SemaDeclCXX.cpp revision bebf5b1bcfbf591dd3cd80c4aebd6486bb34f41c
1//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for C++ declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/AST/ASTConsumer.h"
16#include "clang/AST/ASTContext.h"
17#include "clang/AST/ASTMutationListener.h"
18#include "clang/AST/CXXInheritance.h"
19#include "clang/AST/CharUnits.h"
20#include "clang/AST/DeclVisitor.h"
21#include "clang/AST/EvaluatedExprVisitor.h"
22#include "clang/AST/ExprCXX.h"
23#include "clang/AST/RecordLayout.h"
24#include "clang/AST/RecursiveASTVisitor.h"
25#include "clang/AST/StmtVisitor.h"
26#include "clang/AST/TypeLoc.h"
27#include "clang/AST/TypeOrdering.h"
28#include "clang/Basic/PartialDiagnostic.h"
29#include "clang/Basic/TargetInfo.h"
30#include "clang/Lex/Preprocessor.h"
31#include "clang/Sema/CXXFieldCollector.h"
32#include "clang/Sema/DeclSpec.h"
33#include "clang/Sema/Initialization.h"
34#include "clang/Sema/Lookup.h"
35#include "clang/Sema/ParsedTemplate.h"
36#include "clang/Sema/Scope.h"
37#include "clang/Sema/ScopeInfo.h"
38#include "llvm/ADT/STLExtras.h"
39#include "llvm/ADT/SmallString.h"
40#include <map>
41#include <set>
42
43using namespace clang;
44
45//===----------------------------------------------------------------------===//
46// CheckDefaultArgumentVisitor
47//===----------------------------------------------------------------------===//
48
49namespace {
50  /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
51  /// the default argument of a parameter to determine whether it
52  /// contains any ill-formed subexpressions. For example, this will
53  /// diagnose the use of local variables or parameters within the
54  /// default argument expression.
55  class CheckDefaultArgumentVisitor
56    : public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
57    Expr *DefaultArg;
58    Sema *S;
59
60  public:
61    CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
62      : DefaultArg(defarg), S(s) {}
63
64    bool VisitExpr(Expr *Node);
65    bool VisitDeclRefExpr(DeclRefExpr *DRE);
66    bool VisitCXXThisExpr(CXXThisExpr *ThisE);
67    bool VisitLambdaExpr(LambdaExpr *Lambda);
68    bool VisitPseudoObjectExpr(PseudoObjectExpr *POE);
69  };
70
71  /// VisitExpr - Visit all of the children of this expression.
72  bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
73    bool IsInvalid = false;
74    for (Stmt::child_range I = Node->children(); I; ++I)
75      IsInvalid |= Visit(*I);
76    return IsInvalid;
77  }
78
79  /// VisitDeclRefExpr - Visit a reference to a declaration, to
80  /// determine whether this declaration can be used in the default
81  /// argument expression.
82  bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
83    NamedDecl *Decl = DRE->getDecl();
84    if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
85      // C++ [dcl.fct.default]p9
86      //   Default arguments are evaluated each time the function is
87      //   called. The order of evaluation of function arguments is
88      //   unspecified. Consequently, parameters of a function shall not
89      //   be used in default argument expressions, even if they are not
90      //   evaluated. Parameters of a function declared before a default
91      //   argument expression are in scope and can hide namespace and
92      //   class member names.
93      return S->Diag(DRE->getLocStart(),
94                     diag::err_param_default_argument_references_param)
95         << Param->getDeclName() << DefaultArg->getSourceRange();
96    } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
97      // C++ [dcl.fct.default]p7
98      //   Local variables shall not be used in default argument
99      //   expressions.
100      if (VDecl->isLocalVarDecl())
101        return S->Diag(DRE->getLocStart(),
102                       diag::err_param_default_argument_references_local)
103          << VDecl->getDeclName() << DefaultArg->getSourceRange();
104    }
105
106    return false;
107  }
108
109  /// VisitCXXThisExpr - Visit a C++ "this" expression.
110  bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
111    // C++ [dcl.fct.default]p8:
112    //   The keyword this shall not be used in a default argument of a
113    //   member function.
114    return S->Diag(ThisE->getLocStart(),
115                   diag::err_param_default_argument_references_this)
116               << ThisE->getSourceRange();
117  }
118
119  bool CheckDefaultArgumentVisitor::VisitPseudoObjectExpr(PseudoObjectExpr *POE) {
120    bool Invalid = false;
121    for (PseudoObjectExpr::semantics_iterator
122           i = POE->semantics_begin(), e = POE->semantics_end(); i != e; ++i) {
123      Expr *E = *i;
124
125      // Look through bindings.
126      if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(E)) {
127        E = OVE->getSourceExpr();
128        assert(E && "pseudo-object binding without source expression?");
129      }
130
131      Invalid |= Visit(E);
132    }
133    return Invalid;
134  }
135
136  bool CheckDefaultArgumentVisitor::VisitLambdaExpr(LambdaExpr *Lambda) {
137    // C++11 [expr.lambda.prim]p13:
138    //   A lambda-expression appearing in a default argument shall not
139    //   implicitly or explicitly capture any entity.
140    if (Lambda->capture_begin() == Lambda->capture_end())
141      return false;
142
143    return S->Diag(Lambda->getLocStart(),
144                   diag::err_lambda_capture_default_arg);
145  }
146}
147
148void
149Sema::ImplicitExceptionSpecification::CalledDecl(SourceLocation CallLoc,
150                                                 const CXXMethodDecl *Method) {
151  // If we have an MSAny spec already, don't bother.
152  if (!Method || ComputedEST == EST_MSAny)
153    return;
154
155  const FunctionProtoType *Proto
156    = Method->getType()->getAs<FunctionProtoType>();
157  Proto = Self->ResolveExceptionSpec(CallLoc, Proto);
158  if (!Proto)
159    return;
160
161  ExceptionSpecificationType EST = Proto->getExceptionSpecType();
162
163  // If this function can throw any exceptions, make a note of that.
164  if (EST == EST_MSAny || EST == EST_None) {
165    ClearExceptions();
166    ComputedEST = EST;
167    return;
168  }
169
170  // FIXME: If the call to this decl is using any of its default arguments, we
171  // need to search them for potentially-throwing calls.
172
173  // If this function has a basic noexcept, it doesn't affect the outcome.
174  if (EST == EST_BasicNoexcept)
175    return;
176
177  // If we have a throw-all spec at this point, ignore the function.
178  if (ComputedEST == EST_None)
179    return;
180
181  // If we're still at noexcept(true) and there's a nothrow() callee,
182  // change to that specification.
183  if (EST == EST_DynamicNone) {
184    if (ComputedEST == EST_BasicNoexcept)
185      ComputedEST = EST_DynamicNone;
186    return;
187  }
188
189  // Check out noexcept specs.
190  if (EST == EST_ComputedNoexcept) {
191    FunctionProtoType::NoexceptResult NR =
192        Proto->getNoexceptSpec(Self->Context);
193    assert(NR != FunctionProtoType::NR_NoNoexcept &&
194           "Must have noexcept result for EST_ComputedNoexcept.");
195    assert(NR != FunctionProtoType::NR_Dependent &&
196           "Should not generate implicit declarations for dependent cases, "
197           "and don't know how to handle them anyway.");
198
199    // noexcept(false) -> no spec on the new function
200    if (NR == FunctionProtoType::NR_Throw) {
201      ClearExceptions();
202      ComputedEST = EST_None;
203    }
204    // noexcept(true) won't change anything either.
205    return;
206  }
207
208  assert(EST == EST_Dynamic && "EST case not considered earlier.");
209  assert(ComputedEST != EST_None &&
210         "Shouldn't collect exceptions when throw-all is guaranteed.");
211  ComputedEST = EST_Dynamic;
212  // Record the exceptions in this function's exception specification.
213  for (FunctionProtoType::exception_iterator E = Proto->exception_begin(),
214                                          EEnd = Proto->exception_end();
215       E != EEnd; ++E)
216    if (ExceptionsSeen.insert(Self->Context.getCanonicalType(*E)))
217      Exceptions.push_back(*E);
218}
219
220void Sema::ImplicitExceptionSpecification::CalledExpr(Expr *E) {
221  if (!E || ComputedEST == EST_MSAny)
222    return;
223
224  // FIXME:
225  //
226  // C++0x [except.spec]p14:
227  //   [An] implicit exception-specification specifies the type-id T if and
228  // only if T is allowed by the exception-specification of a function directly
229  // invoked by f's implicit definition; f shall allow all exceptions if any
230  // function it directly invokes allows all exceptions, and f shall allow no
231  // exceptions if every function it directly invokes allows no exceptions.
232  //
233  // Note in particular that if an implicit exception-specification is generated
234  // for a function containing a throw-expression, that specification can still
235  // be noexcept(true).
236  //
237  // Note also that 'directly invoked' is not defined in the standard, and there
238  // is no indication that we should only consider potentially-evaluated calls.
239  //
240  // Ultimately we should implement the intent of the standard: the exception
241  // specification should be the set of exceptions which can be thrown by the
242  // implicit definition. For now, we assume that any non-nothrow expression can
243  // throw any exception.
244
245  if (Self->canThrow(E))
246    ComputedEST = EST_None;
247}
248
249bool
250Sema::SetParamDefaultArgument(ParmVarDecl *Param, Expr *Arg,
251                              SourceLocation EqualLoc) {
252  if (RequireCompleteType(Param->getLocation(), Param->getType(),
253                          diag::err_typecheck_decl_incomplete_type)) {
254    Param->setInvalidDecl();
255    return true;
256  }
257
258  // C++ [dcl.fct.default]p5
259  //   A default argument expression is implicitly converted (clause
260  //   4) to the parameter type. The default argument expression has
261  //   the same semantic constraints as the initializer expression in
262  //   a declaration of a variable of the parameter type, using the
263  //   copy-initialization semantics (8.5).
264  InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
265                                                                    Param);
266  InitializationKind Kind = InitializationKind::CreateCopy(Param->getLocation(),
267                                                           EqualLoc);
268  InitializationSequence InitSeq(*this, Entity, Kind, &Arg, 1);
269  ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Arg);
270  if (Result.isInvalid())
271    return true;
272  Arg = Result.takeAs<Expr>();
273
274  CheckCompletedExpr(Arg, EqualLoc);
275  Arg = MaybeCreateExprWithCleanups(Arg);
276
277  // Okay: add the default argument to the parameter
278  Param->setDefaultArg(Arg);
279
280  // We have already instantiated this parameter; provide each of the
281  // instantiations with the uninstantiated default argument.
282  UnparsedDefaultArgInstantiationsMap::iterator InstPos
283    = UnparsedDefaultArgInstantiations.find(Param);
284  if (InstPos != UnparsedDefaultArgInstantiations.end()) {
285    for (unsigned I = 0, N = InstPos->second.size(); I != N; ++I)
286      InstPos->second[I]->setUninstantiatedDefaultArg(Arg);
287
288    // We're done tracking this parameter's instantiations.
289    UnparsedDefaultArgInstantiations.erase(InstPos);
290  }
291
292  return false;
293}
294
295/// ActOnParamDefaultArgument - Check whether the default argument
296/// provided for a function parameter is well-formed. If so, attach it
297/// to the parameter declaration.
298void
299Sema::ActOnParamDefaultArgument(Decl *param, SourceLocation EqualLoc,
300                                Expr *DefaultArg) {
301  if (!param || !DefaultArg)
302    return;
303
304  ParmVarDecl *Param = cast<ParmVarDecl>(param);
305  UnparsedDefaultArgLocs.erase(Param);
306
307  // Default arguments are only permitted in C++
308  if (!getLangOpts().CPlusPlus) {
309    Diag(EqualLoc, diag::err_param_default_argument)
310      << DefaultArg->getSourceRange();
311    Param->setInvalidDecl();
312    return;
313  }
314
315  // Check for unexpanded parameter packs.
316  if (DiagnoseUnexpandedParameterPack(DefaultArg, UPPC_DefaultArgument)) {
317    Param->setInvalidDecl();
318    return;
319  }
320
321  // Check that the default argument is well-formed
322  CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg, this);
323  if (DefaultArgChecker.Visit(DefaultArg)) {
324    Param->setInvalidDecl();
325    return;
326  }
327
328  SetParamDefaultArgument(Param, DefaultArg, EqualLoc);
329}
330
331/// ActOnParamUnparsedDefaultArgument - We've seen a default
332/// argument for a function parameter, but we can't parse it yet
333/// because we're inside a class definition. Note that this default
334/// argument will be parsed later.
335void Sema::ActOnParamUnparsedDefaultArgument(Decl *param,
336                                             SourceLocation EqualLoc,
337                                             SourceLocation ArgLoc) {
338  if (!param)
339    return;
340
341  ParmVarDecl *Param = cast<ParmVarDecl>(param);
342  if (Param)
343    Param->setUnparsedDefaultArg();
344
345  UnparsedDefaultArgLocs[Param] = ArgLoc;
346}
347
348/// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
349/// the default argument for the parameter param failed.
350void Sema::ActOnParamDefaultArgumentError(Decl *param) {
351  if (!param)
352    return;
353
354  ParmVarDecl *Param = cast<ParmVarDecl>(param);
355
356  Param->setInvalidDecl();
357
358  UnparsedDefaultArgLocs.erase(Param);
359}
360
361/// CheckExtraCXXDefaultArguments - Check for any extra default
362/// arguments in the declarator, which is not a function declaration
363/// or definition and therefore is not permitted to have default
364/// arguments. This routine should be invoked for every declarator
365/// that is not a function declaration or definition.
366void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
367  // C++ [dcl.fct.default]p3
368  //   A default argument expression shall be specified only in the
369  //   parameter-declaration-clause of a function declaration or in a
370  //   template-parameter (14.1). It shall not be specified for a
371  //   parameter pack. If it is specified in a
372  //   parameter-declaration-clause, it shall not occur within a
373  //   declarator or abstract-declarator of a parameter-declaration.
374  bool MightBeFunction = D.isFunctionDeclarationContext();
375  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
376    DeclaratorChunk &chunk = D.getTypeObject(i);
377    if (chunk.Kind == DeclaratorChunk::Function) {
378      if (MightBeFunction) {
379        // This is a function declaration. It can have default arguments, but
380        // keep looking in case its return type is a function type with default
381        // arguments.
382        MightBeFunction = false;
383        continue;
384      }
385      for (unsigned argIdx = 0, e = chunk.Fun.NumArgs; argIdx != e; ++argIdx) {
386        ParmVarDecl *Param =
387          cast<ParmVarDecl>(chunk.Fun.ArgInfo[argIdx].Param);
388        if (Param->hasUnparsedDefaultArg()) {
389          CachedTokens *Toks = chunk.Fun.ArgInfo[argIdx].DefaultArgTokens;
390          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
391            << SourceRange((*Toks)[1].getLocation(),
392                           Toks->back().getLocation());
393          delete Toks;
394          chunk.Fun.ArgInfo[argIdx].DefaultArgTokens = 0;
395        } else if (Param->getDefaultArg()) {
396          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
397            << Param->getDefaultArg()->getSourceRange();
398          Param->setDefaultArg(0);
399        }
400      }
401    } else if (chunk.Kind != DeclaratorChunk::Paren) {
402      MightBeFunction = false;
403    }
404  }
405}
406
407/// MergeCXXFunctionDecl - Merge two declarations of the same C++
408/// function, once we already know that they have the same
409/// type. Subroutine of MergeFunctionDecl. Returns true if there was an
410/// error, false otherwise.
411bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old,
412                                Scope *S) {
413  bool Invalid = false;
414
415  // C++ [dcl.fct.default]p4:
416  //   For non-template functions, default arguments can be added in
417  //   later declarations of a function in the same
418  //   scope. Declarations in different scopes have completely
419  //   distinct sets of default arguments. That is, declarations in
420  //   inner scopes do not acquire default arguments from
421  //   declarations in outer scopes, and vice versa. In a given
422  //   function declaration, all parameters subsequent to a
423  //   parameter with a default argument shall have default
424  //   arguments supplied in this or previous declarations. A
425  //   default argument shall not be redefined by a later
426  //   declaration (not even to the same value).
427  //
428  // C++ [dcl.fct.default]p6:
429  //   Except for member functions of class templates, the default arguments
430  //   in a member function definition that appears outside of the class
431  //   definition are added to the set of default arguments provided by the
432  //   member function declaration in the class definition.
433  for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) {
434    ParmVarDecl *OldParam = Old->getParamDecl(p);
435    ParmVarDecl *NewParam = New->getParamDecl(p);
436
437    bool OldParamHasDfl = OldParam->hasDefaultArg();
438    bool NewParamHasDfl = NewParam->hasDefaultArg();
439
440    NamedDecl *ND = Old;
441    if (S && !isDeclInScope(ND, New->getDeclContext(), S))
442      // Ignore default parameters of old decl if they are not in
443      // the same scope.
444      OldParamHasDfl = false;
445
446    if (OldParamHasDfl && NewParamHasDfl) {
447
448      unsigned DiagDefaultParamID =
449        diag::err_param_default_argument_redefinition;
450
451      // MSVC accepts that default parameters be redefined for member functions
452      // of template class. The new default parameter's value is ignored.
453      Invalid = true;
454      if (getLangOpts().MicrosoftExt) {
455        CXXMethodDecl* MD = dyn_cast<CXXMethodDecl>(New);
456        if (MD && MD->getParent()->getDescribedClassTemplate()) {
457          // Merge the old default argument into the new parameter.
458          NewParam->setHasInheritedDefaultArg();
459          if (OldParam->hasUninstantiatedDefaultArg())
460            NewParam->setUninstantiatedDefaultArg(
461                                      OldParam->getUninstantiatedDefaultArg());
462          else
463            NewParam->setDefaultArg(OldParam->getInit());
464          DiagDefaultParamID = diag::warn_param_default_argument_redefinition;
465          Invalid = false;
466        }
467      }
468
469      // FIXME: If we knew where the '=' was, we could easily provide a fix-it
470      // hint here. Alternatively, we could walk the type-source information
471      // for NewParam to find the last source location in the type... but it
472      // isn't worth the effort right now. This is the kind of test case that
473      // is hard to get right:
474      //   int f(int);
475      //   void g(int (*fp)(int) = f);
476      //   void g(int (*fp)(int) = &f);
477      Diag(NewParam->getLocation(), DiagDefaultParamID)
478        << NewParam->getDefaultArgRange();
479
480      // Look for the function declaration where the default argument was
481      // actually written, which may be a declaration prior to Old.
482      for (FunctionDecl *Older = Old->getPreviousDecl();
483           Older; Older = Older->getPreviousDecl()) {
484        if (!Older->getParamDecl(p)->hasDefaultArg())
485          break;
486
487        OldParam = Older->getParamDecl(p);
488      }
489
490      Diag(OldParam->getLocation(), diag::note_previous_definition)
491        << OldParam->getDefaultArgRange();
492    } else if (OldParamHasDfl) {
493      // Merge the old default argument into the new parameter.
494      // It's important to use getInit() here;  getDefaultArg()
495      // strips off any top-level ExprWithCleanups.
496      NewParam->setHasInheritedDefaultArg();
497      if (OldParam->hasUninstantiatedDefaultArg())
498        NewParam->setUninstantiatedDefaultArg(
499                                      OldParam->getUninstantiatedDefaultArg());
500      else
501        NewParam->setDefaultArg(OldParam->getInit());
502    } else if (NewParamHasDfl) {
503      if (New->getDescribedFunctionTemplate()) {
504        // Paragraph 4, quoted above, only applies to non-template functions.
505        Diag(NewParam->getLocation(),
506             diag::err_param_default_argument_template_redecl)
507          << NewParam->getDefaultArgRange();
508        Diag(Old->getLocation(), diag::note_template_prev_declaration)
509          << false;
510      } else if (New->getTemplateSpecializationKind()
511                   != TSK_ImplicitInstantiation &&
512                 New->getTemplateSpecializationKind() != TSK_Undeclared) {
513        // C++ [temp.expr.spec]p21:
514        //   Default function arguments shall not be specified in a declaration
515        //   or a definition for one of the following explicit specializations:
516        //     - the explicit specialization of a function template;
517        //     - the explicit specialization of a member function template;
518        //     - the explicit specialization of a member function of a class
519        //       template where the class template specialization to which the
520        //       member function specialization belongs is implicitly
521        //       instantiated.
522        Diag(NewParam->getLocation(), diag::err_template_spec_default_arg)
523          << (New->getTemplateSpecializationKind() ==TSK_ExplicitSpecialization)
524          << New->getDeclName()
525          << NewParam->getDefaultArgRange();
526      } else if (New->getDeclContext()->isDependentContext()) {
527        // C++ [dcl.fct.default]p6 (DR217):
528        //   Default arguments for a member function of a class template shall
529        //   be specified on the initial declaration of the member function
530        //   within the class template.
531        //
532        // Reading the tea leaves a bit in DR217 and its reference to DR205
533        // leads me to the conclusion that one cannot add default function
534        // arguments for an out-of-line definition of a member function of a
535        // dependent type.
536        int WhichKind = 2;
537        if (CXXRecordDecl *Record
538              = dyn_cast<CXXRecordDecl>(New->getDeclContext())) {
539          if (Record->getDescribedClassTemplate())
540            WhichKind = 0;
541          else if (isa<ClassTemplatePartialSpecializationDecl>(Record))
542            WhichKind = 1;
543          else
544            WhichKind = 2;
545        }
546
547        Diag(NewParam->getLocation(),
548             diag::err_param_default_argument_member_template_redecl)
549          << WhichKind
550          << NewParam->getDefaultArgRange();
551      }
552    }
553  }
554
555  // DR1344: If a default argument is added outside a class definition and that
556  // default argument makes the function a special member function, the program
557  // is ill-formed. This can only happen for constructors.
558  if (isa<CXXConstructorDecl>(New) &&
559      New->getMinRequiredArguments() < Old->getMinRequiredArguments()) {
560    CXXSpecialMember NewSM = getSpecialMember(cast<CXXMethodDecl>(New)),
561                     OldSM = getSpecialMember(cast<CXXMethodDecl>(Old));
562    if (NewSM != OldSM) {
563      ParmVarDecl *NewParam = New->getParamDecl(New->getMinRequiredArguments());
564      assert(NewParam->hasDefaultArg());
565      Diag(NewParam->getLocation(), diag::err_default_arg_makes_ctor_special)
566        << NewParam->getDefaultArgRange() << NewSM;
567      Diag(Old->getLocation(), diag::note_previous_declaration);
568    }
569  }
570
571  // C++11 [dcl.constexpr]p1: If any declaration of a function or function
572  // template has a constexpr specifier then all its declarations shall
573  // contain the constexpr specifier.
574  if (New->isConstexpr() != Old->isConstexpr()) {
575    Diag(New->getLocation(), diag::err_constexpr_redecl_mismatch)
576      << New << New->isConstexpr();
577    Diag(Old->getLocation(), diag::note_previous_declaration);
578    Invalid = true;
579  }
580
581  if (CheckEquivalentExceptionSpec(Old, New))
582    Invalid = true;
583
584  return Invalid;
585}
586
587/// \brief Merge the exception specifications of two variable declarations.
588///
589/// This is called when there's a redeclaration of a VarDecl. The function
590/// checks if the redeclaration might have an exception specification and
591/// validates compatibility and merges the specs if necessary.
592void Sema::MergeVarDeclExceptionSpecs(VarDecl *New, VarDecl *Old) {
593  // Shortcut if exceptions are disabled.
594  if (!getLangOpts().CXXExceptions)
595    return;
596
597  assert(Context.hasSameType(New->getType(), Old->getType()) &&
598         "Should only be called if types are otherwise the same.");
599
600  QualType NewType = New->getType();
601  QualType OldType = Old->getType();
602
603  // We're only interested in pointers and references to functions, as well
604  // as pointers to member functions.
605  if (const ReferenceType *R = NewType->getAs<ReferenceType>()) {
606    NewType = R->getPointeeType();
607    OldType = OldType->getAs<ReferenceType>()->getPointeeType();
608  } else if (const PointerType *P = NewType->getAs<PointerType>()) {
609    NewType = P->getPointeeType();
610    OldType = OldType->getAs<PointerType>()->getPointeeType();
611  } else if (const MemberPointerType *M = NewType->getAs<MemberPointerType>()) {
612    NewType = M->getPointeeType();
613    OldType = OldType->getAs<MemberPointerType>()->getPointeeType();
614  }
615
616  if (!NewType->isFunctionProtoType())
617    return;
618
619  // There's lots of special cases for functions. For function pointers, system
620  // libraries are hopefully not as broken so that we don't need these
621  // workarounds.
622  if (CheckEquivalentExceptionSpec(
623        OldType->getAs<FunctionProtoType>(), Old->getLocation(),
624        NewType->getAs<FunctionProtoType>(), New->getLocation())) {
625    New->setInvalidDecl();
626  }
627}
628
629/// CheckCXXDefaultArguments - Verify that the default arguments for a
630/// function declaration are well-formed according to C++
631/// [dcl.fct.default].
632void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
633  unsigned NumParams = FD->getNumParams();
634  unsigned p;
635
636  // Find first parameter with a default argument
637  for (p = 0; p < NumParams; ++p) {
638    ParmVarDecl *Param = FD->getParamDecl(p);
639    if (Param->hasDefaultArg())
640      break;
641  }
642
643  // C++ [dcl.fct.default]p4:
644  //   In a given function declaration, all parameters
645  //   subsequent to a parameter with a default argument shall
646  //   have default arguments supplied in this or previous
647  //   declarations. A default argument shall not be redefined
648  //   by a later declaration (not even to the same value).
649  unsigned LastMissingDefaultArg = 0;
650  for (; p < NumParams; ++p) {
651    ParmVarDecl *Param = FD->getParamDecl(p);
652    if (!Param->hasDefaultArg()) {
653      if (Param->isInvalidDecl())
654        /* We already complained about this parameter. */;
655      else if (Param->getIdentifier())
656        Diag(Param->getLocation(),
657             diag::err_param_default_argument_missing_name)
658          << Param->getIdentifier();
659      else
660        Diag(Param->getLocation(),
661             diag::err_param_default_argument_missing);
662
663      LastMissingDefaultArg = p;
664    }
665  }
666
667  if (LastMissingDefaultArg > 0) {
668    // Some default arguments were missing. Clear out all of the
669    // default arguments up to (and including) the last missing
670    // default argument, so that we leave the function parameters
671    // in a semantically valid state.
672    for (p = 0; p <= LastMissingDefaultArg; ++p) {
673      ParmVarDecl *Param = FD->getParamDecl(p);
674      if (Param->hasDefaultArg()) {
675        Param->setDefaultArg(0);
676      }
677    }
678  }
679}
680
681// CheckConstexprParameterTypes - Check whether a function's parameter types
682// are all literal types. If so, return true. If not, produce a suitable
683// diagnostic and return false.
684static bool CheckConstexprParameterTypes(Sema &SemaRef,
685                                         const FunctionDecl *FD) {
686  unsigned ArgIndex = 0;
687  const FunctionProtoType *FT = FD->getType()->getAs<FunctionProtoType>();
688  for (FunctionProtoType::arg_type_iterator i = FT->arg_type_begin(),
689       e = FT->arg_type_end(); i != e; ++i, ++ArgIndex) {
690    const ParmVarDecl *PD = FD->getParamDecl(ArgIndex);
691    SourceLocation ParamLoc = PD->getLocation();
692    if (!(*i)->isDependentType() &&
693        SemaRef.RequireLiteralType(ParamLoc, *i,
694                                   diag::err_constexpr_non_literal_param,
695                                   ArgIndex+1, PD->getSourceRange(),
696                                   isa<CXXConstructorDecl>(FD)))
697      return false;
698  }
699  return true;
700}
701
702/// \brief Get diagnostic %select index for tag kind for
703/// record diagnostic message.
704/// WARNING: Indexes apply to particular diagnostics only!
705///
706/// \returns diagnostic %select index.
707static unsigned getRecordDiagFromTagKind(TagTypeKind Tag) {
708  switch (Tag) {
709  case TTK_Struct: return 0;
710  case TTK_Interface: return 1;
711  case TTK_Class:  return 2;
712  default: llvm_unreachable("Invalid tag kind for record diagnostic!");
713  }
714}
715
716// CheckConstexprFunctionDecl - Check whether a function declaration satisfies
717// the requirements of a constexpr function definition or a constexpr
718// constructor definition. If so, return true. If not, produce appropriate
719// diagnostics and return false.
720//
721// This implements C++11 [dcl.constexpr]p3,4, as amended by DR1360.
722bool Sema::CheckConstexprFunctionDecl(const FunctionDecl *NewFD) {
723  const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
724  if (MD && MD->isInstance()) {
725    // C++11 [dcl.constexpr]p4:
726    //  The definition of a constexpr constructor shall satisfy the following
727    //  constraints:
728    //  - the class shall not have any virtual base classes;
729    const CXXRecordDecl *RD = MD->getParent();
730    if (RD->getNumVBases()) {
731      Diag(NewFD->getLocation(), diag::err_constexpr_virtual_base)
732        << isa<CXXConstructorDecl>(NewFD)
733        << getRecordDiagFromTagKind(RD->getTagKind()) << RD->getNumVBases();
734      for (CXXRecordDecl::base_class_const_iterator I = RD->vbases_begin(),
735             E = RD->vbases_end(); I != E; ++I)
736        Diag(I->getLocStart(),
737             diag::note_constexpr_virtual_base_here) << I->getSourceRange();
738      return false;
739    }
740  }
741
742  if (!isa<CXXConstructorDecl>(NewFD)) {
743    // C++11 [dcl.constexpr]p3:
744    //  The definition of a constexpr function shall satisfy the following
745    //  constraints:
746    // - it shall not be virtual;
747    const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD);
748    if (Method && Method->isVirtual()) {
749      Diag(NewFD->getLocation(), diag::err_constexpr_virtual);
750
751      // If it's not obvious why this function is virtual, find an overridden
752      // function which uses the 'virtual' keyword.
753      const CXXMethodDecl *WrittenVirtual = Method;
754      while (!WrittenVirtual->isVirtualAsWritten())
755        WrittenVirtual = *WrittenVirtual->begin_overridden_methods();
756      if (WrittenVirtual != Method)
757        Diag(WrittenVirtual->getLocation(),
758             diag::note_overridden_virtual_function);
759      return false;
760    }
761
762    // - its return type shall be a literal type;
763    QualType RT = NewFD->getResultType();
764    if (!RT->isDependentType() &&
765        RequireLiteralType(NewFD->getLocation(), RT,
766                           diag::err_constexpr_non_literal_return))
767      return false;
768  }
769
770  // - each of its parameter types shall be a literal type;
771  if (!CheckConstexprParameterTypes(*this, NewFD))
772    return false;
773
774  return true;
775}
776
777/// Check the given declaration statement is legal within a constexpr function
778/// body. C++11 [dcl.constexpr]p3,p4, and C++1y [dcl.constexpr]p3.
779///
780/// \return true if the body is OK (maybe only as an extension), false if we
781///         have diagnosed a problem.
782static bool CheckConstexprDeclStmt(Sema &SemaRef, const FunctionDecl *Dcl,
783                                   DeclStmt *DS, SourceLocation &Cxx1yLoc) {
784  // C++11 [dcl.constexpr]p3 and p4:
785  //  The definition of a constexpr function(p3) or constructor(p4) [...] shall
786  //  contain only
787  for (DeclStmt::decl_iterator DclIt = DS->decl_begin(),
788         DclEnd = DS->decl_end(); DclIt != DclEnd; ++DclIt) {
789    switch ((*DclIt)->getKind()) {
790    case Decl::StaticAssert:
791    case Decl::Using:
792    case Decl::UsingShadow:
793    case Decl::UsingDirective:
794    case Decl::UnresolvedUsingTypename:
795    case Decl::UnresolvedUsingValue:
796      //   - static_assert-declarations
797      //   - using-declarations,
798      //   - using-directives,
799      continue;
800
801    case Decl::Typedef:
802    case Decl::TypeAlias: {
803      //   - typedef declarations and alias-declarations that do not define
804      //     classes or enumerations,
805      TypedefNameDecl *TN = cast<TypedefNameDecl>(*DclIt);
806      if (TN->getUnderlyingType()->isVariablyModifiedType()) {
807        // Don't allow variably-modified types in constexpr functions.
808        TypeLoc TL = TN->getTypeSourceInfo()->getTypeLoc();
809        SemaRef.Diag(TL.getBeginLoc(), diag::err_constexpr_vla)
810          << TL.getSourceRange() << TL.getType()
811          << isa<CXXConstructorDecl>(Dcl);
812        return false;
813      }
814      continue;
815    }
816
817    case Decl::Enum:
818    case Decl::CXXRecord:
819      // C++1y allows types to be defined, not just declared.
820      if (cast<TagDecl>(*DclIt)->isThisDeclarationADefinition())
821        SemaRef.Diag(DS->getLocStart(),
822                     SemaRef.getLangOpts().CPlusPlus1y
823                       ? diag::warn_cxx11_compat_constexpr_type_definition
824                       : diag::ext_constexpr_type_definition)
825          << isa<CXXConstructorDecl>(Dcl);
826      continue;
827
828    case Decl::EnumConstant:
829    case Decl::IndirectField:
830    case Decl::ParmVar:
831      // These can only appear with other declarations which are banned in
832      // C++11 and permitted in C++1y, so ignore them.
833      continue;
834
835    case Decl::Var: {
836      // C++1y [dcl.constexpr]p3 allows anything except:
837      //   a definition of a variable of non-literal type or of static or
838      //   thread storage duration or for which no initialization is performed.
839      VarDecl *VD = cast<VarDecl>(*DclIt);
840      if (VD->isThisDeclarationADefinition()) {
841        if (VD->isStaticLocal()) {
842          SemaRef.Diag(VD->getLocation(),
843                       diag::err_constexpr_local_var_static)
844            << isa<CXXConstructorDecl>(Dcl)
845            << (VD->getTLSKind() == VarDecl::TLS_Dynamic);
846          return false;
847        }
848        if (!VD->getType()->isDependentType() &&
849            SemaRef.RequireLiteralType(
850              VD->getLocation(), VD->getType(),
851              diag::err_constexpr_local_var_non_literal_type,
852              isa<CXXConstructorDecl>(Dcl)))
853          return false;
854        if (!VD->hasInit()) {
855          SemaRef.Diag(VD->getLocation(),
856                       diag::err_constexpr_local_var_no_init)
857            << isa<CXXConstructorDecl>(Dcl);
858          return false;
859        }
860      }
861      SemaRef.Diag(VD->getLocation(),
862                   SemaRef.getLangOpts().CPlusPlus1y
863                    ? diag::warn_cxx11_compat_constexpr_local_var
864                    : diag::ext_constexpr_local_var)
865        << isa<CXXConstructorDecl>(Dcl);
866      continue;
867    }
868
869    case Decl::NamespaceAlias:
870    case Decl::Function:
871      // These are disallowed in C++11 and permitted in C++1y. Allow them
872      // everywhere as an extension.
873      if (!Cxx1yLoc.isValid())
874        Cxx1yLoc = DS->getLocStart();
875      continue;
876
877    default:
878      SemaRef.Diag(DS->getLocStart(), diag::err_constexpr_body_invalid_stmt)
879        << isa<CXXConstructorDecl>(Dcl);
880      return false;
881    }
882  }
883
884  return true;
885}
886
887/// Check that the given field is initialized within a constexpr constructor.
888///
889/// \param Dcl The constexpr constructor being checked.
890/// \param Field The field being checked. This may be a member of an anonymous
891///        struct or union nested within the class being checked.
892/// \param Inits All declarations, including anonymous struct/union members and
893///        indirect members, for which any initialization was provided.
894/// \param Diagnosed Set to true if an error is produced.
895static void CheckConstexprCtorInitializer(Sema &SemaRef,
896                                          const FunctionDecl *Dcl,
897                                          FieldDecl *Field,
898                                          llvm::SmallSet<Decl*, 16> &Inits,
899                                          bool &Diagnosed) {
900  if (Field->isUnnamedBitfield())
901    return;
902
903  if (Field->isAnonymousStructOrUnion() &&
904      Field->getType()->getAsCXXRecordDecl()->isEmpty())
905    return;
906
907  if (!Inits.count(Field)) {
908    if (!Diagnosed) {
909      SemaRef.Diag(Dcl->getLocation(), diag::err_constexpr_ctor_missing_init);
910      Diagnosed = true;
911    }
912    SemaRef.Diag(Field->getLocation(), diag::note_constexpr_ctor_missing_init);
913  } else if (Field->isAnonymousStructOrUnion()) {
914    const RecordDecl *RD = Field->getType()->castAs<RecordType>()->getDecl();
915    for (RecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end();
916         I != E; ++I)
917      // If an anonymous union contains an anonymous struct of which any member
918      // is initialized, all members must be initialized.
919      if (!RD->isUnion() || Inits.count(*I))
920        CheckConstexprCtorInitializer(SemaRef, Dcl, *I, Inits, Diagnosed);
921  }
922}
923
924/// Check the provided statement is allowed in a constexpr function
925/// definition.
926static bool
927CheckConstexprFunctionStmt(Sema &SemaRef, const FunctionDecl *Dcl, Stmt *S,
928                           llvm::SmallVectorImpl<SourceLocation> &ReturnStmts,
929                           SourceLocation &Cxx1yLoc) {
930  // - its function-body shall be [...] a compound-statement that contains only
931  switch (S->getStmtClass()) {
932  case Stmt::NullStmtClass:
933    //   - null statements,
934    return true;
935
936  case Stmt::DeclStmtClass:
937    //   - static_assert-declarations
938    //   - using-declarations,
939    //   - using-directives,
940    //   - typedef declarations and alias-declarations that do not define
941    //     classes or enumerations,
942    if (!CheckConstexprDeclStmt(SemaRef, Dcl, cast<DeclStmt>(S), Cxx1yLoc))
943      return false;
944    return true;
945
946  case Stmt::ReturnStmtClass:
947    //   - and exactly one return statement;
948    if (isa<CXXConstructorDecl>(Dcl)) {
949      // C++1y allows return statements in constexpr constructors.
950      if (!Cxx1yLoc.isValid())
951        Cxx1yLoc = S->getLocStart();
952      return true;
953    }
954
955    ReturnStmts.push_back(S->getLocStart());
956    return true;
957
958  case Stmt::CompoundStmtClass: {
959    // C++1y allows compound-statements.
960    if (!Cxx1yLoc.isValid())
961      Cxx1yLoc = S->getLocStart();
962
963    CompoundStmt *CompStmt = cast<CompoundStmt>(S);
964    for (CompoundStmt::body_iterator BodyIt = CompStmt->body_begin(),
965           BodyEnd = CompStmt->body_end(); BodyIt != BodyEnd; ++BodyIt) {
966      if (!CheckConstexprFunctionStmt(SemaRef, Dcl, *BodyIt, ReturnStmts,
967                                      Cxx1yLoc))
968        return false;
969    }
970    return true;
971  }
972
973  case Stmt::AttributedStmtClass:
974    if (!Cxx1yLoc.isValid())
975      Cxx1yLoc = S->getLocStart();
976    return true;
977
978  case Stmt::IfStmtClass: {
979    // C++1y allows if-statements.
980    if (!Cxx1yLoc.isValid())
981      Cxx1yLoc = S->getLocStart();
982
983    IfStmt *If = cast<IfStmt>(S);
984    if (!CheckConstexprFunctionStmt(SemaRef, Dcl, If->getThen(), ReturnStmts,
985                                    Cxx1yLoc))
986      return false;
987    if (If->getElse() &&
988        !CheckConstexprFunctionStmt(SemaRef, Dcl, If->getElse(), ReturnStmts,
989                                    Cxx1yLoc))
990      return false;
991    return true;
992  }
993
994  case Stmt::WhileStmtClass:
995  case Stmt::DoStmtClass:
996  case Stmt::ForStmtClass:
997  case Stmt::CXXForRangeStmtClass:
998  case Stmt::ContinueStmtClass:
999    // C++1y allows all of these. We don't allow them as extensions in C++11,
1000    // because they don't make sense without variable mutation.
1001    if (!SemaRef.getLangOpts().CPlusPlus1y)
1002      break;
1003    if (!Cxx1yLoc.isValid())
1004      Cxx1yLoc = S->getLocStart();
1005    for (Stmt::child_range Children = S->children(); Children; ++Children)
1006      if (*Children &&
1007          !CheckConstexprFunctionStmt(SemaRef, Dcl, *Children, ReturnStmts,
1008                                      Cxx1yLoc))
1009        return false;
1010    return true;
1011
1012  case Stmt::SwitchStmtClass:
1013  case Stmt::CaseStmtClass:
1014  case Stmt::DefaultStmtClass:
1015  case Stmt::BreakStmtClass:
1016    // C++1y allows switch-statements, and since they don't need variable
1017    // mutation, we can reasonably allow them in C++11 as an extension.
1018    if (!Cxx1yLoc.isValid())
1019      Cxx1yLoc = S->getLocStart();
1020    for (Stmt::child_range Children = S->children(); Children; ++Children)
1021      if (*Children &&
1022          !CheckConstexprFunctionStmt(SemaRef, Dcl, *Children, ReturnStmts,
1023                                      Cxx1yLoc))
1024        return false;
1025    return true;
1026
1027  default:
1028    if (!isa<Expr>(S))
1029      break;
1030
1031    // C++1y allows expression-statements.
1032    if (!Cxx1yLoc.isValid())
1033      Cxx1yLoc = S->getLocStart();
1034    return true;
1035  }
1036
1037  SemaRef.Diag(S->getLocStart(), diag::err_constexpr_body_invalid_stmt)
1038    << isa<CXXConstructorDecl>(Dcl);
1039  return false;
1040}
1041
1042/// Check the body for the given constexpr function declaration only contains
1043/// the permitted types of statement. C++11 [dcl.constexpr]p3,p4.
1044///
1045/// \return true if the body is OK, false if we have diagnosed a problem.
1046bool Sema::CheckConstexprFunctionBody(const FunctionDecl *Dcl, Stmt *Body) {
1047  if (isa<CXXTryStmt>(Body)) {
1048    // C++11 [dcl.constexpr]p3:
1049    //  The definition of a constexpr function shall satisfy the following
1050    //  constraints: [...]
1051    // - its function-body shall be = delete, = default, or a
1052    //   compound-statement
1053    //
1054    // C++11 [dcl.constexpr]p4:
1055    //  In the definition of a constexpr constructor, [...]
1056    // - its function-body shall not be a function-try-block;
1057    Diag(Body->getLocStart(), diag::err_constexpr_function_try_block)
1058      << isa<CXXConstructorDecl>(Dcl);
1059    return false;
1060  }
1061
1062  SmallVector<SourceLocation, 4> ReturnStmts;
1063
1064  // - its function-body shall be [...] a compound-statement that contains only
1065  //   [... list of cases ...]
1066  CompoundStmt *CompBody = cast<CompoundStmt>(Body);
1067  SourceLocation Cxx1yLoc;
1068  for (CompoundStmt::body_iterator BodyIt = CompBody->body_begin(),
1069         BodyEnd = CompBody->body_end(); BodyIt != BodyEnd; ++BodyIt) {
1070    if (!CheckConstexprFunctionStmt(*this, Dcl, *BodyIt, ReturnStmts, Cxx1yLoc))
1071      return false;
1072  }
1073
1074  if (Cxx1yLoc.isValid())
1075    Diag(Cxx1yLoc,
1076         getLangOpts().CPlusPlus1y
1077           ? diag::warn_cxx11_compat_constexpr_body_invalid_stmt
1078           : diag::ext_constexpr_body_invalid_stmt)
1079      << isa<CXXConstructorDecl>(Dcl);
1080
1081  if (const CXXConstructorDecl *Constructor
1082        = dyn_cast<CXXConstructorDecl>(Dcl)) {
1083    const CXXRecordDecl *RD = Constructor->getParent();
1084    // DR1359:
1085    // - every non-variant non-static data member and base class sub-object
1086    //   shall be initialized;
1087    // - if the class is a non-empty union, or for each non-empty anonymous
1088    //   union member of a non-union class, exactly one non-static data member
1089    //   shall be initialized;
1090    if (RD->isUnion()) {
1091      if (Constructor->getNumCtorInitializers() == 0 && !RD->isEmpty()) {
1092        Diag(Dcl->getLocation(), diag::err_constexpr_union_ctor_no_init);
1093        return false;
1094      }
1095    } else if (!Constructor->isDependentContext() &&
1096               !Constructor->isDelegatingConstructor()) {
1097      assert(RD->getNumVBases() == 0 && "constexpr ctor with virtual bases");
1098
1099      // Skip detailed checking if we have enough initializers, and we would
1100      // allow at most one initializer per member.
1101      bool AnyAnonStructUnionMembers = false;
1102      unsigned Fields = 0;
1103      for (CXXRecordDecl::field_iterator I = RD->field_begin(),
1104           E = RD->field_end(); I != E; ++I, ++Fields) {
1105        if (I->isAnonymousStructOrUnion()) {
1106          AnyAnonStructUnionMembers = true;
1107          break;
1108        }
1109      }
1110      if (AnyAnonStructUnionMembers ||
1111          Constructor->getNumCtorInitializers() != RD->getNumBases() + Fields) {
1112        // Check initialization of non-static data members. Base classes are
1113        // always initialized so do not need to be checked. Dependent bases
1114        // might not have initializers in the member initializer list.
1115        llvm::SmallSet<Decl*, 16> Inits;
1116        for (CXXConstructorDecl::init_const_iterator
1117               I = Constructor->init_begin(), E = Constructor->init_end();
1118             I != E; ++I) {
1119          if (FieldDecl *FD = (*I)->getMember())
1120            Inits.insert(FD);
1121          else if (IndirectFieldDecl *ID = (*I)->getIndirectMember())
1122            Inits.insert(ID->chain_begin(), ID->chain_end());
1123        }
1124
1125        bool Diagnosed = false;
1126        for (CXXRecordDecl::field_iterator I = RD->field_begin(),
1127             E = RD->field_end(); I != E; ++I)
1128          CheckConstexprCtorInitializer(*this, Dcl, *I, Inits, Diagnosed);
1129        if (Diagnosed)
1130          return false;
1131      }
1132    }
1133  } else {
1134    if (ReturnStmts.empty()) {
1135      // C++1y doesn't require constexpr functions to contain a 'return'
1136      // statement. We still do, unless the return type is void, because
1137      // otherwise if there's no return statement, the function cannot
1138      // be used in a core constant expression.
1139      bool OK = getLangOpts().CPlusPlus1y && Dcl->getResultType()->isVoidType();
1140      Diag(Dcl->getLocation(),
1141           OK ? diag::warn_cxx11_compat_constexpr_body_no_return
1142              : diag::err_constexpr_body_no_return);
1143      return OK;
1144    }
1145    if (ReturnStmts.size() > 1) {
1146      Diag(ReturnStmts.back(),
1147           getLangOpts().CPlusPlus1y
1148             ? diag::warn_cxx11_compat_constexpr_body_multiple_return
1149             : diag::ext_constexpr_body_multiple_return);
1150      for (unsigned I = 0; I < ReturnStmts.size() - 1; ++I)
1151        Diag(ReturnStmts[I], diag::note_constexpr_body_previous_return);
1152    }
1153  }
1154
1155  // C++11 [dcl.constexpr]p5:
1156  //   if no function argument values exist such that the function invocation
1157  //   substitution would produce a constant expression, the program is
1158  //   ill-formed; no diagnostic required.
1159  // C++11 [dcl.constexpr]p3:
1160  //   - every constructor call and implicit conversion used in initializing the
1161  //     return value shall be one of those allowed in a constant expression.
1162  // C++11 [dcl.constexpr]p4:
1163  //   - every constructor involved in initializing non-static data members and
1164  //     base class sub-objects shall be a constexpr constructor.
1165  SmallVector<PartialDiagnosticAt, 8> Diags;
1166  if (!Expr::isPotentialConstantExpr(Dcl, Diags)) {
1167    Diag(Dcl->getLocation(), diag::ext_constexpr_function_never_constant_expr)
1168      << isa<CXXConstructorDecl>(Dcl);
1169    for (size_t I = 0, N = Diags.size(); I != N; ++I)
1170      Diag(Diags[I].first, Diags[I].second);
1171    // Don't return false here: we allow this for compatibility in
1172    // system headers.
1173  }
1174
1175  return true;
1176}
1177
1178/// isCurrentClassName - Determine whether the identifier II is the
1179/// name of the class type currently being defined. In the case of
1180/// nested classes, this will only return true if II is the name of
1181/// the innermost class.
1182bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *,
1183                              const CXXScopeSpec *SS) {
1184  assert(getLangOpts().CPlusPlus && "No class names in C!");
1185
1186  CXXRecordDecl *CurDecl;
1187  if (SS && SS->isSet() && !SS->isInvalid()) {
1188    DeclContext *DC = computeDeclContext(*SS, true);
1189    CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
1190  } else
1191    CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
1192
1193  if (CurDecl && CurDecl->getIdentifier())
1194    return &II == CurDecl->getIdentifier();
1195  else
1196    return false;
1197}
1198
1199/// \brief Determine whether the given class is a base class of the given
1200/// class, including looking at dependent bases.
1201static bool findCircularInheritance(const CXXRecordDecl *Class,
1202                                    const CXXRecordDecl *Current) {
1203  SmallVector<const CXXRecordDecl*, 8> Queue;
1204
1205  Class = Class->getCanonicalDecl();
1206  while (true) {
1207    for (CXXRecordDecl::base_class_const_iterator I = Current->bases_begin(),
1208                                                  E = Current->bases_end();
1209         I != E; ++I) {
1210      CXXRecordDecl *Base = I->getType()->getAsCXXRecordDecl();
1211      if (!Base)
1212        continue;
1213
1214      Base = Base->getDefinition();
1215      if (!Base)
1216        continue;
1217
1218      if (Base->getCanonicalDecl() == Class)
1219        return true;
1220
1221      Queue.push_back(Base);
1222    }
1223
1224    if (Queue.empty())
1225      return false;
1226
1227    Current = Queue.back();
1228    Queue.pop_back();
1229  }
1230
1231  return false;
1232}
1233
1234/// \brief Check the validity of a C++ base class specifier.
1235///
1236/// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
1237/// and returns NULL otherwise.
1238CXXBaseSpecifier *
1239Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
1240                         SourceRange SpecifierRange,
1241                         bool Virtual, AccessSpecifier Access,
1242                         TypeSourceInfo *TInfo,
1243                         SourceLocation EllipsisLoc) {
1244  QualType BaseType = TInfo->getType();
1245
1246  // C++ [class.union]p1:
1247  //   A union shall not have base classes.
1248  if (Class->isUnion()) {
1249    Diag(Class->getLocation(), diag::err_base_clause_on_union)
1250      << SpecifierRange;
1251    return 0;
1252  }
1253
1254  if (EllipsisLoc.isValid() &&
1255      !TInfo->getType()->containsUnexpandedParameterPack()) {
1256    Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
1257      << TInfo->getTypeLoc().getSourceRange();
1258    EllipsisLoc = SourceLocation();
1259  }
1260
1261  SourceLocation BaseLoc = TInfo->getTypeLoc().getBeginLoc();
1262
1263  if (BaseType->isDependentType()) {
1264    // Make sure that we don't have circular inheritance among our dependent
1265    // bases. For non-dependent bases, the check for completeness below handles
1266    // this.
1267    if (CXXRecordDecl *BaseDecl = BaseType->getAsCXXRecordDecl()) {
1268      if (BaseDecl->getCanonicalDecl() == Class->getCanonicalDecl() ||
1269          ((BaseDecl = BaseDecl->getDefinition()) &&
1270           findCircularInheritance(Class, BaseDecl))) {
1271        Diag(BaseLoc, diag::err_circular_inheritance)
1272          << BaseType << Context.getTypeDeclType(Class);
1273
1274        if (BaseDecl->getCanonicalDecl() != Class->getCanonicalDecl())
1275          Diag(BaseDecl->getLocation(), diag::note_previous_decl)
1276            << BaseType;
1277
1278        return 0;
1279      }
1280    }
1281
1282    return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
1283                                          Class->getTagKind() == TTK_Class,
1284                                          Access, TInfo, EllipsisLoc);
1285  }
1286
1287  // Base specifiers must be record types.
1288  if (!BaseType->isRecordType()) {
1289    Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
1290    return 0;
1291  }
1292
1293  // C++ [class.union]p1:
1294  //   A union shall not be used as a base class.
1295  if (BaseType->isUnionType()) {
1296    Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
1297    return 0;
1298  }
1299
1300  // C++ [class.derived]p2:
1301  //   The class-name in a base-specifier shall not be an incompletely
1302  //   defined class.
1303  if (RequireCompleteType(BaseLoc, BaseType,
1304                          diag::err_incomplete_base_class, SpecifierRange)) {
1305    Class->setInvalidDecl();
1306    return 0;
1307  }
1308
1309  // If the base class is polymorphic or isn't empty, the new one is/isn't, too.
1310  RecordDecl *BaseDecl = BaseType->getAs<RecordType>()->getDecl();
1311  assert(BaseDecl && "Record type has no declaration");
1312  BaseDecl = BaseDecl->getDefinition();
1313  assert(BaseDecl && "Base type is not incomplete, but has no definition");
1314  CXXRecordDecl * CXXBaseDecl = cast<CXXRecordDecl>(BaseDecl);
1315  assert(CXXBaseDecl && "Base type is not a C++ type");
1316
1317  // C++ [class]p3:
1318  //   If a class is marked final and it appears as a base-type-specifier in
1319  //   base-clause, the program is ill-formed.
1320  if (CXXBaseDecl->hasAttr<FinalAttr>()) {
1321    Diag(BaseLoc, diag::err_class_marked_final_used_as_base)
1322      << CXXBaseDecl->getDeclName();
1323    Diag(CXXBaseDecl->getLocation(), diag::note_previous_decl)
1324      << CXXBaseDecl->getDeclName();
1325    return 0;
1326  }
1327
1328  if (BaseDecl->isInvalidDecl())
1329    Class->setInvalidDecl();
1330
1331  // Create the base specifier.
1332  return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
1333                                        Class->getTagKind() == TTK_Class,
1334                                        Access, TInfo, EllipsisLoc);
1335}
1336
1337/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
1338/// one entry in the base class list of a class specifier, for
1339/// example:
1340///    class foo : public bar, virtual private baz {
1341/// 'public bar' and 'virtual private baz' are each base-specifiers.
1342BaseResult
1343Sema::ActOnBaseSpecifier(Decl *classdecl, SourceRange SpecifierRange,
1344                         ParsedAttributes &Attributes,
1345                         bool Virtual, AccessSpecifier Access,
1346                         ParsedType basetype, SourceLocation BaseLoc,
1347                         SourceLocation EllipsisLoc) {
1348  if (!classdecl)
1349    return true;
1350
1351  AdjustDeclIfTemplate(classdecl);
1352  CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(classdecl);
1353  if (!Class)
1354    return true;
1355
1356  // We do not support any C++11 attributes on base-specifiers yet.
1357  // Diagnose any attributes we see.
1358  if (!Attributes.empty()) {
1359    for (AttributeList *Attr = Attributes.getList(); Attr;
1360         Attr = Attr->getNext()) {
1361      if (Attr->isInvalid() ||
1362          Attr->getKind() == AttributeList::IgnoredAttribute)
1363        continue;
1364      Diag(Attr->getLoc(),
1365           Attr->getKind() == AttributeList::UnknownAttribute
1366             ? diag::warn_unknown_attribute_ignored
1367             : diag::err_base_specifier_attribute)
1368        << Attr->getName();
1369    }
1370  }
1371
1372  TypeSourceInfo *TInfo = 0;
1373  GetTypeFromParser(basetype, &TInfo);
1374
1375  if (EllipsisLoc.isInvalid() &&
1376      DiagnoseUnexpandedParameterPack(SpecifierRange.getBegin(), TInfo,
1377                                      UPPC_BaseType))
1378    return true;
1379
1380  if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
1381                                                      Virtual, Access, TInfo,
1382                                                      EllipsisLoc))
1383    return BaseSpec;
1384  else
1385    Class->setInvalidDecl();
1386
1387  return true;
1388}
1389
1390/// \brief Performs the actual work of attaching the given base class
1391/// specifiers to a C++ class.
1392bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, CXXBaseSpecifier **Bases,
1393                                unsigned NumBases) {
1394 if (NumBases == 0)
1395    return false;
1396
1397  // Used to keep track of which base types we have already seen, so
1398  // that we can properly diagnose redundant direct base types. Note
1399  // that the key is always the unqualified canonical type of the base
1400  // class.
1401  std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
1402
1403  // Copy non-redundant base specifiers into permanent storage.
1404  unsigned NumGoodBases = 0;
1405  bool Invalid = false;
1406  for (unsigned idx = 0; idx < NumBases; ++idx) {
1407    QualType NewBaseType
1408      = Context.getCanonicalType(Bases[idx]->getType());
1409    NewBaseType = NewBaseType.getLocalUnqualifiedType();
1410
1411    CXXBaseSpecifier *&KnownBase = KnownBaseTypes[NewBaseType];
1412    if (KnownBase) {
1413      // C++ [class.mi]p3:
1414      //   A class shall not be specified as a direct base class of a
1415      //   derived class more than once.
1416      Diag(Bases[idx]->getLocStart(),
1417           diag::err_duplicate_base_class)
1418        << KnownBase->getType()
1419        << Bases[idx]->getSourceRange();
1420
1421      // Delete the duplicate base class specifier; we're going to
1422      // overwrite its pointer later.
1423      Context.Deallocate(Bases[idx]);
1424
1425      Invalid = true;
1426    } else {
1427      // Okay, add this new base class.
1428      KnownBase = Bases[idx];
1429      Bases[NumGoodBases++] = Bases[idx];
1430      if (const RecordType *Record = NewBaseType->getAs<RecordType>()) {
1431        const CXXRecordDecl *RD = cast<CXXRecordDecl>(Record->getDecl());
1432        if (Class->isInterface() &&
1433              (!RD->isInterface() ||
1434               KnownBase->getAccessSpecifier() != AS_public)) {
1435          // The Microsoft extension __interface does not permit bases that
1436          // are not themselves public interfaces.
1437          Diag(KnownBase->getLocStart(), diag::err_invalid_base_in_interface)
1438            << getRecordDiagFromTagKind(RD->getTagKind()) << RD->getName()
1439            << RD->getSourceRange();
1440          Invalid = true;
1441        }
1442        if (RD->hasAttr<WeakAttr>())
1443          Class->addAttr(::new (Context) WeakAttr(SourceRange(), Context));
1444      }
1445    }
1446  }
1447
1448  // Attach the remaining base class specifiers to the derived class.
1449  Class->setBases(Bases, NumGoodBases);
1450
1451  // Delete the remaining (good) base class specifiers, since their
1452  // data has been copied into the CXXRecordDecl.
1453  for (unsigned idx = 0; idx < NumGoodBases; ++idx)
1454    Context.Deallocate(Bases[idx]);
1455
1456  return Invalid;
1457}
1458
1459/// ActOnBaseSpecifiers - Attach the given base specifiers to the
1460/// class, after checking whether there are any duplicate base
1461/// classes.
1462void Sema::ActOnBaseSpecifiers(Decl *ClassDecl, CXXBaseSpecifier **Bases,
1463                               unsigned NumBases) {
1464  if (!ClassDecl || !Bases || !NumBases)
1465    return;
1466
1467  AdjustDeclIfTemplate(ClassDecl);
1468  AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl),
1469                       (CXXBaseSpecifier**)(Bases), NumBases);
1470}
1471
1472/// \brief Determine whether the type \p Derived is a C++ class that is
1473/// derived from the type \p Base.
1474bool Sema::IsDerivedFrom(QualType Derived, QualType Base) {
1475  if (!getLangOpts().CPlusPlus)
1476    return false;
1477
1478  CXXRecordDecl *DerivedRD = Derived->getAsCXXRecordDecl();
1479  if (!DerivedRD)
1480    return false;
1481
1482  CXXRecordDecl *BaseRD = Base->getAsCXXRecordDecl();
1483  if (!BaseRD)
1484    return false;
1485
1486  // If either the base or the derived type is invalid, don't try to
1487  // check whether one is derived from the other.
1488  if (BaseRD->isInvalidDecl() || DerivedRD->isInvalidDecl())
1489    return false;
1490
1491  // FIXME: instantiate DerivedRD if necessary.  We need a PoI for this.
1492  return DerivedRD->hasDefinition() && DerivedRD->isDerivedFrom(BaseRD);
1493}
1494
1495/// \brief Determine whether the type \p Derived is a C++ class that is
1496/// derived from the type \p Base.
1497bool Sema::IsDerivedFrom(QualType Derived, QualType Base, CXXBasePaths &Paths) {
1498  if (!getLangOpts().CPlusPlus)
1499    return false;
1500
1501  CXXRecordDecl *DerivedRD = Derived->getAsCXXRecordDecl();
1502  if (!DerivedRD)
1503    return false;
1504
1505  CXXRecordDecl *BaseRD = Base->getAsCXXRecordDecl();
1506  if (!BaseRD)
1507    return false;
1508
1509  return DerivedRD->isDerivedFrom(BaseRD, Paths);
1510}
1511
1512void Sema::BuildBasePathArray(const CXXBasePaths &Paths,
1513                              CXXCastPath &BasePathArray) {
1514  assert(BasePathArray.empty() && "Base path array must be empty!");
1515  assert(Paths.isRecordingPaths() && "Must record paths!");
1516
1517  const CXXBasePath &Path = Paths.front();
1518
1519  // We first go backward and check if we have a virtual base.
1520  // FIXME: It would be better if CXXBasePath had the base specifier for
1521  // the nearest virtual base.
1522  unsigned Start = 0;
1523  for (unsigned I = Path.size(); I != 0; --I) {
1524    if (Path[I - 1].Base->isVirtual()) {
1525      Start = I - 1;
1526      break;
1527    }
1528  }
1529
1530  // Now add all bases.
1531  for (unsigned I = Start, E = Path.size(); I != E; ++I)
1532    BasePathArray.push_back(const_cast<CXXBaseSpecifier*>(Path[I].Base));
1533}
1534
1535/// \brief Determine whether the given base path includes a virtual
1536/// base class.
1537bool Sema::BasePathInvolvesVirtualBase(const CXXCastPath &BasePath) {
1538  for (CXXCastPath::const_iterator B = BasePath.begin(),
1539                                BEnd = BasePath.end();
1540       B != BEnd; ++B)
1541    if ((*B)->isVirtual())
1542      return true;
1543
1544  return false;
1545}
1546
1547/// CheckDerivedToBaseConversion - Check whether the Derived-to-Base
1548/// conversion (where Derived and Base are class types) is
1549/// well-formed, meaning that the conversion is unambiguous (and
1550/// that all of the base classes are accessible). Returns true
1551/// and emits a diagnostic if the code is ill-formed, returns false
1552/// otherwise. Loc is the location where this routine should point to
1553/// if there is an error, and Range is the source range to highlight
1554/// if there is an error.
1555bool
1556Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
1557                                   unsigned InaccessibleBaseID,
1558                                   unsigned AmbigiousBaseConvID,
1559                                   SourceLocation Loc, SourceRange Range,
1560                                   DeclarationName Name,
1561                                   CXXCastPath *BasePath) {
1562  // First, determine whether the path from Derived to Base is
1563  // ambiguous. This is slightly more expensive than checking whether
1564  // the Derived to Base conversion exists, because here we need to
1565  // explore multiple paths to determine if there is an ambiguity.
1566  CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
1567                     /*DetectVirtual=*/false);
1568  bool DerivationOkay = IsDerivedFrom(Derived, Base, Paths);
1569  assert(DerivationOkay &&
1570         "Can only be used with a derived-to-base conversion");
1571  (void)DerivationOkay;
1572
1573  if (!Paths.isAmbiguous(Context.getCanonicalType(Base).getUnqualifiedType())) {
1574    if (InaccessibleBaseID) {
1575      // Check that the base class can be accessed.
1576      switch (CheckBaseClassAccess(Loc, Base, Derived, Paths.front(),
1577                                   InaccessibleBaseID)) {
1578        case AR_inaccessible:
1579          return true;
1580        case AR_accessible:
1581        case AR_dependent:
1582        case AR_delayed:
1583          break;
1584      }
1585    }
1586
1587    // Build a base path if necessary.
1588    if (BasePath)
1589      BuildBasePathArray(Paths, *BasePath);
1590    return false;
1591  }
1592
1593  // We know that the derived-to-base conversion is ambiguous, and
1594  // we're going to produce a diagnostic. Perform the derived-to-base
1595  // search just one more time to compute all of the possible paths so
1596  // that we can print them out. This is more expensive than any of
1597  // the previous derived-to-base checks we've done, but at this point
1598  // performance isn't as much of an issue.
1599  Paths.clear();
1600  Paths.setRecordingPaths(true);
1601  bool StillOkay = IsDerivedFrom(Derived, Base, Paths);
1602  assert(StillOkay && "Can only be used with a derived-to-base conversion");
1603  (void)StillOkay;
1604
1605  // Build up a textual representation of the ambiguous paths, e.g.,
1606  // D -> B -> A, that will be used to illustrate the ambiguous
1607  // conversions in the diagnostic. We only print one of the paths
1608  // to each base class subobject.
1609  std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
1610
1611  Diag(Loc, AmbigiousBaseConvID)
1612  << Derived << Base << PathDisplayStr << Range << Name;
1613  return true;
1614}
1615
1616bool
1617Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
1618                                   SourceLocation Loc, SourceRange Range,
1619                                   CXXCastPath *BasePath,
1620                                   bool IgnoreAccess) {
1621  return CheckDerivedToBaseConversion(Derived, Base,
1622                                      IgnoreAccess ? 0
1623                                       : diag::err_upcast_to_inaccessible_base,
1624                                      diag::err_ambiguous_derived_to_base_conv,
1625                                      Loc, Range, DeclarationName(),
1626                                      BasePath);
1627}
1628
1629
1630/// @brief Builds a string representing ambiguous paths from a
1631/// specific derived class to different subobjects of the same base
1632/// class.
1633///
1634/// This function builds a string that can be used in error messages
1635/// to show the different paths that one can take through the
1636/// inheritance hierarchy to go from the derived class to different
1637/// subobjects of a base class. The result looks something like this:
1638/// @code
1639/// struct D -> struct B -> struct A
1640/// struct D -> struct C -> struct A
1641/// @endcode
1642std::string Sema::getAmbiguousPathsDisplayString(CXXBasePaths &Paths) {
1643  std::string PathDisplayStr;
1644  std::set<unsigned> DisplayedPaths;
1645  for (CXXBasePaths::paths_iterator Path = Paths.begin();
1646       Path != Paths.end(); ++Path) {
1647    if (DisplayedPaths.insert(Path->back().SubobjectNumber).second) {
1648      // We haven't displayed a path to this particular base
1649      // class subobject yet.
1650      PathDisplayStr += "\n    ";
1651      PathDisplayStr += Context.getTypeDeclType(Paths.getOrigin()).getAsString();
1652      for (CXXBasePath::const_iterator Element = Path->begin();
1653           Element != Path->end(); ++Element)
1654        PathDisplayStr += " -> " + Element->Base->getType().getAsString();
1655    }
1656  }
1657
1658  return PathDisplayStr;
1659}
1660
1661//===----------------------------------------------------------------------===//
1662// C++ class member Handling
1663//===----------------------------------------------------------------------===//
1664
1665/// ActOnAccessSpecifier - Parsed an access specifier followed by a colon.
1666bool Sema::ActOnAccessSpecifier(AccessSpecifier Access,
1667                                SourceLocation ASLoc,
1668                                SourceLocation ColonLoc,
1669                                AttributeList *Attrs) {
1670  assert(Access != AS_none && "Invalid kind for syntactic access specifier!");
1671  AccessSpecDecl *ASDecl = AccessSpecDecl::Create(Context, Access, CurContext,
1672                                                  ASLoc, ColonLoc);
1673  CurContext->addHiddenDecl(ASDecl);
1674  return ProcessAccessDeclAttributeList(ASDecl, Attrs);
1675}
1676
1677/// CheckOverrideControl - Check C++11 override control semantics.
1678void Sema::CheckOverrideControl(Decl *D) {
1679  if (D->isInvalidDecl())
1680    return;
1681
1682  const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D);
1683
1684  // Do we know which functions this declaration might be overriding?
1685  bool OverridesAreKnown = !MD ||
1686      (!MD->getParent()->hasAnyDependentBases() &&
1687       !MD->getType()->isDependentType());
1688
1689  if (!MD || !MD->isVirtual()) {
1690    if (OverridesAreKnown) {
1691      if (OverrideAttr *OA = D->getAttr<OverrideAttr>()) {
1692        Diag(OA->getLocation(),
1693             diag::override_keyword_only_allowed_on_virtual_member_functions)
1694          << "override" << FixItHint::CreateRemoval(OA->getLocation());
1695        D->dropAttr<OverrideAttr>();
1696      }
1697      if (FinalAttr *FA = D->getAttr<FinalAttr>()) {
1698        Diag(FA->getLocation(),
1699             diag::override_keyword_only_allowed_on_virtual_member_functions)
1700          << "final" << FixItHint::CreateRemoval(FA->getLocation());
1701        D->dropAttr<FinalAttr>();
1702      }
1703    }
1704    return;
1705  }
1706
1707  if (!OverridesAreKnown)
1708    return;
1709
1710  // C++11 [class.virtual]p5:
1711  //   If a virtual function is marked with the virt-specifier override and
1712  //   does not override a member function of a base class, the program is
1713  //   ill-formed.
1714  bool HasOverriddenMethods =
1715    MD->begin_overridden_methods() != MD->end_overridden_methods();
1716  if (MD->hasAttr<OverrideAttr>() && !HasOverriddenMethods)
1717    Diag(MD->getLocation(), diag::err_function_marked_override_not_overriding)
1718      << MD->getDeclName();
1719}
1720
1721/// CheckIfOverriddenFunctionIsMarkedFinal - Checks whether a virtual member
1722/// function overrides a virtual member function marked 'final', according to
1723/// C++11 [class.virtual]p4.
1724bool Sema::CheckIfOverriddenFunctionIsMarkedFinal(const CXXMethodDecl *New,
1725                                                  const CXXMethodDecl *Old) {
1726  if (!Old->hasAttr<FinalAttr>())
1727    return false;
1728
1729  Diag(New->getLocation(), diag::err_final_function_overridden)
1730    << New->getDeclName();
1731  Diag(Old->getLocation(), diag::note_overridden_virtual_function);
1732  return true;
1733}
1734
1735static bool InitializationHasSideEffects(const FieldDecl &FD) {
1736  const Type *T = FD.getType()->getBaseElementTypeUnsafe();
1737  // FIXME: Destruction of ObjC lifetime types has side-effects.
1738  if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
1739    return !RD->isCompleteDefinition() ||
1740           !RD->hasTrivialDefaultConstructor() ||
1741           !RD->hasTrivialDestructor();
1742  return false;
1743}
1744
1745static AttributeList *getMSPropertyAttr(AttributeList *list) {
1746  for (AttributeList* it = list; it != 0; it = it->getNext())
1747    if (it->isDeclspecPropertyAttribute())
1748      return it;
1749  return 0;
1750}
1751
1752/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
1753/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
1754/// bitfield width if there is one, 'InitExpr' specifies the initializer if
1755/// one has been parsed, and 'InitStyle' is set if an in-class initializer is
1756/// present (but parsing it has been deferred).
1757NamedDecl *
1758Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
1759                               MultiTemplateParamsArg TemplateParameterLists,
1760                               Expr *BW, const VirtSpecifiers &VS,
1761                               InClassInitStyle InitStyle) {
1762  const DeclSpec &DS = D.getDeclSpec();
1763  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
1764  DeclarationName Name = NameInfo.getName();
1765  SourceLocation Loc = NameInfo.getLoc();
1766
1767  // For anonymous bitfields, the location should point to the type.
1768  if (Loc.isInvalid())
1769    Loc = D.getLocStart();
1770
1771  Expr *BitWidth = static_cast<Expr*>(BW);
1772
1773  assert(isa<CXXRecordDecl>(CurContext));
1774  assert(!DS.isFriendSpecified());
1775
1776  bool isFunc = D.isDeclarationOfFunction();
1777
1778  if (cast<CXXRecordDecl>(CurContext)->isInterface()) {
1779    // The Microsoft extension __interface only permits public member functions
1780    // and prohibits constructors, destructors, operators, non-public member
1781    // functions, static methods and data members.
1782    unsigned InvalidDecl;
1783    bool ShowDeclName = true;
1784    if (!isFunc)
1785      InvalidDecl = (DS.getStorageClassSpec() == DeclSpec::SCS_typedef) ? 0 : 1;
1786    else if (AS != AS_public)
1787      InvalidDecl = 2;
1788    else if (DS.getStorageClassSpec() == DeclSpec::SCS_static)
1789      InvalidDecl = 3;
1790    else switch (Name.getNameKind()) {
1791      case DeclarationName::CXXConstructorName:
1792        InvalidDecl = 4;
1793        ShowDeclName = false;
1794        break;
1795
1796      case DeclarationName::CXXDestructorName:
1797        InvalidDecl = 5;
1798        ShowDeclName = false;
1799        break;
1800
1801      case DeclarationName::CXXOperatorName:
1802      case DeclarationName::CXXConversionFunctionName:
1803        InvalidDecl = 6;
1804        break;
1805
1806      default:
1807        InvalidDecl = 0;
1808        break;
1809    }
1810
1811    if (InvalidDecl) {
1812      if (ShowDeclName)
1813        Diag(Loc, diag::err_invalid_member_in_interface)
1814          << (InvalidDecl-1) << Name;
1815      else
1816        Diag(Loc, diag::err_invalid_member_in_interface)
1817          << (InvalidDecl-1) << "";
1818      return 0;
1819    }
1820  }
1821
1822  // C++ 9.2p6: A member shall not be declared to have automatic storage
1823  // duration (auto, register) or with the extern storage-class-specifier.
1824  // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
1825  // data members and cannot be applied to names declared const or static,
1826  // and cannot be applied to reference members.
1827  switch (DS.getStorageClassSpec()) {
1828  case DeclSpec::SCS_unspecified:
1829  case DeclSpec::SCS_typedef:
1830  case DeclSpec::SCS_static:
1831    break;
1832  case DeclSpec::SCS_mutable:
1833    if (isFunc) {
1834      Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
1835
1836      // FIXME: It would be nicer if the keyword was ignored only for this
1837      // declarator. Otherwise we could get follow-up errors.
1838      D.getMutableDeclSpec().ClearStorageClassSpecs();
1839    }
1840    break;
1841  default:
1842    Diag(DS.getStorageClassSpecLoc(),
1843         diag::err_storageclass_invalid_for_member);
1844    D.getMutableDeclSpec().ClearStorageClassSpecs();
1845    break;
1846  }
1847
1848  bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
1849                       DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
1850                      !isFunc);
1851
1852  if (DS.isConstexprSpecified() && isInstField) {
1853    SemaDiagnosticBuilder B =
1854        Diag(DS.getConstexprSpecLoc(), diag::err_invalid_constexpr_member);
1855    SourceLocation ConstexprLoc = DS.getConstexprSpecLoc();
1856    if (InitStyle == ICIS_NoInit) {
1857      B << 0 << 0 << FixItHint::CreateReplacement(ConstexprLoc, "const");
1858      D.getMutableDeclSpec().ClearConstexprSpec();
1859      const char *PrevSpec;
1860      unsigned DiagID;
1861      bool Failed = D.getMutableDeclSpec().SetTypeQual(DeclSpec::TQ_const, ConstexprLoc,
1862                                         PrevSpec, DiagID, getLangOpts());
1863      (void)Failed;
1864      assert(!Failed && "Making a constexpr member const shouldn't fail");
1865    } else {
1866      B << 1;
1867      const char *PrevSpec;
1868      unsigned DiagID;
1869      if (D.getMutableDeclSpec().SetStorageClassSpec(
1870          *this, DeclSpec::SCS_static, ConstexprLoc, PrevSpec, DiagID)) {
1871        assert(DS.getStorageClassSpec() == DeclSpec::SCS_mutable &&
1872               "This is the only DeclSpec that should fail to be applied");
1873        B << 1;
1874      } else {
1875        B << 0 << FixItHint::CreateInsertion(ConstexprLoc, "static ");
1876        isInstField = false;
1877      }
1878    }
1879  }
1880
1881  NamedDecl *Member;
1882  if (isInstField) {
1883    CXXScopeSpec &SS = D.getCXXScopeSpec();
1884
1885    // Data members must have identifiers for names.
1886    if (!Name.isIdentifier()) {
1887      Diag(Loc, diag::err_bad_variable_name)
1888        << Name;
1889      return 0;
1890    }
1891
1892    IdentifierInfo *II = Name.getAsIdentifierInfo();
1893
1894    // Member field could not be with "template" keyword.
1895    // So TemplateParameterLists should be empty in this case.
1896    if (TemplateParameterLists.size()) {
1897      TemplateParameterList* TemplateParams = TemplateParameterLists[0];
1898      if (TemplateParams->size()) {
1899        // There is no such thing as a member field template.
1900        Diag(D.getIdentifierLoc(), diag::err_template_member)
1901            << II
1902            << SourceRange(TemplateParams->getTemplateLoc(),
1903                TemplateParams->getRAngleLoc());
1904      } else {
1905        // There is an extraneous 'template<>' for this member.
1906        Diag(TemplateParams->getTemplateLoc(),
1907            diag::err_template_member_noparams)
1908            << II
1909            << SourceRange(TemplateParams->getTemplateLoc(),
1910                TemplateParams->getRAngleLoc());
1911      }
1912      return 0;
1913    }
1914
1915    if (SS.isSet() && !SS.isInvalid()) {
1916      // The user provided a superfluous scope specifier inside a class
1917      // definition:
1918      //
1919      // class X {
1920      //   int X::member;
1921      // };
1922      if (DeclContext *DC = computeDeclContext(SS, false))
1923        diagnoseQualifiedDeclaration(SS, DC, Name, D.getIdentifierLoc());
1924      else
1925        Diag(D.getIdentifierLoc(), diag::err_member_qualification)
1926          << Name << SS.getRange();
1927
1928      SS.clear();
1929    }
1930
1931    AttributeList *MSPropertyAttr =
1932      getMSPropertyAttr(D.getDeclSpec().getAttributes().getList());
1933    if (MSPropertyAttr) {
1934      Member = HandleMSProperty(S, cast<CXXRecordDecl>(CurContext), Loc, D,
1935                                BitWidth, InitStyle, AS, MSPropertyAttr);
1936      isInstField = false;
1937    } else {
1938      Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D,
1939                                BitWidth, InitStyle, AS);
1940    }
1941    assert(Member && "HandleField never returns null");
1942  } else {
1943    assert(InitStyle == ICIS_NoInit || D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_static);
1944
1945    Member = HandleDeclarator(S, D, TemplateParameterLists);
1946    if (!Member) {
1947      return 0;
1948    }
1949
1950    // Non-instance-fields can't have a bitfield.
1951    if (BitWidth) {
1952      if (Member->isInvalidDecl()) {
1953        // don't emit another diagnostic.
1954      } else if (isa<VarDecl>(Member)) {
1955        // C++ 9.6p3: A bit-field shall not be a static member.
1956        // "static member 'A' cannot be a bit-field"
1957        Diag(Loc, diag::err_static_not_bitfield)
1958          << Name << BitWidth->getSourceRange();
1959      } else if (isa<TypedefDecl>(Member)) {
1960        // "typedef member 'x' cannot be a bit-field"
1961        Diag(Loc, diag::err_typedef_not_bitfield)
1962          << Name << BitWidth->getSourceRange();
1963      } else {
1964        // A function typedef ("typedef int f(); f a;").
1965        // C++ 9.6p3: A bit-field shall have integral or enumeration type.
1966        Diag(Loc, diag::err_not_integral_type_bitfield)
1967          << Name << cast<ValueDecl>(Member)->getType()
1968          << BitWidth->getSourceRange();
1969      }
1970
1971      BitWidth = 0;
1972      Member->setInvalidDecl();
1973    }
1974
1975    Member->setAccess(AS);
1976
1977    // If we have declared a member function template, set the access of the
1978    // templated declaration as well.
1979    if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Member))
1980      FunTmpl->getTemplatedDecl()->setAccess(AS);
1981  }
1982
1983  if (VS.isOverrideSpecified())
1984    Member->addAttr(new (Context) OverrideAttr(VS.getOverrideLoc(), Context));
1985  if (VS.isFinalSpecified())
1986    Member->addAttr(new (Context) FinalAttr(VS.getFinalLoc(), Context));
1987
1988  if (VS.getLastLocation().isValid()) {
1989    // Update the end location of a method that has a virt-specifiers.
1990    if (CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(Member))
1991      MD->setRangeEnd(VS.getLastLocation());
1992  }
1993
1994  CheckOverrideControl(Member);
1995
1996  assert((Name || isInstField) && "No identifier for non-field ?");
1997
1998  if (isInstField) {
1999    FieldDecl *FD = cast<FieldDecl>(Member);
2000    FieldCollector->Add(FD);
2001
2002    if (Diags.getDiagnosticLevel(diag::warn_unused_private_field,
2003                                 FD->getLocation())
2004          != DiagnosticsEngine::Ignored) {
2005      // Remember all explicit private FieldDecls that have a name, no side
2006      // effects and are not part of a dependent type declaration.
2007      if (!FD->isImplicit() && FD->getDeclName() &&
2008          FD->getAccess() == AS_private &&
2009          !FD->hasAttr<UnusedAttr>() &&
2010          !FD->getParent()->isDependentContext() &&
2011          !InitializationHasSideEffects(*FD))
2012        UnusedPrivateFields.insert(FD);
2013    }
2014  }
2015
2016  return Member;
2017}
2018
2019namespace {
2020  class UninitializedFieldVisitor
2021      : public EvaluatedExprVisitor<UninitializedFieldVisitor> {
2022    Sema &S;
2023    ValueDecl *VD;
2024  public:
2025    typedef EvaluatedExprVisitor<UninitializedFieldVisitor> Inherited;
2026    UninitializedFieldVisitor(Sema &S, ValueDecl *VD) : Inherited(S.Context),
2027                                                        S(S) {
2028      if (IndirectFieldDecl *IFD = dyn_cast<IndirectFieldDecl>(VD))
2029        this->VD = IFD->getAnonField();
2030      else
2031        this->VD = VD;
2032    }
2033
2034    void HandleExpr(Expr *E) {
2035      if (!E) return;
2036
2037      // Expressions like x(x) sometimes lack the surrounding expressions
2038      // but need to be checked anyways.
2039      HandleValue(E);
2040      Visit(E);
2041    }
2042
2043    void HandleValue(Expr *E) {
2044      E = E->IgnoreParens();
2045
2046      if (MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
2047        if (isa<EnumConstantDecl>(ME->getMemberDecl()))
2048          return;
2049
2050        // FieldME is the inner-most MemberExpr that is not an anonymous struct
2051        // or union.
2052        MemberExpr *FieldME = ME;
2053
2054        Expr *Base = E;
2055        while (isa<MemberExpr>(Base)) {
2056          ME = cast<MemberExpr>(Base);
2057
2058          if (isa<VarDecl>(ME->getMemberDecl()))
2059            return;
2060
2061          if (FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl()))
2062            if (!FD->isAnonymousStructOrUnion())
2063              FieldME = ME;
2064
2065          Base = ME->getBase();
2066        }
2067
2068        if (VD == FieldME->getMemberDecl() && isa<CXXThisExpr>(Base)) {
2069          unsigned diag = VD->getType()->isReferenceType()
2070              ? diag::warn_reference_field_is_uninit
2071              : diag::warn_field_is_uninit;
2072          S.Diag(FieldME->getExprLoc(), diag) << VD;
2073        }
2074        return;
2075      }
2076
2077      if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
2078        HandleValue(CO->getTrueExpr());
2079        HandleValue(CO->getFalseExpr());
2080        return;
2081      }
2082
2083      if (BinaryConditionalOperator *BCO =
2084              dyn_cast<BinaryConditionalOperator>(E)) {
2085        HandleValue(BCO->getCommon());
2086        HandleValue(BCO->getFalseExpr());
2087        return;
2088      }
2089
2090      if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
2091        switch (BO->getOpcode()) {
2092        default:
2093          return;
2094        case(BO_PtrMemD):
2095        case(BO_PtrMemI):
2096          HandleValue(BO->getLHS());
2097          return;
2098        case(BO_Comma):
2099          HandleValue(BO->getRHS());
2100          return;
2101        }
2102      }
2103    }
2104
2105    void VisitImplicitCastExpr(ImplicitCastExpr *E) {
2106      if (E->getCastKind() == CK_LValueToRValue)
2107        HandleValue(E->getSubExpr());
2108
2109      Inherited::VisitImplicitCastExpr(E);
2110    }
2111
2112    void VisitCXXMemberCallExpr(CXXMemberCallExpr *E) {
2113      Expr *Callee = E->getCallee();
2114      if (isa<MemberExpr>(Callee))
2115        HandleValue(Callee);
2116
2117      Inherited::VisitCXXMemberCallExpr(E);
2118    }
2119  };
2120  static void CheckInitExprContainsUninitializedFields(Sema &S, Expr *E,
2121                                                       ValueDecl *VD) {
2122    UninitializedFieldVisitor(S, VD).HandleExpr(E);
2123  }
2124} // namespace
2125
2126/// ActOnCXXInClassMemberInitializer - This is invoked after parsing an
2127/// in-class initializer for a non-static C++ class member, and after
2128/// instantiating an in-class initializer in a class template. Such actions
2129/// are deferred until the class is complete.
2130void
2131Sema::ActOnCXXInClassMemberInitializer(Decl *D, SourceLocation InitLoc,
2132                                       Expr *InitExpr) {
2133  FieldDecl *FD = cast<FieldDecl>(D);
2134  assert(FD->getInClassInitStyle() != ICIS_NoInit &&
2135         "must set init style when field is created");
2136
2137  if (!InitExpr) {
2138    FD->setInvalidDecl();
2139    FD->removeInClassInitializer();
2140    return;
2141  }
2142
2143  if (DiagnoseUnexpandedParameterPack(InitExpr, UPPC_Initializer)) {
2144    FD->setInvalidDecl();
2145    FD->removeInClassInitializer();
2146    return;
2147  }
2148
2149  if (getDiagnostics().getDiagnosticLevel(diag::warn_field_is_uninit, InitLoc)
2150      != DiagnosticsEngine::Ignored) {
2151    CheckInitExprContainsUninitializedFields(*this, InitExpr, FD);
2152  }
2153
2154  ExprResult Init = InitExpr;
2155  if (!FD->getType()->isDependentType() && !InitExpr->isTypeDependent()) {
2156    if (isa<InitListExpr>(InitExpr) && isStdInitializerList(FD->getType(), 0)) {
2157      Diag(FD->getLocation(), diag::warn_dangling_std_initializer_list)
2158        << /*at end of ctor*/1 << InitExpr->getSourceRange();
2159    }
2160    Expr **Inits = &InitExpr;
2161    unsigned NumInits = 1;
2162    InitializedEntity Entity = InitializedEntity::InitializeMember(FD);
2163    InitializationKind Kind = FD->getInClassInitStyle() == ICIS_ListInit
2164        ? InitializationKind::CreateDirectList(InitExpr->getLocStart())
2165        : InitializationKind::CreateCopy(InitExpr->getLocStart(), InitLoc);
2166    InitializationSequence Seq(*this, Entity, Kind, Inits, NumInits);
2167    Init = Seq.Perform(*this, Entity, Kind, MultiExprArg(Inits, NumInits));
2168    if (Init.isInvalid()) {
2169      FD->setInvalidDecl();
2170      return;
2171    }
2172  }
2173
2174  // C++11 [class.base.init]p7:
2175  //   The initialization of each base and member constitutes a
2176  //   full-expression.
2177  Init = ActOnFinishFullExpr(Init.take(), InitLoc);
2178  if (Init.isInvalid()) {
2179    FD->setInvalidDecl();
2180    return;
2181  }
2182
2183  InitExpr = Init.release();
2184
2185  FD->setInClassInitializer(InitExpr);
2186}
2187
2188/// \brief Find the direct and/or virtual base specifiers that
2189/// correspond to the given base type, for use in base initialization
2190/// within a constructor.
2191static bool FindBaseInitializer(Sema &SemaRef,
2192                                CXXRecordDecl *ClassDecl,
2193                                QualType BaseType,
2194                                const CXXBaseSpecifier *&DirectBaseSpec,
2195                                const CXXBaseSpecifier *&VirtualBaseSpec) {
2196  // First, check for a direct base class.
2197  DirectBaseSpec = 0;
2198  for (CXXRecordDecl::base_class_const_iterator Base
2199         = ClassDecl->bases_begin();
2200       Base != ClassDecl->bases_end(); ++Base) {
2201    if (SemaRef.Context.hasSameUnqualifiedType(BaseType, Base->getType())) {
2202      // We found a direct base of this type. That's what we're
2203      // initializing.
2204      DirectBaseSpec = &*Base;
2205      break;
2206    }
2207  }
2208
2209  // Check for a virtual base class.
2210  // FIXME: We might be able to short-circuit this if we know in advance that
2211  // there are no virtual bases.
2212  VirtualBaseSpec = 0;
2213  if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
2214    // We haven't found a base yet; search the class hierarchy for a
2215    // virtual base class.
2216    CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
2217                       /*DetectVirtual=*/false);
2218    if (SemaRef.IsDerivedFrom(SemaRef.Context.getTypeDeclType(ClassDecl),
2219                              BaseType, Paths)) {
2220      for (CXXBasePaths::paths_iterator Path = Paths.begin();
2221           Path != Paths.end(); ++Path) {
2222        if (Path->back().Base->isVirtual()) {
2223          VirtualBaseSpec = Path->back().Base;
2224          break;
2225        }
2226      }
2227    }
2228  }
2229
2230  return DirectBaseSpec || VirtualBaseSpec;
2231}
2232
2233/// \brief Handle a C++ member initializer using braced-init-list syntax.
2234MemInitResult
2235Sema::ActOnMemInitializer(Decl *ConstructorD,
2236                          Scope *S,
2237                          CXXScopeSpec &SS,
2238                          IdentifierInfo *MemberOrBase,
2239                          ParsedType TemplateTypeTy,
2240                          const DeclSpec &DS,
2241                          SourceLocation IdLoc,
2242                          Expr *InitList,
2243                          SourceLocation EllipsisLoc) {
2244  return BuildMemInitializer(ConstructorD, S, SS, MemberOrBase, TemplateTypeTy,
2245                             DS, IdLoc, InitList,
2246                             EllipsisLoc);
2247}
2248
2249/// \brief Handle a C++ member initializer using parentheses syntax.
2250MemInitResult
2251Sema::ActOnMemInitializer(Decl *ConstructorD,
2252                          Scope *S,
2253                          CXXScopeSpec &SS,
2254                          IdentifierInfo *MemberOrBase,
2255                          ParsedType TemplateTypeTy,
2256                          const DeclSpec &DS,
2257                          SourceLocation IdLoc,
2258                          SourceLocation LParenLoc,
2259                          Expr **Args, unsigned NumArgs,
2260                          SourceLocation RParenLoc,
2261                          SourceLocation EllipsisLoc) {
2262  Expr *List = new (Context) ParenListExpr(Context, LParenLoc,
2263                                           llvm::makeArrayRef(Args, NumArgs),
2264                                           RParenLoc);
2265  return BuildMemInitializer(ConstructorD, S, SS, MemberOrBase, TemplateTypeTy,
2266                             DS, IdLoc, List, EllipsisLoc);
2267}
2268
2269namespace {
2270
2271// Callback to only accept typo corrections that can be a valid C++ member
2272// intializer: either a non-static field member or a base class.
2273class MemInitializerValidatorCCC : public CorrectionCandidateCallback {
2274 public:
2275  explicit MemInitializerValidatorCCC(CXXRecordDecl *ClassDecl)
2276      : ClassDecl(ClassDecl) {}
2277
2278  virtual bool ValidateCandidate(const TypoCorrection &candidate) {
2279    if (NamedDecl *ND = candidate.getCorrectionDecl()) {
2280      if (FieldDecl *Member = dyn_cast<FieldDecl>(ND))
2281        return Member->getDeclContext()->getRedeclContext()->Equals(ClassDecl);
2282      else
2283        return isa<TypeDecl>(ND);
2284    }
2285    return false;
2286  }
2287
2288 private:
2289  CXXRecordDecl *ClassDecl;
2290};
2291
2292}
2293
2294/// \brief Handle a C++ member initializer.
2295MemInitResult
2296Sema::BuildMemInitializer(Decl *ConstructorD,
2297                          Scope *S,
2298                          CXXScopeSpec &SS,
2299                          IdentifierInfo *MemberOrBase,
2300                          ParsedType TemplateTypeTy,
2301                          const DeclSpec &DS,
2302                          SourceLocation IdLoc,
2303                          Expr *Init,
2304                          SourceLocation EllipsisLoc) {
2305  if (!ConstructorD)
2306    return true;
2307
2308  AdjustDeclIfTemplate(ConstructorD);
2309
2310  CXXConstructorDecl *Constructor
2311    = dyn_cast<CXXConstructorDecl>(ConstructorD);
2312  if (!Constructor) {
2313    // The user wrote a constructor initializer on a function that is
2314    // not a C++ constructor. Ignore the error for now, because we may
2315    // have more member initializers coming; we'll diagnose it just
2316    // once in ActOnMemInitializers.
2317    return true;
2318  }
2319
2320  CXXRecordDecl *ClassDecl = Constructor->getParent();
2321
2322  // C++ [class.base.init]p2:
2323  //   Names in a mem-initializer-id are looked up in the scope of the
2324  //   constructor's class and, if not found in that scope, are looked
2325  //   up in the scope containing the constructor's definition.
2326  //   [Note: if the constructor's class contains a member with the
2327  //   same name as a direct or virtual base class of the class, a
2328  //   mem-initializer-id naming the member or base class and composed
2329  //   of a single identifier refers to the class member. A
2330  //   mem-initializer-id for the hidden base class may be specified
2331  //   using a qualified name. ]
2332  if (!SS.getScopeRep() && !TemplateTypeTy) {
2333    // Look for a member, first.
2334    DeclContext::lookup_result Result
2335      = ClassDecl->lookup(MemberOrBase);
2336    if (!Result.empty()) {
2337      ValueDecl *Member;
2338      if ((Member = dyn_cast<FieldDecl>(Result.front())) ||
2339          (Member = dyn_cast<IndirectFieldDecl>(Result.front()))) {
2340        if (EllipsisLoc.isValid())
2341          Diag(EllipsisLoc, diag::err_pack_expansion_member_init)
2342            << MemberOrBase
2343            << SourceRange(IdLoc, Init->getSourceRange().getEnd());
2344
2345        return BuildMemberInitializer(Member, Init, IdLoc);
2346      }
2347    }
2348  }
2349  // It didn't name a member, so see if it names a class.
2350  QualType BaseType;
2351  TypeSourceInfo *TInfo = 0;
2352
2353  if (TemplateTypeTy) {
2354    BaseType = GetTypeFromParser(TemplateTypeTy, &TInfo);
2355  } else if (DS.getTypeSpecType() == TST_decltype) {
2356    BaseType = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc());
2357  } else {
2358    LookupResult R(*this, MemberOrBase, IdLoc, LookupOrdinaryName);
2359    LookupParsedName(R, S, &SS);
2360
2361    TypeDecl *TyD = R.getAsSingle<TypeDecl>();
2362    if (!TyD) {
2363      if (R.isAmbiguous()) return true;
2364
2365      // We don't want access-control diagnostics here.
2366      R.suppressDiagnostics();
2367
2368      if (SS.isSet() && isDependentScopeSpecifier(SS)) {
2369        bool NotUnknownSpecialization = false;
2370        DeclContext *DC = computeDeclContext(SS, false);
2371        if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(DC))
2372          NotUnknownSpecialization = !Record->hasAnyDependentBases();
2373
2374        if (!NotUnknownSpecialization) {
2375          // When the scope specifier can refer to a member of an unknown
2376          // specialization, we take it as a type name.
2377          BaseType = CheckTypenameType(ETK_None, SourceLocation(),
2378                                       SS.getWithLocInContext(Context),
2379                                       *MemberOrBase, IdLoc);
2380          if (BaseType.isNull())
2381            return true;
2382
2383          R.clear();
2384          R.setLookupName(MemberOrBase);
2385        }
2386      }
2387
2388      // If no results were found, try to correct typos.
2389      TypoCorrection Corr;
2390      MemInitializerValidatorCCC Validator(ClassDecl);
2391      if (R.empty() && BaseType.isNull() &&
2392          (Corr = CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(), S, &SS,
2393                              Validator, ClassDecl))) {
2394        std::string CorrectedStr(Corr.getAsString(getLangOpts()));
2395        std::string CorrectedQuotedStr(Corr.getQuoted(getLangOpts()));
2396        if (FieldDecl *Member = Corr.getCorrectionDeclAs<FieldDecl>()) {
2397          // We have found a non-static data member with a similar
2398          // name to what was typed; complain and initialize that
2399          // member.
2400          Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
2401            << MemberOrBase << true << CorrectedQuotedStr
2402            << FixItHint::CreateReplacement(R.getNameLoc(), CorrectedStr);
2403          Diag(Member->getLocation(), diag::note_previous_decl)
2404            << CorrectedQuotedStr;
2405
2406          return BuildMemberInitializer(Member, Init, IdLoc);
2407        } else if (TypeDecl *Type = Corr.getCorrectionDeclAs<TypeDecl>()) {
2408          const CXXBaseSpecifier *DirectBaseSpec;
2409          const CXXBaseSpecifier *VirtualBaseSpec;
2410          if (FindBaseInitializer(*this, ClassDecl,
2411                                  Context.getTypeDeclType(Type),
2412                                  DirectBaseSpec, VirtualBaseSpec)) {
2413            // We have found a direct or virtual base class with a
2414            // similar name to what was typed; complain and initialize
2415            // that base class.
2416            Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
2417              << MemberOrBase << false << CorrectedQuotedStr
2418              << FixItHint::CreateReplacement(R.getNameLoc(), CorrectedStr);
2419
2420            const CXXBaseSpecifier *BaseSpec = DirectBaseSpec? DirectBaseSpec
2421                                                             : VirtualBaseSpec;
2422            Diag(BaseSpec->getLocStart(),
2423                 diag::note_base_class_specified_here)
2424              << BaseSpec->getType()
2425              << BaseSpec->getSourceRange();
2426
2427            TyD = Type;
2428          }
2429        }
2430      }
2431
2432      if (!TyD && BaseType.isNull()) {
2433        Diag(IdLoc, diag::err_mem_init_not_member_or_class)
2434          << MemberOrBase << SourceRange(IdLoc,Init->getSourceRange().getEnd());
2435        return true;
2436      }
2437    }
2438
2439    if (BaseType.isNull()) {
2440      BaseType = Context.getTypeDeclType(TyD);
2441      if (SS.isSet()) {
2442        NestedNameSpecifier *Qualifier =
2443          static_cast<NestedNameSpecifier*>(SS.getScopeRep());
2444
2445        // FIXME: preserve source range information
2446        BaseType = Context.getElaboratedType(ETK_None, Qualifier, BaseType);
2447      }
2448    }
2449  }
2450
2451  if (!TInfo)
2452    TInfo = Context.getTrivialTypeSourceInfo(BaseType, IdLoc);
2453
2454  return BuildBaseInitializer(BaseType, TInfo, Init, ClassDecl, EllipsisLoc);
2455}
2456
2457/// Checks a member initializer expression for cases where reference (or
2458/// pointer) members are bound to by-value parameters (or their addresses).
2459static void CheckForDanglingReferenceOrPointer(Sema &S, ValueDecl *Member,
2460                                               Expr *Init,
2461                                               SourceLocation IdLoc) {
2462  QualType MemberTy = Member->getType();
2463
2464  // We only handle pointers and references currently.
2465  // FIXME: Would this be relevant for ObjC object pointers? Or block pointers?
2466  if (!MemberTy->isReferenceType() && !MemberTy->isPointerType())
2467    return;
2468
2469  const bool IsPointer = MemberTy->isPointerType();
2470  if (IsPointer) {
2471    if (const UnaryOperator *Op
2472          = dyn_cast<UnaryOperator>(Init->IgnoreParenImpCasts())) {
2473      // The only case we're worried about with pointers requires taking the
2474      // address.
2475      if (Op->getOpcode() != UO_AddrOf)
2476        return;
2477
2478      Init = Op->getSubExpr();
2479    } else {
2480      // We only handle address-of expression initializers for pointers.
2481      return;
2482    }
2483  }
2484
2485  if (isa<MaterializeTemporaryExpr>(Init->IgnoreParens())) {
2486    // Taking the address of a temporary will be diagnosed as a hard error.
2487    if (IsPointer)
2488      return;
2489
2490    S.Diag(Init->getExprLoc(), diag::warn_bind_ref_member_to_temporary)
2491      << Member << Init->getSourceRange();
2492  } else if (const DeclRefExpr *DRE
2493               = dyn_cast<DeclRefExpr>(Init->IgnoreParens())) {
2494    // We only warn when referring to a non-reference parameter declaration.
2495    const ParmVarDecl *Parameter = dyn_cast<ParmVarDecl>(DRE->getDecl());
2496    if (!Parameter || Parameter->getType()->isReferenceType())
2497      return;
2498
2499    S.Diag(Init->getExprLoc(),
2500           IsPointer ? diag::warn_init_ptr_member_to_parameter_addr
2501                     : diag::warn_bind_ref_member_to_parameter)
2502      << Member << Parameter << Init->getSourceRange();
2503  } else {
2504    // Other initializers are fine.
2505    return;
2506  }
2507
2508  S.Diag(Member->getLocation(), diag::note_ref_or_ptr_member_declared_here)
2509    << (unsigned)IsPointer;
2510}
2511
2512MemInitResult
2513Sema::BuildMemberInitializer(ValueDecl *Member, Expr *Init,
2514                             SourceLocation IdLoc) {
2515  FieldDecl *DirectMember = dyn_cast<FieldDecl>(Member);
2516  IndirectFieldDecl *IndirectMember = dyn_cast<IndirectFieldDecl>(Member);
2517  assert((DirectMember || IndirectMember) &&
2518         "Member must be a FieldDecl or IndirectFieldDecl");
2519
2520  if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer))
2521    return true;
2522
2523  if (Member->isInvalidDecl())
2524    return true;
2525
2526  // Diagnose value-uses of fields to initialize themselves, e.g.
2527  //   foo(foo)
2528  // where foo is not also a parameter to the constructor.
2529  // TODO: implement -Wuninitialized and fold this into that framework.
2530  Expr **Args;
2531  unsigned NumArgs;
2532  if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) {
2533    Args = ParenList->getExprs();
2534    NumArgs = ParenList->getNumExprs();
2535  } else if (InitListExpr *InitList = dyn_cast<InitListExpr>(Init)) {
2536    Args = InitList->getInits();
2537    NumArgs = InitList->getNumInits();
2538  } else {
2539    // Template instantiation doesn't reconstruct ParenListExprs for us.
2540    Args = &Init;
2541    NumArgs = 1;
2542  }
2543
2544  if (getDiagnostics().getDiagnosticLevel(diag::warn_field_is_uninit, IdLoc)
2545        != DiagnosticsEngine::Ignored)
2546    for (unsigned i = 0; i < NumArgs; ++i)
2547      // FIXME: Warn about the case when other fields are used before being
2548      // initialized. For example, let this field be the i'th field. When
2549      // initializing the i'th field, throw a warning if any of the >= i'th
2550      // fields are used, as they are not yet initialized.
2551      // Right now we are only handling the case where the i'th field uses
2552      // itself in its initializer.
2553      // Also need to take into account that some fields may be initialized by
2554      // in-class initializers, see C++11 [class.base.init]p9.
2555      CheckInitExprContainsUninitializedFields(*this, Args[i], Member);
2556
2557  SourceRange InitRange = Init->getSourceRange();
2558
2559  if (Member->getType()->isDependentType() || Init->isTypeDependent()) {
2560    // Can't check initialization for a member of dependent type or when
2561    // any of the arguments are type-dependent expressions.
2562    DiscardCleanupsInEvaluationContext();
2563  } else {
2564    bool InitList = false;
2565    if (isa<InitListExpr>(Init)) {
2566      InitList = true;
2567      Args = &Init;
2568      NumArgs = 1;
2569
2570      if (isStdInitializerList(Member->getType(), 0)) {
2571        Diag(IdLoc, diag::warn_dangling_std_initializer_list)
2572            << /*at end of ctor*/1 << InitRange;
2573      }
2574    }
2575
2576    // Initialize the member.
2577    InitializedEntity MemberEntity =
2578      DirectMember ? InitializedEntity::InitializeMember(DirectMember, 0)
2579                   : InitializedEntity::InitializeMember(IndirectMember, 0);
2580    InitializationKind Kind =
2581      InitList ? InitializationKind::CreateDirectList(IdLoc)
2582               : InitializationKind::CreateDirect(IdLoc, InitRange.getBegin(),
2583                                                  InitRange.getEnd());
2584
2585    InitializationSequence InitSeq(*this, MemberEntity, Kind, Args, NumArgs);
2586    ExprResult MemberInit = InitSeq.Perform(*this, MemberEntity, Kind,
2587                                            MultiExprArg(Args, NumArgs),
2588                                            0);
2589    if (MemberInit.isInvalid())
2590      return true;
2591
2592    // C++11 [class.base.init]p7:
2593    //   The initialization of each base and member constitutes a
2594    //   full-expression.
2595    MemberInit = ActOnFinishFullExpr(MemberInit.get(), InitRange.getBegin());
2596    if (MemberInit.isInvalid())
2597      return true;
2598
2599    Init = MemberInit.get();
2600    CheckForDanglingReferenceOrPointer(*this, Member, Init, IdLoc);
2601  }
2602
2603  if (DirectMember) {
2604    return new (Context) CXXCtorInitializer(Context, DirectMember, IdLoc,
2605                                            InitRange.getBegin(), Init,
2606                                            InitRange.getEnd());
2607  } else {
2608    return new (Context) CXXCtorInitializer(Context, IndirectMember, IdLoc,
2609                                            InitRange.getBegin(), Init,
2610                                            InitRange.getEnd());
2611  }
2612}
2613
2614MemInitResult
2615Sema::BuildDelegatingInitializer(TypeSourceInfo *TInfo, Expr *Init,
2616                                 CXXRecordDecl *ClassDecl) {
2617  SourceLocation NameLoc = TInfo->getTypeLoc().getLocalSourceRange().getBegin();
2618  if (!LangOpts.CPlusPlus11)
2619    return Diag(NameLoc, diag::err_delegating_ctor)
2620      << TInfo->getTypeLoc().getLocalSourceRange();
2621  Diag(NameLoc, diag::warn_cxx98_compat_delegating_ctor);
2622
2623  bool InitList = true;
2624  Expr **Args = &Init;
2625  unsigned NumArgs = 1;
2626  if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) {
2627    InitList = false;
2628    Args = ParenList->getExprs();
2629    NumArgs = ParenList->getNumExprs();
2630  }
2631
2632  SourceRange InitRange = Init->getSourceRange();
2633  // Initialize the object.
2634  InitializedEntity DelegationEntity = InitializedEntity::InitializeDelegation(
2635                                     QualType(ClassDecl->getTypeForDecl(), 0));
2636  InitializationKind Kind =
2637    InitList ? InitializationKind::CreateDirectList(NameLoc)
2638             : InitializationKind::CreateDirect(NameLoc, InitRange.getBegin(),
2639                                                InitRange.getEnd());
2640  InitializationSequence InitSeq(*this, DelegationEntity, Kind, Args, NumArgs);
2641  ExprResult DelegationInit = InitSeq.Perform(*this, DelegationEntity, Kind,
2642                                              MultiExprArg(Args, NumArgs),
2643                                              0);
2644  if (DelegationInit.isInvalid())
2645    return true;
2646
2647  assert(cast<CXXConstructExpr>(DelegationInit.get())->getConstructor() &&
2648         "Delegating constructor with no target?");
2649
2650  // C++11 [class.base.init]p7:
2651  //   The initialization of each base and member constitutes a
2652  //   full-expression.
2653  DelegationInit = ActOnFinishFullExpr(DelegationInit.get(),
2654                                       InitRange.getBegin());
2655  if (DelegationInit.isInvalid())
2656    return true;
2657
2658  // If we are in a dependent context, template instantiation will
2659  // perform this type-checking again. Just save the arguments that we
2660  // received in a ParenListExpr.
2661  // FIXME: This isn't quite ideal, since our ASTs don't capture all
2662  // of the information that we have about the base
2663  // initializer. However, deconstructing the ASTs is a dicey process,
2664  // and this approach is far more likely to get the corner cases right.
2665  if (CurContext->isDependentContext())
2666    DelegationInit = Owned(Init);
2667
2668  return new (Context) CXXCtorInitializer(Context, TInfo, InitRange.getBegin(),
2669                                          DelegationInit.takeAs<Expr>(),
2670                                          InitRange.getEnd());
2671}
2672
2673MemInitResult
2674Sema::BuildBaseInitializer(QualType BaseType, TypeSourceInfo *BaseTInfo,
2675                           Expr *Init, CXXRecordDecl *ClassDecl,
2676                           SourceLocation EllipsisLoc) {
2677  SourceLocation BaseLoc
2678    = BaseTInfo->getTypeLoc().getLocalSourceRange().getBegin();
2679
2680  if (!BaseType->isDependentType() && !BaseType->isRecordType())
2681    return Diag(BaseLoc, diag::err_base_init_does_not_name_class)
2682             << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
2683
2684  // C++ [class.base.init]p2:
2685  //   [...] Unless the mem-initializer-id names a nonstatic data
2686  //   member of the constructor's class or a direct or virtual base
2687  //   of that class, the mem-initializer is ill-formed. A
2688  //   mem-initializer-list can initialize a base class using any
2689  //   name that denotes that base class type.
2690  bool Dependent = BaseType->isDependentType() || Init->isTypeDependent();
2691
2692  SourceRange InitRange = Init->getSourceRange();
2693  if (EllipsisLoc.isValid()) {
2694    // This is a pack expansion.
2695    if (!BaseType->containsUnexpandedParameterPack())  {
2696      Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
2697        << SourceRange(BaseLoc, InitRange.getEnd());
2698
2699      EllipsisLoc = SourceLocation();
2700    }
2701  } else {
2702    // Check for any unexpanded parameter packs.
2703    if (DiagnoseUnexpandedParameterPack(BaseLoc, BaseTInfo, UPPC_Initializer))
2704      return true;
2705
2706    if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer))
2707      return true;
2708  }
2709
2710  // Check for direct and virtual base classes.
2711  const CXXBaseSpecifier *DirectBaseSpec = 0;
2712  const CXXBaseSpecifier *VirtualBaseSpec = 0;
2713  if (!Dependent) {
2714    if (Context.hasSameUnqualifiedType(QualType(ClassDecl->getTypeForDecl(),0),
2715                                       BaseType))
2716      return BuildDelegatingInitializer(BaseTInfo, Init, ClassDecl);
2717
2718    FindBaseInitializer(*this, ClassDecl, BaseType, DirectBaseSpec,
2719                        VirtualBaseSpec);
2720
2721    // C++ [base.class.init]p2:
2722    // Unless the mem-initializer-id names a nonstatic data member of the
2723    // constructor's class or a direct or virtual base of that class, the
2724    // mem-initializer is ill-formed.
2725    if (!DirectBaseSpec && !VirtualBaseSpec) {
2726      // If the class has any dependent bases, then it's possible that
2727      // one of those types will resolve to the same type as
2728      // BaseType. Therefore, just treat this as a dependent base
2729      // class initialization.  FIXME: Should we try to check the
2730      // initialization anyway? It seems odd.
2731      if (ClassDecl->hasAnyDependentBases())
2732        Dependent = true;
2733      else
2734        return Diag(BaseLoc, diag::err_not_direct_base_or_virtual)
2735          << BaseType << Context.getTypeDeclType(ClassDecl)
2736          << BaseTInfo->getTypeLoc().getLocalSourceRange();
2737    }
2738  }
2739
2740  if (Dependent) {
2741    DiscardCleanupsInEvaluationContext();
2742
2743    return new (Context) CXXCtorInitializer(Context, BaseTInfo,
2744                                            /*IsVirtual=*/false,
2745                                            InitRange.getBegin(), Init,
2746                                            InitRange.getEnd(), EllipsisLoc);
2747  }
2748
2749  // C++ [base.class.init]p2:
2750  //   If a mem-initializer-id is ambiguous because it designates both
2751  //   a direct non-virtual base class and an inherited virtual base
2752  //   class, the mem-initializer is ill-formed.
2753  if (DirectBaseSpec && VirtualBaseSpec)
2754    return Diag(BaseLoc, diag::err_base_init_direct_and_virtual)
2755      << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
2756
2757  CXXBaseSpecifier *BaseSpec = const_cast<CXXBaseSpecifier *>(DirectBaseSpec);
2758  if (!BaseSpec)
2759    BaseSpec = const_cast<CXXBaseSpecifier *>(VirtualBaseSpec);
2760
2761  // Initialize the base.
2762  bool InitList = true;
2763  Expr **Args = &Init;
2764  unsigned NumArgs = 1;
2765  if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) {
2766    InitList = false;
2767    Args = ParenList->getExprs();
2768    NumArgs = ParenList->getNumExprs();
2769  }
2770
2771  InitializedEntity BaseEntity =
2772    InitializedEntity::InitializeBase(Context, BaseSpec, VirtualBaseSpec);
2773  InitializationKind Kind =
2774    InitList ? InitializationKind::CreateDirectList(BaseLoc)
2775             : InitializationKind::CreateDirect(BaseLoc, InitRange.getBegin(),
2776                                                InitRange.getEnd());
2777  InitializationSequence InitSeq(*this, BaseEntity, Kind, Args, NumArgs);
2778  ExprResult BaseInit = InitSeq.Perform(*this, BaseEntity, Kind,
2779                                        MultiExprArg(Args, NumArgs), 0);
2780  if (BaseInit.isInvalid())
2781    return true;
2782
2783  // C++11 [class.base.init]p7:
2784  //   The initialization of each base and member constitutes a
2785  //   full-expression.
2786  BaseInit = ActOnFinishFullExpr(BaseInit.get(), InitRange.getBegin());
2787  if (BaseInit.isInvalid())
2788    return true;
2789
2790  // If we are in a dependent context, template instantiation will
2791  // perform this type-checking again. Just save the arguments that we
2792  // received in a ParenListExpr.
2793  // FIXME: This isn't quite ideal, since our ASTs don't capture all
2794  // of the information that we have about the base
2795  // initializer. However, deconstructing the ASTs is a dicey process,
2796  // and this approach is far more likely to get the corner cases right.
2797  if (CurContext->isDependentContext())
2798    BaseInit = Owned(Init);
2799
2800  return new (Context) CXXCtorInitializer(Context, BaseTInfo,
2801                                          BaseSpec->isVirtual(),
2802                                          InitRange.getBegin(),
2803                                          BaseInit.takeAs<Expr>(),
2804                                          InitRange.getEnd(), EllipsisLoc);
2805}
2806
2807// Create a static_cast\<T&&>(expr).
2808static Expr *CastForMoving(Sema &SemaRef, Expr *E, QualType T = QualType()) {
2809  if (T.isNull()) T = E->getType();
2810  QualType TargetType = SemaRef.BuildReferenceType(
2811      T, /*SpelledAsLValue*/false, SourceLocation(), DeclarationName());
2812  SourceLocation ExprLoc = E->getLocStart();
2813  TypeSourceInfo *TargetLoc = SemaRef.Context.getTrivialTypeSourceInfo(
2814      TargetType, ExprLoc);
2815
2816  return SemaRef.BuildCXXNamedCast(ExprLoc, tok::kw_static_cast, TargetLoc, E,
2817                                   SourceRange(ExprLoc, ExprLoc),
2818                                   E->getSourceRange()).take();
2819}
2820
2821/// ImplicitInitializerKind - How an implicit base or member initializer should
2822/// initialize its base or member.
2823enum ImplicitInitializerKind {
2824  IIK_Default,
2825  IIK_Copy,
2826  IIK_Move,
2827  IIK_Inherit
2828};
2829
2830static bool
2831BuildImplicitBaseInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
2832                             ImplicitInitializerKind ImplicitInitKind,
2833                             CXXBaseSpecifier *BaseSpec,
2834                             bool IsInheritedVirtualBase,
2835                             CXXCtorInitializer *&CXXBaseInit) {
2836  InitializedEntity InitEntity
2837    = InitializedEntity::InitializeBase(SemaRef.Context, BaseSpec,
2838                                        IsInheritedVirtualBase);
2839
2840  ExprResult BaseInit;
2841
2842  switch (ImplicitInitKind) {
2843  case IIK_Inherit: {
2844    const CXXRecordDecl *Inherited =
2845        Constructor->getInheritedConstructor()->getParent();
2846    const CXXRecordDecl *Base = BaseSpec->getType()->getAsCXXRecordDecl();
2847    if (Base && Inherited->getCanonicalDecl() == Base->getCanonicalDecl()) {
2848      // C++11 [class.inhctor]p8:
2849      //   Each expression in the expression-list is of the form
2850      //   static_cast<T&&>(p), where p is the name of the corresponding
2851      //   constructor parameter and T is the declared type of p.
2852      SmallVector<Expr*, 16> Args;
2853      for (unsigned I = 0, E = Constructor->getNumParams(); I != E; ++I) {
2854        ParmVarDecl *PD = Constructor->getParamDecl(I);
2855        ExprResult ArgExpr =
2856            SemaRef.BuildDeclRefExpr(PD, PD->getType().getNonReferenceType(),
2857                                     VK_LValue, SourceLocation());
2858        if (ArgExpr.isInvalid())
2859          return true;
2860        Args.push_back(CastForMoving(SemaRef, ArgExpr.take(), PD->getType()));
2861      }
2862
2863      InitializationKind InitKind = InitializationKind::CreateDirect(
2864          Constructor->getLocation(), SourceLocation(), SourceLocation());
2865      InitializationSequence InitSeq(SemaRef, InitEntity, InitKind,
2866                                     Args.data(), Args.size());
2867      BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind, Args);
2868      break;
2869    }
2870  }
2871  // Fall through.
2872  case IIK_Default: {
2873    InitializationKind InitKind
2874      = InitializationKind::CreateDefault(Constructor->getLocation());
2875    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
2876    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind, MultiExprArg());
2877    break;
2878  }
2879
2880  case IIK_Move:
2881  case IIK_Copy: {
2882    bool Moving = ImplicitInitKind == IIK_Move;
2883    ParmVarDecl *Param = Constructor->getParamDecl(0);
2884    QualType ParamType = Param->getType().getNonReferenceType();
2885
2886    Expr *CopyCtorArg =
2887      DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(),
2888                          SourceLocation(), Param, false,
2889                          Constructor->getLocation(), ParamType,
2890                          VK_LValue, 0);
2891
2892    SemaRef.MarkDeclRefReferenced(cast<DeclRefExpr>(CopyCtorArg));
2893
2894    // Cast to the base class to avoid ambiguities.
2895    QualType ArgTy =
2896      SemaRef.Context.getQualifiedType(BaseSpec->getType().getUnqualifiedType(),
2897                                       ParamType.getQualifiers());
2898
2899    if (Moving) {
2900      CopyCtorArg = CastForMoving(SemaRef, CopyCtorArg);
2901    }
2902
2903    CXXCastPath BasePath;
2904    BasePath.push_back(BaseSpec);
2905    CopyCtorArg = SemaRef.ImpCastExprToType(CopyCtorArg, ArgTy,
2906                                            CK_UncheckedDerivedToBase,
2907                                            Moving ? VK_XValue : VK_LValue,
2908                                            &BasePath).take();
2909
2910    InitializationKind InitKind
2911      = InitializationKind::CreateDirect(Constructor->getLocation(),
2912                                         SourceLocation(), SourceLocation());
2913    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind,
2914                                   &CopyCtorArg, 1);
2915    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind,
2916                               MultiExprArg(&CopyCtorArg, 1));
2917    break;
2918  }
2919  }
2920
2921  BaseInit = SemaRef.MaybeCreateExprWithCleanups(BaseInit);
2922  if (BaseInit.isInvalid())
2923    return true;
2924
2925  CXXBaseInit =
2926    new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
2927               SemaRef.Context.getTrivialTypeSourceInfo(BaseSpec->getType(),
2928                                                        SourceLocation()),
2929                                             BaseSpec->isVirtual(),
2930                                             SourceLocation(),
2931                                             BaseInit.takeAs<Expr>(),
2932                                             SourceLocation(),
2933                                             SourceLocation());
2934
2935  return false;
2936}
2937
2938static bool RefersToRValueRef(Expr *MemRef) {
2939  ValueDecl *Referenced = cast<MemberExpr>(MemRef)->getMemberDecl();
2940  return Referenced->getType()->isRValueReferenceType();
2941}
2942
2943static bool
2944BuildImplicitMemberInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
2945                               ImplicitInitializerKind ImplicitInitKind,
2946                               FieldDecl *Field, IndirectFieldDecl *Indirect,
2947                               CXXCtorInitializer *&CXXMemberInit) {
2948  if (Field->isInvalidDecl())
2949    return true;
2950
2951  SourceLocation Loc = Constructor->getLocation();
2952
2953  if (ImplicitInitKind == IIK_Copy || ImplicitInitKind == IIK_Move) {
2954    bool Moving = ImplicitInitKind == IIK_Move;
2955    ParmVarDecl *Param = Constructor->getParamDecl(0);
2956    QualType ParamType = Param->getType().getNonReferenceType();
2957
2958    // Suppress copying zero-width bitfields.
2959    if (Field->isBitField() && Field->getBitWidthValue(SemaRef.Context) == 0)
2960      return false;
2961
2962    Expr *MemberExprBase =
2963      DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(),
2964                          SourceLocation(), Param, false,
2965                          Loc, ParamType, VK_LValue, 0);
2966
2967    SemaRef.MarkDeclRefReferenced(cast<DeclRefExpr>(MemberExprBase));
2968
2969    if (Moving) {
2970      MemberExprBase = CastForMoving(SemaRef, MemberExprBase);
2971    }
2972
2973    // Build a reference to this field within the parameter.
2974    CXXScopeSpec SS;
2975    LookupResult MemberLookup(SemaRef, Field->getDeclName(), Loc,
2976                              Sema::LookupMemberName);
2977    MemberLookup.addDecl(Indirect ? cast<ValueDecl>(Indirect)
2978                                  : cast<ValueDecl>(Field), AS_public);
2979    MemberLookup.resolveKind();
2980    ExprResult CtorArg
2981      = SemaRef.BuildMemberReferenceExpr(MemberExprBase,
2982                                         ParamType, Loc,
2983                                         /*IsArrow=*/false,
2984                                         SS,
2985                                         /*TemplateKWLoc=*/SourceLocation(),
2986                                         /*FirstQualifierInScope=*/0,
2987                                         MemberLookup,
2988                                         /*TemplateArgs=*/0);
2989    if (CtorArg.isInvalid())
2990      return true;
2991
2992    // C++11 [class.copy]p15:
2993    //   - if a member m has rvalue reference type T&&, it is direct-initialized
2994    //     with static_cast<T&&>(x.m);
2995    if (RefersToRValueRef(CtorArg.get())) {
2996      CtorArg = CastForMoving(SemaRef, CtorArg.take());
2997    }
2998
2999    // When the field we are copying is an array, create index variables for
3000    // each dimension of the array. We use these index variables to subscript
3001    // the source array, and other clients (e.g., CodeGen) will perform the
3002    // necessary iteration with these index variables.
3003    SmallVector<VarDecl *, 4> IndexVariables;
3004    QualType BaseType = Field->getType();
3005    QualType SizeType = SemaRef.Context.getSizeType();
3006    bool InitializingArray = false;
3007    while (const ConstantArrayType *Array
3008                          = SemaRef.Context.getAsConstantArrayType(BaseType)) {
3009      InitializingArray = true;
3010      // Create the iteration variable for this array index.
3011      IdentifierInfo *IterationVarName = 0;
3012      {
3013        SmallString<8> Str;
3014        llvm::raw_svector_ostream OS(Str);
3015        OS << "__i" << IndexVariables.size();
3016        IterationVarName = &SemaRef.Context.Idents.get(OS.str());
3017      }
3018      VarDecl *IterationVar
3019        = VarDecl::Create(SemaRef.Context, SemaRef.CurContext, Loc, Loc,
3020                          IterationVarName, SizeType,
3021                        SemaRef.Context.getTrivialTypeSourceInfo(SizeType, Loc),
3022                          SC_None);
3023      IndexVariables.push_back(IterationVar);
3024
3025      // Create a reference to the iteration variable.
3026      ExprResult IterationVarRef
3027        = SemaRef.BuildDeclRefExpr(IterationVar, SizeType, VK_LValue, Loc);
3028      assert(!IterationVarRef.isInvalid() &&
3029             "Reference to invented variable cannot fail!");
3030      IterationVarRef = SemaRef.DefaultLvalueConversion(IterationVarRef.take());
3031      assert(!IterationVarRef.isInvalid() &&
3032             "Conversion of invented variable cannot fail!");
3033
3034      // Subscript the array with this iteration variable.
3035      CtorArg = SemaRef.CreateBuiltinArraySubscriptExpr(CtorArg.take(), Loc,
3036                                                        IterationVarRef.take(),
3037                                                        Loc);
3038      if (CtorArg.isInvalid())
3039        return true;
3040
3041      BaseType = Array->getElementType();
3042    }
3043
3044    // The array subscript expression is an lvalue, which is wrong for moving.
3045    if (Moving && InitializingArray)
3046      CtorArg = CastForMoving(SemaRef, CtorArg.take());
3047
3048    // Construct the entity that we will be initializing. For an array, this
3049    // will be first element in the array, which may require several levels
3050    // of array-subscript entities.
3051    SmallVector<InitializedEntity, 4> Entities;
3052    Entities.reserve(1 + IndexVariables.size());
3053    if (Indirect)
3054      Entities.push_back(InitializedEntity::InitializeMember(Indirect));
3055    else
3056      Entities.push_back(InitializedEntity::InitializeMember(Field));
3057    for (unsigned I = 0, N = IndexVariables.size(); I != N; ++I)
3058      Entities.push_back(InitializedEntity::InitializeElement(SemaRef.Context,
3059                                                              0,
3060                                                              Entities.back()));
3061
3062    // Direct-initialize to use the copy constructor.
3063    InitializationKind InitKind =
3064      InitializationKind::CreateDirect(Loc, SourceLocation(), SourceLocation());
3065
3066    Expr *CtorArgE = CtorArg.takeAs<Expr>();
3067    InitializationSequence InitSeq(SemaRef, Entities.back(), InitKind,
3068                                   &CtorArgE, 1);
3069
3070    ExprResult MemberInit
3071      = InitSeq.Perform(SemaRef, Entities.back(), InitKind,
3072                        MultiExprArg(&CtorArgE, 1));
3073    MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
3074    if (MemberInit.isInvalid())
3075      return true;
3076
3077    if (Indirect) {
3078      assert(IndexVariables.size() == 0 &&
3079             "Indirect field improperly initialized");
3080      CXXMemberInit
3081        = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Indirect,
3082                                                   Loc, Loc,
3083                                                   MemberInit.takeAs<Expr>(),
3084                                                   Loc);
3085    } else
3086      CXXMemberInit = CXXCtorInitializer::Create(SemaRef.Context, Field, Loc,
3087                                                 Loc, MemberInit.takeAs<Expr>(),
3088                                                 Loc,
3089                                                 IndexVariables.data(),
3090                                                 IndexVariables.size());
3091    return false;
3092  }
3093
3094  assert((ImplicitInitKind == IIK_Default || ImplicitInitKind == IIK_Inherit) &&
3095         "Unhandled implicit init kind!");
3096
3097  QualType FieldBaseElementType =
3098    SemaRef.Context.getBaseElementType(Field->getType());
3099
3100  if (FieldBaseElementType->isRecordType()) {
3101    InitializedEntity InitEntity
3102      = Indirect? InitializedEntity::InitializeMember(Indirect)
3103                : InitializedEntity::InitializeMember(Field);
3104    InitializationKind InitKind =
3105      InitializationKind::CreateDefault(Loc);
3106
3107    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
3108    ExprResult MemberInit =
3109      InitSeq.Perform(SemaRef, InitEntity, InitKind, MultiExprArg());
3110
3111    MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
3112    if (MemberInit.isInvalid())
3113      return true;
3114
3115    if (Indirect)
3116      CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
3117                                                               Indirect, Loc,
3118                                                               Loc,
3119                                                               MemberInit.get(),
3120                                                               Loc);
3121    else
3122      CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
3123                                                               Field, Loc, Loc,
3124                                                               MemberInit.get(),
3125                                                               Loc);
3126    return false;
3127  }
3128
3129  if (!Field->getParent()->isUnion()) {
3130    if (FieldBaseElementType->isReferenceType()) {
3131      SemaRef.Diag(Constructor->getLocation(),
3132                   diag::err_uninitialized_member_in_ctor)
3133      << (int)Constructor->isImplicit()
3134      << SemaRef.Context.getTagDeclType(Constructor->getParent())
3135      << 0 << Field->getDeclName();
3136      SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
3137      return true;
3138    }
3139
3140    if (FieldBaseElementType.isConstQualified()) {
3141      SemaRef.Diag(Constructor->getLocation(),
3142                   diag::err_uninitialized_member_in_ctor)
3143      << (int)Constructor->isImplicit()
3144      << SemaRef.Context.getTagDeclType(Constructor->getParent())
3145      << 1 << Field->getDeclName();
3146      SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
3147      return true;
3148    }
3149  }
3150
3151  if (SemaRef.getLangOpts().ObjCAutoRefCount &&
3152      FieldBaseElementType->isObjCRetainableType() &&
3153      FieldBaseElementType.getObjCLifetime() != Qualifiers::OCL_None &&
3154      FieldBaseElementType.getObjCLifetime() != Qualifiers::OCL_ExplicitNone) {
3155    // ARC:
3156    //   Default-initialize Objective-C pointers to NULL.
3157    CXXMemberInit
3158      = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Field,
3159                                                 Loc, Loc,
3160                 new (SemaRef.Context) ImplicitValueInitExpr(Field->getType()),
3161                                                 Loc);
3162    return false;
3163  }
3164
3165  // Nothing to initialize.
3166  CXXMemberInit = 0;
3167  return false;
3168}
3169
3170namespace {
3171struct BaseAndFieldInfo {
3172  Sema &S;
3173  CXXConstructorDecl *Ctor;
3174  bool AnyErrorsInInits;
3175  ImplicitInitializerKind IIK;
3176  llvm::DenseMap<const void *, CXXCtorInitializer*> AllBaseFields;
3177  SmallVector<CXXCtorInitializer*, 8> AllToInit;
3178
3179  BaseAndFieldInfo(Sema &S, CXXConstructorDecl *Ctor, bool ErrorsInInits)
3180    : S(S), Ctor(Ctor), AnyErrorsInInits(ErrorsInInits) {
3181    bool Generated = Ctor->isImplicit() || Ctor->isDefaulted();
3182    if (Generated && Ctor->isCopyConstructor())
3183      IIK = IIK_Copy;
3184    else if (Generated && Ctor->isMoveConstructor())
3185      IIK = IIK_Move;
3186    else if (Ctor->getInheritedConstructor())
3187      IIK = IIK_Inherit;
3188    else
3189      IIK = IIK_Default;
3190  }
3191
3192  bool isImplicitCopyOrMove() const {
3193    switch (IIK) {
3194    case IIK_Copy:
3195    case IIK_Move:
3196      return true;
3197
3198    case IIK_Default:
3199    case IIK_Inherit:
3200      return false;
3201    }
3202
3203    llvm_unreachable("Invalid ImplicitInitializerKind!");
3204  }
3205
3206  bool addFieldInitializer(CXXCtorInitializer *Init) {
3207    AllToInit.push_back(Init);
3208
3209    // Check whether this initializer makes the field "used".
3210    if (Init->getInit()->HasSideEffects(S.Context))
3211      S.UnusedPrivateFields.remove(Init->getAnyMember());
3212
3213    return false;
3214  }
3215};
3216}
3217
3218/// \brief Determine whether the given indirect field declaration is somewhere
3219/// within an anonymous union.
3220static bool isWithinAnonymousUnion(IndirectFieldDecl *F) {
3221  for (IndirectFieldDecl::chain_iterator C = F->chain_begin(),
3222                                      CEnd = F->chain_end();
3223       C != CEnd; ++C)
3224    if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>((*C)->getDeclContext()))
3225      if (Record->isUnion())
3226        return true;
3227
3228  return false;
3229}
3230
3231/// \brief Determine whether the given type is an incomplete or zero-lenfgth
3232/// array type.
3233static bool isIncompleteOrZeroLengthArrayType(ASTContext &Context, QualType T) {
3234  if (T->isIncompleteArrayType())
3235    return true;
3236
3237  while (const ConstantArrayType *ArrayT = Context.getAsConstantArrayType(T)) {
3238    if (!ArrayT->getSize())
3239      return true;
3240
3241    T = ArrayT->getElementType();
3242  }
3243
3244  return false;
3245}
3246
3247static bool CollectFieldInitializer(Sema &SemaRef, BaseAndFieldInfo &Info,
3248                                    FieldDecl *Field,
3249                                    IndirectFieldDecl *Indirect = 0) {
3250
3251  // Overwhelmingly common case: we have a direct initializer for this field.
3252  if (CXXCtorInitializer *Init = Info.AllBaseFields.lookup(Field))
3253    return Info.addFieldInitializer(Init);
3254
3255  // C++11 [class.base.init]p8: if the entity is a non-static data member that
3256  // has a brace-or-equal-initializer, the entity is initialized as specified
3257  // in [dcl.init].
3258  if (Field->hasInClassInitializer() && !Info.isImplicitCopyOrMove()) {
3259    Expr *DIE = CXXDefaultInitExpr::Create(SemaRef.Context,
3260                                           Info.Ctor->getLocation(), Field);
3261    CXXCtorInitializer *Init;
3262    if (Indirect)
3263      Init = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Indirect,
3264                                                      SourceLocation(),
3265                                                      SourceLocation(), DIE,
3266                                                      SourceLocation());
3267    else
3268      Init = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Field,
3269                                                      SourceLocation(),
3270                                                      SourceLocation(), DIE,
3271                                                      SourceLocation());
3272    return Info.addFieldInitializer(Init);
3273  }
3274
3275  // Don't build an implicit initializer for union members if none was
3276  // explicitly specified.
3277  if (Field->getParent()->isUnion() ||
3278      (Indirect && isWithinAnonymousUnion(Indirect)))
3279    return false;
3280
3281  // Don't initialize incomplete or zero-length arrays.
3282  if (isIncompleteOrZeroLengthArrayType(SemaRef.Context, Field->getType()))
3283    return false;
3284
3285  // Don't try to build an implicit initializer if there were semantic
3286  // errors in any of the initializers (and therefore we might be
3287  // missing some that the user actually wrote).
3288  if (Info.AnyErrorsInInits || Field->isInvalidDecl())
3289    return false;
3290
3291  CXXCtorInitializer *Init = 0;
3292  if (BuildImplicitMemberInitializer(Info.S, Info.Ctor, Info.IIK, Field,
3293                                     Indirect, Init))
3294    return true;
3295
3296  if (!Init)
3297    return false;
3298
3299  return Info.addFieldInitializer(Init);
3300}
3301
3302bool
3303Sema::SetDelegatingInitializer(CXXConstructorDecl *Constructor,
3304                               CXXCtorInitializer *Initializer) {
3305  assert(Initializer->isDelegatingInitializer());
3306  Constructor->setNumCtorInitializers(1);
3307  CXXCtorInitializer **initializer =
3308    new (Context) CXXCtorInitializer*[1];
3309  memcpy(initializer, &Initializer, sizeof (CXXCtorInitializer*));
3310  Constructor->setCtorInitializers(initializer);
3311
3312  if (CXXDestructorDecl *Dtor = LookupDestructor(Constructor->getParent())) {
3313    MarkFunctionReferenced(Initializer->getSourceLocation(), Dtor);
3314    DiagnoseUseOfDecl(Dtor, Initializer->getSourceLocation());
3315  }
3316
3317  DelegatingCtorDecls.push_back(Constructor);
3318
3319  return false;
3320}
3321
3322bool Sema::SetCtorInitializers(CXXConstructorDecl *Constructor, bool AnyErrors,
3323                               ArrayRef<CXXCtorInitializer *> Initializers) {
3324  if (Constructor->isDependentContext()) {
3325    // Just store the initializers as written, they will be checked during
3326    // instantiation.
3327    if (!Initializers.empty()) {
3328      Constructor->setNumCtorInitializers(Initializers.size());
3329      CXXCtorInitializer **baseOrMemberInitializers =
3330        new (Context) CXXCtorInitializer*[Initializers.size()];
3331      memcpy(baseOrMemberInitializers, Initializers.data(),
3332             Initializers.size() * sizeof(CXXCtorInitializer*));
3333      Constructor->setCtorInitializers(baseOrMemberInitializers);
3334    }
3335
3336    // Let template instantiation know whether we had errors.
3337    if (AnyErrors)
3338      Constructor->setInvalidDecl();
3339
3340    return false;
3341  }
3342
3343  BaseAndFieldInfo Info(*this, Constructor, AnyErrors);
3344
3345  // We need to build the initializer AST according to order of construction
3346  // and not what user specified in the Initializers list.
3347  CXXRecordDecl *ClassDecl = Constructor->getParent()->getDefinition();
3348  if (!ClassDecl)
3349    return true;
3350
3351  bool HadError = false;
3352
3353  for (unsigned i = 0; i < Initializers.size(); i++) {
3354    CXXCtorInitializer *Member = Initializers[i];
3355
3356    if (Member->isBaseInitializer())
3357      Info.AllBaseFields[Member->getBaseClass()->getAs<RecordType>()] = Member;
3358    else
3359      Info.AllBaseFields[Member->getAnyMember()] = Member;
3360  }
3361
3362  // Keep track of the direct virtual bases.
3363  llvm::SmallPtrSet<CXXBaseSpecifier *, 16> DirectVBases;
3364  for (CXXRecordDecl::base_class_iterator I = ClassDecl->bases_begin(),
3365       E = ClassDecl->bases_end(); I != E; ++I) {
3366    if (I->isVirtual())
3367      DirectVBases.insert(I);
3368  }
3369
3370  // Push virtual bases before others.
3371  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
3372       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
3373
3374    if (CXXCtorInitializer *Value
3375        = Info.AllBaseFields.lookup(VBase->getType()->getAs<RecordType>())) {
3376      Info.AllToInit.push_back(Value);
3377    } else if (!AnyErrors) {
3378      bool IsInheritedVirtualBase = !DirectVBases.count(VBase);
3379      CXXCtorInitializer *CXXBaseInit;
3380      if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
3381                                       VBase, IsInheritedVirtualBase,
3382                                       CXXBaseInit)) {
3383        HadError = true;
3384        continue;
3385      }
3386
3387      Info.AllToInit.push_back(CXXBaseInit);
3388    }
3389  }
3390
3391  // Non-virtual bases.
3392  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
3393       E = ClassDecl->bases_end(); Base != E; ++Base) {
3394    // Virtuals are in the virtual base list and already constructed.
3395    if (Base->isVirtual())
3396      continue;
3397
3398    if (CXXCtorInitializer *Value
3399          = Info.AllBaseFields.lookup(Base->getType()->getAs<RecordType>())) {
3400      Info.AllToInit.push_back(Value);
3401    } else if (!AnyErrors) {
3402      CXXCtorInitializer *CXXBaseInit;
3403      if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
3404                                       Base, /*IsInheritedVirtualBase=*/false,
3405                                       CXXBaseInit)) {
3406        HadError = true;
3407        continue;
3408      }
3409
3410      Info.AllToInit.push_back(CXXBaseInit);
3411    }
3412  }
3413
3414  // Fields.
3415  for (DeclContext::decl_iterator Mem = ClassDecl->decls_begin(),
3416                               MemEnd = ClassDecl->decls_end();
3417       Mem != MemEnd; ++Mem) {
3418    if (FieldDecl *F = dyn_cast<FieldDecl>(*Mem)) {
3419      // C++ [class.bit]p2:
3420      //   A declaration for a bit-field that omits the identifier declares an
3421      //   unnamed bit-field. Unnamed bit-fields are not members and cannot be
3422      //   initialized.
3423      if (F->isUnnamedBitfield())
3424        continue;
3425
3426      // If we're not generating the implicit copy/move constructor, then we'll
3427      // handle anonymous struct/union fields based on their individual
3428      // indirect fields.
3429      if (F->isAnonymousStructOrUnion() && !Info.isImplicitCopyOrMove())
3430        continue;
3431
3432      if (CollectFieldInitializer(*this, Info, F))
3433        HadError = true;
3434      continue;
3435    }
3436
3437    // Beyond this point, we only consider default initialization.
3438    if (Info.isImplicitCopyOrMove())
3439      continue;
3440
3441    if (IndirectFieldDecl *F = dyn_cast<IndirectFieldDecl>(*Mem)) {
3442      if (F->getType()->isIncompleteArrayType()) {
3443        assert(ClassDecl->hasFlexibleArrayMember() &&
3444               "Incomplete array type is not valid");
3445        continue;
3446      }
3447
3448      // Initialize each field of an anonymous struct individually.
3449      if (CollectFieldInitializer(*this, Info, F->getAnonField(), F))
3450        HadError = true;
3451
3452      continue;
3453    }
3454  }
3455
3456  unsigned NumInitializers = Info.AllToInit.size();
3457  if (NumInitializers > 0) {
3458    Constructor->setNumCtorInitializers(NumInitializers);
3459    CXXCtorInitializer **baseOrMemberInitializers =
3460      new (Context) CXXCtorInitializer*[NumInitializers];
3461    memcpy(baseOrMemberInitializers, Info.AllToInit.data(),
3462           NumInitializers * sizeof(CXXCtorInitializer*));
3463    Constructor->setCtorInitializers(baseOrMemberInitializers);
3464
3465    // Constructors implicitly reference the base and member
3466    // destructors.
3467    MarkBaseAndMemberDestructorsReferenced(Constructor->getLocation(),
3468                                           Constructor->getParent());
3469  }
3470
3471  return HadError;
3472}
3473
3474static void PopulateKeysForFields(FieldDecl *Field, SmallVectorImpl<const void*> &IdealInits) {
3475  if (const RecordType *RT = Field->getType()->getAs<RecordType>()) {
3476    const RecordDecl *RD = RT->getDecl();
3477    if (RD->isAnonymousStructOrUnion()) {
3478      for (RecordDecl::field_iterator Field = RD->field_begin(),
3479          E = RD->field_end(); Field != E; ++Field)
3480        PopulateKeysForFields(*Field, IdealInits);
3481      return;
3482    }
3483  }
3484  IdealInits.push_back(Field);
3485}
3486
3487static void *GetKeyForBase(ASTContext &Context, QualType BaseType) {
3488  return const_cast<Type*>(Context.getCanonicalType(BaseType).getTypePtr());
3489}
3490
3491static void *GetKeyForMember(ASTContext &Context,
3492                             CXXCtorInitializer *Member) {
3493  if (!Member->isAnyMemberInitializer())
3494    return GetKeyForBase(Context, QualType(Member->getBaseClass(), 0));
3495
3496  return Member->getAnyMember();
3497}
3498
3499static void DiagnoseBaseOrMemInitializerOrder(
3500    Sema &SemaRef, const CXXConstructorDecl *Constructor,
3501    ArrayRef<CXXCtorInitializer *> Inits) {
3502  if (Constructor->getDeclContext()->isDependentContext())
3503    return;
3504
3505  // Don't check initializers order unless the warning is enabled at the
3506  // location of at least one initializer.
3507  bool ShouldCheckOrder = false;
3508  for (unsigned InitIndex = 0; InitIndex != Inits.size(); ++InitIndex) {
3509    CXXCtorInitializer *Init = Inits[InitIndex];
3510    if (SemaRef.Diags.getDiagnosticLevel(diag::warn_initializer_out_of_order,
3511                                         Init->getSourceLocation())
3512          != DiagnosticsEngine::Ignored) {
3513      ShouldCheckOrder = true;
3514      break;
3515    }
3516  }
3517  if (!ShouldCheckOrder)
3518    return;
3519
3520  // Build the list of bases and members in the order that they'll
3521  // actually be initialized.  The explicit initializers should be in
3522  // this same order but may be missing things.
3523  SmallVector<const void*, 32> IdealInitKeys;
3524
3525  const CXXRecordDecl *ClassDecl = Constructor->getParent();
3526
3527  // 1. Virtual bases.
3528  for (CXXRecordDecl::base_class_const_iterator VBase =
3529       ClassDecl->vbases_begin(),
3530       E = ClassDecl->vbases_end(); VBase != E; ++VBase)
3531    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, VBase->getType()));
3532
3533  // 2. Non-virtual bases.
3534  for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin(),
3535       E = ClassDecl->bases_end(); Base != E; ++Base) {
3536    if (Base->isVirtual())
3537      continue;
3538    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, Base->getType()));
3539  }
3540
3541  // 3. Direct fields.
3542  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
3543       E = ClassDecl->field_end(); Field != E; ++Field) {
3544    if (Field->isUnnamedBitfield())
3545      continue;
3546
3547    PopulateKeysForFields(*Field, IdealInitKeys);
3548  }
3549
3550  unsigned NumIdealInits = IdealInitKeys.size();
3551  unsigned IdealIndex = 0;
3552
3553  CXXCtorInitializer *PrevInit = 0;
3554  for (unsigned InitIndex = 0; InitIndex != Inits.size(); ++InitIndex) {
3555    CXXCtorInitializer *Init = Inits[InitIndex];
3556    void *InitKey = GetKeyForMember(SemaRef.Context, Init);
3557
3558    // Scan forward to try to find this initializer in the idealized
3559    // initializers list.
3560    for (; IdealIndex != NumIdealInits; ++IdealIndex)
3561      if (InitKey == IdealInitKeys[IdealIndex])
3562        break;
3563
3564    // If we didn't find this initializer, it must be because we
3565    // scanned past it on a previous iteration.  That can only
3566    // happen if we're out of order;  emit a warning.
3567    if (IdealIndex == NumIdealInits && PrevInit) {
3568      Sema::SemaDiagnosticBuilder D =
3569        SemaRef.Diag(PrevInit->getSourceLocation(),
3570                     diag::warn_initializer_out_of_order);
3571
3572      if (PrevInit->isAnyMemberInitializer())
3573        D << 0 << PrevInit->getAnyMember()->getDeclName();
3574      else
3575        D << 1 << PrevInit->getTypeSourceInfo()->getType();
3576
3577      if (Init->isAnyMemberInitializer())
3578        D << 0 << Init->getAnyMember()->getDeclName();
3579      else
3580        D << 1 << Init->getTypeSourceInfo()->getType();
3581
3582      // Move back to the initializer's location in the ideal list.
3583      for (IdealIndex = 0; IdealIndex != NumIdealInits; ++IdealIndex)
3584        if (InitKey == IdealInitKeys[IdealIndex])
3585          break;
3586
3587      assert(IdealIndex != NumIdealInits &&
3588             "initializer not found in initializer list");
3589    }
3590
3591    PrevInit = Init;
3592  }
3593}
3594
3595namespace {
3596bool CheckRedundantInit(Sema &S,
3597                        CXXCtorInitializer *Init,
3598                        CXXCtorInitializer *&PrevInit) {
3599  if (!PrevInit) {
3600    PrevInit = Init;
3601    return false;
3602  }
3603
3604  if (FieldDecl *Field = Init->getAnyMember())
3605    S.Diag(Init->getSourceLocation(),
3606           diag::err_multiple_mem_initialization)
3607      << Field->getDeclName()
3608      << Init->getSourceRange();
3609  else {
3610    const Type *BaseClass = Init->getBaseClass();
3611    assert(BaseClass && "neither field nor base");
3612    S.Diag(Init->getSourceLocation(),
3613           diag::err_multiple_base_initialization)
3614      << QualType(BaseClass, 0)
3615      << Init->getSourceRange();
3616  }
3617  S.Diag(PrevInit->getSourceLocation(), diag::note_previous_initializer)
3618    << 0 << PrevInit->getSourceRange();
3619
3620  return true;
3621}
3622
3623typedef std::pair<NamedDecl *, CXXCtorInitializer *> UnionEntry;
3624typedef llvm::DenseMap<RecordDecl*, UnionEntry> RedundantUnionMap;
3625
3626bool CheckRedundantUnionInit(Sema &S,
3627                             CXXCtorInitializer *Init,
3628                             RedundantUnionMap &Unions) {
3629  FieldDecl *Field = Init->getAnyMember();
3630  RecordDecl *Parent = Field->getParent();
3631  NamedDecl *Child = Field;
3632
3633  while (Parent->isAnonymousStructOrUnion() || Parent->isUnion()) {
3634    if (Parent->isUnion()) {
3635      UnionEntry &En = Unions[Parent];
3636      if (En.first && En.first != Child) {
3637        S.Diag(Init->getSourceLocation(),
3638               diag::err_multiple_mem_union_initialization)
3639          << Field->getDeclName()
3640          << Init->getSourceRange();
3641        S.Diag(En.second->getSourceLocation(), diag::note_previous_initializer)
3642          << 0 << En.second->getSourceRange();
3643        return true;
3644      }
3645      if (!En.first) {
3646        En.first = Child;
3647        En.second = Init;
3648      }
3649      if (!Parent->isAnonymousStructOrUnion())
3650        return false;
3651    }
3652
3653    Child = Parent;
3654    Parent = cast<RecordDecl>(Parent->getDeclContext());
3655  }
3656
3657  return false;
3658}
3659}
3660
3661/// ActOnMemInitializers - Handle the member initializers for a constructor.
3662void Sema::ActOnMemInitializers(Decl *ConstructorDecl,
3663                                SourceLocation ColonLoc,
3664                                ArrayRef<CXXCtorInitializer*> MemInits,
3665                                bool AnyErrors) {
3666  if (!ConstructorDecl)
3667    return;
3668
3669  AdjustDeclIfTemplate(ConstructorDecl);
3670
3671  CXXConstructorDecl *Constructor
3672    = dyn_cast<CXXConstructorDecl>(ConstructorDecl);
3673
3674  if (!Constructor) {
3675    Diag(ColonLoc, diag::err_only_constructors_take_base_inits);
3676    return;
3677  }
3678
3679  // Mapping for the duplicate initializers check.
3680  // For member initializers, this is keyed with a FieldDecl*.
3681  // For base initializers, this is keyed with a Type*.
3682  llvm::DenseMap<void*, CXXCtorInitializer *> Members;
3683
3684  // Mapping for the inconsistent anonymous-union initializers check.
3685  RedundantUnionMap MemberUnions;
3686
3687  bool HadError = false;
3688  for (unsigned i = 0; i < MemInits.size(); i++) {
3689    CXXCtorInitializer *Init = MemInits[i];
3690
3691    // Set the source order index.
3692    Init->setSourceOrder(i);
3693
3694    if (Init->isAnyMemberInitializer()) {
3695      FieldDecl *Field = Init->getAnyMember();
3696      if (CheckRedundantInit(*this, Init, Members[Field]) ||
3697          CheckRedundantUnionInit(*this, Init, MemberUnions))
3698        HadError = true;
3699    } else if (Init->isBaseInitializer()) {
3700      void *Key = GetKeyForBase(Context, QualType(Init->getBaseClass(), 0));
3701      if (CheckRedundantInit(*this, Init, Members[Key]))
3702        HadError = true;
3703    } else {
3704      assert(Init->isDelegatingInitializer());
3705      // This must be the only initializer
3706      if (MemInits.size() != 1) {
3707        Diag(Init->getSourceLocation(),
3708             diag::err_delegating_initializer_alone)
3709          << Init->getSourceRange() << MemInits[i ? 0 : 1]->getSourceRange();
3710        // We will treat this as being the only initializer.
3711      }
3712      SetDelegatingInitializer(Constructor, MemInits[i]);
3713      // Return immediately as the initializer is set.
3714      return;
3715    }
3716  }
3717
3718  if (HadError)
3719    return;
3720
3721  DiagnoseBaseOrMemInitializerOrder(*this, Constructor, MemInits);
3722
3723  SetCtorInitializers(Constructor, AnyErrors, MemInits);
3724}
3725
3726void
3727Sema::MarkBaseAndMemberDestructorsReferenced(SourceLocation Location,
3728                                             CXXRecordDecl *ClassDecl) {
3729  // Ignore dependent contexts. Also ignore unions, since their members never
3730  // have destructors implicitly called.
3731  if (ClassDecl->isDependentContext() || ClassDecl->isUnion())
3732    return;
3733
3734  // FIXME: all the access-control diagnostics are positioned on the
3735  // field/base declaration.  That's probably good; that said, the
3736  // user might reasonably want to know why the destructor is being
3737  // emitted, and we currently don't say.
3738
3739  // Non-static data members.
3740  for (CXXRecordDecl::field_iterator I = ClassDecl->field_begin(),
3741       E = ClassDecl->field_end(); I != E; ++I) {
3742    FieldDecl *Field = *I;
3743    if (Field->isInvalidDecl())
3744      continue;
3745
3746    // Don't destroy incomplete or zero-length arrays.
3747    if (isIncompleteOrZeroLengthArrayType(Context, Field->getType()))
3748      continue;
3749
3750    QualType FieldType = Context.getBaseElementType(Field->getType());
3751
3752    const RecordType* RT = FieldType->getAs<RecordType>();
3753    if (!RT)
3754      continue;
3755
3756    CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
3757    if (FieldClassDecl->isInvalidDecl())
3758      continue;
3759    if (FieldClassDecl->hasIrrelevantDestructor())
3760      continue;
3761    // The destructor for an implicit anonymous union member is never invoked.
3762    if (FieldClassDecl->isUnion() && FieldClassDecl->isAnonymousStructOrUnion())
3763      continue;
3764
3765    CXXDestructorDecl *Dtor = LookupDestructor(FieldClassDecl);
3766    assert(Dtor && "No dtor found for FieldClassDecl!");
3767    CheckDestructorAccess(Field->getLocation(), Dtor,
3768                          PDiag(diag::err_access_dtor_field)
3769                            << Field->getDeclName()
3770                            << FieldType);
3771
3772    MarkFunctionReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
3773    DiagnoseUseOfDecl(Dtor, Location);
3774  }
3775
3776  llvm::SmallPtrSet<const RecordType *, 8> DirectVirtualBases;
3777
3778  // Bases.
3779  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
3780       E = ClassDecl->bases_end(); Base != E; ++Base) {
3781    // Bases are always records in a well-formed non-dependent class.
3782    const RecordType *RT = Base->getType()->getAs<RecordType>();
3783
3784    // Remember direct virtual bases.
3785    if (Base->isVirtual())
3786      DirectVirtualBases.insert(RT);
3787
3788    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
3789    // If our base class is invalid, we probably can't get its dtor anyway.
3790    if (BaseClassDecl->isInvalidDecl())
3791      continue;
3792    if (BaseClassDecl->hasIrrelevantDestructor())
3793      continue;
3794
3795    CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
3796    assert(Dtor && "No dtor found for BaseClassDecl!");
3797
3798    // FIXME: caret should be on the start of the class name
3799    CheckDestructorAccess(Base->getLocStart(), Dtor,
3800                          PDiag(diag::err_access_dtor_base)
3801                            << Base->getType()
3802                            << Base->getSourceRange(),
3803                          Context.getTypeDeclType(ClassDecl));
3804
3805    MarkFunctionReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
3806    DiagnoseUseOfDecl(Dtor, Location);
3807  }
3808
3809  // Virtual bases.
3810  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
3811       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
3812
3813    // Bases are always records in a well-formed non-dependent class.
3814    const RecordType *RT = VBase->getType()->castAs<RecordType>();
3815
3816    // Ignore direct virtual bases.
3817    if (DirectVirtualBases.count(RT))
3818      continue;
3819
3820    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
3821    // If our base class is invalid, we probably can't get its dtor anyway.
3822    if (BaseClassDecl->isInvalidDecl())
3823      continue;
3824    if (BaseClassDecl->hasIrrelevantDestructor())
3825      continue;
3826
3827    CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
3828    assert(Dtor && "No dtor found for BaseClassDecl!");
3829    CheckDestructorAccess(ClassDecl->getLocation(), Dtor,
3830                          PDiag(diag::err_access_dtor_vbase)
3831                            << VBase->getType(),
3832                          Context.getTypeDeclType(ClassDecl));
3833
3834    MarkFunctionReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
3835    DiagnoseUseOfDecl(Dtor, Location);
3836  }
3837}
3838
3839void Sema::ActOnDefaultCtorInitializers(Decl *CDtorDecl) {
3840  if (!CDtorDecl)
3841    return;
3842
3843  if (CXXConstructorDecl *Constructor
3844      = dyn_cast<CXXConstructorDecl>(CDtorDecl))
3845    SetCtorInitializers(Constructor, /*AnyErrors=*/false);
3846}
3847
3848bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
3849                                  unsigned DiagID, AbstractDiagSelID SelID) {
3850  class NonAbstractTypeDiagnoser : public TypeDiagnoser {
3851    unsigned DiagID;
3852    AbstractDiagSelID SelID;
3853
3854  public:
3855    NonAbstractTypeDiagnoser(unsigned DiagID, AbstractDiagSelID SelID)
3856      : TypeDiagnoser(DiagID == 0), DiagID(DiagID), SelID(SelID) { }
3857
3858    virtual void diagnose(Sema &S, SourceLocation Loc, QualType T) {
3859      if (Suppressed) return;
3860      if (SelID == -1)
3861        S.Diag(Loc, DiagID) << T;
3862      else
3863        S.Diag(Loc, DiagID) << SelID << T;
3864    }
3865  } Diagnoser(DiagID, SelID);
3866
3867  return RequireNonAbstractType(Loc, T, Diagnoser);
3868}
3869
3870bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
3871                                  TypeDiagnoser &Diagnoser) {
3872  if (!getLangOpts().CPlusPlus)
3873    return false;
3874
3875  if (const ArrayType *AT = Context.getAsArrayType(T))
3876    return RequireNonAbstractType(Loc, AT->getElementType(), Diagnoser);
3877
3878  if (const PointerType *PT = T->getAs<PointerType>()) {
3879    // Find the innermost pointer type.
3880    while (const PointerType *T = PT->getPointeeType()->getAs<PointerType>())
3881      PT = T;
3882
3883    if (const ArrayType *AT = Context.getAsArrayType(PT->getPointeeType()))
3884      return RequireNonAbstractType(Loc, AT->getElementType(), Diagnoser);
3885  }
3886
3887  const RecordType *RT = T->getAs<RecordType>();
3888  if (!RT)
3889    return false;
3890
3891  const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
3892
3893  // We can't answer whether something is abstract until it has a
3894  // definition.  If it's currently being defined, we'll walk back
3895  // over all the declarations when we have a full definition.
3896  const CXXRecordDecl *Def = RD->getDefinition();
3897  if (!Def || Def->isBeingDefined())
3898    return false;
3899
3900  if (!RD->isAbstract())
3901    return false;
3902
3903  Diagnoser.diagnose(*this, Loc, T);
3904  DiagnoseAbstractType(RD);
3905
3906  return true;
3907}
3908
3909void Sema::DiagnoseAbstractType(const CXXRecordDecl *RD) {
3910  // Check if we've already emitted the list of pure virtual functions
3911  // for this class.
3912  if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD))
3913    return;
3914
3915  CXXFinalOverriderMap FinalOverriders;
3916  RD->getFinalOverriders(FinalOverriders);
3917
3918  // Keep a set of seen pure methods so we won't diagnose the same method
3919  // more than once.
3920  llvm::SmallPtrSet<const CXXMethodDecl *, 8> SeenPureMethods;
3921
3922  for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
3923                                   MEnd = FinalOverriders.end();
3924       M != MEnd;
3925       ++M) {
3926    for (OverridingMethods::iterator SO = M->second.begin(),
3927                                  SOEnd = M->second.end();
3928         SO != SOEnd; ++SO) {
3929      // C++ [class.abstract]p4:
3930      //   A class is abstract if it contains or inherits at least one
3931      //   pure virtual function for which the final overrider is pure
3932      //   virtual.
3933
3934      //
3935      if (SO->second.size() != 1)
3936        continue;
3937
3938      if (!SO->second.front().Method->isPure())
3939        continue;
3940
3941      if (!SeenPureMethods.insert(SO->second.front().Method))
3942        continue;
3943
3944      Diag(SO->second.front().Method->getLocation(),
3945           diag::note_pure_virtual_function)
3946        << SO->second.front().Method->getDeclName() << RD->getDeclName();
3947    }
3948  }
3949
3950  if (!PureVirtualClassDiagSet)
3951    PureVirtualClassDiagSet.reset(new RecordDeclSetTy);
3952  PureVirtualClassDiagSet->insert(RD);
3953}
3954
3955namespace {
3956struct AbstractUsageInfo {
3957  Sema &S;
3958  CXXRecordDecl *Record;
3959  CanQualType AbstractType;
3960  bool Invalid;
3961
3962  AbstractUsageInfo(Sema &S, CXXRecordDecl *Record)
3963    : S(S), Record(Record),
3964      AbstractType(S.Context.getCanonicalType(
3965                   S.Context.getTypeDeclType(Record))),
3966      Invalid(false) {}
3967
3968  void DiagnoseAbstractType() {
3969    if (Invalid) return;
3970    S.DiagnoseAbstractType(Record);
3971    Invalid = true;
3972  }
3973
3974  void CheckType(const NamedDecl *D, TypeLoc TL, Sema::AbstractDiagSelID Sel);
3975};
3976
3977struct CheckAbstractUsage {
3978  AbstractUsageInfo &Info;
3979  const NamedDecl *Ctx;
3980
3981  CheckAbstractUsage(AbstractUsageInfo &Info, const NamedDecl *Ctx)
3982    : Info(Info), Ctx(Ctx) {}
3983
3984  void Visit(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
3985    switch (TL.getTypeLocClass()) {
3986#define ABSTRACT_TYPELOC(CLASS, PARENT)
3987#define TYPELOC(CLASS, PARENT) \
3988    case TypeLoc::CLASS: Check(TL.castAs<CLASS##TypeLoc>(), Sel); break;
3989#include "clang/AST/TypeLocNodes.def"
3990    }
3991  }
3992
3993  void Check(FunctionProtoTypeLoc TL, Sema::AbstractDiagSelID Sel) {
3994    Visit(TL.getResultLoc(), Sema::AbstractReturnType);
3995    for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
3996      if (!TL.getArg(I))
3997        continue;
3998
3999      TypeSourceInfo *TSI = TL.getArg(I)->getTypeSourceInfo();
4000      if (TSI) Visit(TSI->getTypeLoc(), Sema::AbstractParamType);
4001    }
4002  }
4003
4004  void Check(ArrayTypeLoc TL, Sema::AbstractDiagSelID Sel) {
4005    Visit(TL.getElementLoc(), Sema::AbstractArrayType);
4006  }
4007
4008  void Check(TemplateSpecializationTypeLoc TL, Sema::AbstractDiagSelID Sel) {
4009    // Visit the type parameters from a permissive context.
4010    for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
4011      TemplateArgumentLoc TAL = TL.getArgLoc(I);
4012      if (TAL.getArgument().getKind() == TemplateArgument::Type)
4013        if (TypeSourceInfo *TSI = TAL.getTypeSourceInfo())
4014          Visit(TSI->getTypeLoc(), Sema::AbstractNone);
4015      // TODO: other template argument types?
4016    }
4017  }
4018
4019  // Visit pointee types from a permissive context.
4020#define CheckPolymorphic(Type) \
4021  void Check(Type TL, Sema::AbstractDiagSelID Sel) { \
4022    Visit(TL.getNextTypeLoc(), Sema::AbstractNone); \
4023  }
4024  CheckPolymorphic(PointerTypeLoc)
4025  CheckPolymorphic(ReferenceTypeLoc)
4026  CheckPolymorphic(MemberPointerTypeLoc)
4027  CheckPolymorphic(BlockPointerTypeLoc)
4028  CheckPolymorphic(AtomicTypeLoc)
4029
4030  /// Handle all the types we haven't given a more specific
4031  /// implementation for above.
4032  void Check(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
4033    // Every other kind of type that we haven't called out already
4034    // that has an inner type is either (1) sugar or (2) contains that
4035    // inner type in some way as a subobject.
4036    if (TypeLoc Next = TL.getNextTypeLoc())
4037      return Visit(Next, Sel);
4038
4039    // If there's no inner type and we're in a permissive context,
4040    // don't diagnose.
4041    if (Sel == Sema::AbstractNone) return;
4042
4043    // Check whether the type matches the abstract type.
4044    QualType T = TL.getType();
4045    if (T->isArrayType()) {
4046      Sel = Sema::AbstractArrayType;
4047      T = Info.S.Context.getBaseElementType(T);
4048    }
4049    CanQualType CT = T->getCanonicalTypeUnqualified().getUnqualifiedType();
4050    if (CT != Info.AbstractType) return;
4051
4052    // It matched; do some magic.
4053    if (Sel == Sema::AbstractArrayType) {
4054      Info.S.Diag(Ctx->getLocation(), diag::err_array_of_abstract_type)
4055        << T << TL.getSourceRange();
4056    } else {
4057      Info.S.Diag(Ctx->getLocation(), diag::err_abstract_type_in_decl)
4058        << Sel << T << TL.getSourceRange();
4059    }
4060    Info.DiagnoseAbstractType();
4061  }
4062};
4063
4064void AbstractUsageInfo::CheckType(const NamedDecl *D, TypeLoc TL,
4065                                  Sema::AbstractDiagSelID Sel) {
4066  CheckAbstractUsage(*this, D).Visit(TL, Sel);
4067}
4068
4069}
4070
4071/// Check for invalid uses of an abstract type in a method declaration.
4072static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
4073                                    CXXMethodDecl *MD) {
4074  // No need to do the check on definitions, which require that
4075  // the return/param types be complete.
4076  if (MD->doesThisDeclarationHaveABody())
4077    return;
4078
4079  // For safety's sake, just ignore it if we don't have type source
4080  // information.  This should never happen for non-implicit methods,
4081  // but...
4082  if (TypeSourceInfo *TSI = MD->getTypeSourceInfo())
4083    Info.CheckType(MD, TSI->getTypeLoc(), Sema::AbstractNone);
4084}
4085
4086/// Check for invalid uses of an abstract type within a class definition.
4087static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
4088                                    CXXRecordDecl *RD) {
4089  for (CXXRecordDecl::decl_iterator
4090         I = RD->decls_begin(), E = RD->decls_end(); I != E; ++I) {
4091    Decl *D = *I;
4092    if (D->isImplicit()) continue;
4093
4094    // Methods and method templates.
4095    if (isa<CXXMethodDecl>(D)) {
4096      CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(D));
4097    } else if (isa<FunctionTemplateDecl>(D)) {
4098      FunctionDecl *FD = cast<FunctionTemplateDecl>(D)->getTemplatedDecl();
4099      CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(FD));
4100
4101    // Fields and static variables.
4102    } else if (isa<FieldDecl>(D)) {
4103      FieldDecl *FD = cast<FieldDecl>(D);
4104      if (TypeSourceInfo *TSI = FD->getTypeSourceInfo())
4105        Info.CheckType(FD, TSI->getTypeLoc(), Sema::AbstractFieldType);
4106    } else if (isa<VarDecl>(D)) {
4107      VarDecl *VD = cast<VarDecl>(D);
4108      if (TypeSourceInfo *TSI = VD->getTypeSourceInfo())
4109        Info.CheckType(VD, TSI->getTypeLoc(), Sema::AbstractVariableType);
4110
4111    // Nested classes and class templates.
4112    } else if (isa<CXXRecordDecl>(D)) {
4113      CheckAbstractClassUsage(Info, cast<CXXRecordDecl>(D));
4114    } else if (isa<ClassTemplateDecl>(D)) {
4115      CheckAbstractClassUsage(Info,
4116                             cast<ClassTemplateDecl>(D)->getTemplatedDecl());
4117    }
4118  }
4119}
4120
4121/// \brief Perform semantic checks on a class definition that has been
4122/// completing, introducing implicitly-declared members, checking for
4123/// abstract types, etc.
4124void Sema::CheckCompletedCXXClass(CXXRecordDecl *Record) {
4125  if (!Record)
4126    return;
4127
4128  if (Record->isAbstract() && !Record->isInvalidDecl()) {
4129    AbstractUsageInfo Info(*this, Record);
4130    CheckAbstractClassUsage(Info, Record);
4131  }
4132
4133  // If this is not an aggregate type and has no user-declared constructor,
4134  // complain about any non-static data members of reference or const scalar
4135  // type, since they will never get initializers.
4136  if (!Record->isInvalidDecl() && !Record->isDependentType() &&
4137      !Record->isAggregate() && !Record->hasUserDeclaredConstructor() &&
4138      !Record->isLambda()) {
4139    bool Complained = false;
4140    for (RecordDecl::field_iterator F = Record->field_begin(),
4141                                 FEnd = Record->field_end();
4142         F != FEnd; ++F) {
4143      if (F->hasInClassInitializer() || F->isUnnamedBitfield())
4144        continue;
4145
4146      if (F->getType()->isReferenceType() ||
4147          (F->getType().isConstQualified() && F->getType()->isScalarType())) {
4148        if (!Complained) {
4149          Diag(Record->getLocation(), diag::warn_no_constructor_for_refconst)
4150            << Record->getTagKind() << Record;
4151          Complained = true;
4152        }
4153
4154        Diag(F->getLocation(), diag::note_refconst_member_not_initialized)
4155          << F->getType()->isReferenceType()
4156          << F->getDeclName();
4157      }
4158    }
4159  }
4160
4161  if (Record->isDynamicClass() && !Record->isDependentType())
4162    DynamicClasses.push_back(Record);
4163
4164  if (Record->getIdentifier()) {
4165    // C++ [class.mem]p13:
4166    //   If T is the name of a class, then each of the following shall have a
4167    //   name different from T:
4168    //     - every member of every anonymous union that is a member of class T.
4169    //
4170    // C++ [class.mem]p14:
4171    //   In addition, if class T has a user-declared constructor (12.1), every
4172    //   non-static data member of class T shall have a name different from T.
4173    DeclContext::lookup_result R = Record->lookup(Record->getDeclName());
4174    for (DeclContext::lookup_iterator I = R.begin(), E = R.end(); I != E;
4175         ++I) {
4176      NamedDecl *D = *I;
4177      if ((isa<FieldDecl>(D) && Record->hasUserDeclaredConstructor()) ||
4178          isa<IndirectFieldDecl>(D)) {
4179        Diag(D->getLocation(), diag::err_member_name_of_class)
4180          << D->getDeclName();
4181        break;
4182      }
4183    }
4184  }
4185
4186  // Warn if the class has virtual methods but non-virtual public destructor.
4187  if (Record->isPolymorphic() && !Record->isDependentType()) {
4188    CXXDestructorDecl *dtor = Record->getDestructor();
4189    if (!dtor || (!dtor->isVirtual() && dtor->getAccess() == AS_public))
4190      Diag(dtor ? dtor->getLocation() : Record->getLocation(),
4191           diag::warn_non_virtual_dtor) << Context.getRecordType(Record);
4192  }
4193
4194  if (Record->isAbstract() && Record->hasAttr<FinalAttr>()) {
4195    Diag(Record->getLocation(), diag::warn_abstract_final_class);
4196    DiagnoseAbstractType(Record);
4197  }
4198
4199  if (!Record->isDependentType()) {
4200    for (CXXRecordDecl::method_iterator M = Record->method_begin(),
4201                                     MEnd = Record->method_end();
4202         M != MEnd; ++M) {
4203      // See if a method overloads virtual methods in a base
4204      // class without overriding any.
4205      if (!M->isStatic())
4206        DiagnoseHiddenVirtualMethods(Record, *M);
4207
4208      // Check whether the explicitly-defaulted special members are valid.
4209      if (!M->isInvalidDecl() && M->isExplicitlyDefaulted())
4210        CheckExplicitlyDefaultedSpecialMember(*M);
4211
4212      // For an explicitly defaulted or deleted special member, we defer
4213      // determining triviality until the class is complete. That time is now!
4214      if (!M->isImplicit() && !M->isUserProvided()) {
4215        CXXSpecialMember CSM = getSpecialMember(*M);
4216        if (CSM != CXXInvalid) {
4217          M->setTrivial(SpecialMemberIsTrivial(*M, CSM));
4218
4219          // Inform the class that we've finished declaring this member.
4220          Record->finishedDefaultedOrDeletedMember(*M);
4221        }
4222      }
4223    }
4224  }
4225
4226  // C++11 [dcl.constexpr]p8: A constexpr specifier for a non-static member
4227  // function that is not a constructor declares that member function to be
4228  // const. [...] The class of which that function is a member shall be
4229  // a literal type.
4230  //
4231  // If the class has virtual bases, any constexpr members will already have
4232  // been diagnosed by the checks performed on the member declaration, so
4233  // suppress this (less useful) diagnostic.
4234  //
4235  // We delay this until we know whether an explicitly-defaulted (or deleted)
4236  // destructor for the class is trivial.
4237  if (LangOpts.CPlusPlus11 && !Record->isDependentType() &&
4238      !Record->isLiteral() && !Record->getNumVBases()) {
4239    for (CXXRecordDecl::method_iterator M = Record->method_begin(),
4240                                     MEnd = Record->method_end();
4241         M != MEnd; ++M) {
4242      if (M->isConstexpr() && M->isInstance() && !isa<CXXConstructorDecl>(*M)) {
4243        switch (Record->getTemplateSpecializationKind()) {
4244        case TSK_ImplicitInstantiation:
4245        case TSK_ExplicitInstantiationDeclaration:
4246        case TSK_ExplicitInstantiationDefinition:
4247          // If a template instantiates to a non-literal type, but its members
4248          // instantiate to constexpr functions, the template is technically
4249          // ill-formed, but we allow it for sanity.
4250          continue;
4251
4252        case TSK_Undeclared:
4253        case TSK_ExplicitSpecialization:
4254          RequireLiteralType(M->getLocation(), Context.getRecordType(Record),
4255                             diag::err_constexpr_method_non_literal);
4256          break;
4257        }
4258
4259        // Only produce one error per class.
4260        break;
4261      }
4262    }
4263  }
4264
4265  // Declare inheriting constructors. We do this eagerly here because:
4266  // - The standard requires an eager diagnostic for conflicting inheriting
4267  //   constructors from different classes.
4268  // - The lazy declaration of the other implicit constructors is so as to not
4269  //   waste space and performance on classes that are not meant to be
4270  //   instantiated (e.g. meta-functions). This doesn't apply to classes that
4271  //   have inheriting constructors.
4272  DeclareInheritingConstructors(Record);
4273}
4274
4275/// Is the special member function which would be selected to perform the
4276/// specified operation on the specified class type a constexpr constructor?
4277static bool specialMemberIsConstexpr(Sema &S, CXXRecordDecl *ClassDecl,
4278                                     Sema::CXXSpecialMember CSM,
4279                                     bool ConstArg) {
4280  Sema::SpecialMemberOverloadResult *SMOR =
4281      S.LookupSpecialMember(ClassDecl, CSM, ConstArg,
4282                            false, false, false, false);
4283  if (!SMOR || !SMOR->getMethod())
4284    // A constructor we wouldn't select can't be "involved in initializing"
4285    // anything.
4286    return true;
4287  return SMOR->getMethod()->isConstexpr();
4288}
4289
4290/// Determine whether the specified special member function would be constexpr
4291/// if it were implicitly defined.
4292static bool defaultedSpecialMemberIsConstexpr(Sema &S, CXXRecordDecl *ClassDecl,
4293                                              Sema::CXXSpecialMember CSM,
4294                                              bool ConstArg) {
4295  if (!S.getLangOpts().CPlusPlus11)
4296    return false;
4297
4298  // C++11 [dcl.constexpr]p4:
4299  // In the definition of a constexpr constructor [...]
4300  switch (CSM) {
4301  case Sema::CXXDefaultConstructor:
4302    // Since default constructor lookup is essentially trivial (and cannot
4303    // involve, for instance, template instantiation), we compute whether a
4304    // defaulted default constructor is constexpr directly within CXXRecordDecl.
4305    //
4306    // This is important for performance; we need to know whether the default
4307    // constructor is constexpr to determine whether the type is a literal type.
4308    return ClassDecl->defaultedDefaultConstructorIsConstexpr();
4309
4310  case Sema::CXXCopyConstructor:
4311  case Sema::CXXMoveConstructor:
4312    // For copy or move constructors, we need to perform overload resolution.
4313    break;
4314
4315  case Sema::CXXCopyAssignment:
4316  case Sema::CXXMoveAssignment:
4317  case Sema::CXXDestructor:
4318  case Sema::CXXInvalid:
4319    return false;
4320  }
4321
4322  //   -- if the class is a non-empty union, or for each non-empty anonymous
4323  //      union member of a non-union class, exactly one non-static data member
4324  //      shall be initialized; [DR1359]
4325  //
4326  // If we squint, this is guaranteed, since exactly one non-static data member
4327  // will be initialized (if the constructor isn't deleted), we just don't know
4328  // which one.
4329  if (ClassDecl->isUnion())
4330    return true;
4331
4332  //   -- the class shall not have any virtual base classes;
4333  if (ClassDecl->getNumVBases())
4334    return false;
4335
4336  //   -- every constructor involved in initializing [...] base class
4337  //      sub-objects shall be a constexpr constructor;
4338  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
4339                                       BEnd = ClassDecl->bases_end();
4340       B != BEnd; ++B) {
4341    const RecordType *BaseType = B->getType()->getAs<RecordType>();
4342    if (!BaseType) continue;
4343
4344    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
4345    if (!specialMemberIsConstexpr(S, BaseClassDecl, CSM, ConstArg))
4346      return false;
4347  }
4348
4349  //   -- every constructor involved in initializing non-static data members
4350  //      [...] shall be a constexpr constructor;
4351  //   -- every non-static data member and base class sub-object shall be
4352  //      initialized
4353  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
4354                               FEnd = ClassDecl->field_end();
4355       F != FEnd; ++F) {
4356    if (F->isInvalidDecl())
4357      continue;
4358    if (const RecordType *RecordTy =
4359            S.Context.getBaseElementType(F->getType())->getAs<RecordType>()) {
4360      CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
4361      if (!specialMemberIsConstexpr(S, FieldRecDecl, CSM, ConstArg))
4362        return false;
4363    }
4364  }
4365
4366  // All OK, it's constexpr!
4367  return true;
4368}
4369
4370static Sema::ImplicitExceptionSpecification
4371computeImplicitExceptionSpec(Sema &S, SourceLocation Loc, CXXMethodDecl *MD) {
4372  switch (S.getSpecialMember(MD)) {
4373  case Sema::CXXDefaultConstructor:
4374    return S.ComputeDefaultedDefaultCtorExceptionSpec(Loc, MD);
4375  case Sema::CXXCopyConstructor:
4376    return S.ComputeDefaultedCopyCtorExceptionSpec(MD);
4377  case Sema::CXXCopyAssignment:
4378    return S.ComputeDefaultedCopyAssignmentExceptionSpec(MD);
4379  case Sema::CXXMoveConstructor:
4380    return S.ComputeDefaultedMoveCtorExceptionSpec(MD);
4381  case Sema::CXXMoveAssignment:
4382    return S.ComputeDefaultedMoveAssignmentExceptionSpec(MD);
4383  case Sema::CXXDestructor:
4384    return S.ComputeDefaultedDtorExceptionSpec(MD);
4385  case Sema::CXXInvalid:
4386    break;
4387  }
4388  assert(cast<CXXConstructorDecl>(MD)->getInheritedConstructor() &&
4389         "only special members have implicit exception specs");
4390  return S.ComputeInheritingCtorExceptionSpec(cast<CXXConstructorDecl>(MD));
4391}
4392
4393static void
4394updateExceptionSpec(Sema &S, FunctionDecl *FD, const FunctionProtoType *FPT,
4395                    const Sema::ImplicitExceptionSpecification &ExceptSpec) {
4396  FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
4397  ExceptSpec.getEPI(EPI);
4398  FD->setType(S.Context.getFunctionType(FPT->getResultType(),
4399                                        FPT->getArgTypes(), EPI));
4400}
4401
4402void Sema::EvaluateImplicitExceptionSpec(SourceLocation Loc, CXXMethodDecl *MD) {
4403  const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
4404  if (FPT->getExceptionSpecType() != EST_Unevaluated)
4405    return;
4406
4407  // Evaluate the exception specification.
4408  ImplicitExceptionSpecification ExceptSpec =
4409      computeImplicitExceptionSpec(*this, Loc, MD);
4410
4411  // Update the type of the special member to use it.
4412  updateExceptionSpec(*this, MD, FPT, ExceptSpec);
4413
4414  // A user-provided destructor can be defined outside the class. When that
4415  // happens, be sure to update the exception specification on both
4416  // declarations.
4417  const FunctionProtoType *CanonicalFPT =
4418    MD->getCanonicalDecl()->getType()->castAs<FunctionProtoType>();
4419  if (CanonicalFPT->getExceptionSpecType() == EST_Unevaluated)
4420    updateExceptionSpec(*this, MD->getCanonicalDecl(),
4421                        CanonicalFPT, ExceptSpec);
4422}
4423
4424void Sema::CheckExplicitlyDefaultedSpecialMember(CXXMethodDecl *MD) {
4425  CXXRecordDecl *RD = MD->getParent();
4426  CXXSpecialMember CSM = getSpecialMember(MD);
4427
4428  assert(MD->isExplicitlyDefaulted() && CSM != CXXInvalid &&
4429         "not an explicitly-defaulted special member");
4430
4431  // Whether this was the first-declared instance of the constructor.
4432  // This affects whether we implicitly add an exception spec and constexpr.
4433  bool First = MD == MD->getCanonicalDecl();
4434
4435  bool HadError = false;
4436
4437  // C++11 [dcl.fct.def.default]p1:
4438  //   A function that is explicitly defaulted shall
4439  //     -- be a special member function (checked elsewhere),
4440  //     -- have the same type (except for ref-qualifiers, and except that a
4441  //        copy operation can take a non-const reference) as an implicit
4442  //        declaration, and
4443  //     -- not have default arguments.
4444  unsigned ExpectedParams = 1;
4445  if (CSM == CXXDefaultConstructor || CSM == CXXDestructor)
4446    ExpectedParams = 0;
4447  if (MD->getNumParams() != ExpectedParams) {
4448    // This also checks for default arguments: a copy or move constructor with a
4449    // default argument is classified as a default constructor, and assignment
4450    // operations and destructors can't have default arguments.
4451    Diag(MD->getLocation(), diag::err_defaulted_special_member_params)
4452      << CSM << MD->getSourceRange();
4453    HadError = true;
4454  } else if (MD->isVariadic()) {
4455    Diag(MD->getLocation(), diag::err_defaulted_special_member_variadic)
4456      << CSM << MD->getSourceRange();
4457    HadError = true;
4458  }
4459
4460  const FunctionProtoType *Type = MD->getType()->getAs<FunctionProtoType>();
4461
4462  bool CanHaveConstParam = false;
4463  if (CSM == CXXCopyConstructor)
4464    CanHaveConstParam = RD->implicitCopyConstructorHasConstParam();
4465  else if (CSM == CXXCopyAssignment)
4466    CanHaveConstParam = RD->implicitCopyAssignmentHasConstParam();
4467
4468  QualType ReturnType = Context.VoidTy;
4469  if (CSM == CXXCopyAssignment || CSM == CXXMoveAssignment) {
4470    // Check for return type matching.
4471    ReturnType = Type->getResultType();
4472    QualType ExpectedReturnType =
4473        Context.getLValueReferenceType(Context.getTypeDeclType(RD));
4474    if (!Context.hasSameType(ReturnType, ExpectedReturnType)) {
4475      Diag(MD->getLocation(), diag::err_defaulted_special_member_return_type)
4476        << (CSM == CXXMoveAssignment) << ExpectedReturnType;
4477      HadError = true;
4478    }
4479
4480    // A defaulted special member cannot have cv-qualifiers.
4481    if (Type->getTypeQuals()) {
4482      Diag(MD->getLocation(), diag::err_defaulted_special_member_quals)
4483        << (CSM == CXXMoveAssignment);
4484      HadError = true;
4485    }
4486  }
4487
4488  // Check for parameter type matching.
4489  QualType ArgType = ExpectedParams ? Type->getArgType(0) : QualType();
4490  bool HasConstParam = false;
4491  if (ExpectedParams && ArgType->isReferenceType()) {
4492    // Argument must be reference to possibly-const T.
4493    QualType ReferentType = ArgType->getPointeeType();
4494    HasConstParam = ReferentType.isConstQualified();
4495
4496    if (ReferentType.isVolatileQualified()) {
4497      Diag(MD->getLocation(),
4498           diag::err_defaulted_special_member_volatile_param) << CSM;
4499      HadError = true;
4500    }
4501
4502    if (HasConstParam && !CanHaveConstParam) {
4503      if (CSM == CXXCopyConstructor || CSM == CXXCopyAssignment) {
4504        Diag(MD->getLocation(),
4505             diag::err_defaulted_special_member_copy_const_param)
4506          << (CSM == CXXCopyAssignment);
4507        // FIXME: Explain why this special member can't be const.
4508      } else {
4509        Diag(MD->getLocation(),
4510             diag::err_defaulted_special_member_move_const_param)
4511          << (CSM == CXXMoveAssignment);
4512      }
4513      HadError = true;
4514    }
4515  } else if (ExpectedParams) {
4516    // A copy assignment operator can take its argument by value, but a
4517    // defaulted one cannot.
4518    assert(CSM == CXXCopyAssignment && "unexpected non-ref argument");
4519    Diag(MD->getLocation(), diag::err_defaulted_copy_assign_not_ref);
4520    HadError = true;
4521  }
4522
4523  // C++11 [dcl.fct.def.default]p2:
4524  //   An explicitly-defaulted function may be declared constexpr only if it
4525  //   would have been implicitly declared as constexpr,
4526  // Do not apply this rule to members of class templates, since core issue 1358
4527  // makes such functions always instantiate to constexpr functions. For
4528  // non-constructors, this is checked elsewhere.
4529  bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, RD, CSM,
4530                                                     HasConstParam);
4531  if (isa<CXXConstructorDecl>(MD) && MD->isConstexpr() && !Constexpr &&
4532      MD->getTemplatedKind() == FunctionDecl::TK_NonTemplate) {
4533    Diag(MD->getLocStart(), diag::err_incorrect_defaulted_constexpr) << CSM;
4534    // FIXME: Explain why the constructor can't be constexpr.
4535    HadError = true;
4536  }
4537
4538  //   and may have an explicit exception-specification only if it is compatible
4539  //   with the exception-specification on the implicit declaration.
4540  if (Type->hasExceptionSpec()) {
4541    // Delay the check if this is the first declaration of the special member,
4542    // since we may not have parsed some necessary in-class initializers yet.
4543    if (First) {
4544      // If the exception specification needs to be instantiated, do so now,
4545      // before we clobber it with an EST_Unevaluated specification below.
4546      if (Type->getExceptionSpecType() == EST_Uninstantiated) {
4547        InstantiateExceptionSpec(MD->getLocStart(), MD);
4548        Type = MD->getType()->getAs<FunctionProtoType>();
4549      }
4550      DelayedDefaultedMemberExceptionSpecs.push_back(std::make_pair(MD, Type));
4551    } else
4552      CheckExplicitlyDefaultedMemberExceptionSpec(MD, Type);
4553  }
4554
4555  //   If a function is explicitly defaulted on its first declaration,
4556  if (First) {
4557    //  -- it is implicitly considered to be constexpr if the implicit
4558    //     definition would be,
4559    MD->setConstexpr(Constexpr);
4560
4561    //  -- it is implicitly considered to have the same exception-specification
4562    //     as if it had been implicitly declared,
4563    FunctionProtoType::ExtProtoInfo EPI = Type->getExtProtoInfo();
4564    EPI.ExceptionSpecType = EST_Unevaluated;
4565    EPI.ExceptionSpecDecl = MD;
4566    MD->setType(Context.getFunctionType(ReturnType,
4567                                        ArrayRef<QualType>(&ArgType,
4568                                                           ExpectedParams),
4569                                        EPI));
4570  }
4571
4572  if (ShouldDeleteSpecialMember(MD, CSM)) {
4573    if (First) {
4574      SetDeclDeleted(MD, MD->getLocation());
4575    } else {
4576      // C++11 [dcl.fct.def.default]p4:
4577      //   [For a] user-provided explicitly-defaulted function [...] if such a
4578      //   function is implicitly defined as deleted, the program is ill-formed.
4579      Diag(MD->getLocation(), diag::err_out_of_line_default_deletes) << CSM;
4580      HadError = true;
4581    }
4582  }
4583
4584  if (HadError)
4585    MD->setInvalidDecl();
4586}
4587
4588/// Check whether the exception specification provided for an
4589/// explicitly-defaulted special member matches the exception specification
4590/// that would have been generated for an implicit special member, per
4591/// C++11 [dcl.fct.def.default]p2.
4592void Sema::CheckExplicitlyDefaultedMemberExceptionSpec(
4593    CXXMethodDecl *MD, const FunctionProtoType *SpecifiedType) {
4594  // Compute the implicit exception specification.
4595  FunctionProtoType::ExtProtoInfo EPI;
4596  computeImplicitExceptionSpec(*this, MD->getLocation(), MD).getEPI(EPI);
4597  const FunctionProtoType *ImplicitType = cast<FunctionProtoType>(
4598    Context.getFunctionType(Context.VoidTy, ArrayRef<QualType>(), EPI));
4599
4600  // Ensure that it matches.
4601  CheckEquivalentExceptionSpec(
4602    PDiag(diag::err_incorrect_defaulted_exception_spec)
4603      << getSpecialMember(MD), PDiag(),
4604    ImplicitType, SourceLocation(),
4605    SpecifiedType, MD->getLocation());
4606}
4607
4608void Sema::CheckDelayedExplicitlyDefaultedMemberExceptionSpecs() {
4609  for (unsigned I = 0, N = DelayedDefaultedMemberExceptionSpecs.size();
4610       I != N; ++I)
4611    CheckExplicitlyDefaultedMemberExceptionSpec(
4612      DelayedDefaultedMemberExceptionSpecs[I].first,
4613      DelayedDefaultedMemberExceptionSpecs[I].second);
4614
4615  DelayedDefaultedMemberExceptionSpecs.clear();
4616}
4617
4618namespace {
4619struct SpecialMemberDeletionInfo {
4620  Sema &S;
4621  CXXMethodDecl *MD;
4622  Sema::CXXSpecialMember CSM;
4623  bool Diagnose;
4624
4625  // Properties of the special member, computed for convenience.
4626  bool IsConstructor, IsAssignment, IsMove, ConstArg, VolatileArg;
4627  SourceLocation Loc;
4628
4629  bool AllFieldsAreConst;
4630
4631  SpecialMemberDeletionInfo(Sema &S, CXXMethodDecl *MD,
4632                            Sema::CXXSpecialMember CSM, bool Diagnose)
4633    : S(S), MD(MD), CSM(CSM), Diagnose(Diagnose),
4634      IsConstructor(false), IsAssignment(false), IsMove(false),
4635      ConstArg(false), VolatileArg(false), Loc(MD->getLocation()),
4636      AllFieldsAreConst(true) {
4637    switch (CSM) {
4638      case Sema::CXXDefaultConstructor:
4639      case Sema::CXXCopyConstructor:
4640        IsConstructor = true;
4641        break;
4642      case Sema::CXXMoveConstructor:
4643        IsConstructor = true;
4644        IsMove = true;
4645        break;
4646      case Sema::CXXCopyAssignment:
4647        IsAssignment = true;
4648        break;
4649      case Sema::CXXMoveAssignment:
4650        IsAssignment = true;
4651        IsMove = true;
4652        break;
4653      case Sema::CXXDestructor:
4654        break;
4655      case Sema::CXXInvalid:
4656        llvm_unreachable("invalid special member kind");
4657    }
4658
4659    if (MD->getNumParams()) {
4660      ConstArg = MD->getParamDecl(0)->getType().isConstQualified();
4661      VolatileArg = MD->getParamDecl(0)->getType().isVolatileQualified();
4662    }
4663  }
4664
4665  bool inUnion() const { return MD->getParent()->isUnion(); }
4666
4667  /// Look up the corresponding special member in the given class.
4668  Sema::SpecialMemberOverloadResult *lookupIn(CXXRecordDecl *Class,
4669                                              unsigned Quals) {
4670    unsigned TQ = MD->getTypeQualifiers();
4671    // cv-qualifiers on class members don't affect default ctor / dtor calls.
4672    if (CSM == Sema::CXXDefaultConstructor || CSM == Sema::CXXDestructor)
4673      Quals = 0;
4674    return S.LookupSpecialMember(Class, CSM,
4675                                 ConstArg || (Quals & Qualifiers::Const),
4676                                 VolatileArg || (Quals & Qualifiers::Volatile),
4677                                 MD->getRefQualifier() == RQ_RValue,
4678                                 TQ & Qualifiers::Const,
4679                                 TQ & Qualifiers::Volatile);
4680  }
4681
4682  typedef llvm::PointerUnion<CXXBaseSpecifier*, FieldDecl*> Subobject;
4683
4684  bool shouldDeleteForBase(CXXBaseSpecifier *Base);
4685  bool shouldDeleteForField(FieldDecl *FD);
4686  bool shouldDeleteForAllConstMembers();
4687
4688  bool shouldDeleteForClassSubobject(CXXRecordDecl *Class, Subobject Subobj,
4689                                     unsigned Quals);
4690  bool shouldDeleteForSubobjectCall(Subobject Subobj,
4691                                    Sema::SpecialMemberOverloadResult *SMOR,
4692                                    bool IsDtorCallInCtor);
4693
4694  bool isAccessible(Subobject Subobj, CXXMethodDecl *D);
4695};
4696}
4697
4698/// Is the given special member inaccessible when used on the given
4699/// sub-object.
4700bool SpecialMemberDeletionInfo::isAccessible(Subobject Subobj,
4701                                             CXXMethodDecl *target) {
4702  /// If we're operating on a base class, the object type is the
4703  /// type of this special member.
4704  QualType objectTy;
4705  AccessSpecifier access = target->getAccess();
4706  if (CXXBaseSpecifier *base = Subobj.dyn_cast<CXXBaseSpecifier*>()) {
4707    objectTy = S.Context.getTypeDeclType(MD->getParent());
4708    access = CXXRecordDecl::MergeAccess(base->getAccessSpecifier(), access);
4709
4710  // If we're operating on a field, the object type is the type of the field.
4711  } else {
4712    objectTy = S.Context.getTypeDeclType(target->getParent());
4713  }
4714
4715  return S.isSpecialMemberAccessibleForDeletion(target, access, objectTy);
4716}
4717
4718/// Check whether we should delete a special member due to the implicit
4719/// definition containing a call to a special member of a subobject.
4720bool SpecialMemberDeletionInfo::shouldDeleteForSubobjectCall(
4721    Subobject Subobj, Sema::SpecialMemberOverloadResult *SMOR,
4722    bool IsDtorCallInCtor) {
4723  CXXMethodDecl *Decl = SMOR->getMethod();
4724  FieldDecl *Field = Subobj.dyn_cast<FieldDecl*>();
4725
4726  int DiagKind = -1;
4727
4728  if (SMOR->getKind() == Sema::SpecialMemberOverloadResult::NoMemberOrDeleted)
4729    DiagKind = !Decl ? 0 : 1;
4730  else if (SMOR->getKind() == Sema::SpecialMemberOverloadResult::Ambiguous)
4731    DiagKind = 2;
4732  else if (!isAccessible(Subobj, Decl))
4733    DiagKind = 3;
4734  else if (!IsDtorCallInCtor && Field && Field->getParent()->isUnion() &&
4735           !Decl->isTrivial()) {
4736    // A member of a union must have a trivial corresponding special member.
4737    // As a weird special case, a destructor call from a union's constructor
4738    // must be accessible and non-deleted, but need not be trivial. Such a
4739    // destructor is never actually called, but is semantically checked as
4740    // if it were.
4741    DiagKind = 4;
4742  }
4743
4744  if (DiagKind == -1)
4745    return false;
4746
4747  if (Diagnose) {
4748    if (Field) {
4749      S.Diag(Field->getLocation(),
4750             diag::note_deleted_special_member_class_subobject)
4751        << CSM << MD->getParent() << /*IsField*/true
4752        << Field << DiagKind << IsDtorCallInCtor;
4753    } else {
4754      CXXBaseSpecifier *Base = Subobj.get<CXXBaseSpecifier*>();
4755      S.Diag(Base->getLocStart(),
4756             diag::note_deleted_special_member_class_subobject)
4757        << CSM << MD->getParent() << /*IsField*/false
4758        << Base->getType() << DiagKind << IsDtorCallInCtor;
4759    }
4760
4761    if (DiagKind == 1)
4762      S.NoteDeletedFunction(Decl);
4763    // FIXME: Explain inaccessibility if DiagKind == 3.
4764  }
4765
4766  return true;
4767}
4768
4769/// Check whether we should delete a special member function due to having a
4770/// direct or virtual base class or non-static data member of class type M.
4771bool SpecialMemberDeletionInfo::shouldDeleteForClassSubobject(
4772    CXXRecordDecl *Class, Subobject Subobj, unsigned Quals) {
4773  FieldDecl *Field = Subobj.dyn_cast<FieldDecl*>();
4774
4775  // C++11 [class.ctor]p5:
4776  // -- any direct or virtual base class, or non-static data member with no
4777  //    brace-or-equal-initializer, has class type M (or array thereof) and
4778  //    either M has no default constructor or overload resolution as applied
4779  //    to M's default constructor results in an ambiguity or in a function
4780  //    that is deleted or inaccessible
4781  // C++11 [class.copy]p11, C++11 [class.copy]p23:
4782  // -- a direct or virtual base class B that cannot be copied/moved because
4783  //    overload resolution, as applied to B's corresponding special member,
4784  //    results in an ambiguity or a function that is deleted or inaccessible
4785  //    from the defaulted special member
4786  // C++11 [class.dtor]p5:
4787  // -- any direct or virtual base class [...] has a type with a destructor
4788  //    that is deleted or inaccessible
4789  if (!(CSM == Sema::CXXDefaultConstructor &&
4790        Field && Field->hasInClassInitializer()) &&
4791      shouldDeleteForSubobjectCall(Subobj, lookupIn(Class, Quals), false))
4792    return true;
4793
4794  // C++11 [class.ctor]p5, C++11 [class.copy]p11:
4795  // -- any direct or virtual base class or non-static data member has a
4796  //    type with a destructor that is deleted or inaccessible
4797  if (IsConstructor) {
4798    Sema::SpecialMemberOverloadResult *SMOR =
4799        S.LookupSpecialMember(Class, Sema::CXXDestructor,
4800                              false, false, false, false, false);
4801    if (shouldDeleteForSubobjectCall(Subobj, SMOR, true))
4802      return true;
4803  }
4804
4805  return false;
4806}
4807
4808/// Check whether we should delete a special member function due to the class
4809/// having a particular direct or virtual base class.
4810bool SpecialMemberDeletionInfo::shouldDeleteForBase(CXXBaseSpecifier *Base) {
4811  CXXRecordDecl *BaseClass = Base->getType()->getAsCXXRecordDecl();
4812  return shouldDeleteForClassSubobject(BaseClass, Base, 0);
4813}
4814
4815/// Check whether we should delete a special member function due to the class
4816/// having a particular non-static data member.
4817bool SpecialMemberDeletionInfo::shouldDeleteForField(FieldDecl *FD) {
4818  QualType FieldType = S.Context.getBaseElementType(FD->getType());
4819  CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl();
4820
4821  if (CSM == Sema::CXXDefaultConstructor) {
4822    // For a default constructor, all references must be initialized in-class
4823    // and, if a union, it must have a non-const member.
4824    if (FieldType->isReferenceType() && !FD->hasInClassInitializer()) {
4825      if (Diagnose)
4826        S.Diag(FD->getLocation(), diag::note_deleted_default_ctor_uninit_field)
4827          << MD->getParent() << FD << FieldType << /*Reference*/0;
4828      return true;
4829    }
4830    // C++11 [class.ctor]p5: any non-variant non-static data member of
4831    // const-qualified type (or array thereof) with no
4832    // brace-or-equal-initializer does not have a user-provided default
4833    // constructor.
4834    if (!inUnion() && FieldType.isConstQualified() &&
4835        !FD->hasInClassInitializer() &&
4836        (!FieldRecord || !FieldRecord->hasUserProvidedDefaultConstructor())) {
4837      if (Diagnose)
4838        S.Diag(FD->getLocation(), diag::note_deleted_default_ctor_uninit_field)
4839          << MD->getParent() << FD << FD->getType() << /*Const*/1;
4840      return true;
4841    }
4842
4843    if (inUnion() && !FieldType.isConstQualified())
4844      AllFieldsAreConst = false;
4845  } else if (CSM == Sema::CXXCopyConstructor) {
4846    // For a copy constructor, data members must not be of rvalue reference
4847    // type.
4848    if (FieldType->isRValueReferenceType()) {
4849      if (Diagnose)
4850        S.Diag(FD->getLocation(), diag::note_deleted_copy_ctor_rvalue_reference)
4851          << MD->getParent() << FD << FieldType;
4852      return true;
4853    }
4854  } else if (IsAssignment) {
4855    // For an assignment operator, data members must not be of reference type.
4856    if (FieldType->isReferenceType()) {
4857      if (Diagnose)
4858        S.Diag(FD->getLocation(), diag::note_deleted_assign_field)
4859          << IsMove << MD->getParent() << FD << FieldType << /*Reference*/0;
4860      return true;
4861    }
4862    if (!FieldRecord && FieldType.isConstQualified()) {
4863      // C++11 [class.copy]p23:
4864      // -- a non-static data member of const non-class type (or array thereof)
4865      if (Diagnose)
4866        S.Diag(FD->getLocation(), diag::note_deleted_assign_field)
4867          << IsMove << MD->getParent() << FD << FD->getType() << /*Const*/1;
4868      return true;
4869    }
4870  }
4871
4872  if (FieldRecord) {
4873    // Some additional restrictions exist on the variant members.
4874    if (!inUnion() && FieldRecord->isUnion() &&
4875        FieldRecord->isAnonymousStructOrUnion()) {
4876      bool AllVariantFieldsAreConst = true;
4877
4878      // FIXME: Handle anonymous unions declared within anonymous unions.
4879      for (CXXRecordDecl::field_iterator UI = FieldRecord->field_begin(),
4880                                         UE = FieldRecord->field_end();
4881           UI != UE; ++UI) {
4882        QualType UnionFieldType = S.Context.getBaseElementType(UI->getType());
4883
4884        if (!UnionFieldType.isConstQualified())
4885          AllVariantFieldsAreConst = false;
4886
4887        CXXRecordDecl *UnionFieldRecord = UnionFieldType->getAsCXXRecordDecl();
4888        if (UnionFieldRecord &&
4889            shouldDeleteForClassSubobject(UnionFieldRecord, *UI,
4890                                          UnionFieldType.getCVRQualifiers()))
4891          return true;
4892      }
4893
4894      // At least one member in each anonymous union must be non-const
4895      if (CSM == Sema::CXXDefaultConstructor && AllVariantFieldsAreConst &&
4896          FieldRecord->field_begin() != FieldRecord->field_end()) {
4897        if (Diagnose)
4898          S.Diag(FieldRecord->getLocation(),
4899                 diag::note_deleted_default_ctor_all_const)
4900            << MD->getParent() << /*anonymous union*/1;
4901        return true;
4902      }
4903
4904      // Don't check the implicit member of the anonymous union type.
4905      // This is technically non-conformant, but sanity demands it.
4906      return false;
4907    }
4908
4909    if (shouldDeleteForClassSubobject(FieldRecord, FD,
4910                                      FieldType.getCVRQualifiers()))
4911      return true;
4912  }
4913
4914  return false;
4915}
4916
4917/// C++11 [class.ctor] p5:
4918///   A defaulted default constructor for a class X is defined as deleted if
4919/// X is a union and all of its variant members are of const-qualified type.
4920bool SpecialMemberDeletionInfo::shouldDeleteForAllConstMembers() {
4921  // This is a silly definition, because it gives an empty union a deleted
4922  // default constructor. Don't do that.
4923  if (CSM == Sema::CXXDefaultConstructor && inUnion() && AllFieldsAreConst &&
4924      (MD->getParent()->field_begin() != MD->getParent()->field_end())) {
4925    if (Diagnose)
4926      S.Diag(MD->getParent()->getLocation(),
4927             diag::note_deleted_default_ctor_all_const)
4928        << MD->getParent() << /*not anonymous union*/0;
4929    return true;
4930  }
4931  return false;
4932}
4933
4934/// Determine whether a defaulted special member function should be defined as
4935/// deleted, as specified in C++11 [class.ctor]p5, C++11 [class.copy]p11,
4936/// C++11 [class.copy]p23, and C++11 [class.dtor]p5.
4937bool Sema::ShouldDeleteSpecialMember(CXXMethodDecl *MD, CXXSpecialMember CSM,
4938                                     bool Diagnose) {
4939  if (MD->isInvalidDecl())
4940    return false;
4941  CXXRecordDecl *RD = MD->getParent();
4942  assert(!RD->isDependentType() && "do deletion after instantiation");
4943  if (!LangOpts.CPlusPlus11 || RD->isInvalidDecl())
4944    return false;
4945
4946  // C++11 [expr.lambda.prim]p19:
4947  //   The closure type associated with a lambda-expression has a
4948  //   deleted (8.4.3) default constructor and a deleted copy
4949  //   assignment operator.
4950  if (RD->isLambda() &&
4951      (CSM == CXXDefaultConstructor || CSM == CXXCopyAssignment)) {
4952    if (Diagnose)
4953      Diag(RD->getLocation(), diag::note_lambda_decl);
4954    return true;
4955  }
4956
4957  // For an anonymous struct or union, the copy and assignment special members
4958  // will never be used, so skip the check. For an anonymous union declared at
4959  // namespace scope, the constructor and destructor are used.
4960  if (CSM != CXXDefaultConstructor && CSM != CXXDestructor &&
4961      RD->isAnonymousStructOrUnion())
4962    return false;
4963
4964  // C++11 [class.copy]p7, p18:
4965  //   If the class definition declares a move constructor or move assignment
4966  //   operator, an implicitly declared copy constructor or copy assignment
4967  //   operator is defined as deleted.
4968  if (MD->isImplicit() &&
4969      (CSM == CXXCopyConstructor || CSM == CXXCopyAssignment)) {
4970    CXXMethodDecl *UserDeclaredMove = 0;
4971
4972    // In Microsoft mode, a user-declared move only causes the deletion of the
4973    // corresponding copy operation, not both copy operations.
4974    if (RD->hasUserDeclaredMoveConstructor() &&
4975        (!getLangOpts().MicrosoftMode || CSM == CXXCopyConstructor)) {
4976      if (!Diagnose) return true;
4977
4978      // Find any user-declared move constructor.
4979      for (CXXRecordDecl::ctor_iterator I = RD->ctor_begin(),
4980                                        E = RD->ctor_end(); I != E; ++I) {
4981        if (I->isMoveConstructor()) {
4982          UserDeclaredMove = *I;
4983          break;
4984        }
4985      }
4986      assert(UserDeclaredMove);
4987    } else if (RD->hasUserDeclaredMoveAssignment() &&
4988               (!getLangOpts().MicrosoftMode || CSM == CXXCopyAssignment)) {
4989      if (!Diagnose) return true;
4990
4991      // Find any user-declared move assignment operator.
4992      for (CXXRecordDecl::method_iterator I = RD->method_begin(),
4993                                          E = RD->method_end(); I != E; ++I) {
4994        if (I->isMoveAssignmentOperator()) {
4995          UserDeclaredMove = *I;
4996          break;
4997        }
4998      }
4999      assert(UserDeclaredMove);
5000    }
5001
5002    if (UserDeclaredMove) {
5003      Diag(UserDeclaredMove->getLocation(),
5004           diag::note_deleted_copy_user_declared_move)
5005        << (CSM == CXXCopyAssignment) << RD
5006        << UserDeclaredMove->isMoveAssignmentOperator();
5007      return true;
5008    }
5009  }
5010
5011  // Do access control from the special member function
5012  ContextRAII MethodContext(*this, MD);
5013
5014  // C++11 [class.dtor]p5:
5015  // -- for a virtual destructor, lookup of the non-array deallocation function
5016  //    results in an ambiguity or in a function that is deleted or inaccessible
5017  if (CSM == CXXDestructor && MD->isVirtual()) {
5018    FunctionDecl *OperatorDelete = 0;
5019    DeclarationName Name =
5020      Context.DeclarationNames.getCXXOperatorName(OO_Delete);
5021    if (FindDeallocationFunction(MD->getLocation(), MD->getParent(), Name,
5022                                 OperatorDelete, false)) {
5023      if (Diagnose)
5024        Diag(RD->getLocation(), diag::note_deleted_dtor_no_operator_delete);
5025      return true;
5026    }
5027  }
5028
5029  SpecialMemberDeletionInfo SMI(*this, MD, CSM, Diagnose);
5030
5031  for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
5032                                          BE = RD->bases_end(); BI != BE; ++BI)
5033    if (!BI->isVirtual() &&
5034        SMI.shouldDeleteForBase(BI))
5035      return true;
5036
5037  for (CXXRecordDecl::base_class_iterator BI = RD->vbases_begin(),
5038                                          BE = RD->vbases_end(); BI != BE; ++BI)
5039    if (SMI.shouldDeleteForBase(BI))
5040      return true;
5041
5042  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
5043                                     FE = RD->field_end(); FI != FE; ++FI)
5044    if (!FI->isInvalidDecl() && !FI->isUnnamedBitfield() &&
5045        SMI.shouldDeleteForField(*FI))
5046      return true;
5047
5048  if (SMI.shouldDeleteForAllConstMembers())
5049    return true;
5050
5051  return false;
5052}
5053
5054/// Perform lookup for a special member of the specified kind, and determine
5055/// whether it is trivial. If the triviality can be determined without the
5056/// lookup, skip it. This is intended for use when determining whether a
5057/// special member of a containing object is trivial, and thus does not ever
5058/// perform overload resolution for default constructors.
5059///
5060/// If \p Selected is not \c NULL, \c *Selected will be filled in with the
5061/// member that was most likely to be intended to be trivial, if any.
5062static bool findTrivialSpecialMember(Sema &S, CXXRecordDecl *RD,
5063                                     Sema::CXXSpecialMember CSM, unsigned Quals,
5064                                     CXXMethodDecl **Selected) {
5065  if (Selected)
5066    *Selected = 0;
5067
5068  switch (CSM) {
5069  case Sema::CXXInvalid:
5070    llvm_unreachable("not a special member");
5071
5072  case Sema::CXXDefaultConstructor:
5073    // C++11 [class.ctor]p5:
5074    //   A default constructor is trivial if:
5075    //    - all the [direct subobjects] have trivial default constructors
5076    //
5077    // Note, no overload resolution is performed in this case.
5078    if (RD->hasTrivialDefaultConstructor())
5079      return true;
5080
5081    if (Selected) {
5082      // If there's a default constructor which could have been trivial, dig it
5083      // out. Otherwise, if there's any user-provided default constructor, point
5084      // to that as an example of why there's not a trivial one.
5085      CXXConstructorDecl *DefCtor = 0;
5086      if (RD->needsImplicitDefaultConstructor())
5087        S.DeclareImplicitDefaultConstructor(RD);
5088      for (CXXRecordDecl::ctor_iterator CI = RD->ctor_begin(),
5089                                        CE = RD->ctor_end(); CI != CE; ++CI) {
5090        if (!CI->isDefaultConstructor())
5091          continue;
5092        DefCtor = *CI;
5093        if (!DefCtor->isUserProvided())
5094          break;
5095      }
5096
5097      *Selected = DefCtor;
5098    }
5099
5100    return false;
5101
5102  case Sema::CXXDestructor:
5103    // C++11 [class.dtor]p5:
5104    //   A destructor is trivial if:
5105    //    - all the direct [subobjects] have trivial destructors
5106    if (RD->hasTrivialDestructor())
5107      return true;
5108
5109    if (Selected) {
5110      if (RD->needsImplicitDestructor())
5111        S.DeclareImplicitDestructor(RD);
5112      *Selected = RD->getDestructor();
5113    }
5114
5115    return false;
5116
5117  case Sema::CXXCopyConstructor:
5118    // C++11 [class.copy]p12:
5119    //   A copy constructor is trivial if:
5120    //    - the constructor selected to copy each direct [subobject] is trivial
5121    if (RD->hasTrivialCopyConstructor()) {
5122      if (Quals == Qualifiers::Const)
5123        // We must either select the trivial copy constructor or reach an
5124        // ambiguity; no need to actually perform overload resolution.
5125        return true;
5126    } else if (!Selected) {
5127      return false;
5128    }
5129    // In C++98, we are not supposed to perform overload resolution here, but we
5130    // treat that as a language defect, as suggested on cxx-abi-dev, to treat
5131    // cases like B as having a non-trivial copy constructor:
5132    //   struct A { template<typename T> A(T&); };
5133    //   struct B { mutable A a; };
5134    goto NeedOverloadResolution;
5135
5136  case Sema::CXXCopyAssignment:
5137    // C++11 [class.copy]p25:
5138    //   A copy assignment operator is trivial if:
5139    //    - the assignment operator selected to copy each direct [subobject] is
5140    //      trivial
5141    if (RD->hasTrivialCopyAssignment()) {
5142      if (Quals == Qualifiers::Const)
5143        return true;
5144    } else if (!Selected) {
5145      return false;
5146    }
5147    // In C++98, we are not supposed to perform overload resolution here, but we
5148    // treat that as a language defect.
5149    goto NeedOverloadResolution;
5150
5151  case Sema::CXXMoveConstructor:
5152  case Sema::CXXMoveAssignment:
5153  NeedOverloadResolution:
5154    Sema::SpecialMemberOverloadResult *SMOR =
5155      S.LookupSpecialMember(RD, CSM,
5156                            Quals & Qualifiers::Const,
5157                            Quals & Qualifiers::Volatile,
5158                            /*RValueThis*/false, /*ConstThis*/false,
5159                            /*VolatileThis*/false);
5160
5161    // The standard doesn't describe how to behave if the lookup is ambiguous.
5162    // We treat it as not making the member non-trivial, just like the standard
5163    // mandates for the default constructor. This should rarely matter, because
5164    // the member will also be deleted.
5165    if (SMOR->getKind() == Sema::SpecialMemberOverloadResult::Ambiguous)
5166      return true;
5167
5168    if (!SMOR->getMethod()) {
5169      assert(SMOR->getKind() ==
5170             Sema::SpecialMemberOverloadResult::NoMemberOrDeleted);
5171      return false;
5172    }
5173
5174    // We deliberately don't check if we found a deleted special member. We're
5175    // not supposed to!
5176    if (Selected)
5177      *Selected = SMOR->getMethod();
5178    return SMOR->getMethod()->isTrivial();
5179  }
5180
5181  llvm_unreachable("unknown special method kind");
5182}
5183
5184static CXXConstructorDecl *findUserDeclaredCtor(CXXRecordDecl *RD) {
5185  for (CXXRecordDecl::ctor_iterator CI = RD->ctor_begin(), CE = RD->ctor_end();
5186       CI != CE; ++CI)
5187    if (!CI->isImplicit())
5188      return *CI;
5189
5190  // Look for constructor templates.
5191  typedef CXXRecordDecl::specific_decl_iterator<FunctionTemplateDecl> tmpl_iter;
5192  for (tmpl_iter TI(RD->decls_begin()), TE(RD->decls_end()); TI != TE; ++TI) {
5193    if (CXXConstructorDecl *CD =
5194          dyn_cast<CXXConstructorDecl>(TI->getTemplatedDecl()))
5195      return CD;
5196  }
5197
5198  return 0;
5199}
5200
5201/// The kind of subobject we are checking for triviality. The values of this
5202/// enumeration are used in diagnostics.
5203enum TrivialSubobjectKind {
5204  /// The subobject is a base class.
5205  TSK_BaseClass,
5206  /// The subobject is a non-static data member.
5207  TSK_Field,
5208  /// The object is actually the complete object.
5209  TSK_CompleteObject
5210};
5211
5212/// Check whether the special member selected for a given type would be trivial.
5213static bool checkTrivialSubobjectCall(Sema &S, SourceLocation SubobjLoc,
5214                                      QualType SubType,
5215                                      Sema::CXXSpecialMember CSM,
5216                                      TrivialSubobjectKind Kind,
5217                                      bool Diagnose) {
5218  CXXRecordDecl *SubRD = SubType->getAsCXXRecordDecl();
5219  if (!SubRD)
5220    return true;
5221
5222  CXXMethodDecl *Selected;
5223  if (findTrivialSpecialMember(S, SubRD, CSM, SubType.getCVRQualifiers(),
5224                               Diagnose ? &Selected : 0))
5225    return true;
5226
5227  if (Diagnose) {
5228    if (!Selected && CSM == Sema::CXXDefaultConstructor) {
5229      S.Diag(SubobjLoc, diag::note_nontrivial_no_def_ctor)
5230        << Kind << SubType.getUnqualifiedType();
5231      if (CXXConstructorDecl *CD = findUserDeclaredCtor(SubRD))
5232        S.Diag(CD->getLocation(), diag::note_user_declared_ctor);
5233    } else if (!Selected)
5234      S.Diag(SubobjLoc, diag::note_nontrivial_no_copy)
5235        << Kind << SubType.getUnqualifiedType() << CSM << SubType;
5236    else if (Selected->isUserProvided()) {
5237      if (Kind == TSK_CompleteObject)
5238        S.Diag(Selected->getLocation(), diag::note_nontrivial_user_provided)
5239          << Kind << SubType.getUnqualifiedType() << CSM;
5240      else {
5241        S.Diag(SubobjLoc, diag::note_nontrivial_user_provided)
5242          << Kind << SubType.getUnqualifiedType() << CSM;
5243        S.Diag(Selected->getLocation(), diag::note_declared_at);
5244      }
5245    } else {
5246      if (Kind != TSK_CompleteObject)
5247        S.Diag(SubobjLoc, diag::note_nontrivial_subobject)
5248          << Kind << SubType.getUnqualifiedType() << CSM;
5249
5250      // Explain why the defaulted or deleted special member isn't trivial.
5251      S.SpecialMemberIsTrivial(Selected, CSM, Diagnose);
5252    }
5253  }
5254
5255  return false;
5256}
5257
5258/// Check whether the members of a class type allow a special member to be
5259/// trivial.
5260static bool checkTrivialClassMembers(Sema &S, CXXRecordDecl *RD,
5261                                     Sema::CXXSpecialMember CSM,
5262                                     bool ConstArg, bool Diagnose) {
5263  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
5264                                     FE = RD->field_end(); FI != FE; ++FI) {
5265    if (FI->isInvalidDecl() || FI->isUnnamedBitfield())
5266      continue;
5267
5268    QualType FieldType = S.Context.getBaseElementType(FI->getType());
5269
5270    // Pretend anonymous struct or union members are members of this class.
5271    if (FI->isAnonymousStructOrUnion()) {
5272      if (!checkTrivialClassMembers(S, FieldType->getAsCXXRecordDecl(),
5273                                    CSM, ConstArg, Diagnose))
5274        return false;
5275      continue;
5276    }
5277
5278    // C++11 [class.ctor]p5:
5279    //   A default constructor is trivial if [...]
5280    //    -- no non-static data member of its class has a
5281    //       brace-or-equal-initializer
5282    if (CSM == Sema::CXXDefaultConstructor && FI->hasInClassInitializer()) {
5283      if (Diagnose)
5284        S.Diag(FI->getLocation(), diag::note_nontrivial_in_class_init) << *FI;
5285      return false;
5286    }
5287
5288    // Objective C ARC 4.3.5:
5289    //   [...] nontrivally ownership-qualified types are [...] not trivially
5290    //   default constructible, copy constructible, move constructible, copy
5291    //   assignable, move assignable, or destructible [...]
5292    if (S.getLangOpts().ObjCAutoRefCount &&
5293        FieldType.hasNonTrivialObjCLifetime()) {
5294      if (Diagnose)
5295        S.Diag(FI->getLocation(), diag::note_nontrivial_objc_ownership)
5296          << RD << FieldType.getObjCLifetime();
5297      return false;
5298    }
5299
5300    if (ConstArg && !FI->isMutable())
5301      FieldType.addConst();
5302    if (!checkTrivialSubobjectCall(S, FI->getLocation(), FieldType, CSM,
5303                                   TSK_Field, Diagnose))
5304      return false;
5305  }
5306
5307  return true;
5308}
5309
5310/// Diagnose why the specified class does not have a trivial special member of
5311/// the given kind.
5312void Sema::DiagnoseNontrivial(const CXXRecordDecl *RD, CXXSpecialMember CSM) {
5313  QualType Ty = Context.getRecordType(RD);
5314  if (CSM == CXXCopyConstructor || CSM == CXXCopyAssignment)
5315    Ty.addConst();
5316
5317  checkTrivialSubobjectCall(*this, RD->getLocation(), Ty, CSM,
5318                            TSK_CompleteObject, /*Diagnose*/true);
5319}
5320
5321/// Determine whether a defaulted or deleted special member function is trivial,
5322/// as specified in C++11 [class.ctor]p5, C++11 [class.copy]p12,
5323/// C++11 [class.copy]p25, and C++11 [class.dtor]p5.
5324bool Sema::SpecialMemberIsTrivial(CXXMethodDecl *MD, CXXSpecialMember CSM,
5325                                  bool Diagnose) {
5326  assert(!MD->isUserProvided() && CSM != CXXInvalid && "not special enough");
5327
5328  CXXRecordDecl *RD = MD->getParent();
5329
5330  bool ConstArg = false;
5331
5332  // C++11 [class.copy]p12, p25:
5333  //   A [special member] is trivial if its declared parameter type is the same
5334  //   as if it had been implicitly declared [...]
5335  switch (CSM) {
5336  case CXXDefaultConstructor:
5337  case CXXDestructor:
5338    // Trivial default constructors and destructors cannot have parameters.
5339    break;
5340
5341  case CXXCopyConstructor:
5342  case CXXCopyAssignment: {
5343    // Trivial copy operations always have const, non-volatile parameter types.
5344    ConstArg = true;
5345    const ParmVarDecl *Param0 = MD->getParamDecl(0);
5346    const ReferenceType *RT = Param0->getType()->getAs<ReferenceType>();
5347    if (!RT || RT->getPointeeType().getCVRQualifiers() != Qualifiers::Const) {
5348      if (Diagnose)
5349        Diag(Param0->getLocation(), diag::note_nontrivial_param_type)
5350          << Param0->getSourceRange() << Param0->getType()
5351          << Context.getLValueReferenceType(
5352               Context.getRecordType(RD).withConst());
5353      return false;
5354    }
5355    break;
5356  }
5357
5358  case CXXMoveConstructor:
5359  case CXXMoveAssignment: {
5360    // Trivial move operations always have non-cv-qualified parameters.
5361    const ParmVarDecl *Param0 = MD->getParamDecl(0);
5362    const RValueReferenceType *RT =
5363      Param0->getType()->getAs<RValueReferenceType>();
5364    if (!RT || RT->getPointeeType().getCVRQualifiers()) {
5365      if (Diagnose)
5366        Diag(Param0->getLocation(), diag::note_nontrivial_param_type)
5367          << Param0->getSourceRange() << Param0->getType()
5368          << Context.getRValueReferenceType(Context.getRecordType(RD));
5369      return false;
5370    }
5371    break;
5372  }
5373
5374  case CXXInvalid:
5375    llvm_unreachable("not a special member");
5376  }
5377
5378  // FIXME: We require that the parameter-declaration-clause is equivalent to
5379  // that of an implicit declaration, not just that the declared parameter type
5380  // matches, in order to prevent absuridities like a function simultaneously
5381  // being a trivial copy constructor and a non-trivial default constructor.
5382  // This issue has not yet been assigned a core issue number.
5383  if (MD->getMinRequiredArguments() < MD->getNumParams()) {
5384    if (Diagnose)
5385      Diag(MD->getParamDecl(MD->getMinRequiredArguments())->getLocation(),
5386           diag::note_nontrivial_default_arg)
5387        << MD->getParamDecl(MD->getMinRequiredArguments())->getSourceRange();
5388    return false;
5389  }
5390  if (MD->isVariadic()) {
5391    if (Diagnose)
5392      Diag(MD->getLocation(), diag::note_nontrivial_variadic);
5393    return false;
5394  }
5395
5396  // C++11 [class.ctor]p5, C++11 [class.dtor]p5:
5397  //   A copy/move [constructor or assignment operator] is trivial if
5398  //    -- the [member] selected to copy/move each direct base class subobject
5399  //       is trivial
5400  //
5401  // C++11 [class.copy]p12, C++11 [class.copy]p25:
5402  //   A [default constructor or destructor] is trivial if
5403  //    -- all the direct base classes have trivial [default constructors or
5404  //       destructors]
5405  for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
5406                                          BE = RD->bases_end(); BI != BE; ++BI)
5407    if (!checkTrivialSubobjectCall(*this, BI->getLocStart(),
5408                                   ConstArg ? BI->getType().withConst()
5409                                            : BI->getType(),
5410                                   CSM, TSK_BaseClass, Diagnose))
5411      return false;
5412
5413  // C++11 [class.ctor]p5, C++11 [class.dtor]p5:
5414  //   A copy/move [constructor or assignment operator] for a class X is
5415  //   trivial if
5416  //    -- for each non-static data member of X that is of class type (or array
5417  //       thereof), the constructor selected to copy/move that member is
5418  //       trivial
5419  //
5420  // C++11 [class.copy]p12, C++11 [class.copy]p25:
5421  //   A [default constructor or destructor] is trivial if
5422  //    -- for all of the non-static data members of its class that are of class
5423  //       type (or array thereof), each such class has a trivial [default
5424  //       constructor or destructor]
5425  if (!checkTrivialClassMembers(*this, RD, CSM, ConstArg, Diagnose))
5426    return false;
5427
5428  // C++11 [class.dtor]p5:
5429  //   A destructor is trivial if [...]
5430  //    -- the destructor is not virtual
5431  if (CSM == CXXDestructor && MD->isVirtual()) {
5432    if (Diagnose)
5433      Diag(MD->getLocation(), diag::note_nontrivial_virtual_dtor) << RD;
5434    return false;
5435  }
5436
5437  // C++11 [class.ctor]p5, C++11 [class.copy]p12, C++11 [class.copy]p25:
5438  //   A [special member] for class X is trivial if [...]
5439  //    -- class X has no virtual functions and no virtual base classes
5440  if (CSM != CXXDestructor && MD->getParent()->isDynamicClass()) {
5441    if (!Diagnose)
5442      return false;
5443
5444    if (RD->getNumVBases()) {
5445      // Check for virtual bases. We already know that the corresponding
5446      // member in all bases is trivial, so vbases must all be direct.
5447      CXXBaseSpecifier &BS = *RD->vbases_begin();
5448      assert(BS.isVirtual());
5449      Diag(BS.getLocStart(), diag::note_nontrivial_has_virtual) << RD << 1;
5450      return false;
5451    }
5452
5453    // Must have a virtual method.
5454    for (CXXRecordDecl::method_iterator MI = RD->method_begin(),
5455                                        ME = RD->method_end(); MI != ME; ++MI) {
5456      if (MI->isVirtual()) {
5457        SourceLocation MLoc = MI->getLocStart();
5458        Diag(MLoc, diag::note_nontrivial_has_virtual) << RD << 0;
5459        return false;
5460      }
5461    }
5462
5463    llvm_unreachable("dynamic class with no vbases and no virtual functions");
5464  }
5465
5466  // Looks like it's trivial!
5467  return true;
5468}
5469
5470/// \brief Data used with FindHiddenVirtualMethod
5471namespace {
5472  struct FindHiddenVirtualMethodData {
5473    Sema *S;
5474    CXXMethodDecl *Method;
5475    llvm::SmallPtrSet<const CXXMethodDecl *, 8> OverridenAndUsingBaseMethods;
5476    SmallVector<CXXMethodDecl *, 8> OverloadedMethods;
5477  };
5478}
5479
5480/// \brief Check whether any most overriden method from MD in Methods
5481static bool CheckMostOverridenMethods(const CXXMethodDecl *MD,
5482                   const llvm::SmallPtrSet<const CXXMethodDecl *, 8>& Methods) {
5483  if (MD->size_overridden_methods() == 0)
5484    return Methods.count(MD->getCanonicalDecl());
5485  for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
5486                                      E = MD->end_overridden_methods();
5487       I != E; ++I)
5488    if (CheckMostOverridenMethods(*I, Methods))
5489      return true;
5490  return false;
5491}
5492
5493/// \brief Member lookup function that determines whether a given C++
5494/// method overloads virtual methods in a base class without overriding any,
5495/// to be used with CXXRecordDecl::lookupInBases().
5496static bool FindHiddenVirtualMethod(const CXXBaseSpecifier *Specifier,
5497                                    CXXBasePath &Path,
5498                                    void *UserData) {
5499  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
5500
5501  FindHiddenVirtualMethodData &Data
5502    = *static_cast<FindHiddenVirtualMethodData*>(UserData);
5503
5504  DeclarationName Name = Data.Method->getDeclName();
5505  assert(Name.getNameKind() == DeclarationName::Identifier);
5506
5507  bool foundSameNameMethod = false;
5508  SmallVector<CXXMethodDecl *, 8> overloadedMethods;
5509  for (Path.Decls = BaseRecord->lookup(Name);
5510       !Path.Decls.empty();
5511       Path.Decls = Path.Decls.slice(1)) {
5512    NamedDecl *D = Path.Decls.front();
5513    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
5514      MD = MD->getCanonicalDecl();
5515      foundSameNameMethod = true;
5516      // Interested only in hidden virtual methods.
5517      if (!MD->isVirtual())
5518        continue;
5519      // If the method we are checking overrides a method from its base
5520      // don't warn about the other overloaded methods.
5521      if (!Data.S->IsOverload(Data.Method, MD, false))
5522        return true;
5523      // Collect the overload only if its hidden.
5524      if (!CheckMostOverridenMethods(MD, Data.OverridenAndUsingBaseMethods))
5525        overloadedMethods.push_back(MD);
5526    }
5527  }
5528
5529  if (foundSameNameMethod)
5530    Data.OverloadedMethods.append(overloadedMethods.begin(),
5531                                   overloadedMethods.end());
5532  return foundSameNameMethod;
5533}
5534
5535/// \brief Add the most overriden methods from MD to Methods
5536static void AddMostOverridenMethods(const CXXMethodDecl *MD,
5537                         llvm::SmallPtrSet<const CXXMethodDecl *, 8>& Methods) {
5538  if (MD->size_overridden_methods() == 0)
5539    Methods.insert(MD->getCanonicalDecl());
5540  for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
5541                                      E = MD->end_overridden_methods();
5542       I != E; ++I)
5543    AddMostOverridenMethods(*I, Methods);
5544}
5545
5546/// \brief See if a method overloads virtual methods in a base class without
5547/// overriding any.
5548void Sema::DiagnoseHiddenVirtualMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
5549  if (Diags.getDiagnosticLevel(diag::warn_overloaded_virtual,
5550                               MD->getLocation()) == DiagnosticsEngine::Ignored)
5551    return;
5552  if (!MD->getDeclName().isIdentifier())
5553    return;
5554
5555  CXXBasePaths Paths(/*FindAmbiguities=*/true, // true to look in all bases.
5556                     /*bool RecordPaths=*/false,
5557                     /*bool DetectVirtual=*/false);
5558  FindHiddenVirtualMethodData Data;
5559  Data.Method = MD;
5560  Data.S = this;
5561
5562  // Keep the base methods that were overriden or introduced in the subclass
5563  // by 'using' in a set. A base method not in this set is hidden.
5564  DeclContext::lookup_result R = DC->lookup(MD->getDeclName());
5565  for (DeclContext::lookup_iterator I = R.begin(), E = R.end(); I != E; ++I) {
5566    NamedDecl *ND = *I;
5567    if (UsingShadowDecl *shad = dyn_cast<UsingShadowDecl>(*I))
5568      ND = shad->getTargetDecl();
5569    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(ND))
5570      AddMostOverridenMethods(MD, Data.OverridenAndUsingBaseMethods);
5571  }
5572
5573  if (DC->lookupInBases(&FindHiddenVirtualMethod, &Data, Paths) &&
5574      !Data.OverloadedMethods.empty()) {
5575    Diag(MD->getLocation(), diag::warn_overloaded_virtual)
5576      << MD << (Data.OverloadedMethods.size() > 1);
5577
5578    for (unsigned i = 0, e = Data.OverloadedMethods.size(); i != e; ++i) {
5579      CXXMethodDecl *overloadedMD = Data.OverloadedMethods[i];
5580      PartialDiagnostic PD = PDiag(
5581           diag::note_hidden_overloaded_virtual_declared_here) << overloadedMD;
5582      HandleFunctionTypeMismatch(PD, MD->getType(), overloadedMD->getType());
5583      Diag(overloadedMD->getLocation(), PD);
5584    }
5585  }
5586}
5587
5588void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
5589                                             Decl *TagDecl,
5590                                             SourceLocation LBrac,
5591                                             SourceLocation RBrac,
5592                                             AttributeList *AttrList) {
5593  if (!TagDecl)
5594    return;
5595
5596  AdjustDeclIfTemplate(TagDecl);
5597
5598  for (const AttributeList* l = AttrList; l; l = l->getNext()) {
5599    if (l->getKind() != AttributeList::AT_Visibility)
5600      continue;
5601    l->setInvalid();
5602    Diag(l->getLoc(), diag::warn_attribute_after_definition_ignored) <<
5603      l->getName();
5604  }
5605
5606  ActOnFields(S, RLoc, TagDecl, llvm::makeArrayRef(
5607              // strict aliasing violation!
5608              reinterpret_cast<Decl**>(FieldCollector->getCurFields()),
5609              FieldCollector->getCurNumFields()), LBrac, RBrac, AttrList);
5610
5611  CheckCompletedCXXClass(
5612                        dyn_cast_or_null<CXXRecordDecl>(TagDecl));
5613}
5614
5615/// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
5616/// special functions, such as the default constructor, copy
5617/// constructor, or destructor, to the given C++ class (C++
5618/// [special]p1).  This routine can only be executed just before the
5619/// definition of the class is complete.
5620void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) {
5621  if (!ClassDecl->hasUserDeclaredConstructor())
5622    ++ASTContext::NumImplicitDefaultConstructors;
5623
5624  if (!ClassDecl->hasUserDeclaredCopyConstructor()) {
5625    ++ASTContext::NumImplicitCopyConstructors;
5626
5627    // If the properties or semantics of the copy constructor couldn't be
5628    // determined while the class was being declared, force a declaration
5629    // of it now.
5630    if (ClassDecl->needsOverloadResolutionForCopyConstructor())
5631      DeclareImplicitCopyConstructor(ClassDecl);
5632  }
5633
5634  if (getLangOpts().CPlusPlus11 && ClassDecl->needsImplicitMoveConstructor()) {
5635    ++ASTContext::NumImplicitMoveConstructors;
5636
5637    if (ClassDecl->needsOverloadResolutionForMoveConstructor())
5638      DeclareImplicitMoveConstructor(ClassDecl);
5639  }
5640
5641  if (!ClassDecl->hasUserDeclaredCopyAssignment()) {
5642    ++ASTContext::NumImplicitCopyAssignmentOperators;
5643
5644    // If we have a dynamic class, then the copy assignment operator may be
5645    // virtual, so we have to declare it immediately. This ensures that, e.g.,
5646    // it shows up in the right place in the vtable and that we diagnose
5647    // problems with the implicit exception specification.
5648    if (ClassDecl->isDynamicClass() ||
5649        ClassDecl->needsOverloadResolutionForCopyAssignment())
5650      DeclareImplicitCopyAssignment(ClassDecl);
5651  }
5652
5653  if (getLangOpts().CPlusPlus11 && ClassDecl->needsImplicitMoveAssignment()) {
5654    ++ASTContext::NumImplicitMoveAssignmentOperators;
5655
5656    // Likewise for the move assignment operator.
5657    if (ClassDecl->isDynamicClass() ||
5658        ClassDecl->needsOverloadResolutionForMoveAssignment())
5659      DeclareImplicitMoveAssignment(ClassDecl);
5660  }
5661
5662  if (!ClassDecl->hasUserDeclaredDestructor()) {
5663    ++ASTContext::NumImplicitDestructors;
5664
5665    // If we have a dynamic class, then the destructor may be virtual, so we
5666    // have to declare the destructor immediately. This ensures that, e.g., it
5667    // shows up in the right place in the vtable and that we diagnose problems
5668    // with the implicit exception specification.
5669    if (ClassDecl->isDynamicClass() ||
5670        ClassDecl->needsOverloadResolutionForDestructor())
5671      DeclareImplicitDestructor(ClassDecl);
5672  }
5673}
5674
5675void Sema::ActOnReenterDeclaratorTemplateScope(Scope *S, DeclaratorDecl *D) {
5676  if (!D)
5677    return;
5678
5679  int NumParamList = D->getNumTemplateParameterLists();
5680  for (int i = 0; i < NumParamList; i++) {
5681    TemplateParameterList* Params = D->getTemplateParameterList(i);
5682    for (TemplateParameterList::iterator Param = Params->begin(),
5683                                      ParamEnd = Params->end();
5684          Param != ParamEnd; ++Param) {
5685      NamedDecl *Named = cast<NamedDecl>(*Param);
5686      if (Named->getDeclName()) {
5687        S->AddDecl(Named);
5688        IdResolver.AddDecl(Named);
5689      }
5690    }
5691  }
5692}
5693
5694void Sema::ActOnReenterTemplateScope(Scope *S, Decl *D) {
5695  if (!D)
5696    return;
5697
5698  TemplateParameterList *Params = 0;
5699  if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D))
5700    Params = Template->getTemplateParameters();
5701  else if (ClassTemplatePartialSpecializationDecl *PartialSpec
5702           = dyn_cast<ClassTemplatePartialSpecializationDecl>(D))
5703    Params = PartialSpec->getTemplateParameters();
5704  else
5705    return;
5706
5707  for (TemplateParameterList::iterator Param = Params->begin(),
5708                                    ParamEnd = Params->end();
5709       Param != ParamEnd; ++Param) {
5710    NamedDecl *Named = cast<NamedDecl>(*Param);
5711    if (Named->getDeclName()) {
5712      S->AddDecl(Named);
5713      IdResolver.AddDecl(Named);
5714    }
5715  }
5716}
5717
5718void Sema::ActOnStartDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
5719  if (!RecordD) return;
5720  AdjustDeclIfTemplate(RecordD);
5721  CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordD);
5722  PushDeclContext(S, Record);
5723}
5724
5725void Sema::ActOnFinishDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
5726  if (!RecordD) return;
5727  PopDeclContext();
5728}
5729
5730/// ActOnStartDelayedCXXMethodDeclaration - We have completed
5731/// parsing a top-level (non-nested) C++ class, and we are now
5732/// parsing those parts of the given Method declaration that could
5733/// not be parsed earlier (C++ [class.mem]p2), such as default
5734/// arguments. This action should enter the scope of the given
5735/// Method declaration as if we had just parsed the qualified method
5736/// name. However, it should not bring the parameters into scope;
5737/// that will be performed by ActOnDelayedCXXMethodParameter.
5738void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
5739}
5740
5741/// ActOnDelayedCXXMethodParameter - We've already started a delayed
5742/// C++ method declaration. We're (re-)introducing the given
5743/// function parameter into scope for use in parsing later parts of
5744/// the method declaration. For example, we could see an
5745/// ActOnParamDefaultArgument event for this parameter.
5746void Sema::ActOnDelayedCXXMethodParameter(Scope *S, Decl *ParamD) {
5747  if (!ParamD)
5748    return;
5749
5750  ParmVarDecl *Param = cast<ParmVarDecl>(ParamD);
5751
5752  // If this parameter has an unparsed default argument, clear it out
5753  // to make way for the parsed default argument.
5754  if (Param->hasUnparsedDefaultArg())
5755    Param->setDefaultArg(0);
5756
5757  S->AddDecl(Param);
5758  if (Param->getDeclName())
5759    IdResolver.AddDecl(Param);
5760}
5761
5762/// ActOnFinishDelayedCXXMethodDeclaration - We have finished
5763/// processing the delayed method declaration for Method. The method
5764/// declaration is now considered finished. There may be a separate
5765/// ActOnStartOfFunctionDef action later (not necessarily
5766/// immediately!) for this method, if it was also defined inside the
5767/// class body.
5768void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
5769  if (!MethodD)
5770    return;
5771
5772  AdjustDeclIfTemplate(MethodD);
5773
5774  FunctionDecl *Method = cast<FunctionDecl>(MethodD);
5775
5776  // Now that we have our default arguments, check the constructor
5777  // again. It could produce additional diagnostics or affect whether
5778  // the class has implicitly-declared destructors, among other
5779  // things.
5780  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method))
5781    CheckConstructor(Constructor);
5782
5783  // Check the default arguments, which we may have added.
5784  if (!Method->isInvalidDecl())
5785    CheckCXXDefaultArguments(Method);
5786}
5787
5788/// CheckConstructorDeclarator - Called by ActOnDeclarator to check
5789/// the well-formedness of the constructor declarator @p D with type @p
5790/// R. If there are any errors in the declarator, this routine will
5791/// emit diagnostics and set the invalid bit to true.  In any case, the type
5792/// will be updated to reflect a well-formed type for the constructor and
5793/// returned.
5794QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R,
5795                                          StorageClass &SC) {
5796  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
5797
5798  // C++ [class.ctor]p3:
5799  //   A constructor shall not be virtual (10.3) or static (9.4). A
5800  //   constructor can be invoked for a const, volatile or const
5801  //   volatile object. A constructor shall not be declared const,
5802  //   volatile, or const volatile (9.3.2).
5803  if (isVirtual) {
5804    if (!D.isInvalidType())
5805      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
5806        << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
5807        << SourceRange(D.getIdentifierLoc());
5808    D.setInvalidType();
5809  }
5810  if (SC == SC_Static) {
5811    if (!D.isInvalidType())
5812      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
5813        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
5814        << SourceRange(D.getIdentifierLoc());
5815    D.setInvalidType();
5816    SC = SC_None;
5817  }
5818
5819  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
5820  if (FTI.TypeQuals != 0) {
5821    if (FTI.TypeQuals & Qualifiers::Const)
5822      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
5823        << "const" << SourceRange(D.getIdentifierLoc());
5824    if (FTI.TypeQuals & Qualifiers::Volatile)
5825      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
5826        << "volatile" << SourceRange(D.getIdentifierLoc());
5827    if (FTI.TypeQuals & Qualifiers::Restrict)
5828      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
5829        << "restrict" << SourceRange(D.getIdentifierLoc());
5830    D.setInvalidType();
5831  }
5832
5833  // C++0x [class.ctor]p4:
5834  //   A constructor shall not be declared with a ref-qualifier.
5835  if (FTI.hasRefQualifier()) {
5836    Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_constructor)
5837      << FTI.RefQualifierIsLValueRef
5838      << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
5839    D.setInvalidType();
5840  }
5841
5842  // Rebuild the function type "R" without any type qualifiers (in
5843  // case any of the errors above fired) and with "void" as the
5844  // return type, since constructors don't have return types.
5845  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
5846  if (Proto->getResultType() == Context.VoidTy && !D.isInvalidType())
5847    return R;
5848
5849  FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
5850  EPI.TypeQuals = 0;
5851  EPI.RefQualifier = RQ_None;
5852
5853  return Context.getFunctionType(Context.VoidTy, Proto->getArgTypes(), EPI);
5854}
5855
5856/// CheckConstructor - Checks a fully-formed constructor for
5857/// well-formedness, issuing any diagnostics required. Returns true if
5858/// the constructor declarator is invalid.
5859void Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
5860  CXXRecordDecl *ClassDecl
5861    = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext());
5862  if (!ClassDecl)
5863    return Constructor->setInvalidDecl();
5864
5865  // C++ [class.copy]p3:
5866  //   A declaration of a constructor for a class X is ill-formed if
5867  //   its first parameter is of type (optionally cv-qualified) X and
5868  //   either there are no other parameters or else all other
5869  //   parameters have default arguments.
5870  if (!Constructor->isInvalidDecl() &&
5871      ((Constructor->getNumParams() == 1) ||
5872       (Constructor->getNumParams() > 1 &&
5873        Constructor->getParamDecl(1)->hasDefaultArg())) &&
5874      Constructor->getTemplateSpecializationKind()
5875                                              != TSK_ImplicitInstantiation) {
5876    QualType ParamType = Constructor->getParamDecl(0)->getType();
5877    QualType ClassTy = Context.getTagDeclType(ClassDecl);
5878    if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
5879      SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation();
5880      const char *ConstRef
5881        = Constructor->getParamDecl(0)->getIdentifier() ? "const &"
5882                                                        : " const &";
5883      Diag(ParamLoc, diag::err_constructor_byvalue_arg)
5884        << FixItHint::CreateInsertion(ParamLoc, ConstRef);
5885
5886      // FIXME: Rather that making the constructor invalid, we should endeavor
5887      // to fix the type.
5888      Constructor->setInvalidDecl();
5889    }
5890  }
5891}
5892
5893/// CheckDestructor - Checks a fully-formed destructor definition for
5894/// well-formedness, issuing any diagnostics required.  Returns true
5895/// on error.
5896bool Sema::CheckDestructor(CXXDestructorDecl *Destructor) {
5897  CXXRecordDecl *RD = Destructor->getParent();
5898
5899  if (Destructor->isVirtual()) {
5900    SourceLocation Loc;
5901
5902    if (!Destructor->isImplicit())
5903      Loc = Destructor->getLocation();
5904    else
5905      Loc = RD->getLocation();
5906
5907    // If we have a virtual destructor, look up the deallocation function
5908    FunctionDecl *OperatorDelete = 0;
5909    DeclarationName Name =
5910    Context.DeclarationNames.getCXXOperatorName(OO_Delete);
5911    if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete))
5912      return true;
5913
5914    MarkFunctionReferenced(Loc, OperatorDelete);
5915
5916    Destructor->setOperatorDelete(OperatorDelete);
5917  }
5918
5919  return false;
5920}
5921
5922static inline bool
5923FTIHasSingleVoidArgument(DeclaratorChunk::FunctionTypeInfo &FTI) {
5924  return (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
5925          FTI.ArgInfo[0].Param &&
5926          cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType());
5927}
5928
5929/// CheckDestructorDeclarator - Called by ActOnDeclarator to check
5930/// the well-formednes of the destructor declarator @p D with type @p
5931/// R. If there are any errors in the declarator, this routine will
5932/// emit diagnostics and set the declarator to invalid.  Even if this happens,
5933/// will be updated to reflect a well-formed type for the destructor and
5934/// returned.
5935QualType Sema::CheckDestructorDeclarator(Declarator &D, QualType R,
5936                                         StorageClass& SC) {
5937  // C++ [class.dtor]p1:
5938  //   [...] A typedef-name that names a class is a class-name
5939  //   (7.1.3); however, a typedef-name that names a class shall not
5940  //   be used as the identifier in the declarator for a destructor
5941  //   declaration.
5942  QualType DeclaratorType = GetTypeFromParser(D.getName().DestructorName);
5943  if (const TypedefType *TT = DeclaratorType->getAs<TypedefType>())
5944    Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
5945      << DeclaratorType << isa<TypeAliasDecl>(TT->getDecl());
5946  else if (const TemplateSpecializationType *TST =
5947             DeclaratorType->getAs<TemplateSpecializationType>())
5948    if (TST->isTypeAlias())
5949      Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
5950        << DeclaratorType << 1;
5951
5952  // C++ [class.dtor]p2:
5953  //   A destructor is used to destroy objects of its class type. A
5954  //   destructor takes no parameters, and no return type can be
5955  //   specified for it (not even void). The address of a destructor
5956  //   shall not be taken. A destructor shall not be static. A
5957  //   destructor can be invoked for a const, volatile or const
5958  //   volatile object. A destructor shall not be declared const,
5959  //   volatile or const volatile (9.3.2).
5960  if (SC == SC_Static) {
5961    if (!D.isInvalidType())
5962      Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
5963        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
5964        << SourceRange(D.getIdentifierLoc())
5965        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
5966
5967    SC = SC_None;
5968  }
5969  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
5970    // Destructors don't have return types, but the parser will
5971    // happily parse something like:
5972    //
5973    //   class X {
5974    //     float ~X();
5975    //   };
5976    //
5977    // The return type will be eliminated later.
5978    Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
5979      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
5980      << SourceRange(D.getIdentifierLoc());
5981  }
5982
5983  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
5984  if (FTI.TypeQuals != 0 && !D.isInvalidType()) {
5985    if (FTI.TypeQuals & Qualifiers::Const)
5986      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
5987        << "const" << SourceRange(D.getIdentifierLoc());
5988    if (FTI.TypeQuals & Qualifiers::Volatile)
5989      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
5990        << "volatile" << SourceRange(D.getIdentifierLoc());
5991    if (FTI.TypeQuals & Qualifiers::Restrict)
5992      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
5993        << "restrict" << SourceRange(D.getIdentifierLoc());
5994    D.setInvalidType();
5995  }
5996
5997  // C++0x [class.dtor]p2:
5998  //   A destructor shall not be declared with a ref-qualifier.
5999  if (FTI.hasRefQualifier()) {
6000    Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_destructor)
6001      << FTI.RefQualifierIsLValueRef
6002      << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
6003    D.setInvalidType();
6004  }
6005
6006  // Make sure we don't have any parameters.
6007  if (FTI.NumArgs > 0 && !FTIHasSingleVoidArgument(FTI)) {
6008    Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
6009
6010    // Delete the parameters.
6011    FTI.freeArgs();
6012    D.setInvalidType();
6013  }
6014
6015  // Make sure the destructor isn't variadic.
6016  if (FTI.isVariadic) {
6017    Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
6018    D.setInvalidType();
6019  }
6020
6021  // Rebuild the function type "R" without any type qualifiers or
6022  // parameters (in case any of the errors above fired) and with
6023  // "void" as the return type, since destructors don't have return
6024  // types.
6025  if (!D.isInvalidType())
6026    return R;
6027
6028  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
6029  FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
6030  EPI.Variadic = false;
6031  EPI.TypeQuals = 0;
6032  EPI.RefQualifier = RQ_None;
6033  return Context.getFunctionType(Context.VoidTy, ArrayRef<QualType>(), EPI);
6034}
6035
6036/// CheckConversionDeclarator - Called by ActOnDeclarator to check the
6037/// well-formednes of the conversion function declarator @p D with
6038/// type @p R. If there are any errors in the declarator, this routine
6039/// will emit diagnostics and return true. Otherwise, it will return
6040/// false. Either way, the type @p R will be updated to reflect a
6041/// well-formed type for the conversion operator.
6042void Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
6043                                     StorageClass& SC) {
6044  // C++ [class.conv.fct]p1:
6045  //   Neither parameter types nor return type can be specified. The
6046  //   type of a conversion function (8.3.5) is "function taking no
6047  //   parameter returning conversion-type-id."
6048  if (SC == SC_Static) {
6049    if (!D.isInvalidType())
6050      Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
6051        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
6052        << SourceRange(D.getIdentifierLoc());
6053    D.setInvalidType();
6054    SC = SC_None;
6055  }
6056
6057  QualType ConvType = GetTypeFromParser(D.getName().ConversionFunctionId);
6058
6059  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
6060    // Conversion functions don't have return types, but the parser will
6061    // happily parse something like:
6062    //
6063    //   class X {
6064    //     float operator bool();
6065    //   };
6066    //
6067    // The return type will be changed later anyway.
6068    Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
6069      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
6070      << SourceRange(D.getIdentifierLoc());
6071    D.setInvalidType();
6072  }
6073
6074  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
6075
6076  // Make sure we don't have any parameters.
6077  if (Proto->getNumArgs() > 0) {
6078    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
6079
6080    // Delete the parameters.
6081    D.getFunctionTypeInfo().freeArgs();
6082    D.setInvalidType();
6083  } else if (Proto->isVariadic()) {
6084    Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
6085    D.setInvalidType();
6086  }
6087
6088  // Diagnose "&operator bool()" and other such nonsense.  This
6089  // is actually a gcc extension which we don't support.
6090  if (Proto->getResultType() != ConvType) {
6091    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_complex_decl)
6092      << Proto->getResultType();
6093    D.setInvalidType();
6094    ConvType = Proto->getResultType();
6095  }
6096
6097  // C++ [class.conv.fct]p4:
6098  //   The conversion-type-id shall not represent a function type nor
6099  //   an array type.
6100  if (ConvType->isArrayType()) {
6101    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
6102    ConvType = Context.getPointerType(ConvType);
6103    D.setInvalidType();
6104  } else if (ConvType->isFunctionType()) {
6105    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
6106    ConvType = Context.getPointerType(ConvType);
6107    D.setInvalidType();
6108  }
6109
6110  // Rebuild the function type "R" without any parameters (in case any
6111  // of the errors above fired) and with the conversion type as the
6112  // return type.
6113  if (D.isInvalidType())
6114    R = Context.getFunctionType(ConvType, ArrayRef<QualType>(),
6115                                Proto->getExtProtoInfo());
6116
6117  // C++0x explicit conversion operators.
6118  if (D.getDeclSpec().isExplicitSpecified())
6119    Diag(D.getDeclSpec().getExplicitSpecLoc(),
6120         getLangOpts().CPlusPlus11 ?
6121           diag::warn_cxx98_compat_explicit_conversion_functions :
6122           diag::ext_explicit_conversion_functions)
6123      << SourceRange(D.getDeclSpec().getExplicitSpecLoc());
6124}
6125
6126/// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
6127/// the declaration of the given C++ conversion function. This routine
6128/// is responsible for recording the conversion function in the C++
6129/// class, if possible.
6130Decl *Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
6131  assert(Conversion && "Expected to receive a conversion function declaration");
6132
6133  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext());
6134
6135  // Make sure we aren't redeclaring the conversion function.
6136  QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());
6137
6138  // C++ [class.conv.fct]p1:
6139  //   [...] A conversion function is never used to convert a
6140  //   (possibly cv-qualified) object to the (possibly cv-qualified)
6141  //   same object type (or a reference to it), to a (possibly
6142  //   cv-qualified) base class of that type (or a reference to it),
6143  //   or to (possibly cv-qualified) void.
6144  // FIXME: Suppress this warning if the conversion function ends up being a
6145  // virtual function that overrides a virtual function in a base class.
6146  QualType ClassType
6147    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
6148  if (const ReferenceType *ConvTypeRef = ConvType->getAs<ReferenceType>())
6149    ConvType = ConvTypeRef->getPointeeType();
6150  if (Conversion->getTemplateSpecializationKind() != TSK_Undeclared &&
6151      Conversion->getTemplateSpecializationKind() != TSK_ExplicitSpecialization)
6152    /* Suppress diagnostics for instantiations. */;
6153  else if (ConvType->isRecordType()) {
6154    ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
6155    if (ConvType == ClassType)
6156      Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used)
6157        << ClassType;
6158    else if (IsDerivedFrom(ClassType, ConvType))
6159      Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used)
6160        <<  ClassType << ConvType;
6161  } else if (ConvType->isVoidType()) {
6162    Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used)
6163      << ClassType << ConvType;
6164  }
6165
6166  if (FunctionTemplateDecl *ConversionTemplate
6167                                = Conversion->getDescribedFunctionTemplate())
6168    return ConversionTemplate;
6169
6170  return Conversion;
6171}
6172
6173//===----------------------------------------------------------------------===//
6174// Namespace Handling
6175//===----------------------------------------------------------------------===//
6176
6177/// \brief Diagnose a mismatch in 'inline' qualifiers when a namespace is
6178/// reopened.
6179static void DiagnoseNamespaceInlineMismatch(Sema &S, SourceLocation KeywordLoc,
6180                                            SourceLocation Loc,
6181                                            IdentifierInfo *II, bool *IsInline,
6182                                            NamespaceDecl *PrevNS) {
6183  assert(*IsInline != PrevNS->isInline());
6184
6185  // HACK: Work around a bug in libstdc++4.6's <atomic>, where
6186  // std::__atomic[0,1,2] are defined as non-inline namespaces, then reopened as
6187  // inline namespaces, with the intention of bringing names into namespace std.
6188  //
6189  // We support this just well enough to get that case working; this is not
6190  // sufficient to support reopening namespaces as inline in general.
6191  if (*IsInline && II && II->getName().startswith("__atomic") &&
6192      S.getSourceManager().isInSystemHeader(Loc)) {
6193    // Mark all prior declarations of the namespace as inline.
6194    for (NamespaceDecl *NS = PrevNS->getMostRecentDecl(); NS;
6195         NS = NS->getPreviousDecl())
6196      NS->setInline(*IsInline);
6197    // Patch up the lookup table for the containing namespace. This isn't really
6198    // correct, but it's good enough for this particular case.
6199    for (DeclContext::decl_iterator I = PrevNS->decls_begin(),
6200                                    E = PrevNS->decls_end(); I != E; ++I)
6201      if (NamedDecl *ND = dyn_cast<NamedDecl>(*I))
6202        PrevNS->getParent()->makeDeclVisibleInContext(ND);
6203    return;
6204  }
6205
6206  if (PrevNS->isInline())
6207    // The user probably just forgot the 'inline', so suggest that it
6208    // be added back.
6209    S.Diag(Loc, diag::warn_inline_namespace_reopened_noninline)
6210      << FixItHint::CreateInsertion(KeywordLoc, "inline ");
6211  else
6212    S.Diag(Loc, diag::err_inline_namespace_mismatch)
6213      << IsInline;
6214
6215  S.Diag(PrevNS->getLocation(), diag::note_previous_definition);
6216  *IsInline = PrevNS->isInline();
6217}
6218
6219/// ActOnStartNamespaceDef - This is called at the start of a namespace
6220/// definition.
6221Decl *Sema::ActOnStartNamespaceDef(Scope *NamespcScope,
6222                                   SourceLocation InlineLoc,
6223                                   SourceLocation NamespaceLoc,
6224                                   SourceLocation IdentLoc,
6225                                   IdentifierInfo *II,
6226                                   SourceLocation LBrace,
6227                                   AttributeList *AttrList) {
6228  SourceLocation StartLoc = InlineLoc.isValid() ? InlineLoc : NamespaceLoc;
6229  // For anonymous namespace, take the location of the left brace.
6230  SourceLocation Loc = II ? IdentLoc : LBrace;
6231  bool IsInline = InlineLoc.isValid();
6232  bool IsInvalid = false;
6233  bool IsStd = false;
6234  bool AddToKnown = false;
6235  Scope *DeclRegionScope = NamespcScope->getParent();
6236
6237  NamespaceDecl *PrevNS = 0;
6238  if (II) {
6239    // C++ [namespace.def]p2:
6240    //   The identifier in an original-namespace-definition shall not
6241    //   have been previously defined in the declarative region in
6242    //   which the original-namespace-definition appears. The
6243    //   identifier in an original-namespace-definition is the name of
6244    //   the namespace. Subsequently in that declarative region, it is
6245    //   treated as an original-namespace-name.
6246    //
6247    // Since namespace names are unique in their scope, and we don't
6248    // look through using directives, just look for any ordinary names.
6249
6250    const unsigned IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Member |
6251    Decl::IDNS_Type | Decl::IDNS_Using | Decl::IDNS_Tag |
6252    Decl::IDNS_Namespace;
6253    NamedDecl *PrevDecl = 0;
6254    DeclContext::lookup_result R = CurContext->getRedeclContext()->lookup(II);
6255    for (DeclContext::lookup_iterator I = R.begin(), E = R.end(); I != E;
6256         ++I) {
6257      if ((*I)->getIdentifierNamespace() & IDNS) {
6258        PrevDecl = *I;
6259        break;
6260      }
6261    }
6262
6263    PrevNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl);
6264
6265    if (PrevNS) {
6266      // This is an extended namespace definition.
6267      if (IsInline != PrevNS->isInline())
6268        DiagnoseNamespaceInlineMismatch(*this, NamespaceLoc, Loc, II,
6269                                        &IsInline, PrevNS);
6270    } else if (PrevDecl) {
6271      // This is an invalid name redefinition.
6272      Diag(Loc, diag::err_redefinition_different_kind)
6273        << II;
6274      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
6275      IsInvalid = true;
6276      // Continue on to push Namespc as current DeclContext and return it.
6277    } else if (II->isStr("std") &&
6278               CurContext->getRedeclContext()->isTranslationUnit()) {
6279      // This is the first "real" definition of the namespace "std", so update
6280      // our cache of the "std" namespace to point at this definition.
6281      PrevNS = getStdNamespace();
6282      IsStd = true;
6283      AddToKnown = !IsInline;
6284    } else {
6285      // We've seen this namespace for the first time.
6286      AddToKnown = !IsInline;
6287    }
6288  } else {
6289    // Anonymous namespaces.
6290
6291    // Determine whether the parent already has an anonymous namespace.
6292    DeclContext *Parent = CurContext->getRedeclContext();
6293    if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
6294      PrevNS = TU->getAnonymousNamespace();
6295    } else {
6296      NamespaceDecl *ND = cast<NamespaceDecl>(Parent);
6297      PrevNS = ND->getAnonymousNamespace();
6298    }
6299
6300    if (PrevNS && IsInline != PrevNS->isInline())
6301      DiagnoseNamespaceInlineMismatch(*this, NamespaceLoc, NamespaceLoc, II,
6302                                      &IsInline, PrevNS);
6303  }
6304
6305  NamespaceDecl *Namespc = NamespaceDecl::Create(Context, CurContext, IsInline,
6306                                                 StartLoc, Loc, II, PrevNS);
6307  if (IsInvalid)
6308    Namespc->setInvalidDecl();
6309
6310  ProcessDeclAttributeList(DeclRegionScope, Namespc, AttrList);
6311
6312  // FIXME: Should we be merging attributes?
6313  if (const VisibilityAttr *Attr = Namespc->getAttr<VisibilityAttr>())
6314    PushNamespaceVisibilityAttr(Attr, Loc);
6315
6316  if (IsStd)
6317    StdNamespace = Namespc;
6318  if (AddToKnown)
6319    KnownNamespaces[Namespc] = false;
6320
6321  if (II) {
6322    PushOnScopeChains(Namespc, DeclRegionScope);
6323  } else {
6324    // Link the anonymous namespace into its parent.
6325    DeclContext *Parent = CurContext->getRedeclContext();
6326    if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
6327      TU->setAnonymousNamespace(Namespc);
6328    } else {
6329      cast<NamespaceDecl>(Parent)->setAnonymousNamespace(Namespc);
6330    }
6331
6332    CurContext->addDecl(Namespc);
6333
6334    // C++ [namespace.unnamed]p1.  An unnamed-namespace-definition
6335    //   behaves as if it were replaced by
6336    //     namespace unique { /* empty body */ }
6337    //     using namespace unique;
6338    //     namespace unique { namespace-body }
6339    //   where all occurrences of 'unique' in a translation unit are
6340    //   replaced by the same identifier and this identifier differs
6341    //   from all other identifiers in the entire program.
6342
6343    // We just create the namespace with an empty name and then add an
6344    // implicit using declaration, just like the standard suggests.
6345    //
6346    // CodeGen enforces the "universally unique" aspect by giving all
6347    // declarations semantically contained within an anonymous
6348    // namespace internal linkage.
6349
6350    if (!PrevNS) {
6351      UsingDirectiveDecl* UD
6352        = UsingDirectiveDecl::Create(Context, Parent,
6353                                     /* 'using' */ LBrace,
6354                                     /* 'namespace' */ SourceLocation(),
6355                                     /* qualifier */ NestedNameSpecifierLoc(),
6356                                     /* identifier */ SourceLocation(),
6357                                     Namespc,
6358                                     /* Ancestor */ Parent);
6359      UD->setImplicit();
6360      Parent->addDecl(UD);
6361    }
6362  }
6363
6364  ActOnDocumentableDecl(Namespc);
6365
6366  // Although we could have an invalid decl (i.e. the namespace name is a
6367  // redefinition), push it as current DeclContext and try to continue parsing.
6368  // FIXME: We should be able to push Namespc here, so that the each DeclContext
6369  // for the namespace has the declarations that showed up in that particular
6370  // namespace definition.
6371  PushDeclContext(NamespcScope, Namespc);
6372  return Namespc;
6373}
6374
6375/// getNamespaceDecl - Returns the namespace a decl represents. If the decl
6376/// is a namespace alias, returns the namespace it points to.
6377static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) {
6378  if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D))
6379    return AD->getNamespace();
6380  return dyn_cast_or_null<NamespaceDecl>(D);
6381}
6382
6383/// ActOnFinishNamespaceDef - This callback is called after a namespace is
6384/// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
6385void Sema::ActOnFinishNamespaceDef(Decl *Dcl, SourceLocation RBrace) {
6386  NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
6387  assert(Namespc && "Invalid parameter, expected NamespaceDecl");
6388  Namespc->setRBraceLoc(RBrace);
6389  PopDeclContext();
6390  if (Namespc->hasAttr<VisibilityAttr>())
6391    PopPragmaVisibility(true, RBrace);
6392}
6393
6394CXXRecordDecl *Sema::getStdBadAlloc() const {
6395  return cast_or_null<CXXRecordDecl>(
6396                                  StdBadAlloc.get(Context.getExternalSource()));
6397}
6398
6399NamespaceDecl *Sema::getStdNamespace() const {
6400  return cast_or_null<NamespaceDecl>(
6401                                 StdNamespace.get(Context.getExternalSource()));
6402}
6403
6404/// \brief Retrieve the special "std" namespace, which may require us to
6405/// implicitly define the namespace.
6406NamespaceDecl *Sema::getOrCreateStdNamespace() {
6407  if (!StdNamespace) {
6408    // The "std" namespace has not yet been defined, so build one implicitly.
6409    StdNamespace = NamespaceDecl::Create(Context,
6410                                         Context.getTranslationUnitDecl(),
6411                                         /*Inline=*/false,
6412                                         SourceLocation(), SourceLocation(),
6413                                         &PP.getIdentifierTable().get("std"),
6414                                         /*PrevDecl=*/0);
6415    getStdNamespace()->setImplicit(true);
6416  }
6417
6418  return getStdNamespace();
6419}
6420
6421bool Sema::isStdInitializerList(QualType Ty, QualType *Element) {
6422  assert(getLangOpts().CPlusPlus &&
6423         "Looking for std::initializer_list outside of C++.");
6424
6425  // We're looking for implicit instantiations of
6426  // template <typename E> class std::initializer_list.
6427
6428  if (!StdNamespace) // If we haven't seen namespace std yet, this can't be it.
6429    return false;
6430
6431  ClassTemplateDecl *Template = 0;
6432  const TemplateArgument *Arguments = 0;
6433
6434  if (const RecordType *RT = Ty->getAs<RecordType>()) {
6435
6436    ClassTemplateSpecializationDecl *Specialization =
6437        dyn_cast<ClassTemplateSpecializationDecl>(RT->getDecl());
6438    if (!Specialization)
6439      return false;
6440
6441    Template = Specialization->getSpecializedTemplate();
6442    Arguments = Specialization->getTemplateArgs().data();
6443  } else if (const TemplateSpecializationType *TST =
6444                 Ty->getAs<TemplateSpecializationType>()) {
6445    Template = dyn_cast_or_null<ClassTemplateDecl>(
6446        TST->getTemplateName().getAsTemplateDecl());
6447    Arguments = TST->getArgs();
6448  }
6449  if (!Template)
6450    return false;
6451
6452  if (!StdInitializerList) {
6453    // Haven't recognized std::initializer_list yet, maybe this is it.
6454    CXXRecordDecl *TemplateClass = Template->getTemplatedDecl();
6455    if (TemplateClass->getIdentifier() !=
6456            &PP.getIdentifierTable().get("initializer_list") ||
6457        !getStdNamespace()->InEnclosingNamespaceSetOf(
6458            TemplateClass->getDeclContext()))
6459      return false;
6460    // This is a template called std::initializer_list, but is it the right
6461    // template?
6462    TemplateParameterList *Params = Template->getTemplateParameters();
6463    if (Params->getMinRequiredArguments() != 1)
6464      return false;
6465    if (!isa<TemplateTypeParmDecl>(Params->getParam(0)))
6466      return false;
6467
6468    // It's the right template.
6469    StdInitializerList = Template;
6470  }
6471
6472  if (Template != StdInitializerList)
6473    return false;
6474
6475  // This is an instance of std::initializer_list. Find the argument type.
6476  if (Element)
6477    *Element = Arguments[0].getAsType();
6478  return true;
6479}
6480
6481static ClassTemplateDecl *LookupStdInitializerList(Sema &S, SourceLocation Loc){
6482  NamespaceDecl *Std = S.getStdNamespace();
6483  if (!Std) {
6484    S.Diag(Loc, diag::err_implied_std_initializer_list_not_found);
6485    return 0;
6486  }
6487
6488  LookupResult Result(S, &S.PP.getIdentifierTable().get("initializer_list"),
6489                      Loc, Sema::LookupOrdinaryName);
6490  if (!S.LookupQualifiedName(Result, Std)) {
6491    S.Diag(Loc, diag::err_implied_std_initializer_list_not_found);
6492    return 0;
6493  }
6494  ClassTemplateDecl *Template = Result.getAsSingle<ClassTemplateDecl>();
6495  if (!Template) {
6496    Result.suppressDiagnostics();
6497    // We found something weird. Complain about the first thing we found.
6498    NamedDecl *Found = *Result.begin();
6499    S.Diag(Found->getLocation(), diag::err_malformed_std_initializer_list);
6500    return 0;
6501  }
6502
6503  // We found some template called std::initializer_list. Now verify that it's
6504  // correct.
6505  TemplateParameterList *Params = Template->getTemplateParameters();
6506  if (Params->getMinRequiredArguments() != 1 ||
6507      !isa<TemplateTypeParmDecl>(Params->getParam(0))) {
6508    S.Diag(Template->getLocation(), diag::err_malformed_std_initializer_list);
6509    return 0;
6510  }
6511
6512  return Template;
6513}
6514
6515QualType Sema::BuildStdInitializerList(QualType Element, SourceLocation Loc) {
6516  if (!StdInitializerList) {
6517    StdInitializerList = LookupStdInitializerList(*this, Loc);
6518    if (!StdInitializerList)
6519      return QualType();
6520  }
6521
6522  TemplateArgumentListInfo Args(Loc, Loc);
6523  Args.addArgument(TemplateArgumentLoc(TemplateArgument(Element),
6524                                       Context.getTrivialTypeSourceInfo(Element,
6525                                                                        Loc)));
6526  return Context.getCanonicalType(
6527      CheckTemplateIdType(TemplateName(StdInitializerList), Loc, Args));
6528}
6529
6530bool Sema::isInitListConstructor(const CXXConstructorDecl* Ctor) {
6531  // C++ [dcl.init.list]p2:
6532  //   A constructor is an initializer-list constructor if its first parameter
6533  //   is of type std::initializer_list<E> or reference to possibly cv-qualified
6534  //   std::initializer_list<E> for some type E, and either there are no other
6535  //   parameters or else all other parameters have default arguments.
6536  if (Ctor->getNumParams() < 1 ||
6537      (Ctor->getNumParams() > 1 && !Ctor->getParamDecl(1)->hasDefaultArg()))
6538    return false;
6539
6540  QualType ArgType = Ctor->getParamDecl(0)->getType();
6541  if (const ReferenceType *RT = ArgType->getAs<ReferenceType>())
6542    ArgType = RT->getPointeeType().getUnqualifiedType();
6543
6544  return isStdInitializerList(ArgType, 0);
6545}
6546
6547/// \brief Determine whether a using statement is in a context where it will be
6548/// apply in all contexts.
6549static bool IsUsingDirectiveInToplevelContext(DeclContext *CurContext) {
6550  switch (CurContext->getDeclKind()) {
6551    case Decl::TranslationUnit:
6552      return true;
6553    case Decl::LinkageSpec:
6554      return IsUsingDirectiveInToplevelContext(CurContext->getParent());
6555    default:
6556      return false;
6557  }
6558}
6559
6560namespace {
6561
6562// Callback to only accept typo corrections that are namespaces.
6563class NamespaceValidatorCCC : public CorrectionCandidateCallback {
6564 public:
6565  virtual bool ValidateCandidate(const TypoCorrection &candidate) {
6566    if (NamedDecl *ND = candidate.getCorrectionDecl()) {
6567      return isa<NamespaceDecl>(ND) || isa<NamespaceAliasDecl>(ND);
6568    }
6569    return false;
6570  }
6571};
6572
6573}
6574
6575static bool TryNamespaceTypoCorrection(Sema &S, LookupResult &R, Scope *Sc,
6576                                       CXXScopeSpec &SS,
6577                                       SourceLocation IdentLoc,
6578                                       IdentifierInfo *Ident) {
6579  NamespaceValidatorCCC Validator;
6580  R.clear();
6581  if (TypoCorrection Corrected = S.CorrectTypo(R.getLookupNameInfo(),
6582                                               R.getLookupKind(), Sc, &SS,
6583                                               Validator)) {
6584    std::string CorrectedStr(Corrected.getAsString(S.getLangOpts()));
6585    std::string CorrectedQuotedStr(Corrected.getQuoted(S.getLangOpts()));
6586    if (DeclContext *DC = S.computeDeclContext(SS, false))
6587      S.Diag(IdentLoc, diag::err_using_directive_member_suggest)
6588        << Ident << DC << CorrectedQuotedStr << SS.getRange()
6589        << FixItHint::CreateReplacement(Corrected.getCorrectionRange(),
6590                                        CorrectedStr);
6591    else
6592      S.Diag(IdentLoc, diag::err_using_directive_suggest)
6593        << Ident << CorrectedQuotedStr
6594        << FixItHint::CreateReplacement(IdentLoc, CorrectedStr);
6595
6596    S.Diag(Corrected.getCorrectionDecl()->getLocation(),
6597         diag::note_namespace_defined_here) << CorrectedQuotedStr;
6598
6599    R.addDecl(Corrected.getCorrectionDecl());
6600    return true;
6601  }
6602  return false;
6603}
6604
6605Decl *Sema::ActOnUsingDirective(Scope *S,
6606                                          SourceLocation UsingLoc,
6607                                          SourceLocation NamespcLoc,
6608                                          CXXScopeSpec &SS,
6609                                          SourceLocation IdentLoc,
6610                                          IdentifierInfo *NamespcName,
6611                                          AttributeList *AttrList) {
6612  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
6613  assert(NamespcName && "Invalid NamespcName.");
6614  assert(IdentLoc.isValid() && "Invalid NamespceName location.");
6615
6616  // This can only happen along a recovery path.
6617  while (S->getFlags() & Scope::TemplateParamScope)
6618    S = S->getParent();
6619  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
6620
6621  UsingDirectiveDecl *UDir = 0;
6622  NestedNameSpecifier *Qualifier = 0;
6623  if (SS.isSet())
6624    Qualifier = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
6625
6626  // Lookup namespace name.
6627  LookupResult R(*this, NamespcName, IdentLoc, LookupNamespaceName);
6628  LookupParsedName(R, S, &SS);
6629  if (R.isAmbiguous())
6630    return 0;
6631
6632  if (R.empty()) {
6633    R.clear();
6634    // Allow "using namespace std;" or "using namespace ::std;" even if
6635    // "std" hasn't been defined yet, for GCC compatibility.
6636    if ((!Qualifier || Qualifier->getKind() == NestedNameSpecifier::Global) &&
6637        NamespcName->isStr("std")) {
6638      Diag(IdentLoc, diag::ext_using_undefined_std);
6639      R.addDecl(getOrCreateStdNamespace());
6640      R.resolveKind();
6641    }
6642    // Otherwise, attempt typo correction.
6643    else TryNamespaceTypoCorrection(*this, R, S, SS, IdentLoc, NamespcName);
6644  }
6645
6646  if (!R.empty()) {
6647    NamedDecl *Named = R.getFoundDecl();
6648    assert((isa<NamespaceDecl>(Named) || isa<NamespaceAliasDecl>(Named))
6649        && "expected namespace decl");
6650    // C++ [namespace.udir]p1:
6651    //   A using-directive specifies that the names in the nominated
6652    //   namespace can be used in the scope in which the
6653    //   using-directive appears after the using-directive. During
6654    //   unqualified name lookup (3.4.1), the names appear as if they
6655    //   were declared in the nearest enclosing namespace which
6656    //   contains both the using-directive and the nominated
6657    //   namespace. [Note: in this context, "contains" means "contains
6658    //   directly or indirectly". ]
6659
6660    // Find enclosing context containing both using-directive and
6661    // nominated namespace.
6662    NamespaceDecl *NS = getNamespaceDecl(Named);
6663    DeclContext *CommonAncestor = cast<DeclContext>(NS);
6664    while (CommonAncestor && !CommonAncestor->Encloses(CurContext))
6665      CommonAncestor = CommonAncestor->getParent();
6666
6667    UDir = UsingDirectiveDecl::Create(Context, CurContext, UsingLoc, NamespcLoc,
6668                                      SS.getWithLocInContext(Context),
6669                                      IdentLoc, Named, CommonAncestor);
6670
6671    if (IsUsingDirectiveInToplevelContext(CurContext) &&
6672        !SourceMgr.isFromMainFile(SourceMgr.getExpansionLoc(IdentLoc))) {
6673      Diag(IdentLoc, diag::warn_using_directive_in_header);
6674    }
6675
6676    PushUsingDirective(S, UDir);
6677  } else {
6678    Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
6679  }
6680
6681  if (UDir)
6682    ProcessDeclAttributeList(S, UDir, AttrList);
6683
6684  return UDir;
6685}
6686
6687void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) {
6688  // If the scope has an associated entity and the using directive is at
6689  // namespace or translation unit scope, add the UsingDirectiveDecl into
6690  // its lookup structure so qualified name lookup can find it.
6691  DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity());
6692  if (Ctx && !Ctx->isFunctionOrMethod())
6693    Ctx->addDecl(UDir);
6694  else
6695    // Otherwise, it is at block sope. The using-directives will affect lookup
6696    // only to the end of the scope.
6697    S->PushUsingDirective(UDir);
6698}
6699
6700
6701Decl *Sema::ActOnUsingDeclaration(Scope *S,
6702                                  AccessSpecifier AS,
6703                                  bool HasUsingKeyword,
6704                                  SourceLocation UsingLoc,
6705                                  CXXScopeSpec &SS,
6706                                  UnqualifiedId &Name,
6707                                  AttributeList *AttrList,
6708                                  bool IsTypeName,
6709                                  SourceLocation TypenameLoc) {
6710  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
6711
6712  switch (Name.getKind()) {
6713  case UnqualifiedId::IK_ImplicitSelfParam:
6714  case UnqualifiedId::IK_Identifier:
6715  case UnqualifiedId::IK_OperatorFunctionId:
6716  case UnqualifiedId::IK_LiteralOperatorId:
6717  case UnqualifiedId::IK_ConversionFunctionId:
6718    break;
6719
6720  case UnqualifiedId::IK_ConstructorName:
6721  case UnqualifiedId::IK_ConstructorTemplateId:
6722    // C++11 inheriting constructors.
6723    Diag(Name.getLocStart(),
6724         getLangOpts().CPlusPlus11 ?
6725           diag::warn_cxx98_compat_using_decl_constructor :
6726           diag::err_using_decl_constructor)
6727      << SS.getRange();
6728
6729    if (getLangOpts().CPlusPlus11) break;
6730
6731    return 0;
6732
6733  case UnqualifiedId::IK_DestructorName:
6734    Diag(Name.getLocStart(), diag::err_using_decl_destructor)
6735      << SS.getRange();
6736    return 0;
6737
6738  case UnqualifiedId::IK_TemplateId:
6739    Diag(Name.getLocStart(), diag::err_using_decl_template_id)
6740      << SourceRange(Name.TemplateId->LAngleLoc, Name.TemplateId->RAngleLoc);
6741    return 0;
6742  }
6743
6744  DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name);
6745  DeclarationName TargetName = TargetNameInfo.getName();
6746  if (!TargetName)
6747    return 0;
6748
6749  // Warn about access declarations.
6750  // TODO: store that the declaration was written without 'using' and
6751  // talk about access decls instead of using decls in the
6752  // diagnostics.
6753  if (!HasUsingKeyword) {
6754    UsingLoc = Name.getLocStart();
6755
6756    Diag(UsingLoc, diag::warn_access_decl_deprecated)
6757      << FixItHint::CreateInsertion(SS.getRange().getBegin(), "using ");
6758  }
6759
6760  if (DiagnoseUnexpandedParameterPack(SS, UPPC_UsingDeclaration) ||
6761      DiagnoseUnexpandedParameterPack(TargetNameInfo, UPPC_UsingDeclaration))
6762    return 0;
6763
6764  NamedDecl *UD = BuildUsingDeclaration(S, AS, UsingLoc, SS,
6765                                        TargetNameInfo, AttrList,
6766                                        /* IsInstantiation */ false,
6767                                        IsTypeName, TypenameLoc);
6768  if (UD)
6769    PushOnScopeChains(UD, S, /*AddToContext*/ false);
6770
6771  return UD;
6772}
6773
6774/// \brief Determine whether a using declaration considers the given
6775/// declarations as "equivalent", e.g., if they are redeclarations of
6776/// the same entity or are both typedefs of the same type.
6777static bool
6778IsEquivalentForUsingDecl(ASTContext &Context, NamedDecl *D1, NamedDecl *D2,
6779                         bool &SuppressRedeclaration) {
6780  if (D1->getCanonicalDecl() == D2->getCanonicalDecl()) {
6781    SuppressRedeclaration = false;
6782    return true;
6783  }
6784
6785  if (TypedefNameDecl *TD1 = dyn_cast<TypedefNameDecl>(D1))
6786    if (TypedefNameDecl *TD2 = dyn_cast<TypedefNameDecl>(D2)) {
6787      SuppressRedeclaration = true;
6788      return Context.hasSameType(TD1->getUnderlyingType(),
6789                                 TD2->getUnderlyingType());
6790    }
6791
6792  return false;
6793}
6794
6795
6796/// Determines whether to create a using shadow decl for a particular
6797/// decl, given the set of decls existing prior to this using lookup.
6798bool Sema::CheckUsingShadowDecl(UsingDecl *Using, NamedDecl *Orig,
6799                                const LookupResult &Previous) {
6800  // Diagnose finding a decl which is not from a base class of the
6801  // current class.  We do this now because there are cases where this
6802  // function will silently decide not to build a shadow decl, which
6803  // will pre-empt further diagnostics.
6804  //
6805  // We don't need to do this in C++0x because we do the check once on
6806  // the qualifier.
6807  //
6808  // FIXME: diagnose the following if we care enough:
6809  //   struct A { int foo; };
6810  //   struct B : A { using A::foo; };
6811  //   template <class T> struct C : A {};
6812  //   template <class T> struct D : C<T> { using B::foo; } // <---
6813  // This is invalid (during instantiation) in C++03 because B::foo
6814  // resolves to the using decl in B, which is not a base class of D<T>.
6815  // We can't diagnose it immediately because C<T> is an unknown
6816  // specialization.  The UsingShadowDecl in D<T> then points directly
6817  // to A::foo, which will look well-formed when we instantiate.
6818  // The right solution is to not collapse the shadow-decl chain.
6819  if (!getLangOpts().CPlusPlus11 && CurContext->isRecord()) {
6820    DeclContext *OrigDC = Orig->getDeclContext();
6821
6822    // Handle enums and anonymous structs.
6823    if (isa<EnumDecl>(OrigDC)) OrigDC = OrigDC->getParent();
6824    CXXRecordDecl *OrigRec = cast<CXXRecordDecl>(OrigDC);
6825    while (OrigRec->isAnonymousStructOrUnion())
6826      OrigRec = cast<CXXRecordDecl>(OrigRec->getDeclContext());
6827
6828    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(OrigRec)) {
6829      if (OrigDC == CurContext) {
6830        Diag(Using->getLocation(),
6831             diag::err_using_decl_nested_name_specifier_is_current_class)
6832          << Using->getQualifierLoc().getSourceRange();
6833        Diag(Orig->getLocation(), diag::note_using_decl_target);
6834        return true;
6835      }
6836
6837      Diag(Using->getQualifierLoc().getBeginLoc(),
6838           diag::err_using_decl_nested_name_specifier_is_not_base_class)
6839        << Using->getQualifier()
6840        << cast<CXXRecordDecl>(CurContext)
6841        << Using->getQualifierLoc().getSourceRange();
6842      Diag(Orig->getLocation(), diag::note_using_decl_target);
6843      return true;
6844    }
6845  }
6846
6847  if (Previous.empty()) return false;
6848
6849  NamedDecl *Target = Orig;
6850  if (isa<UsingShadowDecl>(Target))
6851    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
6852
6853  // If the target happens to be one of the previous declarations, we
6854  // don't have a conflict.
6855  //
6856  // FIXME: but we might be increasing its access, in which case we
6857  // should redeclare it.
6858  NamedDecl *NonTag = 0, *Tag = 0;
6859  for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
6860         I != E; ++I) {
6861    NamedDecl *D = (*I)->getUnderlyingDecl();
6862    bool Result;
6863    if (IsEquivalentForUsingDecl(Context, D, Target, Result))
6864      return Result;
6865
6866    (isa<TagDecl>(D) ? Tag : NonTag) = D;
6867  }
6868
6869  if (Target->isFunctionOrFunctionTemplate()) {
6870    FunctionDecl *FD;
6871    if (isa<FunctionTemplateDecl>(Target))
6872      FD = cast<FunctionTemplateDecl>(Target)->getTemplatedDecl();
6873    else
6874      FD = cast<FunctionDecl>(Target);
6875
6876    NamedDecl *OldDecl = 0;
6877    switch (CheckOverload(0, FD, Previous, OldDecl, /*IsForUsingDecl*/ true)) {
6878    case Ovl_Overload:
6879      return false;
6880
6881    case Ovl_NonFunction:
6882      Diag(Using->getLocation(), diag::err_using_decl_conflict);
6883      break;
6884
6885    // We found a decl with the exact signature.
6886    case Ovl_Match:
6887      // If we're in a record, we want to hide the target, so we
6888      // return true (without a diagnostic) to tell the caller not to
6889      // build a shadow decl.
6890      if (CurContext->isRecord())
6891        return true;
6892
6893      // If we're not in a record, this is an error.
6894      Diag(Using->getLocation(), diag::err_using_decl_conflict);
6895      break;
6896    }
6897
6898    Diag(Target->getLocation(), diag::note_using_decl_target);
6899    Diag(OldDecl->getLocation(), diag::note_using_decl_conflict);
6900    return true;
6901  }
6902
6903  // Target is not a function.
6904
6905  if (isa<TagDecl>(Target)) {
6906    // No conflict between a tag and a non-tag.
6907    if (!Tag) return false;
6908
6909    Diag(Using->getLocation(), diag::err_using_decl_conflict);
6910    Diag(Target->getLocation(), diag::note_using_decl_target);
6911    Diag(Tag->getLocation(), diag::note_using_decl_conflict);
6912    return true;
6913  }
6914
6915  // No conflict between a tag and a non-tag.
6916  if (!NonTag) return false;
6917
6918  Diag(Using->getLocation(), diag::err_using_decl_conflict);
6919  Diag(Target->getLocation(), diag::note_using_decl_target);
6920  Diag(NonTag->getLocation(), diag::note_using_decl_conflict);
6921  return true;
6922}
6923
6924/// Builds a shadow declaration corresponding to a 'using' declaration.
6925UsingShadowDecl *Sema::BuildUsingShadowDecl(Scope *S,
6926                                            UsingDecl *UD,
6927                                            NamedDecl *Orig) {
6928
6929  // If we resolved to another shadow declaration, just coalesce them.
6930  NamedDecl *Target = Orig;
6931  if (isa<UsingShadowDecl>(Target)) {
6932    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
6933    assert(!isa<UsingShadowDecl>(Target) && "nested shadow declaration");
6934  }
6935
6936  UsingShadowDecl *Shadow
6937    = UsingShadowDecl::Create(Context, CurContext,
6938                              UD->getLocation(), UD, Target);
6939  UD->addShadowDecl(Shadow);
6940
6941  Shadow->setAccess(UD->getAccess());
6942  if (Orig->isInvalidDecl() || UD->isInvalidDecl())
6943    Shadow->setInvalidDecl();
6944
6945  if (S)
6946    PushOnScopeChains(Shadow, S);
6947  else
6948    CurContext->addDecl(Shadow);
6949
6950
6951  return Shadow;
6952}
6953
6954/// Hides a using shadow declaration.  This is required by the current
6955/// using-decl implementation when a resolvable using declaration in a
6956/// class is followed by a declaration which would hide or override
6957/// one or more of the using decl's targets; for example:
6958///
6959///   struct Base { void foo(int); };
6960///   struct Derived : Base {
6961///     using Base::foo;
6962///     void foo(int);
6963///   };
6964///
6965/// The governing language is C++03 [namespace.udecl]p12:
6966///
6967///   When a using-declaration brings names from a base class into a
6968///   derived class scope, member functions in the derived class
6969///   override and/or hide member functions with the same name and
6970///   parameter types in a base class (rather than conflicting).
6971///
6972/// There are two ways to implement this:
6973///   (1) optimistically create shadow decls when they're not hidden
6974///       by existing declarations, or
6975///   (2) don't create any shadow decls (or at least don't make them
6976///       visible) until we've fully parsed/instantiated the class.
6977/// The problem with (1) is that we might have to retroactively remove
6978/// a shadow decl, which requires several O(n) operations because the
6979/// decl structures are (very reasonably) not designed for removal.
6980/// (2) avoids this but is very fiddly and phase-dependent.
6981void Sema::HideUsingShadowDecl(Scope *S, UsingShadowDecl *Shadow) {
6982  if (Shadow->getDeclName().getNameKind() ==
6983        DeclarationName::CXXConversionFunctionName)
6984    cast<CXXRecordDecl>(Shadow->getDeclContext())->removeConversion(Shadow);
6985
6986  // Remove it from the DeclContext...
6987  Shadow->getDeclContext()->removeDecl(Shadow);
6988
6989  // ...and the scope, if applicable...
6990  if (S) {
6991    S->RemoveDecl(Shadow);
6992    IdResolver.RemoveDecl(Shadow);
6993  }
6994
6995  // ...and the using decl.
6996  Shadow->getUsingDecl()->removeShadowDecl(Shadow);
6997
6998  // TODO: complain somehow if Shadow was used.  It shouldn't
6999  // be possible for this to happen, because...?
7000}
7001
7002/// Builds a using declaration.
7003///
7004/// \param IsInstantiation - Whether this call arises from an
7005///   instantiation of an unresolved using declaration.  We treat
7006///   the lookup differently for these declarations.
7007NamedDecl *Sema::BuildUsingDeclaration(Scope *S, AccessSpecifier AS,
7008                                       SourceLocation UsingLoc,
7009                                       CXXScopeSpec &SS,
7010                                       const DeclarationNameInfo &NameInfo,
7011                                       AttributeList *AttrList,
7012                                       bool IsInstantiation,
7013                                       bool IsTypeName,
7014                                       SourceLocation TypenameLoc) {
7015  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
7016  SourceLocation IdentLoc = NameInfo.getLoc();
7017  assert(IdentLoc.isValid() && "Invalid TargetName location.");
7018
7019  // FIXME: We ignore attributes for now.
7020
7021  if (SS.isEmpty()) {
7022    Diag(IdentLoc, diag::err_using_requires_qualname);
7023    return 0;
7024  }
7025
7026  // Do the redeclaration lookup in the current scope.
7027  LookupResult Previous(*this, NameInfo, LookupUsingDeclName,
7028                        ForRedeclaration);
7029  Previous.setHideTags(false);
7030  if (S) {
7031    LookupName(Previous, S);
7032
7033    // It is really dumb that we have to do this.
7034    LookupResult::Filter F = Previous.makeFilter();
7035    while (F.hasNext()) {
7036      NamedDecl *D = F.next();
7037      if (!isDeclInScope(D, CurContext, S))
7038        F.erase();
7039    }
7040    F.done();
7041  } else {
7042    assert(IsInstantiation && "no scope in non-instantiation");
7043    assert(CurContext->isRecord() && "scope not record in instantiation");
7044    LookupQualifiedName(Previous, CurContext);
7045  }
7046
7047  // Check for invalid redeclarations.
7048  if (CheckUsingDeclRedeclaration(UsingLoc, IsTypeName, SS, IdentLoc, Previous))
7049    return 0;
7050
7051  // Check for bad qualifiers.
7052  if (CheckUsingDeclQualifier(UsingLoc, SS, IdentLoc))
7053    return 0;
7054
7055  DeclContext *LookupContext = computeDeclContext(SS);
7056  NamedDecl *D;
7057  NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
7058  if (!LookupContext) {
7059    if (IsTypeName) {
7060      // FIXME: not all declaration name kinds are legal here
7061      D = UnresolvedUsingTypenameDecl::Create(Context, CurContext,
7062                                              UsingLoc, TypenameLoc,
7063                                              QualifierLoc,
7064                                              IdentLoc, NameInfo.getName());
7065    } else {
7066      D = UnresolvedUsingValueDecl::Create(Context, CurContext, UsingLoc,
7067                                           QualifierLoc, NameInfo);
7068    }
7069  } else {
7070    D = UsingDecl::Create(Context, CurContext, UsingLoc, QualifierLoc,
7071                          NameInfo, IsTypeName);
7072  }
7073  D->setAccess(AS);
7074  CurContext->addDecl(D);
7075
7076  if (!LookupContext) return D;
7077  UsingDecl *UD = cast<UsingDecl>(D);
7078
7079  if (RequireCompleteDeclContext(SS, LookupContext)) {
7080    UD->setInvalidDecl();
7081    return UD;
7082  }
7083
7084  // The normal rules do not apply to inheriting constructor declarations.
7085  if (NameInfo.getName().getNameKind() == DeclarationName::CXXConstructorName) {
7086    if (CheckInheritingConstructorUsingDecl(UD))
7087      UD->setInvalidDecl();
7088    return UD;
7089  }
7090
7091  // Otherwise, look up the target name.
7092
7093  LookupResult R(*this, NameInfo, LookupOrdinaryName);
7094
7095  // Unlike most lookups, we don't always want to hide tag
7096  // declarations: tag names are visible through the using declaration
7097  // even if hidden by ordinary names, *except* in a dependent context
7098  // where it's important for the sanity of two-phase lookup.
7099  if (!IsInstantiation)
7100    R.setHideTags(false);
7101
7102  // For the purposes of this lookup, we have a base object type
7103  // equal to that of the current context.
7104  if (CurContext->isRecord()) {
7105    R.setBaseObjectType(
7106                   Context.getTypeDeclType(cast<CXXRecordDecl>(CurContext)));
7107  }
7108
7109  LookupQualifiedName(R, LookupContext);
7110
7111  if (R.empty()) {
7112    Diag(IdentLoc, diag::err_no_member)
7113      << NameInfo.getName() << LookupContext << SS.getRange();
7114    UD->setInvalidDecl();
7115    return UD;
7116  }
7117
7118  if (R.isAmbiguous()) {
7119    UD->setInvalidDecl();
7120    return UD;
7121  }
7122
7123  if (IsTypeName) {
7124    // If we asked for a typename and got a non-type decl, error out.
7125    if (!R.getAsSingle<TypeDecl>()) {
7126      Diag(IdentLoc, diag::err_using_typename_non_type);
7127      for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
7128        Diag((*I)->getUnderlyingDecl()->getLocation(),
7129             diag::note_using_decl_target);
7130      UD->setInvalidDecl();
7131      return UD;
7132    }
7133  } else {
7134    // If we asked for a non-typename and we got a type, error out,
7135    // but only if this is an instantiation of an unresolved using
7136    // decl.  Otherwise just silently find the type name.
7137    if (IsInstantiation && R.getAsSingle<TypeDecl>()) {
7138      Diag(IdentLoc, diag::err_using_dependent_value_is_type);
7139      Diag(R.getFoundDecl()->getLocation(), diag::note_using_decl_target);
7140      UD->setInvalidDecl();
7141      return UD;
7142    }
7143  }
7144
7145  // C++0x N2914 [namespace.udecl]p6:
7146  // A using-declaration shall not name a namespace.
7147  if (R.getAsSingle<NamespaceDecl>()) {
7148    Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_namespace)
7149      << SS.getRange();
7150    UD->setInvalidDecl();
7151    return UD;
7152  }
7153
7154  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
7155    if (!CheckUsingShadowDecl(UD, *I, Previous))
7156      BuildUsingShadowDecl(S, UD, *I);
7157  }
7158
7159  return UD;
7160}
7161
7162/// Additional checks for a using declaration referring to a constructor name.
7163bool Sema::CheckInheritingConstructorUsingDecl(UsingDecl *UD) {
7164  assert(!UD->isTypeName() && "expecting a constructor name");
7165
7166  const Type *SourceType = UD->getQualifier()->getAsType();
7167  assert(SourceType &&
7168         "Using decl naming constructor doesn't have type in scope spec.");
7169  CXXRecordDecl *TargetClass = cast<CXXRecordDecl>(CurContext);
7170
7171  // Check whether the named type is a direct base class.
7172  CanQualType CanonicalSourceType = SourceType->getCanonicalTypeUnqualified();
7173  CXXRecordDecl::base_class_iterator BaseIt, BaseE;
7174  for (BaseIt = TargetClass->bases_begin(), BaseE = TargetClass->bases_end();
7175       BaseIt != BaseE; ++BaseIt) {
7176    CanQualType BaseType = BaseIt->getType()->getCanonicalTypeUnqualified();
7177    if (CanonicalSourceType == BaseType)
7178      break;
7179    if (BaseIt->getType()->isDependentType())
7180      break;
7181  }
7182
7183  if (BaseIt == BaseE) {
7184    // Did not find SourceType in the bases.
7185    Diag(UD->getUsingLocation(),
7186         diag::err_using_decl_constructor_not_in_direct_base)
7187      << UD->getNameInfo().getSourceRange()
7188      << QualType(SourceType, 0) << TargetClass;
7189    return true;
7190  }
7191
7192  if (!CurContext->isDependentContext())
7193    BaseIt->setInheritConstructors();
7194
7195  return false;
7196}
7197
7198/// Checks that the given using declaration is not an invalid
7199/// redeclaration.  Note that this is checking only for the using decl
7200/// itself, not for any ill-formedness among the UsingShadowDecls.
7201bool Sema::CheckUsingDeclRedeclaration(SourceLocation UsingLoc,
7202                                       bool isTypeName,
7203                                       const CXXScopeSpec &SS,
7204                                       SourceLocation NameLoc,
7205                                       const LookupResult &Prev) {
7206  // C++03 [namespace.udecl]p8:
7207  // C++0x [namespace.udecl]p10:
7208  //   A using-declaration is a declaration and can therefore be used
7209  //   repeatedly where (and only where) multiple declarations are
7210  //   allowed.
7211  //
7212  // That's in non-member contexts.
7213  if (!CurContext->getRedeclContext()->isRecord())
7214    return false;
7215
7216  NestedNameSpecifier *Qual
7217    = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
7218
7219  for (LookupResult::iterator I = Prev.begin(), E = Prev.end(); I != E; ++I) {
7220    NamedDecl *D = *I;
7221
7222    bool DTypename;
7223    NestedNameSpecifier *DQual;
7224    if (UsingDecl *UD = dyn_cast<UsingDecl>(D)) {
7225      DTypename = UD->isTypeName();
7226      DQual = UD->getQualifier();
7227    } else if (UnresolvedUsingValueDecl *UD
7228                 = dyn_cast<UnresolvedUsingValueDecl>(D)) {
7229      DTypename = false;
7230      DQual = UD->getQualifier();
7231    } else if (UnresolvedUsingTypenameDecl *UD
7232                 = dyn_cast<UnresolvedUsingTypenameDecl>(D)) {
7233      DTypename = true;
7234      DQual = UD->getQualifier();
7235    } else continue;
7236
7237    // using decls differ if one says 'typename' and the other doesn't.
7238    // FIXME: non-dependent using decls?
7239    if (isTypeName != DTypename) continue;
7240
7241    // using decls differ if they name different scopes (but note that
7242    // template instantiation can cause this check to trigger when it
7243    // didn't before instantiation).
7244    if (Context.getCanonicalNestedNameSpecifier(Qual) !=
7245        Context.getCanonicalNestedNameSpecifier(DQual))
7246      continue;
7247
7248    Diag(NameLoc, diag::err_using_decl_redeclaration) << SS.getRange();
7249    Diag(D->getLocation(), diag::note_using_decl) << 1;
7250    return true;
7251  }
7252
7253  return false;
7254}
7255
7256
7257/// Checks that the given nested-name qualifier used in a using decl
7258/// in the current context is appropriately related to the current
7259/// scope.  If an error is found, diagnoses it and returns true.
7260bool Sema::CheckUsingDeclQualifier(SourceLocation UsingLoc,
7261                                   const CXXScopeSpec &SS,
7262                                   SourceLocation NameLoc) {
7263  DeclContext *NamedContext = computeDeclContext(SS);
7264
7265  if (!CurContext->isRecord()) {
7266    // C++03 [namespace.udecl]p3:
7267    // C++0x [namespace.udecl]p8:
7268    //   A using-declaration for a class member shall be a member-declaration.
7269
7270    // If we weren't able to compute a valid scope, it must be a
7271    // dependent class scope.
7272    if (!NamedContext || NamedContext->isRecord()) {
7273      Diag(NameLoc, diag::err_using_decl_can_not_refer_to_class_member)
7274        << SS.getRange();
7275      return true;
7276    }
7277
7278    // Otherwise, everything is known to be fine.
7279    return false;
7280  }
7281
7282  // The current scope is a record.
7283
7284  // If the named context is dependent, we can't decide much.
7285  if (!NamedContext) {
7286    // FIXME: in C++0x, we can diagnose if we can prove that the
7287    // nested-name-specifier does not refer to a base class, which is
7288    // still possible in some cases.
7289
7290    // Otherwise we have to conservatively report that things might be
7291    // okay.
7292    return false;
7293  }
7294
7295  if (!NamedContext->isRecord()) {
7296    // Ideally this would point at the last name in the specifier,
7297    // but we don't have that level of source info.
7298    Diag(SS.getRange().getBegin(),
7299         diag::err_using_decl_nested_name_specifier_is_not_class)
7300      << (NestedNameSpecifier*) SS.getScopeRep() << SS.getRange();
7301    return true;
7302  }
7303
7304  if (!NamedContext->isDependentContext() &&
7305      RequireCompleteDeclContext(const_cast<CXXScopeSpec&>(SS), NamedContext))
7306    return true;
7307
7308  if (getLangOpts().CPlusPlus11) {
7309    // C++0x [namespace.udecl]p3:
7310    //   In a using-declaration used as a member-declaration, the
7311    //   nested-name-specifier shall name a base class of the class
7312    //   being defined.
7313
7314    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(
7315                                 cast<CXXRecordDecl>(NamedContext))) {
7316      if (CurContext == NamedContext) {
7317        Diag(NameLoc,
7318             diag::err_using_decl_nested_name_specifier_is_current_class)
7319          << SS.getRange();
7320        return true;
7321      }
7322
7323      Diag(SS.getRange().getBegin(),
7324           diag::err_using_decl_nested_name_specifier_is_not_base_class)
7325        << (NestedNameSpecifier*) SS.getScopeRep()
7326        << cast<CXXRecordDecl>(CurContext)
7327        << SS.getRange();
7328      return true;
7329    }
7330
7331    return false;
7332  }
7333
7334  // C++03 [namespace.udecl]p4:
7335  //   A using-declaration used as a member-declaration shall refer
7336  //   to a member of a base class of the class being defined [etc.].
7337
7338  // Salient point: SS doesn't have to name a base class as long as
7339  // lookup only finds members from base classes.  Therefore we can
7340  // diagnose here only if we can prove that that can't happen,
7341  // i.e. if the class hierarchies provably don't intersect.
7342
7343  // TODO: it would be nice if "definitely valid" results were cached
7344  // in the UsingDecl and UsingShadowDecl so that these checks didn't
7345  // need to be repeated.
7346
7347  struct UserData {
7348    llvm::SmallPtrSet<const CXXRecordDecl*, 4> Bases;
7349
7350    static bool collect(const CXXRecordDecl *Base, void *OpaqueData) {
7351      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
7352      Data->Bases.insert(Base);
7353      return true;
7354    }
7355
7356    bool hasDependentBases(const CXXRecordDecl *Class) {
7357      return !Class->forallBases(collect, this);
7358    }
7359
7360    /// Returns true if the base is dependent or is one of the
7361    /// accumulated base classes.
7362    static bool doesNotContain(const CXXRecordDecl *Base, void *OpaqueData) {
7363      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
7364      return !Data->Bases.count(Base);
7365    }
7366
7367    bool mightShareBases(const CXXRecordDecl *Class) {
7368      return Bases.count(Class) || !Class->forallBases(doesNotContain, this);
7369    }
7370  };
7371
7372  UserData Data;
7373
7374  // Returns false if we find a dependent base.
7375  if (Data.hasDependentBases(cast<CXXRecordDecl>(CurContext)))
7376    return false;
7377
7378  // Returns false if the class has a dependent base or if it or one
7379  // of its bases is present in the base set of the current context.
7380  if (Data.mightShareBases(cast<CXXRecordDecl>(NamedContext)))
7381    return false;
7382
7383  Diag(SS.getRange().getBegin(),
7384       diag::err_using_decl_nested_name_specifier_is_not_base_class)
7385    << (NestedNameSpecifier*) SS.getScopeRep()
7386    << cast<CXXRecordDecl>(CurContext)
7387    << SS.getRange();
7388
7389  return true;
7390}
7391
7392Decl *Sema::ActOnAliasDeclaration(Scope *S,
7393                                  AccessSpecifier AS,
7394                                  MultiTemplateParamsArg TemplateParamLists,
7395                                  SourceLocation UsingLoc,
7396                                  UnqualifiedId &Name,
7397                                  AttributeList *AttrList,
7398                                  TypeResult Type) {
7399  // Skip up to the relevant declaration scope.
7400  while (S->getFlags() & Scope::TemplateParamScope)
7401    S = S->getParent();
7402  assert((S->getFlags() & Scope::DeclScope) &&
7403         "got alias-declaration outside of declaration scope");
7404
7405  if (Type.isInvalid())
7406    return 0;
7407
7408  bool Invalid = false;
7409  DeclarationNameInfo NameInfo = GetNameFromUnqualifiedId(Name);
7410  TypeSourceInfo *TInfo = 0;
7411  GetTypeFromParser(Type.get(), &TInfo);
7412
7413  if (DiagnoseClassNameShadow(CurContext, NameInfo))
7414    return 0;
7415
7416  if (DiagnoseUnexpandedParameterPack(Name.StartLocation, TInfo,
7417                                      UPPC_DeclarationType)) {
7418    Invalid = true;
7419    TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy,
7420                                             TInfo->getTypeLoc().getBeginLoc());
7421  }
7422
7423  LookupResult Previous(*this, NameInfo, LookupOrdinaryName, ForRedeclaration);
7424  LookupName(Previous, S);
7425
7426  // Warn about shadowing the name of a template parameter.
7427  if (Previous.isSingleResult() &&
7428      Previous.getFoundDecl()->isTemplateParameter()) {
7429    DiagnoseTemplateParameterShadow(Name.StartLocation,Previous.getFoundDecl());
7430    Previous.clear();
7431  }
7432
7433  assert(Name.Kind == UnqualifiedId::IK_Identifier &&
7434         "name in alias declaration must be an identifier");
7435  TypeAliasDecl *NewTD = TypeAliasDecl::Create(Context, CurContext, UsingLoc,
7436                                               Name.StartLocation,
7437                                               Name.Identifier, TInfo);
7438
7439  NewTD->setAccess(AS);
7440
7441  if (Invalid)
7442    NewTD->setInvalidDecl();
7443
7444  ProcessDeclAttributeList(S, NewTD, AttrList);
7445
7446  CheckTypedefForVariablyModifiedType(S, NewTD);
7447  Invalid |= NewTD->isInvalidDecl();
7448
7449  bool Redeclaration = false;
7450
7451  NamedDecl *NewND;
7452  if (TemplateParamLists.size()) {
7453    TypeAliasTemplateDecl *OldDecl = 0;
7454    TemplateParameterList *OldTemplateParams = 0;
7455
7456    if (TemplateParamLists.size() != 1) {
7457      Diag(UsingLoc, diag::err_alias_template_extra_headers)
7458        << SourceRange(TemplateParamLists[1]->getTemplateLoc(),
7459         TemplateParamLists[TemplateParamLists.size()-1]->getRAngleLoc());
7460    }
7461    TemplateParameterList *TemplateParams = TemplateParamLists[0];
7462
7463    // Only consider previous declarations in the same scope.
7464    FilterLookupForScope(Previous, CurContext, S, /*ConsiderLinkage*/false,
7465                         /*ExplicitInstantiationOrSpecialization*/false);
7466    if (!Previous.empty()) {
7467      Redeclaration = true;
7468
7469      OldDecl = Previous.getAsSingle<TypeAliasTemplateDecl>();
7470      if (!OldDecl && !Invalid) {
7471        Diag(UsingLoc, diag::err_redefinition_different_kind)
7472          << Name.Identifier;
7473
7474        NamedDecl *OldD = Previous.getRepresentativeDecl();
7475        if (OldD->getLocation().isValid())
7476          Diag(OldD->getLocation(), diag::note_previous_definition);
7477
7478        Invalid = true;
7479      }
7480
7481      if (!Invalid && OldDecl && !OldDecl->isInvalidDecl()) {
7482        if (TemplateParameterListsAreEqual(TemplateParams,
7483                                           OldDecl->getTemplateParameters(),
7484                                           /*Complain=*/true,
7485                                           TPL_TemplateMatch))
7486          OldTemplateParams = OldDecl->getTemplateParameters();
7487        else
7488          Invalid = true;
7489
7490        TypeAliasDecl *OldTD = OldDecl->getTemplatedDecl();
7491        if (!Invalid &&
7492            !Context.hasSameType(OldTD->getUnderlyingType(),
7493                                 NewTD->getUnderlyingType())) {
7494          // FIXME: The C++0x standard does not clearly say this is ill-formed,
7495          // but we can't reasonably accept it.
7496          Diag(NewTD->getLocation(), diag::err_redefinition_different_typedef)
7497            << 2 << NewTD->getUnderlyingType() << OldTD->getUnderlyingType();
7498          if (OldTD->getLocation().isValid())
7499            Diag(OldTD->getLocation(), diag::note_previous_definition);
7500          Invalid = true;
7501        }
7502      }
7503    }
7504
7505    // Merge any previous default template arguments into our parameters,
7506    // and check the parameter list.
7507    if (CheckTemplateParameterList(TemplateParams, OldTemplateParams,
7508                                   TPC_TypeAliasTemplate))
7509      return 0;
7510
7511    TypeAliasTemplateDecl *NewDecl =
7512      TypeAliasTemplateDecl::Create(Context, CurContext, UsingLoc,
7513                                    Name.Identifier, TemplateParams,
7514                                    NewTD);
7515
7516    NewDecl->setAccess(AS);
7517
7518    if (Invalid)
7519      NewDecl->setInvalidDecl();
7520    else if (OldDecl)
7521      NewDecl->setPreviousDeclaration(OldDecl);
7522
7523    NewND = NewDecl;
7524  } else {
7525    ActOnTypedefNameDecl(S, CurContext, NewTD, Previous, Redeclaration);
7526    NewND = NewTD;
7527  }
7528
7529  if (!Redeclaration)
7530    PushOnScopeChains(NewND, S);
7531
7532  ActOnDocumentableDecl(NewND);
7533  return NewND;
7534}
7535
7536Decl *Sema::ActOnNamespaceAliasDef(Scope *S,
7537                                             SourceLocation NamespaceLoc,
7538                                             SourceLocation AliasLoc,
7539                                             IdentifierInfo *Alias,
7540                                             CXXScopeSpec &SS,
7541                                             SourceLocation IdentLoc,
7542                                             IdentifierInfo *Ident) {
7543
7544  // Lookup the namespace name.
7545  LookupResult R(*this, Ident, IdentLoc, LookupNamespaceName);
7546  LookupParsedName(R, S, &SS);
7547
7548  // Check if we have a previous declaration with the same name.
7549  NamedDecl *PrevDecl
7550    = LookupSingleName(S, Alias, AliasLoc, LookupOrdinaryName,
7551                       ForRedeclaration);
7552  if (PrevDecl && !isDeclInScope(PrevDecl, CurContext, S))
7553    PrevDecl = 0;
7554
7555  if (PrevDecl) {
7556    if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) {
7557      // We already have an alias with the same name that points to the same
7558      // namespace, so don't create a new one.
7559      // FIXME: At some point, we'll want to create the (redundant)
7560      // declaration to maintain better source information.
7561      if (!R.isAmbiguous() && !R.empty() &&
7562          AD->getNamespace()->Equals(getNamespaceDecl(R.getFoundDecl())))
7563        return 0;
7564    }
7565
7566    unsigned DiagID = isa<NamespaceDecl>(PrevDecl) ? diag::err_redefinition :
7567      diag::err_redefinition_different_kind;
7568    Diag(AliasLoc, DiagID) << Alias;
7569    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
7570    return 0;
7571  }
7572
7573  if (R.isAmbiguous())
7574    return 0;
7575
7576  if (R.empty()) {
7577    if (!TryNamespaceTypoCorrection(*this, R, S, SS, IdentLoc, Ident)) {
7578      Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
7579      return 0;
7580    }
7581  }
7582
7583  NamespaceAliasDecl *AliasDecl =
7584    NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc,
7585                               Alias, SS.getWithLocInContext(Context),
7586                               IdentLoc, R.getFoundDecl());
7587
7588  PushOnScopeChains(AliasDecl, S);
7589  return AliasDecl;
7590}
7591
7592Sema::ImplicitExceptionSpecification
7593Sema::ComputeDefaultedDefaultCtorExceptionSpec(SourceLocation Loc,
7594                                               CXXMethodDecl *MD) {
7595  CXXRecordDecl *ClassDecl = MD->getParent();
7596
7597  // C++ [except.spec]p14:
7598  //   An implicitly declared special member function (Clause 12) shall have an
7599  //   exception-specification. [...]
7600  ImplicitExceptionSpecification ExceptSpec(*this);
7601  if (ClassDecl->isInvalidDecl())
7602    return ExceptSpec;
7603
7604  // Direct base-class constructors.
7605  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
7606                                       BEnd = ClassDecl->bases_end();
7607       B != BEnd; ++B) {
7608    if (B->isVirtual()) // Handled below.
7609      continue;
7610
7611    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
7612      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
7613      CXXConstructorDecl *Constructor = LookupDefaultConstructor(BaseClassDecl);
7614      // If this is a deleted function, add it anyway. This might be conformant
7615      // with the standard. This might not. I'm not sure. It might not matter.
7616      if (Constructor)
7617        ExceptSpec.CalledDecl(B->getLocStart(), Constructor);
7618    }
7619  }
7620
7621  // Virtual base-class constructors.
7622  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
7623                                       BEnd = ClassDecl->vbases_end();
7624       B != BEnd; ++B) {
7625    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
7626      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
7627      CXXConstructorDecl *Constructor = LookupDefaultConstructor(BaseClassDecl);
7628      // If this is a deleted function, add it anyway. This might be conformant
7629      // with the standard. This might not. I'm not sure. It might not matter.
7630      if (Constructor)
7631        ExceptSpec.CalledDecl(B->getLocStart(), Constructor);
7632    }
7633  }
7634
7635  // Field constructors.
7636  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
7637                               FEnd = ClassDecl->field_end();
7638       F != FEnd; ++F) {
7639    if (F->hasInClassInitializer()) {
7640      if (Expr *E = F->getInClassInitializer())
7641        ExceptSpec.CalledExpr(E);
7642      else if (!F->isInvalidDecl())
7643        // DR1351:
7644        //   If the brace-or-equal-initializer of a non-static data member
7645        //   invokes a defaulted default constructor of its class or of an
7646        //   enclosing class in a potentially evaluated subexpression, the
7647        //   program is ill-formed.
7648        //
7649        // This resolution is unworkable: the exception specification of the
7650        // default constructor can be needed in an unevaluated context, in
7651        // particular, in the operand of a noexcept-expression, and we can be
7652        // unable to compute an exception specification for an enclosed class.
7653        //
7654        // We do not allow an in-class initializer to require the evaluation
7655        // of the exception specification for any in-class initializer whose
7656        // definition is not lexically complete.
7657        Diag(Loc, diag::err_in_class_initializer_references_def_ctor) << MD;
7658    } else if (const RecordType *RecordTy
7659              = Context.getBaseElementType(F->getType())->getAs<RecordType>()) {
7660      CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
7661      CXXConstructorDecl *Constructor = LookupDefaultConstructor(FieldRecDecl);
7662      // If this is a deleted function, add it anyway. This might be conformant
7663      // with the standard. This might not. I'm not sure. It might not matter.
7664      // In particular, the problem is that this function never gets called. It
7665      // might just be ill-formed because this function attempts to refer to
7666      // a deleted function here.
7667      if (Constructor)
7668        ExceptSpec.CalledDecl(F->getLocation(), Constructor);
7669    }
7670  }
7671
7672  return ExceptSpec;
7673}
7674
7675Sema::ImplicitExceptionSpecification
7676Sema::ComputeInheritingCtorExceptionSpec(CXXConstructorDecl *CD) {
7677  CXXRecordDecl *ClassDecl = CD->getParent();
7678
7679  // C++ [except.spec]p14:
7680  //   An inheriting constructor [...] shall have an exception-specification. [...]
7681  ImplicitExceptionSpecification ExceptSpec(*this);
7682  if (ClassDecl->isInvalidDecl())
7683    return ExceptSpec;
7684
7685  // Inherited constructor.
7686  const CXXConstructorDecl *InheritedCD = CD->getInheritedConstructor();
7687  const CXXRecordDecl *InheritedDecl = InheritedCD->getParent();
7688  // FIXME: Copying or moving the parameters could add extra exceptions to the
7689  // set, as could the default arguments for the inherited constructor. This
7690  // will be addressed when we implement the resolution of core issue 1351.
7691  ExceptSpec.CalledDecl(CD->getLocStart(), InheritedCD);
7692
7693  // Direct base-class constructors.
7694  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
7695                                       BEnd = ClassDecl->bases_end();
7696       B != BEnd; ++B) {
7697    if (B->isVirtual()) // Handled below.
7698      continue;
7699
7700    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
7701      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
7702      if (BaseClassDecl == InheritedDecl)
7703        continue;
7704      CXXConstructorDecl *Constructor = LookupDefaultConstructor(BaseClassDecl);
7705      if (Constructor)
7706        ExceptSpec.CalledDecl(B->getLocStart(), Constructor);
7707    }
7708  }
7709
7710  // Virtual base-class constructors.
7711  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
7712                                       BEnd = ClassDecl->vbases_end();
7713       B != BEnd; ++B) {
7714    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
7715      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
7716      if (BaseClassDecl == InheritedDecl)
7717        continue;
7718      CXXConstructorDecl *Constructor = LookupDefaultConstructor(BaseClassDecl);
7719      if (Constructor)
7720        ExceptSpec.CalledDecl(B->getLocStart(), Constructor);
7721    }
7722  }
7723
7724  // Field constructors.
7725  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
7726                               FEnd = ClassDecl->field_end();
7727       F != FEnd; ++F) {
7728    if (F->hasInClassInitializer()) {
7729      if (Expr *E = F->getInClassInitializer())
7730        ExceptSpec.CalledExpr(E);
7731      else if (!F->isInvalidDecl())
7732        Diag(CD->getLocation(),
7733             diag::err_in_class_initializer_references_def_ctor) << CD;
7734    } else if (const RecordType *RecordTy
7735              = Context.getBaseElementType(F->getType())->getAs<RecordType>()) {
7736      CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
7737      CXXConstructorDecl *Constructor = LookupDefaultConstructor(FieldRecDecl);
7738      if (Constructor)
7739        ExceptSpec.CalledDecl(F->getLocation(), Constructor);
7740    }
7741  }
7742
7743  return ExceptSpec;
7744}
7745
7746namespace {
7747/// RAII object to register a special member as being currently declared.
7748struct DeclaringSpecialMember {
7749  Sema &S;
7750  Sema::SpecialMemberDecl D;
7751  bool WasAlreadyBeingDeclared;
7752
7753  DeclaringSpecialMember(Sema &S, CXXRecordDecl *RD, Sema::CXXSpecialMember CSM)
7754    : S(S), D(RD, CSM) {
7755    WasAlreadyBeingDeclared = !S.SpecialMembersBeingDeclared.insert(D);
7756    if (WasAlreadyBeingDeclared)
7757      // This almost never happens, but if it does, ensure that our cache
7758      // doesn't contain a stale result.
7759      S.SpecialMemberCache.clear();
7760
7761    // FIXME: Register a note to be produced if we encounter an error while
7762    // declaring the special member.
7763  }
7764  ~DeclaringSpecialMember() {
7765    if (!WasAlreadyBeingDeclared)
7766      S.SpecialMembersBeingDeclared.erase(D);
7767  }
7768
7769  /// \brief Are we already trying to declare this special member?
7770  bool isAlreadyBeingDeclared() const {
7771    return WasAlreadyBeingDeclared;
7772  }
7773};
7774}
7775
7776CXXConstructorDecl *Sema::DeclareImplicitDefaultConstructor(
7777                                                     CXXRecordDecl *ClassDecl) {
7778  // C++ [class.ctor]p5:
7779  //   A default constructor for a class X is a constructor of class X
7780  //   that can be called without an argument. If there is no
7781  //   user-declared constructor for class X, a default constructor is
7782  //   implicitly declared. An implicitly-declared default constructor
7783  //   is an inline public member of its class.
7784  assert(ClassDecl->needsImplicitDefaultConstructor() &&
7785         "Should not build implicit default constructor!");
7786
7787  DeclaringSpecialMember DSM(*this, ClassDecl, CXXDefaultConstructor);
7788  if (DSM.isAlreadyBeingDeclared())
7789    return 0;
7790
7791  bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl,
7792                                                     CXXDefaultConstructor,
7793                                                     false);
7794
7795  // Create the actual constructor declaration.
7796  CanQualType ClassType
7797    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
7798  SourceLocation ClassLoc = ClassDecl->getLocation();
7799  DeclarationName Name
7800    = Context.DeclarationNames.getCXXConstructorName(ClassType);
7801  DeclarationNameInfo NameInfo(Name, ClassLoc);
7802  CXXConstructorDecl *DefaultCon = CXXConstructorDecl::Create(
7803      Context, ClassDecl, ClassLoc, NameInfo, /*Type*/QualType(), /*TInfo=*/0,
7804      /*isExplicit=*/false, /*isInline=*/true, /*isImplicitlyDeclared=*/true,
7805      Constexpr);
7806  DefaultCon->setAccess(AS_public);
7807  DefaultCon->setDefaulted();
7808  DefaultCon->setImplicit();
7809
7810  // Build an exception specification pointing back at this constructor.
7811  FunctionProtoType::ExtProtoInfo EPI;
7812  EPI.ExceptionSpecType = EST_Unevaluated;
7813  EPI.ExceptionSpecDecl = DefaultCon;
7814  DefaultCon->setType(Context.getFunctionType(Context.VoidTy,
7815                                              ArrayRef<QualType>(),
7816                                              EPI));
7817
7818  // We don't need to use SpecialMemberIsTrivial here; triviality for default
7819  // constructors is easy to compute.
7820  DefaultCon->setTrivial(ClassDecl->hasTrivialDefaultConstructor());
7821
7822  if (ShouldDeleteSpecialMember(DefaultCon, CXXDefaultConstructor))
7823    SetDeclDeleted(DefaultCon, ClassLoc);
7824
7825  // Note that we have declared this constructor.
7826  ++ASTContext::NumImplicitDefaultConstructorsDeclared;
7827
7828  if (Scope *S = getScopeForContext(ClassDecl))
7829    PushOnScopeChains(DefaultCon, S, false);
7830  ClassDecl->addDecl(DefaultCon);
7831
7832  return DefaultCon;
7833}
7834
7835void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,
7836                                            CXXConstructorDecl *Constructor) {
7837  assert((Constructor->isDefaulted() && Constructor->isDefaultConstructor() &&
7838          !Constructor->doesThisDeclarationHaveABody() &&
7839          !Constructor->isDeleted()) &&
7840    "DefineImplicitDefaultConstructor - call it for implicit default ctor");
7841
7842  CXXRecordDecl *ClassDecl = Constructor->getParent();
7843  assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor");
7844
7845  SynthesizedFunctionScope Scope(*this, Constructor);
7846  DiagnosticErrorTrap Trap(Diags);
7847  if (SetCtorInitializers(Constructor, /*AnyErrors=*/false) ||
7848      Trap.hasErrorOccurred()) {
7849    Diag(CurrentLocation, diag::note_member_synthesized_at)
7850      << CXXDefaultConstructor << Context.getTagDeclType(ClassDecl);
7851    Constructor->setInvalidDecl();
7852    return;
7853  }
7854
7855  SourceLocation Loc = Constructor->getLocation();
7856  Constructor->setBody(new (Context) CompoundStmt(Loc));
7857
7858  Constructor->setUsed();
7859  MarkVTableUsed(CurrentLocation, ClassDecl);
7860
7861  if (ASTMutationListener *L = getASTMutationListener()) {
7862    L->CompletedImplicitDefinition(Constructor);
7863  }
7864}
7865
7866void Sema::ActOnFinishDelayedMemberInitializers(Decl *D) {
7867  // Check that any explicitly-defaulted methods have exception specifications
7868  // compatible with their implicit exception specifications.
7869  CheckDelayedExplicitlyDefaultedMemberExceptionSpecs();
7870}
7871
7872namespace {
7873/// Information on inheriting constructors to declare.
7874class InheritingConstructorInfo {
7875public:
7876  InheritingConstructorInfo(Sema &SemaRef, CXXRecordDecl *Derived)
7877      : SemaRef(SemaRef), Derived(Derived) {
7878    // Mark the constructors that we already have in the derived class.
7879    //
7880    // C++11 [class.inhctor]p3: [...] a constructor is implicitly declared [...]
7881    //   unless there is a user-declared constructor with the same signature in
7882    //   the class where the using-declaration appears.
7883    visitAll(Derived, &InheritingConstructorInfo::noteDeclaredInDerived);
7884  }
7885
7886  void inheritAll(CXXRecordDecl *RD) {
7887    visitAll(RD, &InheritingConstructorInfo::inherit);
7888  }
7889
7890private:
7891  /// Information about an inheriting constructor.
7892  struct InheritingConstructor {
7893    InheritingConstructor()
7894      : DeclaredInDerived(false), BaseCtor(0), DerivedCtor(0) {}
7895
7896    /// If \c true, a constructor with this signature is already declared
7897    /// in the derived class.
7898    bool DeclaredInDerived;
7899
7900    /// The constructor which is inherited.
7901    const CXXConstructorDecl *BaseCtor;
7902
7903    /// The derived constructor we declared.
7904    CXXConstructorDecl *DerivedCtor;
7905  };
7906
7907  /// Inheriting constructors with a given canonical type. There can be at
7908  /// most one such non-template constructor, and any number of templated
7909  /// constructors.
7910  struct InheritingConstructorsForType {
7911    InheritingConstructor NonTemplate;
7912    llvm::SmallVector<
7913      std::pair<TemplateParameterList*, InheritingConstructor>, 4> Templates;
7914
7915    InheritingConstructor &getEntry(Sema &S, const CXXConstructorDecl *Ctor) {
7916      if (FunctionTemplateDecl *FTD = Ctor->getDescribedFunctionTemplate()) {
7917        TemplateParameterList *ParamList = FTD->getTemplateParameters();
7918        for (unsigned I = 0, N = Templates.size(); I != N; ++I)
7919          if (S.TemplateParameterListsAreEqual(ParamList, Templates[I].first,
7920                                               false, S.TPL_TemplateMatch))
7921            return Templates[I].second;
7922        Templates.push_back(std::make_pair(ParamList, InheritingConstructor()));
7923        return Templates.back().second;
7924      }
7925
7926      return NonTemplate;
7927    }
7928  };
7929
7930  /// Get or create the inheriting constructor record for a constructor.
7931  InheritingConstructor &getEntry(const CXXConstructorDecl *Ctor,
7932                                  QualType CtorType) {
7933    return Map[CtorType.getCanonicalType()->castAs<FunctionProtoType>()]
7934        .getEntry(SemaRef, Ctor);
7935  }
7936
7937  typedef void (InheritingConstructorInfo::*VisitFn)(const CXXConstructorDecl*);
7938
7939  /// Process all constructors for a class.
7940  void visitAll(const CXXRecordDecl *RD, VisitFn Callback) {
7941    for (CXXRecordDecl::ctor_iterator CtorIt = RD->ctor_begin(),
7942                                      CtorE = RD->ctor_end();
7943         CtorIt != CtorE; ++CtorIt)
7944      (this->*Callback)(*CtorIt);
7945    for (CXXRecordDecl::specific_decl_iterator<FunctionTemplateDecl>
7946             I(RD->decls_begin()), E(RD->decls_end());
7947         I != E; ++I) {
7948      const FunctionDecl *FD = (*I)->getTemplatedDecl();
7949      if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD))
7950        (this->*Callback)(CD);
7951    }
7952  }
7953
7954  /// Note that a constructor (or constructor template) was declared in Derived.
7955  void noteDeclaredInDerived(const CXXConstructorDecl *Ctor) {
7956    getEntry(Ctor, Ctor->getType()).DeclaredInDerived = true;
7957  }
7958
7959  /// Inherit a single constructor.
7960  void inherit(const CXXConstructorDecl *Ctor) {
7961    const FunctionProtoType *CtorType =
7962        Ctor->getType()->castAs<FunctionProtoType>();
7963    ArrayRef<QualType> ArgTypes(CtorType->getArgTypes());
7964    FunctionProtoType::ExtProtoInfo EPI = CtorType->getExtProtoInfo();
7965
7966    SourceLocation UsingLoc = getUsingLoc(Ctor->getParent());
7967
7968    // Core issue (no number yet): the ellipsis is always discarded.
7969    if (EPI.Variadic) {
7970      SemaRef.Diag(UsingLoc, diag::warn_using_decl_constructor_ellipsis);
7971      SemaRef.Diag(Ctor->getLocation(),
7972                   diag::note_using_decl_constructor_ellipsis);
7973      EPI.Variadic = false;
7974    }
7975
7976    // Declare a constructor for each number of parameters.
7977    //
7978    // C++11 [class.inhctor]p1:
7979    //   The candidate set of inherited constructors from the class X named in
7980    //   the using-declaration consists of [... modulo defects ...] for each
7981    //   constructor or constructor template of X, the set of constructors or
7982    //   constructor templates that results from omitting any ellipsis parameter
7983    //   specification and successively omitting parameters with a default
7984    //   argument from the end of the parameter-type-list
7985    unsigned MinParams = minParamsToInherit(Ctor);
7986    unsigned Params = Ctor->getNumParams();
7987    if (Params >= MinParams) {
7988      do
7989        declareCtor(UsingLoc, Ctor,
7990                    SemaRef.Context.getFunctionType(
7991                        Ctor->getResultType(), ArgTypes.slice(0, Params), EPI));
7992      while (Params > MinParams &&
7993             Ctor->getParamDecl(--Params)->hasDefaultArg());
7994    }
7995  }
7996
7997  /// Find the using-declaration which specified that we should inherit the
7998  /// constructors of \p Base.
7999  SourceLocation getUsingLoc(const CXXRecordDecl *Base) {
8000    // No fancy lookup required; just look for the base constructor name
8001    // directly within the derived class.
8002    ASTContext &Context = SemaRef.Context;
8003    DeclarationName Name = Context.DeclarationNames.getCXXConstructorName(
8004        Context.getCanonicalType(Context.getRecordType(Base)));
8005    DeclContext::lookup_const_result Decls = Derived->lookup(Name);
8006    return Decls.empty() ? Derived->getLocation() : Decls[0]->getLocation();
8007  }
8008
8009  unsigned minParamsToInherit(const CXXConstructorDecl *Ctor) {
8010    // C++11 [class.inhctor]p3:
8011    //   [F]or each constructor template in the candidate set of inherited
8012    //   constructors, a constructor template is implicitly declared
8013    if (Ctor->getDescribedFunctionTemplate())
8014      return 0;
8015
8016    //   For each non-template constructor in the candidate set of inherited
8017    //   constructors other than a constructor having no parameters or a
8018    //   copy/move constructor having a single parameter, a constructor is
8019    //   implicitly declared [...]
8020    if (Ctor->getNumParams() == 0)
8021      return 1;
8022    if (Ctor->isCopyOrMoveConstructor())
8023      return 2;
8024
8025    // Per discussion on core reflector, never inherit a constructor which
8026    // would become a default, copy, or move constructor of Derived either.
8027    const ParmVarDecl *PD = Ctor->getParamDecl(0);
8028    const ReferenceType *RT = PD->getType()->getAs<ReferenceType>();
8029    return (RT && RT->getPointeeCXXRecordDecl() == Derived) ? 2 : 1;
8030  }
8031
8032  /// Declare a single inheriting constructor, inheriting the specified
8033  /// constructor, with the given type.
8034  void declareCtor(SourceLocation UsingLoc, const CXXConstructorDecl *BaseCtor,
8035                   QualType DerivedType) {
8036    InheritingConstructor &Entry = getEntry(BaseCtor, DerivedType);
8037
8038    // C++11 [class.inhctor]p3:
8039    //   ... a constructor is implicitly declared with the same constructor
8040    //   characteristics unless there is a user-declared constructor with
8041    //   the same signature in the class where the using-declaration appears
8042    if (Entry.DeclaredInDerived)
8043      return;
8044
8045    // C++11 [class.inhctor]p7:
8046    //   If two using-declarations declare inheriting constructors with the
8047    //   same signature, the program is ill-formed
8048    if (Entry.DerivedCtor) {
8049      if (BaseCtor->getParent() != Entry.BaseCtor->getParent()) {
8050        // Only diagnose this once per constructor.
8051        if (Entry.DerivedCtor->isInvalidDecl())
8052          return;
8053        Entry.DerivedCtor->setInvalidDecl();
8054
8055        SemaRef.Diag(UsingLoc, diag::err_using_decl_constructor_conflict);
8056        SemaRef.Diag(BaseCtor->getLocation(),
8057                     diag::note_using_decl_constructor_conflict_current_ctor);
8058        SemaRef.Diag(Entry.BaseCtor->getLocation(),
8059                     diag::note_using_decl_constructor_conflict_previous_ctor);
8060        SemaRef.Diag(Entry.DerivedCtor->getLocation(),
8061                     diag::note_using_decl_constructor_conflict_previous_using);
8062      } else {
8063        // Core issue (no number): if the same inheriting constructor is
8064        // produced by multiple base class constructors from the same base
8065        // class, the inheriting constructor is defined as deleted.
8066        SemaRef.SetDeclDeleted(Entry.DerivedCtor, UsingLoc);
8067      }
8068
8069      return;
8070    }
8071
8072    ASTContext &Context = SemaRef.Context;
8073    DeclarationName Name = Context.DeclarationNames.getCXXConstructorName(
8074        Context.getCanonicalType(Context.getRecordType(Derived)));
8075    DeclarationNameInfo NameInfo(Name, UsingLoc);
8076
8077    TemplateParameterList *TemplateParams = 0;
8078    if (const FunctionTemplateDecl *FTD =
8079            BaseCtor->getDescribedFunctionTemplate()) {
8080      TemplateParams = FTD->getTemplateParameters();
8081      // We're reusing template parameters from a different DeclContext. This
8082      // is questionable at best, but works out because the template depth in
8083      // both places is guaranteed to be 0.
8084      // FIXME: Rebuild the template parameters in the new context, and
8085      // transform the function type to refer to them.
8086    }
8087
8088    // Build type source info pointing at the using-declaration. This is
8089    // required by template instantiation.
8090    TypeSourceInfo *TInfo =
8091        Context.getTrivialTypeSourceInfo(DerivedType, UsingLoc);
8092    FunctionProtoTypeLoc ProtoLoc =
8093        TInfo->getTypeLoc().IgnoreParens().castAs<FunctionProtoTypeLoc>();
8094
8095    CXXConstructorDecl *DerivedCtor = CXXConstructorDecl::Create(
8096        Context, Derived, UsingLoc, NameInfo, DerivedType,
8097        TInfo, BaseCtor->isExplicit(), /*Inline=*/true,
8098        /*ImplicitlyDeclared=*/true, /*Constexpr=*/BaseCtor->isConstexpr());
8099
8100    // Build an unevaluated exception specification for this constructor.
8101    const FunctionProtoType *FPT = DerivedType->castAs<FunctionProtoType>();
8102    FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
8103    EPI.ExceptionSpecType = EST_Unevaluated;
8104    EPI.ExceptionSpecDecl = DerivedCtor;
8105    DerivedCtor->setType(Context.getFunctionType(FPT->getResultType(),
8106                                                 FPT->getArgTypes(), EPI));
8107
8108    // Build the parameter declarations.
8109    SmallVector<ParmVarDecl *, 16> ParamDecls;
8110    for (unsigned I = 0, N = FPT->getNumArgs(); I != N; ++I) {
8111      TypeSourceInfo *TInfo =
8112          Context.getTrivialTypeSourceInfo(FPT->getArgType(I), UsingLoc);
8113      ParmVarDecl *PD = ParmVarDecl::Create(
8114          Context, DerivedCtor, UsingLoc, UsingLoc, /*IdentifierInfo=*/0,
8115          FPT->getArgType(I), TInfo, SC_None, /*DefaultArg=*/0);
8116      PD->setScopeInfo(0, I);
8117      PD->setImplicit();
8118      ParamDecls.push_back(PD);
8119      ProtoLoc.setArg(I, PD);
8120    }
8121
8122    // Set up the new constructor.
8123    DerivedCtor->setAccess(BaseCtor->getAccess());
8124    DerivedCtor->setParams(ParamDecls);
8125    DerivedCtor->setInheritedConstructor(BaseCtor);
8126    if (BaseCtor->isDeleted())
8127      SemaRef.SetDeclDeleted(DerivedCtor, UsingLoc);
8128
8129    // If this is a constructor template, build the template declaration.
8130    if (TemplateParams) {
8131      FunctionTemplateDecl *DerivedTemplate =
8132          FunctionTemplateDecl::Create(SemaRef.Context, Derived, UsingLoc, Name,
8133                                       TemplateParams, DerivedCtor);
8134      DerivedTemplate->setAccess(BaseCtor->getAccess());
8135      DerivedCtor->setDescribedFunctionTemplate(DerivedTemplate);
8136      Derived->addDecl(DerivedTemplate);
8137    } else {
8138      Derived->addDecl(DerivedCtor);
8139    }
8140
8141    Entry.BaseCtor = BaseCtor;
8142    Entry.DerivedCtor = DerivedCtor;
8143  }
8144
8145  Sema &SemaRef;
8146  CXXRecordDecl *Derived;
8147  typedef llvm::DenseMap<const Type *, InheritingConstructorsForType> MapType;
8148  MapType Map;
8149};
8150}
8151
8152void Sema::DeclareInheritingConstructors(CXXRecordDecl *ClassDecl) {
8153  // Defer declaring the inheriting constructors until the class is
8154  // instantiated.
8155  if (ClassDecl->isDependentContext())
8156    return;
8157
8158  // Find base classes from which we might inherit constructors.
8159  SmallVector<CXXRecordDecl*, 4> InheritedBases;
8160  for (CXXRecordDecl::base_class_iterator BaseIt = ClassDecl->bases_begin(),
8161                                          BaseE = ClassDecl->bases_end();
8162       BaseIt != BaseE; ++BaseIt)
8163    if (BaseIt->getInheritConstructors())
8164      InheritedBases.push_back(BaseIt->getType()->getAsCXXRecordDecl());
8165
8166  // Go no further if we're not inheriting any constructors.
8167  if (InheritedBases.empty())
8168    return;
8169
8170  // Declare the inherited constructors.
8171  InheritingConstructorInfo ICI(*this, ClassDecl);
8172  for (unsigned I = 0, N = InheritedBases.size(); I != N; ++I)
8173    ICI.inheritAll(InheritedBases[I]);
8174}
8175
8176void Sema::DefineInheritingConstructor(SourceLocation CurrentLocation,
8177                                       CXXConstructorDecl *Constructor) {
8178  CXXRecordDecl *ClassDecl = Constructor->getParent();
8179  assert(Constructor->getInheritedConstructor() &&
8180         !Constructor->doesThisDeclarationHaveABody() &&
8181         !Constructor->isDeleted());
8182
8183  SynthesizedFunctionScope Scope(*this, Constructor);
8184  DiagnosticErrorTrap Trap(Diags);
8185  if (SetCtorInitializers(Constructor, /*AnyErrors=*/false) ||
8186      Trap.hasErrorOccurred()) {
8187    Diag(CurrentLocation, diag::note_inhctor_synthesized_at)
8188      << Context.getTagDeclType(ClassDecl);
8189    Constructor->setInvalidDecl();
8190    return;
8191  }
8192
8193  SourceLocation Loc = Constructor->getLocation();
8194  Constructor->setBody(new (Context) CompoundStmt(Loc));
8195
8196  Constructor->setUsed();
8197  MarkVTableUsed(CurrentLocation, ClassDecl);
8198
8199  if (ASTMutationListener *L = getASTMutationListener()) {
8200    L->CompletedImplicitDefinition(Constructor);
8201  }
8202}
8203
8204
8205Sema::ImplicitExceptionSpecification
8206Sema::ComputeDefaultedDtorExceptionSpec(CXXMethodDecl *MD) {
8207  CXXRecordDecl *ClassDecl = MD->getParent();
8208
8209  // C++ [except.spec]p14:
8210  //   An implicitly declared special member function (Clause 12) shall have
8211  //   an exception-specification.
8212  ImplicitExceptionSpecification ExceptSpec(*this);
8213  if (ClassDecl->isInvalidDecl())
8214    return ExceptSpec;
8215
8216  // Direct base-class destructors.
8217  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
8218                                       BEnd = ClassDecl->bases_end();
8219       B != BEnd; ++B) {
8220    if (B->isVirtual()) // Handled below.
8221      continue;
8222
8223    if (const RecordType *BaseType = B->getType()->getAs<RecordType>())
8224      ExceptSpec.CalledDecl(B->getLocStart(),
8225                   LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
8226  }
8227
8228  // Virtual base-class destructors.
8229  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
8230                                       BEnd = ClassDecl->vbases_end();
8231       B != BEnd; ++B) {
8232    if (const RecordType *BaseType = B->getType()->getAs<RecordType>())
8233      ExceptSpec.CalledDecl(B->getLocStart(),
8234                  LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
8235  }
8236
8237  // Field destructors.
8238  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
8239                               FEnd = ClassDecl->field_end();
8240       F != FEnd; ++F) {
8241    if (const RecordType *RecordTy
8242        = Context.getBaseElementType(F->getType())->getAs<RecordType>())
8243      ExceptSpec.CalledDecl(F->getLocation(),
8244                  LookupDestructor(cast<CXXRecordDecl>(RecordTy->getDecl())));
8245  }
8246
8247  return ExceptSpec;
8248}
8249
8250CXXDestructorDecl *Sema::DeclareImplicitDestructor(CXXRecordDecl *ClassDecl) {
8251  // C++ [class.dtor]p2:
8252  //   If a class has no user-declared destructor, a destructor is
8253  //   declared implicitly. An implicitly-declared destructor is an
8254  //   inline public member of its class.
8255  assert(ClassDecl->needsImplicitDestructor());
8256
8257  DeclaringSpecialMember DSM(*this, ClassDecl, CXXDestructor);
8258  if (DSM.isAlreadyBeingDeclared())
8259    return 0;
8260
8261  // Create the actual destructor declaration.
8262  CanQualType ClassType
8263    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
8264  SourceLocation ClassLoc = ClassDecl->getLocation();
8265  DeclarationName Name
8266    = Context.DeclarationNames.getCXXDestructorName(ClassType);
8267  DeclarationNameInfo NameInfo(Name, ClassLoc);
8268  CXXDestructorDecl *Destructor
8269      = CXXDestructorDecl::Create(Context, ClassDecl, ClassLoc, NameInfo,
8270                                  QualType(), 0, /*isInline=*/true,
8271                                  /*isImplicitlyDeclared=*/true);
8272  Destructor->setAccess(AS_public);
8273  Destructor->setDefaulted();
8274  Destructor->setImplicit();
8275
8276  // Build an exception specification pointing back at this destructor.
8277  FunctionProtoType::ExtProtoInfo EPI;
8278  EPI.ExceptionSpecType = EST_Unevaluated;
8279  EPI.ExceptionSpecDecl = Destructor;
8280  Destructor->setType(Context.getFunctionType(Context.VoidTy,
8281                                              ArrayRef<QualType>(),
8282                                              EPI));
8283
8284  AddOverriddenMethods(ClassDecl, Destructor);
8285
8286  // We don't need to use SpecialMemberIsTrivial here; triviality for
8287  // destructors is easy to compute.
8288  Destructor->setTrivial(ClassDecl->hasTrivialDestructor());
8289
8290  if (ShouldDeleteSpecialMember(Destructor, CXXDestructor))
8291    SetDeclDeleted(Destructor, ClassLoc);
8292
8293  // Note that we have declared this destructor.
8294  ++ASTContext::NumImplicitDestructorsDeclared;
8295
8296  // Introduce this destructor into its scope.
8297  if (Scope *S = getScopeForContext(ClassDecl))
8298    PushOnScopeChains(Destructor, S, false);
8299  ClassDecl->addDecl(Destructor);
8300
8301  return Destructor;
8302}
8303
8304void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation,
8305                                    CXXDestructorDecl *Destructor) {
8306  assert((Destructor->isDefaulted() &&
8307          !Destructor->doesThisDeclarationHaveABody() &&
8308          !Destructor->isDeleted()) &&
8309         "DefineImplicitDestructor - call it for implicit default dtor");
8310  CXXRecordDecl *ClassDecl = Destructor->getParent();
8311  assert(ClassDecl && "DefineImplicitDestructor - invalid destructor");
8312
8313  if (Destructor->isInvalidDecl())
8314    return;
8315
8316  SynthesizedFunctionScope Scope(*this, Destructor);
8317
8318  DiagnosticErrorTrap Trap(Diags);
8319  MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
8320                                         Destructor->getParent());
8321
8322  if (CheckDestructor(Destructor) || Trap.hasErrorOccurred()) {
8323    Diag(CurrentLocation, diag::note_member_synthesized_at)
8324      << CXXDestructor << Context.getTagDeclType(ClassDecl);
8325
8326    Destructor->setInvalidDecl();
8327    return;
8328  }
8329
8330  SourceLocation Loc = Destructor->getLocation();
8331  Destructor->setBody(new (Context) CompoundStmt(Loc));
8332  Destructor->setImplicitlyDefined(true);
8333  Destructor->setUsed();
8334  MarkVTableUsed(CurrentLocation, ClassDecl);
8335
8336  if (ASTMutationListener *L = getASTMutationListener()) {
8337    L->CompletedImplicitDefinition(Destructor);
8338  }
8339}
8340
8341/// \brief Perform any semantic analysis which needs to be delayed until all
8342/// pending class member declarations have been parsed.
8343void Sema::ActOnFinishCXXMemberDecls() {
8344  // If the context is an invalid C++ class, just suppress these checks.
8345  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(CurContext)) {
8346    if (Record->isInvalidDecl()) {
8347      DelayedDestructorExceptionSpecChecks.clear();
8348      return;
8349    }
8350  }
8351
8352  // Perform any deferred checking of exception specifications for virtual
8353  // destructors.
8354  for (unsigned i = 0, e = DelayedDestructorExceptionSpecChecks.size();
8355       i != e; ++i) {
8356    const CXXDestructorDecl *Dtor =
8357        DelayedDestructorExceptionSpecChecks[i].first;
8358    assert(!Dtor->getParent()->isDependentType() &&
8359           "Should not ever add destructors of templates into the list.");
8360    CheckOverridingFunctionExceptionSpec(Dtor,
8361        DelayedDestructorExceptionSpecChecks[i].second);
8362  }
8363  DelayedDestructorExceptionSpecChecks.clear();
8364}
8365
8366void Sema::AdjustDestructorExceptionSpec(CXXRecordDecl *ClassDecl,
8367                                         CXXDestructorDecl *Destructor) {
8368  assert(getLangOpts().CPlusPlus11 &&
8369         "adjusting dtor exception specs was introduced in c++11");
8370
8371  // C++11 [class.dtor]p3:
8372  //   A declaration of a destructor that does not have an exception-
8373  //   specification is implicitly considered to have the same exception-
8374  //   specification as an implicit declaration.
8375  const FunctionProtoType *DtorType = Destructor->getType()->
8376                                        getAs<FunctionProtoType>();
8377  if (DtorType->hasExceptionSpec())
8378    return;
8379
8380  // Replace the destructor's type, building off the existing one. Fortunately,
8381  // the only thing of interest in the destructor type is its extended info.
8382  // The return and arguments are fixed.
8383  FunctionProtoType::ExtProtoInfo EPI = DtorType->getExtProtoInfo();
8384  EPI.ExceptionSpecType = EST_Unevaluated;
8385  EPI.ExceptionSpecDecl = Destructor;
8386  Destructor->setType(Context.getFunctionType(Context.VoidTy,
8387                                              ArrayRef<QualType>(),
8388                                              EPI));
8389
8390  // FIXME: If the destructor has a body that could throw, and the newly created
8391  // spec doesn't allow exceptions, we should emit a warning, because this
8392  // change in behavior can break conforming C++03 programs at runtime.
8393  // However, we don't have a body or an exception specification yet, so it
8394  // needs to be done somewhere else.
8395}
8396
8397/// When generating a defaulted copy or move assignment operator, if a field
8398/// should be copied with __builtin_memcpy rather than via explicit assignments,
8399/// do so. This optimization only applies for arrays of scalars, and for arrays
8400/// of class type where the selected copy/move-assignment operator is trivial.
8401static StmtResult
8402buildMemcpyForAssignmentOp(Sema &S, SourceLocation Loc, QualType T,
8403                           Expr *To, Expr *From) {
8404  // Compute the size of the memory buffer to be copied.
8405  QualType SizeType = S.Context.getSizeType();
8406  llvm::APInt Size(S.Context.getTypeSize(SizeType),
8407                   S.Context.getTypeSizeInChars(T).getQuantity());
8408
8409  // Take the address of the field references for "from" and "to". We
8410  // directly construct UnaryOperators here because semantic analysis
8411  // does not permit us to take the address of an xvalue.
8412  From = new (S.Context) UnaryOperator(From, UO_AddrOf,
8413                         S.Context.getPointerType(From->getType()),
8414                         VK_RValue, OK_Ordinary, Loc);
8415  To = new (S.Context) UnaryOperator(To, UO_AddrOf,
8416                       S.Context.getPointerType(To->getType()),
8417                       VK_RValue, OK_Ordinary, Loc);
8418
8419  const Type *E = T->getBaseElementTypeUnsafe();
8420  bool NeedsCollectableMemCpy =
8421    E->isRecordType() && E->getAs<RecordType>()->getDecl()->hasObjectMember();
8422
8423  // Create a reference to the __builtin_objc_memmove_collectable function
8424  StringRef MemCpyName = NeedsCollectableMemCpy ?
8425    "__builtin_objc_memmove_collectable" :
8426    "__builtin_memcpy";
8427  LookupResult R(S, &S.Context.Idents.get(MemCpyName), Loc,
8428                 Sema::LookupOrdinaryName);
8429  S.LookupName(R, S.TUScope, true);
8430
8431  FunctionDecl *MemCpy = R.getAsSingle<FunctionDecl>();
8432  if (!MemCpy)
8433    // Something went horribly wrong earlier, and we will have complained
8434    // about it.
8435    return StmtError();
8436
8437  ExprResult MemCpyRef = S.BuildDeclRefExpr(MemCpy, S.Context.BuiltinFnTy,
8438                                            VK_RValue, Loc, 0);
8439  assert(MemCpyRef.isUsable() && "Builtin reference cannot fail");
8440
8441  Expr *CallArgs[] = {
8442    To, From, IntegerLiteral::Create(S.Context, Size, SizeType, Loc)
8443  };
8444  ExprResult Call = S.ActOnCallExpr(/*Scope=*/0, MemCpyRef.take(),
8445                                    Loc, CallArgs, Loc);
8446
8447  assert(!Call.isInvalid() && "Call to __builtin_memcpy cannot fail!");
8448  return S.Owned(Call.takeAs<Stmt>());
8449}
8450
8451/// \brief Builds a statement that copies/moves the given entity from \p From to
8452/// \c To.
8453///
8454/// This routine is used to copy/move the members of a class with an
8455/// implicitly-declared copy/move assignment operator. When the entities being
8456/// copied are arrays, this routine builds for loops to copy them.
8457///
8458/// \param S The Sema object used for type-checking.
8459///
8460/// \param Loc The location where the implicit copy/move is being generated.
8461///
8462/// \param T The type of the expressions being copied/moved. Both expressions
8463/// must have this type.
8464///
8465/// \param To The expression we are copying/moving to.
8466///
8467/// \param From The expression we are copying/moving from.
8468///
8469/// \param CopyingBaseSubobject Whether we're copying/moving a base subobject.
8470/// Otherwise, it's a non-static member subobject.
8471///
8472/// \param Copying Whether we're copying or moving.
8473///
8474/// \param Depth Internal parameter recording the depth of the recursion.
8475///
8476/// \returns A statement or a loop that copies the expressions, or StmtResult(0)
8477/// if a memcpy should be used instead.
8478static StmtResult
8479buildSingleCopyAssignRecursively(Sema &S, SourceLocation Loc, QualType T,
8480                                 Expr *To, Expr *From,
8481                                 bool CopyingBaseSubobject, bool Copying,
8482                                 unsigned Depth = 0) {
8483  // C++11 [class.copy]p28:
8484  //   Each subobject is assigned in the manner appropriate to its type:
8485  //
8486  //     - if the subobject is of class type, as if by a call to operator= with
8487  //       the subobject as the object expression and the corresponding
8488  //       subobject of x as a single function argument (as if by explicit
8489  //       qualification; that is, ignoring any possible virtual overriding
8490  //       functions in more derived classes);
8491  //
8492  // C++03 [class.copy]p13:
8493  //     - if the subobject is of class type, the copy assignment operator for
8494  //       the class is used (as if by explicit qualification; that is,
8495  //       ignoring any possible virtual overriding functions in more derived
8496  //       classes);
8497  if (const RecordType *RecordTy = T->getAs<RecordType>()) {
8498    CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
8499
8500    // Look for operator=.
8501    DeclarationName Name
8502      = S.Context.DeclarationNames.getCXXOperatorName(OO_Equal);
8503    LookupResult OpLookup(S, Name, Loc, Sema::LookupOrdinaryName);
8504    S.LookupQualifiedName(OpLookup, ClassDecl, false);
8505
8506    // Prior to C++11, filter out any result that isn't a copy/move-assignment
8507    // operator.
8508    if (!S.getLangOpts().CPlusPlus11) {
8509      LookupResult::Filter F = OpLookup.makeFilter();
8510      while (F.hasNext()) {
8511        NamedDecl *D = F.next();
8512        if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
8513          if (Method->isCopyAssignmentOperator() ||
8514              (!Copying && Method->isMoveAssignmentOperator()))
8515            continue;
8516
8517        F.erase();
8518      }
8519      F.done();
8520    }
8521
8522    // Suppress the protected check (C++ [class.protected]) for each of the
8523    // assignment operators we found. This strange dance is required when
8524    // we're assigning via a base classes's copy-assignment operator. To
8525    // ensure that we're getting the right base class subobject (without
8526    // ambiguities), we need to cast "this" to that subobject type; to
8527    // ensure that we don't go through the virtual call mechanism, we need
8528    // to qualify the operator= name with the base class (see below). However,
8529    // this means that if the base class has a protected copy assignment
8530    // operator, the protected member access check will fail. So, we
8531    // rewrite "protected" access to "public" access in this case, since we
8532    // know by construction that we're calling from a derived class.
8533    if (CopyingBaseSubobject) {
8534      for (LookupResult::iterator L = OpLookup.begin(), LEnd = OpLookup.end();
8535           L != LEnd; ++L) {
8536        if (L.getAccess() == AS_protected)
8537          L.setAccess(AS_public);
8538      }
8539    }
8540
8541    // Create the nested-name-specifier that will be used to qualify the
8542    // reference to operator=; this is required to suppress the virtual
8543    // call mechanism.
8544    CXXScopeSpec SS;
8545    const Type *CanonicalT = S.Context.getCanonicalType(T.getTypePtr());
8546    SS.MakeTrivial(S.Context,
8547                   NestedNameSpecifier::Create(S.Context, 0, false,
8548                                               CanonicalT),
8549                   Loc);
8550
8551    // Create the reference to operator=.
8552    ExprResult OpEqualRef
8553      = S.BuildMemberReferenceExpr(To, T, Loc, /*isArrow=*/false, SS,
8554                                   /*TemplateKWLoc=*/SourceLocation(),
8555                                   /*FirstQualifierInScope=*/0,
8556                                   OpLookup,
8557                                   /*TemplateArgs=*/0,
8558                                   /*SuppressQualifierCheck=*/true);
8559    if (OpEqualRef.isInvalid())
8560      return StmtError();
8561
8562    // Build the call to the assignment operator.
8563
8564    ExprResult Call = S.BuildCallToMemberFunction(/*Scope=*/0,
8565                                                  OpEqualRef.takeAs<Expr>(),
8566                                                  Loc, &From, 1, Loc);
8567    if (Call.isInvalid())
8568      return StmtError();
8569
8570    // If we built a call to a trivial 'operator=' while copying an array,
8571    // bail out. We'll replace the whole shebang with a memcpy.
8572    CXXMemberCallExpr *CE = dyn_cast<CXXMemberCallExpr>(Call.get());
8573    if (CE && CE->getMethodDecl()->isTrivial() && Depth)
8574      return StmtResult((Stmt*)0);
8575
8576    // Convert to an expression-statement, and clean up any produced
8577    // temporaries.
8578    return S.ActOnExprStmt(Call);
8579  }
8580
8581  //     - if the subobject is of scalar type, the built-in assignment
8582  //       operator is used.
8583  const ConstantArrayType *ArrayTy = S.Context.getAsConstantArrayType(T);
8584  if (!ArrayTy) {
8585    ExprResult Assignment = S.CreateBuiltinBinOp(Loc, BO_Assign, To, From);
8586    if (Assignment.isInvalid())
8587      return StmtError();
8588    return S.ActOnExprStmt(Assignment);
8589  }
8590
8591  //     - if the subobject is an array, each element is assigned, in the
8592  //       manner appropriate to the element type;
8593
8594  // Construct a loop over the array bounds, e.g.,
8595  //
8596  //   for (__SIZE_TYPE__ i0 = 0; i0 != array-size; ++i0)
8597  //
8598  // that will copy each of the array elements.
8599  QualType SizeType = S.Context.getSizeType();
8600
8601  // Create the iteration variable.
8602  IdentifierInfo *IterationVarName = 0;
8603  {
8604    SmallString<8> Str;
8605    llvm::raw_svector_ostream OS(Str);
8606    OS << "__i" << Depth;
8607    IterationVarName = &S.Context.Idents.get(OS.str());
8608  }
8609  VarDecl *IterationVar = VarDecl::Create(S.Context, S.CurContext, Loc, Loc,
8610                                          IterationVarName, SizeType,
8611                            S.Context.getTrivialTypeSourceInfo(SizeType, Loc),
8612                                          SC_None);
8613
8614  // Initialize the iteration variable to zero.
8615  llvm::APInt Zero(S.Context.getTypeSize(SizeType), 0);
8616  IterationVar->setInit(IntegerLiteral::Create(S.Context, Zero, SizeType, Loc));
8617
8618  // Create a reference to the iteration variable; we'll use this several
8619  // times throughout.
8620  Expr *IterationVarRef
8621    = S.BuildDeclRefExpr(IterationVar, SizeType, VK_LValue, Loc).take();
8622  assert(IterationVarRef && "Reference to invented variable cannot fail!");
8623  Expr *IterationVarRefRVal = S.DefaultLvalueConversion(IterationVarRef).take();
8624  assert(IterationVarRefRVal && "Conversion of invented variable cannot fail!");
8625
8626  // Create the DeclStmt that holds the iteration variable.
8627  Stmt *InitStmt = new (S.Context) DeclStmt(DeclGroupRef(IterationVar),Loc,Loc);
8628
8629  // Subscript the "from" and "to" expressions with the iteration variable.
8630  From = AssertSuccess(S.CreateBuiltinArraySubscriptExpr(From, Loc,
8631                                                         IterationVarRefRVal,
8632                                                         Loc));
8633  To = AssertSuccess(S.CreateBuiltinArraySubscriptExpr(To, Loc,
8634                                                       IterationVarRefRVal,
8635                                                       Loc));
8636  if (!Copying) // Cast to rvalue
8637    From = CastForMoving(S, From);
8638
8639  // Build the copy/move for an individual element of the array.
8640  StmtResult Copy =
8641    buildSingleCopyAssignRecursively(S, Loc, ArrayTy->getElementType(),
8642                                     To, From, CopyingBaseSubobject,
8643                                     Copying, Depth + 1);
8644  // Bail out if copying fails or if we determined that we should use memcpy.
8645  if (Copy.isInvalid() || !Copy.get())
8646    return Copy;
8647
8648  // Create the comparison against the array bound.
8649  llvm::APInt Upper
8650    = ArrayTy->getSize().zextOrTrunc(S.Context.getTypeSize(SizeType));
8651  Expr *Comparison
8652    = new (S.Context) BinaryOperator(IterationVarRefRVal,
8653                     IntegerLiteral::Create(S.Context, Upper, SizeType, Loc),
8654                                     BO_NE, S.Context.BoolTy,
8655                                     VK_RValue, OK_Ordinary, Loc, false);
8656
8657  // Create the pre-increment of the iteration variable.
8658  Expr *Increment
8659    = new (S.Context) UnaryOperator(IterationVarRef, UO_PreInc, SizeType,
8660                                    VK_LValue, OK_Ordinary, Loc);
8661
8662  // Construct the loop that copies all elements of this array.
8663  return S.ActOnForStmt(Loc, Loc, InitStmt,
8664                        S.MakeFullExpr(Comparison),
8665                        0, S.MakeFullDiscardedValueExpr(Increment),
8666                        Loc, Copy.take());
8667}
8668
8669static StmtResult
8670buildSingleCopyAssign(Sema &S, SourceLocation Loc, QualType T,
8671                      Expr *To, Expr *From,
8672                      bool CopyingBaseSubobject, bool Copying) {
8673  // Maybe we should use a memcpy?
8674  if (T->isArrayType() && !T.isConstQualified() && !T.isVolatileQualified() &&
8675      T.isTriviallyCopyableType(S.Context))
8676    return buildMemcpyForAssignmentOp(S, Loc, T, To, From);
8677
8678  StmtResult Result(buildSingleCopyAssignRecursively(S, Loc, T, To, From,
8679                                                     CopyingBaseSubobject,
8680                                                     Copying, 0));
8681
8682  // If we ended up picking a trivial assignment operator for an array of a
8683  // non-trivially-copyable class type, just emit a memcpy.
8684  if (!Result.isInvalid() && !Result.get())
8685    return buildMemcpyForAssignmentOp(S, Loc, T, To, From);
8686
8687  return Result;
8688}
8689
8690Sema::ImplicitExceptionSpecification
8691Sema::ComputeDefaultedCopyAssignmentExceptionSpec(CXXMethodDecl *MD) {
8692  CXXRecordDecl *ClassDecl = MD->getParent();
8693
8694  ImplicitExceptionSpecification ExceptSpec(*this);
8695  if (ClassDecl->isInvalidDecl())
8696    return ExceptSpec;
8697
8698  const FunctionProtoType *T = MD->getType()->castAs<FunctionProtoType>();
8699  assert(T->getNumArgs() == 1 && "not a copy assignment op");
8700  unsigned ArgQuals = T->getArgType(0).getNonReferenceType().getCVRQualifiers();
8701
8702  // C++ [except.spec]p14:
8703  //   An implicitly declared special member function (Clause 12) shall have an
8704  //   exception-specification. [...]
8705
8706  // It is unspecified whether or not an implicit copy assignment operator
8707  // attempts to deduplicate calls to assignment operators of virtual bases are
8708  // made. As such, this exception specification is effectively unspecified.
8709  // Based on a similar decision made for constness in C++0x, we're erring on
8710  // the side of assuming such calls to be made regardless of whether they
8711  // actually happen.
8712  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
8713                                       BaseEnd = ClassDecl->bases_end();
8714       Base != BaseEnd; ++Base) {
8715    if (Base->isVirtual())
8716      continue;
8717
8718    CXXRecordDecl *BaseClassDecl
8719      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8720    if (CXXMethodDecl *CopyAssign = LookupCopyingAssignment(BaseClassDecl,
8721                                                            ArgQuals, false, 0))
8722      ExceptSpec.CalledDecl(Base->getLocStart(), CopyAssign);
8723  }
8724
8725  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
8726                                       BaseEnd = ClassDecl->vbases_end();
8727       Base != BaseEnd; ++Base) {
8728    CXXRecordDecl *BaseClassDecl
8729      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8730    if (CXXMethodDecl *CopyAssign = LookupCopyingAssignment(BaseClassDecl,
8731                                                            ArgQuals, false, 0))
8732      ExceptSpec.CalledDecl(Base->getLocStart(), CopyAssign);
8733  }
8734
8735  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
8736                                  FieldEnd = ClassDecl->field_end();
8737       Field != FieldEnd;
8738       ++Field) {
8739    QualType FieldType = Context.getBaseElementType(Field->getType());
8740    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
8741      if (CXXMethodDecl *CopyAssign =
8742          LookupCopyingAssignment(FieldClassDecl,
8743                                  ArgQuals | FieldType.getCVRQualifiers(),
8744                                  false, 0))
8745        ExceptSpec.CalledDecl(Field->getLocation(), CopyAssign);
8746    }
8747  }
8748
8749  return ExceptSpec;
8750}
8751
8752CXXMethodDecl *Sema::DeclareImplicitCopyAssignment(CXXRecordDecl *ClassDecl) {
8753  // Note: The following rules are largely analoguous to the copy
8754  // constructor rules. Note that virtual bases are not taken into account
8755  // for determining the argument type of the operator. Note also that
8756  // operators taking an object instead of a reference are allowed.
8757  assert(ClassDecl->needsImplicitCopyAssignment());
8758
8759  DeclaringSpecialMember DSM(*this, ClassDecl, CXXCopyAssignment);
8760  if (DSM.isAlreadyBeingDeclared())
8761    return 0;
8762
8763  QualType ArgType = Context.getTypeDeclType(ClassDecl);
8764  QualType RetType = Context.getLValueReferenceType(ArgType);
8765  if (ClassDecl->implicitCopyAssignmentHasConstParam())
8766    ArgType = ArgType.withConst();
8767  ArgType = Context.getLValueReferenceType(ArgType);
8768
8769  //   An implicitly-declared copy assignment operator is an inline public
8770  //   member of its class.
8771  DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
8772  SourceLocation ClassLoc = ClassDecl->getLocation();
8773  DeclarationNameInfo NameInfo(Name, ClassLoc);
8774  CXXMethodDecl *CopyAssignment
8775    = CXXMethodDecl::Create(Context, ClassDecl, ClassLoc, NameInfo, QualType(),
8776                            /*TInfo=*/0,
8777                            /*StorageClass=*/SC_None,
8778                            /*isInline=*/true, /*isConstexpr=*/false,
8779                            SourceLocation());
8780  CopyAssignment->setAccess(AS_public);
8781  CopyAssignment->setDefaulted();
8782  CopyAssignment->setImplicit();
8783
8784  // Build an exception specification pointing back at this member.
8785  FunctionProtoType::ExtProtoInfo EPI;
8786  EPI.ExceptionSpecType = EST_Unevaluated;
8787  EPI.ExceptionSpecDecl = CopyAssignment;
8788  CopyAssignment->setType(Context.getFunctionType(RetType, ArgType, EPI));
8789
8790  // Add the parameter to the operator.
8791  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment,
8792                                               ClassLoc, ClassLoc, /*Id=*/0,
8793                                               ArgType, /*TInfo=*/0,
8794                                               SC_None, 0);
8795  CopyAssignment->setParams(FromParam);
8796
8797  AddOverriddenMethods(ClassDecl, CopyAssignment);
8798
8799  CopyAssignment->setTrivial(
8800    ClassDecl->needsOverloadResolutionForCopyAssignment()
8801      ? SpecialMemberIsTrivial(CopyAssignment, CXXCopyAssignment)
8802      : ClassDecl->hasTrivialCopyAssignment());
8803
8804  // C++0x [class.copy]p19:
8805  //   ....  If the class definition does not explicitly declare a copy
8806  //   assignment operator, there is no user-declared move constructor, and
8807  //   there is no user-declared move assignment operator, a copy assignment
8808  //   operator is implicitly declared as defaulted.
8809  if (ShouldDeleteSpecialMember(CopyAssignment, CXXCopyAssignment))
8810    SetDeclDeleted(CopyAssignment, ClassLoc);
8811
8812  // Note that we have added this copy-assignment operator.
8813  ++ASTContext::NumImplicitCopyAssignmentOperatorsDeclared;
8814
8815  if (Scope *S = getScopeForContext(ClassDecl))
8816    PushOnScopeChains(CopyAssignment, S, false);
8817  ClassDecl->addDecl(CopyAssignment);
8818
8819  return CopyAssignment;
8820}
8821
8822void Sema::DefineImplicitCopyAssignment(SourceLocation CurrentLocation,
8823                                        CXXMethodDecl *CopyAssignOperator) {
8824  assert((CopyAssignOperator->isDefaulted() &&
8825          CopyAssignOperator->isOverloadedOperator() &&
8826          CopyAssignOperator->getOverloadedOperator() == OO_Equal &&
8827          !CopyAssignOperator->doesThisDeclarationHaveABody() &&
8828          !CopyAssignOperator->isDeleted()) &&
8829         "DefineImplicitCopyAssignment called for wrong function");
8830
8831  CXXRecordDecl *ClassDecl = CopyAssignOperator->getParent();
8832
8833  if (ClassDecl->isInvalidDecl() || CopyAssignOperator->isInvalidDecl()) {
8834    CopyAssignOperator->setInvalidDecl();
8835    return;
8836  }
8837
8838  CopyAssignOperator->setUsed();
8839
8840  SynthesizedFunctionScope Scope(*this, CopyAssignOperator);
8841  DiagnosticErrorTrap Trap(Diags);
8842
8843  // C++0x [class.copy]p30:
8844  //   The implicitly-defined or explicitly-defaulted copy assignment operator
8845  //   for a non-union class X performs memberwise copy assignment of its
8846  //   subobjects. The direct base classes of X are assigned first, in the
8847  //   order of their declaration in the base-specifier-list, and then the
8848  //   immediate non-static data members of X are assigned, in the order in
8849  //   which they were declared in the class definition.
8850
8851  // The statements that form the synthesized function body.
8852  SmallVector<Stmt*, 8> Statements;
8853
8854  // The parameter for the "other" object, which we are copying from.
8855  ParmVarDecl *Other = CopyAssignOperator->getParamDecl(0);
8856  Qualifiers OtherQuals = Other->getType().getQualifiers();
8857  QualType OtherRefType = Other->getType();
8858  if (const LValueReferenceType *OtherRef
8859                                = OtherRefType->getAs<LValueReferenceType>()) {
8860    OtherRefType = OtherRef->getPointeeType();
8861    OtherQuals = OtherRefType.getQualifiers();
8862  }
8863
8864  // Our location for everything implicitly-generated.
8865  SourceLocation Loc = CopyAssignOperator->getLocation();
8866
8867  // Construct a reference to the "other" object. We'll be using this
8868  // throughout the generated ASTs.
8869  Expr *OtherRef = BuildDeclRefExpr(Other, OtherRefType, VK_LValue, Loc).take();
8870  assert(OtherRef && "Reference to parameter cannot fail!");
8871
8872  // Construct the "this" pointer. We'll be using this throughout the generated
8873  // ASTs.
8874  Expr *This = ActOnCXXThis(Loc).takeAs<Expr>();
8875  assert(This && "Reference to this cannot fail!");
8876
8877  // Assign base classes.
8878  bool Invalid = false;
8879  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
8880       E = ClassDecl->bases_end(); Base != E; ++Base) {
8881    // Form the assignment:
8882    //   static_cast<Base*>(this)->Base::operator=(static_cast<Base&>(other));
8883    QualType BaseType = Base->getType().getUnqualifiedType();
8884    if (!BaseType->isRecordType()) {
8885      Invalid = true;
8886      continue;
8887    }
8888
8889    CXXCastPath BasePath;
8890    BasePath.push_back(Base);
8891
8892    // Construct the "from" expression, which is an implicit cast to the
8893    // appropriately-qualified base type.
8894    Expr *From = OtherRef;
8895    From = ImpCastExprToType(From, Context.getQualifiedType(BaseType, OtherQuals),
8896                             CK_UncheckedDerivedToBase,
8897                             VK_LValue, &BasePath).take();
8898
8899    // Dereference "this".
8900    ExprResult To = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
8901
8902    // Implicitly cast "this" to the appropriately-qualified base type.
8903    To = ImpCastExprToType(To.take(),
8904                           Context.getCVRQualifiedType(BaseType,
8905                                     CopyAssignOperator->getTypeQualifiers()),
8906                           CK_UncheckedDerivedToBase,
8907                           VK_LValue, &BasePath);
8908
8909    // Build the copy.
8910    StmtResult Copy = buildSingleCopyAssign(*this, Loc, BaseType,
8911                                            To.get(), From,
8912                                            /*CopyingBaseSubobject=*/true,
8913                                            /*Copying=*/true);
8914    if (Copy.isInvalid()) {
8915      Diag(CurrentLocation, diag::note_member_synthesized_at)
8916        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
8917      CopyAssignOperator->setInvalidDecl();
8918      return;
8919    }
8920
8921    // Success! Record the copy.
8922    Statements.push_back(Copy.takeAs<Expr>());
8923  }
8924
8925  // Assign non-static members.
8926  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
8927                                  FieldEnd = ClassDecl->field_end();
8928       Field != FieldEnd; ++Field) {
8929    if (Field->isUnnamedBitfield())
8930      continue;
8931
8932    // Check for members of reference type; we can't copy those.
8933    if (Field->getType()->isReferenceType()) {
8934      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
8935        << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
8936      Diag(Field->getLocation(), diag::note_declared_at);
8937      Diag(CurrentLocation, diag::note_member_synthesized_at)
8938        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
8939      Invalid = true;
8940      continue;
8941    }
8942
8943    // Check for members of const-qualified, non-class type.
8944    QualType BaseType = Context.getBaseElementType(Field->getType());
8945    if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) {
8946      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
8947        << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
8948      Diag(Field->getLocation(), diag::note_declared_at);
8949      Diag(CurrentLocation, diag::note_member_synthesized_at)
8950        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
8951      Invalid = true;
8952      continue;
8953    }
8954
8955    // Suppress assigning zero-width bitfields.
8956    if (Field->isBitField() && Field->getBitWidthValue(Context) == 0)
8957      continue;
8958
8959    QualType FieldType = Field->getType().getNonReferenceType();
8960    if (FieldType->isIncompleteArrayType()) {
8961      assert(ClassDecl->hasFlexibleArrayMember() &&
8962             "Incomplete array type is not valid");
8963      continue;
8964    }
8965
8966    // Build references to the field in the object we're copying from and to.
8967    CXXScopeSpec SS; // Intentionally empty
8968    LookupResult MemberLookup(*this, Field->getDeclName(), Loc,
8969                              LookupMemberName);
8970    MemberLookup.addDecl(*Field);
8971    MemberLookup.resolveKind();
8972    ExprResult From = BuildMemberReferenceExpr(OtherRef, OtherRefType,
8973                                               Loc, /*IsArrow=*/false,
8974                                               SS, SourceLocation(), 0,
8975                                               MemberLookup, 0);
8976    ExprResult To = BuildMemberReferenceExpr(This, This->getType(),
8977                                             Loc, /*IsArrow=*/true,
8978                                             SS, SourceLocation(), 0,
8979                                             MemberLookup, 0);
8980    assert(!From.isInvalid() && "Implicit field reference cannot fail");
8981    assert(!To.isInvalid() && "Implicit field reference cannot fail");
8982
8983    // Build the copy of this field.
8984    StmtResult Copy = buildSingleCopyAssign(*this, Loc, FieldType,
8985                                            To.get(), From.get(),
8986                                            /*CopyingBaseSubobject=*/false,
8987                                            /*Copying=*/true);
8988    if (Copy.isInvalid()) {
8989      Diag(CurrentLocation, diag::note_member_synthesized_at)
8990        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
8991      CopyAssignOperator->setInvalidDecl();
8992      return;
8993    }
8994
8995    // Success! Record the copy.
8996    Statements.push_back(Copy.takeAs<Stmt>());
8997  }
8998
8999  if (!Invalid) {
9000    // Add a "return *this;"
9001    ExprResult ThisObj = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
9002
9003    StmtResult Return = ActOnReturnStmt(Loc, ThisObj.get());
9004    if (Return.isInvalid())
9005      Invalid = true;
9006    else {
9007      Statements.push_back(Return.takeAs<Stmt>());
9008
9009      if (Trap.hasErrorOccurred()) {
9010        Diag(CurrentLocation, diag::note_member_synthesized_at)
9011          << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
9012        Invalid = true;
9013      }
9014    }
9015  }
9016
9017  if (Invalid) {
9018    CopyAssignOperator->setInvalidDecl();
9019    return;
9020  }
9021
9022  StmtResult Body;
9023  {
9024    CompoundScopeRAII CompoundScope(*this);
9025    Body = ActOnCompoundStmt(Loc, Loc, Statements,
9026                             /*isStmtExpr=*/false);
9027    assert(!Body.isInvalid() && "Compound statement creation cannot fail");
9028  }
9029  CopyAssignOperator->setBody(Body.takeAs<Stmt>());
9030
9031  if (ASTMutationListener *L = getASTMutationListener()) {
9032    L->CompletedImplicitDefinition(CopyAssignOperator);
9033  }
9034}
9035
9036Sema::ImplicitExceptionSpecification
9037Sema::ComputeDefaultedMoveAssignmentExceptionSpec(CXXMethodDecl *MD) {
9038  CXXRecordDecl *ClassDecl = MD->getParent();
9039
9040  ImplicitExceptionSpecification ExceptSpec(*this);
9041  if (ClassDecl->isInvalidDecl())
9042    return ExceptSpec;
9043
9044  // C++0x [except.spec]p14:
9045  //   An implicitly declared special member function (Clause 12) shall have an
9046  //   exception-specification. [...]
9047
9048  // It is unspecified whether or not an implicit move assignment operator
9049  // attempts to deduplicate calls to assignment operators of virtual bases are
9050  // made. As such, this exception specification is effectively unspecified.
9051  // Based on a similar decision made for constness in C++0x, we're erring on
9052  // the side of assuming such calls to be made regardless of whether they
9053  // actually happen.
9054  // Note that a move constructor is not implicitly declared when there are
9055  // virtual bases, but it can still be user-declared and explicitly defaulted.
9056  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
9057                                       BaseEnd = ClassDecl->bases_end();
9058       Base != BaseEnd; ++Base) {
9059    if (Base->isVirtual())
9060      continue;
9061
9062    CXXRecordDecl *BaseClassDecl
9063      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
9064    if (CXXMethodDecl *MoveAssign = LookupMovingAssignment(BaseClassDecl,
9065                                                           0, false, 0))
9066      ExceptSpec.CalledDecl(Base->getLocStart(), MoveAssign);
9067  }
9068
9069  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
9070                                       BaseEnd = ClassDecl->vbases_end();
9071       Base != BaseEnd; ++Base) {
9072    CXXRecordDecl *BaseClassDecl
9073      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
9074    if (CXXMethodDecl *MoveAssign = LookupMovingAssignment(BaseClassDecl,
9075                                                           0, false, 0))
9076      ExceptSpec.CalledDecl(Base->getLocStart(), MoveAssign);
9077  }
9078
9079  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
9080                                  FieldEnd = ClassDecl->field_end();
9081       Field != FieldEnd;
9082       ++Field) {
9083    QualType FieldType = Context.getBaseElementType(Field->getType());
9084    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
9085      if (CXXMethodDecl *MoveAssign =
9086              LookupMovingAssignment(FieldClassDecl,
9087                                     FieldType.getCVRQualifiers(),
9088                                     false, 0))
9089        ExceptSpec.CalledDecl(Field->getLocation(), MoveAssign);
9090    }
9091  }
9092
9093  return ExceptSpec;
9094}
9095
9096/// Determine whether the class type has any direct or indirect virtual base
9097/// classes which have a non-trivial move assignment operator.
9098static bool
9099hasVirtualBaseWithNonTrivialMoveAssignment(Sema &S, CXXRecordDecl *ClassDecl) {
9100  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
9101                                          BaseEnd = ClassDecl->vbases_end();
9102       Base != BaseEnd; ++Base) {
9103    CXXRecordDecl *BaseClass =
9104        cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
9105
9106    // Try to declare the move assignment. If it would be deleted, then the
9107    // class does not have a non-trivial move assignment.
9108    if (BaseClass->needsImplicitMoveAssignment())
9109      S.DeclareImplicitMoveAssignment(BaseClass);
9110
9111    if (BaseClass->hasNonTrivialMoveAssignment())
9112      return true;
9113  }
9114
9115  return false;
9116}
9117
9118/// Determine whether the given type either has a move constructor or is
9119/// trivially copyable.
9120static bool
9121hasMoveOrIsTriviallyCopyable(Sema &S, QualType Type, bool IsConstructor) {
9122  Type = S.Context.getBaseElementType(Type);
9123
9124  // FIXME: Technically, non-trivially-copyable non-class types, such as
9125  // reference types, are supposed to return false here, but that appears
9126  // to be a standard defect.
9127  CXXRecordDecl *ClassDecl = Type->getAsCXXRecordDecl();
9128  if (!ClassDecl || !ClassDecl->getDefinition() || ClassDecl->isInvalidDecl())
9129    return true;
9130
9131  if (Type.isTriviallyCopyableType(S.Context))
9132    return true;
9133
9134  if (IsConstructor) {
9135    // FIXME: Need this because otherwise hasMoveConstructor isn't guaranteed to
9136    // give the right answer.
9137    if (ClassDecl->needsImplicitMoveConstructor())
9138      S.DeclareImplicitMoveConstructor(ClassDecl);
9139    return ClassDecl->hasMoveConstructor();
9140  }
9141
9142  // FIXME: Need this because otherwise hasMoveAssignment isn't guaranteed to
9143  // give the right answer.
9144  if (ClassDecl->needsImplicitMoveAssignment())
9145    S.DeclareImplicitMoveAssignment(ClassDecl);
9146  return ClassDecl->hasMoveAssignment();
9147}
9148
9149/// Determine whether all non-static data members and direct or virtual bases
9150/// of class \p ClassDecl have either a move operation, or are trivially
9151/// copyable.
9152static bool subobjectsHaveMoveOrTrivialCopy(Sema &S, CXXRecordDecl *ClassDecl,
9153                                            bool IsConstructor) {
9154  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
9155                                          BaseEnd = ClassDecl->bases_end();
9156       Base != BaseEnd; ++Base) {
9157    if (Base->isVirtual())
9158      continue;
9159
9160    if (!hasMoveOrIsTriviallyCopyable(S, Base->getType(), IsConstructor))
9161      return false;
9162  }
9163
9164  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
9165                                          BaseEnd = ClassDecl->vbases_end();
9166       Base != BaseEnd; ++Base) {
9167    if (!hasMoveOrIsTriviallyCopyable(S, Base->getType(), IsConstructor))
9168      return false;
9169  }
9170
9171  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
9172                                     FieldEnd = ClassDecl->field_end();
9173       Field != FieldEnd; ++Field) {
9174    if (!hasMoveOrIsTriviallyCopyable(S, Field->getType(), IsConstructor))
9175      return false;
9176  }
9177
9178  return true;
9179}
9180
9181CXXMethodDecl *Sema::DeclareImplicitMoveAssignment(CXXRecordDecl *ClassDecl) {
9182  // C++11 [class.copy]p20:
9183  //   If the definition of a class X does not explicitly declare a move
9184  //   assignment operator, one will be implicitly declared as defaulted
9185  //   if and only if:
9186  //
9187  //   - [first 4 bullets]
9188  assert(ClassDecl->needsImplicitMoveAssignment());
9189
9190  DeclaringSpecialMember DSM(*this, ClassDecl, CXXMoveAssignment);
9191  if (DSM.isAlreadyBeingDeclared())
9192    return 0;
9193
9194  // [Checked after we build the declaration]
9195  //   - the move assignment operator would not be implicitly defined as
9196  //     deleted,
9197
9198  // [DR1402]:
9199  //   - X has no direct or indirect virtual base class with a non-trivial
9200  //     move assignment operator, and
9201  //   - each of X's non-static data members and direct or virtual base classes
9202  //     has a type that either has a move assignment operator or is trivially
9203  //     copyable.
9204  if (hasVirtualBaseWithNonTrivialMoveAssignment(*this, ClassDecl) ||
9205      !subobjectsHaveMoveOrTrivialCopy(*this, ClassDecl,/*Constructor*/false)) {
9206    ClassDecl->setFailedImplicitMoveAssignment();
9207    return 0;
9208  }
9209
9210  // Note: The following rules are largely analoguous to the move
9211  // constructor rules.
9212
9213  QualType ArgType = Context.getTypeDeclType(ClassDecl);
9214  QualType RetType = Context.getLValueReferenceType(ArgType);
9215  ArgType = Context.getRValueReferenceType(ArgType);
9216
9217  //   An implicitly-declared move assignment operator is an inline public
9218  //   member of its class.
9219  DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
9220  SourceLocation ClassLoc = ClassDecl->getLocation();
9221  DeclarationNameInfo NameInfo(Name, ClassLoc);
9222  CXXMethodDecl *MoveAssignment
9223    = CXXMethodDecl::Create(Context, ClassDecl, ClassLoc, NameInfo, QualType(),
9224                            /*TInfo=*/0,
9225                            /*StorageClass=*/SC_None,
9226                            /*isInline=*/true,
9227                            /*isConstexpr=*/false,
9228                            SourceLocation());
9229  MoveAssignment->setAccess(AS_public);
9230  MoveAssignment->setDefaulted();
9231  MoveAssignment->setImplicit();
9232
9233  // Build an exception specification pointing back at this member.
9234  FunctionProtoType::ExtProtoInfo EPI;
9235  EPI.ExceptionSpecType = EST_Unevaluated;
9236  EPI.ExceptionSpecDecl = MoveAssignment;
9237  MoveAssignment->setType(Context.getFunctionType(RetType, ArgType, EPI));
9238
9239  // Add the parameter to the operator.
9240  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, MoveAssignment,
9241                                               ClassLoc, ClassLoc, /*Id=*/0,
9242                                               ArgType, /*TInfo=*/0,
9243                                               SC_None, 0);
9244  MoveAssignment->setParams(FromParam);
9245
9246  AddOverriddenMethods(ClassDecl, MoveAssignment);
9247
9248  MoveAssignment->setTrivial(
9249    ClassDecl->needsOverloadResolutionForMoveAssignment()
9250      ? SpecialMemberIsTrivial(MoveAssignment, CXXMoveAssignment)
9251      : ClassDecl->hasTrivialMoveAssignment());
9252
9253  // C++0x [class.copy]p9:
9254  //   If the definition of a class X does not explicitly declare a move
9255  //   assignment operator, one will be implicitly declared as defaulted if and
9256  //   only if:
9257  //   [...]
9258  //   - the move assignment operator would not be implicitly defined as
9259  //     deleted.
9260  if (ShouldDeleteSpecialMember(MoveAssignment, CXXMoveAssignment)) {
9261    // Cache this result so that we don't try to generate this over and over
9262    // on every lookup, leaking memory and wasting time.
9263    ClassDecl->setFailedImplicitMoveAssignment();
9264    return 0;
9265  }
9266
9267  // Note that we have added this copy-assignment operator.
9268  ++ASTContext::NumImplicitMoveAssignmentOperatorsDeclared;
9269
9270  if (Scope *S = getScopeForContext(ClassDecl))
9271    PushOnScopeChains(MoveAssignment, S, false);
9272  ClassDecl->addDecl(MoveAssignment);
9273
9274  return MoveAssignment;
9275}
9276
9277void Sema::DefineImplicitMoveAssignment(SourceLocation CurrentLocation,
9278                                        CXXMethodDecl *MoveAssignOperator) {
9279  assert((MoveAssignOperator->isDefaulted() &&
9280          MoveAssignOperator->isOverloadedOperator() &&
9281          MoveAssignOperator->getOverloadedOperator() == OO_Equal &&
9282          !MoveAssignOperator->doesThisDeclarationHaveABody() &&
9283          !MoveAssignOperator->isDeleted()) &&
9284         "DefineImplicitMoveAssignment called for wrong function");
9285
9286  CXXRecordDecl *ClassDecl = MoveAssignOperator->getParent();
9287
9288  if (ClassDecl->isInvalidDecl() || MoveAssignOperator->isInvalidDecl()) {
9289    MoveAssignOperator->setInvalidDecl();
9290    return;
9291  }
9292
9293  MoveAssignOperator->setUsed();
9294
9295  SynthesizedFunctionScope Scope(*this, MoveAssignOperator);
9296  DiagnosticErrorTrap Trap(Diags);
9297
9298  // C++0x [class.copy]p28:
9299  //   The implicitly-defined or move assignment operator for a non-union class
9300  //   X performs memberwise move assignment of its subobjects. The direct base
9301  //   classes of X are assigned first, in the order of their declaration in the
9302  //   base-specifier-list, and then the immediate non-static data members of X
9303  //   are assigned, in the order in which they were declared in the class
9304  //   definition.
9305
9306  // The statements that form the synthesized function body.
9307  SmallVector<Stmt*, 8> Statements;
9308
9309  // The parameter for the "other" object, which we are move from.
9310  ParmVarDecl *Other = MoveAssignOperator->getParamDecl(0);
9311  QualType OtherRefType = Other->getType()->
9312      getAs<RValueReferenceType>()->getPointeeType();
9313  assert(OtherRefType.getQualifiers() == 0 &&
9314         "Bad argument type of defaulted move assignment");
9315
9316  // Our location for everything implicitly-generated.
9317  SourceLocation Loc = MoveAssignOperator->getLocation();
9318
9319  // Construct a reference to the "other" object. We'll be using this
9320  // throughout the generated ASTs.
9321  Expr *OtherRef = BuildDeclRefExpr(Other, OtherRefType, VK_LValue, Loc).take();
9322  assert(OtherRef && "Reference to parameter cannot fail!");
9323  // Cast to rvalue.
9324  OtherRef = CastForMoving(*this, OtherRef);
9325
9326  // Construct the "this" pointer. We'll be using this throughout the generated
9327  // ASTs.
9328  Expr *This = ActOnCXXThis(Loc).takeAs<Expr>();
9329  assert(This && "Reference to this cannot fail!");
9330
9331  // Assign base classes.
9332  bool Invalid = false;
9333  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
9334       E = ClassDecl->bases_end(); Base != E; ++Base) {
9335    // Form the assignment:
9336    //   static_cast<Base*>(this)->Base::operator=(static_cast<Base&&>(other));
9337    QualType BaseType = Base->getType().getUnqualifiedType();
9338    if (!BaseType->isRecordType()) {
9339      Invalid = true;
9340      continue;
9341    }
9342
9343    CXXCastPath BasePath;
9344    BasePath.push_back(Base);
9345
9346    // Construct the "from" expression, which is an implicit cast to the
9347    // appropriately-qualified base type.
9348    Expr *From = OtherRef;
9349    From = ImpCastExprToType(From, BaseType, CK_UncheckedDerivedToBase,
9350                             VK_XValue, &BasePath).take();
9351
9352    // Dereference "this".
9353    ExprResult To = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
9354
9355    // Implicitly cast "this" to the appropriately-qualified base type.
9356    To = ImpCastExprToType(To.take(),
9357                           Context.getCVRQualifiedType(BaseType,
9358                                     MoveAssignOperator->getTypeQualifiers()),
9359                           CK_UncheckedDerivedToBase,
9360                           VK_LValue, &BasePath);
9361
9362    // Build the move.
9363    StmtResult Move = buildSingleCopyAssign(*this, Loc, BaseType,
9364                                            To.get(), From,
9365                                            /*CopyingBaseSubobject=*/true,
9366                                            /*Copying=*/false);
9367    if (Move.isInvalid()) {
9368      Diag(CurrentLocation, diag::note_member_synthesized_at)
9369        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
9370      MoveAssignOperator->setInvalidDecl();
9371      return;
9372    }
9373
9374    // Success! Record the move.
9375    Statements.push_back(Move.takeAs<Expr>());
9376  }
9377
9378  // Assign non-static members.
9379  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
9380                                  FieldEnd = ClassDecl->field_end();
9381       Field != FieldEnd; ++Field) {
9382    if (Field->isUnnamedBitfield())
9383      continue;
9384
9385    // Check for members of reference type; we can't move those.
9386    if (Field->getType()->isReferenceType()) {
9387      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
9388        << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
9389      Diag(Field->getLocation(), diag::note_declared_at);
9390      Diag(CurrentLocation, diag::note_member_synthesized_at)
9391        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
9392      Invalid = true;
9393      continue;
9394    }
9395
9396    // Check for members of const-qualified, non-class type.
9397    QualType BaseType = Context.getBaseElementType(Field->getType());
9398    if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) {
9399      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
9400        << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
9401      Diag(Field->getLocation(), diag::note_declared_at);
9402      Diag(CurrentLocation, diag::note_member_synthesized_at)
9403        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
9404      Invalid = true;
9405      continue;
9406    }
9407
9408    // Suppress assigning zero-width bitfields.
9409    if (Field->isBitField() && Field->getBitWidthValue(Context) == 0)
9410      continue;
9411
9412    QualType FieldType = Field->getType().getNonReferenceType();
9413    if (FieldType->isIncompleteArrayType()) {
9414      assert(ClassDecl->hasFlexibleArrayMember() &&
9415             "Incomplete array type is not valid");
9416      continue;
9417    }
9418
9419    // Build references to the field in the object we're copying from and to.
9420    CXXScopeSpec SS; // Intentionally empty
9421    LookupResult MemberLookup(*this, Field->getDeclName(), Loc,
9422                              LookupMemberName);
9423    MemberLookup.addDecl(*Field);
9424    MemberLookup.resolveKind();
9425    ExprResult From = BuildMemberReferenceExpr(OtherRef, OtherRefType,
9426                                               Loc, /*IsArrow=*/false,
9427                                               SS, SourceLocation(), 0,
9428                                               MemberLookup, 0);
9429    ExprResult To = BuildMemberReferenceExpr(This, This->getType(),
9430                                             Loc, /*IsArrow=*/true,
9431                                             SS, SourceLocation(), 0,
9432                                             MemberLookup, 0);
9433    assert(!From.isInvalid() && "Implicit field reference cannot fail");
9434    assert(!To.isInvalid() && "Implicit field reference cannot fail");
9435
9436    assert(!From.get()->isLValue() && // could be xvalue or prvalue
9437        "Member reference with rvalue base must be rvalue except for reference "
9438        "members, which aren't allowed for move assignment.");
9439
9440    // Build the move of this field.
9441    StmtResult Move = buildSingleCopyAssign(*this, Loc, FieldType,
9442                                            To.get(), From.get(),
9443                                            /*CopyingBaseSubobject=*/false,
9444                                            /*Copying=*/false);
9445    if (Move.isInvalid()) {
9446      Diag(CurrentLocation, diag::note_member_synthesized_at)
9447        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
9448      MoveAssignOperator->setInvalidDecl();
9449      return;
9450    }
9451
9452    // Success! Record the copy.
9453    Statements.push_back(Move.takeAs<Stmt>());
9454  }
9455
9456  if (!Invalid) {
9457    // Add a "return *this;"
9458    ExprResult ThisObj = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
9459
9460    StmtResult Return = ActOnReturnStmt(Loc, ThisObj.get());
9461    if (Return.isInvalid())
9462      Invalid = true;
9463    else {
9464      Statements.push_back(Return.takeAs<Stmt>());
9465
9466      if (Trap.hasErrorOccurred()) {
9467        Diag(CurrentLocation, diag::note_member_synthesized_at)
9468          << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
9469        Invalid = true;
9470      }
9471    }
9472  }
9473
9474  if (Invalid) {
9475    MoveAssignOperator->setInvalidDecl();
9476    return;
9477  }
9478
9479  StmtResult Body;
9480  {
9481    CompoundScopeRAII CompoundScope(*this);
9482    Body = ActOnCompoundStmt(Loc, Loc, Statements,
9483                             /*isStmtExpr=*/false);
9484    assert(!Body.isInvalid() && "Compound statement creation cannot fail");
9485  }
9486  MoveAssignOperator->setBody(Body.takeAs<Stmt>());
9487
9488  if (ASTMutationListener *L = getASTMutationListener()) {
9489    L->CompletedImplicitDefinition(MoveAssignOperator);
9490  }
9491}
9492
9493Sema::ImplicitExceptionSpecification
9494Sema::ComputeDefaultedCopyCtorExceptionSpec(CXXMethodDecl *MD) {
9495  CXXRecordDecl *ClassDecl = MD->getParent();
9496
9497  ImplicitExceptionSpecification ExceptSpec(*this);
9498  if (ClassDecl->isInvalidDecl())
9499    return ExceptSpec;
9500
9501  const FunctionProtoType *T = MD->getType()->castAs<FunctionProtoType>();
9502  assert(T->getNumArgs() >= 1 && "not a copy ctor");
9503  unsigned Quals = T->getArgType(0).getNonReferenceType().getCVRQualifiers();
9504
9505  // C++ [except.spec]p14:
9506  //   An implicitly declared special member function (Clause 12) shall have an
9507  //   exception-specification. [...]
9508  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
9509                                       BaseEnd = ClassDecl->bases_end();
9510       Base != BaseEnd;
9511       ++Base) {
9512    // Virtual bases are handled below.
9513    if (Base->isVirtual())
9514      continue;
9515
9516    CXXRecordDecl *BaseClassDecl
9517      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
9518    if (CXXConstructorDecl *CopyConstructor =
9519          LookupCopyingConstructor(BaseClassDecl, Quals))
9520      ExceptSpec.CalledDecl(Base->getLocStart(), CopyConstructor);
9521  }
9522  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
9523                                       BaseEnd = ClassDecl->vbases_end();
9524       Base != BaseEnd;
9525       ++Base) {
9526    CXXRecordDecl *BaseClassDecl
9527      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
9528    if (CXXConstructorDecl *CopyConstructor =
9529          LookupCopyingConstructor(BaseClassDecl, Quals))
9530      ExceptSpec.CalledDecl(Base->getLocStart(), CopyConstructor);
9531  }
9532  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
9533                                  FieldEnd = ClassDecl->field_end();
9534       Field != FieldEnd;
9535       ++Field) {
9536    QualType FieldType = Context.getBaseElementType(Field->getType());
9537    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
9538      if (CXXConstructorDecl *CopyConstructor =
9539              LookupCopyingConstructor(FieldClassDecl,
9540                                       Quals | FieldType.getCVRQualifiers()))
9541      ExceptSpec.CalledDecl(Field->getLocation(), CopyConstructor);
9542    }
9543  }
9544
9545  return ExceptSpec;
9546}
9547
9548CXXConstructorDecl *Sema::DeclareImplicitCopyConstructor(
9549                                                    CXXRecordDecl *ClassDecl) {
9550  // C++ [class.copy]p4:
9551  //   If the class definition does not explicitly declare a copy
9552  //   constructor, one is declared implicitly.
9553  assert(ClassDecl->needsImplicitCopyConstructor());
9554
9555  DeclaringSpecialMember DSM(*this, ClassDecl, CXXCopyConstructor);
9556  if (DSM.isAlreadyBeingDeclared())
9557    return 0;
9558
9559  QualType ClassType = Context.getTypeDeclType(ClassDecl);
9560  QualType ArgType = ClassType;
9561  bool Const = ClassDecl->implicitCopyConstructorHasConstParam();
9562  if (Const)
9563    ArgType = ArgType.withConst();
9564  ArgType = Context.getLValueReferenceType(ArgType);
9565
9566  bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl,
9567                                                     CXXCopyConstructor,
9568                                                     Const);
9569
9570  DeclarationName Name
9571    = Context.DeclarationNames.getCXXConstructorName(
9572                                           Context.getCanonicalType(ClassType));
9573  SourceLocation ClassLoc = ClassDecl->getLocation();
9574  DeclarationNameInfo NameInfo(Name, ClassLoc);
9575
9576  //   An implicitly-declared copy constructor is an inline public
9577  //   member of its class.
9578  CXXConstructorDecl *CopyConstructor = CXXConstructorDecl::Create(
9579      Context, ClassDecl, ClassLoc, NameInfo, QualType(), /*TInfo=*/0,
9580      /*isExplicit=*/false, /*isInline=*/true, /*isImplicitlyDeclared=*/true,
9581      Constexpr);
9582  CopyConstructor->setAccess(AS_public);
9583  CopyConstructor->setDefaulted();
9584
9585  // Build an exception specification pointing back at this member.
9586  FunctionProtoType::ExtProtoInfo EPI;
9587  EPI.ExceptionSpecType = EST_Unevaluated;
9588  EPI.ExceptionSpecDecl = CopyConstructor;
9589  CopyConstructor->setType(
9590      Context.getFunctionType(Context.VoidTy, ArgType, EPI));
9591
9592  // Add the parameter to the constructor.
9593  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor,
9594                                               ClassLoc, ClassLoc,
9595                                               /*IdentifierInfo=*/0,
9596                                               ArgType, /*TInfo=*/0,
9597                                               SC_None, 0);
9598  CopyConstructor->setParams(FromParam);
9599
9600  CopyConstructor->setTrivial(
9601    ClassDecl->needsOverloadResolutionForCopyConstructor()
9602      ? SpecialMemberIsTrivial(CopyConstructor, CXXCopyConstructor)
9603      : ClassDecl->hasTrivialCopyConstructor());
9604
9605  // C++11 [class.copy]p8:
9606  //   ... If the class definition does not explicitly declare a copy
9607  //   constructor, there is no user-declared move constructor, and there is no
9608  //   user-declared move assignment operator, a copy constructor is implicitly
9609  //   declared as defaulted.
9610  if (ShouldDeleteSpecialMember(CopyConstructor, CXXCopyConstructor))
9611    SetDeclDeleted(CopyConstructor, ClassLoc);
9612
9613  // Note that we have declared this constructor.
9614  ++ASTContext::NumImplicitCopyConstructorsDeclared;
9615
9616  if (Scope *S = getScopeForContext(ClassDecl))
9617    PushOnScopeChains(CopyConstructor, S, false);
9618  ClassDecl->addDecl(CopyConstructor);
9619
9620  return CopyConstructor;
9621}
9622
9623void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation,
9624                                   CXXConstructorDecl *CopyConstructor) {
9625  assert((CopyConstructor->isDefaulted() &&
9626          CopyConstructor->isCopyConstructor() &&
9627          !CopyConstructor->doesThisDeclarationHaveABody() &&
9628          !CopyConstructor->isDeleted()) &&
9629         "DefineImplicitCopyConstructor - call it for implicit copy ctor");
9630
9631  CXXRecordDecl *ClassDecl = CopyConstructor->getParent();
9632  assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor");
9633
9634  SynthesizedFunctionScope Scope(*this, CopyConstructor);
9635  DiagnosticErrorTrap Trap(Diags);
9636
9637  if (SetCtorInitializers(CopyConstructor, /*AnyErrors=*/false) ||
9638      Trap.hasErrorOccurred()) {
9639    Diag(CurrentLocation, diag::note_member_synthesized_at)
9640      << CXXCopyConstructor << Context.getTagDeclType(ClassDecl);
9641    CopyConstructor->setInvalidDecl();
9642  }  else {
9643    Sema::CompoundScopeRAII CompoundScope(*this);
9644    CopyConstructor->setBody(ActOnCompoundStmt(CopyConstructor->getLocation(),
9645                                               CopyConstructor->getLocation(),
9646                                               MultiStmtArg(),
9647                                               /*isStmtExpr=*/false)
9648                                                              .takeAs<Stmt>());
9649    CopyConstructor->setImplicitlyDefined(true);
9650  }
9651
9652  CopyConstructor->setUsed();
9653  if (ASTMutationListener *L = getASTMutationListener()) {
9654    L->CompletedImplicitDefinition(CopyConstructor);
9655  }
9656}
9657
9658Sema::ImplicitExceptionSpecification
9659Sema::ComputeDefaultedMoveCtorExceptionSpec(CXXMethodDecl *MD) {
9660  CXXRecordDecl *ClassDecl = MD->getParent();
9661
9662  // C++ [except.spec]p14:
9663  //   An implicitly declared special member function (Clause 12) shall have an
9664  //   exception-specification. [...]
9665  ImplicitExceptionSpecification ExceptSpec(*this);
9666  if (ClassDecl->isInvalidDecl())
9667    return ExceptSpec;
9668
9669  // Direct base-class constructors.
9670  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
9671                                       BEnd = ClassDecl->bases_end();
9672       B != BEnd; ++B) {
9673    if (B->isVirtual()) // Handled below.
9674      continue;
9675
9676    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
9677      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
9678      CXXConstructorDecl *Constructor =
9679          LookupMovingConstructor(BaseClassDecl, 0);
9680      // If this is a deleted function, add it anyway. This might be conformant
9681      // with the standard. This might not. I'm not sure. It might not matter.
9682      if (Constructor)
9683        ExceptSpec.CalledDecl(B->getLocStart(), Constructor);
9684    }
9685  }
9686
9687  // Virtual base-class constructors.
9688  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
9689                                       BEnd = ClassDecl->vbases_end();
9690       B != BEnd; ++B) {
9691    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
9692      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
9693      CXXConstructorDecl *Constructor =
9694          LookupMovingConstructor(BaseClassDecl, 0);
9695      // If this is a deleted function, add it anyway. This might be conformant
9696      // with the standard. This might not. I'm not sure. It might not matter.
9697      if (Constructor)
9698        ExceptSpec.CalledDecl(B->getLocStart(), Constructor);
9699    }
9700  }
9701
9702  // Field constructors.
9703  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
9704                               FEnd = ClassDecl->field_end();
9705       F != FEnd; ++F) {
9706    QualType FieldType = Context.getBaseElementType(F->getType());
9707    if (CXXRecordDecl *FieldRecDecl = FieldType->getAsCXXRecordDecl()) {
9708      CXXConstructorDecl *Constructor =
9709          LookupMovingConstructor(FieldRecDecl, FieldType.getCVRQualifiers());
9710      // If this is a deleted function, add it anyway. This might be conformant
9711      // with the standard. This might not. I'm not sure. It might not matter.
9712      // In particular, the problem is that this function never gets called. It
9713      // might just be ill-formed because this function attempts to refer to
9714      // a deleted function here.
9715      if (Constructor)
9716        ExceptSpec.CalledDecl(F->getLocation(), Constructor);
9717    }
9718  }
9719
9720  return ExceptSpec;
9721}
9722
9723CXXConstructorDecl *Sema::DeclareImplicitMoveConstructor(
9724                                                    CXXRecordDecl *ClassDecl) {
9725  // C++11 [class.copy]p9:
9726  //   If the definition of a class X does not explicitly declare a move
9727  //   constructor, one will be implicitly declared as defaulted if and only if:
9728  //
9729  //   - [first 4 bullets]
9730  assert(ClassDecl->needsImplicitMoveConstructor());
9731
9732  DeclaringSpecialMember DSM(*this, ClassDecl, CXXMoveConstructor);
9733  if (DSM.isAlreadyBeingDeclared())
9734    return 0;
9735
9736  // [Checked after we build the declaration]
9737  //   - the move assignment operator would not be implicitly defined as
9738  //     deleted,
9739
9740  // [DR1402]:
9741  //   - each of X's non-static data members and direct or virtual base classes
9742  //     has a type that either has a move constructor or is trivially copyable.
9743  if (!subobjectsHaveMoveOrTrivialCopy(*this, ClassDecl, /*Constructor*/true)) {
9744    ClassDecl->setFailedImplicitMoveConstructor();
9745    return 0;
9746  }
9747
9748  QualType ClassType = Context.getTypeDeclType(ClassDecl);
9749  QualType ArgType = Context.getRValueReferenceType(ClassType);
9750
9751  bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl,
9752                                                     CXXMoveConstructor,
9753                                                     false);
9754
9755  DeclarationName Name
9756    = Context.DeclarationNames.getCXXConstructorName(
9757                                           Context.getCanonicalType(ClassType));
9758  SourceLocation ClassLoc = ClassDecl->getLocation();
9759  DeclarationNameInfo NameInfo(Name, ClassLoc);
9760
9761  // C++0x [class.copy]p11:
9762  //   An implicitly-declared copy/move constructor is an inline public
9763  //   member of its class.
9764  CXXConstructorDecl *MoveConstructor = CXXConstructorDecl::Create(
9765      Context, ClassDecl, ClassLoc, NameInfo, QualType(), /*TInfo=*/0,
9766      /*isExplicit=*/false, /*isInline=*/true, /*isImplicitlyDeclared=*/true,
9767      Constexpr);
9768  MoveConstructor->setAccess(AS_public);
9769  MoveConstructor->setDefaulted();
9770
9771  // Build an exception specification pointing back at this member.
9772  FunctionProtoType::ExtProtoInfo EPI;
9773  EPI.ExceptionSpecType = EST_Unevaluated;
9774  EPI.ExceptionSpecDecl = MoveConstructor;
9775  MoveConstructor->setType(
9776      Context.getFunctionType(Context.VoidTy, ArgType, EPI));
9777
9778  // Add the parameter to the constructor.
9779  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, MoveConstructor,
9780                                               ClassLoc, ClassLoc,
9781                                               /*IdentifierInfo=*/0,
9782                                               ArgType, /*TInfo=*/0,
9783                                               SC_None, 0);
9784  MoveConstructor->setParams(FromParam);
9785
9786  MoveConstructor->setTrivial(
9787    ClassDecl->needsOverloadResolutionForMoveConstructor()
9788      ? SpecialMemberIsTrivial(MoveConstructor, CXXMoveConstructor)
9789      : ClassDecl->hasTrivialMoveConstructor());
9790
9791  // C++0x [class.copy]p9:
9792  //   If the definition of a class X does not explicitly declare a move
9793  //   constructor, one will be implicitly declared as defaulted if and only if:
9794  //   [...]
9795  //   - the move constructor would not be implicitly defined as deleted.
9796  if (ShouldDeleteSpecialMember(MoveConstructor, CXXMoveConstructor)) {
9797    // Cache this result so that we don't try to generate this over and over
9798    // on every lookup, leaking memory and wasting time.
9799    ClassDecl->setFailedImplicitMoveConstructor();
9800    return 0;
9801  }
9802
9803  // Note that we have declared this constructor.
9804  ++ASTContext::NumImplicitMoveConstructorsDeclared;
9805
9806  if (Scope *S = getScopeForContext(ClassDecl))
9807    PushOnScopeChains(MoveConstructor, S, false);
9808  ClassDecl->addDecl(MoveConstructor);
9809
9810  return MoveConstructor;
9811}
9812
9813void Sema::DefineImplicitMoveConstructor(SourceLocation CurrentLocation,
9814                                   CXXConstructorDecl *MoveConstructor) {
9815  assert((MoveConstructor->isDefaulted() &&
9816          MoveConstructor->isMoveConstructor() &&
9817          !MoveConstructor->doesThisDeclarationHaveABody() &&
9818          !MoveConstructor->isDeleted()) &&
9819         "DefineImplicitMoveConstructor - call it for implicit move ctor");
9820
9821  CXXRecordDecl *ClassDecl = MoveConstructor->getParent();
9822  assert(ClassDecl && "DefineImplicitMoveConstructor - invalid constructor");
9823
9824  SynthesizedFunctionScope Scope(*this, MoveConstructor);
9825  DiagnosticErrorTrap Trap(Diags);
9826
9827  if (SetCtorInitializers(MoveConstructor, /*AnyErrors=*/false) ||
9828      Trap.hasErrorOccurred()) {
9829    Diag(CurrentLocation, diag::note_member_synthesized_at)
9830      << CXXMoveConstructor << Context.getTagDeclType(ClassDecl);
9831    MoveConstructor->setInvalidDecl();
9832  }  else {
9833    Sema::CompoundScopeRAII CompoundScope(*this);
9834    MoveConstructor->setBody(ActOnCompoundStmt(MoveConstructor->getLocation(),
9835                                               MoveConstructor->getLocation(),
9836                                               MultiStmtArg(),
9837                                               /*isStmtExpr=*/false)
9838                                                              .takeAs<Stmt>());
9839    MoveConstructor->setImplicitlyDefined(true);
9840  }
9841
9842  MoveConstructor->setUsed();
9843
9844  if (ASTMutationListener *L = getASTMutationListener()) {
9845    L->CompletedImplicitDefinition(MoveConstructor);
9846  }
9847}
9848
9849bool Sema::isImplicitlyDeleted(FunctionDecl *FD) {
9850  return FD->isDeleted() &&
9851         (FD->isDefaulted() || FD->isImplicit()) &&
9852         isa<CXXMethodDecl>(FD);
9853}
9854
9855/// \brief Mark the call operator of the given lambda closure type as "used".
9856static void markLambdaCallOperatorUsed(Sema &S, CXXRecordDecl *Lambda) {
9857  CXXMethodDecl *CallOperator
9858    = cast<CXXMethodDecl>(
9859        Lambda->lookup(
9860          S.Context.DeclarationNames.getCXXOperatorName(OO_Call)).front());
9861  CallOperator->setReferenced();
9862  CallOperator->setUsed();
9863}
9864
9865void Sema::DefineImplicitLambdaToFunctionPointerConversion(
9866       SourceLocation CurrentLocation,
9867       CXXConversionDecl *Conv)
9868{
9869  CXXRecordDecl *Lambda = Conv->getParent();
9870
9871  // Make sure that the lambda call operator is marked used.
9872  markLambdaCallOperatorUsed(*this, Lambda);
9873
9874  Conv->setUsed();
9875
9876  SynthesizedFunctionScope Scope(*this, Conv);
9877  DiagnosticErrorTrap Trap(Diags);
9878
9879  // Return the address of the __invoke function.
9880  DeclarationName InvokeName = &Context.Idents.get("__invoke");
9881  CXXMethodDecl *Invoke
9882    = cast<CXXMethodDecl>(Lambda->lookup(InvokeName).front());
9883  Expr *FunctionRef = BuildDeclRefExpr(Invoke, Invoke->getType(),
9884                                       VK_LValue, Conv->getLocation()).take();
9885  assert(FunctionRef && "Can't refer to __invoke function?");
9886  Stmt *Return = ActOnReturnStmt(Conv->getLocation(), FunctionRef).take();
9887  Conv->setBody(new (Context) CompoundStmt(Context, Return,
9888                                           Conv->getLocation(),
9889                                           Conv->getLocation()));
9890
9891  // Fill in the __invoke function with a dummy implementation. IR generation
9892  // will fill in the actual details.
9893  Invoke->setUsed();
9894  Invoke->setReferenced();
9895  Invoke->setBody(new (Context) CompoundStmt(Conv->getLocation()));
9896
9897  if (ASTMutationListener *L = getASTMutationListener()) {
9898    L->CompletedImplicitDefinition(Conv);
9899    L->CompletedImplicitDefinition(Invoke);
9900  }
9901}
9902
9903void Sema::DefineImplicitLambdaToBlockPointerConversion(
9904       SourceLocation CurrentLocation,
9905       CXXConversionDecl *Conv)
9906{
9907  Conv->setUsed();
9908
9909  SynthesizedFunctionScope Scope(*this, Conv);
9910  DiagnosticErrorTrap Trap(Diags);
9911
9912  // Copy-initialize the lambda object as needed to capture it.
9913  Expr *This = ActOnCXXThis(CurrentLocation).take();
9914  Expr *DerefThis =CreateBuiltinUnaryOp(CurrentLocation, UO_Deref, This).take();
9915
9916  ExprResult BuildBlock = BuildBlockForLambdaConversion(CurrentLocation,
9917                                                        Conv->getLocation(),
9918                                                        Conv, DerefThis);
9919
9920  // If we're not under ARC, make sure we still get the _Block_copy/autorelease
9921  // behavior.  Note that only the general conversion function does this
9922  // (since it's unusable otherwise); in the case where we inline the
9923  // block literal, it has block literal lifetime semantics.
9924  if (!BuildBlock.isInvalid() && !getLangOpts().ObjCAutoRefCount)
9925    BuildBlock = ImplicitCastExpr::Create(Context, BuildBlock.get()->getType(),
9926                                          CK_CopyAndAutoreleaseBlockObject,
9927                                          BuildBlock.get(), 0, VK_RValue);
9928
9929  if (BuildBlock.isInvalid()) {
9930    Diag(CurrentLocation, diag::note_lambda_to_block_conv);
9931    Conv->setInvalidDecl();
9932    return;
9933  }
9934
9935  // Create the return statement that returns the block from the conversion
9936  // function.
9937  StmtResult Return = ActOnReturnStmt(Conv->getLocation(), BuildBlock.get());
9938  if (Return.isInvalid()) {
9939    Diag(CurrentLocation, diag::note_lambda_to_block_conv);
9940    Conv->setInvalidDecl();
9941    return;
9942  }
9943
9944  // Set the body of the conversion function.
9945  Stmt *ReturnS = Return.take();
9946  Conv->setBody(new (Context) CompoundStmt(Context, ReturnS,
9947                                           Conv->getLocation(),
9948                                           Conv->getLocation()));
9949
9950  // We're done; notify the mutation listener, if any.
9951  if (ASTMutationListener *L = getASTMutationListener()) {
9952    L->CompletedImplicitDefinition(Conv);
9953  }
9954}
9955
9956/// \brief Determine whether the given list arguments contains exactly one
9957/// "real" (non-default) argument.
9958static bool hasOneRealArgument(MultiExprArg Args) {
9959  switch (Args.size()) {
9960  case 0:
9961    return false;
9962
9963  default:
9964    if (!Args[1]->isDefaultArgument())
9965      return false;
9966
9967    // fall through
9968  case 1:
9969    return !Args[0]->isDefaultArgument();
9970  }
9971
9972  return false;
9973}
9974
9975ExprResult
9976Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
9977                            CXXConstructorDecl *Constructor,
9978                            MultiExprArg ExprArgs,
9979                            bool HadMultipleCandidates,
9980                            bool IsListInitialization,
9981                            bool RequiresZeroInit,
9982                            unsigned ConstructKind,
9983                            SourceRange ParenRange) {
9984  bool Elidable = false;
9985
9986  // C++0x [class.copy]p34:
9987  //   When certain criteria are met, an implementation is allowed to
9988  //   omit the copy/move construction of a class object, even if the
9989  //   copy/move constructor and/or destructor for the object have
9990  //   side effects. [...]
9991  //     - when a temporary class object that has not been bound to a
9992  //       reference (12.2) would be copied/moved to a class object
9993  //       with the same cv-unqualified type, the copy/move operation
9994  //       can be omitted by constructing the temporary object
9995  //       directly into the target of the omitted copy/move
9996  if (ConstructKind == CXXConstructExpr::CK_Complete &&
9997      Constructor->isCopyOrMoveConstructor() && hasOneRealArgument(ExprArgs)) {
9998    Expr *SubExpr = ExprArgs[0];
9999    Elidable = SubExpr->isTemporaryObject(Context, Constructor->getParent());
10000  }
10001
10002  return BuildCXXConstructExpr(ConstructLoc, DeclInitType, Constructor,
10003                               Elidable, ExprArgs, HadMultipleCandidates,
10004                               IsListInitialization, RequiresZeroInit,
10005                               ConstructKind, ParenRange);
10006}
10007
10008/// BuildCXXConstructExpr - Creates a complete call to a constructor,
10009/// including handling of its default argument expressions.
10010ExprResult
10011Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
10012                            CXXConstructorDecl *Constructor, bool Elidable,
10013                            MultiExprArg ExprArgs,
10014                            bool HadMultipleCandidates,
10015                            bool IsListInitialization,
10016                            bool RequiresZeroInit,
10017                            unsigned ConstructKind,
10018                            SourceRange ParenRange) {
10019  MarkFunctionReferenced(ConstructLoc, Constructor);
10020  return Owned(CXXConstructExpr::Create(Context, DeclInitType, ConstructLoc,
10021                                        Constructor, Elidable, ExprArgs,
10022                                        HadMultipleCandidates,
10023                                        IsListInitialization, RequiresZeroInit,
10024              static_cast<CXXConstructExpr::ConstructionKind>(ConstructKind),
10025                                        ParenRange));
10026}
10027
10028void Sema::FinalizeVarWithDestructor(VarDecl *VD, const RecordType *Record) {
10029  if (VD->isInvalidDecl()) return;
10030
10031  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Record->getDecl());
10032  if (ClassDecl->isInvalidDecl()) return;
10033  if (ClassDecl->hasIrrelevantDestructor()) return;
10034  if (ClassDecl->isDependentContext()) return;
10035
10036  CXXDestructorDecl *Destructor = LookupDestructor(ClassDecl);
10037  MarkFunctionReferenced(VD->getLocation(), Destructor);
10038  CheckDestructorAccess(VD->getLocation(), Destructor,
10039                        PDiag(diag::err_access_dtor_var)
10040                        << VD->getDeclName()
10041                        << VD->getType());
10042  DiagnoseUseOfDecl(Destructor, VD->getLocation());
10043
10044  if (!VD->hasGlobalStorage()) return;
10045
10046  // Emit warning for non-trivial dtor in global scope (a real global,
10047  // class-static, function-static).
10048  Diag(VD->getLocation(), diag::warn_exit_time_destructor);
10049
10050  // TODO: this should be re-enabled for static locals by !CXAAtExit
10051  if (!VD->isStaticLocal())
10052    Diag(VD->getLocation(), diag::warn_global_destructor);
10053}
10054
10055/// \brief Given a constructor and the set of arguments provided for the
10056/// constructor, convert the arguments and add any required default arguments
10057/// to form a proper call to this constructor.
10058///
10059/// \returns true if an error occurred, false otherwise.
10060bool
10061Sema::CompleteConstructorCall(CXXConstructorDecl *Constructor,
10062                              MultiExprArg ArgsPtr,
10063                              SourceLocation Loc,
10064                              SmallVectorImpl<Expr*> &ConvertedArgs,
10065                              bool AllowExplicit,
10066                              bool IsListInitialization) {
10067  // FIXME: This duplicates a lot of code from Sema::ConvertArgumentsForCall.
10068  unsigned NumArgs = ArgsPtr.size();
10069  Expr **Args = ArgsPtr.data();
10070
10071  const FunctionProtoType *Proto
10072    = Constructor->getType()->getAs<FunctionProtoType>();
10073  assert(Proto && "Constructor without a prototype?");
10074  unsigned NumArgsInProto = Proto->getNumArgs();
10075
10076  // If too few arguments are available, we'll fill in the rest with defaults.
10077  if (NumArgs < NumArgsInProto)
10078    ConvertedArgs.reserve(NumArgsInProto);
10079  else
10080    ConvertedArgs.reserve(NumArgs);
10081
10082  VariadicCallType CallType =
10083    Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply;
10084  SmallVector<Expr *, 8> AllArgs;
10085  bool Invalid = GatherArgumentsForCall(Loc, Constructor,
10086                                        Proto, 0, Args, NumArgs, AllArgs,
10087                                        CallType, AllowExplicit,
10088                                        IsListInitialization);
10089  ConvertedArgs.append(AllArgs.begin(), AllArgs.end());
10090
10091  DiagnoseSentinelCalls(Constructor, Loc, AllArgs.data(), AllArgs.size());
10092
10093  CheckConstructorCall(Constructor,
10094                       llvm::makeArrayRef<const Expr *>(AllArgs.data(),
10095                                                        AllArgs.size()),
10096                       Proto, Loc);
10097
10098  return Invalid;
10099}
10100
10101static inline bool
10102CheckOperatorNewDeleteDeclarationScope(Sema &SemaRef,
10103                                       const FunctionDecl *FnDecl) {
10104  const DeclContext *DC = FnDecl->getDeclContext()->getRedeclContext();
10105  if (isa<NamespaceDecl>(DC)) {
10106    return SemaRef.Diag(FnDecl->getLocation(),
10107                        diag::err_operator_new_delete_declared_in_namespace)
10108      << FnDecl->getDeclName();
10109  }
10110
10111  if (isa<TranslationUnitDecl>(DC) &&
10112      FnDecl->getStorageClass() == SC_Static) {
10113    return SemaRef.Diag(FnDecl->getLocation(),
10114                        diag::err_operator_new_delete_declared_static)
10115      << FnDecl->getDeclName();
10116  }
10117
10118  return false;
10119}
10120
10121static inline bool
10122CheckOperatorNewDeleteTypes(Sema &SemaRef, const FunctionDecl *FnDecl,
10123                            CanQualType ExpectedResultType,
10124                            CanQualType ExpectedFirstParamType,
10125                            unsigned DependentParamTypeDiag,
10126                            unsigned InvalidParamTypeDiag) {
10127  QualType ResultType =
10128    FnDecl->getType()->getAs<FunctionType>()->getResultType();
10129
10130  // Check that the result type is not dependent.
10131  if (ResultType->isDependentType())
10132    return SemaRef.Diag(FnDecl->getLocation(),
10133                        diag::err_operator_new_delete_dependent_result_type)
10134    << FnDecl->getDeclName() << ExpectedResultType;
10135
10136  // Check that the result type is what we expect.
10137  if (SemaRef.Context.getCanonicalType(ResultType) != ExpectedResultType)
10138    return SemaRef.Diag(FnDecl->getLocation(),
10139                        diag::err_operator_new_delete_invalid_result_type)
10140    << FnDecl->getDeclName() << ExpectedResultType;
10141
10142  // A function template must have at least 2 parameters.
10143  if (FnDecl->getDescribedFunctionTemplate() && FnDecl->getNumParams() < 2)
10144    return SemaRef.Diag(FnDecl->getLocation(),
10145                      diag::err_operator_new_delete_template_too_few_parameters)
10146        << FnDecl->getDeclName();
10147
10148  // The function decl must have at least 1 parameter.
10149  if (FnDecl->getNumParams() == 0)
10150    return SemaRef.Diag(FnDecl->getLocation(),
10151                        diag::err_operator_new_delete_too_few_parameters)
10152      << FnDecl->getDeclName();
10153
10154  // Check the first parameter type is not dependent.
10155  QualType FirstParamType = FnDecl->getParamDecl(0)->getType();
10156  if (FirstParamType->isDependentType())
10157    return SemaRef.Diag(FnDecl->getLocation(), DependentParamTypeDiag)
10158      << FnDecl->getDeclName() << ExpectedFirstParamType;
10159
10160  // Check that the first parameter type is what we expect.
10161  if (SemaRef.Context.getCanonicalType(FirstParamType).getUnqualifiedType() !=
10162      ExpectedFirstParamType)
10163    return SemaRef.Diag(FnDecl->getLocation(), InvalidParamTypeDiag)
10164    << FnDecl->getDeclName() << ExpectedFirstParamType;
10165
10166  return false;
10167}
10168
10169static bool
10170CheckOperatorNewDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
10171  // C++ [basic.stc.dynamic.allocation]p1:
10172  //   A program is ill-formed if an allocation function is declared in a
10173  //   namespace scope other than global scope or declared static in global
10174  //   scope.
10175  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
10176    return true;
10177
10178  CanQualType SizeTy =
10179    SemaRef.Context.getCanonicalType(SemaRef.Context.getSizeType());
10180
10181  // C++ [basic.stc.dynamic.allocation]p1:
10182  //  The return type shall be void*. The first parameter shall have type
10183  //  std::size_t.
10184  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidPtrTy,
10185                                  SizeTy,
10186                                  diag::err_operator_new_dependent_param_type,
10187                                  diag::err_operator_new_param_type))
10188    return true;
10189
10190  // C++ [basic.stc.dynamic.allocation]p1:
10191  //  The first parameter shall not have an associated default argument.
10192  if (FnDecl->getParamDecl(0)->hasDefaultArg())
10193    return SemaRef.Diag(FnDecl->getLocation(),
10194                        diag::err_operator_new_default_arg)
10195      << FnDecl->getDeclName() << FnDecl->getParamDecl(0)->getDefaultArgRange();
10196
10197  return false;
10198}
10199
10200static bool
10201CheckOperatorDeleteDeclaration(Sema &SemaRef, FunctionDecl *FnDecl) {
10202  // C++ [basic.stc.dynamic.deallocation]p1:
10203  //   A program is ill-formed if deallocation functions are declared in a
10204  //   namespace scope other than global scope or declared static in global
10205  //   scope.
10206  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
10207    return true;
10208
10209  // C++ [basic.stc.dynamic.deallocation]p2:
10210  //   Each deallocation function shall return void and its first parameter
10211  //   shall be void*.
10212  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidTy,
10213                                  SemaRef.Context.VoidPtrTy,
10214                                 diag::err_operator_delete_dependent_param_type,
10215                                 diag::err_operator_delete_param_type))
10216    return true;
10217
10218  return false;
10219}
10220
10221/// CheckOverloadedOperatorDeclaration - Check whether the declaration
10222/// of this overloaded operator is well-formed. If so, returns false;
10223/// otherwise, emits appropriate diagnostics and returns true.
10224bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
10225  assert(FnDecl && FnDecl->isOverloadedOperator() &&
10226         "Expected an overloaded operator declaration");
10227
10228  OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
10229
10230  // C++ [over.oper]p5:
10231  //   The allocation and deallocation functions, operator new,
10232  //   operator new[], operator delete and operator delete[], are
10233  //   described completely in 3.7.3. The attributes and restrictions
10234  //   found in the rest of this subclause do not apply to them unless
10235  //   explicitly stated in 3.7.3.
10236  if (Op == OO_Delete || Op == OO_Array_Delete)
10237    return CheckOperatorDeleteDeclaration(*this, FnDecl);
10238
10239  if (Op == OO_New || Op == OO_Array_New)
10240    return CheckOperatorNewDeclaration(*this, FnDecl);
10241
10242  // C++ [over.oper]p6:
10243  //   An operator function shall either be a non-static member
10244  //   function or be a non-member function and have at least one
10245  //   parameter whose type is a class, a reference to a class, an
10246  //   enumeration, or a reference to an enumeration.
10247  if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) {
10248    if (MethodDecl->isStatic())
10249      return Diag(FnDecl->getLocation(),
10250                  diag::err_operator_overload_static) << FnDecl->getDeclName();
10251  } else {
10252    bool ClassOrEnumParam = false;
10253    for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
10254                                   ParamEnd = FnDecl->param_end();
10255         Param != ParamEnd; ++Param) {
10256      QualType ParamType = (*Param)->getType().getNonReferenceType();
10257      if (ParamType->isDependentType() || ParamType->isRecordType() ||
10258          ParamType->isEnumeralType()) {
10259        ClassOrEnumParam = true;
10260        break;
10261      }
10262    }
10263
10264    if (!ClassOrEnumParam)
10265      return Diag(FnDecl->getLocation(),
10266                  diag::err_operator_overload_needs_class_or_enum)
10267        << FnDecl->getDeclName();
10268  }
10269
10270  // C++ [over.oper]p8:
10271  //   An operator function cannot have default arguments (8.3.6),
10272  //   except where explicitly stated below.
10273  //
10274  // Only the function-call operator allows default arguments
10275  // (C++ [over.call]p1).
10276  if (Op != OO_Call) {
10277    for (FunctionDecl::param_iterator Param = FnDecl->param_begin();
10278         Param != FnDecl->param_end(); ++Param) {
10279      if ((*Param)->hasDefaultArg())
10280        return Diag((*Param)->getLocation(),
10281                    diag::err_operator_overload_default_arg)
10282          << FnDecl->getDeclName() << (*Param)->getDefaultArgRange();
10283    }
10284  }
10285
10286  static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
10287    { false, false, false }
10288#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
10289    , { Unary, Binary, MemberOnly }
10290#include "clang/Basic/OperatorKinds.def"
10291  };
10292
10293  bool CanBeUnaryOperator = OperatorUses[Op][0];
10294  bool CanBeBinaryOperator = OperatorUses[Op][1];
10295  bool MustBeMemberOperator = OperatorUses[Op][2];
10296
10297  // C++ [over.oper]p8:
10298  //   [...] Operator functions cannot have more or fewer parameters
10299  //   than the number required for the corresponding operator, as
10300  //   described in the rest of this subclause.
10301  unsigned NumParams = FnDecl->getNumParams()
10302                     + (isa<CXXMethodDecl>(FnDecl)? 1 : 0);
10303  if (Op != OO_Call &&
10304      ((NumParams == 1 && !CanBeUnaryOperator) ||
10305       (NumParams == 2 && !CanBeBinaryOperator) ||
10306       (NumParams < 1) || (NumParams > 2))) {
10307    // We have the wrong number of parameters.
10308    unsigned ErrorKind;
10309    if (CanBeUnaryOperator && CanBeBinaryOperator) {
10310      ErrorKind = 2;  // 2 -> unary or binary.
10311    } else if (CanBeUnaryOperator) {
10312      ErrorKind = 0;  // 0 -> unary
10313    } else {
10314      assert(CanBeBinaryOperator &&
10315             "All non-call overloaded operators are unary or binary!");
10316      ErrorKind = 1;  // 1 -> binary
10317    }
10318
10319    return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be)
10320      << FnDecl->getDeclName() << NumParams << ErrorKind;
10321  }
10322
10323  // Overloaded operators other than operator() cannot be variadic.
10324  if (Op != OO_Call &&
10325      FnDecl->getType()->getAs<FunctionProtoType>()->isVariadic()) {
10326    return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
10327      << FnDecl->getDeclName();
10328  }
10329
10330  // Some operators must be non-static member functions.
10331  if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) {
10332    return Diag(FnDecl->getLocation(),
10333                diag::err_operator_overload_must_be_member)
10334      << FnDecl->getDeclName();
10335  }
10336
10337  // C++ [over.inc]p1:
10338  //   The user-defined function called operator++ implements the
10339  //   prefix and postfix ++ operator. If this function is a member
10340  //   function with no parameters, or a non-member function with one
10341  //   parameter of class or enumeration type, it defines the prefix
10342  //   increment operator ++ for objects of that type. If the function
10343  //   is a member function with one parameter (which shall be of type
10344  //   int) or a non-member function with two parameters (the second
10345  //   of which shall be of type int), it defines the postfix
10346  //   increment operator ++ for objects of that type.
10347  if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
10348    ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
10349    bool ParamIsInt = false;
10350    if (const BuiltinType *BT = LastParam->getType()->getAs<BuiltinType>())
10351      ParamIsInt = BT->getKind() == BuiltinType::Int;
10352
10353    if (!ParamIsInt)
10354      return Diag(LastParam->getLocation(),
10355                  diag::err_operator_overload_post_incdec_must_be_int)
10356        << LastParam->getType() << (Op == OO_MinusMinus);
10357  }
10358
10359  return false;
10360}
10361
10362/// CheckLiteralOperatorDeclaration - Check whether the declaration
10363/// of this literal operator function is well-formed. If so, returns
10364/// false; otherwise, emits appropriate diagnostics and returns true.
10365bool Sema::CheckLiteralOperatorDeclaration(FunctionDecl *FnDecl) {
10366  if (isa<CXXMethodDecl>(FnDecl)) {
10367    Diag(FnDecl->getLocation(), diag::err_literal_operator_outside_namespace)
10368      << FnDecl->getDeclName();
10369    return true;
10370  }
10371
10372  if (FnDecl->isExternC()) {
10373    Diag(FnDecl->getLocation(), diag::err_literal_operator_extern_c);
10374    return true;
10375  }
10376
10377  bool Valid = false;
10378
10379  // This might be the definition of a literal operator template.
10380  FunctionTemplateDecl *TpDecl = FnDecl->getDescribedFunctionTemplate();
10381  // This might be a specialization of a literal operator template.
10382  if (!TpDecl)
10383    TpDecl = FnDecl->getPrimaryTemplate();
10384
10385  // template <char...> type operator "" name() is the only valid template
10386  // signature, and the only valid signature with no parameters.
10387  if (TpDecl) {
10388    if (FnDecl->param_size() == 0) {
10389      // Must have only one template parameter
10390      TemplateParameterList *Params = TpDecl->getTemplateParameters();
10391      if (Params->size() == 1) {
10392        NonTypeTemplateParmDecl *PmDecl =
10393          dyn_cast<NonTypeTemplateParmDecl>(Params->getParam(0));
10394
10395        // The template parameter must be a char parameter pack.
10396        if (PmDecl && PmDecl->isTemplateParameterPack() &&
10397            Context.hasSameType(PmDecl->getType(), Context.CharTy))
10398          Valid = true;
10399      }
10400    }
10401  } else if (FnDecl->param_size()) {
10402    // Check the first parameter
10403    FunctionDecl::param_iterator Param = FnDecl->param_begin();
10404
10405    QualType T = (*Param)->getType().getUnqualifiedType();
10406
10407    // unsigned long long int, long double, and any character type are allowed
10408    // as the only parameters.
10409    if (Context.hasSameType(T, Context.UnsignedLongLongTy) ||
10410        Context.hasSameType(T, Context.LongDoubleTy) ||
10411        Context.hasSameType(T, Context.CharTy) ||
10412        Context.hasSameType(T, Context.WCharTy) ||
10413        Context.hasSameType(T, Context.Char16Ty) ||
10414        Context.hasSameType(T, Context.Char32Ty)) {
10415      if (++Param == FnDecl->param_end())
10416        Valid = true;
10417      goto FinishedParams;
10418    }
10419
10420    // Otherwise it must be a pointer to const; let's strip those qualifiers.
10421    const PointerType *PT = T->getAs<PointerType>();
10422    if (!PT)
10423      goto FinishedParams;
10424    T = PT->getPointeeType();
10425    if (!T.isConstQualified() || T.isVolatileQualified())
10426      goto FinishedParams;
10427    T = T.getUnqualifiedType();
10428
10429    // Move on to the second parameter;
10430    ++Param;
10431
10432    // If there is no second parameter, the first must be a const char *
10433    if (Param == FnDecl->param_end()) {
10434      if (Context.hasSameType(T, Context.CharTy))
10435        Valid = true;
10436      goto FinishedParams;
10437    }
10438
10439    // const char *, const wchar_t*, const char16_t*, and const char32_t*
10440    // are allowed as the first parameter to a two-parameter function
10441    if (!(Context.hasSameType(T, Context.CharTy) ||
10442          Context.hasSameType(T, Context.WCharTy) ||
10443          Context.hasSameType(T, Context.Char16Ty) ||
10444          Context.hasSameType(T, Context.Char32Ty)))
10445      goto FinishedParams;
10446
10447    // The second and final parameter must be an std::size_t
10448    T = (*Param)->getType().getUnqualifiedType();
10449    if (Context.hasSameType(T, Context.getSizeType()) &&
10450        ++Param == FnDecl->param_end())
10451      Valid = true;
10452  }
10453
10454  // FIXME: This diagnostic is absolutely terrible.
10455FinishedParams:
10456  if (!Valid) {
10457    Diag(FnDecl->getLocation(), diag::err_literal_operator_params)
10458      << FnDecl->getDeclName();
10459    return true;
10460  }
10461
10462  // A parameter-declaration-clause containing a default argument is not
10463  // equivalent to any of the permitted forms.
10464  for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
10465                                    ParamEnd = FnDecl->param_end();
10466       Param != ParamEnd; ++Param) {
10467    if ((*Param)->hasDefaultArg()) {
10468      Diag((*Param)->getDefaultArgRange().getBegin(),
10469           diag::err_literal_operator_default_argument)
10470        << (*Param)->getDefaultArgRange();
10471      break;
10472    }
10473  }
10474
10475  StringRef LiteralName
10476    = FnDecl->getDeclName().getCXXLiteralIdentifier()->getName();
10477  if (LiteralName[0] != '_') {
10478    // C++11 [usrlit.suffix]p1:
10479    //   Literal suffix identifiers that do not start with an underscore
10480    //   are reserved for future standardization.
10481    Diag(FnDecl->getLocation(), diag::warn_user_literal_reserved);
10482  }
10483
10484  return false;
10485}
10486
10487/// ActOnStartLinkageSpecification - Parsed the beginning of a C++
10488/// linkage specification, including the language and (if present)
10489/// the '{'. ExternLoc is the location of the 'extern', LangLoc is
10490/// the location of the language string literal, which is provided
10491/// by Lang/StrSize. LBraceLoc, if valid, provides the location of
10492/// the '{' brace. Otherwise, this linkage specification does not
10493/// have any braces.
10494Decl *Sema::ActOnStartLinkageSpecification(Scope *S, SourceLocation ExternLoc,
10495                                           SourceLocation LangLoc,
10496                                           StringRef Lang,
10497                                           SourceLocation LBraceLoc) {
10498  LinkageSpecDecl::LanguageIDs Language;
10499  if (Lang == "\"C\"")
10500    Language = LinkageSpecDecl::lang_c;
10501  else if (Lang == "\"C++\"")
10502    Language = LinkageSpecDecl::lang_cxx;
10503  else {
10504    Diag(LangLoc, diag::err_bad_language);
10505    return 0;
10506  }
10507
10508  // FIXME: Add all the various semantics of linkage specifications
10509
10510  LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext,
10511                                               ExternLoc, LangLoc, Language,
10512                                               LBraceLoc.isValid());
10513  CurContext->addDecl(D);
10514  PushDeclContext(S, D);
10515  return D;
10516}
10517
10518/// ActOnFinishLinkageSpecification - Complete the definition of
10519/// the C++ linkage specification LinkageSpec. If RBraceLoc is
10520/// valid, it's the position of the closing '}' brace in a linkage
10521/// specification that uses braces.
10522Decl *Sema::ActOnFinishLinkageSpecification(Scope *S,
10523                                            Decl *LinkageSpec,
10524                                            SourceLocation RBraceLoc) {
10525  if (LinkageSpec) {
10526    if (RBraceLoc.isValid()) {
10527      LinkageSpecDecl* LSDecl = cast<LinkageSpecDecl>(LinkageSpec);
10528      LSDecl->setRBraceLoc(RBraceLoc);
10529    }
10530    PopDeclContext();
10531  }
10532  return LinkageSpec;
10533}
10534
10535Decl *Sema::ActOnEmptyDeclaration(Scope *S,
10536                                  AttributeList *AttrList,
10537                                  SourceLocation SemiLoc) {
10538  Decl *ED = EmptyDecl::Create(Context, CurContext, SemiLoc);
10539  // Attribute declarations appertain to empty declaration so we handle
10540  // them here.
10541  if (AttrList)
10542    ProcessDeclAttributeList(S, ED, AttrList);
10543
10544  CurContext->addDecl(ED);
10545  return ED;
10546}
10547
10548/// \brief Perform semantic analysis for the variable declaration that
10549/// occurs within a C++ catch clause, returning the newly-created
10550/// variable.
10551VarDecl *Sema::BuildExceptionDeclaration(Scope *S,
10552                                         TypeSourceInfo *TInfo,
10553                                         SourceLocation StartLoc,
10554                                         SourceLocation Loc,
10555                                         IdentifierInfo *Name) {
10556  bool Invalid = false;
10557  QualType ExDeclType = TInfo->getType();
10558
10559  // Arrays and functions decay.
10560  if (ExDeclType->isArrayType())
10561    ExDeclType = Context.getArrayDecayedType(ExDeclType);
10562  else if (ExDeclType->isFunctionType())
10563    ExDeclType = Context.getPointerType(ExDeclType);
10564
10565  // C++ 15.3p1: The exception-declaration shall not denote an incomplete type.
10566  // The exception-declaration shall not denote a pointer or reference to an
10567  // incomplete type, other than [cv] void*.
10568  // N2844 forbids rvalue references.
10569  if (!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) {
10570    Diag(Loc, diag::err_catch_rvalue_ref);
10571    Invalid = true;
10572  }
10573
10574  QualType BaseType = ExDeclType;
10575  int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference
10576  unsigned DK = diag::err_catch_incomplete;
10577  if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
10578    BaseType = Ptr->getPointeeType();
10579    Mode = 1;
10580    DK = diag::err_catch_incomplete_ptr;
10581  } else if (const ReferenceType *Ref = BaseType->getAs<ReferenceType>()) {
10582    // For the purpose of error recovery, we treat rvalue refs like lvalue refs.
10583    BaseType = Ref->getPointeeType();
10584    Mode = 2;
10585    DK = diag::err_catch_incomplete_ref;
10586  }
10587  if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) &&
10588      !BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK))
10589    Invalid = true;
10590
10591  if (!Invalid && !ExDeclType->isDependentType() &&
10592      RequireNonAbstractType(Loc, ExDeclType,
10593                             diag::err_abstract_type_in_decl,
10594                             AbstractVariableType))
10595    Invalid = true;
10596
10597  // Only the non-fragile NeXT runtime currently supports C++ catches
10598  // of ObjC types, and no runtime supports catching ObjC types by value.
10599  if (!Invalid && getLangOpts().ObjC1) {
10600    QualType T = ExDeclType;
10601    if (const ReferenceType *RT = T->getAs<ReferenceType>())
10602      T = RT->getPointeeType();
10603
10604    if (T->isObjCObjectType()) {
10605      Diag(Loc, diag::err_objc_object_catch);
10606      Invalid = true;
10607    } else if (T->isObjCObjectPointerType()) {
10608      // FIXME: should this be a test for macosx-fragile specifically?
10609      if (getLangOpts().ObjCRuntime.isFragile())
10610        Diag(Loc, diag::warn_objc_pointer_cxx_catch_fragile);
10611    }
10612  }
10613
10614  VarDecl *ExDecl = VarDecl::Create(Context, CurContext, StartLoc, Loc, Name,
10615                                    ExDeclType, TInfo, SC_None);
10616  ExDecl->setExceptionVariable(true);
10617
10618  // In ARC, infer 'retaining' for variables of retainable type.
10619  if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(ExDecl))
10620    Invalid = true;
10621
10622  if (!Invalid && !ExDeclType->isDependentType()) {
10623    if (const RecordType *recordType = ExDeclType->getAs<RecordType>()) {
10624      // Insulate this from anything else we might currently be parsing.
10625      EnterExpressionEvaluationContext scope(*this, PotentiallyEvaluated);
10626
10627      // C++ [except.handle]p16:
10628      //   The object declared in an exception-declaration or, if the
10629      //   exception-declaration does not specify a name, a temporary (12.2) is
10630      //   copy-initialized (8.5) from the exception object. [...]
10631      //   The object is destroyed when the handler exits, after the destruction
10632      //   of any automatic objects initialized within the handler.
10633      //
10634      // We just pretend to initialize the object with itself, then make sure
10635      // it can be destroyed later.
10636      QualType initType = ExDeclType;
10637
10638      InitializedEntity entity =
10639        InitializedEntity::InitializeVariable(ExDecl);
10640      InitializationKind initKind =
10641        InitializationKind::CreateCopy(Loc, SourceLocation());
10642
10643      Expr *opaqueValue =
10644        new (Context) OpaqueValueExpr(Loc, initType, VK_LValue, OK_Ordinary);
10645      InitializationSequence sequence(*this, entity, initKind, &opaqueValue, 1);
10646      ExprResult result = sequence.Perform(*this, entity, initKind,
10647                                           MultiExprArg(&opaqueValue, 1));
10648      if (result.isInvalid())
10649        Invalid = true;
10650      else {
10651        // If the constructor used was non-trivial, set this as the
10652        // "initializer".
10653        CXXConstructExpr *construct = cast<CXXConstructExpr>(result.take());
10654        if (!construct->getConstructor()->isTrivial()) {
10655          Expr *init = MaybeCreateExprWithCleanups(construct);
10656          ExDecl->setInit(init);
10657        }
10658
10659        // And make sure it's destructable.
10660        FinalizeVarWithDestructor(ExDecl, recordType);
10661      }
10662    }
10663  }
10664
10665  if (Invalid)
10666    ExDecl->setInvalidDecl();
10667
10668  return ExDecl;
10669}
10670
10671/// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch
10672/// handler.
10673Decl *Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) {
10674  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
10675  bool Invalid = D.isInvalidType();
10676
10677  // Check for unexpanded parameter packs.
10678  if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
10679                                      UPPC_ExceptionType)) {
10680    TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy,
10681                                             D.getIdentifierLoc());
10682    Invalid = true;
10683  }
10684
10685  IdentifierInfo *II = D.getIdentifier();
10686  if (NamedDecl *PrevDecl = LookupSingleName(S, II, D.getIdentifierLoc(),
10687                                             LookupOrdinaryName,
10688                                             ForRedeclaration)) {
10689    // The scope should be freshly made just for us. There is just no way
10690    // it contains any previous declaration.
10691    assert(!S->isDeclScope(PrevDecl));
10692    if (PrevDecl->isTemplateParameter()) {
10693      // Maybe we will complain about the shadowed template parameter.
10694      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
10695      PrevDecl = 0;
10696    }
10697  }
10698
10699  if (D.getCXXScopeSpec().isSet() && !Invalid) {
10700    Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator)
10701      << D.getCXXScopeSpec().getRange();
10702    Invalid = true;
10703  }
10704
10705  VarDecl *ExDecl = BuildExceptionDeclaration(S, TInfo,
10706                                              D.getLocStart(),
10707                                              D.getIdentifierLoc(),
10708                                              D.getIdentifier());
10709  if (Invalid)
10710    ExDecl->setInvalidDecl();
10711
10712  // Add the exception declaration into this scope.
10713  if (II)
10714    PushOnScopeChains(ExDecl, S);
10715  else
10716    CurContext->addDecl(ExDecl);
10717
10718  ProcessDeclAttributes(S, ExDecl, D);
10719  return ExDecl;
10720}
10721
10722Decl *Sema::ActOnStaticAssertDeclaration(SourceLocation StaticAssertLoc,
10723                                         Expr *AssertExpr,
10724                                         Expr *AssertMessageExpr,
10725                                         SourceLocation RParenLoc) {
10726  StringLiteral *AssertMessage = cast<StringLiteral>(AssertMessageExpr);
10727
10728  if (DiagnoseUnexpandedParameterPack(AssertExpr, UPPC_StaticAssertExpression))
10729    return 0;
10730
10731  return BuildStaticAssertDeclaration(StaticAssertLoc, AssertExpr,
10732                                      AssertMessage, RParenLoc, false);
10733}
10734
10735Decl *Sema::BuildStaticAssertDeclaration(SourceLocation StaticAssertLoc,
10736                                         Expr *AssertExpr,
10737                                         StringLiteral *AssertMessage,
10738                                         SourceLocation RParenLoc,
10739                                         bool Failed) {
10740  if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent() &&
10741      !Failed) {
10742    // In a static_assert-declaration, the constant-expression shall be a
10743    // constant expression that can be contextually converted to bool.
10744    ExprResult Converted = PerformContextuallyConvertToBool(AssertExpr);
10745    if (Converted.isInvalid())
10746      Failed = true;
10747
10748    llvm::APSInt Cond;
10749    if (!Failed && VerifyIntegerConstantExpression(Converted.get(), &Cond,
10750          diag::err_static_assert_expression_is_not_constant,
10751          /*AllowFold=*/false).isInvalid())
10752      Failed = true;
10753
10754    if (!Failed && !Cond) {
10755      SmallString<256> MsgBuffer;
10756      llvm::raw_svector_ostream Msg(MsgBuffer);
10757      AssertMessage->printPretty(Msg, 0, getPrintingPolicy());
10758      Diag(StaticAssertLoc, diag::err_static_assert_failed)
10759        << Msg.str() << AssertExpr->getSourceRange();
10760      Failed = true;
10761    }
10762  }
10763
10764  Decl *Decl = StaticAssertDecl::Create(Context, CurContext, StaticAssertLoc,
10765                                        AssertExpr, AssertMessage, RParenLoc,
10766                                        Failed);
10767
10768  CurContext->addDecl(Decl);
10769  return Decl;
10770}
10771
10772/// \brief Perform semantic analysis of the given friend type declaration.
10773///
10774/// \returns A friend declaration that.
10775FriendDecl *Sema::CheckFriendTypeDecl(SourceLocation LocStart,
10776                                      SourceLocation FriendLoc,
10777                                      TypeSourceInfo *TSInfo) {
10778  assert(TSInfo && "NULL TypeSourceInfo for friend type declaration");
10779
10780  QualType T = TSInfo->getType();
10781  SourceRange TypeRange = TSInfo->getTypeLoc().getLocalSourceRange();
10782
10783  // C++03 [class.friend]p2:
10784  //   An elaborated-type-specifier shall be used in a friend declaration
10785  //   for a class.*
10786  //
10787  //   * The class-key of the elaborated-type-specifier is required.
10788  if (!ActiveTemplateInstantiations.empty()) {
10789    // Do not complain about the form of friend template types during
10790    // template instantiation; we will already have complained when the
10791    // template was declared.
10792  } else {
10793    if (!T->isElaboratedTypeSpecifier()) {
10794      // If we evaluated the type to a record type, suggest putting
10795      // a tag in front.
10796      if (const RecordType *RT = T->getAs<RecordType>()) {
10797        RecordDecl *RD = RT->getDecl();
10798
10799        std::string InsertionText = std::string(" ") + RD->getKindName();
10800
10801        Diag(TypeRange.getBegin(),
10802             getLangOpts().CPlusPlus11 ?
10803               diag::warn_cxx98_compat_unelaborated_friend_type :
10804               diag::ext_unelaborated_friend_type)
10805          << (unsigned) RD->getTagKind()
10806          << T
10807          << FixItHint::CreateInsertion(PP.getLocForEndOfToken(FriendLoc),
10808                                        InsertionText);
10809      } else {
10810        Diag(FriendLoc,
10811             getLangOpts().CPlusPlus11 ?
10812               diag::warn_cxx98_compat_nonclass_type_friend :
10813               diag::ext_nonclass_type_friend)
10814          << T
10815          << TypeRange;
10816      }
10817    } else if (T->getAs<EnumType>()) {
10818      Diag(FriendLoc,
10819           getLangOpts().CPlusPlus11 ?
10820             diag::warn_cxx98_compat_enum_friend :
10821             diag::ext_enum_friend)
10822        << T
10823        << TypeRange;
10824    }
10825
10826    // C++11 [class.friend]p3:
10827    //   A friend declaration that does not declare a function shall have one
10828    //   of the following forms:
10829    //     friend elaborated-type-specifier ;
10830    //     friend simple-type-specifier ;
10831    //     friend typename-specifier ;
10832    if (getLangOpts().CPlusPlus11 && LocStart != FriendLoc)
10833      Diag(FriendLoc, diag::err_friend_not_first_in_declaration) << T;
10834  }
10835
10836  //   If the type specifier in a friend declaration designates a (possibly
10837  //   cv-qualified) class type, that class is declared as a friend; otherwise,
10838  //   the friend declaration is ignored.
10839  return FriendDecl::Create(Context, CurContext, LocStart, TSInfo, FriendLoc);
10840}
10841
10842/// Handle a friend tag declaration where the scope specifier was
10843/// templated.
10844Decl *Sema::ActOnTemplatedFriendTag(Scope *S, SourceLocation FriendLoc,
10845                                    unsigned TagSpec, SourceLocation TagLoc,
10846                                    CXXScopeSpec &SS,
10847                                    IdentifierInfo *Name,
10848                                    SourceLocation NameLoc,
10849                                    AttributeList *Attr,
10850                                    MultiTemplateParamsArg TempParamLists) {
10851  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
10852
10853  bool isExplicitSpecialization = false;
10854  bool Invalid = false;
10855
10856  if (TemplateParameterList *TemplateParams
10857        = MatchTemplateParametersToScopeSpecifier(TagLoc, NameLoc, SS,
10858                                                  TempParamLists.data(),
10859                                                  TempParamLists.size(),
10860                                                  /*friend*/ true,
10861                                                  isExplicitSpecialization,
10862                                                  Invalid)) {
10863    if (TemplateParams->size() > 0) {
10864      // This is a declaration of a class template.
10865      if (Invalid)
10866        return 0;
10867
10868      return CheckClassTemplate(S, TagSpec, TUK_Friend, TagLoc,
10869                                SS, Name, NameLoc, Attr,
10870                                TemplateParams, AS_public,
10871                                /*ModulePrivateLoc=*/SourceLocation(),
10872                                TempParamLists.size() - 1,
10873                                TempParamLists.data()).take();
10874    } else {
10875      // The "template<>" header is extraneous.
10876      Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
10877        << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
10878      isExplicitSpecialization = true;
10879    }
10880  }
10881
10882  if (Invalid) return 0;
10883
10884  bool isAllExplicitSpecializations = true;
10885  for (unsigned I = TempParamLists.size(); I-- > 0; ) {
10886    if (TempParamLists[I]->size()) {
10887      isAllExplicitSpecializations = false;
10888      break;
10889    }
10890  }
10891
10892  // FIXME: don't ignore attributes.
10893
10894  // If it's explicit specializations all the way down, just forget
10895  // about the template header and build an appropriate non-templated
10896  // friend.  TODO: for source fidelity, remember the headers.
10897  if (isAllExplicitSpecializations) {
10898    if (SS.isEmpty()) {
10899      bool Owned = false;
10900      bool IsDependent = false;
10901      return ActOnTag(S, TagSpec, TUK_Friend, TagLoc, SS, Name, NameLoc,
10902                      Attr, AS_public,
10903                      /*ModulePrivateLoc=*/SourceLocation(),
10904                      MultiTemplateParamsArg(), Owned, IsDependent,
10905                      /*ScopedEnumKWLoc=*/SourceLocation(),
10906                      /*ScopedEnumUsesClassTag=*/false,
10907                      /*UnderlyingType=*/TypeResult());
10908    }
10909
10910    NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
10911    ElaboratedTypeKeyword Keyword
10912      = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
10913    QualType T = CheckTypenameType(Keyword, TagLoc, QualifierLoc,
10914                                   *Name, NameLoc);
10915    if (T.isNull())
10916      return 0;
10917
10918    TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
10919    if (isa<DependentNameType>(T)) {
10920      DependentNameTypeLoc TL =
10921          TSI->getTypeLoc().castAs<DependentNameTypeLoc>();
10922      TL.setElaboratedKeywordLoc(TagLoc);
10923      TL.setQualifierLoc(QualifierLoc);
10924      TL.setNameLoc(NameLoc);
10925    } else {
10926      ElaboratedTypeLoc TL = TSI->getTypeLoc().castAs<ElaboratedTypeLoc>();
10927      TL.setElaboratedKeywordLoc(TagLoc);
10928      TL.setQualifierLoc(QualifierLoc);
10929      TL.getNamedTypeLoc().castAs<TypeSpecTypeLoc>().setNameLoc(NameLoc);
10930    }
10931
10932    FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
10933                                            TSI, FriendLoc, TempParamLists);
10934    Friend->setAccess(AS_public);
10935    CurContext->addDecl(Friend);
10936    return Friend;
10937  }
10938
10939  assert(SS.isNotEmpty() && "valid templated tag with no SS and no direct?");
10940
10941
10942
10943  // Handle the case of a templated-scope friend class.  e.g.
10944  //   template <class T> class A<T>::B;
10945  // FIXME: we don't support these right now.
10946  ElaboratedTypeKeyword ETK = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
10947  QualType T = Context.getDependentNameType(ETK, SS.getScopeRep(), Name);
10948  TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
10949  DependentNameTypeLoc TL = TSI->getTypeLoc().castAs<DependentNameTypeLoc>();
10950  TL.setElaboratedKeywordLoc(TagLoc);
10951  TL.setQualifierLoc(SS.getWithLocInContext(Context));
10952  TL.setNameLoc(NameLoc);
10953
10954  FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
10955                                          TSI, FriendLoc, TempParamLists);
10956  Friend->setAccess(AS_public);
10957  Friend->setUnsupportedFriend(true);
10958  CurContext->addDecl(Friend);
10959  return Friend;
10960}
10961
10962
10963/// Handle a friend type declaration.  This works in tandem with
10964/// ActOnTag.
10965///
10966/// Notes on friend class templates:
10967///
10968/// We generally treat friend class declarations as if they were
10969/// declaring a class.  So, for example, the elaborated type specifier
10970/// in a friend declaration is required to obey the restrictions of a
10971/// class-head (i.e. no typedefs in the scope chain), template
10972/// parameters are required to match up with simple template-ids, &c.
10973/// However, unlike when declaring a template specialization, it's
10974/// okay to refer to a template specialization without an empty
10975/// template parameter declaration, e.g.
10976///   friend class A<T>::B<unsigned>;
10977/// We permit this as a special case; if there are any template
10978/// parameters present at all, require proper matching, i.e.
10979///   template <> template \<class T> friend class A<int>::B;
10980Decl *Sema::ActOnFriendTypeDecl(Scope *S, const DeclSpec &DS,
10981                                MultiTemplateParamsArg TempParams) {
10982  SourceLocation Loc = DS.getLocStart();
10983
10984  assert(DS.isFriendSpecified());
10985  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
10986
10987  // Try to convert the decl specifier to a type.  This works for
10988  // friend templates because ActOnTag never produces a ClassTemplateDecl
10989  // for a TUK_Friend.
10990  Declarator TheDeclarator(DS, Declarator::MemberContext);
10991  TypeSourceInfo *TSI = GetTypeForDeclarator(TheDeclarator, S);
10992  QualType T = TSI->getType();
10993  if (TheDeclarator.isInvalidType())
10994    return 0;
10995
10996  if (DiagnoseUnexpandedParameterPack(Loc, TSI, UPPC_FriendDeclaration))
10997    return 0;
10998
10999  // This is definitely an error in C++98.  It's probably meant to
11000  // be forbidden in C++0x, too, but the specification is just
11001  // poorly written.
11002  //
11003  // The problem is with declarations like the following:
11004  //   template <T> friend A<T>::foo;
11005  // where deciding whether a class C is a friend or not now hinges
11006  // on whether there exists an instantiation of A that causes
11007  // 'foo' to equal C.  There are restrictions on class-heads
11008  // (which we declare (by fiat) elaborated friend declarations to
11009  // be) that makes this tractable.
11010  //
11011  // FIXME: handle "template <> friend class A<T>;", which
11012  // is possibly well-formed?  Who even knows?
11013  if (TempParams.size() && !T->isElaboratedTypeSpecifier()) {
11014    Diag(Loc, diag::err_tagless_friend_type_template)
11015      << DS.getSourceRange();
11016    return 0;
11017  }
11018
11019  // C++98 [class.friend]p1: A friend of a class is a function
11020  //   or class that is not a member of the class . . .
11021  // This is fixed in DR77, which just barely didn't make the C++03
11022  // deadline.  It's also a very silly restriction that seriously
11023  // affects inner classes and which nobody else seems to implement;
11024  // thus we never diagnose it, not even in -pedantic.
11025  //
11026  // But note that we could warn about it: it's always useless to
11027  // friend one of your own members (it's not, however, worthless to
11028  // friend a member of an arbitrary specialization of your template).
11029
11030  Decl *D;
11031  if (unsigned NumTempParamLists = TempParams.size())
11032    D = FriendTemplateDecl::Create(Context, CurContext, Loc,
11033                                   NumTempParamLists,
11034                                   TempParams.data(),
11035                                   TSI,
11036                                   DS.getFriendSpecLoc());
11037  else
11038    D = CheckFriendTypeDecl(Loc, DS.getFriendSpecLoc(), TSI);
11039
11040  if (!D)
11041    return 0;
11042
11043  D->setAccess(AS_public);
11044  CurContext->addDecl(D);
11045
11046  return D;
11047}
11048
11049NamedDecl *Sema::ActOnFriendFunctionDecl(Scope *S, Declarator &D,
11050                                        MultiTemplateParamsArg TemplateParams) {
11051  const DeclSpec &DS = D.getDeclSpec();
11052
11053  assert(DS.isFriendSpecified());
11054  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
11055
11056  SourceLocation Loc = D.getIdentifierLoc();
11057  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
11058
11059  // C++ [class.friend]p1
11060  //   A friend of a class is a function or class....
11061  // Note that this sees through typedefs, which is intended.
11062  // It *doesn't* see through dependent types, which is correct
11063  // according to [temp.arg.type]p3:
11064  //   If a declaration acquires a function type through a
11065  //   type dependent on a template-parameter and this causes
11066  //   a declaration that does not use the syntactic form of a
11067  //   function declarator to have a function type, the program
11068  //   is ill-formed.
11069  if (!TInfo->getType()->isFunctionType()) {
11070    Diag(Loc, diag::err_unexpected_friend);
11071
11072    // It might be worthwhile to try to recover by creating an
11073    // appropriate declaration.
11074    return 0;
11075  }
11076
11077  // C++ [namespace.memdef]p3
11078  //  - If a friend declaration in a non-local class first declares a
11079  //    class or function, the friend class or function is a member
11080  //    of the innermost enclosing namespace.
11081  //  - The name of the friend is not found by simple name lookup
11082  //    until a matching declaration is provided in that namespace
11083  //    scope (either before or after the class declaration granting
11084  //    friendship).
11085  //  - If a friend function is called, its name may be found by the
11086  //    name lookup that considers functions from namespaces and
11087  //    classes associated with the types of the function arguments.
11088  //  - When looking for a prior declaration of a class or a function
11089  //    declared as a friend, scopes outside the innermost enclosing
11090  //    namespace scope are not considered.
11091
11092  CXXScopeSpec &SS = D.getCXXScopeSpec();
11093  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
11094  DeclarationName Name = NameInfo.getName();
11095  assert(Name);
11096
11097  // Check for unexpanded parameter packs.
11098  if (DiagnoseUnexpandedParameterPack(Loc, TInfo, UPPC_FriendDeclaration) ||
11099      DiagnoseUnexpandedParameterPack(NameInfo, UPPC_FriendDeclaration) ||
11100      DiagnoseUnexpandedParameterPack(SS, UPPC_FriendDeclaration))
11101    return 0;
11102
11103  // The context we found the declaration in, or in which we should
11104  // create the declaration.
11105  DeclContext *DC;
11106  Scope *DCScope = S;
11107  LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
11108                        ForRedeclaration);
11109
11110  // FIXME: there are different rules in local classes
11111
11112  // There are four cases here.
11113  //   - There's no scope specifier, in which case we just go to the
11114  //     appropriate scope and look for a function or function template
11115  //     there as appropriate.
11116  // Recover from invalid scope qualifiers as if they just weren't there.
11117  if (SS.isInvalid() || !SS.isSet()) {
11118    // C++0x [namespace.memdef]p3:
11119    //   If the name in a friend declaration is neither qualified nor
11120    //   a template-id and the declaration is a function or an
11121    //   elaborated-type-specifier, the lookup to determine whether
11122    //   the entity has been previously declared shall not consider
11123    //   any scopes outside the innermost enclosing namespace.
11124    // C++0x [class.friend]p11:
11125    //   If a friend declaration appears in a local class and the name
11126    //   specified is an unqualified name, a prior declaration is
11127    //   looked up without considering scopes that are outside the
11128    //   innermost enclosing non-class scope. For a friend function
11129    //   declaration, if there is no prior declaration, the program is
11130    //   ill-formed.
11131    bool isLocal = cast<CXXRecordDecl>(CurContext)->isLocalClass();
11132    bool isTemplateId = D.getName().getKind() == UnqualifiedId::IK_TemplateId;
11133
11134    // Find the appropriate context according to the above.
11135    DC = CurContext;
11136
11137    // Skip class contexts.  If someone can cite chapter and verse
11138    // for this behavior, that would be nice --- it's what GCC and
11139    // EDG do, and it seems like a reasonable intent, but the spec
11140    // really only says that checks for unqualified existing
11141    // declarations should stop at the nearest enclosing namespace,
11142    // not that they should only consider the nearest enclosing
11143    // namespace.
11144    while (DC->isRecord())
11145      DC = DC->getParent();
11146
11147    DeclContext *LookupDC = DC;
11148    while (LookupDC->isTransparentContext())
11149      LookupDC = LookupDC->getParent();
11150
11151    while (true) {
11152      LookupQualifiedName(Previous, LookupDC);
11153
11154      // TODO: decide what we think about using declarations.
11155      if (isLocal)
11156        break;
11157
11158      if (!Previous.empty()) {
11159        DC = LookupDC;
11160        break;
11161      }
11162
11163      if (isTemplateId) {
11164        if (isa<TranslationUnitDecl>(LookupDC)) break;
11165      } else {
11166        if (LookupDC->isFileContext()) break;
11167      }
11168      LookupDC = LookupDC->getParent();
11169    }
11170
11171    DCScope = getScopeForDeclContext(S, DC);
11172
11173    // C++ [class.friend]p6:
11174    //   A function can be defined in a friend declaration of a class if and
11175    //   only if the class is a non-local class (9.8), the function name is
11176    //   unqualified, and the function has namespace scope.
11177    if (isLocal && D.isFunctionDefinition()) {
11178      Diag(NameInfo.getBeginLoc(), diag::err_friend_def_in_local_class);
11179    }
11180
11181  //   - There's a non-dependent scope specifier, in which case we
11182  //     compute it and do a previous lookup there for a function
11183  //     or function template.
11184  } else if (!SS.getScopeRep()->isDependent()) {
11185    DC = computeDeclContext(SS);
11186    if (!DC) return 0;
11187
11188    if (RequireCompleteDeclContext(SS, DC)) return 0;
11189
11190    LookupQualifiedName(Previous, DC);
11191
11192    // Ignore things found implicitly in the wrong scope.
11193    // TODO: better diagnostics for this case.  Suggesting the right
11194    // qualified scope would be nice...
11195    LookupResult::Filter F = Previous.makeFilter();
11196    while (F.hasNext()) {
11197      NamedDecl *D = F.next();
11198      if (!DC->InEnclosingNamespaceSetOf(
11199              D->getDeclContext()->getRedeclContext()))
11200        F.erase();
11201    }
11202    F.done();
11203
11204    if (Previous.empty()) {
11205      D.setInvalidType();
11206      Diag(Loc, diag::err_qualified_friend_not_found)
11207          << Name << TInfo->getType();
11208      return 0;
11209    }
11210
11211    // C++ [class.friend]p1: A friend of a class is a function or
11212    //   class that is not a member of the class . . .
11213    if (DC->Equals(CurContext))
11214      Diag(DS.getFriendSpecLoc(),
11215           getLangOpts().CPlusPlus11 ?
11216             diag::warn_cxx98_compat_friend_is_member :
11217             diag::err_friend_is_member);
11218
11219    if (D.isFunctionDefinition()) {
11220      // C++ [class.friend]p6:
11221      //   A function can be defined in a friend declaration of a class if and
11222      //   only if the class is a non-local class (9.8), the function name is
11223      //   unqualified, and the function has namespace scope.
11224      SemaDiagnosticBuilder DB
11225        = Diag(SS.getRange().getBegin(), diag::err_qualified_friend_def);
11226
11227      DB << SS.getScopeRep();
11228      if (DC->isFileContext())
11229        DB << FixItHint::CreateRemoval(SS.getRange());
11230      SS.clear();
11231    }
11232
11233  //   - There's a scope specifier that does not match any template
11234  //     parameter lists, in which case we use some arbitrary context,
11235  //     create a method or method template, and wait for instantiation.
11236  //   - There's a scope specifier that does match some template
11237  //     parameter lists, which we don't handle right now.
11238  } else {
11239    if (D.isFunctionDefinition()) {
11240      // C++ [class.friend]p6:
11241      //   A function can be defined in a friend declaration of a class if and
11242      //   only if the class is a non-local class (9.8), the function name is
11243      //   unqualified, and the function has namespace scope.
11244      Diag(SS.getRange().getBegin(), diag::err_qualified_friend_def)
11245        << SS.getScopeRep();
11246    }
11247
11248    DC = CurContext;
11249    assert(isa<CXXRecordDecl>(DC) && "friend declaration not in class?");
11250  }
11251
11252  if (!DC->isRecord()) {
11253    // This implies that it has to be an operator or function.
11254    if (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ||
11255        D.getName().getKind() == UnqualifiedId::IK_DestructorName ||
11256        D.getName().getKind() == UnqualifiedId::IK_ConversionFunctionId) {
11257      Diag(Loc, diag::err_introducing_special_friend) <<
11258        (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ? 0 :
11259         D.getName().getKind() == UnqualifiedId::IK_DestructorName ? 1 : 2);
11260      return 0;
11261    }
11262  }
11263
11264  // FIXME: This is an egregious hack to cope with cases where the scope stack
11265  // does not contain the declaration context, i.e., in an out-of-line
11266  // definition of a class.
11267  Scope FakeDCScope(S, Scope::DeclScope, Diags);
11268  if (!DCScope) {
11269    FakeDCScope.setEntity(DC);
11270    DCScope = &FakeDCScope;
11271  }
11272
11273  bool AddToScope = true;
11274  NamedDecl *ND = ActOnFunctionDeclarator(DCScope, D, DC, TInfo, Previous,
11275                                          TemplateParams, AddToScope);
11276  if (!ND) return 0;
11277
11278  assert(ND->getDeclContext() == DC);
11279  assert(ND->getLexicalDeclContext() == CurContext);
11280
11281  // Add the function declaration to the appropriate lookup tables,
11282  // adjusting the redeclarations list as necessary.  We don't
11283  // want to do this yet if the friending class is dependent.
11284  //
11285  // Also update the scope-based lookup if the target context's
11286  // lookup context is in lexical scope.
11287  if (!CurContext->isDependentContext()) {
11288    DC = DC->getRedeclContext();
11289    DC->makeDeclVisibleInContext(ND);
11290    if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
11291      PushOnScopeChains(ND, EnclosingScope, /*AddToContext=*/ false);
11292  }
11293
11294  FriendDecl *FrD = FriendDecl::Create(Context, CurContext,
11295                                       D.getIdentifierLoc(), ND,
11296                                       DS.getFriendSpecLoc());
11297  FrD->setAccess(AS_public);
11298  CurContext->addDecl(FrD);
11299
11300  if (ND->isInvalidDecl()) {
11301    FrD->setInvalidDecl();
11302  } else {
11303    if (DC->isRecord()) CheckFriendAccess(ND);
11304
11305    FunctionDecl *FD;
11306    if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND))
11307      FD = FTD->getTemplatedDecl();
11308    else
11309      FD = cast<FunctionDecl>(ND);
11310
11311    // Mark templated-scope function declarations as unsupported.
11312    if (FD->getNumTemplateParameterLists())
11313      FrD->setUnsupportedFriend(true);
11314  }
11315
11316  return ND;
11317}
11318
11319void Sema::SetDeclDeleted(Decl *Dcl, SourceLocation DelLoc) {
11320  AdjustDeclIfTemplate(Dcl);
11321
11322  FunctionDecl *Fn = dyn_cast_or_null<FunctionDecl>(Dcl);
11323  if (!Fn) {
11324    Diag(DelLoc, diag::err_deleted_non_function);
11325    return;
11326  }
11327
11328  if (const FunctionDecl *Prev = Fn->getPreviousDecl()) {
11329    // Don't consider the implicit declaration we generate for explicit
11330    // specializations. FIXME: Do not generate these implicit declarations.
11331    if ((Prev->getTemplateSpecializationKind() != TSK_ExplicitSpecialization
11332        || Prev->getPreviousDecl()) && !Prev->isDefined()) {
11333      Diag(DelLoc, diag::err_deleted_decl_not_first);
11334      Diag(Prev->getLocation(), diag::note_previous_declaration);
11335    }
11336    // If the declaration wasn't the first, we delete the function anyway for
11337    // recovery.
11338    Fn = Fn->getCanonicalDecl();
11339  }
11340
11341  if (Fn->isDeleted())
11342    return;
11343
11344  // See if we're deleting a function which is already known to override a
11345  // non-deleted virtual function.
11346  if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Fn)) {
11347    bool IssuedDiagnostic = false;
11348    for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
11349                                        E = MD->end_overridden_methods();
11350         I != E; ++I) {
11351      if (!(*MD->begin_overridden_methods())->isDeleted()) {
11352        if (!IssuedDiagnostic) {
11353          Diag(DelLoc, diag::err_deleted_override) << MD->getDeclName();
11354          IssuedDiagnostic = true;
11355        }
11356        Diag((*I)->getLocation(), diag::note_overridden_virtual_function);
11357      }
11358    }
11359  }
11360
11361  Fn->setDeletedAsWritten();
11362}
11363
11364void Sema::SetDeclDefaulted(Decl *Dcl, SourceLocation DefaultLoc) {
11365  CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(Dcl);
11366
11367  if (MD) {
11368    if (MD->getParent()->isDependentType()) {
11369      MD->setDefaulted();
11370      MD->setExplicitlyDefaulted();
11371      return;
11372    }
11373
11374    CXXSpecialMember Member = getSpecialMember(MD);
11375    if (Member == CXXInvalid) {
11376      Diag(DefaultLoc, diag::err_default_special_members);
11377      return;
11378    }
11379
11380    MD->setDefaulted();
11381    MD->setExplicitlyDefaulted();
11382
11383    // If this definition appears within the record, do the checking when
11384    // the record is complete.
11385    const FunctionDecl *Primary = MD;
11386    if (const FunctionDecl *Pattern = MD->getTemplateInstantiationPattern())
11387      // Find the uninstantiated declaration that actually had the '= default'
11388      // on it.
11389      Pattern->isDefined(Primary);
11390
11391    // If the method was defaulted on its first declaration, we will have
11392    // already performed the checking in CheckCompletedCXXClass. Such a
11393    // declaration doesn't trigger an implicit definition.
11394    if (Primary == Primary->getCanonicalDecl())
11395      return;
11396
11397    CheckExplicitlyDefaultedSpecialMember(MD);
11398
11399    // The exception specification is needed because we are defining the
11400    // function.
11401    ResolveExceptionSpec(DefaultLoc,
11402                         MD->getType()->castAs<FunctionProtoType>());
11403
11404    switch (Member) {
11405    case CXXDefaultConstructor: {
11406      CXXConstructorDecl *CD = cast<CXXConstructorDecl>(MD);
11407      if (!CD->isInvalidDecl())
11408        DefineImplicitDefaultConstructor(DefaultLoc, CD);
11409      break;
11410    }
11411
11412    case CXXCopyConstructor: {
11413      CXXConstructorDecl *CD = cast<CXXConstructorDecl>(MD);
11414      if (!CD->isInvalidDecl())
11415        DefineImplicitCopyConstructor(DefaultLoc, CD);
11416      break;
11417    }
11418
11419    case CXXCopyAssignment: {
11420      if (!MD->isInvalidDecl())
11421        DefineImplicitCopyAssignment(DefaultLoc, MD);
11422      break;
11423    }
11424
11425    case CXXDestructor: {
11426      CXXDestructorDecl *DD = cast<CXXDestructorDecl>(MD);
11427      if (!DD->isInvalidDecl())
11428        DefineImplicitDestructor(DefaultLoc, DD);
11429      break;
11430    }
11431
11432    case CXXMoveConstructor: {
11433      CXXConstructorDecl *CD = cast<CXXConstructorDecl>(MD);
11434      if (!CD->isInvalidDecl())
11435        DefineImplicitMoveConstructor(DefaultLoc, CD);
11436      break;
11437    }
11438
11439    case CXXMoveAssignment: {
11440      if (!MD->isInvalidDecl())
11441        DefineImplicitMoveAssignment(DefaultLoc, MD);
11442      break;
11443    }
11444
11445    case CXXInvalid:
11446      llvm_unreachable("Invalid special member.");
11447    }
11448  } else {
11449    Diag(DefaultLoc, diag::err_default_special_members);
11450  }
11451}
11452
11453static void SearchForReturnInStmt(Sema &Self, Stmt *S) {
11454  for (Stmt::child_range CI = S->children(); CI; ++CI) {
11455    Stmt *SubStmt = *CI;
11456    if (!SubStmt)
11457      continue;
11458    if (isa<ReturnStmt>(SubStmt))
11459      Self.Diag(SubStmt->getLocStart(),
11460           diag::err_return_in_constructor_handler);
11461    if (!isa<Expr>(SubStmt))
11462      SearchForReturnInStmt(Self, SubStmt);
11463  }
11464}
11465
11466void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) {
11467  for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) {
11468    CXXCatchStmt *Handler = TryBlock->getHandler(I);
11469    SearchForReturnInStmt(*this, Handler);
11470  }
11471}
11472
11473bool Sema::CheckOverridingFunctionAttributes(const CXXMethodDecl *New,
11474                                             const CXXMethodDecl *Old) {
11475  const FunctionType *NewFT = New->getType()->getAs<FunctionType>();
11476  const FunctionType *OldFT = Old->getType()->getAs<FunctionType>();
11477
11478  CallingConv NewCC = NewFT->getCallConv(), OldCC = OldFT->getCallConv();
11479
11480  // If the calling conventions match, everything is fine
11481  if (NewCC == OldCC)
11482    return false;
11483
11484  // If either of the calling conventions are set to "default", we need to pick
11485  // something more sensible based on the target. This supports code where the
11486  // one method explicitly sets thiscall, and another has no explicit calling
11487  // convention.
11488  CallingConv Default =
11489    Context.getTargetInfo().getDefaultCallingConv(TargetInfo::CCMT_Member);
11490  if (NewCC == CC_Default)
11491    NewCC = Default;
11492  if (OldCC == CC_Default)
11493    OldCC = Default;
11494
11495  // If the calling conventions still don't match, then report the error
11496  if (NewCC != OldCC) {
11497    Diag(New->getLocation(),
11498         diag::err_conflicting_overriding_cc_attributes)
11499      << New->getDeclName() << New->getType() << Old->getType();
11500    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
11501    return true;
11502  }
11503
11504  return false;
11505}
11506
11507bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New,
11508                                             const CXXMethodDecl *Old) {
11509  QualType NewTy = New->getType()->getAs<FunctionType>()->getResultType();
11510  QualType OldTy = Old->getType()->getAs<FunctionType>()->getResultType();
11511
11512  if (Context.hasSameType(NewTy, OldTy) ||
11513      NewTy->isDependentType() || OldTy->isDependentType())
11514    return false;
11515
11516  // Check if the return types are covariant
11517  QualType NewClassTy, OldClassTy;
11518
11519  /// Both types must be pointers or references to classes.
11520  if (const PointerType *NewPT = NewTy->getAs<PointerType>()) {
11521    if (const PointerType *OldPT = OldTy->getAs<PointerType>()) {
11522      NewClassTy = NewPT->getPointeeType();
11523      OldClassTy = OldPT->getPointeeType();
11524    }
11525  } else if (const ReferenceType *NewRT = NewTy->getAs<ReferenceType>()) {
11526    if (const ReferenceType *OldRT = OldTy->getAs<ReferenceType>()) {
11527      if (NewRT->getTypeClass() == OldRT->getTypeClass()) {
11528        NewClassTy = NewRT->getPointeeType();
11529        OldClassTy = OldRT->getPointeeType();
11530      }
11531    }
11532  }
11533
11534  // The return types aren't either both pointers or references to a class type.
11535  if (NewClassTy.isNull()) {
11536    Diag(New->getLocation(),
11537         diag::err_different_return_type_for_overriding_virtual_function)
11538      << New->getDeclName() << NewTy << OldTy;
11539    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
11540
11541    return true;
11542  }
11543
11544  // C++ [class.virtual]p6:
11545  //   If the return type of D::f differs from the return type of B::f, the
11546  //   class type in the return type of D::f shall be complete at the point of
11547  //   declaration of D::f or shall be the class type D.
11548  if (const RecordType *RT = NewClassTy->getAs<RecordType>()) {
11549    if (!RT->isBeingDefined() &&
11550        RequireCompleteType(New->getLocation(), NewClassTy,
11551                            diag::err_covariant_return_incomplete,
11552                            New->getDeclName()))
11553    return true;
11554  }
11555
11556  if (!Context.hasSameUnqualifiedType(NewClassTy, OldClassTy)) {
11557    // Check if the new class derives from the old class.
11558    if (!IsDerivedFrom(NewClassTy, OldClassTy)) {
11559      Diag(New->getLocation(),
11560           diag::err_covariant_return_not_derived)
11561      << New->getDeclName() << NewTy << OldTy;
11562      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
11563      return true;
11564    }
11565
11566    // Check if we the conversion from derived to base is valid.
11567    if (CheckDerivedToBaseConversion(NewClassTy, OldClassTy,
11568                    diag::err_covariant_return_inaccessible_base,
11569                    diag::err_covariant_return_ambiguous_derived_to_base_conv,
11570                    // FIXME: Should this point to the return type?
11571                    New->getLocation(), SourceRange(), New->getDeclName(), 0)) {
11572      // FIXME: this note won't trigger for delayed access control
11573      // diagnostics, and it's impossible to get an undelayed error
11574      // here from access control during the original parse because
11575      // the ParsingDeclSpec/ParsingDeclarator are still in scope.
11576      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
11577      return true;
11578    }
11579  }
11580
11581  // The qualifiers of the return types must be the same.
11582  if (NewTy.getLocalCVRQualifiers() != OldTy.getLocalCVRQualifiers()) {
11583    Diag(New->getLocation(),
11584         diag::err_covariant_return_type_different_qualifications)
11585    << New->getDeclName() << NewTy << OldTy;
11586    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
11587    return true;
11588  };
11589
11590
11591  // The new class type must have the same or less qualifiers as the old type.
11592  if (NewClassTy.isMoreQualifiedThan(OldClassTy)) {
11593    Diag(New->getLocation(),
11594         diag::err_covariant_return_type_class_type_more_qualified)
11595    << New->getDeclName() << NewTy << OldTy;
11596    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
11597    return true;
11598  };
11599
11600  return false;
11601}
11602
11603/// \brief Mark the given method pure.
11604///
11605/// \param Method the method to be marked pure.
11606///
11607/// \param InitRange the source range that covers the "0" initializer.
11608bool Sema::CheckPureMethod(CXXMethodDecl *Method, SourceRange InitRange) {
11609  SourceLocation EndLoc = InitRange.getEnd();
11610  if (EndLoc.isValid())
11611    Method->setRangeEnd(EndLoc);
11612
11613  if (Method->isVirtual() || Method->getParent()->isDependentContext()) {
11614    Method->setPure();
11615    return false;
11616  }
11617
11618  if (!Method->isInvalidDecl())
11619    Diag(Method->getLocation(), diag::err_non_virtual_pure)
11620      << Method->getDeclName() << InitRange;
11621  return true;
11622}
11623
11624/// \brief Determine whether the given declaration is a static data member.
11625static bool isStaticDataMember(Decl *D) {
11626  VarDecl *Var = dyn_cast_or_null<VarDecl>(D);
11627  if (!Var)
11628    return false;
11629
11630  return Var->isStaticDataMember();
11631}
11632/// ActOnCXXEnterDeclInitializer - Invoked when we are about to parse
11633/// an initializer for the out-of-line declaration 'Dcl'.  The scope
11634/// is a fresh scope pushed for just this purpose.
11635///
11636/// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a
11637/// static data member of class X, names should be looked up in the scope of
11638/// class X.
11639void Sema::ActOnCXXEnterDeclInitializer(Scope *S, Decl *D) {
11640  // If there is no declaration, there was an error parsing it.
11641  if (D == 0 || D->isInvalidDecl()) return;
11642
11643  // We should only get called for declarations with scope specifiers, like:
11644  //   int foo::bar;
11645  assert(D->isOutOfLine());
11646  EnterDeclaratorContext(S, D->getDeclContext());
11647
11648  // If we are parsing the initializer for a static data member, push a
11649  // new expression evaluation context that is associated with this static
11650  // data member.
11651  if (isStaticDataMember(D))
11652    PushExpressionEvaluationContext(PotentiallyEvaluated, D);
11653}
11654
11655/// ActOnCXXExitDeclInitializer - Invoked after we are finished parsing an
11656/// initializer for the out-of-line declaration 'D'.
11657void Sema::ActOnCXXExitDeclInitializer(Scope *S, Decl *D) {
11658  // If there is no declaration, there was an error parsing it.
11659  if (D == 0 || D->isInvalidDecl()) return;
11660
11661  if (isStaticDataMember(D))
11662    PopExpressionEvaluationContext();
11663
11664  assert(D->isOutOfLine());
11665  ExitDeclaratorContext(S);
11666}
11667
11668/// ActOnCXXConditionDeclarationExpr - Parsed a condition declaration of a
11669/// C++ if/switch/while/for statement.
11670/// e.g: "if (int x = f()) {...}"
11671DeclResult Sema::ActOnCXXConditionDeclaration(Scope *S, Declarator &D) {
11672  // C++ 6.4p2:
11673  // The declarator shall not specify a function or an array.
11674  // The type-specifier-seq shall not contain typedef and shall not declare a
11675  // new class or enumeration.
11676  assert(D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
11677         "Parser allowed 'typedef' as storage class of condition decl.");
11678
11679  Decl *Dcl = ActOnDeclarator(S, D);
11680  if (!Dcl)
11681    return true;
11682
11683  if (isa<FunctionDecl>(Dcl)) { // The declarator shall not specify a function.
11684    Diag(Dcl->getLocation(), diag::err_invalid_use_of_function_type)
11685      << D.getSourceRange();
11686    return true;
11687  }
11688
11689  return Dcl;
11690}
11691
11692void Sema::LoadExternalVTableUses() {
11693  if (!ExternalSource)
11694    return;
11695
11696  SmallVector<ExternalVTableUse, 4> VTables;
11697  ExternalSource->ReadUsedVTables(VTables);
11698  SmallVector<VTableUse, 4> NewUses;
11699  for (unsigned I = 0, N = VTables.size(); I != N; ++I) {
11700    llvm::DenseMap<CXXRecordDecl *, bool>::iterator Pos
11701      = VTablesUsed.find(VTables[I].Record);
11702    // Even if a definition wasn't required before, it may be required now.
11703    if (Pos != VTablesUsed.end()) {
11704      if (!Pos->second && VTables[I].DefinitionRequired)
11705        Pos->second = true;
11706      continue;
11707    }
11708
11709    VTablesUsed[VTables[I].Record] = VTables[I].DefinitionRequired;
11710    NewUses.push_back(VTableUse(VTables[I].Record, VTables[I].Location));
11711  }
11712
11713  VTableUses.insert(VTableUses.begin(), NewUses.begin(), NewUses.end());
11714}
11715
11716void Sema::MarkVTableUsed(SourceLocation Loc, CXXRecordDecl *Class,
11717                          bool DefinitionRequired) {
11718  // Ignore any vtable uses in unevaluated operands or for classes that do
11719  // not have a vtable.
11720  if (!Class->isDynamicClass() || Class->isDependentContext() ||
11721      CurContext->isDependentContext() ||
11722      ExprEvalContexts.back().Context == Unevaluated)
11723    return;
11724
11725  // Try to insert this class into the map.
11726  LoadExternalVTableUses();
11727  Class = cast<CXXRecordDecl>(Class->getCanonicalDecl());
11728  std::pair<llvm::DenseMap<CXXRecordDecl *, bool>::iterator, bool>
11729    Pos = VTablesUsed.insert(std::make_pair(Class, DefinitionRequired));
11730  if (!Pos.second) {
11731    // If we already had an entry, check to see if we are promoting this vtable
11732    // to required a definition. If so, we need to reappend to the VTableUses
11733    // list, since we may have already processed the first entry.
11734    if (DefinitionRequired && !Pos.first->second) {
11735      Pos.first->second = true;
11736    } else {
11737      // Otherwise, we can early exit.
11738      return;
11739    }
11740  }
11741
11742  // Local classes need to have their virtual members marked
11743  // immediately. For all other classes, we mark their virtual members
11744  // at the end of the translation unit.
11745  if (Class->isLocalClass())
11746    MarkVirtualMembersReferenced(Loc, Class);
11747  else
11748    VTableUses.push_back(std::make_pair(Class, Loc));
11749}
11750
11751bool Sema::DefineUsedVTables() {
11752  LoadExternalVTableUses();
11753  if (VTableUses.empty())
11754    return false;
11755
11756  // Note: The VTableUses vector could grow as a result of marking
11757  // the members of a class as "used", so we check the size each
11758  // time through the loop and prefer indices (which are stable) to
11759  // iterators (which are not).
11760  bool DefinedAnything = false;
11761  for (unsigned I = 0; I != VTableUses.size(); ++I) {
11762    CXXRecordDecl *Class = VTableUses[I].first->getDefinition();
11763    if (!Class)
11764      continue;
11765
11766    SourceLocation Loc = VTableUses[I].second;
11767
11768    bool DefineVTable = true;
11769
11770    // If this class has a key function, but that key function is
11771    // defined in another translation unit, we don't need to emit the
11772    // vtable even though we're using it.
11773    const CXXMethodDecl *KeyFunction = Context.getCurrentKeyFunction(Class);
11774    if (KeyFunction && !KeyFunction->hasBody()) {
11775      switch (KeyFunction->getTemplateSpecializationKind()) {
11776      case TSK_Undeclared:
11777      case TSK_ExplicitSpecialization:
11778      case TSK_ExplicitInstantiationDeclaration:
11779        // The key function is in another translation unit.
11780        DefineVTable = false;
11781        break;
11782
11783      case TSK_ExplicitInstantiationDefinition:
11784      case TSK_ImplicitInstantiation:
11785        // We will be instantiating the key function.
11786        break;
11787      }
11788    } else if (!KeyFunction) {
11789      // If we have a class with no key function that is the subject
11790      // of an explicit instantiation declaration, suppress the
11791      // vtable; it will live with the explicit instantiation
11792      // definition.
11793      bool IsExplicitInstantiationDeclaration
11794        = Class->getTemplateSpecializationKind()
11795                                      == TSK_ExplicitInstantiationDeclaration;
11796      for (TagDecl::redecl_iterator R = Class->redecls_begin(),
11797                                 REnd = Class->redecls_end();
11798           R != REnd; ++R) {
11799        TemplateSpecializationKind TSK
11800          = cast<CXXRecordDecl>(*R)->getTemplateSpecializationKind();
11801        if (TSK == TSK_ExplicitInstantiationDeclaration)
11802          IsExplicitInstantiationDeclaration = true;
11803        else if (TSK == TSK_ExplicitInstantiationDefinition) {
11804          IsExplicitInstantiationDeclaration = false;
11805          break;
11806        }
11807      }
11808
11809      if (IsExplicitInstantiationDeclaration)
11810        DefineVTable = false;
11811    }
11812
11813    // The exception specifications for all virtual members may be needed even
11814    // if we are not providing an authoritative form of the vtable in this TU.
11815    // We may choose to emit it available_externally anyway.
11816    if (!DefineVTable) {
11817      MarkVirtualMemberExceptionSpecsNeeded(Loc, Class);
11818      continue;
11819    }
11820
11821    // Mark all of the virtual members of this class as referenced, so
11822    // that we can build a vtable. Then, tell the AST consumer that a
11823    // vtable for this class is required.
11824    DefinedAnything = true;
11825    MarkVirtualMembersReferenced(Loc, Class);
11826    CXXRecordDecl *Canonical = cast<CXXRecordDecl>(Class->getCanonicalDecl());
11827    Consumer.HandleVTable(Class, VTablesUsed[Canonical]);
11828
11829    // Optionally warn if we're emitting a weak vtable.
11830    if (Class->hasExternalLinkage() &&
11831        Class->getTemplateSpecializationKind() != TSK_ImplicitInstantiation) {
11832      const FunctionDecl *KeyFunctionDef = 0;
11833      if (!KeyFunction ||
11834          (KeyFunction->hasBody(KeyFunctionDef) &&
11835           KeyFunctionDef->isInlined()))
11836        Diag(Class->getLocation(), Class->getTemplateSpecializationKind() ==
11837             TSK_ExplicitInstantiationDefinition
11838             ? diag::warn_weak_template_vtable : diag::warn_weak_vtable)
11839          << Class;
11840    }
11841  }
11842  VTableUses.clear();
11843
11844  return DefinedAnything;
11845}
11846
11847void Sema::MarkVirtualMemberExceptionSpecsNeeded(SourceLocation Loc,
11848                                                 const CXXRecordDecl *RD) {
11849  for (CXXRecordDecl::method_iterator I = RD->method_begin(),
11850                                      E = RD->method_end(); I != E; ++I)
11851    if ((*I)->isVirtual() && !(*I)->isPure())
11852      ResolveExceptionSpec(Loc, (*I)->getType()->castAs<FunctionProtoType>());
11853}
11854
11855void Sema::MarkVirtualMembersReferenced(SourceLocation Loc,
11856                                        const CXXRecordDecl *RD) {
11857  // Mark all functions which will appear in RD's vtable as used.
11858  CXXFinalOverriderMap FinalOverriders;
11859  RD->getFinalOverriders(FinalOverriders);
11860  for (CXXFinalOverriderMap::const_iterator I = FinalOverriders.begin(),
11861                                            E = FinalOverriders.end();
11862       I != E; ++I) {
11863    for (OverridingMethods::const_iterator OI = I->second.begin(),
11864                                           OE = I->second.end();
11865         OI != OE; ++OI) {
11866      assert(OI->second.size() > 0 && "no final overrider");
11867      CXXMethodDecl *Overrider = OI->second.front().Method;
11868
11869      // C++ [basic.def.odr]p2:
11870      //   [...] A virtual member function is used if it is not pure. [...]
11871      if (!Overrider->isPure())
11872        MarkFunctionReferenced(Loc, Overrider);
11873    }
11874  }
11875
11876  // Only classes that have virtual bases need a VTT.
11877  if (RD->getNumVBases() == 0)
11878    return;
11879
11880  for (CXXRecordDecl::base_class_const_iterator i = RD->bases_begin(),
11881           e = RD->bases_end(); i != e; ++i) {
11882    const CXXRecordDecl *Base =
11883        cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
11884    if (Base->getNumVBases() == 0)
11885      continue;
11886    MarkVirtualMembersReferenced(Loc, Base);
11887  }
11888}
11889
11890/// SetIvarInitializers - This routine builds initialization ASTs for the
11891/// Objective-C implementation whose ivars need be initialized.
11892void Sema::SetIvarInitializers(ObjCImplementationDecl *ObjCImplementation) {
11893  if (!getLangOpts().CPlusPlus)
11894    return;
11895  if (ObjCInterfaceDecl *OID = ObjCImplementation->getClassInterface()) {
11896    SmallVector<ObjCIvarDecl*, 8> ivars;
11897    CollectIvarsToConstructOrDestruct(OID, ivars);
11898    if (ivars.empty())
11899      return;
11900    SmallVector<CXXCtorInitializer*, 32> AllToInit;
11901    for (unsigned i = 0; i < ivars.size(); i++) {
11902      FieldDecl *Field = ivars[i];
11903      if (Field->isInvalidDecl())
11904        continue;
11905
11906      CXXCtorInitializer *Member;
11907      InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field);
11908      InitializationKind InitKind =
11909        InitializationKind::CreateDefault(ObjCImplementation->getLocation());
11910
11911      InitializationSequence InitSeq(*this, InitEntity, InitKind, 0, 0);
11912      ExprResult MemberInit =
11913        InitSeq.Perform(*this, InitEntity, InitKind, MultiExprArg());
11914      MemberInit = MaybeCreateExprWithCleanups(MemberInit);
11915      // Note, MemberInit could actually come back empty if no initialization
11916      // is required (e.g., because it would call a trivial default constructor)
11917      if (!MemberInit.get() || MemberInit.isInvalid())
11918        continue;
11919
11920      Member =
11921        new (Context) CXXCtorInitializer(Context, Field, SourceLocation(),
11922                                         SourceLocation(),
11923                                         MemberInit.takeAs<Expr>(),
11924                                         SourceLocation());
11925      AllToInit.push_back(Member);
11926
11927      // Be sure that the destructor is accessible and is marked as referenced.
11928      if (const RecordType *RecordTy
11929                  = Context.getBaseElementType(Field->getType())
11930                                                        ->getAs<RecordType>()) {
11931                    CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl());
11932        if (CXXDestructorDecl *Destructor = LookupDestructor(RD)) {
11933          MarkFunctionReferenced(Field->getLocation(), Destructor);
11934          CheckDestructorAccess(Field->getLocation(), Destructor,
11935                            PDiag(diag::err_access_dtor_ivar)
11936                              << Context.getBaseElementType(Field->getType()));
11937        }
11938      }
11939    }
11940    ObjCImplementation->setIvarInitializers(Context,
11941                                            AllToInit.data(), AllToInit.size());
11942  }
11943}
11944
11945static
11946void DelegatingCycleHelper(CXXConstructorDecl* Ctor,
11947                           llvm::SmallSet<CXXConstructorDecl*, 4> &Valid,
11948                           llvm::SmallSet<CXXConstructorDecl*, 4> &Invalid,
11949                           llvm::SmallSet<CXXConstructorDecl*, 4> &Current,
11950                           Sema &S) {
11951  llvm::SmallSet<CXXConstructorDecl*, 4>::iterator CI = Current.begin(),
11952                                                   CE = Current.end();
11953  if (Ctor->isInvalidDecl())
11954    return;
11955
11956  CXXConstructorDecl *Target = Ctor->getTargetConstructor();
11957
11958  // Target may not be determinable yet, for instance if this is a dependent
11959  // call in an uninstantiated template.
11960  if (Target) {
11961    const FunctionDecl *FNTarget = 0;
11962    (void)Target->hasBody(FNTarget);
11963    Target = const_cast<CXXConstructorDecl*>(
11964      cast_or_null<CXXConstructorDecl>(FNTarget));
11965  }
11966
11967  CXXConstructorDecl *Canonical = Ctor->getCanonicalDecl(),
11968                     // Avoid dereferencing a null pointer here.
11969                     *TCanonical = Target ? Target->getCanonicalDecl() : 0;
11970
11971  if (!Current.insert(Canonical))
11972    return;
11973
11974  // We know that beyond here, we aren't chaining into a cycle.
11975  if (!Target || !Target->isDelegatingConstructor() ||
11976      Target->isInvalidDecl() || Valid.count(TCanonical)) {
11977    for (CI = Current.begin(), CE = Current.end(); CI != CE; ++CI)
11978      Valid.insert(*CI);
11979    Current.clear();
11980  // We've hit a cycle.
11981  } else if (TCanonical == Canonical || Invalid.count(TCanonical) ||
11982             Current.count(TCanonical)) {
11983    // If we haven't diagnosed this cycle yet, do so now.
11984    if (!Invalid.count(TCanonical)) {
11985      S.Diag((*Ctor->init_begin())->getSourceLocation(),
11986             diag::warn_delegating_ctor_cycle)
11987        << Ctor;
11988
11989      // Don't add a note for a function delegating directly to itself.
11990      if (TCanonical != Canonical)
11991        S.Diag(Target->getLocation(), diag::note_it_delegates_to);
11992
11993      CXXConstructorDecl *C = Target;
11994      while (C->getCanonicalDecl() != Canonical) {
11995        const FunctionDecl *FNTarget = 0;
11996        (void)C->getTargetConstructor()->hasBody(FNTarget);
11997        assert(FNTarget && "Ctor cycle through bodiless function");
11998
11999        C = const_cast<CXXConstructorDecl*>(
12000          cast<CXXConstructorDecl>(FNTarget));
12001        S.Diag(C->getLocation(), diag::note_which_delegates_to);
12002      }
12003    }
12004
12005    for (CI = Current.begin(), CE = Current.end(); CI != CE; ++CI)
12006      Invalid.insert(*CI);
12007    Current.clear();
12008  } else {
12009    DelegatingCycleHelper(Target, Valid, Invalid, Current, S);
12010  }
12011}
12012
12013
12014void Sema::CheckDelegatingCtorCycles() {
12015  llvm::SmallSet<CXXConstructorDecl*, 4> Valid, Invalid, Current;
12016
12017  llvm::SmallSet<CXXConstructorDecl*, 4>::iterator CI = Current.begin(),
12018                                                   CE = Current.end();
12019
12020  for (DelegatingCtorDeclsType::iterator
12021         I = DelegatingCtorDecls.begin(ExternalSource),
12022         E = DelegatingCtorDecls.end();
12023       I != E; ++I)
12024    DelegatingCycleHelper(*I, Valid, Invalid, Current, *this);
12025
12026  for (CI = Invalid.begin(), CE = Invalid.end(); CI != CE; ++CI)
12027    (*CI)->setInvalidDecl();
12028}
12029
12030namespace {
12031  /// \brief AST visitor that finds references to the 'this' expression.
12032  class FindCXXThisExpr : public RecursiveASTVisitor<FindCXXThisExpr> {
12033    Sema &S;
12034
12035  public:
12036    explicit FindCXXThisExpr(Sema &S) : S(S) { }
12037
12038    bool VisitCXXThisExpr(CXXThisExpr *E) {
12039      S.Diag(E->getLocation(), diag::err_this_static_member_func)
12040        << E->isImplicit();
12041      return false;
12042    }
12043  };
12044}
12045
12046bool Sema::checkThisInStaticMemberFunctionType(CXXMethodDecl *Method) {
12047  TypeSourceInfo *TSInfo = Method->getTypeSourceInfo();
12048  if (!TSInfo)
12049    return false;
12050
12051  TypeLoc TL = TSInfo->getTypeLoc();
12052  FunctionProtoTypeLoc ProtoTL = TL.getAs<FunctionProtoTypeLoc>();
12053  if (!ProtoTL)
12054    return false;
12055
12056  // C++11 [expr.prim.general]p3:
12057  //   [The expression this] shall not appear before the optional
12058  //   cv-qualifier-seq and it shall not appear within the declaration of a
12059  //   static member function (although its type and value category are defined
12060  //   within a static member function as they are within a non-static member
12061  //   function). [ Note: this is because declaration matching does not occur
12062  //  until the complete declarator is known. - end note ]
12063  const FunctionProtoType *Proto = ProtoTL.getTypePtr();
12064  FindCXXThisExpr Finder(*this);
12065
12066  // If the return type came after the cv-qualifier-seq, check it now.
12067  if (Proto->hasTrailingReturn() &&
12068      !Finder.TraverseTypeLoc(ProtoTL.getResultLoc()))
12069    return true;
12070
12071  // Check the exception specification.
12072  if (checkThisInStaticMemberFunctionExceptionSpec(Method))
12073    return true;
12074
12075  return checkThisInStaticMemberFunctionAttributes(Method);
12076}
12077
12078bool Sema::checkThisInStaticMemberFunctionExceptionSpec(CXXMethodDecl *Method) {
12079  TypeSourceInfo *TSInfo = Method->getTypeSourceInfo();
12080  if (!TSInfo)
12081    return false;
12082
12083  TypeLoc TL = TSInfo->getTypeLoc();
12084  FunctionProtoTypeLoc ProtoTL = TL.getAs<FunctionProtoTypeLoc>();
12085  if (!ProtoTL)
12086    return false;
12087
12088  const FunctionProtoType *Proto = ProtoTL.getTypePtr();
12089  FindCXXThisExpr Finder(*this);
12090
12091  switch (Proto->getExceptionSpecType()) {
12092  case EST_Uninstantiated:
12093  case EST_Unevaluated:
12094  case EST_BasicNoexcept:
12095  case EST_DynamicNone:
12096  case EST_MSAny:
12097  case EST_None:
12098    break;
12099
12100  case EST_ComputedNoexcept:
12101    if (!Finder.TraverseStmt(Proto->getNoexceptExpr()))
12102      return true;
12103
12104  case EST_Dynamic:
12105    for (FunctionProtoType::exception_iterator E = Proto->exception_begin(),
12106         EEnd = Proto->exception_end();
12107         E != EEnd; ++E) {
12108      if (!Finder.TraverseType(*E))
12109        return true;
12110    }
12111    break;
12112  }
12113
12114  return false;
12115}
12116
12117bool Sema::checkThisInStaticMemberFunctionAttributes(CXXMethodDecl *Method) {
12118  FindCXXThisExpr Finder(*this);
12119
12120  // Check attributes.
12121  for (Decl::attr_iterator A = Method->attr_begin(), AEnd = Method->attr_end();
12122       A != AEnd; ++A) {
12123    // FIXME: This should be emitted by tblgen.
12124    Expr *Arg = 0;
12125    ArrayRef<Expr *> Args;
12126    if (GuardedByAttr *G = dyn_cast<GuardedByAttr>(*A))
12127      Arg = G->getArg();
12128    else if (PtGuardedByAttr *G = dyn_cast<PtGuardedByAttr>(*A))
12129      Arg = G->getArg();
12130    else if (AcquiredAfterAttr *AA = dyn_cast<AcquiredAfterAttr>(*A))
12131      Args = ArrayRef<Expr *>(AA->args_begin(), AA->args_size());
12132    else if (AcquiredBeforeAttr *AB = dyn_cast<AcquiredBeforeAttr>(*A))
12133      Args = ArrayRef<Expr *>(AB->args_begin(), AB->args_size());
12134    else if (ExclusiveLockFunctionAttr *ELF
12135               = dyn_cast<ExclusiveLockFunctionAttr>(*A))
12136      Args = ArrayRef<Expr *>(ELF->args_begin(), ELF->args_size());
12137    else if (SharedLockFunctionAttr *SLF
12138               = dyn_cast<SharedLockFunctionAttr>(*A))
12139      Args = ArrayRef<Expr *>(SLF->args_begin(), SLF->args_size());
12140    else if (ExclusiveTrylockFunctionAttr *ETLF
12141               = dyn_cast<ExclusiveTrylockFunctionAttr>(*A)) {
12142      Arg = ETLF->getSuccessValue();
12143      Args = ArrayRef<Expr *>(ETLF->args_begin(), ETLF->args_size());
12144    } else if (SharedTrylockFunctionAttr *STLF
12145                 = dyn_cast<SharedTrylockFunctionAttr>(*A)) {
12146      Arg = STLF->getSuccessValue();
12147      Args = ArrayRef<Expr *>(STLF->args_begin(), STLF->args_size());
12148    } else if (UnlockFunctionAttr *UF = dyn_cast<UnlockFunctionAttr>(*A))
12149      Args = ArrayRef<Expr *>(UF->args_begin(), UF->args_size());
12150    else if (LockReturnedAttr *LR = dyn_cast<LockReturnedAttr>(*A))
12151      Arg = LR->getArg();
12152    else if (LocksExcludedAttr *LE = dyn_cast<LocksExcludedAttr>(*A))
12153      Args = ArrayRef<Expr *>(LE->args_begin(), LE->args_size());
12154    else if (ExclusiveLocksRequiredAttr *ELR
12155               = dyn_cast<ExclusiveLocksRequiredAttr>(*A))
12156      Args = ArrayRef<Expr *>(ELR->args_begin(), ELR->args_size());
12157    else if (SharedLocksRequiredAttr *SLR
12158               = dyn_cast<SharedLocksRequiredAttr>(*A))
12159      Args = ArrayRef<Expr *>(SLR->args_begin(), SLR->args_size());
12160
12161    if (Arg && !Finder.TraverseStmt(Arg))
12162      return true;
12163
12164    for (unsigned I = 0, N = Args.size(); I != N; ++I) {
12165      if (!Finder.TraverseStmt(Args[I]))
12166        return true;
12167    }
12168  }
12169
12170  return false;
12171}
12172
12173void
12174Sema::checkExceptionSpecification(ExceptionSpecificationType EST,
12175                                  ArrayRef<ParsedType> DynamicExceptions,
12176                                  ArrayRef<SourceRange> DynamicExceptionRanges,
12177                                  Expr *NoexceptExpr,
12178                                  SmallVectorImpl<QualType> &Exceptions,
12179                                  FunctionProtoType::ExtProtoInfo &EPI) {
12180  Exceptions.clear();
12181  EPI.ExceptionSpecType = EST;
12182  if (EST == EST_Dynamic) {
12183    Exceptions.reserve(DynamicExceptions.size());
12184    for (unsigned ei = 0, ee = DynamicExceptions.size(); ei != ee; ++ei) {
12185      // FIXME: Preserve type source info.
12186      QualType ET = GetTypeFromParser(DynamicExceptions[ei]);
12187
12188      SmallVector<UnexpandedParameterPack, 2> Unexpanded;
12189      collectUnexpandedParameterPacks(ET, Unexpanded);
12190      if (!Unexpanded.empty()) {
12191        DiagnoseUnexpandedParameterPacks(DynamicExceptionRanges[ei].getBegin(),
12192                                         UPPC_ExceptionType,
12193                                         Unexpanded);
12194        continue;
12195      }
12196
12197      // Check that the type is valid for an exception spec, and
12198      // drop it if not.
12199      if (!CheckSpecifiedExceptionType(ET, DynamicExceptionRanges[ei]))
12200        Exceptions.push_back(ET);
12201    }
12202    EPI.NumExceptions = Exceptions.size();
12203    EPI.Exceptions = Exceptions.data();
12204    return;
12205  }
12206
12207  if (EST == EST_ComputedNoexcept) {
12208    // If an error occurred, there's no expression here.
12209    if (NoexceptExpr) {
12210      assert((NoexceptExpr->isTypeDependent() ||
12211              NoexceptExpr->getType()->getCanonicalTypeUnqualified() ==
12212              Context.BoolTy) &&
12213             "Parser should have made sure that the expression is boolean");
12214      if (NoexceptExpr && DiagnoseUnexpandedParameterPack(NoexceptExpr)) {
12215        EPI.ExceptionSpecType = EST_BasicNoexcept;
12216        return;
12217      }
12218
12219      if (!NoexceptExpr->isValueDependent())
12220        NoexceptExpr = VerifyIntegerConstantExpression(NoexceptExpr, 0,
12221                         diag::err_noexcept_needs_constant_expression,
12222                         /*AllowFold*/ false).take();
12223      EPI.NoexceptExpr = NoexceptExpr;
12224    }
12225    return;
12226  }
12227}
12228
12229/// IdentifyCUDATarget - Determine the CUDA compilation target for this function
12230Sema::CUDAFunctionTarget Sema::IdentifyCUDATarget(const FunctionDecl *D) {
12231  // Implicitly declared functions (e.g. copy constructors) are
12232  // __host__ __device__
12233  if (D->isImplicit())
12234    return CFT_HostDevice;
12235
12236  if (D->hasAttr<CUDAGlobalAttr>())
12237    return CFT_Global;
12238
12239  if (D->hasAttr<CUDADeviceAttr>()) {
12240    if (D->hasAttr<CUDAHostAttr>())
12241      return CFT_HostDevice;
12242    else
12243      return CFT_Device;
12244  }
12245
12246  return CFT_Host;
12247}
12248
12249bool Sema::CheckCUDATarget(CUDAFunctionTarget CallerTarget,
12250                           CUDAFunctionTarget CalleeTarget) {
12251  // CUDA B.1.1 "The __device__ qualifier declares a function that is...
12252  // Callable from the device only."
12253  if (CallerTarget == CFT_Host && CalleeTarget == CFT_Device)
12254    return true;
12255
12256  // CUDA B.1.2 "The __global__ qualifier declares a function that is...
12257  // Callable from the host only."
12258  // CUDA B.1.3 "The __host__ qualifier declares a function that is...
12259  // Callable from the host only."
12260  if ((CallerTarget == CFT_Device || CallerTarget == CFT_Global) &&
12261      (CalleeTarget == CFT_Host || CalleeTarget == CFT_Global))
12262    return true;
12263
12264  if (CallerTarget == CFT_HostDevice && CalleeTarget != CFT_HostDevice)
12265    return true;
12266
12267  return false;
12268}
12269
12270/// HandleMSProperty - Analyze a __delcspec(property) field of a C++ class.
12271///
12272MSPropertyDecl *Sema::HandleMSProperty(Scope *S, RecordDecl *Record,
12273                                       SourceLocation DeclStart,
12274                                       Declarator &D, Expr *BitWidth,
12275                                       InClassInitStyle InitStyle,
12276                                       AccessSpecifier AS,
12277                                       AttributeList *MSPropertyAttr) {
12278  IdentifierInfo *II = D.getIdentifier();
12279  if (!II) {
12280    Diag(DeclStart, diag::err_anonymous_property);
12281    return NULL;
12282  }
12283  SourceLocation Loc = D.getIdentifierLoc();
12284
12285  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
12286  QualType T = TInfo->getType();
12287  if (getLangOpts().CPlusPlus) {
12288    CheckExtraCXXDefaultArguments(D);
12289
12290    if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
12291                                        UPPC_DataMemberType)) {
12292      D.setInvalidType();
12293      T = Context.IntTy;
12294      TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
12295    }
12296  }
12297
12298  DiagnoseFunctionSpecifiers(D.getDeclSpec());
12299
12300  if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec())
12301    Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
12302         diag::err_invalid_thread)
12303      << DeclSpec::getSpecifierName(TSCS);
12304
12305  // Check to see if this name was declared as a member previously
12306  NamedDecl *PrevDecl = 0;
12307  LookupResult Previous(*this, II, Loc, LookupMemberName, ForRedeclaration);
12308  LookupName(Previous, S);
12309  switch (Previous.getResultKind()) {
12310  case LookupResult::Found:
12311  case LookupResult::FoundUnresolvedValue:
12312    PrevDecl = Previous.getAsSingle<NamedDecl>();
12313    break;
12314
12315  case LookupResult::FoundOverloaded:
12316    PrevDecl = Previous.getRepresentativeDecl();
12317    break;
12318
12319  case LookupResult::NotFound:
12320  case LookupResult::NotFoundInCurrentInstantiation:
12321  case LookupResult::Ambiguous:
12322    break;
12323  }
12324
12325  if (PrevDecl && PrevDecl->isTemplateParameter()) {
12326    // Maybe we will complain about the shadowed template parameter.
12327    DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
12328    // Just pretend that we didn't see the previous declaration.
12329    PrevDecl = 0;
12330  }
12331
12332  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
12333    PrevDecl = 0;
12334
12335  SourceLocation TSSL = D.getLocStart();
12336  MSPropertyDecl *NewPD;
12337  const AttributeList::PropertyData &Data = MSPropertyAttr->getPropertyData();
12338  NewPD = new (Context) MSPropertyDecl(Record, Loc,
12339                                       II, T, TInfo, TSSL,
12340                                       Data.GetterId, Data.SetterId);
12341  ProcessDeclAttributes(TUScope, NewPD, D);
12342  NewPD->setAccess(AS);
12343
12344  if (NewPD->isInvalidDecl())
12345    Record->setInvalidDecl();
12346
12347  if (D.getDeclSpec().isModulePrivateSpecified())
12348    NewPD->setModulePrivate();
12349
12350  if (NewPD->isInvalidDecl() && PrevDecl) {
12351    // Don't introduce NewFD into scope; there's already something
12352    // with the same name in the same scope.
12353  } else if (II) {
12354    PushOnScopeChains(NewPD, S);
12355  } else
12356    Record->addDecl(NewPD);
12357
12358  return NewPD;
12359}
12360