SemaDeclCXX.cpp revision 9cdda0cf8528e3d595be9bfa002f0450074beb4d
1//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for C++ declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "SemaInherit.h"
16#include "clang/AST/ASTConsumer.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/DeclVisitor.h"
19#include "clang/AST/TypeOrdering.h"
20#include "clang/AST/StmtVisitor.h"
21#include "clang/Lex/Preprocessor.h"
22#include "clang/Parse/DeclSpec.h"
23#include "llvm/ADT/STLExtras.h"
24#include "llvm/Support/Compiler.h"
25#include <algorithm> // for std::equal
26#include <map>
27
28using namespace clang;
29
30//===----------------------------------------------------------------------===//
31// CheckDefaultArgumentVisitor
32//===----------------------------------------------------------------------===//
33
34namespace {
35  /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
36  /// the default argument of a parameter to determine whether it
37  /// contains any ill-formed subexpressions. For example, this will
38  /// diagnose the use of local variables or parameters within the
39  /// default argument expression.
40  class VISIBILITY_HIDDEN CheckDefaultArgumentVisitor
41    : public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
42    Expr *DefaultArg;
43    Sema *S;
44
45  public:
46    CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
47      : DefaultArg(defarg), S(s) {}
48
49    bool VisitExpr(Expr *Node);
50    bool VisitDeclRefExpr(DeclRefExpr *DRE);
51    bool VisitCXXThisExpr(CXXThisExpr *ThisE);
52  };
53
54  /// VisitExpr - Visit all of the children of this expression.
55  bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
56    bool IsInvalid = false;
57    for (Stmt::child_iterator I = Node->child_begin(),
58         E = Node->child_end(); I != E; ++I)
59      IsInvalid |= Visit(*I);
60    return IsInvalid;
61  }
62
63  /// VisitDeclRefExpr - Visit a reference to a declaration, to
64  /// determine whether this declaration can be used in the default
65  /// argument expression.
66  bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
67    NamedDecl *Decl = DRE->getDecl();
68    if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
69      // C++ [dcl.fct.default]p9
70      //   Default arguments are evaluated each time the function is
71      //   called. The order of evaluation of function arguments is
72      //   unspecified. Consequently, parameters of a function shall not
73      //   be used in default argument expressions, even if they are not
74      //   evaluated. Parameters of a function declared before a default
75      //   argument expression are in scope and can hide namespace and
76      //   class member names.
77      return S->Diag(DRE->getSourceRange().getBegin(),
78                     diag::err_param_default_argument_references_param)
79         << Param->getDeclName() << DefaultArg->getSourceRange();
80    } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
81      // C++ [dcl.fct.default]p7
82      //   Local variables shall not be used in default argument
83      //   expressions.
84      if (VDecl->isBlockVarDecl())
85        return S->Diag(DRE->getSourceRange().getBegin(),
86                       diag::err_param_default_argument_references_local)
87          << VDecl->getDeclName() << DefaultArg->getSourceRange();
88    }
89
90    return false;
91  }
92
93  /// VisitCXXThisExpr - Visit a C++ "this" expression.
94  bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
95    // C++ [dcl.fct.default]p8:
96    //   The keyword this shall not be used in a default argument of a
97    //   member function.
98    return S->Diag(ThisE->getSourceRange().getBegin(),
99                   diag::err_param_default_argument_references_this)
100               << ThisE->getSourceRange();
101  }
102}
103
104/// ActOnParamDefaultArgument - Check whether the default argument
105/// provided for a function parameter is well-formed. If so, attach it
106/// to the parameter declaration.
107void
108Sema::ActOnParamDefaultArgument(DeclPtrTy param, SourceLocation EqualLoc,
109                                ExprArg defarg) {
110  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
111  UnparsedDefaultArgLocs.erase(Param);
112
113  ExprOwningPtr<Expr> DefaultArg(this, defarg.takeAs<Expr>());
114  QualType ParamType = Param->getType();
115
116  // Default arguments are only permitted in C++
117  if (!getLangOptions().CPlusPlus) {
118    Diag(EqualLoc, diag::err_param_default_argument)
119      << DefaultArg->getSourceRange();
120    Param->setInvalidDecl();
121    return;
122  }
123
124  // C++ [dcl.fct.default]p5
125  //   A default argument expression is implicitly converted (clause
126  //   4) to the parameter type. The default argument expression has
127  //   the same semantic constraints as the initializer expression in
128  //   a declaration of a variable of the parameter type, using the
129  //   copy-initialization semantics (8.5).
130  Expr *DefaultArgPtr = DefaultArg.get();
131  bool DefaultInitFailed = CheckInitializerTypes(DefaultArgPtr, ParamType,
132                                                 EqualLoc,
133                                                 Param->getDeclName(),
134                                                 /*DirectInit=*/false);
135  if (DefaultArgPtr != DefaultArg.get()) {
136    DefaultArg.take();
137    DefaultArg.reset(DefaultArgPtr);
138  }
139  if (DefaultInitFailed) {
140    return;
141  }
142
143  // Check that the default argument is well-formed
144  CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg.get(), this);
145  if (DefaultArgChecker.Visit(DefaultArg.get())) {
146    Param->setInvalidDecl();
147    return;
148  }
149
150  DefaultArgPtr = MaybeCreateCXXExprWithTemporaries(DefaultArg.take(),
151                                                    /*DestroyTemps=*/false);
152
153  // Okay: add the default argument to the parameter
154  Param->setDefaultArg(DefaultArgPtr);
155}
156
157/// ActOnParamUnparsedDefaultArgument - We've seen a default
158/// argument for a function parameter, but we can't parse it yet
159/// because we're inside a class definition. Note that this default
160/// argument will be parsed later.
161void Sema::ActOnParamUnparsedDefaultArgument(DeclPtrTy param,
162                                             SourceLocation EqualLoc,
163                                             SourceLocation ArgLoc) {
164  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
165  if (Param)
166    Param->setUnparsedDefaultArg();
167
168  UnparsedDefaultArgLocs[Param] = ArgLoc;
169}
170
171/// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
172/// the default argument for the parameter param failed.
173void Sema::ActOnParamDefaultArgumentError(DeclPtrTy param) {
174  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
175
176  Param->setInvalidDecl();
177
178  UnparsedDefaultArgLocs.erase(Param);
179}
180
181/// CheckExtraCXXDefaultArguments - Check for any extra default
182/// arguments in the declarator, which is not a function declaration
183/// or definition and therefore is not permitted to have default
184/// arguments. This routine should be invoked for every declarator
185/// that is not a function declaration or definition.
186void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
187  // C++ [dcl.fct.default]p3
188  //   A default argument expression shall be specified only in the
189  //   parameter-declaration-clause of a function declaration or in a
190  //   template-parameter (14.1). It shall not be specified for a
191  //   parameter pack. If it is specified in a
192  //   parameter-declaration-clause, it shall not occur within a
193  //   declarator or abstract-declarator of a parameter-declaration.
194  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
195    DeclaratorChunk &chunk = D.getTypeObject(i);
196    if (chunk.Kind == DeclaratorChunk::Function) {
197      for (unsigned argIdx = 0, e = chunk.Fun.NumArgs; argIdx != e; ++argIdx) {
198        ParmVarDecl *Param =
199          cast<ParmVarDecl>(chunk.Fun.ArgInfo[argIdx].Param.getAs<Decl>());
200        if (Param->hasUnparsedDefaultArg()) {
201          CachedTokens *Toks = chunk.Fun.ArgInfo[argIdx].DefaultArgTokens;
202          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
203            << SourceRange((*Toks)[1].getLocation(), Toks->back().getLocation());
204          delete Toks;
205          chunk.Fun.ArgInfo[argIdx].DefaultArgTokens = 0;
206        } else if (Param->getDefaultArg()) {
207          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
208            << Param->getDefaultArg()->getSourceRange();
209          Param->setDefaultArg(0);
210        }
211      }
212    }
213  }
214}
215
216// MergeCXXFunctionDecl - Merge two declarations of the same C++
217// function, once we already know that they have the same
218// type. Subroutine of MergeFunctionDecl. Returns true if there was an
219// error, false otherwise.
220bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old) {
221  bool Invalid = false;
222
223  // C++ [dcl.fct.default]p4:
224  //
225  //   For non-template functions, default arguments can be added in
226  //   later declarations of a function in the same
227  //   scope. Declarations in different scopes have completely
228  //   distinct sets of default arguments. That is, declarations in
229  //   inner scopes do not acquire default arguments from
230  //   declarations in outer scopes, and vice versa. In a given
231  //   function declaration, all parameters subsequent to a
232  //   parameter with a default argument shall have default
233  //   arguments supplied in this or previous declarations. A
234  //   default argument shall not be redefined by a later
235  //   declaration (not even to the same value).
236  for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) {
237    ParmVarDecl *OldParam = Old->getParamDecl(p);
238    ParmVarDecl *NewParam = New->getParamDecl(p);
239
240    if(OldParam->getDefaultArg() && NewParam->getDefaultArg()) {
241      Diag(NewParam->getLocation(),
242           diag::err_param_default_argument_redefinition)
243        << NewParam->getDefaultArg()->getSourceRange();
244      Diag(OldParam->getLocation(), diag::note_previous_definition);
245      Invalid = true;
246    } else if (OldParam->getDefaultArg()) {
247      // Merge the old default argument into the new parameter
248      NewParam->setDefaultArg(OldParam->getDefaultArg());
249    }
250  }
251
252  return Invalid;
253}
254
255/// CheckCXXDefaultArguments - Verify that the default arguments for a
256/// function declaration are well-formed according to C++
257/// [dcl.fct.default].
258void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
259  unsigned NumParams = FD->getNumParams();
260  unsigned p;
261
262  // Find first parameter with a default argument
263  for (p = 0; p < NumParams; ++p) {
264    ParmVarDecl *Param = FD->getParamDecl(p);
265    if (Param->getDefaultArg())
266      break;
267  }
268
269  // C++ [dcl.fct.default]p4:
270  //   In a given function declaration, all parameters
271  //   subsequent to a parameter with a default argument shall
272  //   have default arguments supplied in this or previous
273  //   declarations. A default argument shall not be redefined
274  //   by a later declaration (not even to the same value).
275  unsigned LastMissingDefaultArg = 0;
276  for(; p < NumParams; ++p) {
277    ParmVarDecl *Param = FD->getParamDecl(p);
278    if (!Param->getDefaultArg()) {
279      if (Param->isInvalidDecl())
280        /* We already complained about this parameter. */;
281      else if (Param->getIdentifier())
282        Diag(Param->getLocation(),
283             diag::err_param_default_argument_missing_name)
284          << Param->getIdentifier();
285      else
286        Diag(Param->getLocation(),
287             diag::err_param_default_argument_missing);
288
289      LastMissingDefaultArg = p;
290    }
291  }
292
293  if (LastMissingDefaultArg > 0) {
294    // Some default arguments were missing. Clear out all of the
295    // default arguments up to (and including) the last missing
296    // default argument, so that we leave the function parameters
297    // in a semantically valid state.
298    for (p = 0; p <= LastMissingDefaultArg; ++p) {
299      ParmVarDecl *Param = FD->getParamDecl(p);
300      if (Param->hasDefaultArg()) {
301        if (!Param->hasUnparsedDefaultArg())
302          Param->getDefaultArg()->Destroy(Context);
303        Param->setDefaultArg(0);
304      }
305    }
306  }
307}
308
309/// isCurrentClassName - Determine whether the identifier II is the
310/// name of the class type currently being defined. In the case of
311/// nested classes, this will only return true if II is the name of
312/// the innermost class.
313bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *,
314                              const CXXScopeSpec *SS) {
315  CXXRecordDecl *CurDecl;
316  if (SS && SS->isSet() && !SS->isInvalid()) {
317    DeclContext *DC = computeDeclContext(*SS);
318    CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
319  } else
320    CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
321
322  if (CurDecl)
323    return &II == CurDecl->getIdentifier();
324  else
325    return false;
326}
327
328/// \brief Check the validity of a C++ base class specifier.
329///
330/// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
331/// and returns NULL otherwise.
332CXXBaseSpecifier *
333Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
334                         SourceRange SpecifierRange,
335                         bool Virtual, AccessSpecifier Access,
336                         QualType BaseType,
337                         SourceLocation BaseLoc) {
338  // C++ [class.union]p1:
339  //   A union shall not have base classes.
340  if (Class->isUnion()) {
341    Diag(Class->getLocation(), diag::err_base_clause_on_union)
342      << SpecifierRange;
343    return 0;
344  }
345
346  if (BaseType->isDependentType())
347    return new CXXBaseSpecifier(SpecifierRange, Virtual,
348                                Class->getTagKind() == RecordDecl::TK_class,
349                                Access, BaseType);
350
351  // Base specifiers must be record types.
352  if (!BaseType->isRecordType()) {
353    Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
354    return 0;
355  }
356
357  // C++ [class.union]p1:
358  //   A union shall not be used as a base class.
359  if (BaseType->isUnionType()) {
360    Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
361    return 0;
362  }
363
364  // C++ [class.derived]p2:
365  //   The class-name in a base-specifier shall not be an incompletely
366  //   defined class.
367  if (RequireCompleteType(BaseLoc, BaseType, diag::err_incomplete_base_class,
368                          SpecifierRange))
369    return 0;
370
371  // If the base class is polymorphic, the new one is, too.
372  RecordDecl *BaseDecl = BaseType->getAsRecordType()->getDecl();
373  assert(BaseDecl && "Record type has no declaration");
374  BaseDecl = BaseDecl->getDefinition(Context);
375  assert(BaseDecl && "Base type is not incomplete, but has no definition");
376  if (cast<CXXRecordDecl>(BaseDecl)->isPolymorphic())
377    Class->setPolymorphic(true);
378
379  // C++ [dcl.init.aggr]p1:
380  //   An aggregate is [...] a class with [...] no base classes [...].
381  Class->setAggregate(false);
382  Class->setPOD(false);
383
384  if (Virtual) {
385    // C++ [class.ctor]p5:
386    //   A constructor is trivial if its class has no virtual base classes.
387    Class->setHasTrivialConstructor(false);
388  } else {
389    // C++ [class.ctor]p5:
390    //   A constructor is trivial if all the direct base classes of its
391    //   class have trivial constructors.
392    Class->setHasTrivialConstructor(cast<CXXRecordDecl>(BaseDecl)->
393                                    hasTrivialConstructor());
394  }
395
396  // C++ [class.ctor]p3:
397  //   A destructor is trivial if all the direct base classes of its class
398  //   have trivial destructors.
399  Class->setHasTrivialDestructor(cast<CXXRecordDecl>(BaseDecl)->
400                                 hasTrivialDestructor());
401
402  // Create the base specifier.
403  // FIXME: Allocate via ASTContext?
404  return new CXXBaseSpecifier(SpecifierRange, Virtual,
405                              Class->getTagKind() == RecordDecl::TK_class,
406                              Access, BaseType);
407}
408
409/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
410/// one entry in the base class list of a class specifier, for
411/// example:
412///    class foo : public bar, virtual private baz {
413/// 'public bar' and 'virtual private baz' are each base-specifiers.
414Sema::BaseResult
415Sema::ActOnBaseSpecifier(DeclPtrTy classdecl, SourceRange SpecifierRange,
416                         bool Virtual, AccessSpecifier Access,
417                         TypeTy *basetype, SourceLocation BaseLoc) {
418  AdjustDeclIfTemplate(classdecl);
419  CXXRecordDecl *Class = cast<CXXRecordDecl>(classdecl.getAs<Decl>());
420  QualType BaseType = QualType::getFromOpaquePtr(basetype);
421  if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
422                                                      Virtual, Access,
423                                                      BaseType, BaseLoc))
424    return BaseSpec;
425
426  return true;
427}
428
429/// \brief Performs the actual work of attaching the given base class
430/// specifiers to a C++ class.
431bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, CXXBaseSpecifier **Bases,
432                                unsigned NumBases) {
433 if (NumBases == 0)
434    return false;
435
436  // Used to keep track of which base types we have already seen, so
437  // that we can properly diagnose redundant direct base types. Note
438  // that the key is always the unqualified canonical type of the base
439  // class.
440  std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
441
442  // Copy non-redundant base specifiers into permanent storage.
443  unsigned NumGoodBases = 0;
444  bool Invalid = false;
445  for (unsigned idx = 0; idx < NumBases; ++idx) {
446    QualType NewBaseType
447      = Context.getCanonicalType(Bases[idx]->getType());
448    NewBaseType = NewBaseType.getUnqualifiedType();
449
450    if (KnownBaseTypes[NewBaseType]) {
451      // C++ [class.mi]p3:
452      //   A class shall not be specified as a direct base class of a
453      //   derived class more than once.
454      Diag(Bases[idx]->getSourceRange().getBegin(),
455           diag::err_duplicate_base_class)
456        << KnownBaseTypes[NewBaseType]->getType()
457        << Bases[idx]->getSourceRange();
458
459      // Delete the duplicate base class specifier; we're going to
460      // overwrite its pointer later.
461      delete Bases[idx];
462
463      Invalid = true;
464    } else {
465      // Okay, add this new base class.
466      KnownBaseTypes[NewBaseType] = Bases[idx];
467      Bases[NumGoodBases++] = Bases[idx];
468    }
469  }
470
471  // Attach the remaining base class specifiers to the derived class.
472  Class->setBases(Bases, NumGoodBases);
473
474  // Delete the remaining (good) base class specifiers, since their
475  // data has been copied into the CXXRecordDecl.
476  for (unsigned idx = 0; idx < NumGoodBases; ++idx)
477    delete Bases[idx];
478
479  return Invalid;
480}
481
482/// ActOnBaseSpecifiers - Attach the given base specifiers to the
483/// class, after checking whether there are any duplicate base
484/// classes.
485void Sema::ActOnBaseSpecifiers(DeclPtrTy ClassDecl, BaseTy **Bases,
486                               unsigned NumBases) {
487  if (!ClassDecl || !Bases || !NumBases)
488    return;
489
490  AdjustDeclIfTemplate(ClassDecl);
491  AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl.getAs<Decl>()),
492                       (CXXBaseSpecifier**)(Bases), NumBases);
493}
494
495//===----------------------------------------------------------------------===//
496// C++ class member Handling
497//===----------------------------------------------------------------------===//
498
499/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
500/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
501/// bitfield width if there is one and 'InitExpr' specifies the initializer if
502/// any.
503Sema::DeclPtrTy
504Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
505                               ExprTy *BW, ExprTy *InitExpr, bool Deleted) {
506  const DeclSpec &DS = D.getDeclSpec();
507  DeclarationName Name = GetNameForDeclarator(D);
508  Expr *BitWidth = static_cast<Expr*>(BW);
509  Expr *Init = static_cast<Expr*>(InitExpr);
510  SourceLocation Loc = D.getIdentifierLoc();
511
512  bool isFunc = D.isFunctionDeclarator();
513
514  // C++ 9.2p6: A member shall not be declared to have automatic storage
515  // duration (auto, register) or with the extern storage-class-specifier.
516  // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
517  // data members and cannot be applied to names declared const or static,
518  // and cannot be applied to reference members.
519  switch (DS.getStorageClassSpec()) {
520    case DeclSpec::SCS_unspecified:
521    case DeclSpec::SCS_typedef:
522    case DeclSpec::SCS_static:
523      // FALL THROUGH.
524      break;
525    case DeclSpec::SCS_mutable:
526      if (isFunc) {
527        if (DS.getStorageClassSpecLoc().isValid())
528          Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
529        else
530          Diag(DS.getThreadSpecLoc(), diag::err_mutable_function);
531
532        // FIXME: It would be nicer if the keyword was ignored only for this
533        // declarator. Otherwise we could get follow-up errors.
534        D.getMutableDeclSpec().ClearStorageClassSpecs();
535      } else {
536        QualType T = GetTypeForDeclarator(D, S);
537        diag::kind err = static_cast<diag::kind>(0);
538        if (T->isReferenceType())
539          err = diag::err_mutable_reference;
540        else if (T.isConstQualified())
541          err = diag::err_mutable_const;
542        if (err != 0) {
543          if (DS.getStorageClassSpecLoc().isValid())
544            Diag(DS.getStorageClassSpecLoc(), err);
545          else
546            Diag(DS.getThreadSpecLoc(), err);
547          // FIXME: It would be nicer if the keyword was ignored only for this
548          // declarator. Otherwise we could get follow-up errors.
549          D.getMutableDeclSpec().ClearStorageClassSpecs();
550        }
551      }
552      break;
553    default:
554      if (DS.getStorageClassSpecLoc().isValid())
555        Diag(DS.getStorageClassSpecLoc(),
556             diag::err_storageclass_invalid_for_member);
557      else
558        Diag(DS.getThreadSpecLoc(), diag::err_storageclass_invalid_for_member);
559      D.getMutableDeclSpec().ClearStorageClassSpecs();
560  }
561
562  if (!isFunc &&
563      D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_typename &&
564      D.getNumTypeObjects() == 0) {
565    // Check also for this case:
566    //
567    // typedef int f();
568    // f a;
569    //
570    QualType TDType = QualType::getFromOpaquePtr(DS.getTypeRep());
571    isFunc = TDType->isFunctionType();
572  }
573
574  bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
575                       DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
576                      !isFunc);
577
578  Decl *Member;
579  if (isInstField) {
580    Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D, BitWidth,
581                         AS);
582    assert(Member && "HandleField never returns null");
583  } else {
584    Member = ActOnDeclarator(S, D).getAs<Decl>();
585    if (!Member) {
586      if (BitWidth) DeleteExpr(BitWidth);
587      return DeclPtrTy();
588    }
589
590    // Non-instance-fields can't have a bitfield.
591    if (BitWidth) {
592      if (Member->isInvalidDecl()) {
593        // don't emit another diagnostic.
594      } else if (isa<VarDecl>(Member)) {
595        // C++ 9.6p3: A bit-field shall not be a static member.
596        // "static member 'A' cannot be a bit-field"
597        Diag(Loc, diag::err_static_not_bitfield)
598          << Name << BitWidth->getSourceRange();
599      } else if (isa<TypedefDecl>(Member)) {
600        // "typedef member 'x' cannot be a bit-field"
601        Diag(Loc, diag::err_typedef_not_bitfield)
602          << Name << BitWidth->getSourceRange();
603      } else {
604        // A function typedef ("typedef int f(); f a;").
605        // C++ 9.6p3: A bit-field shall have integral or enumeration type.
606        Diag(Loc, diag::err_not_integral_type_bitfield)
607          << Name << cast<ValueDecl>(Member)->getType()
608          << BitWidth->getSourceRange();
609      }
610
611      DeleteExpr(BitWidth);
612      BitWidth = 0;
613      Member->setInvalidDecl();
614    }
615
616    Member->setAccess(AS);
617  }
618
619  assert((Name || isInstField) && "No identifier for non-field ?");
620
621  if (Init)
622    AddInitializerToDecl(DeclPtrTy::make(Member), ExprArg(*this, Init), false);
623  if (Deleted) // FIXME: Source location is not very good.
624    SetDeclDeleted(DeclPtrTy::make(Member), D.getSourceRange().getBegin());
625
626  if (isInstField) {
627    FieldCollector->Add(cast<FieldDecl>(Member));
628    return DeclPtrTy();
629  }
630  return DeclPtrTy::make(Member);
631}
632
633/// ActOnMemInitializer - Handle a C++ member initializer.
634Sema::MemInitResult
635Sema::ActOnMemInitializer(DeclPtrTy ConstructorD,
636                          Scope *S,
637                          IdentifierInfo *MemberOrBase,
638                          SourceLocation IdLoc,
639                          SourceLocation LParenLoc,
640                          ExprTy **Args, unsigned NumArgs,
641                          SourceLocation *CommaLocs,
642                          SourceLocation RParenLoc) {
643  CXXConstructorDecl *Constructor
644    = dyn_cast<CXXConstructorDecl>(ConstructorD.getAs<Decl>());
645  if (!Constructor) {
646    // The user wrote a constructor initializer on a function that is
647    // not a C++ constructor. Ignore the error for now, because we may
648    // have more member initializers coming; we'll diagnose it just
649    // once in ActOnMemInitializers.
650    return true;
651  }
652
653  CXXRecordDecl *ClassDecl = Constructor->getParent();
654
655  // C++ [class.base.init]p2:
656  //   Names in a mem-initializer-id are looked up in the scope of the
657  //   constructor’s class and, if not found in that scope, are looked
658  //   up in the scope containing the constructor’s
659  //   definition. [Note: if the constructor’s class contains a member
660  //   with the same name as a direct or virtual base class of the
661  //   class, a mem-initializer-id naming the member or base class and
662  //   composed of a single identifier refers to the class member. A
663  //   mem-initializer-id for the hidden base class may be specified
664  //   using a qualified name. ]
665  // Look for a member, first.
666  FieldDecl *Member = 0;
667  DeclContext::lookup_result Result
668    = ClassDecl->lookup(Context, MemberOrBase);
669  if (Result.first != Result.second)
670    Member = dyn_cast<FieldDecl>(*Result.first);
671
672  // FIXME: Handle members of an anonymous union.
673
674  if (Member) {
675    // FIXME: Perform direct initialization of the member.
676    return new CXXBaseOrMemberInitializer(Member, (Expr **)Args, NumArgs);
677  }
678
679  // It didn't name a member, so see if it names a class.
680  TypeTy *BaseTy = getTypeName(*MemberOrBase, IdLoc, S, 0/*SS*/);
681  if (!BaseTy)
682    return Diag(IdLoc, diag::err_mem_init_not_member_or_class)
683      << MemberOrBase << SourceRange(IdLoc, RParenLoc);
684
685  QualType BaseType = QualType::getFromOpaquePtr(BaseTy);
686  if (!BaseType->isRecordType())
687    return Diag(IdLoc, diag::err_base_init_does_not_name_class)
688      << BaseType << SourceRange(IdLoc, RParenLoc);
689
690  // C++ [class.base.init]p2:
691  //   [...] Unless the mem-initializer-id names a nonstatic data
692  //   member of the constructor’s class or a direct or virtual base
693  //   of that class, the mem-initializer is ill-formed. A
694  //   mem-initializer-list can initialize a base class using any
695  //   name that denotes that base class type.
696
697  // First, check for a direct base class.
698  const CXXBaseSpecifier *DirectBaseSpec = 0;
699  for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin();
700       Base != ClassDecl->bases_end(); ++Base) {
701    if (Context.getCanonicalType(BaseType).getUnqualifiedType() ==
702        Context.getCanonicalType(Base->getType()).getUnqualifiedType()) {
703      // We found a direct base of this type. That's what we're
704      // initializing.
705      DirectBaseSpec = &*Base;
706      break;
707    }
708  }
709
710  // Check for a virtual base class.
711  // FIXME: We might be able to short-circuit this if we know in advance that
712  // there are no virtual bases.
713  const CXXBaseSpecifier *VirtualBaseSpec = 0;
714  if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
715    // We haven't found a base yet; search the class hierarchy for a
716    // virtual base class.
717    BasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
718                    /*DetectVirtual=*/false);
719    if (IsDerivedFrom(Context.getTypeDeclType(ClassDecl), BaseType, Paths)) {
720      for (BasePaths::paths_iterator Path = Paths.begin();
721           Path != Paths.end(); ++Path) {
722        if (Path->back().Base->isVirtual()) {
723          VirtualBaseSpec = Path->back().Base;
724          break;
725        }
726      }
727    }
728  }
729
730  // C++ [base.class.init]p2:
731  //   If a mem-initializer-id is ambiguous because it designates both
732  //   a direct non-virtual base class and an inherited virtual base
733  //   class, the mem-initializer is ill-formed.
734  if (DirectBaseSpec && VirtualBaseSpec)
735    return Diag(IdLoc, diag::err_base_init_direct_and_virtual)
736      << MemberOrBase << SourceRange(IdLoc, RParenLoc);
737
738  return new CXXBaseOrMemberInitializer(BaseType, (Expr **)Args, NumArgs);
739}
740
741void Sema::ActOnMemInitializers(DeclPtrTy ConstructorDecl,
742                                SourceLocation ColonLoc,
743                                MemInitTy **MemInits, unsigned NumMemInits) {
744  CXXConstructorDecl *Constructor =
745  dyn_cast<CXXConstructorDecl>(ConstructorDecl.getAs<Decl>());
746
747  if (!Constructor) {
748    Diag(ColonLoc, diag::err_only_constructors_take_base_inits);
749    return;
750  }
751}
752
753namespace {
754  /// PureVirtualMethodCollector - traverses a class and its superclasses
755  /// and determines if it has any pure virtual methods.
756  class VISIBILITY_HIDDEN PureVirtualMethodCollector {
757    ASTContext &Context;
758
759  public:
760    typedef llvm::SmallVector<const CXXMethodDecl*, 8> MethodList;
761
762  private:
763    MethodList Methods;
764
765    void Collect(const CXXRecordDecl* RD, MethodList& Methods);
766
767  public:
768    PureVirtualMethodCollector(ASTContext &Ctx, const CXXRecordDecl* RD)
769      : Context(Ctx) {
770
771      MethodList List;
772      Collect(RD, List);
773
774      // Copy the temporary list to methods, and make sure to ignore any
775      // null entries.
776      for (size_t i = 0, e = List.size(); i != e; ++i) {
777        if (List[i])
778          Methods.push_back(List[i]);
779      }
780    }
781
782    bool empty() const { return Methods.empty(); }
783
784    MethodList::const_iterator methods_begin() { return Methods.begin(); }
785    MethodList::const_iterator methods_end() { return Methods.end(); }
786  };
787
788  void PureVirtualMethodCollector::Collect(const CXXRecordDecl* RD,
789                                           MethodList& Methods) {
790    // First, collect the pure virtual methods for the base classes.
791    for (CXXRecordDecl::base_class_const_iterator Base = RD->bases_begin(),
792         BaseEnd = RD->bases_end(); Base != BaseEnd; ++Base) {
793      if (const RecordType *RT = Base->getType()->getAsRecordType()) {
794        const CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(RT->getDecl());
795        if (BaseDecl && BaseDecl->isAbstract())
796          Collect(BaseDecl, Methods);
797      }
798    }
799
800    // Next, zero out any pure virtual methods that this class overrides.
801    typedef llvm::SmallPtrSet<const CXXMethodDecl*, 4> MethodSetTy;
802
803    MethodSetTy OverriddenMethods;
804    size_t MethodsSize = Methods.size();
805
806    for (RecordDecl::decl_iterator i = RD->decls_begin(Context),
807         e = RD->decls_end(Context);
808         i != e; ++i) {
809      // Traverse the record, looking for methods.
810      if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(*i)) {
811        // If the method is pre virtual, add it to the methods vector.
812        if (MD->isPure()) {
813          Methods.push_back(MD);
814          continue;
815        }
816
817        // Otherwise, record all the overridden methods in our set.
818        for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
819             E = MD->end_overridden_methods(); I != E; ++I) {
820          // Keep track of the overridden methods.
821          OverriddenMethods.insert(*I);
822        }
823      }
824    }
825
826    // Now go through the methods and zero out all the ones we know are
827    // overridden.
828    for (size_t i = 0, e = MethodsSize; i != e; ++i) {
829      if (OverriddenMethods.count(Methods[i]))
830        Methods[i] = 0;
831    }
832
833  }
834}
835
836bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
837                                  unsigned DiagID, AbstractDiagSelID SelID,
838                                  const CXXRecordDecl *CurrentRD) {
839
840  if (!getLangOptions().CPlusPlus)
841    return false;
842
843  if (const ArrayType *AT = Context.getAsArrayType(T))
844    return RequireNonAbstractType(Loc, AT->getElementType(), DiagID, SelID,
845                                  CurrentRD);
846
847  if (const PointerType *PT = T->getAsPointerType()) {
848    // Find the innermost pointer type.
849    while (const PointerType *T = PT->getPointeeType()->getAsPointerType())
850      PT = T;
851
852    if (const ArrayType *AT = Context.getAsArrayType(PT->getPointeeType()))
853      return RequireNonAbstractType(Loc, AT->getElementType(), DiagID, SelID,
854                                    CurrentRD);
855  }
856
857  const RecordType *RT = T->getAsRecordType();
858  if (!RT)
859    return false;
860
861  const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
862  if (!RD)
863    return false;
864
865  if (CurrentRD && CurrentRD != RD)
866    return false;
867
868  if (!RD->isAbstract())
869    return false;
870
871  Diag(Loc, DiagID) << RD->getDeclName() << SelID;
872
873  // Check if we've already emitted the list of pure virtual functions for this
874  // class.
875  if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD))
876    return true;
877
878  PureVirtualMethodCollector Collector(Context, RD);
879
880  for (PureVirtualMethodCollector::MethodList::const_iterator I =
881       Collector.methods_begin(), E = Collector.methods_end(); I != E; ++I) {
882    const CXXMethodDecl *MD = *I;
883
884    Diag(MD->getLocation(), diag::note_pure_virtual_function) <<
885      MD->getDeclName();
886  }
887
888  if (!PureVirtualClassDiagSet)
889    PureVirtualClassDiagSet.reset(new RecordDeclSetTy);
890  PureVirtualClassDiagSet->insert(RD);
891
892  return true;
893}
894
895namespace {
896  class VISIBILITY_HIDDEN AbstractClassUsageDiagnoser
897    : public DeclVisitor<AbstractClassUsageDiagnoser, bool> {
898    Sema &SemaRef;
899    CXXRecordDecl *AbstractClass;
900
901    bool VisitDeclContext(const DeclContext *DC) {
902      bool Invalid = false;
903
904      for (CXXRecordDecl::decl_iterator I = DC->decls_begin(SemaRef.Context),
905           E = DC->decls_end(SemaRef.Context); I != E; ++I)
906        Invalid |= Visit(*I);
907
908      return Invalid;
909    }
910
911  public:
912    AbstractClassUsageDiagnoser(Sema& SemaRef, CXXRecordDecl *ac)
913      : SemaRef(SemaRef), AbstractClass(ac) {
914        Visit(SemaRef.Context.getTranslationUnitDecl());
915    }
916
917    bool VisitFunctionDecl(const FunctionDecl *FD) {
918      if (FD->isThisDeclarationADefinition()) {
919        // No need to do the check if we're in a definition, because it requires
920        // that the return/param types are complete.
921        // because that requires
922        return VisitDeclContext(FD);
923      }
924
925      // Check the return type.
926      QualType RTy = FD->getType()->getAsFunctionType()->getResultType();
927      bool Invalid =
928        SemaRef.RequireNonAbstractType(FD->getLocation(), RTy,
929                                       diag::err_abstract_type_in_decl,
930                                       Sema::AbstractReturnType,
931                                       AbstractClass);
932
933      for (FunctionDecl::param_const_iterator I = FD->param_begin(),
934           E = FD->param_end(); I != E; ++I) {
935        const ParmVarDecl *VD = *I;
936        Invalid |=
937          SemaRef.RequireNonAbstractType(VD->getLocation(),
938                                         VD->getOriginalType(),
939                                         diag::err_abstract_type_in_decl,
940                                         Sema::AbstractParamType,
941                                         AbstractClass);
942      }
943
944      return Invalid;
945    }
946
947    bool VisitDecl(const Decl* D) {
948      if (const DeclContext *DC = dyn_cast<DeclContext>(D))
949        return VisitDeclContext(DC);
950
951      return false;
952    }
953  };
954}
955
956void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
957                                             DeclPtrTy TagDecl,
958                                             SourceLocation LBrac,
959                                             SourceLocation RBrac) {
960  AdjustDeclIfTemplate(TagDecl);
961  ActOnFields(S, RLoc, TagDecl,
962              (DeclPtrTy*)FieldCollector->getCurFields(),
963              FieldCollector->getCurNumFields(), LBrac, RBrac, 0);
964
965  CXXRecordDecl *RD = cast<CXXRecordDecl>(TagDecl.getAs<Decl>());
966  if (!RD->isAbstract()) {
967    // Collect all the pure virtual methods and see if this is an abstract
968    // class after all.
969    PureVirtualMethodCollector Collector(Context, RD);
970    if (!Collector.empty())
971      RD->setAbstract(true);
972  }
973
974  if (RD->isAbstract())
975    AbstractClassUsageDiagnoser(*this, RD);
976
977  if (RD->hasTrivialConstructor() || RD->hasTrivialDestructor()) {
978    for (RecordDecl::field_iterator i = RD->field_begin(Context),
979         e = RD->field_end(Context); i != e; ++i) {
980      // All the nonstatic data members must have trivial constructors.
981      QualType FTy = i->getType();
982      while (const ArrayType *AT = Context.getAsArrayType(FTy))
983        FTy = AT->getElementType();
984
985      if (const RecordType *RT = FTy->getAsRecordType()) {
986        CXXRecordDecl *FieldRD = cast<CXXRecordDecl>(RT->getDecl());
987
988        if (!FieldRD->hasTrivialConstructor())
989          RD->setHasTrivialConstructor(false);
990        if (!FieldRD->hasTrivialDestructor())
991          RD->setHasTrivialDestructor(false);
992
993        // If RD has neither a trivial constructor nor a trivial destructor
994        // we don't need to continue checking.
995        if (!RD->hasTrivialConstructor() && !RD->hasTrivialDestructor())
996          break;
997      }
998    }
999  }
1000
1001  if (!RD->isDependentType())
1002    AddImplicitlyDeclaredMembersToClass(RD);
1003}
1004
1005/// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
1006/// special functions, such as the default constructor, copy
1007/// constructor, or destructor, to the given C++ class (C++
1008/// [special]p1).  This routine can only be executed just before the
1009/// definition of the class is complete.
1010void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) {
1011  QualType ClassType = Context.getTypeDeclType(ClassDecl);
1012  ClassType = Context.getCanonicalType(ClassType);
1013
1014  // FIXME: Implicit declarations have exception specifications, which are
1015  // the union of the specifications of the implicitly called functions.
1016
1017  if (!ClassDecl->hasUserDeclaredConstructor()) {
1018    // C++ [class.ctor]p5:
1019    //   A default constructor for a class X is a constructor of class X
1020    //   that can be called without an argument. If there is no
1021    //   user-declared constructor for class X, a default constructor is
1022    //   implicitly declared. An implicitly-declared default constructor
1023    //   is an inline public member of its class.
1024    DeclarationName Name
1025      = Context.DeclarationNames.getCXXConstructorName(ClassType);
1026    CXXConstructorDecl *DefaultCon =
1027      CXXConstructorDecl::Create(Context, ClassDecl,
1028                                 ClassDecl->getLocation(), Name,
1029                                 Context.getFunctionType(Context.VoidTy,
1030                                                         0, 0, false, 0),
1031                                 /*isExplicit=*/false,
1032                                 /*isInline=*/true,
1033                                 /*isImplicitlyDeclared=*/true);
1034    DefaultCon->setAccess(AS_public);
1035    DefaultCon->setImplicit();
1036    ClassDecl->addDecl(Context, DefaultCon);
1037
1038    // Notify the class that we've added a constructor.
1039    ClassDecl->addedConstructor(Context, DefaultCon);
1040  }
1041
1042  if (!ClassDecl->hasUserDeclaredCopyConstructor()) {
1043    // C++ [class.copy]p4:
1044    //   If the class definition does not explicitly declare a copy
1045    //   constructor, one is declared implicitly.
1046
1047    // C++ [class.copy]p5:
1048    //   The implicitly-declared copy constructor for a class X will
1049    //   have the form
1050    //
1051    //       X::X(const X&)
1052    //
1053    //   if
1054    bool HasConstCopyConstructor = true;
1055
1056    //     -- each direct or virtual base class B of X has a copy
1057    //        constructor whose first parameter is of type const B& or
1058    //        const volatile B&, and
1059    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
1060         HasConstCopyConstructor && Base != ClassDecl->bases_end(); ++Base) {
1061      const CXXRecordDecl *BaseClassDecl
1062        = cast<CXXRecordDecl>(Base->getType()->getAsRecordType()->getDecl());
1063      HasConstCopyConstructor
1064        = BaseClassDecl->hasConstCopyConstructor(Context);
1065    }
1066
1067    //     -- for all the nonstatic data members of X that are of a
1068    //        class type M (or array thereof), each such class type
1069    //        has a copy constructor whose first parameter is of type
1070    //        const M& or const volatile M&.
1071    for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(Context);
1072         HasConstCopyConstructor && Field != ClassDecl->field_end(Context);
1073         ++Field) {
1074      QualType FieldType = (*Field)->getType();
1075      if (const ArrayType *Array = Context.getAsArrayType(FieldType))
1076        FieldType = Array->getElementType();
1077      if (const RecordType *FieldClassType = FieldType->getAsRecordType()) {
1078        const CXXRecordDecl *FieldClassDecl
1079          = cast<CXXRecordDecl>(FieldClassType->getDecl());
1080        HasConstCopyConstructor
1081          = FieldClassDecl->hasConstCopyConstructor(Context);
1082      }
1083    }
1084
1085    //   Otherwise, the implicitly declared copy constructor will have
1086    //   the form
1087    //
1088    //       X::X(X&)
1089    QualType ArgType = ClassType;
1090    if (HasConstCopyConstructor)
1091      ArgType = ArgType.withConst();
1092    ArgType = Context.getLValueReferenceType(ArgType);
1093
1094    //   An implicitly-declared copy constructor is an inline public
1095    //   member of its class.
1096    DeclarationName Name
1097      = Context.DeclarationNames.getCXXConstructorName(ClassType);
1098    CXXConstructorDecl *CopyConstructor
1099      = CXXConstructorDecl::Create(Context, ClassDecl,
1100                                   ClassDecl->getLocation(), Name,
1101                                   Context.getFunctionType(Context.VoidTy,
1102                                                           &ArgType, 1,
1103                                                           false, 0),
1104                                   /*isExplicit=*/false,
1105                                   /*isInline=*/true,
1106                                   /*isImplicitlyDeclared=*/true);
1107    CopyConstructor->setAccess(AS_public);
1108    CopyConstructor->setImplicit();
1109
1110    // Add the parameter to the constructor.
1111    ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor,
1112                                                 ClassDecl->getLocation(),
1113                                                 /*IdentifierInfo=*/0,
1114                                                 ArgType, VarDecl::None, 0);
1115    CopyConstructor->setParams(Context, &FromParam, 1);
1116
1117    ClassDecl->addedConstructor(Context, CopyConstructor);
1118    ClassDecl->addDecl(Context, CopyConstructor);
1119  }
1120
1121  if (!ClassDecl->hasUserDeclaredCopyAssignment()) {
1122    // Note: The following rules are largely analoguous to the copy
1123    // constructor rules. Note that virtual bases are not taken into account
1124    // for determining the argument type of the operator. Note also that
1125    // operators taking an object instead of a reference are allowed.
1126    //
1127    // C++ [class.copy]p10:
1128    //   If the class definition does not explicitly declare a copy
1129    //   assignment operator, one is declared implicitly.
1130    //   The implicitly-defined copy assignment operator for a class X
1131    //   will have the form
1132    //
1133    //       X& X::operator=(const X&)
1134    //
1135    //   if
1136    bool HasConstCopyAssignment = true;
1137
1138    //       -- each direct base class B of X has a copy assignment operator
1139    //          whose parameter is of type const B&, const volatile B& or B,
1140    //          and
1141    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
1142         HasConstCopyAssignment && Base != ClassDecl->bases_end(); ++Base) {
1143      const CXXRecordDecl *BaseClassDecl
1144        = cast<CXXRecordDecl>(Base->getType()->getAsRecordType()->getDecl());
1145      HasConstCopyAssignment = BaseClassDecl->hasConstCopyAssignment(Context);
1146    }
1147
1148    //       -- for all the nonstatic data members of X that are of a class
1149    //          type M (or array thereof), each such class type has a copy
1150    //          assignment operator whose parameter is of type const M&,
1151    //          const volatile M& or M.
1152    for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(Context);
1153         HasConstCopyAssignment && Field != ClassDecl->field_end(Context);
1154         ++Field) {
1155      QualType FieldType = (*Field)->getType();
1156      if (const ArrayType *Array = Context.getAsArrayType(FieldType))
1157        FieldType = Array->getElementType();
1158      if (const RecordType *FieldClassType = FieldType->getAsRecordType()) {
1159        const CXXRecordDecl *FieldClassDecl
1160          = cast<CXXRecordDecl>(FieldClassType->getDecl());
1161        HasConstCopyAssignment
1162          = FieldClassDecl->hasConstCopyAssignment(Context);
1163      }
1164    }
1165
1166    //   Otherwise, the implicitly declared copy assignment operator will
1167    //   have the form
1168    //
1169    //       X& X::operator=(X&)
1170    QualType ArgType = ClassType;
1171    QualType RetType = Context.getLValueReferenceType(ArgType);
1172    if (HasConstCopyAssignment)
1173      ArgType = ArgType.withConst();
1174    ArgType = Context.getLValueReferenceType(ArgType);
1175
1176    //   An implicitly-declared copy assignment operator is an inline public
1177    //   member of its class.
1178    DeclarationName Name =
1179      Context.DeclarationNames.getCXXOperatorName(OO_Equal);
1180    CXXMethodDecl *CopyAssignment =
1181      CXXMethodDecl::Create(Context, ClassDecl, ClassDecl->getLocation(), Name,
1182                            Context.getFunctionType(RetType, &ArgType, 1,
1183                                                    false, 0),
1184                            /*isStatic=*/false, /*isInline=*/true);
1185    CopyAssignment->setAccess(AS_public);
1186    CopyAssignment->setImplicit();
1187
1188    // Add the parameter to the operator.
1189    ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment,
1190                                                 ClassDecl->getLocation(),
1191                                                 /*IdentifierInfo=*/0,
1192                                                 ArgType, VarDecl::None, 0);
1193    CopyAssignment->setParams(Context, &FromParam, 1);
1194
1195    // Don't call addedAssignmentOperator. There is no way to distinguish an
1196    // implicit from an explicit assignment operator.
1197    ClassDecl->addDecl(Context, CopyAssignment);
1198  }
1199
1200  if (!ClassDecl->hasUserDeclaredDestructor()) {
1201    // C++ [class.dtor]p2:
1202    //   If a class has no user-declared destructor, a destructor is
1203    //   declared implicitly. An implicitly-declared destructor is an
1204    //   inline public member of its class.
1205    DeclarationName Name
1206      = Context.DeclarationNames.getCXXDestructorName(ClassType);
1207    CXXDestructorDecl *Destructor
1208      = CXXDestructorDecl::Create(Context, ClassDecl,
1209                                  ClassDecl->getLocation(), Name,
1210                                  Context.getFunctionType(Context.VoidTy,
1211                                                          0, 0, false, 0),
1212                                  /*isInline=*/true,
1213                                  /*isImplicitlyDeclared=*/true);
1214    Destructor->setAccess(AS_public);
1215    Destructor->setImplicit();
1216    ClassDecl->addDecl(Context, Destructor);
1217  }
1218}
1219
1220void Sema::ActOnReenterTemplateScope(Scope *S, DeclPtrTy TemplateD) {
1221  TemplateDecl *Template = TemplateD.getAs<TemplateDecl>();
1222  if (!Template)
1223    return;
1224
1225  TemplateParameterList *Params = Template->getTemplateParameters();
1226  for (TemplateParameterList::iterator Param = Params->begin(),
1227                                    ParamEnd = Params->end();
1228       Param != ParamEnd; ++Param) {
1229    NamedDecl *Named = cast<NamedDecl>(*Param);
1230    if (Named->getDeclName()) {
1231      S->AddDecl(DeclPtrTy::make(Named));
1232      IdResolver.AddDecl(Named);
1233    }
1234  }
1235}
1236
1237/// ActOnStartDelayedCXXMethodDeclaration - We have completed
1238/// parsing a top-level (non-nested) C++ class, and we are now
1239/// parsing those parts of the given Method declaration that could
1240/// not be parsed earlier (C++ [class.mem]p2), such as default
1241/// arguments. This action should enter the scope of the given
1242/// Method declaration as if we had just parsed the qualified method
1243/// name. However, it should not bring the parameters into scope;
1244/// that will be performed by ActOnDelayedCXXMethodParameter.
1245void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, DeclPtrTy MethodD) {
1246  CXXScopeSpec SS;
1247  FunctionDecl *Method = cast<FunctionDecl>(MethodD.getAs<Decl>());
1248  QualType ClassTy
1249    = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext()));
1250  SS.setScopeRep(
1251    NestedNameSpecifier::Create(Context, 0, false, ClassTy.getTypePtr()));
1252  ActOnCXXEnterDeclaratorScope(S, SS);
1253}
1254
1255/// ActOnDelayedCXXMethodParameter - We've already started a delayed
1256/// C++ method declaration. We're (re-)introducing the given
1257/// function parameter into scope for use in parsing later parts of
1258/// the method declaration. For example, we could see an
1259/// ActOnParamDefaultArgument event for this parameter.
1260void Sema::ActOnDelayedCXXMethodParameter(Scope *S, DeclPtrTy ParamD) {
1261  ParmVarDecl *Param = cast<ParmVarDecl>(ParamD.getAs<Decl>());
1262
1263  // If this parameter has an unparsed default argument, clear it out
1264  // to make way for the parsed default argument.
1265  if (Param->hasUnparsedDefaultArg())
1266    Param->setDefaultArg(0);
1267
1268  S->AddDecl(DeclPtrTy::make(Param));
1269  if (Param->getDeclName())
1270    IdResolver.AddDecl(Param);
1271}
1272
1273/// ActOnFinishDelayedCXXMethodDeclaration - We have finished
1274/// processing the delayed method declaration for Method. The method
1275/// declaration is now considered finished. There may be a separate
1276/// ActOnStartOfFunctionDef action later (not necessarily
1277/// immediately!) for this method, if it was also defined inside the
1278/// class body.
1279void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, DeclPtrTy MethodD) {
1280  FunctionDecl *Method = cast<FunctionDecl>(MethodD.getAs<Decl>());
1281  CXXScopeSpec SS;
1282  QualType ClassTy
1283    = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext()));
1284  SS.setScopeRep(
1285    NestedNameSpecifier::Create(Context, 0, false, ClassTy.getTypePtr()));
1286  ActOnCXXExitDeclaratorScope(S, SS);
1287
1288  // Now that we have our default arguments, check the constructor
1289  // again. It could produce additional diagnostics or affect whether
1290  // the class has implicitly-declared destructors, among other
1291  // things.
1292  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method))
1293    CheckConstructor(Constructor);
1294
1295  // Check the default arguments, which we may have added.
1296  if (!Method->isInvalidDecl())
1297    CheckCXXDefaultArguments(Method);
1298}
1299
1300/// CheckConstructorDeclarator - Called by ActOnDeclarator to check
1301/// the well-formedness of the constructor declarator @p D with type @p
1302/// R. If there are any errors in the declarator, this routine will
1303/// emit diagnostics and set the invalid bit to true.  In any case, the type
1304/// will be updated to reflect a well-formed type for the constructor and
1305/// returned.
1306QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R,
1307                                          FunctionDecl::StorageClass &SC) {
1308  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
1309
1310  // C++ [class.ctor]p3:
1311  //   A constructor shall not be virtual (10.3) or static (9.4). A
1312  //   constructor can be invoked for a const, volatile or const
1313  //   volatile object. A constructor shall not be declared const,
1314  //   volatile, or const volatile (9.3.2).
1315  if (isVirtual) {
1316    if (!D.isInvalidType())
1317      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
1318        << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
1319        << SourceRange(D.getIdentifierLoc());
1320    D.setInvalidType();
1321  }
1322  if (SC == FunctionDecl::Static) {
1323    if (!D.isInvalidType())
1324      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
1325        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
1326        << SourceRange(D.getIdentifierLoc());
1327    D.setInvalidType();
1328    SC = FunctionDecl::None;
1329  }
1330
1331  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
1332  if (FTI.TypeQuals != 0) {
1333    if (FTI.TypeQuals & QualType::Const)
1334      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
1335        << "const" << SourceRange(D.getIdentifierLoc());
1336    if (FTI.TypeQuals & QualType::Volatile)
1337      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
1338        << "volatile" << SourceRange(D.getIdentifierLoc());
1339    if (FTI.TypeQuals & QualType::Restrict)
1340      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
1341        << "restrict" << SourceRange(D.getIdentifierLoc());
1342  }
1343
1344  // Rebuild the function type "R" without any type qualifiers (in
1345  // case any of the errors above fired) and with "void" as the
1346  // return type, since constructors don't have return types. We
1347  // *always* have to do this, because GetTypeForDeclarator will
1348  // put in a result type of "int" when none was specified.
1349  const FunctionProtoType *Proto = R->getAsFunctionProtoType();
1350  return Context.getFunctionType(Context.VoidTy, Proto->arg_type_begin(),
1351                                 Proto->getNumArgs(),
1352                                 Proto->isVariadic(), 0);
1353}
1354
1355/// CheckConstructor - Checks a fully-formed constructor for
1356/// well-formedness, issuing any diagnostics required. Returns true if
1357/// the constructor declarator is invalid.
1358void Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
1359  CXXRecordDecl *ClassDecl
1360    = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext());
1361  if (!ClassDecl)
1362    return Constructor->setInvalidDecl();
1363
1364  // C++ [class.copy]p3:
1365  //   A declaration of a constructor for a class X is ill-formed if
1366  //   its first parameter is of type (optionally cv-qualified) X and
1367  //   either there are no other parameters or else all other
1368  //   parameters have default arguments.
1369  if (!Constructor->isInvalidDecl() &&
1370      ((Constructor->getNumParams() == 1) ||
1371       (Constructor->getNumParams() > 1 &&
1372        Constructor->getParamDecl(1)->hasDefaultArg()))) {
1373    QualType ParamType = Constructor->getParamDecl(0)->getType();
1374    QualType ClassTy = Context.getTagDeclType(ClassDecl);
1375    if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
1376      SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation();
1377      Diag(ParamLoc, diag::err_constructor_byvalue_arg)
1378        << CodeModificationHint::CreateInsertion(ParamLoc, " const &");
1379      Constructor->setInvalidDecl();
1380    }
1381  }
1382
1383  // Notify the class that we've added a constructor.
1384  ClassDecl->addedConstructor(Context, Constructor);
1385}
1386
1387static inline bool
1388FTIHasSingleVoidArgument(DeclaratorChunk::FunctionTypeInfo &FTI) {
1389  return (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
1390          FTI.ArgInfo[0].Param &&
1391          FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType());
1392}
1393
1394/// CheckDestructorDeclarator - Called by ActOnDeclarator to check
1395/// the well-formednes of the destructor declarator @p D with type @p
1396/// R. If there are any errors in the declarator, this routine will
1397/// emit diagnostics and set the declarator to invalid.  Even if this happens,
1398/// will be updated to reflect a well-formed type for the destructor and
1399/// returned.
1400QualType Sema::CheckDestructorDeclarator(Declarator &D,
1401                                         FunctionDecl::StorageClass& SC) {
1402  // C++ [class.dtor]p1:
1403  //   [...] A typedef-name that names a class is a class-name
1404  //   (7.1.3); however, a typedef-name that names a class shall not
1405  //   be used as the identifier in the declarator for a destructor
1406  //   declaration.
1407  QualType DeclaratorType = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1408  if (isa<TypedefType>(DeclaratorType)) {
1409    Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
1410      << DeclaratorType;
1411    D.setInvalidType();
1412  }
1413
1414  // C++ [class.dtor]p2:
1415  //   A destructor is used to destroy objects of its class type. A
1416  //   destructor takes no parameters, and no return type can be
1417  //   specified for it (not even void). The address of a destructor
1418  //   shall not be taken. A destructor shall not be static. A
1419  //   destructor can be invoked for a const, volatile or const
1420  //   volatile object. A destructor shall not be declared const,
1421  //   volatile or const volatile (9.3.2).
1422  if (SC == FunctionDecl::Static) {
1423    if (!D.isInvalidType())
1424      Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
1425        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
1426        << SourceRange(D.getIdentifierLoc());
1427    SC = FunctionDecl::None;
1428    D.setInvalidType();
1429  }
1430  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
1431    // Destructors don't have return types, but the parser will
1432    // happily parse something like:
1433    //
1434    //   class X {
1435    //     float ~X();
1436    //   };
1437    //
1438    // The return type will be eliminated later.
1439    Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
1440      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
1441      << SourceRange(D.getIdentifierLoc());
1442  }
1443
1444  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
1445  if (FTI.TypeQuals != 0 && !D.isInvalidType()) {
1446    if (FTI.TypeQuals & QualType::Const)
1447      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
1448        << "const" << SourceRange(D.getIdentifierLoc());
1449    if (FTI.TypeQuals & QualType::Volatile)
1450      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
1451        << "volatile" << SourceRange(D.getIdentifierLoc());
1452    if (FTI.TypeQuals & QualType::Restrict)
1453      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
1454        << "restrict" << SourceRange(D.getIdentifierLoc());
1455    D.setInvalidType();
1456  }
1457
1458  // Make sure we don't have any parameters.
1459  if (FTI.NumArgs > 0 && !FTIHasSingleVoidArgument(FTI)) {
1460    Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
1461
1462    // Delete the parameters.
1463    FTI.freeArgs();
1464    D.setInvalidType();
1465  }
1466
1467  // Make sure the destructor isn't variadic.
1468  if (FTI.isVariadic) {
1469    Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
1470    D.setInvalidType();
1471  }
1472
1473  // Rebuild the function type "R" without any type qualifiers or
1474  // parameters (in case any of the errors above fired) and with
1475  // "void" as the return type, since destructors don't have return
1476  // types. We *always* have to do this, because GetTypeForDeclarator
1477  // will put in a result type of "int" when none was specified.
1478  return Context.getFunctionType(Context.VoidTy, 0, 0, false, 0);
1479}
1480
1481/// CheckConversionDeclarator - Called by ActOnDeclarator to check the
1482/// well-formednes of the conversion function declarator @p D with
1483/// type @p R. If there are any errors in the declarator, this routine
1484/// will emit diagnostics and return true. Otherwise, it will return
1485/// false. Either way, the type @p R will be updated to reflect a
1486/// well-formed type for the conversion operator.
1487void Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
1488                                     FunctionDecl::StorageClass& SC) {
1489  // C++ [class.conv.fct]p1:
1490  //   Neither parameter types nor return type can be specified. The
1491  //   type of a conversion function (8.3.5) is “function taking no
1492  //   parameter returning conversion-type-id.”
1493  if (SC == FunctionDecl::Static) {
1494    if (!D.isInvalidType())
1495      Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
1496        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
1497        << SourceRange(D.getIdentifierLoc());
1498    D.setInvalidType();
1499    SC = FunctionDecl::None;
1500  }
1501  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
1502    // Conversion functions don't have return types, but the parser will
1503    // happily parse something like:
1504    //
1505    //   class X {
1506    //     float operator bool();
1507    //   };
1508    //
1509    // The return type will be changed later anyway.
1510    Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
1511      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
1512      << SourceRange(D.getIdentifierLoc());
1513  }
1514
1515  // Make sure we don't have any parameters.
1516  if (R->getAsFunctionProtoType()->getNumArgs() > 0) {
1517    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
1518
1519    // Delete the parameters.
1520    D.getTypeObject(0).Fun.freeArgs();
1521    D.setInvalidType();
1522  }
1523
1524  // Make sure the conversion function isn't variadic.
1525  if (R->getAsFunctionProtoType()->isVariadic() && !D.isInvalidType()) {
1526    Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
1527    D.setInvalidType();
1528  }
1529
1530  // C++ [class.conv.fct]p4:
1531  //   The conversion-type-id shall not represent a function type nor
1532  //   an array type.
1533  QualType ConvType = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1534  if (ConvType->isArrayType()) {
1535    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
1536    ConvType = Context.getPointerType(ConvType);
1537    D.setInvalidType();
1538  } else if (ConvType->isFunctionType()) {
1539    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
1540    ConvType = Context.getPointerType(ConvType);
1541    D.setInvalidType();
1542  }
1543
1544  // Rebuild the function type "R" without any parameters (in case any
1545  // of the errors above fired) and with the conversion type as the
1546  // return type.
1547  R = Context.getFunctionType(ConvType, 0, 0, false,
1548                              R->getAsFunctionProtoType()->getTypeQuals());
1549
1550  // C++0x explicit conversion operators.
1551  if (D.getDeclSpec().isExplicitSpecified() && !getLangOptions().CPlusPlus0x)
1552    Diag(D.getDeclSpec().getExplicitSpecLoc(),
1553         diag::warn_explicit_conversion_functions)
1554      << SourceRange(D.getDeclSpec().getExplicitSpecLoc());
1555}
1556
1557/// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
1558/// the declaration of the given C++ conversion function. This routine
1559/// is responsible for recording the conversion function in the C++
1560/// class, if possible.
1561Sema::DeclPtrTy Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
1562  assert(Conversion && "Expected to receive a conversion function declaration");
1563
1564  // Set the lexical context of this conversion function
1565  Conversion->setLexicalDeclContext(CurContext);
1566
1567  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext());
1568
1569  // Make sure we aren't redeclaring the conversion function.
1570  QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());
1571
1572  // C++ [class.conv.fct]p1:
1573  //   [...] A conversion function is never used to convert a
1574  //   (possibly cv-qualified) object to the (possibly cv-qualified)
1575  //   same object type (or a reference to it), to a (possibly
1576  //   cv-qualified) base class of that type (or a reference to it),
1577  //   or to (possibly cv-qualified) void.
1578  // FIXME: Suppress this warning if the conversion function ends up being a
1579  // virtual function that overrides a virtual function in a base class.
1580  QualType ClassType
1581    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
1582  if (const ReferenceType *ConvTypeRef = ConvType->getAsReferenceType())
1583    ConvType = ConvTypeRef->getPointeeType();
1584  if (ConvType->isRecordType()) {
1585    ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
1586    if (ConvType == ClassType)
1587      Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used)
1588        << ClassType;
1589    else if (IsDerivedFrom(ClassType, ConvType))
1590      Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used)
1591        <<  ClassType << ConvType;
1592  } else if (ConvType->isVoidType()) {
1593    Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used)
1594      << ClassType << ConvType;
1595  }
1596
1597  if (Conversion->getPreviousDeclaration()) {
1598    OverloadedFunctionDecl *Conversions = ClassDecl->getConversionFunctions();
1599    for (OverloadedFunctionDecl::function_iterator
1600           Conv = Conversions->function_begin(),
1601           ConvEnd = Conversions->function_end();
1602         Conv != ConvEnd; ++Conv) {
1603      if (*Conv == Conversion->getPreviousDeclaration()) {
1604        *Conv = Conversion;
1605        return DeclPtrTy::make(Conversion);
1606      }
1607    }
1608    assert(Conversion->isInvalidDecl() && "Conversion should not get here.");
1609  } else
1610    ClassDecl->addConversionFunction(Context, Conversion);
1611
1612  return DeclPtrTy::make(Conversion);
1613}
1614
1615//===----------------------------------------------------------------------===//
1616// Namespace Handling
1617//===----------------------------------------------------------------------===//
1618
1619/// ActOnStartNamespaceDef - This is called at the start of a namespace
1620/// definition.
1621Sema::DeclPtrTy Sema::ActOnStartNamespaceDef(Scope *NamespcScope,
1622                                             SourceLocation IdentLoc,
1623                                             IdentifierInfo *II,
1624                                             SourceLocation LBrace) {
1625  NamespaceDecl *Namespc =
1626      NamespaceDecl::Create(Context, CurContext, IdentLoc, II);
1627  Namespc->setLBracLoc(LBrace);
1628
1629  Scope *DeclRegionScope = NamespcScope->getParent();
1630
1631  if (II) {
1632    // C++ [namespace.def]p2:
1633    // The identifier in an original-namespace-definition shall not have been
1634    // previously defined in the declarative region in which the
1635    // original-namespace-definition appears. The identifier in an
1636    // original-namespace-definition is the name of the namespace. Subsequently
1637    // in that declarative region, it is treated as an original-namespace-name.
1638
1639    NamedDecl *PrevDecl = LookupName(DeclRegionScope, II, LookupOrdinaryName,
1640                                     true);
1641
1642    if (NamespaceDecl *OrigNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl)) {
1643      // This is an extended namespace definition.
1644      // Attach this namespace decl to the chain of extended namespace
1645      // definitions.
1646      OrigNS->setNextNamespace(Namespc);
1647      Namespc->setOriginalNamespace(OrigNS->getOriginalNamespace());
1648
1649      // Remove the previous declaration from the scope.
1650      if (DeclRegionScope->isDeclScope(DeclPtrTy::make(OrigNS))) {
1651        IdResolver.RemoveDecl(OrigNS);
1652        DeclRegionScope->RemoveDecl(DeclPtrTy::make(OrigNS));
1653      }
1654    } else if (PrevDecl) {
1655      // This is an invalid name redefinition.
1656      Diag(Namespc->getLocation(), diag::err_redefinition_different_kind)
1657       << Namespc->getDeclName();
1658      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
1659      Namespc->setInvalidDecl();
1660      // Continue on to push Namespc as current DeclContext and return it.
1661    }
1662
1663    PushOnScopeChains(Namespc, DeclRegionScope);
1664  } else {
1665    // FIXME: Handle anonymous namespaces
1666  }
1667
1668  // Although we could have an invalid decl (i.e. the namespace name is a
1669  // redefinition), push it as current DeclContext and try to continue parsing.
1670  // FIXME: We should be able to push Namespc here, so that the each DeclContext
1671  // for the namespace has the declarations that showed up in that particular
1672  // namespace definition.
1673  PushDeclContext(NamespcScope, Namespc);
1674  return DeclPtrTy::make(Namespc);
1675}
1676
1677/// ActOnFinishNamespaceDef - This callback is called after a namespace is
1678/// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
1679void Sema::ActOnFinishNamespaceDef(DeclPtrTy D, SourceLocation RBrace) {
1680  Decl *Dcl = D.getAs<Decl>();
1681  NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
1682  assert(Namespc && "Invalid parameter, expected NamespaceDecl");
1683  Namespc->setRBracLoc(RBrace);
1684  PopDeclContext();
1685}
1686
1687Sema::DeclPtrTy Sema::ActOnUsingDirective(Scope *S,
1688                                          SourceLocation UsingLoc,
1689                                          SourceLocation NamespcLoc,
1690                                          const CXXScopeSpec &SS,
1691                                          SourceLocation IdentLoc,
1692                                          IdentifierInfo *NamespcName,
1693                                          AttributeList *AttrList) {
1694  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
1695  assert(NamespcName && "Invalid NamespcName.");
1696  assert(IdentLoc.isValid() && "Invalid NamespceName location.");
1697  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
1698
1699  UsingDirectiveDecl *UDir = 0;
1700
1701  // Lookup namespace name.
1702  LookupResult R = LookupParsedName(S, &SS, NamespcName,
1703                                    LookupNamespaceName, false);
1704  if (R.isAmbiguous()) {
1705    DiagnoseAmbiguousLookup(R, NamespcName, IdentLoc);
1706    return DeclPtrTy();
1707  }
1708  if (NamedDecl *NS = R) {
1709    assert(isa<NamespaceDecl>(NS) && "expected namespace decl");
1710    // C++ [namespace.udir]p1:
1711    //   A using-directive specifies that the names in the nominated
1712    //   namespace can be used in the scope in which the
1713    //   using-directive appears after the using-directive. During
1714    //   unqualified name lookup (3.4.1), the names appear as if they
1715    //   were declared in the nearest enclosing namespace which
1716    //   contains both the using-directive and the nominated
1717    //   namespace. [Note: in this context, “contains” means “contains
1718    //   directly or indirectly”. ]
1719
1720    // Find enclosing context containing both using-directive and
1721    // nominated namespace.
1722    DeclContext *CommonAncestor = cast<DeclContext>(NS);
1723    while (CommonAncestor && !CommonAncestor->Encloses(CurContext))
1724      CommonAncestor = CommonAncestor->getParent();
1725
1726    UDir = UsingDirectiveDecl::Create(Context,
1727                                      CurContext, UsingLoc,
1728                                      NamespcLoc,
1729                                      SS.getRange(),
1730                                      (NestedNameSpecifier *)SS.getScopeRep(),
1731                                      IdentLoc,
1732                                      cast<NamespaceDecl>(NS),
1733                                      CommonAncestor);
1734    PushUsingDirective(S, UDir);
1735  } else {
1736    Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
1737  }
1738
1739  // FIXME: We ignore attributes for now.
1740  delete AttrList;
1741  return DeclPtrTy::make(UDir);
1742}
1743
1744void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) {
1745  // If scope has associated entity, then using directive is at namespace
1746  // or translation unit scope. We add UsingDirectiveDecls, into
1747  // it's lookup structure.
1748  if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity()))
1749    Ctx->addDecl(Context, UDir);
1750  else
1751    // Otherwise it is block-sope. using-directives will affect lookup
1752    // only to the end of scope.
1753    S->PushUsingDirective(DeclPtrTy::make(UDir));
1754}
1755
1756/// getNamespaceDecl - Returns the namespace a decl represents. If the decl
1757/// is a namespace alias, returns the namespace it points to.
1758static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) {
1759  if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D))
1760    return AD->getNamespace();
1761  return dyn_cast_or_null<NamespaceDecl>(D);
1762}
1763
1764Sema::DeclPtrTy Sema::ActOnNamespaceAliasDef(Scope *S,
1765                                             SourceLocation NamespaceLoc,
1766                                             SourceLocation AliasLoc,
1767                                             IdentifierInfo *Alias,
1768                                             const CXXScopeSpec &SS,
1769                                             SourceLocation IdentLoc,
1770                                             IdentifierInfo *Ident) {
1771
1772  // Lookup the namespace name.
1773  LookupResult R = LookupParsedName(S, &SS, Ident, LookupNamespaceName, false);
1774
1775  // Check if we have a previous declaration with the same name.
1776  if (NamedDecl *PrevDecl = LookupName(S, Alias, LookupOrdinaryName, true)) {
1777    if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) {
1778      // We already have an alias with the same name that points to the same
1779      // namespace, so don't create a new one.
1780      if (!R.isAmbiguous() && AD->getNamespace() == getNamespaceDecl(R))
1781        return DeclPtrTy();
1782    }
1783
1784    unsigned DiagID = isa<NamespaceDecl>(PrevDecl) ? diag::err_redefinition :
1785      diag::err_redefinition_different_kind;
1786    Diag(AliasLoc, DiagID) << Alias;
1787    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
1788    return DeclPtrTy();
1789  }
1790
1791  if (R.isAmbiguous()) {
1792    DiagnoseAmbiguousLookup(R, Ident, IdentLoc);
1793    return DeclPtrTy();
1794  }
1795
1796  if (!R) {
1797    Diag(NamespaceLoc, diag::err_expected_namespace_name) << SS.getRange();
1798    return DeclPtrTy();
1799  }
1800
1801  NamespaceAliasDecl *AliasDecl =
1802    NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc,
1803                               Alias, SS.getRange(),
1804                               (NestedNameSpecifier *)SS.getScopeRep(),
1805                               IdentLoc, R);
1806
1807  CurContext->addDecl(Context, AliasDecl);
1808  return DeclPtrTy::make(AliasDecl);
1809}
1810
1811void Sema::InitializeVarWithConstructor(VarDecl *VD,
1812                                        CXXConstructorDecl *Constructor,
1813                                        QualType DeclInitType,
1814                                        Expr **Exprs, unsigned NumExprs) {
1815  Expr *Temp = CXXConstructExpr::Create(Context, DeclInitType, Constructor,
1816                                        false, Exprs, NumExprs);
1817  VD->setInit(Context, Temp);
1818}
1819
1820/// AddCXXDirectInitializerToDecl - This action is called immediately after
1821/// ActOnDeclarator, when a C++ direct initializer is present.
1822/// e.g: "int x(1);"
1823void Sema::AddCXXDirectInitializerToDecl(DeclPtrTy Dcl,
1824                                         SourceLocation LParenLoc,
1825                                         MultiExprArg Exprs,
1826                                         SourceLocation *CommaLocs,
1827                                         SourceLocation RParenLoc) {
1828  unsigned NumExprs = Exprs.size();
1829  assert(NumExprs != 0 && Exprs.get() && "missing expressions");
1830  Decl *RealDecl = Dcl.getAs<Decl>();
1831
1832  // If there is no declaration, there was an error parsing it.  Just ignore
1833  // the initializer.
1834  if (RealDecl == 0)
1835    return;
1836
1837  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
1838  if (!VDecl) {
1839    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
1840    RealDecl->setInvalidDecl();
1841    return;
1842  }
1843
1844  // FIXME: Need to handle dependent types and expressions here.
1845
1846  // We will treat direct-initialization as a copy-initialization:
1847  //    int x(1);  -as-> int x = 1;
1848  //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
1849  //
1850  // Clients that want to distinguish between the two forms, can check for
1851  // direct initializer using VarDecl::hasCXXDirectInitializer().
1852  // A major benefit is that clients that don't particularly care about which
1853  // exactly form was it (like the CodeGen) can handle both cases without
1854  // special case code.
1855
1856  // C++ 8.5p11:
1857  // The form of initialization (using parentheses or '=') is generally
1858  // insignificant, but does matter when the entity being initialized has a
1859  // class type.
1860  QualType DeclInitType = VDecl->getType();
1861  if (const ArrayType *Array = Context.getAsArrayType(DeclInitType))
1862    DeclInitType = Array->getElementType();
1863
1864  // FIXME: This isn't the right place to complete the type.
1865  if (RequireCompleteType(VDecl->getLocation(), VDecl->getType(),
1866                          diag::err_typecheck_decl_incomplete_type)) {
1867    VDecl->setInvalidDecl();
1868    return;
1869  }
1870
1871  if (VDecl->getType()->isRecordType()) {
1872    CXXConstructorDecl *Constructor
1873      = PerformInitializationByConstructor(DeclInitType,
1874                                           (Expr **)Exprs.get(), NumExprs,
1875                                           VDecl->getLocation(),
1876                                           SourceRange(VDecl->getLocation(),
1877                                                       RParenLoc),
1878                                           VDecl->getDeclName(),
1879                                           IK_Direct);
1880    if (!Constructor)
1881      RealDecl->setInvalidDecl();
1882    else {
1883      VDecl->setCXXDirectInitializer(true);
1884      InitializeVarWithConstructor(VDecl, Constructor, DeclInitType,
1885                                   (Expr**)Exprs.release(), NumExprs);
1886    }
1887    return;
1888  }
1889
1890  if (NumExprs > 1) {
1891    Diag(CommaLocs[0], diag::err_builtin_direct_init_more_than_one_arg)
1892      << SourceRange(VDecl->getLocation(), RParenLoc);
1893    RealDecl->setInvalidDecl();
1894    return;
1895  }
1896
1897  // Let clients know that initialization was done with a direct initializer.
1898  VDecl->setCXXDirectInitializer(true);
1899
1900  assert(NumExprs == 1 && "Expected 1 expression");
1901  // Set the init expression, handles conversions.
1902  AddInitializerToDecl(Dcl, ExprArg(*this, Exprs.release()[0]),
1903                       /*DirectInit=*/true);
1904}
1905
1906/// PerformInitializationByConstructor - Perform initialization by
1907/// constructor (C++ [dcl.init]p14), which may occur as part of
1908/// direct-initialization or copy-initialization. We are initializing
1909/// an object of type @p ClassType with the given arguments @p
1910/// Args. @p Loc is the location in the source code where the
1911/// initializer occurs (e.g., a declaration, member initializer,
1912/// functional cast, etc.) while @p Range covers the whole
1913/// initialization. @p InitEntity is the entity being initialized,
1914/// which may by the name of a declaration or a type. @p Kind is the
1915/// kind of initialization we're performing, which affects whether
1916/// explicit constructors will be considered. When successful, returns
1917/// the constructor that will be used to perform the initialization;
1918/// when the initialization fails, emits a diagnostic and returns
1919/// null.
1920CXXConstructorDecl *
1921Sema::PerformInitializationByConstructor(QualType ClassType,
1922                                         Expr **Args, unsigned NumArgs,
1923                                         SourceLocation Loc, SourceRange Range,
1924                                         DeclarationName InitEntity,
1925                                         InitializationKind Kind) {
1926  const RecordType *ClassRec = ClassType->getAsRecordType();
1927  assert(ClassRec && "Can only initialize a class type here");
1928
1929  // C++ [dcl.init]p14:
1930  //
1931  //   If the initialization is direct-initialization, or if it is
1932  //   copy-initialization where the cv-unqualified version of the
1933  //   source type is the same class as, or a derived class of, the
1934  //   class of the destination, constructors are considered. The
1935  //   applicable constructors are enumerated (13.3.1.3), and the
1936  //   best one is chosen through overload resolution (13.3). The
1937  //   constructor so selected is called to initialize the object,
1938  //   with the initializer expression(s) as its argument(s). If no
1939  //   constructor applies, or the overload resolution is ambiguous,
1940  //   the initialization is ill-formed.
1941  const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(ClassRec->getDecl());
1942  OverloadCandidateSet CandidateSet;
1943
1944  // Add constructors to the overload set.
1945  DeclarationName ConstructorName
1946    = Context.DeclarationNames.getCXXConstructorName(
1947                       Context.getCanonicalType(ClassType.getUnqualifiedType()));
1948  DeclContext::lookup_const_iterator Con, ConEnd;
1949  for (llvm::tie(Con, ConEnd) = ClassDecl->lookup(Context, ConstructorName);
1950       Con != ConEnd; ++Con) {
1951    CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
1952    if ((Kind == IK_Direct) ||
1953        (Kind == IK_Copy && Constructor->isConvertingConstructor()) ||
1954        (Kind == IK_Default && Constructor->isDefaultConstructor()))
1955      AddOverloadCandidate(Constructor, Args, NumArgs, CandidateSet);
1956  }
1957
1958  // FIXME: When we decide not to synthesize the implicitly-declared
1959  // constructors, we'll need to make them appear here.
1960
1961  OverloadCandidateSet::iterator Best;
1962  switch (BestViableFunction(CandidateSet, Best)) {
1963  case OR_Success:
1964    // We found a constructor. Return it.
1965    return cast<CXXConstructorDecl>(Best->Function);
1966
1967  case OR_No_Viable_Function:
1968    if (InitEntity)
1969      Diag(Loc, diag::err_ovl_no_viable_function_in_init)
1970        << InitEntity << Range;
1971    else
1972      Diag(Loc, diag::err_ovl_no_viable_function_in_init)
1973        << ClassType << Range;
1974    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
1975    return 0;
1976
1977  case OR_Ambiguous:
1978    if (InitEntity)
1979      Diag(Loc, diag::err_ovl_ambiguous_init) << InitEntity << Range;
1980    else
1981      Diag(Loc, diag::err_ovl_ambiguous_init) << ClassType << Range;
1982    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
1983    return 0;
1984
1985  case OR_Deleted:
1986    if (InitEntity)
1987      Diag(Loc, diag::err_ovl_deleted_init)
1988        << Best->Function->isDeleted()
1989        << InitEntity << Range;
1990    else
1991      Diag(Loc, diag::err_ovl_deleted_init)
1992        << Best->Function->isDeleted()
1993        << InitEntity << Range;
1994    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
1995    return 0;
1996  }
1997
1998  return 0;
1999}
2000
2001/// CompareReferenceRelationship - Compare the two types T1 and T2 to
2002/// determine whether they are reference-related,
2003/// reference-compatible, reference-compatible with added
2004/// qualification, or incompatible, for use in C++ initialization by
2005/// reference (C++ [dcl.ref.init]p4). Neither type can be a reference
2006/// type, and the first type (T1) is the pointee type of the reference
2007/// type being initialized.
2008Sema::ReferenceCompareResult
2009Sema::CompareReferenceRelationship(QualType T1, QualType T2,
2010                                   bool& DerivedToBase) {
2011  assert(!T1->isReferenceType() &&
2012    "T1 must be the pointee type of the reference type");
2013  assert(!T2->isReferenceType() && "T2 cannot be a reference type");
2014
2015  T1 = Context.getCanonicalType(T1);
2016  T2 = Context.getCanonicalType(T2);
2017  QualType UnqualT1 = T1.getUnqualifiedType();
2018  QualType UnqualT2 = T2.getUnqualifiedType();
2019
2020  // C++ [dcl.init.ref]p4:
2021  //   Given types “cv1 T1” and “cv2 T2,” “cv1 T1” is
2022  //   reference-related to “cv2 T2” if T1 is the same type as T2, or
2023  //   T1 is a base class of T2.
2024  if (UnqualT1 == UnqualT2)
2025    DerivedToBase = false;
2026  else if (IsDerivedFrom(UnqualT2, UnqualT1))
2027    DerivedToBase = true;
2028  else
2029    return Ref_Incompatible;
2030
2031  // At this point, we know that T1 and T2 are reference-related (at
2032  // least).
2033
2034  // C++ [dcl.init.ref]p4:
2035  //   "cv1 T1” is reference-compatible with “cv2 T2” if T1 is
2036  //   reference-related to T2 and cv1 is the same cv-qualification
2037  //   as, or greater cv-qualification than, cv2. For purposes of
2038  //   overload resolution, cases for which cv1 is greater
2039  //   cv-qualification than cv2 are identified as
2040  //   reference-compatible with added qualification (see 13.3.3.2).
2041  if (T1.getCVRQualifiers() == T2.getCVRQualifiers())
2042    return Ref_Compatible;
2043  else if (T1.isMoreQualifiedThan(T2))
2044    return Ref_Compatible_With_Added_Qualification;
2045  else
2046    return Ref_Related;
2047}
2048
2049/// CheckReferenceInit - Check the initialization of a reference
2050/// variable with the given initializer (C++ [dcl.init.ref]). Init is
2051/// the initializer (either a simple initializer or an initializer
2052/// list), and DeclType is the type of the declaration. When ICS is
2053/// non-null, this routine will compute the implicit conversion
2054/// sequence according to C++ [over.ics.ref] and will not produce any
2055/// diagnostics; when ICS is null, it will emit diagnostics when any
2056/// errors are found. Either way, a return value of true indicates
2057/// that there was a failure, a return value of false indicates that
2058/// the reference initialization succeeded.
2059///
2060/// When @p SuppressUserConversions, user-defined conversions are
2061/// suppressed.
2062/// When @p AllowExplicit, we also permit explicit user-defined
2063/// conversion functions.
2064/// When @p ForceRValue, we unconditionally treat the initializer as an rvalue.
2065bool
2066Sema::CheckReferenceInit(Expr *&Init, QualType DeclType,
2067                         ImplicitConversionSequence *ICS,
2068                         bool SuppressUserConversions,
2069                         bool AllowExplicit, bool ForceRValue) {
2070  assert(DeclType->isReferenceType() && "Reference init needs a reference");
2071
2072  QualType T1 = DeclType->getAsReferenceType()->getPointeeType();
2073  QualType T2 = Init->getType();
2074
2075  // If the initializer is the address of an overloaded function, try
2076  // to resolve the overloaded function. If all goes well, T2 is the
2077  // type of the resulting function.
2078  if (Context.getCanonicalType(T2) == Context.OverloadTy) {
2079    FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Init, DeclType,
2080                                                          ICS != 0);
2081    if (Fn) {
2082      // Since we're performing this reference-initialization for
2083      // real, update the initializer with the resulting function.
2084      if (!ICS) {
2085        if (DiagnoseUseOfDecl(Fn, Init->getSourceRange().getBegin()))
2086          return true;
2087
2088        FixOverloadedFunctionReference(Init, Fn);
2089      }
2090
2091      T2 = Fn->getType();
2092    }
2093  }
2094
2095  // Compute some basic properties of the types and the initializer.
2096  bool isRValRef = DeclType->isRValueReferenceType();
2097  bool DerivedToBase = false;
2098  Expr::isLvalueResult InitLvalue = ForceRValue ? Expr::LV_InvalidExpression :
2099                                                  Init->isLvalue(Context);
2100  ReferenceCompareResult RefRelationship
2101    = CompareReferenceRelationship(T1, T2, DerivedToBase);
2102
2103  // Most paths end in a failed conversion.
2104  if (ICS)
2105    ICS->ConversionKind = ImplicitConversionSequence::BadConversion;
2106
2107  // C++ [dcl.init.ref]p5:
2108  //   A reference to type “cv1 T1” is initialized by an expression
2109  //   of type “cv2 T2” as follows:
2110
2111  //     -- If the initializer expression
2112
2113  // Rvalue references cannot bind to lvalues (N2812).
2114  // There is absolutely no situation where they can. In particular, note that
2115  // this is ill-formed, even if B has a user-defined conversion to A&&:
2116  //   B b;
2117  //   A&& r = b;
2118  if (isRValRef && InitLvalue == Expr::LV_Valid) {
2119    if (!ICS)
2120      Diag(Init->getSourceRange().getBegin(), diag::err_lvalue_to_rvalue_ref)
2121        << Init->getSourceRange();
2122    return true;
2123  }
2124
2125  bool BindsDirectly = false;
2126  //       -- is an lvalue (but is not a bit-field), and “cv1 T1” is
2127  //          reference-compatible with “cv2 T2,” or
2128  //
2129  // Note that the bit-field check is skipped if we are just computing
2130  // the implicit conversion sequence (C++ [over.best.ics]p2).
2131  if (InitLvalue == Expr::LV_Valid && (ICS || !Init->getBitField()) &&
2132      RefRelationship >= Ref_Compatible_With_Added_Qualification) {
2133    BindsDirectly = true;
2134
2135    if (ICS) {
2136      // C++ [over.ics.ref]p1:
2137      //   When a parameter of reference type binds directly (8.5.3)
2138      //   to an argument expression, the implicit conversion sequence
2139      //   is the identity conversion, unless the argument expression
2140      //   has a type that is a derived class of the parameter type,
2141      //   in which case the implicit conversion sequence is a
2142      //   derived-to-base Conversion (13.3.3.1).
2143      ICS->ConversionKind = ImplicitConversionSequence::StandardConversion;
2144      ICS->Standard.First = ICK_Identity;
2145      ICS->Standard.Second = DerivedToBase? ICK_Derived_To_Base : ICK_Identity;
2146      ICS->Standard.Third = ICK_Identity;
2147      ICS->Standard.FromTypePtr = T2.getAsOpaquePtr();
2148      ICS->Standard.ToTypePtr = T1.getAsOpaquePtr();
2149      ICS->Standard.ReferenceBinding = true;
2150      ICS->Standard.DirectBinding = true;
2151      ICS->Standard.RRefBinding = false;
2152      ICS->Standard.CopyConstructor = 0;
2153
2154      // Nothing more to do: the inaccessibility/ambiguity check for
2155      // derived-to-base conversions is suppressed when we're
2156      // computing the implicit conversion sequence (C++
2157      // [over.best.ics]p2).
2158      return false;
2159    } else {
2160      // Perform the conversion.
2161      // FIXME: Binding to a subobject of the lvalue is going to require more
2162      // AST annotation than this.
2163      ImpCastExprToType(Init, T1, /*isLvalue=*/true);
2164    }
2165  }
2166
2167  //       -- has a class type (i.e., T2 is a class type) and can be
2168  //          implicitly converted to an lvalue of type “cv3 T3,”
2169  //          where “cv1 T1” is reference-compatible with “cv3 T3”
2170  //          92) (this conversion is selected by enumerating the
2171  //          applicable conversion functions (13.3.1.6) and choosing
2172  //          the best one through overload resolution (13.3)),
2173  if (!isRValRef && !SuppressUserConversions && T2->isRecordType()) {
2174    // FIXME: Look for conversions in base classes!
2175    CXXRecordDecl *T2RecordDecl
2176      = dyn_cast<CXXRecordDecl>(T2->getAsRecordType()->getDecl());
2177
2178    OverloadCandidateSet CandidateSet;
2179    OverloadedFunctionDecl *Conversions
2180      = T2RecordDecl->getConversionFunctions();
2181    for (OverloadedFunctionDecl::function_iterator Func
2182           = Conversions->function_begin();
2183         Func != Conversions->function_end(); ++Func) {
2184      CXXConversionDecl *Conv = cast<CXXConversionDecl>(*Func);
2185
2186      // If the conversion function doesn't return a reference type,
2187      // it can't be considered for this conversion.
2188      if (Conv->getConversionType()->isLValueReferenceType() &&
2189          (AllowExplicit || !Conv->isExplicit()))
2190        AddConversionCandidate(Conv, Init, DeclType, CandidateSet);
2191    }
2192
2193    OverloadCandidateSet::iterator Best;
2194    switch (BestViableFunction(CandidateSet, Best)) {
2195    case OR_Success:
2196      // This is a direct binding.
2197      BindsDirectly = true;
2198
2199      if (ICS) {
2200        // C++ [over.ics.ref]p1:
2201        //
2202        //   [...] If the parameter binds directly to the result of
2203        //   applying a conversion function to the argument
2204        //   expression, the implicit conversion sequence is a
2205        //   user-defined conversion sequence (13.3.3.1.2), with the
2206        //   second standard conversion sequence either an identity
2207        //   conversion or, if the conversion function returns an
2208        //   entity of a type that is a derived class of the parameter
2209        //   type, a derived-to-base Conversion.
2210        ICS->ConversionKind = ImplicitConversionSequence::UserDefinedConversion;
2211        ICS->UserDefined.Before = Best->Conversions[0].Standard;
2212        ICS->UserDefined.After = Best->FinalConversion;
2213        ICS->UserDefined.ConversionFunction = Best->Function;
2214        assert(ICS->UserDefined.After.ReferenceBinding &&
2215               ICS->UserDefined.After.DirectBinding &&
2216               "Expected a direct reference binding!");
2217        return false;
2218      } else {
2219        // Perform the conversion.
2220        // FIXME: Binding to a subobject of the lvalue is going to require more
2221        // AST annotation than this.
2222        ImpCastExprToType(Init, T1, /*isLvalue=*/true);
2223      }
2224      break;
2225
2226    case OR_Ambiguous:
2227      assert(false && "Ambiguous reference binding conversions not implemented.");
2228      return true;
2229
2230    case OR_No_Viable_Function:
2231    case OR_Deleted:
2232      // There was no suitable conversion, or we found a deleted
2233      // conversion; continue with other checks.
2234      break;
2235    }
2236  }
2237
2238  if (BindsDirectly) {
2239    // C++ [dcl.init.ref]p4:
2240    //   [...] In all cases where the reference-related or
2241    //   reference-compatible relationship of two types is used to
2242    //   establish the validity of a reference binding, and T1 is a
2243    //   base class of T2, a program that necessitates such a binding
2244    //   is ill-formed if T1 is an inaccessible (clause 11) or
2245    //   ambiguous (10.2) base class of T2.
2246    //
2247    // Note that we only check this condition when we're allowed to
2248    // complain about errors, because we should not be checking for
2249    // ambiguity (or inaccessibility) unless the reference binding
2250    // actually happens.
2251    if (DerivedToBase)
2252      return CheckDerivedToBaseConversion(T2, T1,
2253                                          Init->getSourceRange().getBegin(),
2254                                          Init->getSourceRange());
2255    else
2256      return false;
2257  }
2258
2259  //     -- Otherwise, the reference shall be to a non-volatile const
2260  //        type (i.e., cv1 shall be const), or the reference shall be an
2261  //        rvalue reference and the initializer expression shall be an rvalue.
2262  if (!isRValRef && T1.getCVRQualifiers() != QualType::Const) {
2263    if (!ICS)
2264      Diag(Init->getSourceRange().getBegin(),
2265           diag::err_not_reference_to_const_init)
2266        << T1 << (InitLvalue != Expr::LV_Valid? "temporary" : "value")
2267        << T2 << Init->getSourceRange();
2268    return true;
2269  }
2270
2271  //       -- If the initializer expression is an rvalue, with T2 a
2272  //          class type, and “cv1 T1” is reference-compatible with
2273  //          “cv2 T2,” the reference is bound in one of the
2274  //          following ways (the choice is implementation-defined):
2275  //
2276  //          -- The reference is bound to the object represented by
2277  //             the rvalue (see 3.10) or to a sub-object within that
2278  //             object.
2279  //
2280  //          -- A temporary of type “cv1 T2” [sic] is created, and
2281  //             a constructor is called to copy the entire rvalue
2282  //             object into the temporary. The reference is bound to
2283  //             the temporary or to a sub-object within the
2284  //             temporary.
2285  //
2286  //          The constructor that would be used to make the copy
2287  //          shall be callable whether or not the copy is actually
2288  //          done.
2289  //
2290  // Note that C++0x [dcl.init.ref]p5 takes away this implementation
2291  // freedom, so we will always take the first option and never build
2292  // a temporary in this case. FIXME: We will, however, have to check
2293  // for the presence of a copy constructor in C++98/03 mode.
2294  if (InitLvalue != Expr::LV_Valid && T2->isRecordType() &&
2295      RefRelationship >= Ref_Compatible_With_Added_Qualification) {
2296    if (ICS) {
2297      ICS->ConversionKind = ImplicitConversionSequence::StandardConversion;
2298      ICS->Standard.First = ICK_Identity;
2299      ICS->Standard.Second = DerivedToBase? ICK_Derived_To_Base : ICK_Identity;
2300      ICS->Standard.Third = ICK_Identity;
2301      ICS->Standard.FromTypePtr = T2.getAsOpaquePtr();
2302      ICS->Standard.ToTypePtr = T1.getAsOpaquePtr();
2303      ICS->Standard.ReferenceBinding = true;
2304      ICS->Standard.DirectBinding = false;
2305      ICS->Standard.RRefBinding = isRValRef;
2306      ICS->Standard.CopyConstructor = 0;
2307    } else {
2308      // FIXME: Binding to a subobject of the rvalue is going to require more
2309      // AST annotation than this.
2310      ImpCastExprToType(Init, T1, /*isLvalue=*/false);
2311    }
2312    return false;
2313  }
2314
2315  //       -- Otherwise, a temporary of type “cv1 T1” is created and
2316  //          initialized from the initializer expression using the
2317  //          rules for a non-reference copy initialization (8.5). The
2318  //          reference is then bound to the temporary. If T1 is
2319  //          reference-related to T2, cv1 must be the same
2320  //          cv-qualification as, or greater cv-qualification than,
2321  //          cv2; otherwise, the program is ill-formed.
2322  if (RefRelationship == Ref_Related) {
2323    // If cv1 == cv2 or cv1 is a greater cv-qualified than cv2, then
2324    // we would be reference-compatible or reference-compatible with
2325    // added qualification. But that wasn't the case, so the reference
2326    // initialization fails.
2327    if (!ICS)
2328      Diag(Init->getSourceRange().getBegin(),
2329           diag::err_reference_init_drops_quals)
2330        << T1 << (InitLvalue != Expr::LV_Valid? "temporary" : "value")
2331        << T2 << Init->getSourceRange();
2332    return true;
2333  }
2334
2335  // If at least one of the types is a class type, the types are not
2336  // related, and we aren't allowed any user conversions, the
2337  // reference binding fails. This case is important for breaking
2338  // recursion, since TryImplicitConversion below will attempt to
2339  // create a temporary through the use of a copy constructor.
2340  if (SuppressUserConversions && RefRelationship == Ref_Incompatible &&
2341      (T1->isRecordType() || T2->isRecordType())) {
2342    if (!ICS)
2343      Diag(Init->getSourceRange().getBegin(),
2344           diag::err_typecheck_convert_incompatible)
2345        << DeclType << Init->getType() << "initializing" << Init->getSourceRange();
2346    return true;
2347  }
2348
2349  // Actually try to convert the initializer to T1.
2350  if (ICS) {
2351    // C++ [over.ics.ref]p2:
2352    //
2353    //   When a parameter of reference type is not bound directly to
2354    //   an argument expression, the conversion sequence is the one
2355    //   required to convert the argument expression to the
2356    //   underlying type of the reference according to
2357    //   13.3.3.1. Conceptually, this conversion sequence corresponds
2358    //   to copy-initializing a temporary of the underlying type with
2359    //   the argument expression. Any difference in top-level
2360    //   cv-qualification is subsumed by the initialization itself
2361    //   and does not constitute a conversion.
2362    *ICS = TryImplicitConversion(Init, T1, SuppressUserConversions);
2363    // Of course, that's still a reference binding.
2364    if (ICS->ConversionKind == ImplicitConversionSequence::StandardConversion) {
2365      ICS->Standard.ReferenceBinding = true;
2366      ICS->Standard.RRefBinding = isRValRef;
2367    } else if(ICS->ConversionKind ==
2368              ImplicitConversionSequence::UserDefinedConversion) {
2369      ICS->UserDefined.After.ReferenceBinding = true;
2370      ICS->UserDefined.After.RRefBinding = isRValRef;
2371    }
2372    return ICS->ConversionKind == ImplicitConversionSequence::BadConversion;
2373  } else {
2374    return PerformImplicitConversion(Init, T1, "initializing");
2375  }
2376}
2377
2378/// CheckOverloadedOperatorDeclaration - Check whether the declaration
2379/// of this overloaded operator is well-formed. If so, returns false;
2380/// otherwise, emits appropriate diagnostics and returns true.
2381bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
2382  assert(FnDecl && FnDecl->isOverloadedOperator() &&
2383         "Expected an overloaded operator declaration");
2384
2385  OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
2386
2387  // C++ [over.oper]p5:
2388  //   The allocation and deallocation functions, operator new,
2389  //   operator new[], operator delete and operator delete[], are
2390  //   described completely in 3.7.3. The attributes and restrictions
2391  //   found in the rest of this subclause do not apply to them unless
2392  //   explicitly stated in 3.7.3.
2393  // FIXME: Write a separate routine for checking this. For now, just allow it.
2394  if (Op == OO_New || Op == OO_Array_New ||
2395      Op == OO_Delete || Op == OO_Array_Delete)
2396    return false;
2397
2398  // C++ [over.oper]p6:
2399  //   An operator function shall either be a non-static member
2400  //   function or be a non-member function and have at least one
2401  //   parameter whose type is a class, a reference to a class, an
2402  //   enumeration, or a reference to an enumeration.
2403  if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) {
2404    if (MethodDecl->isStatic())
2405      return Diag(FnDecl->getLocation(),
2406                  diag::err_operator_overload_static) << FnDecl->getDeclName();
2407  } else {
2408    bool ClassOrEnumParam = false;
2409    for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
2410                                   ParamEnd = FnDecl->param_end();
2411         Param != ParamEnd; ++Param) {
2412      QualType ParamType = (*Param)->getType().getNonReferenceType();
2413      if (ParamType->isRecordType() || ParamType->isEnumeralType()) {
2414        ClassOrEnumParam = true;
2415        break;
2416      }
2417    }
2418
2419    if (!ClassOrEnumParam)
2420      return Diag(FnDecl->getLocation(),
2421                  diag::err_operator_overload_needs_class_or_enum)
2422        << FnDecl->getDeclName();
2423  }
2424
2425  // C++ [over.oper]p8:
2426  //   An operator function cannot have default arguments (8.3.6),
2427  //   except where explicitly stated below.
2428  //
2429  // Only the function-call operator allows default arguments
2430  // (C++ [over.call]p1).
2431  if (Op != OO_Call) {
2432    for (FunctionDecl::param_iterator Param = FnDecl->param_begin();
2433         Param != FnDecl->param_end(); ++Param) {
2434      if ((*Param)->hasUnparsedDefaultArg())
2435        return Diag((*Param)->getLocation(),
2436                    diag::err_operator_overload_default_arg)
2437          << FnDecl->getDeclName();
2438      else if (Expr *DefArg = (*Param)->getDefaultArg())
2439        return Diag((*Param)->getLocation(),
2440                    diag::err_operator_overload_default_arg)
2441          << FnDecl->getDeclName() << DefArg->getSourceRange();
2442    }
2443  }
2444
2445  static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
2446    { false, false, false }
2447#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
2448    , { Unary, Binary, MemberOnly }
2449#include "clang/Basic/OperatorKinds.def"
2450  };
2451
2452  bool CanBeUnaryOperator = OperatorUses[Op][0];
2453  bool CanBeBinaryOperator = OperatorUses[Op][1];
2454  bool MustBeMemberOperator = OperatorUses[Op][2];
2455
2456  // C++ [over.oper]p8:
2457  //   [...] Operator functions cannot have more or fewer parameters
2458  //   than the number required for the corresponding operator, as
2459  //   described in the rest of this subclause.
2460  unsigned NumParams = FnDecl->getNumParams()
2461                     + (isa<CXXMethodDecl>(FnDecl)? 1 : 0);
2462  if (Op != OO_Call &&
2463      ((NumParams == 1 && !CanBeUnaryOperator) ||
2464       (NumParams == 2 && !CanBeBinaryOperator) ||
2465       (NumParams < 1) || (NumParams > 2))) {
2466    // We have the wrong number of parameters.
2467    unsigned ErrorKind;
2468    if (CanBeUnaryOperator && CanBeBinaryOperator) {
2469      ErrorKind = 2;  // 2 -> unary or binary.
2470    } else if (CanBeUnaryOperator) {
2471      ErrorKind = 0;  // 0 -> unary
2472    } else {
2473      assert(CanBeBinaryOperator &&
2474             "All non-call overloaded operators are unary or binary!");
2475      ErrorKind = 1;  // 1 -> binary
2476    }
2477
2478    return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be)
2479      << FnDecl->getDeclName() << NumParams << ErrorKind;
2480  }
2481
2482  // Overloaded operators other than operator() cannot be variadic.
2483  if (Op != OO_Call &&
2484      FnDecl->getType()->getAsFunctionProtoType()->isVariadic()) {
2485    return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
2486      << FnDecl->getDeclName();
2487  }
2488
2489  // Some operators must be non-static member functions.
2490  if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) {
2491    return Diag(FnDecl->getLocation(),
2492                diag::err_operator_overload_must_be_member)
2493      << FnDecl->getDeclName();
2494  }
2495
2496  // C++ [over.inc]p1:
2497  //   The user-defined function called operator++ implements the
2498  //   prefix and postfix ++ operator. If this function is a member
2499  //   function with no parameters, or a non-member function with one
2500  //   parameter of class or enumeration type, it defines the prefix
2501  //   increment operator ++ for objects of that type. If the function
2502  //   is a member function with one parameter (which shall be of type
2503  //   int) or a non-member function with two parameters (the second
2504  //   of which shall be of type int), it defines the postfix
2505  //   increment operator ++ for objects of that type.
2506  if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
2507    ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
2508    bool ParamIsInt = false;
2509    if (const BuiltinType *BT = LastParam->getType()->getAsBuiltinType())
2510      ParamIsInt = BT->getKind() == BuiltinType::Int;
2511
2512    if (!ParamIsInt)
2513      return Diag(LastParam->getLocation(),
2514                  diag::err_operator_overload_post_incdec_must_be_int)
2515        << LastParam->getType() << (Op == OO_MinusMinus);
2516  }
2517
2518  // Notify the class if it got an assignment operator.
2519  if (Op == OO_Equal) {
2520    // Would have returned earlier otherwise.
2521    assert(isa<CXXMethodDecl>(FnDecl) &&
2522      "Overloaded = not member, but not filtered.");
2523    CXXMethodDecl *Method = cast<CXXMethodDecl>(FnDecl);
2524    Method->getParent()->addedAssignmentOperator(Context, Method);
2525  }
2526
2527  return false;
2528}
2529
2530/// ActOnStartLinkageSpecification - Parsed the beginning of a C++
2531/// linkage specification, including the language and (if present)
2532/// the '{'. ExternLoc is the location of the 'extern', LangLoc is
2533/// the location of the language string literal, which is provided
2534/// by Lang/StrSize. LBraceLoc, if valid, provides the location of
2535/// the '{' brace. Otherwise, this linkage specification does not
2536/// have any braces.
2537Sema::DeclPtrTy Sema::ActOnStartLinkageSpecification(Scope *S,
2538                                                     SourceLocation ExternLoc,
2539                                                     SourceLocation LangLoc,
2540                                                     const char *Lang,
2541                                                     unsigned StrSize,
2542                                                     SourceLocation LBraceLoc) {
2543  LinkageSpecDecl::LanguageIDs Language;
2544  if (strncmp(Lang, "\"C\"", StrSize) == 0)
2545    Language = LinkageSpecDecl::lang_c;
2546  else if (strncmp(Lang, "\"C++\"", StrSize) == 0)
2547    Language = LinkageSpecDecl::lang_cxx;
2548  else {
2549    Diag(LangLoc, diag::err_bad_language);
2550    return DeclPtrTy();
2551  }
2552
2553  // FIXME: Add all the various semantics of linkage specifications
2554
2555  LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext,
2556                                               LangLoc, Language,
2557                                               LBraceLoc.isValid());
2558  CurContext->addDecl(Context, D);
2559  PushDeclContext(S, D);
2560  return DeclPtrTy::make(D);
2561}
2562
2563/// ActOnFinishLinkageSpecification - Completely the definition of
2564/// the C++ linkage specification LinkageSpec. If RBraceLoc is
2565/// valid, it's the position of the closing '}' brace in a linkage
2566/// specification that uses braces.
2567Sema::DeclPtrTy Sema::ActOnFinishLinkageSpecification(Scope *S,
2568                                                      DeclPtrTy LinkageSpec,
2569                                                      SourceLocation RBraceLoc) {
2570  if (LinkageSpec)
2571    PopDeclContext();
2572  return LinkageSpec;
2573}
2574
2575/// \brief Perform semantic analysis for the variable declaration that
2576/// occurs within a C++ catch clause, returning the newly-created
2577/// variable.
2578VarDecl *Sema::BuildExceptionDeclaration(Scope *S, QualType ExDeclType,
2579                                         IdentifierInfo *Name,
2580                                         SourceLocation Loc,
2581                                         SourceRange Range) {
2582  bool Invalid = false;
2583
2584  // Arrays and functions decay.
2585  if (ExDeclType->isArrayType())
2586    ExDeclType = Context.getArrayDecayedType(ExDeclType);
2587  else if (ExDeclType->isFunctionType())
2588    ExDeclType = Context.getPointerType(ExDeclType);
2589
2590  // C++ 15.3p1: The exception-declaration shall not denote an incomplete type.
2591  // The exception-declaration shall not denote a pointer or reference to an
2592  // incomplete type, other than [cv] void*.
2593  // N2844 forbids rvalue references.
2594  if(!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) {
2595    Diag(Loc, diag::err_catch_rvalue_ref) << Range;
2596    Invalid = true;
2597  }
2598
2599  QualType BaseType = ExDeclType;
2600  int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference
2601  unsigned DK = diag::err_catch_incomplete;
2602  if (const PointerType *Ptr = BaseType->getAsPointerType()) {
2603    BaseType = Ptr->getPointeeType();
2604    Mode = 1;
2605    DK = diag::err_catch_incomplete_ptr;
2606  } else if(const ReferenceType *Ref = BaseType->getAsReferenceType()) {
2607    // For the purpose of error recovery, we treat rvalue refs like lvalue refs.
2608    BaseType = Ref->getPointeeType();
2609    Mode = 2;
2610    DK = diag::err_catch_incomplete_ref;
2611  }
2612  if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) &&
2613      !BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK))
2614    Invalid = true;
2615
2616  if (!Invalid && !ExDeclType->isDependentType() &&
2617      RequireNonAbstractType(Loc, ExDeclType,
2618                             diag::err_abstract_type_in_decl,
2619                             AbstractVariableType))
2620    Invalid = true;
2621
2622  // FIXME: Need to test for ability to copy-construct and destroy the
2623  // exception variable.
2624
2625  // FIXME: Need to check for abstract classes.
2626
2627  VarDecl *ExDecl = VarDecl::Create(Context, CurContext, Loc,
2628                                    Name, ExDeclType, VarDecl::None,
2629                                    Range.getBegin());
2630
2631  if (Invalid)
2632    ExDecl->setInvalidDecl();
2633
2634  return ExDecl;
2635}
2636
2637/// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch
2638/// handler.
2639Sema::DeclPtrTy Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) {
2640  QualType ExDeclType = GetTypeForDeclarator(D, S);
2641
2642  bool Invalid = D.isInvalidType();
2643  IdentifierInfo *II = D.getIdentifier();
2644  if (NamedDecl *PrevDecl = LookupName(S, II, LookupOrdinaryName)) {
2645    // The scope should be freshly made just for us. There is just no way
2646    // it contains any previous declaration.
2647    assert(!S->isDeclScope(DeclPtrTy::make(PrevDecl)));
2648    if (PrevDecl->isTemplateParameter()) {
2649      // Maybe we will complain about the shadowed template parameter.
2650      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
2651    }
2652  }
2653
2654  if (D.getCXXScopeSpec().isSet() && !Invalid) {
2655    Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator)
2656      << D.getCXXScopeSpec().getRange();
2657    Invalid = true;
2658  }
2659
2660  VarDecl *ExDecl = BuildExceptionDeclaration(S, ExDeclType,
2661                                              D.getIdentifier(),
2662                                              D.getIdentifierLoc(),
2663                                            D.getDeclSpec().getSourceRange());
2664
2665  if (Invalid)
2666    ExDecl->setInvalidDecl();
2667
2668  // Add the exception declaration into this scope.
2669  if (II)
2670    PushOnScopeChains(ExDecl, S);
2671  else
2672    CurContext->addDecl(Context, ExDecl);
2673
2674  ProcessDeclAttributes(S, ExDecl, D);
2675  return DeclPtrTy::make(ExDecl);
2676}
2677
2678Sema::DeclPtrTy Sema::ActOnStaticAssertDeclaration(SourceLocation AssertLoc,
2679                                                   ExprArg assertexpr,
2680                                                   ExprArg assertmessageexpr) {
2681  Expr *AssertExpr = (Expr *)assertexpr.get();
2682  StringLiteral *AssertMessage =
2683    cast<StringLiteral>((Expr *)assertmessageexpr.get());
2684
2685  if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent()) {
2686    llvm::APSInt Value(32);
2687    if (!AssertExpr->isIntegerConstantExpr(Value, Context)) {
2688      Diag(AssertLoc, diag::err_static_assert_expression_is_not_constant) <<
2689        AssertExpr->getSourceRange();
2690      return DeclPtrTy();
2691    }
2692
2693    if (Value == 0) {
2694      std::string str(AssertMessage->getStrData(),
2695                      AssertMessage->getByteLength());
2696      Diag(AssertLoc, diag::err_static_assert_failed)
2697        << str << AssertExpr->getSourceRange();
2698    }
2699  }
2700
2701  assertexpr.release();
2702  assertmessageexpr.release();
2703  Decl *Decl = StaticAssertDecl::Create(Context, CurContext, AssertLoc,
2704                                        AssertExpr, AssertMessage);
2705
2706  CurContext->addDecl(Context, Decl);
2707  return DeclPtrTy::make(Decl);
2708}
2709
2710bool Sema::ActOnFriendDecl(Scope *S, SourceLocation FriendLoc, DeclPtrTy Dcl) {
2711  if (!(S->getFlags() & Scope::ClassScope)) {
2712    Diag(FriendLoc, diag::err_friend_decl_outside_class);
2713    return true;
2714  }
2715
2716  return false;
2717}
2718
2719void Sema::SetDeclDeleted(DeclPtrTy dcl, SourceLocation DelLoc) {
2720  Decl *Dcl = dcl.getAs<Decl>();
2721  FunctionDecl *Fn = dyn_cast<FunctionDecl>(Dcl);
2722  if (!Fn) {
2723    Diag(DelLoc, diag::err_deleted_non_function);
2724    return;
2725  }
2726  if (const FunctionDecl *Prev = Fn->getPreviousDeclaration()) {
2727    Diag(DelLoc, diag::err_deleted_decl_not_first);
2728    Diag(Prev->getLocation(), diag::note_previous_declaration);
2729    // If the declaration wasn't the first, we delete the function anyway for
2730    // recovery.
2731  }
2732  Fn->setDeleted();
2733}
2734
2735static void SearchForReturnInStmt(Sema &Self, Stmt *S) {
2736  for (Stmt::child_iterator CI = S->child_begin(), E = S->child_end(); CI != E;
2737       ++CI) {
2738    Stmt *SubStmt = *CI;
2739    if (!SubStmt)
2740      continue;
2741    if (isa<ReturnStmt>(SubStmt))
2742      Self.Diag(SubStmt->getSourceRange().getBegin(),
2743           diag::err_return_in_constructor_handler);
2744    if (!isa<Expr>(SubStmt))
2745      SearchForReturnInStmt(Self, SubStmt);
2746  }
2747}
2748
2749void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) {
2750  for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) {
2751    CXXCatchStmt *Handler = TryBlock->getHandler(I);
2752    SearchForReturnInStmt(*this, Handler);
2753  }
2754}
2755
2756bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New,
2757                                             const CXXMethodDecl *Old) {
2758  QualType NewTy = New->getType()->getAsFunctionType()->getResultType();
2759  QualType OldTy = Old->getType()->getAsFunctionType()->getResultType();
2760
2761  QualType CNewTy = Context.getCanonicalType(NewTy);
2762  QualType COldTy = Context.getCanonicalType(OldTy);
2763
2764  if (CNewTy == COldTy &&
2765      CNewTy.getCVRQualifiers() == COldTy.getCVRQualifiers())
2766    return false;
2767
2768  // Check if the return types are covariant
2769  QualType NewClassTy, OldClassTy;
2770
2771  /// Both types must be pointers or references to classes.
2772  if (PointerType *NewPT = dyn_cast<PointerType>(NewTy)) {
2773    if (PointerType *OldPT = dyn_cast<PointerType>(OldTy)) {
2774      NewClassTy = NewPT->getPointeeType();
2775      OldClassTy = OldPT->getPointeeType();
2776    }
2777  } else if (ReferenceType *NewRT = dyn_cast<ReferenceType>(NewTy)) {
2778    if (ReferenceType *OldRT = dyn_cast<ReferenceType>(OldTy)) {
2779      NewClassTy = NewRT->getPointeeType();
2780      OldClassTy = OldRT->getPointeeType();
2781    }
2782  }
2783
2784  // The return types aren't either both pointers or references to a class type.
2785  if (NewClassTy.isNull()) {
2786    Diag(New->getLocation(),
2787         diag::err_different_return_type_for_overriding_virtual_function)
2788      << New->getDeclName() << NewTy << OldTy;
2789    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
2790
2791    return true;
2792  }
2793
2794  if (NewClassTy.getUnqualifiedType() != OldClassTy.getUnqualifiedType()) {
2795    // Check if the new class derives from the old class.
2796    if (!IsDerivedFrom(NewClassTy, OldClassTy)) {
2797      Diag(New->getLocation(),
2798           diag::err_covariant_return_not_derived)
2799      << New->getDeclName() << NewTy << OldTy;
2800      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
2801      return true;
2802    }
2803
2804    // Check if we the conversion from derived to base is valid.
2805    if (CheckDerivedToBaseConversion(NewClassTy, OldClassTy,
2806                      diag::err_covariant_return_inaccessible_base,
2807                      diag::err_covariant_return_ambiguous_derived_to_base_conv,
2808                      // FIXME: Should this point to the return type?
2809                      New->getLocation(), SourceRange(), New->getDeclName())) {
2810      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
2811      return true;
2812    }
2813  }
2814
2815  // The qualifiers of the return types must be the same.
2816  if (CNewTy.getCVRQualifiers() != COldTy.getCVRQualifiers()) {
2817    Diag(New->getLocation(),
2818         diag::err_covariant_return_type_different_qualifications)
2819    << New->getDeclName() << NewTy << OldTy;
2820    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
2821    return true;
2822  };
2823
2824
2825  // The new class type must have the same or less qualifiers as the old type.
2826  if (NewClassTy.isMoreQualifiedThan(OldClassTy)) {
2827    Diag(New->getLocation(),
2828         diag::err_covariant_return_type_class_type_more_qualified)
2829    << New->getDeclName() << NewTy << OldTy;
2830    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
2831    return true;
2832  };
2833
2834  return false;
2835}
2836