't the first, we delete the function anyway for
10400    // recovery.
10401  }
10402  Fn->setDeletedAsWritten();
10403
10404  CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Dcl);
10405  if (!MD)
10406    return;
10407
10408  // A deleted special member function is trivial if the corresponding
10409  // implicitly-declared function would have been.
10410  switch (getSpecialMember(MD)) {
10411  case CXXInvalid:
10412    break;
10413  case CXXDefaultConstructor:
10414    MD->setTrivial(MD->getParent()->hasTrivialDefaultConstructor());
10415    break;
10416  case CXXCopyConstructor:
10417    MD->setTrivial(MD->getParent()->hasTrivialCopyConstructor());
10418    break;
10419  case CXXMoveConstructor:
10420    MD->setTrivial(MD->getParent()->hasTrivialMoveConstructor());
10421    break;
10422  case CXXCopyAssignment:
10423    MD->setTrivial(MD->getParent()->hasTrivialCopyAssignment());
10424    break;
10425  case CXXMoveAssignment:
10426    MD->setTrivial(MD->getParent()->hasTrivialMoveAssignment());
10427    break;
10428  case CXXDestructor:
10429    MD->setTrivial(MD->getParent()->hasTrivialDestructor());
10430    break;
10431  }
10432}
10433
10434void Sema::SetDeclDefaulted(Decl *Dcl, SourceLocation DefaultLoc) {
10435  CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Dcl);
10436
10437  if (MD) {
10438    if (MD->getParent()->isDependentType()) {
10439      MD->setDefaulted();
10440      MD->setExplicitlyDefaulted();
10441      return;
10442    }
10443
10444    CXXSpecialMember Member = getSpecialMember(MD);
10445    if (Member == CXXInvalid) {
10446      Diag(DefaultLoc, diag::err_default_special_members);
10447      return;
10448    }
10449
10450    MD->setDefaulted();
10451    MD->setExplicitlyDefaulted();
10452
10453    // If this definition appears within the record, do the checking when
10454    // the record is complete.
10455    const FunctionDecl *Primary = MD;
10456    if (const FunctionDecl *Pattern = MD->getTemplateInstantiationPattern())
10457      // Find the uninstantiated declaration that actually had the '= default'
10458      // on it.
10459      Pattern->isDefined(Primary);
10460
10461    if (Primary == Primary->getCanonicalDecl())
10462      return;
10463
10464    CheckExplicitlyDefaultedSpecialMember(MD);
10465
10466    switch (Member) {
10467    case CXXDefaultConstructor: {
10468      CXXConstructorDecl *CD = cast<CXXConstructorDecl>(MD);
10469      if (!CD->isInvalidDecl())
10470        DefineImplicitDefaultConstructor(DefaultLoc, CD);
10471      break;
10472    }
10473
10474    case CXXCopyConstructor: {
10475      CXXConstructorDecl *CD = cast<CXXConstructorDecl>(MD);
10476      if (!CD->isInvalidDecl())
10477        DefineImplicitCopyConstructor(DefaultLoc, CD);
10478      break;
10479    }
10480
10481    case CXXCopyAssignment: {
10482      if (!MD->isInvalidDecl())
10483        DefineImplicitCopyAssignment(DefaultLoc, MD);
10484      break;
10485    }
10486
10487    case CXXDestructor: {
10488      CXXDestructorDecl *DD = cast<CXXDestructorDecl>(MD);
10489      if (!DD->isInvalidDecl())
10490        DefineImplicitDestructor(DefaultLoc, DD);
10491      break;
10492    }
10493
10494    case CXXMoveConstructor: {
10495      CXXConstructorDecl *CD = cast<CXXConstructorDecl>(MD);
10496      if (!CD->isInvalidDecl())
10497        DefineImplicitMoveConstructor(DefaultLoc, CD);
10498      break;
10499    }
10500
10501    case CXXMoveAssignment: {
10502      if (!MD->isInvalidDecl())
10503        DefineImplicitMoveAssignment(DefaultLoc, MD);
10504      break;
10505    }
10506
10507    case CXXInvalid:
10508      llvm_unreachable("Invalid special member.");
10509    }
10510  } else {
10511    Diag(DefaultLoc, diag::err_default_special_members);
10512  }
10513}
10514
10515static void SearchForReturnInStmt(Sema &Self, Stmt *S) {
10516  for (Stmt::child_range CI = S->children(); CI; ++CI) {
10517    Stmt *SubStmt = *CI;
10518    if (!SubStmt)
10519      continue;
10520    if (isa<ReturnStmt>(SubStmt))
10521      Self.Diag(SubStmt->getLocStart(),
10522           diag::err_return_in_constructor_handler);
10523    if (!isa<Expr>(SubStmt))
10524      SearchForReturnInStmt(Self, SubStmt);
10525  }
10526}
10527
10528void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) {
10529  for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) {
10530    CXXCatchStmt *Handler = TryBlock->getHandler(I);
10531    SearchForReturnInStmt(*this, Handler);
10532  }
10533}
10534
10535bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New,
10536                                             const CXXMethodDecl *Old) {
10537  QualType NewTy = New->getType()->getAs<FunctionType>()->getResultType();
10538  QualType OldTy = Old->getType()->getAs<FunctionType>()->getResultType();
10539
10540  if (Context.hasSameType(NewTy, OldTy) ||
10541      NewTy->isDependentType() || OldTy->isDependentType())
10542    return false;
10543
10544  // Check if the return types are covariant
10545  QualType NewClassTy, OldClassTy;
10546
10547  /// Both types must be pointers or references to classes.
10548  if (const PointerType *NewPT = NewTy->getAs<PointerType>()) {
10549    if (const PointerType *OldPT = OldTy->getAs<PointerType>()) {
10550      NewClassTy = NewPT->getPointeeType();
10551      OldClassTy = OldPT->getPointeeType();
10552    }
10553  } else if (const ReferenceType *NewRT = NewTy->getAs<ReferenceType>()) {
10554    if (const ReferenceType *OldRT = OldTy->getAs<ReferenceType>()) {
10555      if (NewRT->getTypeClass() == OldRT->getTypeClass()) {
10556        NewClassTy = NewRT->getPointeeType();
10557        OldClassTy = OldRT->getPointeeType();
10558      }
10559    }
10560  }
10561
10562  // The return types aren't either both pointers or references to a class type.
10563  if (NewClassTy.isNull()) {
10564    Diag(New->getLocation(),
10565         diag::err_different_return_type_for_overriding_virtual_function)
10566      << New->getDeclName() << NewTy << OldTy;
10567    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
10568
10569    return true;
10570  }
10571
10572  // C++ [class.virtual]p6:
10573  //   If the return type of D::f differs from the return type of B::f, the
10574  //   class type in the return type of D::f shall be complete at the point of
10575  //   declaration of D::f or shall be the class type D.
10576  if (const RecordType *RT = NewClassTy->getAs<RecordType>()) {
10577    if (!RT->isBeingDefined() &&
10578        RequireCompleteType(New->getLocation(), NewClassTy,
10579                            diag::err_covariant_return_incomplete,
10580                            New->getDeclName()))
10581    return true;
10582  }
10583
10584  if (!Context.hasSameUnqualifiedType(NewClassTy, OldClassTy)) {
10585    // Check if the new class derives from the old class.
10586    if (!IsDerivedFrom(NewClassTy, OldClassTy)) {
10587      Diag(New->getLocation(),
10588           diag::err_covariant_return_not_derived)
10589      << New->getDeclName() << NewTy << OldTy;
10590      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
10591      return true;
10592    }
10593
10594    // Check if we the conversion from derived to base is valid.
10595    if (CheckDerivedToBaseConversion(NewClassTy, OldClassTy,
10596                    diag::err_covariant_return_inaccessible_base,
10597                    diag::err_covariant_return_ambiguous_derived_to_base_conv,
10598                    // FIXME: Should this point to the return type?
10599                    New->getLocation(), SourceRange(), New->getDeclName(), 0)) {
10600      // FIXME: this note won't trigger for delayed access control
10601      // diagnostics, and it's impossible to get an undelayed error
10602      // here from access control during the original parse because
10603      // the ParsingDeclSpec/ParsingDeclarator are still in scope.
10604      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
10605      return true;
10606    }
10607  }
10608
10609  // The qualifiers of the return types must be the same.
10610  if (NewTy.getLocalCVRQualifiers() != OldTy.getLocalCVRQualifiers()) {
10611    Diag(New->getLocation(),
10612         diag::err_covariant_return_type_different_qualifications)
10613    << New->getDeclName() << NewTy << OldTy;
10614    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
10615    return true;
10616  };
10617
10618
10619  // The new class type must have the same or less qualifiers as the old type.
10620  if (NewClassTy.isMoreQualifiedThan(OldClassTy)) {
10621    Diag(New->getLocation(),
10622         diag::err_covariant_return_type_class_type_more_qualified)
10623    << New->getDeclName() << NewTy << OldTy;
10624    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
10625    return true;
10626  };
10627
10628  return false;
10629}
10630
10631/// \brief Mark the given method pure.
10632///
10633/// \param Method the method to be marked pure.
10634///
10635/// \param InitRange the source range that covers the "0" initializer.
10636bool Sema::CheckPureMethod(CXXMethodDecl *Method, SourceRange InitRange) {
10637  SourceLocation EndLoc = InitRange.getEnd();
10638  if (EndLoc.isValid())
10639    Method->setRangeEnd(EndLoc);
10640
10641  if (Method->isVirtual() || Method->getParent()->isDependentContext()) {
10642    Method->setPure();
10643    return false;
10644  }
10645
10646  if (!Method->isInvalidDecl())
10647    Diag(Method->getLocation(), diag::err_non_virtual_pure)
10648      << Method->getDeclName() << InitRange;
10649  return true;
10650}
10651
10652/// \brief Determine whether the given declaration is a static data member.
10653static bool isStaticDataMember(Decl *D) {
10654  VarDecl *Var = dyn_cast_or_null<VarDecl>(D);
10655  if (!Var)
10656    return false;
10657
10658  return Var->isStaticDataMember();
10659}
10660/// ActOnCXXEnterDeclInitializer - Invoked when we are about to parse
10661/// an initializer for the out-of-line declaration 'Dcl'.  The scope
10662/// is a fresh scope pushed for just this purpose.
10663///
10664/// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a
10665/// static data member of class X, names should be looked up in the scope of
10666/// class X.
10667void Sema::ActOnCXXEnterDeclInitializer(Scope *S, Decl *D) {
10668  // If there is no declaration, there was an error parsing it.
10669  if (D == 0 || D->isInvalidDecl()) return;
10670
10671  // We should only get called for declarations with scope specifiers, like:
10672  //   int foo::bar;
10673  assert(D->isOutOfLine());
10674  EnterDeclaratorContext(S, D->getDeclContext());
10675
10676  // If we are parsing the initializer for a static data member, push a
10677  // new expression evaluation context that is associated with this static
10678  // data member.
10679  if (isStaticDataMember(D))
10680    PushExpressionEvaluationContext(PotentiallyEvaluated, D);
10681}
10682
10683/// ActOnCXXExitDeclInitializer - Invoked after we are finished parsing an
10684/// initializer for the out-of-line declaration 'D'.
10685void Sema::ActOnCXXExitDeclInitializer(Scope *S, Decl *D) {
10686  // If there is no declaration, there was an error parsing it.
10687  if (D == 0 || D->isInvalidDecl()) return;
10688
10689  if (isStaticDataMember(D))
10690    PopExpressionEvaluationContext();
10691
10692  assert(D->isOutOfLine());
10693  ExitDeclaratorContext(S);
10694}
10695
10696/// ActOnCXXConditionDeclarationExpr - Parsed a condition declaration of a
10697/// C++ if/switch/while/for statement.
10698/// e.g: "if (int x = f()) {...}"
10699DeclResult Sema::ActOnCXXConditionDeclaration(Scope *S, Declarator &D) {
10700  // C++ 6.4p2:
10701  // The declarator shall not specify a function or an array.
10702  // The type-specifier-seq shall not contain typedef and shall not declare a
10703  // new class or enumeration.
10704  assert(D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
10705         "Parser allowed 'typedef' as storage class of condition decl.");
10706
10707  Decl *Dcl = ActOnDeclarator(S, D);
10708  if (!Dcl)
10709    return true;
10710
10711  if (isa<FunctionDecl>(Dcl)) { // The declarator shall not specify a function.
10712    Diag(Dcl->getLocation(), diag::err_invalid_use_of_function_type)
10713      << D.getSourceRange();
10714    return true;
10715  }
10716
10717  return Dcl;
10718}
10719
10720void Sema::LoadExternalVTableUses() {
10721  if (!ExternalSource)
10722    return;
10723
10724  SmallVector<ExternalVTableUse, 4> VTables;
10725  ExternalSource->ReadUsedVTables(VTables);
10726  SmallVector<VTableUse, 4> NewUses;
10727  for (unsigned I = 0, N = VTables.size(); I != N; ++I) {
10728    llvm::DenseMap<CXXRecordDecl *, bool>::iterator Pos
10729      = VTablesUsed.find(VTables[I].Record);
10730    // Even if a definition wasn't required before, it may be required now.
10731    if (Pos != VTablesUsed.end()) {
10732      if (!Pos->second && VTables[I].DefinitionRequired)
10733        Pos->second = true;
10734      continue;
10735    }
10736
10737    VTablesUsed[VTables[I].Record] = VTables[I].DefinitionRequired;
10738    NewUses.push_back(VTableUse(VTables[I].Record, VTables[I].Location));
10739  }
10740
10741  VTableUses.insert(VTableUses.begin(), NewUses.begin(), NewUses.end());
10742}
10743
10744void Sema::MarkVTableUsed(SourceLocation Loc, CXXRecordDecl *Class,
10745                          bool DefinitionRequired) {
10746  // Ignore any vtable uses in unevaluated operands or for classes that do
10747  // not have a vtable.
10748  if (!Class->isDynamicClass() || Class->isDependentContext() ||
10749      CurContext->isDependentContext() ||
10750      ExprEvalContexts.back().Context == Unevaluated)
10751    return;
10752
10753  // Try to insert this class into the map.
10754  LoadExternalVTableUses();
10755  Class = cast<CXXRecordDecl>(Class->getCanonicalDecl());
10756  std::pair<llvm::DenseMap<CXXRecordDecl *, bool>::iterator, bool>
10757    Pos = VTablesUsed.insert(std::make_pair(Class, DefinitionRequired));
10758  if (!Pos.second) {
10759    // If we already had an entry, check to see if we are promoting this vtable
10760    // to required a definition. If so, we need to reappend to the VTableUses
10761    // list, since we may have already processed the first entry.
10762    if (DefinitionRequired && !Pos.first->second) {
10763      Pos.first->second = true;
10764    } else {
10765      // Otherwise, we can early exit.
10766      return;
10767    }
10768  }
10769
10770  // Local classes need to have their virtual members marked
10771  // immediately. For all other classes, we mark their virtual members
10772  // at the end of the translation unit.
10773  if (Class->isLocalClass())
10774    MarkVirtualMembersReferenced(Loc, Class);
10775  else
10776    VTableUses.push_back(std::make_pair(Class, Loc));
10777}
10778
10779bool Sema::DefineUsedVTables() {
10780  LoadExternalVTableUses();
10781  if (VTableUses.empty())
10782    return false;
10783
10784  // Note: The VTableUses vector could grow as a result of marking
10785  // the members of a class as "used", so we check the size each
10786  // time through the loop and prefer indices (which are stable) to
10787  // iterators (which are not).
10788  bool DefinedAnything = false;
10789  for (unsigned I = 0; I != VTableUses.size(); ++I) {
10790    CXXRecordDecl *Class = VTableUses[I].first->getDefinition();
10791    if (!Class)
10792      continue;
10793
10794    SourceLocation Loc = VTableUses[I].second;
10795
10796    bool DefineVTable = true;
10797
10798    // If this class has a key function, but that key function is
10799    // defined in another translation unit, we don't need to emit the
10800    // vtable even though we're using it.
10801    const CXXMethodDecl *KeyFunction = Context.getKeyFunction(Class);
10802    if (KeyFunction && !KeyFunction->hasBody()) {
10803      switch (KeyFunction->getTemplateSpecializationKind()) {
10804      case TSK_Undeclared:
10805      case TSK_ExplicitSpecialization:
10806      case TSK_ExplicitInstantiationDeclaration:
10807        // The key function is in another translation unit.
10808        DefineVTable = false;
10809        break;
10810
10811      case TSK_ExplicitInstantiationDefinition:
10812      case TSK_ImplicitInstantiation:
10813        // We will be instantiating the key function.
10814        break;
10815      }
10816    } else if (!KeyFunction) {
10817      // If we have a class with no key function that is the subject
10818      // of an explicit instantiation declaration, suppress the
10819      // vtable; it will live with the explicit instantiation
10820      // definition.
10821      bool IsExplicitInstantiationDeclaration
10822        = Class->getTemplateSpecializationKind()
10823                                      == TSK_ExplicitInstantiationDeclaration;
10824      for (TagDecl::redecl_iterator R = Class->redecls_begin(),
10825                                 REnd = Class->redecls_end();
10826           R != REnd; ++R) {
10827        TemplateSpecializationKind TSK
10828          = cast<CXXRecordDecl>(*R)->getTemplateSpecializationKind();
10829        if (TSK == TSK_ExplicitInstantiationDeclaration)
10830          IsExplicitInstantiationDeclaration = true;
10831        else if (TSK == TSK_ExplicitInstantiationDefinition) {
10832          IsExplicitInstantiationDeclaration = false;
10833          break;
10834        }
10835      }
10836
10837      if (IsExplicitInstantiationDeclaration)
10838        DefineVTable = false;
10839    }
10840
10841    // The exception specifications for all virtual members may be needed even
10842    // if we are not providing an authoritative form of the vtable in this TU.
10843    // We may choose to emit it available_externally anyway.
10844    if (!DefineVTable) {
10845      MarkVirtualMemberExceptionSpecsNeeded(Loc, Class);
10846      continue;
10847    }
10848
10849    // Mark all of the virtual members of this class as referenced, so
10850    // that we can build a vtable. Then, tell the AST consumer that a
10851    // vtable for this class is required.
10852    DefinedAnything = true;
10853    MarkVirtualMembersReferenced(Loc, Class);
10854    CXXRecordDecl *Canonical = cast<CXXRecordDecl>(Class->getCanonicalDecl());
10855    Consumer.HandleVTable(Class, VTablesUsed[Canonical]);
10856
10857    // Optionally warn if we're emitting a weak vtable.
10858    if (Class->getLinkage() == ExternalLinkage &&
10859        Class->getTemplateSpecializationKind() != TSK_ImplicitInstantiation) {
10860      const FunctionDecl *KeyFunctionDef = 0;
10861      if (!KeyFunction ||
10862          (KeyFunction->hasBody(KeyFunctionDef) &&
10863           KeyFunctionDef->isInlined()))
10864        Diag(Class->getLocation(), Class->getTemplateSpecializationKind() ==
10865             TSK_ExplicitInstantiationDefinition
10866             ? diag::warn_weak_template_vtable : diag::warn_weak_vtable)
10867          << Class;
10868    }
10869  }
10870  VTableUses.clear();
10871
10872  return DefinedAnything;
10873}
10874
10875void Sema::MarkVirtualMemberExceptionSpecsNeeded(SourceLocation Loc,
10876                                                 const CXXRecordDecl *RD) {
10877  for (CXXRecordDecl::method_iterator I = RD->method_begin(),
10878                                      E = RD->method_end(); I != E; ++I)
10879    if ((*I)->isVirtual() && !(*I)->isPure())
10880      ResolveExceptionSpec(Loc, (*I)->getType()->castAs<FunctionProtoType>());
10881}
10882
10883void Sema::MarkVirtualMembersReferenced(SourceLocation Loc,
10884                                        const CXXRecordDecl *RD) {
10885  // Mark all functions which will appear in RD's vtable as used.
10886  CXXFinalOverriderMap FinalOverriders;
10887  RD->getFinalOverriders(FinalOverriders);
10888  for (CXXFinalOverriderMap::const_iterator I = FinalOverriders.begin(),
10889                                            E = FinalOverriders.end();
10890       I != E; ++I) {
10891    for (OverridingMethods::const_iterator OI = I->second.begin(),
10892                                           OE = I->second.end();
10893         OI != OE; ++OI) {
10894      assert(OI->second.size() > 0 && "no final overrider");
10895      CXXMethodDecl *Overrider = OI->second.front().Method;
10896
10897      // C++ [basic.def.odr]p2:
10898      //   [...] A virtual member function is used if it is not pure. [...]
10899      if (!Overrider->isPure())
10900        MarkFunctionReferenced(Loc, Overrider);
10901    }
10902  }
10903
10904  // Only classes that have virtual bases need a VTT.
10905  if (RD->getNumVBases() == 0)
10906    return;
10907
10908  for (CXXRecordDecl::base_class_const_iterator i = RD->bases_begin(),
10909           e = RD->bases_end(); i != e; ++i) {
10910    const CXXRecordDecl *Base =
10911        cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
10912    if (Base->getNumVBases() == 0)
10913      continue;
10914    MarkVirtualMembersReferenced(Loc, Base);
10915  }
10916}
10917
10918/// SetIvarInitializers - This routine builds initialization ASTs for the
10919/// Objective-C implementation whose ivars need be initialized.
10920void Sema::SetIvarInitializers(ObjCImplementationDecl *ObjCImplementation) {
10921  if (!getLangOpts().CPlusPlus)
10922    return;
10923  if (ObjCInterfaceDecl *OID = ObjCImplementation->getClassInterface()) {
10924    SmallVector<ObjCIvarDecl*, 8> ivars;
10925    CollectIvarsToConstructOrDestruct(OID, ivars);
10926    if (ivars.empty())
10927      return;
10928    SmallVector<CXXCtorInitializer*, 32> AllToInit;
10929    for (unsigned i = 0; i < ivars.size(); i++) {
10930      FieldDecl *Field = ivars[i];
10931      if (Field->isInvalidDecl())
10932        continue;
10933
10934      CXXCtorInitializer *Member;
10935      InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field);
10936      InitializationKind InitKind =
10937        InitializationKind::CreateDefault(ObjCImplementation->getLocation());
10938
10939      InitializationSequence InitSeq(*this, InitEntity, InitKind, 0, 0);
10940      ExprResult MemberInit =
10941        InitSeq.Perform(*this, InitEntity, InitKind, MultiExprArg());
10942      MemberInit = MaybeCreateExprWithCleanups(MemberInit);
10943      // Note, MemberInit could actually come back empty if no initialization
10944      // is required (e.g., because it would call a trivial default constructor)
10945      if (!MemberInit.get() || MemberInit.isInvalid())
10946        continue;
10947
10948      Member =
10949        new (Context) CXXCtorInitializer(Context, Field, SourceLocation(),
10950                                         SourceLocation(),
10951                                         MemberInit.takeAs<Expr>(),
10952                                         SourceLocation());
10953      AllToInit.push_back(Member);
10954
10955      // Be sure that the destructor is accessible and is marked as referenced.
10956      if (const RecordType *RecordTy
10957                  = Context.getBaseElementType(Field->getType())
10958                                                        ->getAs<RecordType>()) {
10959                    CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl());
10960        if (CXXDestructorDecl *Destructor = LookupDestructor(RD)) {
10961          MarkFunctionReferenced(Field->getLocation(), Destructor);
10962          CheckDestructorAccess(Field->getLocation(), Destructor,
10963                            PDiag(diag::err_access_dtor_ivar)
10964                              << Context.getBaseElementType(Field->getType()));
10965        }
10966      }
10967    }
10968    ObjCImplementation->setIvarInitializers(Context,
10969                                            AllToInit.data(), AllToInit.size());
10970  }
10971}
10972
10973static
10974void DelegatingCycleHelper(CXXConstructorDecl* Ctor,
10975                           llvm::SmallSet<CXXConstructorDecl*, 4> &Valid,
10976                           llvm::SmallSet<CXXConstructorDecl*, 4> &Invalid,
10977                           llvm::SmallSet<CXXConstructorDecl*, 4> &Current,
10978                           Sema &S) {
10979  llvm::SmallSet<CXXConstructorDecl*, 4>::iterator CI = Current.begin(),
10980                                                   CE = Current.end();
10981  if (Ctor->isInvalidDecl())
10982    return;
10983
10984  CXXConstructorDecl *Target = Ctor->getTargetConstructor();
10985
10986  // Target may not be determinable yet, for instance if this is a dependent
10987  // call in an uninstantiated template.
10988  if (Target) {
10989    const FunctionDecl *FNTarget = 0;
10990    (void)Target->hasBody(FNTarget);
10991    Target = const_cast<CXXConstructorDecl*>(
10992      cast_or_null<CXXConstructorDecl>(FNTarget));
10993  }
10994
10995  CXXConstructorDecl *Canonical = Ctor->getCanonicalDecl(),
10996                     // Avoid dereferencing a null pointer here.
10997                     *TCanonical = Target ? Target->getCanonicalDecl() : 0;
10998
10999  if (!Current.insert(Canonical))
11000    return;
11001
11002  // We know that beyond here, we aren't chaining into a cycle.
11003  if (!Target || !Target->isDelegatingConstructor() ||
11004      Target->isInvalidDecl() || Valid.count(TCanonical)) {
11005    for (CI = Current.begin(), CE = Current.end(); CI != CE; ++CI)
11006      Valid.insert(*CI);
11007    Current.clear();
11008  // We've hit a cycle.
11009  } else if (TCanonical == Canonical || Invalid.count(TCanonical) ||
11010             Current.count(TCanonical)) {
11011    // If we haven't diagnosed this cycle yet, do so now.
11012    if (!Invalid.count(TCanonical)) {
11013      S.Diag((*Ctor->init_begin())->getSourceLocation(),
11014             diag::warn_delegating_ctor_cycle)
11015        << Ctor;
11016
11017      // Don't add a note for a function delegating directly to itself.
11018      if (TCanonical != Canonical)
11019        S.Diag(Target->getLocation(), diag::note_it_delegates_to);
11020
11021      CXXConstructorDecl *C = Target;
11022      while (C->getCanonicalDecl() != Canonical) {
11023        const FunctionDecl *FNTarget = 0;
11024        (void)C->getTargetConstructor()->hasBody(FNTarget);
11025        assert(FNTarget && "Ctor cycle through bodiless function");
11026
11027        C = const_cast<CXXConstructorDecl*>(
11028          cast<CXXConstructorDecl>(FNTarget));
11029        S.Diag(C->getLocation(), diag::note_which_delegates_to);
11030      }
11031    }
11032
11033    for (CI = Current.begin(), CE = Current.end(); CI != CE; ++CI)
11034      Invalid.insert(*CI);
11035    Current.clear();
11036  } else {
11037    DelegatingCycleHelper(Target, Valid, Invalid, Current, S);
11038  }
11039}
11040
11041
11042void Sema::CheckDelegatingCtorCycles() {
11043  llvm::SmallSet<CXXConstructorDecl*, 4> Valid, Invalid, Current;
11044
11045  llvm::SmallSet<CXXConstructorDecl*, 4>::iterator CI = Current.begin(),
11046                                                   CE = Current.end();
11047
11048  for (DelegatingCtorDeclsType::iterator
11049         I = DelegatingCtorDecls.begin(ExternalSource),
11050         E = DelegatingCtorDecls.end();
11051       I != E; ++I)
11052    DelegatingCycleHelper(*I, Valid, Invalid, Current, *this);
11053
11054  for (CI = Invalid.begin(), CE = Invalid.end(); CI != CE; ++CI)
11055    (*CI)->setInvalidDecl();
11056}
11057
11058namespace {
11059  /// \brief AST visitor that finds references to the 'this' expression.
11060  class FindCXXThisExpr : public RecursiveASTVisitor<FindCXXThisExpr> {
11061    Sema &S;
11062
11063  public:
11064    explicit FindCXXThisExpr(Sema &S) : S(S) { }
11065
11066    bool VisitCXXThisExpr(CXXThisExpr *E) {
11067      S.Diag(E->getLocation(), diag::err_this_static_member_func)
11068        << E->isImplicit();
11069      return false;
11070    }
11071  };
11072}
11073
11074bool Sema::checkThisInStaticMemberFunctionType(CXXMethodDecl *Method) {
11075  TypeSourceInfo *TSInfo = Method->getTypeSourceInfo();
11076  if (!TSInfo)
11077    return false;
11078
11079  TypeLoc TL = TSInfo->getTypeLoc();
11080  FunctionProtoTypeLoc *ProtoTL = dyn_cast<FunctionProtoTypeLoc>(&TL);
11081  if (!ProtoTL)
11082    return false;
11083
11084  // C++11 [expr.prim.general]p3:
11085  //   [The expression this] shall not appear before the optional
11086  //   cv-qualifier-seq and it shall not appear within the declaration of a
11087  //   static member function (although its type and value category are defined
11088  //   within a static member function as they are within a non-static member
11089  //   function). [ Note: this is because declaration matching does not occur
11090  //  until the complete declarator is known. - end note ]
11091  const FunctionProtoType *Proto = ProtoTL->getTypePtr();
11092  FindCXXThisExpr Finder(*this);
11093
11094  // If the return type came after the cv-qualifier-seq, check it now.
11095  if (Proto->hasTrailingReturn() &&
11096      !Finder.TraverseTypeLoc(ProtoTL->getResultLoc()))
11097    return true;
11098
11099  // Check the exception specification.
11100  if (checkThisInStaticMemberFunctionExceptionSpec(Method))
11101    return true;
11102
11103  return checkThisInStaticMemberFunctionAttributes(Method);
11104}
11105
11106bool Sema::checkThisInStaticMemberFunctionExceptionSpec(CXXMethodDecl *Method) {
11107  TypeSourceInfo *TSInfo = Method->getTypeSourceInfo();
11108  if (!TSInfo)
11109    return false;
11110
11111  TypeLoc TL = TSInfo->getTypeLoc();
11112  FunctionProtoTypeLoc *ProtoTL = dyn_cast<FunctionProtoTypeLoc>(&TL);
11113  if (!ProtoTL)
11114    return false;
11115
11116  const FunctionProtoType *Proto = ProtoTL->getTypePtr();
11117  FindCXXThisExpr Finder(*this);
11118
11119  switch (Proto->getExceptionSpecType()) {
11120  case EST_Uninstantiated:
11121  case EST_Unevaluated:
11122  case EST_BasicNoexcept:
11123  case EST_DynamicNone:
11124  case EST_MSAny:
11125  case EST_None:
11126    break;
11127
11128  case EST_ComputedNoexcept:
11129    if (!Finder.TraverseStmt(Proto->getNoexceptExpr()))
11130      return true;
11131
11132  case EST_Dynamic:
11133    for (FunctionProtoType::exception_iterator E = Proto->exception_begin(),
11134         EEnd = Proto->exception_end();
11135         E != EEnd; ++E) {
11136      if (!Finder.TraverseType(*E))
11137        return true;
11138    }
11139    break;
11140  }
11141
11142  return false;
11143}
11144
11145bool Sema::checkThisInStaticMemberFunctionAttributes(CXXMethodDecl *Method) {
11146  FindCXXThisExpr Finder(*this);
11147
11148  // Check attributes.
11149  for (Decl::attr_iterator A = Method->attr_begin(), AEnd = Method->attr_end();
11150       A != AEnd; ++A) {
11151    // FIXME: This should be emitted by tblgen.
11152    Expr *Arg = 0;
11153    ArrayRef<Expr *> Args;
11154    if (GuardedByAttr *G = dyn_cast<GuardedByAttr>(*A))
11155      Arg = G->getArg();
11156    else if (PtGuardedByAttr *G = dyn_cast<PtGuardedByAttr>(*A))
11157      Arg = G->getArg();
11158    else if (AcquiredAfterAttr *AA = dyn_cast<AcquiredAfterAttr>(*A))
11159      Args = ArrayRef<Expr *>(AA->args_begin(), AA->args_size());
11160    else if (AcquiredBeforeAttr *AB = dyn_cast<AcquiredBeforeAttr>(*A))
11161      Args = ArrayRef<Expr *>(AB->args_begin(), AB->args_size());
11162    else if (ExclusiveLockFunctionAttr *ELF
11163               = dyn_cast<ExclusiveLockFunctionAttr>(*A))
11164      Args = ArrayRef<Expr *>(ELF->args_begin(), ELF->args_size());
11165    else if (SharedLockFunctionAttr *SLF
11166               = dyn_cast<SharedLockFunctionAttr>(*A))
11167      Args = ArrayRef<Expr *>(SLF->args_begin(), SLF->args_size());
11168    else if (ExclusiveTrylockFunctionAttr *ETLF
11169               = dyn_cast<ExclusiveTrylockFunctionAttr>(*A)) {
11170      Arg = ETLF->getSuccessValue();
11171      Args = ArrayRef<Expr *>(ETLF->args_begin(), ETLF->args_size());
11172    } else if (SharedTrylockFunctionAttr *STLF
11173                 = dyn_cast<SharedTrylockFunctionAttr>(*A)) {
11174      Arg = STLF->getSuccessValue();
11175      Args = ArrayRef<Expr *>(STLF->args_begin(), STLF->args_size());
11176    } else if (UnlockFunctionAttr *UF = dyn_cast<UnlockFunctionAttr>(*A))
11177      Args = ArrayRef<Expr *>(UF->args_begin(), UF->args_size());
11178    else if (LockReturnedAttr *LR = dyn_cast<LockReturnedAttr>(*A))
11179      Arg = LR->getArg();
11180    else if (LocksExcludedAttr *LE = dyn_cast<LocksExcludedAttr>(*A))
11181      Args = ArrayRef<Expr *>(LE->args_begin(), LE->args_size());
11182    else if (ExclusiveLocksRequiredAttr *ELR
11183               = dyn_cast<ExclusiveLocksRequiredAttr>(*A))
11184      Args = ArrayRef<Expr *>(ELR->args_begin(), ELR->args_size());
11185    else if (SharedLocksRequiredAttr *SLR
11186               = dyn_cast<SharedLocksRequiredAttr>(*A))
11187      Args = ArrayRef<Expr *>(SLR->args_begin(), SLR->args_size());
11188
11189    if (Arg && !Finder.TraverseStmt(Arg))
11190      return true;
11191
11192    for (unsigned I = 0, N = Args.size(); I != N; ++I) {
11193      if (!Finder.TraverseStmt(Args[I]))
11194        return true;
11195    }
11196  }
11197
11198  return false;
11199}
11200
11201void
11202Sema::checkExceptionSpecification(ExceptionSpecificationType EST,
11203                                  ArrayRef<ParsedType> DynamicExceptions,
11204                                  ArrayRef<SourceRange> DynamicExceptionRanges,
11205                                  Expr *NoexceptExpr,
11206                                  llvm::SmallVectorImpl<QualType> &Exceptions,
11207                                  FunctionProtoType::ExtProtoInfo &EPI) {
11208  Exceptions.clear();
11209  EPI.ExceptionSpecType = EST;
11210  if (EST == EST_Dynamic) {
11211    Exceptions.reserve(DynamicExceptions.size());
11212    for (unsigned ei = 0, ee = DynamicExceptions.size(); ei != ee; ++ei) {
11213      // FIXME: Preserve type source info.
11214      QualType ET = GetTypeFromParser(DynamicExceptions[ei]);
11215
11216      SmallVector<UnexpandedParameterPack, 2> Unexpanded;
11217      collectUnexpandedParameterPacks(ET, Unexpanded);
11218      if (!Unexpanded.empty()) {
11219        DiagnoseUnexpandedParameterPacks(DynamicExceptionRanges[ei].getBegin(),
11220                                         UPPC_ExceptionType,
11221                                         Unexpanded);
11222        continue;
11223      }
11224
11225      // Check that the type is valid for an exception spec, and
11226      // drop it if not.
11227      if (!CheckSpecifiedExceptionType(ET, DynamicExceptionRanges[ei]))
11228        Exceptions.push_back(ET);
11229    }
11230    EPI.NumExceptions = Exceptions.size();
11231    EPI.Exceptions = Exceptions.data();
11232    return;
11233  }
11234
11235  if (EST == EST_ComputedNoexcept) {
11236    // If an error occurred, there's no expression here.
11237    if (NoexceptExpr) {
11238      assert((NoexceptExpr->isTypeDependent() ||
11239              NoexceptExpr->getType()->getCanonicalTypeUnqualified() ==
11240              Context.BoolTy) &&
11241             "Parser should have made sure that the expression is boolean");
11242      if (NoexceptExpr && DiagnoseUnexpandedParameterPack(NoexceptExpr)) {
11243        EPI.ExceptionSpecType = EST_BasicNoexcept;
11244        return;
11245      }
11246
11247      if (!NoexceptExpr->isValueDependent())
11248        NoexceptExpr = VerifyIntegerConstantExpression(NoexceptExpr, 0,
11249                         diag::err_noexcept_needs_constant_expression,
11250                         /*AllowFold*/ false).take();
11251      EPI.NoexceptExpr = NoexceptExpr;
11252    }
11253    return;
11254  }
11255}
11256
11257/// IdentifyCUDATarget - Determine the CUDA compilation target for this function
11258Sema::CUDAFunctionTarget Sema::IdentifyCUDATarget(const FunctionDecl *D) {
11259  // Implicitly declared functions (e.g. copy constructors) are
11260  // __host__ __device__
11261  if (D->isImplicit())
11262    return CFT_HostDevice;
11263
11264  if (D->hasAttr<CUDAGlobalAttr>())
11265    return CFT_Global;
11266
11267  if (D->hasAttr<CUDADeviceAttr>()) {
11268    if (D->hasAttr<CUDAHostAttr>())
11269      return CFT_HostDevice;
11270    else
11271      return CFT_Device;
11272  }
11273
11274  return CFT_Host;
11275}
11276
11277bool Sema::CheckCUDATarget(CUDAFunctionTarget CallerTarget,
11278                           CUDAFunctionTarget CalleeTarget) {
11279  // CUDA B.1.1 "The __device__ qualifier declares a function that is...
11280  // Callable from the device only."
11281  if (CallerTarget == CFT_Host && CalleeTarget == CFT_Device)
11282    return true;
11283
11284  // CUDA B.1.2 "The __global__ qualifier declares a function that is...
11285  // Callable from the host only."
11286  // CUDA B.1.3 "The __host__ qualifier declares a function that is...
11287  // Callable from the host only."
11288  if ((CallerTarget == CFT_Device || CallerTarget == CFT_Global) &&
11289      (CalleeTarget == CFT_Host || CalleeTarget == CFT_Global))
11290    return true;
11291
11292  if (CallerTarget == CFT_HostDevice && CalleeTarget != CFT_HostDevice)
11293    return true;
11294
11295  return false;
11296}
11297