SemaDeclCXX.cpp revision b2969b1e50580344891a98f5b241f8351fe371cf
1//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for C++ declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/AST/ASTConsumer.h"
16#include "clang/AST/ASTContext.h"
17#include "clang/AST/ASTLambda.h"
18#include "clang/AST/ASTMutationListener.h"
19#include "clang/AST/CXXInheritance.h"
20#include "clang/AST/CharUnits.h"
21#include "clang/AST/DeclVisitor.h"
22#include "clang/AST/EvaluatedExprVisitor.h"
23#include "clang/AST/ExprCXX.h"
24#include "clang/AST/RecordLayout.h"
25#include "clang/AST/RecursiveASTVisitor.h"
26#include "clang/AST/StmtVisitor.h"
27#include "clang/AST/TypeLoc.h"
28#include "clang/AST/TypeOrdering.h"
29#include "clang/Basic/PartialDiagnostic.h"
30#include "clang/Basic/TargetInfo.h"
31#include "clang/Lex/LiteralSupport.h"
32#include "clang/Lex/Preprocessor.h"
33#include "clang/Sema/CXXFieldCollector.h"
34#include "clang/Sema/DeclSpec.h"
35#include "clang/Sema/Initialization.h"
36#include "clang/Sema/Lookup.h"
37#include "clang/Sema/ParsedTemplate.h"
38#include "clang/Sema/Scope.h"
39#include "clang/Sema/ScopeInfo.h"
40#include "llvm/ADT/STLExtras.h"
41#include "llvm/ADT/SmallString.h"
42#include <map>
43#include <set>
44
45using namespace clang;
46
47//===----------------------------------------------------------------------===//
48// CheckDefaultArgumentVisitor
49//===----------------------------------------------------------------------===//
50
51namespace {
52  /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
53  /// the default argument of a parameter to determine whether it
54  /// contains any ill-formed subexpressions. For example, this will
55  /// diagnose the use of local variables or parameters within the
56  /// default argument expression.
57  class CheckDefaultArgumentVisitor
58    : public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
59    Expr *DefaultArg;
60    Sema *S;
61
62  public:
63    CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
64      : DefaultArg(defarg), S(s) {}
65
66    bool VisitExpr(Expr *Node);
67    bool VisitDeclRefExpr(DeclRefExpr *DRE);
68    bool VisitCXXThisExpr(CXXThisExpr *ThisE);
69    bool VisitLambdaExpr(LambdaExpr *Lambda);
70    bool VisitPseudoObjectExpr(PseudoObjectExpr *POE);
71  };
72
73  /// VisitExpr - Visit all of the children of this expression.
74  bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
75    bool IsInvalid = false;
76    for (Stmt::child_range I = Node->children(); I; ++I)
77      IsInvalid |= Visit(*I);
78    return IsInvalid;
79  }
80
81  /// VisitDeclRefExpr - Visit a reference to a declaration, to
82  /// determine whether this declaration can be used in the default
83  /// argument expression.
84  bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
85    NamedDecl *Decl = DRE->getDecl();
86    if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
87      // C++ [dcl.fct.default]p9
88      //   Default arguments are evaluated each time the function is
89      //   called. The order of evaluation of function arguments is
90      //   unspecified. Consequently, parameters of a function shall not
91      //   be used in default argument expressions, even if they are not
92      //   evaluated. Parameters of a function declared before a default
93      //   argument expression are in scope and can hide namespace and
94      //   class member names.
95      return S->Diag(DRE->getLocStart(),
96                     diag::err_param_default_argument_references_param)
97         << Param->getDeclName() << DefaultArg->getSourceRange();
98    } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
99      // C++ [dcl.fct.default]p7
100      //   Local variables shall not be used in default argument
101      //   expressions.
102      if (VDecl->isLocalVarDecl())
103        return S->Diag(DRE->getLocStart(),
104                       diag::err_param_default_argument_references_local)
105          << VDecl->getDeclName() << DefaultArg->getSourceRange();
106    }
107
108    return false;
109  }
110
111  /// VisitCXXThisExpr - Visit a C++ "this" expression.
112  bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
113    // C++ [dcl.fct.default]p8:
114    //   The keyword this shall not be used in a default argument of a
115    //   member function.
116    return S->Diag(ThisE->getLocStart(),
117                   diag::err_param_default_argument_references_this)
118               << ThisE->getSourceRange();
119  }
120
121  bool CheckDefaultArgumentVisitor::VisitPseudoObjectExpr(PseudoObjectExpr *POE) {
122    bool Invalid = false;
123    for (PseudoObjectExpr::semantics_iterator
124           i = POE->semantics_begin(), e = POE->semantics_end(); i != e; ++i) {
125      Expr *E = *i;
126
127      // Look through bindings.
128      if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(E)) {
129        E = OVE->getSourceExpr();
130        assert(E && "pseudo-object binding without source expression?");
131      }
132
133      Invalid |= Visit(E);
134    }
135    return Invalid;
136  }
137
138  bool CheckDefaultArgumentVisitor::VisitLambdaExpr(LambdaExpr *Lambda) {
139    // C++11 [expr.lambda.prim]p13:
140    //   A lambda-expression appearing in a default argument shall not
141    //   implicitly or explicitly capture any entity.
142    if (Lambda->capture_begin() == Lambda->capture_end())
143      return false;
144
145    return S->Diag(Lambda->getLocStart(),
146                   diag::err_lambda_capture_default_arg);
147  }
148}
149
150void
151Sema::ImplicitExceptionSpecification::CalledDecl(SourceLocation CallLoc,
152                                                 const CXXMethodDecl *Method) {
153  // If we have an MSAny spec already, don't bother.
154  if (!Method || ComputedEST == EST_MSAny)
155    return;
156
157  const FunctionProtoType *Proto
158    = Method->getType()->getAs<FunctionProtoType>();
159  Proto = Self->ResolveExceptionSpec(CallLoc, Proto);
160  if (!Proto)
161    return;
162
163  ExceptionSpecificationType EST = Proto->getExceptionSpecType();
164
165  // If this function can throw any exceptions, make a note of that.
166  if (EST == EST_MSAny || EST == EST_None) {
167    ClearExceptions();
168    ComputedEST = EST;
169    return;
170  }
171
172  // FIXME: If the call to this decl is using any of its default arguments, we
173  // need to search them for potentially-throwing calls.
174
175  // If this function has a basic noexcept, it doesn't affect the outcome.
176  if (EST == EST_BasicNoexcept)
177    return;
178
179  // If we have a throw-all spec at this point, ignore the function.
180  if (ComputedEST == EST_None)
181    return;
182
183  // If we're still at noexcept(true) and there's a nothrow() callee,
184  // change to that specification.
185  if (EST == EST_DynamicNone) {
186    if (ComputedEST == EST_BasicNoexcept)
187      ComputedEST = EST_DynamicNone;
188    return;
189  }
190
191  // Check out noexcept specs.
192  if (EST == EST_ComputedNoexcept) {
193    FunctionProtoType::NoexceptResult NR =
194        Proto->getNoexceptSpec(Self->Context);
195    assert(NR != FunctionProtoType::NR_NoNoexcept &&
196           "Must have noexcept result for EST_ComputedNoexcept.");
197    assert(NR != FunctionProtoType::NR_Dependent &&
198           "Should not generate implicit declarations for dependent cases, "
199           "and don't know how to handle them anyway.");
200
201    // noexcept(false) -> no spec on the new function
202    if (NR == FunctionProtoType::NR_Throw) {
203      ClearExceptions();
204      ComputedEST = EST_None;
205    }
206    // noexcept(true) won't change anything either.
207    return;
208  }
209
210  assert(EST == EST_Dynamic && "EST case not considered earlier.");
211  assert(ComputedEST != EST_None &&
212         "Shouldn't collect exceptions when throw-all is guaranteed.");
213  ComputedEST = EST_Dynamic;
214  // Record the exceptions in this function's exception specification.
215  for (FunctionProtoType::exception_iterator E = Proto->exception_begin(),
216                                          EEnd = Proto->exception_end();
217       E != EEnd; ++E)
218    if (ExceptionsSeen.insert(Self->Context.getCanonicalType(*E)))
219      Exceptions.push_back(*E);
220}
221
222void Sema::ImplicitExceptionSpecification::CalledExpr(Expr *E) {
223  if (!E || ComputedEST == EST_MSAny)
224    return;
225
226  // FIXME:
227  //
228  // C++0x [except.spec]p14:
229  //   [An] implicit exception-specification specifies the type-id T if and
230  // only if T is allowed by the exception-specification of a function directly
231  // invoked by f's implicit definition; f shall allow all exceptions if any
232  // function it directly invokes allows all exceptions, and f shall allow no
233  // exceptions if every function it directly invokes allows no exceptions.
234  //
235  // Note in particular that if an implicit exception-specification is generated
236  // for a function containing a throw-expression, that specification can still
237  // be noexcept(true).
238  //
239  // Note also that 'directly invoked' is not defined in the standard, and there
240  // is no indication that we should only consider potentially-evaluated calls.
241  //
242  // Ultimately we should implement the intent of the standard: the exception
243  // specification should be the set of exceptions which can be thrown by the
244  // implicit definition. For now, we assume that any non-nothrow expression can
245  // throw any exception.
246
247  if (Self->canThrow(E))
248    ComputedEST = EST_None;
249}
250
251bool
252Sema::SetParamDefaultArgument(ParmVarDecl *Param, Expr *Arg,
253                              SourceLocation EqualLoc) {
254  if (RequireCompleteType(Param->getLocation(), Param->getType(),
255                          diag::err_typecheck_decl_incomplete_type)) {
256    Param->setInvalidDecl();
257    return true;
258  }
259
260  // C++ [dcl.fct.default]p5
261  //   A default argument expression is implicitly converted (clause
262  //   4) to the parameter type. The default argument expression has
263  //   the same semantic constraints as the initializer expression in
264  //   a declaration of a variable of the parameter type, using the
265  //   copy-initialization semantics (8.5).
266  InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
267                                                                    Param);
268  InitializationKind Kind = InitializationKind::CreateCopy(Param->getLocation(),
269                                                           EqualLoc);
270  InitializationSequence InitSeq(*this, Entity, Kind, Arg);
271  ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Arg);
272  if (Result.isInvalid())
273    return true;
274  Arg = Result.takeAs<Expr>();
275
276  CheckCompletedExpr(Arg, EqualLoc);
277  Arg = MaybeCreateExprWithCleanups(Arg);
278
279  // Okay: add the default argument to the parameter
280  Param->setDefaultArg(Arg);
281
282  // We have already instantiated this parameter; provide each of the
283  // instantiations with the uninstantiated default argument.
284  UnparsedDefaultArgInstantiationsMap::iterator InstPos
285    = UnparsedDefaultArgInstantiations.find(Param);
286  if (InstPos != UnparsedDefaultArgInstantiations.end()) {
287    for (unsigned I = 0, N = InstPos->second.size(); I != N; ++I)
288      InstPos->second[I]->setUninstantiatedDefaultArg(Arg);
289
290    // We're done tracking this parameter's instantiations.
291    UnparsedDefaultArgInstantiations.erase(InstPos);
292  }
293
294  return false;
295}
296
297/// ActOnParamDefaultArgument - Check whether the default argument
298/// provided for a function parameter is well-formed. If so, attach it
299/// to the parameter declaration.
300void
301Sema::ActOnParamDefaultArgument(Decl *param, SourceLocation EqualLoc,
302                                Expr *DefaultArg) {
303  if (!param || !DefaultArg)
304    return;
305
306  ParmVarDecl *Param = cast<ParmVarDecl>(param);
307  UnparsedDefaultArgLocs.erase(Param);
308
309  // Default arguments are only permitted in C++
310  if (!getLangOpts().CPlusPlus) {
311    Diag(EqualLoc, diag::err_param_default_argument)
312      << DefaultArg->getSourceRange();
313    Param->setInvalidDecl();
314    return;
315  }
316
317  // Check for unexpanded parameter packs.
318  if (DiagnoseUnexpandedParameterPack(DefaultArg, UPPC_DefaultArgument)) {
319    Param->setInvalidDecl();
320    return;
321  }
322
323  // Check that the default argument is well-formed
324  CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg, this);
325  if (DefaultArgChecker.Visit(DefaultArg)) {
326    Param->setInvalidDecl();
327    return;
328  }
329
330  SetParamDefaultArgument(Param, DefaultArg, EqualLoc);
331}
332
333/// ActOnParamUnparsedDefaultArgument - We've seen a default
334/// argument for a function parameter, but we can't parse it yet
335/// because we're inside a class definition. Note that this default
336/// argument will be parsed later.
337void Sema::ActOnParamUnparsedDefaultArgument(Decl *param,
338                                             SourceLocation EqualLoc,
339                                             SourceLocation ArgLoc) {
340  if (!param)
341    return;
342
343  ParmVarDecl *Param = cast<ParmVarDecl>(param);
344  Param->setUnparsedDefaultArg();
345  UnparsedDefaultArgLocs[Param] = ArgLoc;
346}
347
348/// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
349/// the default argument for the parameter param failed.
350void Sema::ActOnParamDefaultArgumentError(Decl *param) {
351  if (!param)
352    return;
353
354  ParmVarDecl *Param = cast<ParmVarDecl>(param);
355  Param->setInvalidDecl();
356  UnparsedDefaultArgLocs.erase(Param);
357}
358
359/// CheckExtraCXXDefaultArguments - Check for any extra default
360/// arguments in the declarator, which is not a function declaration
361/// or definition and therefore is not permitted to have default
362/// arguments. This routine should be invoked for every declarator
363/// that is not a function declaration or definition.
364void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
365  // C++ [dcl.fct.default]p3
366  //   A default argument expression shall be specified only in the
367  //   parameter-declaration-clause of a function declaration or in a
368  //   template-parameter (14.1). It shall not be specified for a
369  //   parameter pack. If it is specified in a
370  //   parameter-declaration-clause, it shall not occur within a
371  //   declarator or abstract-declarator of a parameter-declaration.
372  bool MightBeFunction = D.isFunctionDeclarationContext();
373  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
374    DeclaratorChunk &chunk = D.getTypeObject(i);
375    if (chunk.Kind == DeclaratorChunk::Function) {
376      if (MightBeFunction) {
377        // This is a function declaration. It can have default arguments, but
378        // keep looking in case its return type is a function type with default
379        // arguments.
380        MightBeFunction = false;
381        continue;
382      }
383      for (unsigned argIdx = 0, e = chunk.Fun.NumArgs; argIdx != e; ++argIdx) {
384        ParmVarDecl *Param =
385          cast<ParmVarDecl>(chunk.Fun.ArgInfo[argIdx].Param);
386        if (Param->hasUnparsedDefaultArg()) {
387          CachedTokens *Toks = chunk.Fun.ArgInfo[argIdx].DefaultArgTokens;
388          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
389            << SourceRange((*Toks)[1].getLocation(),
390                           Toks->back().getLocation());
391          delete Toks;
392          chunk.Fun.ArgInfo[argIdx].DefaultArgTokens = 0;
393        } else if (Param->getDefaultArg()) {
394          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
395            << Param->getDefaultArg()->getSourceRange();
396          Param->setDefaultArg(0);
397        }
398      }
399    } else if (chunk.Kind != DeclaratorChunk::Paren) {
400      MightBeFunction = false;
401    }
402  }
403}
404
405static bool functionDeclHasDefaultArgument(const FunctionDecl *FD) {
406  for (unsigned NumParams = FD->getNumParams(); NumParams > 0; --NumParams) {
407    const ParmVarDecl *PVD = FD->getParamDecl(NumParams-1);
408    if (!PVD->hasDefaultArg())
409      return false;
410    if (!PVD->hasInheritedDefaultArg())
411      return true;
412  }
413  return false;
414}
415
416/// MergeCXXFunctionDecl - Merge two declarations of the same C++
417/// function, once we already know that they have the same
418/// type. Subroutine of MergeFunctionDecl. Returns true if there was an
419/// error, false otherwise.
420bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old,
421                                Scope *S) {
422  bool Invalid = false;
423
424  // C++ [dcl.fct.default]p4:
425  //   For non-template functions, default arguments can be added in
426  //   later declarations of a function in the same
427  //   scope. Declarations in different scopes have completely
428  //   distinct sets of default arguments. That is, declarations in
429  //   inner scopes do not acquire default arguments from
430  //   declarations in outer scopes, and vice versa. In a given
431  //   function declaration, all parameters subsequent to a
432  //   parameter with a default argument shall have default
433  //   arguments supplied in this or previous declarations. A
434  //   default argument shall not be redefined by a later
435  //   declaration (not even to the same value).
436  //
437  // C++ [dcl.fct.default]p6:
438  //   Except for member functions of class templates, the default arguments
439  //   in a member function definition that appears outside of the class
440  //   definition are added to the set of default arguments provided by the
441  //   member function declaration in the class definition.
442  for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) {
443    ParmVarDecl *OldParam = Old->getParamDecl(p);
444    ParmVarDecl *NewParam = New->getParamDecl(p);
445
446    bool OldParamHasDfl = OldParam->hasDefaultArg();
447    bool NewParamHasDfl = NewParam->hasDefaultArg();
448
449    NamedDecl *ND = Old;
450
451    // The declaration context corresponding to the scope is the semantic
452    // parent, unless this is a local function declaration, in which case
453    // it is that surrounding function.
454    DeclContext *ScopeDC = New->getLexicalDeclContext();
455    if (!ScopeDC->isFunctionOrMethod())
456      ScopeDC = New->getDeclContext();
457    if (S && !isDeclInScope(ND, ScopeDC, S) &&
458        !New->getDeclContext()->isRecord())
459      // Ignore default parameters of old decl if they are not in
460      // the same scope and this is not an out-of-line definition of
461      // a member function.
462      OldParamHasDfl = false;
463
464    if (OldParamHasDfl && NewParamHasDfl) {
465
466      unsigned DiagDefaultParamID =
467        diag::err_param_default_argument_redefinition;
468
469      // MSVC accepts that default parameters be redefined for member functions
470      // of template class. The new default parameter's value is ignored.
471      Invalid = true;
472      if (getLangOpts().MicrosoftExt) {
473        CXXMethodDecl* MD = dyn_cast<CXXMethodDecl>(New);
474        if (MD && MD->getParent()->getDescribedClassTemplate()) {
475          // Merge the old default argument into the new parameter.
476          NewParam->setHasInheritedDefaultArg();
477          if (OldParam->hasUninstantiatedDefaultArg())
478            NewParam->setUninstantiatedDefaultArg(
479                                      OldParam->getUninstantiatedDefaultArg());
480          else
481            NewParam->setDefaultArg(OldParam->getInit());
482          DiagDefaultParamID = diag::warn_param_default_argument_redefinition;
483          Invalid = false;
484        }
485      }
486
487      // FIXME: If we knew where the '=' was, we could easily provide a fix-it
488      // hint here. Alternatively, we could walk the type-source information
489      // for NewParam to find the last source location in the type... but it
490      // isn't worth the effort right now. This is the kind of test case that
491      // is hard to get right:
492      //   int f(int);
493      //   void g(int (*fp)(int) = f);
494      //   void g(int (*fp)(int) = &f);
495      Diag(NewParam->getLocation(), DiagDefaultParamID)
496        << NewParam->getDefaultArgRange();
497
498      // Look for the function declaration where the default argument was
499      // actually written, which may be a declaration prior to Old.
500      for (FunctionDecl *Older = Old->getPreviousDecl();
501           Older; Older = Older->getPreviousDecl()) {
502        if (!Older->getParamDecl(p)->hasDefaultArg())
503          break;
504
505        OldParam = Older->getParamDecl(p);
506      }
507
508      Diag(OldParam->getLocation(), diag::note_previous_definition)
509        << OldParam->getDefaultArgRange();
510    } else if (OldParamHasDfl) {
511      // Merge the old default argument into the new parameter.
512      // It's important to use getInit() here;  getDefaultArg()
513      // strips off any top-level ExprWithCleanups.
514      NewParam->setHasInheritedDefaultArg();
515      if (OldParam->hasUninstantiatedDefaultArg())
516        NewParam->setUninstantiatedDefaultArg(
517                                      OldParam->getUninstantiatedDefaultArg());
518      else
519        NewParam->setDefaultArg(OldParam->getInit());
520    } else if (NewParamHasDfl) {
521      if (New->getDescribedFunctionTemplate()) {
522        // Paragraph 4, quoted above, only applies to non-template functions.
523        Diag(NewParam->getLocation(),
524             diag::err_param_default_argument_template_redecl)
525          << NewParam->getDefaultArgRange();
526        Diag(Old->getLocation(), diag::note_template_prev_declaration)
527          << false;
528      } else if (New->getTemplateSpecializationKind()
529                   != TSK_ImplicitInstantiation &&
530                 New->getTemplateSpecializationKind() != TSK_Undeclared) {
531        // C++ [temp.expr.spec]p21:
532        //   Default function arguments shall not be specified in a declaration
533        //   or a definition for one of the following explicit specializations:
534        //     - the explicit specialization of a function template;
535        //     - the explicit specialization of a member function template;
536        //     - the explicit specialization of a member function of a class
537        //       template where the class template specialization to which the
538        //       member function specialization belongs is implicitly
539        //       instantiated.
540        Diag(NewParam->getLocation(), diag::err_template_spec_default_arg)
541          << (New->getTemplateSpecializationKind() ==TSK_ExplicitSpecialization)
542          << New->getDeclName()
543          << NewParam->getDefaultArgRange();
544      } else if (New->getDeclContext()->isDependentContext()) {
545        // C++ [dcl.fct.default]p6 (DR217):
546        //   Default arguments for a member function of a class template shall
547        //   be specified on the initial declaration of the member function
548        //   within the class template.
549        //
550        // Reading the tea leaves a bit in DR217 and its reference to DR205
551        // leads me to the conclusion that one cannot add default function
552        // arguments for an out-of-line definition of a member function of a
553        // dependent type.
554        int WhichKind = 2;
555        if (CXXRecordDecl *Record
556              = dyn_cast<CXXRecordDecl>(New->getDeclContext())) {
557          if (Record->getDescribedClassTemplate())
558            WhichKind = 0;
559          else if (isa<ClassTemplatePartialSpecializationDecl>(Record))
560            WhichKind = 1;
561          else
562            WhichKind = 2;
563        }
564
565        Diag(NewParam->getLocation(),
566             diag::err_param_default_argument_member_template_redecl)
567          << WhichKind
568          << NewParam->getDefaultArgRange();
569      }
570    }
571  }
572
573  // DR1344: If a default argument is added outside a class definition and that
574  // default argument makes the function a special member function, the program
575  // is ill-formed. This can only happen for constructors.
576  if (isa<CXXConstructorDecl>(New) &&
577      New->getMinRequiredArguments() < Old->getMinRequiredArguments()) {
578    CXXSpecialMember NewSM = getSpecialMember(cast<CXXMethodDecl>(New)),
579                     OldSM = getSpecialMember(cast<CXXMethodDecl>(Old));
580    if (NewSM != OldSM) {
581      ParmVarDecl *NewParam = New->getParamDecl(New->getMinRequiredArguments());
582      assert(NewParam->hasDefaultArg());
583      Diag(NewParam->getLocation(), diag::err_default_arg_makes_ctor_special)
584        << NewParam->getDefaultArgRange() << NewSM;
585      Diag(Old->getLocation(), diag::note_previous_declaration);
586    }
587  }
588
589  // C++11 [dcl.constexpr]p1: If any declaration of a function or function
590  // template has a constexpr specifier then all its declarations shall
591  // contain the constexpr specifier.
592  if (New->isConstexpr() != Old->isConstexpr()) {
593    Diag(New->getLocation(), diag::err_constexpr_redecl_mismatch)
594      << New << New->isConstexpr();
595    Diag(Old->getLocation(), diag::note_previous_declaration);
596    Invalid = true;
597  }
598
599  // C++11 [dcl.fct.default]p4: If a friend declaration specifies a default
600  // argument expression, that declaration shall be a definition and shall be
601  // the only declaration of the function or function template in the
602  // translation unit.
603  if (Old->getFriendObjectKind() == Decl::FOK_Undeclared &&
604      functionDeclHasDefaultArgument(Old)) {
605    Diag(New->getLocation(), diag::err_friend_decl_with_def_arg_redeclared);
606    Diag(Old->getLocation(), diag::note_previous_declaration);
607    Invalid = true;
608  }
609
610  if (CheckEquivalentExceptionSpec(Old, New))
611    Invalid = true;
612
613  return Invalid;
614}
615
616/// \brief Merge the exception specifications of two variable declarations.
617///
618/// This is called when there's a redeclaration of a VarDecl. The function
619/// checks if the redeclaration might have an exception specification and
620/// validates compatibility and merges the specs if necessary.
621void Sema::MergeVarDeclExceptionSpecs(VarDecl *New, VarDecl *Old) {
622  // Shortcut if exceptions are disabled.
623  if (!getLangOpts().CXXExceptions)
624    return;
625
626  assert(Context.hasSameType(New->getType(), Old->getType()) &&
627         "Should only be called if types are otherwise the same.");
628
629  QualType NewType = New->getType();
630  QualType OldType = Old->getType();
631
632  // We're only interested in pointers and references to functions, as well
633  // as pointers to member functions.
634  if (const ReferenceType *R = NewType->getAs<ReferenceType>()) {
635    NewType = R->getPointeeType();
636    OldType = OldType->getAs<ReferenceType>()->getPointeeType();
637  } else if (const PointerType *P = NewType->getAs<PointerType>()) {
638    NewType = P->getPointeeType();
639    OldType = OldType->getAs<PointerType>()->getPointeeType();
640  } else if (const MemberPointerType *M = NewType->getAs<MemberPointerType>()) {
641    NewType = M->getPointeeType();
642    OldType = OldType->getAs<MemberPointerType>()->getPointeeType();
643  }
644
645  if (!NewType->isFunctionProtoType())
646    return;
647
648  // There's lots of special cases for functions. For function pointers, system
649  // libraries are hopefully not as broken so that we don't need these
650  // workarounds.
651  if (CheckEquivalentExceptionSpec(
652        OldType->getAs<FunctionProtoType>(), Old->getLocation(),
653        NewType->getAs<FunctionProtoType>(), New->getLocation())) {
654    New->setInvalidDecl();
655  }
656}
657
658/// CheckCXXDefaultArguments - Verify that the default arguments for a
659/// function declaration are well-formed according to C++
660/// [dcl.fct.default].
661void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
662  unsigned NumParams = FD->getNumParams();
663  unsigned p;
664
665  // Find first parameter with a default argument
666  for (p = 0; p < NumParams; ++p) {
667    ParmVarDecl *Param = FD->getParamDecl(p);
668    if (Param->hasDefaultArg())
669      break;
670  }
671
672  // C++ [dcl.fct.default]p4:
673  //   In a given function declaration, all parameters
674  //   subsequent to a parameter with a default argument shall
675  //   have default arguments supplied in this or previous
676  //   declarations. A default argument shall not be redefined
677  //   by a later declaration (not even to the same value).
678  unsigned LastMissingDefaultArg = 0;
679  for (; p < NumParams; ++p) {
680    ParmVarDecl *Param = FD->getParamDecl(p);
681    if (!Param->hasDefaultArg()) {
682      if (Param->isInvalidDecl())
683        /* We already complained about this parameter. */;
684      else if (Param->getIdentifier())
685        Diag(Param->getLocation(),
686             diag::err_param_default_argument_missing_name)
687          << Param->getIdentifier();
688      else
689        Diag(Param->getLocation(),
690             diag::err_param_default_argument_missing);
691
692      LastMissingDefaultArg = p;
693    }
694  }
695
696  if (LastMissingDefaultArg > 0) {
697    // Some default arguments were missing. Clear out all of the
698    // default arguments up to (and including) the last missing
699    // default argument, so that we leave the function parameters
700    // in a semantically valid state.
701    for (p = 0; p <= LastMissingDefaultArg; ++p) {
702      ParmVarDecl *Param = FD->getParamDecl(p);
703      if (Param->hasDefaultArg()) {
704        Param->setDefaultArg(0);
705      }
706    }
707  }
708}
709
710// CheckConstexprParameterTypes - Check whether a function's parameter types
711// are all literal types. If so, return true. If not, produce a suitable
712// diagnostic and return false.
713static bool CheckConstexprParameterTypes(Sema &SemaRef,
714                                         const FunctionDecl *FD) {
715  unsigned ArgIndex = 0;
716  const FunctionProtoType *FT = FD->getType()->getAs<FunctionProtoType>();
717  for (FunctionProtoType::arg_type_iterator i = FT->arg_type_begin(),
718       e = FT->arg_type_end(); i != e; ++i, ++ArgIndex) {
719    const ParmVarDecl *PD = FD->getParamDecl(ArgIndex);
720    SourceLocation ParamLoc = PD->getLocation();
721    if (!(*i)->isDependentType() &&
722        SemaRef.RequireLiteralType(ParamLoc, *i,
723                                   diag::err_constexpr_non_literal_param,
724                                   ArgIndex+1, PD->getSourceRange(),
725                                   isa<CXXConstructorDecl>(FD)))
726      return false;
727  }
728  return true;
729}
730
731/// \brief Get diagnostic %select index for tag kind for
732/// record diagnostic message.
733/// WARNING: Indexes apply to particular diagnostics only!
734///
735/// \returns diagnostic %select index.
736static unsigned getRecordDiagFromTagKind(TagTypeKind Tag) {
737  switch (Tag) {
738  case TTK_Struct: return 0;
739  case TTK_Interface: return 1;
740  case TTK_Class:  return 2;
741  default: llvm_unreachable("Invalid tag kind for record diagnostic!");
742  }
743}
744
745// CheckConstexprFunctionDecl - Check whether a function declaration satisfies
746// the requirements of a constexpr function definition or a constexpr
747// constructor definition. If so, return true. If not, produce appropriate
748// diagnostics and return false.
749//
750// This implements C++11 [dcl.constexpr]p3,4, as amended by DR1360.
751bool Sema::CheckConstexprFunctionDecl(const FunctionDecl *NewFD) {
752  const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
753  if (MD && MD->isInstance()) {
754    // C++11 [dcl.constexpr]p4:
755    //  The definition of a constexpr constructor shall satisfy the following
756    //  constraints:
757    //  - the class shall not have any virtual base classes;
758    const CXXRecordDecl *RD = MD->getParent();
759    if (RD->getNumVBases()) {
760      Diag(NewFD->getLocation(), diag::err_constexpr_virtual_base)
761        << isa<CXXConstructorDecl>(NewFD)
762        << getRecordDiagFromTagKind(RD->getTagKind()) << RD->getNumVBases();
763      for (CXXRecordDecl::base_class_const_iterator I = RD->vbases_begin(),
764             E = RD->vbases_end(); I != E; ++I)
765        Diag(I->getLocStart(),
766             diag::note_constexpr_virtual_base_here) << I->getSourceRange();
767      return false;
768    }
769  }
770
771  if (!isa<CXXConstructorDecl>(NewFD)) {
772    // C++11 [dcl.constexpr]p3:
773    //  The definition of a constexpr function shall satisfy the following
774    //  constraints:
775    // - it shall not be virtual;
776    const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD);
777    if (Method && Method->isVirtual()) {
778      Diag(NewFD->getLocation(), diag::err_constexpr_virtual);
779
780      // If it's not obvious why this function is virtual, find an overridden
781      // function which uses the 'virtual' keyword.
782      const CXXMethodDecl *WrittenVirtual = Method;
783      while (!WrittenVirtual->isVirtualAsWritten())
784        WrittenVirtual = *WrittenVirtual->begin_overridden_methods();
785      if (WrittenVirtual != Method)
786        Diag(WrittenVirtual->getLocation(),
787             diag::note_overridden_virtual_function);
788      return false;
789    }
790
791    // - its return type shall be a literal type;
792    QualType RT = NewFD->getResultType();
793    if (!RT->isDependentType() &&
794        RequireLiteralType(NewFD->getLocation(), RT,
795                           diag::err_constexpr_non_literal_return))
796      return false;
797  }
798
799  // - each of its parameter types shall be a literal type;
800  if (!CheckConstexprParameterTypes(*this, NewFD))
801    return false;
802
803  return true;
804}
805
806/// Check the given declaration statement is legal within a constexpr function
807/// body. C++11 [dcl.constexpr]p3,p4, and C++1y [dcl.constexpr]p3.
808///
809/// \return true if the body is OK (maybe only as an extension), false if we
810///         have diagnosed a problem.
811static bool CheckConstexprDeclStmt(Sema &SemaRef, const FunctionDecl *Dcl,
812                                   DeclStmt *DS, SourceLocation &Cxx1yLoc) {
813  // C++11 [dcl.constexpr]p3 and p4:
814  //  The definition of a constexpr function(p3) or constructor(p4) [...] shall
815  //  contain only
816  for (DeclStmt::decl_iterator DclIt = DS->decl_begin(),
817         DclEnd = DS->decl_end(); DclIt != DclEnd; ++DclIt) {
818    switch ((*DclIt)->getKind()) {
819    case Decl::StaticAssert:
820    case Decl::Using:
821    case Decl::UsingShadow:
822    case Decl::UsingDirective:
823    case Decl::UnresolvedUsingTypename:
824    case Decl::UnresolvedUsingValue:
825      //   - static_assert-declarations
826      //   - using-declarations,
827      //   - using-directives,
828      continue;
829
830    case Decl::Typedef:
831    case Decl::TypeAlias: {
832      //   - typedef declarations and alias-declarations that do not define
833      //     classes or enumerations,
834      TypedefNameDecl *TN = cast<TypedefNameDecl>(*DclIt);
835      if (TN->getUnderlyingType()->isVariablyModifiedType()) {
836        // Don't allow variably-modified types in constexpr functions.
837        TypeLoc TL = TN->getTypeSourceInfo()->getTypeLoc();
838        SemaRef.Diag(TL.getBeginLoc(), diag::err_constexpr_vla)
839          << TL.getSourceRange() << TL.getType()
840          << isa<CXXConstructorDecl>(Dcl);
841        return false;
842      }
843      continue;
844    }
845
846    case Decl::Enum:
847    case Decl::CXXRecord:
848      // C++1y allows types to be defined, not just declared.
849      if (cast<TagDecl>(*DclIt)->isThisDeclarationADefinition())
850        SemaRef.Diag(DS->getLocStart(),
851                     SemaRef.getLangOpts().CPlusPlus1y
852                       ? diag::warn_cxx11_compat_constexpr_type_definition
853                       : diag::ext_constexpr_type_definition)
854          << isa<CXXConstructorDecl>(Dcl);
855      continue;
856
857    case Decl::EnumConstant:
858    case Decl::IndirectField:
859    case Decl::ParmVar:
860      // These can only appear with other declarations which are banned in
861      // C++11 and permitted in C++1y, so ignore them.
862      continue;
863
864    case Decl::Var: {
865      // C++1y [dcl.constexpr]p3 allows anything except:
866      //   a definition of a variable of non-literal type or of static or
867      //   thread storage duration or for which no initialization is performed.
868      VarDecl *VD = cast<VarDecl>(*DclIt);
869      if (VD->isThisDeclarationADefinition()) {
870        if (VD->isStaticLocal()) {
871          SemaRef.Diag(VD->getLocation(),
872                       diag::err_constexpr_local_var_static)
873            << isa<CXXConstructorDecl>(Dcl)
874            << (VD->getTLSKind() == VarDecl::TLS_Dynamic);
875          return false;
876        }
877        if (!VD->getType()->isDependentType() &&
878            SemaRef.RequireLiteralType(
879              VD->getLocation(), VD->getType(),
880              diag::err_constexpr_local_var_non_literal_type,
881              isa<CXXConstructorDecl>(Dcl)))
882          return false;
883        if (!VD->hasInit()) {
884          SemaRef.Diag(VD->getLocation(),
885                       diag::err_constexpr_local_var_no_init)
886            << isa<CXXConstructorDecl>(Dcl);
887          return false;
888        }
889      }
890      SemaRef.Diag(VD->getLocation(),
891                   SemaRef.getLangOpts().CPlusPlus1y
892                    ? diag::warn_cxx11_compat_constexpr_local_var
893                    : diag::ext_constexpr_local_var)
894        << isa<CXXConstructorDecl>(Dcl);
895      continue;
896    }
897
898    case Decl::NamespaceAlias:
899    case Decl::Function:
900      // These are disallowed in C++11 and permitted in C++1y. Allow them
901      // everywhere as an extension.
902      if (!Cxx1yLoc.isValid())
903        Cxx1yLoc = DS->getLocStart();
904      continue;
905
906    default:
907      SemaRef.Diag(DS->getLocStart(), diag::err_constexpr_body_invalid_stmt)
908        << isa<CXXConstructorDecl>(Dcl);
909      return false;
910    }
911  }
912
913  return true;
914}
915
916/// Check that the given field is initialized within a constexpr constructor.
917///
918/// \param Dcl The constexpr constructor being checked.
919/// \param Field The field being checked. This may be a member of an anonymous
920///        struct or union nested within the class being checked.
921/// \param Inits All declarations, including anonymous struct/union members and
922///        indirect members, for which any initialization was provided.
923/// \param Diagnosed Set to true if an error is produced.
924static void CheckConstexprCtorInitializer(Sema &SemaRef,
925                                          const FunctionDecl *Dcl,
926                                          FieldDecl *Field,
927                                          llvm::SmallSet<Decl*, 16> &Inits,
928                                          bool &Diagnosed) {
929  if (Field->isInvalidDecl())
930    return;
931
932  if (Field->isUnnamedBitfield())
933    return;
934
935  if (Field->isAnonymousStructOrUnion() &&
936      Field->getType()->getAsCXXRecordDecl()->isEmpty())
937    return;
938
939  if (!Inits.count(Field)) {
940    if (!Diagnosed) {
941      SemaRef.Diag(Dcl->getLocation(), diag::err_constexpr_ctor_missing_init);
942      Diagnosed = true;
943    }
944    SemaRef.Diag(Field->getLocation(), diag::note_constexpr_ctor_missing_init);
945  } else if (Field->isAnonymousStructOrUnion()) {
946    const RecordDecl *RD = Field->getType()->castAs<RecordType>()->getDecl();
947    for (RecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end();
948         I != E; ++I)
949      // If an anonymous union contains an anonymous struct of which any member
950      // is initialized, all members must be initialized.
951      if (!RD->isUnion() || Inits.count(*I))
952        CheckConstexprCtorInitializer(SemaRef, Dcl, *I, Inits, Diagnosed);
953  }
954}
955
956/// Check the provided statement is allowed in a constexpr function
957/// definition.
958static bool
959CheckConstexprFunctionStmt(Sema &SemaRef, const FunctionDecl *Dcl, Stmt *S,
960                           SmallVectorImpl<SourceLocation> &ReturnStmts,
961                           SourceLocation &Cxx1yLoc) {
962  // - its function-body shall be [...] a compound-statement that contains only
963  switch (S->getStmtClass()) {
964  case Stmt::NullStmtClass:
965    //   - null statements,
966    return true;
967
968  case Stmt::DeclStmtClass:
969    //   - static_assert-declarations
970    //   - using-declarations,
971    //   - using-directives,
972    //   - typedef declarations and alias-declarations that do not define
973    //     classes or enumerations,
974    if (!CheckConstexprDeclStmt(SemaRef, Dcl, cast<DeclStmt>(S), Cxx1yLoc))
975      return false;
976    return true;
977
978  case Stmt::ReturnStmtClass:
979    //   - and exactly one return statement;
980    if (isa<CXXConstructorDecl>(Dcl)) {
981      // C++1y allows return statements in constexpr constructors.
982      if (!Cxx1yLoc.isValid())
983        Cxx1yLoc = S->getLocStart();
984      return true;
985    }
986
987    ReturnStmts.push_back(S->getLocStart());
988    return true;
989
990  case Stmt::CompoundStmtClass: {
991    // C++1y allows compound-statements.
992    if (!Cxx1yLoc.isValid())
993      Cxx1yLoc = S->getLocStart();
994
995    CompoundStmt *CompStmt = cast<CompoundStmt>(S);
996    for (CompoundStmt::body_iterator BodyIt = CompStmt->body_begin(),
997           BodyEnd = CompStmt->body_end(); BodyIt != BodyEnd; ++BodyIt) {
998      if (!CheckConstexprFunctionStmt(SemaRef, Dcl, *BodyIt, ReturnStmts,
999                                      Cxx1yLoc))
1000        return false;
1001    }
1002    return true;
1003  }
1004
1005  case Stmt::AttributedStmtClass:
1006    if (!Cxx1yLoc.isValid())
1007      Cxx1yLoc = S->getLocStart();
1008    return true;
1009
1010  case Stmt::IfStmtClass: {
1011    // C++1y allows if-statements.
1012    if (!Cxx1yLoc.isValid())
1013      Cxx1yLoc = S->getLocStart();
1014
1015    IfStmt *If = cast<IfStmt>(S);
1016    if (!CheckConstexprFunctionStmt(SemaRef, Dcl, If->getThen(), ReturnStmts,
1017                                    Cxx1yLoc))
1018      return false;
1019    if (If->getElse() &&
1020        !CheckConstexprFunctionStmt(SemaRef, Dcl, If->getElse(), ReturnStmts,
1021                                    Cxx1yLoc))
1022      return false;
1023    return true;
1024  }
1025
1026  case Stmt::WhileStmtClass:
1027  case Stmt::DoStmtClass:
1028  case Stmt::ForStmtClass:
1029  case Stmt::CXXForRangeStmtClass:
1030  case Stmt::ContinueStmtClass:
1031    // C++1y allows all of these. We don't allow them as extensions in C++11,
1032    // because they don't make sense without variable mutation.
1033    if (!SemaRef.getLangOpts().CPlusPlus1y)
1034      break;
1035    if (!Cxx1yLoc.isValid())
1036      Cxx1yLoc = S->getLocStart();
1037    for (Stmt::child_range Children = S->children(); Children; ++Children)
1038      if (*Children &&
1039          !CheckConstexprFunctionStmt(SemaRef, Dcl, *Children, ReturnStmts,
1040                                      Cxx1yLoc))
1041        return false;
1042    return true;
1043
1044  case Stmt::SwitchStmtClass:
1045  case Stmt::CaseStmtClass:
1046  case Stmt::DefaultStmtClass:
1047  case Stmt::BreakStmtClass:
1048    // C++1y allows switch-statements, and since they don't need variable
1049    // mutation, we can reasonably allow them in C++11 as an extension.
1050    if (!Cxx1yLoc.isValid())
1051      Cxx1yLoc = S->getLocStart();
1052    for (Stmt::child_range Children = S->children(); Children; ++Children)
1053      if (*Children &&
1054          !CheckConstexprFunctionStmt(SemaRef, Dcl, *Children, ReturnStmts,
1055                                      Cxx1yLoc))
1056        return false;
1057    return true;
1058
1059  default:
1060    if (!isa<Expr>(S))
1061      break;
1062
1063    // C++1y allows expression-statements.
1064    if (!Cxx1yLoc.isValid())
1065      Cxx1yLoc = S->getLocStart();
1066    return true;
1067  }
1068
1069  SemaRef.Diag(S->getLocStart(), diag::err_constexpr_body_invalid_stmt)
1070    << isa<CXXConstructorDecl>(Dcl);
1071  return false;
1072}
1073
1074/// Check the body for the given constexpr function declaration only contains
1075/// the permitted types of statement. C++11 [dcl.constexpr]p3,p4.
1076///
1077/// \return true if the body is OK, false if we have diagnosed a problem.
1078bool Sema::CheckConstexprFunctionBody(const FunctionDecl *Dcl, Stmt *Body) {
1079  if (isa<CXXTryStmt>(Body)) {
1080    // C++11 [dcl.constexpr]p3:
1081    //  The definition of a constexpr function shall satisfy the following
1082    //  constraints: [...]
1083    // - its function-body shall be = delete, = default, or a
1084    //   compound-statement
1085    //
1086    // C++11 [dcl.constexpr]p4:
1087    //  In the definition of a constexpr constructor, [...]
1088    // - its function-body shall not be a function-try-block;
1089    Diag(Body->getLocStart(), diag::err_constexpr_function_try_block)
1090      << isa<CXXConstructorDecl>(Dcl);
1091    return false;
1092  }
1093
1094  SmallVector<SourceLocation, 4> ReturnStmts;
1095
1096  // - its function-body shall be [...] a compound-statement that contains only
1097  //   [... list of cases ...]
1098  CompoundStmt *CompBody = cast<CompoundStmt>(Body);
1099  SourceLocation Cxx1yLoc;
1100  for (CompoundStmt::body_iterator BodyIt = CompBody->body_begin(),
1101         BodyEnd = CompBody->body_end(); BodyIt != BodyEnd; ++BodyIt) {
1102    if (!CheckConstexprFunctionStmt(*this, Dcl, *BodyIt, ReturnStmts, Cxx1yLoc))
1103      return false;
1104  }
1105
1106  if (Cxx1yLoc.isValid())
1107    Diag(Cxx1yLoc,
1108         getLangOpts().CPlusPlus1y
1109           ? diag::warn_cxx11_compat_constexpr_body_invalid_stmt
1110           : diag::ext_constexpr_body_invalid_stmt)
1111      << isa<CXXConstructorDecl>(Dcl);
1112
1113  if (const CXXConstructorDecl *Constructor
1114        = dyn_cast<CXXConstructorDecl>(Dcl)) {
1115    const CXXRecordDecl *RD = Constructor->getParent();
1116    // DR1359:
1117    // - every non-variant non-static data member and base class sub-object
1118    //   shall be initialized;
1119    // - if the class is a non-empty union, or for each non-empty anonymous
1120    //   union member of a non-union class, exactly one non-static data member
1121    //   shall be initialized;
1122    if (RD->isUnion()) {
1123      if (Constructor->getNumCtorInitializers() == 0 && !RD->isEmpty()) {
1124        Diag(Dcl->getLocation(), diag::err_constexpr_union_ctor_no_init);
1125        return false;
1126      }
1127    } else if (!Constructor->isDependentContext() &&
1128               !Constructor->isDelegatingConstructor()) {
1129      assert(RD->getNumVBases() == 0 && "constexpr ctor with virtual bases");
1130
1131      // Skip detailed checking if we have enough initializers, and we would
1132      // allow at most one initializer per member.
1133      bool AnyAnonStructUnionMembers = false;
1134      unsigned Fields = 0;
1135      for (CXXRecordDecl::field_iterator I = RD->field_begin(),
1136           E = RD->field_end(); I != E; ++I, ++Fields) {
1137        if (I->isAnonymousStructOrUnion()) {
1138          AnyAnonStructUnionMembers = true;
1139          break;
1140        }
1141      }
1142      if (AnyAnonStructUnionMembers ||
1143          Constructor->getNumCtorInitializers() != RD->getNumBases() + Fields) {
1144        // Check initialization of non-static data members. Base classes are
1145        // always initialized so do not need to be checked. Dependent bases
1146        // might not have initializers in the member initializer list.
1147        llvm::SmallSet<Decl*, 16> Inits;
1148        for (CXXConstructorDecl::init_const_iterator
1149               I = Constructor->init_begin(), E = Constructor->init_end();
1150             I != E; ++I) {
1151          if (FieldDecl *FD = (*I)->getMember())
1152            Inits.insert(FD);
1153          else if (IndirectFieldDecl *ID = (*I)->getIndirectMember())
1154            Inits.insert(ID->chain_begin(), ID->chain_end());
1155        }
1156
1157        bool Diagnosed = false;
1158        for (CXXRecordDecl::field_iterator I = RD->field_begin(),
1159             E = RD->field_end(); I != E; ++I)
1160          CheckConstexprCtorInitializer(*this, Dcl, *I, Inits, Diagnosed);
1161        if (Diagnosed)
1162          return false;
1163      }
1164    }
1165  } else {
1166    if (ReturnStmts.empty()) {
1167      // C++1y doesn't require constexpr functions to contain a 'return'
1168      // statement. We still do, unless the return type is void, because
1169      // otherwise if there's no return statement, the function cannot
1170      // be used in a core constant expression.
1171      bool OK = getLangOpts().CPlusPlus1y && Dcl->getResultType()->isVoidType();
1172      Diag(Dcl->getLocation(),
1173           OK ? diag::warn_cxx11_compat_constexpr_body_no_return
1174              : diag::err_constexpr_body_no_return);
1175      return OK;
1176    }
1177    if (ReturnStmts.size() > 1) {
1178      Diag(ReturnStmts.back(),
1179           getLangOpts().CPlusPlus1y
1180             ? diag::warn_cxx11_compat_constexpr_body_multiple_return
1181             : diag::ext_constexpr_body_multiple_return);
1182      for (unsigned I = 0; I < ReturnStmts.size() - 1; ++I)
1183        Diag(ReturnStmts[I], diag::note_constexpr_body_previous_return);
1184    }
1185  }
1186
1187  // C++11 [dcl.constexpr]p5:
1188  //   if no function argument values exist such that the function invocation
1189  //   substitution would produce a constant expression, the program is
1190  //   ill-formed; no diagnostic required.
1191  // C++11 [dcl.constexpr]p3:
1192  //   - every constructor call and implicit conversion used in initializing the
1193  //     return value shall be one of those allowed in a constant expression.
1194  // C++11 [dcl.constexpr]p4:
1195  //   - every constructor involved in initializing non-static data members and
1196  //     base class sub-objects shall be a constexpr constructor.
1197  SmallVector<PartialDiagnosticAt, 8> Diags;
1198  if (!Expr::isPotentialConstantExpr(Dcl, Diags)) {
1199    Diag(Dcl->getLocation(), diag::ext_constexpr_function_never_constant_expr)
1200      << isa<CXXConstructorDecl>(Dcl);
1201    for (size_t I = 0, N = Diags.size(); I != N; ++I)
1202      Diag(Diags[I].first, Diags[I].second);
1203    // Don't return false here: we allow this for compatibility in
1204    // system headers.
1205  }
1206
1207  return true;
1208}
1209
1210/// isCurrentClassName - Determine whether the identifier II is the
1211/// name of the class type currently being defined. In the case of
1212/// nested classes, this will only return true if II is the name of
1213/// the innermost class.
1214bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *,
1215                              const CXXScopeSpec *SS) {
1216  assert(getLangOpts().CPlusPlus && "No class names in C!");
1217
1218  CXXRecordDecl *CurDecl;
1219  if (SS && SS->isSet() && !SS->isInvalid()) {
1220    DeclContext *DC = computeDeclContext(*SS, true);
1221    CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
1222  } else
1223    CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
1224
1225  if (CurDecl && CurDecl->getIdentifier())
1226    return &II == CurDecl->getIdentifier();
1227  return false;
1228}
1229
1230/// \brief Determine whether the given class is a base class of the given
1231/// class, including looking at dependent bases.
1232static bool findCircularInheritance(const CXXRecordDecl *Class,
1233                                    const CXXRecordDecl *Current) {
1234  SmallVector<const CXXRecordDecl*, 8> Queue;
1235
1236  Class = Class->getCanonicalDecl();
1237  while (true) {
1238    for (CXXRecordDecl::base_class_const_iterator I = Current->bases_begin(),
1239                                                  E = Current->bases_end();
1240         I != E; ++I) {
1241      CXXRecordDecl *Base = I->getType()->getAsCXXRecordDecl();
1242      if (!Base)
1243        continue;
1244
1245      Base = Base->getDefinition();
1246      if (!Base)
1247        continue;
1248
1249      if (Base->getCanonicalDecl() == Class)
1250        return true;
1251
1252      Queue.push_back(Base);
1253    }
1254
1255    if (Queue.empty())
1256      return false;
1257
1258    Current = Queue.pop_back_val();
1259  }
1260
1261  return false;
1262}
1263
1264/// \brief Check the validity of a C++ base class specifier.
1265///
1266/// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
1267/// and returns NULL otherwise.
1268CXXBaseSpecifier *
1269Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
1270                         SourceRange SpecifierRange,
1271                         bool Virtual, AccessSpecifier Access,
1272                         TypeSourceInfo *TInfo,
1273                         SourceLocation EllipsisLoc) {
1274  QualType BaseType = TInfo->getType();
1275
1276  // C++ [class.union]p1:
1277  //   A union shall not have base classes.
1278  if (Class->isUnion()) {
1279    Diag(Class->getLocation(), diag::err_base_clause_on_union)
1280      << SpecifierRange;
1281    return 0;
1282  }
1283
1284  if (EllipsisLoc.isValid() &&
1285      !TInfo->getType()->containsUnexpandedParameterPack()) {
1286    Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
1287      << TInfo->getTypeLoc().getSourceRange();
1288    EllipsisLoc = SourceLocation();
1289  }
1290
1291  SourceLocation BaseLoc = TInfo->getTypeLoc().getBeginLoc();
1292
1293  if (BaseType->isDependentType()) {
1294    // Make sure that we don't have circular inheritance among our dependent
1295    // bases. For non-dependent bases, the check for completeness below handles
1296    // this.
1297    if (CXXRecordDecl *BaseDecl = BaseType->getAsCXXRecordDecl()) {
1298      if (BaseDecl->getCanonicalDecl() == Class->getCanonicalDecl() ||
1299          ((BaseDecl = BaseDecl->getDefinition()) &&
1300           findCircularInheritance(Class, BaseDecl))) {
1301        Diag(BaseLoc, diag::err_circular_inheritance)
1302          << BaseType << Context.getTypeDeclType(Class);
1303
1304        if (BaseDecl->getCanonicalDecl() != Class->getCanonicalDecl())
1305          Diag(BaseDecl->getLocation(), diag::note_previous_decl)
1306            << BaseType;
1307
1308        return 0;
1309      }
1310    }
1311
1312    return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
1313                                          Class->getTagKind() == TTK_Class,
1314                                          Access, TInfo, EllipsisLoc);
1315  }
1316
1317  // Base specifiers must be record types.
1318  if (!BaseType->isRecordType()) {
1319    Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
1320    return 0;
1321  }
1322
1323  // C++ [class.union]p1:
1324  //   A union shall not be used as a base class.
1325  if (BaseType->isUnionType()) {
1326    Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
1327    return 0;
1328  }
1329
1330  // C++ [class.derived]p2:
1331  //   The class-name in a base-specifier shall not be an incompletely
1332  //   defined class.
1333  if (RequireCompleteType(BaseLoc, BaseType,
1334                          diag::err_incomplete_base_class, SpecifierRange)) {
1335    Class->setInvalidDecl();
1336    return 0;
1337  }
1338
1339  // If the base class is polymorphic or isn't empty, the new one is/isn't, too.
1340  RecordDecl *BaseDecl = BaseType->getAs<RecordType>()->getDecl();
1341  assert(BaseDecl && "Record type has no declaration");
1342  BaseDecl = BaseDecl->getDefinition();
1343  assert(BaseDecl && "Base type is not incomplete, but has no definition");
1344  CXXRecordDecl *CXXBaseDecl = cast<CXXRecordDecl>(BaseDecl);
1345  assert(CXXBaseDecl && "Base type is not a C++ type");
1346
1347  // C++ [class]p3:
1348  //   If a class is marked final and it appears as a base-type-specifier in
1349  //   base-clause, the program is ill-formed.
1350  if (CXXBaseDecl->hasAttr<FinalAttr>()) {
1351    Diag(BaseLoc, diag::err_class_marked_final_used_as_base)
1352      << CXXBaseDecl->getDeclName();
1353    Diag(CXXBaseDecl->getLocation(), diag::note_previous_decl)
1354      << CXXBaseDecl->getDeclName();
1355    return 0;
1356  }
1357
1358  if (BaseDecl->isInvalidDecl())
1359    Class->setInvalidDecl();
1360
1361  // Create the base specifier.
1362  return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
1363                                        Class->getTagKind() == TTK_Class,
1364                                        Access, TInfo, EllipsisLoc);
1365}
1366
1367/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
1368/// one entry in the base class list of a class specifier, for
1369/// example:
1370///    class foo : public bar, virtual private baz {
1371/// 'public bar' and 'virtual private baz' are each base-specifiers.
1372BaseResult
1373Sema::ActOnBaseSpecifier(Decl *classdecl, SourceRange SpecifierRange,
1374                         ParsedAttributes &Attributes,
1375                         bool Virtual, AccessSpecifier Access,
1376                         ParsedType basetype, SourceLocation BaseLoc,
1377                         SourceLocation EllipsisLoc) {
1378  if (!classdecl)
1379    return true;
1380
1381  AdjustDeclIfTemplate(classdecl);
1382  CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(classdecl);
1383  if (!Class)
1384    return true;
1385
1386  // We do not support any C++11 attributes on base-specifiers yet.
1387  // Diagnose any attributes we see.
1388  if (!Attributes.empty()) {
1389    for (AttributeList *Attr = Attributes.getList(); Attr;
1390         Attr = Attr->getNext()) {
1391      if (Attr->isInvalid() ||
1392          Attr->getKind() == AttributeList::IgnoredAttribute)
1393        continue;
1394      Diag(Attr->getLoc(),
1395           Attr->getKind() == AttributeList::UnknownAttribute
1396             ? diag::warn_unknown_attribute_ignored
1397             : diag::err_base_specifier_attribute)
1398        << Attr->getName();
1399    }
1400  }
1401
1402  TypeSourceInfo *TInfo = 0;
1403  GetTypeFromParser(basetype, &TInfo);
1404
1405  if (EllipsisLoc.isInvalid() &&
1406      DiagnoseUnexpandedParameterPack(SpecifierRange.getBegin(), TInfo,
1407                                      UPPC_BaseType))
1408    return true;
1409
1410  if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
1411                                                      Virtual, Access, TInfo,
1412                                                      EllipsisLoc))
1413    return BaseSpec;
1414  else
1415    Class->setInvalidDecl();
1416
1417  return true;
1418}
1419
1420/// \brief Performs the actual work of attaching the given base class
1421/// specifiers to a C++ class.
1422bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, CXXBaseSpecifier **Bases,
1423                                unsigned NumBases) {
1424 if (NumBases == 0)
1425    return false;
1426
1427  // Used to keep track of which base types we have already seen, so
1428  // that we can properly diagnose redundant direct base types. Note
1429  // that the key is always the unqualified canonical type of the base
1430  // class.
1431  std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
1432
1433  // Copy non-redundant base specifiers into permanent storage.
1434  unsigned NumGoodBases = 0;
1435  bool Invalid = false;
1436  for (unsigned idx = 0; idx < NumBases; ++idx) {
1437    QualType NewBaseType
1438      = Context.getCanonicalType(Bases[idx]->getType());
1439    NewBaseType = NewBaseType.getLocalUnqualifiedType();
1440
1441    CXXBaseSpecifier *&KnownBase = KnownBaseTypes[NewBaseType];
1442    if (KnownBase) {
1443      // C++ [class.mi]p3:
1444      //   A class shall not be specified as a direct base class of a
1445      //   derived class more than once.
1446      Diag(Bases[idx]->getLocStart(),
1447           diag::err_duplicate_base_class)
1448        << KnownBase->getType()
1449        << Bases[idx]->getSourceRange();
1450
1451      // Delete the duplicate base class specifier; we're going to
1452      // overwrite its pointer later.
1453      Context.Deallocate(Bases[idx]);
1454
1455      Invalid = true;
1456    } else {
1457      // Okay, add this new base class.
1458      KnownBase = Bases[idx];
1459      Bases[NumGoodBases++] = Bases[idx];
1460      if (const RecordType *Record = NewBaseType->getAs<RecordType>()) {
1461        const CXXRecordDecl *RD = cast<CXXRecordDecl>(Record->getDecl());
1462        if (Class->isInterface() &&
1463              (!RD->isInterface() ||
1464               KnownBase->getAccessSpecifier() != AS_public)) {
1465          // The Microsoft extension __interface does not permit bases that
1466          // are not themselves public interfaces.
1467          Diag(KnownBase->getLocStart(), diag::err_invalid_base_in_interface)
1468            << getRecordDiagFromTagKind(RD->getTagKind()) << RD->getName()
1469            << RD->getSourceRange();
1470          Invalid = true;
1471        }
1472        if (RD->hasAttr<WeakAttr>())
1473          Class->addAttr(::new (Context) WeakAttr(SourceRange(), Context));
1474      }
1475    }
1476  }
1477
1478  // Attach the remaining base class specifiers to the derived class.
1479  Class->setBases(Bases, NumGoodBases);
1480
1481  // Delete the remaining (good) base class specifiers, since their
1482  // data has been copied into the CXXRecordDecl.
1483  for (unsigned idx = 0; idx < NumGoodBases; ++idx)
1484    Context.Deallocate(Bases[idx]);
1485
1486  return Invalid;
1487}
1488
1489/// ActOnBaseSpecifiers - Attach the given base specifiers to the
1490/// class, after checking whether there are any duplicate base
1491/// classes.
1492void Sema::ActOnBaseSpecifiers(Decl *ClassDecl, CXXBaseSpecifier **Bases,
1493                               unsigned NumBases) {
1494  if (!ClassDecl || !Bases || !NumBases)
1495    return;
1496
1497  AdjustDeclIfTemplate(ClassDecl);
1498  AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl), Bases, NumBases);
1499}
1500
1501/// \brief Determine whether the type \p Derived is a C++ class that is
1502/// derived from the type \p Base.
1503bool Sema::IsDerivedFrom(QualType Derived, QualType Base) {
1504  if (!getLangOpts().CPlusPlus)
1505    return false;
1506
1507  CXXRecordDecl *DerivedRD = Derived->getAsCXXRecordDecl();
1508  if (!DerivedRD)
1509    return false;
1510
1511  CXXRecordDecl *BaseRD = Base->getAsCXXRecordDecl();
1512  if (!BaseRD)
1513    return false;
1514
1515  // If either the base or the derived type is invalid, don't try to
1516  // check whether one is derived from the other.
1517  if (BaseRD->isInvalidDecl() || DerivedRD->isInvalidDecl())
1518    return false;
1519
1520  // FIXME: instantiate DerivedRD if necessary.  We need a PoI for this.
1521  return DerivedRD->hasDefinition() && DerivedRD->isDerivedFrom(BaseRD);
1522}
1523
1524/// \brief Determine whether the type \p Derived is a C++ class that is
1525/// derived from the type \p Base.
1526bool Sema::IsDerivedFrom(QualType Derived, QualType Base, CXXBasePaths &Paths) {
1527  if (!getLangOpts().CPlusPlus)
1528    return false;
1529
1530  CXXRecordDecl *DerivedRD = Derived->getAsCXXRecordDecl();
1531  if (!DerivedRD)
1532    return false;
1533
1534  CXXRecordDecl *BaseRD = Base->getAsCXXRecordDecl();
1535  if (!BaseRD)
1536    return false;
1537
1538  return DerivedRD->isDerivedFrom(BaseRD, Paths);
1539}
1540
1541void Sema::BuildBasePathArray(const CXXBasePaths &Paths,
1542                              CXXCastPath &BasePathArray) {
1543  assert(BasePathArray.empty() && "Base path array must be empty!");
1544  assert(Paths.isRecordingPaths() && "Must record paths!");
1545
1546  const CXXBasePath &Path = Paths.front();
1547
1548  // We first go backward and check if we have a virtual base.
1549  // FIXME: It would be better if CXXBasePath had the base specifier for
1550  // the nearest virtual base.
1551  unsigned Start = 0;
1552  for (unsigned I = Path.size(); I != 0; --I) {
1553    if (Path[I - 1].Base->isVirtual()) {
1554      Start = I - 1;
1555      break;
1556    }
1557  }
1558
1559  // Now add all bases.
1560  for (unsigned I = Start, E = Path.size(); I != E; ++I)
1561    BasePathArray.push_back(const_cast<CXXBaseSpecifier*>(Path[I].Base));
1562}
1563
1564/// \brief Determine whether the given base path includes a virtual
1565/// base class.
1566bool Sema::BasePathInvolvesVirtualBase(const CXXCastPath &BasePath) {
1567  for (CXXCastPath::const_iterator B = BasePath.begin(),
1568                                BEnd = BasePath.end();
1569       B != BEnd; ++B)
1570    if ((*B)->isVirtual())
1571      return true;
1572
1573  return false;
1574}
1575
1576/// CheckDerivedToBaseConversion - Check whether the Derived-to-Base
1577/// conversion (where Derived and Base are class types) is
1578/// well-formed, meaning that the conversion is unambiguous (and
1579/// that all of the base classes are accessible). Returns true
1580/// and emits a diagnostic if the code is ill-formed, returns false
1581/// otherwise. Loc is the location where this routine should point to
1582/// if there is an error, and Range is the source range to highlight
1583/// if there is an error.
1584bool
1585Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
1586                                   unsigned InaccessibleBaseID,
1587                                   unsigned AmbigiousBaseConvID,
1588                                   SourceLocation Loc, SourceRange Range,
1589                                   DeclarationName Name,
1590                                   CXXCastPath *BasePath) {
1591  // First, determine whether the path from Derived to Base is
1592  // ambiguous. This is slightly more expensive than checking whether
1593  // the Derived to Base conversion exists, because here we need to
1594  // explore multiple paths to determine if there is an ambiguity.
1595  CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
1596                     /*DetectVirtual=*/false);
1597  bool DerivationOkay = IsDerivedFrom(Derived, Base, Paths);
1598  assert(DerivationOkay &&
1599         "Can only be used with a derived-to-base conversion");
1600  (void)DerivationOkay;
1601
1602  if (!Paths.isAmbiguous(Context.getCanonicalType(Base).getUnqualifiedType())) {
1603    if (InaccessibleBaseID) {
1604      // Check that the base class can be accessed.
1605      switch (CheckBaseClassAccess(Loc, Base, Derived, Paths.front(),
1606                                   InaccessibleBaseID)) {
1607        case AR_inaccessible:
1608          return true;
1609        case AR_accessible:
1610        case AR_dependent:
1611        case AR_delayed:
1612          break;
1613      }
1614    }
1615
1616    // Build a base path if necessary.
1617    if (BasePath)
1618      BuildBasePathArray(Paths, *BasePath);
1619    return false;
1620  }
1621
1622  if (AmbigiousBaseConvID) {
1623    // We know that the derived-to-base conversion is ambiguous, and
1624    // we're going to produce a diagnostic. Perform the derived-to-base
1625    // search just one more time to compute all of the possible paths so
1626    // that we can print them out. This is more expensive than any of
1627    // the previous derived-to-base checks we've done, but at this point
1628    // performance isn't as much of an issue.
1629    Paths.clear();
1630    Paths.setRecordingPaths(true);
1631    bool StillOkay = IsDerivedFrom(Derived, Base, Paths);
1632    assert(StillOkay && "Can only be used with a derived-to-base conversion");
1633    (void)StillOkay;
1634
1635    // Build up a textual representation of the ambiguous paths, e.g.,
1636    // D -> B -> A, that will be used to illustrate the ambiguous
1637    // conversions in the diagnostic. We only print one of the paths
1638    // to each base class subobject.
1639    std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
1640
1641    Diag(Loc, AmbigiousBaseConvID)
1642    << Derived << Base << PathDisplayStr << Range << Name;
1643  }
1644  return true;
1645}
1646
1647bool
1648Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
1649                                   SourceLocation Loc, SourceRange Range,
1650                                   CXXCastPath *BasePath,
1651                                   bool IgnoreAccess) {
1652  return CheckDerivedToBaseConversion(Derived, Base,
1653                                      IgnoreAccess ? 0
1654                                       : diag::err_upcast_to_inaccessible_base,
1655                                      diag::err_ambiguous_derived_to_base_conv,
1656                                      Loc, Range, DeclarationName(),
1657                                      BasePath);
1658}
1659
1660
1661/// @brief Builds a string representing ambiguous paths from a
1662/// specific derived class to different subobjects of the same base
1663/// class.
1664///
1665/// This function builds a string that can be used in error messages
1666/// to show the different paths that one can take through the
1667/// inheritance hierarchy to go from the derived class to different
1668/// subobjects of a base class. The result looks something like this:
1669/// @code
1670/// struct D -> struct B -> struct A
1671/// struct D -> struct C -> struct A
1672/// @endcode
1673std::string Sema::getAmbiguousPathsDisplayString(CXXBasePaths &Paths) {
1674  std::string PathDisplayStr;
1675  std::set<unsigned> DisplayedPaths;
1676  for (CXXBasePaths::paths_iterator Path = Paths.begin();
1677       Path != Paths.end(); ++Path) {
1678    if (DisplayedPaths.insert(Path->back().SubobjectNumber).second) {
1679      // We haven't displayed a path to this particular base
1680      // class subobject yet.
1681      PathDisplayStr += "\n    ";
1682      PathDisplayStr += Context.getTypeDeclType(Paths.getOrigin()).getAsString();
1683      for (CXXBasePath::const_iterator Element = Path->begin();
1684           Element != Path->end(); ++Element)
1685        PathDisplayStr += " -> " + Element->Base->getType().getAsString();
1686    }
1687  }
1688
1689  return PathDisplayStr;
1690}
1691
1692//===----------------------------------------------------------------------===//
1693// C++ class member Handling
1694//===----------------------------------------------------------------------===//
1695
1696/// ActOnAccessSpecifier - Parsed an access specifier followed by a colon.
1697bool Sema::ActOnAccessSpecifier(AccessSpecifier Access,
1698                                SourceLocation ASLoc,
1699                                SourceLocation ColonLoc,
1700                                AttributeList *Attrs) {
1701  assert(Access != AS_none && "Invalid kind for syntactic access specifier!");
1702  AccessSpecDecl *ASDecl = AccessSpecDecl::Create(Context, Access, CurContext,
1703                                                  ASLoc, ColonLoc);
1704  CurContext->addHiddenDecl(ASDecl);
1705  return ProcessAccessDeclAttributeList(ASDecl, Attrs);
1706}
1707
1708/// CheckOverrideControl - Check C++11 override control semantics.
1709void Sema::CheckOverrideControl(NamedDecl *D) {
1710  if (D->isInvalidDecl())
1711    return;
1712
1713  // We only care about "override" and "final" declarations.
1714  if (!D->hasAttr<OverrideAttr>() && !D->hasAttr<FinalAttr>())
1715    return;
1716
1717  CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D);
1718
1719  // We can't check dependent instance methods.
1720  if (MD && MD->isInstance() &&
1721      (MD->getParent()->hasAnyDependentBases() ||
1722       MD->getType()->isDependentType()))
1723    return;
1724
1725  if (MD && !MD->isVirtual()) {
1726    // If we have a non-virtual method, check if if hides a virtual method.
1727    // (In that case, it's most likely the method has the wrong type.)
1728    SmallVector<CXXMethodDecl *, 8> OverloadedMethods;
1729    FindHiddenVirtualMethods(MD, OverloadedMethods);
1730
1731    if (!OverloadedMethods.empty()) {
1732      if (OverrideAttr *OA = D->getAttr<OverrideAttr>()) {
1733        Diag(OA->getLocation(),
1734             diag::override_keyword_hides_virtual_member_function)
1735          << "override" << (OverloadedMethods.size() > 1);
1736      } else if (FinalAttr *FA = D->getAttr<FinalAttr>()) {
1737        Diag(FA->getLocation(),
1738             diag::override_keyword_hides_virtual_member_function)
1739            << "final" << (OverloadedMethods.size() > 1);
1740      }
1741      NoteHiddenVirtualMethods(MD, OverloadedMethods);
1742      MD->setInvalidDecl();
1743      return;
1744    }
1745    // Fall through into the general case diagnostic.
1746    // FIXME: We might want to attempt typo correction here.
1747  }
1748
1749  if (!MD || !MD->isVirtual()) {
1750    if (OverrideAttr *OA = D->getAttr<OverrideAttr>()) {
1751      Diag(OA->getLocation(),
1752           diag::override_keyword_only_allowed_on_virtual_member_functions)
1753        << "override" << FixItHint::CreateRemoval(OA->getLocation());
1754      D->dropAttr<OverrideAttr>();
1755    }
1756    if (FinalAttr *FA = D->getAttr<FinalAttr>()) {
1757      Diag(FA->getLocation(),
1758           diag::override_keyword_only_allowed_on_virtual_member_functions)
1759        << "final" << FixItHint::CreateRemoval(FA->getLocation());
1760      D->dropAttr<FinalAttr>();
1761    }
1762    return;
1763  }
1764
1765  // C++11 [class.virtual]p5:
1766  //   If a virtual function is marked with the virt-specifier override and
1767  //   does not override a member function of a base class, the program is
1768  //   ill-formed.
1769  bool HasOverriddenMethods =
1770    MD->begin_overridden_methods() != MD->end_overridden_methods();
1771  if (MD->hasAttr<OverrideAttr>() && !HasOverriddenMethods)
1772    Diag(MD->getLocation(), diag::err_function_marked_override_not_overriding)
1773      << MD->getDeclName();
1774}
1775
1776/// CheckIfOverriddenFunctionIsMarkedFinal - Checks whether a virtual member
1777/// function overrides a virtual member function marked 'final', according to
1778/// C++11 [class.virtual]p4.
1779bool Sema::CheckIfOverriddenFunctionIsMarkedFinal(const CXXMethodDecl *New,
1780                                                  const CXXMethodDecl *Old) {
1781  if (!Old->hasAttr<FinalAttr>())
1782    return false;
1783
1784  Diag(New->getLocation(), diag::err_final_function_overridden)
1785    << New->getDeclName();
1786  Diag(Old->getLocation(), diag::note_overridden_virtual_function);
1787  return true;
1788}
1789
1790static bool InitializationHasSideEffects(const FieldDecl &FD) {
1791  const Type *T = FD.getType()->getBaseElementTypeUnsafe();
1792  // FIXME: Destruction of ObjC lifetime types has side-effects.
1793  if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
1794    return !RD->isCompleteDefinition() ||
1795           !RD->hasTrivialDefaultConstructor() ||
1796           !RD->hasTrivialDestructor();
1797  return false;
1798}
1799
1800static AttributeList *getMSPropertyAttr(AttributeList *list) {
1801  for (AttributeList* it = list; it != 0; it = it->getNext())
1802    if (it->isDeclspecPropertyAttribute())
1803      return it;
1804  return 0;
1805}
1806
1807/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
1808/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
1809/// bitfield width if there is one, 'InitExpr' specifies the initializer if
1810/// one has been parsed, and 'InitStyle' is set if an in-class initializer is
1811/// present (but parsing it has been deferred).
1812NamedDecl *
1813Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
1814                               MultiTemplateParamsArg TemplateParameterLists,
1815                               Expr *BW, const VirtSpecifiers &VS,
1816                               InClassInitStyle InitStyle) {
1817  const DeclSpec &DS = D.getDeclSpec();
1818  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
1819  DeclarationName Name = NameInfo.getName();
1820  SourceLocation Loc = NameInfo.getLoc();
1821
1822  // For anonymous bitfields, the location should point to the type.
1823  if (Loc.isInvalid())
1824    Loc = D.getLocStart();
1825
1826  Expr *BitWidth = static_cast<Expr*>(BW);
1827
1828  assert(isa<CXXRecordDecl>(CurContext));
1829  assert(!DS.isFriendSpecified());
1830
1831  bool isFunc = D.isDeclarationOfFunction();
1832
1833  if (cast<CXXRecordDecl>(CurContext)->isInterface()) {
1834    // The Microsoft extension __interface only permits public member functions
1835    // and prohibits constructors, destructors, operators, non-public member
1836    // functions, static methods and data members.
1837    unsigned InvalidDecl;
1838    bool ShowDeclName = true;
1839    if (!isFunc)
1840      InvalidDecl = (DS.getStorageClassSpec() == DeclSpec::SCS_typedef) ? 0 : 1;
1841    else if (AS != AS_public)
1842      InvalidDecl = 2;
1843    else if (DS.getStorageClassSpec() == DeclSpec::SCS_static)
1844      InvalidDecl = 3;
1845    else switch (Name.getNameKind()) {
1846      case DeclarationName::CXXConstructorName:
1847        InvalidDecl = 4;
1848        ShowDeclName = false;
1849        break;
1850
1851      case DeclarationName::CXXDestructorName:
1852        InvalidDecl = 5;
1853        ShowDeclName = false;
1854        break;
1855
1856      case DeclarationName::CXXOperatorName:
1857      case DeclarationName::CXXConversionFunctionName:
1858        InvalidDecl = 6;
1859        break;
1860
1861      default:
1862        InvalidDecl = 0;
1863        break;
1864    }
1865
1866    if (InvalidDecl) {
1867      if (ShowDeclName)
1868        Diag(Loc, diag::err_invalid_member_in_interface)
1869          << (InvalidDecl-1) << Name;
1870      else
1871        Diag(Loc, diag::err_invalid_member_in_interface)
1872          << (InvalidDecl-1) << "";
1873      return 0;
1874    }
1875  }
1876
1877  // C++ 9.2p6: A member shall not be declared to have automatic storage
1878  // duration (auto, register) or with the extern storage-class-specifier.
1879  // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
1880  // data members and cannot be applied to names declared const or static,
1881  // and cannot be applied to reference members.
1882  switch (DS.getStorageClassSpec()) {
1883  case DeclSpec::SCS_unspecified:
1884  case DeclSpec::SCS_typedef:
1885  case DeclSpec::SCS_static:
1886    break;
1887  case DeclSpec::SCS_mutable:
1888    if (isFunc) {
1889      Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
1890
1891      // FIXME: It would be nicer if the keyword was ignored only for this
1892      // declarator. Otherwise we could get follow-up errors.
1893      D.getMutableDeclSpec().ClearStorageClassSpecs();
1894    }
1895    break;
1896  default:
1897    Diag(DS.getStorageClassSpecLoc(),
1898         diag::err_storageclass_invalid_for_member);
1899    D.getMutableDeclSpec().ClearStorageClassSpecs();
1900    break;
1901  }
1902
1903  bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
1904                       DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
1905                      !isFunc);
1906
1907  if (DS.isConstexprSpecified() && isInstField) {
1908    SemaDiagnosticBuilder B =
1909        Diag(DS.getConstexprSpecLoc(), diag::err_invalid_constexpr_member);
1910    SourceLocation ConstexprLoc = DS.getConstexprSpecLoc();
1911    if (InitStyle == ICIS_NoInit) {
1912      B << 0 << 0 << FixItHint::CreateReplacement(ConstexprLoc, "const");
1913      D.getMutableDeclSpec().ClearConstexprSpec();
1914      const char *PrevSpec;
1915      unsigned DiagID;
1916      bool Failed = D.getMutableDeclSpec().SetTypeQual(DeclSpec::TQ_const, ConstexprLoc,
1917                                         PrevSpec, DiagID, getLangOpts());
1918      (void)Failed;
1919      assert(!Failed && "Making a constexpr member const shouldn't fail");
1920    } else {
1921      B << 1;
1922      const char *PrevSpec;
1923      unsigned DiagID;
1924      if (D.getMutableDeclSpec().SetStorageClassSpec(
1925          *this, DeclSpec::SCS_static, ConstexprLoc, PrevSpec, DiagID)) {
1926        assert(DS.getStorageClassSpec() == DeclSpec::SCS_mutable &&
1927               "This is the only DeclSpec that should fail to be applied");
1928        B << 1;
1929      } else {
1930        B << 0 << FixItHint::CreateInsertion(ConstexprLoc, "static ");
1931        isInstField = false;
1932      }
1933    }
1934  }
1935
1936  NamedDecl *Member;
1937  if (isInstField) {
1938    CXXScopeSpec &SS = D.getCXXScopeSpec();
1939
1940    // Data members must have identifiers for names.
1941    if (!Name.isIdentifier()) {
1942      Diag(Loc, diag::err_bad_variable_name)
1943        << Name;
1944      return 0;
1945    }
1946
1947    IdentifierInfo *II = Name.getAsIdentifierInfo();
1948
1949    // Member field could not be with "template" keyword.
1950    // So TemplateParameterLists should be empty in this case.
1951    if (TemplateParameterLists.size()) {
1952      TemplateParameterList* TemplateParams = TemplateParameterLists[0];
1953      if (TemplateParams->size()) {
1954        // There is no such thing as a member field template.
1955        Diag(D.getIdentifierLoc(), diag::err_template_member)
1956            << II
1957            << SourceRange(TemplateParams->getTemplateLoc(),
1958                TemplateParams->getRAngleLoc());
1959      } else {
1960        // There is an extraneous 'template<>' for this member.
1961        Diag(TemplateParams->getTemplateLoc(),
1962            diag::err_template_member_noparams)
1963            << II
1964            << SourceRange(TemplateParams->getTemplateLoc(),
1965                TemplateParams->getRAngleLoc());
1966      }
1967      return 0;
1968    }
1969
1970    if (SS.isSet() && !SS.isInvalid()) {
1971      // The user provided a superfluous scope specifier inside a class
1972      // definition:
1973      //
1974      // class X {
1975      //   int X::member;
1976      // };
1977      if (DeclContext *DC = computeDeclContext(SS, false))
1978        diagnoseQualifiedDeclaration(SS, DC, Name, D.getIdentifierLoc());
1979      else
1980        Diag(D.getIdentifierLoc(), diag::err_member_qualification)
1981          << Name << SS.getRange();
1982
1983      SS.clear();
1984    }
1985
1986    AttributeList *MSPropertyAttr =
1987      getMSPropertyAttr(D.getDeclSpec().getAttributes().getList());
1988    if (MSPropertyAttr) {
1989      Member = HandleMSProperty(S, cast<CXXRecordDecl>(CurContext), Loc, D,
1990                                BitWidth, InitStyle, AS, MSPropertyAttr);
1991      if (!Member)
1992        return 0;
1993      isInstField = false;
1994    } else {
1995      Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D,
1996                                BitWidth, InitStyle, AS);
1997      assert(Member && "HandleField never returns null");
1998    }
1999  } else {
2000    assert(InitStyle == ICIS_NoInit || D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_static);
2001
2002    Member = HandleDeclarator(S, D, TemplateParameterLists);
2003    if (!Member)
2004      return 0;
2005
2006    // Non-instance-fields can't have a bitfield.
2007    if (BitWidth) {
2008      if (Member->isInvalidDecl()) {
2009        // don't emit another diagnostic.
2010      } else if (isa<VarDecl>(Member)) {
2011        // C++ 9.6p3: A bit-field shall not be a static member.
2012        // "static member 'A' cannot be a bit-field"
2013        Diag(Loc, diag::err_static_not_bitfield)
2014          << Name << BitWidth->getSourceRange();
2015      } else if (isa<TypedefDecl>(Member)) {
2016        // "typedef member 'x' cannot be a bit-field"
2017        Diag(Loc, diag::err_typedef_not_bitfield)
2018          << Name << BitWidth->getSourceRange();
2019      } else {
2020        // A function typedef ("typedef int f(); f a;").
2021        // C++ 9.6p3: A bit-field shall have integral or enumeration type.
2022        Diag(Loc, diag::err_not_integral_type_bitfield)
2023          << Name << cast<ValueDecl>(Member)->getType()
2024          << BitWidth->getSourceRange();
2025      }
2026
2027      BitWidth = 0;
2028      Member->setInvalidDecl();
2029    }
2030
2031    Member->setAccess(AS);
2032
2033    // If we have declared a member function template or static data member
2034    // template, set the access of the templated declaration as well.
2035    if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Member))
2036      FunTmpl->getTemplatedDecl()->setAccess(AS);
2037    else if (VarTemplateDecl *VarTmpl = dyn_cast<VarTemplateDecl>(Member))
2038      VarTmpl->getTemplatedDecl()->setAccess(AS);
2039  }
2040
2041  if (VS.isOverrideSpecified())
2042    Member->addAttr(new (Context) OverrideAttr(VS.getOverrideLoc(), Context));
2043  if (VS.isFinalSpecified())
2044    Member->addAttr(new (Context) FinalAttr(VS.getFinalLoc(), Context));
2045
2046  if (VS.getLastLocation().isValid()) {
2047    // Update the end location of a method that has a virt-specifiers.
2048    if (CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(Member))
2049      MD->setRangeEnd(VS.getLastLocation());
2050  }
2051
2052  CheckOverrideControl(Member);
2053
2054  assert((Name || isInstField) && "No identifier for non-field ?");
2055
2056  if (isInstField) {
2057    FieldDecl *FD = cast<FieldDecl>(Member);
2058    FieldCollector->Add(FD);
2059
2060    if (Diags.getDiagnosticLevel(diag::warn_unused_private_field,
2061                                 FD->getLocation())
2062          != DiagnosticsEngine::Ignored) {
2063      // Remember all explicit private FieldDecls that have a name, no side
2064      // effects and are not part of a dependent type declaration.
2065      if (!FD->isImplicit() && FD->getDeclName() &&
2066          FD->getAccess() == AS_private &&
2067          !FD->hasAttr<UnusedAttr>() &&
2068          !FD->getParent()->isDependentContext() &&
2069          !InitializationHasSideEffects(*FD))
2070        UnusedPrivateFields.insert(FD);
2071    }
2072  }
2073
2074  return Member;
2075}
2076
2077namespace {
2078  class UninitializedFieldVisitor
2079      : public EvaluatedExprVisitor<UninitializedFieldVisitor> {
2080    Sema &S;
2081    // If VD is null, this visitor will only update the Decls set.
2082    ValueDecl *VD;
2083    bool isReferenceType;
2084    // List of Decls to generate a warning on.
2085    llvm::SmallPtrSet<ValueDecl*, 4> &Decls;
2086    bool WarnOnSelfReference;
2087    // If non-null, add a note to the warning pointing back to the constructor.
2088    const CXXConstructorDecl *Constructor;
2089  public:
2090    typedef EvaluatedExprVisitor<UninitializedFieldVisitor> Inherited;
2091    UninitializedFieldVisitor(Sema &S, ValueDecl *VD,
2092                              llvm::SmallPtrSet<ValueDecl*, 4> &Decls,
2093                              bool WarnOnSelfReference,
2094                              const CXXConstructorDecl *Constructor)
2095      : Inherited(S.Context), S(S), VD(VD), isReferenceType(false), Decls(Decls),
2096        WarnOnSelfReference(WarnOnSelfReference), Constructor(Constructor) {
2097      // When VD is null, this visitor is used to detect initialization of other
2098      // fields.
2099      if (VD) {
2100        if (IndirectFieldDecl *IFD = dyn_cast<IndirectFieldDecl>(VD))
2101          this->VD = IFD->getAnonField();
2102        else
2103          this->VD = VD;
2104        isReferenceType = this->VD->getType()->isReferenceType();
2105      }
2106    }
2107
2108    void HandleMemberExpr(MemberExpr *ME, bool CheckReferenceOnly) {
2109      if (!VD)
2110        return;
2111
2112      if (CheckReferenceOnly && !isReferenceType)
2113        return;
2114
2115      if (isa<EnumConstantDecl>(ME->getMemberDecl()))
2116        return;
2117
2118      // FieldME is the inner-most MemberExpr that is not an anonymous struct
2119      // or union.
2120      MemberExpr *FieldME = ME;
2121
2122      Expr *Base = ME;
2123      while (isa<MemberExpr>(Base)) {
2124        ME = cast<MemberExpr>(Base);
2125
2126        if (isa<VarDecl>(ME->getMemberDecl()))
2127          return;
2128
2129        if (FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl()))
2130          if (!FD->isAnonymousStructOrUnion())
2131            FieldME = ME;
2132
2133        Base = ME->getBase();
2134      }
2135
2136      if (!isa<CXXThisExpr>(Base))
2137        return;
2138
2139      ValueDecl* FoundVD = FieldME->getMemberDecl();
2140
2141      if (VD == FoundVD) {
2142        if (!WarnOnSelfReference)
2143          return;
2144
2145        unsigned diag = isReferenceType
2146            ? diag::warn_reference_field_is_uninit
2147            : diag::warn_field_is_uninit;
2148        S.Diag(FieldME->getExprLoc(), diag) << VD;
2149        if (Constructor)
2150          S.Diag(Constructor->getLocation(),
2151                 diag::note_uninit_in_this_constructor);
2152        return;
2153      }
2154
2155      if (CheckReferenceOnly)
2156        return;
2157
2158      if (Decls.count(FoundVD)) {
2159        S.Diag(FieldME->getExprLoc(), diag::warn_field_is_uninit) << FoundVD;
2160        if (Constructor)
2161          S.Diag(Constructor->getLocation(),
2162                 diag::note_uninit_in_this_constructor);
2163
2164      }
2165    }
2166
2167    void HandleValue(Expr *E) {
2168      if (!VD)
2169        return;
2170
2171      E = E->IgnoreParens();
2172
2173      if (MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
2174        HandleMemberExpr(ME, false /*CheckReferenceOnly*/);
2175        return;
2176      }
2177
2178      if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
2179        HandleValue(CO->getTrueExpr());
2180        HandleValue(CO->getFalseExpr());
2181        return;
2182      }
2183
2184      if (BinaryConditionalOperator *BCO =
2185              dyn_cast<BinaryConditionalOperator>(E)) {
2186        HandleValue(BCO->getCommon());
2187        HandleValue(BCO->getFalseExpr());
2188        return;
2189      }
2190
2191      if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
2192        switch (BO->getOpcode()) {
2193        default:
2194          return;
2195        case(BO_PtrMemD):
2196        case(BO_PtrMemI):
2197          HandleValue(BO->getLHS());
2198          return;
2199        case(BO_Comma):
2200          HandleValue(BO->getRHS());
2201          return;
2202        }
2203      }
2204    }
2205
2206    void VisitMemberExpr(MemberExpr *ME) {
2207      HandleMemberExpr(ME, true /*CheckReferenceOnly*/);
2208
2209      Inherited::VisitMemberExpr(ME);
2210    }
2211
2212    void VisitImplicitCastExpr(ImplicitCastExpr *E) {
2213      if (E->getCastKind() == CK_LValueToRValue)
2214        HandleValue(E->getSubExpr());
2215
2216      Inherited::VisitImplicitCastExpr(E);
2217    }
2218
2219    void VisitCXXConstructExpr(CXXConstructExpr *E) {
2220      if (E->getConstructor()->isCopyConstructor())
2221        if (ImplicitCastExpr* ICE = dyn_cast<ImplicitCastExpr>(E->getArg(0)))
2222          if (ICE->getCastKind() == CK_NoOp)
2223            if (MemberExpr *ME = dyn_cast<MemberExpr>(ICE->getSubExpr()))
2224              HandleMemberExpr(ME, false /*CheckReferenceOnly*/);
2225
2226      Inherited::VisitCXXConstructExpr(E);
2227    }
2228
2229    void VisitCXXMemberCallExpr(CXXMemberCallExpr *E) {
2230      Expr *Callee = E->getCallee();
2231      if (isa<MemberExpr>(Callee))
2232        HandleValue(Callee);
2233
2234      Inherited::VisitCXXMemberCallExpr(E);
2235    }
2236
2237    void VisitBinaryOperator(BinaryOperator *E) {
2238      // If a field assignment is detected, remove the field from the
2239      // uninitiailized field set.
2240      if (E->getOpcode() == BO_Assign)
2241        if (MemberExpr *ME = dyn_cast<MemberExpr>(E->getLHS()))
2242          if (FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl()))
2243            Decls.erase(FD);
2244
2245      Inherited::VisitBinaryOperator(E);
2246    }
2247  };
2248  static void CheckInitExprContainsUninitializedFields(
2249      Sema &S, Expr *E, ValueDecl *VD, llvm::SmallPtrSet<ValueDecl*, 4> &Decls,
2250      bool WarnOnSelfReference, const CXXConstructorDecl *Constructor = 0) {
2251    if (Decls.size() == 0 && !WarnOnSelfReference)
2252      return;
2253
2254    if (E)
2255      UninitializedFieldVisitor(S, VD, Decls, WarnOnSelfReference, Constructor)
2256          .Visit(E);
2257  }
2258} // namespace
2259
2260/// ActOnCXXInClassMemberInitializer - This is invoked after parsing an
2261/// in-class initializer for a non-static C++ class member, and after
2262/// instantiating an in-class initializer in a class template. Such actions
2263/// are deferred until the class is complete.
2264void
2265Sema::ActOnCXXInClassMemberInitializer(Decl *D, SourceLocation InitLoc,
2266                                       Expr *InitExpr) {
2267  FieldDecl *FD = cast<FieldDecl>(D);
2268  assert(FD->getInClassInitStyle() != ICIS_NoInit &&
2269         "must set init style when field is created");
2270
2271  if (!InitExpr) {
2272    FD->setInvalidDecl();
2273    FD->removeInClassInitializer();
2274    return;
2275  }
2276
2277  if (DiagnoseUnexpandedParameterPack(InitExpr, UPPC_Initializer)) {
2278    FD->setInvalidDecl();
2279    FD->removeInClassInitializer();
2280    return;
2281  }
2282
2283  ExprResult Init = InitExpr;
2284  if (!FD->getType()->isDependentType() && !InitExpr->isTypeDependent()) {
2285    InitializedEntity Entity = InitializedEntity::InitializeMember(FD);
2286    InitializationKind Kind = FD->getInClassInitStyle() == ICIS_ListInit
2287        ? InitializationKind::CreateDirectList(InitExpr->getLocStart())
2288        : InitializationKind::CreateCopy(InitExpr->getLocStart(), InitLoc);
2289    InitializationSequence Seq(*this, Entity, Kind, InitExpr);
2290    Init = Seq.Perform(*this, Entity, Kind, InitExpr);
2291    if (Init.isInvalid()) {
2292      FD->setInvalidDecl();
2293      return;
2294    }
2295  }
2296
2297  // C++11 [class.base.init]p7:
2298  //   The initialization of each base and member constitutes a
2299  //   full-expression.
2300  Init = ActOnFinishFullExpr(Init.take(), InitLoc);
2301  if (Init.isInvalid()) {
2302    FD->setInvalidDecl();
2303    return;
2304  }
2305
2306  InitExpr = Init.release();
2307
2308  FD->setInClassInitializer(InitExpr);
2309}
2310
2311/// \brief Find the direct and/or virtual base specifiers that
2312/// correspond to the given base type, for use in base initialization
2313/// within a constructor.
2314static bool FindBaseInitializer(Sema &SemaRef,
2315                                CXXRecordDecl *ClassDecl,
2316                                QualType BaseType,
2317                                const CXXBaseSpecifier *&DirectBaseSpec,
2318                                const CXXBaseSpecifier *&VirtualBaseSpec) {
2319  // First, check for a direct base class.
2320  DirectBaseSpec = 0;
2321  for (CXXRecordDecl::base_class_const_iterator Base
2322         = ClassDecl->bases_begin();
2323       Base != ClassDecl->bases_end(); ++Base) {
2324    if (SemaRef.Context.hasSameUnqualifiedType(BaseType, Base->getType())) {
2325      // We found a direct base of this type. That's what we're
2326      // initializing.
2327      DirectBaseSpec = &*Base;
2328      break;
2329    }
2330  }
2331
2332  // Check for a virtual base class.
2333  // FIXME: We might be able to short-circuit this if we know in advance that
2334  // there are no virtual bases.
2335  VirtualBaseSpec = 0;
2336  if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
2337    // We haven't found a base yet; search the class hierarchy for a
2338    // virtual base class.
2339    CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
2340                       /*DetectVirtual=*/false);
2341    if (SemaRef.IsDerivedFrom(SemaRef.Context.getTypeDeclType(ClassDecl),
2342                              BaseType, Paths)) {
2343      for (CXXBasePaths::paths_iterator Path = Paths.begin();
2344           Path != Paths.end(); ++Path) {
2345        if (Path->back().Base->isVirtual()) {
2346          VirtualBaseSpec = Path->back().Base;
2347          break;
2348        }
2349      }
2350    }
2351  }
2352
2353  return DirectBaseSpec || VirtualBaseSpec;
2354}
2355
2356/// \brief Handle a C++ member initializer using braced-init-list syntax.
2357MemInitResult
2358Sema::ActOnMemInitializer(Decl *ConstructorD,
2359                          Scope *S,
2360                          CXXScopeSpec &SS,
2361                          IdentifierInfo *MemberOrBase,
2362                          ParsedType TemplateTypeTy,
2363                          const DeclSpec &DS,
2364                          SourceLocation IdLoc,
2365                          Expr *InitList,
2366                          SourceLocation EllipsisLoc) {
2367  return BuildMemInitializer(ConstructorD, S, SS, MemberOrBase, TemplateTypeTy,
2368                             DS, IdLoc, InitList,
2369                             EllipsisLoc);
2370}
2371
2372/// \brief Handle a C++ member initializer using parentheses syntax.
2373MemInitResult
2374Sema::ActOnMemInitializer(Decl *ConstructorD,
2375                          Scope *S,
2376                          CXXScopeSpec &SS,
2377                          IdentifierInfo *MemberOrBase,
2378                          ParsedType TemplateTypeTy,
2379                          const DeclSpec &DS,
2380                          SourceLocation IdLoc,
2381                          SourceLocation LParenLoc,
2382                          ArrayRef<Expr *> Args,
2383                          SourceLocation RParenLoc,
2384                          SourceLocation EllipsisLoc) {
2385  Expr *List = new (Context) ParenListExpr(Context, LParenLoc,
2386                                           Args, RParenLoc);
2387  return BuildMemInitializer(ConstructorD, S, SS, MemberOrBase, TemplateTypeTy,
2388                             DS, IdLoc, List, EllipsisLoc);
2389}
2390
2391namespace {
2392
2393// Callback to only accept typo corrections that can be a valid C++ member
2394// intializer: either a non-static field member or a base class.
2395class MemInitializerValidatorCCC : public CorrectionCandidateCallback {
2396public:
2397  explicit MemInitializerValidatorCCC(CXXRecordDecl *ClassDecl)
2398      : ClassDecl(ClassDecl) {}
2399
2400  bool ValidateCandidate(const TypoCorrection &candidate) LLVM_OVERRIDE {
2401    if (NamedDecl *ND = candidate.getCorrectionDecl()) {
2402      if (FieldDecl *Member = dyn_cast<FieldDecl>(ND))
2403        return Member->getDeclContext()->getRedeclContext()->Equals(ClassDecl);
2404      return isa<TypeDecl>(ND);
2405    }
2406    return false;
2407  }
2408
2409private:
2410  CXXRecordDecl *ClassDecl;
2411};
2412
2413}
2414
2415/// \brief Handle a C++ member initializer.
2416MemInitResult
2417Sema::BuildMemInitializer(Decl *ConstructorD,
2418                          Scope *S,
2419                          CXXScopeSpec &SS,
2420                          IdentifierInfo *MemberOrBase,
2421                          ParsedType TemplateTypeTy,
2422                          const DeclSpec &DS,
2423                          SourceLocation IdLoc,
2424                          Expr *Init,
2425                          SourceLocation EllipsisLoc) {
2426  if (!ConstructorD)
2427    return true;
2428
2429  AdjustDeclIfTemplate(ConstructorD);
2430
2431  CXXConstructorDecl *Constructor
2432    = dyn_cast<CXXConstructorDecl>(ConstructorD);
2433  if (!Constructor) {
2434    // The user wrote a constructor initializer on a function that is
2435    // not a C++ constructor. Ignore the error for now, because we may
2436    // have more member initializers coming; we'll diagnose it just
2437    // once in ActOnMemInitializers.
2438    return true;
2439  }
2440
2441  CXXRecordDecl *ClassDecl = Constructor->getParent();
2442
2443  // C++ [class.base.init]p2:
2444  //   Names in a mem-initializer-id are looked up in the scope of the
2445  //   constructor's class and, if not found in that scope, are looked
2446  //   up in the scope containing the constructor's definition.
2447  //   [Note: if the constructor's class contains a member with the
2448  //   same name as a direct or virtual base class of the class, a
2449  //   mem-initializer-id naming the member or base class and composed
2450  //   of a single identifier refers to the class member. A
2451  //   mem-initializer-id for the hidden base class may be specified
2452  //   using a qualified name. ]
2453  if (!SS.getScopeRep() && !TemplateTypeTy) {
2454    // Look for a member, first.
2455    DeclContext::lookup_result Result
2456      = ClassDecl->lookup(MemberOrBase);
2457    if (!Result.empty()) {
2458      ValueDecl *Member;
2459      if ((Member = dyn_cast<FieldDecl>(Result.front())) ||
2460          (Member = dyn_cast<IndirectFieldDecl>(Result.front()))) {
2461        if (EllipsisLoc.isValid())
2462          Diag(EllipsisLoc, diag::err_pack_expansion_member_init)
2463            << MemberOrBase
2464            << SourceRange(IdLoc, Init->getSourceRange().getEnd());
2465
2466        return BuildMemberInitializer(Member, Init, IdLoc);
2467      }
2468    }
2469  }
2470  // It didn't name a member, so see if it names a class.
2471  QualType BaseType;
2472  TypeSourceInfo *TInfo = 0;
2473
2474  if (TemplateTypeTy) {
2475    BaseType = GetTypeFromParser(TemplateTypeTy, &TInfo);
2476  } else if (DS.getTypeSpecType() == TST_decltype) {
2477    BaseType = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc());
2478  } else {
2479    LookupResult R(*this, MemberOrBase, IdLoc, LookupOrdinaryName);
2480    LookupParsedName(R, S, &SS);
2481
2482    TypeDecl *TyD = R.getAsSingle<TypeDecl>();
2483    if (!TyD) {
2484      if (R.isAmbiguous()) return true;
2485
2486      // We don't want access-control diagnostics here.
2487      R.suppressDiagnostics();
2488
2489      if (SS.isSet() && isDependentScopeSpecifier(SS)) {
2490        bool NotUnknownSpecialization = false;
2491        DeclContext *DC = computeDeclContext(SS, false);
2492        if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(DC))
2493          NotUnknownSpecialization = !Record->hasAnyDependentBases();
2494
2495        if (!NotUnknownSpecialization) {
2496          // When the scope specifier can refer to a member of an unknown
2497          // specialization, we take it as a type name.
2498          BaseType = CheckTypenameType(ETK_None, SourceLocation(),
2499                                       SS.getWithLocInContext(Context),
2500                                       *MemberOrBase, IdLoc);
2501          if (BaseType.isNull())
2502            return true;
2503
2504          R.clear();
2505          R.setLookupName(MemberOrBase);
2506        }
2507      }
2508
2509      // If no results were found, try to correct typos.
2510      TypoCorrection Corr;
2511      MemInitializerValidatorCCC Validator(ClassDecl);
2512      if (R.empty() && BaseType.isNull() &&
2513          (Corr = CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(), S, &SS,
2514                              Validator, ClassDecl))) {
2515        if (FieldDecl *Member = Corr.getCorrectionDeclAs<FieldDecl>()) {
2516          // We have found a non-static data member with a similar
2517          // name to what was typed; complain and initialize that
2518          // member.
2519          diagnoseTypo(Corr,
2520                       PDiag(diag::err_mem_init_not_member_or_class_suggest)
2521                         << MemberOrBase << true);
2522          return BuildMemberInitializer(Member, Init, IdLoc);
2523        } else if (TypeDecl *Type = Corr.getCorrectionDeclAs<TypeDecl>()) {
2524          const CXXBaseSpecifier *DirectBaseSpec;
2525          const CXXBaseSpecifier *VirtualBaseSpec;
2526          if (FindBaseInitializer(*this, ClassDecl,
2527                                  Context.getTypeDeclType(Type),
2528                                  DirectBaseSpec, VirtualBaseSpec)) {
2529            // We have found a direct or virtual base class with a
2530            // similar name to what was typed; complain and initialize
2531            // that base class.
2532            diagnoseTypo(Corr,
2533                         PDiag(diag::err_mem_init_not_member_or_class_suggest)
2534                           << MemberOrBase << false,
2535                         PDiag() /*Suppress note, we provide our own.*/);
2536
2537            const CXXBaseSpecifier *BaseSpec = DirectBaseSpec ? DirectBaseSpec
2538                                                              : VirtualBaseSpec;
2539            Diag(BaseSpec->getLocStart(),
2540                 diag::note_base_class_specified_here)
2541              << BaseSpec->getType()
2542              << BaseSpec->getSourceRange();
2543
2544            TyD = Type;
2545          }
2546        }
2547      }
2548
2549      if (!TyD && BaseType.isNull()) {
2550        Diag(IdLoc, diag::err_mem_init_not_member_or_class)
2551          << MemberOrBase << SourceRange(IdLoc,Init->getSourceRange().getEnd());
2552        return true;
2553      }
2554    }
2555
2556    if (BaseType.isNull()) {
2557      BaseType = Context.getTypeDeclType(TyD);
2558      if (SS.isSet()) {
2559        NestedNameSpecifier *Qualifier =
2560          static_cast<NestedNameSpecifier*>(SS.getScopeRep());
2561
2562        // FIXME: preserve source range information
2563        BaseType = Context.getElaboratedType(ETK_None, Qualifier, BaseType);
2564      }
2565    }
2566  }
2567
2568  if (!TInfo)
2569    TInfo = Context.getTrivialTypeSourceInfo(BaseType, IdLoc);
2570
2571  return BuildBaseInitializer(BaseType, TInfo, Init, ClassDecl, EllipsisLoc);
2572}
2573
2574/// Checks a member initializer expression for cases where reference (or
2575/// pointer) members are bound to by-value parameters (or their addresses).
2576static void CheckForDanglingReferenceOrPointer(Sema &S, ValueDecl *Member,
2577                                               Expr *Init,
2578                                               SourceLocation IdLoc) {
2579  QualType MemberTy = Member->getType();
2580
2581  // We only handle pointers and references currently.
2582  // FIXME: Would this be relevant for ObjC object pointers? Or block pointers?
2583  if (!MemberTy->isReferenceType() && !MemberTy->isPointerType())
2584    return;
2585
2586  const bool IsPointer = MemberTy->isPointerType();
2587  if (IsPointer) {
2588    if (const UnaryOperator *Op
2589          = dyn_cast<UnaryOperator>(Init->IgnoreParenImpCasts())) {
2590      // The only case we're worried about with pointers requires taking the
2591      // address.
2592      if (Op->getOpcode() != UO_AddrOf)
2593        return;
2594
2595      Init = Op->getSubExpr();
2596    } else {
2597      // We only handle address-of expression initializers for pointers.
2598      return;
2599    }
2600  }
2601
2602  if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Init->IgnoreParens())) {
2603    // We only warn when referring to a non-reference parameter declaration.
2604    const ParmVarDecl *Parameter = dyn_cast<ParmVarDecl>(DRE->getDecl());
2605    if (!Parameter || Parameter->getType()->isReferenceType())
2606      return;
2607
2608    S.Diag(Init->getExprLoc(),
2609           IsPointer ? diag::warn_init_ptr_member_to_parameter_addr
2610                     : diag::warn_bind_ref_member_to_parameter)
2611      << Member << Parameter << Init->getSourceRange();
2612  } else {
2613    // Other initializers are fine.
2614    return;
2615  }
2616
2617  S.Diag(Member->getLocation(), diag::note_ref_or_ptr_member_declared_here)
2618    << (unsigned)IsPointer;
2619}
2620
2621MemInitResult
2622Sema::BuildMemberInitializer(ValueDecl *Member, Expr *Init,
2623                             SourceLocation IdLoc) {
2624  FieldDecl *DirectMember = dyn_cast<FieldDecl>(Member);
2625  IndirectFieldDecl *IndirectMember = dyn_cast<IndirectFieldDecl>(Member);
2626  assert((DirectMember || IndirectMember) &&
2627         "Member must be a FieldDecl or IndirectFieldDecl");
2628
2629  if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer))
2630    return true;
2631
2632  if (Member->isInvalidDecl())
2633    return true;
2634
2635  MultiExprArg Args;
2636  if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) {
2637    Args = MultiExprArg(ParenList->getExprs(), ParenList->getNumExprs());
2638  } else if (InitListExpr *InitList = dyn_cast<InitListExpr>(Init)) {
2639    Args = MultiExprArg(InitList->getInits(), InitList->getNumInits());
2640  } else {
2641    // Template instantiation doesn't reconstruct ParenListExprs for us.
2642    Args = Init;
2643  }
2644
2645  SourceRange InitRange = Init->getSourceRange();
2646
2647  if (Member->getType()->isDependentType() || Init->isTypeDependent()) {
2648    // Can't check initialization for a member of dependent type or when
2649    // any of the arguments are type-dependent expressions.
2650    DiscardCleanupsInEvaluationContext();
2651  } else {
2652    bool InitList = false;
2653    if (isa<InitListExpr>(Init)) {
2654      InitList = true;
2655      Args = Init;
2656    }
2657
2658    // Initialize the member.
2659    InitializedEntity MemberEntity =
2660      DirectMember ? InitializedEntity::InitializeMember(DirectMember, 0)
2661                   : InitializedEntity::InitializeMember(IndirectMember, 0);
2662    InitializationKind Kind =
2663      InitList ? InitializationKind::CreateDirectList(IdLoc)
2664               : InitializationKind::CreateDirect(IdLoc, InitRange.getBegin(),
2665                                                  InitRange.getEnd());
2666
2667    InitializationSequence InitSeq(*this, MemberEntity, Kind, Args);
2668    ExprResult MemberInit = InitSeq.Perform(*this, MemberEntity, Kind, Args, 0);
2669    if (MemberInit.isInvalid())
2670      return true;
2671
2672    CheckForDanglingReferenceOrPointer(*this, Member, MemberInit.get(), IdLoc);
2673
2674    // C++11 [class.base.init]p7:
2675    //   The initialization of each base and member constitutes a
2676    //   full-expression.
2677    MemberInit = ActOnFinishFullExpr(MemberInit.get(), InitRange.getBegin());
2678    if (MemberInit.isInvalid())
2679      return true;
2680
2681    Init = MemberInit.get();
2682  }
2683
2684  if (DirectMember) {
2685    return new (Context) CXXCtorInitializer(Context, DirectMember, IdLoc,
2686                                            InitRange.getBegin(), Init,
2687                                            InitRange.getEnd());
2688  } else {
2689    return new (Context) CXXCtorInitializer(Context, IndirectMember, IdLoc,
2690                                            InitRange.getBegin(), Init,
2691                                            InitRange.getEnd());
2692  }
2693}
2694
2695MemInitResult
2696Sema::BuildDelegatingInitializer(TypeSourceInfo *TInfo, Expr *Init,
2697                                 CXXRecordDecl *ClassDecl) {
2698  SourceLocation NameLoc = TInfo->getTypeLoc().getLocalSourceRange().getBegin();
2699  if (!LangOpts.CPlusPlus11)
2700    return Diag(NameLoc, diag::err_delegating_ctor)
2701      << TInfo->getTypeLoc().getLocalSourceRange();
2702  Diag(NameLoc, diag::warn_cxx98_compat_delegating_ctor);
2703
2704  bool InitList = true;
2705  MultiExprArg Args = Init;
2706  if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) {
2707    InitList = false;
2708    Args = MultiExprArg(ParenList->getExprs(), ParenList->getNumExprs());
2709  }
2710
2711  SourceRange InitRange = Init->getSourceRange();
2712  // Initialize the object.
2713  InitializedEntity DelegationEntity = InitializedEntity::InitializeDelegation(
2714                                     QualType(ClassDecl->getTypeForDecl(), 0));
2715  InitializationKind Kind =
2716    InitList ? InitializationKind::CreateDirectList(NameLoc)
2717             : InitializationKind::CreateDirect(NameLoc, InitRange.getBegin(),
2718                                                InitRange.getEnd());
2719  InitializationSequence InitSeq(*this, DelegationEntity, Kind, Args);
2720  ExprResult DelegationInit = InitSeq.Perform(*this, DelegationEntity, Kind,
2721                                              Args, 0);
2722  if (DelegationInit.isInvalid())
2723    return true;
2724
2725  assert(cast<CXXConstructExpr>(DelegationInit.get())->getConstructor() &&
2726         "Delegating constructor with no target?");
2727
2728  // C++11 [class.base.init]p7:
2729  //   The initialization of each base and member constitutes a
2730  //   full-expression.
2731  DelegationInit = ActOnFinishFullExpr(DelegationInit.get(),
2732                                       InitRange.getBegin());
2733  if (DelegationInit.isInvalid())
2734    return true;
2735
2736  // If we are in a dependent context, template instantiation will
2737  // perform this type-checking again. Just save the arguments that we
2738  // received in a ParenListExpr.
2739  // FIXME: This isn't quite ideal, since our ASTs don't capture all
2740  // of the information that we have about the base
2741  // initializer. However, deconstructing the ASTs is a dicey process,
2742  // and this approach is far more likely to get the corner cases right.
2743  if (CurContext->isDependentContext())
2744    DelegationInit = Owned(Init);
2745
2746  return new (Context) CXXCtorInitializer(Context, TInfo, InitRange.getBegin(),
2747                                          DelegationInit.takeAs<Expr>(),
2748                                          InitRange.getEnd());
2749}
2750
2751MemInitResult
2752Sema::BuildBaseInitializer(QualType BaseType, TypeSourceInfo *BaseTInfo,
2753                           Expr *Init, CXXRecordDecl *ClassDecl,
2754                           SourceLocation EllipsisLoc) {
2755  SourceLocation BaseLoc
2756    = BaseTInfo->getTypeLoc().getLocalSourceRange().getBegin();
2757
2758  if (!BaseType->isDependentType() && !BaseType->isRecordType())
2759    return Diag(BaseLoc, diag::err_base_init_does_not_name_class)
2760             << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
2761
2762  // C++ [class.base.init]p2:
2763  //   [...] Unless the mem-initializer-id names a nonstatic data
2764  //   member of the constructor's class or a direct or virtual base
2765  //   of that class, the mem-initializer is ill-formed. A
2766  //   mem-initializer-list can initialize a base class using any
2767  //   name that denotes that base class type.
2768  bool Dependent = BaseType->isDependentType() || Init->isTypeDependent();
2769
2770  SourceRange InitRange = Init->getSourceRange();
2771  if (EllipsisLoc.isValid()) {
2772    // This is a pack expansion.
2773    if (!BaseType->containsUnexpandedParameterPack())  {
2774      Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
2775        << SourceRange(BaseLoc, InitRange.getEnd());
2776
2777      EllipsisLoc = SourceLocation();
2778    }
2779  } else {
2780    // Check for any unexpanded parameter packs.
2781    if (DiagnoseUnexpandedParameterPack(BaseLoc, BaseTInfo, UPPC_Initializer))
2782      return true;
2783
2784    if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer))
2785      return true;
2786  }
2787
2788  // Check for direct and virtual base classes.
2789  const CXXBaseSpecifier *DirectBaseSpec = 0;
2790  const CXXBaseSpecifier *VirtualBaseSpec = 0;
2791  if (!Dependent) {
2792    if (Context.hasSameUnqualifiedType(QualType(ClassDecl->getTypeForDecl(),0),
2793                                       BaseType))
2794      return BuildDelegatingInitializer(BaseTInfo, Init, ClassDecl);
2795
2796    FindBaseInitializer(*this, ClassDecl, BaseType, DirectBaseSpec,
2797                        VirtualBaseSpec);
2798
2799    // C++ [base.class.init]p2:
2800    // Unless the mem-initializer-id names a nonstatic data member of the
2801    // constructor's class or a direct or virtual base of that class, the
2802    // mem-initializer is ill-formed.
2803    if (!DirectBaseSpec && !VirtualBaseSpec) {
2804      // If the class has any dependent bases, then it's possible that
2805      // one of those types will resolve to the same type as
2806      // BaseType. Therefore, just treat this as a dependent base
2807      // class initialization.  FIXME: Should we try to check the
2808      // initialization anyway? It seems odd.
2809      if (ClassDecl->hasAnyDependentBases())
2810        Dependent = true;
2811      else
2812        return Diag(BaseLoc, diag::err_not_direct_base_or_virtual)
2813          << BaseType << Context.getTypeDeclType(ClassDecl)
2814          << BaseTInfo->getTypeLoc().getLocalSourceRange();
2815    }
2816  }
2817
2818  if (Dependent) {
2819    DiscardCleanupsInEvaluationContext();
2820
2821    return new (Context) CXXCtorInitializer(Context, BaseTInfo,
2822                                            /*IsVirtual=*/false,
2823                                            InitRange.getBegin(), Init,
2824                                            InitRange.getEnd(), EllipsisLoc);
2825  }
2826
2827  // C++ [base.class.init]p2:
2828  //   If a mem-initializer-id is ambiguous because it designates both
2829  //   a direct non-virtual base class and an inherited virtual base
2830  //   class, the mem-initializer is ill-formed.
2831  if (DirectBaseSpec && VirtualBaseSpec)
2832    return Diag(BaseLoc, diag::err_base_init_direct_and_virtual)
2833      << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
2834
2835  const CXXBaseSpecifier *BaseSpec = DirectBaseSpec;
2836  if (!BaseSpec)
2837    BaseSpec = VirtualBaseSpec;
2838
2839  // Initialize the base.
2840  bool InitList = true;
2841  MultiExprArg Args = Init;
2842  if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) {
2843    InitList = false;
2844    Args = MultiExprArg(ParenList->getExprs(), ParenList->getNumExprs());
2845  }
2846
2847  InitializedEntity BaseEntity =
2848    InitializedEntity::InitializeBase(Context, BaseSpec, VirtualBaseSpec);
2849  InitializationKind Kind =
2850    InitList ? InitializationKind::CreateDirectList(BaseLoc)
2851             : InitializationKind::CreateDirect(BaseLoc, InitRange.getBegin(),
2852                                                InitRange.getEnd());
2853  InitializationSequence InitSeq(*this, BaseEntity, Kind, Args);
2854  ExprResult BaseInit = InitSeq.Perform(*this, BaseEntity, Kind, Args, 0);
2855  if (BaseInit.isInvalid())
2856    return true;
2857
2858  // C++11 [class.base.init]p7:
2859  //   The initialization of each base and member constitutes a
2860  //   full-expression.
2861  BaseInit = ActOnFinishFullExpr(BaseInit.get(), InitRange.getBegin());
2862  if (BaseInit.isInvalid())
2863    return true;
2864
2865  // If we are in a dependent context, template instantiation will
2866  // perform this type-checking again. Just save the arguments that we
2867  // received in a ParenListExpr.
2868  // FIXME: This isn't quite ideal, since our ASTs don't capture all
2869  // of the information that we have about the base
2870  // initializer. However, deconstructing the ASTs is a dicey process,
2871  // and this approach is far more likely to get the corner cases right.
2872  if (CurContext->isDependentContext())
2873    BaseInit = Owned(Init);
2874
2875  return new (Context) CXXCtorInitializer(Context, BaseTInfo,
2876                                          BaseSpec->isVirtual(),
2877                                          InitRange.getBegin(),
2878                                          BaseInit.takeAs<Expr>(),
2879                                          InitRange.getEnd(), EllipsisLoc);
2880}
2881
2882// Create a static_cast\<T&&>(expr).
2883static Expr *CastForMoving(Sema &SemaRef, Expr *E, QualType T = QualType()) {
2884  if (T.isNull()) T = E->getType();
2885  QualType TargetType = SemaRef.BuildReferenceType(
2886      T, /*SpelledAsLValue*/false, SourceLocation(), DeclarationName());
2887  SourceLocation ExprLoc = E->getLocStart();
2888  TypeSourceInfo *TargetLoc = SemaRef.Context.getTrivialTypeSourceInfo(
2889      TargetType, ExprLoc);
2890
2891  return SemaRef.BuildCXXNamedCast(ExprLoc, tok::kw_static_cast, TargetLoc, E,
2892                                   SourceRange(ExprLoc, ExprLoc),
2893                                   E->getSourceRange()).take();
2894}
2895
2896/// ImplicitInitializerKind - How an implicit base or member initializer should
2897/// initialize its base or member.
2898enum ImplicitInitializerKind {
2899  IIK_Default,
2900  IIK_Copy,
2901  IIK_Move,
2902  IIK_Inherit
2903};
2904
2905static bool
2906BuildImplicitBaseInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
2907                             ImplicitInitializerKind ImplicitInitKind,
2908                             CXXBaseSpecifier *BaseSpec,
2909                             bool IsInheritedVirtualBase,
2910                             CXXCtorInitializer *&CXXBaseInit) {
2911  InitializedEntity InitEntity
2912    = InitializedEntity::InitializeBase(SemaRef.Context, BaseSpec,
2913                                        IsInheritedVirtualBase);
2914
2915  ExprResult BaseInit;
2916
2917  switch (ImplicitInitKind) {
2918  case IIK_Inherit: {
2919    const CXXRecordDecl *Inherited =
2920        Constructor->getInheritedConstructor()->getParent();
2921    const CXXRecordDecl *Base = BaseSpec->getType()->getAsCXXRecordDecl();
2922    if (Base && Inherited->getCanonicalDecl() == Base->getCanonicalDecl()) {
2923      // C++11 [class.inhctor]p8:
2924      //   Each expression in the expression-list is of the form
2925      //   static_cast<T&&>(p), where p is the name of the corresponding
2926      //   constructor parameter and T is the declared type of p.
2927      SmallVector<Expr*, 16> Args;
2928      for (unsigned I = 0, E = Constructor->getNumParams(); I != E; ++I) {
2929        ParmVarDecl *PD = Constructor->getParamDecl(I);
2930        ExprResult ArgExpr =
2931            SemaRef.BuildDeclRefExpr(PD, PD->getType().getNonReferenceType(),
2932                                     VK_LValue, SourceLocation());
2933        if (ArgExpr.isInvalid())
2934          return true;
2935        Args.push_back(CastForMoving(SemaRef, ArgExpr.take(), PD->getType()));
2936      }
2937
2938      InitializationKind InitKind = InitializationKind::CreateDirect(
2939          Constructor->getLocation(), SourceLocation(), SourceLocation());
2940      InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, Args);
2941      BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind, Args);
2942      break;
2943    }
2944  }
2945  // Fall through.
2946  case IIK_Default: {
2947    InitializationKind InitKind
2948      = InitializationKind::CreateDefault(Constructor->getLocation());
2949    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, None);
2950    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind, None);
2951    break;
2952  }
2953
2954  case IIK_Move:
2955  case IIK_Copy: {
2956    bool Moving = ImplicitInitKind == IIK_Move;
2957    ParmVarDecl *Param = Constructor->getParamDecl(0);
2958    QualType ParamType = Param->getType().getNonReferenceType();
2959
2960    Expr *CopyCtorArg =
2961      DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(),
2962                          SourceLocation(), Param, false,
2963                          Constructor->getLocation(), ParamType,
2964                          VK_LValue, 0);
2965
2966    SemaRef.MarkDeclRefReferenced(cast<DeclRefExpr>(CopyCtorArg));
2967
2968    // Cast to the base class to avoid ambiguities.
2969    QualType ArgTy =
2970      SemaRef.Context.getQualifiedType(BaseSpec->getType().getUnqualifiedType(),
2971                                       ParamType.getQualifiers());
2972
2973    if (Moving) {
2974      CopyCtorArg = CastForMoving(SemaRef, CopyCtorArg);
2975    }
2976
2977    CXXCastPath BasePath;
2978    BasePath.push_back(BaseSpec);
2979    CopyCtorArg = SemaRef.ImpCastExprToType(CopyCtorArg, ArgTy,
2980                                            CK_UncheckedDerivedToBase,
2981                                            Moving ? VK_XValue : VK_LValue,
2982                                            &BasePath).take();
2983
2984    InitializationKind InitKind
2985      = InitializationKind::CreateDirect(Constructor->getLocation(),
2986                                         SourceLocation(), SourceLocation());
2987    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, CopyCtorArg);
2988    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind, CopyCtorArg);
2989    break;
2990  }
2991  }
2992
2993  BaseInit = SemaRef.MaybeCreateExprWithCleanups(BaseInit);
2994  if (BaseInit.isInvalid())
2995    return true;
2996
2997  CXXBaseInit =
2998    new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
2999               SemaRef.Context.getTrivialTypeSourceInfo(BaseSpec->getType(),
3000                                                        SourceLocation()),
3001                                             BaseSpec->isVirtual(),
3002                                             SourceLocation(),
3003                                             BaseInit.takeAs<Expr>(),
3004                                             SourceLocation(),
3005                                             SourceLocation());
3006
3007  return false;
3008}
3009
3010static bool RefersToRValueRef(Expr *MemRef) {
3011  ValueDecl *Referenced = cast<MemberExpr>(MemRef)->getMemberDecl();
3012  return Referenced->getType()->isRValueReferenceType();
3013}
3014
3015static bool
3016BuildImplicitMemberInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
3017                               ImplicitInitializerKind ImplicitInitKind,
3018                               FieldDecl *Field, IndirectFieldDecl *Indirect,
3019                               CXXCtorInitializer *&CXXMemberInit) {
3020  if (Field->isInvalidDecl())
3021    return true;
3022
3023  SourceLocation Loc = Constructor->getLocation();
3024
3025  if (ImplicitInitKind == IIK_Copy || ImplicitInitKind == IIK_Move) {
3026    bool Moving = ImplicitInitKind == IIK_Move;
3027    ParmVarDecl *Param = Constructor->getParamDecl(0);
3028    QualType ParamType = Param->getType().getNonReferenceType();
3029
3030    // Suppress copying zero-width bitfields.
3031    if (Field->isBitField() && Field->getBitWidthValue(SemaRef.Context) == 0)
3032      return false;
3033
3034    Expr *MemberExprBase =
3035      DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(),
3036                          SourceLocation(), Param, false,
3037                          Loc, ParamType, VK_LValue, 0);
3038
3039    SemaRef.MarkDeclRefReferenced(cast<DeclRefExpr>(MemberExprBase));
3040
3041    if (Moving) {
3042      MemberExprBase = CastForMoving(SemaRef, MemberExprBase);
3043    }
3044
3045    // Build a reference to this field within the parameter.
3046    CXXScopeSpec SS;
3047    LookupResult MemberLookup(SemaRef, Field->getDeclName(), Loc,
3048                              Sema::LookupMemberName);
3049    MemberLookup.addDecl(Indirect ? cast<ValueDecl>(Indirect)
3050                                  : cast<ValueDecl>(Field), AS_public);
3051    MemberLookup.resolveKind();
3052    ExprResult CtorArg
3053      = SemaRef.BuildMemberReferenceExpr(MemberExprBase,
3054                                         ParamType, Loc,
3055                                         /*IsArrow=*/false,
3056                                         SS,
3057                                         /*TemplateKWLoc=*/SourceLocation(),
3058                                         /*FirstQualifierInScope=*/0,
3059                                         MemberLookup,
3060                                         /*TemplateArgs=*/0);
3061    if (CtorArg.isInvalid())
3062      return true;
3063
3064    // C++11 [class.copy]p15:
3065    //   - if a member m has rvalue reference type T&&, it is direct-initialized
3066    //     with static_cast<T&&>(x.m);
3067    if (RefersToRValueRef(CtorArg.get())) {
3068      CtorArg = CastForMoving(SemaRef, CtorArg.take());
3069    }
3070
3071    // When the field we are copying is an array, create index variables for
3072    // each dimension of the array. We use these index variables to subscript
3073    // the source array, and other clients (e.g., CodeGen) will perform the
3074    // necessary iteration with these index variables.
3075    SmallVector<VarDecl *, 4> IndexVariables;
3076    QualType BaseType = Field->getType();
3077    QualType SizeType = SemaRef.Context.getSizeType();
3078    bool InitializingArray = false;
3079    while (const ConstantArrayType *Array
3080                          = SemaRef.Context.getAsConstantArrayType(BaseType)) {
3081      InitializingArray = true;
3082      // Create the iteration variable for this array index.
3083      IdentifierInfo *IterationVarName = 0;
3084      {
3085        SmallString<8> Str;
3086        llvm::raw_svector_ostream OS(Str);
3087        OS << "__i" << IndexVariables.size();
3088        IterationVarName = &SemaRef.Context.Idents.get(OS.str());
3089      }
3090      VarDecl *IterationVar
3091        = VarDecl::Create(SemaRef.Context, SemaRef.CurContext, Loc, Loc,
3092                          IterationVarName, SizeType,
3093                        SemaRef.Context.getTrivialTypeSourceInfo(SizeType, Loc),
3094                          SC_None);
3095      IndexVariables.push_back(IterationVar);
3096
3097      // Create a reference to the iteration variable.
3098      ExprResult IterationVarRef
3099        = SemaRef.BuildDeclRefExpr(IterationVar, SizeType, VK_LValue, Loc);
3100      assert(!IterationVarRef.isInvalid() &&
3101             "Reference to invented variable cannot fail!");
3102      IterationVarRef = SemaRef.DefaultLvalueConversion(IterationVarRef.take());
3103      assert(!IterationVarRef.isInvalid() &&
3104             "Conversion of invented variable cannot fail!");
3105
3106      // Subscript the array with this iteration variable.
3107      CtorArg = SemaRef.CreateBuiltinArraySubscriptExpr(CtorArg.take(), Loc,
3108                                                        IterationVarRef.take(),
3109                                                        Loc);
3110      if (CtorArg.isInvalid())
3111        return true;
3112
3113      BaseType = Array->getElementType();
3114    }
3115
3116    // The array subscript expression is an lvalue, which is wrong for moving.
3117    if (Moving && InitializingArray)
3118      CtorArg = CastForMoving(SemaRef, CtorArg.take());
3119
3120    // Construct the entity that we will be initializing. For an array, this
3121    // will be first element in the array, which may require several levels
3122    // of array-subscript entities.
3123    SmallVector<InitializedEntity, 4> Entities;
3124    Entities.reserve(1 + IndexVariables.size());
3125    if (Indirect)
3126      Entities.push_back(InitializedEntity::InitializeMember(Indirect));
3127    else
3128      Entities.push_back(InitializedEntity::InitializeMember(Field));
3129    for (unsigned I = 0, N = IndexVariables.size(); I != N; ++I)
3130      Entities.push_back(InitializedEntity::InitializeElement(SemaRef.Context,
3131                                                              0,
3132                                                              Entities.back()));
3133
3134    // Direct-initialize to use the copy constructor.
3135    InitializationKind InitKind =
3136      InitializationKind::CreateDirect(Loc, SourceLocation(), SourceLocation());
3137
3138    Expr *CtorArgE = CtorArg.takeAs<Expr>();
3139    InitializationSequence InitSeq(SemaRef, Entities.back(), InitKind, CtorArgE);
3140
3141    ExprResult MemberInit
3142      = InitSeq.Perform(SemaRef, Entities.back(), InitKind,
3143                        MultiExprArg(&CtorArgE, 1));
3144    MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
3145    if (MemberInit.isInvalid())
3146      return true;
3147
3148    if (Indirect) {
3149      assert(IndexVariables.size() == 0 &&
3150             "Indirect field improperly initialized");
3151      CXXMemberInit
3152        = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Indirect,
3153                                                   Loc, Loc,
3154                                                   MemberInit.takeAs<Expr>(),
3155                                                   Loc);
3156    } else
3157      CXXMemberInit = CXXCtorInitializer::Create(SemaRef.Context, Field, Loc,
3158                                                 Loc, MemberInit.takeAs<Expr>(),
3159                                                 Loc,
3160                                                 IndexVariables.data(),
3161                                                 IndexVariables.size());
3162    return false;
3163  }
3164
3165  assert((ImplicitInitKind == IIK_Default || ImplicitInitKind == IIK_Inherit) &&
3166         "Unhandled implicit init kind!");
3167
3168  QualType FieldBaseElementType =
3169    SemaRef.Context.getBaseElementType(Field->getType());
3170
3171  if (FieldBaseElementType->isRecordType()) {
3172    InitializedEntity InitEntity
3173      = Indirect? InitializedEntity::InitializeMember(Indirect)
3174                : InitializedEntity::InitializeMember(Field);
3175    InitializationKind InitKind =
3176      InitializationKind::CreateDefault(Loc);
3177
3178    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, None);
3179    ExprResult MemberInit =
3180      InitSeq.Perform(SemaRef, InitEntity, InitKind, None);
3181
3182    MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
3183    if (MemberInit.isInvalid())
3184      return true;
3185
3186    if (Indirect)
3187      CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
3188                                                               Indirect, Loc,
3189                                                               Loc,
3190                                                               MemberInit.get(),
3191                                                               Loc);
3192    else
3193      CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
3194                                                               Field, Loc, Loc,
3195                                                               MemberInit.get(),
3196                                                               Loc);
3197    return false;
3198  }
3199
3200  if (!Field->getParent()->isUnion()) {
3201    if (FieldBaseElementType->isReferenceType()) {
3202      SemaRef.Diag(Constructor->getLocation(),
3203                   diag::err_uninitialized_member_in_ctor)
3204      << (int)Constructor->isImplicit()
3205      << SemaRef.Context.getTagDeclType(Constructor->getParent())
3206      << 0 << Field->getDeclName();
3207      SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
3208      return true;
3209    }
3210
3211    if (FieldBaseElementType.isConstQualified()) {
3212      SemaRef.Diag(Constructor->getLocation(),
3213                   diag::err_uninitialized_member_in_ctor)
3214      << (int)Constructor->isImplicit()
3215      << SemaRef.Context.getTagDeclType(Constructor->getParent())
3216      << 1 << Field->getDeclName();
3217      SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
3218      return true;
3219    }
3220  }
3221
3222  if (SemaRef.getLangOpts().ObjCAutoRefCount &&
3223      FieldBaseElementType->isObjCRetainableType() &&
3224      FieldBaseElementType.getObjCLifetime() != Qualifiers::OCL_None &&
3225      FieldBaseElementType.getObjCLifetime() != Qualifiers::OCL_ExplicitNone) {
3226    // ARC:
3227    //   Default-initialize Objective-C pointers to NULL.
3228    CXXMemberInit
3229      = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Field,
3230                                                 Loc, Loc,
3231                 new (SemaRef.Context) ImplicitValueInitExpr(Field->getType()),
3232                                                 Loc);
3233    return false;
3234  }
3235
3236  // Nothing to initialize.
3237  CXXMemberInit = 0;
3238  return false;
3239}
3240
3241namespace {
3242struct BaseAndFieldInfo {
3243  Sema &S;
3244  CXXConstructorDecl *Ctor;
3245  bool AnyErrorsInInits;
3246  ImplicitInitializerKind IIK;
3247  llvm::DenseMap<const void *, CXXCtorInitializer*> AllBaseFields;
3248  SmallVector<CXXCtorInitializer*, 8> AllToInit;
3249
3250  BaseAndFieldInfo(Sema &S, CXXConstructorDecl *Ctor, bool ErrorsInInits)
3251    : S(S), Ctor(Ctor), AnyErrorsInInits(ErrorsInInits) {
3252    bool Generated = Ctor->isImplicit() || Ctor->isDefaulted();
3253    if (Generated && Ctor->isCopyConstructor())
3254      IIK = IIK_Copy;
3255    else if (Generated && Ctor->isMoveConstructor())
3256      IIK = IIK_Move;
3257    else if (Ctor->getInheritedConstructor())
3258      IIK = IIK_Inherit;
3259    else
3260      IIK = IIK_Default;
3261  }
3262
3263  bool isImplicitCopyOrMove() const {
3264    switch (IIK) {
3265    case IIK_Copy:
3266    case IIK_Move:
3267      return true;
3268
3269    case IIK_Default:
3270    case IIK_Inherit:
3271      return false;
3272    }
3273
3274    llvm_unreachable("Invalid ImplicitInitializerKind!");
3275  }
3276
3277  bool addFieldInitializer(CXXCtorInitializer *Init) {
3278    AllToInit.push_back(Init);
3279
3280    // Check whether this initializer makes the field "used".
3281    if (Init->getInit()->HasSideEffects(S.Context))
3282      S.UnusedPrivateFields.remove(Init->getAnyMember());
3283
3284    return false;
3285  }
3286};
3287}
3288
3289/// \brief Determine whether the given indirect field declaration is somewhere
3290/// within an anonymous union.
3291static bool isWithinAnonymousUnion(IndirectFieldDecl *F) {
3292  for (IndirectFieldDecl::chain_iterator C = F->chain_begin(),
3293                                      CEnd = F->chain_end();
3294       C != CEnd; ++C)
3295    if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>((*C)->getDeclContext()))
3296      if (Record->isUnion())
3297        return true;
3298
3299  return false;
3300}
3301
3302/// \brief Determine whether the given type is an incomplete or zero-lenfgth
3303/// array type.
3304static bool isIncompleteOrZeroLengthArrayType(ASTContext &Context, QualType T) {
3305  if (T->isIncompleteArrayType())
3306    return true;
3307
3308  while (const ConstantArrayType *ArrayT = Context.getAsConstantArrayType(T)) {
3309    if (!ArrayT->getSize())
3310      return true;
3311
3312    T = ArrayT->getElementType();
3313  }
3314
3315  return false;
3316}
3317
3318static bool CollectFieldInitializer(Sema &SemaRef, BaseAndFieldInfo &Info,
3319                                    FieldDecl *Field,
3320                                    IndirectFieldDecl *Indirect = 0) {
3321  if (Field->isInvalidDecl())
3322    return false;
3323
3324  // Overwhelmingly common case: we have a direct initializer for this field.
3325  if (CXXCtorInitializer *Init = Info.AllBaseFields.lookup(Field))
3326    return Info.addFieldInitializer(Init);
3327
3328  // C++11 [class.base.init]p8: if the entity is a non-static data member that
3329  // has a brace-or-equal-initializer, the entity is initialized as specified
3330  // in [dcl.init].
3331  if (Field->hasInClassInitializer() && !Info.isImplicitCopyOrMove()) {
3332    Expr *DIE = CXXDefaultInitExpr::Create(SemaRef.Context,
3333                                           Info.Ctor->getLocation(), Field);
3334    CXXCtorInitializer *Init;
3335    if (Indirect)
3336      Init = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Indirect,
3337                                                      SourceLocation(),
3338                                                      SourceLocation(), DIE,
3339                                                      SourceLocation());
3340    else
3341      Init = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Field,
3342                                                      SourceLocation(),
3343                                                      SourceLocation(), DIE,
3344                                                      SourceLocation());
3345    return Info.addFieldInitializer(Init);
3346  }
3347
3348  // Don't build an implicit initializer for union members if none was
3349  // explicitly specified.
3350  if (Field->getParent()->isUnion() ||
3351      (Indirect && isWithinAnonymousUnion(Indirect)))
3352    return false;
3353
3354  // Don't initialize incomplete or zero-length arrays.
3355  if (isIncompleteOrZeroLengthArrayType(SemaRef.Context, Field->getType()))
3356    return false;
3357
3358  // Don't try to build an implicit initializer if there were semantic
3359  // errors in any of the initializers (and therefore we might be
3360  // missing some that the user actually wrote).
3361  if (Info.AnyErrorsInInits)
3362    return false;
3363
3364  CXXCtorInitializer *Init = 0;
3365  if (BuildImplicitMemberInitializer(Info.S, Info.Ctor, Info.IIK, Field,
3366                                     Indirect, Init))
3367    return true;
3368
3369  if (!Init)
3370    return false;
3371
3372  return Info.addFieldInitializer(Init);
3373}
3374
3375bool
3376Sema::SetDelegatingInitializer(CXXConstructorDecl *Constructor,
3377                               CXXCtorInitializer *Initializer) {
3378  assert(Initializer->isDelegatingInitializer());
3379  Constructor->setNumCtorInitializers(1);
3380  CXXCtorInitializer **initializer =
3381    new (Context) CXXCtorInitializer*[1];
3382  memcpy(initializer, &Initializer, sizeof (CXXCtorInitializer*));
3383  Constructor->setCtorInitializers(initializer);
3384
3385  if (CXXDestructorDecl *Dtor = LookupDestructor(Constructor->getParent())) {
3386    MarkFunctionReferenced(Initializer->getSourceLocation(), Dtor);
3387    DiagnoseUseOfDecl(Dtor, Initializer->getSourceLocation());
3388  }
3389
3390  DelegatingCtorDecls.push_back(Constructor);
3391
3392  return false;
3393}
3394
3395bool Sema::SetCtorInitializers(CXXConstructorDecl *Constructor, bool AnyErrors,
3396                               ArrayRef<CXXCtorInitializer *> Initializers) {
3397  if (Constructor->isDependentContext()) {
3398    // Just store the initializers as written, they will be checked during
3399    // instantiation.
3400    if (!Initializers.empty()) {
3401      Constructor->setNumCtorInitializers(Initializers.size());
3402      CXXCtorInitializer **baseOrMemberInitializers =
3403        new (Context) CXXCtorInitializer*[Initializers.size()];
3404      memcpy(baseOrMemberInitializers, Initializers.data(),
3405             Initializers.size() * sizeof(CXXCtorInitializer*));
3406      Constructor->setCtorInitializers(baseOrMemberInitializers);
3407    }
3408
3409    // Let template instantiation know whether we had errors.
3410    if (AnyErrors)
3411      Constructor->setInvalidDecl();
3412
3413    return false;
3414  }
3415
3416  BaseAndFieldInfo Info(*this, Constructor, AnyErrors);
3417
3418  // We need to build the initializer AST according to order of construction
3419  // and not what user specified in the Initializers list.
3420  CXXRecordDecl *ClassDecl = Constructor->getParent()->getDefinition();
3421  if (!ClassDecl)
3422    return true;
3423
3424  bool HadError = false;
3425
3426  for (unsigned i = 0; i < Initializers.size(); i++) {
3427    CXXCtorInitializer *Member = Initializers[i];
3428
3429    if (Member->isBaseInitializer())
3430      Info.AllBaseFields[Member->getBaseClass()->getAs<RecordType>()] = Member;
3431    else
3432      Info.AllBaseFields[Member->getAnyMember()] = Member;
3433  }
3434
3435  // Keep track of the direct virtual bases.
3436  llvm::SmallPtrSet<CXXBaseSpecifier *, 16> DirectVBases;
3437  for (CXXRecordDecl::base_class_iterator I = ClassDecl->bases_begin(),
3438       E = ClassDecl->bases_end(); I != E; ++I) {
3439    if (I->isVirtual())
3440      DirectVBases.insert(I);
3441  }
3442
3443  // Push virtual bases before others.
3444  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
3445       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
3446
3447    if (CXXCtorInitializer *Value
3448        = Info.AllBaseFields.lookup(VBase->getType()->getAs<RecordType>())) {
3449      // [class.base.init]p7, per DR257:
3450      //   A mem-initializer where the mem-initializer-id names a virtual base
3451      //   class is ignored during execution of a constructor of any class that
3452      //   is not the most derived class.
3453      if (ClassDecl->isAbstract()) {
3454        // FIXME: Provide a fixit to remove the base specifier. This requires
3455        // tracking the location of the associated comma for a base specifier.
3456        Diag(Value->getSourceLocation(), diag::warn_abstract_vbase_init_ignored)
3457          << VBase->getType() << ClassDecl;
3458        DiagnoseAbstractType(ClassDecl);
3459      }
3460
3461      Info.AllToInit.push_back(Value);
3462    } else if (!AnyErrors && !ClassDecl->isAbstract()) {
3463      // [class.base.init]p8, per DR257:
3464      //   If a given [...] base class is not named by a mem-initializer-id
3465      //   [...] and the entity is not a virtual base class of an abstract
3466      //   class, then [...] the entity is default-initialized.
3467      bool IsInheritedVirtualBase = !DirectVBases.count(VBase);
3468      CXXCtorInitializer *CXXBaseInit;
3469      if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
3470                                       VBase, IsInheritedVirtualBase,
3471                                       CXXBaseInit)) {
3472        HadError = true;
3473        continue;
3474      }
3475
3476      Info.AllToInit.push_back(CXXBaseInit);
3477    }
3478  }
3479
3480  // Non-virtual bases.
3481  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
3482       E = ClassDecl->bases_end(); Base != E; ++Base) {
3483    // Virtuals are in the virtual base list and already constructed.
3484    if (Base->isVirtual())
3485      continue;
3486
3487    if (CXXCtorInitializer *Value
3488          = Info.AllBaseFields.lookup(Base->getType()->getAs<RecordType>())) {
3489      Info.AllToInit.push_back(Value);
3490    } else if (!AnyErrors) {
3491      CXXCtorInitializer *CXXBaseInit;
3492      if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
3493                                       Base, /*IsInheritedVirtualBase=*/false,
3494                                       CXXBaseInit)) {
3495        HadError = true;
3496        continue;
3497      }
3498
3499      Info.AllToInit.push_back(CXXBaseInit);
3500    }
3501  }
3502
3503  // Fields.
3504  for (DeclContext::decl_iterator Mem = ClassDecl->decls_begin(),
3505                               MemEnd = ClassDecl->decls_end();
3506       Mem != MemEnd; ++Mem) {
3507    if (FieldDecl *F = dyn_cast<FieldDecl>(*Mem)) {
3508      // C++ [class.bit]p2:
3509      //   A declaration for a bit-field that omits the identifier declares an
3510      //   unnamed bit-field. Unnamed bit-fields are not members and cannot be
3511      //   initialized.
3512      if (F->isUnnamedBitfield())
3513        continue;
3514
3515      // If we're not generating the implicit copy/move constructor, then we'll
3516      // handle anonymous struct/union fields based on their individual
3517      // indirect fields.
3518      if (F->isAnonymousStructOrUnion() && !Info.isImplicitCopyOrMove())
3519        continue;
3520
3521      if (CollectFieldInitializer(*this, Info, F))
3522        HadError = true;
3523      continue;
3524    }
3525
3526    // Beyond this point, we only consider default initialization.
3527    if (Info.isImplicitCopyOrMove())
3528      continue;
3529
3530    if (IndirectFieldDecl *F = dyn_cast<IndirectFieldDecl>(*Mem)) {
3531      if (F->getType()->isIncompleteArrayType()) {
3532        assert(ClassDecl->hasFlexibleArrayMember() &&
3533               "Incomplete array type is not valid");
3534        continue;
3535      }
3536
3537      // Initialize each field of an anonymous struct individually.
3538      if (CollectFieldInitializer(*this, Info, F->getAnonField(), F))
3539        HadError = true;
3540
3541      continue;
3542    }
3543  }
3544
3545  unsigned NumInitializers = Info.AllToInit.size();
3546  if (NumInitializers > 0) {
3547    Constructor->setNumCtorInitializers(NumInitializers);
3548    CXXCtorInitializer **baseOrMemberInitializers =
3549      new (Context) CXXCtorInitializer*[NumInitializers];
3550    memcpy(baseOrMemberInitializers, Info.AllToInit.data(),
3551           NumInitializers * sizeof(CXXCtorInitializer*));
3552    Constructor->setCtorInitializers(baseOrMemberInitializers);
3553
3554    // Constructors implicitly reference the base and member
3555    // destructors.
3556    MarkBaseAndMemberDestructorsReferenced(Constructor->getLocation(),
3557                                           Constructor->getParent());
3558  }
3559
3560  return HadError;
3561}
3562
3563static void PopulateKeysForFields(FieldDecl *Field, SmallVectorImpl<const void*> &IdealInits) {
3564  if (const RecordType *RT = Field->getType()->getAs<RecordType>()) {
3565    const RecordDecl *RD = RT->getDecl();
3566    if (RD->isAnonymousStructOrUnion()) {
3567      for (RecordDecl::field_iterator Field = RD->field_begin(),
3568          E = RD->field_end(); Field != E; ++Field)
3569        PopulateKeysForFields(*Field, IdealInits);
3570      return;
3571    }
3572  }
3573  IdealInits.push_back(Field);
3574}
3575
3576static const void *GetKeyForBase(ASTContext &Context, QualType BaseType) {
3577  return Context.getCanonicalType(BaseType).getTypePtr();
3578}
3579
3580static const void *GetKeyForMember(ASTContext &Context,
3581                                   CXXCtorInitializer *Member) {
3582  if (!Member->isAnyMemberInitializer())
3583    return GetKeyForBase(Context, QualType(Member->getBaseClass(), 0));
3584
3585  return Member->getAnyMember();
3586}
3587
3588static void DiagnoseBaseOrMemInitializerOrder(
3589    Sema &SemaRef, const CXXConstructorDecl *Constructor,
3590    ArrayRef<CXXCtorInitializer *> Inits) {
3591  if (Constructor->getDeclContext()->isDependentContext())
3592    return;
3593
3594  // Don't check initializers order unless the warning is enabled at the
3595  // location of at least one initializer.
3596  bool ShouldCheckOrder = false;
3597  for (unsigned InitIndex = 0; InitIndex != Inits.size(); ++InitIndex) {
3598    CXXCtorInitializer *Init = Inits[InitIndex];
3599    if (SemaRef.Diags.getDiagnosticLevel(diag::warn_initializer_out_of_order,
3600                                         Init->getSourceLocation())
3601          != DiagnosticsEngine::Ignored) {
3602      ShouldCheckOrder = true;
3603      break;
3604    }
3605  }
3606  if (!ShouldCheckOrder)
3607    return;
3608
3609  // Build the list of bases and members in the order that they'll
3610  // actually be initialized.  The explicit initializers should be in
3611  // this same order but may be missing things.
3612  SmallVector<const void*, 32> IdealInitKeys;
3613
3614  const CXXRecordDecl *ClassDecl = Constructor->getParent();
3615
3616  // 1. Virtual bases.
3617  for (CXXRecordDecl::base_class_const_iterator VBase =
3618       ClassDecl->vbases_begin(),
3619       E = ClassDecl->vbases_end(); VBase != E; ++VBase)
3620    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, VBase->getType()));
3621
3622  // 2. Non-virtual bases.
3623  for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin(),
3624       E = ClassDecl->bases_end(); Base != E; ++Base) {
3625    if (Base->isVirtual())
3626      continue;
3627    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, Base->getType()));
3628  }
3629
3630  // 3. Direct fields.
3631  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
3632       E = ClassDecl->field_end(); Field != E; ++Field) {
3633    if (Field->isUnnamedBitfield())
3634      continue;
3635
3636    PopulateKeysForFields(*Field, IdealInitKeys);
3637  }
3638
3639  unsigned NumIdealInits = IdealInitKeys.size();
3640  unsigned IdealIndex = 0;
3641
3642  CXXCtorInitializer *PrevInit = 0;
3643  for (unsigned InitIndex = 0; InitIndex != Inits.size(); ++InitIndex) {
3644    CXXCtorInitializer *Init = Inits[InitIndex];
3645    const void *InitKey = GetKeyForMember(SemaRef.Context, Init);
3646
3647    // Scan forward to try to find this initializer in the idealized
3648    // initializers list.
3649    for (; IdealIndex != NumIdealInits; ++IdealIndex)
3650      if (InitKey == IdealInitKeys[IdealIndex])
3651        break;
3652
3653    // If we didn't find this initializer, it must be because we
3654    // scanned past it on a previous iteration.  That can only
3655    // happen if we're out of order;  emit a warning.
3656    if (IdealIndex == NumIdealInits && PrevInit) {
3657      Sema::SemaDiagnosticBuilder D =
3658        SemaRef.Diag(PrevInit->getSourceLocation(),
3659                     diag::warn_initializer_out_of_order);
3660
3661      if (PrevInit->isAnyMemberInitializer())
3662        D << 0 << PrevInit->getAnyMember()->getDeclName();
3663      else
3664        D << 1 << PrevInit->getTypeSourceInfo()->getType();
3665
3666      if (Init->isAnyMemberInitializer())
3667        D << 0 << Init->getAnyMember()->getDeclName();
3668      else
3669        D << 1 << Init->getTypeSourceInfo()->getType();
3670
3671      // Move back to the initializer's location in the ideal list.
3672      for (IdealIndex = 0; IdealIndex != NumIdealInits; ++IdealIndex)
3673        if (InitKey == IdealInitKeys[IdealIndex])
3674          break;
3675
3676      assert(IdealIndex != NumIdealInits &&
3677             "initializer not found in initializer list");
3678    }
3679
3680    PrevInit = Init;
3681  }
3682}
3683
3684namespace {
3685bool CheckRedundantInit(Sema &S,
3686                        CXXCtorInitializer *Init,
3687                        CXXCtorInitializer *&PrevInit) {
3688  if (!PrevInit) {
3689    PrevInit = Init;
3690    return false;
3691  }
3692
3693  if (FieldDecl *Field = Init->getAnyMember())
3694    S.Diag(Init->getSourceLocation(),
3695           diag::err_multiple_mem_initialization)
3696      << Field->getDeclName()
3697      << Init->getSourceRange();
3698  else {
3699    const Type *BaseClass = Init->getBaseClass();
3700    assert(BaseClass && "neither field nor base");
3701    S.Diag(Init->getSourceLocation(),
3702           diag::err_multiple_base_initialization)
3703      << QualType(BaseClass, 0)
3704      << Init->getSourceRange();
3705  }
3706  S.Diag(PrevInit->getSourceLocation(), diag::note_previous_initializer)
3707    << 0 << PrevInit->getSourceRange();
3708
3709  return true;
3710}
3711
3712typedef std::pair<NamedDecl *, CXXCtorInitializer *> UnionEntry;
3713typedef llvm::DenseMap<RecordDecl*, UnionEntry> RedundantUnionMap;
3714
3715bool CheckRedundantUnionInit(Sema &S,
3716                             CXXCtorInitializer *Init,
3717                             RedundantUnionMap &Unions) {
3718  FieldDecl *Field = Init->getAnyMember();
3719  RecordDecl *Parent = Field->getParent();
3720  NamedDecl *Child = Field;
3721
3722  while (Parent->isAnonymousStructOrUnion() || Parent->isUnion()) {
3723    if (Parent->isUnion()) {
3724      UnionEntry &En = Unions[Parent];
3725      if (En.first && En.first != Child) {
3726        S.Diag(Init->getSourceLocation(),
3727               diag::err_multiple_mem_union_initialization)
3728          << Field->getDeclName()
3729          << Init->getSourceRange();
3730        S.Diag(En.second->getSourceLocation(), diag::note_previous_initializer)
3731          << 0 << En.second->getSourceRange();
3732        return true;
3733      }
3734      if (!En.first) {
3735        En.first = Child;
3736        En.second = Init;
3737      }
3738      if (!Parent->isAnonymousStructOrUnion())
3739        return false;
3740    }
3741
3742    Child = Parent;
3743    Parent = cast<RecordDecl>(Parent->getDeclContext());
3744  }
3745
3746  return false;
3747}
3748}
3749
3750// Diagnose value-uses of fields to initialize themselves, e.g.
3751//   foo(foo)
3752// where foo is not also a parameter to the constructor.
3753// Also diagnose across field uninitialized use such as
3754//   x(y), y(x)
3755// TODO: implement -Wuninitialized and fold this into that framework.
3756static void DiagnoseUnitializedFields(
3757    Sema &SemaRef, const CXXConstructorDecl *Constructor) {
3758
3759  if (SemaRef.getDiagnostics().getDiagnosticLevel(diag::warn_field_is_uninit,
3760                                                  Constructor->getLocation())
3761      == DiagnosticsEngine::Ignored) {
3762    return;
3763  }
3764
3765  const CXXRecordDecl *RD = Constructor->getParent();
3766
3767  // Holds fields that are uninitialized.
3768  llvm::SmallPtrSet<ValueDecl*, 4> UninitializedFields;
3769
3770  for (DeclContext::decl_iterator I = RD->decls_begin(), E = RD->decls_end();
3771       I != E; ++I) {
3772    if (FieldDecl *FD = dyn_cast<FieldDecl>(*I)) {
3773      UninitializedFields.insert(FD);
3774    } else if (IndirectFieldDecl *IFD = dyn_cast<IndirectFieldDecl>(*I)) {
3775      UninitializedFields.insert(IFD->getAnonField());
3776    }
3777  }
3778
3779  // Fields already checked when processing the in class initializers.
3780  llvm::SmallPtrSet<ValueDecl*, 4>
3781      InClassUninitializedFields = UninitializedFields;
3782
3783  for (CXXConstructorDecl::init_const_iterator FieldInit =
3784           Constructor->init_begin(),
3785           FieldInitEnd = Constructor->init_end();
3786       FieldInit != FieldInitEnd; ++FieldInit) {
3787
3788    FieldDecl *Field = (*FieldInit)->getAnyMember();
3789    Expr *InitExpr = (*FieldInit)->getInit();
3790
3791    if (!Field) {
3792      CheckInitExprContainsUninitializedFields(
3793          SemaRef, InitExpr, 0, UninitializedFields,
3794          false/*WarnOnSelfReference*/);
3795      continue;
3796    }
3797
3798    if (CXXDefaultInitExpr *Default = dyn_cast<CXXDefaultInitExpr>(InitExpr)) {
3799      // This field is initialized with an in-class initailzer.  Remove the
3800      // fields already checked to prevent duplicate warnings.
3801      llvm::SmallPtrSet<ValueDecl*, 4> DiffSet = UninitializedFields;
3802      for (llvm::SmallPtrSet<ValueDecl*, 4>::iterator
3803               I = InClassUninitializedFields.begin(),
3804               E = InClassUninitializedFields.end();
3805           I != E; ++I) {
3806        DiffSet.erase(*I);
3807      }
3808      CheckInitExprContainsUninitializedFields(
3809            SemaRef, Default->getExpr(), Field, DiffSet,
3810            DiffSet.count(Field), Constructor);
3811
3812      // Update the unitialized field sets.
3813      CheckInitExprContainsUninitializedFields(
3814            SemaRef, Default->getExpr(), 0, UninitializedFields,
3815            false);
3816      CheckInitExprContainsUninitializedFields(
3817            SemaRef, Default->getExpr(), 0, InClassUninitializedFields,
3818            false);
3819    } else {
3820      CheckInitExprContainsUninitializedFields(
3821          SemaRef, InitExpr, Field, UninitializedFields,
3822          UninitializedFields.count(Field));
3823      if (Expr* InClassInit = Field->getInClassInitializer()) {
3824        CheckInitExprContainsUninitializedFields(
3825            SemaRef, InClassInit, 0, InClassUninitializedFields,
3826            false);
3827      }
3828    }
3829    UninitializedFields.erase(Field);
3830    InClassUninitializedFields.erase(Field);
3831  }
3832}
3833
3834/// ActOnMemInitializers - Handle the member initializers for a constructor.
3835void Sema::ActOnMemInitializers(Decl *ConstructorDecl,
3836                                SourceLocation ColonLoc,
3837                                ArrayRef<CXXCtorInitializer*> MemInits,
3838                                bool AnyErrors) {
3839  if (!ConstructorDecl)
3840    return;
3841
3842  AdjustDeclIfTemplate(ConstructorDecl);
3843
3844  CXXConstructorDecl *Constructor
3845    = dyn_cast<CXXConstructorDecl>(ConstructorDecl);
3846
3847  if (!Constructor) {
3848    Diag(ColonLoc, diag::err_only_constructors_take_base_inits);
3849    return;
3850  }
3851
3852  // Mapping for the duplicate initializers check.
3853  // For member initializers, this is keyed with a FieldDecl*.
3854  // For base initializers, this is keyed with a Type*.
3855  llvm::DenseMap<const void *, CXXCtorInitializer *> Members;
3856
3857  // Mapping for the inconsistent anonymous-union initializers check.
3858  RedundantUnionMap MemberUnions;
3859
3860  bool HadError = false;
3861  for (unsigned i = 0; i < MemInits.size(); i++) {
3862    CXXCtorInitializer *Init = MemInits[i];
3863
3864    // Set the source order index.
3865    Init->setSourceOrder(i);
3866
3867    if (Init->isAnyMemberInitializer()) {
3868      FieldDecl *Field = Init->getAnyMember();
3869      if (CheckRedundantInit(*this, Init, Members[Field]) ||
3870          CheckRedundantUnionInit(*this, Init, MemberUnions))
3871        HadError = true;
3872    } else if (Init->isBaseInitializer()) {
3873      const void *Key =
3874          GetKeyForBase(Context, QualType(Init->getBaseClass(), 0));
3875      if (CheckRedundantInit(*this, Init, Members[Key]))
3876        HadError = true;
3877    } else {
3878      assert(Init->isDelegatingInitializer());
3879      // This must be the only initializer
3880      if (MemInits.size() != 1) {
3881        Diag(Init->getSourceLocation(),
3882             diag::err_delegating_initializer_alone)
3883          << Init->getSourceRange() << MemInits[i ? 0 : 1]->getSourceRange();
3884        // We will treat this as being the only initializer.
3885      }
3886      SetDelegatingInitializer(Constructor, MemInits[i]);
3887      // Return immediately as the initializer is set.
3888      return;
3889    }
3890  }
3891
3892  if (HadError)
3893    return;
3894
3895  DiagnoseBaseOrMemInitializerOrder(*this, Constructor, MemInits);
3896
3897  SetCtorInitializers(Constructor, AnyErrors, MemInits);
3898
3899  DiagnoseUnitializedFields(*this, Constructor);
3900}
3901
3902void
3903Sema::MarkBaseAndMemberDestructorsReferenced(SourceLocation Location,
3904                                             CXXRecordDecl *ClassDecl) {
3905  // Ignore dependent contexts. Also ignore unions, since their members never
3906  // have destructors implicitly called.
3907  if (ClassDecl->isDependentContext() || ClassDecl->isUnion())
3908    return;
3909
3910  // FIXME: all the access-control diagnostics are positioned on the
3911  // field/base declaration.  That's probably good; that said, the
3912  // user might reasonably want to know why the destructor is being
3913  // emitted, and we currently don't say.
3914
3915  // Non-static data members.
3916  for (CXXRecordDecl::field_iterator I = ClassDecl->field_begin(),
3917       E = ClassDecl->field_end(); I != E; ++I) {
3918    FieldDecl *Field = *I;
3919    if (Field->isInvalidDecl())
3920      continue;
3921
3922    // Don't destroy incomplete or zero-length arrays.
3923    if (isIncompleteOrZeroLengthArrayType(Context, Field->getType()))
3924      continue;
3925
3926    QualType FieldType = Context.getBaseElementType(Field->getType());
3927
3928    const RecordType* RT = FieldType->getAs<RecordType>();
3929    if (!RT)
3930      continue;
3931
3932    CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
3933    if (FieldClassDecl->isInvalidDecl())
3934      continue;
3935    if (FieldClassDecl->hasIrrelevantDestructor())
3936      continue;
3937    // The destructor for an implicit anonymous union member is never invoked.
3938    if (FieldClassDecl->isUnion() && FieldClassDecl->isAnonymousStructOrUnion())
3939      continue;
3940
3941    CXXDestructorDecl *Dtor = LookupDestructor(FieldClassDecl);
3942    assert(Dtor && "No dtor found for FieldClassDecl!");
3943    CheckDestructorAccess(Field->getLocation(), Dtor,
3944                          PDiag(diag::err_access_dtor_field)
3945                            << Field->getDeclName()
3946                            << FieldType);
3947
3948    MarkFunctionReferenced(Location, Dtor);
3949    DiagnoseUseOfDecl(Dtor, Location);
3950  }
3951
3952  llvm::SmallPtrSet<const RecordType *, 8> DirectVirtualBases;
3953
3954  // Bases.
3955  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
3956       E = ClassDecl->bases_end(); Base != E; ++Base) {
3957    // Bases are always records in a well-formed non-dependent class.
3958    const RecordType *RT = Base->getType()->getAs<RecordType>();
3959
3960    // Remember direct virtual bases.
3961    if (Base->isVirtual())
3962      DirectVirtualBases.insert(RT);
3963
3964    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
3965    // If our base class is invalid, we probably can't get its dtor anyway.
3966    if (BaseClassDecl->isInvalidDecl())
3967      continue;
3968    if (BaseClassDecl->hasIrrelevantDestructor())
3969      continue;
3970
3971    CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
3972    assert(Dtor && "No dtor found for BaseClassDecl!");
3973
3974    // FIXME: caret should be on the start of the class name
3975    CheckDestructorAccess(Base->getLocStart(), Dtor,
3976                          PDiag(diag::err_access_dtor_base)
3977                            << Base->getType()
3978                            << Base->getSourceRange(),
3979                          Context.getTypeDeclType(ClassDecl));
3980
3981    MarkFunctionReferenced(Location, Dtor);
3982    DiagnoseUseOfDecl(Dtor, Location);
3983  }
3984
3985  // Virtual bases.
3986  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
3987       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
3988
3989    // Bases are always records in a well-formed non-dependent class.
3990    const RecordType *RT = VBase->getType()->castAs<RecordType>();
3991
3992    // Ignore direct virtual bases.
3993    if (DirectVirtualBases.count(RT))
3994      continue;
3995
3996    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
3997    // If our base class is invalid, we probably can't get its dtor anyway.
3998    if (BaseClassDecl->isInvalidDecl())
3999      continue;
4000    if (BaseClassDecl->hasIrrelevantDestructor())
4001      continue;
4002
4003    CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
4004    assert(Dtor && "No dtor found for BaseClassDecl!");
4005    if (CheckDestructorAccess(
4006            ClassDecl->getLocation(), Dtor,
4007            PDiag(diag::err_access_dtor_vbase)
4008                << Context.getTypeDeclType(ClassDecl) << VBase->getType(),
4009            Context.getTypeDeclType(ClassDecl)) ==
4010        AR_accessible) {
4011      CheckDerivedToBaseConversion(
4012          Context.getTypeDeclType(ClassDecl), VBase->getType(),
4013          diag::err_access_dtor_vbase, 0, ClassDecl->getLocation(),
4014          SourceRange(), DeclarationName(), 0);
4015    }
4016
4017    MarkFunctionReferenced(Location, Dtor);
4018    DiagnoseUseOfDecl(Dtor, Location);
4019  }
4020}
4021
4022void Sema::ActOnDefaultCtorInitializers(Decl *CDtorDecl) {
4023  if (!CDtorDecl)
4024    return;
4025
4026  if (CXXConstructorDecl *Constructor
4027      = dyn_cast<CXXConstructorDecl>(CDtorDecl))
4028    SetCtorInitializers(Constructor, /*AnyErrors=*/false);
4029}
4030
4031bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
4032                                  unsigned DiagID, AbstractDiagSelID SelID) {
4033  class NonAbstractTypeDiagnoser : public TypeDiagnoser {
4034    unsigned DiagID;
4035    AbstractDiagSelID SelID;
4036
4037  public:
4038    NonAbstractTypeDiagnoser(unsigned DiagID, AbstractDiagSelID SelID)
4039      : TypeDiagnoser(DiagID == 0), DiagID(DiagID), SelID(SelID) { }
4040
4041    void diagnose(Sema &S, SourceLocation Loc, QualType T) LLVM_OVERRIDE {
4042      if (Suppressed) return;
4043      if (SelID == -1)
4044        S.Diag(Loc, DiagID) << T;
4045      else
4046        S.Diag(Loc, DiagID) << SelID << T;
4047    }
4048  } Diagnoser(DiagID, SelID);
4049
4050  return RequireNonAbstractType(Loc, T, Diagnoser);
4051}
4052
4053bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
4054                                  TypeDiagnoser &Diagnoser) {
4055  if (!getLangOpts().CPlusPlus)
4056    return false;
4057
4058  if (const ArrayType *AT = Context.getAsArrayType(T))
4059    return RequireNonAbstractType(Loc, AT->getElementType(), Diagnoser);
4060
4061  if (const PointerType *PT = T->getAs<PointerType>()) {
4062    // Find the innermost pointer type.
4063    while (const PointerType *T = PT->getPointeeType()->getAs<PointerType>())
4064      PT = T;
4065
4066    if (const ArrayType *AT = Context.getAsArrayType(PT->getPointeeType()))
4067      return RequireNonAbstractType(Loc, AT->getElementType(), Diagnoser);
4068  }
4069
4070  const RecordType *RT = T->getAs<RecordType>();
4071  if (!RT)
4072    return false;
4073
4074  const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
4075
4076  // We can't answer whether something is abstract until it has a
4077  // definition.  If it's currently being defined, we'll walk back
4078  // over all the declarations when we have a full definition.
4079  const CXXRecordDecl *Def = RD->getDefinition();
4080  if (!Def || Def->isBeingDefined())
4081    return false;
4082
4083  if (!RD->isAbstract())
4084    return false;
4085
4086  Diagnoser.diagnose(*this, Loc, T);
4087  DiagnoseAbstractType(RD);
4088
4089  return true;
4090}
4091
4092void Sema::DiagnoseAbstractType(const CXXRecordDecl *RD) {
4093  // Check if we've already emitted the list of pure virtual functions
4094  // for this class.
4095  if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD))
4096    return;
4097
4098  // If the diagnostic is suppressed, don't emit the notes. We're only
4099  // going to emit them once, so try to attach them to a diagnostic we're
4100  // actually going to show.
4101  if (Diags.isLastDiagnosticIgnored())
4102    return;
4103
4104  CXXFinalOverriderMap FinalOverriders;
4105  RD->getFinalOverriders(FinalOverriders);
4106
4107  // Keep a set of seen pure methods so we won't diagnose the same method
4108  // more than once.
4109  llvm::SmallPtrSet<const CXXMethodDecl *, 8> SeenPureMethods;
4110
4111  for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
4112                                   MEnd = FinalOverriders.end();
4113       M != MEnd;
4114       ++M) {
4115    for (OverridingMethods::iterator SO = M->second.begin(),
4116                                  SOEnd = M->second.end();
4117         SO != SOEnd; ++SO) {
4118      // C++ [class.abstract]p4:
4119      //   A class is abstract if it contains or inherits at least one
4120      //   pure virtual function for which the final overrider is pure
4121      //   virtual.
4122
4123      //
4124      if (SO->second.size() != 1)
4125        continue;
4126
4127      if (!SO->second.front().Method->isPure())
4128        continue;
4129
4130      if (!SeenPureMethods.insert(SO->second.front().Method))
4131        continue;
4132
4133      Diag(SO->second.front().Method->getLocation(),
4134           diag::note_pure_virtual_function)
4135        << SO->second.front().Method->getDeclName() << RD->getDeclName();
4136    }
4137  }
4138
4139  if (!PureVirtualClassDiagSet)
4140    PureVirtualClassDiagSet.reset(new RecordDeclSetTy);
4141  PureVirtualClassDiagSet->insert(RD);
4142}
4143
4144namespace {
4145struct AbstractUsageInfo {
4146  Sema &S;
4147  CXXRecordDecl *Record;
4148  CanQualType AbstractType;
4149  bool Invalid;
4150
4151  AbstractUsageInfo(Sema &S, CXXRecordDecl *Record)
4152    : S(S), Record(Record),
4153      AbstractType(S.Context.getCanonicalType(
4154                   S.Context.getTypeDeclType(Record))),
4155      Invalid(false) {}
4156
4157  void DiagnoseAbstractType() {
4158    if (Invalid) return;
4159    S.DiagnoseAbstractType(Record);
4160    Invalid = true;
4161  }
4162
4163  void CheckType(const NamedDecl *D, TypeLoc TL, Sema::AbstractDiagSelID Sel);
4164};
4165
4166struct CheckAbstractUsage {
4167  AbstractUsageInfo &Info;
4168  const NamedDecl *Ctx;
4169
4170  CheckAbstractUsage(AbstractUsageInfo &Info, const NamedDecl *Ctx)
4171    : Info(Info), Ctx(Ctx) {}
4172
4173  void Visit(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
4174    switch (TL.getTypeLocClass()) {
4175#define ABSTRACT_TYPELOC(CLASS, PARENT)
4176#define TYPELOC(CLASS, PARENT) \
4177    case TypeLoc::CLASS: Check(TL.castAs<CLASS##TypeLoc>(), Sel); break;
4178#include "clang/AST/TypeLocNodes.def"
4179    }
4180  }
4181
4182  void Check(FunctionProtoTypeLoc TL, Sema::AbstractDiagSelID Sel) {
4183    Visit(TL.getResultLoc(), Sema::AbstractReturnType);
4184    for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
4185      if (!TL.getArg(I))
4186        continue;
4187
4188      TypeSourceInfo *TSI = TL.getArg(I)->getTypeSourceInfo();
4189      if (TSI) Visit(TSI->getTypeLoc(), Sema::AbstractParamType);
4190    }
4191  }
4192
4193  void Check(ArrayTypeLoc TL, Sema::AbstractDiagSelID Sel) {
4194    Visit(TL.getElementLoc(), Sema::AbstractArrayType);
4195  }
4196
4197  void Check(TemplateSpecializationTypeLoc TL, Sema::AbstractDiagSelID Sel) {
4198    // Visit the type parameters from a permissive context.
4199    for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
4200      TemplateArgumentLoc TAL = TL.getArgLoc(I);
4201      if (TAL.getArgument().getKind() == TemplateArgument::Type)
4202        if (TypeSourceInfo *TSI = TAL.getTypeSourceInfo())
4203          Visit(TSI->getTypeLoc(), Sema::AbstractNone);
4204      // TODO: other template argument types?
4205    }
4206  }
4207
4208  // Visit pointee types from a permissive context.
4209#define CheckPolymorphic(Type) \
4210  void Check(Type TL, Sema::AbstractDiagSelID Sel) { \
4211    Visit(TL.getNextTypeLoc(), Sema::AbstractNone); \
4212  }
4213  CheckPolymorphic(PointerTypeLoc)
4214  CheckPolymorphic(ReferenceTypeLoc)
4215  CheckPolymorphic(MemberPointerTypeLoc)
4216  CheckPolymorphic(BlockPointerTypeLoc)
4217  CheckPolymorphic(AtomicTypeLoc)
4218
4219  /// Handle all the types we haven't given a more specific
4220  /// implementation for above.
4221  void Check(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
4222    // Every other kind of type that we haven't called out already
4223    // that has an inner type is either (1) sugar or (2) contains that
4224    // inner type in some way as a subobject.
4225    if (TypeLoc Next = TL.getNextTypeLoc())
4226      return Visit(Next, Sel);
4227
4228    // If there's no inner type and we're in a permissive context,
4229    // don't diagnose.
4230    if (Sel == Sema::AbstractNone) return;
4231
4232    // Check whether the type matches the abstract type.
4233    QualType T = TL.getType();
4234    if (T->isArrayType()) {
4235      Sel = Sema::AbstractArrayType;
4236      T = Info.S.Context.getBaseElementType(T);
4237    }
4238    CanQualType CT = T->getCanonicalTypeUnqualified().getUnqualifiedType();
4239    if (CT != Info.AbstractType) return;
4240
4241    // It matched; do some magic.
4242    if (Sel == Sema::AbstractArrayType) {
4243      Info.S.Diag(Ctx->getLocation(), diag::err_array_of_abstract_type)
4244        << T << TL.getSourceRange();
4245    } else {
4246      Info.S.Diag(Ctx->getLocation(), diag::err_abstract_type_in_decl)
4247        << Sel << T << TL.getSourceRange();
4248    }
4249    Info.DiagnoseAbstractType();
4250  }
4251};
4252
4253void AbstractUsageInfo::CheckType(const NamedDecl *D, TypeLoc TL,
4254                                  Sema::AbstractDiagSelID Sel) {
4255  CheckAbstractUsage(*this, D).Visit(TL, Sel);
4256}
4257
4258}
4259
4260/// Check for invalid uses of an abstract type in a method declaration.
4261static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
4262                                    CXXMethodDecl *MD) {
4263  // No need to do the check on definitions, which require that
4264  // the return/param types be complete.
4265  if (MD->doesThisDeclarationHaveABody())
4266    return;
4267
4268  // For safety's sake, just ignore it if we don't have type source
4269  // information.  This should never happen for non-implicit methods,
4270  // but...
4271  if (TypeSourceInfo *TSI = MD->getTypeSourceInfo())
4272    Info.CheckType(MD, TSI->getTypeLoc(), Sema::AbstractNone);
4273}
4274
4275/// Check for invalid uses of an abstract type within a class definition.
4276static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
4277                                    CXXRecordDecl *RD) {
4278  for (CXXRecordDecl::decl_iterator
4279         I = RD->decls_begin(), E = RD->decls_end(); I != E; ++I) {
4280    Decl *D = *I;
4281    if (D->isImplicit()) continue;
4282
4283    // Methods and method templates.
4284    if (isa<CXXMethodDecl>(D)) {
4285      CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(D));
4286    } else if (isa<FunctionTemplateDecl>(D)) {
4287      FunctionDecl *FD = cast<FunctionTemplateDecl>(D)->getTemplatedDecl();
4288      CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(FD));
4289
4290    // Fields and static variables.
4291    } else if (isa<FieldDecl>(D)) {
4292      FieldDecl *FD = cast<FieldDecl>(D);
4293      if (TypeSourceInfo *TSI = FD->getTypeSourceInfo())
4294        Info.CheckType(FD, TSI->getTypeLoc(), Sema::AbstractFieldType);
4295    } else if (isa<VarDecl>(D)) {
4296      VarDecl *VD = cast<VarDecl>(D);
4297      if (TypeSourceInfo *TSI = VD->getTypeSourceInfo())
4298        Info.CheckType(VD, TSI->getTypeLoc(), Sema::AbstractVariableType);
4299
4300    // Nested classes and class templates.
4301    } else if (isa<CXXRecordDecl>(D)) {
4302      CheckAbstractClassUsage(Info, cast<CXXRecordDecl>(D));
4303    } else if (isa<ClassTemplateDecl>(D)) {
4304      CheckAbstractClassUsage(Info,
4305                             cast<ClassTemplateDecl>(D)->getTemplatedDecl());
4306    }
4307  }
4308}
4309
4310/// \brief Perform semantic checks on a class definition that has been
4311/// completing, introducing implicitly-declared members, checking for
4312/// abstract types, etc.
4313void Sema::CheckCompletedCXXClass(CXXRecordDecl *Record) {
4314  if (!Record)
4315    return;
4316
4317  if (Record->isAbstract() && !Record->isInvalidDecl()) {
4318    AbstractUsageInfo Info(*this, Record);
4319    CheckAbstractClassUsage(Info, Record);
4320  }
4321
4322  // If this is not an aggregate type and has no user-declared constructor,
4323  // complain about any non-static data members of reference or const scalar
4324  // type, since they will never get initializers.
4325  if (!Record->isInvalidDecl() && !Record->isDependentType() &&
4326      !Record->isAggregate() && !Record->hasUserDeclaredConstructor() &&
4327      !Record->isLambda()) {
4328    bool Complained = false;
4329    for (RecordDecl::field_iterator F = Record->field_begin(),
4330                                 FEnd = Record->field_end();
4331         F != FEnd; ++F) {
4332      if (F->hasInClassInitializer() || F->isUnnamedBitfield())
4333        continue;
4334
4335      if (F->getType()->isReferenceType() ||
4336          (F->getType().isConstQualified() && F->getType()->isScalarType())) {
4337        if (!Complained) {
4338          Diag(Record->getLocation(), diag::warn_no_constructor_for_refconst)
4339            << Record->getTagKind() << Record;
4340          Complained = true;
4341        }
4342
4343        Diag(F->getLocation(), diag::note_refconst_member_not_initialized)
4344          << F->getType()->isReferenceType()
4345          << F->getDeclName();
4346      }
4347    }
4348  }
4349
4350  if (Record->isDynamicClass() && !Record->isDependentType())
4351    DynamicClasses.push_back(Record);
4352
4353  if (Record->getIdentifier()) {
4354    // C++ [class.mem]p13:
4355    //   If T is the name of a class, then each of the following shall have a
4356    //   name different from T:
4357    //     - every member of every anonymous union that is a member of class T.
4358    //
4359    // C++ [class.mem]p14:
4360    //   In addition, if class T has a user-declared constructor (12.1), every
4361    //   non-static data member of class T shall have a name different from T.
4362    DeclContext::lookup_result R = Record->lookup(Record->getDeclName());
4363    for (DeclContext::lookup_iterator I = R.begin(), E = R.end(); I != E;
4364         ++I) {
4365      NamedDecl *D = *I;
4366      if ((isa<FieldDecl>(D) && Record->hasUserDeclaredConstructor()) ||
4367          isa<IndirectFieldDecl>(D)) {
4368        Diag(D->getLocation(), diag::err_member_name_of_class)
4369          << D->getDeclName();
4370        break;
4371      }
4372    }
4373  }
4374
4375  // Warn if the class has virtual methods but non-virtual public destructor.
4376  if (Record->isPolymorphic() && !Record->isDependentType()) {
4377    CXXDestructorDecl *dtor = Record->getDestructor();
4378    if (!dtor || (!dtor->isVirtual() && dtor->getAccess() == AS_public))
4379      Diag(dtor ? dtor->getLocation() : Record->getLocation(),
4380           diag::warn_non_virtual_dtor) << Context.getRecordType(Record);
4381  }
4382
4383  if (Record->isAbstract() && Record->hasAttr<FinalAttr>()) {
4384    Diag(Record->getLocation(), diag::warn_abstract_final_class);
4385    DiagnoseAbstractType(Record);
4386  }
4387
4388  if (!Record->isDependentType()) {
4389    for (CXXRecordDecl::method_iterator M = Record->method_begin(),
4390                                     MEnd = Record->method_end();
4391         M != MEnd; ++M) {
4392      // See if a method overloads virtual methods in a base
4393      // class without overriding any.
4394      if (!M->isStatic())
4395        DiagnoseHiddenVirtualMethods(*M);
4396
4397      // Check whether the explicitly-defaulted special members are valid.
4398      if (!M->isInvalidDecl() && M->isExplicitlyDefaulted())
4399        CheckExplicitlyDefaultedSpecialMember(*M);
4400
4401      // For an explicitly defaulted or deleted special member, we defer
4402      // determining triviality until the class is complete. That time is now!
4403      if (!M->isImplicit() && !M->isUserProvided()) {
4404        CXXSpecialMember CSM = getSpecialMember(*M);
4405        if (CSM != CXXInvalid) {
4406          M->setTrivial(SpecialMemberIsTrivial(*M, CSM));
4407
4408          // Inform the class that we've finished declaring this member.
4409          Record->finishedDefaultedOrDeletedMember(*M);
4410        }
4411      }
4412    }
4413  }
4414
4415  // C++11 [dcl.constexpr]p8: A constexpr specifier for a non-static member
4416  // function that is not a constructor declares that member function to be
4417  // const. [...] The class of which that function is a member shall be
4418  // a literal type.
4419  //
4420  // If the class has virtual bases, any constexpr members will already have
4421  // been diagnosed by the checks performed on the member declaration, so
4422  // suppress this (less useful) diagnostic.
4423  //
4424  // We delay this until we know whether an explicitly-defaulted (or deleted)
4425  // destructor for the class is trivial.
4426  if (LangOpts.CPlusPlus11 && !Record->isDependentType() &&
4427      !Record->isLiteral() && !Record->getNumVBases()) {
4428    for (CXXRecordDecl::method_iterator M = Record->method_begin(),
4429                                     MEnd = Record->method_end();
4430         M != MEnd; ++M) {
4431      if (M->isConstexpr() && M->isInstance() && !isa<CXXConstructorDecl>(*M)) {
4432        switch (Record->getTemplateSpecializationKind()) {
4433        case TSK_ImplicitInstantiation:
4434        case TSK_ExplicitInstantiationDeclaration:
4435        case TSK_ExplicitInstantiationDefinition:
4436          // If a template instantiates to a non-literal type, but its members
4437          // instantiate to constexpr functions, the template is technically
4438          // ill-formed, but we allow it for sanity.
4439          continue;
4440
4441        case TSK_Undeclared:
4442        case TSK_ExplicitSpecialization:
4443          RequireLiteralType(M->getLocation(), Context.getRecordType(Record),
4444                             diag::err_constexpr_method_non_literal);
4445          break;
4446        }
4447
4448        // Only produce one error per class.
4449        break;
4450      }
4451    }
4452  }
4453
4454  // Check to see if we're trying to lay out a struct using the ms_struct
4455  // attribute that is dynamic.
4456  if (Record->isMsStruct(Context) && Record->isDynamicClass()) {
4457    Diag(Record->getLocation(), diag::warn_pragma_ms_struct_failed);
4458    Record->dropAttr<MsStructAttr>();
4459  }
4460
4461  // Declare inheriting constructors. We do this eagerly here because:
4462  // - The standard requires an eager diagnostic for conflicting inheriting
4463  //   constructors from different classes.
4464  // - The lazy declaration of the other implicit constructors is so as to not
4465  //   waste space and performance on classes that are not meant to be
4466  //   instantiated (e.g. meta-functions). This doesn't apply to classes that
4467  //   have inheriting constructors.
4468  DeclareInheritingConstructors(Record);
4469}
4470
4471/// Is the special member function which would be selected to perform the
4472/// specified operation on the specified class type a constexpr constructor?
4473static bool specialMemberIsConstexpr(Sema &S, CXXRecordDecl *ClassDecl,
4474                                     Sema::CXXSpecialMember CSM,
4475                                     bool ConstArg) {
4476  Sema::SpecialMemberOverloadResult *SMOR =
4477      S.LookupSpecialMember(ClassDecl, CSM, ConstArg,
4478                            false, false, false, false);
4479  if (!SMOR || !SMOR->getMethod())
4480    // A constructor we wouldn't select can't be "involved in initializing"
4481    // anything.
4482    return true;
4483  return SMOR->getMethod()->isConstexpr();
4484}
4485
4486/// Determine whether the specified special member function would be constexpr
4487/// if it were implicitly defined.
4488static bool defaultedSpecialMemberIsConstexpr(Sema &S, CXXRecordDecl *ClassDecl,
4489                                              Sema::CXXSpecialMember CSM,
4490                                              bool ConstArg) {
4491  if (!S.getLangOpts().CPlusPlus11)
4492    return false;
4493
4494  // C++11 [dcl.constexpr]p4:
4495  // In the definition of a constexpr constructor [...]
4496  bool Ctor = true;
4497  switch (CSM) {
4498  case Sema::CXXDefaultConstructor:
4499    // Since default constructor lookup is essentially trivial (and cannot
4500    // involve, for instance, template instantiation), we compute whether a
4501    // defaulted default constructor is constexpr directly within CXXRecordDecl.
4502    //
4503    // This is important for performance; we need to know whether the default
4504    // constructor is constexpr to determine whether the type is a literal type.
4505    return ClassDecl->defaultedDefaultConstructorIsConstexpr();
4506
4507  case Sema::CXXCopyConstructor:
4508  case Sema::CXXMoveConstructor:
4509    // For copy or move constructors, we need to perform overload resolution.
4510    break;
4511
4512  case Sema::CXXCopyAssignment:
4513  case Sema::CXXMoveAssignment:
4514    if (!S.getLangOpts().CPlusPlus1y)
4515      return false;
4516    // In C++1y, we need to perform overload resolution.
4517    Ctor = false;
4518    break;
4519
4520  case Sema::CXXDestructor:
4521  case Sema::CXXInvalid:
4522    return false;
4523  }
4524
4525  //   -- if the class is a non-empty union, or for each non-empty anonymous
4526  //      union member of a non-union class, exactly one non-static data member
4527  //      shall be initialized; [DR1359]
4528  //
4529  // If we squint, this is guaranteed, since exactly one non-static data member
4530  // will be initialized (if the constructor isn't deleted), we just don't know
4531  // which one.
4532  if (Ctor && ClassDecl->isUnion())
4533    return true;
4534
4535  //   -- the class shall not have any virtual base classes;
4536  if (Ctor && ClassDecl->getNumVBases())
4537    return false;
4538
4539  // C++1y [class.copy]p26:
4540  //   -- [the class] is a literal type, and
4541  if (!Ctor && !ClassDecl->isLiteral())
4542    return false;
4543
4544  //   -- every constructor involved in initializing [...] base class
4545  //      sub-objects shall be a constexpr constructor;
4546  //   -- the assignment operator selected to copy/move each direct base
4547  //      class is a constexpr function, and
4548  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
4549                                       BEnd = ClassDecl->bases_end();
4550       B != BEnd; ++B) {
4551    const RecordType *BaseType = B->getType()->getAs<RecordType>();
4552    if (!BaseType) continue;
4553
4554    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
4555    if (!specialMemberIsConstexpr(S, BaseClassDecl, CSM, ConstArg))
4556      return false;
4557  }
4558
4559  //   -- every constructor involved in initializing non-static data members
4560  //      [...] shall be a constexpr constructor;
4561  //   -- every non-static data member and base class sub-object shall be
4562  //      initialized
4563  //   -- for each non-stastic data member of X that is of class type (or array
4564  //      thereof), the assignment operator selected to copy/move that member is
4565  //      a constexpr function
4566  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
4567                               FEnd = ClassDecl->field_end();
4568       F != FEnd; ++F) {
4569    if (F->isInvalidDecl())
4570      continue;
4571    if (const RecordType *RecordTy =
4572            S.Context.getBaseElementType(F->getType())->getAs<RecordType>()) {
4573      CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
4574      if (!specialMemberIsConstexpr(S, FieldRecDecl, CSM, ConstArg))
4575        return false;
4576    }
4577  }
4578
4579  // All OK, it's constexpr!
4580  return true;
4581}
4582
4583static Sema::ImplicitExceptionSpecification
4584computeImplicitExceptionSpec(Sema &S, SourceLocation Loc, CXXMethodDecl *MD) {
4585  switch (S.getSpecialMember(MD)) {
4586  case Sema::CXXDefaultConstructor:
4587    return S.ComputeDefaultedDefaultCtorExceptionSpec(Loc, MD);
4588  case Sema::CXXCopyConstructor:
4589    return S.ComputeDefaultedCopyCtorExceptionSpec(MD);
4590  case Sema::CXXCopyAssignment:
4591    return S.ComputeDefaultedCopyAssignmentExceptionSpec(MD);
4592  case Sema::CXXMoveConstructor:
4593    return S.ComputeDefaultedMoveCtorExceptionSpec(MD);
4594  case Sema::CXXMoveAssignment:
4595    return S.ComputeDefaultedMoveAssignmentExceptionSpec(MD);
4596  case Sema::CXXDestructor:
4597    return S.ComputeDefaultedDtorExceptionSpec(MD);
4598  case Sema::CXXInvalid:
4599    break;
4600  }
4601  assert(cast<CXXConstructorDecl>(MD)->getInheritedConstructor() &&
4602         "only special members have implicit exception specs");
4603  return S.ComputeInheritingCtorExceptionSpec(cast<CXXConstructorDecl>(MD));
4604}
4605
4606static void
4607updateExceptionSpec(Sema &S, FunctionDecl *FD, const FunctionProtoType *FPT,
4608                    const Sema::ImplicitExceptionSpecification &ExceptSpec) {
4609  FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
4610  ExceptSpec.getEPI(EPI);
4611  FD->setType(S.Context.getFunctionType(FPT->getResultType(),
4612                                        FPT->getArgTypes(), EPI));
4613}
4614
4615static FunctionProtoType::ExtProtoInfo getImplicitMethodEPI(Sema &S,
4616                                                            CXXMethodDecl *MD) {
4617  FunctionProtoType::ExtProtoInfo EPI;
4618
4619  // Build an exception specification pointing back at this member.
4620  EPI.ExceptionSpecType = EST_Unevaluated;
4621  EPI.ExceptionSpecDecl = MD;
4622
4623  // Set the calling convention to the default for C++ instance methods.
4624  EPI.ExtInfo = EPI.ExtInfo.withCallingConv(
4625      S.Context.getDefaultCallingConvention(/*IsVariadic=*/false,
4626                                            /*IsCXXMethod=*/true));
4627  return EPI;
4628}
4629
4630void Sema::EvaluateImplicitExceptionSpec(SourceLocation Loc, CXXMethodDecl *MD) {
4631  const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
4632  if (FPT->getExceptionSpecType() != EST_Unevaluated)
4633    return;
4634
4635  // Evaluate the exception specification.
4636  ImplicitExceptionSpecification ExceptSpec =
4637      computeImplicitExceptionSpec(*this, Loc, MD);
4638
4639  // Update the type of the special member to use it.
4640  updateExceptionSpec(*this, MD, FPT, ExceptSpec);
4641
4642  // A user-provided destructor can be defined outside the class. When that
4643  // happens, be sure to update the exception specification on both
4644  // declarations.
4645  const FunctionProtoType *CanonicalFPT =
4646    MD->getCanonicalDecl()->getType()->castAs<FunctionProtoType>();
4647  if (CanonicalFPT->getExceptionSpecType() == EST_Unevaluated)
4648    updateExceptionSpec(*this, MD->getCanonicalDecl(),
4649                        CanonicalFPT, ExceptSpec);
4650}
4651
4652void Sema::CheckExplicitlyDefaultedSpecialMember(CXXMethodDecl *MD) {
4653  CXXRecordDecl *RD = MD->getParent();
4654  CXXSpecialMember CSM = getSpecialMember(MD);
4655
4656  assert(MD->isExplicitlyDefaulted() && CSM != CXXInvalid &&
4657         "not an explicitly-defaulted special member");
4658
4659  // Whether this was the first-declared instance of the constructor.
4660  // This affects whether we implicitly add an exception spec and constexpr.
4661  bool First = MD == MD->getCanonicalDecl();
4662
4663  bool HadError = false;
4664
4665  // C++11 [dcl.fct.def.default]p1:
4666  //   A function that is explicitly defaulted shall
4667  //     -- be a special member function (checked elsewhere),
4668  //     -- have the same type (except for ref-qualifiers, and except that a
4669  //        copy operation can take a non-const reference) as an implicit
4670  //        declaration, and
4671  //     -- not have default arguments.
4672  unsigned ExpectedParams = 1;
4673  if (CSM == CXXDefaultConstructor || CSM == CXXDestructor)
4674    ExpectedParams = 0;
4675  if (MD->getNumParams() != ExpectedParams) {
4676    // This also checks for default arguments: a copy or move constructor with a
4677    // default argument is classified as a default constructor, and assignment
4678    // operations and destructors can't have default arguments.
4679    Diag(MD->getLocation(), diag::err_defaulted_special_member_params)
4680      << CSM << MD->getSourceRange();
4681    HadError = true;
4682  } else if (MD->isVariadic()) {
4683    Diag(MD->getLocation(), diag::err_defaulted_special_member_variadic)
4684      << CSM << MD->getSourceRange();
4685    HadError = true;
4686  }
4687
4688  const FunctionProtoType *Type = MD->getType()->getAs<FunctionProtoType>();
4689
4690  bool CanHaveConstParam = false;
4691  if (CSM == CXXCopyConstructor)
4692    CanHaveConstParam = RD->implicitCopyConstructorHasConstParam();
4693  else if (CSM == CXXCopyAssignment)
4694    CanHaveConstParam = RD->implicitCopyAssignmentHasConstParam();
4695
4696  QualType ReturnType = Context.VoidTy;
4697  if (CSM == CXXCopyAssignment || CSM == CXXMoveAssignment) {
4698    // Check for return type matching.
4699    ReturnType = Type->getResultType();
4700    QualType ExpectedReturnType =
4701        Context.getLValueReferenceType(Context.getTypeDeclType(RD));
4702    if (!Context.hasSameType(ReturnType, ExpectedReturnType)) {
4703      Diag(MD->getLocation(), diag::err_defaulted_special_member_return_type)
4704        << (CSM == CXXMoveAssignment) << ExpectedReturnType;
4705      HadError = true;
4706    }
4707
4708    // A defaulted special member cannot have cv-qualifiers.
4709    if (Type->getTypeQuals()) {
4710      Diag(MD->getLocation(), diag::err_defaulted_special_member_quals)
4711        << (CSM == CXXMoveAssignment) << getLangOpts().CPlusPlus1y;
4712      HadError = true;
4713    }
4714  }
4715
4716  // Check for parameter type matching.
4717  QualType ArgType = ExpectedParams ? Type->getArgType(0) : QualType();
4718  bool HasConstParam = false;
4719  if (ExpectedParams && ArgType->isReferenceType()) {
4720    // Argument must be reference to possibly-const T.
4721    QualType ReferentType = ArgType->getPointeeType();
4722    HasConstParam = ReferentType.isConstQualified();
4723
4724    if (ReferentType.isVolatileQualified()) {
4725      Diag(MD->getLocation(),
4726           diag::err_defaulted_special_member_volatile_param) << CSM;
4727      HadError = true;
4728    }
4729
4730    if (HasConstParam && !CanHaveConstParam) {
4731      if (CSM == CXXCopyConstructor || CSM == CXXCopyAssignment) {
4732        Diag(MD->getLocation(),
4733             diag::err_defaulted_special_member_copy_const_param)
4734          << (CSM == CXXCopyAssignment);
4735        // FIXME: Explain why this special member can't be const.
4736      } else {
4737        Diag(MD->getLocation(),
4738             diag::err_defaulted_special_member_move_const_param)
4739          << (CSM == CXXMoveAssignment);
4740      }
4741      HadError = true;
4742    }
4743  } else if (ExpectedParams) {
4744    // A copy assignment operator can take its argument by value, but a
4745    // defaulted one cannot.
4746    assert(CSM == CXXCopyAssignment && "unexpected non-ref argument");
4747    Diag(MD->getLocation(), diag::err_defaulted_copy_assign_not_ref);
4748    HadError = true;
4749  }
4750
4751  // C++11 [dcl.fct.def.default]p2:
4752  //   An explicitly-defaulted function may be declared constexpr only if it
4753  //   would have been implicitly declared as constexpr,
4754  // Do not apply this rule to members of class templates, since core issue 1358
4755  // makes such functions always instantiate to constexpr functions. For
4756  // functions which cannot be constexpr (for non-constructors in C++11 and for
4757  // destructors in C++1y), this is checked elsewhere.
4758  bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, RD, CSM,
4759                                                     HasConstParam);
4760  if ((getLangOpts().CPlusPlus1y ? !isa<CXXDestructorDecl>(MD)
4761                                 : isa<CXXConstructorDecl>(MD)) &&
4762      MD->isConstexpr() && !Constexpr &&
4763      MD->getTemplatedKind() == FunctionDecl::TK_NonTemplate) {
4764    Diag(MD->getLocStart(), diag::err_incorrect_defaulted_constexpr) << CSM;
4765    // FIXME: Explain why the special member can't be constexpr.
4766    HadError = true;
4767  }
4768
4769  //   and may have an explicit exception-specification only if it is compatible
4770  //   with the exception-specification on the implicit declaration.
4771  if (Type->hasExceptionSpec()) {
4772    // Delay the check if this is the first declaration of the special member,
4773    // since we may not have parsed some necessary in-class initializers yet.
4774    if (First) {
4775      // If the exception specification needs to be instantiated, do so now,
4776      // before we clobber it with an EST_Unevaluated specification below.
4777      if (Type->getExceptionSpecType() == EST_Uninstantiated) {
4778        InstantiateExceptionSpec(MD->getLocStart(), MD);
4779        Type = MD->getType()->getAs<FunctionProtoType>();
4780      }
4781      DelayedDefaultedMemberExceptionSpecs.push_back(std::make_pair(MD, Type));
4782    } else
4783      CheckExplicitlyDefaultedMemberExceptionSpec(MD, Type);
4784  }
4785
4786  //   If a function is explicitly defaulted on its first declaration,
4787  if (First) {
4788    //  -- it is implicitly considered to be constexpr if the implicit
4789    //     definition would be,
4790    MD->setConstexpr(Constexpr);
4791
4792    //  -- it is implicitly considered to have the same exception-specification
4793    //     as if it had been implicitly declared,
4794    FunctionProtoType::ExtProtoInfo EPI = Type->getExtProtoInfo();
4795    EPI.ExceptionSpecType = EST_Unevaluated;
4796    EPI.ExceptionSpecDecl = MD;
4797    MD->setType(Context.getFunctionType(ReturnType,
4798                                        ArrayRef<QualType>(&ArgType,
4799                                                           ExpectedParams),
4800                                        EPI));
4801  }
4802
4803  if (ShouldDeleteSpecialMember(MD, CSM)) {
4804    if (First) {
4805      SetDeclDeleted(MD, MD->getLocation());
4806    } else {
4807      // C++11 [dcl.fct.def.default]p4:
4808      //   [For a] user-provided explicitly-defaulted function [...] if such a
4809      //   function is implicitly defined as deleted, the program is ill-formed.
4810      Diag(MD->getLocation(), diag::err_out_of_line_default_deletes) << CSM;
4811      HadError = true;
4812    }
4813  }
4814
4815  if (HadError)
4816    MD->setInvalidDecl();
4817}
4818
4819/// Check whether the exception specification provided for an
4820/// explicitly-defaulted special member matches the exception specification
4821/// that would have been generated for an implicit special member, per
4822/// C++11 [dcl.fct.def.default]p2.
4823void Sema::CheckExplicitlyDefaultedMemberExceptionSpec(
4824    CXXMethodDecl *MD, const FunctionProtoType *SpecifiedType) {
4825  // Compute the implicit exception specification.
4826  CallingConv CC = Context.getDefaultCallingConvention(/*IsVariadic=*/false,
4827                                                       /*IsCXXMethod=*/true);
4828  FunctionProtoType::ExtProtoInfo EPI(CC);
4829  computeImplicitExceptionSpec(*this, MD->getLocation(), MD).getEPI(EPI);
4830  const FunctionProtoType *ImplicitType = cast<FunctionProtoType>(
4831    Context.getFunctionType(Context.VoidTy, None, EPI));
4832
4833  // Ensure that it matches.
4834  CheckEquivalentExceptionSpec(
4835    PDiag(diag::err_incorrect_defaulted_exception_spec)
4836      << getSpecialMember(MD), PDiag(),
4837    ImplicitType, SourceLocation(),
4838    SpecifiedType, MD->getLocation());
4839}
4840
4841void Sema::CheckDelayedExplicitlyDefaultedMemberExceptionSpecs() {
4842  for (unsigned I = 0, N = DelayedDefaultedMemberExceptionSpecs.size();
4843       I != N; ++I)
4844    CheckExplicitlyDefaultedMemberExceptionSpec(
4845      DelayedDefaultedMemberExceptionSpecs[I].first,
4846      DelayedDefaultedMemberExceptionSpecs[I].second);
4847
4848  DelayedDefaultedMemberExceptionSpecs.clear();
4849}
4850
4851namespace {
4852struct SpecialMemberDeletionInfo {
4853  Sema &S;
4854  CXXMethodDecl *MD;
4855  Sema::CXXSpecialMember CSM;
4856  bool Diagnose;
4857
4858  // Properties of the special member, computed for convenience.
4859  bool IsConstructor, IsAssignment, IsMove, ConstArg, VolatileArg;
4860  SourceLocation Loc;
4861
4862  bool AllFieldsAreConst;
4863
4864  SpecialMemberDeletionInfo(Sema &S, CXXMethodDecl *MD,
4865                            Sema::CXXSpecialMember CSM, bool Diagnose)
4866    : S(S), MD(MD), CSM(CSM), Diagnose(Diagnose),
4867      IsConstructor(false), IsAssignment(false), IsMove(false),
4868      ConstArg(false), VolatileArg(false), Loc(MD->getLocation()),
4869      AllFieldsAreConst(true) {
4870    switch (CSM) {
4871      case Sema::CXXDefaultConstructor:
4872      case Sema::CXXCopyConstructor:
4873        IsConstructor = true;
4874        break;
4875      case Sema::CXXMoveConstructor:
4876        IsConstructor = true;
4877        IsMove = true;
4878        break;
4879      case Sema::CXXCopyAssignment:
4880        IsAssignment = true;
4881        break;
4882      case Sema::CXXMoveAssignment:
4883        IsAssignment = true;
4884        IsMove = true;
4885        break;
4886      case Sema::CXXDestructor:
4887        break;
4888      case Sema::CXXInvalid:
4889        llvm_unreachable("invalid special member kind");
4890    }
4891
4892    if (MD->getNumParams()) {
4893      ConstArg = MD->getParamDecl(0)->getType().isConstQualified();
4894      VolatileArg = MD->getParamDecl(0)->getType().isVolatileQualified();
4895    }
4896  }
4897
4898  bool inUnion() const { return MD->getParent()->isUnion(); }
4899
4900  /// Look up the corresponding special member in the given class.
4901  Sema::SpecialMemberOverloadResult *lookupIn(CXXRecordDecl *Class,
4902                                              unsigned Quals) {
4903    unsigned TQ = MD->getTypeQualifiers();
4904    // cv-qualifiers on class members don't affect default ctor / dtor calls.
4905    if (CSM == Sema::CXXDefaultConstructor || CSM == Sema::CXXDestructor)
4906      Quals = 0;
4907    return S.LookupSpecialMember(Class, CSM,
4908                                 ConstArg || (Quals & Qualifiers::Const),
4909                                 VolatileArg || (Quals & Qualifiers::Volatile),
4910                                 MD->getRefQualifier() == RQ_RValue,
4911                                 TQ & Qualifiers::Const,
4912                                 TQ & Qualifiers::Volatile);
4913  }
4914
4915  typedef llvm::PointerUnion<CXXBaseSpecifier*, FieldDecl*> Subobject;
4916
4917  bool shouldDeleteForBase(CXXBaseSpecifier *Base);
4918  bool shouldDeleteForField(FieldDecl *FD);
4919  bool shouldDeleteForAllConstMembers();
4920
4921  bool shouldDeleteForClassSubobject(CXXRecordDecl *Class, Subobject Subobj,
4922                                     unsigned Quals);
4923  bool shouldDeleteForSubobjectCall(Subobject Subobj,
4924                                    Sema::SpecialMemberOverloadResult *SMOR,
4925                                    bool IsDtorCallInCtor);
4926
4927  bool isAccessible(Subobject Subobj, CXXMethodDecl *D);
4928};
4929}
4930
4931/// Is the given special member inaccessible when used on the given
4932/// sub-object.
4933bool SpecialMemberDeletionInfo::isAccessible(Subobject Subobj,
4934                                             CXXMethodDecl *target) {
4935  /// If we're operating on a base class, the object type is the
4936  /// type of this special member.
4937  QualType objectTy;
4938  AccessSpecifier access = target->getAccess();
4939  if (CXXBaseSpecifier *base = Subobj.dyn_cast<CXXBaseSpecifier*>()) {
4940    objectTy = S.Context.getTypeDeclType(MD->getParent());
4941    access = CXXRecordDecl::MergeAccess(base->getAccessSpecifier(), access);
4942
4943  // If we're operating on a field, the object type is the type of the field.
4944  } else {
4945    objectTy = S.Context.getTypeDeclType(target->getParent());
4946  }
4947
4948  return S.isSpecialMemberAccessibleForDeletion(target, access, objectTy);
4949}
4950
4951/// Check whether we should delete a special member due to the implicit
4952/// definition containing a call to a special member of a subobject.
4953bool SpecialMemberDeletionInfo::shouldDeleteForSubobjectCall(
4954    Subobject Subobj, Sema::SpecialMemberOverloadResult *SMOR,
4955    bool IsDtorCallInCtor) {
4956  CXXMethodDecl *Decl = SMOR->getMethod();
4957  FieldDecl *Field = Subobj.dyn_cast<FieldDecl*>();
4958
4959  int DiagKind = -1;
4960
4961  if (SMOR->getKind() == Sema::SpecialMemberOverloadResult::NoMemberOrDeleted)
4962    DiagKind = !Decl ? 0 : 1;
4963  else if (SMOR->getKind() == Sema::SpecialMemberOverloadResult::Ambiguous)
4964    DiagKind = 2;
4965  else if (!isAccessible(Subobj, Decl))
4966    DiagKind = 3;
4967  else if (!IsDtorCallInCtor && Field && Field->getParent()->isUnion() &&
4968           !Decl->isTrivial()) {
4969    // A member of a union must have a trivial corresponding special member.
4970    // As a weird special case, a destructor call from a union's constructor
4971    // must be accessible and non-deleted, but need not be trivial. Such a
4972    // destructor is never actually called, but is semantically checked as
4973    // if it were.
4974    DiagKind = 4;
4975  }
4976
4977  if (DiagKind == -1)
4978    return false;
4979
4980  if (Diagnose) {
4981    if (Field) {
4982      S.Diag(Field->getLocation(),
4983             diag::note_deleted_special_member_class_subobject)
4984        << CSM << MD->getParent() << /*IsField*/true
4985        << Field << DiagKind << IsDtorCallInCtor;
4986    } else {
4987      CXXBaseSpecifier *Base = Subobj.get<CXXBaseSpecifier*>();
4988      S.Diag(Base->getLocStart(),
4989             diag::note_deleted_special_member_class_subobject)
4990        << CSM << MD->getParent() << /*IsField*/false
4991        << Base->getType() << DiagKind << IsDtorCallInCtor;
4992    }
4993
4994    if (DiagKind == 1)
4995      S.NoteDeletedFunction(Decl);
4996    // FIXME: Explain inaccessibility if DiagKind == 3.
4997  }
4998
4999  return true;
5000}
5001
5002/// Check whether we should delete a special member function due to having a
5003/// direct or virtual base class or non-static data member of class type M.
5004bool SpecialMemberDeletionInfo::shouldDeleteForClassSubobject(
5005    CXXRecordDecl *Class, Subobject Subobj, unsigned Quals) {
5006  FieldDecl *Field = Subobj.dyn_cast<FieldDecl*>();
5007
5008  // C++11 [class.ctor]p5:
5009  // -- any direct or virtual base class, or non-static data member with no
5010  //    brace-or-equal-initializer, has class type M (or array thereof) and
5011  //    either M has no default constructor or overload resolution as applied
5012  //    to M's default constructor results in an ambiguity or in a function
5013  //    that is deleted or inaccessible
5014  // C++11 [class.copy]p11, C++11 [class.copy]p23:
5015  // -- a direct or virtual base class B that cannot be copied/moved because
5016  //    overload resolution, as applied to B's corresponding special member,
5017  //    results in an ambiguity or a function that is deleted or inaccessible
5018  //    from the defaulted special member
5019  // C++11 [class.dtor]p5:
5020  // -- any direct or virtual base class [...] has a type with a destructor
5021  //    that is deleted or inaccessible
5022  if (!(CSM == Sema::CXXDefaultConstructor &&
5023        Field && Field->hasInClassInitializer()) &&
5024      shouldDeleteForSubobjectCall(Subobj, lookupIn(Class, Quals), false))
5025    return true;
5026
5027  // C++11 [class.ctor]p5, C++11 [class.copy]p11:
5028  // -- any direct or virtual base class or non-static data member has a
5029  //    type with a destructor that is deleted or inaccessible
5030  if (IsConstructor) {
5031    Sema::SpecialMemberOverloadResult *SMOR =
5032        S.LookupSpecialMember(Class, Sema::CXXDestructor,
5033                              false, false, false, false, false);
5034    if (shouldDeleteForSubobjectCall(Subobj, SMOR, true))
5035      return true;
5036  }
5037
5038  return false;
5039}
5040
5041/// Check whether we should delete a special member function due to the class
5042/// having a particular direct or virtual base class.
5043bool SpecialMemberDeletionInfo::shouldDeleteForBase(CXXBaseSpecifier *Base) {
5044  CXXRecordDecl *BaseClass = Base->getType()->getAsCXXRecordDecl();
5045  return shouldDeleteForClassSubobject(BaseClass, Base, 0);
5046}
5047
5048/// Check whether we should delete a special member function due to the class
5049/// having a particular non-static data member.
5050bool SpecialMemberDeletionInfo::shouldDeleteForField(FieldDecl *FD) {
5051  QualType FieldType = S.Context.getBaseElementType(FD->getType());
5052  CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl();
5053
5054  if (CSM == Sema::CXXDefaultConstructor) {
5055    // For a default constructor, all references must be initialized in-class
5056    // and, if a union, it must have a non-const member.
5057    if (FieldType->isReferenceType() && !FD->hasInClassInitializer()) {
5058      if (Diagnose)
5059        S.Diag(FD->getLocation(), diag::note_deleted_default_ctor_uninit_field)
5060          << MD->getParent() << FD << FieldType << /*Reference*/0;
5061      return true;
5062    }
5063    // C++11 [class.ctor]p5: any non-variant non-static data member of
5064    // const-qualified type (or array thereof) with no
5065    // brace-or-equal-initializer does not have a user-provided default
5066    // constructor.
5067    if (!inUnion() && FieldType.isConstQualified() &&
5068        !FD->hasInClassInitializer() &&
5069        (!FieldRecord || !FieldRecord->hasUserProvidedDefaultConstructor())) {
5070      if (Diagnose)
5071        S.Diag(FD->getLocation(), diag::note_deleted_default_ctor_uninit_field)
5072          << MD->getParent() << FD << FD->getType() << /*Const*/1;
5073      return true;
5074    }
5075
5076    if (inUnion() && !FieldType.isConstQualified())
5077      AllFieldsAreConst = false;
5078  } else if (CSM == Sema::CXXCopyConstructor) {
5079    // For a copy constructor, data members must not be of rvalue reference
5080    // type.
5081    if (FieldType->isRValueReferenceType()) {
5082      if (Diagnose)
5083        S.Diag(FD->getLocation(), diag::note_deleted_copy_ctor_rvalue_reference)
5084          << MD->getParent() << FD << FieldType;
5085      return true;
5086    }
5087  } else if (IsAssignment) {
5088    // For an assignment operator, data members must not be of reference type.
5089    if (FieldType->isReferenceType()) {
5090      if (Diagnose)
5091        S.Diag(FD->getLocation(), diag::note_deleted_assign_field)
5092          << IsMove << MD->getParent() << FD << FieldType << /*Reference*/0;
5093      return true;
5094    }
5095    if (!FieldRecord && FieldType.isConstQualified()) {
5096      // C++11 [class.copy]p23:
5097      // -- a non-static data member of const non-class type (or array thereof)
5098      if (Diagnose)
5099        S.Diag(FD->getLocation(), diag::note_deleted_assign_field)
5100          << IsMove << MD->getParent() << FD << FD->getType() << /*Const*/1;
5101      return true;
5102    }
5103  }
5104
5105  if (FieldRecord) {
5106    // Some additional restrictions exist on the variant members.
5107    if (!inUnion() && FieldRecord->isUnion() &&
5108        FieldRecord->isAnonymousStructOrUnion()) {
5109      bool AllVariantFieldsAreConst = true;
5110
5111      // FIXME: Handle anonymous unions declared within anonymous unions.
5112      for (CXXRecordDecl::field_iterator UI = FieldRecord->field_begin(),
5113                                         UE = FieldRecord->field_end();
5114           UI != UE; ++UI) {
5115        QualType UnionFieldType = S.Context.getBaseElementType(UI->getType());
5116
5117        if (!UnionFieldType.isConstQualified())
5118          AllVariantFieldsAreConst = false;
5119
5120        CXXRecordDecl *UnionFieldRecord = UnionFieldType->getAsCXXRecordDecl();
5121        if (UnionFieldRecord &&
5122            shouldDeleteForClassSubobject(UnionFieldRecord, *UI,
5123                                          UnionFieldType.getCVRQualifiers()))
5124          return true;
5125      }
5126
5127      // At least one member in each anonymous union must be non-const
5128      if (CSM == Sema::CXXDefaultConstructor && AllVariantFieldsAreConst &&
5129          FieldRecord->field_begin() != FieldRecord->field_end()) {
5130        if (Diagnose)
5131          S.Diag(FieldRecord->getLocation(),
5132                 diag::note_deleted_default_ctor_all_const)
5133            << MD->getParent() << /*anonymous union*/1;
5134        return true;
5135      }
5136
5137      // Don't check the implicit member of the anonymous union type.
5138      // This is technically non-conformant, but sanity demands it.
5139      return false;
5140    }
5141
5142    if (shouldDeleteForClassSubobject(FieldRecord, FD,
5143                                      FieldType.getCVRQualifiers()))
5144      return true;
5145  }
5146
5147  return false;
5148}
5149
5150/// C++11 [class.ctor] p5:
5151///   A defaulted default constructor for a class X is defined as deleted if
5152/// X is a union and all of its variant members are of const-qualified type.
5153bool SpecialMemberDeletionInfo::shouldDeleteForAllConstMembers() {
5154  // This is a silly definition, because it gives an empty union a deleted
5155  // default constructor. Don't do that.
5156  if (CSM == Sema::CXXDefaultConstructor && inUnion() && AllFieldsAreConst &&
5157      (MD->getParent()->field_begin() != MD->getParent()->field_end())) {
5158    if (Diagnose)
5159      S.Diag(MD->getParent()->getLocation(),
5160             diag::note_deleted_default_ctor_all_const)
5161        << MD->getParent() << /*not anonymous union*/0;
5162    return true;
5163  }
5164  return false;
5165}
5166
5167/// Determine whether a defaulted special member function should be defined as
5168/// deleted, as specified in C++11 [class.ctor]p5, C++11 [class.copy]p11,
5169/// C++11 [class.copy]p23, and C++11 [class.dtor]p5.
5170bool Sema::ShouldDeleteSpecialMember(CXXMethodDecl *MD, CXXSpecialMember CSM,
5171                                     bool Diagnose) {
5172  if (MD->isInvalidDecl())
5173    return false;
5174  CXXRecordDecl *RD = MD->getParent();
5175  assert(!RD->isDependentType() && "do deletion after instantiation");
5176  if (!LangOpts.CPlusPlus11 || RD->isInvalidDecl())
5177    return false;
5178
5179  // C++11 [expr.lambda.prim]p19:
5180  //   The closure type associated with a lambda-expression has a
5181  //   deleted (8.4.3) default constructor and a deleted copy
5182  //   assignment operator.
5183  if (RD->isLambda() &&
5184      (CSM == CXXDefaultConstructor || CSM == CXXCopyAssignment)) {
5185    if (Diagnose)
5186      Diag(RD->getLocation(), diag::note_lambda_decl);
5187    return true;
5188  }
5189
5190  // For an anonymous struct or union, the copy and assignment special members
5191  // will never be used, so skip the check. For an anonymous union declared at
5192  // namespace scope, the constructor and destructor are used.
5193  if (CSM != CXXDefaultConstructor && CSM != CXXDestructor &&
5194      RD->isAnonymousStructOrUnion())
5195    return false;
5196
5197  // C++11 [class.copy]p7, p18:
5198  //   If the class definition declares a move constructor or move assignment
5199  //   operator, an implicitly declared copy constructor or copy assignment
5200  //   operator is defined as deleted.
5201  if (MD->isImplicit() &&
5202      (CSM == CXXCopyConstructor || CSM == CXXCopyAssignment)) {
5203    CXXMethodDecl *UserDeclaredMove = 0;
5204
5205    // In Microsoft mode, a user-declared move only causes the deletion of the
5206    // corresponding copy operation, not both copy operations.
5207    if (RD->hasUserDeclaredMoveConstructor() &&
5208        (!getLangOpts().MicrosoftMode || CSM == CXXCopyConstructor)) {
5209      if (!Diagnose) return true;
5210
5211      // Find any user-declared move constructor.
5212      for (CXXRecordDecl::ctor_iterator I = RD->ctor_begin(),
5213                                        E = RD->ctor_end(); I != E; ++I) {
5214        if (I->isMoveConstructor()) {
5215          UserDeclaredMove = *I;
5216          break;
5217        }
5218      }
5219      assert(UserDeclaredMove);
5220    } else if (RD->hasUserDeclaredMoveAssignment() &&
5221               (!getLangOpts().MicrosoftMode || CSM == CXXCopyAssignment)) {
5222      if (!Diagnose) return true;
5223
5224      // Find any user-declared move assignment operator.
5225      for (CXXRecordDecl::method_iterator I = RD->method_begin(),
5226                                          E = RD->method_end(); I != E; ++I) {
5227        if (I->isMoveAssignmentOperator()) {
5228          UserDeclaredMove = *I;
5229          break;
5230        }
5231      }
5232      assert(UserDeclaredMove);
5233    }
5234
5235    if (UserDeclaredMove) {
5236      Diag(UserDeclaredMove->getLocation(),
5237           diag::note_deleted_copy_user_declared_move)
5238        << (CSM == CXXCopyAssignment) << RD
5239        << UserDeclaredMove->isMoveAssignmentOperator();
5240      return true;
5241    }
5242  }
5243
5244  // Do access control from the special member function
5245  ContextRAII MethodContext(*this, MD);
5246
5247  // C++11 [class.dtor]p5:
5248  // -- for a virtual destructor, lookup of the non-array deallocation function
5249  //    results in an ambiguity or in a function that is deleted or inaccessible
5250  if (CSM == CXXDestructor && MD->isVirtual()) {
5251    FunctionDecl *OperatorDelete = 0;
5252    DeclarationName Name =
5253      Context.DeclarationNames.getCXXOperatorName(OO_Delete);
5254    if (FindDeallocationFunction(MD->getLocation(), MD->getParent(), Name,
5255                                 OperatorDelete, false)) {
5256      if (Diagnose)
5257        Diag(RD->getLocation(), diag::note_deleted_dtor_no_operator_delete);
5258      return true;
5259    }
5260  }
5261
5262  SpecialMemberDeletionInfo SMI(*this, MD, CSM, Diagnose);
5263
5264  for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
5265                                          BE = RD->bases_end(); BI != BE; ++BI)
5266    if (!BI->isVirtual() &&
5267        SMI.shouldDeleteForBase(BI))
5268      return true;
5269
5270  // Per DR1611, do not consider virtual bases of constructors of abstract
5271  // classes, since we are not going to construct them.
5272  if (!RD->isAbstract() || !SMI.IsConstructor) {
5273    for (CXXRecordDecl::base_class_iterator BI = RD->vbases_begin(),
5274                                            BE = RD->vbases_end();
5275         BI != BE; ++BI)
5276      if (SMI.shouldDeleteForBase(BI))
5277        return true;
5278  }
5279
5280  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
5281                                     FE = RD->field_end(); FI != FE; ++FI)
5282    if (!FI->isInvalidDecl() && !FI->isUnnamedBitfield() &&
5283        SMI.shouldDeleteForField(*FI))
5284      return true;
5285
5286  if (SMI.shouldDeleteForAllConstMembers())
5287    return true;
5288
5289  return false;
5290}
5291
5292/// Perform lookup for a special member of the specified kind, and determine
5293/// whether it is trivial. If the triviality can be determined without the
5294/// lookup, skip it. This is intended for use when determining whether a
5295/// special member of a containing object is trivial, and thus does not ever
5296/// perform overload resolution for default constructors.
5297///
5298/// If \p Selected is not \c NULL, \c *Selected will be filled in with the
5299/// member that was most likely to be intended to be trivial, if any.
5300static bool findTrivialSpecialMember(Sema &S, CXXRecordDecl *RD,
5301                                     Sema::CXXSpecialMember CSM, unsigned Quals,
5302                                     CXXMethodDecl **Selected) {
5303  if (Selected)
5304    *Selected = 0;
5305
5306  switch (CSM) {
5307  case Sema::CXXInvalid:
5308    llvm_unreachable("not a special member");
5309
5310  case Sema::CXXDefaultConstructor:
5311    // C++11 [class.ctor]p5:
5312    //   A default constructor is trivial if:
5313    //    - all the [direct subobjects] have trivial default constructors
5314    //
5315    // Note, no overload resolution is performed in this case.
5316    if (RD->hasTrivialDefaultConstructor())
5317      return true;
5318
5319    if (Selected) {
5320      // If there's a default constructor which could have been trivial, dig it
5321      // out. Otherwise, if there's any user-provided default constructor, point
5322      // to that as an example of why there's not a trivial one.
5323      CXXConstructorDecl *DefCtor = 0;
5324      if (RD->needsImplicitDefaultConstructor())
5325        S.DeclareImplicitDefaultConstructor(RD);
5326      for (CXXRecordDecl::ctor_iterator CI = RD->ctor_begin(),
5327                                        CE = RD->ctor_end(); CI != CE; ++CI) {
5328        if (!CI->isDefaultConstructor())
5329          continue;
5330        DefCtor = *CI;
5331        if (!DefCtor->isUserProvided())
5332          break;
5333      }
5334
5335      *Selected = DefCtor;
5336    }
5337
5338    return false;
5339
5340  case Sema::CXXDestructor:
5341    // C++11 [class.dtor]p5:
5342    //   A destructor is trivial if:
5343    //    - all the direct [subobjects] have trivial destructors
5344    if (RD->hasTrivialDestructor())
5345      return true;
5346
5347    if (Selected) {
5348      if (RD->needsImplicitDestructor())
5349        S.DeclareImplicitDestructor(RD);
5350      *Selected = RD->getDestructor();
5351    }
5352
5353    return false;
5354
5355  case Sema::CXXCopyConstructor:
5356    // C++11 [class.copy]p12:
5357    //   A copy constructor is trivial if:
5358    //    - the constructor selected to copy each direct [subobject] is trivial
5359    if (RD->hasTrivialCopyConstructor()) {
5360      if (Quals == Qualifiers::Const)
5361        // We must either select the trivial copy constructor or reach an
5362        // ambiguity; no need to actually perform overload resolution.
5363        return true;
5364    } else if (!Selected) {
5365      return false;
5366    }
5367    // In C++98, we are not supposed to perform overload resolution here, but we
5368    // treat that as a language defect, as suggested on cxx-abi-dev, to treat
5369    // cases like B as having a non-trivial copy constructor:
5370    //   struct A { template<typename T> A(T&); };
5371    //   struct B { mutable A a; };
5372    goto NeedOverloadResolution;
5373
5374  case Sema::CXXCopyAssignment:
5375    // C++11 [class.copy]p25:
5376    //   A copy assignment operator is trivial if:
5377    //    - the assignment operator selected to copy each direct [subobject] is
5378    //      trivial
5379    if (RD->hasTrivialCopyAssignment()) {
5380      if (Quals == Qualifiers::Const)
5381        return true;
5382    } else if (!Selected) {
5383      return false;
5384    }
5385    // In C++98, we are not supposed to perform overload resolution here, but we
5386    // treat that as a language defect.
5387    goto NeedOverloadResolution;
5388
5389  case Sema::CXXMoveConstructor:
5390  case Sema::CXXMoveAssignment:
5391  NeedOverloadResolution:
5392    Sema::SpecialMemberOverloadResult *SMOR =
5393      S.LookupSpecialMember(RD, CSM,
5394                            Quals & Qualifiers::Const,
5395                            Quals & Qualifiers::Volatile,
5396                            /*RValueThis*/false, /*ConstThis*/false,
5397                            /*VolatileThis*/false);
5398
5399    // The standard doesn't describe how to behave if the lookup is ambiguous.
5400    // We treat it as not making the member non-trivial, just like the standard
5401    // mandates for the default constructor. This should rarely matter, because
5402    // the member will also be deleted.
5403    if (SMOR->getKind() == Sema::SpecialMemberOverloadResult::Ambiguous)
5404      return true;
5405
5406    if (!SMOR->getMethod()) {
5407      assert(SMOR->getKind() ==
5408             Sema::SpecialMemberOverloadResult::NoMemberOrDeleted);
5409      return false;
5410    }
5411
5412    // We deliberately don't check if we found a deleted special member. We're
5413    // not supposed to!
5414    if (Selected)
5415      *Selected = SMOR->getMethod();
5416    return SMOR->getMethod()->isTrivial();
5417  }
5418
5419  llvm_unreachable("unknown special method kind");
5420}
5421
5422static CXXConstructorDecl *findUserDeclaredCtor(CXXRecordDecl *RD) {
5423  for (CXXRecordDecl::ctor_iterator CI = RD->ctor_begin(), CE = RD->ctor_end();
5424       CI != CE; ++CI)
5425    if (!CI->isImplicit())
5426      return *CI;
5427
5428  // Look for constructor templates.
5429  typedef CXXRecordDecl::specific_decl_iterator<FunctionTemplateDecl> tmpl_iter;
5430  for (tmpl_iter TI(RD->decls_begin()), TE(RD->decls_end()); TI != TE; ++TI) {
5431    if (CXXConstructorDecl *CD =
5432          dyn_cast<CXXConstructorDecl>(TI->getTemplatedDecl()))
5433      return CD;
5434  }
5435
5436  return 0;
5437}
5438
5439/// The kind of subobject we are checking for triviality. The values of this
5440/// enumeration are used in diagnostics.
5441enum TrivialSubobjectKind {
5442  /// The subobject is a base class.
5443  TSK_BaseClass,
5444  /// The subobject is a non-static data member.
5445  TSK_Field,
5446  /// The object is actually the complete object.
5447  TSK_CompleteObject
5448};
5449
5450/// Check whether the special member selected for a given type would be trivial.
5451static bool checkTrivialSubobjectCall(Sema &S, SourceLocation SubobjLoc,
5452                                      QualType SubType,
5453                                      Sema::CXXSpecialMember CSM,
5454                                      TrivialSubobjectKind Kind,
5455                                      bool Diagnose) {
5456  CXXRecordDecl *SubRD = SubType->getAsCXXRecordDecl();
5457  if (!SubRD)
5458    return true;
5459
5460  CXXMethodDecl *Selected;
5461  if (findTrivialSpecialMember(S, SubRD, CSM, SubType.getCVRQualifiers(),
5462                               Diagnose ? &Selected : 0))
5463    return true;
5464
5465  if (Diagnose) {
5466    if (!Selected && CSM == Sema::CXXDefaultConstructor) {
5467      S.Diag(SubobjLoc, diag::note_nontrivial_no_def_ctor)
5468        << Kind << SubType.getUnqualifiedType();
5469      if (CXXConstructorDecl *CD = findUserDeclaredCtor(SubRD))
5470        S.Diag(CD->getLocation(), diag::note_user_declared_ctor);
5471    } else if (!Selected)
5472      S.Diag(SubobjLoc, diag::note_nontrivial_no_copy)
5473        << Kind << SubType.getUnqualifiedType() << CSM << SubType;
5474    else if (Selected->isUserProvided()) {
5475      if (Kind == TSK_CompleteObject)
5476        S.Diag(Selected->getLocation(), diag::note_nontrivial_user_provided)
5477          << Kind << SubType.getUnqualifiedType() << CSM;
5478      else {
5479        S.Diag(SubobjLoc, diag::note_nontrivial_user_provided)
5480          << Kind << SubType.getUnqualifiedType() << CSM;
5481        S.Diag(Selected->getLocation(), diag::note_declared_at);
5482      }
5483    } else {
5484      if (Kind != TSK_CompleteObject)
5485        S.Diag(SubobjLoc, diag::note_nontrivial_subobject)
5486          << Kind << SubType.getUnqualifiedType() << CSM;
5487
5488      // Explain why the defaulted or deleted special member isn't trivial.
5489      S.SpecialMemberIsTrivial(Selected, CSM, Diagnose);
5490    }
5491  }
5492
5493  return false;
5494}
5495
5496/// Check whether the members of a class type allow a special member to be
5497/// trivial.
5498static bool checkTrivialClassMembers(Sema &S, CXXRecordDecl *RD,
5499                                     Sema::CXXSpecialMember CSM,
5500                                     bool ConstArg, bool Diagnose) {
5501  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
5502                                     FE = RD->field_end(); FI != FE; ++FI) {
5503    if (FI->isInvalidDecl() || FI->isUnnamedBitfield())
5504      continue;
5505
5506    QualType FieldType = S.Context.getBaseElementType(FI->getType());
5507
5508    // Pretend anonymous struct or union members are members of this class.
5509    if (FI->isAnonymousStructOrUnion()) {
5510      if (!checkTrivialClassMembers(S, FieldType->getAsCXXRecordDecl(),
5511                                    CSM, ConstArg, Diagnose))
5512        return false;
5513      continue;
5514    }
5515
5516    // C++11 [class.ctor]p5:
5517    //   A default constructor is trivial if [...]
5518    //    -- no non-static data member of its class has a
5519    //       brace-or-equal-initializer
5520    if (CSM == Sema::CXXDefaultConstructor && FI->hasInClassInitializer()) {
5521      if (Diagnose)
5522        S.Diag(FI->getLocation(), diag::note_nontrivial_in_class_init) << *FI;
5523      return false;
5524    }
5525
5526    // Objective C ARC 4.3.5:
5527    //   [...] nontrivally ownership-qualified types are [...] not trivially
5528    //   default constructible, copy constructible, move constructible, copy
5529    //   assignable, move assignable, or destructible [...]
5530    if (S.getLangOpts().ObjCAutoRefCount &&
5531        FieldType.hasNonTrivialObjCLifetime()) {
5532      if (Diagnose)
5533        S.Diag(FI->getLocation(), diag::note_nontrivial_objc_ownership)
5534          << RD << FieldType.getObjCLifetime();
5535      return false;
5536    }
5537
5538    if (ConstArg && !FI->isMutable())
5539      FieldType.addConst();
5540    if (!checkTrivialSubobjectCall(S, FI->getLocation(), FieldType, CSM,
5541                                   TSK_Field, Diagnose))
5542      return false;
5543  }
5544
5545  return true;
5546}
5547
5548/// Diagnose why the specified class does not have a trivial special member of
5549/// the given kind.
5550void Sema::DiagnoseNontrivial(const CXXRecordDecl *RD, CXXSpecialMember CSM) {
5551  QualType Ty = Context.getRecordType(RD);
5552  if (CSM == CXXCopyConstructor || CSM == CXXCopyAssignment)
5553    Ty.addConst();
5554
5555  checkTrivialSubobjectCall(*this, RD->getLocation(), Ty, CSM,
5556                            TSK_CompleteObject, /*Diagnose*/true);
5557}
5558
5559/// Determine whether a defaulted or deleted special member function is trivial,
5560/// as specified in C++11 [class.ctor]p5, C++11 [class.copy]p12,
5561/// C++11 [class.copy]p25, and C++11 [class.dtor]p5.
5562bool Sema::SpecialMemberIsTrivial(CXXMethodDecl *MD, CXXSpecialMember CSM,
5563                                  bool Diagnose) {
5564  assert(!MD->isUserProvided() && CSM != CXXInvalid && "not special enough");
5565
5566  CXXRecordDecl *RD = MD->getParent();
5567
5568  bool ConstArg = false;
5569
5570  // C++11 [class.copy]p12, p25:
5571  //   A [special member] is trivial if its declared parameter type is the same
5572  //   as if it had been implicitly declared [...]
5573  switch (CSM) {
5574  case CXXDefaultConstructor:
5575  case CXXDestructor:
5576    // Trivial default constructors and destructors cannot have parameters.
5577    break;
5578
5579  case CXXCopyConstructor:
5580  case CXXCopyAssignment: {
5581    // Trivial copy operations always have const, non-volatile parameter types.
5582    ConstArg = true;
5583    const ParmVarDecl *Param0 = MD->getParamDecl(0);
5584    const ReferenceType *RT = Param0->getType()->getAs<ReferenceType>();
5585    if (!RT || RT->getPointeeType().getCVRQualifiers() != Qualifiers::Const) {
5586      if (Diagnose)
5587        Diag(Param0->getLocation(), diag::note_nontrivial_param_type)
5588          << Param0->getSourceRange() << Param0->getType()
5589          << Context.getLValueReferenceType(
5590               Context.getRecordType(RD).withConst());
5591      return false;
5592    }
5593    break;
5594  }
5595
5596  case CXXMoveConstructor:
5597  case CXXMoveAssignment: {
5598    // Trivial move operations always have non-cv-qualified parameters.
5599    const ParmVarDecl *Param0 = MD->getParamDecl(0);
5600    const RValueReferenceType *RT =
5601      Param0->getType()->getAs<RValueReferenceType>();
5602    if (!RT || RT->getPointeeType().getCVRQualifiers()) {
5603      if (Diagnose)
5604        Diag(Param0->getLocation(), diag::note_nontrivial_param_type)
5605          << Param0->getSourceRange() << Param0->getType()
5606          << Context.getRValueReferenceType(Context.getRecordType(RD));
5607      return false;
5608    }
5609    break;
5610  }
5611
5612  case CXXInvalid:
5613    llvm_unreachable("not a special member");
5614  }
5615
5616  // FIXME: We require that the parameter-declaration-clause is equivalent to
5617  // that of an implicit declaration, not just that the declared parameter type
5618  // matches, in order to prevent absuridities like a function simultaneously
5619  // being a trivial copy constructor and a non-trivial default constructor.
5620  // This issue has not yet been assigned a core issue number.
5621  if (MD->getMinRequiredArguments() < MD->getNumParams()) {
5622    if (Diagnose)
5623      Diag(MD->getParamDecl(MD->getMinRequiredArguments())->getLocation(),
5624           diag::note_nontrivial_default_arg)
5625        << MD->getParamDecl(MD->getMinRequiredArguments())->getSourceRange();
5626    return false;
5627  }
5628  if (MD->isVariadic()) {
5629    if (Diagnose)
5630      Diag(MD->getLocation(), diag::note_nontrivial_variadic);
5631    return false;
5632  }
5633
5634  // C++11 [class.ctor]p5, C++11 [class.dtor]p5:
5635  //   A copy/move [constructor or assignment operator] is trivial if
5636  //    -- the [member] selected to copy/move each direct base class subobject
5637  //       is trivial
5638  //
5639  // C++11 [class.copy]p12, C++11 [class.copy]p25:
5640  //   A [default constructor or destructor] is trivial if
5641  //    -- all the direct base classes have trivial [default constructors or
5642  //       destructors]
5643  for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
5644                                          BE = RD->bases_end(); BI != BE; ++BI)
5645    if (!checkTrivialSubobjectCall(*this, BI->getLocStart(),
5646                                   ConstArg ? BI->getType().withConst()
5647                                            : BI->getType(),
5648                                   CSM, TSK_BaseClass, Diagnose))
5649      return false;
5650
5651  // C++11 [class.ctor]p5, C++11 [class.dtor]p5:
5652  //   A copy/move [constructor or assignment operator] for a class X is
5653  //   trivial if
5654  //    -- for each non-static data member of X that is of class type (or array
5655  //       thereof), the constructor selected to copy/move that member is
5656  //       trivial
5657  //
5658  // C++11 [class.copy]p12, C++11 [class.copy]p25:
5659  //   A [default constructor or destructor] is trivial if
5660  //    -- for all of the non-static data members of its class that are of class
5661  //       type (or array thereof), each such class has a trivial [default
5662  //       constructor or destructor]
5663  if (!checkTrivialClassMembers(*this, RD, CSM, ConstArg, Diagnose))
5664    return false;
5665
5666  // C++11 [class.dtor]p5:
5667  //   A destructor is trivial if [...]
5668  //    -- the destructor is not virtual
5669  if (CSM == CXXDestructor && MD->isVirtual()) {
5670    if (Diagnose)
5671      Diag(MD->getLocation(), diag::note_nontrivial_virtual_dtor) << RD;
5672    return false;
5673  }
5674
5675  // C++11 [class.ctor]p5, C++11 [class.copy]p12, C++11 [class.copy]p25:
5676  //   A [special member] for class X is trivial if [...]
5677  //    -- class X has no virtual functions and no virtual base classes
5678  if (CSM != CXXDestructor && MD->getParent()->isDynamicClass()) {
5679    if (!Diagnose)
5680      return false;
5681
5682    if (RD->getNumVBases()) {
5683      // Check for virtual bases. We already know that the corresponding
5684      // member in all bases is trivial, so vbases must all be direct.
5685      CXXBaseSpecifier &BS = *RD->vbases_begin();
5686      assert(BS.isVirtual());
5687      Diag(BS.getLocStart(), diag::note_nontrivial_has_virtual) << RD << 1;
5688      return false;
5689    }
5690
5691    // Must have a virtual method.
5692    for (CXXRecordDecl::method_iterator MI = RD->method_begin(),
5693                                        ME = RD->method_end(); MI != ME; ++MI) {
5694      if (MI->isVirtual()) {
5695        SourceLocation MLoc = MI->getLocStart();
5696        Diag(MLoc, diag::note_nontrivial_has_virtual) << RD << 0;
5697        return false;
5698      }
5699    }
5700
5701    llvm_unreachable("dynamic class with no vbases and no virtual functions");
5702  }
5703
5704  // Looks like it's trivial!
5705  return true;
5706}
5707
5708/// \brief Data used with FindHiddenVirtualMethod
5709namespace {
5710  struct FindHiddenVirtualMethodData {
5711    Sema *S;
5712    CXXMethodDecl *Method;
5713    llvm::SmallPtrSet<const CXXMethodDecl *, 8> OverridenAndUsingBaseMethods;
5714    SmallVector<CXXMethodDecl *, 8> OverloadedMethods;
5715  };
5716}
5717
5718/// \brief Check whether any most overriden method from MD in Methods
5719static bool CheckMostOverridenMethods(const CXXMethodDecl *MD,
5720                   const llvm::SmallPtrSet<const CXXMethodDecl *, 8>& Methods) {
5721  if (MD->size_overridden_methods() == 0)
5722    return Methods.count(MD->getCanonicalDecl());
5723  for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
5724                                      E = MD->end_overridden_methods();
5725       I != E; ++I)
5726    if (CheckMostOverridenMethods(*I, Methods))
5727      return true;
5728  return false;
5729}
5730
5731/// \brief Member lookup function that determines whether a given C++
5732/// method overloads virtual methods in a base class without overriding any,
5733/// to be used with CXXRecordDecl::lookupInBases().
5734static bool FindHiddenVirtualMethod(const CXXBaseSpecifier *Specifier,
5735                                    CXXBasePath &Path,
5736                                    void *UserData) {
5737  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
5738
5739  FindHiddenVirtualMethodData &Data
5740    = *static_cast<FindHiddenVirtualMethodData*>(UserData);
5741
5742  DeclarationName Name = Data.Method->getDeclName();
5743  assert(Name.getNameKind() == DeclarationName::Identifier);
5744
5745  bool foundSameNameMethod = false;
5746  SmallVector<CXXMethodDecl *, 8> overloadedMethods;
5747  for (Path.Decls = BaseRecord->lookup(Name);
5748       !Path.Decls.empty();
5749       Path.Decls = Path.Decls.slice(1)) {
5750    NamedDecl *D = Path.Decls.front();
5751    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
5752      MD = MD->getCanonicalDecl();
5753      foundSameNameMethod = true;
5754      // Interested only in hidden virtual methods.
5755      if (!MD->isVirtual())
5756        continue;
5757      // If the method we are checking overrides a method from its base
5758      // don't warn about the other overloaded methods.
5759      if (!Data.S->IsOverload(Data.Method, MD, false))
5760        return true;
5761      // Collect the overload only if its hidden.
5762      if (!CheckMostOverridenMethods(MD, Data.OverridenAndUsingBaseMethods))
5763        overloadedMethods.push_back(MD);
5764    }
5765  }
5766
5767  if (foundSameNameMethod)
5768    Data.OverloadedMethods.append(overloadedMethods.begin(),
5769                                   overloadedMethods.end());
5770  return foundSameNameMethod;
5771}
5772
5773/// \brief Add the most overriden methods from MD to Methods
5774static void AddMostOverridenMethods(const CXXMethodDecl *MD,
5775                         llvm::SmallPtrSet<const CXXMethodDecl *, 8>& Methods) {
5776  if (MD->size_overridden_methods() == 0)
5777    Methods.insert(MD->getCanonicalDecl());
5778  for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
5779                                      E = MD->end_overridden_methods();
5780       I != E; ++I)
5781    AddMostOverridenMethods(*I, Methods);
5782}
5783
5784/// \brief Check if a method overloads virtual methods in a base class without
5785/// overriding any.
5786void Sema::FindHiddenVirtualMethods(CXXMethodDecl *MD,
5787                          SmallVectorImpl<CXXMethodDecl*> &OverloadedMethods) {
5788  if (!MD->getDeclName().isIdentifier())
5789    return;
5790
5791  CXXBasePaths Paths(/*FindAmbiguities=*/true, // true to look in all bases.
5792                     /*bool RecordPaths=*/false,
5793                     /*bool DetectVirtual=*/false);
5794  FindHiddenVirtualMethodData Data;
5795  Data.Method = MD;
5796  Data.S = this;
5797
5798  // Keep the base methods that were overriden or introduced in the subclass
5799  // by 'using' in a set. A base method not in this set is hidden.
5800  CXXRecordDecl *DC = MD->getParent();
5801  DeclContext::lookup_result R = DC->lookup(MD->getDeclName());
5802  for (DeclContext::lookup_iterator I = R.begin(), E = R.end(); I != E; ++I) {
5803    NamedDecl *ND = *I;
5804    if (UsingShadowDecl *shad = dyn_cast<UsingShadowDecl>(*I))
5805      ND = shad->getTargetDecl();
5806    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(ND))
5807      AddMostOverridenMethods(MD, Data.OverridenAndUsingBaseMethods);
5808  }
5809
5810  if (DC->lookupInBases(&FindHiddenVirtualMethod, &Data, Paths))
5811    OverloadedMethods = Data.OverloadedMethods;
5812}
5813
5814void Sema::NoteHiddenVirtualMethods(CXXMethodDecl *MD,
5815                          SmallVectorImpl<CXXMethodDecl*> &OverloadedMethods) {
5816  for (unsigned i = 0, e = OverloadedMethods.size(); i != e; ++i) {
5817    CXXMethodDecl *overloadedMD = OverloadedMethods[i];
5818    PartialDiagnostic PD = PDiag(
5819         diag::note_hidden_overloaded_virtual_declared_here) << overloadedMD;
5820    HandleFunctionTypeMismatch(PD, MD->getType(), overloadedMD->getType());
5821    Diag(overloadedMD->getLocation(), PD);
5822  }
5823}
5824
5825/// \brief Diagnose methods which overload virtual methods in a base class
5826/// without overriding any.
5827void Sema::DiagnoseHiddenVirtualMethods(CXXMethodDecl *MD) {
5828  if (MD->isInvalidDecl())
5829    return;
5830
5831  if (Diags.getDiagnosticLevel(diag::warn_overloaded_virtual,
5832                               MD->getLocation()) == DiagnosticsEngine::Ignored)
5833    return;
5834
5835  SmallVector<CXXMethodDecl *, 8> OverloadedMethods;
5836  FindHiddenVirtualMethods(MD, OverloadedMethods);
5837  if (!OverloadedMethods.empty()) {
5838    Diag(MD->getLocation(), diag::warn_overloaded_virtual)
5839      << MD << (OverloadedMethods.size() > 1);
5840
5841    NoteHiddenVirtualMethods(MD, OverloadedMethods);
5842  }
5843}
5844
5845void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
5846                                             Decl *TagDecl,
5847                                             SourceLocation LBrac,
5848                                             SourceLocation RBrac,
5849                                             AttributeList *AttrList) {
5850  if (!TagDecl)
5851    return;
5852
5853  AdjustDeclIfTemplate(TagDecl);
5854
5855  for (const AttributeList* l = AttrList; l; l = l->getNext()) {
5856    if (l->getKind() != AttributeList::AT_Visibility)
5857      continue;
5858    l->setInvalid();
5859    Diag(l->getLoc(), diag::warn_attribute_after_definition_ignored) <<
5860      l->getName();
5861  }
5862
5863  ActOnFields(S, RLoc, TagDecl, llvm::makeArrayRef(
5864              // strict aliasing violation!
5865              reinterpret_cast<Decl**>(FieldCollector->getCurFields()),
5866              FieldCollector->getCurNumFields()), LBrac, RBrac, AttrList);
5867
5868  CheckCompletedCXXClass(
5869                        dyn_cast_or_null<CXXRecordDecl>(TagDecl));
5870}
5871
5872/// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
5873/// special functions, such as the default constructor, copy
5874/// constructor, or destructor, to the given C++ class (C++
5875/// [special]p1).  This routine can only be executed just before the
5876/// definition of the class is complete.
5877void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) {
5878  if (!ClassDecl->hasUserDeclaredConstructor())
5879    ++ASTContext::NumImplicitDefaultConstructors;
5880
5881  if (!ClassDecl->hasUserDeclaredCopyConstructor()) {
5882    ++ASTContext::NumImplicitCopyConstructors;
5883
5884    // If the properties or semantics of the copy constructor couldn't be
5885    // determined while the class was being declared, force a declaration
5886    // of it now.
5887    if (ClassDecl->needsOverloadResolutionForCopyConstructor())
5888      DeclareImplicitCopyConstructor(ClassDecl);
5889  }
5890
5891  if (getLangOpts().CPlusPlus11 && ClassDecl->needsImplicitMoveConstructor()) {
5892    ++ASTContext::NumImplicitMoveConstructors;
5893
5894    if (ClassDecl->needsOverloadResolutionForMoveConstructor())
5895      DeclareImplicitMoveConstructor(ClassDecl);
5896  }
5897
5898  if (!ClassDecl->hasUserDeclaredCopyAssignment()) {
5899    ++ASTContext::NumImplicitCopyAssignmentOperators;
5900
5901    // If we have a dynamic class, then the copy assignment operator may be
5902    // virtual, so we have to declare it immediately. This ensures that, e.g.,
5903    // it shows up in the right place in the vtable and that we diagnose
5904    // problems with the implicit exception specification.
5905    if (ClassDecl->isDynamicClass() ||
5906        ClassDecl->needsOverloadResolutionForCopyAssignment())
5907      DeclareImplicitCopyAssignment(ClassDecl);
5908  }
5909
5910  if (getLangOpts().CPlusPlus11 && ClassDecl->needsImplicitMoveAssignment()) {
5911    ++ASTContext::NumImplicitMoveAssignmentOperators;
5912
5913    // Likewise for the move assignment operator.
5914    if (ClassDecl->isDynamicClass() ||
5915        ClassDecl->needsOverloadResolutionForMoveAssignment())
5916      DeclareImplicitMoveAssignment(ClassDecl);
5917  }
5918
5919  if (!ClassDecl->hasUserDeclaredDestructor()) {
5920    ++ASTContext::NumImplicitDestructors;
5921
5922    // If we have a dynamic class, then the destructor may be virtual, so we
5923    // have to declare the destructor immediately. This ensures that, e.g., it
5924    // shows up in the right place in the vtable and that we diagnose problems
5925    // with the implicit exception specification.
5926    if (ClassDecl->isDynamicClass() ||
5927        ClassDecl->needsOverloadResolutionForDestructor())
5928      DeclareImplicitDestructor(ClassDecl);
5929  }
5930}
5931
5932void Sema::ActOnReenterDeclaratorTemplateScope(Scope *S, DeclaratorDecl *D) {
5933  if (!D)
5934    return;
5935
5936  int NumParamList = D->getNumTemplateParameterLists();
5937  for (int i = 0; i < NumParamList; i++) {
5938    TemplateParameterList* Params = D->getTemplateParameterList(i);
5939    for (TemplateParameterList::iterator Param = Params->begin(),
5940                                      ParamEnd = Params->end();
5941          Param != ParamEnd; ++Param) {
5942      NamedDecl *Named = cast<NamedDecl>(*Param);
5943      if (Named->getDeclName()) {
5944        S->AddDecl(Named);
5945        IdResolver.AddDecl(Named);
5946      }
5947    }
5948  }
5949}
5950
5951void Sema::ActOnReenterTemplateScope(Scope *S, Decl *D) {
5952  if (!D)
5953    return;
5954
5955  TemplateParameterList *Params = 0;
5956  if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D))
5957    Params = Template->getTemplateParameters();
5958  else if (ClassTemplatePartialSpecializationDecl *PartialSpec
5959           = dyn_cast<ClassTemplatePartialSpecializationDecl>(D))
5960    Params = PartialSpec->getTemplateParameters();
5961  else
5962    return;
5963
5964  for (TemplateParameterList::iterator Param = Params->begin(),
5965                                    ParamEnd = Params->end();
5966       Param != ParamEnd; ++Param) {
5967    NamedDecl *Named = cast<NamedDecl>(*Param);
5968    if (Named->getDeclName()) {
5969      S->AddDecl(Named);
5970      IdResolver.AddDecl(Named);
5971    }
5972  }
5973}
5974
5975void Sema::ActOnStartDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
5976  if (!RecordD) return;
5977  AdjustDeclIfTemplate(RecordD);
5978  CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordD);
5979  PushDeclContext(S, Record);
5980}
5981
5982void Sema::ActOnFinishDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
5983  if (!RecordD) return;
5984  PopDeclContext();
5985}
5986
5987/// ActOnStartDelayedCXXMethodDeclaration - We have completed
5988/// parsing a top-level (non-nested) C++ class, and we are now
5989/// parsing those parts of the given Method declaration that could
5990/// not be parsed earlier (C++ [class.mem]p2), such as default
5991/// arguments. This action should enter the scope of the given
5992/// Method declaration as if we had just parsed the qualified method
5993/// name. However, it should not bring the parameters into scope;
5994/// that will be performed by ActOnDelayedCXXMethodParameter.
5995void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
5996}
5997
5998/// ActOnDelayedCXXMethodParameter - We've already started a delayed
5999/// C++ method declaration. We're (re-)introducing the given
6000/// function parameter into scope for use in parsing later parts of
6001/// the method declaration. For example, we could see an
6002/// ActOnParamDefaultArgument event for this parameter.
6003void Sema::ActOnDelayedCXXMethodParameter(Scope *S, Decl *ParamD) {
6004  if (!ParamD)
6005    return;
6006
6007  ParmVarDecl *Param = cast<ParmVarDecl>(ParamD);
6008
6009  // If this parameter has an unparsed default argument, clear it out
6010  // to make way for the parsed default argument.
6011  if (Param->hasUnparsedDefaultArg())
6012    Param->setDefaultArg(0);
6013
6014  S->AddDecl(Param);
6015  if (Param->getDeclName())
6016    IdResolver.AddDecl(Param);
6017}
6018
6019/// ActOnFinishDelayedCXXMethodDeclaration - We have finished
6020/// processing the delayed method declaration for Method. The method
6021/// declaration is now considered finished. There may be a separate
6022/// ActOnStartOfFunctionDef action later (not necessarily
6023/// immediately!) for this method, if it was also defined inside the
6024/// class body.
6025void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
6026  if (!MethodD)
6027    return;
6028
6029  AdjustDeclIfTemplate(MethodD);
6030
6031  FunctionDecl *Method = cast<FunctionDecl>(MethodD);
6032
6033  // Now that we have our default arguments, check the constructor
6034  // again. It could produce additional diagnostics or affect whether
6035  // the class has implicitly-declared destructors, among other
6036  // things.
6037  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method))
6038    CheckConstructor(Constructor);
6039
6040  // Check the default arguments, which we may have added.
6041  if (!Method->isInvalidDecl())
6042    CheckCXXDefaultArguments(Method);
6043}
6044
6045/// CheckConstructorDeclarator - Called by ActOnDeclarator to check
6046/// the well-formedness of the constructor declarator @p D with type @p
6047/// R. If there are any errors in the declarator, this routine will
6048/// emit diagnostics and set the invalid bit to true.  In any case, the type
6049/// will be updated to reflect a well-formed type for the constructor and
6050/// returned.
6051QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R,
6052                                          StorageClass &SC) {
6053  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
6054
6055  // C++ [class.ctor]p3:
6056  //   A constructor shall not be virtual (10.3) or static (9.4). A
6057  //   constructor can be invoked for a const, volatile or const
6058  //   volatile object. A constructor shall not be declared const,
6059  //   volatile, or const volatile (9.3.2).
6060  if (isVirtual) {
6061    if (!D.isInvalidType())
6062      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
6063        << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
6064        << SourceRange(D.getIdentifierLoc());
6065    D.setInvalidType();
6066  }
6067  if (SC == SC_Static) {
6068    if (!D.isInvalidType())
6069      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
6070        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
6071        << SourceRange(D.getIdentifierLoc());
6072    D.setInvalidType();
6073    SC = SC_None;
6074  }
6075
6076  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
6077  if (FTI.TypeQuals != 0) {
6078    if (FTI.TypeQuals & Qualifiers::Const)
6079      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
6080        << "const" << SourceRange(D.getIdentifierLoc());
6081    if (FTI.TypeQuals & Qualifiers::Volatile)
6082      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
6083        << "volatile" << SourceRange(D.getIdentifierLoc());
6084    if (FTI.TypeQuals & Qualifiers::Restrict)
6085      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
6086        << "restrict" << SourceRange(D.getIdentifierLoc());
6087    D.setInvalidType();
6088  }
6089
6090  // C++0x [class.ctor]p4:
6091  //   A constructor shall not be declared with a ref-qualifier.
6092  if (FTI.hasRefQualifier()) {
6093    Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_constructor)
6094      << FTI.RefQualifierIsLValueRef
6095      << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
6096    D.setInvalidType();
6097  }
6098
6099  // Rebuild the function type "R" without any type qualifiers (in
6100  // case any of the errors above fired) and with "void" as the
6101  // return type, since constructors don't have return types.
6102  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
6103  if (Proto->getResultType() == Context.VoidTy && !D.isInvalidType())
6104    return R;
6105
6106  FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
6107  EPI.TypeQuals = 0;
6108  EPI.RefQualifier = RQ_None;
6109
6110  return Context.getFunctionType(Context.VoidTy, Proto->getArgTypes(), EPI);
6111}
6112
6113/// CheckConstructor - Checks a fully-formed constructor for
6114/// well-formedness, issuing any diagnostics required. Returns true if
6115/// the constructor declarator is invalid.
6116void Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
6117  CXXRecordDecl *ClassDecl
6118    = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext());
6119  if (!ClassDecl)
6120    return Constructor->setInvalidDecl();
6121
6122  // C++ [class.copy]p3:
6123  //   A declaration of a constructor for a class X is ill-formed if
6124  //   its first parameter is of type (optionally cv-qualified) X and
6125  //   either there are no other parameters or else all other
6126  //   parameters have default arguments.
6127  if (!Constructor->isInvalidDecl() &&
6128      ((Constructor->getNumParams() == 1) ||
6129       (Constructor->getNumParams() > 1 &&
6130        Constructor->getParamDecl(1)->hasDefaultArg())) &&
6131      Constructor->getTemplateSpecializationKind()
6132                                              != TSK_ImplicitInstantiation) {
6133    QualType ParamType = Constructor->getParamDecl(0)->getType();
6134    QualType ClassTy = Context.getTagDeclType(ClassDecl);
6135    if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
6136      SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation();
6137      const char *ConstRef
6138        = Constructor->getParamDecl(0)->getIdentifier() ? "const &"
6139                                                        : " const &";
6140      Diag(ParamLoc, diag::err_constructor_byvalue_arg)
6141        << FixItHint::CreateInsertion(ParamLoc, ConstRef);
6142
6143      // FIXME: Rather that making the constructor invalid, we should endeavor
6144      // to fix the type.
6145      Constructor->setInvalidDecl();
6146    }
6147  }
6148}
6149
6150/// CheckDestructor - Checks a fully-formed destructor definition for
6151/// well-formedness, issuing any diagnostics required.  Returns true
6152/// on error.
6153bool Sema::CheckDestructor(CXXDestructorDecl *Destructor) {
6154  CXXRecordDecl *RD = Destructor->getParent();
6155
6156  if (!Destructor->getOperatorDelete() && Destructor->isVirtual()) {
6157    SourceLocation Loc;
6158
6159    if (!Destructor->isImplicit())
6160      Loc = Destructor->getLocation();
6161    else
6162      Loc = RD->getLocation();
6163
6164    // If we have a virtual destructor, look up the deallocation function
6165    FunctionDecl *OperatorDelete = 0;
6166    DeclarationName Name =
6167    Context.DeclarationNames.getCXXOperatorName(OO_Delete);
6168    if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete))
6169      return true;
6170
6171    MarkFunctionReferenced(Loc, OperatorDelete);
6172
6173    Destructor->setOperatorDelete(OperatorDelete);
6174  }
6175
6176  return false;
6177}
6178
6179static inline bool
6180FTIHasSingleVoidArgument(DeclaratorChunk::FunctionTypeInfo &FTI) {
6181  return (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
6182          FTI.ArgInfo[0].Param &&
6183          cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType());
6184}
6185
6186/// CheckDestructorDeclarator - Called by ActOnDeclarator to check
6187/// the well-formednes of the destructor declarator @p D with type @p
6188/// R. If there are any errors in the declarator, this routine will
6189/// emit diagnostics and set the declarator to invalid.  Even if this happens,
6190/// will be updated to reflect a well-formed type for the destructor and
6191/// returned.
6192QualType Sema::CheckDestructorDeclarator(Declarator &D, QualType R,
6193                                         StorageClass& SC) {
6194  // C++ [class.dtor]p1:
6195  //   [...] A typedef-name that names a class is a class-name
6196  //   (7.1.3); however, a typedef-name that names a class shall not
6197  //   be used as the identifier in the declarator for a destructor
6198  //   declaration.
6199  QualType DeclaratorType = GetTypeFromParser(D.getName().DestructorName);
6200  if (const TypedefType *TT = DeclaratorType->getAs<TypedefType>())
6201    Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
6202      << DeclaratorType << isa<TypeAliasDecl>(TT->getDecl());
6203  else if (const TemplateSpecializationType *TST =
6204             DeclaratorType->getAs<TemplateSpecializationType>())
6205    if (TST->isTypeAlias())
6206      Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
6207        << DeclaratorType << 1;
6208
6209  // C++ [class.dtor]p2:
6210  //   A destructor is used to destroy objects of its class type. A
6211  //   destructor takes no parameters, and no return type can be
6212  //   specified for it (not even void). The address of a destructor
6213  //   shall not be taken. A destructor shall not be static. A
6214  //   destructor can be invoked for a const, volatile or const
6215  //   volatile object. A destructor shall not be declared const,
6216  //   volatile or const volatile (9.3.2).
6217  if (SC == SC_Static) {
6218    if (!D.isInvalidType())
6219      Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
6220        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
6221        << SourceRange(D.getIdentifierLoc())
6222        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
6223
6224    SC = SC_None;
6225  }
6226  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
6227    // Destructors don't have return types, but the parser will
6228    // happily parse something like:
6229    //
6230    //   class X {
6231    //     float ~X();
6232    //   };
6233    //
6234    // The return type will be eliminated later.
6235    Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
6236      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
6237      << SourceRange(D.getIdentifierLoc());
6238  }
6239
6240  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
6241  if (FTI.TypeQuals != 0 && !D.isInvalidType()) {
6242    if (FTI.TypeQuals & Qualifiers::Const)
6243      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
6244        << "const" << SourceRange(D.getIdentifierLoc());
6245    if (FTI.TypeQuals & Qualifiers::Volatile)
6246      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
6247        << "volatile" << SourceRange(D.getIdentifierLoc());
6248    if (FTI.TypeQuals & Qualifiers::Restrict)
6249      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
6250        << "restrict" << SourceRange(D.getIdentifierLoc());
6251    D.setInvalidType();
6252  }
6253
6254  // C++0x [class.dtor]p2:
6255  //   A destructor shall not be declared with a ref-qualifier.
6256  if (FTI.hasRefQualifier()) {
6257    Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_destructor)
6258      << FTI.RefQualifierIsLValueRef
6259      << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
6260    D.setInvalidType();
6261  }
6262
6263  // Make sure we don't have any parameters.
6264  if (FTI.NumArgs > 0 && !FTIHasSingleVoidArgument(FTI)) {
6265    Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
6266
6267    // Delete the parameters.
6268    FTI.freeArgs();
6269    D.setInvalidType();
6270  }
6271
6272  // Make sure the destructor isn't variadic.
6273  if (FTI.isVariadic) {
6274    Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
6275    D.setInvalidType();
6276  }
6277
6278  // Rebuild the function type "R" without any type qualifiers or
6279  // parameters (in case any of the errors above fired) and with
6280  // "void" as the return type, since destructors don't have return
6281  // types.
6282  if (!D.isInvalidType())
6283    return R;
6284
6285  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
6286  FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
6287  EPI.Variadic = false;
6288  EPI.TypeQuals = 0;
6289  EPI.RefQualifier = RQ_None;
6290  return Context.getFunctionType(Context.VoidTy, None, EPI);
6291}
6292
6293/// CheckConversionDeclarator - Called by ActOnDeclarator to check the
6294/// well-formednes of the conversion function declarator @p D with
6295/// type @p R. If there are any errors in the declarator, this routine
6296/// will emit diagnostics and return true. Otherwise, it will return
6297/// false. Either way, the type @p R will be updated to reflect a
6298/// well-formed type for the conversion operator.
6299void Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
6300                                     StorageClass& SC) {
6301  // C++ [class.conv.fct]p1:
6302  //   Neither parameter types nor return type can be specified. The
6303  //   type of a conversion function (8.3.5) is "function taking no
6304  //   parameter returning conversion-type-id."
6305  if (SC == SC_Static) {
6306    if (!D.isInvalidType())
6307      Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
6308        << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
6309        << D.getName().getSourceRange();
6310    D.setInvalidType();
6311    SC = SC_None;
6312  }
6313
6314  QualType ConvType = GetTypeFromParser(D.getName().ConversionFunctionId);
6315
6316  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
6317    // Conversion functions don't have return types, but the parser will
6318    // happily parse something like:
6319    //
6320    //   class X {
6321    //     float operator bool();
6322    //   };
6323    //
6324    // The return type will be changed later anyway.
6325    Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
6326      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
6327      << SourceRange(D.getIdentifierLoc());
6328    D.setInvalidType();
6329  }
6330
6331  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
6332
6333  // Make sure we don't have any parameters.
6334  if (Proto->getNumArgs() > 0) {
6335    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
6336
6337    // Delete the parameters.
6338    D.getFunctionTypeInfo().freeArgs();
6339    D.setInvalidType();
6340  } else if (Proto->isVariadic()) {
6341    Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
6342    D.setInvalidType();
6343  }
6344
6345  // Diagnose "&operator bool()" and other such nonsense.  This
6346  // is actually a gcc extension which we don't support.
6347  if (Proto->getResultType() != ConvType) {
6348    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_complex_decl)
6349      << Proto->getResultType();
6350    D.setInvalidType();
6351    ConvType = Proto->getResultType();
6352  }
6353
6354  // C++ [class.conv.fct]p4:
6355  //   The conversion-type-id shall not represent a function type nor
6356  //   an array type.
6357  if (ConvType->isArrayType()) {
6358    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
6359    ConvType = Context.getPointerType(ConvType);
6360    D.setInvalidType();
6361  } else if (ConvType->isFunctionType()) {
6362    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
6363    ConvType = Context.getPointerType(ConvType);
6364    D.setInvalidType();
6365  }
6366
6367  // Rebuild the function type "R" without any parameters (in case any
6368  // of the errors above fired) and with the conversion type as the
6369  // return type.
6370  if (D.isInvalidType())
6371    R = Context.getFunctionType(ConvType, None, Proto->getExtProtoInfo());
6372
6373  // C++0x explicit conversion operators.
6374  if (D.getDeclSpec().isExplicitSpecified())
6375    Diag(D.getDeclSpec().getExplicitSpecLoc(),
6376         getLangOpts().CPlusPlus11 ?
6377           diag::warn_cxx98_compat_explicit_conversion_functions :
6378           diag::ext_explicit_conversion_functions)
6379      << SourceRange(D.getDeclSpec().getExplicitSpecLoc());
6380}
6381
6382/// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
6383/// the declaration of the given C++ conversion function. This routine
6384/// is responsible for recording the conversion function in the C++
6385/// class, if possible.
6386Decl *Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
6387  assert(Conversion && "Expected to receive a conversion function declaration");
6388
6389  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext());
6390
6391  // Make sure we aren't redeclaring the conversion function.
6392  QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());
6393
6394  // C++ [class.conv.fct]p1:
6395  //   [...] A conversion function is never used to convert a
6396  //   (possibly cv-qualified) object to the (possibly cv-qualified)
6397  //   same object type (or a reference to it), to a (possibly
6398  //   cv-qualified) base class of that type (or a reference to it),
6399  //   or to (possibly cv-qualified) void.
6400  // FIXME: Suppress this warning if the conversion function ends up being a
6401  // virtual function that overrides a virtual function in a base class.
6402  QualType ClassType
6403    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
6404  if (const ReferenceType *ConvTypeRef = ConvType->getAs<ReferenceType>())
6405    ConvType = ConvTypeRef->getPointeeType();
6406  if (Conversion->getTemplateSpecializationKind() != TSK_Undeclared &&
6407      Conversion->getTemplateSpecializationKind() != TSK_ExplicitSpecialization)
6408    /* Suppress diagnostics for instantiations. */;
6409  else if (ConvType->isRecordType()) {
6410    ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
6411    if (ConvType == ClassType)
6412      Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used)
6413        << ClassType;
6414    else if (IsDerivedFrom(ClassType, ConvType))
6415      Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used)
6416        <<  ClassType << ConvType;
6417  } else if (ConvType->isVoidType()) {
6418    Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used)
6419      << ClassType << ConvType;
6420  }
6421
6422  if (FunctionTemplateDecl *ConversionTemplate
6423                                = Conversion->getDescribedFunctionTemplate())
6424    return ConversionTemplate;
6425
6426  return Conversion;
6427}
6428
6429//===----------------------------------------------------------------------===//
6430// Namespace Handling
6431//===----------------------------------------------------------------------===//
6432
6433/// \brief Diagnose a mismatch in 'inline' qualifiers when a namespace is
6434/// reopened.
6435static void DiagnoseNamespaceInlineMismatch(Sema &S, SourceLocation KeywordLoc,
6436                                            SourceLocation Loc,
6437                                            IdentifierInfo *II, bool *IsInline,
6438                                            NamespaceDecl *PrevNS) {
6439  assert(*IsInline != PrevNS->isInline());
6440
6441  // HACK: Work around a bug in libstdc++4.6's <atomic>, where
6442  // std::__atomic[0,1,2] are defined as non-inline namespaces, then reopened as
6443  // inline namespaces, with the intention of bringing names into namespace std.
6444  //
6445  // We support this just well enough to get that case working; this is not
6446  // sufficient to support reopening namespaces as inline in general.
6447  if (*IsInline && II && II->getName().startswith("__atomic") &&
6448      S.getSourceManager().isInSystemHeader(Loc)) {
6449    // Mark all prior declarations of the namespace as inline.
6450    for (NamespaceDecl *NS = PrevNS->getMostRecentDecl(); NS;
6451         NS = NS->getPreviousDecl())
6452      NS->setInline(*IsInline);
6453    // Patch up the lookup table for the containing namespace. This isn't really
6454    // correct, but it's good enough for this particular case.
6455    for (DeclContext::decl_iterator I = PrevNS->decls_begin(),
6456                                    E = PrevNS->decls_end(); I != E; ++I)
6457      if (NamedDecl *ND = dyn_cast<NamedDecl>(*I))
6458        PrevNS->getParent()->makeDeclVisibleInContext(ND);
6459    return;
6460  }
6461
6462  if (PrevNS->isInline())
6463    // The user probably just forgot the 'inline', so suggest that it
6464    // be added back.
6465    S.Diag(Loc, diag::warn_inline_namespace_reopened_noninline)
6466      << FixItHint::CreateInsertion(KeywordLoc, "inline ");
6467  else
6468    S.Diag(Loc, diag::err_inline_namespace_mismatch)
6469      << IsInline;
6470
6471  S.Diag(PrevNS->getLocation(), diag::note_previous_definition);
6472  *IsInline = PrevNS->isInline();
6473}
6474
6475/// ActOnStartNamespaceDef - This is called at the start of a namespace
6476/// definition.
6477Decl *Sema::ActOnStartNamespaceDef(Scope *NamespcScope,
6478                                   SourceLocation InlineLoc,
6479                                   SourceLocation NamespaceLoc,
6480                                   SourceLocation IdentLoc,
6481                                   IdentifierInfo *II,
6482                                   SourceLocation LBrace,
6483                                   AttributeList *AttrList) {
6484  SourceLocation StartLoc = InlineLoc.isValid() ? InlineLoc : NamespaceLoc;
6485  // For anonymous namespace, take the location of the left brace.
6486  SourceLocation Loc = II ? IdentLoc : LBrace;
6487  bool IsInline = InlineLoc.isValid();
6488  bool IsInvalid = false;
6489  bool IsStd = false;
6490  bool AddToKnown = false;
6491  Scope *DeclRegionScope = NamespcScope->getParent();
6492
6493  NamespaceDecl *PrevNS = 0;
6494  if (II) {
6495    // C++ [namespace.def]p2:
6496    //   The identifier in an original-namespace-definition shall not
6497    //   have been previously defined in the declarative region in
6498    //   which the original-namespace-definition appears. The
6499    //   identifier in an original-namespace-definition is the name of
6500    //   the namespace. Subsequently in that declarative region, it is
6501    //   treated as an original-namespace-name.
6502    //
6503    // Since namespace names are unique in their scope, and we don't
6504    // look through using directives, just look for any ordinary names.
6505
6506    const unsigned IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Member |
6507    Decl::IDNS_Type | Decl::IDNS_Using | Decl::IDNS_Tag |
6508    Decl::IDNS_Namespace;
6509    NamedDecl *PrevDecl = 0;
6510    DeclContext::lookup_result R = CurContext->getRedeclContext()->lookup(II);
6511    for (DeclContext::lookup_iterator I = R.begin(), E = R.end(); I != E;
6512         ++I) {
6513      if ((*I)->getIdentifierNamespace() & IDNS) {
6514        PrevDecl = *I;
6515        break;
6516      }
6517    }
6518
6519    PrevNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl);
6520
6521    if (PrevNS) {
6522      // This is an extended namespace definition.
6523      if (IsInline != PrevNS->isInline())
6524        DiagnoseNamespaceInlineMismatch(*this, NamespaceLoc, Loc, II,
6525                                        &IsInline, PrevNS);
6526    } else if (PrevDecl) {
6527      // This is an invalid name redefinition.
6528      Diag(Loc, diag::err_redefinition_different_kind)
6529        << II;
6530      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
6531      IsInvalid = true;
6532      // Continue on to push Namespc as current DeclContext and return it.
6533    } else if (II->isStr("std") &&
6534               CurContext->getRedeclContext()->isTranslationUnit()) {
6535      // This is the first "real" definition of the namespace "std", so update
6536      // our cache of the "std" namespace to point at this definition.
6537      PrevNS = getStdNamespace();
6538      IsStd = true;
6539      AddToKnown = !IsInline;
6540    } else {
6541      // We've seen this namespace for the first time.
6542      AddToKnown = !IsInline;
6543    }
6544  } else {
6545    // Anonymous namespaces.
6546
6547    // Determine whether the parent already has an anonymous namespace.
6548    DeclContext *Parent = CurContext->getRedeclContext();
6549    if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
6550      PrevNS = TU->getAnonymousNamespace();
6551    } else {
6552      NamespaceDecl *ND = cast<NamespaceDecl>(Parent);
6553      PrevNS = ND->getAnonymousNamespace();
6554    }
6555
6556    if (PrevNS && IsInline != PrevNS->isInline())
6557      DiagnoseNamespaceInlineMismatch(*this, NamespaceLoc, NamespaceLoc, II,
6558                                      &IsInline, PrevNS);
6559  }
6560
6561  NamespaceDecl *Namespc = NamespaceDecl::Create(Context, CurContext, IsInline,
6562                                                 StartLoc, Loc, II, PrevNS);
6563  if (IsInvalid)
6564    Namespc->setInvalidDecl();
6565
6566  ProcessDeclAttributeList(DeclRegionScope, Namespc, AttrList);
6567
6568  // FIXME: Should we be merging attributes?
6569  if (const VisibilityAttr *Attr = Namespc->getAttr<VisibilityAttr>())
6570    PushNamespaceVisibilityAttr(Attr, Loc);
6571
6572  if (IsStd)
6573    StdNamespace = Namespc;
6574  if (AddToKnown)
6575    KnownNamespaces[Namespc] = false;
6576
6577  if (II) {
6578    PushOnScopeChains(Namespc, DeclRegionScope);
6579  } else {
6580    // Link the anonymous namespace into its parent.
6581    DeclContext *Parent = CurContext->getRedeclContext();
6582    if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
6583      TU->setAnonymousNamespace(Namespc);
6584    } else {
6585      cast<NamespaceDecl>(Parent)->setAnonymousNamespace(Namespc);
6586    }
6587
6588    CurContext->addDecl(Namespc);
6589
6590    // C++ [namespace.unnamed]p1.  An unnamed-namespace-definition
6591    //   behaves as if it were replaced by
6592    //     namespace unique { /* empty body */ }
6593    //     using namespace unique;
6594    //     namespace unique { namespace-body }
6595    //   where all occurrences of 'unique' in a translation unit are
6596    //   replaced by the same identifier and this identifier differs
6597    //   from all other identifiers in the entire program.
6598
6599    // We just create the namespace with an empty name and then add an
6600    // implicit using declaration, just like the standard suggests.
6601    //
6602    // CodeGen enforces the "universally unique" aspect by giving all
6603    // declarations semantically contained within an anonymous
6604    // namespace internal linkage.
6605
6606    if (!PrevNS) {
6607      UsingDirectiveDecl* UD
6608        = UsingDirectiveDecl::Create(Context, Parent,
6609                                     /* 'using' */ LBrace,
6610                                     /* 'namespace' */ SourceLocation(),
6611                                     /* qualifier */ NestedNameSpecifierLoc(),
6612                                     /* identifier */ SourceLocation(),
6613                                     Namespc,
6614                                     /* Ancestor */ Parent);
6615      UD->setImplicit();
6616      Parent->addDecl(UD);
6617    }
6618  }
6619
6620  ActOnDocumentableDecl(Namespc);
6621
6622  // Although we could have an invalid decl (i.e. the namespace name is a
6623  // redefinition), push it as current DeclContext and try to continue parsing.
6624  // FIXME: We should be able to push Namespc here, so that the each DeclContext
6625  // for the namespace has the declarations that showed up in that particular
6626  // namespace definition.
6627  PushDeclContext(NamespcScope, Namespc);
6628  return Namespc;
6629}
6630
6631/// getNamespaceDecl - Returns the namespace a decl represents. If the decl
6632/// is a namespace alias, returns the namespace it points to.
6633static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) {
6634  if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D))
6635    return AD->getNamespace();
6636  return dyn_cast_or_null<NamespaceDecl>(D);
6637}
6638
6639/// ActOnFinishNamespaceDef - This callback is called after a namespace is
6640/// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
6641void Sema::ActOnFinishNamespaceDef(Decl *Dcl, SourceLocation RBrace) {
6642  NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
6643  assert(Namespc && "Invalid parameter, expected NamespaceDecl");
6644  Namespc->setRBraceLoc(RBrace);
6645  PopDeclContext();
6646  if (Namespc->hasAttr<VisibilityAttr>())
6647    PopPragmaVisibility(true, RBrace);
6648}
6649
6650CXXRecordDecl *Sema::getStdBadAlloc() const {
6651  return cast_or_null<CXXRecordDecl>(
6652                                  StdBadAlloc.get(Context.getExternalSource()));
6653}
6654
6655NamespaceDecl *Sema::getStdNamespace() const {
6656  return cast_or_null<NamespaceDecl>(
6657                                 StdNamespace.get(Context.getExternalSource()));
6658}
6659
6660/// \brief Retrieve the special "std" namespace, which may require us to
6661/// implicitly define the namespace.
6662NamespaceDecl *Sema::getOrCreateStdNamespace() {
6663  if (!StdNamespace) {
6664    // The "std" namespace has not yet been defined, so build one implicitly.
6665    StdNamespace = NamespaceDecl::Create(Context,
6666                                         Context.getTranslationUnitDecl(),
6667                                         /*Inline=*/false,
6668                                         SourceLocation(), SourceLocation(),
6669                                         &PP.getIdentifierTable().get("std"),
6670                                         /*PrevDecl=*/0);
6671    getStdNamespace()->setImplicit(true);
6672  }
6673
6674  return getStdNamespace();
6675}
6676
6677bool Sema::isStdInitializerList(QualType Ty, QualType *Element) {
6678  assert(getLangOpts().CPlusPlus &&
6679         "Looking for std::initializer_list outside of C++.");
6680
6681  // We're looking for implicit instantiations of
6682  // template <typename E> class std::initializer_list.
6683
6684  if (!StdNamespace) // If we haven't seen namespace std yet, this can't be it.
6685    return false;
6686
6687  ClassTemplateDecl *Template = 0;
6688  const TemplateArgument *Arguments = 0;
6689
6690  if (const RecordType *RT = Ty->getAs<RecordType>()) {
6691
6692    ClassTemplateSpecializationDecl *Specialization =
6693        dyn_cast<ClassTemplateSpecializationDecl>(RT->getDecl());
6694    if (!Specialization)
6695      return false;
6696
6697    Template = Specialization->getSpecializedTemplate();
6698    Arguments = Specialization->getTemplateArgs().data();
6699  } else if (const TemplateSpecializationType *TST =
6700                 Ty->getAs<TemplateSpecializationType>()) {
6701    Template = dyn_cast_or_null<ClassTemplateDecl>(
6702        TST->getTemplateName().getAsTemplateDecl());
6703    Arguments = TST->getArgs();
6704  }
6705  if (!Template)
6706    return false;
6707
6708  if (!StdInitializerList) {
6709    // Haven't recognized std::initializer_list yet, maybe this is it.
6710    CXXRecordDecl *TemplateClass = Template->getTemplatedDecl();
6711    if (TemplateClass->getIdentifier() !=
6712            &PP.getIdentifierTable().get("initializer_list") ||
6713        !getStdNamespace()->InEnclosingNamespaceSetOf(
6714            TemplateClass->getDeclContext()))
6715      return false;
6716    // This is a template called std::initializer_list, but is it the right
6717    // template?
6718    TemplateParameterList *Params = Template->getTemplateParameters();
6719    if (Params->getMinRequiredArguments() != 1)
6720      return false;
6721    if (!isa<TemplateTypeParmDecl>(Params->getParam(0)))
6722      return false;
6723
6724    // It's the right template.
6725    StdInitializerList = Template;
6726  }
6727
6728  if (Template != StdInitializerList)
6729    return false;
6730
6731  // This is an instance of std::initializer_list. Find the argument type.
6732  if (Element)
6733    *Element = Arguments[0].getAsType();
6734  return true;
6735}
6736
6737static ClassTemplateDecl *LookupStdInitializerList(Sema &S, SourceLocation Loc){
6738  NamespaceDecl *Std = S.getStdNamespace();
6739  if (!Std) {
6740    S.Diag(Loc, diag::err_implied_std_initializer_list_not_found);
6741    return 0;
6742  }
6743
6744  LookupResult Result(S, &S.PP.getIdentifierTable().get("initializer_list"),
6745                      Loc, Sema::LookupOrdinaryName);
6746  if (!S.LookupQualifiedName(Result, Std)) {
6747    S.Diag(Loc, diag::err_implied_std_initializer_list_not_found);
6748    return 0;
6749  }
6750  ClassTemplateDecl *Template = Result.getAsSingle<ClassTemplateDecl>();
6751  if (!Template) {
6752    Result.suppressDiagnostics();
6753    // We found something weird. Complain about the first thing we found.
6754    NamedDecl *Found = *Result.begin();
6755    S.Diag(Found->getLocation(), diag::err_malformed_std_initializer_list);
6756    return 0;
6757  }
6758
6759  // We found some template called std::initializer_list. Now verify that it's
6760  // correct.
6761  TemplateParameterList *Params = Template->getTemplateParameters();
6762  if (Params->getMinRequiredArguments() != 1 ||
6763      !isa<TemplateTypeParmDecl>(Params->getParam(0))) {
6764    S.Diag(Template->getLocation(), diag::err_malformed_std_initializer_list);
6765    return 0;
6766  }
6767
6768  return Template;
6769}
6770
6771QualType Sema::BuildStdInitializerList(QualType Element, SourceLocation Loc) {
6772  if (!StdInitializerList) {
6773    StdInitializerList = LookupStdInitializerList(*this, Loc);
6774    if (!StdInitializerList)
6775      return QualType();
6776  }
6777
6778  TemplateArgumentListInfo Args(Loc, Loc);
6779  Args.addArgument(TemplateArgumentLoc(TemplateArgument(Element),
6780                                       Context.getTrivialTypeSourceInfo(Element,
6781                                                                        Loc)));
6782  return Context.getCanonicalType(
6783      CheckTemplateIdType(TemplateName(StdInitializerList), Loc, Args));
6784}
6785
6786bool Sema::isInitListConstructor(const CXXConstructorDecl* Ctor) {
6787  // C++ [dcl.init.list]p2:
6788  //   A constructor is an initializer-list constructor if its first parameter
6789  //   is of type std::initializer_list<E> or reference to possibly cv-qualified
6790  //   std::initializer_list<E> for some type E, and either there are no other
6791  //   parameters or else all other parameters have default arguments.
6792  if (Ctor->getNumParams() < 1 ||
6793      (Ctor->getNumParams() > 1 && !Ctor->getParamDecl(1)->hasDefaultArg()))
6794    return false;
6795
6796  QualType ArgType = Ctor->getParamDecl(0)->getType();
6797  if (const ReferenceType *RT = ArgType->getAs<ReferenceType>())
6798    ArgType = RT->getPointeeType().getUnqualifiedType();
6799
6800  return isStdInitializerList(ArgType, 0);
6801}
6802
6803/// \brief Determine whether a using statement is in a context where it will be
6804/// apply in all contexts.
6805static bool IsUsingDirectiveInToplevelContext(DeclContext *CurContext) {
6806  switch (CurContext->getDeclKind()) {
6807    case Decl::TranslationUnit:
6808      return true;
6809    case Decl::LinkageSpec:
6810      return IsUsingDirectiveInToplevelContext(CurContext->getParent());
6811    default:
6812      return false;
6813  }
6814}
6815
6816namespace {
6817
6818// Callback to only accept typo corrections that are namespaces.
6819class NamespaceValidatorCCC : public CorrectionCandidateCallback {
6820public:
6821  bool ValidateCandidate(const TypoCorrection &candidate) LLVM_OVERRIDE {
6822    if (NamedDecl *ND = candidate.getCorrectionDecl())
6823      return isa<NamespaceDecl>(ND) || isa<NamespaceAliasDecl>(ND);
6824    return false;
6825  }
6826};
6827
6828}
6829
6830static bool TryNamespaceTypoCorrection(Sema &S, LookupResult &R, Scope *Sc,
6831                                       CXXScopeSpec &SS,
6832                                       SourceLocation IdentLoc,
6833                                       IdentifierInfo *Ident) {
6834  NamespaceValidatorCCC Validator;
6835  R.clear();
6836  if (TypoCorrection Corrected = S.CorrectTypo(R.getLookupNameInfo(),
6837                                               R.getLookupKind(), Sc, &SS,
6838                                               Validator)) {
6839    if (DeclContext *DC = S.computeDeclContext(SS, false)) {
6840      std::string CorrectedStr(Corrected.getAsString(S.getLangOpts()));
6841      bool DroppedSpecifier = Corrected.WillReplaceSpecifier() &&
6842                              Ident->getName().equals(CorrectedStr);
6843      S.diagnoseTypo(Corrected,
6844                     S.PDiag(diag::err_using_directive_member_suggest)
6845                       << Ident << DC << DroppedSpecifier << SS.getRange(),
6846                     S.PDiag(diag::note_namespace_defined_here));
6847    } else {
6848      S.diagnoseTypo(Corrected,
6849                     S.PDiag(diag::err_using_directive_suggest) << Ident,
6850                     S.PDiag(diag::note_namespace_defined_here));
6851    }
6852    R.addDecl(Corrected.getCorrectionDecl());
6853    return true;
6854  }
6855  return false;
6856}
6857
6858Decl *Sema::ActOnUsingDirective(Scope *S,
6859                                          SourceLocation UsingLoc,
6860                                          SourceLocation NamespcLoc,
6861                                          CXXScopeSpec &SS,
6862                                          SourceLocation IdentLoc,
6863                                          IdentifierInfo *NamespcName,
6864                                          AttributeList *AttrList) {
6865  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
6866  assert(NamespcName && "Invalid NamespcName.");
6867  assert(IdentLoc.isValid() && "Invalid NamespceName location.");
6868
6869  // This can only happen along a recovery path.
6870  while (S->getFlags() & Scope::TemplateParamScope)
6871    S = S->getParent();
6872  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
6873
6874  UsingDirectiveDecl *UDir = 0;
6875  NestedNameSpecifier *Qualifier = 0;
6876  if (SS.isSet())
6877    Qualifier = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
6878
6879  // Lookup namespace name.
6880  LookupResult R(*this, NamespcName, IdentLoc, LookupNamespaceName);
6881  LookupParsedName(R, S, &SS);
6882  if (R.isAmbiguous())
6883    return 0;
6884
6885  if (R.empty()) {
6886    R.clear();
6887    // Allow "using namespace std;" or "using namespace ::std;" even if
6888    // "std" hasn't been defined yet, for GCC compatibility.
6889    if ((!Qualifier || Qualifier->getKind() == NestedNameSpecifier::Global) &&
6890        NamespcName->isStr("std")) {
6891      Diag(IdentLoc, diag::ext_using_undefined_std);
6892      R.addDecl(getOrCreateStdNamespace());
6893      R.resolveKind();
6894    }
6895    // Otherwise, attempt typo correction.
6896    else TryNamespaceTypoCorrection(*this, R, S, SS, IdentLoc, NamespcName);
6897  }
6898
6899  if (!R.empty()) {
6900    NamedDecl *Named = R.getFoundDecl();
6901    assert((isa<NamespaceDecl>(Named) || isa<NamespaceAliasDecl>(Named))
6902        && "expected namespace decl");
6903    // C++ [namespace.udir]p1:
6904    //   A using-directive specifies that the names in the nominated
6905    //   namespace can be used in the scope in which the
6906    //   using-directive appears after the using-directive. During
6907    //   unqualified name lookup (3.4.1), the names appear as if they
6908    //   were declared in the nearest enclosing namespace which
6909    //   contains both the using-directive and the nominated
6910    //   namespace. [Note: in this context, "contains" means "contains
6911    //   directly or indirectly". ]
6912
6913    // Find enclosing context containing both using-directive and
6914    // nominated namespace.
6915    NamespaceDecl *NS = getNamespaceDecl(Named);
6916    DeclContext *CommonAncestor = cast<DeclContext>(NS);
6917    while (CommonAncestor && !CommonAncestor->Encloses(CurContext))
6918      CommonAncestor = CommonAncestor->getParent();
6919
6920    UDir = UsingDirectiveDecl::Create(Context, CurContext, UsingLoc, NamespcLoc,
6921                                      SS.getWithLocInContext(Context),
6922                                      IdentLoc, Named, CommonAncestor);
6923
6924    if (IsUsingDirectiveInToplevelContext(CurContext) &&
6925        !SourceMgr.isInMainFile(SourceMgr.getExpansionLoc(IdentLoc))) {
6926      Diag(IdentLoc, diag::warn_using_directive_in_header);
6927    }
6928
6929    PushUsingDirective(S, UDir);
6930  } else {
6931    Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
6932  }
6933
6934  if (UDir)
6935    ProcessDeclAttributeList(S, UDir, AttrList);
6936
6937  return UDir;
6938}
6939
6940void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) {
6941  // If the scope has an associated entity and the using directive is at
6942  // namespace or translation unit scope, add the UsingDirectiveDecl into
6943  // its lookup structure so qualified name lookup can find it.
6944  DeclContext *Ctx = S->getEntity();
6945  if (Ctx && !Ctx->isFunctionOrMethod())
6946    Ctx->addDecl(UDir);
6947  else
6948    // Otherwise, it is at block sope. The using-directives will affect lookup
6949    // only to the end of the scope.
6950    S->PushUsingDirective(UDir);
6951}
6952
6953
6954Decl *Sema::ActOnUsingDeclaration(Scope *S,
6955                                  AccessSpecifier AS,
6956                                  bool HasUsingKeyword,
6957                                  SourceLocation UsingLoc,
6958                                  CXXScopeSpec &SS,
6959                                  UnqualifiedId &Name,
6960                                  AttributeList *AttrList,
6961                                  bool HasTypenameKeyword,
6962                                  SourceLocation TypenameLoc) {
6963  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
6964
6965  switch (Name.getKind()) {
6966  case UnqualifiedId::IK_ImplicitSelfParam:
6967  case UnqualifiedId::IK_Identifier:
6968  case UnqualifiedId::IK_OperatorFunctionId:
6969  case UnqualifiedId::IK_LiteralOperatorId:
6970  case UnqualifiedId::IK_ConversionFunctionId:
6971    break;
6972
6973  case UnqualifiedId::IK_ConstructorName:
6974  case UnqualifiedId::IK_ConstructorTemplateId:
6975    // C++11 inheriting constructors.
6976    Diag(Name.getLocStart(),
6977         getLangOpts().CPlusPlus11 ?
6978           diag::warn_cxx98_compat_using_decl_constructor :
6979           diag::err_using_decl_constructor)
6980      << SS.getRange();
6981
6982    if (getLangOpts().CPlusPlus11) break;
6983
6984    return 0;
6985
6986  case UnqualifiedId::IK_DestructorName:
6987    Diag(Name.getLocStart(), diag::err_using_decl_destructor)
6988      << SS.getRange();
6989    return 0;
6990
6991  case UnqualifiedId::IK_TemplateId:
6992    Diag(Name.getLocStart(), diag::err_using_decl_template_id)
6993      << SourceRange(Name.TemplateId->LAngleLoc, Name.TemplateId->RAngleLoc);
6994    return 0;
6995  }
6996
6997  DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name);
6998  DeclarationName TargetName = TargetNameInfo.getName();
6999  if (!TargetName)
7000    return 0;
7001
7002  // Warn about access declarations.
7003  if (!HasUsingKeyword) {
7004    Diag(Name.getLocStart(),
7005         getLangOpts().CPlusPlus11 ? diag::err_access_decl
7006                                   : diag::warn_access_decl_deprecated)
7007      << FixItHint::CreateInsertion(SS.getRange().getBegin(), "using ");
7008  }
7009
7010  if (DiagnoseUnexpandedParameterPack(SS, UPPC_UsingDeclaration) ||
7011      DiagnoseUnexpandedParameterPack(TargetNameInfo, UPPC_UsingDeclaration))
7012    return 0;
7013
7014  NamedDecl *UD = BuildUsingDeclaration(S, AS, UsingLoc, SS,
7015                                        TargetNameInfo, AttrList,
7016                                        /* IsInstantiation */ false,
7017                                        HasTypenameKeyword, TypenameLoc);
7018  if (UD)
7019    PushOnScopeChains(UD, S, /*AddToContext*/ false);
7020
7021  return UD;
7022}
7023
7024/// \brief Determine whether a using declaration considers the given
7025/// declarations as "equivalent", e.g., if they are redeclarations of
7026/// the same entity or are both typedefs of the same type.
7027static bool
7028IsEquivalentForUsingDecl(ASTContext &Context, NamedDecl *D1, NamedDecl *D2,
7029                         bool &SuppressRedeclaration) {
7030  if (D1->getCanonicalDecl() == D2->getCanonicalDecl()) {
7031    SuppressRedeclaration = false;
7032    return true;
7033  }
7034
7035  if (TypedefNameDecl *TD1 = dyn_cast<TypedefNameDecl>(D1))
7036    if (TypedefNameDecl *TD2 = dyn_cast<TypedefNameDecl>(D2)) {
7037      SuppressRedeclaration = true;
7038      return Context.hasSameType(TD1->getUnderlyingType(),
7039                                 TD2->getUnderlyingType());
7040    }
7041
7042  return false;
7043}
7044
7045
7046/// Determines whether to create a using shadow decl for a particular
7047/// decl, given the set of decls existing prior to this using lookup.
7048bool Sema::CheckUsingShadowDecl(UsingDecl *Using, NamedDecl *Orig,
7049                                const LookupResult &Previous) {
7050  // Diagnose finding a decl which is not from a base class of the
7051  // current class.  We do this now because there are cases where this
7052  // function will silently decide not to build a shadow decl, which
7053  // will pre-empt further diagnostics.
7054  //
7055  // We don't need to do this in C++0x because we do the check once on
7056  // the qualifier.
7057  //
7058  // FIXME: diagnose the following if we care enough:
7059  //   struct A { int foo; };
7060  //   struct B : A { using A::foo; };
7061  //   template <class T> struct C : A {};
7062  //   template <class T> struct D : C<T> { using B::foo; } // <---
7063  // This is invalid (during instantiation) in C++03 because B::foo
7064  // resolves to the using decl in B, which is not a base class of D<T>.
7065  // We can't diagnose it immediately because C<T> is an unknown
7066  // specialization.  The UsingShadowDecl in D<T> then points directly
7067  // to A::foo, which will look well-formed when we instantiate.
7068  // The right solution is to not collapse the shadow-decl chain.
7069  if (!getLangOpts().CPlusPlus11 && CurContext->isRecord()) {
7070    DeclContext *OrigDC = Orig->getDeclContext();
7071
7072    // Handle enums and anonymous structs.
7073    if (isa<EnumDecl>(OrigDC)) OrigDC = OrigDC->getParent();
7074    CXXRecordDecl *OrigRec = cast<CXXRecordDecl>(OrigDC);
7075    while (OrigRec->isAnonymousStructOrUnion())
7076      OrigRec = cast<CXXRecordDecl>(OrigRec->getDeclContext());
7077
7078    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(OrigRec)) {
7079      if (OrigDC == CurContext) {
7080        Diag(Using->getLocation(),
7081             diag::err_using_decl_nested_name_specifier_is_current_class)
7082          << Using->getQualifierLoc().getSourceRange();
7083        Diag(Orig->getLocation(), diag::note_using_decl_target);
7084        return true;
7085      }
7086
7087      Diag(Using->getQualifierLoc().getBeginLoc(),
7088           diag::err_using_decl_nested_name_specifier_is_not_base_class)
7089        << Using->getQualifier()
7090        << cast<CXXRecordDecl>(CurContext)
7091        << Using->getQualifierLoc().getSourceRange();
7092      Diag(Orig->getLocation(), diag::note_using_decl_target);
7093      return true;
7094    }
7095  }
7096
7097  if (Previous.empty()) return false;
7098
7099  NamedDecl *Target = Orig;
7100  if (isa<UsingShadowDecl>(Target))
7101    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
7102
7103  // If the target happens to be one of the previous declarations, we
7104  // don't have a conflict.
7105  //
7106  // FIXME: but we might be increasing its access, in which case we
7107  // should redeclare it.
7108  NamedDecl *NonTag = 0, *Tag = 0;
7109  for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
7110         I != E; ++I) {
7111    NamedDecl *D = (*I)->getUnderlyingDecl();
7112    bool Result;
7113    if (IsEquivalentForUsingDecl(Context, D, Target, Result))
7114      return Result;
7115
7116    (isa<TagDecl>(D) ? Tag : NonTag) = D;
7117  }
7118
7119  if (Target->isFunctionOrFunctionTemplate()) {
7120    FunctionDecl *FD;
7121    if (isa<FunctionTemplateDecl>(Target))
7122      FD = cast<FunctionTemplateDecl>(Target)->getTemplatedDecl();
7123    else
7124      FD = cast<FunctionDecl>(Target);
7125
7126    NamedDecl *OldDecl = 0;
7127    switch (CheckOverload(0, FD, Previous, OldDecl, /*IsForUsingDecl*/ true)) {
7128    case Ovl_Overload:
7129      return false;
7130
7131    case Ovl_NonFunction:
7132      Diag(Using->getLocation(), diag::err_using_decl_conflict);
7133      break;
7134
7135    // We found a decl with the exact signature.
7136    case Ovl_Match:
7137      // If we're in a record, we want to hide the target, so we
7138      // return true (without a diagnostic) to tell the caller not to
7139      // build a shadow decl.
7140      if (CurContext->isRecord())
7141        return true;
7142
7143      // If we're not in a record, this is an error.
7144      Diag(Using->getLocation(), diag::err_using_decl_conflict);
7145      break;
7146    }
7147
7148    Diag(Target->getLocation(), diag::note_using_decl_target);
7149    Diag(OldDecl->getLocation(), diag::note_using_decl_conflict);
7150    return true;
7151  }
7152
7153  // Target is not a function.
7154
7155  if (isa<TagDecl>(Target)) {
7156    // No conflict between a tag and a non-tag.
7157    if (!Tag) return false;
7158
7159    Diag(Using->getLocation(), diag::err_using_decl_conflict);
7160    Diag(Target->getLocation(), diag::note_using_decl_target);
7161    Diag(Tag->getLocation(), diag::note_using_decl_conflict);
7162    return true;
7163  }
7164
7165  // No conflict between a tag and a non-tag.
7166  if (!NonTag) return false;
7167
7168  Diag(Using->getLocation(), diag::err_using_decl_conflict);
7169  Diag(Target->getLocation(), diag::note_using_decl_target);
7170  Diag(NonTag->getLocation(), diag::note_using_decl_conflict);
7171  return true;
7172}
7173
7174/// Builds a shadow declaration corresponding to a 'using' declaration.
7175UsingShadowDecl *Sema::BuildUsingShadowDecl(Scope *S,
7176                                            UsingDecl *UD,
7177                                            NamedDecl *Orig) {
7178
7179  // If we resolved to another shadow declaration, just coalesce them.
7180  NamedDecl *Target = Orig;
7181  if (isa<UsingShadowDecl>(Target)) {
7182    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
7183    assert(!isa<UsingShadowDecl>(Target) && "nested shadow declaration");
7184  }
7185
7186  UsingShadowDecl *Shadow
7187    = UsingShadowDecl::Create(Context, CurContext,
7188                              UD->getLocation(), UD, Target);
7189  UD->addShadowDecl(Shadow);
7190
7191  Shadow->setAccess(UD->getAccess());
7192  if (Orig->isInvalidDecl() || UD->isInvalidDecl())
7193    Shadow->setInvalidDecl();
7194
7195  if (S)
7196    PushOnScopeChains(Shadow, S);
7197  else
7198    CurContext->addDecl(Shadow);
7199
7200
7201  return Shadow;
7202}
7203
7204/// Hides a using shadow declaration.  This is required by the current
7205/// using-decl implementation when a resolvable using declaration in a
7206/// class is followed by a declaration which would hide or override
7207/// one or more of the using decl's targets; for example:
7208///
7209///   struct Base { void foo(int); };
7210///   struct Derived : Base {
7211///     using Base::foo;
7212///     void foo(int);
7213///   };
7214///
7215/// The governing language is C++03 [namespace.udecl]p12:
7216///
7217///   When a using-declaration brings names from a base class into a
7218///   derived class scope, member functions in the derived class
7219///   override and/or hide member functions with the same name and
7220///   parameter types in a base class (rather than conflicting).
7221///
7222/// There are two ways to implement this:
7223///   (1) optimistically create shadow decls when they're not hidden
7224///       by existing declarations, or
7225///   (2) don't create any shadow decls (or at least don't make them
7226///       visible) until we've fully parsed/instantiated the class.
7227/// The problem with (1) is that we might have to retroactively remove
7228/// a shadow decl, which requires several O(n) operations because the
7229/// decl structures are (very reasonably) not designed for removal.
7230/// (2) avoids this but is very fiddly and phase-dependent.
7231void Sema::HideUsingShadowDecl(Scope *S, UsingShadowDecl *Shadow) {
7232  if (Shadow->getDeclName().getNameKind() ==
7233        DeclarationName::CXXConversionFunctionName)
7234    cast<CXXRecordDecl>(Shadow->getDeclContext())->removeConversion(Shadow);
7235
7236  // Remove it from the DeclContext...
7237  Shadow->getDeclContext()->removeDecl(Shadow);
7238
7239  // ...and the scope, if applicable...
7240  if (S) {
7241    S->RemoveDecl(Shadow);
7242    IdResolver.RemoveDecl(Shadow);
7243  }
7244
7245  // ...and the using decl.
7246  Shadow->getUsingDecl()->removeShadowDecl(Shadow);
7247
7248  // TODO: complain somehow if Shadow was used.  It shouldn't
7249  // be possible for this to happen, because...?
7250}
7251
7252namespace {
7253class UsingValidatorCCC : public CorrectionCandidateCallback {
7254public:
7255  UsingValidatorCCC(bool HasTypenameKeyword, bool IsInstantiation)
7256      : HasTypenameKeyword(HasTypenameKeyword),
7257        IsInstantiation(IsInstantiation) {}
7258
7259  bool ValidateCandidate(const TypoCorrection &Candidate) LLVM_OVERRIDE {
7260    NamedDecl *ND = Candidate.getCorrectionDecl();
7261
7262    // Keywords are not valid here.
7263    if (!ND || isa<NamespaceDecl>(ND))
7264      return false;
7265
7266    // Completely unqualified names are invalid for a 'using' declaration.
7267    if (Candidate.WillReplaceSpecifier() && !Candidate.getCorrectionSpecifier())
7268      return false;
7269
7270    if (isa<TypeDecl>(ND))
7271      return HasTypenameKeyword || !IsInstantiation;
7272
7273    return !HasTypenameKeyword;
7274  }
7275
7276private:
7277  bool HasTypenameKeyword;
7278  bool IsInstantiation;
7279};
7280} // end anonymous namespace
7281
7282/// Builds a using declaration.
7283///
7284/// \param IsInstantiation - Whether this call arises from an
7285///   instantiation of an unresolved using declaration.  We treat
7286///   the lookup differently for these declarations.
7287NamedDecl *Sema::BuildUsingDeclaration(Scope *S, AccessSpecifier AS,
7288                                       SourceLocation UsingLoc,
7289                                       CXXScopeSpec &SS,
7290                                       const DeclarationNameInfo &NameInfo,
7291                                       AttributeList *AttrList,
7292                                       bool IsInstantiation,
7293                                       bool HasTypenameKeyword,
7294                                       SourceLocation TypenameLoc) {
7295  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
7296  SourceLocation IdentLoc = NameInfo.getLoc();
7297  assert(IdentLoc.isValid() && "Invalid TargetName location.");
7298
7299  // FIXME: We ignore attributes for now.
7300
7301  if (SS.isEmpty()) {
7302    Diag(IdentLoc, diag::err_using_requires_qualname);
7303    return 0;
7304  }
7305
7306  // Do the redeclaration lookup in the current scope.
7307  LookupResult Previous(*this, NameInfo, LookupUsingDeclName,
7308                        ForRedeclaration);
7309  Previous.setHideTags(false);
7310  if (S) {
7311    LookupName(Previous, S);
7312
7313    // It is really dumb that we have to do this.
7314    LookupResult::Filter F = Previous.makeFilter();
7315    while (F.hasNext()) {
7316      NamedDecl *D = F.next();
7317      if (!isDeclInScope(D, CurContext, S))
7318        F.erase();
7319    }
7320    F.done();
7321  } else {
7322    assert(IsInstantiation && "no scope in non-instantiation");
7323    assert(CurContext->isRecord() && "scope not record in instantiation");
7324    LookupQualifiedName(Previous, CurContext);
7325  }
7326
7327  // Check for invalid redeclarations.
7328  if (CheckUsingDeclRedeclaration(UsingLoc, HasTypenameKeyword,
7329                                  SS, IdentLoc, Previous))
7330    return 0;
7331
7332  // Check for bad qualifiers.
7333  if (CheckUsingDeclQualifier(UsingLoc, SS, IdentLoc))
7334    return 0;
7335
7336  DeclContext *LookupContext = computeDeclContext(SS);
7337  NamedDecl *D;
7338  NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
7339  if (!LookupContext) {
7340    if (HasTypenameKeyword) {
7341      // FIXME: not all declaration name kinds are legal here
7342      D = UnresolvedUsingTypenameDecl::Create(Context, CurContext,
7343                                              UsingLoc, TypenameLoc,
7344                                              QualifierLoc,
7345                                              IdentLoc, NameInfo.getName());
7346    } else {
7347      D = UnresolvedUsingValueDecl::Create(Context, CurContext, UsingLoc,
7348                                           QualifierLoc, NameInfo);
7349    }
7350  } else {
7351    D = UsingDecl::Create(Context, CurContext, UsingLoc, QualifierLoc,
7352                          NameInfo, HasTypenameKeyword);
7353  }
7354  D->setAccess(AS);
7355  CurContext->addDecl(D);
7356
7357  if (!LookupContext) return D;
7358  UsingDecl *UD = cast<UsingDecl>(D);
7359
7360  if (RequireCompleteDeclContext(SS, LookupContext)) {
7361    UD->setInvalidDecl();
7362    return UD;
7363  }
7364
7365  // The normal rules do not apply to inheriting constructor declarations.
7366  if (NameInfo.getName().getNameKind() == DeclarationName::CXXConstructorName) {
7367    if (CheckInheritingConstructorUsingDecl(UD))
7368      UD->setInvalidDecl();
7369    return UD;
7370  }
7371
7372  // Otherwise, look up the target name.
7373
7374  LookupResult R(*this, NameInfo, LookupOrdinaryName);
7375
7376  // Unlike most lookups, we don't always want to hide tag
7377  // declarations: tag names are visible through the using declaration
7378  // even if hidden by ordinary names, *except* in a dependent context
7379  // where it's important for the sanity of two-phase lookup.
7380  if (!IsInstantiation)
7381    R.setHideTags(false);
7382
7383  // For the purposes of this lookup, we have a base object type
7384  // equal to that of the current context.
7385  if (CurContext->isRecord()) {
7386    R.setBaseObjectType(
7387                   Context.getTypeDeclType(cast<CXXRecordDecl>(CurContext)));
7388  }
7389
7390  LookupQualifiedName(R, LookupContext);
7391
7392  // Try to correct typos if possible.
7393  if (R.empty()) {
7394    UsingValidatorCCC CCC(HasTypenameKeyword, IsInstantiation);
7395    if (TypoCorrection Corrected = CorrectTypo(R.getLookupNameInfo(),
7396                                               R.getLookupKind(), S, &SS, CCC)){
7397      // We reject any correction for which ND would be NULL.
7398      NamedDecl *ND = Corrected.getCorrectionDecl();
7399      R.setLookupName(Corrected.getCorrection());
7400      R.addDecl(ND);
7401      // We reject candidates where DroppedSpecifier == true, hence the
7402      // literal '0' below.
7403      diagnoseTypo(Corrected, PDiag(diag::err_no_member_suggest)
7404                                << NameInfo.getName() << LookupContext << 0
7405                                << SS.getRange());
7406    } else {
7407      Diag(IdentLoc, diag::err_no_member)
7408        << NameInfo.getName() << LookupContext << SS.getRange();
7409      UD->setInvalidDecl();
7410      return UD;
7411    }
7412  }
7413
7414  if (R.isAmbiguous()) {
7415    UD->setInvalidDecl();
7416    return UD;
7417  }
7418
7419  if (HasTypenameKeyword) {
7420    // If we asked for a typename and got a non-type decl, error out.
7421    if (!R.getAsSingle<TypeDecl>()) {
7422      Diag(IdentLoc, diag::err_using_typename_non_type);
7423      for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
7424        Diag((*I)->getUnderlyingDecl()->getLocation(),
7425             diag::note_using_decl_target);
7426      UD->setInvalidDecl();
7427      return UD;
7428    }
7429  } else {
7430    // If we asked for a non-typename and we got a type, error out,
7431    // but only if this is an instantiation of an unresolved using
7432    // decl.  Otherwise just silently find the type name.
7433    if (IsInstantiation && R.getAsSingle<TypeDecl>()) {
7434      Diag(IdentLoc, diag::err_using_dependent_value_is_type);
7435      Diag(R.getFoundDecl()->getLocation(), diag::note_using_decl_target);
7436      UD->setInvalidDecl();
7437      return UD;
7438    }
7439  }
7440
7441  // C++0x N2914 [namespace.udecl]p6:
7442  // A using-declaration shall not name a namespace.
7443  if (R.getAsSingle<NamespaceDecl>()) {
7444    Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_namespace)
7445      << SS.getRange();
7446    UD->setInvalidDecl();
7447    return UD;
7448  }
7449
7450  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
7451    if (!CheckUsingShadowDecl(UD, *I, Previous))
7452      BuildUsingShadowDecl(S, UD, *I);
7453  }
7454
7455  return UD;
7456}
7457
7458/// Additional checks for a using declaration referring to a constructor name.
7459bool Sema::CheckInheritingConstructorUsingDecl(UsingDecl *UD) {
7460  assert(!UD->hasTypename() && "expecting a constructor name");
7461
7462  const Type *SourceType = UD->getQualifier()->getAsType();
7463  assert(SourceType &&
7464         "Using decl naming constructor doesn't have type in scope spec.");
7465  CXXRecordDecl *TargetClass = cast<CXXRecordDecl>(CurContext);
7466
7467  // Check whether the named type is a direct base class.
7468  CanQualType CanonicalSourceType = SourceType->getCanonicalTypeUnqualified();
7469  CXXRecordDecl::base_class_iterator BaseIt, BaseE;
7470  for (BaseIt = TargetClass->bases_begin(), BaseE = TargetClass->bases_end();
7471       BaseIt != BaseE; ++BaseIt) {
7472    CanQualType BaseType = BaseIt->getType()->getCanonicalTypeUnqualified();
7473    if (CanonicalSourceType == BaseType)
7474      break;
7475    if (BaseIt->getType()->isDependentType())
7476      break;
7477  }
7478
7479  if (BaseIt == BaseE) {
7480    // Did not find SourceType in the bases.
7481    Diag(UD->getUsingLoc(),
7482         diag::err_using_decl_constructor_not_in_direct_base)
7483      << UD->getNameInfo().getSourceRange()
7484      << QualType(SourceType, 0) << TargetClass;
7485    return true;
7486  }
7487
7488  if (!CurContext->isDependentContext())
7489    BaseIt->setInheritConstructors();
7490
7491  return false;
7492}
7493
7494/// Checks that the given using declaration is not an invalid
7495/// redeclaration.  Note that this is checking only for the using decl
7496/// itself, not for any ill-formedness among the UsingShadowDecls.
7497bool Sema::CheckUsingDeclRedeclaration(SourceLocation UsingLoc,
7498                                       bool HasTypenameKeyword,
7499                                       const CXXScopeSpec &SS,
7500                                       SourceLocation NameLoc,
7501                                       const LookupResult &Prev) {
7502  // C++03 [namespace.udecl]p8:
7503  // C++0x [namespace.udecl]p10:
7504  //   A using-declaration is a declaration and can therefore be used
7505  //   repeatedly where (and only where) multiple declarations are
7506  //   allowed.
7507  //
7508  // That's in non-member contexts.
7509  if (!CurContext->getRedeclContext()->isRecord())
7510    return false;
7511
7512  NestedNameSpecifier *Qual
7513    = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
7514
7515  for (LookupResult::iterator I = Prev.begin(), E = Prev.end(); I != E; ++I) {
7516    NamedDecl *D = *I;
7517
7518    bool DTypename;
7519    NestedNameSpecifier *DQual;
7520    if (UsingDecl *UD = dyn_cast<UsingDecl>(D)) {
7521      DTypename = UD->hasTypename();
7522      DQual = UD->getQualifier();
7523    } else if (UnresolvedUsingValueDecl *UD
7524                 = dyn_cast<UnresolvedUsingValueDecl>(D)) {
7525      DTypename = false;
7526      DQual = UD->getQualifier();
7527    } else if (UnresolvedUsingTypenameDecl *UD
7528                 = dyn_cast<UnresolvedUsingTypenameDecl>(D)) {
7529      DTypename = true;
7530      DQual = UD->getQualifier();
7531    } else continue;
7532
7533    // using decls differ if one says 'typename' and the other doesn't.
7534    // FIXME: non-dependent using decls?
7535    if (HasTypenameKeyword != DTypename) continue;
7536
7537    // using decls differ if they name different scopes (but note that
7538    // template instantiation can cause this check to trigger when it
7539    // didn't before instantiation).
7540    if (Context.getCanonicalNestedNameSpecifier(Qual) !=
7541        Context.getCanonicalNestedNameSpecifier(DQual))
7542      continue;
7543
7544    Diag(NameLoc, diag::err_using_decl_redeclaration) << SS.getRange();
7545    Diag(D->getLocation(), diag::note_using_decl) << 1;
7546    return true;
7547  }
7548
7549  return false;
7550}
7551
7552
7553/// Checks that the given nested-name qualifier used in a using decl
7554/// in the current context is appropriately related to the current
7555/// scope.  If an error is found, diagnoses it and returns true.
7556bool Sema::CheckUsingDeclQualifier(SourceLocation UsingLoc,
7557                                   const CXXScopeSpec &SS,
7558                                   SourceLocation NameLoc) {
7559  DeclContext *NamedContext = computeDeclContext(SS);
7560
7561  if (!CurContext->isRecord()) {
7562    // C++03 [namespace.udecl]p3:
7563    // C++0x [namespace.udecl]p8:
7564    //   A using-declaration for a class member shall be a member-declaration.
7565
7566    // If we weren't able to compute a valid scope, it must be a
7567    // dependent class scope.
7568    if (!NamedContext || NamedContext->isRecord()) {
7569      Diag(NameLoc, diag::err_using_decl_can_not_refer_to_class_member)
7570        << SS.getRange();
7571      return true;
7572    }
7573
7574    // Otherwise, everything is known to be fine.
7575    return false;
7576  }
7577
7578  // The current scope is a record.
7579
7580  // If the named context is dependent, we can't decide much.
7581  if (!NamedContext) {
7582    // FIXME: in C++0x, we can diagnose if we can prove that the
7583    // nested-name-specifier does not refer to a base class, which is
7584    // still possible in some cases.
7585
7586    // Otherwise we have to conservatively report that things might be
7587    // okay.
7588    return false;
7589  }
7590
7591  if (!NamedContext->isRecord()) {
7592    // Ideally this would point at the last name in the specifier,
7593    // but we don't have that level of source info.
7594    Diag(SS.getRange().getBegin(),
7595         diag::err_using_decl_nested_name_specifier_is_not_class)
7596      << (NestedNameSpecifier*) SS.getScopeRep() << SS.getRange();
7597    return true;
7598  }
7599
7600  if (!NamedContext->isDependentContext() &&
7601      RequireCompleteDeclContext(const_cast<CXXScopeSpec&>(SS), NamedContext))
7602    return true;
7603
7604  if (getLangOpts().CPlusPlus11) {
7605    // C++0x [namespace.udecl]p3:
7606    //   In a using-declaration used as a member-declaration, the
7607    //   nested-name-specifier shall name a base class of the class
7608    //   being defined.
7609
7610    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(
7611                                 cast<CXXRecordDecl>(NamedContext))) {
7612      if (CurContext == NamedContext) {
7613        Diag(NameLoc,
7614             diag::err_using_decl_nested_name_specifier_is_current_class)
7615          << SS.getRange();
7616        return true;
7617      }
7618
7619      Diag(SS.getRange().getBegin(),
7620           diag::err_using_decl_nested_name_specifier_is_not_base_class)
7621        << (NestedNameSpecifier*) SS.getScopeRep()
7622        << cast<CXXRecordDecl>(CurContext)
7623        << SS.getRange();
7624      return true;
7625    }
7626
7627    return false;
7628  }
7629
7630  // C++03 [namespace.udecl]p4:
7631  //   A using-declaration used as a member-declaration shall refer
7632  //   to a member of a base class of the class being defined [etc.].
7633
7634  // Salient point: SS doesn't have to name a base class as long as
7635  // lookup only finds members from base classes.  Therefore we can
7636  // diagnose here only if we can prove that that can't happen,
7637  // i.e. if the class hierarchies provably don't intersect.
7638
7639  // TODO: it would be nice if "definitely valid" results were cached
7640  // in the UsingDecl and UsingShadowDecl so that these checks didn't
7641  // need to be repeated.
7642
7643  struct UserData {
7644    llvm::SmallPtrSet<const CXXRecordDecl*, 4> Bases;
7645
7646    static bool collect(const CXXRecordDecl *Base, void *OpaqueData) {
7647      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
7648      Data->Bases.insert(Base);
7649      return true;
7650    }
7651
7652    bool hasDependentBases(const CXXRecordDecl *Class) {
7653      return !Class->forallBases(collect, this);
7654    }
7655
7656    /// Returns true if the base is dependent or is one of the
7657    /// accumulated base classes.
7658    static bool doesNotContain(const CXXRecordDecl *Base, void *OpaqueData) {
7659      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
7660      return !Data->Bases.count(Base);
7661    }
7662
7663    bool mightShareBases(const CXXRecordDecl *Class) {
7664      return Bases.count(Class) || !Class->forallBases(doesNotContain, this);
7665    }
7666  };
7667
7668  UserData Data;
7669
7670  // Returns false if we find a dependent base.
7671  if (Data.hasDependentBases(cast<CXXRecordDecl>(CurContext)))
7672    return false;
7673
7674  // Returns false if the class has a dependent base or if it or one
7675  // of its bases is present in the base set of the current context.
7676  if (Data.mightShareBases(cast<CXXRecordDecl>(NamedContext)))
7677    return false;
7678
7679  Diag(SS.getRange().getBegin(),
7680       diag::err_using_decl_nested_name_specifier_is_not_base_class)
7681    << (NestedNameSpecifier*) SS.getScopeRep()
7682    << cast<CXXRecordDecl>(CurContext)
7683    << SS.getRange();
7684
7685  return true;
7686}
7687
7688Decl *Sema::ActOnAliasDeclaration(Scope *S,
7689                                  AccessSpecifier AS,
7690                                  MultiTemplateParamsArg TemplateParamLists,
7691                                  SourceLocation UsingLoc,
7692                                  UnqualifiedId &Name,
7693                                  AttributeList *AttrList,
7694                                  TypeResult Type) {
7695  // Skip up to the relevant declaration scope.
7696  while (S->getFlags() & Scope::TemplateParamScope)
7697    S = S->getParent();
7698  assert((S->getFlags() & Scope::DeclScope) &&
7699         "got alias-declaration outside of declaration scope");
7700
7701  if (Type.isInvalid())
7702    return 0;
7703
7704  bool Invalid = false;
7705  DeclarationNameInfo NameInfo = GetNameFromUnqualifiedId(Name);
7706  TypeSourceInfo *TInfo = 0;
7707  GetTypeFromParser(Type.get(), &TInfo);
7708
7709  if (DiagnoseClassNameShadow(CurContext, NameInfo))
7710    return 0;
7711
7712  if (DiagnoseUnexpandedParameterPack(Name.StartLocation, TInfo,
7713                                      UPPC_DeclarationType)) {
7714    Invalid = true;
7715    TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy,
7716                                             TInfo->getTypeLoc().getBeginLoc());
7717  }
7718
7719  LookupResult Previous(*this, NameInfo, LookupOrdinaryName, ForRedeclaration);
7720  LookupName(Previous, S);
7721
7722  // Warn about shadowing the name of a template parameter.
7723  if (Previous.isSingleResult() &&
7724      Previous.getFoundDecl()->isTemplateParameter()) {
7725    DiagnoseTemplateParameterShadow(Name.StartLocation,Previous.getFoundDecl());
7726    Previous.clear();
7727  }
7728
7729  assert(Name.Kind == UnqualifiedId::IK_Identifier &&
7730         "name in alias declaration must be an identifier");
7731  TypeAliasDecl *NewTD = TypeAliasDecl::Create(Context, CurContext, UsingLoc,
7732                                               Name.StartLocation,
7733                                               Name.Identifier, TInfo);
7734
7735  NewTD->setAccess(AS);
7736
7737  if (Invalid)
7738    NewTD->setInvalidDecl();
7739
7740  ProcessDeclAttributeList(S, NewTD, AttrList);
7741
7742  CheckTypedefForVariablyModifiedType(S, NewTD);
7743  Invalid |= NewTD->isInvalidDecl();
7744
7745  bool Redeclaration = false;
7746
7747  NamedDecl *NewND;
7748  if (TemplateParamLists.size()) {
7749    TypeAliasTemplateDecl *OldDecl = 0;
7750    TemplateParameterList *OldTemplateParams = 0;
7751
7752    if (TemplateParamLists.size() != 1) {
7753      Diag(UsingLoc, diag::err_alias_template_extra_headers)
7754        << SourceRange(TemplateParamLists[1]->getTemplateLoc(),
7755         TemplateParamLists[TemplateParamLists.size()-1]->getRAngleLoc());
7756    }
7757    TemplateParameterList *TemplateParams = TemplateParamLists[0];
7758
7759    // Only consider previous declarations in the same scope.
7760    FilterLookupForScope(Previous, CurContext, S, /*ConsiderLinkage*/false,
7761                         /*ExplicitInstantiationOrSpecialization*/false);
7762    if (!Previous.empty()) {
7763      Redeclaration = true;
7764
7765      OldDecl = Previous.getAsSingle<TypeAliasTemplateDecl>();
7766      if (!OldDecl && !Invalid) {
7767        Diag(UsingLoc, diag::err_redefinition_different_kind)
7768          << Name.Identifier;
7769
7770        NamedDecl *OldD = Previous.getRepresentativeDecl();
7771        if (OldD->getLocation().isValid())
7772          Diag(OldD->getLocation(), diag::note_previous_definition);
7773
7774        Invalid = true;
7775      }
7776
7777      if (!Invalid && OldDecl && !OldDecl->isInvalidDecl()) {
7778        if (TemplateParameterListsAreEqual(TemplateParams,
7779                                           OldDecl->getTemplateParameters(),
7780                                           /*Complain=*/true,
7781                                           TPL_TemplateMatch))
7782          OldTemplateParams = OldDecl->getTemplateParameters();
7783        else
7784          Invalid = true;
7785
7786        TypeAliasDecl *OldTD = OldDecl->getTemplatedDecl();
7787        if (!Invalid &&
7788            !Context.hasSameType(OldTD->getUnderlyingType(),
7789                                 NewTD->getUnderlyingType())) {
7790          // FIXME: The C++0x standard does not clearly say this is ill-formed,
7791          // but we can't reasonably accept it.
7792          Diag(NewTD->getLocation(), diag::err_redefinition_different_typedef)
7793            << 2 << NewTD->getUnderlyingType() << OldTD->getUnderlyingType();
7794          if (OldTD->getLocation().isValid())
7795            Diag(OldTD->getLocation(), diag::note_previous_definition);
7796          Invalid = true;
7797        }
7798      }
7799    }
7800
7801    // Merge any previous default template arguments into our parameters,
7802    // and check the parameter list.
7803    if (CheckTemplateParameterList(TemplateParams, OldTemplateParams,
7804                                   TPC_TypeAliasTemplate))
7805      return 0;
7806
7807    TypeAliasTemplateDecl *NewDecl =
7808      TypeAliasTemplateDecl::Create(Context, CurContext, UsingLoc,
7809                                    Name.Identifier, TemplateParams,
7810                                    NewTD);
7811
7812    NewDecl->setAccess(AS);
7813
7814    if (Invalid)
7815      NewDecl->setInvalidDecl();
7816    else if (OldDecl)
7817      NewDecl->setPreviousDeclaration(OldDecl);
7818
7819    NewND = NewDecl;
7820  } else {
7821    ActOnTypedefNameDecl(S, CurContext, NewTD, Previous, Redeclaration);
7822    NewND = NewTD;
7823  }
7824
7825  if (!Redeclaration)
7826    PushOnScopeChains(NewND, S);
7827
7828  ActOnDocumentableDecl(NewND);
7829  return NewND;
7830}
7831
7832Decl *Sema::ActOnNamespaceAliasDef(Scope *S,
7833                                             SourceLocation NamespaceLoc,
7834                                             SourceLocation AliasLoc,
7835                                             IdentifierInfo *Alias,
7836                                             CXXScopeSpec &SS,
7837                                             SourceLocation IdentLoc,
7838                                             IdentifierInfo *Ident) {
7839
7840  // Lookup the namespace name.
7841  LookupResult R(*this, Ident, IdentLoc, LookupNamespaceName);
7842  LookupParsedName(R, S, &SS);
7843
7844  // Check if we have a previous declaration with the same name.
7845  NamedDecl *PrevDecl
7846    = LookupSingleName(S, Alias, AliasLoc, LookupOrdinaryName,
7847                       ForRedeclaration);
7848  if (PrevDecl && !isDeclInScope(PrevDecl, CurContext, S))
7849    PrevDecl = 0;
7850
7851  if (PrevDecl) {
7852    if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) {
7853      // We already have an alias with the same name that points to the same
7854      // namespace, so don't create a new one.
7855      // FIXME: At some point, we'll want to create the (redundant)
7856      // declaration to maintain better source information.
7857      if (!R.isAmbiguous() && !R.empty() &&
7858          AD->getNamespace()->Equals(getNamespaceDecl(R.getFoundDecl())))
7859        return 0;
7860    }
7861
7862    unsigned DiagID = isa<NamespaceDecl>(PrevDecl) ? diag::err_redefinition :
7863      diag::err_redefinition_different_kind;
7864    Diag(AliasLoc, DiagID) << Alias;
7865    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
7866    return 0;
7867  }
7868
7869  if (R.isAmbiguous())
7870    return 0;
7871
7872  if (R.empty()) {
7873    if (!TryNamespaceTypoCorrection(*this, R, S, SS, IdentLoc, Ident)) {
7874      Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
7875      return 0;
7876    }
7877  }
7878
7879  NamespaceAliasDecl *AliasDecl =
7880    NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc,
7881                               Alias, SS.getWithLocInContext(Context),
7882                               IdentLoc, R.getFoundDecl());
7883
7884  PushOnScopeChains(AliasDecl, S);
7885  return AliasDecl;
7886}
7887
7888Sema::ImplicitExceptionSpecification
7889Sema::ComputeDefaultedDefaultCtorExceptionSpec(SourceLocation Loc,
7890                                               CXXMethodDecl *MD) {
7891  CXXRecordDecl *ClassDecl = MD->getParent();
7892
7893  // C++ [except.spec]p14:
7894  //   An implicitly declared special member function (Clause 12) shall have an
7895  //   exception-specification. [...]
7896  ImplicitExceptionSpecification ExceptSpec(*this);
7897  if (ClassDecl->isInvalidDecl())
7898    return ExceptSpec;
7899
7900  // Direct base-class constructors.
7901  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
7902                                       BEnd = ClassDecl->bases_end();
7903       B != BEnd; ++B) {
7904    if (B->isVirtual()) // Handled below.
7905      continue;
7906
7907    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
7908      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
7909      CXXConstructorDecl *Constructor = LookupDefaultConstructor(BaseClassDecl);
7910      // If this is a deleted function, add it anyway. This might be conformant
7911      // with the standard. This might not. I'm not sure. It might not matter.
7912      if (Constructor)
7913        ExceptSpec.CalledDecl(B->getLocStart(), Constructor);
7914    }
7915  }
7916
7917  // Virtual base-class constructors.
7918  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
7919                                       BEnd = ClassDecl->vbases_end();
7920       B != BEnd; ++B) {
7921    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
7922      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
7923      CXXConstructorDecl *Constructor = LookupDefaultConstructor(BaseClassDecl);
7924      // If this is a deleted function, add it anyway. This might be conformant
7925      // with the standard. This might not. I'm not sure. It might not matter.
7926      if (Constructor)
7927        ExceptSpec.CalledDecl(B->getLocStart(), Constructor);
7928    }
7929  }
7930
7931  // Field constructors.
7932  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
7933                               FEnd = ClassDecl->field_end();
7934       F != FEnd; ++F) {
7935    if (F->hasInClassInitializer()) {
7936      if (Expr *E = F->getInClassInitializer())
7937        ExceptSpec.CalledExpr(E);
7938      else if (!F->isInvalidDecl())
7939        // DR1351:
7940        //   If the brace-or-equal-initializer of a non-static data member
7941        //   invokes a defaulted default constructor of its class or of an
7942        //   enclosing class in a potentially evaluated subexpression, the
7943        //   program is ill-formed.
7944        //
7945        // This resolution is unworkable: the exception specification of the
7946        // default constructor can be needed in an unevaluated context, in
7947        // particular, in the operand of a noexcept-expression, and we can be
7948        // unable to compute an exception specification for an enclosed class.
7949        //
7950        // We do not allow an in-class initializer to require the evaluation
7951        // of the exception specification for any in-class initializer whose
7952        // definition is not lexically complete.
7953        Diag(Loc, diag::err_in_class_initializer_references_def_ctor) << MD;
7954    } else if (const RecordType *RecordTy
7955              = Context.getBaseElementType(F->getType())->getAs<RecordType>()) {
7956      CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
7957      CXXConstructorDecl *Constructor = LookupDefaultConstructor(FieldRecDecl);
7958      // If this is a deleted function, add it anyway. This might be conformant
7959      // with the standard. This might not. I'm not sure. It might not matter.
7960      // In particular, the problem is that this function never gets called. It
7961      // might just be ill-formed because this function attempts to refer to
7962      // a deleted function here.
7963      if (Constructor)
7964        ExceptSpec.CalledDecl(F->getLocation(), Constructor);
7965    }
7966  }
7967
7968  return ExceptSpec;
7969}
7970
7971Sema::ImplicitExceptionSpecification
7972Sema::ComputeInheritingCtorExceptionSpec(CXXConstructorDecl *CD) {
7973  CXXRecordDecl *ClassDecl = CD->getParent();
7974
7975  // C++ [except.spec]p14:
7976  //   An inheriting constructor [...] shall have an exception-specification. [...]
7977  ImplicitExceptionSpecification ExceptSpec(*this);
7978  if (ClassDecl->isInvalidDecl())
7979    return ExceptSpec;
7980
7981  // Inherited constructor.
7982  const CXXConstructorDecl *InheritedCD = CD->getInheritedConstructor();
7983  const CXXRecordDecl *InheritedDecl = InheritedCD->getParent();
7984  // FIXME: Copying or moving the parameters could add extra exceptions to the
7985  // set, as could the default arguments for the inherited constructor. This
7986  // will be addressed when we implement the resolution of core issue 1351.
7987  ExceptSpec.CalledDecl(CD->getLocStart(), InheritedCD);
7988
7989  // Direct base-class constructors.
7990  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
7991                                       BEnd = ClassDecl->bases_end();
7992       B != BEnd; ++B) {
7993    if (B->isVirtual()) // Handled below.
7994      continue;
7995
7996    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
7997      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
7998      if (BaseClassDecl == InheritedDecl)
7999        continue;
8000      CXXConstructorDecl *Constructor = LookupDefaultConstructor(BaseClassDecl);
8001      if (Constructor)
8002        ExceptSpec.CalledDecl(B->getLocStart(), Constructor);
8003    }
8004  }
8005
8006  // Virtual base-class constructors.
8007  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
8008                                       BEnd = ClassDecl->vbases_end();
8009       B != BEnd; ++B) {
8010    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
8011      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
8012      if (BaseClassDecl == InheritedDecl)
8013        continue;
8014      CXXConstructorDecl *Constructor = LookupDefaultConstructor(BaseClassDecl);
8015      if (Constructor)
8016        ExceptSpec.CalledDecl(B->getLocStart(), Constructor);
8017    }
8018  }
8019
8020  // Field constructors.
8021  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
8022                               FEnd = ClassDecl->field_end();
8023       F != FEnd; ++F) {
8024    if (F->hasInClassInitializer()) {
8025      if (Expr *E = F->getInClassInitializer())
8026        ExceptSpec.CalledExpr(E);
8027      else if (!F->isInvalidDecl())
8028        Diag(CD->getLocation(),
8029             diag::err_in_class_initializer_references_def_ctor) << CD;
8030    } else if (const RecordType *RecordTy
8031              = Context.getBaseElementType(F->getType())->getAs<RecordType>()) {
8032      CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
8033      CXXConstructorDecl *Constructor = LookupDefaultConstructor(FieldRecDecl);
8034      if (Constructor)
8035        ExceptSpec.CalledDecl(F->getLocation(), Constructor);
8036    }
8037  }
8038
8039  return ExceptSpec;
8040}
8041
8042namespace {
8043/// RAII object to register a special member as being currently declared.
8044struct DeclaringSpecialMember {
8045  Sema &S;
8046  Sema::SpecialMemberDecl D;
8047  bool WasAlreadyBeingDeclared;
8048
8049  DeclaringSpecialMember(Sema &S, CXXRecordDecl *RD, Sema::CXXSpecialMember CSM)
8050    : S(S), D(RD, CSM) {
8051    WasAlreadyBeingDeclared = !S.SpecialMembersBeingDeclared.insert(D);
8052    if (WasAlreadyBeingDeclared)
8053      // This almost never happens, but if it does, ensure that our cache
8054      // doesn't contain a stale result.
8055      S.SpecialMemberCache.clear();
8056
8057    // FIXME: Register a note to be produced if we encounter an error while
8058    // declaring the special member.
8059  }
8060  ~DeclaringSpecialMember() {
8061    if (!WasAlreadyBeingDeclared)
8062      S.SpecialMembersBeingDeclared.erase(D);
8063  }
8064
8065  /// \brief Are we already trying to declare this special member?
8066  bool isAlreadyBeingDeclared() const {
8067    return WasAlreadyBeingDeclared;
8068  }
8069};
8070}
8071
8072CXXConstructorDecl *Sema::DeclareImplicitDefaultConstructor(
8073                                                     CXXRecordDecl *ClassDecl) {
8074  // C++ [class.ctor]p5:
8075  //   A default constructor for a class X is a constructor of class X
8076  //   that can be called without an argument. If there is no
8077  //   user-declared constructor for class X, a default constructor is
8078  //   implicitly declared. An implicitly-declared default constructor
8079  //   is an inline public member of its class.
8080  assert(ClassDecl->needsImplicitDefaultConstructor() &&
8081         "Should not build implicit default constructor!");
8082
8083  DeclaringSpecialMember DSM(*this, ClassDecl, CXXDefaultConstructor);
8084  if (DSM.isAlreadyBeingDeclared())
8085    return 0;
8086
8087  bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl,
8088                                                     CXXDefaultConstructor,
8089                                                     false);
8090
8091  // Create the actual constructor declaration.
8092  CanQualType ClassType
8093    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
8094  SourceLocation ClassLoc = ClassDecl->getLocation();
8095  DeclarationName Name
8096    = Context.DeclarationNames.getCXXConstructorName(ClassType);
8097  DeclarationNameInfo NameInfo(Name, ClassLoc);
8098  CXXConstructorDecl *DefaultCon = CXXConstructorDecl::Create(
8099      Context, ClassDecl, ClassLoc, NameInfo, /*Type*/QualType(), /*TInfo=*/0,
8100      /*isExplicit=*/false, /*isInline=*/true, /*isImplicitlyDeclared=*/true,
8101      Constexpr);
8102  DefaultCon->setAccess(AS_public);
8103  DefaultCon->setDefaulted();
8104  DefaultCon->setImplicit();
8105
8106  // Build an exception specification pointing back at this constructor.
8107  FunctionProtoType::ExtProtoInfo EPI = getImplicitMethodEPI(*this, DefaultCon);
8108  DefaultCon->setType(Context.getFunctionType(Context.VoidTy, None, EPI));
8109
8110  // We don't need to use SpecialMemberIsTrivial here; triviality for default
8111  // constructors is easy to compute.
8112  DefaultCon->setTrivial(ClassDecl->hasTrivialDefaultConstructor());
8113
8114  if (ShouldDeleteSpecialMember(DefaultCon, CXXDefaultConstructor))
8115    SetDeclDeleted(DefaultCon, ClassLoc);
8116
8117  // Note that we have declared this constructor.
8118  ++ASTContext::NumImplicitDefaultConstructorsDeclared;
8119
8120  if (Scope *S = getScopeForContext(ClassDecl))
8121    PushOnScopeChains(DefaultCon, S, false);
8122  ClassDecl->addDecl(DefaultCon);
8123
8124  return DefaultCon;
8125}
8126
8127void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,
8128                                            CXXConstructorDecl *Constructor) {
8129  assert((Constructor->isDefaulted() && Constructor->isDefaultConstructor() &&
8130          !Constructor->doesThisDeclarationHaveABody() &&
8131          !Constructor->isDeleted()) &&
8132    "DefineImplicitDefaultConstructor - call it for implicit default ctor");
8133
8134  CXXRecordDecl *ClassDecl = Constructor->getParent();
8135  assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor");
8136
8137  SynthesizedFunctionScope Scope(*this, Constructor);
8138  DiagnosticErrorTrap Trap(Diags);
8139  if (SetCtorInitializers(Constructor, /*AnyErrors=*/false) ||
8140      Trap.hasErrorOccurred()) {
8141    Diag(CurrentLocation, diag::note_member_synthesized_at)
8142      << CXXDefaultConstructor << Context.getTagDeclType(ClassDecl);
8143    Constructor->setInvalidDecl();
8144    return;
8145  }
8146
8147  SourceLocation Loc = Constructor->getLocation();
8148  Constructor->setBody(new (Context) CompoundStmt(Loc));
8149
8150  Constructor->markUsed(Context);
8151  MarkVTableUsed(CurrentLocation, ClassDecl);
8152
8153  if (ASTMutationListener *L = getASTMutationListener()) {
8154    L->CompletedImplicitDefinition(Constructor);
8155  }
8156}
8157
8158void Sema::ActOnFinishDelayedMemberInitializers(Decl *D) {
8159  // Check that any explicitly-defaulted methods have exception specifications
8160  // compatible with their implicit exception specifications.
8161  CheckDelayedExplicitlyDefaultedMemberExceptionSpecs();
8162
8163  // Once all the member initializers are processed, perform checks to see if
8164  // any unintialized use is happeneing.
8165  if (getDiagnostics().getDiagnosticLevel(diag::warn_field_is_uninit,
8166                                          D->getLocation())
8167      == DiagnosticsEngine::Ignored)
8168    return;
8169
8170  CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D);
8171  if (!RD) return;
8172
8173  // Holds fields that are uninitialized.
8174  llvm::SmallPtrSet<ValueDecl*, 4> UninitializedFields;
8175
8176  // In the beginning, every field is uninitialized.
8177  for (DeclContext::decl_iterator I = RD->decls_begin(), E = RD->decls_end();
8178       I != E; ++I) {
8179    if (FieldDecl *FD = dyn_cast<FieldDecl>(*I)) {
8180      UninitializedFields.insert(FD);
8181    } else if (IndirectFieldDecl *IFD = dyn_cast<IndirectFieldDecl>(*I)) {
8182      UninitializedFields.insert(IFD->getAnonField());
8183    }
8184  }
8185
8186  for (DeclContext::decl_iterator I = RD->decls_begin(), E = RD->decls_end();
8187       I != E; ++I) {
8188    FieldDecl *FD = dyn_cast<FieldDecl>(*I);
8189    if (!FD)
8190      if (IndirectFieldDecl *IFD = dyn_cast<IndirectFieldDecl>(*I))
8191        FD = IFD->getAnonField();
8192
8193    if (!FD)
8194      continue;
8195
8196    Expr *InitExpr = FD->getInClassInitializer();
8197    if (!InitExpr) {
8198      // Uninitialized reference types will give an error.
8199      // Record types with an initializer are default initialized.
8200      QualType FieldType = FD->getType();
8201      if (FieldType->isReferenceType() || FieldType->isRecordType())
8202        UninitializedFields.erase(FD);
8203      continue;
8204    }
8205
8206    CheckInitExprContainsUninitializedFields(
8207        *this, InitExpr, FD, UninitializedFields,
8208        UninitializedFields.count(FD)/*WarnOnSelfReference*/);
8209
8210    UninitializedFields.erase(FD);
8211  }
8212}
8213
8214namespace {
8215/// Information on inheriting constructors to declare.
8216class InheritingConstructorInfo {
8217public:
8218  InheritingConstructorInfo(Sema &SemaRef, CXXRecordDecl *Derived)
8219      : SemaRef(SemaRef), Derived(Derived) {
8220    // Mark the constructors that we already have in the derived class.
8221    //
8222    // C++11 [class.inhctor]p3: [...] a constructor is implicitly declared [...]
8223    //   unless there is a user-declared constructor with the same signature in
8224    //   the class where the using-declaration appears.
8225    visitAll(Derived, &InheritingConstructorInfo::noteDeclaredInDerived);
8226  }
8227
8228  void inheritAll(CXXRecordDecl *RD) {
8229    visitAll(RD, &InheritingConstructorInfo::inherit);
8230  }
8231
8232private:
8233  /// Information about an inheriting constructor.
8234  struct InheritingConstructor {
8235    InheritingConstructor()
8236      : DeclaredInDerived(false), BaseCtor(0), DerivedCtor(0) {}
8237
8238    /// If \c true, a constructor with this signature is already declared
8239    /// in the derived class.
8240    bool DeclaredInDerived;
8241
8242    /// The constructor which is inherited.
8243    const CXXConstructorDecl *BaseCtor;
8244
8245    /// The derived constructor we declared.
8246    CXXConstructorDecl *DerivedCtor;
8247  };
8248
8249  /// Inheriting constructors with a given canonical type. There can be at
8250  /// most one such non-template constructor, and any number of templated
8251  /// constructors.
8252  struct InheritingConstructorsForType {
8253    InheritingConstructor NonTemplate;
8254    SmallVector<std::pair<TemplateParameterList *, InheritingConstructor>, 4>
8255        Templates;
8256
8257    InheritingConstructor &getEntry(Sema &S, const CXXConstructorDecl *Ctor) {
8258      if (FunctionTemplateDecl *FTD = Ctor->getDescribedFunctionTemplate()) {
8259        TemplateParameterList *ParamList = FTD->getTemplateParameters();
8260        for (unsigned I = 0, N = Templates.size(); I != N; ++I)
8261          if (S.TemplateParameterListsAreEqual(ParamList, Templates[I].first,
8262                                               false, S.TPL_TemplateMatch))
8263            return Templates[I].second;
8264        Templates.push_back(std::make_pair(ParamList, InheritingConstructor()));
8265        return Templates.back().second;
8266      }
8267
8268      return NonTemplate;
8269    }
8270  };
8271
8272  /// Get or create the inheriting constructor record for a constructor.
8273  InheritingConstructor &getEntry(const CXXConstructorDecl *Ctor,
8274                                  QualType CtorType) {
8275    return Map[CtorType.getCanonicalType()->castAs<FunctionProtoType>()]
8276        .getEntry(SemaRef, Ctor);
8277  }
8278
8279  typedef void (InheritingConstructorInfo::*VisitFn)(const CXXConstructorDecl*);
8280
8281  /// Process all constructors for a class.
8282  void visitAll(const CXXRecordDecl *RD, VisitFn Callback) {
8283    for (CXXRecordDecl::ctor_iterator CtorIt = RD->ctor_begin(),
8284                                      CtorE = RD->ctor_end();
8285         CtorIt != CtorE; ++CtorIt)
8286      (this->*Callback)(*CtorIt);
8287    for (CXXRecordDecl::specific_decl_iterator<FunctionTemplateDecl>
8288             I(RD->decls_begin()), E(RD->decls_end());
8289         I != E; ++I) {
8290      const FunctionDecl *FD = (*I)->getTemplatedDecl();
8291      if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD))
8292        (this->*Callback)(CD);
8293    }
8294  }
8295
8296  /// Note that a constructor (or constructor template) was declared in Derived.
8297  void noteDeclaredInDerived(const CXXConstructorDecl *Ctor) {
8298    getEntry(Ctor, Ctor->getType()).DeclaredInDerived = true;
8299  }
8300
8301  /// Inherit a single constructor.
8302  void inherit(const CXXConstructorDecl *Ctor) {
8303    const FunctionProtoType *CtorType =
8304        Ctor->getType()->castAs<FunctionProtoType>();
8305    ArrayRef<QualType> ArgTypes(CtorType->getArgTypes());
8306    FunctionProtoType::ExtProtoInfo EPI = CtorType->getExtProtoInfo();
8307
8308    SourceLocation UsingLoc = getUsingLoc(Ctor->getParent());
8309
8310    // Core issue (no number yet): the ellipsis is always discarded.
8311    if (EPI.Variadic) {
8312      SemaRef.Diag(UsingLoc, diag::warn_using_decl_constructor_ellipsis);
8313      SemaRef.Diag(Ctor->getLocation(),
8314                   diag::note_using_decl_constructor_ellipsis);
8315      EPI.Variadic = false;
8316    }
8317
8318    // Declare a constructor for each number of parameters.
8319    //
8320    // C++11 [class.inhctor]p1:
8321    //   The candidate set of inherited constructors from the class X named in
8322    //   the using-declaration consists of [... modulo defects ...] for each
8323    //   constructor or constructor template of X, the set of constructors or
8324    //   constructor templates that results from omitting any ellipsis parameter
8325    //   specification and successively omitting parameters with a default
8326    //   argument from the end of the parameter-type-list
8327    unsigned MinParams = minParamsToInherit(Ctor);
8328    unsigned Params = Ctor->getNumParams();
8329    if (Params >= MinParams) {
8330      do
8331        declareCtor(UsingLoc, Ctor,
8332                    SemaRef.Context.getFunctionType(
8333                        Ctor->getResultType(), ArgTypes.slice(0, Params), EPI));
8334      while (Params > MinParams &&
8335             Ctor->getParamDecl(--Params)->hasDefaultArg());
8336    }
8337  }
8338
8339  /// Find the using-declaration which specified that we should inherit the
8340  /// constructors of \p Base.
8341  SourceLocation getUsingLoc(const CXXRecordDecl *Base) {
8342    // No fancy lookup required; just look for the base constructor name
8343    // directly within the derived class.
8344    ASTContext &Context = SemaRef.Context;
8345    DeclarationName Name = Context.DeclarationNames.getCXXConstructorName(
8346        Context.getCanonicalType(Context.getRecordType(Base)));
8347    DeclContext::lookup_const_result Decls = Derived->lookup(Name);
8348    return Decls.empty() ? Derived->getLocation() : Decls[0]->getLocation();
8349  }
8350
8351  unsigned minParamsToInherit(const CXXConstructorDecl *Ctor) {
8352    // C++11 [class.inhctor]p3:
8353    //   [F]or each constructor template in the candidate set of inherited
8354    //   constructors, a constructor template is implicitly declared
8355    if (Ctor->getDescribedFunctionTemplate())
8356      return 0;
8357
8358    //   For each non-template constructor in the candidate set of inherited
8359    //   constructors other than a constructor having no parameters or a
8360    //   copy/move constructor having a single parameter, a constructor is
8361    //   implicitly declared [...]
8362    if (Ctor->getNumParams() == 0)
8363      return 1;
8364    if (Ctor->isCopyOrMoveConstructor())
8365      return 2;
8366
8367    // Per discussion on core reflector, never inherit a constructor which
8368    // would become a default, copy, or move constructor of Derived either.
8369    const ParmVarDecl *PD = Ctor->getParamDecl(0);
8370    const ReferenceType *RT = PD->getType()->getAs<ReferenceType>();
8371    return (RT && RT->getPointeeCXXRecordDecl() == Derived) ? 2 : 1;
8372  }
8373
8374  /// Declare a single inheriting constructor, inheriting the specified
8375  /// constructor, with the given type.
8376  void declareCtor(SourceLocation UsingLoc, const CXXConstructorDecl *BaseCtor,
8377                   QualType DerivedType) {
8378    InheritingConstructor &Entry = getEntry(BaseCtor, DerivedType);
8379
8380    // C++11 [class.inhctor]p3:
8381    //   ... a constructor is implicitly declared with the same constructor
8382    //   characteristics unless there is a user-declared constructor with
8383    //   the same signature in the class where the using-declaration appears
8384    if (Entry.DeclaredInDerived)
8385      return;
8386
8387    // C++11 [class.inhctor]p7:
8388    //   If two using-declarations declare inheriting constructors with the
8389    //   same signature, the program is ill-formed
8390    if (Entry.DerivedCtor) {
8391      if (BaseCtor->getParent() != Entry.BaseCtor->getParent()) {
8392        // Only diagnose this once per constructor.
8393        if (Entry.DerivedCtor->isInvalidDecl())
8394          return;
8395        Entry.DerivedCtor->setInvalidDecl();
8396
8397        SemaRef.Diag(UsingLoc, diag::err_using_decl_constructor_conflict);
8398        SemaRef.Diag(BaseCtor->getLocation(),
8399                     diag::note_using_decl_constructor_conflict_current_ctor);
8400        SemaRef.Diag(Entry.BaseCtor->getLocation(),
8401                     diag::note_using_decl_constructor_conflict_previous_ctor);
8402        SemaRef.Diag(Entry.DerivedCtor->getLocation(),
8403                     diag::note_using_decl_constructor_conflict_previous_using);
8404      } else {
8405        // Core issue (no number): if the same inheriting constructor is
8406        // produced by multiple base class constructors from the same base
8407        // class, the inheriting constructor is defined as deleted.
8408        SemaRef.SetDeclDeleted(Entry.DerivedCtor, UsingLoc);
8409      }
8410
8411      return;
8412    }
8413
8414    ASTContext &Context = SemaRef.Context;
8415    DeclarationName Name = Context.DeclarationNames.getCXXConstructorName(
8416        Context.getCanonicalType(Context.getRecordType(Derived)));
8417    DeclarationNameInfo NameInfo(Name, UsingLoc);
8418
8419    TemplateParameterList *TemplateParams = 0;
8420    if (const FunctionTemplateDecl *FTD =
8421            BaseCtor->getDescribedFunctionTemplate()) {
8422      TemplateParams = FTD->getTemplateParameters();
8423      // We're reusing template parameters from a different DeclContext. This
8424      // is questionable at best, but works out because the template depth in
8425      // both places is guaranteed to be 0.
8426      // FIXME: Rebuild the template parameters in the new context, and
8427      // transform the function type to refer to them.
8428    }
8429
8430    // Build type source info pointing at the using-declaration. This is
8431    // required by template instantiation.
8432    TypeSourceInfo *TInfo =
8433        Context.getTrivialTypeSourceInfo(DerivedType, UsingLoc);
8434    FunctionProtoTypeLoc ProtoLoc =
8435        TInfo->getTypeLoc().IgnoreParens().castAs<FunctionProtoTypeLoc>();
8436
8437    CXXConstructorDecl *DerivedCtor = CXXConstructorDecl::Create(
8438        Context, Derived, UsingLoc, NameInfo, DerivedType,
8439        TInfo, BaseCtor->isExplicit(), /*Inline=*/true,
8440        /*ImplicitlyDeclared=*/true, /*Constexpr=*/BaseCtor->isConstexpr());
8441
8442    // Build an unevaluated exception specification for this constructor.
8443    const FunctionProtoType *FPT = DerivedType->castAs<FunctionProtoType>();
8444    FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
8445    EPI.ExceptionSpecType = EST_Unevaluated;
8446    EPI.ExceptionSpecDecl = DerivedCtor;
8447    DerivedCtor->setType(Context.getFunctionType(FPT->getResultType(),
8448                                                 FPT->getArgTypes(), EPI));
8449
8450    // Build the parameter declarations.
8451    SmallVector<ParmVarDecl *, 16> ParamDecls;
8452    for (unsigned I = 0, N = FPT->getNumArgs(); I != N; ++I) {
8453      TypeSourceInfo *TInfo =
8454          Context.getTrivialTypeSourceInfo(FPT->getArgType(I), UsingLoc);
8455      ParmVarDecl *PD = ParmVarDecl::Create(
8456          Context, DerivedCtor, UsingLoc, UsingLoc, /*IdentifierInfo=*/0,
8457          FPT->getArgType(I), TInfo, SC_None, /*DefaultArg=*/0);
8458      PD->setScopeInfo(0, I);
8459      PD->setImplicit();
8460      ParamDecls.push_back(PD);
8461      ProtoLoc.setArg(I, PD);
8462    }
8463
8464    // Set up the new constructor.
8465    DerivedCtor->setAccess(BaseCtor->getAccess());
8466    DerivedCtor->setParams(ParamDecls);
8467    DerivedCtor->setInheritedConstructor(BaseCtor);
8468    if (BaseCtor->isDeleted())
8469      SemaRef.SetDeclDeleted(DerivedCtor, UsingLoc);
8470
8471    // If this is a constructor template, build the template declaration.
8472    if (TemplateParams) {
8473      FunctionTemplateDecl *DerivedTemplate =
8474          FunctionTemplateDecl::Create(SemaRef.Context, Derived, UsingLoc, Name,
8475                                       TemplateParams, DerivedCtor);
8476      DerivedTemplate->setAccess(BaseCtor->getAccess());
8477      DerivedCtor->setDescribedFunctionTemplate(DerivedTemplate);
8478      Derived->addDecl(DerivedTemplate);
8479    } else {
8480      Derived->addDecl(DerivedCtor);
8481    }
8482
8483    Entry.BaseCtor = BaseCtor;
8484    Entry.DerivedCtor = DerivedCtor;
8485  }
8486
8487  Sema &SemaRef;
8488  CXXRecordDecl *Derived;
8489  typedef llvm::DenseMap<const Type *, InheritingConstructorsForType> MapType;
8490  MapType Map;
8491};
8492}
8493
8494void Sema::DeclareInheritingConstructors(CXXRecordDecl *ClassDecl) {
8495  // Defer declaring the inheriting constructors until the class is
8496  // instantiated.
8497  if (ClassDecl->isDependentContext())
8498    return;
8499
8500  // Find base classes from which we might inherit constructors.
8501  SmallVector<CXXRecordDecl*, 4> InheritedBases;
8502  for (CXXRecordDecl::base_class_iterator BaseIt = ClassDecl->bases_begin(),
8503                                          BaseE = ClassDecl->bases_end();
8504       BaseIt != BaseE; ++BaseIt)
8505    if (BaseIt->getInheritConstructors())
8506      InheritedBases.push_back(BaseIt->getType()->getAsCXXRecordDecl());
8507
8508  // Go no further if we're not inheriting any constructors.
8509  if (InheritedBases.empty())
8510    return;
8511
8512  // Declare the inherited constructors.
8513  InheritingConstructorInfo ICI(*this, ClassDecl);
8514  for (unsigned I = 0, N = InheritedBases.size(); I != N; ++I)
8515    ICI.inheritAll(InheritedBases[I]);
8516}
8517
8518void Sema::DefineInheritingConstructor(SourceLocation CurrentLocation,
8519                                       CXXConstructorDecl *Constructor) {
8520  CXXRecordDecl *ClassDecl = Constructor->getParent();
8521  assert(Constructor->getInheritedConstructor() &&
8522         !Constructor->doesThisDeclarationHaveABody() &&
8523         !Constructor->isDeleted());
8524
8525  SynthesizedFunctionScope Scope(*this, Constructor);
8526  DiagnosticErrorTrap Trap(Diags);
8527  if (SetCtorInitializers(Constructor, /*AnyErrors=*/false) ||
8528      Trap.hasErrorOccurred()) {
8529    Diag(CurrentLocation, diag::note_inhctor_synthesized_at)
8530      << Context.getTagDeclType(ClassDecl);
8531    Constructor->setInvalidDecl();
8532    return;
8533  }
8534
8535  SourceLocation Loc = Constructor->getLocation();
8536  Constructor->setBody(new (Context) CompoundStmt(Loc));
8537
8538  Constructor->markUsed(Context);
8539  MarkVTableUsed(CurrentLocation, ClassDecl);
8540
8541  if (ASTMutationListener *L = getASTMutationListener()) {
8542    L->CompletedImplicitDefinition(Constructor);
8543  }
8544}
8545
8546
8547Sema::ImplicitExceptionSpecification
8548Sema::ComputeDefaultedDtorExceptionSpec(CXXMethodDecl *MD) {
8549  CXXRecordDecl *ClassDecl = MD->getParent();
8550
8551  // C++ [except.spec]p14:
8552  //   An implicitly declared special member function (Clause 12) shall have
8553  //   an exception-specification.
8554  ImplicitExceptionSpecification ExceptSpec(*this);
8555  if (ClassDecl->isInvalidDecl())
8556    return ExceptSpec;
8557
8558  // Direct base-class destructors.
8559  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
8560                                       BEnd = ClassDecl->bases_end();
8561       B != BEnd; ++B) {
8562    if (B->isVirtual()) // Handled below.
8563      continue;
8564
8565    if (const RecordType *BaseType = B->getType()->getAs<RecordType>())
8566      ExceptSpec.CalledDecl(B->getLocStart(),
8567                   LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
8568  }
8569
8570  // Virtual base-class destructors.
8571  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
8572                                       BEnd = ClassDecl->vbases_end();
8573       B != BEnd; ++B) {
8574    if (const RecordType *BaseType = B->getType()->getAs<RecordType>())
8575      ExceptSpec.CalledDecl(B->getLocStart(),
8576                  LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
8577  }
8578
8579  // Field destructors.
8580  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
8581                               FEnd = ClassDecl->field_end();
8582       F != FEnd; ++F) {
8583    if (const RecordType *RecordTy
8584        = Context.getBaseElementType(F->getType())->getAs<RecordType>())
8585      ExceptSpec.CalledDecl(F->getLocation(),
8586                  LookupDestructor(cast<CXXRecordDecl>(RecordTy->getDecl())));
8587  }
8588
8589  return ExceptSpec;
8590}
8591
8592CXXDestructorDecl *Sema::DeclareImplicitDestructor(CXXRecordDecl *ClassDecl) {
8593  // C++ [class.dtor]p2:
8594  //   If a class has no user-declared destructor, a destructor is
8595  //   declared implicitly. An implicitly-declared destructor is an
8596  //   inline public member of its class.
8597  assert(ClassDecl->needsImplicitDestructor());
8598
8599  DeclaringSpecialMember DSM(*this, ClassDecl, CXXDestructor);
8600  if (DSM.isAlreadyBeingDeclared())
8601    return 0;
8602
8603  // Create the actual destructor declaration.
8604  CanQualType ClassType
8605    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
8606  SourceLocation ClassLoc = ClassDecl->getLocation();
8607  DeclarationName Name
8608    = Context.DeclarationNames.getCXXDestructorName(ClassType);
8609  DeclarationNameInfo NameInfo(Name, ClassLoc);
8610  CXXDestructorDecl *Destructor
8611      = CXXDestructorDecl::Create(Context, ClassDecl, ClassLoc, NameInfo,
8612                                  QualType(), 0, /*isInline=*/true,
8613                                  /*isImplicitlyDeclared=*/true);
8614  Destructor->setAccess(AS_public);
8615  Destructor->setDefaulted();
8616  Destructor->setImplicit();
8617
8618  // Build an exception specification pointing back at this destructor.
8619  FunctionProtoType::ExtProtoInfo EPI = getImplicitMethodEPI(*this, Destructor);
8620  Destructor->setType(Context.getFunctionType(Context.VoidTy, None, EPI));
8621
8622  AddOverriddenMethods(ClassDecl, Destructor);
8623
8624  // We don't need to use SpecialMemberIsTrivial here; triviality for
8625  // destructors is easy to compute.
8626  Destructor->setTrivial(ClassDecl->hasTrivialDestructor());
8627
8628  if (ShouldDeleteSpecialMember(Destructor, CXXDestructor))
8629    SetDeclDeleted(Destructor, ClassLoc);
8630
8631  // Note that we have declared this destructor.
8632  ++ASTContext::NumImplicitDestructorsDeclared;
8633
8634  // Introduce this destructor into its scope.
8635  if (Scope *S = getScopeForContext(ClassDecl))
8636    PushOnScopeChains(Destructor, S, false);
8637  ClassDecl->addDecl(Destructor);
8638
8639  return Destructor;
8640}
8641
8642void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation,
8643                                    CXXDestructorDecl *Destructor) {
8644  assert((Destructor->isDefaulted() &&
8645          !Destructor->doesThisDeclarationHaveABody() &&
8646          !Destructor->isDeleted()) &&
8647         "DefineImplicitDestructor - call it for implicit default dtor");
8648  CXXRecordDecl *ClassDecl = Destructor->getParent();
8649  assert(ClassDecl && "DefineImplicitDestructor - invalid destructor");
8650
8651  if (Destructor->isInvalidDecl())
8652    return;
8653
8654  SynthesizedFunctionScope Scope(*this, Destructor);
8655
8656  DiagnosticErrorTrap Trap(Diags);
8657  MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
8658                                         Destructor->getParent());
8659
8660  if (CheckDestructor(Destructor) || Trap.hasErrorOccurred()) {
8661    Diag(CurrentLocation, diag::note_member_synthesized_at)
8662      << CXXDestructor << Context.getTagDeclType(ClassDecl);
8663
8664    Destructor->setInvalidDecl();
8665    return;
8666  }
8667
8668  SourceLocation Loc = Destructor->getLocation();
8669  Destructor->setBody(new (Context) CompoundStmt(Loc));
8670  Destructor->markUsed(Context);
8671  MarkVTableUsed(CurrentLocation, ClassDecl);
8672
8673  if (ASTMutationListener *L = getASTMutationListener()) {
8674    L->CompletedImplicitDefinition(Destructor);
8675  }
8676}
8677
8678/// \brief Perform any semantic analysis which needs to be delayed until all
8679/// pending class member declarations have been parsed.
8680void Sema::ActOnFinishCXXMemberDecls() {
8681  // If the context is an invalid C++ class, just suppress these checks.
8682  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(CurContext)) {
8683    if (Record->isInvalidDecl()) {
8684      DelayedDestructorExceptionSpecChecks.clear();
8685      return;
8686    }
8687  }
8688
8689  // Perform any deferred checking of exception specifications for virtual
8690  // destructors.
8691  for (unsigned i = 0, e = DelayedDestructorExceptionSpecChecks.size();
8692       i != e; ++i) {
8693    const CXXDestructorDecl *Dtor =
8694        DelayedDestructorExceptionSpecChecks[i].first;
8695    assert(!Dtor->getParent()->isDependentType() &&
8696           "Should not ever add destructors of templates into the list.");
8697    CheckOverridingFunctionExceptionSpec(Dtor,
8698        DelayedDestructorExceptionSpecChecks[i].second);
8699  }
8700  DelayedDestructorExceptionSpecChecks.clear();
8701}
8702
8703void Sema::AdjustDestructorExceptionSpec(CXXRecordDecl *ClassDecl,
8704                                         CXXDestructorDecl *Destructor) {
8705  assert(getLangOpts().CPlusPlus11 &&
8706         "adjusting dtor exception specs was introduced in c++11");
8707
8708  // C++11 [class.dtor]p3:
8709  //   A declaration of a destructor that does not have an exception-
8710  //   specification is implicitly considered to have the same exception-
8711  //   specification as an implicit declaration.
8712  const FunctionProtoType *DtorType = Destructor->getType()->
8713                                        getAs<FunctionProtoType>();
8714  if (DtorType->hasExceptionSpec())
8715    return;
8716
8717  // Replace the destructor's type, building off the existing one. Fortunately,
8718  // the only thing of interest in the destructor type is its extended info.
8719  // The return and arguments are fixed.
8720  FunctionProtoType::ExtProtoInfo EPI = DtorType->getExtProtoInfo();
8721  EPI.ExceptionSpecType = EST_Unevaluated;
8722  EPI.ExceptionSpecDecl = Destructor;
8723  Destructor->setType(Context.getFunctionType(Context.VoidTy, None, EPI));
8724
8725  // FIXME: If the destructor has a body that could throw, and the newly created
8726  // spec doesn't allow exceptions, we should emit a warning, because this
8727  // change in behavior can break conforming C++03 programs at runtime.
8728  // However, we don't have a body or an exception specification yet, so it
8729  // needs to be done somewhere else.
8730}
8731
8732namespace {
8733/// \brief An abstract base class for all helper classes used in building the
8734//  copy/move operators. These classes serve as factory functions and help us
8735//  avoid using the same Expr* in the AST twice.
8736class ExprBuilder {
8737  ExprBuilder(const ExprBuilder&) LLVM_DELETED_FUNCTION;
8738  ExprBuilder &operator=(const ExprBuilder&) LLVM_DELETED_FUNCTION;
8739
8740protected:
8741  static Expr *assertNotNull(Expr *E) {
8742    assert(E && "Expression construction must not fail.");
8743    return E;
8744  }
8745
8746public:
8747  ExprBuilder() {}
8748  virtual ~ExprBuilder() {}
8749
8750  virtual Expr *build(Sema &S, SourceLocation Loc) const = 0;
8751};
8752
8753class RefBuilder: public ExprBuilder {
8754  VarDecl *Var;
8755  QualType VarType;
8756
8757public:
8758  virtual Expr *build(Sema &S, SourceLocation Loc) const LLVM_OVERRIDE {
8759    return assertNotNull(S.BuildDeclRefExpr(Var, VarType, VK_LValue, Loc).take());
8760  }
8761
8762  RefBuilder(VarDecl *Var, QualType VarType)
8763      : Var(Var), VarType(VarType) {}
8764};
8765
8766class ThisBuilder: public ExprBuilder {
8767public:
8768  virtual Expr *build(Sema &S, SourceLocation Loc) const LLVM_OVERRIDE {
8769    return assertNotNull(S.ActOnCXXThis(Loc).takeAs<Expr>());
8770  }
8771};
8772
8773class CastBuilder: public ExprBuilder {
8774  const ExprBuilder &Builder;
8775  QualType Type;
8776  ExprValueKind Kind;
8777  const CXXCastPath &Path;
8778
8779public:
8780  virtual Expr *build(Sema &S, SourceLocation Loc) const LLVM_OVERRIDE {
8781    return assertNotNull(S.ImpCastExprToType(Builder.build(S, Loc), Type,
8782                                             CK_UncheckedDerivedToBase, Kind,
8783                                             &Path).take());
8784  }
8785
8786  CastBuilder(const ExprBuilder &Builder, QualType Type, ExprValueKind Kind,
8787              const CXXCastPath &Path)
8788      : Builder(Builder), Type(Type), Kind(Kind), Path(Path) {}
8789};
8790
8791class DerefBuilder: public ExprBuilder {
8792  const ExprBuilder &Builder;
8793
8794public:
8795  virtual Expr *build(Sema &S, SourceLocation Loc) const LLVM_OVERRIDE {
8796    return assertNotNull(
8797        S.CreateBuiltinUnaryOp(Loc, UO_Deref, Builder.build(S, Loc)).take());
8798  }
8799
8800  DerefBuilder(const ExprBuilder &Builder) : Builder(Builder) {}
8801};
8802
8803class MemberBuilder: public ExprBuilder {
8804  const ExprBuilder &Builder;
8805  QualType Type;
8806  CXXScopeSpec SS;
8807  bool IsArrow;
8808  LookupResult &MemberLookup;
8809
8810public:
8811  virtual Expr *build(Sema &S, SourceLocation Loc) const LLVM_OVERRIDE {
8812    return assertNotNull(S.BuildMemberReferenceExpr(
8813        Builder.build(S, Loc), Type, Loc, IsArrow, SS, SourceLocation(), 0,
8814        MemberLookup, 0).take());
8815  }
8816
8817  MemberBuilder(const ExprBuilder &Builder, QualType Type, bool IsArrow,
8818                LookupResult &MemberLookup)
8819      : Builder(Builder), Type(Type), IsArrow(IsArrow),
8820        MemberLookup(MemberLookup) {}
8821};
8822
8823class MoveCastBuilder: public ExprBuilder {
8824  const ExprBuilder &Builder;
8825
8826public:
8827  virtual Expr *build(Sema &S, SourceLocation Loc) const LLVM_OVERRIDE {
8828    return assertNotNull(CastForMoving(S, Builder.build(S, Loc)));
8829  }
8830
8831  MoveCastBuilder(const ExprBuilder &Builder) : Builder(Builder) {}
8832};
8833
8834class LvalueConvBuilder: public ExprBuilder {
8835  const ExprBuilder &Builder;
8836
8837public:
8838  virtual Expr *build(Sema &S, SourceLocation Loc) const LLVM_OVERRIDE {
8839    return assertNotNull(
8840        S.DefaultLvalueConversion(Builder.build(S, Loc)).take());
8841  }
8842
8843  LvalueConvBuilder(const ExprBuilder &Builder) : Builder(Builder) {}
8844};
8845
8846class SubscriptBuilder: public ExprBuilder {
8847  const ExprBuilder &Base;
8848  const ExprBuilder &Index;
8849
8850public:
8851  virtual Expr *build(Sema &S, SourceLocation Loc) const
8852      LLVM_OVERRIDE {
8853    return assertNotNull(S.CreateBuiltinArraySubscriptExpr(
8854        Base.build(S, Loc), Loc, Index.build(S, Loc), Loc).take());
8855  }
8856
8857  SubscriptBuilder(const ExprBuilder &Base, const ExprBuilder &Index)
8858      : Base(Base), Index(Index) {}
8859};
8860
8861} // end anonymous namespace
8862
8863/// When generating a defaulted copy or move assignment operator, if a field
8864/// should be copied with __builtin_memcpy rather than via explicit assignments,
8865/// do so. This optimization only applies for arrays of scalars, and for arrays
8866/// of class type where the selected copy/move-assignment operator is trivial.
8867static StmtResult
8868buildMemcpyForAssignmentOp(Sema &S, SourceLocation Loc, QualType T,
8869                           const ExprBuilder &ToB, const ExprBuilder &FromB) {
8870  // Compute the size of the memory buffer to be copied.
8871  QualType SizeType = S.Context.getSizeType();
8872  llvm::APInt Size(S.Context.getTypeSize(SizeType),
8873                   S.Context.getTypeSizeInChars(T).getQuantity());
8874
8875  // Take the address of the field references for "from" and "to". We
8876  // directly construct UnaryOperators here because semantic analysis
8877  // does not permit us to take the address of an xvalue.
8878  Expr *From = FromB.build(S, Loc);
8879  From = new (S.Context) UnaryOperator(From, UO_AddrOf,
8880                         S.Context.getPointerType(From->getType()),
8881                         VK_RValue, OK_Ordinary, Loc);
8882  Expr *To = ToB.build(S, Loc);
8883  To = new (S.Context) UnaryOperator(To, UO_AddrOf,
8884                       S.Context.getPointerType(To->getType()),
8885                       VK_RValue, OK_Ordinary, Loc);
8886
8887  const Type *E = T->getBaseElementTypeUnsafe();
8888  bool NeedsCollectableMemCpy =
8889    E->isRecordType() && E->getAs<RecordType>()->getDecl()->hasObjectMember();
8890
8891  // Create a reference to the __builtin_objc_memmove_collectable function
8892  StringRef MemCpyName = NeedsCollectableMemCpy ?
8893    "__builtin_objc_memmove_collectable" :
8894    "__builtin_memcpy";
8895  LookupResult R(S, &S.Context.Idents.get(MemCpyName), Loc,
8896                 Sema::LookupOrdinaryName);
8897  S.LookupName(R, S.TUScope, true);
8898
8899  FunctionDecl *MemCpy = R.getAsSingle<FunctionDecl>();
8900  if (!MemCpy)
8901    // Something went horribly wrong earlier, and we will have complained
8902    // about it.
8903    return StmtError();
8904
8905  ExprResult MemCpyRef = S.BuildDeclRefExpr(MemCpy, S.Context.BuiltinFnTy,
8906                                            VK_RValue, Loc, 0);
8907  assert(MemCpyRef.isUsable() && "Builtin reference cannot fail");
8908
8909  Expr *CallArgs[] = {
8910    To, From, IntegerLiteral::Create(S.Context, Size, SizeType, Loc)
8911  };
8912  ExprResult Call = S.ActOnCallExpr(/*Scope=*/0, MemCpyRef.take(),
8913                                    Loc, CallArgs, Loc);
8914
8915  assert(!Call.isInvalid() && "Call to __builtin_memcpy cannot fail!");
8916  return S.Owned(Call.takeAs<Stmt>());
8917}
8918
8919/// \brief Builds a statement that copies/moves the given entity from \p From to
8920/// \c To.
8921///
8922/// This routine is used to copy/move the members of a class with an
8923/// implicitly-declared copy/move assignment operator. When the entities being
8924/// copied are arrays, this routine builds for loops to copy them.
8925///
8926/// \param S The Sema object used for type-checking.
8927///
8928/// \param Loc The location where the implicit copy/move is being generated.
8929///
8930/// \param T The type of the expressions being copied/moved. Both expressions
8931/// must have this type.
8932///
8933/// \param To The expression we are copying/moving to.
8934///
8935/// \param From The expression we are copying/moving from.
8936///
8937/// \param CopyingBaseSubobject Whether we're copying/moving a base subobject.
8938/// Otherwise, it's a non-static member subobject.
8939///
8940/// \param Copying Whether we're copying or moving.
8941///
8942/// \param Depth Internal parameter recording the depth of the recursion.
8943///
8944/// \returns A statement or a loop that copies the expressions, or StmtResult(0)
8945/// if a memcpy should be used instead.
8946static StmtResult
8947buildSingleCopyAssignRecursively(Sema &S, SourceLocation Loc, QualType T,
8948                                 const ExprBuilder &To, const ExprBuilder &From,
8949                                 bool CopyingBaseSubobject, bool Copying,
8950                                 unsigned Depth = 0) {
8951  // C++11 [class.copy]p28:
8952  //   Each subobject is assigned in the manner appropriate to its type:
8953  //
8954  //     - if the subobject is of class type, as if by a call to operator= with
8955  //       the subobject as the object expression and the corresponding
8956  //       subobject of x as a single function argument (as if by explicit
8957  //       qualification; that is, ignoring any possible virtual overriding
8958  //       functions in more derived classes);
8959  //
8960  // C++03 [class.copy]p13:
8961  //     - if the subobject is of class type, the copy assignment operator for
8962  //       the class is used (as if by explicit qualification; that is,
8963  //       ignoring any possible virtual overriding functions in more derived
8964  //       classes);
8965  if (const RecordType *RecordTy = T->getAs<RecordType>()) {
8966    CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
8967
8968    // Look for operator=.
8969    DeclarationName Name
8970      = S.Context.DeclarationNames.getCXXOperatorName(OO_Equal);
8971    LookupResult OpLookup(S, Name, Loc, Sema::LookupOrdinaryName);
8972    S.LookupQualifiedName(OpLookup, ClassDecl, false);
8973
8974    // Prior to C++11, filter out any result that isn't a copy/move-assignment
8975    // operator.
8976    if (!S.getLangOpts().CPlusPlus11) {
8977      LookupResult::Filter F = OpLookup.makeFilter();
8978      while (F.hasNext()) {
8979        NamedDecl *D = F.next();
8980        if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
8981          if (Method->isCopyAssignmentOperator() ||
8982              (!Copying && Method->isMoveAssignmentOperator()))
8983            continue;
8984
8985        F.erase();
8986      }
8987      F.done();
8988    }
8989
8990    // Suppress the protected check (C++ [class.protected]) for each of the
8991    // assignment operators we found. This strange dance is required when
8992    // we're assigning via a base classes's copy-assignment operator. To
8993    // ensure that we're getting the right base class subobject (without
8994    // ambiguities), we need to cast "this" to that subobject type; to
8995    // ensure that we don't go through the virtual call mechanism, we need
8996    // to qualify the operator= name with the base class (see below). However,
8997    // this means that if the base class has a protected copy assignment
8998    // operator, the protected member access check will fail. So, we
8999    // rewrite "protected" access to "public" access in this case, since we
9000    // know by construction that we're calling from a derived class.
9001    if (CopyingBaseSubobject) {
9002      for (LookupResult::iterator L = OpLookup.begin(), LEnd = OpLookup.end();
9003           L != LEnd; ++L) {
9004        if (L.getAccess() == AS_protected)
9005          L.setAccess(AS_public);
9006      }
9007    }
9008
9009    // Create the nested-name-specifier that will be used to qualify the
9010    // reference to operator=; this is required to suppress the virtual
9011    // call mechanism.
9012    CXXScopeSpec SS;
9013    const Type *CanonicalT = S.Context.getCanonicalType(T.getTypePtr());
9014    SS.MakeTrivial(S.Context,
9015                   NestedNameSpecifier::Create(S.Context, 0, false,
9016                                               CanonicalT),
9017                   Loc);
9018
9019    // Create the reference to operator=.
9020    ExprResult OpEqualRef
9021      = S.BuildMemberReferenceExpr(To.build(S, Loc), T, Loc, /*isArrow=*/false,
9022                                   SS, /*TemplateKWLoc=*/SourceLocation(),
9023                                   /*FirstQualifierInScope=*/0,
9024                                   OpLookup,
9025                                   /*TemplateArgs=*/0,
9026                                   /*SuppressQualifierCheck=*/true);
9027    if (OpEqualRef.isInvalid())
9028      return StmtError();
9029
9030    // Build the call to the assignment operator.
9031
9032    Expr *FromInst = From.build(S, Loc);
9033    ExprResult Call = S.BuildCallToMemberFunction(/*Scope=*/0,
9034                                                  OpEqualRef.takeAs<Expr>(),
9035                                                  Loc, FromInst, Loc);
9036    if (Call.isInvalid())
9037      return StmtError();
9038
9039    // If we built a call to a trivial 'operator=' while copying an array,
9040    // bail out. We'll replace the whole shebang with a memcpy.
9041    CXXMemberCallExpr *CE = dyn_cast<CXXMemberCallExpr>(Call.get());
9042    if (CE && CE->getMethodDecl()->isTrivial() && Depth)
9043      return StmtResult((Stmt*)0);
9044
9045    // Convert to an expression-statement, and clean up any produced
9046    // temporaries.
9047    return S.ActOnExprStmt(Call);
9048  }
9049
9050  //     - if the subobject is of scalar type, the built-in assignment
9051  //       operator is used.
9052  const ConstantArrayType *ArrayTy = S.Context.getAsConstantArrayType(T);
9053  if (!ArrayTy) {
9054    ExprResult Assignment = S.CreateBuiltinBinOp(
9055        Loc, BO_Assign, To.build(S, Loc), From.build(S, Loc));
9056    if (Assignment.isInvalid())
9057      return StmtError();
9058    return S.ActOnExprStmt(Assignment);
9059  }
9060
9061  //     - if the subobject is an array, each element is assigned, in the
9062  //       manner appropriate to the element type;
9063
9064  // Construct a loop over the array bounds, e.g.,
9065  //
9066  //   for (__SIZE_TYPE__ i0 = 0; i0 != array-size; ++i0)
9067  //
9068  // that will copy each of the array elements.
9069  QualType SizeType = S.Context.getSizeType();
9070
9071  // Create the iteration variable.
9072  IdentifierInfo *IterationVarName = 0;
9073  {
9074    SmallString<8> Str;
9075    llvm::raw_svector_ostream OS(Str);
9076    OS << "__i" << Depth;
9077    IterationVarName = &S.Context.Idents.get(OS.str());
9078  }
9079  VarDecl *IterationVar = VarDecl::Create(S.Context, S.CurContext, Loc, Loc,
9080                                          IterationVarName, SizeType,
9081                            S.Context.getTrivialTypeSourceInfo(SizeType, Loc),
9082                                          SC_None);
9083
9084  // Initialize the iteration variable to zero.
9085  llvm::APInt Zero(S.Context.getTypeSize(SizeType), 0);
9086  IterationVar->setInit(IntegerLiteral::Create(S.Context, Zero, SizeType, Loc));
9087
9088  // Creates a reference to the iteration variable.
9089  RefBuilder IterationVarRef(IterationVar, SizeType);
9090  LvalueConvBuilder IterationVarRefRVal(IterationVarRef);
9091
9092  // Create the DeclStmt that holds the iteration variable.
9093  Stmt *InitStmt = new (S.Context) DeclStmt(DeclGroupRef(IterationVar),Loc,Loc);
9094
9095  // Subscript the "from" and "to" expressions with the iteration variable.
9096  SubscriptBuilder FromIndexCopy(From, IterationVarRefRVal);
9097  MoveCastBuilder FromIndexMove(FromIndexCopy);
9098  const ExprBuilder *FromIndex;
9099  if (Copying)
9100    FromIndex = &FromIndexCopy;
9101  else
9102    FromIndex = &FromIndexMove;
9103
9104  SubscriptBuilder ToIndex(To, IterationVarRefRVal);
9105
9106  // Build the copy/move for an individual element of the array.
9107  StmtResult Copy =
9108    buildSingleCopyAssignRecursively(S, Loc, ArrayTy->getElementType(),
9109                                     ToIndex, *FromIndex, CopyingBaseSubobject,
9110                                     Copying, Depth + 1);
9111  // Bail out if copying fails or if we determined that we should use memcpy.
9112  if (Copy.isInvalid() || !Copy.get())
9113    return Copy;
9114
9115  // Create the comparison against the array bound.
9116  llvm::APInt Upper
9117    = ArrayTy->getSize().zextOrTrunc(S.Context.getTypeSize(SizeType));
9118  Expr *Comparison
9119    = new (S.Context) BinaryOperator(IterationVarRefRVal.build(S, Loc),
9120                     IntegerLiteral::Create(S.Context, Upper, SizeType, Loc),
9121                                     BO_NE, S.Context.BoolTy,
9122                                     VK_RValue, OK_Ordinary, Loc, false);
9123
9124  // Create the pre-increment of the iteration variable.
9125  Expr *Increment
9126    = new (S.Context) UnaryOperator(IterationVarRef.build(S, Loc), UO_PreInc,
9127                                    SizeType, VK_LValue, OK_Ordinary, Loc);
9128
9129  // Construct the loop that copies all elements of this array.
9130  return S.ActOnForStmt(Loc, Loc, InitStmt,
9131                        S.MakeFullExpr(Comparison),
9132                        0, S.MakeFullDiscardedValueExpr(Increment),
9133                        Loc, Copy.take());
9134}
9135
9136static StmtResult
9137buildSingleCopyAssign(Sema &S, SourceLocation Loc, QualType T,
9138                      const ExprBuilder &To, const ExprBuilder &From,
9139                      bool CopyingBaseSubobject, bool Copying) {
9140  // Maybe we should use a memcpy?
9141  if (T->isArrayType() && !T.isConstQualified() && !T.isVolatileQualified() &&
9142      T.isTriviallyCopyableType(S.Context))
9143    return buildMemcpyForAssignmentOp(S, Loc, T, To, From);
9144
9145  StmtResult Result(buildSingleCopyAssignRecursively(S, Loc, T, To, From,
9146                                                     CopyingBaseSubobject,
9147                                                     Copying, 0));
9148
9149  // If we ended up picking a trivial assignment operator for an array of a
9150  // non-trivially-copyable class type, just emit a memcpy.
9151  if (!Result.isInvalid() && !Result.get())
9152    return buildMemcpyForAssignmentOp(S, Loc, T, To, From);
9153
9154  return Result;
9155}
9156
9157Sema::ImplicitExceptionSpecification
9158Sema::ComputeDefaultedCopyAssignmentExceptionSpec(CXXMethodDecl *MD) {
9159  CXXRecordDecl *ClassDecl = MD->getParent();
9160
9161  ImplicitExceptionSpecification ExceptSpec(*this);
9162  if (ClassDecl->isInvalidDecl())
9163    return ExceptSpec;
9164
9165  const FunctionProtoType *T = MD->getType()->castAs<FunctionProtoType>();
9166  assert(T->getNumArgs() == 1 && "not a copy assignment op");
9167  unsigned ArgQuals = T->getArgType(0).getNonReferenceType().getCVRQualifiers();
9168
9169  // C++ [except.spec]p14:
9170  //   An implicitly declared special member function (Clause 12) shall have an
9171  //   exception-specification. [...]
9172
9173  // It is unspecified whether or not an implicit copy assignment operator
9174  // attempts to deduplicate calls to assignment operators of virtual bases are
9175  // made. As such, this exception specification is effectively unspecified.
9176  // Based on a similar decision made for constness in C++0x, we're erring on
9177  // the side of assuming such calls to be made regardless of whether they
9178  // actually happen.
9179  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
9180                                       BaseEnd = ClassDecl->bases_end();
9181       Base != BaseEnd; ++Base) {
9182    if (Base->isVirtual())
9183      continue;
9184
9185    CXXRecordDecl *BaseClassDecl
9186      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
9187    if (CXXMethodDecl *CopyAssign = LookupCopyingAssignment(BaseClassDecl,
9188                                                            ArgQuals, false, 0))
9189      ExceptSpec.CalledDecl(Base->getLocStart(), CopyAssign);
9190  }
9191
9192  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
9193                                       BaseEnd = ClassDecl->vbases_end();
9194       Base != BaseEnd; ++Base) {
9195    CXXRecordDecl *BaseClassDecl
9196      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
9197    if (CXXMethodDecl *CopyAssign = LookupCopyingAssignment(BaseClassDecl,
9198                                                            ArgQuals, false, 0))
9199      ExceptSpec.CalledDecl(Base->getLocStart(), CopyAssign);
9200  }
9201
9202  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
9203                                  FieldEnd = ClassDecl->field_end();
9204       Field != FieldEnd;
9205       ++Field) {
9206    QualType FieldType = Context.getBaseElementType(Field->getType());
9207    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
9208      if (CXXMethodDecl *CopyAssign =
9209          LookupCopyingAssignment(FieldClassDecl,
9210                                  ArgQuals | FieldType.getCVRQualifiers(),
9211                                  false, 0))
9212        ExceptSpec.CalledDecl(Field->getLocation(), CopyAssign);
9213    }
9214  }
9215
9216  return ExceptSpec;
9217}
9218
9219CXXMethodDecl *Sema::DeclareImplicitCopyAssignment(CXXRecordDecl *ClassDecl) {
9220  // Note: The following rules are largely analoguous to the copy
9221  // constructor rules. Note that virtual bases are not taken into account
9222  // for determining the argument type of the operator. Note also that
9223  // operators taking an object instead of a reference are allowed.
9224  assert(ClassDecl->needsImplicitCopyAssignment());
9225
9226  DeclaringSpecialMember DSM(*this, ClassDecl, CXXCopyAssignment);
9227  if (DSM.isAlreadyBeingDeclared())
9228    return 0;
9229
9230  QualType ArgType = Context.getTypeDeclType(ClassDecl);
9231  QualType RetType = Context.getLValueReferenceType(ArgType);
9232  bool Const = ClassDecl->implicitCopyAssignmentHasConstParam();
9233  if (Const)
9234    ArgType = ArgType.withConst();
9235  ArgType = Context.getLValueReferenceType(ArgType);
9236
9237  bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl,
9238                                                     CXXCopyAssignment,
9239                                                     Const);
9240
9241  //   An implicitly-declared copy assignment operator is an inline public
9242  //   member of its class.
9243  DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
9244  SourceLocation ClassLoc = ClassDecl->getLocation();
9245  DeclarationNameInfo NameInfo(Name, ClassLoc);
9246  CXXMethodDecl *CopyAssignment =
9247      CXXMethodDecl::Create(Context, ClassDecl, ClassLoc, NameInfo, QualType(),
9248                            /*TInfo=*/ 0, /*StorageClass=*/ SC_None,
9249                            /*isInline=*/ true, Constexpr, SourceLocation());
9250  CopyAssignment->setAccess(AS_public);
9251  CopyAssignment->setDefaulted();
9252  CopyAssignment->setImplicit();
9253
9254  // Build an exception specification pointing back at this member.
9255  FunctionProtoType::ExtProtoInfo EPI =
9256      getImplicitMethodEPI(*this, CopyAssignment);
9257  CopyAssignment->setType(Context.getFunctionType(RetType, ArgType, EPI));
9258
9259  // Add the parameter to the operator.
9260  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment,
9261                                               ClassLoc, ClassLoc, /*Id=*/0,
9262                                               ArgType, /*TInfo=*/0,
9263                                               SC_None, 0);
9264  CopyAssignment->setParams(FromParam);
9265
9266  AddOverriddenMethods(ClassDecl, CopyAssignment);
9267
9268  CopyAssignment->setTrivial(
9269    ClassDecl->needsOverloadResolutionForCopyAssignment()
9270      ? SpecialMemberIsTrivial(CopyAssignment, CXXCopyAssignment)
9271      : ClassDecl->hasTrivialCopyAssignment());
9272
9273  // C++11 [class.copy]p19:
9274  //   ....  If the class definition does not explicitly declare a copy
9275  //   assignment operator, there is no user-declared move constructor, and
9276  //   there is no user-declared move assignment operator, a copy assignment
9277  //   operator is implicitly declared as defaulted.
9278  if (ShouldDeleteSpecialMember(CopyAssignment, CXXCopyAssignment))
9279    SetDeclDeleted(CopyAssignment, ClassLoc);
9280
9281  // Note that we have added this copy-assignment operator.
9282  ++ASTContext::NumImplicitCopyAssignmentOperatorsDeclared;
9283
9284  if (Scope *S = getScopeForContext(ClassDecl))
9285    PushOnScopeChains(CopyAssignment, S, false);
9286  ClassDecl->addDecl(CopyAssignment);
9287
9288  return CopyAssignment;
9289}
9290
9291/// Diagnose an implicit copy operation for a class which is odr-used, but
9292/// which is deprecated because the class has a user-declared copy constructor,
9293/// copy assignment operator, or destructor.
9294static void diagnoseDeprecatedCopyOperation(Sema &S, CXXMethodDecl *CopyOp,
9295                                            SourceLocation UseLoc) {
9296  assert(CopyOp->isImplicit());
9297
9298  CXXRecordDecl *RD = CopyOp->getParent();
9299  CXXMethodDecl *UserDeclaredOperation = 0;
9300
9301  // In Microsoft mode, assignment operations don't affect constructors and
9302  // vice versa.
9303  if (RD->hasUserDeclaredDestructor()) {
9304    UserDeclaredOperation = RD->getDestructor();
9305  } else if (!isa<CXXConstructorDecl>(CopyOp) &&
9306             RD->hasUserDeclaredCopyConstructor() &&
9307             !S.getLangOpts().MicrosoftMode) {
9308    // Find any user-declared copy constructor.
9309    for (CXXRecordDecl::ctor_iterator I = RD->ctor_begin(),
9310                                      E = RD->ctor_end(); I != E; ++I) {
9311      if (I->isCopyConstructor()) {
9312        UserDeclaredOperation = *I;
9313        break;
9314      }
9315    }
9316    assert(UserDeclaredOperation);
9317  } else if (isa<CXXConstructorDecl>(CopyOp) &&
9318             RD->hasUserDeclaredCopyAssignment() &&
9319             !S.getLangOpts().MicrosoftMode) {
9320    // Find any user-declared move assignment operator.
9321    for (CXXRecordDecl::method_iterator I = RD->method_begin(),
9322                                        E = RD->method_end(); I != E; ++I) {
9323      if (I->isCopyAssignmentOperator()) {
9324        UserDeclaredOperation = *I;
9325        break;
9326      }
9327    }
9328    assert(UserDeclaredOperation);
9329  }
9330
9331  if (UserDeclaredOperation) {
9332    S.Diag(UserDeclaredOperation->getLocation(),
9333         diag::warn_deprecated_copy_operation)
9334      << RD << /*copy assignment*/!isa<CXXConstructorDecl>(CopyOp)
9335      << /*destructor*/isa<CXXDestructorDecl>(UserDeclaredOperation);
9336    S.Diag(UseLoc, diag::note_member_synthesized_at)
9337      << (isa<CXXConstructorDecl>(CopyOp) ? Sema::CXXCopyConstructor
9338                                          : Sema::CXXCopyAssignment)
9339      << RD;
9340  }
9341}
9342
9343void Sema::DefineImplicitCopyAssignment(SourceLocation CurrentLocation,
9344                                        CXXMethodDecl *CopyAssignOperator) {
9345  assert((CopyAssignOperator->isDefaulted() &&
9346          CopyAssignOperator->isOverloadedOperator() &&
9347          CopyAssignOperator->getOverloadedOperator() == OO_Equal &&
9348          !CopyAssignOperator->doesThisDeclarationHaveABody() &&
9349          !CopyAssignOperator->isDeleted()) &&
9350         "DefineImplicitCopyAssignment called for wrong function");
9351
9352  CXXRecordDecl *ClassDecl = CopyAssignOperator->getParent();
9353
9354  if (ClassDecl->isInvalidDecl() || CopyAssignOperator->isInvalidDecl()) {
9355    CopyAssignOperator->setInvalidDecl();
9356    return;
9357  }
9358
9359  // C++11 [class.copy]p18:
9360  //   The [definition of an implicitly declared copy assignment operator] is
9361  //   deprecated if the class has a user-declared copy constructor or a
9362  //   user-declared destructor.
9363  if (getLangOpts().CPlusPlus11 && CopyAssignOperator->isImplicit())
9364    diagnoseDeprecatedCopyOperation(*this, CopyAssignOperator, CurrentLocation);
9365
9366  CopyAssignOperator->markUsed(Context);
9367
9368  SynthesizedFunctionScope Scope(*this, CopyAssignOperator);
9369  DiagnosticErrorTrap Trap(Diags);
9370
9371  // C++0x [class.copy]p30:
9372  //   The implicitly-defined or explicitly-defaulted copy assignment operator
9373  //   for a non-union class X performs memberwise copy assignment of its
9374  //   subobjects. The direct base classes of X are assigned first, in the
9375  //   order of their declaration in the base-specifier-list, and then the
9376  //   immediate non-static data members of X are assigned, in the order in
9377  //   which they were declared in the class definition.
9378
9379  // The statements that form the synthesized function body.
9380  SmallVector<Stmt*, 8> Statements;
9381
9382  // The parameter for the "other" object, which we are copying from.
9383  ParmVarDecl *Other = CopyAssignOperator->getParamDecl(0);
9384  Qualifiers OtherQuals = Other->getType().getQualifiers();
9385  QualType OtherRefType = Other->getType();
9386  if (const LValueReferenceType *OtherRef
9387                                = OtherRefType->getAs<LValueReferenceType>()) {
9388    OtherRefType = OtherRef->getPointeeType();
9389    OtherQuals = OtherRefType.getQualifiers();
9390  }
9391
9392  // Our location for everything implicitly-generated.
9393  SourceLocation Loc = CopyAssignOperator->getLocation();
9394
9395  // Builds a DeclRefExpr for the "other" object.
9396  RefBuilder OtherRef(Other, OtherRefType);
9397
9398  // Builds the "this" pointer.
9399  ThisBuilder This;
9400
9401  // Assign base classes.
9402  bool Invalid = false;
9403  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
9404       E = ClassDecl->bases_end(); Base != E; ++Base) {
9405    // Form the assignment:
9406    //   static_cast<Base*>(this)->Base::operator=(static_cast<Base&>(other));
9407    QualType BaseType = Base->getType().getUnqualifiedType();
9408    if (!BaseType->isRecordType()) {
9409      Invalid = true;
9410      continue;
9411    }
9412
9413    CXXCastPath BasePath;
9414    BasePath.push_back(Base);
9415
9416    // Construct the "from" expression, which is an implicit cast to the
9417    // appropriately-qualified base type.
9418    CastBuilder From(OtherRef, Context.getQualifiedType(BaseType, OtherQuals),
9419                     VK_LValue, BasePath);
9420
9421    // Dereference "this".
9422    DerefBuilder DerefThis(This);
9423    CastBuilder To(DerefThis,
9424                   Context.getCVRQualifiedType(
9425                       BaseType, CopyAssignOperator->getTypeQualifiers()),
9426                   VK_LValue, BasePath);
9427
9428    // Build the copy.
9429    StmtResult Copy = buildSingleCopyAssign(*this, Loc, BaseType,
9430                                            To, From,
9431                                            /*CopyingBaseSubobject=*/true,
9432                                            /*Copying=*/true);
9433    if (Copy.isInvalid()) {
9434      Diag(CurrentLocation, diag::note_member_synthesized_at)
9435        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
9436      CopyAssignOperator->setInvalidDecl();
9437      return;
9438    }
9439
9440    // Success! Record the copy.
9441    Statements.push_back(Copy.takeAs<Expr>());
9442  }
9443
9444  // Assign non-static members.
9445  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
9446                                  FieldEnd = ClassDecl->field_end();
9447       Field != FieldEnd; ++Field) {
9448    if (Field->isUnnamedBitfield())
9449      continue;
9450
9451    if (Field->isInvalidDecl()) {
9452      Invalid = true;
9453      continue;
9454    }
9455
9456    // Check for members of reference type; we can't copy those.
9457    if (Field->getType()->isReferenceType()) {
9458      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
9459        << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
9460      Diag(Field->getLocation(), diag::note_declared_at);
9461      Diag(CurrentLocation, diag::note_member_synthesized_at)
9462        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
9463      Invalid = true;
9464      continue;
9465    }
9466
9467    // Check for members of const-qualified, non-class type.
9468    QualType BaseType = Context.getBaseElementType(Field->getType());
9469    if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) {
9470      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
9471        << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
9472      Diag(Field->getLocation(), diag::note_declared_at);
9473      Diag(CurrentLocation, diag::note_member_synthesized_at)
9474        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
9475      Invalid = true;
9476      continue;
9477    }
9478
9479    // Suppress assigning zero-width bitfields.
9480    if (Field->isBitField() && Field->getBitWidthValue(Context) == 0)
9481      continue;
9482
9483    QualType FieldType = Field->getType().getNonReferenceType();
9484    if (FieldType->isIncompleteArrayType()) {
9485      assert(ClassDecl->hasFlexibleArrayMember() &&
9486             "Incomplete array type is not valid");
9487      continue;
9488    }
9489
9490    // Build references to the field in the object we're copying from and to.
9491    CXXScopeSpec SS; // Intentionally empty
9492    LookupResult MemberLookup(*this, Field->getDeclName(), Loc,
9493                              LookupMemberName);
9494    MemberLookup.addDecl(*Field);
9495    MemberLookup.resolveKind();
9496
9497    MemberBuilder From(OtherRef, OtherRefType, /*IsArrow=*/false, MemberLookup);
9498
9499    MemberBuilder To(This, getCurrentThisType(), /*IsArrow=*/true, MemberLookup);
9500
9501    // Build the copy of this field.
9502    StmtResult Copy = buildSingleCopyAssign(*this, Loc, FieldType,
9503                                            To, From,
9504                                            /*CopyingBaseSubobject=*/false,
9505                                            /*Copying=*/true);
9506    if (Copy.isInvalid()) {
9507      Diag(CurrentLocation, diag::note_member_synthesized_at)
9508        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
9509      CopyAssignOperator->setInvalidDecl();
9510      return;
9511    }
9512
9513    // Success! Record the copy.
9514    Statements.push_back(Copy.takeAs<Stmt>());
9515  }
9516
9517  if (!Invalid) {
9518    // Add a "return *this;"
9519    ExprResult ThisObj = CreateBuiltinUnaryOp(Loc, UO_Deref, This.build(*this, Loc));
9520
9521    StmtResult Return = ActOnReturnStmt(Loc, ThisObj.get());
9522    if (Return.isInvalid())
9523      Invalid = true;
9524    else {
9525      Statements.push_back(Return.takeAs<Stmt>());
9526
9527      if (Trap.hasErrorOccurred()) {
9528        Diag(CurrentLocation, diag::note_member_synthesized_at)
9529          << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
9530        Invalid = true;
9531      }
9532    }
9533  }
9534
9535  if (Invalid) {
9536    CopyAssignOperator->setInvalidDecl();
9537    return;
9538  }
9539
9540  StmtResult Body;
9541  {
9542    CompoundScopeRAII CompoundScope(*this);
9543    Body = ActOnCompoundStmt(Loc, Loc, Statements,
9544                             /*isStmtExpr=*/false);
9545    assert(!Body.isInvalid() && "Compound statement creation cannot fail");
9546  }
9547  CopyAssignOperator->setBody(Body.takeAs<Stmt>());
9548
9549  if (ASTMutationListener *L = getASTMutationListener()) {
9550    L->CompletedImplicitDefinition(CopyAssignOperator);
9551  }
9552}
9553
9554Sema::ImplicitExceptionSpecification
9555Sema::ComputeDefaultedMoveAssignmentExceptionSpec(CXXMethodDecl *MD) {
9556  CXXRecordDecl *ClassDecl = MD->getParent();
9557
9558  ImplicitExceptionSpecification ExceptSpec(*this);
9559  if (ClassDecl->isInvalidDecl())
9560    return ExceptSpec;
9561
9562  // C++0x [except.spec]p14:
9563  //   An implicitly declared special member function (Clause 12) shall have an
9564  //   exception-specification. [...]
9565
9566  // It is unspecified whether or not an implicit move assignment operator
9567  // attempts to deduplicate calls to assignment operators of virtual bases are
9568  // made. As such, this exception specification is effectively unspecified.
9569  // Based on a similar decision made for constness in C++0x, we're erring on
9570  // the side of assuming such calls to be made regardless of whether they
9571  // actually happen.
9572  // Note that a move constructor is not implicitly declared when there are
9573  // virtual bases, but it can still be user-declared and explicitly defaulted.
9574  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
9575                                       BaseEnd = ClassDecl->bases_end();
9576       Base != BaseEnd; ++Base) {
9577    if (Base->isVirtual())
9578      continue;
9579
9580    CXXRecordDecl *BaseClassDecl
9581      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
9582    if (CXXMethodDecl *MoveAssign = LookupMovingAssignment(BaseClassDecl,
9583                                                           0, false, 0))
9584      ExceptSpec.CalledDecl(Base->getLocStart(), MoveAssign);
9585  }
9586
9587  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
9588                                       BaseEnd = ClassDecl->vbases_end();
9589       Base != BaseEnd; ++Base) {
9590    CXXRecordDecl *BaseClassDecl
9591      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
9592    if (CXXMethodDecl *MoveAssign = LookupMovingAssignment(BaseClassDecl,
9593                                                           0, false, 0))
9594      ExceptSpec.CalledDecl(Base->getLocStart(), MoveAssign);
9595  }
9596
9597  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
9598                                  FieldEnd = ClassDecl->field_end();
9599       Field != FieldEnd;
9600       ++Field) {
9601    QualType FieldType = Context.getBaseElementType(Field->getType());
9602    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
9603      if (CXXMethodDecl *MoveAssign =
9604              LookupMovingAssignment(FieldClassDecl,
9605                                     FieldType.getCVRQualifiers(),
9606                                     false, 0))
9607        ExceptSpec.CalledDecl(Field->getLocation(), MoveAssign);
9608    }
9609  }
9610
9611  return ExceptSpec;
9612}
9613
9614/// Determine whether the class type has any direct or indirect virtual base
9615/// classes which have a non-trivial move assignment operator.
9616static bool
9617hasVirtualBaseWithNonTrivialMoveAssignment(Sema &S, CXXRecordDecl *ClassDecl) {
9618  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
9619                                          BaseEnd = ClassDecl->vbases_end();
9620       Base != BaseEnd; ++Base) {
9621    CXXRecordDecl *BaseClass =
9622        cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
9623
9624    // Try to declare the move assignment. If it would be deleted, then the
9625    // class does not have a non-trivial move assignment.
9626    if (BaseClass->needsImplicitMoveAssignment())
9627      S.DeclareImplicitMoveAssignment(BaseClass);
9628
9629    if (BaseClass->hasNonTrivialMoveAssignment())
9630      return true;
9631  }
9632
9633  return false;
9634}
9635
9636/// Determine whether the given type either has a move constructor or is
9637/// trivially copyable.
9638static bool
9639hasMoveOrIsTriviallyCopyable(Sema &S, QualType Type, bool IsConstructor) {
9640  Type = S.Context.getBaseElementType(Type);
9641
9642  // FIXME: Technically, non-trivially-copyable non-class types, such as
9643  // reference types, are supposed to return false here, but that appears
9644  // to be a standard defect.
9645  CXXRecordDecl *ClassDecl = Type->getAsCXXRecordDecl();
9646  if (!ClassDecl || !ClassDecl->getDefinition() || ClassDecl->isInvalidDecl())
9647    return true;
9648
9649  if (Type.isTriviallyCopyableType(S.Context))
9650    return true;
9651
9652  if (IsConstructor) {
9653    // FIXME: Need this because otherwise hasMoveConstructor isn't guaranteed to
9654    // give the right answer.
9655    if (ClassDecl->needsImplicitMoveConstructor())
9656      S.DeclareImplicitMoveConstructor(ClassDecl);
9657    return ClassDecl->hasMoveConstructor();
9658  }
9659
9660  // FIXME: Need this because otherwise hasMoveAssignment isn't guaranteed to
9661  // give the right answer.
9662  if (ClassDecl->needsImplicitMoveAssignment())
9663    S.DeclareImplicitMoveAssignment(ClassDecl);
9664  return ClassDecl->hasMoveAssignment();
9665}
9666
9667/// Determine whether all non-static data members and direct or virtual bases
9668/// of class \p ClassDecl have either a move operation, or are trivially
9669/// copyable.
9670static bool subobjectsHaveMoveOrTrivialCopy(Sema &S, CXXRecordDecl *ClassDecl,
9671                                            bool IsConstructor) {
9672  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
9673                                          BaseEnd = ClassDecl->bases_end();
9674       Base != BaseEnd; ++Base) {
9675    if (Base->isVirtual())
9676      continue;
9677
9678    if (!hasMoveOrIsTriviallyCopyable(S, Base->getType(), IsConstructor))
9679      return false;
9680  }
9681
9682  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
9683                                          BaseEnd = ClassDecl->vbases_end();
9684       Base != BaseEnd; ++Base) {
9685    if (!hasMoveOrIsTriviallyCopyable(S, Base->getType(), IsConstructor))
9686      return false;
9687  }
9688
9689  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
9690                                     FieldEnd = ClassDecl->field_end();
9691       Field != FieldEnd; ++Field) {
9692    if (!hasMoveOrIsTriviallyCopyable(S, Field->getType(), IsConstructor))
9693      return false;
9694  }
9695
9696  return true;
9697}
9698
9699CXXMethodDecl *Sema::DeclareImplicitMoveAssignment(CXXRecordDecl *ClassDecl) {
9700  // C++11 [class.copy]p20:
9701  //   If the definition of a class X does not explicitly declare a move
9702  //   assignment operator, one will be implicitly declared as defaulted
9703  //   if and only if:
9704  //
9705  //   - [first 4 bullets]
9706  assert(ClassDecl->needsImplicitMoveAssignment());
9707
9708  DeclaringSpecialMember DSM(*this, ClassDecl, CXXMoveAssignment);
9709  if (DSM.isAlreadyBeingDeclared())
9710    return 0;
9711
9712  // [Checked after we build the declaration]
9713  //   - the move assignment operator would not be implicitly defined as
9714  //     deleted,
9715
9716  // [DR1402]:
9717  //   - X has no direct or indirect virtual base class with a non-trivial
9718  //     move assignment operator, and
9719  //   - each of X's non-static data members and direct or virtual base classes
9720  //     has a type that either has a move assignment operator or is trivially
9721  //     copyable.
9722  if (hasVirtualBaseWithNonTrivialMoveAssignment(*this, ClassDecl) ||
9723      !subobjectsHaveMoveOrTrivialCopy(*this, ClassDecl,/*Constructor*/false)) {
9724    ClassDecl->setFailedImplicitMoveAssignment();
9725    return 0;
9726  }
9727
9728  // Note: The following rules are largely analoguous to the move
9729  // constructor rules.
9730
9731  QualType ArgType = Context.getTypeDeclType(ClassDecl);
9732  QualType RetType = Context.getLValueReferenceType(ArgType);
9733  ArgType = Context.getRValueReferenceType(ArgType);
9734
9735  bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl,
9736                                                     CXXMoveAssignment,
9737                                                     false);
9738
9739  //   An implicitly-declared move assignment operator is an inline public
9740  //   member of its class.
9741  DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
9742  SourceLocation ClassLoc = ClassDecl->getLocation();
9743  DeclarationNameInfo NameInfo(Name, ClassLoc);
9744  CXXMethodDecl *MoveAssignment =
9745      CXXMethodDecl::Create(Context, ClassDecl, ClassLoc, NameInfo, QualType(),
9746                            /*TInfo=*/0, /*StorageClass=*/SC_None,
9747                            /*isInline=*/true, Constexpr, SourceLocation());
9748  MoveAssignment->setAccess(AS_public);
9749  MoveAssignment->setDefaulted();
9750  MoveAssignment->setImplicit();
9751
9752  // Build an exception specification pointing back at this member.
9753  FunctionProtoType::ExtProtoInfo EPI =
9754      getImplicitMethodEPI(*this, MoveAssignment);
9755  MoveAssignment->setType(Context.getFunctionType(RetType, ArgType, EPI));
9756
9757  // Add the parameter to the operator.
9758  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, MoveAssignment,
9759                                               ClassLoc, ClassLoc, /*Id=*/0,
9760                                               ArgType, /*TInfo=*/0,
9761                                               SC_None, 0);
9762  MoveAssignment->setParams(FromParam);
9763
9764  AddOverriddenMethods(ClassDecl, MoveAssignment);
9765
9766  MoveAssignment->setTrivial(
9767    ClassDecl->needsOverloadResolutionForMoveAssignment()
9768      ? SpecialMemberIsTrivial(MoveAssignment, CXXMoveAssignment)
9769      : ClassDecl->hasTrivialMoveAssignment());
9770
9771  // C++0x [class.copy]p9:
9772  //   If the definition of a class X does not explicitly declare a move
9773  //   assignment operator, one will be implicitly declared as defaulted if and
9774  //   only if:
9775  //   [...]
9776  //   - the move assignment operator would not be implicitly defined as
9777  //     deleted.
9778  if (ShouldDeleteSpecialMember(MoveAssignment, CXXMoveAssignment)) {
9779    // Cache this result so that we don't try to generate this over and over
9780    // on every lookup, leaking memory and wasting time.
9781    ClassDecl->setFailedImplicitMoveAssignment();
9782    return 0;
9783  }
9784
9785  // Note that we have added this copy-assignment operator.
9786  ++ASTContext::NumImplicitMoveAssignmentOperatorsDeclared;
9787
9788  if (Scope *S = getScopeForContext(ClassDecl))
9789    PushOnScopeChains(MoveAssignment, S, false);
9790  ClassDecl->addDecl(MoveAssignment);
9791
9792  return MoveAssignment;
9793}
9794
9795void Sema::DefineImplicitMoveAssignment(SourceLocation CurrentLocation,
9796                                        CXXMethodDecl *MoveAssignOperator) {
9797  assert((MoveAssignOperator->isDefaulted() &&
9798          MoveAssignOperator->isOverloadedOperator() &&
9799          MoveAssignOperator->getOverloadedOperator() == OO_Equal &&
9800          !MoveAssignOperator->doesThisDeclarationHaveABody() &&
9801          !MoveAssignOperator->isDeleted()) &&
9802         "DefineImplicitMoveAssignment called for wrong function");
9803
9804  CXXRecordDecl *ClassDecl = MoveAssignOperator->getParent();
9805
9806  if (ClassDecl->isInvalidDecl() || MoveAssignOperator->isInvalidDecl()) {
9807    MoveAssignOperator->setInvalidDecl();
9808    return;
9809  }
9810
9811  MoveAssignOperator->markUsed(Context);
9812
9813  SynthesizedFunctionScope Scope(*this, MoveAssignOperator);
9814  DiagnosticErrorTrap Trap(Diags);
9815
9816  // C++0x [class.copy]p28:
9817  //   The implicitly-defined or move assignment operator for a non-union class
9818  //   X performs memberwise move assignment of its subobjects. The direct base
9819  //   classes of X are assigned first, in the order of their declaration in the
9820  //   base-specifier-list, and then the immediate non-static data members of X
9821  //   are assigned, in the order in which they were declared in the class
9822  //   definition.
9823
9824  // The statements that form the synthesized function body.
9825  SmallVector<Stmt*, 8> Statements;
9826
9827  // The parameter for the "other" object, which we are move from.
9828  ParmVarDecl *Other = MoveAssignOperator->getParamDecl(0);
9829  QualType OtherRefType = Other->getType()->
9830      getAs<RValueReferenceType>()->getPointeeType();
9831  assert(!OtherRefType.getQualifiers() &&
9832         "Bad argument type of defaulted move assignment");
9833
9834  // Our location for everything implicitly-generated.
9835  SourceLocation Loc = MoveAssignOperator->getLocation();
9836
9837  // Builds a reference to the "other" object.
9838  RefBuilder OtherRef(Other, OtherRefType);
9839  // Cast to rvalue.
9840  MoveCastBuilder MoveOther(OtherRef);
9841
9842  // Builds the "this" pointer.
9843  ThisBuilder This;
9844
9845  // Assign base classes.
9846  bool Invalid = false;
9847  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
9848       E = ClassDecl->bases_end(); Base != E; ++Base) {
9849    // Form the assignment:
9850    //   static_cast<Base*>(this)->Base::operator=(static_cast<Base&&>(other));
9851    QualType BaseType = Base->getType().getUnqualifiedType();
9852    if (!BaseType->isRecordType()) {
9853      Invalid = true;
9854      continue;
9855    }
9856
9857    CXXCastPath BasePath;
9858    BasePath.push_back(Base);
9859
9860    // Construct the "from" expression, which is an implicit cast to the
9861    // appropriately-qualified base type.
9862    CastBuilder From(OtherRef, BaseType, VK_XValue, BasePath);
9863
9864    // Dereference "this".
9865    DerefBuilder DerefThis(This);
9866
9867    // Implicitly cast "this" to the appropriately-qualified base type.
9868    CastBuilder To(DerefThis,
9869                   Context.getCVRQualifiedType(
9870                       BaseType, MoveAssignOperator->getTypeQualifiers()),
9871                   VK_LValue, BasePath);
9872
9873    // Build the move.
9874    StmtResult Move = buildSingleCopyAssign(*this, Loc, BaseType,
9875                                            To, From,
9876                                            /*CopyingBaseSubobject=*/true,
9877                                            /*Copying=*/false);
9878    if (Move.isInvalid()) {
9879      Diag(CurrentLocation, diag::note_member_synthesized_at)
9880        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
9881      MoveAssignOperator->setInvalidDecl();
9882      return;
9883    }
9884
9885    // Success! Record the move.
9886    Statements.push_back(Move.takeAs<Expr>());
9887  }
9888
9889  // Assign non-static members.
9890  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
9891                                  FieldEnd = ClassDecl->field_end();
9892       Field != FieldEnd; ++Field) {
9893    if (Field->isUnnamedBitfield())
9894      continue;
9895
9896    if (Field->isInvalidDecl()) {
9897      Invalid = true;
9898      continue;
9899    }
9900
9901    // Check for members of reference type; we can't move those.
9902    if (Field->getType()->isReferenceType()) {
9903      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
9904        << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
9905      Diag(Field->getLocation(), diag::note_declared_at);
9906      Diag(CurrentLocation, diag::note_member_synthesized_at)
9907        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
9908      Invalid = true;
9909      continue;
9910    }
9911
9912    // Check for members of const-qualified, non-class type.
9913    QualType BaseType = Context.getBaseElementType(Field->getType());
9914    if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) {
9915      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
9916        << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
9917      Diag(Field->getLocation(), diag::note_declared_at);
9918      Diag(CurrentLocation, diag::note_member_synthesized_at)
9919        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
9920      Invalid = true;
9921      continue;
9922    }
9923
9924    // Suppress assigning zero-width bitfields.
9925    if (Field->isBitField() && Field->getBitWidthValue(Context) == 0)
9926      continue;
9927
9928    QualType FieldType = Field->getType().getNonReferenceType();
9929    if (FieldType->isIncompleteArrayType()) {
9930      assert(ClassDecl->hasFlexibleArrayMember() &&
9931             "Incomplete array type is not valid");
9932      continue;
9933    }
9934
9935    // Build references to the field in the object we're copying from and to.
9936    LookupResult MemberLookup(*this, Field->getDeclName(), Loc,
9937                              LookupMemberName);
9938    MemberLookup.addDecl(*Field);
9939    MemberLookup.resolveKind();
9940    MemberBuilder From(MoveOther, OtherRefType,
9941                       /*IsArrow=*/false, MemberLookup);
9942    MemberBuilder To(This, getCurrentThisType(),
9943                     /*IsArrow=*/true, MemberLookup);
9944
9945    assert(!From.build(*this, Loc)->isLValue() && // could be xvalue or prvalue
9946        "Member reference with rvalue base must be rvalue except for reference "
9947        "members, which aren't allowed for move assignment.");
9948
9949    // Build the move of this field.
9950    StmtResult Move = buildSingleCopyAssign(*this, Loc, FieldType,
9951                                            To, From,
9952                                            /*CopyingBaseSubobject=*/false,
9953                                            /*Copying=*/false);
9954    if (Move.isInvalid()) {
9955      Diag(CurrentLocation, diag::note_member_synthesized_at)
9956        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
9957      MoveAssignOperator->setInvalidDecl();
9958      return;
9959    }
9960
9961    // Success! Record the copy.
9962    Statements.push_back(Move.takeAs<Stmt>());
9963  }
9964
9965  if (!Invalid) {
9966    // Add a "return *this;"
9967    ExprResult ThisObj = CreateBuiltinUnaryOp(Loc, UO_Deref, This.build(*this, Loc));
9968
9969    StmtResult Return = ActOnReturnStmt(Loc, ThisObj.get());
9970    if (Return.isInvalid())
9971      Invalid = true;
9972    else {
9973      Statements.push_back(Return.takeAs<Stmt>());
9974
9975      if (Trap.hasErrorOccurred()) {
9976        Diag(CurrentLocation, diag::note_member_synthesized_at)
9977          << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
9978        Invalid = true;
9979      }
9980    }
9981  }
9982
9983  if (Invalid) {
9984    MoveAssignOperator->setInvalidDecl();
9985    return;
9986  }
9987
9988  StmtResult Body;
9989  {
9990    CompoundScopeRAII CompoundScope(*this);
9991    Body = ActOnCompoundStmt(Loc, Loc, Statements,
9992                             /*isStmtExpr=*/false);
9993    assert(!Body.isInvalid() && "Compound statement creation cannot fail");
9994  }
9995  MoveAssignOperator->setBody(Body.takeAs<Stmt>());
9996
9997  if (ASTMutationListener *L = getASTMutationListener()) {
9998    L->CompletedImplicitDefinition(MoveAssignOperator);
9999  }
10000}
10001
10002Sema::ImplicitExceptionSpecification
10003Sema::ComputeDefaultedCopyCtorExceptionSpec(CXXMethodDecl *MD) {
10004  CXXRecordDecl *ClassDecl = MD->getParent();
10005
10006  ImplicitExceptionSpecification ExceptSpec(*this);
10007  if (ClassDecl->isInvalidDecl())
10008    return ExceptSpec;
10009
10010  const FunctionProtoType *T = MD->getType()->castAs<FunctionProtoType>();
10011  assert(T->getNumArgs() >= 1 && "not a copy ctor");
10012  unsigned Quals = T->getArgType(0).getNonReferenceType().getCVRQualifiers();
10013
10014  // C++ [except.spec]p14:
10015  //   An implicitly declared special member function (Clause 12) shall have an
10016  //   exception-specification. [...]
10017  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
10018                                       BaseEnd = ClassDecl->bases_end();
10019       Base != BaseEnd;
10020       ++Base) {
10021    // Virtual bases are handled below.
10022    if (Base->isVirtual())
10023      continue;
10024
10025    CXXRecordDecl *BaseClassDecl
10026      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
10027    if (CXXConstructorDecl *CopyConstructor =
10028          LookupCopyingConstructor(BaseClassDecl, Quals))
10029      ExceptSpec.CalledDecl(Base->getLocStart(), CopyConstructor);
10030  }
10031  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
10032                                       BaseEnd = ClassDecl->vbases_end();
10033       Base != BaseEnd;
10034       ++Base) {
10035    CXXRecordDecl *BaseClassDecl
10036      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
10037    if (CXXConstructorDecl *CopyConstructor =
10038          LookupCopyingConstructor(BaseClassDecl, Quals))
10039      ExceptSpec.CalledDecl(Base->getLocStart(), CopyConstructor);
10040  }
10041  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
10042                                  FieldEnd = ClassDecl->field_end();
10043       Field != FieldEnd;
10044       ++Field) {
10045    QualType FieldType = Context.getBaseElementType(Field->getType());
10046    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
10047      if (CXXConstructorDecl *CopyConstructor =
10048              LookupCopyingConstructor(FieldClassDecl,
10049                                       Quals | FieldType.getCVRQualifiers()))
10050      ExceptSpec.CalledDecl(Field->getLocation(), CopyConstructor);
10051    }
10052  }
10053
10054  return ExceptSpec;
10055}
10056
10057CXXConstructorDecl *Sema::DeclareImplicitCopyConstructor(
10058                                                    CXXRecordDecl *ClassDecl) {
10059  // C++ [class.copy]p4:
10060  //   If the class definition does not explicitly declare a copy
10061  //   constructor, one is declared implicitly.
10062  assert(ClassDecl->needsImplicitCopyConstructor());
10063
10064  DeclaringSpecialMember DSM(*this, ClassDecl, CXXCopyConstructor);
10065  if (DSM.isAlreadyBeingDeclared())
10066    return 0;
10067
10068  QualType ClassType = Context.getTypeDeclType(ClassDecl);
10069  QualType ArgType = ClassType;
10070  bool Const = ClassDecl->implicitCopyConstructorHasConstParam();
10071  if (Const)
10072    ArgType = ArgType.withConst();
10073  ArgType = Context.getLValueReferenceType(ArgType);
10074
10075  bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl,
10076                                                     CXXCopyConstructor,
10077                                                     Const);
10078
10079  DeclarationName Name
10080    = Context.DeclarationNames.getCXXConstructorName(
10081                                           Context.getCanonicalType(ClassType));
10082  SourceLocation ClassLoc = ClassDecl->getLocation();
10083  DeclarationNameInfo NameInfo(Name, ClassLoc);
10084
10085  //   An implicitly-declared copy constructor is an inline public
10086  //   member of its class.
10087  CXXConstructorDecl *CopyConstructor = CXXConstructorDecl::Create(
10088      Context, ClassDecl, ClassLoc, NameInfo, QualType(), /*TInfo=*/0,
10089      /*isExplicit=*/false, /*isInline=*/true, /*isImplicitlyDeclared=*/true,
10090      Constexpr);
10091  CopyConstructor->setAccess(AS_public);
10092  CopyConstructor->setDefaulted();
10093
10094  // Build an exception specification pointing back at this member.
10095  FunctionProtoType::ExtProtoInfo EPI =
10096      getImplicitMethodEPI(*this, CopyConstructor);
10097  CopyConstructor->setType(
10098      Context.getFunctionType(Context.VoidTy, ArgType, EPI));
10099
10100  // Add the parameter to the constructor.
10101  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor,
10102                                               ClassLoc, ClassLoc,
10103                                               /*IdentifierInfo=*/0,
10104                                               ArgType, /*TInfo=*/0,
10105                                               SC_None, 0);
10106  CopyConstructor->setParams(FromParam);
10107
10108  CopyConstructor->setTrivial(
10109    ClassDecl->needsOverloadResolutionForCopyConstructor()
10110      ? SpecialMemberIsTrivial(CopyConstructor, CXXCopyConstructor)
10111      : ClassDecl->hasTrivialCopyConstructor());
10112
10113  // C++11 [class.copy]p8:
10114  //   ... If the class definition does not explicitly declare a copy
10115  //   constructor, there is no user-declared move constructor, and there is no
10116  //   user-declared move assignment operator, a copy constructor is implicitly
10117  //   declared as defaulted.
10118  if (ShouldDeleteSpecialMember(CopyConstructor, CXXCopyConstructor))
10119    SetDeclDeleted(CopyConstructor, ClassLoc);
10120
10121  // Note that we have declared this constructor.
10122  ++ASTContext::NumImplicitCopyConstructorsDeclared;
10123
10124  if (Scope *S = getScopeForContext(ClassDecl))
10125    PushOnScopeChains(CopyConstructor, S, false);
10126  ClassDecl->addDecl(CopyConstructor);
10127
10128  return CopyConstructor;
10129}
10130
10131void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation,
10132                                   CXXConstructorDecl *CopyConstructor) {
10133  assert((CopyConstructor->isDefaulted() &&
10134          CopyConstructor->isCopyConstructor() &&
10135          !CopyConstructor->doesThisDeclarationHaveABody() &&
10136          !CopyConstructor->isDeleted()) &&
10137         "DefineImplicitCopyConstructor - call it for implicit copy ctor");
10138
10139  CXXRecordDecl *ClassDecl = CopyConstructor->getParent();
10140  assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor");
10141
10142  // C++11 [class.copy]p7:
10143  //   The [definition of an implicitly declared copy constructor] is
10144  //   deprecated if the class has a user-declared copy assignment operator
10145  //   or a user-declared destructor.
10146  if (getLangOpts().CPlusPlus11 && CopyConstructor->isImplicit())
10147    diagnoseDeprecatedCopyOperation(*this, CopyConstructor, CurrentLocation);
10148
10149  SynthesizedFunctionScope Scope(*this, CopyConstructor);
10150  DiagnosticErrorTrap Trap(Diags);
10151
10152  if (SetCtorInitializers(CopyConstructor, /*AnyErrors=*/false) ||
10153      Trap.hasErrorOccurred()) {
10154    Diag(CurrentLocation, diag::note_member_synthesized_at)
10155      << CXXCopyConstructor << Context.getTagDeclType(ClassDecl);
10156    CopyConstructor->setInvalidDecl();
10157  }  else {
10158    Sema::CompoundScopeRAII CompoundScope(*this);
10159    CopyConstructor->setBody(ActOnCompoundStmt(
10160        CopyConstructor->getLocation(), CopyConstructor->getLocation(), None,
10161        /*isStmtExpr=*/ false).takeAs<Stmt>());
10162  }
10163
10164  CopyConstructor->markUsed(Context);
10165  if (ASTMutationListener *L = getASTMutationListener()) {
10166    L->CompletedImplicitDefinition(CopyConstructor);
10167  }
10168}
10169
10170Sema::ImplicitExceptionSpecification
10171Sema::ComputeDefaultedMoveCtorExceptionSpec(CXXMethodDecl *MD) {
10172  CXXRecordDecl *ClassDecl = MD->getParent();
10173
10174  // C++ [except.spec]p14:
10175  //   An implicitly declared special member function (Clause 12) shall have an
10176  //   exception-specification. [...]
10177  ImplicitExceptionSpecification ExceptSpec(*this);
10178  if (ClassDecl->isInvalidDecl())
10179    return ExceptSpec;
10180
10181  // Direct base-class constructors.
10182  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
10183                                       BEnd = ClassDecl->bases_end();
10184       B != BEnd; ++B) {
10185    if (B->isVirtual()) // Handled below.
10186      continue;
10187
10188    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
10189      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
10190      CXXConstructorDecl *Constructor =
10191          LookupMovingConstructor(BaseClassDecl, 0);
10192      // If this is a deleted function, add it anyway. This might be conformant
10193      // with the standard. This might not. I'm not sure. It might not matter.
10194      if (Constructor)
10195        ExceptSpec.CalledDecl(B->getLocStart(), Constructor);
10196    }
10197  }
10198
10199  // Virtual base-class constructors.
10200  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
10201                                       BEnd = ClassDecl->vbases_end();
10202       B != BEnd; ++B) {
10203    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
10204      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
10205      CXXConstructorDecl *Constructor =
10206          LookupMovingConstructor(BaseClassDecl, 0);
10207      // If this is a deleted function, add it anyway. This might be conformant
10208      // with the standard. This might not. I'm not sure. It might not matter.
10209      if (Constructor)
10210        ExceptSpec.CalledDecl(B->getLocStart(), Constructor);
10211    }
10212  }
10213
10214  // Field constructors.
10215  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
10216                               FEnd = ClassDecl->field_end();
10217       F != FEnd; ++F) {
10218    QualType FieldType = Context.getBaseElementType(F->getType());
10219    if (CXXRecordDecl *FieldRecDecl = FieldType->getAsCXXRecordDecl()) {
10220      CXXConstructorDecl *Constructor =
10221          LookupMovingConstructor(FieldRecDecl, FieldType.getCVRQualifiers());
10222      // If this is a deleted function, add it anyway. This might be conformant
10223      // with the standard. This might not. I'm not sure. It might not matter.
10224      // In particular, the problem is that this function never gets called. It
10225      // might just be ill-formed because this function attempts to refer to
10226      // a deleted function here.
10227      if (Constructor)
10228        ExceptSpec.CalledDecl(F->getLocation(), Constructor);
10229    }
10230  }
10231
10232  return ExceptSpec;
10233}
10234
10235CXXConstructorDecl *Sema::DeclareImplicitMoveConstructor(
10236                                                    CXXRecordDecl *ClassDecl) {
10237  // C++11 [class.copy]p9:
10238  //   If the definition of a class X does not explicitly declare a move
10239  //   constructor, one will be implicitly declared as defaulted if and only if:
10240  //
10241  //   - [first 4 bullets]
10242  assert(ClassDecl->needsImplicitMoveConstructor());
10243
10244  DeclaringSpecialMember DSM(*this, ClassDecl, CXXMoveConstructor);
10245  if (DSM.isAlreadyBeingDeclared())
10246    return 0;
10247
10248  // [Checked after we build the declaration]
10249  //   - the move assignment operator would not be implicitly defined as
10250  //     deleted,
10251
10252  // [DR1402]:
10253  //   - each of X's non-static data members and direct or virtual base classes
10254  //     has a type that either has a move constructor or is trivially copyable.
10255  if (!subobjectsHaveMoveOrTrivialCopy(*this, ClassDecl, /*Constructor*/true)) {
10256    ClassDecl->setFailedImplicitMoveConstructor();
10257    return 0;
10258  }
10259
10260  QualType ClassType = Context.getTypeDeclType(ClassDecl);
10261  QualType ArgType = Context.getRValueReferenceType(ClassType);
10262
10263  bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl,
10264                                                     CXXMoveConstructor,
10265                                                     false);
10266
10267  DeclarationName Name
10268    = Context.DeclarationNames.getCXXConstructorName(
10269                                           Context.getCanonicalType(ClassType));
10270  SourceLocation ClassLoc = ClassDecl->getLocation();
10271  DeclarationNameInfo NameInfo(Name, ClassLoc);
10272
10273  // C++11 [class.copy]p11:
10274  //   An implicitly-declared copy/move constructor is an inline public
10275  //   member of its class.
10276  CXXConstructorDecl *MoveConstructor = CXXConstructorDecl::Create(
10277      Context, ClassDecl, ClassLoc, NameInfo, QualType(), /*TInfo=*/0,
10278      /*isExplicit=*/false, /*isInline=*/true, /*isImplicitlyDeclared=*/true,
10279      Constexpr);
10280  MoveConstructor->setAccess(AS_public);
10281  MoveConstructor->setDefaulted();
10282
10283  // Build an exception specification pointing back at this member.
10284  FunctionProtoType::ExtProtoInfo EPI =
10285      getImplicitMethodEPI(*this, MoveConstructor);
10286  MoveConstructor->setType(
10287      Context.getFunctionType(Context.VoidTy, ArgType, EPI));
10288
10289  // Add the parameter to the constructor.
10290  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, MoveConstructor,
10291                                               ClassLoc, ClassLoc,
10292                                               /*IdentifierInfo=*/0,
10293                                               ArgType, /*TInfo=*/0,
10294                                               SC_None, 0);
10295  MoveConstructor->setParams(FromParam);
10296
10297  MoveConstructor->setTrivial(
10298    ClassDecl->needsOverloadResolutionForMoveConstructor()
10299      ? SpecialMemberIsTrivial(MoveConstructor, CXXMoveConstructor)
10300      : ClassDecl->hasTrivialMoveConstructor());
10301
10302  // C++0x [class.copy]p9:
10303  //   If the definition of a class X does not explicitly declare a move
10304  //   constructor, one will be implicitly declared as defaulted if and only if:
10305  //   [...]
10306  //   - the move constructor would not be implicitly defined as deleted.
10307  if (ShouldDeleteSpecialMember(MoveConstructor, CXXMoveConstructor)) {
10308    // Cache this result so that we don't try to generate this over and over
10309    // on every lookup, leaking memory and wasting time.
10310    ClassDecl->setFailedImplicitMoveConstructor();
10311    return 0;
10312  }
10313
10314  // Note that we have declared this constructor.
10315  ++ASTContext::NumImplicitMoveConstructorsDeclared;
10316
10317  if (Scope *S = getScopeForContext(ClassDecl))
10318    PushOnScopeChains(MoveConstructor, S, false);
10319  ClassDecl->addDecl(MoveConstructor);
10320
10321  return MoveConstructor;
10322}
10323
10324void Sema::DefineImplicitMoveConstructor(SourceLocation CurrentLocation,
10325                                   CXXConstructorDecl *MoveConstructor) {
10326  assert((MoveConstructor->isDefaulted() &&
10327          MoveConstructor->isMoveConstructor() &&
10328          !MoveConstructor->doesThisDeclarationHaveABody() &&
10329          !MoveConstructor->isDeleted()) &&
10330         "DefineImplicitMoveConstructor - call it for implicit move ctor");
10331
10332  CXXRecordDecl *ClassDecl = MoveConstructor->getParent();
10333  assert(ClassDecl && "DefineImplicitMoveConstructor - invalid constructor");
10334
10335  SynthesizedFunctionScope Scope(*this, MoveConstructor);
10336  DiagnosticErrorTrap Trap(Diags);
10337
10338  if (SetCtorInitializers(MoveConstructor, /*AnyErrors=*/false) ||
10339      Trap.hasErrorOccurred()) {
10340    Diag(CurrentLocation, diag::note_member_synthesized_at)
10341      << CXXMoveConstructor << Context.getTagDeclType(ClassDecl);
10342    MoveConstructor->setInvalidDecl();
10343  }  else {
10344    Sema::CompoundScopeRAII CompoundScope(*this);
10345    MoveConstructor->setBody(ActOnCompoundStmt(
10346        MoveConstructor->getLocation(), MoveConstructor->getLocation(), None,
10347        /*isStmtExpr=*/ false).takeAs<Stmt>());
10348  }
10349
10350  MoveConstructor->markUsed(Context);
10351
10352  if (ASTMutationListener *L = getASTMutationListener()) {
10353    L->CompletedImplicitDefinition(MoveConstructor);
10354  }
10355}
10356
10357bool Sema::isImplicitlyDeleted(FunctionDecl *FD) {
10358  return FD->isDeleted() && FD->isDefaulted() && isa<CXXMethodDecl>(FD);
10359}
10360
10361void Sema::DefineImplicitLambdaToFunctionPointerConversion(
10362                            SourceLocation CurrentLocation,
10363                            CXXConversionDecl *Conv) {
10364  CXXRecordDecl *Lambda = Conv->getParent();
10365  CXXMethodDecl *CallOp = Lambda->getLambdaCallOperator();
10366  // If we are defining a specialization of a conversion to function-ptr
10367  // cache the deduced template arguments for this specialization
10368  // so that we can use them to retrieve the corresponding call-operator
10369  // and static-invoker.
10370  const TemplateArgumentList *DeducedTemplateArgs = 0;
10371
10372
10373  // Retrieve the corresponding call-operator specialization.
10374  if (Lambda->isGenericLambda()) {
10375    assert(Conv->isFunctionTemplateSpecialization());
10376    FunctionTemplateDecl *CallOpTemplate =
10377        CallOp->getDescribedFunctionTemplate();
10378    DeducedTemplateArgs = Conv->getTemplateSpecializationArgs();
10379    void *InsertPos = 0;
10380    FunctionDecl *CallOpSpec = CallOpTemplate->findSpecialization(
10381                                                DeducedTemplateArgs->data(),
10382                                                DeducedTemplateArgs->size(),
10383                                                InsertPos);
10384    assert(CallOpSpec &&
10385          "Conversion operator must have a corresponding call operator");
10386    CallOp = cast<CXXMethodDecl>(CallOpSpec);
10387  }
10388  // Mark the call operator referenced (and add to pending instantiations
10389  // if necessary).
10390  // For both the conversion and static-invoker template specializations
10391  // we construct their body's in this function, so no need to add them
10392  // to the PendingInstantiations.
10393  MarkFunctionReferenced(CurrentLocation, CallOp);
10394
10395  SynthesizedFunctionScope Scope(*this, Conv);
10396  DiagnosticErrorTrap Trap(Diags);
10397
10398  // Retreive the static invoker...
10399  CXXMethodDecl *Invoker = Lambda->getLambdaStaticInvoker();
10400  // ... and get the corresponding specialization for a generic lambda.
10401  if (Lambda->isGenericLambda()) {
10402    assert(DeducedTemplateArgs &&
10403      "Must have deduced template arguments from Conversion Operator");
10404    FunctionTemplateDecl *InvokeTemplate =
10405                          Invoker->getDescribedFunctionTemplate();
10406    void *InsertPos = 0;
10407    FunctionDecl *InvokeSpec = InvokeTemplate->findSpecialization(
10408                                                DeducedTemplateArgs->data(),
10409                                                DeducedTemplateArgs->size(),
10410                                                InsertPos);
10411    assert(InvokeSpec &&
10412      "Must have a corresponding static invoker specialization");
10413    Invoker = cast<CXXMethodDecl>(InvokeSpec);
10414  }
10415  // Construct the body of the conversion function { return __invoke; }.
10416  Expr *FunctionRef = BuildDeclRefExpr(Invoker, Invoker->getType(),
10417                                        VK_LValue, Conv->getLocation()).take();
10418   assert(FunctionRef && "Can't refer to __invoke function?");
10419   Stmt *Return = ActOnReturnStmt(Conv->getLocation(), FunctionRef).take();
10420   Conv->setBody(new (Context) CompoundStmt(Context, Return,
10421                                            Conv->getLocation(),
10422                                            Conv->getLocation()));
10423
10424  Conv->markUsed(Context);
10425  Conv->setReferenced();
10426
10427  // Fill in the __invoke function with a dummy implementation. IR generation
10428  // will fill in the actual details.
10429  Invoker->markUsed(Context);
10430  Invoker->setReferenced();
10431  Invoker->setBody(new (Context) CompoundStmt(Conv->getLocation()));
10432
10433  if (ASTMutationListener *L = getASTMutationListener()) {
10434    L->CompletedImplicitDefinition(Conv);
10435    L->CompletedImplicitDefinition(Invoker);
10436   }
10437}
10438
10439
10440
10441void Sema::DefineImplicitLambdaToBlockPointerConversion(
10442       SourceLocation CurrentLocation,
10443       CXXConversionDecl *Conv)
10444{
10445  assert(!Conv->getParent()->isGenericLambda());
10446
10447  Conv->markUsed(Context);
10448
10449  SynthesizedFunctionScope Scope(*this, Conv);
10450  DiagnosticErrorTrap Trap(Diags);
10451
10452  // Copy-initialize the lambda object as needed to capture it.
10453  Expr *This = ActOnCXXThis(CurrentLocation).take();
10454  Expr *DerefThis =CreateBuiltinUnaryOp(CurrentLocation, UO_Deref, This).take();
10455
10456  ExprResult BuildBlock = BuildBlockForLambdaConversion(CurrentLocation,
10457                                                        Conv->getLocation(),
10458                                                        Conv, DerefThis);
10459
10460  // If we're not under ARC, make sure we still get the _Block_copy/autorelease
10461  // behavior.  Note that only the general conversion function does this
10462  // (since it's unusable otherwise); in the case where we inline the
10463  // block literal, it has block literal lifetime semantics.
10464  if (!BuildBlock.isInvalid() && !getLangOpts().ObjCAutoRefCount)
10465    BuildBlock = ImplicitCastExpr::Create(Context, BuildBlock.get()->getType(),
10466                                          CK_CopyAndAutoreleaseBlockObject,
10467                                          BuildBlock.get(), 0, VK_RValue);
10468
10469  if (BuildBlock.isInvalid()) {
10470    Diag(CurrentLocation, diag::note_lambda_to_block_conv);
10471    Conv->setInvalidDecl();
10472    return;
10473  }
10474
10475  // Create the return statement that returns the block from the conversion
10476  // function.
10477  StmtResult Return = ActOnReturnStmt(Conv->getLocation(), BuildBlock.get());
10478  if (Return.isInvalid()) {
10479    Diag(CurrentLocation, diag::note_lambda_to_block_conv);
10480    Conv->setInvalidDecl();
10481    return;
10482  }
10483
10484  // Set the body of the conversion function.
10485  Stmt *ReturnS = Return.take();
10486  Conv->setBody(new (Context) CompoundStmt(Context, ReturnS,
10487                                           Conv->getLocation(),
10488                                           Conv->getLocation()));
10489
10490  // We're done; notify the mutation listener, if any.
10491  if (ASTMutationListener *L = getASTMutationListener()) {
10492    L->CompletedImplicitDefinition(Conv);
10493  }
10494}
10495
10496/// \brief Determine whether the given list arguments contains exactly one
10497/// "real" (non-default) argument.
10498static bool hasOneRealArgument(MultiExprArg Args) {
10499  switch (Args.size()) {
10500  case 0:
10501    return false;
10502
10503  default:
10504    if (!Args[1]->isDefaultArgument())
10505      return false;
10506
10507    // fall through
10508  case 1:
10509    return !Args[0]->isDefaultArgument();
10510  }
10511
10512  return false;
10513}
10514
10515ExprResult
10516Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
10517                            CXXConstructorDecl *Constructor,
10518                            MultiExprArg ExprArgs,
10519                            bool HadMultipleCandidates,
10520                            bool IsListInitialization,
10521                            bool RequiresZeroInit,
10522                            unsigned ConstructKind,
10523                            SourceRange ParenRange) {
10524  bool Elidable = false;
10525
10526  // C++0x [class.copy]p34:
10527  //   When certain criteria are met, an implementation is allowed to
10528  //   omit the copy/move construction of a class object, even if the
10529  //   copy/move constructor and/or destructor for the object have
10530  //   side effects. [...]
10531  //     - when a temporary class object that has not been bound to a
10532  //       reference (12.2) would be copied/moved to a class object
10533  //       with the same cv-unqualified type, the copy/move operation
10534  //       can be omitted by constructing the temporary object
10535  //       directly into the target of the omitted copy/move
10536  if (ConstructKind == CXXConstructExpr::CK_Complete &&
10537      Constructor->isCopyOrMoveConstructor() && hasOneRealArgument(ExprArgs)) {
10538    Expr *SubExpr = ExprArgs[0];
10539    Elidable = SubExpr->isTemporaryObject(Context, Constructor->getParent());
10540  }
10541
10542  return BuildCXXConstructExpr(ConstructLoc, DeclInitType, Constructor,
10543                               Elidable, ExprArgs, HadMultipleCandidates,
10544                               IsListInitialization, RequiresZeroInit,
10545                               ConstructKind, ParenRange);
10546}
10547
10548/// BuildCXXConstructExpr - Creates a complete call to a constructor,
10549/// including handling of its default argument expressions.
10550ExprResult
10551Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
10552                            CXXConstructorDecl *Constructor, bool Elidable,
10553                            MultiExprArg ExprArgs,
10554                            bool HadMultipleCandidates,
10555                            bool IsListInitialization,
10556                            bool RequiresZeroInit,
10557                            unsigned ConstructKind,
10558                            SourceRange ParenRange) {
10559  MarkFunctionReferenced(ConstructLoc, Constructor);
10560  return Owned(CXXConstructExpr::Create(Context, DeclInitType, ConstructLoc,
10561                                        Constructor, Elidable, ExprArgs,
10562                                        HadMultipleCandidates,
10563                                        IsListInitialization, RequiresZeroInit,
10564              static_cast<CXXConstructExpr::ConstructionKind>(ConstructKind),
10565                                        ParenRange));
10566}
10567
10568void Sema::FinalizeVarWithDestructor(VarDecl *VD, const RecordType *Record) {
10569  if (VD->isInvalidDecl()) return;
10570
10571  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Record->getDecl());
10572  if (ClassDecl->isInvalidDecl()) return;
10573  if (ClassDecl->hasIrrelevantDestructor()) return;
10574  if (ClassDecl->isDependentContext()) return;
10575
10576  CXXDestructorDecl *Destructor = LookupDestructor(ClassDecl);
10577  MarkFunctionReferenced(VD->getLocation(), Destructor);
10578  CheckDestructorAccess(VD->getLocation(), Destructor,
10579                        PDiag(diag::err_access_dtor_var)
10580                        << VD->getDeclName()
10581                        << VD->getType());
10582  DiagnoseUseOfDecl(Destructor, VD->getLocation());
10583
10584  if (!VD->hasGlobalStorage()) return;
10585
10586  // Emit warning for non-trivial dtor in global scope (a real global,
10587  // class-static, function-static).
10588  Diag(VD->getLocation(), diag::warn_exit_time_destructor);
10589
10590  // TODO: this should be re-enabled for static locals by !CXAAtExit
10591  if (!VD->isStaticLocal())
10592    Diag(VD->getLocation(), diag::warn_global_destructor);
10593}
10594
10595/// \brief Given a constructor and the set of arguments provided for the
10596/// constructor, convert the arguments and add any required default arguments
10597/// to form a proper call to this constructor.
10598///
10599/// \returns true if an error occurred, false otherwise.
10600bool
10601Sema::CompleteConstructorCall(CXXConstructorDecl *Constructor,
10602                              MultiExprArg ArgsPtr,
10603                              SourceLocation Loc,
10604                              SmallVectorImpl<Expr*> &ConvertedArgs,
10605                              bool AllowExplicit,
10606                              bool IsListInitialization) {
10607  // FIXME: This duplicates a lot of code from Sema::ConvertArgumentsForCall.
10608  unsigned NumArgs = ArgsPtr.size();
10609  Expr **Args = ArgsPtr.data();
10610
10611  const FunctionProtoType *Proto
10612    = Constructor->getType()->getAs<FunctionProtoType>();
10613  assert(Proto && "Constructor without a prototype?");
10614  unsigned NumArgsInProto = Proto->getNumArgs();
10615
10616  // If too few arguments are available, we'll fill in the rest with defaults.
10617  if (NumArgs < NumArgsInProto)
10618    ConvertedArgs.reserve(NumArgsInProto);
10619  else
10620    ConvertedArgs.reserve(NumArgs);
10621
10622  VariadicCallType CallType =
10623    Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply;
10624  SmallVector<Expr *, 8> AllArgs;
10625  bool Invalid = GatherArgumentsForCall(Loc, Constructor,
10626                                        Proto, 0,
10627                                        llvm::makeArrayRef(Args, NumArgs),
10628                                        AllArgs,
10629                                        CallType, AllowExplicit,
10630                                        IsListInitialization);
10631  ConvertedArgs.append(AllArgs.begin(), AllArgs.end());
10632
10633  DiagnoseSentinelCalls(Constructor, Loc, AllArgs);
10634
10635  CheckConstructorCall(Constructor,
10636                       llvm::makeArrayRef<const Expr *>(AllArgs.data(),
10637                                                        AllArgs.size()),
10638                       Proto, Loc);
10639
10640  return Invalid;
10641}
10642
10643static inline bool
10644CheckOperatorNewDeleteDeclarationScope(Sema &SemaRef,
10645                                       const FunctionDecl *FnDecl) {
10646  const DeclContext *DC = FnDecl->getDeclContext()->getRedeclContext();
10647  if (isa<NamespaceDecl>(DC)) {
10648    return SemaRef.Diag(FnDecl->getLocation(),
10649                        diag::err_operator_new_delete_declared_in_namespace)
10650      << FnDecl->getDeclName();
10651  }
10652
10653  if (isa<TranslationUnitDecl>(DC) &&
10654      FnDecl->getStorageClass() == SC_Static) {
10655    return SemaRef.Diag(FnDecl->getLocation(),
10656                        diag::err_operator_new_delete_declared_static)
10657      << FnDecl->getDeclName();
10658  }
10659
10660  return false;
10661}
10662
10663static inline bool
10664CheckOperatorNewDeleteTypes(Sema &SemaRef, const FunctionDecl *FnDecl,
10665                            CanQualType ExpectedResultType,
10666                            CanQualType ExpectedFirstParamType,
10667                            unsigned DependentParamTypeDiag,
10668                            unsigned InvalidParamTypeDiag) {
10669  QualType ResultType =
10670    FnDecl->getType()->getAs<FunctionType>()->getResultType();
10671
10672  // Check that the result type is not dependent.
10673  if (ResultType->isDependentType())
10674    return SemaRef.Diag(FnDecl->getLocation(),
10675                        diag::err_operator_new_delete_dependent_result_type)
10676    << FnDecl->getDeclName() << ExpectedResultType;
10677
10678  // Check that the result type is what we expect.
10679  if (SemaRef.Context.getCanonicalType(ResultType) != ExpectedResultType)
10680    return SemaRef.Diag(FnDecl->getLocation(),
10681                        diag::err_operator_new_delete_invalid_result_type)
10682    << FnDecl->getDeclName() << ExpectedResultType;
10683
10684  // A function template must have at least 2 parameters.
10685  if (FnDecl->getDescribedFunctionTemplate() && FnDecl->getNumParams() < 2)
10686    return SemaRef.Diag(FnDecl->getLocation(),
10687                      diag::err_operator_new_delete_template_too_few_parameters)
10688        << FnDecl->getDeclName();
10689
10690  // The function decl must have at least 1 parameter.
10691  if (FnDecl->getNumParams() == 0)
10692    return SemaRef.Diag(FnDecl->getLocation(),
10693                        diag::err_operator_new_delete_too_few_parameters)
10694      << FnDecl->getDeclName();
10695
10696  // Check the first parameter type is not dependent.
10697  QualType FirstParamType = FnDecl->getParamDecl(0)->getType();
10698  if (FirstParamType->isDependentType())
10699    return SemaRef.Diag(FnDecl->getLocation(), DependentParamTypeDiag)
10700      << FnDecl->getDeclName() << ExpectedFirstParamType;
10701
10702  // Check that the first parameter type is what we expect.
10703  if (SemaRef.Context.getCanonicalType(FirstParamType).getUnqualifiedType() !=
10704      ExpectedFirstParamType)
10705    return SemaRef.Diag(FnDecl->getLocation(), InvalidParamTypeDiag)
10706    << FnDecl->getDeclName() << ExpectedFirstParamType;
10707
10708  return false;
10709}
10710
10711static bool
10712CheckOperatorNewDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
10713  // C++ [basic.stc.dynamic.allocation]p1:
10714  //   A program is ill-formed if an allocation function is declared in a
10715  //   namespace scope other than global scope or declared static in global
10716  //   scope.
10717  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
10718    return true;
10719
10720  CanQualType SizeTy =
10721    SemaRef.Context.getCanonicalType(SemaRef.Context.getSizeType());
10722
10723  // C++ [basic.stc.dynamic.allocation]p1:
10724  //  The return type shall be void*. The first parameter shall have type
10725  //  std::size_t.
10726  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidPtrTy,
10727                                  SizeTy,
10728                                  diag::err_operator_new_dependent_param_type,
10729                                  diag::err_operator_new_param_type))
10730    return true;
10731
10732  // C++ [basic.stc.dynamic.allocation]p1:
10733  //  The first parameter shall not have an associated default argument.
10734  if (FnDecl->getParamDecl(0)->hasDefaultArg())
10735    return SemaRef.Diag(FnDecl->getLocation(),
10736                        diag::err_operator_new_default_arg)
10737      << FnDecl->getDeclName() << FnDecl->getParamDecl(0)->getDefaultArgRange();
10738
10739  return false;
10740}
10741
10742static bool
10743CheckOperatorDeleteDeclaration(Sema &SemaRef, FunctionDecl *FnDecl) {
10744  // C++ [basic.stc.dynamic.deallocation]p1:
10745  //   A program is ill-formed if deallocation functions are declared in a
10746  //   namespace scope other than global scope or declared static in global
10747  //   scope.
10748  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
10749    return true;
10750
10751  // C++ [basic.stc.dynamic.deallocation]p2:
10752  //   Each deallocation function shall return void and its first parameter
10753  //   shall be void*.
10754  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidTy,
10755                                  SemaRef.Context.VoidPtrTy,
10756                                 diag::err_operator_delete_dependent_param_type,
10757                                 diag::err_operator_delete_param_type))
10758    return true;
10759
10760  return false;
10761}
10762
10763/// CheckOverloadedOperatorDeclaration - Check whether the declaration
10764/// of this overloaded operator is well-formed. If so, returns false;
10765/// otherwise, emits appropriate diagnostics and returns true.
10766bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
10767  assert(FnDecl && FnDecl->isOverloadedOperator() &&
10768         "Expected an overloaded operator declaration");
10769
10770  OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
10771
10772  // C++ [over.oper]p5:
10773  //   The allocation and deallocation functions, operator new,
10774  //   operator new[], operator delete and operator delete[], are
10775  //   described completely in 3.7.3. The attributes and restrictions
10776  //   found in the rest of this subclause do not apply to them unless
10777  //   explicitly stated in 3.7.3.
10778  if (Op == OO_Delete || Op == OO_Array_Delete)
10779    return CheckOperatorDeleteDeclaration(*this, FnDecl);
10780
10781  if (Op == OO_New || Op == OO_Array_New)
10782    return CheckOperatorNewDeclaration(*this, FnDecl);
10783
10784  // C++ [over.oper]p6:
10785  //   An operator function shall either be a non-static member
10786  //   function or be a non-member function and have at least one
10787  //   parameter whose type is a class, a reference to a class, an
10788  //   enumeration, or a reference to an enumeration.
10789  if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) {
10790    if (MethodDecl->isStatic())
10791      return Diag(FnDecl->getLocation(),
10792                  diag::err_operator_overload_static) << FnDecl->getDeclName();
10793  } else {
10794    bool ClassOrEnumParam = false;
10795    for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
10796                                   ParamEnd = FnDecl->param_end();
10797         Param != ParamEnd; ++Param) {
10798      QualType ParamType = (*Param)->getType().getNonReferenceType();
10799      if (ParamType->isDependentType() || ParamType->isRecordType() ||
10800          ParamType->isEnumeralType()) {
10801        ClassOrEnumParam = true;
10802        break;
10803      }
10804    }
10805
10806    if (!ClassOrEnumParam)
10807      return Diag(FnDecl->getLocation(),
10808                  diag::err_operator_overload_needs_class_or_enum)
10809        << FnDecl->getDeclName();
10810  }
10811
10812  // C++ [over.oper]p8:
10813  //   An operator function cannot have default arguments (8.3.6),
10814  //   except where explicitly stated below.
10815  //
10816  // Only the function-call operator allows default arguments
10817  // (C++ [over.call]p1).
10818  if (Op != OO_Call) {
10819    for (FunctionDecl::param_iterator Param = FnDecl->param_begin();
10820         Param != FnDecl->param_end(); ++Param) {
10821      if ((*Param)->hasDefaultArg())
10822        return Diag((*Param)->getLocation(),
10823                    diag::err_operator_overload_default_arg)
10824          << FnDecl->getDeclName() << (*Param)->getDefaultArgRange();
10825    }
10826  }
10827
10828  static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
10829    { false, false, false }
10830#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
10831    , { Unary, Binary, MemberOnly }
10832#include "clang/Basic/OperatorKinds.def"
10833  };
10834
10835  bool CanBeUnaryOperator = OperatorUses[Op][0];
10836  bool CanBeBinaryOperator = OperatorUses[Op][1];
10837  bool MustBeMemberOperator = OperatorUses[Op][2];
10838
10839  // C++ [over.oper]p8:
10840  //   [...] Operator functions cannot have more or fewer parameters
10841  //   than the number required for the corresponding operator, as
10842  //   described in the rest of this subclause.
10843  unsigned NumParams = FnDecl->getNumParams()
10844                     + (isa<CXXMethodDecl>(FnDecl)? 1 : 0);
10845  if (Op != OO_Call &&
10846      ((NumParams == 1 && !CanBeUnaryOperator) ||
10847       (NumParams == 2 && !CanBeBinaryOperator) ||
10848       (NumParams < 1) || (NumParams > 2))) {
10849    // We have the wrong number of parameters.
10850    unsigned ErrorKind;
10851    if (CanBeUnaryOperator && CanBeBinaryOperator) {
10852      ErrorKind = 2;  // 2 -> unary or binary.
10853    } else if (CanBeUnaryOperator) {
10854      ErrorKind = 0;  // 0 -> unary
10855    } else {
10856      assert(CanBeBinaryOperator &&
10857             "All non-call overloaded operators are unary or binary!");
10858      ErrorKind = 1;  // 1 -> binary
10859    }
10860
10861    return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be)
10862      << FnDecl->getDeclName() << NumParams << ErrorKind;
10863  }
10864
10865  // Overloaded operators other than operator() cannot be variadic.
10866  if (Op != OO_Call &&
10867      FnDecl->getType()->getAs<FunctionProtoType>()->isVariadic()) {
10868    return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
10869      << FnDecl->getDeclName();
10870  }
10871
10872  // Some operators must be non-static member functions.
10873  if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) {
10874    return Diag(FnDecl->getLocation(),
10875                diag::err_operator_overload_must_be_member)
10876      << FnDecl->getDeclName();
10877  }
10878
10879  // C++ [over.inc]p1:
10880  //   The user-defined function called operator++ implements the
10881  //   prefix and postfix ++ operator. If this function is a member
10882  //   function with no parameters, or a non-member function with one
10883  //   parameter of class or enumeration type, it defines the prefix
10884  //   increment operator ++ for objects of that type. If the function
10885  //   is a member function with one parameter (which shall be of type
10886  //   int) or a non-member function with two parameters (the second
10887  //   of which shall be of type int), it defines the postfix
10888  //   increment operator ++ for objects of that type.
10889  if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
10890    ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
10891    bool ParamIsInt = false;
10892    if (const BuiltinType *BT = LastParam->getType()->getAs<BuiltinType>())
10893      ParamIsInt = BT->getKind() == BuiltinType::Int;
10894
10895    if (!ParamIsInt)
10896      return Diag(LastParam->getLocation(),
10897                  diag::err_operator_overload_post_incdec_must_be_int)
10898        << LastParam->getType() << (Op == OO_MinusMinus);
10899  }
10900
10901  return false;
10902}
10903
10904/// CheckLiteralOperatorDeclaration - Check whether the declaration
10905/// of this literal operator function is well-formed. If so, returns
10906/// false; otherwise, emits appropriate diagnostics and returns true.
10907bool Sema::CheckLiteralOperatorDeclaration(FunctionDecl *FnDecl) {
10908  if (isa<CXXMethodDecl>(FnDecl)) {
10909    Diag(FnDecl->getLocation(), diag::err_literal_operator_outside_namespace)
10910      << FnDecl->getDeclName();
10911    return true;
10912  }
10913
10914  if (FnDecl->isExternC()) {
10915    Diag(FnDecl->getLocation(), diag::err_literal_operator_extern_c);
10916    return true;
10917  }
10918
10919  bool Valid = false;
10920
10921  // This might be the definition of a literal operator template.
10922  FunctionTemplateDecl *TpDecl = FnDecl->getDescribedFunctionTemplate();
10923  // This might be a specialization of a literal operator template.
10924  if (!TpDecl)
10925    TpDecl = FnDecl->getPrimaryTemplate();
10926
10927  // template <char...> type operator "" name() and
10928  // template <class T, T...> type operator "" name() are the only valid
10929  // template signatures, and the only valid signatures with no parameters.
10930  if (TpDecl) {
10931    if (FnDecl->param_size() == 0) {
10932      // Must have one or two template parameters
10933      TemplateParameterList *Params = TpDecl->getTemplateParameters();
10934      if (Params->size() == 1) {
10935        NonTypeTemplateParmDecl *PmDecl =
10936          dyn_cast<NonTypeTemplateParmDecl>(Params->getParam(0));
10937
10938        // The template parameter must be a char parameter pack.
10939        if (PmDecl && PmDecl->isTemplateParameterPack() &&
10940            Context.hasSameType(PmDecl->getType(), Context.CharTy))
10941          Valid = true;
10942      } else if (Params->size() == 2) {
10943        TemplateTypeParmDecl *PmType =
10944          dyn_cast<TemplateTypeParmDecl>(Params->getParam(0));
10945        NonTypeTemplateParmDecl *PmArgs =
10946          dyn_cast<NonTypeTemplateParmDecl>(Params->getParam(1));
10947
10948        // The second template parameter must be a parameter pack with the
10949        // first template parameter as its type.
10950        if (PmType && PmArgs &&
10951            !PmType->isTemplateParameterPack() &&
10952            PmArgs->isTemplateParameterPack()) {
10953          const TemplateTypeParmType *TArgs =
10954            PmArgs->getType()->getAs<TemplateTypeParmType>();
10955          if (TArgs && TArgs->getDepth() == PmType->getDepth() &&
10956              TArgs->getIndex() == PmType->getIndex()) {
10957            Valid = true;
10958            if (ActiveTemplateInstantiations.empty())
10959              Diag(FnDecl->getLocation(),
10960                   diag::ext_string_literal_operator_template);
10961          }
10962        }
10963      }
10964    }
10965  } else if (FnDecl->param_size()) {
10966    // Check the first parameter
10967    FunctionDecl::param_iterator Param = FnDecl->param_begin();
10968
10969    QualType T = (*Param)->getType().getUnqualifiedType();
10970
10971    // unsigned long long int, long double, and any character type are allowed
10972    // as the only parameters.
10973    if (Context.hasSameType(T, Context.UnsignedLongLongTy) ||
10974        Context.hasSameType(T, Context.LongDoubleTy) ||
10975        Context.hasSameType(T, Context.CharTy) ||
10976        Context.hasSameType(T, Context.WideCharTy) ||
10977        Context.hasSameType(T, Context.Char16Ty) ||
10978        Context.hasSameType(T, Context.Char32Ty)) {
10979      if (++Param == FnDecl->param_end())
10980        Valid = true;
10981      goto FinishedParams;
10982    }
10983
10984    // Otherwise it must be a pointer to const; let's strip those qualifiers.
10985    const PointerType *PT = T->getAs<PointerType>();
10986    if (!PT)
10987      goto FinishedParams;
10988    T = PT->getPointeeType();
10989    if (!T.isConstQualified() || T.isVolatileQualified())
10990      goto FinishedParams;
10991    T = T.getUnqualifiedType();
10992
10993    // Move on to the second parameter;
10994    ++Param;
10995
10996    // If there is no second parameter, the first must be a const char *
10997    if (Param == FnDecl->param_end()) {
10998      if (Context.hasSameType(T, Context.CharTy))
10999        Valid = true;
11000      goto FinishedParams;
11001    }
11002
11003    // const char *, const wchar_t*, const char16_t*, and const char32_t*
11004    // are allowed as the first parameter to a two-parameter function
11005    if (!(Context.hasSameType(T, Context.CharTy) ||
11006          Context.hasSameType(T, Context.WideCharTy) ||
11007          Context.hasSameType(T, Context.Char16Ty) ||
11008          Context.hasSameType(T, Context.Char32Ty)))
11009      goto FinishedParams;
11010
11011    // The second and final parameter must be an std::size_t
11012    T = (*Param)->getType().getUnqualifiedType();
11013    if (Context.hasSameType(T, Context.getSizeType()) &&
11014        ++Param == FnDecl->param_end())
11015      Valid = true;
11016  }
11017
11018  // FIXME: This diagnostic is absolutely terrible.
11019FinishedParams:
11020  if (!Valid) {
11021    Diag(FnDecl->getLocation(), diag::err_literal_operator_params)
11022      << FnDecl->getDeclName();
11023    return true;
11024  }
11025
11026  // A parameter-declaration-clause containing a default argument is not
11027  // equivalent to any of the permitted forms.
11028  for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
11029                                    ParamEnd = FnDecl->param_end();
11030       Param != ParamEnd; ++Param) {
11031    if ((*Param)->hasDefaultArg()) {
11032      Diag((*Param)->getDefaultArgRange().getBegin(),
11033           diag::err_literal_operator_default_argument)
11034        << (*Param)->getDefaultArgRange();
11035      break;
11036    }
11037  }
11038
11039  StringRef LiteralName
11040    = FnDecl->getDeclName().getCXXLiteralIdentifier()->getName();
11041  if (LiteralName[0] != '_') {
11042    // C++11 [usrlit.suffix]p1:
11043    //   Literal suffix identifiers that do not start with an underscore
11044    //   are reserved for future standardization.
11045    Diag(FnDecl->getLocation(), diag::warn_user_literal_reserved)
11046      << NumericLiteralParser::isValidUDSuffix(getLangOpts(), LiteralName);
11047  }
11048
11049  return false;
11050}
11051
11052/// ActOnStartLinkageSpecification - Parsed the beginning of a C++
11053/// linkage specification, including the language and (if present)
11054/// the '{'. ExternLoc is the location of the 'extern', LangLoc is
11055/// the location of the language string literal, which is provided
11056/// by Lang/StrSize. LBraceLoc, if valid, provides the location of
11057/// the '{' brace. Otherwise, this linkage specification does not
11058/// have any braces.
11059Decl *Sema::ActOnStartLinkageSpecification(Scope *S, SourceLocation ExternLoc,
11060                                           SourceLocation LangLoc,
11061                                           StringRef Lang,
11062                                           SourceLocation LBraceLoc) {
11063  LinkageSpecDecl::LanguageIDs Language;
11064  if (Lang == "\"C\"")
11065    Language = LinkageSpecDecl::lang_c;
11066  else if (Lang == "\"C++\"")
11067    Language = LinkageSpecDecl::lang_cxx;
11068  else {
11069    Diag(LangLoc, diag::err_bad_language);
11070    return 0;
11071  }
11072
11073  // FIXME: Add all the various semantics of linkage specifications
11074
11075  LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext,
11076                                               ExternLoc, LangLoc, Language,
11077                                               LBraceLoc.isValid());
11078  CurContext->addDecl(D);
11079  PushDeclContext(S, D);
11080  return D;
11081}
11082
11083/// ActOnFinishLinkageSpecification - Complete the definition of
11084/// the C++ linkage specification LinkageSpec. If RBraceLoc is
11085/// valid, it's the position of the closing '}' brace in a linkage
11086/// specification that uses braces.
11087Decl *Sema::ActOnFinishLinkageSpecification(Scope *S,
11088                                            Decl *LinkageSpec,
11089                                            SourceLocation RBraceLoc) {
11090  if (LinkageSpec) {
11091    if (RBraceLoc.isValid()) {
11092      LinkageSpecDecl* LSDecl = cast<LinkageSpecDecl>(LinkageSpec);
11093      LSDecl->setRBraceLoc(RBraceLoc);
11094    }
11095    PopDeclContext();
11096  }
11097  return LinkageSpec;
11098}
11099
11100Decl *Sema::ActOnEmptyDeclaration(Scope *S,
11101                                  AttributeList *AttrList,
11102                                  SourceLocation SemiLoc) {
11103  Decl *ED = EmptyDecl::Create(Context, CurContext, SemiLoc);
11104  // Attribute declarations appertain to empty declaration so we handle
11105  // them here.
11106  if (AttrList)
11107    ProcessDeclAttributeList(S, ED, AttrList);
11108
11109  CurContext->addDecl(ED);
11110  return ED;
11111}
11112
11113/// \brief Perform semantic analysis for the variable declaration that
11114/// occurs within a C++ catch clause, returning the newly-created
11115/// variable.
11116VarDecl *Sema::BuildExceptionDeclaration(Scope *S,
11117                                         TypeSourceInfo *TInfo,
11118                                         SourceLocation StartLoc,
11119                                         SourceLocation Loc,
11120                                         IdentifierInfo *Name) {
11121  bool Invalid = false;
11122  QualType ExDeclType = TInfo->getType();
11123
11124  // Arrays and functions decay.
11125  if (ExDeclType->isArrayType())
11126    ExDeclType = Context.getArrayDecayedType(ExDeclType);
11127  else if (ExDeclType->isFunctionType())
11128    ExDeclType = Context.getPointerType(ExDeclType);
11129
11130  // C++ 15.3p1: The exception-declaration shall not denote an incomplete type.
11131  // The exception-declaration shall not denote a pointer or reference to an
11132  // incomplete type, other than [cv] void*.
11133  // N2844 forbids rvalue references.
11134  if (!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) {
11135    Diag(Loc, diag::err_catch_rvalue_ref);
11136    Invalid = true;
11137  }
11138
11139  QualType BaseType = ExDeclType;
11140  int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference
11141  unsigned DK = diag::err_catch_incomplete;
11142  if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
11143    BaseType = Ptr->getPointeeType();
11144    Mode = 1;
11145    DK = diag::err_catch_incomplete_ptr;
11146  } else if (const ReferenceType *Ref = BaseType->getAs<ReferenceType>()) {
11147    // For the purpose of error recovery, we treat rvalue refs like lvalue refs.
11148    BaseType = Ref->getPointeeType();
11149    Mode = 2;
11150    DK = diag::err_catch_incomplete_ref;
11151  }
11152  if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) &&
11153      !BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK))
11154    Invalid = true;
11155
11156  if (!Invalid && !ExDeclType->isDependentType() &&
11157      RequireNonAbstractType(Loc, ExDeclType,
11158                             diag::err_abstract_type_in_decl,
11159                             AbstractVariableType))
11160    Invalid = true;
11161
11162  // Only the non-fragile NeXT runtime currently supports C++ catches
11163  // of ObjC types, and no runtime supports catching ObjC types by value.
11164  if (!Invalid && getLangOpts().ObjC1) {
11165    QualType T = ExDeclType;
11166    if (const ReferenceType *RT = T->getAs<ReferenceType>())
11167      T = RT->getPointeeType();
11168
11169    if (T->isObjCObjectType()) {
11170      Diag(Loc, diag::err_objc_object_catch);
11171      Invalid = true;
11172    } else if (T->isObjCObjectPointerType()) {
11173      // FIXME: should this be a test for macosx-fragile specifically?
11174      if (getLangOpts().ObjCRuntime.isFragile())
11175        Diag(Loc, diag::warn_objc_pointer_cxx_catch_fragile);
11176    }
11177  }
11178
11179  VarDecl *ExDecl = VarDecl::Create(Context, CurContext, StartLoc, Loc, Name,
11180                                    ExDeclType, TInfo, SC_None);
11181  ExDecl->setExceptionVariable(true);
11182
11183  // In ARC, infer 'retaining' for variables of retainable type.
11184  if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(ExDecl))
11185    Invalid = true;
11186
11187  if (!Invalid && !ExDeclType->isDependentType()) {
11188    if (const RecordType *recordType = ExDeclType->getAs<RecordType>()) {
11189      // Insulate this from anything else we might currently be parsing.
11190      EnterExpressionEvaluationContext scope(*this, PotentiallyEvaluated);
11191
11192      // C++ [except.handle]p16:
11193      //   The object declared in an exception-declaration or, if the
11194      //   exception-declaration does not specify a name, a temporary (12.2) is
11195      //   copy-initialized (8.5) from the exception object. [...]
11196      //   The object is destroyed when the handler exits, after the destruction
11197      //   of any automatic objects initialized within the handler.
11198      //
11199      // We just pretend to initialize the object with itself, then make sure
11200      // it can be destroyed later.
11201      QualType initType = ExDeclType;
11202
11203      InitializedEntity entity =
11204        InitializedEntity::InitializeVariable(ExDecl);
11205      InitializationKind initKind =
11206        InitializationKind::CreateCopy(Loc, SourceLocation());
11207
11208      Expr *opaqueValue =
11209        new (Context) OpaqueValueExpr(Loc, initType, VK_LValue, OK_Ordinary);
11210      InitializationSequence sequence(*this, entity, initKind, opaqueValue);
11211      ExprResult result = sequence.Perform(*this, entity, initKind, opaqueValue);
11212      if (result.isInvalid())
11213        Invalid = true;
11214      else {
11215        // If the constructor used was non-trivial, set this as the
11216        // "initializer".
11217        CXXConstructExpr *construct = result.takeAs<CXXConstructExpr>();
11218        if (!construct->getConstructor()->isTrivial()) {
11219          Expr *init = MaybeCreateExprWithCleanups(construct);
11220          ExDecl->setInit(init);
11221        }
11222
11223        // And make sure it's destructable.
11224        FinalizeVarWithDestructor(ExDecl, recordType);
11225      }
11226    }
11227  }
11228
11229  if (Invalid)
11230    ExDecl->setInvalidDecl();
11231
11232  return ExDecl;
11233}
11234
11235/// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch
11236/// handler.
11237Decl *Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) {
11238  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
11239  bool Invalid = D.isInvalidType();
11240
11241  // Check for unexpanded parameter packs.
11242  if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
11243                                      UPPC_ExceptionType)) {
11244    TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy,
11245                                             D.getIdentifierLoc());
11246    Invalid = true;
11247  }
11248
11249  IdentifierInfo *II = D.getIdentifier();
11250  if (NamedDecl *PrevDecl = LookupSingleName(S, II, D.getIdentifierLoc(),
11251                                             LookupOrdinaryName,
11252                                             ForRedeclaration)) {
11253    // The scope should be freshly made just for us. There is just no way
11254    // it contains any previous declaration.
11255    assert(!S->isDeclScope(PrevDecl));
11256    if (PrevDecl->isTemplateParameter()) {
11257      // Maybe we will complain about the shadowed template parameter.
11258      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
11259      PrevDecl = 0;
11260    }
11261  }
11262
11263  if (D.getCXXScopeSpec().isSet() && !Invalid) {
11264    Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator)
11265      << D.getCXXScopeSpec().getRange();
11266    Invalid = true;
11267  }
11268
11269  VarDecl *ExDecl = BuildExceptionDeclaration(S, TInfo,
11270                                              D.getLocStart(),
11271                                              D.getIdentifierLoc(),
11272                                              D.getIdentifier());
11273  if (Invalid)
11274    ExDecl->setInvalidDecl();
11275
11276  // Add the exception declaration into this scope.
11277  if (II)
11278    PushOnScopeChains(ExDecl, S);
11279  else
11280    CurContext->addDecl(ExDecl);
11281
11282  ProcessDeclAttributes(S, ExDecl, D);
11283  return ExDecl;
11284}
11285
11286Decl *Sema::ActOnStaticAssertDeclaration(SourceLocation StaticAssertLoc,
11287                                         Expr *AssertExpr,
11288                                         Expr *AssertMessageExpr,
11289                                         SourceLocation RParenLoc) {
11290  StringLiteral *AssertMessage = cast<StringLiteral>(AssertMessageExpr);
11291
11292  if (DiagnoseUnexpandedParameterPack(AssertExpr, UPPC_StaticAssertExpression))
11293    return 0;
11294
11295  return BuildStaticAssertDeclaration(StaticAssertLoc, AssertExpr,
11296                                      AssertMessage, RParenLoc, false);
11297}
11298
11299Decl *Sema::BuildStaticAssertDeclaration(SourceLocation StaticAssertLoc,
11300                                         Expr *AssertExpr,
11301                                         StringLiteral *AssertMessage,
11302                                         SourceLocation RParenLoc,
11303                                         bool Failed) {
11304  if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent() &&
11305      !Failed) {
11306    // In a static_assert-declaration, the constant-expression shall be a
11307    // constant expression that can be contextually converted to bool.
11308    ExprResult Converted = PerformContextuallyConvertToBool(AssertExpr);
11309    if (Converted.isInvalid())
11310      Failed = true;
11311
11312    llvm::APSInt Cond;
11313    if (!Failed && VerifyIntegerConstantExpression(Converted.get(), &Cond,
11314          diag::err_static_assert_expression_is_not_constant,
11315          /*AllowFold=*/false).isInvalid())
11316      Failed = true;
11317
11318    if (!Failed && !Cond) {
11319      SmallString<256> MsgBuffer;
11320      llvm::raw_svector_ostream Msg(MsgBuffer);
11321      AssertMessage->printPretty(Msg, 0, getPrintingPolicy());
11322      Diag(StaticAssertLoc, diag::err_static_assert_failed)
11323        << Msg.str() << AssertExpr->getSourceRange();
11324      Failed = true;
11325    }
11326  }
11327
11328  Decl *Decl = StaticAssertDecl::Create(Context, CurContext, StaticAssertLoc,
11329                                        AssertExpr, AssertMessage, RParenLoc,
11330                                        Failed);
11331
11332  CurContext->addDecl(Decl);
11333  return Decl;
11334}
11335
11336/// \brief Perform semantic analysis of the given friend type declaration.
11337///
11338/// \returns A friend declaration that.
11339FriendDecl *Sema::CheckFriendTypeDecl(SourceLocation LocStart,
11340                                      SourceLocation FriendLoc,
11341                                      TypeSourceInfo *TSInfo) {
11342  assert(TSInfo && "NULL TypeSourceInfo for friend type declaration");
11343
11344  QualType T = TSInfo->getType();
11345  SourceRange TypeRange = TSInfo->getTypeLoc().getLocalSourceRange();
11346
11347  // C++03 [class.friend]p2:
11348  //   An elaborated-type-specifier shall be used in a friend declaration
11349  //   for a class.*
11350  //
11351  //   * The class-key of the elaborated-type-specifier is required.
11352  if (!ActiveTemplateInstantiations.empty()) {
11353    // Do not complain about the form of friend template types during
11354    // template instantiation; we will already have complained when the
11355    // template was declared.
11356  } else {
11357    if (!T->isElaboratedTypeSpecifier()) {
11358      // If we evaluated the type to a record type, suggest putting
11359      // a tag in front.
11360      if (const RecordType *RT = T->getAs<RecordType>()) {
11361        RecordDecl *RD = RT->getDecl();
11362
11363        std::string InsertionText = std::string(" ") + RD->getKindName();
11364
11365        Diag(TypeRange.getBegin(),
11366             getLangOpts().CPlusPlus11 ?
11367               diag::warn_cxx98_compat_unelaborated_friend_type :
11368               diag::ext_unelaborated_friend_type)
11369          << (unsigned) RD->getTagKind()
11370          << T
11371          << FixItHint::CreateInsertion(PP.getLocForEndOfToken(FriendLoc),
11372                                        InsertionText);
11373      } else {
11374        Diag(FriendLoc,
11375             getLangOpts().CPlusPlus11 ?
11376               diag::warn_cxx98_compat_nonclass_type_friend :
11377               diag::ext_nonclass_type_friend)
11378          << T
11379          << TypeRange;
11380      }
11381    } else if (T->getAs<EnumType>()) {
11382      Diag(FriendLoc,
11383           getLangOpts().CPlusPlus11 ?
11384             diag::warn_cxx98_compat_enum_friend :
11385             diag::ext_enum_friend)
11386        << T
11387        << TypeRange;
11388    }
11389
11390    // C++11 [class.friend]p3:
11391    //   A friend declaration that does not declare a function shall have one
11392    //   of the following forms:
11393    //     friend elaborated-type-specifier ;
11394    //     friend simple-type-specifier ;
11395    //     friend typename-specifier ;
11396    if (getLangOpts().CPlusPlus11 && LocStart != FriendLoc)
11397      Diag(FriendLoc, diag::err_friend_not_first_in_declaration) << T;
11398  }
11399
11400  //   If the type specifier in a friend declaration designates a (possibly
11401  //   cv-qualified) class type, that class is declared as a friend; otherwise,
11402  //   the friend declaration is ignored.
11403  return FriendDecl::Create(Context, CurContext, LocStart, TSInfo, FriendLoc);
11404}
11405
11406/// Handle a friend tag declaration where the scope specifier was
11407/// templated.
11408Decl *Sema::ActOnTemplatedFriendTag(Scope *S, SourceLocation FriendLoc,
11409                                    unsigned TagSpec, SourceLocation TagLoc,
11410                                    CXXScopeSpec &SS,
11411                                    IdentifierInfo *Name,
11412                                    SourceLocation NameLoc,
11413                                    AttributeList *Attr,
11414                                    MultiTemplateParamsArg TempParamLists) {
11415  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
11416
11417  bool isExplicitSpecialization = false;
11418  bool Invalid = false;
11419
11420  if (TemplateParameterList *TemplateParams =
11421          MatchTemplateParametersToScopeSpecifier(
11422              TagLoc, NameLoc, SS, TempParamLists, /*friend*/ true,
11423              isExplicitSpecialization, Invalid)) {
11424    if (TemplateParams->size() > 0) {
11425      // This is a declaration of a class template.
11426      if (Invalid)
11427        return 0;
11428
11429      return CheckClassTemplate(S, TagSpec, TUK_Friend, TagLoc,
11430                                SS, Name, NameLoc, Attr,
11431                                TemplateParams, AS_public,
11432                                /*ModulePrivateLoc=*/SourceLocation(),
11433                                TempParamLists.size() - 1,
11434                                TempParamLists.data()).take();
11435    } else {
11436      // The "template<>" header is extraneous.
11437      Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
11438        << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
11439      isExplicitSpecialization = true;
11440    }
11441  }
11442
11443  if (Invalid) return 0;
11444
11445  bool isAllExplicitSpecializations = true;
11446  for (unsigned I = TempParamLists.size(); I-- > 0; ) {
11447    if (TempParamLists[I]->size()) {
11448      isAllExplicitSpecializations = false;
11449      break;
11450    }
11451  }
11452
11453  // FIXME: don't ignore attributes.
11454
11455  // If it's explicit specializations all the way down, just forget
11456  // about the template header and build an appropriate non-templated
11457  // friend.  TODO: for source fidelity, remember the headers.
11458  if (isAllExplicitSpecializations) {
11459    if (SS.isEmpty()) {
11460      bool Owned = false;
11461      bool IsDependent = false;
11462      return ActOnTag(S, TagSpec, TUK_Friend, TagLoc, SS, Name, NameLoc,
11463                      Attr, AS_public,
11464                      /*ModulePrivateLoc=*/SourceLocation(),
11465                      MultiTemplateParamsArg(), Owned, IsDependent,
11466                      /*ScopedEnumKWLoc=*/SourceLocation(),
11467                      /*ScopedEnumUsesClassTag=*/false,
11468                      /*UnderlyingType=*/TypeResult());
11469    }
11470
11471    NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
11472    ElaboratedTypeKeyword Keyword
11473      = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
11474    QualType T = CheckTypenameType(Keyword, TagLoc, QualifierLoc,
11475                                   *Name, NameLoc);
11476    if (T.isNull())
11477      return 0;
11478
11479    TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
11480    if (isa<DependentNameType>(T)) {
11481      DependentNameTypeLoc TL =
11482          TSI->getTypeLoc().castAs<DependentNameTypeLoc>();
11483      TL.setElaboratedKeywordLoc(TagLoc);
11484      TL.setQualifierLoc(QualifierLoc);
11485      TL.setNameLoc(NameLoc);
11486    } else {
11487      ElaboratedTypeLoc TL = TSI->getTypeLoc().castAs<ElaboratedTypeLoc>();
11488      TL.setElaboratedKeywordLoc(TagLoc);
11489      TL.setQualifierLoc(QualifierLoc);
11490      TL.getNamedTypeLoc().castAs<TypeSpecTypeLoc>().setNameLoc(NameLoc);
11491    }
11492
11493    FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
11494                                            TSI, FriendLoc, TempParamLists);
11495    Friend->setAccess(AS_public);
11496    CurContext->addDecl(Friend);
11497    return Friend;
11498  }
11499
11500  assert(SS.isNotEmpty() && "valid templated tag with no SS and no direct?");
11501
11502
11503
11504  // Handle the case of a templated-scope friend class.  e.g.
11505  //   template <class T> class A<T>::B;
11506  // FIXME: we don't support these right now.
11507  ElaboratedTypeKeyword ETK = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
11508  QualType T = Context.getDependentNameType(ETK, SS.getScopeRep(), Name);
11509  TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
11510  DependentNameTypeLoc TL = TSI->getTypeLoc().castAs<DependentNameTypeLoc>();
11511  TL.setElaboratedKeywordLoc(TagLoc);
11512  TL.setQualifierLoc(SS.getWithLocInContext(Context));
11513  TL.setNameLoc(NameLoc);
11514
11515  FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
11516                                          TSI, FriendLoc, TempParamLists);
11517  Friend->setAccess(AS_public);
11518  Friend->setUnsupportedFriend(true);
11519  CurContext->addDecl(Friend);
11520  return Friend;
11521}
11522
11523
11524/// Handle a friend type declaration.  This works in tandem with
11525/// ActOnTag.
11526///
11527/// Notes on friend class templates:
11528///
11529/// We generally treat friend class declarations as if they were
11530/// declaring a class.  So, for example, the elaborated type specifier
11531/// in a friend declaration is required to obey the restrictions of a
11532/// class-head (i.e. no typedefs in the scope chain), template
11533/// parameters are required to match up with simple template-ids, &c.
11534/// However, unlike when declaring a template specialization, it's
11535/// okay to refer to a template specialization without an empty
11536/// template parameter declaration, e.g.
11537///   friend class A<T>::B<unsigned>;
11538/// We permit this as a special case; if there are any template
11539/// parameters present at all, require proper matching, i.e.
11540///   template <> template \<class T> friend class A<int>::B;
11541Decl *Sema::ActOnFriendTypeDecl(Scope *S, const DeclSpec &DS,
11542                                MultiTemplateParamsArg TempParams) {
11543  SourceLocation Loc = DS.getLocStart();
11544
11545  assert(DS.isFriendSpecified());
11546  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
11547
11548  // Try to convert the decl specifier to a type.  This works for
11549  // friend templates because ActOnTag never produces a ClassTemplateDecl
11550  // for a TUK_Friend.
11551  Declarator TheDeclarator(DS, Declarator::MemberContext);
11552  TypeSourceInfo *TSI = GetTypeForDeclarator(TheDeclarator, S);
11553  QualType T = TSI->getType();
11554  if (TheDeclarator.isInvalidType())
11555    return 0;
11556
11557  if (DiagnoseUnexpandedParameterPack(Loc, TSI, UPPC_FriendDeclaration))
11558    return 0;
11559
11560  // This is definitely an error in C++98.  It's probably meant to
11561  // be forbidden in C++0x, too, but the specification is just
11562  // poorly written.
11563  //
11564  // The problem is with declarations like the following:
11565  //   template <T> friend A<T>::foo;
11566  // where deciding whether a class C is a friend or not now hinges
11567  // on whether there exists an instantiation of A that causes
11568  // 'foo' to equal C.  There are restrictions on class-heads
11569  // (which we declare (by fiat) elaborated friend declarations to
11570  // be) that makes this tractable.
11571  //
11572  // FIXME: handle "template <> friend class A<T>;", which
11573  // is possibly well-formed?  Who even knows?
11574  if (TempParams.size() && !T->isElaboratedTypeSpecifier()) {
11575    Diag(Loc, diag::err_tagless_friend_type_template)
11576      << DS.getSourceRange();
11577    return 0;
11578  }
11579
11580  // C++98 [class.friend]p1: A friend of a class is a function
11581  //   or class that is not a member of the class . . .
11582  // This is fixed in DR77, which just barely didn't make the C++03
11583  // deadline.  It's also a very silly restriction that seriously
11584  // affects inner classes and which nobody else seems to implement;
11585  // thus we never diagnose it, not even in -pedantic.
11586  //
11587  // But note that we could warn about it: it's always useless to
11588  // friend one of your own members (it's not, however, worthless to
11589  // friend a member of an arbitrary specialization of your template).
11590
11591  Decl *D;
11592  if (unsigned NumTempParamLists = TempParams.size())
11593    D = FriendTemplateDecl::Create(Context, CurContext, Loc,
11594                                   NumTempParamLists,
11595                                   TempParams.data(),
11596                                   TSI,
11597                                   DS.getFriendSpecLoc());
11598  else
11599    D = CheckFriendTypeDecl(Loc, DS.getFriendSpecLoc(), TSI);
11600
11601  if (!D)
11602    return 0;
11603
11604  D->setAccess(AS_public);
11605  CurContext->addDecl(D);
11606
11607  return D;
11608}
11609
11610NamedDecl *Sema::ActOnFriendFunctionDecl(Scope *S, Declarator &D,
11611                                        MultiTemplateParamsArg TemplateParams) {
11612  const DeclSpec &DS = D.getDeclSpec();
11613
11614  assert(DS.isFriendSpecified());
11615  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
11616
11617  SourceLocation Loc = D.getIdentifierLoc();
11618  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
11619
11620  // C++ [class.friend]p1
11621  //   A friend of a class is a function or class....
11622  // Note that this sees through typedefs, which is intended.
11623  // It *doesn't* see through dependent types, which is correct
11624  // according to [temp.arg.type]p3:
11625  //   If a declaration acquires a function type through a
11626  //   type dependent on a template-parameter and this causes
11627  //   a declaration that does not use the syntactic form of a
11628  //   function declarator to have a function type, the program
11629  //   is ill-formed.
11630  if (!TInfo->getType()->isFunctionType()) {
11631    Diag(Loc, diag::err_unexpected_friend);
11632
11633    // It might be worthwhile to try to recover by creating an
11634    // appropriate declaration.
11635    return 0;
11636  }
11637
11638  // C++ [namespace.memdef]p3
11639  //  - If a friend declaration in a non-local class first declares a
11640  //    class or function, the friend class or function is a member
11641  //    of the innermost enclosing namespace.
11642  //  - The name of the friend is not found by simple name lookup
11643  //    until a matching declaration is provided in that namespace
11644  //    scope (either before or after the class declaration granting
11645  //    friendship).
11646  //  - If a friend function is called, its name may be found by the
11647  //    name lookup that considers functions from namespaces and
11648  //    classes associated with the types of the function arguments.
11649  //  - When looking for a prior declaration of a class or a function
11650  //    declared as a friend, scopes outside the innermost enclosing
11651  //    namespace scope are not considered.
11652
11653  CXXScopeSpec &SS = D.getCXXScopeSpec();
11654  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
11655  DeclarationName Name = NameInfo.getName();
11656  assert(Name);
11657
11658  // Check for unexpanded parameter packs.
11659  if (DiagnoseUnexpandedParameterPack(Loc, TInfo, UPPC_FriendDeclaration) ||
11660      DiagnoseUnexpandedParameterPack(NameInfo, UPPC_FriendDeclaration) ||
11661      DiagnoseUnexpandedParameterPack(SS, UPPC_FriendDeclaration))
11662    return 0;
11663
11664  // The context we found the declaration in, or in which we should
11665  // create the declaration.
11666  DeclContext *DC;
11667  Scope *DCScope = S;
11668  LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
11669                        ForRedeclaration);
11670
11671  // There are five cases here.
11672  //   - There's no scope specifier and we're in a local class. Only look
11673  //     for functions declared in the immediately-enclosing block scope.
11674  // We recover from invalid scope qualifiers as if they just weren't there.
11675  FunctionDecl *FunctionContainingLocalClass = 0;
11676  if ((SS.isInvalid() || !SS.isSet()) &&
11677      (FunctionContainingLocalClass =
11678           cast<CXXRecordDecl>(CurContext)->isLocalClass())) {
11679    // C++11 [class.friend]p11:
11680    //   If a friend declaration appears in a local class and the name
11681    //   specified is an unqualified name, a prior declaration is
11682    //   looked up without considering scopes that are outside the
11683    //   innermost enclosing non-class scope. For a friend function
11684    //   declaration, if there is no prior declaration, the program is
11685    //   ill-formed.
11686
11687    // Find the innermost enclosing non-class scope. This is the block
11688    // scope containing the local class definition (or for a nested class,
11689    // the outer local class).
11690    DCScope = S->getFnParent();
11691
11692    // Look up the function name in the scope.
11693    Previous.clear(LookupLocalFriendName);
11694    LookupName(Previous, S, /*AllowBuiltinCreation*/false);
11695
11696    if (!Previous.empty()) {
11697      // All possible previous declarations must have the same context:
11698      // either they were declared at block scope or they are members of
11699      // one of the enclosing local classes.
11700      DC = Previous.getRepresentativeDecl()->getDeclContext();
11701    } else {
11702      // This is ill-formed, but provide the context that we would have
11703      // declared the function in, if we were permitted to, for error recovery.
11704      DC = FunctionContainingLocalClass;
11705    }
11706    adjustContextForLocalExternDecl(DC);
11707
11708    // C++ [class.friend]p6:
11709    //   A function can be defined in a friend declaration of a class if and
11710    //   only if the class is a non-local class (9.8), the function name is
11711    //   unqualified, and the function has namespace scope.
11712    if (D.isFunctionDefinition()) {
11713      Diag(NameInfo.getBeginLoc(), diag::err_friend_def_in_local_class);
11714    }
11715
11716  //   - There's no scope specifier, in which case we just go to the
11717  //     appropriate scope and look for a function or function template
11718  //     there as appropriate.
11719  } else if (SS.isInvalid() || !SS.isSet()) {
11720    // C++11 [namespace.memdef]p3:
11721    //   If the name in a friend declaration is neither qualified nor
11722    //   a template-id and the declaration is a function or an
11723    //   elaborated-type-specifier, the lookup to determine whether
11724    //   the entity has been previously declared shall not consider
11725    //   any scopes outside the innermost enclosing namespace.
11726    bool isTemplateId = D.getName().getKind() == UnqualifiedId::IK_TemplateId;
11727
11728    // Find the appropriate context according to the above.
11729    DC = CurContext;
11730
11731    // Skip class contexts.  If someone can cite chapter and verse
11732    // for this behavior, that would be nice --- it's what GCC and
11733    // EDG do, and it seems like a reasonable intent, but the spec
11734    // really only says that checks for unqualified existing
11735    // declarations should stop at the nearest enclosing namespace,
11736    // not that they should only consider the nearest enclosing
11737    // namespace.
11738    while (DC->isRecord())
11739      DC = DC->getParent();
11740
11741    DeclContext *LookupDC = DC;
11742    while (LookupDC->isTransparentContext())
11743      LookupDC = LookupDC->getParent();
11744
11745    while (true) {
11746      LookupQualifiedName(Previous, LookupDC);
11747
11748      if (!Previous.empty()) {
11749        DC = LookupDC;
11750        break;
11751      }
11752
11753      if (isTemplateId) {
11754        if (isa<TranslationUnitDecl>(LookupDC)) break;
11755      } else {
11756        if (LookupDC->isFileContext()) break;
11757      }
11758      LookupDC = LookupDC->getParent();
11759    }
11760
11761    DCScope = getScopeForDeclContext(S, DC);
11762
11763  //   - There's a non-dependent scope specifier, in which case we
11764  //     compute it and do a previous lookup there for a function
11765  //     or function template.
11766  } else if (!SS.getScopeRep()->isDependent()) {
11767    DC = computeDeclContext(SS);
11768    if (!DC) return 0;
11769
11770    if (RequireCompleteDeclContext(SS, DC)) return 0;
11771
11772    LookupQualifiedName(Previous, DC);
11773
11774    // Ignore things found implicitly in the wrong scope.
11775    // TODO: better diagnostics for this case.  Suggesting the right
11776    // qualified scope would be nice...
11777    LookupResult::Filter F = Previous.makeFilter();
11778    while (F.hasNext()) {
11779      NamedDecl *D = F.next();
11780      if (!DC->InEnclosingNamespaceSetOf(
11781              D->getDeclContext()->getRedeclContext()))
11782        F.erase();
11783    }
11784    F.done();
11785
11786    if (Previous.empty()) {
11787      D.setInvalidType();
11788      Diag(Loc, diag::err_qualified_friend_not_found)
11789          << Name << TInfo->getType();
11790      return 0;
11791    }
11792
11793    // C++ [class.friend]p1: A friend of a class is a function or
11794    //   class that is not a member of the class . . .
11795    if (DC->Equals(CurContext))
11796      Diag(DS.getFriendSpecLoc(),
11797           getLangOpts().CPlusPlus11 ?
11798             diag::warn_cxx98_compat_friend_is_member :
11799             diag::err_friend_is_member);
11800
11801    if (D.isFunctionDefinition()) {
11802      // C++ [class.friend]p6:
11803      //   A function can be defined in a friend declaration of a class if and
11804      //   only if the class is a non-local class (9.8), the function name is
11805      //   unqualified, and the function has namespace scope.
11806      SemaDiagnosticBuilder DB
11807        = Diag(SS.getRange().getBegin(), diag::err_qualified_friend_def);
11808
11809      DB << SS.getScopeRep();
11810      if (DC->isFileContext())
11811        DB << FixItHint::CreateRemoval(SS.getRange());
11812      SS.clear();
11813    }
11814
11815  //   - There's a scope specifier that does not match any template
11816  //     parameter lists, in which case we use some arbitrary context,
11817  //     create a method or method template, and wait for instantiation.
11818  //   - There's a scope specifier that does match some template
11819  //     parameter lists, which we don't handle right now.
11820  } else {
11821    if (D.isFunctionDefinition()) {
11822      // C++ [class.friend]p6:
11823      //   A function can be defined in a friend declaration of a class if and
11824      //   only if the class is a non-local class (9.8), the function name is
11825      //   unqualified, and the function has namespace scope.
11826      Diag(SS.getRange().getBegin(), diag::err_qualified_friend_def)
11827        << SS.getScopeRep();
11828    }
11829
11830    DC = CurContext;
11831    assert(isa<CXXRecordDecl>(DC) && "friend declaration not in class?");
11832  }
11833
11834  if (!DC->isRecord()) {
11835    // This implies that it has to be an operator or function.
11836    if (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ||
11837        D.getName().getKind() == UnqualifiedId::IK_DestructorName ||
11838        D.getName().getKind() == UnqualifiedId::IK_ConversionFunctionId) {
11839      Diag(Loc, diag::err_introducing_special_friend) <<
11840        (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ? 0 :
11841         D.getName().getKind() == UnqualifiedId::IK_DestructorName ? 1 : 2);
11842      return 0;
11843    }
11844  }
11845
11846  // FIXME: This is an egregious hack to cope with cases where the scope stack
11847  // does not contain the declaration context, i.e., in an out-of-line
11848  // definition of a class.
11849  Scope FakeDCScope(S, Scope::DeclScope, Diags);
11850  if (!DCScope) {
11851    FakeDCScope.setEntity(DC);
11852    DCScope = &FakeDCScope;
11853  }
11854
11855  bool AddToScope = true;
11856  NamedDecl *ND = ActOnFunctionDeclarator(DCScope, D, DC, TInfo, Previous,
11857                                          TemplateParams, AddToScope);
11858  if (!ND) return 0;
11859
11860  assert(ND->getLexicalDeclContext() == CurContext);
11861
11862  // If we performed typo correction, we might have added a scope specifier
11863  // and changed the decl context.
11864  DC = ND->getDeclContext();
11865
11866  // Add the function declaration to the appropriate lookup tables,
11867  // adjusting the redeclarations list as necessary.  We don't
11868  // want to do this yet if the friending class is dependent.
11869  //
11870  // Also update the scope-based lookup if the target context's
11871  // lookup context is in lexical scope.
11872  if (!CurContext->isDependentContext()) {
11873    DC = DC->getRedeclContext();
11874    DC->makeDeclVisibleInContext(ND);
11875    if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
11876      PushOnScopeChains(ND, EnclosingScope, /*AddToContext=*/ false);
11877  }
11878
11879  FriendDecl *FrD = FriendDecl::Create(Context, CurContext,
11880                                       D.getIdentifierLoc(), ND,
11881                                       DS.getFriendSpecLoc());
11882  FrD->setAccess(AS_public);
11883  CurContext->addDecl(FrD);
11884
11885  if (ND->isInvalidDecl()) {
11886    FrD->setInvalidDecl();
11887  } else {
11888    if (DC->isRecord()) CheckFriendAccess(ND);
11889
11890    FunctionDecl *FD;
11891    if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND))
11892      FD = FTD->getTemplatedDecl();
11893    else
11894      FD = cast<FunctionDecl>(ND);
11895
11896    // C++11 [dcl.fct.default]p4: If a friend declaration specifies a
11897    // default argument expression, that declaration shall be a definition
11898    // and shall be the only declaration of the function or function
11899    // template in the translation unit.
11900    if (functionDeclHasDefaultArgument(FD)) {
11901      if (FunctionDecl *OldFD = FD->getPreviousDecl()) {
11902        Diag(FD->getLocation(), diag::err_friend_decl_with_def_arg_redeclared);
11903        Diag(OldFD->getLocation(), diag::note_previous_declaration);
11904      } else if (!D.isFunctionDefinition())
11905        Diag(FD->getLocation(), diag::err_friend_decl_with_def_arg_must_be_def);
11906    }
11907
11908    // Mark templated-scope function declarations as unsupported.
11909    if (FD->getNumTemplateParameterLists())
11910      FrD->setUnsupportedFriend(true);
11911  }
11912
11913  return ND;
11914}
11915
11916void Sema::SetDeclDeleted(Decl *Dcl, SourceLocation DelLoc) {
11917  AdjustDeclIfTemplate(Dcl);
11918
11919  FunctionDecl *Fn = dyn_cast_or_null<FunctionDecl>(Dcl);
11920  if (!Fn) {
11921    Diag(DelLoc, diag::err_deleted_non_function);
11922    return;
11923  }
11924
11925  if (const FunctionDecl *Prev = Fn->getPreviousDecl()) {
11926    // Don't consider the implicit declaration we generate for explicit
11927    // specializations. FIXME: Do not generate these implicit declarations.
11928    if ((Prev->getTemplateSpecializationKind() != TSK_ExplicitSpecialization
11929        || Prev->getPreviousDecl()) && !Prev->isDefined()) {
11930      Diag(DelLoc, diag::err_deleted_decl_not_first);
11931      Diag(Prev->getLocation(), diag::note_previous_declaration);
11932    }
11933    // If the declaration wasn't the first, we delete the function anyway for
11934    // recovery.
11935    Fn = Fn->getCanonicalDecl();
11936  }
11937
11938  if (Fn->isDeleted())
11939    return;
11940
11941  // See if we're deleting a function which is already known to override a
11942  // non-deleted virtual function.
11943  if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Fn)) {
11944    bool IssuedDiagnostic = false;
11945    for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
11946                                        E = MD->end_overridden_methods();
11947         I != E; ++I) {
11948      if (!(*MD->begin_overridden_methods())->isDeleted()) {
11949        if (!IssuedDiagnostic) {
11950          Diag(DelLoc, diag::err_deleted_override) << MD->getDeclName();
11951          IssuedDiagnostic = true;
11952        }
11953        Diag((*I)->getLocation(), diag::note_overridden_virtual_function);
11954      }
11955    }
11956  }
11957
11958  Fn->setDeletedAsWritten();
11959}
11960
11961void Sema::SetDeclDefaulted(Decl *Dcl, SourceLocation DefaultLoc) {
11962  CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(Dcl);
11963
11964  if (MD) {
11965    if (MD->getParent()->isDependentType()) {
11966      MD->setDefaulted();
11967      MD->setExplicitlyDefaulted();
11968      return;
11969    }
11970
11971    CXXSpecialMember Member = getSpecialMember(MD);
11972    if (Member == CXXInvalid) {
11973      if (!MD->isInvalidDecl())
11974        Diag(DefaultLoc, diag::err_default_special_members);
11975      return;
11976    }
11977
11978    MD->setDefaulted();
11979    MD->setExplicitlyDefaulted();
11980
11981    // If this definition appears within the record, do the checking when
11982    // the record is complete.
11983    const FunctionDecl *Primary = MD;
11984    if (const FunctionDecl *Pattern = MD->getTemplateInstantiationPattern())
11985      // Find the uninstantiated declaration that actually had the '= default'
11986      // on it.
11987      Pattern->isDefined(Primary);
11988
11989    // If the method was defaulted on its first declaration, we will have
11990    // already performed the checking in CheckCompletedCXXClass. Such a
11991    // declaration doesn't trigger an implicit definition.
11992    if (Primary == Primary->getCanonicalDecl())
11993      return;
11994
11995    CheckExplicitlyDefaultedSpecialMember(MD);
11996
11997    // The exception specification is needed because we are defining the
11998    // function.
11999    ResolveExceptionSpec(DefaultLoc,
12000                         MD->getType()->castAs<FunctionProtoType>());
12001
12002    if (MD->isInvalidDecl())
12003      return;
12004
12005    switch (Member) {
12006    case CXXDefaultConstructor:
12007      DefineImplicitDefaultConstructor(DefaultLoc,
12008                                       cast<CXXConstructorDecl>(MD));
12009      break;
12010    case CXXCopyConstructor:
12011      DefineImplicitCopyConstructor(DefaultLoc, cast<CXXConstructorDecl>(MD));
12012      break;
12013    case CXXCopyAssignment:
12014      DefineImplicitCopyAssignment(DefaultLoc, MD);
12015      break;
12016    case CXXDestructor:
12017      DefineImplicitDestructor(DefaultLoc, cast<CXXDestructorDecl>(MD));
12018      break;
12019    case CXXMoveConstructor:
12020      DefineImplicitMoveConstructor(DefaultLoc, cast<CXXConstructorDecl>(MD));
12021      break;
12022    case CXXMoveAssignment:
12023      DefineImplicitMoveAssignment(DefaultLoc, MD);
12024      break;
12025    case CXXInvalid:
12026      llvm_unreachable("Invalid special member.");
12027    }
12028  } else {
12029    Diag(DefaultLoc, diag::err_default_special_members);
12030  }
12031}
12032
12033static void SearchForReturnInStmt(Sema &Self, Stmt *S) {
12034  for (Stmt::child_range CI = S->children(); CI; ++CI) {
12035    Stmt *SubStmt = *CI;
12036    if (!SubStmt)
12037      continue;
12038    if (isa<ReturnStmt>(SubStmt))
12039      Self.Diag(SubStmt->getLocStart(),
12040           diag::err_return_in_constructor_handler);
12041    if (!isa<Expr>(SubStmt))
12042      SearchForReturnInStmt(Self, SubStmt);
12043  }
12044}
12045
12046void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) {
12047  for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) {
12048    CXXCatchStmt *Handler = TryBlock->getHandler(I);
12049    SearchForReturnInStmt(*this, Handler);
12050  }
12051}
12052
12053bool Sema::CheckOverridingFunctionAttributes(const CXXMethodDecl *New,
12054                                             const CXXMethodDecl *Old) {
12055  const FunctionType *NewFT = New->getType()->getAs<FunctionType>();
12056  const FunctionType *OldFT = Old->getType()->getAs<FunctionType>();
12057
12058  CallingConv NewCC = NewFT->getCallConv(), OldCC = OldFT->getCallConv();
12059
12060  // If the calling conventions match, everything is fine
12061  if (NewCC == OldCC)
12062    return false;
12063
12064  Diag(New->getLocation(),
12065       diag::err_conflicting_overriding_cc_attributes)
12066    << New->getDeclName() << New->getType() << Old->getType();
12067  Diag(Old->getLocation(), diag::note_overridden_virtual_function);
12068  return true;
12069}
12070
12071bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New,
12072                                             const CXXMethodDecl *Old) {
12073  QualType NewTy = New->getType()->getAs<FunctionType>()->getResultType();
12074  QualType OldTy = Old->getType()->getAs<FunctionType>()->getResultType();
12075
12076  if (Context.hasSameType(NewTy, OldTy) ||
12077      NewTy->isDependentType() || OldTy->isDependentType())
12078    return false;
12079
12080  // Check if the return types are covariant
12081  QualType NewClassTy, OldClassTy;
12082
12083  /// Both types must be pointers or references to classes.
12084  if (const PointerType *NewPT = NewTy->getAs<PointerType>()) {
12085    if (const PointerType *OldPT = OldTy->getAs<PointerType>()) {
12086      NewClassTy = NewPT->getPointeeType();
12087      OldClassTy = OldPT->getPointeeType();
12088    }
12089  } else if (const ReferenceType *NewRT = NewTy->getAs<ReferenceType>()) {
12090    if (const ReferenceType *OldRT = OldTy->getAs<ReferenceType>()) {
12091      if (NewRT->getTypeClass() == OldRT->getTypeClass()) {
12092        NewClassTy = NewRT->getPointeeType();
12093        OldClassTy = OldRT->getPointeeType();
12094      }
12095    }
12096  }
12097
12098  // The return types aren't either both pointers or references to a class type.
12099  if (NewClassTy.isNull()) {
12100    Diag(New->getLocation(),
12101         diag::err_different_return_type_for_overriding_virtual_function)
12102      << New->getDeclName() << NewTy << OldTy;
12103    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
12104
12105    return true;
12106  }
12107
12108  // C++ [class.virtual]p6:
12109  //   If the return type of D::f differs from the return type of B::f, the
12110  //   class type in the return type of D::f shall be complete at the point of
12111  //   declaration of D::f or shall be the class type D.
12112  if (const RecordType *RT = NewClassTy->getAs<RecordType>()) {
12113    if (!RT->isBeingDefined() &&
12114        RequireCompleteType(New->getLocation(), NewClassTy,
12115                            diag::err_covariant_return_incomplete,
12116                            New->getDeclName()))
12117    return true;
12118  }
12119
12120  if (!Context.hasSameUnqualifiedType(NewClassTy, OldClassTy)) {
12121    // Check if the new class derives from the old class.
12122    if (!IsDerivedFrom(NewClassTy, OldClassTy)) {
12123      Diag(New->getLocation(),
12124           diag::err_covariant_return_not_derived)
12125      << New->getDeclName() << NewTy << OldTy;
12126      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
12127      return true;
12128    }
12129
12130    // Check if we the conversion from derived to base is valid.
12131    if (CheckDerivedToBaseConversion(NewClassTy, OldClassTy,
12132                    diag::err_covariant_return_inaccessible_base,
12133                    diag::err_covariant_return_ambiguous_derived_to_base_conv,
12134                    // FIXME: Should this point to the return type?
12135                    New->getLocation(), SourceRange(), New->getDeclName(), 0)) {
12136      // FIXME: this note won't trigger for delayed access control
12137      // diagnostics, and it's impossible to get an undelayed error
12138      // here from access control during the original parse because
12139      // the ParsingDeclSpec/ParsingDeclarator are still in scope.
12140      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
12141      return true;
12142    }
12143  }
12144
12145  // The qualifiers of the return types must be the same.
12146  if (NewTy.getLocalCVRQualifiers() != OldTy.getLocalCVRQualifiers()) {
12147    Diag(New->getLocation(),
12148         diag::err_covariant_return_type_different_qualifications)
12149    << New->getDeclName() << NewTy << OldTy;
12150    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
12151    return true;
12152  };
12153
12154
12155  // The new class type must have the same or less qualifiers as the old type.
12156  if (NewClassTy.isMoreQualifiedThan(OldClassTy)) {
12157    Diag(New->getLocation(),
12158         diag::err_covariant_return_type_class_type_more_qualified)
12159    << New->getDeclName() << NewTy << OldTy;
12160    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
12161    return true;
12162  };
12163
12164  return false;
12165}
12166
12167/// \brief Mark the given method pure.
12168///
12169/// \param Method the method to be marked pure.
12170///
12171/// \param InitRange the source range that covers the "0" initializer.
12172bool Sema::CheckPureMethod(CXXMethodDecl *Method, SourceRange InitRange) {
12173  SourceLocation EndLoc = InitRange.getEnd();
12174  if (EndLoc.isValid())
12175    Method->setRangeEnd(EndLoc);
12176
12177  if (Method->isVirtual() || Method->getParent()->isDependentContext()) {
12178    Method->setPure();
12179    return false;
12180  }
12181
12182  if (!Method->isInvalidDecl())
12183    Diag(Method->getLocation(), diag::err_non_virtual_pure)
12184      << Method->getDeclName() << InitRange;
12185  return true;
12186}
12187
12188/// \brief Determine whether the given declaration is a static data member.
12189static bool isStaticDataMember(const Decl *D) {
12190  if (const VarDecl *Var = dyn_cast_or_null<VarDecl>(D))
12191    return Var->isStaticDataMember();
12192
12193  return false;
12194}
12195
12196/// ActOnCXXEnterDeclInitializer - Invoked when we are about to parse
12197/// an initializer for the out-of-line declaration 'Dcl'.  The scope
12198/// is a fresh scope pushed for just this purpose.
12199///
12200/// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a
12201/// static data member of class X, names should be looked up in the scope of
12202/// class X.
12203void Sema::ActOnCXXEnterDeclInitializer(Scope *S, Decl *D) {
12204  // If there is no declaration, there was an error parsing it.
12205  if (D == 0 || D->isInvalidDecl()) return;
12206
12207  // We should only get called for declarations with scope specifiers, like:
12208  //   int foo::bar;
12209  assert(D->isOutOfLine());
12210  EnterDeclaratorContext(S, D->getDeclContext());
12211
12212  // If we are parsing the initializer for a static data member, push a
12213  // new expression evaluation context that is associated with this static
12214  // data member.
12215  if (isStaticDataMember(D))
12216    PushExpressionEvaluationContext(PotentiallyEvaluated, D);
12217}
12218
12219/// ActOnCXXExitDeclInitializer - Invoked after we are finished parsing an
12220/// initializer for the out-of-line declaration 'D'.
12221void Sema::ActOnCXXExitDeclInitializer(Scope *S, Decl *D) {
12222  // If there is no declaration, there was an error parsing it.
12223  if (D == 0 || D->isInvalidDecl()) return;
12224
12225  if (isStaticDataMember(D))
12226    PopExpressionEvaluationContext();
12227
12228  assert(D->isOutOfLine());
12229  ExitDeclaratorContext(S);
12230}
12231
12232/// ActOnCXXConditionDeclarationExpr - Parsed a condition declaration of a
12233/// C++ if/switch/while/for statement.
12234/// e.g: "if (int x = f()) {...}"
12235DeclResult Sema::ActOnCXXConditionDeclaration(Scope *S, Declarator &D) {
12236  // C++ 6.4p2:
12237  // The declarator shall not specify a function or an array.
12238  // The type-specifier-seq shall not contain typedef and shall not declare a
12239  // new class or enumeration.
12240  assert(D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
12241         "Parser allowed 'typedef' as storage class of condition decl.");
12242
12243  Decl *Dcl = ActOnDeclarator(S, D);
12244  if (!Dcl)
12245    return true;
12246
12247  if (isa<FunctionDecl>(Dcl)) { // The declarator shall not specify a function.
12248    Diag(Dcl->getLocation(), diag::err_invalid_use_of_function_type)
12249      << D.getSourceRange();
12250    return true;
12251  }
12252
12253  return Dcl;
12254}
12255
12256void Sema::LoadExternalVTableUses() {
12257  if (!ExternalSource)
12258    return;
12259
12260  SmallVector<ExternalVTableUse, 4> VTables;
12261  ExternalSource->ReadUsedVTables(VTables);
12262  SmallVector<VTableUse, 4> NewUses;
12263  for (unsigned I = 0, N = VTables.size(); I != N; ++I) {
12264    llvm::DenseMap<CXXRecordDecl *, bool>::iterator Pos
12265      = VTablesUsed.find(VTables[I].Record);
12266    // Even if a definition wasn't required before, it may be required now.
12267    if (Pos != VTablesUsed.end()) {
12268      if (!Pos->second && VTables[I].DefinitionRequired)
12269        Pos->second = true;
12270      continue;
12271    }
12272
12273    VTablesUsed[VTables[I].Record] = VTables[I].DefinitionRequired;
12274    NewUses.push_back(VTableUse(VTables[I].Record, VTables[I].Location));
12275  }
12276
12277  VTableUses.insert(VTableUses.begin(), NewUses.begin(), NewUses.end());
12278}
12279
12280void Sema::MarkVTableUsed(SourceLocation Loc, CXXRecordDecl *Class,
12281                          bool DefinitionRequired) {
12282  // Ignore any vtable uses in unevaluated operands or for classes that do
12283  // not have a vtable.
12284  if (!Class->isDynamicClass() || Class->isDependentContext() ||
12285      CurContext->isDependentContext() || isUnevaluatedContext())
12286    return;
12287
12288  // Try to insert this class into the map.
12289  LoadExternalVTableUses();
12290  Class = cast<CXXRecordDecl>(Class->getCanonicalDecl());
12291  std::pair<llvm::DenseMap<CXXRecordDecl *, bool>::iterator, bool>
12292    Pos = VTablesUsed.insert(std::make_pair(Class, DefinitionRequired));
12293  if (!Pos.second) {
12294    // If we already had an entry, check to see if we are promoting this vtable
12295    // to required a definition. If so, we need to reappend to the VTableUses
12296    // list, since we may have already processed the first entry.
12297    if (DefinitionRequired && !Pos.first->second) {
12298      Pos.first->second = true;
12299    } else {
12300      // Otherwise, we can early exit.
12301      return;
12302    }
12303  }
12304
12305  // Local classes need to have their virtual members marked
12306  // immediately. For all other classes, we mark their virtual members
12307  // at the end of the translation unit.
12308  if (Class->isLocalClass())
12309    MarkVirtualMembersReferenced(Loc, Class);
12310  else
12311    VTableUses.push_back(std::make_pair(Class, Loc));
12312}
12313
12314bool Sema::DefineUsedVTables() {
12315  LoadExternalVTableUses();
12316  if (VTableUses.empty())
12317    return false;
12318
12319  // Note: The VTableUses vector could grow as a result of marking
12320  // the members of a class as "used", so we check the size each
12321  // time through the loop and prefer indices (which are stable) to
12322  // iterators (which are not).
12323  bool DefinedAnything = false;
12324  for (unsigned I = 0; I != VTableUses.size(); ++I) {
12325    CXXRecordDecl *Class = VTableUses[I].first->getDefinition();
12326    if (!Class)
12327      continue;
12328
12329    SourceLocation Loc = VTableUses[I].second;
12330
12331    bool DefineVTable = true;
12332
12333    // If this class has a key function, but that key function is
12334    // defined in another translation unit, we don't need to emit the
12335    // vtable even though we're using it.
12336    const CXXMethodDecl *KeyFunction = Context.getCurrentKeyFunction(Class);
12337    if (KeyFunction && !KeyFunction->hasBody()) {
12338      // The key function is in another translation unit.
12339      DefineVTable = false;
12340      TemplateSpecializationKind TSK =
12341          KeyFunction->getTemplateSpecializationKind();
12342      assert(TSK != TSK_ExplicitInstantiationDefinition &&
12343             TSK != TSK_ImplicitInstantiation &&
12344             "Instantiations don't have key functions");
12345      (void)TSK;
12346    } else if (!KeyFunction) {
12347      // If we have a class with no key function that is the subject
12348      // of an explicit instantiation declaration, suppress the
12349      // vtable; it will live with the explicit instantiation
12350      // definition.
12351      bool IsExplicitInstantiationDeclaration
12352        = Class->getTemplateSpecializationKind()
12353                                      == TSK_ExplicitInstantiationDeclaration;
12354      for (TagDecl::redecl_iterator R = Class->redecls_begin(),
12355                                 REnd = Class->redecls_end();
12356           R != REnd; ++R) {
12357        TemplateSpecializationKind TSK
12358          = cast<CXXRecordDecl>(*R)->getTemplateSpecializationKind();
12359        if (TSK == TSK_ExplicitInstantiationDeclaration)
12360          IsExplicitInstantiationDeclaration = true;
12361        else if (TSK == TSK_ExplicitInstantiationDefinition) {
12362          IsExplicitInstantiationDeclaration = false;
12363          break;
12364        }
12365      }
12366
12367      if (IsExplicitInstantiationDeclaration)
12368        DefineVTable = false;
12369    }
12370
12371    // The exception specifications for all virtual members may be needed even
12372    // if we are not providing an authoritative form of the vtable in this TU.
12373    // We may choose to emit it available_externally anyway.
12374    if (!DefineVTable) {
12375      MarkVirtualMemberExceptionSpecsNeeded(Loc, Class);
12376      continue;
12377    }
12378
12379    // Mark all of the virtual members of this class as referenced, so
12380    // that we can build a vtable. Then, tell the AST consumer that a
12381    // vtable for this class is required.
12382    DefinedAnything = true;
12383    MarkVirtualMembersReferenced(Loc, Class);
12384    CXXRecordDecl *Canonical = cast<CXXRecordDecl>(Class->getCanonicalDecl());
12385    Consumer.HandleVTable(Class, VTablesUsed[Canonical]);
12386
12387    // Optionally warn if we're emitting a weak vtable.
12388    if (Class->isExternallyVisible() &&
12389        Class->getTemplateSpecializationKind() != TSK_ImplicitInstantiation) {
12390      const FunctionDecl *KeyFunctionDef = 0;
12391      if (!KeyFunction ||
12392          (KeyFunction->hasBody(KeyFunctionDef) &&
12393           KeyFunctionDef->isInlined()))
12394        Diag(Class->getLocation(), Class->getTemplateSpecializationKind() ==
12395             TSK_ExplicitInstantiationDefinition
12396             ? diag::warn_weak_template_vtable : diag::warn_weak_vtable)
12397          << Class;
12398    }
12399  }
12400  VTableUses.clear();
12401
12402  return DefinedAnything;
12403}
12404
12405void Sema::MarkVirtualMemberExceptionSpecsNeeded(SourceLocation Loc,
12406                                                 const CXXRecordDecl *RD) {
12407  for (CXXRecordDecl::method_iterator I = RD->method_begin(),
12408                                      E = RD->method_end(); I != E; ++I)
12409    if ((*I)->isVirtual() && !(*I)->isPure())
12410      ResolveExceptionSpec(Loc, (*I)->getType()->castAs<FunctionProtoType>());
12411}
12412
12413void Sema::MarkVirtualMembersReferenced(SourceLocation Loc,
12414                                        const CXXRecordDecl *RD) {
12415  // Mark all functions which will appear in RD's vtable as used.
12416  CXXFinalOverriderMap FinalOverriders;
12417  RD->getFinalOverriders(FinalOverriders);
12418  for (CXXFinalOverriderMap::const_iterator I = FinalOverriders.begin(),
12419                                            E = FinalOverriders.end();
12420       I != E; ++I) {
12421    for (OverridingMethods::const_iterator OI = I->second.begin(),
12422                                           OE = I->second.end();
12423         OI != OE; ++OI) {
12424      assert(OI->second.size() > 0 && "no final overrider");
12425      CXXMethodDecl *Overrider = OI->second.front().Method;
12426
12427      // C++ [basic.def.odr]p2:
12428      //   [...] A virtual member function is used if it is not pure. [...]
12429      if (!Overrider->isPure())
12430        MarkFunctionReferenced(Loc, Overrider);
12431    }
12432  }
12433
12434  // Only classes that have virtual bases need a VTT.
12435  if (RD->getNumVBases() == 0)
12436    return;
12437
12438  for (CXXRecordDecl::base_class_const_iterator i = RD->bases_begin(),
12439           e = RD->bases_end(); i != e; ++i) {
12440    const CXXRecordDecl *Base =
12441        cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
12442    if (Base->getNumVBases() == 0)
12443      continue;
12444    MarkVirtualMembersReferenced(Loc, Base);
12445  }
12446}
12447
12448/// SetIvarInitializers - This routine builds initialization ASTs for the
12449/// Objective-C implementation whose ivars need be initialized.
12450void Sema::SetIvarInitializers(ObjCImplementationDecl *ObjCImplementation) {
12451  if (!getLangOpts().CPlusPlus)
12452    return;
12453  if (ObjCInterfaceDecl *OID = ObjCImplementation->getClassInterface()) {
12454    SmallVector<ObjCIvarDecl*, 8> ivars;
12455    CollectIvarsToConstructOrDestruct(OID, ivars);
12456    if (ivars.empty())
12457      return;
12458    SmallVector<CXXCtorInitializer*, 32> AllToInit;
12459    for (unsigned i = 0; i < ivars.size(); i++) {
12460      FieldDecl *Field = ivars[i];
12461      if (Field->isInvalidDecl())
12462        continue;
12463
12464      CXXCtorInitializer *Member;
12465      InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field);
12466      InitializationKind InitKind =
12467        InitializationKind::CreateDefault(ObjCImplementation->getLocation());
12468
12469      InitializationSequence InitSeq(*this, InitEntity, InitKind, None);
12470      ExprResult MemberInit =
12471        InitSeq.Perform(*this, InitEntity, InitKind, None);
12472      MemberInit = MaybeCreateExprWithCleanups(MemberInit);
12473      // Note, MemberInit could actually come back empty if no initialization
12474      // is required (e.g., because it would call a trivial default constructor)
12475      if (!MemberInit.get() || MemberInit.isInvalid())
12476        continue;
12477
12478      Member =
12479        new (Context) CXXCtorInitializer(Context, Field, SourceLocation(),
12480                                         SourceLocation(),
12481                                         MemberInit.takeAs<Expr>(),
12482                                         SourceLocation());
12483      AllToInit.push_back(Member);
12484
12485      // Be sure that the destructor is accessible and is marked as referenced.
12486      if (const RecordType *RecordTy
12487                  = Context.getBaseElementType(Field->getType())
12488                                                        ->getAs<RecordType>()) {
12489                    CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl());
12490        if (CXXDestructorDecl *Destructor = LookupDestructor(RD)) {
12491          MarkFunctionReferenced(Field->getLocation(), Destructor);
12492          CheckDestructorAccess(Field->getLocation(), Destructor,
12493                            PDiag(diag::err_access_dtor_ivar)
12494                              << Context.getBaseElementType(Field->getType()));
12495        }
12496      }
12497    }
12498    ObjCImplementation->setIvarInitializers(Context,
12499                                            AllToInit.data(), AllToInit.size());
12500  }
12501}
12502
12503static
12504void DelegatingCycleHelper(CXXConstructorDecl* Ctor,
12505                           llvm::SmallSet<CXXConstructorDecl*, 4> &Valid,
12506                           llvm::SmallSet<CXXConstructorDecl*, 4> &Invalid,
12507                           llvm::SmallSet<CXXConstructorDecl*, 4> &Current,
12508                           Sema &S) {
12509  if (Ctor->isInvalidDecl())
12510    return;
12511
12512  CXXConstructorDecl *Target = Ctor->getTargetConstructor();
12513
12514  // Target may not be determinable yet, for instance if this is a dependent
12515  // call in an uninstantiated template.
12516  if (Target) {
12517    const FunctionDecl *FNTarget = 0;
12518    (void)Target->hasBody(FNTarget);
12519    Target = const_cast<CXXConstructorDecl*>(
12520      cast_or_null<CXXConstructorDecl>(FNTarget));
12521  }
12522
12523  CXXConstructorDecl *Canonical = Ctor->getCanonicalDecl(),
12524                     // Avoid dereferencing a null pointer here.
12525                     *TCanonical = Target ? Target->getCanonicalDecl() : 0;
12526
12527  if (!Current.insert(Canonical))
12528    return;
12529
12530  // We know that beyond here, we aren't chaining into a cycle.
12531  if (!Target || !Target->isDelegatingConstructor() ||
12532      Target->isInvalidDecl() || Valid.count(TCanonical)) {
12533    Valid.insert(Current.begin(), Current.end());
12534    Current.clear();
12535  // We've hit a cycle.
12536  } else if (TCanonical == Canonical || Invalid.count(TCanonical) ||
12537             Current.count(TCanonical)) {
12538    // If we haven't diagnosed this cycle yet, do so now.
12539    if (!Invalid.count(TCanonical)) {
12540      S.Diag((*Ctor->init_begin())->getSourceLocation(),
12541             diag::warn_delegating_ctor_cycle)
12542        << Ctor;
12543
12544      // Don't add a note for a function delegating directly to itself.
12545      if (TCanonical != Canonical)
12546        S.Diag(Target->getLocation(), diag::note_it_delegates_to);
12547
12548      CXXConstructorDecl *C = Target;
12549      while (C->getCanonicalDecl() != Canonical) {
12550        const FunctionDecl *FNTarget = 0;
12551        (void)C->getTargetConstructor()->hasBody(FNTarget);
12552        assert(FNTarget && "Ctor cycle through bodiless function");
12553
12554        C = const_cast<CXXConstructorDecl*>(
12555          cast<CXXConstructorDecl>(FNTarget));
12556        S.Diag(C->getLocation(), diag::note_which_delegates_to);
12557      }
12558    }
12559
12560    Invalid.insert(Current.begin(), Current.end());
12561    Current.clear();
12562  } else {
12563    DelegatingCycleHelper(Target, Valid, Invalid, Current, S);
12564  }
12565}
12566
12567
12568void Sema::CheckDelegatingCtorCycles() {
12569  llvm::SmallSet<CXXConstructorDecl*, 4> Valid, Invalid, Current;
12570
12571  for (DelegatingCtorDeclsType::iterator
12572         I = DelegatingCtorDecls.begin(ExternalSource),
12573         E = DelegatingCtorDecls.end();
12574       I != E; ++I)
12575    DelegatingCycleHelper(*I, Valid, Invalid, Current, *this);
12576
12577  for (llvm::SmallSet<CXXConstructorDecl *, 4>::iterator CI = Invalid.begin(),
12578                                                         CE = Invalid.end();
12579       CI != CE; ++CI)
12580    (*CI)->setInvalidDecl();
12581}
12582
12583namespace {
12584  /// \brief AST visitor that finds references to the 'this' expression.
12585  class FindCXXThisExpr : public RecursiveASTVisitor<FindCXXThisExpr> {
12586    Sema &S;
12587
12588  public:
12589    explicit FindCXXThisExpr(Sema &S) : S(S) { }
12590
12591    bool VisitCXXThisExpr(CXXThisExpr *E) {
12592      S.Diag(E->getLocation(), diag::err_this_static_member_func)
12593        << E->isImplicit();
12594      return false;
12595    }
12596  };
12597}
12598
12599bool Sema::checkThisInStaticMemberFunctionType(CXXMethodDecl *Method) {
12600  TypeSourceInfo *TSInfo = Method->getTypeSourceInfo();
12601  if (!TSInfo)
12602    return false;
12603
12604  TypeLoc TL = TSInfo->getTypeLoc();
12605  FunctionProtoTypeLoc ProtoTL = TL.getAs<FunctionProtoTypeLoc>();
12606  if (!ProtoTL)
12607    return false;
12608
12609  // C++11 [expr.prim.general]p3:
12610  //   [The expression this] shall not appear before the optional
12611  //   cv-qualifier-seq and it shall not appear within the declaration of a
12612  //   static member function (although its type and value category are defined
12613  //   within a static member function as they are within a non-static member
12614  //   function). [ Note: this is because declaration matching does not occur
12615  //  until the complete declarator is known. - end note ]
12616  const FunctionProtoType *Proto = ProtoTL.getTypePtr();
12617  FindCXXThisExpr Finder(*this);
12618
12619  // If the return type came after the cv-qualifier-seq, check it now.
12620  if (Proto->hasTrailingReturn() &&
12621      !Finder.TraverseTypeLoc(ProtoTL.getResultLoc()))
12622    return true;
12623
12624  // Check the exception specification.
12625  if (checkThisInStaticMemberFunctionExceptionSpec(Method))
12626    return true;
12627
12628  return checkThisInStaticMemberFunctionAttributes(Method);
12629}
12630
12631bool Sema::checkThisInStaticMemberFunctionExceptionSpec(CXXMethodDecl *Method) {
12632  TypeSourceInfo *TSInfo = Method->getTypeSourceInfo();
12633  if (!TSInfo)
12634    return false;
12635
12636  TypeLoc TL = TSInfo->getTypeLoc();
12637  FunctionProtoTypeLoc ProtoTL = TL.getAs<FunctionProtoTypeLoc>();
12638  if (!ProtoTL)
12639    return false;
12640
12641  const FunctionProtoType *Proto = ProtoTL.getTypePtr();
12642  FindCXXThisExpr Finder(*this);
12643
12644  switch (Proto->getExceptionSpecType()) {
12645  case EST_Uninstantiated:
12646  case EST_Unevaluated:
12647  case EST_BasicNoexcept:
12648  case EST_DynamicNone:
12649  case EST_MSAny:
12650  case EST_None:
12651    break;
12652
12653  case EST_ComputedNoexcept:
12654    if (!Finder.TraverseStmt(Proto->getNoexceptExpr()))
12655      return true;
12656
12657  case EST_Dynamic:
12658    for (FunctionProtoType::exception_iterator E = Proto->exception_begin(),
12659         EEnd = Proto->exception_end();
12660         E != EEnd; ++E) {
12661      if (!Finder.TraverseType(*E))
12662        return true;
12663    }
12664    break;
12665  }
12666
12667  return false;
12668}
12669
12670bool Sema::checkThisInStaticMemberFunctionAttributes(CXXMethodDecl *Method) {
12671  FindCXXThisExpr Finder(*this);
12672
12673  // Check attributes.
12674  for (Decl::attr_iterator A = Method->attr_begin(), AEnd = Method->attr_end();
12675       A != AEnd; ++A) {
12676    // FIXME: This should be emitted by tblgen.
12677    Expr *Arg = 0;
12678    ArrayRef<Expr *> Args;
12679    if (GuardedByAttr *G = dyn_cast<GuardedByAttr>(*A))
12680      Arg = G->getArg();
12681    else if (PtGuardedByAttr *G = dyn_cast<PtGuardedByAttr>(*A))
12682      Arg = G->getArg();
12683    else if (AcquiredAfterAttr *AA = dyn_cast<AcquiredAfterAttr>(*A))
12684      Args = ArrayRef<Expr *>(AA->args_begin(), AA->args_size());
12685    else if (AcquiredBeforeAttr *AB = dyn_cast<AcquiredBeforeAttr>(*A))
12686      Args = ArrayRef<Expr *>(AB->args_begin(), AB->args_size());
12687    else if (ExclusiveLockFunctionAttr *ELF
12688               = dyn_cast<ExclusiveLockFunctionAttr>(*A))
12689      Args = ArrayRef<Expr *>(ELF->args_begin(), ELF->args_size());
12690    else if (SharedLockFunctionAttr *SLF
12691               = dyn_cast<SharedLockFunctionAttr>(*A))
12692      Args = ArrayRef<Expr *>(SLF->args_begin(), SLF->args_size());
12693    else if (ExclusiveTrylockFunctionAttr *ETLF
12694               = dyn_cast<ExclusiveTrylockFunctionAttr>(*A)) {
12695      Arg = ETLF->getSuccessValue();
12696      Args = ArrayRef<Expr *>(ETLF->args_begin(), ETLF->args_size());
12697    } else if (SharedTrylockFunctionAttr *STLF
12698                 = dyn_cast<SharedTrylockFunctionAttr>(*A)) {
12699      Arg = STLF->getSuccessValue();
12700      Args = ArrayRef<Expr *>(STLF->args_begin(), STLF->args_size());
12701    } else if (UnlockFunctionAttr *UF = dyn_cast<UnlockFunctionAttr>(*A))
12702      Args = ArrayRef<Expr *>(UF->args_begin(), UF->args_size());
12703    else if (LockReturnedAttr *LR = dyn_cast<LockReturnedAttr>(*A))
12704      Arg = LR->getArg();
12705    else if (LocksExcludedAttr *LE = dyn_cast<LocksExcludedAttr>(*A))
12706      Args = ArrayRef<Expr *>(LE->args_begin(), LE->args_size());
12707    else if (ExclusiveLocksRequiredAttr *ELR
12708               = dyn_cast<ExclusiveLocksRequiredAttr>(*A))
12709      Args = ArrayRef<Expr *>(ELR->args_begin(), ELR->args_size());
12710    else if (SharedLocksRequiredAttr *SLR
12711               = dyn_cast<SharedLocksRequiredAttr>(*A))
12712      Args = ArrayRef<Expr *>(SLR->args_begin(), SLR->args_size());
12713
12714    if (Arg && !Finder.TraverseStmt(Arg))
12715      return true;
12716
12717    for (unsigned I = 0, N = Args.size(); I != N; ++I) {
12718      if (!Finder.TraverseStmt(Args[I]))
12719        return true;
12720    }
12721  }
12722
12723  return false;
12724}
12725
12726void
12727Sema::checkExceptionSpecification(ExceptionSpecificationType EST,
12728                                  ArrayRef<ParsedType> DynamicExceptions,
12729                                  ArrayRef<SourceRange> DynamicExceptionRanges,
12730                                  Expr *NoexceptExpr,
12731                                  SmallVectorImpl<QualType> &Exceptions,
12732                                  FunctionProtoType::ExtProtoInfo &EPI) {
12733  Exceptions.clear();
12734  EPI.ExceptionSpecType = EST;
12735  if (EST == EST_Dynamic) {
12736    Exceptions.reserve(DynamicExceptions.size());
12737    for (unsigned ei = 0, ee = DynamicExceptions.size(); ei != ee; ++ei) {
12738      // FIXME: Preserve type source info.
12739      QualType ET = GetTypeFromParser(DynamicExceptions[ei]);
12740
12741      SmallVector<UnexpandedParameterPack, 2> Unexpanded;
12742      collectUnexpandedParameterPacks(ET, Unexpanded);
12743      if (!Unexpanded.empty()) {
12744        DiagnoseUnexpandedParameterPacks(DynamicExceptionRanges[ei].getBegin(),
12745                                         UPPC_ExceptionType,
12746                                         Unexpanded);
12747        continue;
12748      }
12749
12750      // Check that the type is valid for an exception spec, and
12751      // drop it if not.
12752      if (!CheckSpecifiedExceptionType(ET, DynamicExceptionRanges[ei]))
12753        Exceptions.push_back(ET);
12754    }
12755    EPI.NumExceptions = Exceptions.size();
12756    EPI.Exceptions = Exceptions.data();
12757    return;
12758  }
12759
12760  if (EST == EST_ComputedNoexcept) {
12761    // If an error occurred, there's no expression here.
12762    if (NoexceptExpr) {
12763      assert((NoexceptExpr->isTypeDependent() ||
12764              NoexceptExpr->getType()->getCanonicalTypeUnqualified() ==
12765              Context.BoolTy) &&
12766             "Parser should have made sure that the expression is boolean");
12767      if (NoexceptExpr && DiagnoseUnexpandedParameterPack(NoexceptExpr)) {
12768        EPI.ExceptionSpecType = EST_BasicNoexcept;
12769        return;
12770      }
12771
12772      if (!NoexceptExpr->isValueDependent())
12773        NoexceptExpr = VerifyIntegerConstantExpression(NoexceptExpr, 0,
12774                         diag::err_noexcept_needs_constant_expression,
12775                         /*AllowFold*/ false).take();
12776      EPI.NoexceptExpr = NoexceptExpr;
12777    }
12778    return;
12779  }
12780}
12781
12782/// IdentifyCUDATarget - Determine the CUDA compilation target for this function
12783Sema::CUDAFunctionTarget Sema::IdentifyCUDATarget(const FunctionDecl *D) {
12784  // Implicitly declared functions (e.g. copy constructors) are
12785  // __host__ __device__
12786  if (D->isImplicit())
12787    return CFT_HostDevice;
12788
12789  if (D->hasAttr<CUDAGlobalAttr>())
12790    return CFT_Global;
12791
12792  if (D->hasAttr<CUDADeviceAttr>()) {
12793    if (D->hasAttr<CUDAHostAttr>())
12794      return CFT_HostDevice;
12795    return CFT_Device;
12796  }
12797
12798  return CFT_Host;
12799}
12800
12801bool Sema::CheckCUDATarget(CUDAFunctionTarget CallerTarget,
12802                           CUDAFunctionTarget CalleeTarget) {
12803  // CUDA B.1.1 "The __device__ qualifier declares a function that is...
12804  // Callable from the device only."
12805  if (CallerTarget == CFT_Host && CalleeTarget == CFT_Device)
12806    return true;
12807
12808  // CUDA B.1.2 "The __global__ qualifier declares a function that is...
12809  // Callable from the host only."
12810  // CUDA B.1.3 "The __host__ qualifier declares a function that is...
12811  // Callable from the host only."
12812  if ((CallerTarget == CFT_Device || CallerTarget == CFT_Global) &&
12813      (CalleeTarget == CFT_Host || CalleeTarget == CFT_Global))
12814    return true;
12815
12816  if (CallerTarget == CFT_HostDevice && CalleeTarget != CFT_HostDevice)
12817    return true;
12818
12819  return false;
12820}
12821
12822/// HandleMSProperty - Analyze a __delcspec(property) field of a C++ class.
12823///
12824MSPropertyDecl *Sema::HandleMSProperty(Scope *S, RecordDecl *Record,
12825                                       SourceLocation DeclStart,
12826                                       Declarator &D, Expr *BitWidth,
12827                                       InClassInitStyle InitStyle,
12828                                       AccessSpecifier AS,
12829                                       AttributeList *MSPropertyAttr) {
12830  IdentifierInfo *II = D.getIdentifier();
12831  if (!II) {
12832    Diag(DeclStart, diag::err_anonymous_property);
12833    return NULL;
12834  }
12835  SourceLocation Loc = D.getIdentifierLoc();
12836
12837  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
12838  QualType T = TInfo->getType();
12839  if (getLangOpts().CPlusPlus) {
12840    CheckExtraCXXDefaultArguments(D);
12841
12842    if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
12843                                        UPPC_DataMemberType)) {
12844      D.setInvalidType();
12845      T = Context.IntTy;
12846      TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
12847    }
12848  }
12849
12850  DiagnoseFunctionSpecifiers(D.getDeclSpec());
12851
12852  if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec())
12853    Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
12854         diag::err_invalid_thread)
12855      << DeclSpec::getSpecifierName(TSCS);
12856
12857  // Check to see if this name was declared as a member previously
12858  NamedDecl *PrevDecl = 0;
12859  LookupResult Previous(*this, II, Loc, LookupMemberName, ForRedeclaration);
12860  LookupName(Previous, S);
12861  switch (Previous.getResultKind()) {
12862  case LookupResult::Found:
12863  case LookupResult::FoundUnresolvedValue:
12864    PrevDecl = Previous.getAsSingle<NamedDecl>();
12865    break;
12866
12867  case LookupResult::FoundOverloaded:
12868    PrevDecl = Previous.getRepresentativeDecl();
12869    break;
12870
12871  case LookupResult::NotFound:
12872  case LookupResult::NotFoundInCurrentInstantiation:
12873  case LookupResult::Ambiguous:
12874    break;
12875  }
12876
12877  if (PrevDecl && PrevDecl->isTemplateParameter()) {
12878    // Maybe we will complain about the shadowed template parameter.
12879    DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
12880    // Just pretend that we didn't see the previous declaration.
12881    PrevDecl = 0;
12882  }
12883
12884  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
12885    PrevDecl = 0;
12886
12887  SourceLocation TSSL = D.getLocStart();
12888  MSPropertyDecl *NewPD;
12889  const AttributeList::PropertyData &Data = MSPropertyAttr->getPropertyData();
12890  NewPD = new (Context) MSPropertyDecl(Record, Loc,
12891                                       II, T, TInfo, TSSL,
12892                                       Data.GetterId, Data.SetterId);
12893  ProcessDeclAttributes(TUScope, NewPD, D);
12894  NewPD->setAccess(AS);
12895
12896  if (NewPD->isInvalidDecl())
12897    Record->setInvalidDecl();
12898
12899  if (D.getDeclSpec().isModulePrivateSpecified())
12900    NewPD->setModulePrivate();
12901
12902  if (NewPD->isInvalidDecl() && PrevDecl) {
12903    // Don't introduce NewFD into scope; there's already something
12904    // with the same name in the same scope.
12905  } else if (II) {
12906    PushOnScopeChains(NewPD, S);
12907  } else
12908    Record->addDecl(NewPD);
12909
12910  return NewPD;
12911}
12912