SemaDeclCXX.cpp revision d777e2845110469182809e4efc577899395805f7
1//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for C++ declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/CXXFieldCollector.h"
16#include "clang/Sema/Scope.h"
17#include "clang/Sema/Initialization.h"
18#include "clang/Sema/Lookup.h"
19#include "clang/Sema/ScopeInfo.h"
20#include "clang/AST/ASTConsumer.h"
21#include "clang/AST/ASTContext.h"
22#include "clang/AST/ASTMutationListener.h"
23#include "clang/AST/CharUnits.h"
24#include "clang/AST/CXXInheritance.h"
25#include "clang/AST/DeclVisitor.h"
26#include "clang/AST/EvaluatedExprVisitor.h"
27#include "clang/AST/ExprCXX.h"
28#include "clang/AST/RecordLayout.h"
29#include "clang/AST/RecursiveASTVisitor.h"
30#include "clang/AST/StmtVisitor.h"
31#include "clang/AST/TypeLoc.h"
32#include "clang/AST/TypeOrdering.h"
33#include "clang/Sema/DeclSpec.h"
34#include "clang/Sema/ParsedTemplate.h"
35#include "clang/Basic/PartialDiagnostic.h"
36#include "clang/Lex/Preprocessor.h"
37#include "llvm/ADT/SmallString.h"
38#include "llvm/ADT/STLExtras.h"
39#include <map>
40#include <set>
41
42using namespace clang;
43
44//===----------------------------------------------------------------------===//
45// CheckDefaultArgumentVisitor
46//===----------------------------------------------------------------------===//
47
48namespace {
49  /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
50  /// the default argument of a parameter to determine whether it
51  /// contains any ill-formed subexpressions. For example, this will
52  /// diagnose the use of local variables or parameters within the
53  /// default argument expression.
54  class CheckDefaultArgumentVisitor
55    : public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
56    Expr *DefaultArg;
57    Sema *S;
58
59  public:
60    CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
61      : DefaultArg(defarg), S(s) {}
62
63    bool VisitExpr(Expr *Node);
64    bool VisitDeclRefExpr(DeclRefExpr *DRE);
65    bool VisitCXXThisExpr(CXXThisExpr *ThisE);
66    bool VisitLambdaExpr(LambdaExpr *Lambda);
67  };
68
69  /// VisitExpr - Visit all of the children of this expression.
70  bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
71    bool IsInvalid = false;
72    for (Stmt::child_range I = Node->children(); I; ++I)
73      IsInvalid |= Visit(*I);
74    return IsInvalid;
75  }
76
77  /// VisitDeclRefExpr - Visit a reference to a declaration, to
78  /// determine whether this declaration can be used in the default
79  /// argument expression.
80  bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
81    NamedDecl *Decl = DRE->getDecl();
82    if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
83      // C++ [dcl.fct.default]p9
84      //   Default arguments are evaluated each time the function is
85      //   called. The order of evaluation of function arguments is
86      //   unspecified. Consequently, parameters of a function shall not
87      //   be used in default argument expressions, even if they are not
88      //   evaluated. Parameters of a function declared before a default
89      //   argument expression are in scope and can hide namespace and
90      //   class member names.
91      return S->Diag(DRE->getLocStart(),
92                     diag::err_param_default_argument_references_param)
93         << Param->getDeclName() << DefaultArg->getSourceRange();
94    } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
95      // C++ [dcl.fct.default]p7
96      //   Local variables shall not be used in default argument
97      //   expressions.
98      if (VDecl->isLocalVarDecl())
99        return S->Diag(DRE->getLocStart(),
100                       diag::err_param_default_argument_references_local)
101          << VDecl->getDeclName() << DefaultArg->getSourceRange();
102    }
103
104    return false;
105  }
106
107  /// VisitCXXThisExpr - Visit a C++ "this" expression.
108  bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
109    // C++ [dcl.fct.default]p8:
110    //   The keyword this shall not be used in a default argument of a
111    //   member function.
112    return S->Diag(ThisE->getLocStart(),
113                   diag::err_param_default_argument_references_this)
114               << ThisE->getSourceRange();
115  }
116
117  bool CheckDefaultArgumentVisitor::VisitLambdaExpr(LambdaExpr *Lambda) {
118    // C++11 [expr.lambda.prim]p13:
119    //   A lambda-expression appearing in a default argument shall not
120    //   implicitly or explicitly capture any entity.
121    if (Lambda->capture_begin() == Lambda->capture_end())
122      return false;
123
124    return S->Diag(Lambda->getLocStart(),
125                   diag::err_lambda_capture_default_arg);
126  }
127}
128
129void Sema::ImplicitExceptionSpecification::CalledDecl(SourceLocation CallLoc,
130                                                      CXXMethodDecl *Method) {
131  // If we have an MSAny spec already, don't bother.
132  if (!Method || ComputedEST == EST_MSAny)
133    return;
134
135  const FunctionProtoType *Proto
136    = Method->getType()->getAs<FunctionProtoType>();
137  Proto = Self->ResolveExceptionSpec(CallLoc, Proto);
138  if (!Proto)
139    return;
140
141  ExceptionSpecificationType EST = Proto->getExceptionSpecType();
142
143  // If this function can throw any exceptions, make a note of that.
144  if (EST == EST_MSAny || EST == EST_None) {
145    ClearExceptions();
146    ComputedEST = EST;
147    return;
148  }
149
150  // FIXME: If the call to this decl is using any of its default arguments, we
151  // need to search them for potentially-throwing calls.
152
153  // If this function has a basic noexcept, it doesn't affect the outcome.
154  if (EST == EST_BasicNoexcept)
155    return;
156
157  // If we have a throw-all spec at this point, ignore the function.
158  if (ComputedEST == EST_None)
159    return;
160
161  // If we're still at noexcept(true) and there's a nothrow() callee,
162  // change to that specification.
163  if (EST == EST_DynamicNone) {
164    if (ComputedEST == EST_BasicNoexcept)
165      ComputedEST = EST_DynamicNone;
166    return;
167  }
168
169  // Check out noexcept specs.
170  if (EST == EST_ComputedNoexcept) {
171    FunctionProtoType::NoexceptResult NR =
172        Proto->getNoexceptSpec(Self->Context);
173    assert(NR != FunctionProtoType::NR_NoNoexcept &&
174           "Must have noexcept result for EST_ComputedNoexcept.");
175    assert(NR != FunctionProtoType::NR_Dependent &&
176           "Should not generate implicit declarations for dependent cases, "
177           "and don't know how to handle them anyway.");
178
179    // noexcept(false) -> no spec on the new function
180    if (NR == FunctionProtoType::NR_Throw) {
181      ClearExceptions();
182      ComputedEST = EST_None;
183    }
184    // noexcept(true) won't change anything either.
185    return;
186  }
187
188  assert(EST == EST_Dynamic && "EST case not considered earlier.");
189  assert(ComputedEST != EST_None &&
190         "Shouldn't collect exceptions when throw-all is guaranteed.");
191  ComputedEST = EST_Dynamic;
192  // Record the exceptions in this function's exception specification.
193  for (FunctionProtoType::exception_iterator E = Proto->exception_begin(),
194                                          EEnd = Proto->exception_end();
195       E != EEnd; ++E)
196    if (ExceptionsSeen.insert(Self->Context.getCanonicalType(*E)))
197      Exceptions.push_back(*E);
198}
199
200void Sema::ImplicitExceptionSpecification::CalledExpr(Expr *E) {
201  if (!E || ComputedEST == EST_MSAny)
202    return;
203
204  // FIXME:
205  //
206  // C++0x [except.spec]p14:
207  //   [An] implicit exception-specification specifies the type-id T if and
208  // only if T is allowed by the exception-specification of a function directly
209  // invoked by f's implicit definition; f shall allow all exceptions if any
210  // function it directly invokes allows all exceptions, and f shall allow no
211  // exceptions if every function it directly invokes allows no exceptions.
212  //
213  // Note in particular that if an implicit exception-specification is generated
214  // for a function containing a throw-expression, that specification can still
215  // be noexcept(true).
216  //
217  // Note also that 'directly invoked' is not defined in the standard, and there
218  // is no indication that we should only consider potentially-evaluated calls.
219  //
220  // Ultimately we should implement the intent of the standard: the exception
221  // specification should be the set of exceptions which can be thrown by the
222  // implicit definition. For now, we assume that any non-nothrow expression can
223  // throw any exception.
224
225  if (Self->canThrow(E))
226    ComputedEST = EST_None;
227}
228
229bool
230Sema::SetParamDefaultArgument(ParmVarDecl *Param, Expr *Arg,
231                              SourceLocation EqualLoc) {
232  if (RequireCompleteType(Param->getLocation(), Param->getType(),
233                          diag::err_typecheck_decl_incomplete_type)) {
234    Param->setInvalidDecl();
235    return true;
236  }
237
238  // C++ [dcl.fct.default]p5
239  //   A default argument expression is implicitly converted (clause
240  //   4) to the parameter type. The default argument expression has
241  //   the same semantic constraints as the initializer expression in
242  //   a declaration of a variable of the parameter type, using the
243  //   copy-initialization semantics (8.5).
244  InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
245                                                                    Param);
246  InitializationKind Kind = InitializationKind::CreateCopy(Param->getLocation(),
247                                                           EqualLoc);
248  InitializationSequence InitSeq(*this, Entity, Kind, &Arg, 1);
249  ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Arg);
250  if (Result.isInvalid())
251    return true;
252  Arg = Result.takeAs<Expr>();
253
254  CheckImplicitConversions(Arg, EqualLoc);
255  Arg = MaybeCreateExprWithCleanups(Arg);
256
257  // Okay: add the default argument to the parameter
258  Param->setDefaultArg(Arg);
259
260  // We have already instantiated this parameter; provide each of the
261  // instantiations with the uninstantiated default argument.
262  UnparsedDefaultArgInstantiationsMap::iterator InstPos
263    = UnparsedDefaultArgInstantiations.find(Param);
264  if (InstPos != UnparsedDefaultArgInstantiations.end()) {
265    for (unsigned I = 0, N = InstPos->second.size(); I != N; ++I)
266      InstPos->second[I]->setUninstantiatedDefaultArg(Arg);
267
268    // We're done tracking this parameter's instantiations.
269    UnparsedDefaultArgInstantiations.erase(InstPos);
270  }
271
272  return false;
273}
274
275/// ActOnParamDefaultArgument - Check whether the default argument
276/// provided for a function parameter is well-formed. If so, attach it
277/// to the parameter declaration.
278void
279Sema::ActOnParamDefaultArgument(Decl *param, SourceLocation EqualLoc,
280                                Expr *DefaultArg) {
281  if (!param || !DefaultArg)
282    return;
283
284  ParmVarDecl *Param = cast<ParmVarDecl>(param);
285  UnparsedDefaultArgLocs.erase(Param);
286
287  // Default arguments are only permitted in C++
288  if (!getLangOpts().CPlusPlus) {
289    Diag(EqualLoc, diag::err_param_default_argument)
290      << DefaultArg->getSourceRange();
291    Param->setInvalidDecl();
292    return;
293  }
294
295  // Check for unexpanded parameter packs.
296  if (DiagnoseUnexpandedParameterPack(DefaultArg, UPPC_DefaultArgument)) {
297    Param->setInvalidDecl();
298    return;
299  }
300
301  // Check that the default argument is well-formed
302  CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg, this);
303  if (DefaultArgChecker.Visit(DefaultArg)) {
304    Param->setInvalidDecl();
305    return;
306  }
307
308  SetParamDefaultArgument(Param, DefaultArg, EqualLoc);
309}
310
311/// ActOnParamUnparsedDefaultArgument - We've seen a default
312/// argument for a function parameter, but we can't parse it yet
313/// because we're inside a class definition. Note that this default
314/// argument will be parsed later.
315void Sema::ActOnParamUnparsedDefaultArgument(Decl *param,
316                                             SourceLocation EqualLoc,
317                                             SourceLocation ArgLoc) {
318  if (!param)
319    return;
320
321  ParmVarDecl *Param = cast<ParmVarDecl>(param);
322  if (Param)
323    Param->setUnparsedDefaultArg();
324
325  UnparsedDefaultArgLocs[Param] = ArgLoc;
326}
327
328/// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
329/// the default argument for the parameter param failed.
330void Sema::ActOnParamDefaultArgumentError(Decl *param) {
331  if (!param)
332    return;
333
334  ParmVarDecl *Param = cast<ParmVarDecl>(param);
335
336  Param->setInvalidDecl();
337
338  UnparsedDefaultArgLocs.erase(Param);
339}
340
341/// CheckExtraCXXDefaultArguments - Check for any extra default
342/// arguments in the declarator, which is not a function declaration
343/// or definition and therefore is not permitted to have default
344/// arguments. This routine should be invoked for every declarator
345/// that is not a function declaration or definition.
346void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
347  // C++ [dcl.fct.default]p3
348  //   A default argument expression shall be specified only in the
349  //   parameter-declaration-clause of a function declaration or in a
350  //   template-parameter (14.1). It shall not be specified for a
351  //   parameter pack. If it is specified in a
352  //   parameter-declaration-clause, it shall not occur within a
353  //   declarator or abstract-declarator of a parameter-declaration.
354  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
355    DeclaratorChunk &chunk = D.getTypeObject(i);
356    if (chunk.Kind == DeclaratorChunk::Function) {
357      for (unsigned argIdx = 0, e = chunk.Fun.NumArgs; argIdx != e; ++argIdx) {
358        ParmVarDecl *Param =
359          cast<ParmVarDecl>(chunk.Fun.ArgInfo[argIdx].Param);
360        if (Param->hasUnparsedDefaultArg()) {
361          CachedTokens *Toks = chunk.Fun.ArgInfo[argIdx].DefaultArgTokens;
362          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
363            << SourceRange((*Toks)[1].getLocation(), Toks->back().getLocation());
364          delete Toks;
365          chunk.Fun.ArgInfo[argIdx].DefaultArgTokens = 0;
366        } else if (Param->getDefaultArg()) {
367          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
368            << Param->getDefaultArg()->getSourceRange();
369          Param->setDefaultArg(0);
370        }
371      }
372    }
373  }
374}
375
376/// MergeCXXFunctionDecl - Merge two declarations of the same C++
377/// function, once we already know that they have the same
378/// type. Subroutine of MergeFunctionDecl. Returns true if there was an
379/// error, false otherwise.
380bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old,
381                                Scope *S) {
382  bool Invalid = false;
383
384  // C++ [dcl.fct.default]p4:
385  //   For non-template functions, default arguments can be added in
386  //   later declarations of a function in the same
387  //   scope. Declarations in different scopes have completely
388  //   distinct sets of default arguments. That is, declarations in
389  //   inner scopes do not acquire default arguments from
390  //   declarations in outer scopes, and vice versa. In a given
391  //   function declaration, all parameters subsequent to a
392  //   parameter with a default argument shall have default
393  //   arguments supplied in this or previous declarations. A
394  //   default argument shall not be redefined by a later
395  //   declaration (not even to the same value).
396  //
397  // C++ [dcl.fct.default]p6:
398  //   Except for member functions of class templates, the default arguments
399  //   in a member function definition that appears outside of the class
400  //   definition are added to the set of default arguments provided by the
401  //   member function declaration in the class definition.
402  for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) {
403    ParmVarDecl *OldParam = Old->getParamDecl(p);
404    ParmVarDecl *NewParam = New->getParamDecl(p);
405
406    bool OldParamHasDfl = OldParam->hasDefaultArg();
407    bool NewParamHasDfl = NewParam->hasDefaultArg();
408
409    NamedDecl *ND = Old;
410    if (S && !isDeclInScope(ND, New->getDeclContext(), S))
411      // Ignore default parameters of old decl if they are not in
412      // the same scope.
413      OldParamHasDfl = false;
414
415    if (OldParamHasDfl && NewParamHasDfl) {
416
417      unsigned DiagDefaultParamID =
418        diag::err_param_default_argument_redefinition;
419
420      // MSVC accepts that default parameters be redefined for member functions
421      // of template class. The new default parameter's value is ignored.
422      Invalid = true;
423      if (getLangOpts().MicrosoftExt) {
424        CXXMethodDecl* MD = dyn_cast<CXXMethodDecl>(New);
425        if (MD && MD->getParent()->getDescribedClassTemplate()) {
426          // Merge the old default argument into the new parameter.
427          NewParam->setHasInheritedDefaultArg();
428          if (OldParam->hasUninstantiatedDefaultArg())
429            NewParam->setUninstantiatedDefaultArg(
430                                      OldParam->getUninstantiatedDefaultArg());
431          else
432            NewParam->setDefaultArg(OldParam->getInit());
433          DiagDefaultParamID = diag::warn_param_default_argument_redefinition;
434          Invalid = false;
435        }
436      }
437
438      // FIXME: If we knew where the '=' was, we could easily provide a fix-it
439      // hint here. Alternatively, we could walk the type-source information
440      // for NewParam to find the last source location in the type... but it
441      // isn't worth the effort right now. This is the kind of test case that
442      // is hard to get right:
443      //   int f(int);
444      //   void g(int (*fp)(int) = f);
445      //   void g(int (*fp)(int) = &f);
446      Diag(NewParam->getLocation(), DiagDefaultParamID)
447        << NewParam->getDefaultArgRange();
448
449      // Look for the function declaration where the default argument was
450      // actually written, which may be a declaration prior to Old.
451      for (FunctionDecl *Older = Old->getPreviousDecl();
452           Older; Older = Older->getPreviousDecl()) {
453        if (!Older->getParamDecl(p)->hasDefaultArg())
454          break;
455
456        OldParam = Older->getParamDecl(p);
457      }
458
459      Diag(OldParam->getLocation(), diag::note_previous_definition)
460        << OldParam->getDefaultArgRange();
461    } else if (OldParamHasDfl) {
462      // Merge the old default argument into the new parameter.
463      // It's important to use getInit() here;  getDefaultArg()
464      // strips off any top-level ExprWithCleanups.
465      NewParam->setHasInheritedDefaultArg();
466      if (OldParam->hasUninstantiatedDefaultArg())
467        NewParam->setUninstantiatedDefaultArg(
468                                      OldParam->getUninstantiatedDefaultArg());
469      else
470        NewParam->setDefaultArg(OldParam->getInit());
471    } else if (NewParamHasDfl) {
472      if (New->getDescribedFunctionTemplate()) {
473        // Paragraph 4, quoted above, only applies to non-template functions.
474        Diag(NewParam->getLocation(),
475             diag::err_param_default_argument_template_redecl)
476          << NewParam->getDefaultArgRange();
477        Diag(Old->getLocation(), diag::note_template_prev_declaration)
478          << false;
479      } else if (New->getTemplateSpecializationKind()
480                   != TSK_ImplicitInstantiation &&
481                 New->getTemplateSpecializationKind() != TSK_Undeclared) {
482        // C++ [temp.expr.spec]p21:
483        //   Default function arguments shall not be specified in a declaration
484        //   or a definition for one of the following explicit specializations:
485        //     - the explicit specialization of a function template;
486        //     - the explicit specialization of a member function template;
487        //     - the explicit specialization of a member function of a class
488        //       template where the class template specialization to which the
489        //       member function specialization belongs is implicitly
490        //       instantiated.
491        Diag(NewParam->getLocation(), diag::err_template_spec_default_arg)
492          << (New->getTemplateSpecializationKind() ==TSK_ExplicitSpecialization)
493          << New->getDeclName()
494          << NewParam->getDefaultArgRange();
495      } else if (New->getDeclContext()->isDependentContext()) {
496        // C++ [dcl.fct.default]p6 (DR217):
497        //   Default arguments for a member function of a class template shall
498        //   be specified on the initial declaration of the member function
499        //   within the class template.
500        //
501        // Reading the tea leaves a bit in DR217 and its reference to DR205
502        // leads me to the conclusion that one cannot add default function
503        // arguments for an out-of-line definition of a member function of a
504        // dependent type.
505        int WhichKind = 2;
506        if (CXXRecordDecl *Record
507              = dyn_cast<CXXRecordDecl>(New->getDeclContext())) {
508          if (Record->getDescribedClassTemplate())
509            WhichKind = 0;
510          else if (isa<ClassTemplatePartialSpecializationDecl>(Record))
511            WhichKind = 1;
512          else
513            WhichKind = 2;
514        }
515
516        Diag(NewParam->getLocation(),
517             diag::err_param_default_argument_member_template_redecl)
518          << WhichKind
519          << NewParam->getDefaultArgRange();
520      } else if (CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(New)) {
521        CXXSpecialMember NewSM = getSpecialMember(Ctor),
522                         OldSM = getSpecialMember(cast<CXXConstructorDecl>(Old));
523        if (NewSM != OldSM) {
524          Diag(NewParam->getLocation(),diag::warn_default_arg_makes_ctor_special)
525            << NewParam->getDefaultArgRange() << NewSM;
526          Diag(Old->getLocation(), diag::note_previous_declaration_special)
527            << OldSM;
528        }
529      }
530    }
531  }
532
533  // C++11 [dcl.constexpr]p1: If any declaration of a function or function
534  // template has a constexpr specifier then all its declarations shall
535  // contain the constexpr specifier.
536  if (New->isConstexpr() != Old->isConstexpr()) {
537    Diag(New->getLocation(), diag::err_constexpr_redecl_mismatch)
538      << New << New->isConstexpr();
539    Diag(Old->getLocation(), diag::note_previous_declaration);
540    Invalid = true;
541  }
542
543  if (CheckEquivalentExceptionSpec(Old, New))
544    Invalid = true;
545
546  return Invalid;
547}
548
549/// \brief Merge the exception specifications of two variable declarations.
550///
551/// This is called when there's a redeclaration of a VarDecl. The function
552/// checks if the redeclaration might have an exception specification and
553/// validates compatibility and merges the specs if necessary.
554void Sema::MergeVarDeclExceptionSpecs(VarDecl *New, VarDecl *Old) {
555  // Shortcut if exceptions are disabled.
556  if (!getLangOpts().CXXExceptions)
557    return;
558
559  assert(Context.hasSameType(New->getType(), Old->getType()) &&
560         "Should only be called if types are otherwise the same.");
561
562  QualType NewType = New->getType();
563  QualType OldType = Old->getType();
564
565  // We're only interested in pointers and references to functions, as well
566  // as pointers to member functions.
567  if (const ReferenceType *R = NewType->getAs<ReferenceType>()) {
568    NewType = R->getPointeeType();
569    OldType = OldType->getAs<ReferenceType>()->getPointeeType();
570  } else if (const PointerType *P = NewType->getAs<PointerType>()) {
571    NewType = P->getPointeeType();
572    OldType = OldType->getAs<PointerType>()->getPointeeType();
573  } else if (const MemberPointerType *M = NewType->getAs<MemberPointerType>()) {
574    NewType = M->getPointeeType();
575    OldType = OldType->getAs<MemberPointerType>()->getPointeeType();
576  }
577
578  if (!NewType->isFunctionProtoType())
579    return;
580
581  // There's lots of special cases for functions. For function pointers, system
582  // libraries are hopefully not as broken so that we don't need these
583  // workarounds.
584  if (CheckEquivalentExceptionSpec(
585        OldType->getAs<FunctionProtoType>(), Old->getLocation(),
586        NewType->getAs<FunctionProtoType>(), New->getLocation())) {
587    New->setInvalidDecl();
588  }
589}
590
591/// CheckCXXDefaultArguments - Verify that the default arguments for a
592/// function declaration are well-formed according to C++
593/// [dcl.fct.default].
594void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
595  unsigned NumParams = FD->getNumParams();
596  unsigned p;
597
598  bool IsLambda = FD->getOverloadedOperator() == OO_Call &&
599                  isa<CXXMethodDecl>(FD) &&
600                  cast<CXXMethodDecl>(FD)->getParent()->isLambda();
601
602  // Find first parameter with a default argument
603  for (p = 0; p < NumParams; ++p) {
604    ParmVarDecl *Param = FD->getParamDecl(p);
605    if (Param->hasDefaultArg()) {
606      // C++11 [expr.prim.lambda]p5:
607      //   [...] Default arguments (8.3.6) shall not be specified in the
608      //   parameter-declaration-clause of a lambda-declarator.
609      //
610      // FIXME: Core issue 974 strikes this sentence, we only provide an
611      // extension warning.
612      if (IsLambda)
613        Diag(Param->getLocation(), diag::ext_lambda_default_arguments)
614          << Param->getDefaultArgRange();
615      break;
616    }
617  }
618
619  // C++ [dcl.fct.default]p4:
620  //   In a given function declaration, all parameters
621  //   subsequent to a parameter with a default argument shall
622  //   have default arguments supplied in this or previous
623  //   declarations. A default argument shall not be redefined
624  //   by a later declaration (not even to the same value).
625  unsigned LastMissingDefaultArg = 0;
626  for (; p < NumParams; ++p) {
627    ParmVarDecl *Param = FD->getParamDecl(p);
628    if (!Param->hasDefaultArg()) {
629      if (Param->isInvalidDecl())
630        /* We already complained about this parameter. */;
631      else if (Param->getIdentifier())
632        Diag(Param->getLocation(),
633             diag::err_param_default_argument_missing_name)
634          << Param->getIdentifier();
635      else
636        Diag(Param->getLocation(),
637             diag::err_param_default_argument_missing);
638
639      LastMissingDefaultArg = p;
640    }
641  }
642
643  if (LastMissingDefaultArg > 0) {
644    // Some default arguments were missing. Clear out all of the
645    // default arguments up to (and including) the last missing
646    // default argument, so that we leave the function parameters
647    // in a semantically valid state.
648    for (p = 0; p <= LastMissingDefaultArg; ++p) {
649      ParmVarDecl *Param = FD->getParamDecl(p);
650      if (Param->hasDefaultArg()) {
651        Param->setDefaultArg(0);
652      }
653    }
654  }
655}
656
657// CheckConstexprParameterTypes - Check whether a function's parameter types
658// are all literal types. If so, return true. If not, produce a suitable
659// diagnostic and return false.
660static bool CheckConstexprParameterTypes(Sema &SemaRef,
661                                         const FunctionDecl *FD) {
662  unsigned ArgIndex = 0;
663  const FunctionProtoType *FT = FD->getType()->getAs<FunctionProtoType>();
664  for (FunctionProtoType::arg_type_iterator i = FT->arg_type_begin(),
665       e = FT->arg_type_end(); i != e; ++i, ++ArgIndex) {
666    const ParmVarDecl *PD = FD->getParamDecl(ArgIndex);
667    SourceLocation ParamLoc = PD->getLocation();
668    if (!(*i)->isDependentType() &&
669        SemaRef.RequireLiteralType(ParamLoc, *i,
670                                   diag::err_constexpr_non_literal_param,
671                                   ArgIndex+1, PD->getSourceRange(),
672                                   isa<CXXConstructorDecl>(FD)))
673      return false;
674  }
675  return true;
676}
677
678/// \brief Get diagnostic %select index for tag kind for
679/// record diagnostic message.
680/// WARNING: Indexes apply to particular diagnostics only!
681///
682/// \returns diagnostic %select index.
683static unsigned getRecordDiagFromTagKind(TagTypeKind Tag) {
684  switch (Tag) {
685  case TTK_Struct: return 0;
686  case TTK_Interface: return 1;
687  case TTK_Class:  return 2;
688  default: llvm_unreachable("Invalid tag kind for record diagnostic!");
689  }
690}
691
692// CheckConstexprFunctionDecl - Check whether a function declaration satisfies
693// the requirements of a constexpr function definition or a constexpr
694// constructor definition. If so, return true. If not, produce appropriate
695// diagnostics and return false.
696//
697// This implements C++11 [dcl.constexpr]p3,4, as amended by DR1360.
698bool Sema::CheckConstexprFunctionDecl(const FunctionDecl *NewFD) {
699  const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
700  if (MD && MD->isInstance()) {
701    // C++11 [dcl.constexpr]p4:
702    //  The definition of a constexpr constructor shall satisfy the following
703    //  constraints:
704    //  - the class shall not have any virtual base classes;
705    const CXXRecordDecl *RD = MD->getParent();
706    if (RD->getNumVBases()) {
707      Diag(NewFD->getLocation(), diag::err_constexpr_virtual_base)
708        << isa<CXXConstructorDecl>(NewFD)
709        << getRecordDiagFromTagKind(RD->getTagKind()) << RD->getNumVBases();
710      for (CXXRecordDecl::base_class_const_iterator I = RD->vbases_begin(),
711             E = RD->vbases_end(); I != E; ++I)
712        Diag(I->getLocStart(),
713             diag::note_constexpr_virtual_base_here) << I->getSourceRange();
714      return false;
715    }
716  }
717
718  if (!isa<CXXConstructorDecl>(NewFD)) {
719    // C++11 [dcl.constexpr]p3:
720    //  The definition of a constexpr function shall satisfy the following
721    //  constraints:
722    // - it shall not be virtual;
723    const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD);
724    if (Method && Method->isVirtual()) {
725      Diag(NewFD->getLocation(), diag::err_constexpr_virtual);
726
727      // If it's not obvious why this function is virtual, find an overridden
728      // function which uses the 'virtual' keyword.
729      const CXXMethodDecl *WrittenVirtual = Method;
730      while (!WrittenVirtual->isVirtualAsWritten())
731        WrittenVirtual = *WrittenVirtual->begin_overridden_methods();
732      if (WrittenVirtual != Method)
733        Diag(WrittenVirtual->getLocation(),
734             diag::note_overridden_virtual_function);
735      return false;
736    }
737
738    // - its return type shall be a literal type;
739    QualType RT = NewFD->getResultType();
740    if (!RT->isDependentType() &&
741        RequireLiteralType(NewFD->getLocation(), RT,
742                           diag::err_constexpr_non_literal_return))
743      return false;
744  }
745
746  // - each of its parameter types shall be a literal type;
747  if (!CheckConstexprParameterTypes(*this, NewFD))
748    return false;
749
750  return true;
751}
752
753/// Check the given declaration statement is legal within a constexpr function
754/// body. C++0x [dcl.constexpr]p3,p4.
755///
756/// \return true if the body is OK, false if we have diagnosed a problem.
757static bool CheckConstexprDeclStmt(Sema &SemaRef, const FunctionDecl *Dcl,
758                                   DeclStmt *DS) {
759  // C++0x [dcl.constexpr]p3 and p4:
760  //  The definition of a constexpr function(p3) or constructor(p4) [...] shall
761  //  contain only
762  for (DeclStmt::decl_iterator DclIt = DS->decl_begin(),
763         DclEnd = DS->decl_end(); DclIt != DclEnd; ++DclIt) {
764    switch ((*DclIt)->getKind()) {
765    case Decl::StaticAssert:
766    case Decl::Using:
767    case Decl::UsingShadow:
768    case Decl::UsingDirective:
769    case Decl::UnresolvedUsingTypename:
770      //   - static_assert-declarations
771      //   - using-declarations,
772      //   - using-directives,
773      continue;
774
775    case Decl::Typedef:
776    case Decl::TypeAlias: {
777      //   - typedef declarations and alias-declarations that do not define
778      //     classes or enumerations,
779      TypedefNameDecl *TN = cast<TypedefNameDecl>(*DclIt);
780      if (TN->getUnderlyingType()->isVariablyModifiedType()) {
781        // Don't allow variably-modified types in constexpr functions.
782        TypeLoc TL = TN->getTypeSourceInfo()->getTypeLoc();
783        SemaRef.Diag(TL.getBeginLoc(), diag::err_constexpr_vla)
784          << TL.getSourceRange() << TL.getType()
785          << isa<CXXConstructorDecl>(Dcl);
786        return false;
787      }
788      continue;
789    }
790
791    case Decl::Enum:
792    case Decl::CXXRecord:
793      // As an extension, we allow the declaration (but not the definition) of
794      // classes and enumerations in all declarations, not just in typedef and
795      // alias declarations.
796      if (cast<TagDecl>(*DclIt)->isThisDeclarationADefinition()) {
797        SemaRef.Diag(DS->getLocStart(), diag::err_constexpr_type_definition)
798          << isa<CXXConstructorDecl>(Dcl);
799        return false;
800      }
801      continue;
802
803    case Decl::Var:
804      SemaRef.Diag(DS->getLocStart(), diag::err_constexpr_var_declaration)
805        << isa<CXXConstructorDecl>(Dcl);
806      return false;
807
808    default:
809      SemaRef.Diag(DS->getLocStart(), diag::err_constexpr_body_invalid_stmt)
810        << isa<CXXConstructorDecl>(Dcl);
811      return false;
812    }
813  }
814
815  return true;
816}
817
818/// Check that the given field is initialized within a constexpr constructor.
819///
820/// \param Dcl The constexpr constructor being checked.
821/// \param Field The field being checked. This may be a member of an anonymous
822///        struct or union nested within the class being checked.
823/// \param Inits All declarations, including anonymous struct/union members and
824///        indirect members, for which any initialization was provided.
825/// \param Diagnosed Set to true if an error is produced.
826static void CheckConstexprCtorInitializer(Sema &SemaRef,
827                                          const FunctionDecl *Dcl,
828                                          FieldDecl *Field,
829                                          llvm::SmallSet<Decl*, 16> &Inits,
830                                          bool &Diagnosed) {
831  if (Field->isUnnamedBitfield())
832    return;
833
834  if (Field->isAnonymousStructOrUnion() &&
835      Field->getType()->getAsCXXRecordDecl()->isEmpty())
836    return;
837
838  if (!Inits.count(Field)) {
839    if (!Diagnosed) {
840      SemaRef.Diag(Dcl->getLocation(), diag::err_constexpr_ctor_missing_init);
841      Diagnosed = true;
842    }
843    SemaRef.Diag(Field->getLocation(), diag::note_constexpr_ctor_missing_init);
844  } else if (Field->isAnonymousStructOrUnion()) {
845    const RecordDecl *RD = Field->getType()->castAs<RecordType>()->getDecl();
846    for (RecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end();
847         I != E; ++I)
848      // If an anonymous union contains an anonymous struct of which any member
849      // is initialized, all members must be initialized.
850      if (!RD->isUnion() || Inits.count(*I))
851        CheckConstexprCtorInitializer(SemaRef, Dcl, *I, Inits, Diagnosed);
852  }
853}
854
855/// Check the body for the given constexpr function declaration only contains
856/// the permitted types of statement. C++11 [dcl.constexpr]p3,p4.
857///
858/// \return true if the body is OK, false if we have diagnosed a problem.
859bool Sema::CheckConstexprFunctionBody(const FunctionDecl *Dcl, Stmt *Body) {
860  if (isa<CXXTryStmt>(Body)) {
861    // C++11 [dcl.constexpr]p3:
862    //  The definition of a constexpr function shall satisfy the following
863    //  constraints: [...]
864    // - its function-body shall be = delete, = default, or a
865    //   compound-statement
866    //
867    // C++11 [dcl.constexpr]p4:
868    //  In the definition of a constexpr constructor, [...]
869    // - its function-body shall not be a function-try-block;
870    Diag(Body->getLocStart(), diag::err_constexpr_function_try_block)
871      << isa<CXXConstructorDecl>(Dcl);
872    return false;
873  }
874
875  // - its function-body shall be [...] a compound-statement that contains only
876  CompoundStmt *CompBody = cast<CompoundStmt>(Body);
877
878  llvm::SmallVector<SourceLocation, 4> ReturnStmts;
879  for (CompoundStmt::body_iterator BodyIt = CompBody->body_begin(),
880         BodyEnd = CompBody->body_end(); BodyIt != BodyEnd; ++BodyIt) {
881    switch ((*BodyIt)->getStmtClass()) {
882    case Stmt::NullStmtClass:
883      //   - null statements,
884      continue;
885
886    case Stmt::DeclStmtClass:
887      //   - static_assert-declarations
888      //   - using-declarations,
889      //   - using-directives,
890      //   - typedef declarations and alias-declarations that do not define
891      //     classes or enumerations,
892      if (!CheckConstexprDeclStmt(*this, Dcl, cast<DeclStmt>(*BodyIt)))
893        return false;
894      continue;
895
896    case Stmt::ReturnStmtClass:
897      //   - and exactly one return statement;
898      if (isa<CXXConstructorDecl>(Dcl))
899        break;
900
901      ReturnStmts.push_back((*BodyIt)->getLocStart());
902      continue;
903
904    default:
905      break;
906    }
907
908    Diag((*BodyIt)->getLocStart(), diag::err_constexpr_body_invalid_stmt)
909      << isa<CXXConstructorDecl>(Dcl);
910    return false;
911  }
912
913  if (const CXXConstructorDecl *Constructor
914        = dyn_cast<CXXConstructorDecl>(Dcl)) {
915    const CXXRecordDecl *RD = Constructor->getParent();
916    // DR1359:
917    // - every non-variant non-static data member and base class sub-object
918    //   shall be initialized;
919    // - if the class is a non-empty union, or for each non-empty anonymous
920    //   union member of a non-union class, exactly one non-static data member
921    //   shall be initialized;
922    if (RD->isUnion()) {
923      if (Constructor->getNumCtorInitializers() == 0 && !RD->isEmpty()) {
924        Diag(Dcl->getLocation(), diag::err_constexpr_union_ctor_no_init);
925        return false;
926      }
927    } else if (!Constructor->isDependentContext() &&
928               !Constructor->isDelegatingConstructor()) {
929      assert(RD->getNumVBases() == 0 && "constexpr ctor with virtual bases");
930
931      // Skip detailed checking if we have enough initializers, and we would
932      // allow at most one initializer per member.
933      bool AnyAnonStructUnionMembers = false;
934      unsigned Fields = 0;
935      for (CXXRecordDecl::field_iterator I = RD->field_begin(),
936           E = RD->field_end(); I != E; ++I, ++Fields) {
937        if (I->isAnonymousStructOrUnion()) {
938          AnyAnonStructUnionMembers = true;
939          break;
940        }
941      }
942      if (AnyAnonStructUnionMembers ||
943          Constructor->getNumCtorInitializers() != RD->getNumBases() + Fields) {
944        // Check initialization of non-static data members. Base classes are
945        // always initialized so do not need to be checked. Dependent bases
946        // might not have initializers in the member initializer list.
947        llvm::SmallSet<Decl*, 16> Inits;
948        for (CXXConstructorDecl::init_const_iterator
949               I = Constructor->init_begin(), E = Constructor->init_end();
950             I != E; ++I) {
951          if (FieldDecl *FD = (*I)->getMember())
952            Inits.insert(FD);
953          else if (IndirectFieldDecl *ID = (*I)->getIndirectMember())
954            Inits.insert(ID->chain_begin(), ID->chain_end());
955        }
956
957        bool Diagnosed = false;
958        for (CXXRecordDecl::field_iterator I = RD->field_begin(),
959             E = RD->field_end(); I != E; ++I)
960          CheckConstexprCtorInitializer(*this, Dcl, *I, Inits, Diagnosed);
961        if (Diagnosed)
962          return false;
963      }
964    }
965  } else {
966    if (ReturnStmts.empty()) {
967      Diag(Dcl->getLocation(), diag::err_constexpr_body_no_return);
968      return false;
969    }
970    if (ReturnStmts.size() > 1) {
971      Diag(ReturnStmts.back(), diag::err_constexpr_body_multiple_return);
972      for (unsigned I = 0; I < ReturnStmts.size() - 1; ++I)
973        Diag(ReturnStmts[I], diag::note_constexpr_body_previous_return);
974      return false;
975    }
976  }
977
978  // C++11 [dcl.constexpr]p5:
979  //   if no function argument values exist such that the function invocation
980  //   substitution would produce a constant expression, the program is
981  //   ill-formed; no diagnostic required.
982  // C++11 [dcl.constexpr]p3:
983  //   - every constructor call and implicit conversion used in initializing the
984  //     return value shall be one of those allowed in a constant expression.
985  // C++11 [dcl.constexpr]p4:
986  //   - every constructor involved in initializing non-static data members and
987  //     base class sub-objects shall be a constexpr constructor.
988  llvm::SmallVector<PartialDiagnosticAt, 8> Diags;
989  if (!Expr::isPotentialConstantExpr(Dcl, Diags)) {
990    Diag(Dcl->getLocation(), diag::err_constexpr_function_never_constant_expr)
991      << isa<CXXConstructorDecl>(Dcl);
992    for (size_t I = 0, N = Diags.size(); I != N; ++I)
993      Diag(Diags[I].first, Diags[I].second);
994    return false;
995  }
996
997  return true;
998}
999
1000/// isCurrentClassName - Determine whether the identifier II is the
1001/// name of the class type currently being defined. In the case of
1002/// nested classes, this will only return true if II is the name of
1003/// the innermost class.
1004bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *,
1005                              const CXXScopeSpec *SS) {
1006  assert(getLangOpts().CPlusPlus && "No class names in C!");
1007
1008  CXXRecordDecl *CurDecl;
1009  if (SS && SS->isSet() && !SS->isInvalid()) {
1010    DeclContext *DC = computeDeclContext(*SS, true);
1011    CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
1012  } else
1013    CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
1014
1015  if (CurDecl && CurDecl->getIdentifier())
1016    return &II == CurDecl->getIdentifier();
1017  else
1018    return false;
1019}
1020
1021/// \brief Determine whether we have the same C++ record definition.
1022///
1023/// Used as a helper function in Sema::CheckBaseSpecifier, below.
1024static bool sameCXXRecordDef(const CXXRecordDecl *BaseDefinition,
1025                          void *UserData) {
1026  return (CXXRecordDecl *)UserData != BaseDefinition;
1027}
1028
1029/// \brief Check the validity of a C++ base class specifier.
1030///
1031/// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
1032/// and returns NULL otherwise.
1033CXXBaseSpecifier *
1034Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
1035                         SourceRange SpecifierRange,
1036                         bool Virtual, AccessSpecifier Access,
1037                         TypeSourceInfo *TInfo,
1038                         SourceLocation EllipsisLoc) {
1039  QualType BaseType = TInfo->getType();
1040
1041  // C++ [class.union]p1:
1042  //   A union shall not have base classes.
1043  if (Class->isUnion()) {
1044    Diag(Class->getLocation(), diag::err_base_clause_on_union)
1045      << SpecifierRange;
1046    return 0;
1047  }
1048
1049  if (EllipsisLoc.isValid() &&
1050      !TInfo->getType()->containsUnexpandedParameterPack()) {
1051    Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
1052      << TInfo->getTypeLoc().getSourceRange();
1053    EllipsisLoc = SourceLocation();
1054  }
1055
1056  SourceLocation BaseLoc = TInfo->getTypeLoc().getBeginLoc();
1057
1058  if (BaseType->isDependentType()) {
1059    // Make sure that we don't have circular inheritance among our dependent
1060    // bases. For non-dependent bases, the check for completeness below handles
1061    // this.
1062    if (CXXRecordDecl *BaseDecl = BaseType->getAsCXXRecordDecl()) {
1063      if (BaseDecl->getCanonicalDecl() == Class->getCanonicalDecl() ||
1064          ((BaseDecl = BaseDecl->getDefinition()) &&
1065           !BaseDecl->forallBases(&sameCXXRecordDef, Class))) {
1066        Diag(BaseLoc, diag::err_circular_inheritance)
1067          << BaseType << Context.getTypeDeclType(Class);
1068
1069        if (BaseDecl->getCanonicalDecl() != Class->getCanonicalDecl())
1070          Diag(BaseDecl->getLocation(), diag::note_previous_decl)
1071            << BaseType;
1072
1073        return 0;
1074      }
1075    }
1076
1077    return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
1078                                          Class->getTagKind() == TTK_Class,
1079                                          Access, TInfo, EllipsisLoc);
1080  }
1081
1082  // Base specifiers must be record types.
1083  if (!BaseType->isRecordType()) {
1084    Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
1085    return 0;
1086  }
1087
1088  // C++ [class.union]p1:
1089  //   A union shall not be used as a base class.
1090  if (BaseType->isUnionType()) {
1091    Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
1092    return 0;
1093  }
1094
1095  // C++ [class.derived]p2:
1096  //   The class-name in a base-specifier shall not be an incompletely
1097  //   defined class.
1098  if (RequireCompleteType(BaseLoc, BaseType,
1099                          diag::err_incomplete_base_class, SpecifierRange)) {
1100    Class->setInvalidDecl();
1101    return 0;
1102  }
1103
1104  // If the base class is polymorphic or isn't empty, the new one is/isn't, too.
1105  RecordDecl *BaseDecl = BaseType->getAs<RecordType>()->getDecl();
1106  assert(BaseDecl && "Record type has no declaration");
1107  BaseDecl = BaseDecl->getDefinition();
1108  assert(BaseDecl && "Base type is not incomplete, but has no definition");
1109  CXXRecordDecl * CXXBaseDecl = cast<CXXRecordDecl>(BaseDecl);
1110  assert(CXXBaseDecl && "Base type is not a C++ type");
1111
1112  // C++ [class]p3:
1113  //   If a class is marked final and it appears as a base-type-specifier in
1114  //   base-clause, the program is ill-formed.
1115  if (CXXBaseDecl->hasAttr<FinalAttr>()) {
1116    Diag(BaseLoc, diag::err_class_marked_final_used_as_base)
1117      << CXXBaseDecl->getDeclName();
1118    Diag(CXXBaseDecl->getLocation(), diag::note_previous_decl)
1119      << CXXBaseDecl->getDeclName();
1120    return 0;
1121  }
1122
1123  if (BaseDecl->isInvalidDecl())
1124    Class->setInvalidDecl();
1125
1126  // Create the base specifier.
1127  return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
1128                                        Class->getTagKind() == TTK_Class,
1129                                        Access, TInfo, EllipsisLoc);
1130}
1131
1132/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
1133/// one entry in the base class list of a class specifier, for
1134/// example:
1135///    class foo : public bar, virtual private baz {
1136/// 'public bar' and 'virtual private baz' are each base-specifiers.
1137BaseResult
1138Sema::ActOnBaseSpecifier(Decl *classdecl, SourceRange SpecifierRange,
1139                         bool Virtual, AccessSpecifier Access,
1140                         ParsedType basetype, SourceLocation BaseLoc,
1141                         SourceLocation EllipsisLoc) {
1142  if (!classdecl)
1143    return true;
1144
1145  AdjustDeclIfTemplate(classdecl);
1146  CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(classdecl);
1147  if (!Class)
1148    return true;
1149
1150  TypeSourceInfo *TInfo = 0;
1151  GetTypeFromParser(basetype, &TInfo);
1152
1153  if (EllipsisLoc.isInvalid() &&
1154      DiagnoseUnexpandedParameterPack(SpecifierRange.getBegin(), TInfo,
1155                                      UPPC_BaseType))
1156    return true;
1157
1158  if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
1159                                                      Virtual, Access, TInfo,
1160                                                      EllipsisLoc))
1161    return BaseSpec;
1162  else
1163    Class->setInvalidDecl();
1164
1165  return true;
1166}
1167
1168/// \brief Performs the actual work of attaching the given base class
1169/// specifiers to a C++ class.
1170bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, CXXBaseSpecifier **Bases,
1171                                unsigned NumBases) {
1172 if (NumBases == 0)
1173    return false;
1174
1175  // Used to keep track of which base types we have already seen, so
1176  // that we can properly diagnose redundant direct base types. Note
1177  // that the key is always the unqualified canonical type of the base
1178  // class.
1179  std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
1180
1181  // Copy non-redundant base specifiers into permanent storage.
1182  unsigned NumGoodBases = 0;
1183  bool Invalid = false;
1184  for (unsigned idx = 0; idx < NumBases; ++idx) {
1185    QualType NewBaseType
1186      = Context.getCanonicalType(Bases[idx]->getType());
1187    NewBaseType = NewBaseType.getLocalUnqualifiedType();
1188
1189    CXXBaseSpecifier *&KnownBase = KnownBaseTypes[NewBaseType];
1190    if (KnownBase) {
1191      // C++ [class.mi]p3:
1192      //   A class shall not be specified as a direct base class of a
1193      //   derived class more than once.
1194      Diag(Bases[idx]->getLocStart(),
1195           diag::err_duplicate_base_class)
1196        << KnownBase->getType()
1197        << Bases[idx]->getSourceRange();
1198
1199      // Delete the duplicate base class specifier; we're going to
1200      // overwrite its pointer later.
1201      Context.Deallocate(Bases[idx]);
1202
1203      Invalid = true;
1204    } else {
1205      // Okay, add this new base class.
1206      KnownBase = Bases[idx];
1207      Bases[NumGoodBases++] = Bases[idx];
1208      if (const RecordType *Record = NewBaseType->getAs<RecordType>()) {
1209        const CXXRecordDecl *RD = cast<CXXRecordDecl>(Record->getDecl());
1210        if (Class->isInterface() &&
1211              (!RD->isInterface() ||
1212               KnownBase->getAccessSpecifier() != AS_public)) {
1213          // The Microsoft extension __interface does not permit bases that
1214          // are not themselves public interfaces.
1215          Diag(KnownBase->getLocStart(), diag::err_invalid_base_in_interface)
1216            << getRecordDiagFromTagKind(RD->getTagKind()) << RD->getName()
1217            << RD->getSourceRange();
1218          Invalid = true;
1219        }
1220        if (RD->hasAttr<WeakAttr>())
1221          Class->addAttr(::new (Context) WeakAttr(SourceRange(), Context));
1222      }
1223    }
1224  }
1225
1226  // Attach the remaining base class specifiers to the derived class.
1227  Class->setBases(Bases, NumGoodBases);
1228
1229  // Delete the remaining (good) base class specifiers, since their
1230  // data has been copied into the CXXRecordDecl.
1231  for (unsigned idx = 0; idx < NumGoodBases; ++idx)
1232    Context.Deallocate(Bases[idx]);
1233
1234  return Invalid;
1235}
1236
1237/// ActOnBaseSpecifiers - Attach the given base specifiers to the
1238/// class, after checking whether there are any duplicate base
1239/// classes.
1240void Sema::ActOnBaseSpecifiers(Decl *ClassDecl, CXXBaseSpecifier **Bases,
1241                               unsigned NumBases) {
1242  if (!ClassDecl || !Bases || !NumBases)
1243    return;
1244
1245  AdjustDeclIfTemplate(ClassDecl);
1246  AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl),
1247                       (CXXBaseSpecifier**)(Bases), NumBases);
1248}
1249
1250static CXXRecordDecl *GetClassForType(QualType T) {
1251  if (const RecordType *RT = T->getAs<RecordType>())
1252    return cast<CXXRecordDecl>(RT->getDecl());
1253  else if (const InjectedClassNameType *ICT = T->getAs<InjectedClassNameType>())
1254    return ICT->getDecl();
1255  else
1256    return 0;
1257}
1258
1259/// \brief Determine whether the type \p Derived is a C++ class that is
1260/// derived from the type \p Base.
1261bool Sema::IsDerivedFrom(QualType Derived, QualType Base) {
1262  if (!getLangOpts().CPlusPlus)
1263    return false;
1264
1265  CXXRecordDecl *DerivedRD = GetClassForType(Derived);
1266  if (!DerivedRD)
1267    return false;
1268
1269  CXXRecordDecl *BaseRD = GetClassForType(Base);
1270  if (!BaseRD)
1271    return false;
1272
1273  // FIXME: instantiate DerivedRD if necessary.  We need a PoI for this.
1274  return DerivedRD->hasDefinition() && DerivedRD->isDerivedFrom(BaseRD);
1275}
1276
1277/// \brief Determine whether the type \p Derived is a C++ class that is
1278/// derived from the type \p Base.
1279bool Sema::IsDerivedFrom(QualType Derived, QualType Base, CXXBasePaths &Paths) {
1280  if (!getLangOpts().CPlusPlus)
1281    return false;
1282
1283  CXXRecordDecl *DerivedRD = GetClassForType(Derived);
1284  if (!DerivedRD)
1285    return false;
1286
1287  CXXRecordDecl *BaseRD = GetClassForType(Base);
1288  if (!BaseRD)
1289    return false;
1290
1291  return DerivedRD->isDerivedFrom(BaseRD, Paths);
1292}
1293
1294void Sema::BuildBasePathArray(const CXXBasePaths &Paths,
1295                              CXXCastPath &BasePathArray) {
1296  assert(BasePathArray.empty() && "Base path array must be empty!");
1297  assert(Paths.isRecordingPaths() && "Must record paths!");
1298
1299  const CXXBasePath &Path = Paths.front();
1300
1301  // We first go backward and check if we have a virtual base.
1302  // FIXME: It would be better if CXXBasePath had the base specifier for
1303  // the nearest virtual base.
1304  unsigned Start = 0;
1305  for (unsigned I = Path.size(); I != 0; --I) {
1306    if (Path[I - 1].Base->isVirtual()) {
1307      Start = I - 1;
1308      break;
1309    }
1310  }
1311
1312  // Now add all bases.
1313  for (unsigned I = Start, E = Path.size(); I != E; ++I)
1314    BasePathArray.push_back(const_cast<CXXBaseSpecifier*>(Path[I].Base));
1315}
1316
1317/// \brief Determine whether the given base path includes a virtual
1318/// base class.
1319bool Sema::BasePathInvolvesVirtualBase(const CXXCastPath &BasePath) {
1320  for (CXXCastPath::const_iterator B = BasePath.begin(),
1321                                BEnd = BasePath.end();
1322       B != BEnd; ++B)
1323    if ((*B)->isVirtual())
1324      return true;
1325
1326  return false;
1327}
1328
1329/// CheckDerivedToBaseConversion - Check whether the Derived-to-Base
1330/// conversion (where Derived and Base are class types) is
1331/// well-formed, meaning that the conversion is unambiguous (and
1332/// that all of the base classes are accessible). Returns true
1333/// and emits a diagnostic if the code is ill-formed, returns false
1334/// otherwise. Loc is the location where this routine should point to
1335/// if there is an error, and Range is the source range to highlight
1336/// if there is an error.
1337bool
1338Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
1339                                   unsigned InaccessibleBaseID,
1340                                   unsigned AmbigiousBaseConvID,
1341                                   SourceLocation Loc, SourceRange Range,
1342                                   DeclarationName Name,
1343                                   CXXCastPath *BasePath) {
1344  // First, determine whether the path from Derived to Base is
1345  // ambiguous. This is slightly more expensive than checking whether
1346  // the Derived to Base conversion exists, because here we need to
1347  // explore multiple paths to determine if there is an ambiguity.
1348  CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
1349                     /*DetectVirtual=*/false);
1350  bool DerivationOkay = IsDerivedFrom(Derived, Base, Paths);
1351  assert(DerivationOkay &&
1352         "Can only be used with a derived-to-base conversion");
1353  (void)DerivationOkay;
1354
1355  if (!Paths.isAmbiguous(Context.getCanonicalType(Base).getUnqualifiedType())) {
1356    if (InaccessibleBaseID) {
1357      // Check that the base class can be accessed.
1358      switch (CheckBaseClassAccess(Loc, Base, Derived, Paths.front(),
1359                                   InaccessibleBaseID)) {
1360        case AR_inaccessible:
1361          return true;
1362        case AR_accessible:
1363        case AR_dependent:
1364        case AR_delayed:
1365          break;
1366      }
1367    }
1368
1369    // Build a base path if necessary.
1370    if (BasePath)
1371      BuildBasePathArray(Paths, *BasePath);
1372    return false;
1373  }
1374
1375  // We know that the derived-to-base conversion is ambiguous, and
1376  // we're going to produce a diagnostic. Perform the derived-to-base
1377  // search just one more time to compute all of the possible paths so
1378  // that we can print them out. This is more expensive than any of
1379  // the previous derived-to-base checks we've done, but at this point
1380  // performance isn't as much of an issue.
1381  Paths.clear();
1382  Paths.setRecordingPaths(true);
1383  bool StillOkay = IsDerivedFrom(Derived, Base, Paths);
1384  assert(StillOkay && "Can only be used with a derived-to-base conversion");
1385  (void)StillOkay;
1386
1387  // Build up a textual representation of the ambiguous paths, e.g.,
1388  // D -> B -> A, that will be used to illustrate the ambiguous
1389  // conversions in the diagnostic. We only print one of the paths
1390  // to each base class subobject.
1391  std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
1392
1393  Diag(Loc, AmbigiousBaseConvID)
1394  << Derived << Base << PathDisplayStr << Range << Name;
1395  return true;
1396}
1397
1398bool
1399Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
1400                                   SourceLocation Loc, SourceRange Range,
1401                                   CXXCastPath *BasePath,
1402                                   bool IgnoreAccess) {
1403  return CheckDerivedToBaseConversion(Derived, Base,
1404                                      IgnoreAccess ? 0
1405                                       : diag::err_upcast_to_inaccessible_base,
1406                                      diag::err_ambiguous_derived_to_base_conv,
1407                                      Loc, Range, DeclarationName(),
1408                                      BasePath);
1409}
1410
1411
1412/// @brief Builds a string representing ambiguous paths from a
1413/// specific derived class to different subobjects of the same base
1414/// class.
1415///
1416/// This function builds a string that can be used in error messages
1417/// to show the different paths that one can take through the
1418/// inheritance hierarchy to go from the derived class to different
1419/// subobjects of a base class. The result looks something like this:
1420/// @code
1421/// struct D -> struct B -> struct A
1422/// struct D -> struct C -> struct A
1423/// @endcode
1424std::string Sema::getAmbiguousPathsDisplayString(CXXBasePaths &Paths) {
1425  std::string PathDisplayStr;
1426  std::set<unsigned> DisplayedPaths;
1427  for (CXXBasePaths::paths_iterator Path = Paths.begin();
1428       Path != Paths.end(); ++Path) {
1429    if (DisplayedPaths.insert(Path->back().SubobjectNumber).second) {
1430      // We haven't displayed a path to this particular base
1431      // class subobject yet.
1432      PathDisplayStr += "\n    ";
1433      PathDisplayStr += Context.getTypeDeclType(Paths.getOrigin()).getAsString();
1434      for (CXXBasePath::const_iterator Element = Path->begin();
1435           Element != Path->end(); ++Element)
1436        PathDisplayStr += " -> " + Element->Base->getType().getAsString();
1437    }
1438  }
1439
1440  return PathDisplayStr;
1441}
1442
1443//===----------------------------------------------------------------------===//
1444// C++ class member Handling
1445//===----------------------------------------------------------------------===//
1446
1447/// ActOnAccessSpecifier - Parsed an access specifier followed by a colon.
1448bool Sema::ActOnAccessSpecifier(AccessSpecifier Access,
1449                                SourceLocation ASLoc,
1450                                SourceLocation ColonLoc,
1451                                AttributeList *Attrs) {
1452  assert(Access != AS_none && "Invalid kind for syntactic access specifier!");
1453  AccessSpecDecl *ASDecl = AccessSpecDecl::Create(Context, Access, CurContext,
1454                                                  ASLoc, ColonLoc);
1455  CurContext->addHiddenDecl(ASDecl);
1456  return ProcessAccessDeclAttributeList(ASDecl, Attrs);
1457}
1458
1459/// CheckOverrideControl - Check C++11 override control semantics.
1460void Sema::CheckOverrideControl(Decl *D) {
1461  if (D->isInvalidDecl())
1462    return;
1463
1464  const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D);
1465
1466  // Do we know which functions this declaration might be overriding?
1467  bool OverridesAreKnown = !MD ||
1468      (!MD->getParent()->hasAnyDependentBases() &&
1469       !MD->getType()->isDependentType());
1470
1471  if (!MD || !MD->isVirtual()) {
1472    if (OverridesAreKnown) {
1473      if (OverrideAttr *OA = D->getAttr<OverrideAttr>()) {
1474        Diag(OA->getLocation(),
1475             diag::override_keyword_only_allowed_on_virtual_member_functions)
1476          << "override" << FixItHint::CreateRemoval(OA->getLocation());
1477        D->dropAttr<OverrideAttr>();
1478      }
1479      if (FinalAttr *FA = D->getAttr<FinalAttr>()) {
1480        Diag(FA->getLocation(),
1481             diag::override_keyword_only_allowed_on_virtual_member_functions)
1482          << "final" << FixItHint::CreateRemoval(FA->getLocation());
1483        D->dropAttr<FinalAttr>();
1484      }
1485    }
1486    return;
1487  }
1488
1489  if (!OverridesAreKnown)
1490    return;
1491
1492  // C++11 [class.virtual]p5:
1493  //   If a virtual function is marked with the virt-specifier override and
1494  //   does not override a member function of a base class, the program is
1495  //   ill-formed.
1496  bool HasOverriddenMethods =
1497    MD->begin_overridden_methods() != MD->end_overridden_methods();
1498  if (MD->hasAttr<OverrideAttr>() && !HasOverriddenMethods)
1499    Diag(MD->getLocation(), diag::err_function_marked_override_not_overriding)
1500      << MD->getDeclName();
1501}
1502
1503/// CheckIfOverriddenFunctionIsMarkedFinal - Checks whether a virtual member
1504/// function overrides a virtual member function marked 'final', according to
1505/// C++11 [class.virtual]p4.
1506bool Sema::CheckIfOverriddenFunctionIsMarkedFinal(const CXXMethodDecl *New,
1507                                                  const CXXMethodDecl *Old) {
1508  if (!Old->hasAttr<FinalAttr>())
1509    return false;
1510
1511  Diag(New->getLocation(), diag::err_final_function_overridden)
1512    << New->getDeclName();
1513  Diag(Old->getLocation(), diag::note_overridden_virtual_function);
1514  return true;
1515}
1516
1517static bool InitializationHasSideEffects(const FieldDecl &FD) {
1518  const Type *T = FD.getType()->getBaseElementTypeUnsafe();
1519  // FIXME: Destruction of ObjC lifetime types has side-effects.
1520  if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
1521    return !RD->isCompleteDefinition() ||
1522           !RD->hasTrivialDefaultConstructor() ||
1523           !RD->hasTrivialDestructor();
1524  return false;
1525}
1526
1527/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
1528/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
1529/// bitfield width if there is one, 'InitExpr' specifies the initializer if
1530/// one has been parsed, and 'InitStyle' is set if an in-class initializer is
1531/// present (but parsing it has been deferred).
1532Decl *
1533Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
1534                               MultiTemplateParamsArg TemplateParameterLists,
1535                               Expr *BW, const VirtSpecifiers &VS,
1536                               InClassInitStyle InitStyle) {
1537  const DeclSpec &DS = D.getDeclSpec();
1538  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
1539  DeclarationName Name = NameInfo.getName();
1540  SourceLocation Loc = NameInfo.getLoc();
1541
1542  // For anonymous bitfields, the location should point to the type.
1543  if (Loc.isInvalid())
1544    Loc = D.getLocStart();
1545
1546  Expr *BitWidth = static_cast<Expr*>(BW);
1547
1548  assert(isa<CXXRecordDecl>(CurContext));
1549  assert(!DS.isFriendSpecified());
1550
1551  bool isFunc = D.isDeclarationOfFunction();
1552
1553  if (cast<CXXRecordDecl>(CurContext)->isInterface()) {
1554    // The Microsoft extension __interface only permits public member functions
1555    // and prohibits constructors, destructors, operators, non-public member
1556    // functions, static methods and data members.
1557    unsigned InvalidDecl;
1558    bool ShowDeclName = true;
1559    if (!isFunc)
1560      InvalidDecl = (DS.getStorageClassSpec() == DeclSpec::SCS_typedef) ? 0 : 1;
1561    else if (AS != AS_public)
1562      InvalidDecl = 2;
1563    else if (DS.getStorageClassSpec() == DeclSpec::SCS_static)
1564      InvalidDecl = 3;
1565    else switch (Name.getNameKind()) {
1566      case DeclarationName::CXXConstructorName:
1567        InvalidDecl = 4;
1568        ShowDeclName = false;
1569        break;
1570
1571      case DeclarationName::CXXDestructorName:
1572        InvalidDecl = 5;
1573        ShowDeclName = false;
1574        break;
1575
1576      case DeclarationName::CXXOperatorName:
1577      case DeclarationName::CXXConversionFunctionName:
1578        InvalidDecl = 6;
1579        break;
1580
1581      default:
1582        InvalidDecl = 0;
1583        break;
1584    }
1585
1586    if (InvalidDecl) {
1587      if (ShowDeclName)
1588        Diag(Loc, diag::err_invalid_member_in_interface)
1589          << (InvalidDecl-1) << Name;
1590      else
1591        Diag(Loc, diag::err_invalid_member_in_interface)
1592          << (InvalidDecl-1) << "";
1593      return 0;
1594    }
1595  }
1596
1597  // C++ 9.2p6: A member shall not be declared to have automatic storage
1598  // duration (auto, register) or with the extern storage-class-specifier.
1599  // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
1600  // data members and cannot be applied to names declared const or static,
1601  // and cannot be applied to reference members.
1602  switch (DS.getStorageClassSpec()) {
1603    case DeclSpec::SCS_unspecified:
1604    case DeclSpec::SCS_typedef:
1605    case DeclSpec::SCS_static:
1606      // FALL THROUGH.
1607      break;
1608    case DeclSpec::SCS_mutable:
1609      if (isFunc) {
1610        if (DS.getStorageClassSpecLoc().isValid())
1611          Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
1612        else
1613          Diag(DS.getThreadSpecLoc(), diag::err_mutable_function);
1614
1615        // FIXME: It would be nicer if the keyword was ignored only for this
1616        // declarator. Otherwise we could get follow-up errors.
1617        D.getMutableDeclSpec().ClearStorageClassSpecs();
1618      }
1619      break;
1620    default:
1621      if (DS.getStorageClassSpecLoc().isValid())
1622        Diag(DS.getStorageClassSpecLoc(),
1623             diag::err_storageclass_invalid_for_member);
1624      else
1625        Diag(DS.getThreadSpecLoc(), diag::err_storageclass_invalid_for_member);
1626      D.getMutableDeclSpec().ClearStorageClassSpecs();
1627  }
1628
1629  bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
1630                       DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
1631                      !isFunc);
1632
1633  Decl *Member;
1634  if (isInstField) {
1635    CXXScopeSpec &SS = D.getCXXScopeSpec();
1636
1637    // Data members must have identifiers for names.
1638    if (!Name.isIdentifier()) {
1639      Diag(Loc, diag::err_bad_variable_name)
1640        << Name;
1641      return 0;
1642    }
1643
1644    IdentifierInfo *II = Name.getAsIdentifierInfo();
1645
1646    // Member field could not be with "template" keyword.
1647    // So TemplateParameterLists should be empty in this case.
1648    if (TemplateParameterLists.size()) {
1649      TemplateParameterList* TemplateParams = TemplateParameterLists[0];
1650      if (TemplateParams->size()) {
1651        // There is no such thing as a member field template.
1652        Diag(D.getIdentifierLoc(), diag::err_template_member)
1653            << II
1654            << SourceRange(TemplateParams->getTemplateLoc(),
1655                TemplateParams->getRAngleLoc());
1656      } else {
1657        // There is an extraneous 'template<>' for this member.
1658        Diag(TemplateParams->getTemplateLoc(),
1659            diag::err_template_member_noparams)
1660            << II
1661            << SourceRange(TemplateParams->getTemplateLoc(),
1662                TemplateParams->getRAngleLoc());
1663      }
1664      return 0;
1665    }
1666
1667    if (SS.isSet() && !SS.isInvalid()) {
1668      // The user provided a superfluous scope specifier inside a class
1669      // definition:
1670      //
1671      // class X {
1672      //   int X::member;
1673      // };
1674      if (DeclContext *DC = computeDeclContext(SS, false))
1675        diagnoseQualifiedDeclaration(SS, DC, Name, D.getIdentifierLoc());
1676      else
1677        Diag(D.getIdentifierLoc(), diag::err_member_qualification)
1678          << Name << SS.getRange();
1679
1680      SS.clear();
1681    }
1682
1683    Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D, BitWidth,
1684                         InitStyle, AS);
1685    assert(Member && "HandleField never returns null");
1686  } else {
1687    assert(InitStyle == ICIS_NoInit);
1688
1689    Member = HandleDeclarator(S, D, TemplateParameterLists);
1690    if (!Member) {
1691      return 0;
1692    }
1693
1694    // Non-instance-fields can't have a bitfield.
1695    if (BitWidth) {
1696      if (Member->isInvalidDecl()) {
1697        // don't emit another diagnostic.
1698      } else if (isa<VarDecl>(Member)) {
1699        // C++ 9.6p3: A bit-field shall not be a static member.
1700        // "static member 'A' cannot be a bit-field"
1701        Diag(Loc, diag::err_static_not_bitfield)
1702          << Name << BitWidth->getSourceRange();
1703      } else if (isa<TypedefDecl>(Member)) {
1704        // "typedef member 'x' cannot be a bit-field"
1705        Diag(Loc, diag::err_typedef_not_bitfield)
1706          << Name << BitWidth->getSourceRange();
1707      } else {
1708        // A function typedef ("typedef int f(); f a;").
1709        // C++ 9.6p3: A bit-field shall have integral or enumeration type.
1710        Diag(Loc, diag::err_not_integral_type_bitfield)
1711          << Name << cast<ValueDecl>(Member)->getType()
1712          << BitWidth->getSourceRange();
1713      }
1714
1715      BitWidth = 0;
1716      Member->setInvalidDecl();
1717    }
1718
1719    Member->setAccess(AS);
1720
1721    // If we have declared a member function template, set the access of the
1722    // templated declaration as well.
1723    if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Member))
1724      FunTmpl->getTemplatedDecl()->setAccess(AS);
1725  }
1726
1727  if (VS.isOverrideSpecified())
1728    Member->addAttr(new (Context) OverrideAttr(VS.getOverrideLoc(), Context));
1729  if (VS.isFinalSpecified())
1730    Member->addAttr(new (Context) FinalAttr(VS.getFinalLoc(), Context));
1731
1732  if (VS.getLastLocation().isValid()) {
1733    // Update the end location of a method that has a virt-specifiers.
1734    if (CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(Member))
1735      MD->setRangeEnd(VS.getLastLocation());
1736  }
1737
1738  CheckOverrideControl(Member);
1739
1740  assert((Name || isInstField) && "No identifier for non-field ?");
1741
1742  if (isInstField) {
1743    FieldDecl *FD = cast<FieldDecl>(Member);
1744    FieldCollector->Add(FD);
1745
1746    if (Diags.getDiagnosticLevel(diag::warn_unused_private_field,
1747                                 FD->getLocation())
1748          != DiagnosticsEngine::Ignored) {
1749      // Remember all explicit private FieldDecls that have a name, no side
1750      // effects and are not part of a dependent type declaration.
1751      if (!FD->isImplicit() && FD->getDeclName() &&
1752          FD->getAccess() == AS_private &&
1753          !FD->hasAttr<UnusedAttr>() &&
1754          !FD->getParent()->isDependentContext() &&
1755          !InitializationHasSideEffects(*FD))
1756        UnusedPrivateFields.insert(FD);
1757    }
1758  }
1759
1760  return Member;
1761}
1762
1763namespace {
1764  class UninitializedFieldVisitor
1765      : public EvaluatedExprVisitor<UninitializedFieldVisitor> {
1766    Sema &S;
1767    ValueDecl *VD;
1768  public:
1769    typedef EvaluatedExprVisitor<UninitializedFieldVisitor> Inherited;
1770    UninitializedFieldVisitor(Sema &S, ValueDecl *VD) : Inherited(S.Context),
1771                                                        S(S), VD(VD) {
1772    }
1773
1774    void HandleExpr(Expr *E) {
1775      if (!E) return;
1776
1777      // Expressions like x(x) sometimes lack the surrounding expressions
1778      // but need to be checked anyways.
1779      HandleValue(E);
1780      Visit(E);
1781    }
1782
1783    void HandleValue(Expr *E) {
1784      E = E->IgnoreParens();
1785
1786      if (MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
1787        if (isa<EnumConstantDecl>(ME->getMemberDecl()))
1788            return;
1789        Expr *Base = E;
1790        while (isa<MemberExpr>(Base)) {
1791          ME = dyn_cast<MemberExpr>(Base);
1792          if (VarDecl *VarD = dyn_cast<VarDecl>(ME->getMemberDecl()))
1793            if (VarD->hasGlobalStorage())
1794              return;
1795          Base = ME->getBase();
1796        }
1797
1798        if (VD == ME->getMemberDecl() && isa<CXXThisExpr>(Base)) {
1799          unsigned diag = VD->getType()->isReferenceType()
1800              ? diag::warn_reference_field_is_uninit
1801              : diag::warn_field_is_uninit;
1802          S.Diag(ME->getExprLoc(), diag) << ME->getMemberNameInfo().getName();
1803          return;
1804        }
1805      }
1806
1807      if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
1808        HandleValue(CO->getTrueExpr());
1809        HandleValue(CO->getFalseExpr());
1810        return;
1811      }
1812
1813      if (BinaryConditionalOperator *BCO =
1814              dyn_cast<BinaryConditionalOperator>(E)) {
1815        HandleValue(BCO->getCommon());
1816        HandleValue(BCO->getFalseExpr());
1817        return;
1818      }
1819
1820      if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
1821        switch (BO->getOpcode()) {
1822        default:
1823          return;
1824        case(BO_PtrMemD):
1825        case(BO_PtrMemI):
1826          HandleValue(BO->getLHS());
1827          return;
1828        case(BO_Comma):
1829          HandleValue(BO->getRHS());
1830          return;
1831        }
1832      }
1833    }
1834
1835    void VisitImplicitCastExpr(ImplicitCastExpr *E) {
1836      if (E->getCastKind() == CK_LValueToRValue)
1837        HandleValue(E->getSubExpr());
1838
1839      Inherited::VisitImplicitCastExpr(E);
1840    }
1841
1842    void VisitCXXMemberCallExpr(CXXMemberCallExpr *E) {
1843      Expr *Callee = E->getCallee();
1844      if (isa<MemberExpr>(Callee))
1845        HandleValue(Callee);
1846
1847      Inherited::VisitCXXMemberCallExpr(E);
1848    }
1849  };
1850  static void CheckInitExprContainsUninitializedFields(Sema &S, Expr *E,
1851                                                       ValueDecl *VD) {
1852    UninitializedFieldVisitor(S, VD).HandleExpr(E);
1853  }
1854} // namespace
1855
1856/// ActOnCXXInClassMemberInitializer - This is invoked after parsing an
1857/// in-class initializer for a non-static C++ class member, and after
1858/// instantiating an in-class initializer in a class template. Such actions
1859/// are deferred until the class is complete.
1860void
1861Sema::ActOnCXXInClassMemberInitializer(Decl *D, SourceLocation InitLoc,
1862                                       Expr *InitExpr) {
1863  FieldDecl *FD = cast<FieldDecl>(D);
1864  assert(FD->getInClassInitStyle() != ICIS_NoInit &&
1865         "must set init style when field is created");
1866
1867  if (!InitExpr) {
1868    FD->setInvalidDecl();
1869    FD->removeInClassInitializer();
1870    return;
1871  }
1872
1873  if (DiagnoseUnexpandedParameterPack(InitExpr, UPPC_Initializer)) {
1874    FD->setInvalidDecl();
1875    FD->removeInClassInitializer();
1876    return;
1877  }
1878
1879  if (getDiagnostics().getDiagnosticLevel(diag::warn_field_is_uninit, InitLoc)
1880      != DiagnosticsEngine::Ignored) {
1881    CheckInitExprContainsUninitializedFields(*this, InitExpr, FD);
1882  }
1883
1884  ExprResult Init = InitExpr;
1885  if (!FD->getType()->isDependentType() && !InitExpr->isTypeDependent() &&
1886      !FD->getDeclContext()->isDependentContext()) {
1887    // Note: We don't type-check when we're in a dependent context, because
1888    // the initialization-substitution code does not properly handle direct
1889    // list initialization. We have the same hackaround for ctor-initializers.
1890    if (isa<InitListExpr>(InitExpr) && isStdInitializerList(FD->getType(), 0)) {
1891      Diag(FD->getLocation(), diag::warn_dangling_std_initializer_list)
1892        << /*at end of ctor*/1 << InitExpr->getSourceRange();
1893    }
1894    Expr **Inits = &InitExpr;
1895    unsigned NumInits = 1;
1896    InitializedEntity Entity = InitializedEntity::InitializeMember(FD);
1897    InitializationKind Kind = FD->getInClassInitStyle() == ICIS_ListInit
1898        ? InitializationKind::CreateDirectList(InitExpr->getLocStart())
1899        : InitializationKind::CreateCopy(InitExpr->getLocStart(), InitLoc);
1900    InitializationSequence Seq(*this, Entity, Kind, Inits, NumInits);
1901    Init = Seq.Perform(*this, Entity, Kind, MultiExprArg(Inits, NumInits));
1902    if (Init.isInvalid()) {
1903      FD->setInvalidDecl();
1904      return;
1905    }
1906
1907    CheckImplicitConversions(Init.get(), InitLoc);
1908  }
1909
1910  // C++0x [class.base.init]p7:
1911  //   The initialization of each base and member constitutes a
1912  //   full-expression.
1913  Init = MaybeCreateExprWithCleanups(Init);
1914  if (Init.isInvalid()) {
1915    FD->setInvalidDecl();
1916    return;
1917  }
1918
1919  InitExpr = Init.release();
1920
1921  FD->setInClassInitializer(InitExpr);
1922}
1923
1924/// \brief Find the direct and/or virtual base specifiers that
1925/// correspond to the given base type, for use in base initialization
1926/// within a constructor.
1927static bool FindBaseInitializer(Sema &SemaRef,
1928                                CXXRecordDecl *ClassDecl,
1929                                QualType BaseType,
1930                                const CXXBaseSpecifier *&DirectBaseSpec,
1931                                const CXXBaseSpecifier *&VirtualBaseSpec) {
1932  // First, check for a direct base class.
1933  DirectBaseSpec = 0;
1934  for (CXXRecordDecl::base_class_const_iterator Base
1935         = ClassDecl->bases_begin();
1936       Base != ClassDecl->bases_end(); ++Base) {
1937    if (SemaRef.Context.hasSameUnqualifiedType(BaseType, Base->getType())) {
1938      // We found a direct base of this type. That's what we're
1939      // initializing.
1940      DirectBaseSpec = &*Base;
1941      break;
1942    }
1943  }
1944
1945  // Check for a virtual base class.
1946  // FIXME: We might be able to short-circuit this if we know in advance that
1947  // there are no virtual bases.
1948  VirtualBaseSpec = 0;
1949  if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
1950    // We haven't found a base yet; search the class hierarchy for a
1951    // virtual base class.
1952    CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
1953                       /*DetectVirtual=*/false);
1954    if (SemaRef.IsDerivedFrom(SemaRef.Context.getTypeDeclType(ClassDecl),
1955                              BaseType, Paths)) {
1956      for (CXXBasePaths::paths_iterator Path = Paths.begin();
1957           Path != Paths.end(); ++Path) {
1958        if (Path->back().Base->isVirtual()) {
1959          VirtualBaseSpec = Path->back().Base;
1960          break;
1961        }
1962      }
1963    }
1964  }
1965
1966  return DirectBaseSpec || VirtualBaseSpec;
1967}
1968
1969/// \brief Handle a C++ member initializer using braced-init-list syntax.
1970MemInitResult
1971Sema::ActOnMemInitializer(Decl *ConstructorD,
1972                          Scope *S,
1973                          CXXScopeSpec &SS,
1974                          IdentifierInfo *MemberOrBase,
1975                          ParsedType TemplateTypeTy,
1976                          const DeclSpec &DS,
1977                          SourceLocation IdLoc,
1978                          Expr *InitList,
1979                          SourceLocation EllipsisLoc) {
1980  return BuildMemInitializer(ConstructorD, S, SS, MemberOrBase, TemplateTypeTy,
1981                             DS, IdLoc, InitList,
1982                             EllipsisLoc);
1983}
1984
1985/// \brief Handle a C++ member initializer using parentheses syntax.
1986MemInitResult
1987Sema::ActOnMemInitializer(Decl *ConstructorD,
1988                          Scope *S,
1989                          CXXScopeSpec &SS,
1990                          IdentifierInfo *MemberOrBase,
1991                          ParsedType TemplateTypeTy,
1992                          const DeclSpec &DS,
1993                          SourceLocation IdLoc,
1994                          SourceLocation LParenLoc,
1995                          Expr **Args, unsigned NumArgs,
1996                          SourceLocation RParenLoc,
1997                          SourceLocation EllipsisLoc) {
1998  Expr *List = new (Context) ParenListExpr(Context, LParenLoc,
1999                                           llvm::makeArrayRef(Args, NumArgs),
2000                                           RParenLoc);
2001  return BuildMemInitializer(ConstructorD, S, SS, MemberOrBase, TemplateTypeTy,
2002                             DS, IdLoc, List, EllipsisLoc);
2003}
2004
2005namespace {
2006
2007// Callback to only accept typo corrections that can be a valid C++ member
2008// intializer: either a non-static field member or a base class.
2009class MemInitializerValidatorCCC : public CorrectionCandidateCallback {
2010 public:
2011  explicit MemInitializerValidatorCCC(CXXRecordDecl *ClassDecl)
2012      : ClassDecl(ClassDecl) {}
2013
2014  virtual bool ValidateCandidate(const TypoCorrection &candidate) {
2015    if (NamedDecl *ND = candidate.getCorrectionDecl()) {
2016      if (FieldDecl *Member = dyn_cast<FieldDecl>(ND))
2017        return Member->getDeclContext()->getRedeclContext()->Equals(ClassDecl);
2018      else
2019        return isa<TypeDecl>(ND);
2020    }
2021    return false;
2022  }
2023
2024 private:
2025  CXXRecordDecl *ClassDecl;
2026};
2027
2028}
2029
2030/// \brief Handle a C++ member initializer.
2031MemInitResult
2032Sema::BuildMemInitializer(Decl *ConstructorD,
2033                          Scope *S,
2034                          CXXScopeSpec &SS,
2035                          IdentifierInfo *MemberOrBase,
2036                          ParsedType TemplateTypeTy,
2037                          const DeclSpec &DS,
2038                          SourceLocation IdLoc,
2039                          Expr *Init,
2040                          SourceLocation EllipsisLoc) {
2041  if (!ConstructorD)
2042    return true;
2043
2044  AdjustDeclIfTemplate(ConstructorD);
2045
2046  CXXConstructorDecl *Constructor
2047    = dyn_cast<CXXConstructorDecl>(ConstructorD);
2048  if (!Constructor) {
2049    // The user wrote a constructor initializer on a function that is
2050    // not a C++ constructor. Ignore the error for now, because we may
2051    // have more member initializers coming; we'll diagnose it just
2052    // once in ActOnMemInitializers.
2053    return true;
2054  }
2055
2056  CXXRecordDecl *ClassDecl = Constructor->getParent();
2057
2058  // C++ [class.base.init]p2:
2059  //   Names in a mem-initializer-id are looked up in the scope of the
2060  //   constructor's class and, if not found in that scope, are looked
2061  //   up in the scope containing the constructor's definition.
2062  //   [Note: if the constructor's class contains a member with the
2063  //   same name as a direct or virtual base class of the class, a
2064  //   mem-initializer-id naming the member or base class and composed
2065  //   of a single identifier refers to the class member. A
2066  //   mem-initializer-id for the hidden base class may be specified
2067  //   using a qualified name. ]
2068  if (!SS.getScopeRep() && !TemplateTypeTy) {
2069    // Look for a member, first.
2070    DeclContext::lookup_result Result
2071      = ClassDecl->lookup(MemberOrBase);
2072    if (Result.first != Result.second) {
2073      ValueDecl *Member;
2074      if ((Member = dyn_cast<FieldDecl>(*Result.first)) ||
2075          (Member = dyn_cast<IndirectFieldDecl>(*Result.first))) {
2076        if (EllipsisLoc.isValid())
2077          Diag(EllipsisLoc, diag::err_pack_expansion_member_init)
2078            << MemberOrBase
2079            << SourceRange(IdLoc, Init->getSourceRange().getEnd());
2080
2081        return BuildMemberInitializer(Member, Init, IdLoc);
2082      }
2083    }
2084  }
2085  // It didn't name a member, so see if it names a class.
2086  QualType BaseType;
2087  TypeSourceInfo *TInfo = 0;
2088
2089  if (TemplateTypeTy) {
2090    BaseType = GetTypeFromParser(TemplateTypeTy, &TInfo);
2091  } else if (DS.getTypeSpecType() == TST_decltype) {
2092    BaseType = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc());
2093  } else {
2094    LookupResult R(*this, MemberOrBase, IdLoc, LookupOrdinaryName);
2095    LookupParsedName(R, S, &SS);
2096
2097    TypeDecl *TyD = R.getAsSingle<TypeDecl>();
2098    if (!TyD) {
2099      if (R.isAmbiguous()) return true;
2100
2101      // We don't want access-control diagnostics here.
2102      R.suppressDiagnostics();
2103
2104      if (SS.isSet() && isDependentScopeSpecifier(SS)) {
2105        bool NotUnknownSpecialization = false;
2106        DeclContext *DC = computeDeclContext(SS, false);
2107        if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(DC))
2108          NotUnknownSpecialization = !Record->hasAnyDependentBases();
2109
2110        if (!NotUnknownSpecialization) {
2111          // When the scope specifier can refer to a member of an unknown
2112          // specialization, we take it as a type name.
2113          BaseType = CheckTypenameType(ETK_None, SourceLocation(),
2114                                       SS.getWithLocInContext(Context),
2115                                       *MemberOrBase, IdLoc);
2116          if (BaseType.isNull())
2117            return true;
2118
2119          R.clear();
2120          R.setLookupName(MemberOrBase);
2121        }
2122      }
2123
2124      // If no results were found, try to correct typos.
2125      TypoCorrection Corr;
2126      MemInitializerValidatorCCC Validator(ClassDecl);
2127      if (R.empty() && BaseType.isNull() &&
2128          (Corr = CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(), S, &SS,
2129                              Validator, ClassDecl))) {
2130        std::string CorrectedStr(Corr.getAsString(getLangOpts()));
2131        std::string CorrectedQuotedStr(Corr.getQuoted(getLangOpts()));
2132        if (FieldDecl *Member = Corr.getCorrectionDeclAs<FieldDecl>()) {
2133          // We have found a non-static data member with a similar
2134          // name to what was typed; complain and initialize that
2135          // member.
2136          Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
2137            << MemberOrBase << true << CorrectedQuotedStr
2138            << FixItHint::CreateReplacement(R.getNameLoc(), CorrectedStr);
2139          Diag(Member->getLocation(), diag::note_previous_decl)
2140            << CorrectedQuotedStr;
2141
2142          return BuildMemberInitializer(Member, Init, IdLoc);
2143        } else if (TypeDecl *Type = Corr.getCorrectionDeclAs<TypeDecl>()) {
2144          const CXXBaseSpecifier *DirectBaseSpec;
2145          const CXXBaseSpecifier *VirtualBaseSpec;
2146          if (FindBaseInitializer(*this, ClassDecl,
2147                                  Context.getTypeDeclType(Type),
2148                                  DirectBaseSpec, VirtualBaseSpec)) {
2149            // We have found a direct or virtual base class with a
2150            // similar name to what was typed; complain and initialize
2151            // that base class.
2152            Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
2153              << MemberOrBase << false << CorrectedQuotedStr
2154              << FixItHint::CreateReplacement(R.getNameLoc(), CorrectedStr);
2155
2156            const CXXBaseSpecifier *BaseSpec = DirectBaseSpec? DirectBaseSpec
2157                                                             : VirtualBaseSpec;
2158            Diag(BaseSpec->getLocStart(),
2159                 diag::note_base_class_specified_here)
2160              << BaseSpec->getType()
2161              << BaseSpec->getSourceRange();
2162
2163            TyD = Type;
2164          }
2165        }
2166      }
2167
2168      if (!TyD && BaseType.isNull()) {
2169        Diag(IdLoc, diag::err_mem_init_not_member_or_class)
2170          << MemberOrBase << SourceRange(IdLoc,Init->getSourceRange().getEnd());
2171        return true;
2172      }
2173    }
2174
2175    if (BaseType.isNull()) {
2176      BaseType = Context.getTypeDeclType(TyD);
2177      if (SS.isSet()) {
2178        NestedNameSpecifier *Qualifier =
2179          static_cast<NestedNameSpecifier*>(SS.getScopeRep());
2180
2181        // FIXME: preserve source range information
2182        BaseType = Context.getElaboratedType(ETK_None, Qualifier, BaseType);
2183      }
2184    }
2185  }
2186
2187  if (!TInfo)
2188    TInfo = Context.getTrivialTypeSourceInfo(BaseType, IdLoc);
2189
2190  return BuildBaseInitializer(BaseType, TInfo, Init, ClassDecl, EllipsisLoc);
2191}
2192
2193/// Checks a member initializer expression for cases where reference (or
2194/// pointer) members are bound to by-value parameters (or their addresses).
2195static void CheckForDanglingReferenceOrPointer(Sema &S, ValueDecl *Member,
2196                                               Expr *Init,
2197                                               SourceLocation IdLoc) {
2198  QualType MemberTy = Member->getType();
2199
2200  // We only handle pointers and references currently.
2201  // FIXME: Would this be relevant for ObjC object pointers? Or block pointers?
2202  if (!MemberTy->isReferenceType() && !MemberTy->isPointerType())
2203    return;
2204
2205  const bool IsPointer = MemberTy->isPointerType();
2206  if (IsPointer) {
2207    if (const UnaryOperator *Op
2208          = dyn_cast<UnaryOperator>(Init->IgnoreParenImpCasts())) {
2209      // The only case we're worried about with pointers requires taking the
2210      // address.
2211      if (Op->getOpcode() != UO_AddrOf)
2212        return;
2213
2214      Init = Op->getSubExpr();
2215    } else {
2216      // We only handle address-of expression initializers for pointers.
2217      return;
2218    }
2219  }
2220
2221  if (isa<MaterializeTemporaryExpr>(Init->IgnoreParens())) {
2222    // Taking the address of a temporary will be diagnosed as a hard error.
2223    if (IsPointer)
2224      return;
2225
2226    S.Diag(Init->getExprLoc(), diag::warn_bind_ref_member_to_temporary)
2227      << Member << Init->getSourceRange();
2228  } else if (const DeclRefExpr *DRE
2229               = dyn_cast<DeclRefExpr>(Init->IgnoreParens())) {
2230    // We only warn when referring to a non-reference parameter declaration.
2231    const ParmVarDecl *Parameter = dyn_cast<ParmVarDecl>(DRE->getDecl());
2232    if (!Parameter || Parameter->getType()->isReferenceType())
2233      return;
2234
2235    S.Diag(Init->getExprLoc(),
2236           IsPointer ? diag::warn_init_ptr_member_to_parameter_addr
2237                     : diag::warn_bind_ref_member_to_parameter)
2238      << Member << Parameter << Init->getSourceRange();
2239  } else {
2240    // Other initializers are fine.
2241    return;
2242  }
2243
2244  S.Diag(Member->getLocation(), diag::note_ref_or_ptr_member_declared_here)
2245    << (unsigned)IsPointer;
2246}
2247
2248MemInitResult
2249Sema::BuildMemberInitializer(ValueDecl *Member, Expr *Init,
2250                             SourceLocation IdLoc) {
2251  FieldDecl *DirectMember = dyn_cast<FieldDecl>(Member);
2252  IndirectFieldDecl *IndirectMember = dyn_cast<IndirectFieldDecl>(Member);
2253  assert((DirectMember || IndirectMember) &&
2254         "Member must be a FieldDecl or IndirectFieldDecl");
2255
2256  if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer))
2257    return true;
2258
2259  if (Member->isInvalidDecl())
2260    return true;
2261
2262  // Diagnose value-uses of fields to initialize themselves, e.g.
2263  //   foo(foo)
2264  // where foo is not also a parameter to the constructor.
2265  // TODO: implement -Wuninitialized and fold this into that framework.
2266  Expr **Args;
2267  unsigned NumArgs;
2268  if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) {
2269    Args = ParenList->getExprs();
2270    NumArgs = ParenList->getNumExprs();
2271  } else {
2272    InitListExpr *InitList = cast<InitListExpr>(Init);
2273    Args = InitList->getInits();
2274    NumArgs = InitList->getNumInits();
2275  }
2276
2277  if (getDiagnostics().getDiagnosticLevel(diag::warn_field_is_uninit, IdLoc)
2278        != DiagnosticsEngine::Ignored)
2279    for (unsigned i = 0; i < NumArgs; ++i)
2280      // FIXME: Warn about the case when other fields are used before being
2281      // initialized. For example, let this field be the i'th field. When
2282      // initializing the i'th field, throw a warning if any of the >= i'th
2283      // fields are used, as they are not yet initialized.
2284      // Right now we are only handling the case where the i'th field uses
2285      // itself in its initializer.
2286      // Also need to take into account that some fields may be initialized by
2287      // in-class initializers, see C++11 [class.base.init]p9.
2288      CheckInitExprContainsUninitializedFields(*this, Args[i], Member);
2289
2290  SourceRange InitRange = Init->getSourceRange();
2291
2292  if (Member->getType()->isDependentType() || Init->isTypeDependent()) {
2293    // Can't check initialization for a member of dependent type or when
2294    // any of the arguments are type-dependent expressions.
2295    DiscardCleanupsInEvaluationContext();
2296  } else {
2297    bool InitList = false;
2298    if (isa<InitListExpr>(Init)) {
2299      InitList = true;
2300      Args = &Init;
2301      NumArgs = 1;
2302
2303      if (isStdInitializerList(Member->getType(), 0)) {
2304        Diag(IdLoc, diag::warn_dangling_std_initializer_list)
2305            << /*at end of ctor*/1 << InitRange;
2306      }
2307    }
2308
2309    // Initialize the member.
2310    InitializedEntity MemberEntity =
2311      DirectMember ? InitializedEntity::InitializeMember(DirectMember, 0)
2312                   : InitializedEntity::InitializeMember(IndirectMember, 0);
2313    InitializationKind Kind =
2314      InitList ? InitializationKind::CreateDirectList(IdLoc)
2315               : InitializationKind::CreateDirect(IdLoc, InitRange.getBegin(),
2316                                                  InitRange.getEnd());
2317
2318    InitializationSequence InitSeq(*this, MemberEntity, Kind, Args, NumArgs);
2319    ExprResult MemberInit = InitSeq.Perform(*this, MemberEntity, Kind,
2320                                            MultiExprArg(Args, NumArgs),
2321                                            0);
2322    if (MemberInit.isInvalid())
2323      return true;
2324
2325    CheckImplicitConversions(MemberInit.get(),
2326                             InitRange.getBegin());
2327
2328    // C++0x [class.base.init]p7:
2329    //   The initialization of each base and member constitutes a
2330    //   full-expression.
2331    MemberInit = MaybeCreateExprWithCleanups(MemberInit);
2332    if (MemberInit.isInvalid())
2333      return true;
2334
2335    // If we are in a dependent context, template instantiation will
2336    // perform this type-checking again. Just save the arguments that we
2337    // received.
2338    // FIXME: This isn't quite ideal, since our ASTs don't capture all
2339    // of the information that we have about the member
2340    // initializer. However, deconstructing the ASTs is a dicey process,
2341    // and this approach is far more likely to get the corner cases right.
2342    if (CurContext->isDependentContext()) {
2343      // The existing Init will do fine.
2344    } else {
2345      Init = MemberInit.get();
2346      CheckForDanglingReferenceOrPointer(*this, Member, Init, IdLoc);
2347    }
2348  }
2349
2350  if (DirectMember) {
2351    return new (Context) CXXCtorInitializer(Context, DirectMember, IdLoc,
2352                                            InitRange.getBegin(), Init,
2353                                            InitRange.getEnd());
2354  } else {
2355    return new (Context) CXXCtorInitializer(Context, IndirectMember, IdLoc,
2356                                            InitRange.getBegin(), Init,
2357                                            InitRange.getEnd());
2358  }
2359}
2360
2361MemInitResult
2362Sema::BuildDelegatingInitializer(TypeSourceInfo *TInfo, Expr *Init,
2363                                 CXXRecordDecl *ClassDecl) {
2364  SourceLocation NameLoc = TInfo->getTypeLoc().getLocalSourceRange().getBegin();
2365  if (!LangOpts.CPlusPlus0x)
2366    return Diag(NameLoc, diag::err_delegating_ctor)
2367      << TInfo->getTypeLoc().getLocalSourceRange();
2368  Diag(NameLoc, diag::warn_cxx98_compat_delegating_ctor);
2369
2370  bool InitList = true;
2371  Expr **Args = &Init;
2372  unsigned NumArgs = 1;
2373  if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) {
2374    InitList = false;
2375    Args = ParenList->getExprs();
2376    NumArgs = ParenList->getNumExprs();
2377  }
2378
2379  SourceRange InitRange = Init->getSourceRange();
2380  // Initialize the object.
2381  InitializedEntity DelegationEntity = InitializedEntity::InitializeDelegation(
2382                                     QualType(ClassDecl->getTypeForDecl(), 0));
2383  InitializationKind Kind =
2384    InitList ? InitializationKind::CreateDirectList(NameLoc)
2385             : InitializationKind::CreateDirect(NameLoc, InitRange.getBegin(),
2386                                                InitRange.getEnd());
2387  InitializationSequence InitSeq(*this, DelegationEntity, Kind, Args, NumArgs);
2388  ExprResult DelegationInit = InitSeq.Perform(*this, DelegationEntity, Kind,
2389                                              MultiExprArg(Args, NumArgs),
2390                                              0);
2391  if (DelegationInit.isInvalid())
2392    return true;
2393
2394  assert(cast<CXXConstructExpr>(DelegationInit.get())->getConstructor() &&
2395         "Delegating constructor with no target?");
2396
2397  CheckImplicitConversions(DelegationInit.get(), InitRange.getBegin());
2398
2399  // C++0x [class.base.init]p7:
2400  //   The initialization of each base and member constitutes a
2401  //   full-expression.
2402  DelegationInit = MaybeCreateExprWithCleanups(DelegationInit);
2403  if (DelegationInit.isInvalid())
2404    return true;
2405
2406  // If we are in a dependent context, template instantiation will
2407  // perform this type-checking again. Just save the arguments that we
2408  // received in a ParenListExpr.
2409  // FIXME: This isn't quite ideal, since our ASTs don't capture all
2410  // of the information that we have about the base
2411  // initializer. However, deconstructing the ASTs is a dicey process,
2412  // and this approach is far more likely to get the corner cases right.
2413  if (CurContext->isDependentContext())
2414    DelegationInit = Owned(Init);
2415
2416  return new (Context) CXXCtorInitializer(Context, TInfo, InitRange.getBegin(),
2417                                          DelegationInit.takeAs<Expr>(),
2418                                          InitRange.getEnd());
2419}
2420
2421MemInitResult
2422Sema::BuildBaseInitializer(QualType BaseType, TypeSourceInfo *BaseTInfo,
2423                           Expr *Init, CXXRecordDecl *ClassDecl,
2424                           SourceLocation EllipsisLoc) {
2425  SourceLocation BaseLoc
2426    = BaseTInfo->getTypeLoc().getLocalSourceRange().getBegin();
2427
2428  if (!BaseType->isDependentType() && !BaseType->isRecordType())
2429    return Diag(BaseLoc, diag::err_base_init_does_not_name_class)
2430             << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
2431
2432  // C++ [class.base.init]p2:
2433  //   [...] Unless the mem-initializer-id names a nonstatic data
2434  //   member of the constructor's class or a direct or virtual base
2435  //   of that class, the mem-initializer is ill-formed. A
2436  //   mem-initializer-list can initialize a base class using any
2437  //   name that denotes that base class type.
2438  bool Dependent = BaseType->isDependentType() || Init->isTypeDependent();
2439
2440  SourceRange InitRange = Init->getSourceRange();
2441  if (EllipsisLoc.isValid()) {
2442    // This is a pack expansion.
2443    if (!BaseType->containsUnexpandedParameterPack())  {
2444      Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
2445        << SourceRange(BaseLoc, InitRange.getEnd());
2446
2447      EllipsisLoc = SourceLocation();
2448    }
2449  } else {
2450    // Check for any unexpanded parameter packs.
2451    if (DiagnoseUnexpandedParameterPack(BaseLoc, BaseTInfo, UPPC_Initializer))
2452      return true;
2453
2454    if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer))
2455      return true;
2456  }
2457
2458  // Check for direct and virtual base classes.
2459  const CXXBaseSpecifier *DirectBaseSpec = 0;
2460  const CXXBaseSpecifier *VirtualBaseSpec = 0;
2461  if (!Dependent) {
2462    if (Context.hasSameUnqualifiedType(QualType(ClassDecl->getTypeForDecl(),0),
2463                                       BaseType))
2464      return BuildDelegatingInitializer(BaseTInfo, Init, ClassDecl);
2465
2466    FindBaseInitializer(*this, ClassDecl, BaseType, DirectBaseSpec,
2467                        VirtualBaseSpec);
2468
2469    // C++ [base.class.init]p2:
2470    // Unless the mem-initializer-id names a nonstatic data member of the
2471    // constructor's class or a direct or virtual base of that class, the
2472    // mem-initializer is ill-formed.
2473    if (!DirectBaseSpec && !VirtualBaseSpec) {
2474      // If the class has any dependent bases, then it's possible that
2475      // one of those types will resolve to the same type as
2476      // BaseType. Therefore, just treat this as a dependent base
2477      // class initialization.  FIXME: Should we try to check the
2478      // initialization anyway? It seems odd.
2479      if (ClassDecl->hasAnyDependentBases())
2480        Dependent = true;
2481      else
2482        return Diag(BaseLoc, diag::err_not_direct_base_or_virtual)
2483          << BaseType << Context.getTypeDeclType(ClassDecl)
2484          << BaseTInfo->getTypeLoc().getLocalSourceRange();
2485    }
2486  }
2487
2488  if (Dependent) {
2489    DiscardCleanupsInEvaluationContext();
2490
2491    return new (Context) CXXCtorInitializer(Context, BaseTInfo,
2492                                            /*IsVirtual=*/false,
2493                                            InitRange.getBegin(), Init,
2494                                            InitRange.getEnd(), EllipsisLoc);
2495  }
2496
2497  // C++ [base.class.init]p2:
2498  //   If a mem-initializer-id is ambiguous because it designates both
2499  //   a direct non-virtual base class and an inherited virtual base
2500  //   class, the mem-initializer is ill-formed.
2501  if (DirectBaseSpec && VirtualBaseSpec)
2502    return Diag(BaseLoc, diag::err_base_init_direct_and_virtual)
2503      << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
2504
2505  CXXBaseSpecifier *BaseSpec = const_cast<CXXBaseSpecifier *>(DirectBaseSpec);
2506  if (!BaseSpec)
2507    BaseSpec = const_cast<CXXBaseSpecifier *>(VirtualBaseSpec);
2508
2509  // Initialize the base.
2510  bool InitList = true;
2511  Expr **Args = &Init;
2512  unsigned NumArgs = 1;
2513  if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) {
2514    InitList = false;
2515    Args = ParenList->getExprs();
2516    NumArgs = ParenList->getNumExprs();
2517  }
2518
2519  InitializedEntity BaseEntity =
2520    InitializedEntity::InitializeBase(Context, BaseSpec, VirtualBaseSpec);
2521  InitializationKind Kind =
2522    InitList ? InitializationKind::CreateDirectList(BaseLoc)
2523             : InitializationKind::CreateDirect(BaseLoc, InitRange.getBegin(),
2524                                                InitRange.getEnd());
2525  InitializationSequence InitSeq(*this, BaseEntity, Kind, Args, NumArgs);
2526  ExprResult BaseInit = InitSeq.Perform(*this, BaseEntity, Kind,
2527                                        MultiExprArg(Args, NumArgs), 0);
2528  if (BaseInit.isInvalid())
2529    return true;
2530
2531  CheckImplicitConversions(BaseInit.get(), InitRange.getBegin());
2532
2533  // C++0x [class.base.init]p7:
2534  //   The initialization of each base and member constitutes a
2535  //   full-expression.
2536  BaseInit = MaybeCreateExprWithCleanups(BaseInit);
2537  if (BaseInit.isInvalid())
2538    return true;
2539
2540  // If we are in a dependent context, template instantiation will
2541  // perform this type-checking again. Just save the arguments that we
2542  // received in a ParenListExpr.
2543  // FIXME: This isn't quite ideal, since our ASTs don't capture all
2544  // of the information that we have about the base
2545  // initializer. However, deconstructing the ASTs is a dicey process,
2546  // and this approach is far more likely to get the corner cases right.
2547  if (CurContext->isDependentContext())
2548    BaseInit = Owned(Init);
2549
2550  return new (Context) CXXCtorInitializer(Context, BaseTInfo,
2551                                          BaseSpec->isVirtual(),
2552                                          InitRange.getBegin(),
2553                                          BaseInit.takeAs<Expr>(),
2554                                          InitRange.getEnd(), EllipsisLoc);
2555}
2556
2557// Create a static_cast\<T&&>(expr).
2558static Expr *CastForMoving(Sema &SemaRef, Expr *E) {
2559  QualType ExprType = E->getType();
2560  QualType TargetType = SemaRef.Context.getRValueReferenceType(ExprType);
2561  SourceLocation ExprLoc = E->getLocStart();
2562  TypeSourceInfo *TargetLoc = SemaRef.Context.getTrivialTypeSourceInfo(
2563      TargetType, ExprLoc);
2564
2565  return SemaRef.BuildCXXNamedCast(ExprLoc, tok::kw_static_cast, TargetLoc, E,
2566                                   SourceRange(ExprLoc, ExprLoc),
2567                                   E->getSourceRange()).take();
2568}
2569
2570/// ImplicitInitializerKind - How an implicit base or member initializer should
2571/// initialize its base or member.
2572enum ImplicitInitializerKind {
2573  IIK_Default,
2574  IIK_Copy,
2575  IIK_Move
2576};
2577
2578static bool
2579BuildImplicitBaseInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
2580                             ImplicitInitializerKind ImplicitInitKind,
2581                             CXXBaseSpecifier *BaseSpec,
2582                             bool IsInheritedVirtualBase,
2583                             CXXCtorInitializer *&CXXBaseInit) {
2584  InitializedEntity InitEntity
2585    = InitializedEntity::InitializeBase(SemaRef.Context, BaseSpec,
2586                                        IsInheritedVirtualBase);
2587
2588  ExprResult BaseInit;
2589
2590  switch (ImplicitInitKind) {
2591  case IIK_Default: {
2592    InitializationKind InitKind
2593      = InitializationKind::CreateDefault(Constructor->getLocation());
2594    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
2595    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind, MultiExprArg());
2596    break;
2597  }
2598
2599  case IIK_Move:
2600  case IIK_Copy: {
2601    bool Moving = ImplicitInitKind == IIK_Move;
2602    ParmVarDecl *Param = Constructor->getParamDecl(0);
2603    QualType ParamType = Param->getType().getNonReferenceType();
2604
2605    Expr *CopyCtorArg =
2606      DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(),
2607                          SourceLocation(), Param, false,
2608                          Constructor->getLocation(), ParamType,
2609                          VK_LValue, 0);
2610
2611    SemaRef.MarkDeclRefReferenced(cast<DeclRefExpr>(CopyCtorArg));
2612
2613    // Cast to the base class to avoid ambiguities.
2614    QualType ArgTy =
2615      SemaRef.Context.getQualifiedType(BaseSpec->getType().getUnqualifiedType(),
2616                                       ParamType.getQualifiers());
2617
2618    if (Moving) {
2619      CopyCtorArg = CastForMoving(SemaRef, CopyCtorArg);
2620    }
2621
2622    CXXCastPath BasePath;
2623    BasePath.push_back(BaseSpec);
2624    CopyCtorArg = SemaRef.ImpCastExprToType(CopyCtorArg, ArgTy,
2625                                            CK_UncheckedDerivedToBase,
2626                                            Moving ? VK_XValue : VK_LValue,
2627                                            &BasePath).take();
2628
2629    InitializationKind InitKind
2630      = InitializationKind::CreateDirect(Constructor->getLocation(),
2631                                         SourceLocation(), SourceLocation());
2632    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind,
2633                                   &CopyCtorArg, 1);
2634    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind,
2635                               MultiExprArg(&CopyCtorArg, 1));
2636    break;
2637  }
2638  }
2639
2640  BaseInit = SemaRef.MaybeCreateExprWithCleanups(BaseInit);
2641  if (BaseInit.isInvalid())
2642    return true;
2643
2644  CXXBaseInit =
2645    new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
2646               SemaRef.Context.getTrivialTypeSourceInfo(BaseSpec->getType(),
2647                                                        SourceLocation()),
2648                                             BaseSpec->isVirtual(),
2649                                             SourceLocation(),
2650                                             BaseInit.takeAs<Expr>(),
2651                                             SourceLocation(),
2652                                             SourceLocation());
2653
2654  return false;
2655}
2656
2657static bool RefersToRValueRef(Expr *MemRef) {
2658  ValueDecl *Referenced = cast<MemberExpr>(MemRef)->getMemberDecl();
2659  return Referenced->getType()->isRValueReferenceType();
2660}
2661
2662static bool
2663BuildImplicitMemberInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
2664                               ImplicitInitializerKind ImplicitInitKind,
2665                               FieldDecl *Field, IndirectFieldDecl *Indirect,
2666                               CXXCtorInitializer *&CXXMemberInit) {
2667  if (Field->isInvalidDecl())
2668    return true;
2669
2670  SourceLocation Loc = Constructor->getLocation();
2671
2672  if (ImplicitInitKind == IIK_Copy || ImplicitInitKind == IIK_Move) {
2673    bool Moving = ImplicitInitKind == IIK_Move;
2674    ParmVarDecl *Param = Constructor->getParamDecl(0);
2675    QualType ParamType = Param->getType().getNonReferenceType();
2676
2677    // Suppress copying zero-width bitfields.
2678    if (Field->isBitField() && Field->getBitWidthValue(SemaRef.Context) == 0)
2679      return false;
2680
2681    Expr *MemberExprBase =
2682      DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(),
2683                          SourceLocation(), Param, false,
2684                          Loc, ParamType, VK_LValue, 0);
2685
2686    SemaRef.MarkDeclRefReferenced(cast<DeclRefExpr>(MemberExprBase));
2687
2688    if (Moving) {
2689      MemberExprBase = CastForMoving(SemaRef, MemberExprBase);
2690    }
2691
2692    // Build a reference to this field within the parameter.
2693    CXXScopeSpec SS;
2694    LookupResult MemberLookup(SemaRef, Field->getDeclName(), Loc,
2695                              Sema::LookupMemberName);
2696    MemberLookup.addDecl(Indirect ? cast<ValueDecl>(Indirect)
2697                                  : cast<ValueDecl>(Field), AS_public);
2698    MemberLookup.resolveKind();
2699    ExprResult CtorArg
2700      = SemaRef.BuildMemberReferenceExpr(MemberExprBase,
2701                                         ParamType, Loc,
2702                                         /*IsArrow=*/false,
2703                                         SS,
2704                                         /*TemplateKWLoc=*/SourceLocation(),
2705                                         /*FirstQualifierInScope=*/0,
2706                                         MemberLookup,
2707                                         /*TemplateArgs=*/0);
2708    if (CtorArg.isInvalid())
2709      return true;
2710
2711    // C++11 [class.copy]p15:
2712    //   - if a member m has rvalue reference type T&&, it is direct-initialized
2713    //     with static_cast<T&&>(x.m);
2714    if (RefersToRValueRef(CtorArg.get())) {
2715      CtorArg = CastForMoving(SemaRef, CtorArg.take());
2716    }
2717
2718    // When the field we are copying is an array, create index variables for
2719    // each dimension of the array. We use these index variables to subscript
2720    // the source array, and other clients (e.g., CodeGen) will perform the
2721    // necessary iteration with these index variables.
2722    SmallVector<VarDecl *, 4> IndexVariables;
2723    QualType BaseType = Field->getType();
2724    QualType SizeType = SemaRef.Context.getSizeType();
2725    bool InitializingArray = false;
2726    while (const ConstantArrayType *Array
2727                          = SemaRef.Context.getAsConstantArrayType(BaseType)) {
2728      InitializingArray = true;
2729      // Create the iteration variable for this array index.
2730      IdentifierInfo *IterationVarName = 0;
2731      {
2732        SmallString<8> Str;
2733        llvm::raw_svector_ostream OS(Str);
2734        OS << "__i" << IndexVariables.size();
2735        IterationVarName = &SemaRef.Context.Idents.get(OS.str());
2736      }
2737      VarDecl *IterationVar
2738        = VarDecl::Create(SemaRef.Context, SemaRef.CurContext, Loc, Loc,
2739                          IterationVarName, SizeType,
2740                        SemaRef.Context.getTrivialTypeSourceInfo(SizeType, Loc),
2741                          SC_None, SC_None);
2742      IndexVariables.push_back(IterationVar);
2743
2744      // Create a reference to the iteration variable.
2745      ExprResult IterationVarRef
2746        = SemaRef.BuildDeclRefExpr(IterationVar, SizeType, VK_LValue, Loc);
2747      assert(!IterationVarRef.isInvalid() &&
2748             "Reference to invented variable cannot fail!");
2749      IterationVarRef = SemaRef.DefaultLvalueConversion(IterationVarRef.take());
2750      assert(!IterationVarRef.isInvalid() &&
2751             "Conversion of invented variable cannot fail!");
2752
2753      // Subscript the array with this iteration variable.
2754      CtorArg = SemaRef.CreateBuiltinArraySubscriptExpr(CtorArg.take(), Loc,
2755                                                        IterationVarRef.take(),
2756                                                        Loc);
2757      if (CtorArg.isInvalid())
2758        return true;
2759
2760      BaseType = Array->getElementType();
2761    }
2762
2763    // The array subscript expression is an lvalue, which is wrong for moving.
2764    if (Moving && InitializingArray)
2765      CtorArg = CastForMoving(SemaRef, CtorArg.take());
2766
2767    // Construct the entity that we will be initializing. For an array, this
2768    // will be first element in the array, which may require several levels
2769    // of array-subscript entities.
2770    SmallVector<InitializedEntity, 4> Entities;
2771    Entities.reserve(1 + IndexVariables.size());
2772    if (Indirect)
2773      Entities.push_back(InitializedEntity::InitializeMember(Indirect));
2774    else
2775      Entities.push_back(InitializedEntity::InitializeMember(Field));
2776    for (unsigned I = 0, N = IndexVariables.size(); I != N; ++I)
2777      Entities.push_back(InitializedEntity::InitializeElement(SemaRef.Context,
2778                                                              0,
2779                                                              Entities.back()));
2780
2781    // Direct-initialize to use the copy constructor.
2782    InitializationKind InitKind =
2783      InitializationKind::CreateDirect(Loc, SourceLocation(), SourceLocation());
2784
2785    Expr *CtorArgE = CtorArg.takeAs<Expr>();
2786    InitializationSequence InitSeq(SemaRef, Entities.back(), InitKind,
2787                                   &CtorArgE, 1);
2788
2789    ExprResult MemberInit
2790      = InitSeq.Perform(SemaRef, Entities.back(), InitKind,
2791                        MultiExprArg(&CtorArgE, 1));
2792    MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
2793    if (MemberInit.isInvalid())
2794      return true;
2795
2796    if (Indirect) {
2797      assert(IndexVariables.size() == 0 &&
2798             "Indirect field improperly initialized");
2799      CXXMemberInit
2800        = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Indirect,
2801                                                   Loc, Loc,
2802                                                   MemberInit.takeAs<Expr>(),
2803                                                   Loc);
2804    } else
2805      CXXMemberInit = CXXCtorInitializer::Create(SemaRef.Context, Field, Loc,
2806                                                 Loc, MemberInit.takeAs<Expr>(),
2807                                                 Loc,
2808                                                 IndexVariables.data(),
2809                                                 IndexVariables.size());
2810    return false;
2811  }
2812
2813  assert(ImplicitInitKind == IIK_Default && "Unhandled implicit init kind!");
2814
2815  QualType FieldBaseElementType =
2816    SemaRef.Context.getBaseElementType(Field->getType());
2817
2818  if (FieldBaseElementType->isRecordType()) {
2819    InitializedEntity InitEntity
2820      = Indirect? InitializedEntity::InitializeMember(Indirect)
2821                : InitializedEntity::InitializeMember(Field);
2822    InitializationKind InitKind =
2823      InitializationKind::CreateDefault(Loc);
2824
2825    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
2826    ExprResult MemberInit =
2827      InitSeq.Perform(SemaRef, InitEntity, InitKind, MultiExprArg());
2828
2829    MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
2830    if (MemberInit.isInvalid())
2831      return true;
2832
2833    if (Indirect)
2834      CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
2835                                                               Indirect, Loc,
2836                                                               Loc,
2837                                                               MemberInit.get(),
2838                                                               Loc);
2839    else
2840      CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
2841                                                               Field, Loc, Loc,
2842                                                               MemberInit.get(),
2843                                                               Loc);
2844    return false;
2845  }
2846
2847  if (!Field->getParent()->isUnion()) {
2848    if (FieldBaseElementType->isReferenceType()) {
2849      SemaRef.Diag(Constructor->getLocation(),
2850                   diag::err_uninitialized_member_in_ctor)
2851      << (int)Constructor->isImplicit()
2852      << SemaRef.Context.getTagDeclType(Constructor->getParent())
2853      << 0 << Field->getDeclName();
2854      SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
2855      return true;
2856    }
2857
2858    if (FieldBaseElementType.isConstQualified()) {
2859      SemaRef.Diag(Constructor->getLocation(),
2860                   diag::err_uninitialized_member_in_ctor)
2861      << (int)Constructor->isImplicit()
2862      << SemaRef.Context.getTagDeclType(Constructor->getParent())
2863      << 1 << Field->getDeclName();
2864      SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
2865      return true;
2866    }
2867  }
2868
2869  if (SemaRef.getLangOpts().ObjCAutoRefCount &&
2870      FieldBaseElementType->isObjCRetainableType() &&
2871      FieldBaseElementType.getObjCLifetime() != Qualifiers::OCL_None &&
2872      FieldBaseElementType.getObjCLifetime() != Qualifiers::OCL_ExplicitNone) {
2873    // ARC:
2874    //   Default-initialize Objective-C pointers to NULL.
2875    CXXMemberInit
2876      = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Field,
2877                                                 Loc, Loc,
2878                 new (SemaRef.Context) ImplicitValueInitExpr(Field->getType()),
2879                                                 Loc);
2880    return false;
2881  }
2882
2883  // Nothing to initialize.
2884  CXXMemberInit = 0;
2885  return false;
2886}
2887
2888namespace {
2889struct BaseAndFieldInfo {
2890  Sema &S;
2891  CXXConstructorDecl *Ctor;
2892  bool AnyErrorsInInits;
2893  ImplicitInitializerKind IIK;
2894  llvm::DenseMap<const void *, CXXCtorInitializer*> AllBaseFields;
2895  SmallVector<CXXCtorInitializer*, 8> AllToInit;
2896
2897  BaseAndFieldInfo(Sema &S, CXXConstructorDecl *Ctor, bool ErrorsInInits)
2898    : S(S), Ctor(Ctor), AnyErrorsInInits(ErrorsInInits) {
2899    bool Generated = Ctor->isImplicit() || Ctor->isDefaulted();
2900    if (Generated && Ctor->isCopyConstructor())
2901      IIK = IIK_Copy;
2902    else if (Generated && Ctor->isMoveConstructor())
2903      IIK = IIK_Move;
2904    else
2905      IIK = IIK_Default;
2906  }
2907
2908  bool isImplicitCopyOrMove() const {
2909    switch (IIK) {
2910    case IIK_Copy:
2911    case IIK_Move:
2912      return true;
2913
2914    case IIK_Default:
2915      return false;
2916    }
2917
2918    llvm_unreachable("Invalid ImplicitInitializerKind!");
2919  }
2920
2921  bool addFieldInitializer(CXXCtorInitializer *Init) {
2922    AllToInit.push_back(Init);
2923
2924    // Check whether this initializer makes the field "used".
2925    if (Init->getInit() && Init->getInit()->HasSideEffects(S.Context))
2926      S.UnusedPrivateFields.remove(Init->getAnyMember());
2927
2928    return false;
2929  }
2930};
2931}
2932
2933/// \brief Determine whether the given indirect field declaration is somewhere
2934/// within an anonymous union.
2935static bool isWithinAnonymousUnion(IndirectFieldDecl *F) {
2936  for (IndirectFieldDecl::chain_iterator C = F->chain_begin(),
2937                                      CEnd = F->chain_end();
2938       C != CEnd; ++C)
2939    if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>((*C)->getDeclContext()))
2940      if (Record->isUnion())
2941        return true;
2942
2943  return false;
2944}
2945
2946/// \brief Determine whether the given type is an incomplete or zero-lenfgth
2947/// array type.
2948static bool isIncompleteOrZeroLengthArrayType(ASTContext &Context, QualType T) {
2949  if (T->isIncompleteArrayType())
2950    return true;
2951
2952  while (const ConstantArrayType *ArrayT = Context.getAsConstantArrayType(T)) {
2953    if (!ArrayT->getSize())
2954      return true;
2955
2956    T = ArrayT->getElementType();
2957  }
2958
2959  return false;
2960}
2961
2962static bool CollectFieldInitializer(Sema &SemaRef, BaseAndFieldInfo &Info,
2963                                    FieldDecl *Field,
2964                                    IndirectFieldDecl *Indirect = 0) {
2965
2966  // Overwhelmingly common case: we have a direct initializer for this field.
2967  if (CXXCtorInitializer *Init = Info.AllBaseFields.lookup(Field))
2968    return Info.addFieldInitializer(Init);
2969
2970  // C++11 [class.base.init]p8: if the entity is a non-static data member that
2971  // has a brace-or-equal-initializer, the entity is initialized as specified
2972  // in [dcl.init].
2973  if (Field->hasInClassInitializer() && !Info.isImplicitCopyOrMove()) {
2974    CXXCtorInitializer *Init;
2975    if (Indirect)
2976      Init = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Indirect,
2977                                                      SourceLocation(),
2978                                                      SourceLocation(), 0,
2979                                                      SourceLocation());
2980    else
2981      Init = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Field,
2982                                                      SourceLocation(),
2983                                                      SourceLocation(), 0,
2984                                                      SourceLocation());
2985    return Info.addFieldInitializer(Init);
2986  }
2987
2988  // Don't build an implicit initializer for union members if none was
2989  // explicitly specified.
2990  if (Field->getParent()->isUnion() ||
2991      (Indirect && isWithinAnonymousUnion(Indirect)))
2992    return false;
2993
2994  // Don't initialize incomplete or zero-length arrays.
2995  if (isIncompleteOrZeroLengthArrayType(SemaRef.Context, Field->getType()))
2996    return false;
2997
2998  // Don't try to build an implicit initializer if there were semantic
2999  // errors in any of the initializers (and therefore we might be
3000  // missing some that the user actually wrote).
3001  if (Info.AnyErrorsInInits || Field->isInvalidDecl())
3002    return false;
3003
3004  CXXCtorInitializer *Init = 0;
3005  if (BuildImplicitMemberInitializer(Info.S, Info.Ctor, Info.IIK, Field,
3006                                     Indirect, Init))
3007    return true;
3008
3009  if (!Init)
3010    return false;
3011
3012  return Info.addFieldInitializer(Init);
3013}
3014
3015bool
3016Sema::SetDelegatingInitializer(CXXConstructorDecl *Constructor,
3017                               CXXCtorInitializer *Initializer) {
3018  assert(Initializer->isDelegatingInitializer());
3019  Constructor->setNumCtorInitializers(1);
3020  CXXCtorInitializer **initializer =
3021    new (Context) CXXCtorInitializer*[1];
3022  memcpy(initializer, &Initializer, sizeof (CXXCtorInitializer*));
3023  Constructor->setCtorInitializers(initializer);
3024
3025  if (CXXDestructorDecl *Dtor = LookupDestructor(Constructor->getParent())) {
3026    MarkFunctionReferenced(Initializer->getSourceLocation(), Dtor);
3027    DiagnoseUseOfDecl(Dtor, Initializer->getSourceLocation());
3028  }
3029
3030  DelegatingCtorDecls.push_back(Constructor);
3031
3032  return false;
3033}
3034
3035bool Sema::SetCtorInitializers(CXXConstructorDecl *Constructor,
3036                               CXXCtorInitializer **Initializers,
3037                               unsigned NumInitializers,
3038                               bool AnyErrors) {
3039  if (Constructor->isDependentContext()) {
3040    // Just store the initializers as written, they will be checked during
3041    // instantiation.
3042    if (NumInitializers > 0) {
3043      Constructor->setNumCtorInitializers(NumInitializers);
3044      CXXCtorInitializer **baseOrMemberInitializers =
3045        new (Context) CXXCtorInitializer*[NumInitializers];
3046      memcpy(baseOrMemberInitializers, Initializers,
3047             NumInitializers * sizeof(CXXCtorInitializer*));
3048      Constructor->setCtorInitializers(baseOrMemberInitializers);
3049    }
3050
3051    // Let template instantiation know whether we had errors.
3052    if (AnyErrors)
3053      Constructor->setInvalidDecl();
3054
3055    return false;
3056  }
3057
3058  BaseAndFieldInfo Info(*this, Constructor, AnyErrors);
3059
3060  // We need to build the initializer AST according to order of construction
3061  // and not what user specified in the Initializers list.
3062  CXXRecordDecl *ClassDecl = Constructor->getParent()->getDefinition();
3063  if (!ClassDecl)
3064    return true;
3065
3066  bool HadError = false;
3067
3068  for (unsigned i = 0; i < NumInitializers; i++) {
3069    CXXCtorInitializer *Member = Initializers[i];
3070
3071    if (Member->isBaseInitializer())
3072      Info.AllBaseFields[Member->getBaseClass()->getAs<RecordType>()] = Member;
3073    else
3074      Info.AllBaseFields[Member->getAnyMember()] = Member;
3075  }
3076
3077  // Keep track of the direct virtual bases.
3078  llvm::SmallPtrSet<CXXBaseSpecifier *, 16> DirectVBases;
3079  for (CXXRecordDecl::base_class_iterator I = ClassDecl->bases_begin(),
3080       E = ClassDecl->bases_end(); I != E; ++I) {
3081    if (I->isVirtual())
3082      DirectVBases.insert(I);
3083  }
3084
3085  // Push virtual bases before others.
3086  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
3087       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
3088
3089    if (CXXCtorInitializer *Value
3090        = Info.AllBaseFields.lookup(VBase->getType()->getAs<RecordType>())) {
3091      Info.AllToInit.push_back(Value);
3092    } else if (!AnyErrors) {
3093      bool IsInheritedVirtualBase = !DirectVBases.count(VBase);
3094      CXXCtorInitializer *CXXBaseInit;
3095      if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
3096                                       VBase, IsInheritedVirtualBase,
3097                                       CXXBaseInit)) {
3098        HadError = true;
3099        continue;
3100      }
3101
3102      Info.AllToInit.push_back(CXXBaseInit);
3103    }
3104  }
3105
3106  // Non-virtual bases.
3107  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
3108       E = ClassDecl->bases_end(); Base != E; ++Base) {
3109    // Virtuals are in the virtual base list and already constructed.
3110    if (Base->isVirtual())
3111      continue;
3112
3113    if (CXXCtorInitializer *Value
3114          = Info.AllBaseFields.lookup(Base->getType()->getAs<RecordType>())) {
3115      Info.AllToInit.push_back(Value);
3116    } else if (!AnyErrors) {
3117      CXXCtorInitializer *CXXBaseInit;
3118      if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
3119                                       Base, /*IsInheritedVirtualBase=*/false,
3120                                       CXXBaseInit)) {
3121        HadError = true;
3122        continue;
3123      }
3124
3125      Info.AllToInit.push_back(CXXBaseInit);
3126    }
3127  }
3128
3129  // Fields.
3130  for (DeclContext::decl_iterator Mem = ClassDecl->decls_begin(),
3131                               MemEnd = ClassDecl->decls_end();
3132       Mem != MemEnd; ++Mem) {
3133    if (FieldDecl *F = dyn_cast<FieldDecl>(*Mem)) {
3134      // C++ [class.bit]p2:
3135      //   A declaration for a bit-field that omits the identifier declares an
3136      //   unnamed bit-field. Unnamed bit-fields are not members and cannot be
3137      //   initialized.
3138      if (F->isUnnamedBitfield())
3139        continue;
3140
3141      // If we're not generating the implicit copy/move constructor, then we'll
3142      // handle anonymous struct/union fields based on their individual
3143      // indirect fields.
3144      if (F->isAnonymousStructOrUnion() && Info.IIK == IIK_Default)
3145        continue;
3146
3147      if (CollectFieldInitializer(*this, Info, F))
3148        HadError = true;
3149      continue;
3150    }
3151
3152    // Beyond this point, we only consider default initialization.
3153    if (Info.IIK != IIK_Default)
3154      continue;
3155
3156    if (IndirectFieldDecl *F = dyn_cast<IndirectFieldDecl>(*Mem)) {
3157      if (F->getType()->isIncompleteArrayType()) {
3158        assert(ClassDecl->hasFlexibleArrayMember() &&
3159               "Incomplete array type is not valid");
3160        continue;
3161      }
3162
3163      // Initialize each field of an anonymous struct individually.
3164      if (CollectFieldInitializer(*this, Info, F->getAnonField(), F))
3165        HadError = true;
3166
3167      continue;
3168    }
3169  }
3170
3171  NumInitializers = Info.AllToInit.size();
3172  if (NumInitializers > 0) {
3173    Constructor->setNumCtorInitializers(NumInitializers);
3174    CXXCtorInitializer **baseOrMemberInitializers =
3175      new (Context) CXXCtorInitializer*[NumInitializers];
3176    memcpy(baseOrMemberInitializers, Info.AllToInit.data(),
3177           NumInitializers * sizeof(CXXCtorInitializer*));
3178    Constructor->setCtorInitializers(baseOrMemberInitializers);
3179
3180    // Constructors implicitly reference the base and member
3181    // destructors.
3182    MarkBaseAndMemberDestructorsReferenced(Constructor->getLocation(),
3183                                           Constructor->getParent());
3184  }
3185
3186  return HadError;
3187}
3188
3189static void *GetKeyForTopLevelField(FieldDecl *Field) {
3190  // For anonymous unions, use the class declaration as the key.
3191  if (const RecordType *RT = Field->getType()->getAs<RecordType>()) {
3192    if (RT->getDecl()->isAnonymousStructOrUnion())
3193      return static_cast<void *>(RT->getDecl());
3194  }
3195  return static_cast<void *>(Field);
3196}
3197
3198static void *GetKeyForBase(ASTContext &Context, QualType BaseType) {
3199  return const_cast<Type*>(Context.getCanonicalType(BaseType).getTypePtr());
3200}
3201
3202static void *GetKeyForMember(ASTContext &Context,
3203                             CXXCtorInitializer *Member) {
3204  if (!Member->isAnyMemberInitializer())
3205    return GetKeyForBase(Context, QualType(Member->getBaseClass(), 0));
3206
3207  // For fields injected into the class via declaration of an anonymous union,
3208  // use its anonymous union class declaration as the unique key.
3209  FieldDecl *Field = Member->getAnyMember();
3210
3211  // If the field is a member of an anonymous struct or union, our key
3212  // is the anonymous record decl that's a direct child of the class.
3213  RecordDecl *RD = Field->getParent();
3214  if (RD->isAnonymousStructOrUnion()) {
3215    while (true) {
3216      RecordDecl *Parent = cast<RecordDecl>(RD->getDeclContext());
3217      if (Parent->isAnonymousStructOrUnion())
3218        RD = Parent;
3219      else
3220        break;
3221    }
3222
3223    return static_cast<void *>(RD);
3224  }
3225
3226  return static_cast<void *>(Field);
3227}
3228
3229static void
3230DiagnoseBaseOrMemInitializerOrder(Sema &SemaRef,
3231                                  const CXXConstructorDecl *Constructor,
3232                                  CXXCtorInitializer **Inits,
3233                                  unsigned NumInits) {
3234  if (Constructor->getDeclContext()->isDependentContext())
3235    return;
3236
3237  // Don't check initializers order unless the warning is enabled at the
3238  // location of at least one initializer.
3239  bool ShouldCheckOrder = false;
3240  for (unsigned InitIndex = 0; InitIndex != NumInits; ++InitIndex) {
3241    CXXCtorInitializer *Init = Inits[InitIndex];
3242    if (SemaRef.Diags.getDiagnosticLevel(diag::warn_initializer_out_of_order,
3243                                         Init->getSourceLocation())
3244          != DiagnosticsEngine::Ignored) {
3245      ShouldCheckOrder = true;
3246      break;
3247    }
3248  }
3249  if (!ShouldCheckOrder)
3250    return;
3251
3252  // Build the list of bases and members in the order that they'll
3253  // actually be initialized.  The explicit initializers should be in
3254  // this same order but may be missing things.
3255  SmallVector<const void*, 32> IdealInitKeys;
3256
3257  const CXXRecordDecl *ClassDecl = Constructor->getParent();
3258
3259  // 1. Virtual bases.
3260  for (CXXRecordDecl::base_class_const_iterator VBase =
3261       ClassDecl->vbases_begin(),
3262       E = ClassDecl->vbases_end(); VBase != E; ++VBase)
3263    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, VBase->getType()));
3264
3265  // 2. Non-virtual bases.
3266  for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin(),
3267       E = ClassDecl->bases_end(); Base != E; ++Base) {
3268    if (Base->isVirtual())
3269      continue;
3270    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, Base->getType()));
3271  }
3272
3273  // 3. Direct fields.
3274  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
3275       E = ClassDecl->field_end(); Field != E; ++Field) {
3276    if (Field->isUnnamedBitfield())
3277      continue;
3278
3279    IdealInitKeys.push_back(GetKeyForTopLevelField(*Field));
3280  }
3281
3282  unsigned NumIdealInits = IdealInitKeys.size();
3283  unsigned IdealIndex = 0;
3284
3285  CXXCtorInitializer *PrevInit = 0;
3286  for (unsigned InitIndex = 0; InitIndex != NumInits; ++InitIndex) {
3287    CXXCtorInitializer *Init = Inits[InitIndex];
3288    void *InitKey = GetKeyForMember(SemaRef.Context, Init);
3289
3290    // Scan forward to try to find this initializer in the idealized
3291    // initializers list.
3292    for (; IdealIndex != NumIdealInits; ++IdealIndex)
3293      if (InitKey == IdealInitKeys[IdealIndex])
3294        break;
3295
3296    // If we didn't find this initializer, it must be because we
3297    // scanned past it on a previous iteration.  That can only
3298    // happen if we're out of order;  emit a warning.
3299    if (IdealIndex == NumIdealInits && PrevInit) {
3300      Sema::SemaDiagnosticBuilder D =
3301        SemaRef.Diag(PrevInit->getSourceLocation(),
3302                     diag::warn_initializer_out_of_order);
3303
3304      if (PrevInit->isAnyMemberInitializer())
3305        D << 0 << PrevInit->getAnyMember()->getDeclName();
3306      else
3307        D << 1 << PrevInit->getTypeSourceInfo()->getType();
3308
3309      if (Init->isAnyMemberInitializer())
3310        D << 0 << Init->getAnyMember()->getDeclName();
3311      else
3312        D << 1 << Init->getTypeSourceInfo()->getType();
3313
3314      // Move back to the initializer's location in the ideal list.
3315      for (IdealIndex = 0; IdealIndex != NumIdealInits; ++IdealIndex)
3316        if (InitKey == IdealInitKeys[IdealIndex])
3317          break;
3318
3319      assert(IdealIndex != NumIdealInits &&
3320             "initializer not found in initializer list");
3321    }
3322
3323    PrevInit = Init;
3324  }
3325}
3326
3327namespace {
3328bool CheckRedundantInit(Sema &S,
3329                        CXXCtorInitializer *Init,
3330                        CXXCtorInitializer *&PrevInit) {
3331  if (!PrevInit) {
3332    PrevInit = Init;
3333    return false;
3334  }
3335
3336  if (FieldDecl *Field = Init->getMember())
3337    S.Diag(Init->getSourceLocation(),
3338           diag::err_multiple_mem_initialization)
3339      << Field->getDeclName()
3340      << Init->getSourceRange();
3341  else {
3342    const Type *BaseClass = Init->getBaseClass();
3343    assert(BaseClass && "neither field nor base");
3344    S.Diag(Init->getSourceLocation(),
3345           diag::err_multiple_base_initialization)
3346      << QualType(BaseClass, 0)
3347      << Init->getSourceRange();
3348  }
3349  S.Diag(PrevInit->getSourceLocation(), diag::note_previous_initializer)
3350    << 0 << PrevInit->getSourceRange();
3351
3352  return true;
3353}
3354
3355typedef std::pair<NamedDecl *, CXXCtorInitializer *> UnionEntry;
3356typedef llvm::DenseMap<RecordDecl*, UnionEntry> RedundantUnionMap;
3357
3358bool CheckRedundantUnionInit(Sema &S,
3359                             CXXCtorInitializer *Init,
3360                             RedundantUnionMap &Unions) {
3361  FieldDecl *Field = Init->getAnyMember();
3362  RecordDecl *Parent = Field->getParent();
3363  NamedDecl *Child = Field;
3364
3365  while (Parent->isAnonymousStructOrUnion() || Parent->isUnion()) {
3366    if (Parent->isUnion()) {
3367      UnionEntry &En = Unions[Parent];
3368      if (En.first && En.first != Child) {
3369        S.Diag(Init->getSourceLocation(),
3370               diag::err_multiple_mem_union_initialization)
3371          << Field->getDeclName()
3372          << Init->getSourceRange();
3373        S.Diag(En.second->getSourceLocation(), diag::note_previous_initializer)
3374          << 0 << En.second->getSourceRange();
3375        return true;
3376      }
3377      if (!En.first) {
3378        En.first = Child;
3379        En.second = Init;
3380      }
3381      if (!Parent->isAnonymousStructOrUnion())
3382        return false;
3383    }
3384
3385    Child = Parent;
3386    Parent = cast<RecordDecl>(Parent->getDeclContext());
3387  }
3388
3389  return false;
3390}
3391}
3392
3393/// ActOnMemInitializers - Handle the member initializers for a constructor.
3394void Sema::ActOnMemInitializers(Decl *ConstructorDecl,
3395                                SourceLocation ColonLoc,
3396                                CXXCtorInitializer **meminits,
3397                                unsigned NumMemInits,
3398                                bool AnyErrors) {
3399  if (!ConstructorDecl)
3400    return;
3401
3402  AdjustDeclIfTemplate(ConstructorDecl);
3403
3404  CXXConstructorDecl *Constructor
3405    = dyn_cast<CXXConstructorDecl>(ConstructorDecl);
3406
3407  if (!Constructor) {
3408    Diag(ColonLoc, diag::err_only_constructors_take_base_inits);
3409    return;
3410  }
3411
3412  CXXCtorInitializer **MemInits =
3413    reinterpret_cast<CXXCtorInitializer **>(meminits);
3414
3415  // Mapping for the duplicate initializers check.
3416  // For member initializers, this is keyed with a FieldDecl*.
3417  // For base initializers, this is keyed with a Type*.
3418  llvm::DenseMap<void*, CXXCtorInitializer *> Members;
3419
3420  // Mapping for the inconsistent anonymous-union initializers check.
3421  RedundantUnionMap MemberUnions;
3422
3423  bool HadError = false;
3424  for (unsigned i = 0; i < NumMemInits; i++) {
3425    CXXCtorInitializer *Init = MemInits[i];
3426
3427    // Set the source order index.
3428    Init->setSourceOrder(i);
3429
3430    if (Init->isAnyMemberInitializer()) {
3431      FieldDecl *Field = Init->getAnyMember();
3432      if (CheckRedundantInit(*this, Init, Members[Field]) ||
3433          CheckRedundantUnionInit(*this, Init, MemberUnions))
3434        HadError = true;
3435    } else if (Init->isBaseInitializer()) {
3436      void *Key = GetKeyForBase(Context, QualType(Init->getBaseClass(), 0));
3437      if (CheckRedundantInit(*this, Init, Members[Key]))
3438        HadError = true;
3439    } else {
3440      assert(Init->isDelegatingInitializer());
3441      // This must be the only initializer
3442      if (NumMemInits != 1) {
3443        Diag(Init->getSourceLocation(),
3444             diag::err_delegating_initializer_alone)
3445          << Init->getSourceRange() << MemInits[i ? 0 : 1]->getSourceRange();
3446        // We will treat this as being the only initializer.
3447      }
3448      SetDelegatingInitializer(Constructor, MemInits[i]);
3449      // Return immediately as the initializer is set.
3450      return;
3451    }
3452  }
3453
3454  if (HadError)
3455    return;
3456
3457  DiagnoseBaseOrMemInitializerOrder(*this, Constructor, MemInits, NumMemInits);
3458
3459  SetCtorInitializers(Constructor, MemInits, NumMemInits, AnyErrors);
3460}
3461
3462void
3463Sema::MarkBaseAndMemberDestructorsReferenced(SourceLocation Location,
3464                                             CXXRecordDecl *ClassDecl) {
3465  // Ignore dependent contexts. Also ignore unions, since their members never
3466  // have destructors implicitly called.
3467  if (ClassDecl->isDependentContext() || ClassDecl->isUnion())
3468    return;
3469
3470  // FIXME: all the access-control diagnostics are positioned on the
3471  // field/base declaration.  That's probably good; that said, the
3472  // user might reasonably want to know why the destructor is being
3473  // emitted, and we currently don't say.
3474
3475  // Non-static data members.
3476  for (CXXRecordDecl::field_iterator I = ClassDecl->field_begin(),
3477       E = ClassDecl->field_end(); I != E; ++I) {
3478    FieldDecl *Field = *I;
3479    if (Field->isInvalidDecl())
3480      continue;
3481
3482    // Don't destroy incomplete or zero-length arrays.
3483    if (isIncompleteOrZeroLengthArrayType(Context, Field->getType()))
3484      continue;
3485
3486    QualType FieldType = Context.getBaseElementType(Field->getType());
3487
3488    const RecordType* RT = FieldType->getAs<RecordType>();
3489    if (!RT)
3490      continue;
3491
3492    CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
3493    if (FieldClassDecl->isInvalidDecl())
3494      continue;
3495    if (FieldClassDecl->hasIrrelevantDestructor())
3496      continue;
3497    // The destructor for an implicit anonymous union member is never invoked.
3498    if (FieldClassDecl->isUnion() && FieldClassDecl->isAnonymousStructOrUnion())
3499      continue;
3500
3501    CXXDestructorDecl *Dtor = LookupDestructor(FieldClassDecl);
3502    assert(Dtor && "No dtor found for FieldClassDecl!");
3503    CheckDestructorAccess(Field->getLocation(), Dtor,
3504                          PDiag(diag::err_access_dtor_field)
3505                            << Field->getDeclName()
3506                            << FieldType);
3507
3508    MarkFunctionReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
3509    DiagnoseUseOfDecl(Dtor, Location);
3510  }
3511
3512  llvm::SmallPtrSet<const RecordType *, 8> DirectVirtualBases;
3513
3514  // Bases.
3515  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
3516       E = ClassDecl->bases_end(); Base != E; ++Base) {
3517    // Bases are always records in a well-formed non-dependent class.
3518    const RecordType *RT = Base->getType()->getAs<RecordType>();
3519
3520    // Remember direct virtual bases.
3521    if (Base->isVirtual())
3522      DirectVirtualBases.insert(RT);
3523
3524    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
3525    // If our base class is invalid, we probably can't get its dtor anyway.
3526    if (BaseClassDecl->isInvalidDecl())
3527      continue;
3528    if (BaseClassDecl->hasIrrelevantDestructor())
3529      continue;
3530
3531    CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
3532    assert(Dtor && "No dtor found for BaseClassDecl!");
3533
3534    // FIXME: caret should be on the start of the class name
3535    CheckDestructorAccess(Base->getLocStart(), Dtor,
3536                          PDiag(diag::err_access_dtor_base)
3537                            << Base->getType()
3538                            << Base->getSourceRange(),
3539                          Context.getTypeDeclType(ClassDecl));
3540
3541    MarkFunctionReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
3542    DiagnoseUseOfDecl(Dtor, Location);
3543  }
3544
3545  // Virtual bases.
3546  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
3547       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
3548
3549    // Bases are always records in a well-formed non-dependent class.
3550    const RecordType *RT = VBase->getType()->castAs<RecordType>();
3551
3552    // Ignore direct virtual bases.
3553    if (DirectVirtualBases.count(RT))
3554      continue;
3555
3556    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
3557    // If our base class is invalid, we probably can't get its dtor anyway.
3558    if (BaseClassDecl->isInvalidDecl())
3559      continue;
3560    if (BaseClassDecl->hasIrrelevantDestructor())
3561      continue;
3562
3563    CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
3564    assert(Dtor && "No dtor found for BaseClassDecl!");
3565    CheckDestructorAccess(ClassDecl->getLocation(), Dtor,
3566                          PDiag(diag::err_access_dtor_vbase)
3567                            << VBase->getType(),
3568                          Context.getTypeDeclType(ClassDecl));
3569
3570    MarkFunctionReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
3571    DiagnoseUseOfDecl(Dtor, Location);
3572  }
3573}
3574
3575void Sema::ActOnDefaultCtorInitializers(Decl *CDtorDecl) {
3576  if (!CDtorDecl)
3577    return;
3578
3579  if (CXXConstructorDecl *Constructor
3580      = dyn_cast<CXXConstructorDecl>(CDtorDecl))
3581    SetCtorInitializers(Constructor, 0, 0, /*AnyErrors=*/false);
3582}
3583
3584bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
3585                                  unsigned DiagID, AbstractDiagSelID SelID) {
3586  class NonAbstractTypeDiagnoser : public TypeDiagnoser {
3587    unsigned DiagID;
3588    AbstractDiagSelID SelID;
3589
3590  public:
3591    NonAbstractTypeDiagnoser(unsigned DiagID, AbstractDiagSelID SelID)
3592      : TypeDiagnoser(DiagID == 0), DiagID(DiagID), SelID(SelID) { }
3593
3594    virtual void diagnose(Sema &S, SourceLocation Loc, QualType T) {
3595      if (Suppressed) return;
3596      if (SelID == -1)
3597        S.Diag(Loc, DiagID) << T;
3598      else
3599        S.Diag(Loc, DiagID) << SelID << T;
3600    }
3601  } Diagnoser(DiagID, SelID);
3602
3603  return RequireNonAbstractType(Loc, T, Diagnoser);
3604}
3605
3606bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
3607                                  TypeDiagnoser &Diagnoser) {
3608  if (!getLangOpts().CPlusPlus)
3609    return false;
3610
3611  if (const ArrayType *AT = Context.getAsArrayType(T))
3612    return RequireNonAbstractType(Loc, AT->getElementType(), Diagnoser);
3613
3614  if (const PointerType *PT = T->getAs<PointerType>()) {
3615    // Find the innermost pointer type.
3616    while (const PointerType *T = PT->getPointeeType()->getAs<PointerType>())
3617      PT = T;
3618
3619    if (const ArrayType *AT = Context.getAsArrayType(PT->getPointeeType()))
3620      return RequireNonAbstractType(Loc, AT->getElementType(), Diagnoser);
3621  }
3622
3623  const RecordType *RT = T->getAs<RecordType>();
3624  if (!RT)
3625    return false;
3626
3627  const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
3628
3629  // We can't answer whether something is abstract until it has a
3630  // definition.  If it's currently being defined, we'll walk back
3631  // over all the declarations when we have a full definition.
3632  const CXXRecordDecl *Def = RD->getDefinition();
3633  if (!Def || Def->isBeingDefined())
3634    return false;
3635
3636  if (!RD->isAbstract())
3637    return false;
3638
3639  Diagnoser.diagnose(*this, Loc, T);
3640  DiagnoseAbstractType(RD);
3641
3642  return true;
3643}
3644
3645void Sema::DiagnoseAbstractType(const CXXRecordDecl *RD) {
3646  // Check if we've already emitted the list of pure virtual functions
3647  // for this class.
3648  if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD))
3649    return;
3650
3651  CXXFinalOverriderMap FinalOverriders;
3652  RD->getFinalOverriders(FinalOverriders);
3653
3654  // Keep a set of seen pure methods so we won't diagnose the same method
3655  // more than once.
3656  llvm::SmallPtrSet<const CXXMethodDecl *, 8> SeenPureMethods;
3657
3658  for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
3659                                   MEnd = FinalOverriders.end();
3660       M != MEnd;
3661       ++M) {
3662    for (OverridingMethods::iterator SO = M->second.begin(),
3663                                  SOEnd = M->second.end();
3664         SO != SOEnd; ++SO) {
3665      // C++ [class.abstract]p4:
3666      //   A class is abstract if it contains or inherits at least one
3667      //   pure virtual function for which the final overrider is pure
3668      //   virtual.
3669
3670      //
3671      if (SO->second.size() != 1)
3672        continue;
3673
3674      if (!SO->second.front().Method->isPure())
3675        continue;
3676
3677      if (!SeenPureMethods.insert(SO->second.front().Method))
3678        continue;
3679
3680      Diag(SO->second.front().Method->getLocation(),
3681           diag::note_pure_virtual_function)
3682        << SO->second.front().Method->getDeclName() << RD->getDeclName();
3683    }
3684  }
3685
3686  if (!PureVirtualClassDiagSet)
3687    PureVirtualClassDiagSet.reset(new RecordDeclSetTy);
3688  PureVirtualClassDiagSet->insert(RD);
3689}
3690
3691namespace {
3692struct AbstractUsageInfo {
3693  Sema &S;
3694  CXXRecordDecl *Record;
3695  CanQualType AbstractType;
3696  bool Invalid;
3697
3698  AbstractUsageInfo(Sema &S, CXXRecordDecl *Record)
3699    : S(S), Record(Record),
3700      AbstractType(S.Context.getCanonicalType(
3701                   S.Context.getTypeDeclType(Record))),
3702      Invalid(false) {}
3703
3704  void DiagnoseAbstractType() {
3705    if (Invalid) return;
3706    S.DiagnoseAbstractType(Record);
3707    Invalid = true;
3708  }
3709
3710  void CheckType(const NamedDecl *D, TypeLoc TL, Sema::AbstractDiagSelID Sel);
3711};
3712
3713struct CheckAbstractUsage {
3714  AbstractUsageInfo &Info;
3715  const NamedDecl *Ctx;
3716
3717  CheckAbstractUsage(AbstractUsageInfo &Info, const NamedDecl *Ctx)
3718    : Info(Info), Ctx(Ctx) {}
3719
3720  void Visit(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
3721    switch (TL.getTypeLocClass()) {
3722#define ABSTRACT_TYPELOC(CLASS, PARENT)
3723#define TYPELOC(CLASS, PARENT) \
3724    case TypeLoc::CLASS: Check(cast<CLASS##TypeLoc>(TL), Sel); break;
3725#include "clang/AST/TypeLocNodes.def"
3726    }
3727  }
3728
3729  void Check(FunctionProtoTypeLoc TL, Sema::AbstractDiagSelID Sel) {
3730    Visit(TL.getResultLoc(), Sema::AbstractReturnType);
3731    for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
3732      if (!TL.getArg(I))
3733        continue;
3734
3735      TypeSourceInfo *TSI = TL.getArg(I)->getTypeSourceInfo();
3736      if (TSI) Visit(TSI->getTypeLoc(), Sema::AbstractParamType);
3737    }
3738  }
3739
3740  void Check(ArrayTypeLoc TL, Sema::AbstractDiagSelID Sel) {
3741    Visit(TL.getElementLoc(), Sema::AbstractArrayType);
3742  }
3743
3744  void Check(TemplateSpecializationTypeLoc TL, Sema::AbstractDiagSelID Sel) {
3745    // Visit the type parameters from a permissive context.
3746    for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
3747      TemplateArgumentLoc TAL = TL.getArgLoc(I);
3748      if (TAL.getArgument().getKind() == TemplateArgument::Type)
3749        if (TypeSourceInfo *TSI = TAL.getTypeSourceInfo())
3750          Visit(TSI->getTypeLoc(), Sema::AbstractNone);
3751      // TODO: other template argument types?
3752    }
3753  }
3754
3755  // Visit pointee types from a permissive context.
3756#define CheckPolymorphic(Type) \
3757  void Check(Type TL, Sema::AbstractDiagSelID Sel) { \
3758    Visit(TL.getNextTypeLoc(), Sema::AbstractNone); \
3759  }
3760  CheckPolymorphic(PointerTypeLoc)
3761  CheckPolymorphic(ReferenceTypeLoc)
3762  CheckPolymorphic(MemberPointerTypeLoc)
3763  CheckPolymorphic(BlockPointerTypeLoc)
3764  CheckPolymorphic(AtomicTypeLoc)
3765
3766  /// Handle all the types we haven't given a more specific
3767  /// implementation for above.
3768  void Check(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
3769    // Every other kind of type that we haven't called out already
3770    // that has an inner type is either (1) sugar or (2) contains that
3771    // inner type in some way as a subobject.
3772    if (TypeLoc Next = TL.getNextTypeLoc())
3773      return Visit(Next, Sel);
3774
3775    // If there's no inner type and we're in a permissive context,
3776    // don't diagnose.
3777    if (Sel == Sema::AbstractNone) return;
3778
3779    // Check whether the type matches the abstract type.
3780    QualType T = TL.getType();
3781    if (T->isArrayType()) {
3782      Sel = Sema::AbstractArrayType;
3783      T = Info.S.Context.getBaseElementType(T);
3784    }
3785    CanQualType CT = T->getCanonicalTypeUnqualified().getUnqualifiedType();
3786    if (CT != Info.AbstractType) return;
3787
3788    // It matched; do some magic.
3789    if (Sel == Sema::AbstractArrayType) {
3790      Info.S.Diag(Ctx->getLocation(), diag::err_array_of_abstract_type)
3791        << T << TL.getSourceRange();
3792    } else {
3793      Info.S.Diag(Ctx->getLocation(), diag::err_abstract_type_in_decl)
3794        << Sel << T << TL.getSourceRange();
3795    }
3796    Info.DiagnoseAbstractType();
3797  }
3798};
3799
3800void AbstractUsageInfo::CheckType(const NamedDecl *D, TypeLoc TL,
3801                                  Sema::AbstractDiagSelID Sel) {
3802  CheckAbstractUsage(*this, D).Visit(TL, Sel);
3803}
3804
3805}
3806
3807/// Check for invalid uses of an abstract type in a method declaration.
3808static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
3809                                    CXXMethodDecl *MD) {
3810  // No need to do the check on definitions, which require that
3811  // the return/param types be complete.
3812  if (MD->doesThisDeclarationHaveABody())
3813    return;
3814
3815  // For safety's sake, just ignore it if we don't have type source
3816  // information.  This should never happen for non-implicit methods,
3817  // but...
3818  if (TypeSourceInfo *TSI = MD->getTypeSourceInfo())
3819    Info.CheckType(MD, TSI->getTypeLoc(), Sema::AbstractNone);
3820}
3821
3822/// Check for invalid uses of an abstract type within a class definition.
3823static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
3824                                    CXXRecordDecl *RD) {
3825  for (CXXRecordDecl::decl_iterator
3826         I = RD->decls_begin(), E = RD->decls_end(); I != E; ++I) {
3827    Decl *D = *I;
3828    if (D->isImplicit()) continue;
3829
3830    // Methods and method templates.
3831    if (isa<CXXMethodDecl>(D)) {
3832      CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(D));
3833    } else if (isa<FunctionTemplateDecl>(D)) {
3834      FunctionDecl *FD = cast<FunctionTemplateDecl>(D)->getTemplatedDecl();
3835      CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(FD));
3836
3837    // Fields and static variables.
3838    } else if (isa<FieldDecl>(D)) {
3839      FieldDecl *FD = cast<FieldDecl>(D);
3840      if (TypeSourceInfo *TSI = FD->getTypeSourceInfo())
3841        Info.CheckType(FD, TSI->getTypeLoc(), Sema::AbstractFieldType);
3842    } else if (isa<VarDecl>(D)) {
3843      VarDecl *VD = cast<VarDecl>(D);
3844      if (TypeSourceInfo *TSI = VD->getTypeSourceInfo())
3845        Info.CheckType(VD, TSI->getTypeLoc(), Sema::AbstractVariableType);
3846
3847    // Nested classes and class templates.
3848    } else if (isa<CXXRecordDecl>(D)) {
3849      CheckAbstractClassUsage(Info, cast<CXXRecordDecl>(D));
3850    } else if (isa<ClassTemplateDecl>(D)) {
3851      CheckAbstractClassUsage(Info,
3852                             cast<ClassTemplateDecl>(D)->getTemplatedDecl());
3853    }
3854  }
3855}
3856
3857/// \brief Perform semantic checks on a class definition that has been
3858/// completing, introducing implicitly-declared members, checking for
3859/// abstract types, etc.
3860void Sema::CheckCompletedCXXClass(CXXRecordDecl *Record) {
3861  if (!Record)
3862    return;
3863
3864  if (Record->isAbstract() && !Record->isInvalidDecl()) {
3865    AbstractUsageInfo Info(*this, Record);
3866    CheckAbstractClassUsage(Info, Record);
3867  }
3868
3869  // If this is not an aggregate type and has no user-declared constructor,
3870  // complain about any non-static data members of reference or const scalar
3871  // type, since they will never get initializers.
3872  if (!Record->isInvalidDecl() && !Record->isDependentType() &&
3873      !Record->isAggregate() && !Record->hasUserDeclaredConstructor() &&
3874      !Record->isLambda()) {
3875    bool Complained = false;
3876    for (RecordDecl::field_iterator F = Record->field_begin(),
3877                                 FEnd = Record->field_end();
3878         F != FEnd; ++F) {
3879      if (F->hasInClassInitializer() || F->isUnnamedBitfield())
3880        continue;
3881
3882      if (F->getType()->isReferenceType() ||
3883          (F->getType().isConstQualified() && F->getType()->isScalarType())) {
3884        if (!Complained) {
3885          Diag(Record->getLocation(), diag::warn_no_constructor_for_refconst)
3886            << Record->getTagKind() << Record;
3887          Complained = true;
3888        }
3889
3890        Diag(F->getLocation(), diag::note_refconst_member_not_initialized)
3891          << F->getType()->isReferenceType()
3892          << F->getDeclName();
3893      }
3894    }
3895  }
3896
3897  if (Record->isDynamicClass() && !Record->isDependentType())
3898    DynamicClasses.push_back(Record);
3899
3900  if (Record->getIdentifier()) {
3901    // C++ [class.mem]p13:
3902    //   If T is the name of a class, then each of the following shall have a
3903    //   name different from T:
3904    //     - every member of every anonymous union that is a member of class T.
3905    //
3906    // C++ [class.mem]p14:
3907    //   In addition, if class T has a user-declared constructor (12.1), every
3908    //   non-static data member of class T shall have a name different from T.
3909    for (DeclContext::lookup_result R = Record->lookup(Record->getDeclName());
3910         R.first != R.second; ++R.first) {
3911      NamedDecl *D = *R.first;
3912      if ((isa<FieldDecl>(D) && Record->hasUserDeclaredConstructor()) ||
3913          isa<IndirectFieldDecl>(D)) {
3914        Diag(D->getLocation(), diag::err_member_name_of_class)
3915          << D->getDeclName();
3916        break;
3917      }
3918    }
3919  }
3920
3921  // Warn if the class has virtual methods but non-virtual public destructor.
3922  if (Record->isPolymorphic() && !Record->isDependentType()) {
3923    CXXDestructorDecl *dtor = Record->getDestructor();
3924    if (!dtor || (!dtor->isVirtual() && dtor->getAccess() == AS_public))
3925      Diag(dtor ? dtor->getLocation() : Record->getLocation(),
3926           diag::warn_non_virtual_dtor) << Context.getRecordType(Record);
3927  }
3928
3929  if (Record->isAbstract() && Record->hasAttr<FinalAttr>()) {
3930    Diag(Record->getLocation(), diag::warn_abstract_final_class);
3931    DiagnoseAbstractType(Record);
3932  }
3933
3934  // See if a method overloads virtual methods in a base
3935  /// class without overriding any.
3936  if (!Record->isDependentType()) {
3937    for (CXXRecordDecl::method_iterator M = Record->method_begin(),
3938                                     MEnd = Record->method_end();
3939         M != MEnd; ++M) {
3940      if (!M->isStatic())
3941        DiagnoseHiddenVirtualMethods(Record, *M);
3942    }
3943  }
3944
3945  // C++0x [dcl.constexpr]p8: A constexpr specifier for a non-static member
3946  // function that is not a constructor declares that member function to be
3947  // const. [...] The class of which that function is a member shall be
3948  // a literal type.
3949  //
3950  // If the class has virtual bases, any constexpr members will already have
3951  // been diagnosed by the checks performed on the member declaration, so
3952  // suppress this (less useful) diagnostic.
3953  if (LangOpts.CPlusPlus0x && !Record->isDependentType() &&
3954      !Record->isLiteral() && !Record->getNumVBases()) {
3955    for (CXXRecordDecl::method_iterator M = Record->method_begin(),
3956                                     MEnd = Record->method_end();
3957         M != MEnd; ++M) {
3958      if (M->isConstexpr() && M->isInstance() && !isa<CXXConstructorDecl>(*M)) {
3959        switch (Record->getTemplateSpecializationKind()) {
3960        case TSK_ImplicitInstantiation:
3961        case TSK_ExplicitInstantiationDeclaration:
3962        case TSK_ExplicitInstantiationDefinition:
3963          // If a template instantiates to a non-literal type, but its members
3964          // instantiate to constexpr functions, the template is technically
3965          // ill-formed, but we allow it for sanity.
3966          continue;
3967
3968        case TSK_Undeclared:
3969        case TSK_ExplicitSpecialization:
3970          RequireLiteralType(M->getLocation(), Context.getRecordType(Record),
3971                             diag::err_constexpr_method_non_literal);
3972          break;
3973        }
3974
3975        // Only produce one error per class.
3976        break;
3977      }
3978    }
3979  }
3980
3981  // Declare inherited constructors. We do this eagerly here because:
3982  // - The standard requires an eager diagnostic for conflicting inherited
3983  //   constructors from different classes.
3984  // - The lazy declaration of the other implicit constructors is so as to not
3985  //   waste space and performance on classes that are not meant to be
3986  //   instantiated (e.g. meta-functions). This doesn't apply to classes that
3987  //   have inherited constructors.
3988  DeclareInheritedConstructors(Record);
3989}
3990
3991void Sema::CheckExplicitlyDefaultedMethods(CXXRecordDecl *Record) {
3992  for (CXXRecordDecl::method_iterator MI = Record->method_begin(),
3993                                      ME = Record->method_end();
3994       MI != ME; ++MI)
3995    if (!MI->isInvalidDecl() && MI->isExplicitlyDefaulted())
3996      CheckExplicitlyDefaultedSpecialMember(*MI);
3997}
3998
3999/// Is the special member function which would be selected to perform the
4000/// specified operation on the specified class type a constexpr constructor?
4001static bool specialMemberIsConstexpr(Sema &S, CXXRecordDecl *ClassDecl,
4002                                     Sema::CXXSpecialMember CSM,
4003                                     bool ConstArg) {
4004  Sema::SpecialMemberOverloadResult *SMOR =
4005      S.LookupSpecialMember(ClassDecl, CSM, ConstArg,
4006                            false, false, false, false);
4007  if (!SMOR || !SMOR->getMethod())
4008    // A constructor we wouldn't select can't be "involved in initializing"
4009    // anything.
4010    return true;
4011  return SMOR->getMethod()->isConstexpr();
4012}
4013
4014/// Determine whether the specified special member function would be constexpr
4015/// if it were implicitly defined.
4016static bool defaultedSpecialMemberIsConstexpr(Sema &S, CXXRecordDecl *ClassDecl,
4017                                              Sema::CXXSpecialMember CSM,
4018                                              bool ConstArg) {
4019  if (!S.getLangOpts().CPlusPlus0x)
4020    return false;
4021
4022  // C++11 [dcl.constexpr]p4:
4023  // In the definition of a constexpr constructor [...]
4024  switch (CSM) {
4025  case Sema::CXXDefaultConstructor:
4026    // Since default constructor lookup is essentially trivial (and cannot
4027    // involve, for instance, template instantiation), we compute whether a
4028    // defaulted default constructor is constexpr directly within CXXRecordDecl.
4029    //
4030    // This is important for performance; we need to know whether the default
4031    // constructor is constexpr to determine whether the type is a literal type.
4032    return ClassDecl->defaultedDefaultConstructorIsConstexpr();
4033
4034  case Sema::CXXCopyConstructor:
4035  case Sema::CXXMoveConstructor:
4036    // For copy or move constructors, we need to perform overload resolution.
4037    break;
4038
4039  case Sema::CXXCopyAssignment:
4040  case Sema::CXXMoveAssignment:
4041  case Sema::CXXDestructor:
4042  case Sema::CXXInvalid:
4043    return false;
4044  }
4045
4046  //   -- if the class is a non-empty union, or for each non-empty anonymous
4047  //      union member of a non-union class, exactly one non-static data member
4048  //      shall be initialized; [DR1359]
4049  //
4050  // If we squint, this is guaranteed, since exactly one non-static data member
4051  // will be initialized (if the constructor isn't deleted), we just don't know
4052  // which one.
4053  if (ClassDecl->isUnion())
4054    return true;
4055
4056  //   -- the class shall not have any virtual base classes;
4057  if (ClassDecl->getNumVBases())
4058    return false;
4059
4060  //   -- every constructor involved in initializing [...] base class
4061  //      sub-objects shall be a constexpr constructor;
4062  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
4063                                       BEnd = ClassDecl->bases_end();
4064       B != BEnd; ++B) {
4065    const RecordType *BaseType = B->getType()->getAs<RecordType>();
4066    if (!BaseType) continue;
4067
4068    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
4069    if (!specialMemberIsConstexpr(S, BaseClassDecl, CSM, ConstArg))
4070      return false;
4071  }
4072
4073  //   -- every constructor involved in initializing non-static data members
4074  //      [...] shall be a constexpr constructor;
4075  //   -- every non-static data member and base class sub-object shall be
4076  //      initialized
4077  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
4078                               FEnd = ClassDecl->field_end();
4079       F != FEnd; ++F) {
4080    if (F->isInvalidDecl())
4081      continue;
4082    if (const RecordType *RecordTy =
4083            S.Context.getBaseElementType(F->getType())->getAs<RecordType>()) {
4084      CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
4085      if (!specialMemberIsConstexpr(S, FieldRecDecl, CSM, ConstArg))
4086        return false;
4087    }
4088  }
4089
4090  // All OK, it's constexpr!
4091  return true;
4092}
4093
4094static Sema::ImplicitExceptionSpecification
4095computeImplicitExceptionSpec(Sema &S, SourceLocation Loc, CXXMethodDecl *MD) {
4096  switch (S.getSpecialMember(MD)) {
4097  case Sema::CXXDefaultConstructor:
4098    return S.ComputeDefaultedDefaultCtorExceptionSpec(Loc, MD);
4099  case Sema::CXXCopyConstructor:
4100    return S.ComputeDefaultedCopyCtorExceptionSpec(MD);
4101  case Sema::CXXCopyAssignment:
4102    return S.ComputeDefaultedCopyAssignmentExceptionSpec(MD);
4103  case Sema::CXXMoveConstructor:
4104    return S.ComputeDefaultedMoveCtorExceptionSpec(MD);
4105  case Sema::CXXMoveAssignment:
4106    return S.ComputeDefaultedMoveAssignmentExceptionSpec(MD);
4107  case Sema::CXXDestructor:
4108    return S.ComputeDefaultedDtorExceptionSpec(MD);
4109  case Sema::CXXInvalid:
4110    break;
4111  }
4112  llvm_unreachable("only special members have implicit exception specs");
4113}
4114
4115static void
4116updateExceptionSpec(Sema &S, FunctionDecl *FD, const FunctionProtoType *FPT,
4117                    const Sema::ImplicitExceptionSpecification &ExceptSpec) {
4118  FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
4119  ExceptSpec.getEPI(EPI);
4120  const FunctionProtoType *NewFPT = cast<FunctionProtoType>(
4121    S.Context.getFunctionType(FPT->getResultType(), FPT->arg_type_begin(),
4122                              FPT->getNumArgs(), EPI));
4123  FD->setType(QualType(NewFPT, 0));
4124}
4125
4126void Sema::EvaluateImplicitExceptionSpec(SourceLocation Loc, CXXMethodDecl *MD) {
4127  const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
4128  if (FPT->getExceptionSpecType() != EST_Unevaluated)
4129    return;
4130
4131  // Evaluate the exception specification.
4132  ImplicitExceptionSpecification ExceptSpec =
4133      computeImplicitExceptionSpec(*this, Loc, MD);
4134
4135  // Update the type of the special member to use it.
4136  updateExceptionSpec(*this, MD, FPT, ExceptSpec);
4137
4138  // A user-provided destructor can be defined outside the class. When that
4139  // happens, be sure to update the exception specification on both
4140  // declarations.
4141  const FunctionProtoType *CanonicalFPT =
4142    MD->getCanonicalDecl()->getType()->castAs<FunctionProtoType>();
4143  if (CanonicalFPT->getExceptionSpecType() == EST_Unevaluated)
4144    updateExceptionSpec(*this, MD->getCanonicalDecl(),
4145                        CanonicalFPT, ExceptSpec);
4146}
4147
4148static bool isImplicitCopyCtorArgConst(Sema &S, CXXRecordDecl *ClassDecl);
4149static bool isImplicitCopyAssignmentArgConst(Sema &S, CXXRecordDecl *ClassDecl);
4150
4151void Sema::CheckExplicitlyDefaultedSpecialMember(CXXMethodDecl *MD) {
4152  CXXRecordDecl *RD = MD->getParent();
4153  CXXSpecialMember CSM = getSpecialMember(MD);
4154
4155  assert(MD->isExplicitlyDefaulted() && CSM != CXXInvalid &&
4156         "not an explicitly-defaulted special member");
4157
4158  // Whether this was the first-declared instance of the constructor.
4159  // This affects whether we implicitly add an exception spec and constexpr.
4160  bool First = MD == MD->getCanonicalDecl();
4161
4162  bool HadError = false;
4163
4164  // C++11 [dcl.fct.def.default]p1:
4165  //   A function that is explicitly defaulted shall
4166  //     -- be a special member function (checked elsewhere),
4167  //     -- have the same type (except for ref-qualifiers, and except that a
4168  //        copy operation can take a non-const reference) as an implicit
4169  //        declaration, and
4170  //     -- not have default arguments.
4171  unsigned ExpectedParams = 1;
4172  if (CSM == CXXDefaultConstructor || CSM == CXXDestructor)
4173    ExpectedParams = 0;
4174  if (MD->getNumParams() != ExpectedParams) {
4175    // This also checks for default arguments: a copy or move constructor with a
4176    // default argument is classified as a default constructor, and assignment
4177    // operations and destructors can't have default arguments.
4178    Diag(MD->getLocation(), diag::err_defaulted_special_member_params)
4179      << CSM << MD->getSourceRange();
4180    HadError = true;
4181  }
4182
4183  const FunctionProtoType *Type = MD->getType()->getAs<FunctionProtoType>();
4184
4185  // Compute argument constness, constexpr, and triviality.
4186  bool CanHaveConstParam = false;
4187  bool Trivial = false;
4188  switch (CSM) {
4189  case CXXDefaultConstructor:
4190    Trivial = RD->hasTrivialDefaultConstructor();
4191    break;
4192  case CXXCopyConstructor:
4193    CanHaveConstParam = isImplicitCopyCtorArgConst(*this, RD);
4194    Trivial = RD->hasTrivialCopyConstructor();
4195    break;
4196  case CXXCopyAssignment:
4197    CanHaveConstParam = isImplicitCopyAssignmentArgConst(*this, RD);
4198    Trivial = RD->hasTrivialCopyAssignment();
4199    break;
4200  case CXXMoveConstructor:
4201    Trivial = RD->hasTrivialMoveConstructor();
4202    break;
4203  case CXXMoveAssignment:
4204    Trivial = RD->hasTrivialMoveAssignment();
4205    break;
4206  case CXXDestructor:
4207    Trivial = RD->hasTrivialDestructor();
4208    break;
4209  case CXXInvalid:
4210    llvm_unreachable("non-special member explicitly defaulted!");
4211  }
4212
4213  QualType ReturnType = Context.VoidTy;
4214  if (CSM == CXXCopyAssignment || CSM == CXXMoveAssignment) {
4215    // Check for return type matching.
4216    ReturnType = Type->getResultType();
4217    QualType ExpectedReturnType =
4218        Context.getLValueReferenceType(Context.getTypeDeclType(RD));
4219    if (!Context.hasSameType(ReturnType, ExpectedReturnType)) {
4220      Diag(MD->getLocation(), diag::err_defaulted_special_member_return_type)
4221        << (CSM == CXXMoveAssignment) << ExpectedReturnType;
4222      HadError = true;
4223    }
4224
4225    // A defaulted special member cannot have cv-qualifiers.
4226    if (Type->getTypeQuals()) {
4227      Diag(MD->getLocation(), diag::err_defaulted_special_member_quals)
4228        << (CSM == CXXMoveAssignment);
4229      HadError = true;
4230    }
4231  }
4232
4233  // Check for parameter type matching.
4234  QualType ArgType = ExpectedParams ? Type->getArgType(0) : QualType();
4235  bool HasConstParam = false;
4236  if (ExpectedParams && ArgType->isReferenceType()) {
4237    // Argument must be reference to possibly-const T.
4238    QualType ReferentType = ArgType->getPointeeType();
4239    HasConstParam = ReferentType.isConstQualified();
4240
4241    if (ReferentType.isVolatileQualified()) {
4242      Diag(MD->getLocation(),
4243           diag::err_defaulted_special_member_volatile_param) << CSM;
4244      HadError = true;
4245    }
4246
4247    if (HasConstParam && !CanHaveConstParam) {
4248      if (CSM == CXXCopyConstructor || CSM == CXXCopyAssignment) {
4249        Diag(MD->getLocation(),
4250             diag::err_defaulted_special_member_copy_const_param)
4251          << (CSM == CXXCopyAssignment);
4252        // FIXME: Explain why this special member can't be const.
4253      } else {
4254        Diag(MD->getLocation(),
4255             diag::err_defaulted_special_member_move_const_param)
4256          << (CSM == CXXMoveAssignment);
4257      }
4258      HadError = true;
4259    }
4260
4261    // If a function is explicitly defaulted on its first declaration, it shall
4262    // have the same parameter type as if it had been implicitly declared.
4263    // (Presumably this is to prevent it from being trivial?)
4264    if (!HasConstParam && CanHaveConstParam && First)
4265      Diag(MD->getLocation(),
4266           diag::err_defaulted_special_member_copy_non_const_param)
4267        << (CSM == CXXCopyAssignment);
4268  } else if (ExpectedParams) {
4269    // A copy assignment operator can take its argument by value, but a
4270    // defaulted one cannot.
4271    assert(CSM == CXXCopyAssignment && "unexpected non-ref argument");
4272    Diag(MD->getLocation(), diag::err_defaulted_copy_assign_not_ref);
4273    HadError = true;
4274  }
4275
4276  // Rebuild the type with the implicit exception specification added, if we
4277  // are going to need it.
4278  const FunctionProtoType *ImplicitType = 0;
4279  if (First || Type->hasExceptionSpec()) {
4280    FunctionProtoType::ExtProtoInfo EPI = Type->getExtProtoInfo();
4281    computeImplicitExceptionSpec(*this, MD->getLocation(), MD).getEPI(EPI);
4282    ImplicitType = cast<FunctionProtoType>(
4283      Context.getFunctionType(ReturnType, &ArgType, ExpectedParams, EPI));
4284  }
4285
4286  // C++11 [dcl.fct.def.default]p2:
4287  //   An explicitly-defaulted function may be declared constexpr only if it
4288  //   would have been implicitly declared as constexpr,
4289  // Do not apply this rule to members of class templates, since core issue 1358
4290  // makes such functions always instantiate to constexpr functions. For
4291  // non-constructors, this is checked elsewhere.
4292  bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, RD, CSM,
4293                                                     HasConstParam);
4294  if (isa<CXXConstructorDecl>(MD) && MD->isConstexpr() && !Constexpr &&
4295      MD->getTemplatedKind() == FunctionDecl::TK_NonTemplate) {
4296    Diag(MD->getLocStart(), diag::err_incorrect_defaulted_constexpr) << CSM;
4297    // FIXME: Explain why the constructor can't be constexpr.
4298    HadError = true;
4299  }
4300  //   and may have an explicit exception-specification only if it is compatible
4301  //   with the exception-specification on the implicit declaration.
4302  if (Type->hasExceptionSpec() &&
4303      CheckEquivalentExceptionSpec(
4304        PDiag(diag::err_incorrect_defaulted_exception_spec) << CSM,
4305        PDiag(), ImplicitType, SourceLocation(), Type, MD->getLocation()))
4306    HadError = true;
4307
4308  //   If a function is explicitly defaulted on its first declaration,
4309  if (First) {
4310    //  -- it is implicitly considered to be constexpr if the implicit
4311    //     definition would be,
4312    MD->setConstexpr(Constexpr);
4313
4314    //  -- it is implicitly considered to have the same exception-specification
4315    //     as if it had been implicitly declared,
4316    MD->setType(QualType(ImplicitType, 0));
4317
4318    // Such a function is also trivial if the implicitly-declared function
4319    // would have been.
4320    MD->setTrivial(Trivial);
4321  }
4322
4323  if (ShouldDeleteSpecialMember(MD, CSM)) {
4324    if (First) {
4325      MD->setDeletedAsWritten();
4326    } else {
4327      // C++11 [dcl.fct.def.default]p4:
4328      //   [For a] user-provided explicitly-defaulted function [...] if such a
4329      //   function is implicitly defined as deleted, the program is ill-formed.
4330      Diag(MD->getLocation(), diag::err_out_of_line_default_deletes) << CSM;
4331      HadError = true;
4332    }
4333  }
4334
4335  if (HadError)
4336    MD->setInvalidDecl();
4337}
4338
4339namespace {
4340struct SpecialMemberDeletionInfo {
4341  Sema &S;
4342  CXXMethodDecl *MD;
4343  Sema::CXXSpecialMember CSM;
4344  bool Diagnose;
4345
4346  // Properties of the special member, computed for convenience.
4347  bool IsConstructor, IsAssignment, IsMove, ConstArg, VolatileArg;
4348  SourceLocation Loc;
4349
4350  bool AllFieldsAreConst;
4351
4352  SpecialMemberDeletionInfo(Sema &S, CXXMethodDecl *MD,
4353                            Sema::CXXSpecialMember CSM, bool Diagnose)
4354    : S(S), MD(MD), CSM(CSM), Diagnose(Diagnose),
4355      IsConstructor(false), IsAssignment(false), IsMove(false),
4356      ConstArg(false), VolatileArg(false), Loc(MD->getLocation()),
4357      AllFieldsAreConst(true) {
4358    switch (CSM) {
4359      case Sema::CXXDefaultConstructor:
4360      case Sema::CXXCopyConstructor:
4361        IsConstructor = true;
4362        break;
4363      case Sema::CXXMoveConstructor:
4364        IsConstructor = true;
4365        IsMove = true;
4366        break;
4367      case Sema::CXXCopyAssignment:
4368        IsAssignment = true;
4369        break;
4370      case Sema::CXXMoveAssignment:
4371        IsAssignment = true;
4372        IsMove = true;
4373        break;
4374      case Sema::CXXDestructor:
4375        break;
4376      case Sema::CXXInvalid:
4377        llvm_unreachable("invalid special member kind");
4378    }
4379
4380    if (MD->getNumParams()) {
4381      ConstArg = MD->getParamDecl(0)->getType().isConstQualified();
4382      VolatileArg = MD->getParamDecl(0)->getType().isVolatileQualified();
4383    }
4384  }
4385
4386  bool inUnion() const { return MD->getParent()->isUnion(); }
4387
4388  /// Look up the corresponding special member in the given class.
4389  Sema::SpecialMemberOverloadResult *lookupIn(CXXRecordDecl *Class,
4390                                              unsigned Quals) {
4391    unsigned TQ = MD->getTypeQualifiers();
4392    // cv-qualifiers on class members don't affect default ctor / dtor calls.
4393    if (CSM == Sema::CXXDefaultConstructor || CSM == Sema::CXXDestructor)
4394      Quals = 0;
4395    return S.LookupSpecialMember(Class, CSM,
4396                                 ConstArg || (Quals & Qualifiers::Const),
4397                                 VolatileArg || (Quals & Qualifiers::Volatile),
4398                                 MD->getRefQualifier() == RQ_RValue,
4399                                 TQ & Qualifiers::Const,
4400                                 TQ & Qualifiers::Volatile);
4401  }
4402
4403  typedef llvm::PointerUnion<CXXBaseSpecifier*, FieldDecl*> Subobject;
4404
4405  bool shouldDeleteForBase(CXXBaseSpecifier *Base);
4406  bool shouldDeleteForField(FieldDecl *FD);
4407  bool shouldDeleteForAllConstMembers();
4408
4409  bool shouldDeleteForClassSubobject(CXXRecordDecl *Class, Subobject Subobj,
4410                                     unsigned Quals);
4411  bool shouldDeleteForSubobjectCall(Subobject Subobj,
4412                                    Sema::SpecialMemberOverloadResult *SMOR,
4413                                    bool IsDtorCallInCtor);
4414
4415  bool isAccessible(Subobject Subobj, CXXMethodDecl *D);
4416};
4417}
4418
4419/// Is the given special member inaccessible when used on the given
4420/// sub-object.
4421bool SpecialMemberDeletionInfo::isAccessible(Subobject Subobj,
4422                                             CXXMethodDecl *target) {
4423  /// If we're operating on a base class, the object type is the
4424  /// type of this special member.
4425  QualType objectTy;
4426  AccessSpecifier access = target->getAccess();
4427  if (CXXBaseSpecifier *base = Subobj.dyn_cast<CXXBaseSpecifier*>()) {
4428    objectTy = S.Context.getTypeDeclType(MD->getParent());
4429    access = CXXRecordDecl::MergeAccess(base->getAccessSpecifier(), access);
4430
4431  // If we're operating on a field, the object type is the type of the field.
4432  } else {
4433    objectTy = S.Context.getTypeDeclType(target->getParent());
4434  }
4435
4436  return S.isSpecialMemberAccessibleForDeletion(target, access, objectTy);
4437}
4438
4439/// Check whether we should delete a special member due to the implicit
4440/// definition containing a call to a special member of a subobject.
4441bool SpecialMemberDeletionInfo::shouldDeleteForSubobjectCall(
4442    Subobject Subobj, Sema::SpecialMemberOverloadResult *SMOR,
4443    bool IsDtorCallInCtor) {
4444  CXXMethodDecl *Decl = SMOR->getMethod();
4445  FieldDecl *Field = Subobj.dyn_cast<FieldDecl*>();
4446
4447  int DiagKind = -1;
4448
4449  if (SMOR->getKind() == Sema::SpecialMemberOverloadResult::NoMemberOrDeleted)
4450    DiagKind = !Decl ? 0 : 1;
4451  else if (SMOR->getKind() == Sema::SpecialMemberOverloadResult::Ambiguous)
4452    DiagKind = 2;
4453  else if (!isAccessible(Subobj, Decl))
4454    DiagKind = 3;
4455  else if (!IsDtorCallInCtor && Field && Field->getParent()->isUnion() &&
4456           !Decl->isTrivial()) {
4457    // A member of a union must have a trivial corresponding special member.
4458    // As a weird special case, a destructor call from a union's constructor
4459    // must be accessible and non-deleted, but need not be trivial. Such a
4460    // destructor is never actually called, but is semantically checked as
4461    // if it were.
4462    DiagKind = 4;
4463  }
4464
4465  if (DiagKind == -1)
4466    return false;
4467
4468  if (Diagnose) {
4469    if (Field) {
4470      S.Diag(Field->getLocation(),
4471             diag::note_deleted_special_member_class_subobject)
4472        << CSM << MD->getParent() << /*IsField*/true
4473        << Field << DiagKind << IsDtorCallInCtor;
4474    } else {
4475      CXXBaseSpecifier *Base = Subobj.get<CXXBaseSpecifier*>();
4476      S.Diag(Base->getLocStart(),
4477             diag::note_deleted_special_member_class_subobject)
4478        << CSM << MD->getParent() << /*IsField*/false
4479        << Base->getType() << DiagKind << IsDtorCallInCtor;
4480    }
4481
4482    if (DiagKind == 1)
4483      S.NoteDeletedFunction(Decl);
4484    // FIXME: Explain inaccessibility if DiagKind == 3.
4485  }
4486
4487  return true;
4488}
4489
4490/// Check whether we should delete a special member function due to having a
4491/// direct or virtual base class or non-static data member of class type M.
4492bool SpecialMemberDeletionInfo::shouldDeleteForClassSubobject(
4493    CXXRecordDecl *Class, Subobject Subobj, unsigned Quals) {
4494  FieldDecl *Field = Subobj.dyn_cast<FieldDecl*>();
4495
4496  // C++11 [class.ctor]p5:
4497  // -- any direct or virtual base class, or non-static data member with no
4498  //    brace-or-equal-initializer, has class type M (or array thereof) and
4499  //    either M has no default constructor or overload resolution as applied
4500  //    to M's default constructor results in an ambiguity or in a function
4501  //    that is deleted or inaccessible
4502  // C++11 [class.copy]p11, C++11 [class.copy]p23:
4503  // -- a direct or virtual base class B that cannot be copied/moved because
4504  //    overload resolution, as applied to B's corresponding special member,
4505  //    results in an ambiguity or a function that is deleted or inaccessible
4506  //    from the defaulted special member
4507  // C++11 [class.dtor]p5:
4508  // -- any direct or virtual base class [...] has a type with a destructor
4509  //    that is deleted or inaccessible
4510  if (!(CSM == Sema::CXXDefaultConstructor &&
4511        Field && Field->hasInClassInitializer()) &&
4512      shouldDeleteForSubobjectCall(Subobj, lookupIn(Class, Quals), false))
4513    return true;
4514
4515  // C++11 [class.ctor]p5, C++11 [class.copy]p11:
4516  // -- any direct or virtual base class or non-static data member has a
4517  //    type with a destructor that is deleted or inaccessible
4518  if (IsConstructor) {
4519    Sema::SpecialMemberOverloadResult *SMOR =
4520        S.LookupSpecialMember(Class, Sema::CXXDestructor,
4521                              false, false, false, false, false);
4522    if (shouldDeleteForSubobjectCall(Subobj, SMOR, true))
4523      return true;
4524  }
4525
4526  return false;
4527}
4528
4529/// Check whether we should delete a special member function due to the class
4530/// having a particular direct or virtual base class.
4531bool SpecialMemberDeletionInfo::shouldDeleteForBase(CXXBaseSpecifier *Base) {
4532  CXXRecordDecl *BaseClass = Base->getType()->getAsCXXRecordDecl();
4533  return shouldDeleteForClassSubobject(BaseClass, Base, 0);
4534}
4535
4536/// Check whether we should delete a special member function due to the class
4537/// having a particular non-static data member.
4538bool SpecialMemberDeletionInfo::shouldDeleteForField(FieldDecl *FD) {
4539  QualType FieldType = S.Context.getBaseElementType(FD->getType());
4540  CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl();
4541
4542  if (CSM == Sema::CXXDefaultConstructor) {
4543    // For a default constructor, all references must be initialized in-class
4544    // and, if a union, it must have a non-const member.
4545    if (FieldType->isReferenceType() && !FD->hasInClassInitializer()) {
4546      if (Diagnose)
4547        S.Diag(FD->getLocation(), diag::note_deleted_default_ctor_uninit_field)
4548          << MD->getParent() << FD << FieldType << /*Reference*/0;
4549      return true;
4550    }
4551    // C++11 [class.ctor]p5: any non-variant non-static data member of
4552    // const-qualified type (or array thereof) with no
4553    // brace-or-equal-initializer does not have a user-provided default
4554    // constructor.
4555    if (!inUnion() && FieldType.isConstQualified() &&
4556        !FD->hasInClassInitializer() &&
4557        (!FieldRecord || !FieldRecord->hasUserProvidedDefaultConstructor())) {
4558      if (Diagnose)
4559        S.Diag(FD->getLocation(), diag::note_deleted_default_ctor_uninit_field)
4560          << MD->getParent() << FD << FD->getType() << /*Const*/1;
4561      return true;
4562    }
4563
4564    if (inUnion() && !FieldType.isConstQualified())
4565      AllFieldsAreConst = false;
4566  } else if (CSM == Sema::CXXCopyConstructor) {
4567    // For a copy constructor, data members must not be of rvalue reference
4568    // type.
4569    if (FieldType->isRValueReferenceType()) {
4570      if (Diagnose)
4571        S.Diag(FD->getLocation(), diag::note_deleted_copy_ctor_rvalue_reference)
4572          << MD->getParent() << FD << FieldType;
4573      return true;
4574    }
4575  } else if (IsAssignment) {
4576    // For an assignment operator, data members must not be of reference type.
4577    if (FieldType->isReferenceType()) {
4578      if (Diagnose)
4579        S.Diag(FD->getLocation(), diag::note_deleted_assign_field)
4580          << IsMove << MD->getParent() << FD << FieldType << /*Reference*/0;
4581      return true;
4582    }
4583    if (!FieldRecord && FieldType.isConstQualified()) {
4584      // C++11 [class.copy]p23:
4585      // -- a non-static data member of const non-class type (or array thereof)
4586      if (Diagnose)
4587        S.Diag(FD->getLocation(), diag::note_deleted_assign_field)
4588          << IsMove << MD->getParent() << FD << FD->getType() << /*Const*/1;
4589      return true;
4590    }
4591  }
4592
4593  if (FieldRecord) {
4594    // Some additional restrictions exist on the variant members.
4595    if (!inUnion() && FieldRecord->isUnion() &&
4596        FieldRecord->isAnonymousStructOrUnion()) {
4597      bool AllVariantFieldsAreConst = true;
4598
4599      // FIXME: Handle anonymous unions declared within anonymous unions.
4600      for (CXXRecordDecl::field_iterator UI = FieldRecord->field_begin(),
4601                                         UE = FieldRecord->field_end();
4602           UI != UE; ++UI) {
4603        QualType UnionFieldType = S.Context.getBaseElementType(UI->getType());
4604
4605        if (!UnionFieldType.isConstQualified())
4606          AllVariantFieldsAreConst = false;
4607
4608        CXXRecordDecl *UnionFieldRecord = UnionFieldType->getAsCXXRecordDecl();
4609        if (UnionFieldRecord &&
4610            shouldDeleteForClassSubobject(UnionFieldRecord, *UI,
4611                                          UnionFieldType.getCVRQualifiers()))
4612          return true;
4613      }
4614
4615      // At least one member in each anonymous union must be non-const
4616      if (CSM == Sema::CXXDefaultConstructor && AllVariantFieldsAreConst &&
4617          FieldRecord->field_begin() != FieldRecord->field_end()) {
4618        if (Diagnose)
4619          S.Diag(FieldRecord->getLocation(),
4620                 diag::note_deleted_default_ctor_all_const)
4621            << MD->getParent() << /*anonymous union*/1;
4622        return true;
4623      }
4624
4625      // Don't check the implicit member of the anonymous union type.
4626      // This is technically non-conformant, but sanity demands it.
4627      return false;
4628    }
4629
4630    if (shouldDeleteForClassSubobject(FieldRecord, FD,
4631                                      FieldType.getCVRQualifiers()))
4632      return true;
4633  }
4634
4635  return false;
4636}
4637
4638/// C++11 [class.ctor] p5:
4639///   A defaulted default constructor for a class X is defined as deleted if
4640/// X is a union and all of its variant members are of const-qualified type.
4641bool SpecialMemberDeletionInfo::shouldDeleteForAllConstMembers() {
4642  // This is a silly definition, because it gives an empty union a deleted
4643  // default constructor. Don't do that.
4644  if (CSM == Sema::CXXDefaultConstructor && inUnion() && AllFieldsAreConst &&
4645      (MD->getParent()->field_begin() != MD->getParent()->field_end())) {
4646    if (Diagnose)
4647      S.Diag(MD->getParent()->getLocation(),
4648             diag::note_deleted_default_ctor_all_const)
4649        << MD->getParent() << /*not anonymous union*/0;
4650    return true;
4651  }
4652  return false;
4653}
4654
4655/// Determine whether a defaulted special member function should be defined as
4656/// deleted, as specified in C++11 [class.ctor]p5, C++11 [class.copy]p11,
4657/// C++11 [class.copy]p23, and C++11 [class.dtor]p5.
4658bool Sema::ShouldDeleteSpecialMember(CXXMethodDecl *MD, CXXSpecialMember CSM,
4659                                     bool Diagnose) {
4660  if (MD->isInvalidDecl())
4661    return false;
4662  CXXRecordDecl *RD = MD->getParent();
4663  assert(!RD->isDependentType() && "do deletion after instantiation");
4664  if (!LangOpts.CPlusPlus0x || RD->isInvalidDecl())
4665    return false;
4666
4667  // C++11 [expr.lambda.prim]p19:
4668  //   The closure type associated with a lambda-expression has a
4669  //   deleted (8.4.3) default constructor and a deleted copy
4670  //   assignment operator.
4671  if (RD->isLambda() &&
4672      (CSM == CXXDefaultConstructor || CSM == CXXCopyAssignment)) {
4673    if (Diagnose)
4674      Diag(RD->getLocation(), diag::note_lambda_decl);
4675    return true;
4676  }
4677
4678  // For an anonymous struct or union, the copy and assignment special members
4679  // will never be used, so skip the check. For an anonymous union declared at
4680  // namespace scope, the constructor and destructor are used.
4681  if (CSM != CXXDefaultConstructor && CSM != CXXDestructor &&
4682      RD->isAnonymousStructOrUnion())
4683    return false;
4684
4685  // C++11 [class.copy]p7, p18:
4686  //   If the class definition declares a move constructor or move assignment
4687  //   operator, an implicitly declared copy constructor or copy assignment
4688  //   operator is defined as deleted.
4689  if (MD->isImplicit() &&
4690      (CSM == CXXCopyConstructor || CSM == CXXCopyAssignment)) {
4691    CXXMethodDecl *UserDeclaredMove = 0;
4692
4693    // In Microsoft mode, a user-declared move only causes the deletion of the
4694    // corresponding copy operation, not both copy operations.
4695    if (RD->hasUserDeclaredMoveConstructor() &&
4696        (!getLangOpts().MicrosoftMode || CSM == CXXCopyConstructor)) {
4697      if (!Diagnose) return true;
4698      UserDeclaredMove = RD->getMoveConstructor();
4699      assert(UserDeclaredMove);
4700    } else if (RD->hasUserDeclaredMoveAssignment() &&
4701               (!getLangOpts().MicrosoftMode || CSM == CXXCopyAssignment)) {
4702      if (!Diagnose) return true;
4703      UserDeclaredMove = RD->getMoveAssignmentOperator();
4704      assert(UserDeclaredMove);
4705    }
4706
4707    if (UserDeclaredMove) {
4708      Diag(UserDeclaredMove->getLocation(),
4709           diag::note_deleted_copy_user_declared_move)
4710        << (CSM == CXXCopyAssignment) << RD
4711        << UserDeclaredMove->isMoveAssignmentOperator();
4712      return true;
4713    }
4714  }
4715
4716  // Do access control from the special member function
4717  ContextRAII MethodContext(*this, MD);
4718
4719  // C++11 [class.dtor]p5:
4720  // -- for a virtual destructor, lookup of the non-array deallocation function
4721  //    results in an ambiguity or in a function that is deleted or inaccessible
4722  if (CSM == CXXDestructor && MD->isVirtual()) {
4723    FunctionDecl *OperatorDelete = 0;
4724    DeclarationName Name =
4725      Context.DeclarationNames.getCXXOperatorName(OO_Delete);
4726    if (FindDeallocationFunction(MD->getLocation(), MD->getParent(), Name,
4727                                 OperatorDelete, false)) {
4728      if (Diagnose)
4729        Diag(RD->getLocation(), diag::note_deleted_dtor_no_operator_delete);
4730      return true;
4731    }
4732  }
4733
4734  SpecialMemberDeletionInfo SMI(*this, MD, CSM, Diagnose);
4735
4736  for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
4737                                          BE = RD->bases_end(); BI != BE; ++BI)
4738    if (!BI->isVirtual() &&
4739        SMI.shouldDeleteForBase(BI))
4740      return true;
4741
4742  for (CXXRecordDecl::base_class_iterator BI = RD->vbases_begin(),
4743                                          BE = RD->vbases_end(); BI != BE; ++BI)
4744    if (SMI.shouldDeleteForBase(BI))
4745      return true;
4746
4747  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
4748                                     FE = RD->field_end(); FI != FE; ++FI)
4749    if (!FI->isInvalidDecl() && !FI->isUnnamedBitfield() &&
4750        SMI.shouldDeleteForField(*FI))
4751      return true;
4752
4753  if (SMI.shouldDeleteForAllConstMembers())
4754    return true;
4755
4756  return false;
4757}
4758
4759/// \brief Data used with FindHiddenVirtualMethod
4760namespace {
4761  struct FindHiddenVirtualMethodData {
4762    Sema *S;
4763    CXXMethodDecl *Method;
4764    llvm::SmallPtrSet<const CXXMethodDecl *, 8> OverridenAndUsingBaseMethods;
4765    SmallVector<CXXMethodDecl *, 8> OverloadedMethods;
4766  };
4767}
4768
4769/// \brief Check whether any most overriden method from MD in Methods
4770static bool CheckMostOverridenMethods(const CXXMethodDecl *MD,
4771                   const llvm::SmallPtrSet<const CXXMethodDecl *, 8>& Methods) {
4772  if (MD->size_overridden_methods() == 0)
4773    return Methods.count(MD->getCanonicalDecl());
4774  for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
4775                                      E = MD->end_overridden_methods();
4776       I != E; ++I)
4777    if (CheckMostOverridenMethods(*I, Methods))
4778      return true;
4779  return false;
4780}
4781
4782/// \brief Member lookup function that determines whether a given C++
4783/// method overloads virtual methods in a base class without overriding any,
4784/// to be used with CXXRecordDecl::lookupInBases().
4785static bool FindHiddenVirtualMethod(const CXXBaseSpecifier *Specifier,
4786                                    CXXBasePath &Path,
4787                                    void *UserData) {
4788  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
4789
4790  FindHiddenVirtualMethodData &Data
4791    = *static_cast<FindHiddenVirtualMethodData*>(UserData);
4792
4793  DeclarationName Name = Data.Method->getDeclName();
4794  assert(Name.getNameKind() == DeclarationName::Identifier);
4795
4796  bool foundSameNameMethod = false;
4797  SmallVector<CXXMethodDecl *, 8> overloadedMethods;
4798  for (Path.Decls = BaseRecord->lookup(Name);
4799       Path.Decls.first != Path.Decls.second;
4800       ++Path.Decls.first) {
4801    NamedDecl *D = *Path.Decls.first;
4802    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
4803      MD = MD->getCanonicalDecl();
4804      foundSameNameMethod = true;
4805      // Interested only in hidden virtual methods.
4806      if (!MD->isVirtual())
4807        continue;
4808      // If the method we are checking overrides a method from its base
4809      // don't warn about the other overloaded methods.
4810      if (!Data.S->IsOverload(Data.Method, MD, false))
4811        return true;
4812      // Collect the overload only if its hidden.
4813      if (!CheckMostOverridenMethods(MD, Data.OverridenAndUsingBaseMethods))
4814        overloadedMethods.push_back(MD);
4815    }
4816  }
4817
4818  if (foundSameNameMethod)
4819    Data.OverloadedMethods.append(overloadedMethods.begin(),
4820                                   overloadedMethods.end());
4821  return foundSameNameMethod;
4822}
4823
4824/// \brief Add the most overriden methods from MD to Methods
4825static void AddMostOverridenMethods(const CXXMethodDecl *MD,
4826                         llvm::SmallPtrSet<const CXXMethodDecl *, 8>& Methods) {
4827  if (MD->size_overridden_methods() == 0)
4828    Methods.insert(MD->getCanonicalDecl());
4829  for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
4830                                      E = MD->end_overridden_methods();
4831       I != E; ++I)
4832    AddMostOverridenMethods(*I, Methods);
4833}
4834
4835/// \brief See if a method overloads virtual methods in a base class without
4836/// overriding any.
4837void Sema::DiagnoseHiddenVirtualMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
4838  if (Diags.getDiagnosticLevel(diag::warn_overloaded_virtual,
4839                               MD->getLocation()) == DiagnosticsEngine::Ignored)
4840    return;
4841  if (!MD->getDeclName().isIdentifier())
4842    return;
4843
4844  CXXBasePaths Paths(/*FindAmbiguities=*/true, // true to look in all bases.
4845                     /*bool RecordPaths=*/false,
4846                     /*bool DetectVirtual=*/false);
4847  FindHiddenVirtualMethodData Data;
4848  Data.Method = MD;
4849  Data.S = this;
4850
4851  // Keep the base methods that were overriden or introduced in the subclass
4852  // by 'using' in a set. A base method not in this set is hidden.
4853  for (DeclContext::lookup_result res = DC->lookup(MD->getDeclName());
4854       res.first != res.second; ++res.first) {
4855    NamedDecl *ND = *res.first;
4856    if (UsingShadowDecl *shad = dyn_cast<UsingShadowDecl>(*res.first))
4857      ND = shad->getTargetDecl();
4858    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(ND))
4859      AddMostOverridenMethods(MD, Data.OverridenAndUsingBaseMethods);
4860  }
4861
4862  if (DC->lookupInBases(&FindHiddenVirtualMethod, &Data, Paths) &&
4863      !Data.OverloadedMethods.empty()) {
4864    Diag(MD->getLocation(), diag::warn_overloaded_virtual)
4865      << MD << (Data.OverloadedMethods.size() > 1);
4866
4867    for (unsigned i = 0, e = Data.OverloadedMethods.size(); i != e; ++i) {
4868      CXXMethodDecl *overloadedMD = Data.OverloadedMethods[i];
4869      Diag(overloadedMD->getLocation(),
4870           diag::note_hidden_overloaded_virtual_declared_here) << overloadedMD;
4871    }
4872  }
4873}
4874
4875void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
4876                                             Decl *TagDecl,
4877                                             SourceLocation LBrac,
4878                                             SourceLocation RBrac,
4879                                             AttributeList *AttrList) {
4880  if (!TagDecl)
4881    return;
4882
4883  AdjustDeclIfTemplate(TagDecl);
4884
4885  for (const AttributeList* l = AttrList; l; l = l->getNext()) {
4886    if (l->getKind() != AttributeList::AT_Visibility)
4887      continue;
4888    l->setInvalid();
4889    Diag(l->getLoc(), diag::warn_attribute_after_definition_ignored) <<
4890      l->getName();
4891  }
4892
4893  ActOnFields(S, RLoc, TagDecl, llvm::makeArrayRef(
4894              // strict aliasing violation!
4895              reinterpret_cast<Decl**>(FieldCollector->getCurFields()),
4896              FieldCollector->getCurNumFields()), LBrac, RBrac, AttrList);
4897
4898  CheckCompletedCXXClass(
4899                        dyn_cast_or_null<CXXRecordDecl>(TagDecl));
4900}
4901
4902/// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
4903/// special functions, such as the default constructor, copy
4904/// constructor, or destructor, to the given C++ class (C++
4905/// [special]p1).  This routine can only be executed just before the
4906/// definition of the class is complete.
4907void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) {
4908  if (!ClassDecl->hasUserDeclaredConstructor())
4909    ++ASTContext::NumImplicitDefaultConstructors;
4910
4911  if (!ClassDecl->hasUserDeclaredCopyConstructor())
4912    ++ASTContext::NumImplicitCopyConstructors;
4913
4914  if (getLangOpts().CPlusPlus0x && ClassDecl->needsImplicitMoveConstructor())
4915    ++ASTContext::NumImplicitMoveConstructors;
4916
4917  if (!ClassDecl->hasUserDeclaredCopyAssignment()) {
4918    ++ASTContext::NumImplicitCopyAssignmentOperators;
4919
4920    // If we have a dynamic class, then the copy assignment operator may be
4921    // virtual, so we have to declare it immediately. This ensures that, e.g.,
4922    // it shows up in the right place in the vtable and that we diagnose
4923    // problems with the implicit exception specification.
4924    if (ClassDecl->isDynamicClass())
4925      DeclareImplicitCopyAssignment(ClassDecl);
4926  }
4927
4928  if (getLangOpts().CPlusPlus0x && ClassDecl->needsImplicitMoveAssignment()) {
4929    ++ASTContext::NumImplicitMoveAssignmentOperators;
4930
4931    // Likewise for the move assignment operator.
4932    if (ClassDecl->isDynamicClass())
4933      DeclareImplicitMoveAssignment(ClassDecl);
4934  }
4935
4936  if (!ClassDecl->hasUserDeclaredDestructor()) {
4937    ++ASTContext::NumImplicitDestructors;
4938
4939    // If we have a dynamic class, then the destructor may be virtual, so we
4940    // have to declare the destructor immediately. This ensures that, e.g., it
4941    // shows up in the right place in the vtable and that we diagnose problems
4942    // with the implicit exception specification.
4943    if (ClassDecl->isDynamicClass())
4944      DeclareImplicitDestructor(ClassDecl);
4945  }
4946}
4947
4948void Sema::ActOnReenterDeclaratorTemplateScope(Scope *S, DeclaratorDecl *D) {
4949  if (!D)
4950    return;
4951
4952  int NumParamList = D->getNumTemplateParameterLists();
4953  for (int i = 0; i < NumParamList; i++) {
4954    TemplateParameterList* Params = D->getTemplateParameterList(i);
4955    for (TemplateParameterList::iterator Param = Params->begin(),
4956                                      ParamEnd = Params->end();
4957          Param != ParamEnd; ++Param) {
4958      NamedDecl *Named = cast<NamedDecl>(*Param);
4959      if (Named->getDeclName()) {
4960        S->AddDecl(Named);
4961        IdResolver.AddDecl(Named);
4962      }
4963    }
4964  }
4965}
4966
4967void Sema::ActOnReenterTemplateScope(Scope *S, Decl *D) {
4968  if (!D)
4969    return;
4970
4971  TemplateParameterList *Params = 0;
4972  if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D))
4973    Params = Template->getTemplateParameters();
4974  else if (ClassTemplatePartialSpecializationDecl *PartialSpec
4975           = dyn_cast<ClassTemplatePartialSpecializationDecl>(D))
4976    Params = PartialSpec->getTemplateParameters();
4977  else
4978    return;
4979
4980  for (TemplateParameterList::iterator Param = Params->begin(),
4981                                    ParamEnd = Params->end();
4982       Param != ParamEnd; ++Param) {
4983    NamedDecl *Named = cast<NamedDecl>(*Param);
4984    if (Named->getDeclName()) {
4985      S->AddDecl(Named);
4986      IdResolver.AddDecl(Named);
4987    }
4988  }
4989}
4990
4991void Sema::ActOnStartDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
4992  if (!RecordD) return;
4993  AdjustDeclIfTemplate(RecordD);
4994  CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordD);
4995  PushDeclContext(S, Record);
4996}
4997
4998void Sema::ActOnFinishDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
4999  if (!RecordD) return;
5000  PopDeclContext();
5001}
5002
5003/// ActOnStartDelayedCXXMethodDeclaration - We have completed
5004/// parsing a top-level (non-nested) C++ class, and we are now
5005/// parsing those parts of the given Method declaration that could
5006/// not be parsed earlier (C++ [class.mem]p2), such as default
5007/// arguments. This action should enter the scope of the given
5008/// Method declaration as if we had just parsed the qualified method
5009/// name. However, it should not bring the parameters into scope;
5010/// that will be performed by ActOnDelayedCXXMethodParameter.
5011void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
5012}
5013
5014/// ActOnDelayedCXXMethodParameter - We've already started a delayed
5015/// C++ method declaration. We're (re-)introducing the given
5016/// function parameter into scope for use in parsing later parts of
5017/// the method declaration. For example, we could see an
5018/// ActOnParamDefaultArgument event for this parameter.
5019void Sema::ActOnDelayedCXXMethodParameter(Scope *S, Decl *ParamD) {
5020  if (!ParamD)
5021    return;
5022
5023  ParmVarDecl *Param = cast<ParmVarDecl>(ParamD);
5024
5025  // If this parameter has an unparsed default argument, clear it out
5026  // to make way for the parsed default argument.
5027  if (Param->hasUnparsedDefaultArg())
5028    Param->setDefaultArg(0);
5029
5030  S->AddDecl(Param);
5031  if (Param->getDeclName())
5032    IdResolver.AddDecl(Param);
5033}
5034
5035/// ActOnFinishDelayedCXXMethodDeclaration - We have finished
5036/// processing the delayed method declaration for Method. The method
5037/// declaration is now considered finished. There may be a separate
5038/// ActOnStartOfFunctionDef action later (not necessarily
5039/// immediately!) for this method, if it was also defined inside the
5040/// class body.
5041void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
5042  if (!MethodD)
5043    return;
5044
5045  AdjustDeclIfTemplate(MethodD);
5046
5047  FunctionDecl *Method = cast<FunctionDecl>(MethodD);
5048
5049  // Now that we have our default arguments, check the constructor
5050  // again. It could produce additional diagnostics or affect whether
5051  // the class has implicitly-declared destructors, among other
5052  // things.
5053  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method))
5054    CheckConstructor(Constructor);
5055
5056  // Check the default arguments, which we may have added.
5057  if (!Method->isInvalidDecl())
5058    CheckCXXDefaultArguments(Method);
5059}
5060
5061/// CheckConstructorDeclarator - Called by ActOnDeclarator to check
5062/// the well-formedness of the constructor declarator @p D with type @p
5063/// R. If there are any errors in the declarator, this routine will
5064/// emit diagnostics and set the invalid bit to true.  In any case, the type
5065/// will be updated to reflect a well-formed type for the constructor and
5066/// returned.
5067QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R,
5068                                          StorageClass &SC) {
5069  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
5070
5071  // C++ [class.ctor]p3:
5072  //   A constructor shall not be virtual (10.3) or static (9.4). A
5073  //   constructor can be invoked for a const, volatile or const
5074  //   volatile object. A constructor shall not be declared const,
5075  //   volatile, or const volatile (9.3.2).
5076  if (isVirtual) {
5077    if (!D.isInvalidType())
5078      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
5079        << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
5080        << SourceRange(D.getIdentifierLoc());
5081    D.setInvalidType();
5082  }
5083  if (SC == SC_Static) {
5084    if (!D.isInvalidType())
5085      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
5086        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
5087        << SourceRange(D.getIdentifierLoc());
5088    D.setInvalidType();
5089    SC = SC_None;
5090  }
5091
5092  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
5093  if (FTI.TypeQuals != 0) {
5094    if (FTI.TypeQuals & Qualifiers::Const)
5095      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
5096        << "const" << SourceRange(D.getIdentifierLoc());
5097    if (FTI.TypeQuals & Qualifiers::Volatile)
5098      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
5099        << "volatile" << SourceRange(D.getIdentifierLoc());
5100    if (FTI.TypeQuals & Qualifiers::Restrict)
5101      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
5102        << "restrict" << SourceRange(D.getIdentifierLoc());
5103    D.setInvalidType();
5104  }
5105
5106  // C++0x [class.ctor]p4:
5107  //   A constructor shall not be declared with a ref-qualifier.
5108  if (FTI.hasRefQualifier()) {
5109    Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_constructor)
5110      << FTI.RefQualifierIsLValueRef
5111      << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
5112    D.setInvalidType();
5113  }
5114
5115  // Rebuild the function type "R" without any type qualifiers (in
5116  // case any of the errors above fired) and with "void" as the
5117  // return type, since constructors don't have return types.
5118  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
5119  if (Proto->getResultType() == Context.VoidTy && !D.isInvalidType())
5120    return R;
5121
5122  FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
5123  EPI.TypeQuals = 0;
5124  EPI.RefQualifier = RQ_None;
5125
5126  return Context.getFunctionType(Context.VoidTy, Proto->arg_type_begin(),
5127                                 Proto->getNumArgs(), EPI);
5128}
5129
5130/// CheckConstructor - Checks a fully-formed constructor for
5131/// well-formedness, issuing any diagnostics required. Returns true if
5132/// the constructor declarator is invalid.
5133void Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
5134  CXXRecordDecl *ClassDecl
5135    = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext());
5136  if (!ClassDecl)
5137    return Constructor->setInvalidDecl();
5138
5139  // C++ [class.copy]p3:
5140  //   A declaration of a constructor for a class X is ill-formed if
5141  //   its first parameter is of type (optionally cv-qualified) X and
5142  //   either there are no other parameters or else all other
5143  //   parameters have default arguments.
5144  if (!Constructor->isInvalidDecl() &&
5145      ((Constructor->getNumParams() == 1) ||
5146       (Constructor->getNumParams() > 1 &&
5147        Constructor->getParamDecl(1)->hasDefaultArg())) &&
5148      Constructor->getTemplateSpecializationKind()
5149                                              != TSK_ImplicitInstantiation) {
5150    QualType ParamType = Constructor->getParamDecl(0)->getType();
5151    QualType ClassTy = Context.getTagDeclType(ClassDecl);
5152    if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
5153      SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation();
5154      const char *ConstRef
5155        = Constructor->getParamDecl(0)->getIdentifier() ? "const &"
5156                                                        : " const &";
5157      Diag(ParamLoc, diag::err_constructor_byvalue_arg)
5158        << FixItHint::CreateInsertion(ParamLoc, ConstRef);
5159
5160      // FIXME: Rather that making the constructor invalid, we should endeavor
5161      // to fix the type.
5162      Constructor->setInvalidDecl();
5163    }
5164  }
5165}
5166
5167/// CheckDestructor - Checks a fully-formed destructor definition for
5168/// well-formedness, issuing any diagnostics required.  Returns true
5169/// on error.
5170bool Sema::CheckDestructor(CXXDestructorDecl *Destructor) {
5171  CXXRecordDecl *RD = Destructor->getParent();
5172
5173  if (Destructor->isVirtual()) {
5174    SourceLocation Loc;
5175
5176    if (!Destructor->isImplicit())
5177      Loc = Destructor->getLocation();
5178    else
5179      Loc = RD->getLocation();
5180
5181    // If we have a virtual destructor, look up the deallocation function
5182    FunctionDecl *OperatorDelete = 0;
5183    DeclarationName Name =
5184    Context.DeclarationNames.getCXXOperatorName(OO_Delete);
5185    if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete))
5186      return true;
5187
5188    MarkFunctionReferenced(Loc, OperatorDelete);
5189
5190    Destructor->setOperatorDelete(OperatorDelete);
5191  }
5192
5193  return false;
5194}
5195
5196static inline bool
5197FTIHasSingleVoidArgument(DeclaratorChunk::FunctionTypeInfo &FTI) {
5198  return (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
5199          FTI.ArgInfo[0].Param &&
5200          cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType());
5201}
5202
5203/// CheckDestructorDeclarator - Called by ActOnDeclarator to check
5204/// the well-formednes of the destructor declarator @p D with type @p
5205/// R. If there are any errors in the declarator, this routine will
5206/// emit diagnostics and set the declarator to invalid.  Even if this happens,
5207/// will be updated to reflect a well-formed type for the destructor and
5208/// returned.
5209QualType Sema::CheckDestructorDeclarator(Declarator &D, QualType R,
5210                                         StorageClass& SC) {
5211  // C++ [class.dtor]p1:
5212  //   [...] A typedef-name that names a class is a class-name
5213  //   (7.1.3); however, a typedef-name that names a class shall not
5214  //   be used as the identifier in the declarator for a destructor
5215  //   declaration.
5216  QualType DeclaratorType = GetTypeFromParser(D.getName().DestructorName);
5217  if (const TypedefType *TT = DeclaratorType->getAs<TypedefType>())
5218    Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
5219      << DeclaratorType << isa<TypeAliasDecl>(TT->getDecl());
5220  else if (const TemplateSpecializationType *TST =
5221             DeclaratorType->getAs<TemplateSpecializationType>())
5222    if (TST->isTypeAlias())
5223      Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
5224        << DeclaratorType << 1;
5225
5226  // C++ [class.dtor]p2:
5227  //   A destructor is used to destroy objects of its class type. A
5228  //   destructor takes no parameters, and no return type can be
5229  //   specified for it (not even void). The address of a destructor
5230  //   shall not be taken. A destructor shall not be static. A
5231  //   destructor can be invoked for a const, volatile or const
5232  //   volatile object. A destructor shall not be declared const,
5233  //   volatile or const volatile (9.3.2).
5234  if (SC == SC_Static) {
5235    if (!D.isInvalidType())
5236      Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
5237        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
5238        << SourceRange(D.getIdentifierLoc())
5239        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
5240
5241    SC = SC_None;
5242  }
5243  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
5244    // Destructors don't have return types, but the parser will
5245    // happily parse something like:
5246    //
5247    //   class X {
5248    //     float ~X();
5249    //   };
5250    //
5251    // The return type will be eliminated later.
5252    Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
5253      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
5254      << SourceRange(D.getIdentifierLoc());
5255  }
5256
5257  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
5258  if (FTI.TypeQuals != 0 && !D.isInvalidType()) {
5259    if (FTI.TypeQuals & Qualifiers::Const)
5260      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
5261        << "const" << SourceRange(D.getIdentifierLoc());
5262    if (FTI.TypeQuals & Qualifiers::Volatile)
5263      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
5264        << "volatile" << SourceRange(D.getIdentifierLoc());
5265    if (FTI.TypeQuals & Qualifiers::Restrict)
5266      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
5267        << "restrict" << SourceRange(D.getIdentifierLoc());
5268    D.setInvalidType();
5269  }
5270
5271  // C++0x [class.dtor]p2:
5272  //   A destructor shall not be declared with a ref-qualifier.
5273  if (FTI.hasRefQualifier()) {
5274    Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_destructor)
5275      << FTI.RefQualifierIsLValueRef
5276      << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
5277    D.setInvalidType();
5278  }
5279
5280  // Make sure we don't have any parameters.
5281  if (FTI.NumArgs > 0 && !FTIHasSingleVoidArgument(FTI)) {
5282    Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
5283
5284    // Delete the parameters.
5285    FTI.freeArgs();
5286    D.setInvalidType();
5287  }
5288
5289  // Make sure the destructor isn't variadic.
5290  if (FTI.isVariadic) {
5291    Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
5292    D.setInvalidType();
5293  }
5294
5295  // Rebuild the function type "R" without any type qualifiers or
5296  // parameters (in case any of the errors above fired) and with
5297  // "void" as the return type, since destructors don't have return
5298  // types.
5299  if (!D.isInvalidType())
5300    return R;
5301
5302  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
5303  FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
5304  EPI.Variadic = false;
5305  EPI.TypeQuals = 0;
5306  EPI.RefQualifier = RQ_None;
5307  return Context.getFunctionType(Context.VoidTy, 0, 0, EPI);
5308}
5309
5310/// CheckConversionDeclarator - Called by ActOnDeclarator to check the
5311/// well-formednes of the conversion function declarator @p D with
5312/// type @p R. If there are any errors in the declarator, this routine
5313/// will emit diagnostics and return true. Otherwise, it will return
5314/// false. Either way, the type @p R will be updated to reflect a
5315/// well-formed type for the conversion operator.
5316void Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
5317                                     StorageClass& SC) {
5318  // C++ [class.conv.fct]p1:
5319  //   Neither parameter types nor return type can be specified. The
5320  //   type of a conversion function (8.3.5) is "function taking no
5321  //   parameter returning conversion-type-id."
5322  if (SC == SC_Static) {
5323    if (!D.isInvalidType())
5324      Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
5325        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
5326        << SourceRange(D.getIdentifierLoc());
5327    D.setInvalidType();
5328    SC = SC_None;
5329  }
5330
5331  QualType ConvType = GetTypeFromParser(D.getName().ConversionFunctionId);
5332
5333  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
5334    // Conversion functions don't have return types, but the parser will
5335    // happily parse something like:
5336    //
5337    //   class X {
5338    //     float operator bool();
5339    //   };
5340    //
5341    // The return type will be changed later anyway.
5342    Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
5343      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
5344      << SourceRange(D.getIdentifierLoc());
5345    D.setInvalidType();
5346  }
5347
5348  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
5349
5350  // Make sure we don't have any parameters.
5351  if (Proto->getNumArgs() > 0) {
5352    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
5353
5354    // Delete the parameters.
5355    D.getFunctionTypeInfo().freeArgs();
5356    D.setInvalidType();
5357  } else if (Proto->isVariadic()) {
5358    Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
5359    D.setInvalidType();
5360  }
5361
5362  // Diagnose "&operator bool()" and other such nonsense.  This
5363  // is actually a gcc extension which we don't support.
5364  if (Proto->getResultType() != ConvType) {
5365    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_complex_decl)
5366      << Proto->getResultType();
5367    D.setInvalidType();
5368    ConvType = Proto->getResultType();
5369  }
5370
5371  // C++ [class.conv.fct]p4:
5372  //   The conversion-type-id shall not represent a function type nor
5373  //   an array type.
5374  if (ConvType->isArrayType()) {
5375    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
5376    ConvType = Context.getPointerType(ConvType);
5377    D.setInvalidType();
5378  } else if (ConvType->isFunctionType()) {
5379    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
5380    ConvType = Context.getPointerType(ConvType);
5381    D.setInvalidType();
5382  }
5383
5384  // Rebuild the function type "R" without any parameters (in case any
5385  // of the errors above fired) and with the conversion type as the
5386  // return type.
5387  if (D.isInvalidType())
5388    R = Context.getFunctionType(ConvType, 0, 0, Proto->getExtProtoInfo());
5389
5390  // C++0x explicit conversion operators.
5391  if (D.getDeclSpec().isExplicitSpecified())
5392    Diag(D.getDeclSpec().getExplicitSpecLoc(),
5393         getLangOpts().CPlusPlus0x ?
5394           diag::warn_cxx98_compat_explicit_conversion_functions :
5395           diag::ext_explicit_conversion_functions)
5396      << SourceRange(D.getDeclSpec().getExplicitSpecLoc());
5397}
5398
5399/// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
5400/// the declaration of the given C++ conversion function. This routine
5401/// is responsible for recording the conversion function in the C++
5402/// class, if possible.
5403Decl *Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
5404  assert(Conversion && "Expected to receive a conversion function declaration");
5405
5406  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext());
5407
5408  // Make sure we aren't redeclaring the conversion function.
5409  QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());
5410
5411  // C++ [class.conv.fct]p1:
5412  //   [...] A conversion function is never used to convert a
5413  //   (possibly cv-qualified) object to the (possibly cv-qualified)
5414  //   same object type (or a reference to it), to a (possibly
5415  //   cv-qualified) base class of that type (or a reference to it),
5416  //   or to (possibly cv-qualified) void.
5417  // FIXME: Suppress this warning if the conversion function ends up being a
5418  // virtual function that overrides a virtual function in a base class.
5419  QualType ClassType
5420    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
5421  if (const ReferenceType *ConvTypeRef = ConvType->getAs<ReferenceType>())
5422    ConvType = ConvTypeRef->getPointeeType();
5423  if (Conversion->getTemplateSpecializationKind() != TSK_Undeclared &&
5424      Conversion->getTemplateSpecializationKind() != TSK_ExplicitSpecialization)
5425    /* Suppress diagnostics for instantiations. */;
5426  else if (ConvType->isRecordType()) {
5427    ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
5428    if (ConvType == ClassType)
5429      Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used)
5430        << ClassType;
5431    else if (IsDerivedFrom(ClassType, ConvType))
5432      Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used)
5433        <<  ClassType << ConvType;
5434  } else if (ConvType->isVoidType()) {
5435    Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used)
5436      << ClassType << ConvType;
5437  }
5438
5439  if (FunctionTemplateDecl *ConversionTemplate
5440                                = Conversion->getDescribedFunctionTemplate())
5441    return ConversionTemplate;
5442
5443  return Conversion;
5444}
5445
5446//===----------------------------------------------------------------------===//
5447// Namespace Handling
5448//===----------------------------------------------------------------------===//
5449
5450/// \brief Diagnose a mismatch in 'inline' qualifiers when a namespace is
5451/// reopened.
5452static void DiagnoseNamespaceInlineMismatch(Sema &S, SourceLocation KeywordLoc,
5453                                            SourceLocation Loc,
5454                                            IdentifierInfo *II, bool *IsInline,
5455                                            NamespaceDecl *PrevNS) {
5456  assert(*IsInline != PrevNS->isInline());
5457
5458  // HACK: Work around a bug in libstdc++4.6's <atomic>, where
5459  // std::__atomic[0,1,2] are defined as non-inline namespaces, then reopened as
5460  // inline namespaces, with the intention of bringing names into namespace std.
5461  //
5462  // We support this just well enough to get that case working; this is not
5463  // sufficient to support reopening namespaces as inline in general.
5464  if (*IsInline && II && II->getName().startswith("__atomic") &&
5465      S.getSourceManager().isInSystemHeader(Loc)) {
5466    // Mark all prior declarations of the namespace as inline.
5467    for (NamespaceDecl *NS = PrevNS->getMostRecentDecl(); NS;
5468         NS = NS->getPreviousDecl())
5469      NS->setInline(*IsInline);
5470    // Patch up the lookup table for the containing namespace. This isn't really
5471    // correct, but it's good enough for this particular case.
5472    for (DeclContext::decl_iterator I = PrevNS->decls_begin(),
5473                                    E = PrevNS->decls_end(); I != E; ++I)
5474      if (NamedDecl *ND = dyn_cast<NamedDecl>(*I))
5475        PrevNS->getParent()->makeDeclVisibleInContext(ND);
5476    return;
5477  }
5478
5479  if (PrevNS->isInline())
5480    // The user probably just forgot the 'inline', so suggest that it
5481    // be added back.
5482    S.Diag(Loc, diag::warn_inline_namespace_reopened_noninline)
5483      << FixItHint::CreateInsertion(KeywordLoc, "inline ");
5484  else
5485    S.Diag(Loc, diag::err_inline_namespace_mismatch)
5486      << IsInline;
5487
5488  S.Diag(PrevNS->getLocation(), diag::note_previous_definition);
5489  *IsInline = PrevNS->isInline();
5490}
5491
5492/// ActOnStartNamespaceDef - This is called at the start of a namespace
5493/// definition.
5494Decl *Sema::ActOnStartNamespaceDef(Scope *NamespcScope,
5495                                   SourceLocation InlineLoc,
5496                                   SourceLocation NamespaceLoc,
5497                                   SourceLocation IdentLoc,
5498                                   IdentifierInfo *II,
5499                                   SourceLocation LBrace,
5500                                   AttributeList *AttrList) {
5501  SourceLocation StartLoc = InlineLoc.isValid() ? InlineLoc : NamespaceLoc;
5502  // For anonymous namespace, take the location of the left brace.
5503  SourceLocation Loc = II ? IdentLoc : LBrace;
5504  bool IsInline = InlineLoc.isValid();
5505  bool IsInvalid = false;
5506  bool IsStd = false;
5507  bool AddToKnown = false;
5508  Scope *DeclRegionScope = NamespcScope->getParent();
5509
5510  NamespaceDecl *PrevNS = 0;
5511  if (II) {
5512    // C++ [namespace.def]p2:
5513    //   The identifier in an original-namespace-definition shall not
5514    //   have been previously defined in the declarative region in
5515    //   which the original-namespace-definition appears. The
5516    //   identifier in an original-namespace-definition is the name of
5517    //   the namespace. Subsequently in that declarative region, it is
5518    //   treated as an original-namespace-name.
5519    //
5520    // Since namespace names are unique in their scope, and we don't
5521    // look through using directives, just look for any ordinary names.
5522
5523    const unsigned IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Member |
5524    Decl::IDNS_Type | Decl::IDNS_Using | Decl::IDNS_Tag |
5525    Decl::IDNS_Namespace;
5526    NamedDecl *PrevDecl = 0;
5527    for (DeclContext::lookup_result R
5528         = CurContext->getRedeclContext()->lookup(II);
5529         R.first != R.second; ++R.first) {
5530      if ((*R.first)->getIdentifierNamespace() & IDNS) {
5531        PrevDecl = *R.first;
5532        break;
5533      }
5534    }
5535
5536    PrevNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl);
5537
5538    if (PrevNS) {
5539      // This is an extended namespace definition.
5540      if (IsInline != PrevNS->isInline())
5541        DiagnoseNamespaceInlineMismatch(*this, NamespaceLoc, Loc, II,
5542                                        &IsInline, PrevNS);
5543    } else if (PrevDecl) {
5544      // This is an invalid name redefinition.
5545      Diag(Loc, diag::err_redefinition_different_kind)
5546        << II;
5547      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
5548      IsInvalid = true;
5549      // Continue on to push Namespc as current DeclContext and return it.
5550    } else if (II->isStr("std") &&
5551               CurContext->getRedeclContext()->isTranslationUnit()) {
5552      // This is the first "real" definition of the namespace "std", so update
5553      // our cache of the "std" namespace to point at this definition.
5554      PrevNS = getStdNamespace();
5555      IsStd = true;
5556      AddToKnown = !IsInline;
5557    } else {
5558      // We've seen this namespace for the first time.
5559      AddToKnown = !IsInline;
5560    }
5561  } else {
5562    // Anonymous namespaces.
5563
5564    // Determine whether the parent already has an anonymous namespace.
5565    DeclContext *Parent = CurContext->getRedeclContext();
5566    if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
5567      PrevNS = TU->getAnonymousNamespace();
5568    } else {
5569      NamespaceDecl *ND = cast<NamespaceDecl>(Parent);
5570      PrevNS = ND->getAnonymousNamespace();
5571    }
5572
5573    if (PrevNS && IsInline != PrevNS->isInline())
5574      DiagnoseNamespaceInlineMismatch(*this, NamespaceLoc, NamespaceLoc, II,
5575                                      &IsInline, PrevNS);
5576  }
5577
5578  NamespaceDecl *Namespc = NamespaceDecl::Create(Context, CurContext, IsInline,
5579                                                 StartLoc, Loc, II, PrevNS);
5580  if (IsInvalid)
5581    Namespc->setInvalidDecl();
5582
5583  ProcessDeclAttributeList(DeclRegionScope, Namespc, AttrList);
5584
5585  // FIXME: Should we be merging attributes?
5586  if (const VisibilityAttr *Attr = Namespc->getAttr<VisibilityAttr>())
5587    PushNamespaceVisibilityAttr(Attr, Loc);
5588
5589  if (IsStd)
5590    StdNamespace = Namespc;
5591  if (AddToKnown)
5592    KnownNamespaces[Namespc] = false;
5593
5594  if (II) {
5595    PushOnScopeChains(Namespc, DeclRegionScope);
5596  } else {
5597    // Link the anonymous namespace into its parent.
5598    DeclContext *Parent = CurContext->getRedeclContext();
5599    if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
5600      TU->setAnonymousNamespace(Namespc);
5601    } else {
5602      cast<NamespaceDecl>(Parent)->setAnonymousNamespace(Namespc);
5603    }
5604
5605    CurContext->addDecl(Namespc);
5606
5607    // C++ [namespace.unnamed]p1.  An unnamed-namespace-definition
5608    //   behaves as if it were replaced by
5609    //     namespace unique { /* empty body */ }
5610    //     using namespace unique;
5611    //     namespace unique { namespace-body }
5612    //   where all occurrences of 'unique' in a translation unit are
5613    //   replaced by the same identifier and this identifier differs
5614    //   from all other identifiers in the entire program.
5615
5616    // We just create the namespace with an empty name and then add an
5617    // implicit using declaration, just like the standard suggests.
5618    //
5619    // CodeGen enforces the "universally unique" aspect by giving all
5620    // declarations semantically contained within an anonymous
5621    // namespace internal linkage.
5622
5623    if (!PrevNS) {
5624      UsingDirectiveDecl* UD
5625        = UsingDirectiveDecl::Create(Context, Parent,
5626                                     /* 'using' */ LBrace,
5627                                     /* 'namespace' */ SourceLocation(),
5628                                     /* qualifier */ NestedNameSpecifierLoc(),
5629                                     /* identifier */ SourceLocation(),
5630                                     Namespc,
5631                                     /* Ancestor */ Parent);
5632      UD->setImplicit();
5633      Parent->addDecl(UD);
5634    }
5635  }
5636
5637  ActOnDocumentableDecl(Namespc);
5638
5639  // Although we could have an invalid decl (i.e. the namespace name is a
5640  // redefinition), push it as current DeclContext and try to continue parsing.
5641  // FIXME: We should be able to push Namespc here, so that the each DeclContext
5642  // for the namespace has the declarations that showed up in that particular
5643  // namespace definition.
5644  PushDeclContext(NamespcScope, Namespc);
5645  return Namespc;
5646}
5647
5648/// getNamespaceDecl - Returns the namespace a decl represents. If the decl
5649/// is a namespace alias, returns the namespace it points to.
5650static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) {
5651  if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D))
5652    return AD->getNamespace();
5653  return dyn_cast_or_null<NamespaceDecl>(D);
5654}
5655
5656/// ActOnFinishNamespaceDef - This callback is called after a namespace is
5657/// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
5658void Sema::ActOnFinishNamespaceDef(Decl *Dcl, SourceLocation RBrace) {
5659  NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
5660  assert(Namespc && "Invalid parameter, expected NamespaceDecl");
5661  Namespc->setRBraceLoc(RBrace);
5662  PopDeclContext();
5663  if (Namespc->hasAttr<VisibilityAttr>())
5664    PopPragmaVisibility(true, RBrace);
5665}
5666
5667CXXRecordDecl *Sema::getStdBadAlloc() const {
5668  return cast_or_null<CXXRecordDecl>(
5669                                  StdBadAlloc.get(Context.getExternalSource()));
5670}
5671
5672NamespaceDecl *Sema::getStdNamespace() const {
5673  return cast_or_null<NamespaceDecl>(
5674                                 StdNamespace.get(Context.getExternalSource()));
5675}
5676
5677/// \brief Retrieve the special "std" namespace, which may require us to
5678/// implicitly define the namespace.
5679NamespaceDecl *Sema::getOrCreateStdNamespace() {
5680  if (!StdNamespace) {
5681    // The "std" namespace has not yet been defined, so build one implicitly.
5682    StdNamespace = NamespaceDecl::Create(Context,
5683                                         Context.getTranslationUnitDecl(),
5684                                         /*Inline=*/false,
5685                                         SourceLocation(), SourceLocation(),
5686                                         &PP.getIdentifierTable().get("std"),
5687                                         /*PrevDecl=*/0);
5688    getStdNamespace()->setImplicit(true);
5689  }
5690
5691  return getStdNamespace();
5692}
5693
5694bool Sema::isStdInitializerList(QualType Ty, QualType *Element) {
5695  assert(getLangOpts().CPlusPlus &&
5696         "Looking for std::initializer_list outside of C++.");
5697
5698  // We're looking for implicit instantiations of
5699  // template <typename E> class std::initializer_list.
5700
5701  if (!StdNamespace) // If we haven't seen namespace std yet, this can't be it.
5702    return false;
5703
5704  ClassTemplateDecl *Template = 0;
5705  const TemplateArgument *Arguments = 0;
5706
5707  if (const RecordType *RT = Ty->getAs<RecordType>()) {
5708
5709    ClassTemplateSpecializationDecl *Specialization =
5710        dyn_cast<ClassTemplateSpecializationDecl>(RT->getDecl());
5711    if (!Specialization)
5712      return false;
5713
5714    Template = Specialization->getSpecializedTemplate();
5715    Arguments = Specialization->getTemplateArgs().data();
5716  } else if (const TemplateSpecializationType *TST =
5717                 Ty->getAs<TemplateSpecializationType>()) {
5718    Template = dyn_cast_or_null<ClassTemplateDecl>(
5719        TST->getTemplateName().getAsTemplateDecl());
5720    Arguments = TST->getArgs();
5721  }
5722  if (!Template)
5723    return false;
5724
5725  if (!StdInitializerList) {
5726    // Haven't recognized std::initializer_list yet, maybe this is it.
5727    CXXRecordDecl *TemplateClass = Template->getTemplatedDecl();
5728    if (TemplateClass->getIdentifier() !=
5729            &PP.getIdentifierTable().get("initializer_list") ||
5730        !getStdNamespace()->InEnclosingNamespaceSetOf(
5731            TemplateClass->getDeclContext()))
5732      return false;
5733    // This is a template called std::initializer_list, but is it the right
5734    // template?
5735    TemplateParameterList *Params = Template->getTemplateParameters();
5736    if (Params->getMinRequiredArguments() != 1)
5737      return false;
5738    if (!isa<TemplateTypeParmDecl>(Params->getParam(0)))
5739      return false;
5740
5741    // It's the right template.
5742    StdInitializerList = Template;
5743  }
5744
5745  if (Template != StdInitializerList)
5746    return false;
5747
5748  // This is an instance of std::initializer_list. Find the argument type.
5749  if (Element)
5750    *Element = Arguments[0].getAsType();
5751  return true;
5752}
5753
5754static ClassTemplateDecl *LookupStdInitializerList(Sema &S, SourceLocation Loc){
5755  NamespaceDecl *Std = S.getStdNamespace();
5756  if (!Std) {
5757    S.Diag(Loc, diag::err_implied_std_initializer_list_not_found);
5758    return 0;
5759  }
5760
5761  LookupResult Result(S, &S.PP.getIdentifierTable().get("initializer_list"),
5762                      Loc, Sema::LookupOrdinaryName);
5763  if (!S.LookupQualifiedName(Result, Std)) {
5764    S.Diag(Loc, diag::err_implied_std_initializer_list_not_found);
5765    return 0;
5766  }
5767  ClassTemplateDecl *Template = Result.getAsSingle<ClassTemplateDecl>();
5768  if (!Template) {
5769    Result.suppressDiagnostics();
5770    // We found something weird. Complain about the first thing we found.
5771    NamedDecl *Found = *Result.begin();
5772    S.Diag(Found->getLocation(), diag::err_malformed_std_initializer_list);
5773    return 0;
5774  }
5775
5776  // We found some template called std::initializer_list. Now verify that it's
5777  // correct.
5778  TemplateParameterList *Params = Template->getTemplateParameters();
5779  if (Params->getMinRequiredArguments() != 1 ||
5780      !isa<TemplateTypeParmDecl>(Params->getParam(0))) {
5781    S.Diag(Template->getLocation(), diag::err_malformed_std_initializer_list);
5782    return 0;
5783  }
5784
5785  return Template;
5786}
5787
5788QualType Sema::BuildStdInitializerList(QualType Element, SourceLocation Loc) {
5789  if (!StdInitializerList) {
5790    StdInitializerList = LookupStdInitializerList(*this, Loc);
5791    if (!StdInitializerList)
5792      return QualType();
5793  }
5794
5795  TemplateArgumentListInfo Args(Loc, Loc);
5796  Args.addArgument(TemplateArgumentLoc(TemplateArgument(Element),
5797                                       Context.getTrivialTypeSourceInfo(Element,
5798                                                                        Loc)));
5799  return Context.getCanonicalType(
5800      CheckTemplateIdType(TemplateName(StdInitializerList), Loc, Args));
5801}
5802
5803bool Sema::isInitListConstructor(const CXXConstructorDecl* Ctor) {
5804  // C++ [dcl.init.list]p2:
5805  //   A constructor is an initializer-list constructor if its first parameter
5806  //   is of type std::initializer_list<E> or reference to possibly cv-qualified
5807  //   std::initializer_list<E> for some type E, and either there are no other
5808  //   parameters or else all other parameters have default arguments.
5809  if (Ctor->getNumParams() < 1 ||
5810      (Ctor->getNumParams() > 1 && !Ctor->getParamDecl(1)->hasDefaultArg()))
5811    return false;
5812
5813  QualType ArgType = Ctor->getParamDecl(0)->getType();
5814  if (const ReferenceType *RT = ArgType->getAs<ReferenceType>())
5815    ArgType = RT->getPointeeType().getUnqualifiedType();
5816
5817  return isStdInitializerList(ArgType, 0);
5818}
5819
5820/// \brief Determine whether a using statement is in a context where it will be
5821/// apply in all contexts.
5822static bool IsUsingDirectiveInToplevelContext(DeclContext *CurContext) {
5823  switch (CurContext->getDeclKind()) {
5824    case Decl::TranslationUnit:
5825      return true;
5826    case Decl::LinkageSpec:
5827      return IsUsingDirectiveInToplevelContext(CurContext->getParent());
5828    default:
5829      return false;
5830  }
5831}
5832
5833namespace {
5834
5835// Callback to only accept typo corrections that are namespaces.
5836class NamespaceValidatorCCC : public CorrectionCandidateCallback {
5837 public:
5838  virtual bool ValidateCandidate(const TypoCorrection &candidate) {
5839    if (NamedDecl *ND = candidate.getCorrectionDecl()) {
5840      return isa<NamespaceDecl>(ND) || isa<NamespaceAliasDecl>(ND);
5841    }
5842    return false;
5843  }
5844};
5845
5846}
5847
5848static bool TryNamespaceTypoCorrection(Sema &S, LookupResult &R, Scope *Sc,
5849                                       CXXScopeSpec &SS,
5850                                       SourceLocation IdentLoc,
5851                                       IdentifierInfo *Ident) {
5852  NamespaceValidatorCCC Validator;
5853  R.clear();
5854  if (TypoCorrection Corrected = S.CorrectTypo(R.getLookupNameInfo(),
5855                                               R.getLookupKind(), Sc, &SS,
5856                                               Validator)) {
5857    std::string CorrectedStr(Corrected.getAsString(S.getLangOpts()));
5858    std::string CorrectedQuotedStr(Corrected.getQuoted(S.getLangOpts()));
5859    if (DeclContext *DC = S.computeDeclContext(SS, false))
5860      S.Diag(IdentLoc, diag::err_using_directive_member_suggest)
5861        << Ident << DC << CorrectedQuotedStr << SS.getRange()
5862        << FixItHint::CreateReplacement(Corrected.getCorrectionRange(),
5863                                        CorrectedStr);
5864    else
5865      S.Diag(IdentLoc, diag::err_using_directive_suggest)
5866        << Ident << CorrectedQuotedStr
5867        << FixItHint::CreateReplacement(IdentLoc, CorrectedStr);
5868
5869    S.Diag(Corrected.getCorrectionDecl()->getLocation(),
5870         diag::note_namespace_defined_here) << CorrectedQuotedStr;
5871
5872    R.addDecl(Corrected.getCorrectionDecl());
5873    return true;
5874  }
5875  return false;
5876}
5877
5878Decl *Sema::ActOnUsingDirective(Scope *S,
5879                                          SourceLocation UsingLoc,
5880                                          SourceLocation NamespcLoc,
5881                                          CXXScopeSpec &SS,
5882                                          SourceLocation IdentLoc,
5883                                          IdentifierInfo *NamespcName,
5884                                          AttributeList *AttrList) {
5885  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
5886  assert(NamespcName && "Invalid NamespcName.");
5887  assert(IdentLoc.isValid() && "Invalid NamespceName location.");
5888
5889  // This can only happen along a recovery path.
5890  while (S->getFlags() & Scope::TemplateParamScope)
5891    S = S->getParent();
5892  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
5893
5894  UsingDirectiveDecl *UDir = 0;
5895  NestedNameSpecifier *Qualifier = 0;
5896  if (SS.isSet())
5897    Qualifier = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
5898
5899  // Lookup namespace name.
5900  LookupResult R(*this, NamespcName, IdentLoc, LookupNamespaceName);
5901  LookupParsedName(R, S, &SS);
5902  if (R.isAmbiguous())
5903    return 0;
5904
5905  if (R.empty()) {
5906    R.clear();
5907    // Allow "using namespace std;" or "using namespace ::std;" even if
5908    // "std" hasn't been defined yet, for GCC compatibility.
5909    if ((!Qualifier || Qualifier->getKind() == NestedNameSpecifier::Global) &&
5910        NamespcName->isStr("std")) {
5911      Diag(IdentLoc, diag::ext_using_undefined_std);
5912      R.addDecl(getOrCreateStdNamespace());
5913      R.resolveKind();
5914    }
5915    // Otherwise, attempt typo correction.
5916    else TryNamespaceTypoCorrection(*this, R, S, SS, IdentLoc, NamespcName);
5917  }
5918
5919  if (!R.empty()) {
5920    NamedDecl *Named = R.getFoundDecl();
5921    assert((isa<NamespaceDecl>(Named) || isa<NamespaceAliasDecl>(Named))
5922        && "expected namespace decl");
5923    // C++ [namespace.udir]p1:
5924    //   A using-directive specifies that the names in the nominated
5925    //   namespace can be used in the scope in which the
5926    //   using-directive appears after the using-directive. During
5927    //   unqualified name lookup (3.4.1), the names appear as if they
5928    //   were declared in the nearest enclosing namespace which
5929    //   contains both the using-directive and the nominated
5930    //   namespace. [Note: in this context, "contains" means "contains
5931    //   directly or indirectly". ]
5932
5933    // Find enclosing context containing both using-directive and
5934    // nominated namespace.
5935    NamespaceDecl *NS = getNamespaceDecl(Named);
5936    DeclContext *CommonAncestor = cast<DeclContext>(NS);
5937    while (CommonAncestor && !CommonAncestor->Encloses(CurContext))
5938      CommonAncestor = CommonAncestor->getParent();
5939
5940    UDir = UsingDirectiveDecl::Create(Context, CurContext, UsingLoc, NamespcLoc,
5941                                      SS.getWithLocInContext(Context),
5942                                      IdentLoc, Named, CommonAncestor);
5943
5944    if (IsUsingDirectiveInToplevelContext(CurContext) &&
5945        !SourceMgr.isFromMainFile(SourceMgr.getExpansionLoc(IdentLoc))) {
5946      Diag(IdentLoc, diag::warn_using_directive_in_header);
5947    }
5948
5949    PushUsingDirective(S, UDir);
5950  } else {
5951    Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
5952  }
5953
5954  // FIXME: We ignore attributes for now.
5955  return UDir;
5956}
5957
5958void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) {
5959  // If the scope has an associated entity and the using directive is at
5960  // namespace or translation unit scope, add the UsingDirectiveDecl into
5961  // its lookup structure so qualified name lookup can find it.
5962  DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity());
5963  if (Ctx && !Ctx->isFunctionOrMethod())
5964    Ctx->addDecl(UDir);
5965  else
5966    // Otherwise, it is at block sope. The using-directives will affect lookup
5967    // only to the end of the scope.
5968    S->PushUsingDirective(UDir);
5969}
5970
5971
5972Decl *Sema::ActOnUsingDeclaration(Scope *S,
5973                                  AccessSpecifier AS,
5974                                  bool HasUsingKeyword,
5975                                  SourceLocation UsingLoc,
5976                                  CXXScopeSpec &SS,
5977                                  UnqualifiedId &Name,
5978                                  AttributeList *AttrList,
5979                                  bool IsTypeName,
5980                                  SourceLocation TypenameLoc) {
5981  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
5982
5983  switch (Name.getKind()) {
5984  case UnqualifiedId::IK_ImplicitSelfParam:
5985  case UnqualifiedId::IK_Identifier:
5986  case UnqualifiedId::IK_OperatorFunctionId:
5987  case UnqualifiedId::IK_LiteralOperatorId:
5988  case UnqualifiedId::IK_ConversionFunctionId:
5989    break;
5990
5991  case UnqualifiedId::IK_ConstructorName:
5992  case UnqualifiedId::IK_ConstructorTemplateId:
5993    // C++11 inheriting constructors.
5994    Diag(Name.getLocStart(),
5995         getLangOpts().CPlusPlus0x ?
5996           // FIXME: Produce warn_cxx98_compat_using_decl_constructor
5997           //        instead once inheriting constructors work.
5998           diag::err_using_decl_constructor_unsupported :
5999           diag::err_using_decl_constructor)
6000      << SS.getRange();
6001
6002    if (getLangOpts().CPlusPlus0x) break;
6003
6004    return 0;
6005
6006  case UnqualifiedId::IK_DestructorName:
6007    Diag(Name.getLocStart(), diag::err_using_decl_destructor)
6008      << SS.getRange();
6009    return 0;
6010
6011  case UnqualifiedId::IK_TemplateId:
6012    Diag(Name.getLocStart(), diag::err_using_decl_template_id)
6013      << SourceRange(Name.TemplateId->LAngleLoc, Name.TemplateId->RAngleLoc);
6014    return 0;
6015  }
6016
6017  DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name);
6018  DeclarationName TargetName = TargetNameInfo.getName();
6019  if (!TargetName)
6020    return 0;
6021
6022  // Warn about using declarations.
6023  // TODO: store that the declaration was written without 'using' and
6024  // talk about access decls instead of using decls in the
6025  // diagnostics.
6026  if (!HasUsingKeyword) {
6027    UsingLoc = Name.getLocStart();
6028
6029    Diag(UsingLoc, diag::warn_access_decl_deprecated)
6030      << FixItHint::CreateInsertion(SS.getRange().getBegin(), "using ");
6031  }
6032
6033  if (DiagnoseUnexpandedParameterPack(SS, UPPC_UsingDeclaration) ||
6034      DiagnoseUnexpandedParameterPack(TargetNameInfo, UPPC_UsingDeclaration))
6035    return 0;
6036
6037  NamedDecl *UD = BuildUsingDeclaration(S, AS, UsingLoc, SS,
6038                                        TargetNameInfo, AttrList,
6039                                        /* IsInstantiation */ false,
6040                                        IsTypeName, TypenameLoc);
6041  if (UD)
6042    PushOnScopeChains(UD, S, /*AddToContext*/ false);
6043
6044  return UD;
6045}
6046
6047/// \brief Determine whether a using declaration considers the given
6048/// declarations as "equivalent", e.g., if they are redeclarations of
6049/// the same entity or are both typedefs of the same type.
6050static bool
6051IsEquivalentForUsingDecl(ASTContext &Context, NamedDecl *D1, NamedDecl *D2,
6052                         bool &SuppressRedeclaration) {
6053  if (D1->getCanonicalDecl() == D2->getCanonicalDecl()) {
6054    SuppressRedeclaration = false;
6055    return true;
6056  }
6057
6058  if (TypedefNameDecl *TD1 = dyn_cast<TypedefNameDecl>(D1))
6059    if (TypedefNameDecl *TD2 = dyn_cast<TypedefNameDecl>(D2)) {
6060      SuppressRedeclaration = true;
6061      return Context.hasSameType(TD1->getUnderlyingType(),
6062                                 TD2->getUnderlyingType());
6063    }
6064
6065  return false;
6066}
6067
6068
6069/// Determines whether to create a using shadow decl for a particular
6070/// decl, given the set of decls existing prior to this using lookup.
6071bool Sema::CheckUsingShadowDecl(UsingDecl *Using, NamedDecl *Orig,
6072                                const LookupResult &Previous) {
6073  // Diagnose finding a decl which is not from a base class of the
6074  // current class.  We do this now because there are cases where this
6075  // function will silently decide not to build a shadow decl, which
6076  // will pre-empt further diagnostics.
6077  //
6078  // We don't need to do this in C++0x because we do the check once on
6079  // the qualifier.
6080  //
6081  // FIXME: diagnose the following if we care enough:
6082  //   struct A { int foo; };
6083  //   struct B : A { using A::foo; };
6084  //   template <class T> struct C : A {};
6085  //   template <class T> struct D : C<T> { using B::foo; } // <---
6086  // This is invalid (during instantiation) in C++03 because B::foo
6087  // resolves to the using decl in B, which is not a base class of D<T>.
6088  // We can't diagnose it immediately because C<T> is an unknown
6089  // specialization.  The UsingShadowDecl in D<T> then points directly
6090  // to A::foo, which will look well-formed when we instantiate.
6091  // The right solution is to not collapse the shadow-decl chain.
6092  if (!getLangOpts().CPlusPlus0x && CurContext->isRecord()) {
6093    DeclContext *OrigDC = Orig->getDeclContext();
6094
6095    // Handle enums and anonymous structs.
6096    if (isa<EnumDecl>(OrigDC)) OrigDC = OrigDC->getParent();
6097    CXXRecordDecl *OrigRec = cast<CXXRecordDecl>(OrigDC);
6098    while (OrigRec->isAnonymousStructOrUnion())
6099      OrigRec = cast<CXXRecordDecl>(OrigRec->getDeclContext());
6100
6101    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(OrigRec)) {
6102      if (OrigDC == CurContext) {
6103        Diag(Using->getLocation(),
6104             diag::err_using_decl_nested_name_specifier_is_current_class)
6105          << Using->getQualifierLoc().getSourceRange();
6106        Diag(Orig->getLocation(), diag::note_using_decl_target);
6107        return true;
6108      }
6109
6110      Diag(Using->getQualifierLoc().getBeginLoc(),
6111           diag::err_using_decl_nested_name_specifier_is_not_base_class)
6112        << Using->getQualifier()
6113        << cast<CXXRecordDecl>(CurContext)
6114        << Using->getQualifierLoc().getSourceRange();
6115      Diag(Orig->getLocation(), diag::note_using_decl_target);
6116      return true;
6117    }
6118  }
6119
6120  if (Previous.empty()) return false;
6121
6122  NamedDecl *Target = Orig;
6123  if (isa<UsingShadowDecl>(Target))
6124    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
6125
6126  // If the target happens to be one of the previous declarations, we
6127  // don't have a conflict.
6128  //
6129  // FIXME: but we might be increasing its access, in which case we
6130  // should redeclare it.
6131  NamedDecl *NonTag = 0, *Tag = 0;
6132  for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
6133         I != E; ++I) {
6134    NamedDecl *D = (*I)->getUnderlyingDecl();
6135    bool Result;
6136    if (IsEquivalentForUsingDecl(Context, D, Target, Result))
6137      return Result;
6138
6139    (isa<TagDecl>(D) ? Tag : NonTag) = D;
6140  }
6141
6142  if (Target->isFunctionOrFunctionTemplate()) {
6143    FunctionDecl *FD;
6144    if (isa<FunctionTemplateDecl>(Target))
6145      FD = cast<FunctionTemplateDecl>(Target)->getTemplatedDecl();
6146    else
6147      FD = cast<FunctionDecl>(Target);
6148
6149    NamedDecl *OldDecl = 0;
6150    switch (CheckOverload(0, FD, Previous, OldDecl, /*IsForUsingDecl*/ true)) {
6151    case Ovl_Overload:
6152      return false;
6153
6154    case Ovl_NonFunction:
6155      Diag(Using->getLocation(), diag::err_using_decl_conflict);
6156      break;
6157
6158    // We found a decl with the exact signature.
6159    case Ovl_Match:
6160      // If we're in a record, we want to hide the target, so we
6161      // return true (without a diagnostic) to tell the caller not to
6162      // build a shadow decl.
6163      if (CurContext->isRecord())
6164        return true;
6165
6166      // If we're not in a record, this is an error.
6167      Diag(Using->getLocation(), diag::err_using_decl_conflict);
6168      break;
6169    }
6170
6171    Diag(Target->getLocation(), diag::note_using_decl_target);
6172    Diag(OldDecl->getLocation(), diag::note_using_decl_conflict);
6173    return true;
6174  }
6175
6176  // Target is not a function.
6177
6178  if (isa<TagDecl>(Target)) {
6179    // No conflict between a tag and a non-tag.
6180    if (!Tag) return false;
6181
6182    Diag(Using->getLocation(), diag::err_using_decl_conflict);
6183    Diag(Target->getLocation(), diag::note_using_decl_target);
6184    Diag(Tag->getLocation(), diag::note_using_decl_conflict);
6185    return true;
6186  }
6187
6188  // No conflict between a tag and a non-tag.
6189  if (!NonTag) return false;
6190
6191  Diag(Using->getLocation(), diag::err_using_decl_conflict);
6192  Diag(Target->getLocation(), diag::note_using_decl_target);
6193  Diag(NonTag->getLocation(), diag::note_using_decl_conflict);
6194  return true;
6195}
6196
6197/// Builds a shadow declaration corresponding to a 'using' declaration.
6198UsingShadowDecl *Sema::BuildUsingShadowDecl(Scope *S,
6199                                            UsingDecl *UD,
6200                                            NamedDecl *Orig) {
6201
6202  // If we resolved to another shadow declaration, just coalesce them.
6203  NamedDecl *Target = Orig;
6204  if (isa<UsingShadowDecl>(Target)) {
6205    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
6206    assert(!isa<UsingShadowDecl>(Target) && "nested shadow declaration");
6207  }
6208
6209  UsingShadowDecl *Shadow
6210    = UsingShadowDecl::Create(Context, CurContext,
6211                              UD->getLocation(), UD, Target);
6212  UD->addShadowDecl(Shadow);
6213
6214  Shadow->setAccess(UD->getAccess());
6215  if (Orig->isInvalidDecl() || UD->isInvalidDecl())
6216    Shadow->setInvalidDecl();
6217
6218  if (S)
6219    PushOnScopeChains(Shadow, S);
6220  else
6221    CurContext->addDecl(Shadow);
6222
6223
6224  return Shadow;
6225}
6226
6227/// Hides a using shadow declaration.  This is required by the current
6228/// using-decl implementation when a resolvable using declaration in a
6229/// class is followed by a declaration which would hide or override
6230/// one or more of the using decl's targets; for example:
6231///
6232///   struct Base { void foo(int); };
6233///   struct Derived : Base {
6234///     using Base::foo;
6235///     void foo(int);
6236///   };
6237///
6238/// The governing language is C++03 [namespace.udecl]p12:
6239///
6240///   When a using-declaration brings names from a base class into a
6241///   derived class scope, member functions in the derived class
6242///   override and/or hide member functions with the same name and
6243///   parameter types in a base class (rather than conflicting).
6244///
6245/// There are two ways to implement this:
6246///   (1) optimistically create shadow decls when they're not hidden
6247///       by existing declarations, or
6248///   (2) don't create any shadow decls (or at least don't make them
6249///       visible) until we've fully parsed/instantiated the class.
6250/// The problem with (1) is that we might have to retroactively remove
6251/// a shadow decl, which requires several O(n) operations because the
6252/// decl structures are (very reasonably) not designed for removal.
6253/// (2) avoids this but is very fiddly and phase-dependent.
6254void Sema::HideUsingShadowDecl(Scope *S, UsingShadowDecl *Shadow) {
6255  if (Shadow->getDeclName().getNameKind() ==
6256        DeclarationName::CXXConversionFunctionName)
6257    cast<CXXRecordDecl>(Shadow->getDeclContext())->removeConversion(Shadow);
6258
6259  // Remove it from the DeclContext...
6260  Shadow->getDeclContext()->removeDecl(Shadow);
6261
6262  // ...and the scope, if applicable...
6263  if (S) {
6264    S->RemoveDecl(Shadow);
6265    IdResolver.RemoveDecl(Shadow);
6266  }
6267
6268  // ...and the using decl.
6269  Shadow->getUsingDecl()->removeShadowDecl(Shadow);
6270
6271  // TODO: complain somehow if Shadow was used.  It shouldn't
6272  // be possible for this to happen, because...?
6273}
6274
6275/// Builds a using declaration.
6276///
6277/// \param IsInstantiation - Whether this call arises from an
6278///   instantiation of an unresolved using declaration.  We treat
6279///   the lookup differently for these declarations.
6280NamedDecl *Sema::BuildUsingDeclaration(Scope *S, AccessSpecifier AS,
6281                                       SourceLocation UsingLoc,
6282                                       CXXScopeSpec &SS,
6283                                       const DeclarationNameInfo &NameInfo,
6284                                       AttributeList *AttrList,
6285                                       bool IsInstantiation,
6286                                       bool IsTypeName,
6287                                       SourceLocation TypenameLoc) {
6288  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
6289  SourceLocation IdentLoc = NameInfo.getLoc();
6290  assert(IdentLoc.isValid() && "Invalid TargetName location.");
6291
6292  // FIXME: We ignore attributes for now.
6293
6294  if (SS.isEmpty()) {
6295    Diag(IdentLoc, diag::err_using_requires_qualname);
6296    return 0;
6297  }
6298
6299  // Do the redeclaration lookup in the current scope.
6300  LookupResult Previous(*this, NameInfo, LookupUsingDeclName,
6301                        ForRedeclaration);
6302  Previous.setHideTags(false);
6303  if (S) {
6304    LookupName(Previous, S);
6305
6306    // It is really dumb that we have to do this.
6307    LookupResult::Filter F = Previous.makeFilter();
6308    while (F.hasNext()) {
6309      NamedDecl *D = F.next();
6310      if (!isDeclInScope(D, CurContext, S))
6311        F.erase();
6312    }
6313    F.done();
6314  } else {
6315    assert(IsInstantiation && "no scope in non-instantiation");
6316    assert(CurContext->isRecord() && "scope not record in instantiation");
6317    LookupQualifiedName(Previous, CurContext);
6318  }
6319
6320  // Check for invalid redeclarations.
6321  if (CheckUsingDeclRedeclaration(UsingLoc, IsTypeName, SS, IdentLoc, Previous))
6322    return 0;
6323
6324  // Check for bad qualifiers.
6325  if (CheckUsingDeclQualifier(UsingLoc, SS, IdentLoc))
6326    return 0;
6327
6328  DeclContext *LookupContext = computeDeclContext(SS);
6329  NamedDecl *D;
6330  NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
6331  if (!LookupContext) {
6332    if (IsTypeName) {
6333      // FIXME: not all declaration name kinds are legal here
6334      D = UnresolvedUsingTypenameDecl::Create(Context, CurContext,
6335                                              UsingLoc, TypenameLoc,
6336                                              QualifierLoc,
6337                                              IdentLoc, NameInfo.getName());
6338    } else {
6339      D = UnresolvedUsingValueDecl::Create(Context, CurContext, UsingLoc,
6340                                           QualifierLoc, NameInfo);
6341    }
6342  } else {
6343    D = UsingDecl::Create(Context, CurContext, UsingLoc, QualifierLoc,
6344                          NameInfo, IsTypeName);
6345  }
6346  D->setAccess(AS);
6347  CurContext->addDecl(D);
6348
6349  if (!LookupContext) return D;
6350  UsingDecl *UD = cast<UsingDecl>(D);
6351
6352  if (RequireCompleteDeclContext(SS, LookupContext)) {
6353    UD->setInvalidDecl();
6354    return UD;
6355  }
6356
6357  // The normal rules do not apply to inheriting constructor declarations.
6358  if (NameInfo.getName().getNameKind() == DeclarationName::CXXConstructorName) {
6359    if (CheckInheritingConstructorUsingDecl(UD))
6360      UD->setInvalidDecl();
6361    return UD;
6362  }
6363
6364  // Otherwise, look up the target name.
6365
6366  LookupResult R(*this, NameInfo, LookupOrdinaryName);
6367
6368  // Unlike most lookups, we don't always want to hide tag
6369  // declarations: tag names are visible through the using declaration
6370  // even if hidden by ordinary names, *except* in a dependent context
6371  // where it's important for the sanity of two-phase lookup.
6372  if (!IsInstantiation)
6373    R.setHideTags(false);
6374
6375  // For the purposes of this lookup, we have a base object type
6376  // equal to that of the current context.
6377  if (CurContext->isRecord()) {
6378    R.setBaseObjectType(
6379                   Context.getTypeDeclType(cast<CXXRecordDecl>(CurContext)));
6380  }
6381
6382  LookupQualifiedName(R, LookupContext);
6383
6384  if (R.empty()) {
6385    Diag(IdentLoc, diag::err_no_member)
6386      << NameInfo.getName() << LookupContext << SS.getRange();
6387    UD->setInvalidDecl();
6388    return UD;
6389  }
6390
6391  if (R.isAmbiguous()) {
6392    UD->setInvalidDecl();
6393    return UD;
6394  }
6395
6396  if (IsTypeName) {
6397    // If we asked for a typename and got a non-type decl, error out.
6398    if (!R.getAsSingle<TypeDecl>()) {
6399      Diag(IdentLoc, diag::err_using_typename_non_type);
6400      for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
6401        Diag((*I)->getUnderlyingDecl()->getLocation(),
6402             diag::note_using_decl_target);
6403      UD->setInvalidDecl();
6404      return UD;
6405    }
6406  } else {
6407    // If we asked for a non-typename and we got a type, error out,
6408    // but only if this is an instantiation of an unresolved using
6409    // decl.  Otherwise just silently find the type name.
6410    if (IsInstantiation && R.getAsSingle<TypeDecl>()) {
6411      Diag(IdentLoc, diag::err_using_dependent_value_is_type);
6412      Diag(R.getFoundDecl()->getLocation(), diag::note_using_decl_target);
6413      UD->setInvalidDecl();
6414      return UD;
6415    }
6416  }
6417
6418  // C++0x N2914 [namespace.udecl]p6:
6419  // A using-declaration shall not name a namespace.
6420  if (R.getAsSingle<NamespaceDecl>()) {
6421    Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_namespace)
6422      << SS.getRange();
6423    UD->setInvalidDecl();
6424    return UD;
6425  }
6426
6427  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
6428    if (!CheckUsingShadowDecl(UD, *I, Previous))
6429      BuildUsingShadowDecl(S, UD, *I);
6430  }
6431
6432  return UD;
6433}
6434
6435/// Additional checks for a using declaration referring to a constructor name.
6436bool Sema::CheckInheritingConstructorUsingDecl(UsingDecl *UD) {
6437  assert(!UD->isTypeName() && "expecting a constructor name");
6438
6439  const Type *SourceType = UD->getQualifier()->getAsType();
6440  assert(SourceType &&
6441         "Using decl naming constructor doesn't have type in scope spec.");
6442  CXXRecordDecl *TargetClass = cast<CXXRecordDecl>(CurContext);
6443
6444  // Check whether the named type is a direct base class.
6445  CanQualType CanonicalSourceType = SourceType->getCanonicalTypeUnqualified();
6446  CXXRecordDecl::base_class_iterator BaseIt, BaseE;
6447  for (BaseIt = TargetClass->bases_begin(), BaseE = TargetClass->bases_end();
6448       BaseIt != BaseE; ++BaseIt) {
6449    CanQualType BaseType = BaseIt->getType()->getCanonicalTypeUnqualified();
6450    if (CanonicalSourceType == BaseType)
6451      break;
6452    if (BaseIt->getType()->isDependentType())
6453      break;
6454  }
6455
6456  if (BaseIt == BaseE) {
6457    // Did not find SourceType in the bases.
6458    Diag(UD->getUsingLocation(),
6459         diag::err_using_decl_constructor_not_in_direct_base)
6460      << UD->getNameInfo().getSourceRange()
6461      << QualType(SourceType, 0) << TargetClass;
6462    return true;
6463  }
6464
6465  if (!CurContext->isDependentContext())
6466    BaseIt->setInheritConstructors();
6467
6468  return false;
6469}
6470
6471/// Checks that the given using declaration is not an invalid
6472/// redeclaration.  Note that this is checking only for the using decl
6473/// itself, not for any ill-formedness among the UsingShadowDecls.
6474bool Sema::CheckUsingDeclRedeclaration(SourceLocation UsingLoc,
6475                                       bool isTypeName,
6476                                       const CXXScopeSpec &SS,
6477                                       SourceLocation NameLoc,
6478                                       const LookupResult &Prev) {
6479  // C++03 [namespace.udecl]p8:
6480  // C++0x [namespace.udecl]p10:
6481  //   A using-declaration is a declaration and can therefore be used
6482  //   repeatedly where (and only where) multiple declarations are
6483  //   allowed.
6484  //
6485  // That's in non-member contexts.
6486  if (!CurContext->getRedeclContext()->isRecord())
6487    return false;
6488
6489  NestedNameSpecifier *Qual
6490    = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
6491
6492  for (LookupResult::iterator I = Prev.begin(), E = Prev.end(); I != E; ++I) {
6493    NamedDecl *D = *I;
6494
6495    bool DTypename;
6496    NestedNameSpecifier *DQual;
6497    if (UsingDecl *UD = dyn_cast<UsingDecl>(D)) {
6498      DTypename = UD->isTypeName();
6499      DQual = UD->getQualifier();
6500    } else if (UnresolvedUsingValueDecl *UD
6501                 = dyn_cast<UnresolvedUsingValueDecl>(D)) {
6502      DTypename = false;
6503      DQual = UD->getQualifier();
6504    } else if (UnresolvedUsingTypenameDecl *UD
6505                 = dyn_cast<UnresolvedUsingTypenameDecl>(D)) {
6506      DTypename = true;
6507      DQual = UD->getQualifier();
6508    } else continue;
6509
6510    // using decls differ if one says 'typename' and the other doesn't.
6511    // FIXME: non-dependent using decls?
6512    if (isTypeName != DTypename) continue;
6513
6514    // using decls differ if they name different scopes (but note that
6515    // template instantiation can cause this check to trigger when it
6516    // didn't before instantiation).
6517    if (Context.getCanonicalNestedNameSpecifier(Qual) !=
6518        Context.getCanonicalNestedNameSpecifier(DQual))
6519      continue;
6520
6521    Diag(NameLoc, diag::err_using_decl_redeclaration) << SS.getRange();
6522    Diag(D->getLocation(), diag::note_using_decl) << 1;
6523    return true;
6524  }
6525
6526  return false;
6527}
6528
6529
6530/// Checks that the given nested-name qualifier used in a using decl
6531/// in the current context is appropriately related to the current
6532/// scope.  If an error is found, diagnoses it and returns true.
6533bool Sema::CheckUsingDeclQualifier(SourceLocation UsingLoc,
6534                                   const CXXScopeSpec &SS,
6535                                   SourceLocation NameLoc) {
6536  DeclContext *NamedContext = computeDeclContext(SS);
6537
6538  if (!CurContext->isRecord()) {
6539    // C++03 [namespace.udecl]p3:
6540    // C++0x [namespace.udecl]p8:
6541    //   A using-declaration for a class member shall be a member-declaration.
6542
6543    // If we weren't able to compute a valid scope, it must be a
6544    // dependent class scope.
6545    if (!NamedContext || NamedContext->isRecord()) {
6546      Diag(NameLoc, diag::err_using_decl_can_not_refer_to_class_member)
6547        << SS.getRange();
6548      return true;
6549    }
6550
6551    // Otherwise, everything is known to be fine.
6552    return false;
6553  }
6554
6555  // The current scope is a record.
6556
6557  // If the named context is dependent, we can't decide much.
6558  if (!NamedContext) {
6559    // FIXME: in C++0x, we can diagnose if we can prove that the
6560    // nested-name-specifier does not refer to a base class, which is
6561    // still possible in some cases.
6562
6563    // Otherwise we have to conservatively report that things might be
6564    // okay.
6565    return false;
6566  }
6567
6568  if (!NamedContext->isRecord()) {
6569    // Ideally this would point at the last name in the specifier,
6570    // but we don't have that level of source info.
6571    Diag(SS.getRange().getBegin(),
6572         diag::err_using_decl_nested_name_specifier_is_not_class)
6573      << (NestedNameSpecifier*) SS.getScopeRep() << SS.getRange();
6574    return true;
6575  }
6576
6577  if (!NamedContext->isDependentContext() &&
6578      RequireCompleteDeclContext(const_cast<CXXScopeSpec&>(SS), NamedContext))
6579    return true;
6580
6581  if (getLangOpts().CPlusPlus0x) {
6582    // C++0x [namespace.udecl]p3:
6583    //   In a using-declaration used as a member-declaration, the
6584    //   nested-name-specifier shall name a base class of the class
6585    //   being defined.
6586
6587    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(
6588                                 cast<CXXRecordDecl>(NamedContext))) {
6589      if (CurContext == NamedContext) {
6590        Diag(NameLoc,
6591             diag::err_using_decl_nested_name_specifier_is_current_class)
6592          << SS.getRange();
6593        return true;
6594      }
6595
6596      Diag(SS.getRange().getBegin(),
6597           diag::err_using_decl_nested_name_specifier_is_not_base_class)
6598        << (NestedNameSpecifier*) SS.getScopeRep()
6599        << cast<CXXRecordDecl>(CurContext)
6600        << SS.getRange();
6601      return true;
6602    }
6603
6604    return false;
6605  }
6606
6607  // C++03 [namespace.udecl]p4:
6608  //   A using-declaration used as a member-declaration shall refer
6609  //   to a member of a base class of the class being defined [etc.].
6610
6611  // Salient point: SS doesn't have to name a base class as long as
6612  // lookup only finds members from base classes.  Therefore we can
6613  // diagnose here only if we can prove that that can't happen,
6614  // i.e. if the class hierarchies provably don't intersect.
6615
6616  // TODO: it would be nice if "definitely valid" results were cached
6617  // in the UsingDecl and UsingShadowDecl so that these checks didn't
6618  // need to be repeated.
6619
6620  struct UserData {
6621    llvm::SmallPtrSet<const CXXRecordDecl*, 4> Bases;
6622
6623    static bool collect(const CXXRecordDecl *Base, void *OpaqueData) {
6624      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
6625      Data->Bases.insert(Base);
6626      return true;
6627    }
6628
6629    bool hasDependentBases(const CXXRecordDecl *Class) {
6630      return !Class->forallBases(collect, this);
6631    }
6632
6633    /// Returns true if the base is dependent or is one of the
6634    /// accumulated base classes.
6635    static bool doesNotContain(const CXXRecordDecl *Base, void *OpaqueData) {
6636      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
6637      return !Data->Bases.count(Base);
6638    }
6639
6640    bool mightShareBases(const CXXRecordDecl *Class) {
6641      return Bases.count(Class) || !Class->forallBases(doesNotContain, this);
6642    }
6643  };
6644
6645  UserData Data;
6646
6647  // Returns false if we find a dependent base.
6648  if (Data.hasDependentBases(cast<CXXRecordDecl>(CurContext)))
6649    return false;
6650
6651  // Returns false if the class has a dependent base or if it or one
6652  // of its bases is present in the base set of the current context.
6653  if (Data.mightShareBases(cast<CXXRecordDecl>(NamedContext)))
6654    return false;
6655
6656  Diag(SS.getRange().getBegin(),
6657       diag::err_using_decl_nested_name_specifier_is_not_base_class)
6658    << (NestedNameSpecifier*) SS.getScopeRep()
6659    << cast<CXXRecordDecl>(CurContext)
6660    << SS.getRange();
6661
6662  return true;
6663}
6664
6665Decl *Sema::ActOnAliasDeclaration(Scope *S,
6666                                  AccessSpecifier AS,
6667                                  MultiTemplateParamsArg TemplateParamLists,
6668                                  SourceLocation UsingLoc,
6669                                  UnqualifiedId &Name,
6670                                  TypeResult Type) {
6671  // Skip up to the relevant declaration scope.
6672  while (S->getFlags() & Scope::TemplateParamScope)
6673    S = S->getParent();
6674  assert((S->getFlags() & Scope::DeclScope) &&
6675         "got alias-declaration outside of declaration scope");
6676
6677  if (Type.isInvalid())
6678    return 0;
6679
6680  bool Invalid = false;
6681  DeclarationNameInfo NameInfo = GetNameFromUnqualifiedId(Name);
6682  TypeSourceInfo *TInfo = 0;
6683  GetTypeFromParser(Type.get(), &TInfo);
6684
6685  if (DiagnoseClassNameShadow(CurContext, NameInfo))
6686    return 0;
6687
6688  if (DiagnoseUnexpandedParameterPack(Name.StartLocation, TInfo,
6689                                      UPPC_DeclarationType)) {
6690    Invalid = true;
6691    TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy,
6692                                             TInfo->getTypeLoc().getBeginLoc());
6693  }
6694
6695  LookupResult Previous(*this, NameInfo, LookupOrdinaryName, ForRedeclaration);
6696  LookupName(Previous, S);
6697
6698  // Warn about shadowing the name of a template parameter.
6699  if (Previous.isSingleResult() &&
6700      Previous.getFoundDecl()->isTemplateParameter()) {
6701    DiagnoseTemplateParameterShadow(Name.StartLocation,Previous.getFoundDecl());
6702    Previous.clear();
6703  }
6704
6705  assert(Name.Kind == UnqualifiedId::IK_Identifier &&
6706         "name in alias declaration must be an identifier");
6707  TypeAliasDecl *NewTD = TypeAliasDecl::Create(Context, CurContext, UsingLoc,
6708                                               Name.StartLocation,
6709                                               Name.Identifier, TInfo);
6710
6711  NewTD->setAccess(AS);
6712
6713  if (Invalid)
6714    NewTD->setInvalidDecl();
6715
6716  CheckTypedefForVariablyModifiedType(S, NewTD);
6717  Invalid |= NewTD->isInvalidDecl();
6718
6719  bool Redeclaration = false;
6720
6721  NamedDecl *NewND;
6722  if (TemplateParamLists.size()) {
6723    TypeAliasTemplateDecl *OldDecl = 0;
6724    TemplateParameterList *OldTemplateParams = 0;
6725
6726    if (TemplateParamLists.size() != 1) {
6727      Diag(UsingLoc, diag::err_alias_template_extra_headers)
6728        << SourceRange(TemplateParamLists[1]->getTemplateLoc(),
6729         TemplateParamLists[TemplateParamLists.size()-1]->getRAngleLoc());
6730    }
6731    TemplateParameterList *TemplateParams = TemplateParamLists[0];
6732
6733    // Only consider previous declarations in the same scope.
6734    FilterLookupForScope(Previous, CurContext, S, /*ConsiderLinkage*/false,
6735                         /*ExplicitInstantiationOrSpecialization*/false);
6736    if (!Previous.empty()) {
6737      Redeclaration = true;
6738
6739      OldDecl = Previous.getAsSingle<TypeAliasTemplateDecl>();
6740      if (!OldDecl && !Invalid) {
6741        Diag(UsingLoc, diag::err_redefinition_different_kind)
6742          << Name.Identifier;
6743
6744        NamedDecl *OldD = Previous.getRepresentativeDecl();
6745        if (OldD->getLocation().isValid())
6746          Diag(OldD->getLocation(), diag::note_previous_definition);
6747
6748        Invalid = true;
6749      }
6750
6751      if (!Invalid && OldDecl && !OldDecl->isInvalidDecl()) {
6752        if (TemplateParameterListsAreEqual(TemplateParams,
6753                                           OldDecl->getTemplateParameters(),
6754                                           /*Complain=*/true,
6755                                           TPL_TemplateMatch))
6756          OldTemplateParams = OldDecl->getTemplateParameters();
6757        else
6758          Invalid = true;
6759
6760        TypeAliasDecl *OldTD = OldDecl->getTemplatedDecl();
6761        if (!Invalid &&
6762            !Context.hasSameType(OldTD->getUnderlyingType(),
6763                                 NewTD->getUnderlyingType())) {
6764          // FIXME: The C++0x standard does not clearly say this is ill-formed,
6765          // but we can't reasonably accept it.
6766          Diag(NewTD->getLocation(), diag::err_redefinition_different_typedef)
6767            << 2 << NewTD->getUnderlyingType() << OldTD->getUnderlyingType();
6768          if (OldTD->getLocation().isValid())
6769            Diag(OldTD->getLocation(), diag::note_previous_definition);
6770          Invalid = true;
6771        }
6772      }
6773    }
6774
6775    // Merge any previous default template arguments into our parameters,
6776    // and check the parameter list.
6777    if (CheckTemplateParameterList(TemplateParams, OldTemplateParams,
6778                                   TPC_TypeAliasTemplate))
6779      return 0;
6780
6781    TypeAliasTemplateDecl *NewDecl =
6782      TypeAliasTemplateDecl::Create(Context, CurContext, UsingLoc,
6783                                    Name.Identifier, TemplateParams,
6784                                    NewTD);
6785
6786    NewDecl->setAccess(AS);
6787
6788    if (Invalid)
6789      NewDecl->setInvalidDecl();
6790    else if (OldDecl)
6791      NewDecl->setPreviousDeclaration(OldDecl);
6792
6793    NewND = NewDecl;
6794  } else {
6795    ActOnTypedefNameDecl(S, CurContext, NewTD, Previous, Redeclaration);
6796    NewND = NewTD;
6797  }
6798
6799  if (!Redeclaration)
6800    PushOnScopeChains(NewND, S);
6801
6802  ActOnDocumentableDecl(NewND);
6803  return NewND;
6804}
6805
6806Decl *Sema::ActOnNamespaceAliasDef(Scope *S,
6807                                             SourceLocation NamespaceLoc,
6808                                             SourceLocation AliasLoc,
6809                                             IdentifierInfo *Alias,
6810                                             CXXScopeSpec &SS,
6811                                             SourceLocation IdentLoc,
6812                                             IdentifierInfo *Ident) {
6813
6814  // Lookup the namespace name.
6815  LookupResult R(*this, Ident, IdentLoc, LookupNamespaceName);
6816  LookupParsedName(R, S, &SS);
6817
6818  // Check if we have a previous declaration with the same name.
6819  NamedDecl *PrevDecl
6820    = LookupSingleName(S, Alias, AliasLoc, LookupOrdinaryName,
6821                       ForRedeclaration);
6822  if (PrevDecl && !isDeclInScope(PrevDecl, CurContext, S))
6823    PrevDecl = 0;
6824
6825  if (PrevDecl) {
6826    if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) {
6827      // We already have an alias with the same name that points to the same
6828      // namespace, so don't create a new one.
6829      // FIXME: At some point, we'll want to create the (redundant)
6830      // declaration to maintain better source information.
6831      if (!R.isAmbiguous() && !R.empty() &&
6832          AD->getNamespace()->Equals(getNamespaceDecl(R.getFoundDecl())))
6833        return 0;
6834    }
6835
6836    unsigned DiagID = isa<NamespaceDecl>(PrevDecl) ? diag::err_redefinition :
6837      diag::err_redefinition_different_kind;
6838    Diag(AliasLoc, DiagID) << Alias;
6839    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
6840    return 0;
6841  }
6842
6843  if (R.isAmbiguous())
6844    return 0;
6845
6846  if (R.empty()) {
6847    if (!TryNamespaceTypoCorrection(*this, R, S, SS, IdentLoc, Ident)) {
6848      Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
6849      return 0;
6850    }
6851  }
6852
6853  NamespaceAliasDecl *AliasDecl =
6854    NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc,
6855                               Alias, SS.getWithLocInContext(Context),
6856                               IdentLoc, R.getFoundDecl());
6857
6858  PushOnScopeChains(AliasDecl, S);
6859  return AliasDecl;
6860}
6861
6862Sema::ImplicitExceptionSpecification
6863Sema::ComputeDefaultedDefaultCtorExceptionSpec(SourceLocation Loc,
6864                                               CXXMethodDecl *MD) {
6865  CXXRecordDecl *ClassDecl = MD->getParent();
6866
6867  // C++ [except.spec]p14:
6868  //   An implicitly declared special member function (Clause 12) shall have an
6869  //   exception-specification. [...]
6870  ImplicitExceptionSpecification ExceptSpec(*this);
6871  if (ClassDecl->isInvalidDecl())
6872    return ExceptSpec;
6873
6874  // Direct base-class constructors.
6875  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
6876                                       BEnd = ClassDecl->bases_end();
6877       B != BEnd; ++B) {
6878    if (B->isVirtual()) // Handled below.
6879      continue;
6880
6881    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
6882      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
6883      CXXConstructorDecl *Constructor = LookupDefaultConstructor(BaseClassDecl);
6884      // If this is a deleted function, add it anyway. This might be conformant
6885      // with the standard. This might not. I'm not sure. It might not matter.
6886      if (Constructor)
6887        ExceptSpec.CalledDecl(B->getLocStart(), Constructor);
6888    }
6889  }
6890
6891  // Virtual base-class constructors.
6892  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
6893                                       BEnd = ClassDecl->vbases_end();
6894       B != BEnd; ++B) {
6895    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
6896      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
6897      CXXConstructorDecl *Constructor = LookupDefaultConstructor(BaseClassDecl);
6898      // If this is a deleted function, add it anyway. This might be conformant
6899      // with the standard. This might not. I'm not sure. It might not matter.
6900      if (Constructor)
6901        ExceptSpec.CalledDecl(B->getLocStart(), Constructor);
6902    }
6903  }
6904
6905  // Field constructors.
6906  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
6907                               FEnd = ClassDecl->field_end();
6908       F != FEnd; ++F) {
6909    if (F->hasInClassInitializer()) {
6910      if (Expr *E = F->getInClassInitializer())
6911        ExceptSpec.CalledExpr(E);
6912      else if (!F->isInvalidDecl())
6913        // DR1351:
6914        //   If the brace-or-equal-initializer of a non-static data member
6915        //   invokes a defaulted default constructor of its class or of an
6916        //   enclosing class in a potentially evaluated subexpression, the
6917        //   program is ill-formed.
6918        //
6919        // This resolution is unworkable: the exception specification of the
6920        // default constructor can be needed in an unevaluated context, in
6921        // particular, in the operand of a noexcept-expression, and we can be
6922        // unable to compute an exception specification for an enclosed class.
6923        //
6924        // We do not allow an in-class initializer to require the evaluation
6925        // of the exception specification for any in-class initializer whose
6926        // definition is not lexically complete.
6927        Diag(Loc, diag::err_in_class_initializer_references_def_ctor) << MD;
6928    } else if (const RecordType *RecordTy
6929              = Context.getBaseElementType(F->getType())->getAs<RecordType>()) {
6930      CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
6931      CXXConstructorDecl *Constructor = LookupDefaultConstructor(FieldRecDecl);
6932      // If this is a deleted function, add it anyway. This might be conformant
6933      // with the standard. This might not. I'm not sure. It might not matter.
6934      // In particular, the problem is that this function never gets called. It
6935      // might just be ill-formed because this function attempts to refer to
6936      // a deleted function here.
6937      if (Constructor)
6938        ExceptSpec.CalledDecl(F->getLocation(), Constructor);
6939    }
6940  }
6941
6942  return ExceptSpec;
6943}
6944
6945CXXConstructorDecl *Sema::DeclareImplicitDefaultConstructor(
6946                                                     CXXRecordDecl *ClassDecl) {
6947  // C++ [class.ctor]p5:
6948  //   A default constructor for a class X is a constructor of class X
6949  //   that can be called without an argument. If there is no
6950  //   user-declared constructor for class X, a default constructor is
6951  //   implicitly declared. An implicitly-declared default constructor
6952  //   is an inline public member of its class.
6953  assert(!ClassDecl->hasUserDeclaredConstructor() &&
6954         "Should not build implicit default constructor!");
6955
6956  bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl,
6957                                                     CXXDefaultConstructor,
6958                                                     false);
6959
6960  // Create the actual constructor declaration.
6961  CanQualType ClassType
6962    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
6963  SourceLocation ClassLoc = ClassDecl->getLocation();
6964  DeclarationName Name
6965    = Context.DeclarationNames.getCXXConstructorName(ClassType);
6966  DeclarationNameInfo NameInfo(Name, ClassLoc);
6967  CXXConstructorDecl *DefaultCon = CXXConstructorDecl::Create(
6968      Context, ClassDecl, ClassLoc, NameInfo, /*Type*/QualType(), /*TInfo=*/0,
6969      /*isExplicit=*/false, /*isInline=*/true, /*isImplicitlyDeclared=*/true,
6970      Constexpr);
6971  DefaultCon->setAccess(AS_public);
6972  DefaultCon->setDefaulted();
6973  DefaultCon->setImplicit();
6974  DefaultCon->setTrivial(ClassDecl->hasTrivialDefaultConstructor());
6975
6976  // Build an exception specification pointing back at this constructor.
6977  FunctionProtoType::ExtProtoInfo EPI;
6978  EPI.ExceptionSpecType = EST_Unevaluated;
6979  EPI.ExceptionSpecDecl = DefaultCon;
6980  DefaultCon->setType(Context.getFunctionType(Context.VoidTy, 0, 0, EPI));
6981
6982  // Note that we have declared this constructor.
6983  ++ASTContext::NumImplicitDefaultConstructorsDeclared;
6984
6985  if (Scope *S = getScopeForContext(ClassDecl))
6986    PushOnScopeChains(DefaultCon, S, false);
6987  ClassDecl->addDecl(DefaultCon);
6988
6989  if (ShouldDeleteSpecialMember(DefaultCon, CXXDefaultConstructor))
6990    DefaultCon->setDeletedAsWritten();
6991
6992  return DefaultCon;
6993}
6994
6995void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,
6996                                            CXXConstructorDecl *Constructor) {
6997  assert((Constructor->isDefaulted() && Constructor->isDefaultConstructor() &&
6998          !Constructor->doesThisDeclarationHaveABody() &&
6999          !Constructor->isDeleted()) &&
7000    "DefineImplicitDefaultConstructor - call it for implicit default ctor");
7001
7002  CXXRecordDecl *ClassDecl = Constructor->getParent();
7003  assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor");
7004
7005  SynthesizedFunctionScope Scope(*this, Constructor);
7006  DiagnosticErrorTrap Trap(Diags);
7007  if (SetCtorInitializers(Constructor, 0, 0, /*AnyErrors=*/false) ||
7008      Trap.hasErrorOccurred()) {
7009    Diag(CurrentLocation, diag::note_member_synthesized_at)
7010      << CXXDefaultConstructor << Context.getTagDeclType(ClassDecl);
7011    Constructor->setInvalidDecl();
7012    return;
7013  }
7014
7015  SourceLocation Loc = Constructor->getLocation();
7016  Constructor->setBody(new (Context) CompoundStmt(Loc));
7017
7018  Constructor->setUsed();
7019  MarkVTableUsed(CurrentLocation, ClassDecl);
7020
7021  if (ASTMutationListener *L = getASTMutationListener()) {
7022    L->CompletedImplicitDefinition(Constructor);
7023  }
7024}
7025
7026void Sema::ActOnFinishDelayedMemberInitializers(Decl *D) {
7027  if (!D) return;
7028  AdjustDeclIfTemplate(D);
7029
7030  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(D);
7031
7032  if (!ClassDecl->isDependentType())
7033    CheckExplicitlyDefaultedMethods(ClassDecl);
7034}
7035
7036void Sema::DeclareInheritedConstructors(CXXRecordDecl *ClassDecl) {
7037  // We start with an initial pass over the base classes to collect those that
7038  // inherit constructors from. If there are none, we can forgo all further
7039  // processing.
7040  typedef SmallVector<const RecordType *, 4> BasesVector;
7041  BasesVector BasesToInheritFrom;
7042  for (CXXRecordDecl::base_class_iterator BaseIt = ClassDecl->bases_begin(),
7043                                          BaseE = ClassDecl->bases_end();
7044         BaseIt != BaseE; ++BaseIt) {
7045    if (BaseIt->getInheritConstructors()) {
7046      QualType Base = BaseIt->getType();
7047      if (Base->isDependentType()) {
7048        // If we inherit constructors from anything that is dependent, just
7049        // abort processing altogether. We'll get another chance for the
7050        // instantiations.
7051        return;
7052      }
7053      BasesToInheritFrom.push_back(Base->castAs<RecordType>());
7054    }
7055  }
7056  if (BasesToInheritFrom.empty())
7057    return;
7058
7059  // Now collect the constructors that we already have in the current class.
7060  // Those take precedence over inherited constructors.
7061  // C++0x [class.inhctor]p3: [...] a constructor is implicitly declared [...]
7062  //   unless there is a user-declared constructor with the same signature in
7063  //   the class where the using-declaration appears.
7064  llvm::SmallSet<const Type *, 8> ExistingConstructors;
7065  for (CXXRecordDecl::ctor_iterator CtorIt = ClassDecl->ctor_begin(),
7066                                    CtorE = ClassDecl->ctor_end();
7067       CtorIt != CtorE; ++CtorIt) {
7068    ExistingConstructors.insert(
7069        Context.getCanonicalType(CtorIt->getType()).getTypePtr());
7070  }
7071
7072  DeclarationName CreatedCtorName =
7073      Context.DeclarationNames.getCXXConstructorName(
7074          ClassDecl->getTypeForDecl()->getCanonicalTypeUnqualified());
7075
7076  // Now comes the true work.
7077  // First, we keep a map from constructor types to the base that introduced
7078  // them. Needed for finding conflicting constructors. We also keep the
7079  // actually inserted declarations in there, for pretty diagnostics.
7080  typedef std::pair<CanQualType, CXXConstructorDecl *> ConstructorInfo;
7081  typedef llvm::DenseMap<const Type *, ConstructorInfo> ConstructorToSourceMap;
7082  ConstructorToSourceMap InheritedConstructors;
7083  for (BasesVector::iterator BaseIt = BasesToInheritFrom.begin(),
7084                             BaseE = BasesToInheritFrom.end();
7085       BaseIt != BaseE; ++BaseIt) {
7086    const RecordType *Base = *BaseIt;
7087    CanQualType CanonicalBase = Base->getCanonicalTypeUnqualified();
7088    CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(Base->getDecl());
7089    for (CXXRecordDecl::ctor_iterator CtorIt = BaseDecl->ctor_begin(),
7090                                      CtorE = BaseDecl->ctor_end();
7091         CtorIt != CtorE; ++CtorIt) {
7092      // Find the using declaration for inheriting this base's constructors.
7093      // FIXME: Don't perform name lookup just to obtain a source location!
7094      DeclarationName Name =
7095          Context.DeclarationNames.getCXXConstructorName(CanonicalBase);
7096      LookupResult Result(*this, Name, SourceLocation(), LookupUsingDeclName);
7097      LookupQualifiedName(Result, CurContext);
7098      UsingDecl *UD = Result.getAsSingle<UsingDecl>();
7099      SourceLocation UsingLoc = UD ? UD->getLocation() :
7100                                     ClassDecl->getLocation();
7101
7102      // C++0x [class.inhctor]p1: The candidate set of inherited constructors
7103      //   from the class X named in the using-declaration consists of actual
7104      //   constructors and notional constructors that result from the
7105      //   transformation of defaulted parameters as follows:
7106      //   - all non-template default constructors of X, and
7107      //   - for each non-template constructor of X that has at least one
7108      //     parameter with a default argument, the set of constructors that
7109      //     results from omitting any ellipsis parameter specification and
7110      //     successively omitting parameters with a default argument from the
7111      //     end of the parameter-type-list.
7112      CXXConstructorDecl *BaseCtor = *CtorIt;
7113      bool CanBeCopyOrMove = BaseCtor->isCopyOrMoveConstructor();
7114      const FunctionProtoType *BaseCtorType =
7115          BaseCtor->getType()->getAs<FunctionProtoType>();
7116
7117      for (unsigned params = BaseCtor->getMinRequiredArguments(),
7118                    maxParams = BaseCtor->getNumParams();
7119           params <= maxParams; ++params) {
7120        // Skip default constructors. They're never inherited.
7121        if (params == 0)
7122          continue;
7123        // Skip copy and move constructors for the same reason.
7124        if (CanBeCopyOrMove && params == 1)
7125          continue;
7126
7127        // Build up a function type for this particular constructor.
7128        // FIXME: The working paper does not consider that the exception spec
7129        // for the inheriting constructor might be larger than that of the
7130        // source. This code doesn't yet, either. When it does, this code will
7131        // need to be delayed until after exception specifications and in-class
7132        // member initializers are attached.
7133        const Type *NewCtorType;
7134        if (params == maxParams)
7135          NewCtorType = BaseCtorType;
7136        else {
7137          SmallVector<QualType, 16> Args;
7138          for (unsigned i = 0; i < params; ++i) {
7139            Args.push_back(BaseCtorType->getArgType(i));
7140          }
7141          FunctionProtoType::ExtProtoInfo ExtInfo =
7142              BaseCtorType->getExtProtoInfo();
7143          ExtInfo.Variadic = false;
7144          NewCtorType = Context.getFunctionType(BaseCtorType->getResultType(),
7145                                                Args.data(), params, ExtInfo)
7146                       .getTypePtr();
7147        }
7148        const Type *CanonicalNewCtorType =
7149            Context.getCanonicalType(NewCtorType);
7150
7151        // Now that we have the type, first check if the class already has a
7152        // constructor with this signature.
7153        if (ExistingConstructors.count(CanonicalNewCtorType))
7154          continue;
7155
7156        // Then we check if we have already declared an inherited constructor
7157        // with this signature.
7158        std::pair<ConstructorToSourceMap::iterator, bool> result =
7159            InheritedConstructors.insert(std::make_pair(
7160                CanonicalNewCtorType,
7161                std::make_pair(CanonicalBase, (CXXConstructorDecl*)0)));
7162        if (!result.second) {
7163          // Already in the map. If it came from a different class, that's an
7164          // error. Not if it's from the same.
7165          CanQualType PreviousBase = result.first->second.first;
7166          if (CanonicalBase != PreviousBase) {
7167            const CXXConstructorDecl *PrevCtor = result.first->second.second;
7168            const CXXConstructorDecl *PrevBaseCtor =
7169                PrevCtor->getInheritedConstructor();
7170            assert(PrevBaseCtor && "Conflicting constructor was not inherited");
7171
7172            Diag(UsingLoc, diag::err_using_decl_constructor_conflict);
7173            Diag(BaseCtor->getLocation(),
7174                 diag::note_using_decl_constructor_conflict_current_ctor);
7175            Diag(PrevBaseCtor->getLocation(),
7176                 diag::note_using_decl_constructor_conflict_previous_ctor);
7177            Diag(PrevCtor->getLocation(),
7178                 diag::note_using_decl_constructor_conflict_previous_using);
7179          }
7180          continue;
7181        }
7182
7183        // OK, we're there, now add the constructor.
7184        // C++0x [class.inhctor]p8: [...] that would be performed by a
7185        //   user-written inline constructor [...]
7186        DeclarationNameInfo DNI(CreatedCtorName, UsingLoc);
7187        CXXConstructorDecl *NewCtor = CXXConstructorDecl::Create(
7188            Context, ClassDecl, UsingLoc, DNI, QualType(NewCtorType, 0),
7189            /*TInfo=*/0, BaseCtor->isExplicit(), /*Inline=*/true,
7190            /*ImplicitlyDeclared=*/true,
7191            // FIXME: Due to a defect in the standard, we treat inherited
7192            // constructors as constexpr even if that makes them ill-formed.
7193            /*Constexpr=*/BaseCtor->isConstexpr());
7194        NewCtor->setAccess(BaseCtor->getAccess());
7195
7196        // Build up the parameter decls and add them.
7197        SmallVector<ParmVarDecl *, 16> ParamDecls;
7198        for (unsigned i = 0; i < params; ++i) {
7199          ParamDecls.push_back(ParmVarDecl::Create(Context, NewCtor,
7200                                                   UsingLoc, UsingLoc,
7201                                                   /*IdentifierInfo=*/0,
7202                                                   BaseCtorType->getArgType(i),
7203                                                   /*TInfo=*/0, SC_None,
7204                                                   SC_None, /*DefaultArg=*/0));
7205        }
7206        NewCtor->setParams(ParamDecls);
7207        NewCtor->setInheritedConstructor(BaseCtor);
7208
7209        ClassDecl->addDecl(NewCtor);
7210        result.first->second.second = NewCtor;
7211      }
7212    }
7213  }
7214}
7215
7216Sema::ImplicitExceptionSpecification
7217Sema::ComputeDefaultedDtorExceptionSpec(CXXMethodDecl *MD) {
7218  CXXRecordDecl *ClassDecl = MD->getParent();
7219
7220  // C++ [except.spec]p14:
7221  //   An implicitly declared special member function (Clause 12) shall have
7222  //   an exception-specification.
7223  ImplicitExceptionSpecification ExceptSpec(*this);
7224  if (ClassDecl->isInvalidDecl())
7225    return ExceptSpec;
7226
7227  // Direct base-class destructors.
7228  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
7229                                       BEnd = ClassDecl->bases_end();
7230       B != BEnd; ++B) {
7231    if (B->isVirtual()) // Handled below.
7232      continue;
7233
7234    if (const RecordType *BaseType = B->getType()->getAs<RecordType>())
7235      ExceptSpec.CalledDecl(B->getLocStart(),
7236                   LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
7237  }
7238
7239  // Virtual base-class destructors.
7240  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
7241                                       BEnd = ClassDecl->vbases_end();
7242       B != BEnd; ++B) {
7243    if (const RecordType *BaseType = B->getType()->getAs<RecordType>())
7244      ExceptSpec.CalledDecl(B->getLocStart(),
7245                  LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
7246  }
7247
7248  // Field destructors.
7249  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
7250                               FEnd = ClassDecl->field_end();
7251       F != FEnd; ++F) {
7252    if (const RecordType *RecordTy
7253        = Context.getBaseElementType(F->getType())->getAs<RecordType>())
7254      ExceptSpec.CalledDecl(F->getLocation(),
7255                  LookupDestructor(cast<CXXRecordDecl>(RecordTy->getDecl())));
7256  }
7257
7258  return ExceptSpec;
7259}
7260
7261CXXDestructorDecl *Sema::DeclareImplicitDestructor(CXXRecordDecl *ClassDecl) {
7262  // C++ [class.dtor]p2:
7263  //   If a class has no user-declared destructor, a destructor is
7264  //   declared implicitly. An implicitly-declared destructor is an
7265  //   inline public member of its class.
7266
7267  // Create the actual destructor declaration.
7268  CanQualType ClassType
7269    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
7270  SourceLocation ClassLoc = ClassDecl->getLocation();
7271  DeclarationName Name
7272    = Context.DeclarationNames.getCXXDestructorName(ClassType);
7273  DeclarationNameInfo NameInfo(Name, ClassLoc);
7274  CXXDestructorDecl *Destructor
7275      = CXXDestructorDecl::Create(Context, ClassDecl, ClassLoc, NameInfo,
7276                                  QualType(), 0, /*isInline=*/true,
7277                                  /*isImplicitlyDeclared=*/true);
7278  Destructor->setAccess(AS_public);
7279  Destructor->setDefaulted();
7280  Destructor->setImplicit();
7281  Destructor->setTrivial(ClassDecl->hasTrivialDestructor());
7282
7283  // Build an exception specification pointing back at this destructor.
7284  FunctionProtoType::ExtProtoInfo EPI;
7285  EPI.ExceptionSpecType = EST_Unevaluated;
7286  EPI.ExceptionSpecDecl = Destructor;
7287  Destructor->setType(Context.getFunctionType(Context.VoidTy, 0, 0, EPI));
7288
7289  // Note that we have declared this destructor.
7290  ++ASTContext::NumImplicitDestructorsDeclared;
7291
7292  // Introduce this destructor into its scope.
7293  if (Scope *S = getScopeForContext(ClassDecl))
7294    PushOnScopeChains(Destructor, S, false);
7295  ClassDecl->addDecl(Destructor);
7296
7297  AddOverriddenMethods(ClassDecl, Destructor);
7298
7299  if (ShouldDeleteSpecialMember(Destructor, CXXDestructor))
7300    Destructor->setDeletedAsWritten();
7301
7302  return Destructor;
7303}
7304
7305void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation,
7306                                    CXXDestructorDecl *Destructor) {
7307  assert((Destructor->isDefaulted() &&
7308          !Destructor->doesThisDeclarationHaveABody() &&
7309          !Destructor->isDeleted()) &&
7310         "DefineImplicitDestructor - call it for implicit default dtor");
7311  CXXRecordDecl *ClassDecl = Destructor->getParent();
7312  assert(ClassDecl && "DefineImplicitDestructor - invalid destructor");
7313
7314  if (Destructor->isInvalidDecl())
7315    return;
7316
7317  SynthesizedFunctionScope Scope(*this, Destructor);
7318
7319  DiagnosticErrorTrap Trap(Diags);
7320  MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
7321                                         Destructor->getParent());
7322
7323  if (CheckDestructor(Destructor) || Trap.hasErrorOccurred()) {
7324    Diag(CurrentLocation, diag::note_member_synthesized_at)
7325      << CXXDestructor << Context.getTagDeclType(ClassDecl);
7326
7327    Destructor->setInvalidDecl();
7328    return;
7329  }
7330
7331  SourceLocation Loc = Destructor->getLocation();
7332  Destructor->setBody(new (Context) CompoundStmt(Loc));
7333  Destructor->setImplicitlyDefined(true);
7334  Destructor->setUsed();
7335  MarkVTableUsed(CurrentLocation, ClassDecl);
7336
7337  if (ASTMutationListener *L = getASTMutationListener()) {
7338    L->CompletedImplicitDefinition(Destructor);
7339  }
7340}
7341
7342/// \brief Perform any semantic analysis which needs to be delayed until all
7343/// pending class member declarations have been parsed.
7344void Sema::ActOnFinishCXXMemberDecls() {
7345  // Perform any deferred checking of exception specifications for virtual
7346  // destructors.
7347  for (unsigned i = 0, e = DelayedDestructorExceptionSpecChecks.size();
7348       i != e; ++i) {
7349    const CXXDestructorDecl *Dtor =
7350        DelayedDestructorExceptionSpecChecks[i].first;
7351    assert(!Dtor->getParent()->isDependentType() &&
7352           "Should not ever add destructors of templates into the list.");
7353    CheckOverridingFunctionExceptionSpec(Dtor,
7354        DelayedDestructorExceptionSpecChecks[i].second);
7355  }
7356  DelayedDestructorExceptionSpecChecks.clear();
7357}
7358
7359void Sema::AdjustDestructorExceptionSpec(CXXRecordDecl *ClassDecl,
7360                                         CXXDestructorDecl *Destructor) {
7361  assert(getLangOpts().CPlusPlus0x &&
7362         "adjusting dtor exception specs was introduced in c++11");
7363
7364  // C++11 [class.dtor]p3:
7365  //   A declaration of a destructor that does not have an exception-
7366  //   specification is implicitly considered to have the same exception-
7367  //   specification as an implicit declaration.
7368  const FunctionProtoType *DtorType = Destructor->getType()->
7369                                        getAs<FunctionProtoType>();
7370  if (DtorType->hasExceptionSpec())
7371    return;
7372
7373  // Replace the destructor's type, building off the existing one. Fortunately,
7374  // the only thing of interest in the destructor type is its extended info.
7375  // The return and arguments are fixed.
7376  FunctionProtoType::ExtProtoInfo EPI = DtorType->getExtProtoInfo();
7377  EPI.ExceptionSpecType = EST_Unevaluated;
7378  EPI.ExceptionSpecDecl = Destructor;
7379  Destructor->setType(Context.getFunctionType(Context.VoidTy, 0, 0, EPI));
7380
7381  // FIXME: If the destructor has a body that could throw, and the newly created
7382  // spec doesn't allow exceptions, we should emit a warning, because this
7383  // change in behavior can break conforming C++03 programs at runtime.
7384  // However, we don't have a body or an exception specification yet, so it
7385  // needs to be done somewhere else.
7386}
7387
7388/// \brief Builds a statement that copies/moves the given entity from \p From to
7389/// \c To.
7390///
7391/// This routine is used to copy/move the members of a class with an
7392/// implicitly-declared copy/move assignment operator. When the entities being
7393/// copied are arrays, this routine builds for loops to copy them.
7394///
7395/// \param S The Sema object used for type-checking.
7396///
7397/// \param Loc The location where the implicit copy/move is being generated.
7398///
7399/// \param T The type of the expressions being copied/moved. Both expressions
7400/// must have this type.
7401///
7402/// \param To The expression we are copying/moving to.
7403///
7404/// \param From The expression we are copying/moving from.
7405///
7406/// \param CopyingBaseSubobject Whether we're copying/moving a base subobject.
7407/// Otherwise, it's a non-static member subobject.
7408///
7409/// \param Copying Whether we're copying or moving.
7410///
7411/// \param Depth Internal parameter recording the depth of the recursion.
7412///
7413/// \returns A statement or a loop that copies the expressions.
7414static StmtResult
7415BuildSingleCopyAssign(Sema &S, SourceLocation Loc, QualType T,
7416                      Expr *To, Expr *From,
7417                      bool CopyingBaseSubobject, bool Copying,
7418                      unsigned Depth = 0) {
7419  // C++0x [class.copy]p28:
7420  //   Each subobject is assigned in the manner appropriate to its type:
7421  //
7422  //     - if the subobject is of class type, as if by a call to operator= with
7423  //       the subobject as the object expression and the corresponding
7424  //       subobject of x as a single function argument (as if by explicit
7425  //       qualification; that is, ignoring any possible virtual overriding
7426  //       functions in more derived classes);
7427  if (const RecordType *RecordTy = T->getAs<RecordType>()) {
7428    CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
7429
7430    // Look for operator=.
7431    DeclarationName Name
7432      = S.Context.DeclarationNames.getCXXOperatorName(OO_Equal);
7433    LookupResult OpLookup(S, Name, Loc, Sema::LookupOrdinaryName);
7434    S.LookupQualifiedName(OpLookup, ClassDecl, false);
7435
7436    // Filter out any result that isn't a copy/move-assignment operator.
7437    LookupResult::Filter F = OpLookup.makeFilter();
7438    while (F.hasNext()) {
7439      NamedDecl *D = F.next();
7440      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
7441        if (Method->isCopyAssignmentOperator() ||
7442            (!Copying && Method->isMoveAssignmentOperator()))
7443          continue;
7444
7445      F.erase();
7446    }
7447    F.done();
7448
7449    // Suppress the protected check (C++ [class.protected]) for each of the
7450    // assignment operators we found. This strange dance is required when
7451    // we're assigning via a base classes's copy-assignment operator. To
7452    // ensure that we're getting the right base class subobject (without
7453    // ambiguities), we need to cast "this" to that subobject type; to
7454    // ensure that we don't go through the virtual call mechanism, we need
7455    // to qualify the operator= name with the base class (see below). However,
7456    // this means that if the base class has a protected copy assignment
7457    // operator, the protected member access check will fail. So, we
7458    // rewrite "protected" access to "public" access in this case, since we
7459    // know by construction that we're calling from a derived class.
7460    if (CopyingBaseSubobject) {
7461      for (LookupResult::iterator L = OpLookup.begin(), LEnd = OpLookup.end();
7462           L != LEnd; ++L) {
7463        if (L.getAccess() == AS_protected)
7464          L.setAccess(AS_public);
7465      }
7466    }
7467
7468    // Create the nested-name-specifier that will be used to qualify the
7469    // reference to operator=; this is required to suppress the virtual
7470    // call mechanism.
7471    CXXScopeSpec SS;
7472    const Type *CanonicalT = S.Context.getCanonicalType(T.getTypePtr());
7473    SS.MakeTrivial(S.Context,
7474                   NestedNameSpecifier::Create(S.Context, 0, false,
7475                                               CanonicalT),
7476                   Loc);
7477
7478    // Create the reference to operator=.
7479    ExprResult OpEqualRef
7480      = S.BuildMemberReferenceExpr(To, T, Loc, /*isArrow=*/false, SS,
7481                                   /*TemplateKWLoc=*/SourceLocation(),
7482                                   /*FirstQualifierInScope=*/0,
7483                                   OpLookup,
7484                                   /*TemplateArgs=*/0,
7485                                   /*SuppressQualifierCheck=*/true);
7486    if (OpEqualRef.isInvalid())
7487      return StmtError();
7488
7489    // Build the call to the assignment operator.
7490
7491    ExprResult Call = S.BuildCallToMemberFunction(/*Scope=*/0,
7492                                                  OpEqualRef.takeAs<Expr>(),
7493                                                  Loc, &From, 1, Loc);
7494    if (Call.isInvalid())
7495      return StmtError();
7496
7497    return S.Owned(Call.takeAs<Stmt>());
7498  }
7499
7500  //     - if the subobject is of scalar type, the built-in assignment
7501  //       operator is used.
7502  const ConstantArrayType *ArrayTy = S.Context.getAsConstantArrayType(T);
7503  if (!ArrayTy) {
7504    ExprResult Assignment = S.CreateBuiltinBinOp(Loc, BO_Assign, To, From);
7505    if (Assignment.isInvalid())
7506      return StmtError();
7507
7508    return S.Owned(Assignment.takeAs<Stmt>());
7509  }
7510
7511  //     - if the subobject is an array, each element is assigned, in the
7512  //       manner appropriate to the element type;
7513
7514  // Construct a loop over the array bounds, e.g.,
7515  //
7516  //   for (__SIZE_TYPE__ i0 = 0; i0 != array-size; ++i0)
7517  //
7518  // that will copy each of the array elements.
7519  QualType SizeType = S.Context.getSizeType();
7520
7521  // Create the iteration variable.
7522  IdentifierInfo *IterationVarName = 0;
7523  {
7524    SmallString<8> Str;
7525    llvm::raw_svector_ostream OS(Str);
7526    OS << "__i" << Depth;
7527    IterationVarName = &S.Context.Idents.get(OS.str());
7528  }
7529  VarDecl *IterationVar = VarDecl::Create(S.Context, S.CurContext, Loc, Loc,
7530                                          IterationVarName, SizeType,
7531                            S.Context.getTrivialTypeSourceInfo(SizeType, Loc),
7532                                          SC_None, SC_None);
7533
7534  // Initialize the iteration variable to zero.
7535  llvm::APInt Zero(S.Context.getTypeSize(SizeType), 0);
7536  IterationVar->setInit(IntegerLiteral::Create(S.Context, Zero, SizeType, Loc));
7537
7538  // Create a reference to the iteration variable; we'll use this several
7539  // times throughout.
7540  Expr *IterationVarRef
7541    = S.BuildDeclRefExpr(IterationVar, SizeType, VK_LValue, Loc).take();
7542  assert(IterationVarRef && "Reference to invented variable cannot fail!");
7543  Expr *IterationVarRefRVal = S.DefaultLvalueConversion(IterationVarRef).take();
7544  assert(IterationVarRefRVal && "Conversion of invented variable cannot fail!");
7545
7546  // Create the DeclStmt that holds the iteration variable.
7547  Stmt *InitStmt = new (S.Context) DeclStmt(DeclGroupRef(IterationVar),Loc,Loc);
7548
7549  // Create the comparison against the array bound.
7550  llvm::APInt Upper
7551    = ArrayTy->getSize().zextOrTrunc(S.Context.getTypeSize(SizeType));
7552  Expr *Comparison
7553    = new (S.Context) BinaryOperator(IterationVarRefRVal,
7554                     IntegerLiteral::Create(S.Context, Upper, SizeType, Loc),
7555                                     BO_NE, S.Context.BoolTy,
7556                                     VK_RValue, OK_Ordinary, Loc, false);
7557
7558  // Create the pre-increment of the iteration variable.
7559  Expr *Increment
7560    = new (S.Context) UnaryOperator(IterationVarRef, UO_PreInc, SizeType,
7561                                    VK_LValue, OK_Ordinary, Loc);
7562
7563  // Subscript the "from" and "to" expressions with the iteration variable.
7564  From = AssertSuccess(S.CreateBuiltinArraySubscriptExpr(From, Loc,
7565                                                         IterationVarRefRVal,
7566                                                         Loc));
7567  To = AssertSuccess(S.CreateBuiltinArraySubscriptExpr(To, Loc,
7568                                                       IterationVarRefRVal,
7569                                                       Loc));
7570  if (!Copying) // Cast to rvalue
7571    From = CastForMoving(S, From);
7572
7573  // Build the copy/move for an individual element of the array.
7574  StmtResult Copy = BuildSingleCopyAssign(S, Loc, ArrayTy->getElementType(),
7575                                          To, From, CopyingBaseSubobject,
7576                                          Copying, Depth + 1);
7577  if (Copy.isInvalid())
7578    return StmtError();
7579
7580  // Construct the loop that copies all elements of this array.
7581  return S.ActOnForStmt(Loc, Loc, InitStmt,
7582                        S.MakeFullExpr(Comparison),
7583                        0, S.MakeFullExpr(Increment),
7584                        Loc, Copy.take());
7585}
7586
7587/// Determine whether an implicit copy assignment operator for ClassDecl has a
7588/// const argument.
7589/// FIXME: It ought to be possible to store this on the record.
7590static bool isImplicitCopyAssignmentArgConst(Sema &S,
7591                                             CXXRecordDecl *ClassDecl) {
7592  if (ClassDecl->isInvalidDecl())
7593    return true;
7594
7595  // C++ [class.copy]p10:
7596  //   If the class definition does not explicitly declare a copy
7597  //   assignment operator, one is declared implicitly.
7598  //   The implicitly-defined copy assignment operator for a class X
7599  //   will have the form
7600  //
7601  //       X& X::operator=(const X&)
7602  //
7603  //   if
7604  //       -- each direct base class B of X has a copy assignment operator
7605  //          whose parameter is of type const B&, const volatile B& or B,
7606  //          and
7607  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
7608                                       BaseEnd = ClassDecl->bases_end();
7609       Base != BaseEnd; ++Base) {
7610    // We'll handle this below
7611    if (S.getLangOpts().CPlusPlus0x && Base->isVirtual())
7612      continue;
7613
7614    assert(!Base->getType()->isDependentType() &&
7615           "Cannot generate implicit members for class with dependent bases.");
7616    CXXRecordDecl *BaseClassDecl = Base->getType()->getAsCXXRecordDecl();
7617    if (!S.LookupCopyingAssignment(BaseClassDecl, Qualifiers::Const, false, 0))
7618      return false;
7619  }
7620
7621  // In C++11, the above citation has "or virtual" added
7622  if (S.getLangOpts().CPlusPlus0x) {
7623    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
7624                                         BaseEnd = ClassDecl->vbases_end();
7625         Base != BaseEnd; ++Base) {
7626      assert(!Base->getType()->isDependentType() &&
7627             "Cannot generate implicit members for class with dependent bases.");
7628      CXXRecordDecl *BaseClassDecl = Base->getType()->getAsCXXRecordDecl();
7629      if (!S.LookupCopyingAssignment(BaseClassDecl, Qualifiers::Const,
7630                                     false, 0))
7631        return false;
7632    }
7633  }
7634
7635  //       -- for all the nonstatic data members of X that are of a class
7636  //          type M (or array thereof), each such class type has a copy
7637  //          assignment operator whose parameter is of type const M&,
7638  //          const volatile M& or M.
7639  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
7640                                  FieldEnd = ClassDecl->field_end();
7641       Field != FieldEnd; ++Field) {
7642    QualType FieldType = S.Context.getBaseElementType(Field->getType());
7643    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl())
7644      if (!S.LookupCopyingAssignment(FieldClassDecl, Qualifiers::Const,
7645                                     false, 0))
7646        return false;
7647  }
7648
7649  //   Otherwise, the implicitly declared copy assignment operator will
7650  //   have the form
7651  //
7652  //       X& X::operator=(X&)
7653
7654  return true;
7655}
7656
7657Sema::ImplicitExceptionSpecification
7658Sema::ComputeDefaultedCopyAssignmentExceptionSpec(CXXMethodDecl *MD) {
7659  CXXRecordDecl *ClassDecl = MD->getParent();
7660
7661  ImplicitExceptionSpecification ExceptSpec(*this);
7662  if (ClassDecl->isInvalidDecl())
7663    return ExceptSpec;
7664
7665  const FunctionProtoType *T = MD->getType()->castAs<FunctionProtoType>();
7666  assert(T->getNumArgs() == 1 && "not a copy assignment op");
7667  unsigned ArgQuals = T->getArgType(0).getNonReferenceType().getCVRQualifiers();
7668
7669  // C++ [except.spec]p14:
7670  //   An implicitly declared special member function (Clause 12) shall have an
7671  //   exception-specification. [...]
7672
7673  // It is unspecified whether or not an implicit copy assignment operator
7674  // attempts to deduplicate calls to assignment operators of virtual bases are
7675  // made. As such, this exception specification is effectively unspecified.
7676  // Based on a similar decision made for constness in C++0x, we're erring on
7677  // the side of assuming such calls to be made regardless of whether they
7678  // actually happen.
7679  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
7680                                       BaseEnd = ClassDecl->bases_end();
7681       Base != BaseEnd; ++Base) {
7682    if (Base->isVirtual())
7683      continue;
7684
7685    CXXRecordDecl *BaseClassDecl
7686      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
7687    if (CXXMethodDecl *CopyAssign = LookupCopyingAssignment(BaseClassDecl,
7688                                                            ArgQuals, false, 0))
7689      ExceptSpec.CalledDecl(Base->getLocStart(), CopyAssign);
7690  }
7691
7692  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
7693                                       BaseEnd = ClassDecl->vbases_end();
7694       Base != BaseEnd; ++Base) {
7695    CXXRecordDecl *BaseClassDecl
7696      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
7697    if (CXXMethodDecl *CopyAssign = LookupCopyingAssignment(BaseClassDecl,
7698                                                            ArgQuals, false, 0))
7699      ExceptSpec.CalledDecl(Base->getLocStart(), CopyAssign);
7700  }
7701
7702  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
7703                                  FieldEnd = ClassDecl->field_end();
7704       Field != FieldEnd;
7705       ++Field) {
7706    QualType FieldType = Context.getBaseElementType(Field->getType());
7707    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
7708      if (CXXMethodDecl *CopyAssign =
7709          LookupCopyingAssignment(FieldClassDecl,
7710                                  ArgQuals | FieldType.getCVRQualifiers(),
7711                                  false, 0))
7712        ExceptSpec.CalledDecl(Field->getLocation(), CopyAssign);
7713    }
7714  }
7715
7716  return ExceptSpec;
7717}
7718
7719CXXMethodDecl *Sema::DeclareImplicitCopyAssignment(CXXRecordDecl *ClassDecl) {
7720  // Note: The following rules are largely analoguous to the copy
7721  // constructor rules. Note that virtual bases are not taken into account
7722  // for determining the argument type of the operator. Note also that
7723  // operators taking an object instead of a reference are allowed.
7724
7725  QualType ArgType = Context.getTypeDeclType(ClassDecl);
7726  QualType RetType = Context.getLValueReferenceType(ArgType);
7727  if (isImplicitCopyAssignmentArgConst(*this, ClassDecl))
7728    ArgType = ArgType.withConst();
7729  ArgType = Context.getLValueReferenceType(ArgType);
7730
7731  //   An implicitly-declared copy assignment operator is an inline public
7732  //   member of its class.
7733  DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
7734  SourceLocation ClassLoc = ClassDecl->getLocation();
7735  DeclarationNameInfo NameInfo(Name, ClassLoc);
7736  CXXMethodDecl *CopyAssignment
7737    = CXXMethodDecl::Create(Context, ClassDecl, ClassLoc, NameInfo, QualType(),
7738                            /*TInfo=*/0, /*isStatic=*/false,
7739                            /*StorageClassAsWritten=*/SC_None,
7740                            /*isInline=*/true, /*isConstexpr=*/false,
7741                            SourceLocation());
7742  CopyAssignment->setAccess(AS_public);
7743  CopyAssignment->setDefaulted();
7744  CopyAssignment->setImplicit();
7745  CopyAssignment->setTrivial(ClassDecl->hasTrivialCopyAssignment());
7746
7747  // Build an exception specification pointing back at this member.
7748  FunctionProtoType::ExtProtoInfo EPI;
7749  EPI.ExceptionSpecType = EST_Unevaluated;
7750  EPI.ExceptionSpecDecl = CopyAssignment;
7751  CopyAssignment->setType(Context.getFunctionType(RetType, &ArgType, 1, EPI));
7752
7753  // Add the parameter to the operator.
7754  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment,
7755                                               ClassLoc, ClassLoc, /*Id=*/0,
7756                                               ArgType, /*TInfo=*/0,
7757                                               SC_None,
7758                                               SC_None, 0);
7759  CopyAssignment->setParams(FromParam);
7760
7761  // Note that we have added this copy-assignment operator.
7762  ++ASTContext::NumImplicitCopyAssignmentOperatorsDeclared;
7763
7764  if (Scope *S = getScopeForContext(ClassDecl))
7765    PushOnScopeChains(CopyAssignment, S, false);
7766  ClassDecl->addDecl(CopyAssignment);
7767
7768  // C++0x [class.copy]p19:
7769  //   ....  If the class definition does not explicitly declare a copy
7770  //   assignment operator, there is no user-declared move constructor, and
7771  //   there is no user-declared move assignment operator, a copy assignment
7772  //   operator is implicitly declared as defaulted.
7773  if (ShouldDeleteSpecialMember(CopyAssignment, CXXCopyAssignment))
7774    CopyAssignment->setDeletedAsWritten();
7775
7776  AddOverriddenMethods(ClassDecl, CopyAssignment);
7777  return CopyAssignment;
7778}
7779
7780void Sema::DefineImplicitCopyAssignment(SourceLocation CurrentLocation,
7781                                        CXXMethodDecl *CopyAssignOperator) {
7782  assert((CopyAssignOperator->isDefaulted() &&
7783          CopyAssignOperator->isOverloadedOperator() &&
7784          CopyAssignOperator->getOverloadedOperator() == OO_Equal &&
7785          !CopyAssignOperator->doesThisDeclarationHaveABody() &&
7786          !CopyAssignOperator->isDeleted()) &&
7787         "DefineImplicitCopyAssignment called for wrong function");
7788
7789  CXXRecordDecl *ClassDecl = CopyAssignOperator->getParent();
7790
7791  if (ClassDecl->isInvalidDecl() || CopyAssignOperator->isInvalidDecl()) {
7792    CopyAssignOperator->setInvalidDecl();
7793    return;
7794  }
7795
7796  CopyAssignOperator->setUsed();
7797
7798  SynthesizedFunctionScope Scope(*this, CopyAssignOperator);
7799  DiagnosticErrorTrap Trap(Diags);
7800
7801  // C++0x [class.copy]p30:
7802  //   The implicitly-defined or explicitly-defaulted copy assignment operator
7803  //   for a non-union class X performs memberwise copy assignment of its
7804  //   subobjects. The direct base classes of X are assigned first, in the
7805  //   order of their declaration in the base-specifier-list, and then the
7806  //   immediate non-static data members of X are assigned, in the order in
7807  //   which they were declared in the class definition.
7808
7809  // The statements that form the synthesized function body.
7810  SmallVector<Stmt*, 8> Statements;
7811
7812  // The parameter for the "other" object, which we are copying from.
7813  ParmVarDecl *Other = CopyAssignOperator->getParamDecl(0);
7814  Qualifiers OtherQuals = Other->getType().getQualifiers();
7815  QualType OtherRefType = Other->getType();
7816  if (const LValueReferenceType *OtherRef
7817                                = OtherRefType->getAs<LValueReferenceType>()) {
7818    OtherRefType = OtherRef->getPointeeType();
7819    OtherQuals = OtherRefType.getQualifiers();
7820  }
7821
7822  // Our location for everything implicitly-generated.
7823  SourceLocation Loc = CopyAssignOperator->getLocation();
7824
7825  // Construct a reference to the "other" object. We'll be using this
7826  // throughout the generated ASTs.
7827  Expr *OtherRef = BuildDeclRefExpr(Other, OtherRefType, VK_LValue, Loc).take();
7828  assert(OtherRef && "Reference to parameter cannot fail!");
7829
7830  // Construct the "this" pointer. We'll be using this throughout the generated
7831  // ASTs.
7832  Expr *This = ActOnCXXThis(Loc).takeAs<Expr>();
7833  assert(This && "Reference to this cannot fail!");
7834
7835  // Assign base classes.
7836  bool Invalid = false;
7837  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
7838       E = ClassDecl->bases_end(); Base != E; ++Base) {
7839    // Form the assignment:
7840    //   static_cast<Base*>(this)->Base::operator=(static_cast<Base&>(other));
7841    QualType BaseType = Base->getType().getUnqualifiedType();
7842    if (!BaseType->isRecordType()) {
7843      Invalid = true;
7844      continue;
7845    }
7846
7847    CXXCastPath BasePath;
7848    BasePath.push_back(Base);
7849
7850    // Construct the "from" expression, which is an implicit cast to the
7851    // appropriately-qualified base type.
7852    Expr *From = OtherRef;
7853    From = ImpCastExprToType(From, Context.getQualifiedType(BaseType, OtherQuals),
7854                             CK_UncheckedDerivedToBase,
7855                             VK_LValue, &BasePath).take();
7856
7857    // Dereference "this".
7858    ExprResult To = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
7859
7860    // Implicitly cast "this" to the appropriately-qualified base type.
7861    To = ImpCastExprToType(To.take(),
7862                           Context.getCVRQualifiedType(BaseType,
7863                                     CopyAssignOperator->getTypeQualifiers()),
7864                           CK_UncheckedDerivedToBase,
7865                           VK_LValue, &BasePath);
7866
7867    // Build the copy.
7868    StmtResult Copy = BuildSingleCopyAssign(*this, Loc, BaseType,
7869                                            To.get(), From,
7870                                            /*CopyingBaseSubobject=*/true,
7871                                            /*Copying=*/true);
7872    if (Copy.isInvalid()) {
7873      Diag(CurrentLocation, diag::note_member_synthesized_at)
7874        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
7875      CopyAssignOperator->setInvalidDecl();
7876      return;
7877    }
7878
7879    // Success! Record the copy.
7880    Statements.push_back(Copy.takeAs<Expr>());
7881  }
7882
7883  // \brief Reference to the __builtin_memcpy function.
7884  Expr *BuiltinMemCpyRef = 0;
7885  // \brief Reference to the __builtin_objc_memmove_collectable function.
7886  Expr *CollectableMemCpyRef = 0;
7887
7888  // Assign non-static members.
7889  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
7890                                  FieldEnd = ClassDecl->field_end();
7891       Field != FieldEnd; ++Field) {
7892    if (Field->isUnnamedBitfield())
7893      continue;
7894
7895    // Check for members of reference type; we can't copy those.
7896    if (Field->getType()->isReferenceType()) {
7897      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
7898        << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
7899      Diag(Field->getLocation(), diag::note_declared_at);
7900      Diag(CurrentLocation, diag::note_member_synthesized_at)
7901        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
7902      Invalid = true;
7903      continue;
7904    }
7905
7906    // Check for members of const-qualified, non-class type.
7907    QualType BaseType = Context.getBaseElementType(Field->getType());
7908    if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) {
7909      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
7910        << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
7911      Diag(Field->getLocation(), diag::note_declared_at);
7912      Diag(CurrentLocation, diag::note_member_synthesized_at)
7913        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
7914      Invalid = true;
7915      continue;
7916    }
7917
7918    // Suppress assigning zero-width bitfields.
7919    if (Field->isBitField() && Field->getBitWidthValue(Context) == 0)
7920      continue;
7921
7922    QualType FieldType = Field->getType().getNonReferenceType();
7923    if (FieldType->isIncompleteArrayType()) {
7924      assert(ClassDecl->hasFlexibleArrayMember() &&
7925             "Incomplete array type is not valid");
7926      continue;
7927    }
7928
7929    // Build references to the field in the object we're copying from and to.
7930    CXXScopeSpec SS; // Intentionally empty
7931    LookupResult MemberLookup(*this, Field->getDeclName(), Loc,
7932                              LookupMemberName);
7933    MemberLookup.addDecl(*Field);
7934    MemberLookup.resolveKind();
7935    ExprResult From = BuildMemberReferenceExpr(OtherRef, OtherRefType,
7936                                               Loc, /*IsArrow=*/false,
7937                                               SS, SourceLocation(), 0,
7938                                               MemberLookup, 0);
7939    ExprResult To = BuildMemberReferenceExpr(This, This->getType(),
7940                                             Loc, /*IsArrow=*/true,
7941                                             SS, SourceLocation(), 0,
7942                                             MemberLookup, 0);
7943    assert(!From.isInvalid() && "Implicit field reference cannot fail");
7944    assert(!To.isInvalid() && "Implicit field reference cannot fail");
7945
7946    // If the field should be copied with __builtin_memcpy rather than via
7947    // explicit assignments, do so. This optimization only applies for arrays
7948    // of scalars and arrays of class type with trivial copy-assignment
7949    // operators.
7950    if (FieldType->isArrayType() && !FieldType.isVolatileQualified()
7951        && BaseType.hasTrivialAssignment(Context, /*Copying=*/true)) {
7952      // Compute the size of the memory buffer to be copied.
7953      QualType SizeType = Context.getSizeType();
7954      llvm::APInt Size(Context.getTypeSize(SizeType),
7955                       Context.getTypeSizeInChars(BaseType).getQuantity());
7956      for (const ConstantArrayType *Array
7957              = Context.getAsConstantArrayType(FieldType);
7958           Array;
7959           Array = Context.getAsConstantArrayType(Array->getElementType())) {
7960        llvm::APInt ArraySize
7961          = Array->getSize().zextOrTrunc(Size.getBitWidth());
7962        Size *= ArraySize;
7963      }
7964
7965      // Take the address of the field references for "from" and "to".
7966      From = CreateBuiltinUnaryOp(Loc, UO_AddrOf, From.get());
7967      To = CreateBuiltinUnaryOp(Loc, UO_AddrOf, To.get());
7968
7969      bool NeedsCollectableMemCpy =
7970          (BaseType->isRecordType() &&
7971           BaseType->getAs<RecordType>()->getDecl()->hasObjectMember());
7972
7973      if (NeedsCollectableMemCpy) {
7974        if (!CollectableMemCpyRef) {
7975          // Create a reference to the __builtin_objc_memmove_collectable function.
7976          LookupResult R(*this,
7977                         &Context.Idents.get("__builtin_objc_memmove_collectable"),
7978                         Loc, LookupOrdinaryName);
7979          LookupName(R, TUScope, true);
7980
7981          FunctionDecl *CollectableMemCpy = R.getAsSingle<FunctionDecl>();
7982          if (!CollectableMemCpy) {
7983            // Something went horribly wrong earlier, and we will have
7984            // complained about it.
7985            Invalid = true;
7986            continue;
7987          }
7988
7989          CollectableMemCpyRef = BuildDeclRefExpr(CollectableMemCpy,
7990                                                  Context.BuiltinFnTy,
7991                                                  VK_RValue, Loc, 0).take();
7992          assert(CollectableMemCpyRef && "Builtin reference cannot fail");
7993        }
7994      }
7995      // Create a reference to the __builtin_memcpy builtin function.
7996      else if (!BuiltinMemCpyRef) {
7997        LookupResult R(*this, &Context.Idents.get("__builtin_memcpy"), Loc,
7998                       LookupOrdinaryName);
7999        LookupName(R, TUScope, true);
8000
8001        FunctionDecl *BuiltinMemCpy = R.getAsSingle<FunctionDecl>();
8002        if (!BuiltinMemCpy) {
8003          // Something went horribly wrong earlier, and we will have complained
8004          // about it.
8005          Invalid = true;
8006          continue;
8007        }
8008
8009        BuiltinMemCpyRef = BuildDeclRefExpr(BuiltinMemCpy,
8010                                            Context.BuiltinFnTy,
8011                                            VK_RValue, Loc, 0).take();
8012        assert(BuiltinMemCpyRef && "Builtin reference cannot fail");
8013      }
8014
8015      SmallVector<Expr*, 8> CallArgs;
8016      CallArgs.push_back(To.takeAs<Expr>());
8017      CallArgs.push_back(From.takeAs<Expr>());
8018      CallArgs.push_back(IntegerLiteral::Create(Context, Size, SizeType, Loc));
8019      ExprResult Call = ExprError();
8020      if (NeedsCollectableMemCpy)
8021        Call = ActOnCallExpr(/*Scope=*/0,
8022                             CollectableMemCpyRef,
8023                             Loc, CallArgs,
8024                             Loc);
8025      else
8026        Call = ActOnCallExpr(/*Scope=*/0,
8027                             BuiltinMemCpyRef,
8028                             Loc, CallArgs,
8029                             Loc);
8030
8031      assert(!Call.isInvalid() && "Call to __builtin_memcpy cannot fail!");
8032      Statements.push_back(Call.takeAs<Expr>());
8033      continue;
8034    }
8035
8036    // Build the copy of this field.
8037    StmtResult Copy = BuildSingleCopyAssign(*this, Loc, FieldType,
8038                                            To.get(), From.get(),
8039                                            /*CopyingBaseSubobject=*/false,
8040                                            /*Copying=*/true);
8041    if (Copy.isInvalid()) {
8042      Diag(CurrentLocation, diag::note_member_synthesized_at)
8043        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
8044      CopyAssignOperator->setInvalidDecl();
8045      return;
8046    }
8047
8048    // Success! Record the copy.
8049    Statements.push_back(Copy.takeAs<Stmt>());
8050  }
8051
8052  if (!Invalid) {
8053    // Add a "return *this;"
8054    ExprResult ThisObj = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
8055
8056    StmtResult Return = ActOnReturnStmt(Loc, ThisObj.get());
8057    if (Return.isInvalid())
8058      Invalid = true;
8059    else {
8060      Statements.push_back(Return.takeAs<Stmt>());
8061
8062      if (Trap.hasErrorOccurred()) {
8063        Diag(CurrentLocation, diag::note_member_synthesized_at)
8064          << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
8065        Invalid = true;
8066      }
8067    }
8068  }
8069
8070  if (Invalid) {
8071    CopyAssignOperator->setInvalidDecl();
8072    return;
8073  }
8074
8075  StmtResult Body;
8076  {
8077    CompoundScopeRAII CompoundScope(*this);
8078    Body = ActOnCompoundStmt(Loc, Loc, Statements,
8079                             /*isStmtExpr=*/false);
8080    assert(!Body.isInvalid() && "Compound statement creation cannot fail");
8081  }
8082  CopyAssignOperator->setBody(Body.takeAs<Stmt>());
8083
8084  if (ASTMutationListener *L = getASTMutationListener()) {
8085    L->CompletedImplicitDefinition(CopyAssignOperator);
8086  }
8087}
8088
8089Sema::ImplicitExceptionSpecification
8090Sema::ComputeDefaultedMoveAssignmentExceptionSpec(CXXMethodDecl *MD) {
8091  CXXRecordDecl *ClassDecl = MD->getParent();
8092
8093  ImplicitExceptionSpecification ExceptSpec(*this);
8094  if (ClassDecl->isInvalidDecl())
8095    return ExceptSpec;
8096
8097  // C++0x [except.spec]p14:
8098  //   An implicitly declared special member function (Clause 12) shall have an
8099  //   exception-specification. [...]
8100
8101  // It is unspecified whether or not an implicit move assignment operator
8102  // attempts to deduplicate calls to assignment operators of virtual bases are
8103  // made. As such, this exception specification is effectively unspecified.
8104  // Based on a similar decision made for constness in C++0x, we're erring on
8105  // the side of assuming such calls to be made regardless of whether they
8106  // actually happen.
8107  // Note that a move constructor is not implicitly declared when there are
8108  // virtual bases, but it can still be user-declared and explicitly defaulted.
8109  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
8110                                       BaseEnd = ClassDecl->bases_end();
8111       Base != BaseEnd; ++Base) {
8112    if (Base->isVirtual())
8113      continue;
8114
8115    CXXRecordDecl *BaseClassDecl
8116      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8117    if (CXXMethodDecl *MoveAssign = LookupMovingAssignment(BaseClassDecl,
8118                                                           0, false, 0))
8119      ExceptSpec.CalledDecl(Base->getLocStart(), MoveAssign);
8120  }
8121
8122  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
8123                                       BaseEnd = ClassDecl->vbases_end();
8124       Base != BaseEnd; ++Base) {
8125    CXXRecordDecl *BaseClassDecl
8126      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8127    if (CXXMethodDecl *MoveAssign = LookupMovingAssignment(BaseClassDecl,
8128                                                           0, false, 0))
8129      ExceptSpec.CalledDecl(Base->getLocStart(), MoveAssign);
8130  }
8131
8132  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
8133                                  FieldEnd = ClassDecl->field_end();
8134       Field != FieldEnd;
8135       ++Field) {
8136    QualType FieldType = Context.getBaseElementType(Field->getType());
8137    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
8138      if (CXXMethodDecl *MoveAssign =
8139              LookupMovingAssignment(FieldClassDecl,
8140                                     FieldType.getCVRQualifiers(),
8141                                     false, 0))
8142        ExceptSpec.CalledDecl(Field->getLocation(), MoveAssign);
8143    }
8144  }
8145
8146  return ExceptSpec;
8147}
8148
8149/// Determine whether the class type has any direct or indirect virtual base
8150/// classes which have a non-trivial move assignment operator.
8151static bool
8152hasVirtualBaseWithNonTrivialMoveAssignment(Sema &S, CXXRecordDecl *ClassDecl) {
8153  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
8154                                          BaseEnd = ClassDecl->vbases_end();
8155       Base != BaseEnd; ++Base) {
8156    CXXRecordDecl *BaseClass =
8157        cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8158
8159    // Try to declare the move assignment. If it would be deleted, then the
8160    // class does not have a non-trivial move assignment.
8161    if (BaseClass->needsImplicitMoveAssignment())
8162      S.DeclareImplicitMoveAssignment(BaseClass);
8163
8164    // If the class has both a trivial move assignment and a non-trivial move
8165    // assignment, hasTrivialMoveAssignment() is false.
8166    if (BaseClass->hasDeclaredMoveAssignment() &&
8167        !BaseClass->hasTrivialMoveAssignment())
8168      return true;
8169  }
8170
8171  return false;
8172}
8173
8174/// Determine whether the given type either has a move constructor or is
8175/// trivially copyable.
8176static bool
8177hasMoveOrIsTriviallyCopyable(Sema &S, QualType Type, bool IsConstructor) {
8178  Type = S.Context.getBaseElementType(Type);
8179
8180  // FIXME: Technically, non-trivially-copyable non-class types, such as
8181  // reference types, are supposed to return false here, but that appears
8182  // to be a standard defect.
8183  CXXRecordDecl *ClassDecl = Type->getAsCXXRecordDecl();
8184  if (!ClassDecl || !ClassDecl->getDefinition() || ClassDecl->isInvalidDecl())
8185    return true;
8186
8187  if (Type.isTriviallyCopyableType(S.Context))
8188    return true;
8189
8190  if (IsConstructor) {
8191    if (ClassDecl->needsImplicitMoveConstructor())
8192      S.DeclareImplicitMoveConstructor(ClassDecl);
8193    return ClassDecl->hasDeclaredMoveConstructor();
8194  }
8195
8196  if (ClassDecl->needsImplicitMoveAssignment())
8197    S.DeclareImplicitMoveAssignment(ClassDecl);
8198  return ClassDecl->hasDeclaredMoveAssignment();
8199}
8200
8201/// Determine whether all non-static data members and direct or virtual bases
8202/// of class \p ClassDecl have either a move operation, or are trivially
8203/// copyable.
8204static bool subobjectsHaveMoveOrTrivialCopy(Sema &S, CXXRecordDecl *ClassDecl,
8205                                            bool IsConstructor) {
8206  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
8207                                          BaseEnd = ClassDecl->bases_end();
8208       Base != BaseEnd; ++Base) {
8209    if (Base->isVirtual())
8210      continue;
8211
8212    if (!hasMoveOrIsTriviallyCopyable(S, Base->getType(), IsConstructor))
8213      return false;
8214  }
8215
8216  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
8217                                          BaseEnd = ClassDecl->vbases_end();
8218       Base != BaseEnd; ++Base) {
8219    if (!hasMoveOrIsTriviallyCopyable(S, Base->getType(), IsConstructor))
8220      return false;
8221  }
8222
8223  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
8224                                     FieldEnd = ClassDecl->field_end();
8225       Field != FieldEnd; ++Field) {
8226    if (!hasMoveOrIsTriviallyCopyable(S, Field->getType(), IsConstructor))
8227      return false;
8228  }
8229
8230  return true;
8231}
8232
8233CXXMethodDecl *Sema::DeclareImplicitMoveAssignment(CXXRecordDecl *ClassDecl) {
8234  // C++11 [class.copy]p20:
8235  //   If the definition of a class X does not explicitly declare a move
8236  //   assignment operator, one will be implicitly declared as defaulted
8237  //   if and only if:
8238  //
8239  //   - [first 4 bullets]
8240  assert(ClassDecl->needsImplicitMoveAssignment());
8241
8242  // [Checked after we build the declaration]
8243  //   - the move assignment operator would not be implicitly defined as
8244  //     deleted,
8245
8246  // [DR1402]:
8247  //   - X has no direct or indirect virtual base class with a non-trivial
8248  //     move assignment operator, and
8249  //   - each of X's non-static data members and direct or virtual base classes
8250  //     has a type that either has a move assignment operator or is trivially
8251  //     copyable.
8252  if (hasVirtualBaseWithNonTrivialMoveAssignment(*this, ClassDecl) ||
8253      !subobjectsHaveMoveOrTrivialCopy(*this, ClassDecl,/*Constructor*/false)) {
8254    ClassDecl->setFailedImplicitMoveAssignment();
8255    return 0;
8256  }
8257
8258  // Note: The following rules are largely analoguous to the move
8259  // constructor rules.
8260
8261  QualType ArgType = Context.getTypeDeclType(ClassDecl);
8262  QualType RetType = Context.getLValueReferenceType(ArgType);
8263  ArgType = Context.getRValueReferenceType(ArgType);
8264
8265  //   An implicitly-declared move assignment operator is an inline public
8266  //   member of its class.
8267  DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
8268  SourceLocation ClassLoc = ClassDecl->getLocation();
8269  DeclarationNameInfo NameInfo(Name, ClassLoc);
8270  CXXMethodDecl *MoveAssignment
8271    = CXXMethodDecl::Create(Context, ClassDecl, ClassLoc, NameInfo, QualType(),
8272                            /*TInfo=*/0, /*isStatic=*/false,
8273                            /*StorageClassAsWritten=*/SC_None,
8274                            /*isInline=*/true,
8275                            /*isConstexpr=*/false,
8276                            SourceLocation());
8277  MoveAssignment->setAccess(AS_public);
8278  MoveAssignment->setDefaulted();
8279  MoveAssignment->setImplicit();
8280  MoveAssignment->setTrivial(ClassDecl->hasTrivialMoveAssignment());
8281
8282  // Build an exception specification pointing back at this member.
8283  FunctionProtoType::ExtProtoInfo EPI;
8284  EPI.ExceptionSpecType = EST_Unevaluated;
8285  EPI.ExceptionSpecDecl = MoveAssignment;
8286  MoveAssignment->setType(Context.getFunctionType(RetType, &ArgType, 1, EPI));
8287
8288  // Add the parameter to the operator.
8289  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, MoveAssignment,
8290                                               ClassLoc, ClassLoc, /*Id=*/0,
8291                                               ArgType, /*TInfo=*/0,
8292                                               SC_None,
8293                                               SC_None, 0);
8294  MoveAssignment->setParams(FromParam);
8295
8296  // Note that we have added this copy-assignment operator.
8297  ++ASTContext::NumImplicitMoveAssignmentOperatorsDeclared;
8298
8299  // C++0x [class.copy]p9:
8300  //   If the definition of a class X does not explicitly declare a move
8301  //   assignment operator, one will be implicitly declared as defaulted if and
8302  //   only if:
8303  //   [...]
8304  //   - the move assignment operator would not be implicitly defined as
8305  //     deleted.
8306  if (ShouldDeleteSpecialMember(MoveAssignment, CXXMoveAssignment)) {
8307    // Cache this result so that we don't try to generate this over and over
8308    // on every lookup, leaking memory and wasting time.
8309    ClassDecl->setFailedImplicitMoveAssignment();
8310    return 0;
8311  }
8312
8313  if (Scope *S = getScopeForContext(ClassDecl))
8314    PushOnScopeChains(MoveAssignment, S, false);
8315  ClassDecl->addDecl(MoveAssignment);
8316
8317  AddOverriddenMethods(ClassDecl, MoveAssignment);
8318  return MoveAssignment;
8319}
8320
8321void Sema::DefineImplicitMoveAssignment(SourceLocation CurrentLocation,
8322                                        CXXMethodDecl *MoveAssignOperator) {
8323  assert((MoveAssignOperator->isDefaulted() &&
8324          MoveAssignOperator->isOverloadedOperator() &&
8325          MoveAssignOperator->getOverloadedOperator() == OO_Equal &&
8326          !MoveAssignOperator->doesThisDeclarationHaveABody() &&
8327          !MoveAssignOperator->isDeleted()) &&
8328         "DefineImplicitMoveAssignment called for wrong function");
8329
8330  CXXRecordDecl *ClassDecl = MoveAssignOperator->getParent();
8331
8332  if (ClassDecl->isInvalidDecl() || MoveAssignOperator->isInvalidDecl()) {
8333    MoveAssignOperator->setInvalidDecl();
8334    return;
8335  }
8336
8337  MoveAssignOperator->setUsed();
8338
8339  SynthesizedFunctionScope Scope(*this, MoveAssignOperator);
8340  DiagnosticErrorTrap Trap(Diags);
8341
8342  // C++0x [class.copy]p28:
8343  //   The implicitly-defined or move assignment operator for a non-union class
8344  //   X performs memberwise move assignment of its subobjects. The direct base
8345  //   classes of X are assigned first, in the order of their declaration in the
8346  //   base-specifier-list, and then the immediate non-static data members of X
8347  //   are assigned, in the order in which they were declared in the class
8348  //   definition.
8349
8350  // The statements that form the synthesized function body.
8351  SmallVector<Stmt*, 8> Statements;
8352
8353  // The parameter for the "other" object, which we are move from.
8354  ParmVarDecl *Other = MoveAssignOperator->getParamDecl(0);
8355  QualType OtherRefType = Other->getType()->
8356      getAs<RValueReferenceType>()->getPointeeType();
8357  assert(OtherRefType.getQualifiers() == 0 &&
8358         "Bad argument type of defaulted move assignment");
8359
8360  // Our location for everything implicitly-generated.
8361  SourceLocation Loc = MoveAssignOperator->getLocation();
8362
8363  // Construct a reference to the "other" object. We'll be using this
8364  // throughout the generated ASTs.
8365  Expr *OtherRef = BuildDeclRefExpr(Other, OtherRefType, VK_LValue, Loc).take();
8366  assert(OtherRef && "Reference to parameter cannot fail!");
8367  // Cast to rvalue.
8368  OtherRef = CastForMoving(*this, OtherRef);
8369
8370  // Construct the "this" pointer. We'll be using this throughout the generated
8371  // ASTs.
8372  Expr *This = ActOnCXXThis(Loc).takeAs<Expr>();
8373  assert(This && "Reference to this cannot fail!");
8374
8375  // Assign base classes.
8376  bool Invalid = false;
8377  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
8378       E = ClassDecl->bases_end(); Base != E; ++Base) {
8379    // Form the assignment:
8380    //   static_cast<Base*>(this)->Base::operator=(static_cast<Base&&>(other));
8381    QualType BaseType = Base->getType().getUnqualifiedType();
8382    if (!BaseType->isRecordType()) {
8383      Invalid = true;
8384      continue;
8385    }
8386
8387    CXXCastPath BasePath;
8388    BasePath.push_back(Base);
8389
8390    // Construct the "from" expression, which is an implicit cast to the
8391    // appropriately-qualified base type.
8392    Expr *From = OtherRef;
8393    From = ImpCastExprToType(From, BaseType, CK_UncheckedDerivedToBase,
8394                             VK_XValue, &BasePath).take();
8395
8396    // Dereference "this".
8397    ExprResult To = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
8398
8399    // Implicitly cast "this" to the appropriately-qualified base type.
8400    To = ImpCastExprToType(To.take(),
8401                           Context.getCVRQualifiedType(BaseType,
8402                                     MoveAssignOperator->getTypeQualifiers()),
8403                           CK_UncheckedDerivedToBase,
8404                           VK_LValue, &BasePath);
8405
8406    // Build the move.
8407    StmtResult Move = BuildSingleCopyAssign(*this, Loc, BaseType,
8408                                            To.get(), From,
8409                                            /*CopyingBaseSubobject=*/true,
8410                                            /*Copying=*/false);
8411    if (Move.isInvalid()) {
8412      Diag(CurrentLocation, diag::note_member_synthesized_at)
8413        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
8414      MoveAssignOperator->setInvalidDecl();
8415      return;
8416    }
8417
8418    // Success! Record the move.
8419    Statements.push_back(Move.takeAs<Expr>());
8420  }
8421
8422  // \brief Reference to the __builtin_memcpy function.
8423  Expr *BuiltinMemCpyRef = 0;
8424  // \brief Reference to the __builtin_objc_memmove_collectable function.
8425  Expr *CollectableMemCpyRef = 0;
8426
8427  // Assign non-static members.
8428  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
8429                                  FieldEnd = ClassDecl->field_end();
8430       Field != FieldEnd; ++Field) {
8431    if (Field->isUnnamedBitfield())
8432      continue;
8433
8434    // Check for members of reference type; we can't move those.
8435    if (Field->getType()->isReferenceType()) {
8436      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
8437        << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
8438      Diag(Field->getLocation(), diag::note_declared_at);
8439      Diag(CurrentLocation, diag::note_member_synthesized_at)
8440        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
8441      Invalid = true;
8442      continue;
8443    }
8444
8445    // Check for members of const-qualified, non-class type.
8446    QualType BaseType = Context.getBaseElementType(Field->getType());
8447    if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) {
8448      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
8449        << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
8450      Diag(Field->getLocation(), diag::note_declared_at);
8451      Diag(CurrentLocation, diag::note_member_synthesized_at)
8452        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
8453      Invalid = true;
8454      continue;
8455    }
8456
8457    // Suppress assigning zero-width bitfields.
8458    if (Field->isBitField() && Field->getBitWidthValue(Context) == 0)
8459      continue;
8460
8461    QualType FieldType = Field->getType().getNonReferenceType();
8462    if (FieldType->isIncompleteArrayType()) {
8463      assert(ClassDecl->hasFlexibleArrayMember() &&
8464             "Incomplete array type is not valid");
8465      continue;
8466    }
8467
8468    // Build references to the field in the object we're copying from and to.
8469    CXXScopeSpec SS; // Intentionally empty
8470    LookupResult MemberLookup(*this, Field->getDeclName(), Loc,
8471                              LookupMemberName);
8472    MemberLookup.addDecl(*Field);
8473    MemberLookup.resolveKind();
8474    ExprResult From = BuildMemberReferenceExpr(OtherRef, OtherRefType,
8475                                               Loc, /*IsArrow=*/false,
8476                                               SS, SourceLocation(), 0,
8477                                               MemberLookup, 0);
8478    ExprResult To = BuildMemberReferenceExpr(This, This->getType(),
8479                                             Loc, /*IsArrow=*/true,
8480                                             SS, SourceLocation(), 0,
8481                                             MemberLookup, 0);
8482    assert(!From.isInvalid() && "Implicit field reference cannot fail");
8483    assert(!To.isInvalid() && "Implicit field reference cannot fail");
8484
8485    assert(!From.get()->isLValue() && // could be xvalue or prvalue
8486        "Member reference with rvalue base must be rvalue except for reference "
8487        "members, which aren't allowed for move assignment.");
8488
8489    // If the field should be copied with __builtin_memcpy rather than via
8490    // explicit assignments, do so. This optimization only applies for arrays
8491    // of scalars and arrays of class type with trivial move-assignment
8492    // operators.
8493    if (FieldType->isArrayType() && !FieldType.isVolatileQualified()
8494        && BaseType.hasTrivialAssignment(Context, /*Copying=*/false)) {
8495      // Compute the size of the memory buffer to be copied.
8496      QualType SizeType = Context.getSizeType();
8497      llvm::APInt Size(Context.getTypeSize(SizeType),
8498                       Context.getTypeSizeInChars(BaseType).getQuantity());
8499      for (const ConstantArrayType *Array
8500              = Context.getAsConstantArrayType(FieldType);
8501           Array;
8502           Array = Context.getAsConstantArrayType(Array->getElementType())) {
8503        llvm::APInt ArraySize
8504          = Array->getSize().zextOrTrunc(Size.getBitWidth());
8505        Size *= ArraySize;
8506      }
8507
8508      // Take the address of the field references for "from" and "to". We
8509      // directly construct UnaryOperators here because semantic analysis
8510      // does not permit us to take the address of an xvalue.
8511      From = new (Context) UnaryOperator(From.get(), UO_AddrOf,
8512                             Context.getPointerType(From.get()->getType()),
8513                             VK_RValue, OK_Ordinary, Loc);
8514      To = new (Context) UnaryOperator(To.get(), UO_AddrOf,
8515                           Context.getPointerType(To.get()->getType()),
8516                           VK_RValue, OK_Ordinary, Loc);
8517
8518      bool NeedsCollectableMemCpy =
8519          (BaseType->isRecordType() &&
8520           BaseType->getAs<RecordType>()->getDecl()->hasObjectMember());
8521
8522      if (NeedsCollectableMemCpy) {
8523        if (!CollectableMemCpyRef) {
8524          // Create a reference to the __builtin_objc_memmove_collectable function.
8525          LookupResult R(*this,
8526                         &Context.Idents.get("__builtin_objc_memmove_collectable"),
8527                         Loc, LookupOrdinaryName);
8528          LookupName(R, TUScope, true);
8529
8530          FunctionDecl *CollectableMemCpy = R.getAsSingle<FunctionDecl>();
8531          if (!CollectableMemCpy) {
8532            // Something went horribly wrong earlier, and we will have
8533            // complained about it.
8534            Invalid = true;
8535            continue;
8536          }
8537
8538          CollectableMemCpyRef = BuildDeclRefExpr(CollectableMemCpy,
8539                                                  Context.BuiltinFnTy,
8540                                                  VK_RValue, Loc, 0).take();
8541          assert(CollectableMemCpyRef && "Builtin reference cannot fail");
8542        }
8543      }
8544      // Create a reference to the __builtin_memcpy builtin function.
8545      else if (!BuiltinMemCpyRef) {
8546        LookupResult R(*this, &Context.Idents.get("__builtin_memcpy"), Loc,
8547                       LookupOrdinaryName);
8548        LookupName(R, TUScope, true);
8549
8550        FunctionDecl *BuiltinMemCpy = R.getAsSingle<FunctionDecl>();
8551        if (!BuiltinMemCpy) {
8552          // Something went horribly wrong earlier, and we will have complained
8553          // about it.
8554          Invalid = true;
8555          continue;
8556        }
8557
8558        BuiltinMemCpyRef = BuildDeclRefExpr(BuiltinMemCpy,
8559                                            Context.BuiltinFnTy,
8560                                            VK_RValue, Loc, 0).take();
8561        assert(BuiltinMemCpyRef && "Builtin reference cannot fail");
8562      }
8563
8564      SmallVector<Expr*, 8> CallArgs;
8565      CallArgs.push_back(To.takeAs<Expr>());
8566      CallArgs.push_back(From.takeAs<Expr>());
8567      CallArgs.push_back(IntegerLiteral::Create(Context, Size, SizeType, Loc));
8568      ExprResult Call = ExprError();
8569      if (NeedsCollectableMemCpy)
8570        Call = ActOnCallExpr(/*Scope=*/0,
8571                             CollectableMemCpyRef,
8572                             Loc, CallArgs,
8573                             Loc);
8574      else
8575        Call = ActOnCallExpr(/*Scope=*/0,
8576                             BuiltinMemCpyRef,
8577                             Loc, CallArgs,
8578                             Loc);
8579
8580      assert(!Call.isInvalid() && "Call to __builtin_memcpy cannot fail!");
8581      Statements.push_back(Call.takeAs<Expr>());
8582      continue;
8583    }
8584
8585    // Build the move of this field.
8586    StmtResult Move = BuildSingleCopyAssign(*this, Loc, FieldType,
8587                                            To.get(), From.get(),
8588                                            /*CopyingBaseSubobject=*/false,
8589                                            /*Copying=*/false);
8590    if (Move.isInvalid()) {
8591      Diag(CurrentLocation, diag::note_member_synthesized_at)
8592        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
8593      MoveAssignOperator->setInvalidDecl();
8594      return;
8595    }
8596
8597    // Success! Record the copy.
8598    Statements.push_back(Move.takeAs<Stmt>());
8599  }
8600
8601  if (!Invalid) {
8602    // Add a "return *this;"
8603    ExprResult ThisObj = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
8604
8605    StmtResult Return = ActOnReturnStmt(Loc, ThisObj.get());
8606    if (Return.isInvalid())
8607      Invalid = true;
8608    else {
8609      Statements.push_back(Return.takeAs<Stmt>());
8610
8611      if (Trap.hasErrorOccurred()) {
8612        Diag(CurrentLocation, diag::note_member_synthesized_at)
8613          << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
8614        Invalid = true;
8615      }
8616    }
8617  }
8618
8619  if (Invalid) {
8620    MoveAssignOperator->setInvalidDecl();
8621    return;
8622  }
8623
8624  StmtResult Body;
8625  {
8626    CompoundScopeRAII CompoundScope(*this);
8627    Body = ActOnCompoundStmt(Loc, Loc, Statements,
8628                             /*isStmtExpr=*/false);
8629    assert(!Body.isInvalid() && "Compound statement creation cannot fail");
8630  }
8631  MoveAssignOperator->setBody(Body.takeAs<Stmt>());
8632
8633  if (ASTMutationListener *L = getASTMutationListener()) {
8634    L->CompletedImplicitDefinition(MoveAssignOperator);
8635  }
8636}
8637
8638/// Determine whether an implicit copy constructor for ClassDecl has a const
8639/// argument.
8640/// FIXME: It ought to be possible to store this on the record.
8641static bool isImplicitCopyCtorArgConst(Sema &S, CXXRecordDecl *ClassDecl) {
8642  if (ClassDecl->isInvalidDecl())
8643    return true;
8644
8645  // C++ [class.copy]p5:
8646  //   The implicitly-declared copy constructor for a class X will
8647  //   have the form
8648  //
8649  //       X::X(const X&)
8650  //
8651  //   if
8652  //     -- each direct or virtual base class B of X has a copy
8653  //        constructor whose first parameter is of type const B& or
8654  //        const volatile B&, and
8655  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
8656                                       BaseEnd = ClassDecl->bases_end();
8657       Base != BaseEnd; ++Base) {
8658    // Virtual bases are handled below.
8659    if (Base->isVirtual())
8660      continue;
8661
8662    CXXRecordDecl *BaseClassDecl
8663      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8664    // FIXME: This lookup is wrong. If the copy ctor for a member or base is
8665    // ambiguous, we should still produce a constructor with a const-qualified
8666    // parameter.
8667    if (!S.LookupCopyingConstructor(BaseClassDecl, Qualifiers::Const))
8668      return false;
8669  }
8670
8671  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
8672                                       BaseEnd = ClassDecl->vbases_end();
8673       Base != BaseEnd; ++Base) {
8674    CXXRecordDecl *BaseClassDecl
8675      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8676    if (!S.LookupCopyingConstructor(BaseClassDecl, Qualifiers::Const))
8677      return false;
8678  }
8679
8680  //     -- for all the nonstatic data members of X that are of a
8681  //        class type M (or array thereof), each such class type
8682  //        has a copy constructor whose first parameter is of type
8683  //        const M& or const volatile M&.
8684  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
8685                                  FieldEnd = ClassDecl->field_end();
8686       Field != FieldEnd; ++Field) {
8687    QualType FieldType = S.Context.getBaseElementType(Field->getType());
8688    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
8689      if (!S.LookupCopyingConstructor(FieldClassDecl, Qualifiers::Const))
8690        return false;
8691    }
8692  }
8693
8694  //   Otherwise, the implicitly declared copy constructor will have
8695  //   the form
8696  //
8697  //       X::X(X&)
8698
8699  return true;
8700}
8701
8702Sema::ImplicitExceptionSpecification
8703Sema::ComputeDefaultedCopyCtorExceptionSpec(CXXMethodDecl *MD) {
8704  CXXRecordDecl *ClassDecl = MD->getParent();
8705
8706  ImplicitExceptionSpecification ExceptSpec(*this);
8707  if (ClassDecl->isInvalidDecl())
8708    return ExceptSpec;
8709
8710  const FunctionProtoType *T = MD->getType()->castAs<FunctionProtoType>();
8711  assert(T->getNumArgs() >= 1 && "not a copy ctor");
8712  unsigned Quals = T->getArgType(0).getNonReferenceType().getCVRQualifiers();
8713
8714  // C++ [except.spec]p14:
8715  //   An implicitly declared special member function (Clause 12) shall have an
8716  //   exception-specification. [...]
8717  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
8718                                       BaseEnd = ClassDecl->bases_end();
8719       Base != BaseEnd;
8720       ++Base) {
8721    // Virtual bases are handled below.
8722    if (Base->isVirtual())
8723      continue;
8724
8725    CXXRecordDecl *BaseClassDecl
8726      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8727    if (CXXConstructorDecl *CopyConstructor =
8728          LookupCopyingConstructor(BaseClassDecl, Quals))
8729      ExceptSpec.CalledDecl(Base->getLocStart(), CopyConstructor);
8730  }
8731  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
8732                                       BaseEnd = ClassDecl->vbases_end();
8733       Base != BaseEnd;
8734       ++Base) {
8735    CXXRecordDecl *BaseClassDecl
8736      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8737    if (CXXConstructorDecl *CopyConstructor =
8738          LookupCopyingConstructor(BaseClassDecl, Quals))
8739      ExceptSpec.CalledDecl(Base->getLocStart(), CopyConstructor);
8740  }
8741  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
8742                                  FieldEnd = ClassDecl->field_end();
8743       Field != FieldEnd;
8744       ++Field) {
8745    QualType FieldType = Context.getBaseElementType(Field->getType());
8746    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
8747      if (CXXConstructorDecl *CopyConstructor =
8748              LookupCopyingConstructor(FieldClassDecl,
8749                                       Quals | FieldType.getCVRQualifiers()))
8750      ExceptSpec.CalledDecl(Field->getLocation(), CopyConstructor);
8751    }
8752  }
8753
8754  return ExceptSpec;
8755}
8756
8757CXXConstructorDecl *Sema::DeclareImplicitCopyConstructor(
8758                                                    CXXRecordDecl *ClassDecl) {
8759  // C++ [class.copy]p4:
8760  //   If the class definition does not explicitly declare a copy
8761  //   constructor, one is declared implicitly.
8762
8763  QualType ClassType = Context.getTypeDeclType(ClassDecl);
8764  QualType ArgType = ClassType;
8765  bool Const = isImplicitCopyCtorArgConst(*this, ClassDecl);
8766  if (Const)
8767    ArgType = ArgType.withConst();
8768  ArgType = Context.getLValueReferenceType(ArgType);
8769
8770  bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl,
8771                                                     CXXCopyConstructor,
8772                                                     Const);
8773
8774  DeclarationName Name
8775    = Context.DeclarationNames.getCXXConstructorName(
8776                                           Context.getCanonicalType(ClassType));
8777  SourceLocation ClassLoc = ClassDecl->getLocation();
8778  DeclarationNameInfo NameInfo(Name, ClassLoc);
8779
8780  //   An implicitly-declared copy constructor is an inline public
8781  //   member of its class.
8782  CXXConstructorDecl *CopyConstructor = CXXConstructorDecl::Create(
8783      Context, ClassDecl, ClassLoc, NameInfo, QualType(), /*TInfo=*/0,
8784      /*isExplicit=*/false, /*isInline=*/true, /*isImplicitlyDeclared=*/true,
8785      Constexpr);
8786  CopyConstructor->setAccess(AS_public);
8787  CopyConstructor->setDefaulted();
8788  CopyConstructor->setTrivial(ClassDecl->hasTrivialCopyConstructor());
8789
8790  // Build an exception specification pointing back at this member.
8791  FunctionProtoType::ExtProtoInfo EPI;
8792  EPI.ExceptionSpecType = EST_Unevaluated;
8793  EPI.ExceptionSpecDecl = CopyConstructor;
8794  CopyConstructor->setType(
8795      Context.getFunctionType(Context.VoidTy, &ArgType, 1, EPI));
8796
8797  // Note that we have declared this constructor.
8798  ++ASTContext::NumImplicitCopyConstructorsDeclared;
8799
8800  // Add the parameter to the constructor.
8801  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor,
8802                                               ClassLoc, ClassLoc,
8803                                               /*IdentifierInfo=*/0,
8804                                               ArgType, /*TInfo=*/0,
8805                                               SC_None,
8806                                               SC_None, 0);
8807  CopyConstructor->setParams(FromParam);
8808
8809  if (Scope *S = getScopeForContext(ClassDecl))
8810    PushOnScopeChains(CopyConstructor, S, false);
8811  ClassDecl->addDecl(CopyConstructor);
8812
8813  // C++11 [class.copy]p8:
8814  //   ... If the class definition does not explicitly declare a copy
8815  //   constructor, there is no user-declared move constructor, and there is no
8816  //   user-declared move assignment operator, a copy constructor is implicitly
8817  //   declared as defaulted.
8818  if (ShouldDeleteSpecialMember(CopyConstructor, CXXCopyConstructor))
8819    CopyConstructor->setDeletedAsWritten();
8820
8821  return CopyConstructor;
8822}
8823
8824void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation,
8825                                   CXXConstructorDecl *CopyConstructor) {
8826  assert((CopyConstructor->isDefaulted() &&
8827          CopyConstructor->isCopyConstructor() &&
8828          !CopyConstructor->doesThisDeclarationHaveABody() &&
8829          !CopyConstructor->isDeleted()) &&
8830         "DefineImplicitCopyConstructor - call it for implicit copy ctor");
8831
8832  CXXRecordDecl *ClassDecl = CopyConstructor->getParent();
8833  assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor");
8834
8835  SynthesizedFunctionScope Scope(*this, CopyConstructor);
8836  DiagnosticErrorTrap Trap(Diags);
8837
8838  if (SetCtorInitializers(CopyConstructor, 0, 0, /*AnyErrors=*/false) ||
8839      Trap.hasErrorOccurred()) {
8840    Diag(CurrentLocation, diag::note_member_synthesized_at)
8841      << CXXCopyConstructor << Context.getTagDeclType(ClassDecl);
8842    CopyConstructor->setInvalidDecl();
8843  }  else {
8844    Sema::CompoundScopeRAII CompoundScope(*this);
8845    CopyConstructor->setBody(ActOnCompoundStmt(CopyConstructor->getLocation(),
8846                                               CopyConstructor->getLocation(),
8847                                               MultiStmtArg(),
8848                                               /*isStmtExpr=*/false)
8849                                                              .takeAs<Stmt>());
8850    CopyConstructor->setImplicitlyDefined(true);
8851  }
8852
8853  CopyConstructor->setUsed();
8854  if (ASTMutationListener *L = getASTMutationListener()) {
8855    L->CompletedImplicitDefinition(CopyConstructor);
8856  }
8857}
8858
8859Sema::ImplicitExceptionSpecification
8860Sema::ComputeDefaultedMoveCtorExceptionSpec(CXXMethodDecl *MD) {
8861  CXXRecordDecl *ClassDecl = MD->getParent();
8862
8863  // C++ [except.spec]p14:
8864  //   An implicitly declared special member function (Clause 12) shall have an
8865  //   exception-specification. [...]
8866  ImplicitExceptionSpecification ExceptSpec(*this);
8867  if (ClassDecl->isInvalidDecl())
8868    return ExceptSpec;
8869
8870  // Direct base-class constructors.
8871  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
8872                                       BEnd = ClassDecl->bases_end();
8873       B != BEnd; ++B) {
8874    if (B->isVirtual()) // Handled below.
8875      continue;
8876
8877    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
8878      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
8879      CXXConstructorDecl *Constructor =
8880          LookupMovingConstructor(BaseClassDecl, 0);
8881      // If this is a deleted function, add it anyway. This might be conformant
8882      // with the standard. This might not. I'm not sure. It might not matter.
8883      if (Constructor)
8884        ExceptSpec.CalledDecl(B->getLocStart(), Constructor);
8885    }
8886  }
8887
8888  // Virtual base-class constructors.
8889  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
8890                                       BEnd = ClassDecl->vbases_end();
8891       B != BEnd; ++B) {
8892    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
8893      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
8894      CXXConstructorDecl *Constructor =
8895          LookupMovingConstructor(BaseClassDecl, 0);
8896      // If this is a deleted function, add it anyway. This might be conformant
8897      // with the standard. This might not. I'm not sure. It might not matter.
8898      if (Constructor)
8899        ExceptSpec.CalledDecl(B->getLocStart(), Constructor);
8900    }
8901  }
8902
8903  // Field constructors.
8904  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
8905                               FEnd = ClassDecl->field_end();
8906       F != FEnd; ++F) {
8907    QualType FieldType = Context.getBaseElementType(F->getType());
8908    if (CXXRecordDecl *FieldRecDecl = FieldType->getAsCXXRecordDecl()) {
8909      CXXConstructorDecl *Constructor =
8910          LookupMovingConstructor(FieldRecDecl, FieldType.getCVRQualifiers());
8911      // If this is a deleted function, add it anyway. This might be conformant
8912      // with the standard. This might not. I'm not sure. It might not matter.
8913      // In particular, the problem is that this function never gets called. It
8914      // might just be ill-formed because this function attempts to refer to
8915      // a deleted function here.
8916      if (Constructor)
8917        ExceptSpec.CalledDecl(F->getLocation(), Constructor);
8918    }
8919  }
8920
8921  return ExceptSpec;
8922}
8923
8924CXXConstructorDecl *Sema::DeclareImplicitMoveConstructor(
8925                                                    CXXRecordDecl *ClassDecl) {
8926  // C++11 [class.copy]p9:
8927  //   If the definition of a class X does not explicitly declare a move
8928  //   constructor, one will be implicitly declared as defaulted if and only if:
8929  //
8930  //   - [first 4 bullets]
8931  assert(ClassDecl->needsImplicitMoveConstructor());
8932
8933  // [Checked after we build the declaration]
8934  //   - the move assignment operator would not be implicitly defined as
8935  //     deleted,
8936
8937  // [DR1402]:
8938  //   - each of X's non-static data members and direct or virtual base classes
8939  //     has a type that either has a move constructor or is trivially copyable.
8940  if (!subobjectsHaveMoveOrTrivialCopy(*this, ClassDecl, /*Constructor*/true)) {
8941    ClassDecl->setFailedImplicitMoveConstructor();
8942    return 0;
8943  }
8944
8945  QualType ClassType = Context.getTypeDeclType(ClassDecl);
8946  QualType ArgType = Context.getRValueReferenceType(ClassType);
8947
8948  bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl,
8949                                                     CXXMoveConstructor,
8950                                                     false);
8951
8952  DeclarationName Name
8953    = Context.DeclarationNames.getCXXConstructorName(
8954                                           Context.getCanonicalType(ClassType));
8955  SourceLocation ClassLoc = ClassDecl->getLocation();
8956  DeclarationNameInfo NameInfo(Name, ClassLoc);
8957
8958  // C++0x [class.copy]p11:
8959  //   An implicitly-declared copy/move constructor is an inline public
8960  //   member of its class.
8961  CXXConstructorDecl *MoveConstructor = CXXConstructorDecl::Create(
8962      Context, ClassDecl, ClassLoc, NameInfo, QualType(), /*TInfo=*/0,
8963      /*isExplicit=*/false, /*isInline=*/true, /*isImplicitlyDeclared=*/true,
8964      Constexpr);
8965  MoveConstructor->setAccess(AS_public);
8966  MoveConstructor->setDefaulted();
8967  MoveConstructor->setTrivial(ClassDecl->hasTrivialMoveConstructor());
8968
8969  // Build an exception specification pointing back at this member.
8970  FunctionProtoType::ExtProtoInfo EPI;
8971  EPI.ExceptionSpecType = EST_Unevaluated;
8972  EPI.ExceptionSpecDecl = MoveConstructor;
8973  MoveConstructor->setType(
8974      Context.getFunctionType(Context.VoidTy, &ArgType, 1, EPI));
8975
8976  // Add the parameter to the constructor.
8977  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, MoveConstructor,
8978                                               ClassLoc, ClassLoc,
8979                                               /*IdentifierInfo=*/0,
8980                                               ArgType, /*TInfo=*/0,
8981                                               SC_None,
8982                                               SC_None, 0);
8983  MoveConstructor->setParams(FromParam);
8984
8985  // C++0x [class.copy]p9:
8986  //   If the definition of a class X does not explicitly declare a move
8987  //   constructor, one will be implicitly declared as defaulted if and only if:
8988  //   [...]
8989  //   - the move constructor would not be implicitly defined as deleted.
8990  if (ShouldDeleteSpecialMember(MoveConstructor, CXXMoveConstructor)) {
8991    // Cache this result so that we don't try to generate this over and over
8992    // on every lookup, leaking memory and wasting time.
8993    ClassDecl->setFailedImplicitMoveConstructor();
8994    return 0;
8995  }
8996
8997  // Note that we have declared this constructor.
8998  ++ASTContext::NumImplicitMoveConstructorsDeclared;
8999
9000  if (Scope *S = getScopeForContext(ClassDecl))
9001    PushOnScopeChains(MoveConstructor, S, false);
9002  ClassDecl->addDecl(MoveConstructor);
9003
9004  return MoveConstructor;
9005}
9006
9007void Sema::DefineImplicitMoveConstructor(SourceLocation CurrentLocation,
9008                                   CXXConstructorDecl *MoveConstructor) {
9009  assert((MoveConstructor->isDefaulted() &&
9010          MoveConstructor->isMoveConstructor() &&
9011          !MoveConstructor->doesThisDeclarationHaveABody() &&
9012          !MoveConstructor->isDeleted()) &&
9013         "DefineImplicitMoveConstructor - call it for implicit move ctor");
9014
9015  CXXRecordDecl *ClassDecl = MoveConstructor->getParent();
9016  assert(ClassDecl && "DefineImplicitMoveConstructor - invalid constructor");
9017
9018  SynthesizedFunctionScope Scope(*this, MoveConstructor);
9019  DiagnosticErrorTrap Trap(Diags);
9020
9021  if (SetCtorInitializers(MoveConstructor, 0, 0, /*AnyErrors=*/false) ||
9022      Trap.hasErrorOccurred()) {
9023    Diag(CurrentLocation, diag::note_member_synthesized_at)
9024      << CXXMoveConstructor << Context.getTagDeclType(ClassDecl);
9025    MoveConstructor->setInvalidDecl();
9026  }  else {
9027    Sema::CompoundScopeRAII CompoundScope(*this);
9028    MoveConstructor->setBody(ActOnCompoundStmt(MoveConstructor->getLocation(),
9029                                               MoveConstructor->getLocation(),
9030                                               MultiStmtArg(),
9031                                               /*isStmtExpr=*/false)
9032                                                              .takeAs<Stmt>());
9033    MoveConstructor->setImplicitlyDefined(true);
9034  }
9035
9036  MoveConstructor->setUsed();
9037
9038  if (ASTMutationListener *L = getASTMutationListener()) {
9039    L->CompletedImplicitDefinition(MoveConstructor);
9040  }
9041}
9042
9043bool Sema::isImplicitlyDeleted(FunctionDecl *FD) {
9044  return FD->isDeleted() &&
9045         (FD->isDefaulted() || FD->isImplicit()) &&
9046         isa<CXXMethodDecl>(FD);
9047}
9048
9049/// \brief Mark the call operator of the given lambda closure type as "used".
9050static void markLambdaCallOperatorUsed(Sema &S, CXXRecordDecl *Lambda) {
9051  CXXMethodDecl *CallOperator
9052    = cast<CXXMethodDecl>(
9053        *Lambda->lookup(
9054          S.Context.DeclarationNames.getCXXOperatorName(OO_Call)).first);
9055  CallOperator->setReferenced();
9056  CallOperator->setUsed();
9057}
9058
9059void Sema::DefineImplicitLambdaToFunctionPointerConversion(
9060       SourceLocation CurrentLocation,
9061       CXXConversionDecl *Conv)
9062{
9063  CXXRecordDecl *Lambda = Conv->getParent();
9064
9065  // Make sure that the lambda call operator is marked used.
9066  markLambdaCallOperatorUsed(*this, Lambda);
9067
9068  Conv->setUsed();
9069
9070  SynthesizedFunctionScope Scope(*this, Conv);
9071  DiagnosticErrorTrap Trap(Diags);
9072
9073  // Return the address of the __invoke function.
9074  DeclarationName InvokeName = &Context.Idents.get("__invoke");
9075  CXXMethodDecl *Invoke
9076    = cast<CXXMethodDecl>(*Lambda->lookup(InvokeName).first);
9077  Expr *FunctionRef = BuildDeclRefExpr(Invoke, Invoke->getType(),
9078                                       VK_LValue, Conv->getLocation()).take();
9079  assert(FunctionRef && "Can't refer to __invoke function?");
9080  Stmt *Return = ActOnReturnStmt(Conv->getLocation(), FunctionRef).take();
9081  Conv->setBody(new (Context) CompoundStmt(Context, &Return, 1,
9082                                           Conv->getLocation(),
9083                                           Conv->getLocation()));
9084
9085  // Fill in the __invoke function with a dummy implementation. IR generation
9086  // will fill in the actual details.
9087  Invoke->setUsed();
9088  Invoke->setReferenced();
9089  Invoke->setBody(new (Context) CompoundStmt(Conv->getLocation()));
9090
9091  if (ASTMutationListener *L = getASTMutationListener()) {
9092    L->CompletedImplicitDefinition(Conv);
9093    L->CompletedImplicitDefinition(Invoke);
9094  }
9095}
9096
9097void Sema::DefineImplicitLambdaToBlockPointerConversion(
9098       SourceLocation CurrentLocation,
9099       CXXConversionDecl *Conv)
9100{
9101  Conv->setUsed();
9102
9103  SynthesizedFunctionScope Scope(*this, Conv);
9104  DiagnosticErrorTrap Trap(Diags);
9105
9106  // Copy-initialize the lambda object as needed to capture it.
9107  Expr *This = ActOnCXXThis(CurrentLocation).take();
9108  Expr *DerefThis =CreateBuiltinUnaryOp(CurrentLocation, UO_Deref, This).take();
9109
9110  ExprResult BuildBlock = BuildBlockForLambdaConversion(CurrentLocation,
9111                                                        Conv->getLocation(),
9112                                                        Conv, DerefThis);
9113
9114  // If we're not under ARC, make sure we still get the _Block_copy/autorelease
9115  // behavior.  Note that only the general conversion function does this
9116  // (since it's unusable otherwise); in the case where we inline the
9117  // block literal, it has block literal lifetime semantics.
9118  if (!BuildBlock.isInvalid() && !getLangOpts().ObjCAutoRefCount)
9119    BuildBlock = ImplicitCastExpr::Create(Context, BuildBlock.get()->getType(),
9120                                          CK_CopyAndAutoreleaseBlockObject,
9121                                          BuildBlock.get(), 0, VK_RValue);
9122
9123  if (BuildBlock.isInvalid()) {
9124    Diag(CurrentLocation, diag::note_lambda_to_block_conv);
9125    Conv->setInvalidDecl();
9126    return;
9127  }
9128
9129  // Create the return statement that returns the block from the conversion
9130  // function.
9131  StmtResult Return = ActOnReturnStmt(Conv->getLocation(), BuildBlock.get());
9132  if (Return.isInvalid()) {
9133    Diag(CurrentLocation, diag::note_lambda_to_block_conv);
9134    Conv->setInvalidDecl();
9135    return;
9136  }
9137
9138  // Set the body of the conversion function.
9139  Stmt *ReturnS = Return.take();
9140  Conv->setBody(new (Context) CompoundStmt(Context, &ReturnS, 1,
9141                                           Conv->getLocation(),
9142                                           Conv->getLocation()));
9143
9144  // We're done; notify the mutation listener, if any.
9145  if (ASTMutationListener *L = getASTMutationListener()) {
9146    L->CompletedImplicitDefinition(Conv);
9147  }
9148}
9149
9150/// \brief Determine whether the given list arguments contains exactly one
9151/// "real" (non-default) argument.
9152static bool hasOneRealArgument(MultiExprArg Args) {
9153  switch (Args.size()) {
9154  case 0:
9155    return false;
9156
9157  default:
9158    if (!Args[1]->isDefaultArgument())
9159      return false;
9160
9161    // fall through
9162  case 1:
9163    return !Args[0]->isDefaultArgument();
9164  }
9165
9166  return false;
9167}
9168
9169ExprResult
9170Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
9171                            CXXConstructorDecl *Constructor,
9172                            MultiExprArg ExprArgs,
9173                            bool HadMultipleCandidates,
9174                            bool RequiresZeroInit,
9175                            unsigned ConstructKind,
9176                            SourceRange ParenRange) {
9177  bool Elidable = false;
9178
9179  // C++0x [class.copy]p34:
9180  //   When certain criteria are met, an implementation is allowed to
9181  //   omit the copy/move construction of a class object, even if the
9182  //   copy/move constructor and/or destructor for the object have
9183  //   side effects. [...]
9184  //     - when a temporary class object that has not been bound to a
9185  //       reference (12.2) would be copied/moved to a class object
9186  //       with the same cv-unqualified type, the copy/move operation
9187  //       can be omitted by constructing the temporary object
9188  //       directly into the target of the omitted copy/move
9189  if (ConstructKind == CXXConstructExpr::CK_Complete &&
9190      Constructor->isCopyOrMoveConstructor() && hasOneRealArgument(ExprArgs)) {
9191    Expr *SubExpr = ExprArgs[0];
9192    Elidable = SubExpr->isTemporaryObject(Context, Constructor->getParent());
9193  }
9194
9195  return BuildCXXConstructExpr(ConstructLoc, DeclInitType, Constructor,
9196                               Elidable, ExprArgs, HadMultipleCandidates,
9197                               RequiresZeroInit, ConstructKind, ParenRange);
9198}
9199
9200/// BuildCXXConstructExpr - Creates a complete call to a constructor,
9201/// including handling of its default argument expressions.
9202ExprResult
9203Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
9204                            CXXConstructorDecl *Constructor, bool Elidable,
9205                            MultiExprArg ExprArgs,
9206                            bool HadMultipleCandidates,
9207                            bool RequiresZeroInit,
9208                            unsigned ConstructKind,
9209                            SourceRange ParenRange) {
9210  MarkFunctionReferenced(ConstructLoc, Constructor);
9211  return Owned(CXXConstructExpr::Create(Context, DeclInitType, ConstructLoc,
9212                                        Constructor, Elidable, ExprArgs,
9213                                        HadMultipleCandidates, /*FIXME*/false,
9214                                        RequiresZeroInit,
9215              static_cast<CXXConstructExpr::ConstructionKind>(ConstructKind),
9216                                        ParenRange));
9217}
9218
9219bool Sema::InitializeVarWithConstructor(VarDecl *VD,
9220                                        CXXConstructorDecl *Constructor,
9221                                        MultiExprArg Exprs,
9222                                        bool HadMultipleCandidates) {
9223  // FIXME: Provide the correct paren SourceRange when available.
9224  ExprResult TempResult =
9225    BuildCXXConstructExpr(VD->getLocation(), VD->getType(), Constructor,
9226                          Exprs, HadMultipleCandidates, false,
9227                          CXXConstructExpr::CK_Complete, SourceRange());
9228  if (TempResult.isInvalid())
9229    return true;
9230
9231  Expr *Temp = TempResult.takeAs<Expr>();
9232  CheckImplicitConversions(Temp, VD->getLocation());
9233  MarkFunctionReferenced(VD->getLocation(), Constructor);
9234  Temp = MaybeCreateExprWithCleanups(Temp);
9235  VD->setInit(Temp);
9236
9237  return false;
9238}
9239
9240void Sema::FinalizeVarWithDestructor(VarDecl *VD, const RecordType *Record) {
9241  if (VD->isInvalidDecl()) return;
9242
9243  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Record->getDecl());
9244  if (ClassDecl->isInvalidDecl()) return;
9245  if (ClassDecl->hasIrrelevantDestructor()) return;
9246  if (ClassDecl->isDependentContext()) return;
9247
9248  CXXDestructorDecl *Destructor = LookupDestructor(ClassDecl);
9249  MarkFunctionReferenced(VD->getLocation(), Destructor);
9250  CheckDestructorAccess(VD->getLocation(), Destructor,
9251                        PDiag(diag::err_access_dtor_var)
9252                        << VD->getDeclName()
9253                        << VD->getType());
9254  DiagnoseUseOfDecl(Destructor, VD->getLocation());
9255
9256  if (!VD->hasGlobalStorage()) return;
9257
9258  // Emit warning for non-trivial dtor in global scope (a real global,
9259  // class-static, function-static).
9260  Diag(VD->getLocation(), diag::warn_exit_time_destructor);
9261
9262  // TODO: this should be re-enabled for static locals by !CXAAtExit
9263  if (!VD->isStaticLocal())
9264    Diag(VD->getLocation(), diag::warn_global_destructor);
9265}
9266
9267/// \brief Given a constructor and the set of arguments provided for the
9268/// constructor, convert the arguments and add any required default arguments
9269/// to form a proper call to this constructor.
9270///
9271/// \returns true if an error occurred, false otherwise.
9272bool
9273Sema::CompleteConstructorCall(CXXConstructorDecl *Constructor,
9274                              MultiExprArg ArgsPtr,
9275                              SourceLocation Loc,
9276                              SmallVectorImpl<Expr*> &ConvertedArgs,
9277                              bool AllowExplicit) {
9278  // FIXME: This duplicates a lot of code from Sema::ConvertArgumentsForCall.
9279  unsigned NumArgs = ArgsPtr.size();
9280  Expr **Args = ArgsPtr.data();
9281
9282  const FunctionProtoType *Proto
9283    = Constructor->getType()->getAs<FunctionProtoType>();
9284  assert(Proto && "Constructor without a prototype?");
9285  unsigned NumArgsInProto = Proto->getNumArgs();
9286
9287  // If too few arguments are available, we'll fill in the rest with defaults.
9288  if (NumArgs < NumArgsInProto)
9289    ConvertedArgs.reserve(NumArgsInProto);
9290  else
9291    ConvertedArgs.reserve(NumArgs);
9292
9293  VariadicCallType CallType =
9294    Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply;
9295  SmallVector<Expr *, 8> AllArgs;
9296  bool Invalid = GatherArgumentsForCall(Loc, Constructor,
9297                                        Proto, 0, Args, NumArgs, AllArgs,
9298                                        CallType, AllowExplicit);
9299  ConvertedArgs.append(AllArgs.begin(), AllArgs.end());
9300
9301  DiagnoseSentinelCalls(Constructor, Loc, AllArgs.data(), AllArgs.size());
9302
9303  CheckConstructorCall(Constructor, AllArgs.data(), AllArgs.size(),
9304                       Proto, Loc);
9305
9306  return Invalid;
9307}
9308
9309static inline bool
9310CheckOperatorNewDeleteDeclarationScope(Sema &SemaRef,
9311                                       const FunctionDecl *FnDecl) {
9312  const DeclContext *DC = FnDecl->getDeclContext()->getRedeclContext();
9313  if (isa<NamespaceDecl>(DC)) {
9314    return SemaRef.Diag(FnDecl->getLocation(),
9315                        diag::err_operator_new_delete_declared_in_namespace)
9316      << FnDecl->getDeclName();
9317  }
9318
9319  if (isa<TranslationUnitDecl>(DC) &&
9320      FnDecl->getStorageClass() == SC_Static) {
9321    return SemaRef.Diag(FnDecl->getLocation(),
9322                        diag::err_operator_new_delete_declared_static)
9323      << FnDecl->getDeclName();
9324  }
9325
9326  return false;
9327}
9328
9329static inline bool
9330CheckOperatorNewDeleteTypes(Sema &SemaRef, const FunctionDecl *FnDecl,
9331                            CanQualType ExpectedResultType,
9332                            CanQualType ExpectedFirstParamType,
9333                            unsigned DependentParamTypeDiag,
9334                            unsigned InvalidParamTypeDiag) {
9335  QualType ResultType =
9336    FnDecl->getType()->getAs<FunctionType>()->getResultType();
9337
9338  // Check that the result type is not dependent.
9339  if (ResultType->isDependentType())
9340    return SemaRef.Diag(FnDecl->getLocation(),
9341                        diag::err_operator_new_delete_dependent_result_type)
9342    << FnDecl->getDeclName() << ExpectedResultType;
9343
9344  // Check that the result type is what we expect.
9345  if (SemaRef.Context.getCanonicalType(ResultType) != ExpectedResultType)
9346    return SemaRef.Diag(FnDecl->getLocation(),
9347                        diag::err_operator_new_delete_invalid_result_type)
9348    << FnDecl->getDeclName() << ExpectedResultType;
9349
9350  // A function template must have at least 2 parameters.
9351  if (FnDecl->getDescribedFunctionTemplate() && FnDecl->getNumParams() < 2)
9352    return SemaRef.Diag(FnDecl->getLocation(),
9353                      diag::err_operator_new_delete_template_too_few_parameters)
9354        << FnDecl->getDeclName();
9355
9356  // The function decl must have at least 1 parameter.
9357  if (FnDecl->getNumParams() == 0)
9358    return SemaRef.Diag(FnDecl->getLocation(),
9359                        diag::err_operator_new_delete_too_few_parameters)
9360      << FnDecl->getDeclName();
9361
9362  // Check the first parameter type is not dependent.
9363  QualType FirstParamType = FnDecl->getParamDecl(0)->getType();
9364  if (FirstParamType->isDependentType())
9365    return SemaRef.Diag(FnDecl->getLocation(), DependentParamTypeDiag)
9366      << FnDecl->getDeclName() << ExpectedFirstParamType;
9367
9368  // Check that the first parameter type is what we expect.
9369  if (SemaRef.Context.getCanonicalType(FirstParamType).getUnqualifiedType() !=
9370      ExpectedFirstParamType)
9371    return SemaRef.Diag(FnDecl->getLocation(), InvalidParamTypeDiag)
9372    << FnDecl->getDeclName() << ExpectedFirstParamType;
9373
9374  return false;
9375}
9376
9377static bool
9378CheckOperatorNewDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
9379  // C++ [basic.stc.dynamic.allocation]p1:
9380  //   A program is ill-formed if an allocation function is declared in a
9381  //   namespace scope other than global scope or declared static in global
9382  //   scope.
9383  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
9384    return true;
9385
9386  CanQualType SizeTy =
9387    SemaRef.Context.getCanonicalType(SemaRef.Context.getSizeType());
9388
9389  // C++ [basic.stc.dynamic.allocation]p1:
9390  //  The return type shall be void*. The first parameter shall have type
9391  //  std::size_t.
9392  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidPtrTy,
9393                                  SizeTy,
9394                                  diag::err_operator_new_dependent_param_type,
9395                                  diag::err_operator_new_param_type))
9396    return true;
9397
9398  // C++ [basic.stc.dynamic.allocation]p1:
9399  //  The first parameter shall not have an associated default argument.
9400  if (FnDecl->getParamDecl(0)->hasDefaultArg())
9401    return SemaRef.Diag(FnDecl->getLocation(),
9402                        diag::err_operator_new_default_arg)
9403      << FnDecl->getDeclName() << FnDecl->getParamDecl(0)->getDefaultArgRange();
9404
9405  return false;
9406}
9407
9408static bool
9409CheckOperatorDeleteDeclaration(Sema &SemaRef, FunctionDecl *FnDecl) {
9410  // C++ [basic.stc.dynamic.deallocation]p1:
9411  //   A program is ill-formed if deallocation functions are declared in a
9412  //   namespace scope other than global scope or declared static in global
9413  //   scope.
9414  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
9415    return true;
9416
9417  // C++ [basic.stc.dynamic.deallocation]p2:
9418  //   Each deallocation function shall return void and its first parameter
9419  //   shall be void*.
9420  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidTy,
9421                                  SemaRef.Context.VoidPtrTy,
9422                                 diag::err_operator_delete_dependent_param_type,
9423                                 diag::err_operator_delete_param_type))
9424    return true;
9425
9426  return false;
9427}
9428
9429/// CheckOverloadedOperatorDeclaration - Check whether the declaration
9430/// of this overloaded operator is well-formed. If so, returns false;
9431/// otherwise, emits appropriate diagnostics and returns true.
9432bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
9433  assert(FnDecl && FnDecl->isOverloadedOperator() &&
9434         "Expected an overloaded operator declaration");
9435
9436  OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
9437
9438  // C++ [over.oper]p5:
9439  //   The allocation and deallocation functions, operator new,
9440  //   operator new[], operator delete and operator delete[], are
9441  //   described completely in 3.7.3. The attributes and restrictions
9442  //   found in the rest of this subclause do not apply to them unless
9443  //   explicitly stated in 3.7.3.
9444  if (Op == OO_Delete || Op == OO_Array_Delete)
9445    return CheckOperatorDeleteDeclaration(*this, FnDecl);
9446
9447  if (Op == OO_New || Op == OO_Array_New)
9448    return CheckOperatorNewDeclaration(*this, FnDecl);
9449
9450  // C++ [over.oper]p6:
9451  //   An operator function shall either be a non-static member
9452  //   function or be a non-member function and have at least one
9453  //   parameter whose type is a class, a reference to a class, an
9454  //   enumeration, or a reference to an enumeration.
9455  if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) {
9456    if (MethodDecl->isStatic())
9457      return Diag(FnDecl->getLocation(),
9458                  diag::err_operator_overload_static) << FnDecl->getDeclName();
9459  } else {
9460    bool ClassOrEnumParam = false;
9461    for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
9462                                   ParamEnd = FnDecl->param_end();
9463         Param != ParamEnd; ++Param) {
9464      QualType ParamType = (*Param)->getType().getNonReferenceType();
9465      if (ParamType->isDependentType() || ParamType->isRecordType() ||
9466          ParamType->isEnumeralType()) {
9467        ClassOrEnumParam = true;
9468        break;
9469      }
9470    }
9471
9472    if (!ClassOrEnumParam)
9473      return Diag(FnDecl->getLocation(),
9474                  diag::err_operator_overload_needs_class_or_enum)
9475        << FnDecl->getDeclName();
9476  }
9477
9478  // C++ [over.oper]p8:
9479  //   An operator function cannot have default arguments (8.3.6),
9480  //   except where explicitly stated below.
9481  //
9482  // Only the function-call operator allows default arguments
9483  // (C++ [over.call]p1).
9484  if (Op != OO_Call) {
9485    for (FunctionDecl::param_iterator Param = FnDecl->param_begin();
9486         Param != FnDecl->param_end(); ++Param) {
9487      if ((*Param)->hasDefaultArg())
9488        return Diag((*Param)->getLocation(),
9489                    diag::err_operator_overload_default_arg)
9490          << FnDecl->getDeclName() << (*Param)->getDefaultArgRange();
9491    }
9492  }
9493
9494  static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
9495    { false, false, false }
9496#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
9497    , { Unary, Binary, MemberOnly }
9498#include "clang/Basic/OperatorKinds.def"
9499  };
9500
9501  bool CanBeUnaryOperator = OperatorUses[Op][0];
9502  bool CanBeBinaryOperator = OperatorUses[Op][1];
9503  bool MustBeMemberOperator = OperatorUses[Op][2];
9504
9505  // C++ [over.oper]p8:
9506  //   [...] Operator functions cannot have more or fewer parameters
9507  //   than the number required for the corresponding operator, as
9508  //   described in the rest of this subclause.
9509  unsigned NumParams = FnDecl->getNumParams()
9510                     + (isa<CXXMethodDecl>(FnDecl)? 1 : 0);
9511  if (Op != OO_Call &&
9512      ((NumParams == 1 && !CanBeUnaryOperator) ||
9513       (NumParams == 2 && !CanBeBinaryOperator) ||
9514       (NumParams < 1) || (NumParams > 2))) {
9515    // We have the wrong number of parameters.
9516    unsigned ErrorKind;
9517    if (CanBeUnaryOperator && CanBeBinaryOperator) {
9518      ErrorKind = 2;  // 2 -> unary or binary.
9519    } else if (CanBeUnaryOperator) {
9520      ErrorKind = 0;  // 0 -> unary
9521    } else {
9522      assert(CanBeBinaryOperator &&
9523             "All non-call overloaded operators are unary or binary!");
9524      ErrorKind = 1;  // 1 -> binary
9525    }
9526
9527    return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be)
9528      << FnDecl->getDeclName() << NumParams << ErrorKind;
9529  }
9530
9531  // Overloaded operators other than operator() cannot be variadic.
9532  if (Op != OO_Call &&
9533      FnDecl->getType()->getAs<FunctionProtoType>()->isVariadic()) {
9534    return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
9535      << FnDecl->getDeclName();
9536  }
9537
9538  // Some operators must be non-static member functions.
9539  if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) {
9540    return Diag(FnDecl->getLocation(),
9541                diag::err_operator_overload_must_be_member)
9542      << FnDecl->getDeclName();
9543  }
9544
9545  // C++ [over.inc]p1:
9546  //   The user-defined function called operator++ implements the
9547  //   prefix and postfix ++ operator. If this function is a member
9548  //   function with no parameters, or a non-member function with one
9549  //   parameter of class or enumeration type, it defines the prefix
9550  //   increment operator ++ for objects of that type. If the function
9551  //   is a member function with one parameter (which shall be of type
9552  //   int) or a non-member function with two parameters (the second
9553  //   of which shall be of type int), it defines the postfix
9554  //   increment operator ++ for objects of that type.
9555  if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
9556    ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
9557    bool ParamIsInt = false;
9558    if (const BuiltinType *BT = LastParam->getType()->getAs<BuiltinType>())
9559      ParamIsInt = BT->getKind() == BuiltinType::Int;
9560
9561    if (!ParamIsInt)
9562      return Diag(LastParam->getLocation(),
9563                  diag::err_operator_overload_post_incdec_must_be_int)
9564        << LastParam->getType() << (Op == OO_MinusMinus);
9565  }
9566
9567  return false;
9568}
9569
9570/// CheckLiteralOperatorDeclaration - Check whether the declaration
9571/// of this literal operator function is well-formed. If so, returns
9572/// false; otherwise, emits appropriate diagnostics and returns true.
9573bool Sema::CheckLiteralOperatorDeclaration(FunctionDecl *FnDecl) {
9574  if (isa<CXXMethodDecl>(FnDecl)) {
9575    Diag(FnDecl->getLocation(), diag::err_literal_operator_outside_namespace)
9576      << FnDecl->getDeclName();
9577    return true;
9578  }
9579
9580  if (FnDecl->isExternC()) {
9581    Diag(FnDecl->getLocation(), diag::err_literal_operator_extern_c);
9582    return true;
9583  }
9584
9585  bool Valid = false;
9586
9587  // This might be the definition of a literal operator template.
9588  FunctionTemplateDecl *TpDecl = FnDecl->getDescribedFunctionTemplate();
9589  // This might be a specialization of a literal operator template.
9590  if (!TpDecl)
9591    TpDecl = FnDecl->getPrimaryTemplate();
9592
9593  // template <char...> type operator "" name() is the only valid template
9594  // signature, and the only valid signature with no parameters.
9595  if (TpDecl) {
9596    if (FnDecl->param_size() == 0) {
9597      // Must have only one template parameter
9598      TemplateParameterList *Params = TpDecl->getTemplateParameters();
9599      if (Params->size() == 1) {
9600        NonTypeTemplateParmDecl *PmDecl =
9601          dyn_cast<NonTypeTemplateParmDecl>(Params->getParam(0));
9602
9603        // The template parameter must be a char parameter pack.
9604        if (PmDecl && PmDecl->isTemplateParameterPack() &&
9605            Context.hasSameType(PmDecl->getType(), Context.CharTy))
9606          Valid = true;
9607      }
9608    }
9609  } else if (FnDecl->param_size()) {
9610    // Check the first parameter
9611    FunctionDecl::param_iterator Param = FnDecl->param_begin();
9612
9613    QualType T = (*Param)->getType().getUnqualifiedType();
9614
9615    // unsigned long long int, long double, and any character type are allowed
9616    // as the only parameters.
9617    if (Context.hasSameType(T, Context.UnsignedLongLongTy) ||
9618        Context.hasSameType(T, Context.LongDoubleTy) ||
9619        Context.hasSameType(T, Context.CharTy) ||
9620        Context.hasSameType(T, Context.WCharTy) ||
9621        Context.hasSameType(T, Context.Char16Ty) ||
9622        Context.hasSameType(T, Context.Char32Ty)) {
9623      if (++Param == FnDecl->param_end())
9624        Valid = true;
9625      goto FinishedParams;
9626    }
9627
9628    // Otherwise it must be a pointer to const; let's strip those qualifiers.
9629    const PointerType *PT = T->getAs<PointerType>();
9630    if (!PT)
9631      goto FinishedParams;
9632    T = PT->getPointeeType();
9633    if (!T.isConstQualified() || T.isVolatileQualified())
9634      goto FinishedParams;
9635    T = T.getUnqualifiedType();
9636
9637    // Move on to the second parameter;
9638    ++Param;
9639
9640    // If there is no second parameter, the first must be a const char *
9641    if (Param == FnDecl->param_end()) {
9642      if (Context.hasSameType(T, Context.CharTy))
9643        Valid = true;
9644      goto FinishedParams;
9645    }
9646
9647    // const char *, const wchar_t*, const char16_t*, and const char32_t*
9648    // are allowed as the first parameter to a two-parameter function
9649    if (!(Context.hasSameType(T, Context.CharTy) ||
9650          Context.hasSameType(T, Context.WCharTy) ||
9651          Context.hasSameType(T, Context.Char16Ty) ||
9652          Context.hasSameType(T, Context.Char32Ty)))
9653      goto FinishedParams;
9654
9655    // The second and final parameter must be an std::size_t
9656    T = (*Param)->getType().getUnqualifiedType();
9657    if (Context.hasSameType(T, Context.getSizeType()) &&
9658        ++Param == FnDecl->param_end())
9659      Valid = true;
9660  }
9661
9662  // FIXME: This diagnostic is absolutely terrible.
9663FinishedParams:
9664  if (!Valid) {
9665    Diag(FnDecl->getLocation(), diag::err_literal_operator_params)
9666      << FnDecl->getDeclName();
9667    return true;
9668  }
9669
9670  // A parameter-declaration-clause containing a default argument is not
9671  // equivalent to any of the permitted forms.
9672  for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
9673                                    ParamEnd = FnDecl->param_end();
9674       Param != ParamEnd; ++Param) {
9675    if ((*Param)->hasDefaultArg()) {
9676      Diag((*Param)->getDefaultArgRange().getBegin(),
9677           diag::err_literal_operator_default_argument)
9678        << (*Param)->getDefaultArgRange();
9679      break;
9680    }
9681  }
9682
9683  StringRef LiteralName
9684    = FnDecl->getDeclName().getCXXLiteralIdentifier()->getName();
9685  if (LiteralName[0] != '_') {
9686    // C++11 [usrlit.suffix]p1:
9687    //   Literal suffix identifiers that do not start with an underscore
9688    //   are reserved for future standardization.
9689    Diag(FnDecl->getLocation(), diag::warn_user_literal_reserved);
9690  }
9691
9692  return false;
9693}
9694
9695/// ActOnStartLinkageSpecification - Parsed the beginning of a C++
9696/// linkage specification, including the language and (if present)
9697/// the '{'. ExternLoc is the location of the 'extern', LangLoc is
9698/// the location of the language string literal, which is provided
9699/// by Lang/StrSize. LBraceLoc, if valid, provides the location of
9700/// the '{' brace. Otherwise, this linkage specification does not
9701/// have any braces.
9702Decl *Sema::ActOnStartLinkageSpecification(Scope *S, SourceLocation ExternLoc,
9703                                           SourceLocation LangLoc,
9704                                           StringRef Lang,
9705                                           SourceLocation LBraceLoc) {
9706  LinkageSpecDecl::LanguageIDs Language;
9707  if (Lang == "\"C\"")
9708    Language = LinkageSpecDecl::lang_c;
9709  else if (Lang == "\"C++\"")
9710    Language = LinkageSpecDecl::lang_cxx;
9711  else {
9712    Diag(LangLoc, diag::err_bad_language);
9713    return 0;
9714  }
9715
9716  // FIXME: Add all the various semantics of linkage specifications
9717
9718  LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext,
9719                                               ExternLoc, LangLoc, Language);
9720  CurContext->addDecl(D);
9721  PushDeclContext(S, D);
9722  return D;
9723}
9724
9725/// ActOnFinishLinkageSpecification - Complete the definition of
9726/// the C++ linkage specification LinkageSpec. If RBraceLoc is
9727/// valid, it's the position of the closing '}' brace in a linkage
9728/// specification that uses braces.
9729Decl *Sema::ActOnFinishLinkageSpecification(Scope *S,
9730                                            Decl *LinkageSpec,
9731                                            SourceLocation RBraceLoc) {
9732  if (LinkageSpec) {
9733    if (RBraceLoc.isValid()) {
9734      LinkageSpecDecl* LSDecl = cast<LinkageSpecDecl>(LinkageSpec);
9735      LSDecl->setRBraceLoc(RBraceLoc);
9736    }
9737    PopDeclContext();
9738  }
9739  return LinkageSpec;
9740}
9741
9742/// \brief Perform semantic analysis for the variable declaration that
9743/// occurs within a C++ catch clause, returning the newly-created
9744/// variable.
9745VarDecl *Sema::BuildExceptionDeclaration(Scope *S,
9746                                         TypeSourceInfo *TInfo,
9747                                         SourceLocation StartLoc,
9748                                         SourceLocation Loc,
9749                                         IdentifierInfo *Name) {
9750  bool Invalid = false;
9751  QualType ExDeclType = TInfo->getType();
9752
9753  // Arrays and functions decay.
9754  if (ExDeclType->isArrayType())
9755    ExDeclType = Context.getArrayDecayedType(ExDeclType);
9756  else if (ExDeclType->isFunctionType())
9757    ExDeclType = Context.getPointerType(ExDeclType);
9758
9759  // C++ 15.3p1: The exception-declaration shall not denote an incomplete type.
9760  // The exception-declaration shall not denote a pointer or reference to an
9761  // incomplete type, other than [cv] void*.
9762  // N2844 forbids rvalue references.
9763  if (!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) {
9764    Diag(Loc, diag::err_catch_rvalue_ref);
9765    Invalid = true;
9766  }
9767
9768  QualType BaseType = ExDeclType;
9769  int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference
9770  unsigned DK = diag::err_catch_incomplete;
9771  if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
9772    BaseType = Ptr->getPointeeType();
9773    Mode = 1;
9774    DK = diag::err_catch_incomplete_ptr;
9775  } else if (const ReferenceType *Ref = BaseType->getAs<ReferenceType>()) {
9776    // For the purpose of error recovery, we treat rvalue refs like lvalue refs.
9777    BaseType = Ref->getPointeeType();
9778    Mode = 2;
9779    DK = diag::err_catch_incomplete_ref;
9780  }
9781  if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) &&
9782      !BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK))
9783    Invalid = true;
9784
9785  if (!Invalid && !ExDeclType->isDependentType() &&
9786      RequireNonAbstractType(Loc, ExDeclType,
9787                             diag::err_abstract_type_in_decl,
9788                             AbstractVariableType))
9789    Invalid = true;
9790
9791  // Only the non-fragile NeXT runtime currently supports C++ catches
9792  // of ObjC types, and no runtime supports catching ObjC types by value.
9793  if (!Invalid && getLangOpts().ObjC1) {
9794    QualType T = ExDeclType;
9795    if (const ReferenceType *RT = T->getAs<ReferenceType>())
9796      T = RT->getPointeeType();
9797
9798    if (T->isObjCObjectType()) {
9799      Diag(Loc, diag::err_objc_object_catch);
9800      Invalid = true;
9801    } else if (T->isObjCObjectPointerType()) {
9802      // FIXME: should this be a test for macosx-fragile specifically?
9803      if (getLangOpts().ObjCRuntime.isFragile())
9804        Diag(Loc, diag::warn_objc_pointer_cxx_catch_fragile);
9805    }
9806  }
9807
9808  VarDecl *ExDecl = VarDecl::Create(Context, CurContext, StartLoc, Loc, Name,
9809                                    ExDeclType, TInfo, SC_None, SC_None);
9810  ExDecl->setExceptionVariable(true);
9811
9812  // In ARC, infer 'retaining' for variables of retainable type.
9813  if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(ExDecl))
9814    Invalid = true;
9815
9816  if (!Invalid && !ExDeclType->isDependentType()) {
9817    if (const RecordType *recordType = ExDeclType->getAs<RecordType>()) {
9818      // C++ [except.handle]p16:
9819      //   The object declared in an exception-declaration or, if the
9820      //   exception-declaration does not specify a name, a temporary (12.2) is
9821      //   copy-initialized (8.5) from the exception object. [...]
9822      //   The object is destroyed when the handler exits, after the destruction
9823      //   of any automatic objects initialized within the handler.
9824      //
9825      // We just pretend to initialize the object with itself, then make sure
9826      // it can be destroyed later.
9827      QualType initType = ExDeclType;
9828
9829      InitializedEntity entity =
9830        InitializedEntity::InitializeVariable(ExDecl);
9831      InitializationKind initKind =
9832        InitializationKind::CreateCopy(Loc, SourceLocation());
9833
9834      Expr *opaqueValue =
9835        new (Context) OpaqueValueExpr(Loc, initType, VK_LValue, OK_Ordinary);
9836      InitializationSequence sequence(*this, entity, initKind, &opaqueValue, 1);
9837      ExprResult result = sequence.Perform(*this, entity, initKind,
9838                                           MultiExprArg(&opaqueValue, 1));
9839      if (result.isInvalid())
9840        Invalid = true;
9841      else {
9842        // If the constructor used was non-trivial, set this as the
9843        // "initializer".
9844        CXXConstructExpr *construct = cast<CXXConstructExpr>(result.take());
9845        if (!construct->getConstructor()->isTrivial()) {
9846          Expr *init = MaybeCreateExprWithCleanups(construct);
9847          ExDecl->setInit(init);
9848        }
9849
9850        // And make sure it's destructable.
9851        FinalizeVarWithDestructor(ExDecl, recordType);
9852      }
9853    }
9854  }
9855
9856  if (Invalid)
9857    ExDecl->setInvalidDecl();
9858
9859  return ExDecl;
9860}
9861
9862/// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch
9863/// handler.
9864Decl *Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) {
9865  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
9866  bool Invalid = D.isInvalidType();
9867
9868  // Check for unexpanded parameter packs.
9869  if (TInfo && DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
9870                                               UPPC_ExceptionType)) {
9871    TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy,
9872                                             D.getIdentifierLoc());
9873    Invalid = true;
9874  }
9875
9876  IdentifierInfo *II = D.getIdentifier();
9877  if (NamedDecl *PrevDecl = LookupSingleName(S, II, D.getIdentifierLoc(),
9878                                             LookupOrdinaryName,
9879                                             ForRedeclaration)) {
9880    // The scope should be freshly made just for us. There is just no way
9881    // it contains any previous declaration.
9882    assert(!S->isDeclScope(PrevDecl));
9883    if (PrevDecl->isTemplateParameter()) {
9884      // Maybe we will complain about the shadowed template parameter.
9885      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
9886      PrevDecl = 0;
9887    }
9888  }
9889
9890  if (D.getCXXScopeSpec().isSet() && !Invalid) {
9891    Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator)
9892      << D.getCXXScopeSpec().getRange();
9893    Invalid = true;
9894  }
9895
9896  VarDecl *ExDecl = BuildExceptionDeclaration(S, TInfo,
9897                                              D.getLocStart(),
9898                                              D.getIdentifierLoc(),
9899                                              D.getIdentifier());
9900  if (Invalid)
9901    ExDecl->setInvalidDecl();
9902
9903  // Add the exception declaration into this scope.
9904  if (II)
9905    PushOnScopeChains(ExDecl, S);
9906  else
9907    CurContext->addDecl(ExDecl);
9908
9909  ProcessDeclAttributes(S, ExDecl, D);
9910  return ExDecl;
9911}
9912
9913Decl *Sema::ActOnStaticAssertDeclaration(SourceLocation StaticAssertLoc,
9914                                         Expr *AssertExpr,
9915                                         Expr *AssertMessageExpr,
9916                                         SourceLocation RParenLoc) {
9917  StringLiteral *AssertMessage = cast<StringLiteral>(AssertMessageExpr);
9918
9919  if (DiagnoseUnexpandedParameterPack(AssertExpr, UPPC_StaticAssertExpression))
9920    return 0;
9921
9922  return BuildStaticAssertDeclaration(StaticAssertLoc, AssertExpr,
9923                                      AssertMessage, RParenLoc, false);
9924}
9925
9926Decl *Sema::BuildStaticAssertDeclaration(SourceLocation StaticAssertLoc,
9927                                         Expr *AssertExpr,
9928                                         StringLiteral *AssertMessage,
9929                                         SourceLocation RParenLoc,
9930                                         bool Failed) {
9931  if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent() &&
9932      !Failed) {
9933    // In a static_assert-declaration, the constant-expression shall be a
9934    // constant expression that can be contextually converted to bool.
9935    ExprResult Converted = PerformContextuallyConvertToBool(AssertExpr);
9936    if (Converted.isInvalid())
9937      Failed = true;
9938
9939    llvm::APSInt Cond;
9940    if (!Failed && VerifyIntegerConstantExpression(Converted.get(), &Cond,
9941          diag::err_static_assert_expression_is_not_constant,
9942          /*AllowFold=*/false).isInvalid())
9943      Failed = true;
9944
9945    if (!Failed && !Cond) {
9946      llvm::SmallString<256> MsgBuffer;
9947      llvm::raw_svector_ostream Msg(MsgBuffer);
9948      AssertMessage->printPretty(Msg, 0, getPrintingPolicy());
9949      Diag(StaticAssertLoc, diag::err_static_assert_failed)
9950        << Msg.str() << AssertExpr->getSourceRange();
9951      Failed = true;
9952    }
9953  }
9954
9955  Decl *Decl = StaticAssertDecl::Create(Context, CurContext, StaticAssertLoc,
9956                                        AssertExpr, AssertMessage, RParenLoc,
9957                                        Failed);
9958
9959  CurContext->addDecl(Decl);
9960  return Decl;
9961}
9962
9963/// \brief Perform semantic analysis of the given friend type declaration.
9964///
9965/// \returns A friend declaration that.
9966FriendDecl *Sema::CheckFriendTypeDecl(SourceLocation LocStart,
9967                                      SourceLocation FriendLoc,
9968                                      TypeSourceInfo *TSInfo) {
9969  assert(TSInfo && "NULL TypeSourceInfo for friend type declaration");
9970
9971  QualType T = TSInfo->getType();
9972  SourceRange TypeRange = TSInfo->getTypeLoc().getLocalSourceRange();
9973
9974  // C++03 [class.friend]p2:
9975  //   An elaborated-type-specifier shall be used in a friend declaration
9976  //   for a class.*
9977  //
9978  //   * The class-key of the elaborated-type-specifier is required.
9979  if (!ActiveTemplateInstantiations.empty()) {
9980    // Do not complain about the form of friend template types during
9981    // template instantiation; we will already have complained when the
9982    // template was declared.
9983  } else if (!T->isElaboratedTypeSpecifier()) {
9984    // If we evaluated the type to a record type, suggest putting
9985    // a tag in front.
9986    if (const RecordType *RT = T->getAs<RecordType>()) {
9987      RecordDecl *RD = RT->getDecl();
9988
9989      std::string InsertionText = std::string(" ") + RD->getKindName();
9990
9991      Diag(TypeRange.getBegin(),
9992           getLangOpts().CPlusPlus0x ?
9993             diag::warn_cxx98_compat_unelaborated_friend_type :
9994             diag::ext_unelaborated_friend_type)
9995        << (unsigned) RD->getTagKind()
9996        << T
9997        << FixItHint::CreateInsertion(PP.getLocForEndOfToken(FriendLoc),
9998                                      InsertionText);
9999    } else {
10000      Diag(FriendLoc,
10001           getLangOpts().CPlusPlus0x ?
10002             diag::warn_cxx98_compat_nonclass_type_friend :
10003             diag::ext_nonclass_type_friend)
10004        << T
10005        << TypeRange;
10006    }
10007  } else if (T->getAs<EnumType>()) {
10008    Diag(FriendLoc,
10009         getLangOpts().CPlusPlus0x ?
10010           diag::warn_cxx98_compat_enum_friend :
10011           diag::ext_enum_friend)
10012      << T
10013      << TypeRange;
10014  }
10015
10016  // C++11 [class.friend]p3:
10017  //   A friend declaration that does not declare a function shall have one
10018  //   of the following forms:
10019  //     friend elaborated-type-specifier ;
10020  //     friend simple-type-specifier ;
10021  //     friend typename-specifier ;
10022  if (getLangOpts().CPlusPlus0x && LocStart != FriendLoc)
10023    Diag(FriendLoc, diag::err_friend_not_first_in_declaration) << T;
10024
10025  //   If the type specifier in a friend declaration designates a (possibly
10026  //   cv-qualified) class type, that class is declared as a friend; otherwise,
10027  //   the friend declaration is ignored.
10028  return FriendDecl::Create(Context, CurContext, LocStart, TSInfo, FriendLoc);
10029}
10030
10031/// Handle a friend tag declaration where the scope specifier was
10032/// templated.
10033Decl *Sema::ActOnTemplatedFriendTag(Scope *S, SourceLocation FriendLoc,
10034                                    unsigned TagSpec, SourceLocation TagLoc,
10035                                    CXXScopeSpec &SS,
10036                                    IdentifierInfo *Name, SourceLocation NameLoc,
10037                                    AttributeList *Attr,
10038                                    MultiTemplateParamsArg TempParamLists) {
10039  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
10040
10041  bool isExplicitSpecialization = false;
10042  bool Invalid = false;
10043
10044  if (TemplateParameterList *TemplateParams
10045        = MatchTemplateParametersToScopeSpecifier(TagLoc, NameLoc, SS,
10046                                                  TempParamLists.data(),
10047                                                  TempParamLists.size(),
10048                                                  /*friend*/ true,
10049                                                  isExplicitSpecialization,
10050                                                  Invalid)) {
10051    if (TemplateParams->size() > 0) {
10052      // This is a declaration of a class template.
10053      if (Invalid)
10054        return 0;
10055
10056      return CheckClassTemplate(S, TagSpec, TUK_Friend, TagLoc,
10057                                SS, Name, NameLoc, Attr,
10058                                TemplateParams, AS_public,
10059                                /*ModulePrivateLoc=*/SourceLocation(),
10060                                TempParamLists.size() - 1,
10061                                TempParamLists.data()).take();
10062    } else {
10063      // The "template<>" header is extraneous.
10064      Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
10065        << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
10066      isExplicitSpecialization = true;
10067    }
10068  }
10069
10070  if (Invalid) return 0;
10071
10072  bool isAllExplicitSpecializations = true;
10073  for (unsigned I = TempParamLists.size(); I-- > 0; ) {
10074    if (TempParamLists[I]->size()) {
10075      isAllExplicitSpecializations = false;
10076      break;
10077    }
10078  }
10079
10080  // FIXME: don't ignore attributes.
10081
10082  // If it's explicit specializations all the way down, just forget
10083  // about the template header and build an appropriate non-templated
10084  // friend.  TODO: for source fidelity, remember the headers.
10085  if (isAllExplicitSpecializations) {
10086    if (SS.isEmpty()) {
10087      bool Owned = false;
10088      bool IsDependent = false;
10089      return ActOnTag(S, TagSpec, TUK_Friend, TagLoc, SS, Name, NameLoc,
10090                      Attr, AS_public,
10091                      /*ModulePrivateLoc=*/SourceLocation(),
10092                      MultiTemplateParamsArg(), Owned, IsDependent,
10093                      /*ScopedEnumKWLoc=*/SourceLocation(),
10094                      /*ScopedEnumUsesClassTag=*/false,
10095                      /*UnderlyingType=*/TypeResult());
10096    }
10097
10098    NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
10099    ElaboratedTypeKeyword Keyword
10100      = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
10101    QualType T = CheckTypenameType(Keyword, TagLoc, QualifierLoc,
10102                                   *Name, NameLoc);
10103    if (T.isNull())
10104      return 0;
10105
10106    TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
10107    if (isa<DependentNameType>(T)) {
10108      DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc());
10109      TL.setElaboratedKeywordLoc(TagLoc);
10110      TL.setQualifierLoc(QualifierLoc);
10111      TL.setNameLoc(NameLoc);
10112    } else {
10113      ElaboratedTypeLoc TL = cast<ElaboratedTypeLoc>(TSI->getTypeLoc());
10114      TL.setElaboratedKeywordLoc(TagLoc);
10115      TL.setQualifierLoc(QualifierLoc);
10116      cast<TypeSpecTypeLoc>(TL.getNamedTypeLoc()).setNameLoc(NameLoc);
10117    }
10118
10119    FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
10120                                            TSI, FriendLoc);
10121    Friend->setAccess(AS_public);
10122    CurContext->addDecl(Friend);
10123    return Friend;
10124  }
10125
10126  assert(SS.isNotEmpty() && "valid templated tag with no SS and no direct?");
10127
10128
10129
10130  // Handle the case of a templated-scope friend class.  e.g.
10131  //   template <class T> class A<T>::B;
10132  // FIXME: we don't support these right now.
10133  ElaboratedTypeKeyword ETK = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
10134  QualType T = Context.getDependentNameType(ETK, SS.getScopeRep(), Name);
10135  TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
10136  DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc());
10137  TL.setElaboratedKeywordLoc(TagLoc);
10138  TL.setQualifierLoc(SS.getWithLocInContext(Context));
10139  TL.setNameLoc(NameLoc);
10140
10141  FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
10142                                          TSI, FriendLoc);
10143  Friend->setAccess(AS_public);
10144  Friend->setUnsupportedFriend(true);
10145  CurContext->addDecl(Friend);
10146  return Friend;
10147}
10148
10149
10150/// Handle a friend type declaration.  This works in tandem with
10151/// ActOnTag.
10152///
10153/// Notes on friend class templates:
10154///
10155/// We generally treat friend class declarations as if they were
10156/// declaring a class.  So, for example, the elaborated type specifier
10157/// in a friend declaration is required to obey the restrictions of a
10158/// class-head (i.e. no typedefs in the scope chain), template
10159/// parameters are required to match up with simple template-ids, &c.
10160/// However, unlike when declaring a template specialization, it's
10161/// okay to refer to a template specialization without an empty
10162/// template parameter declaration, e.g.
10163///   friend class A<T>::B<unsigned>;
10164/// We permit this as a special case; if there are any template
10165/// parameters present at all, require proper matching, i.e.
10166///   template <> template \<class T> friend class A<int>::B;
10167Decl *Sema::ActOnFriendTypeDecl(Scope *S, const DeclSpec &DS,
10168                                MultiTemplateParamsArg TempParams) {
10169  SourceLocation Loc = DS.getLocStart();
10170
10171  assert(DS.isFriendSpecified());
10172  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
10173
10174  // Try to convert the decl specifier to a type.  This works for
10175  // friend templates because ActOnTag never produces a ClassTemplateDecl
10176  // for a TUK_Friend.
10177  Declarator TheDeclarator(DS, Declarator::MemberContext);
10178  TypeSourceInfo *TSI = GetTypeForDeclarator(TheDeclarator, S);
10179  QualType T = TSI->getType();
10180  if (TheDeclarator.isInvalidType())
10181    return 0;
10182
10183  if (DiagnoseUnexpandedParameterPack(Loc, TSI, UPPC_FriendDeclaration))
10184    return 0;
10185
10186  // This is definitely an error in C++98.  It's probably meant to
10187  // be forbidden in C++0x, too, but the specification is just
10188  // poorly written.
10189  //
10190  // The problem is with declarations like the following:
10191  //   template <T> friend A<T>::foo;
10192  // where deciding whether a class C is a friend or not now hinges
10193  // on whether there exists an instantiation of A that causes
10194  // 'foo' to equal C.  There are restrictions on class-heads
10195  // (which we declare (by fiat) elaborated friend declarations to
10196  // be) that makes this tractable.
10197  //
10198  // FIXME: handle "template <> friend class A<T>;", which
10199  // is possibly well-formed?  Who even knows?
10200  if (TempParams.size() && !T->isElaboratedTypeSpecifier()) {
10201    Diag(Loc, diag::err_tagless_friend_type_template)
10202      << DS.getSourceRange();
10203    return 0;
10204  }
10205
10206  // C++98 [class.friend]p1: A friend of a class is a function
10207  //   or class that is not a member of the class . . .
10208  // This is fixed in DR77, which just barely didn't make the C++03
10209  // deadline.  It's also a very silly restriction that seriously
10210  // affects inner classes and which nobody else seems to implement;
10211  // thus we never diagnose it, not even in -pedantic.
10212  //
10213  // But note that we could warn about it: it's always useless to
10214  // friend one of your own members (it's not, however, worthless to
10215  // friend a member of an arbitrary specialization of your template).
10216
10217  Decl *D;
10218  if (unsigned NumTempParamLists = TempParams.size())
10219    D = FriendTemplateDecl::Create(Context, CurContext, Loc,
10220                                   NumTempParamLists,
10221                                   TempParams.data(),
10222                                   TSI,
10223                                   DS.getFriendSpecLoc());
10224  else
10225    D = CheckFriendTypeDecl(Loc, DS.getFriendSpecLoc(), TSI);
10226
10227  if (!D)
10228    return 0;
10229
10230  D->setAccess(AS_public);
10231  CurContext->addDecl(D);
10232
10233  return D;
10234}
10235
10236Decl *Sema::ActOnFriendFunctionDecl(Scope *S, Declarator &D,
10237                                    MultiTemplateParamsArg TemplateParams) {
10238  const DeclSpec &DS = D.getDeclSpec();
10239
10240  assert(DS.isFriendSpecified());
10241  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
10242
10243  SourceLocation Loc = D.getIdentifierLoc();
10244  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
10245
10246  // C++ [class.friend]p1
10247  //   A friend of a class is a function or class....
10248  // Note that this sees through typedefs, which is intended.
10249  // It *doesn't* see through dependent types, which is correct
10250  // according to [temp.arg.type]p3:
10251  //   If a declaration acquires a function type through a
10252  //   type dependent on a template-parameter and this causes
10253  //   a declaration that does not use the syntactic form of a
10254  //   function declarator to have a function type, the program
10255  //   is ill-formed.
10256  if (!TInfo->getType()->isFunctionType()) {
10257    Diag(Loc, diag::err_unexpected_friend);
10258
10259    // It might be worthwhile to try to recover by creating an
10260    // appropriate declaration.
10261    return 0;
10262  }
10263
10264  // C++ [namespace.memdef]p3
10265  //  - If a friend declaration in a non-local class first declares a
10266  //    class or function, the friend class or function is a member
10267  //    of the innermost enclosing namespace.
10268  //  - The name of the friend is not found by simple name lookup
10269  //    until a matching declaration is provided in that namespace
10270  //    scope (either before or after the class declaration granting
10271  //    friendship).
10272  //  - If a friend function is called, its name may be found by the
10273  //    name lookup that considers functions from namespaces and
10274  //    classes associated with the types of the function arguments.
10275  //  - When looking for a prior declaration of a class or a function
10276  //    declared as a friend, scopes outside the innermost enclosing
10277  //    namespace scope are not considered.
10278
10279  CXXScopeSpec &SS = D.getCXXScopeSpec();
10280  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
10281  DeclarationName Name = NameInfo.getName();
10282  assert(Name);
10283
10284  // Check for unexpanded parameter packs.
10285  if (DiagnoseUnexpandedParameterPack(Loc, TInfo, UPPC_FriendDeclaration) ||
10286      DiagnoseUnexpandedParameterPack(NameInfo, UPPC_FriendDeclaration) ||
10287      DiagnoseUnexpandedParameterPack(SS, UPPC_FriendDeclaration))
10288    return 0;
10289
10290  // The context we found the declaration in, or in which we should
10291  // create the declaration.
10292  DeclContext *DC;
10293  Scope *DCScope = S;
10294  LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
10295                        ForRedeclaration);
10296
10297  // FIXME: there are different rules in local classes
10298
10299  // There are four cases here.
10300  //   - There's no scope specifier, in which case we just go to the
10301  //     appropriate scope and look for a function or function template
10302  //     there as appropriate.
10303  // Recover from invalid scope qualifiers as if they just weren't there.
10304  if (SS.isInvalid() || !SS.isSet()) {
10305    // C++0x [namespace.memdef]p3:
10306    //   If the name in a friend declaration is neither qualified nor
10307    //   a template-id and the declaration is a function or an
10308    //   elaborated-type-specifier, the lookup to determine whether
10309    //   the entity has been previously declared shall not consider
10310    //   any scopes outside the innermost enclosing namespace.
10311    // C++0x [class.friend]p11:
10312    //   If a friend declaration appears in a local class and the name
10313    //   specified is an unqualified name, a prior declaration is
10314    //   looked up without considering scopes that are outside the
10315    //   innermost enclosing non-class scope. For a friend function
10316    //   declaration, if there is no prior declaration, the program is
10317    //   ill-formed.
10318    bool isLocal = cast<CXXRecordDecl>(CurContext)->isLocalClass();
10319    bool isTemplateId = D.getName().getKind() == UnqualifiedId::IK_TemplateId;
10320
10321    // Find the appropriate context according to the above.
10322    DC = CurContext;
10323    while (true) {
10324      // Skip class contexts.  If someone can cite chapter and verse
10325      // for this behavior, that would be nice --- it's what GCC and
10326      // EDG do, and it seems like a reasonable intent, but the spec
10327      // really only says that checks for unqualified existing
10328      // declarations should stop at the nearest enclosing namespace,
10329      // not that they should only consider the nearest enclosing
10330      // namespace.
10331      while (DC->isRecord() || DC->isTransparentContext())
10332        DC = DC->getParent();
10333
10334      LookupQualifiedName(Previous, DC);
10335
10336      // TODO: decide what we think about using declarations.
10337      if (isLocal || !Previous.empty())
10338        break;
10339
10340      if (isTemplateId) {
10341        if (isa<TranslationUnitDecl>(DC)) break;
10342      } else {
10343        if (DC->isFileContext()) break;
10344      }
10345      DC = DC->getParent();
10346    }
10347
10348    // C++ [class.friend]p1: A friend of a class is a function or
10349    //   class that is not a member of the class . . .
10350    // C++11 changes this for both friend types and functions.
10351    // Most C++ 98 compilers do seem to give an error here, so
10352    // we do, too.
10353    if (!Previous.empty() && DC->Equals(CurContext))
10354      Diag(DS.getFriendSpecLoc(),
10355           getLangOpts().CPlusPlus0x ?
10356             diag::warn_cxx98_compat_friend_is_member :
10357             diag::err_friend_is_member);
10358
10359    DCScope = getScopeForDeclContext(S, DC);
10360
10361    // C++ [class.friend]p6:
10362    //   A function can be defined in a friend declaration of a class if and
10363    //   only if the class is a non-local class (9.8), the function name is
10364    //   unqualified, and the function has namespace scope.
10365    if (isLocal && D.isFunctionDefinition()) {
10366      Diag(NameInfo.getBeginLoc(), diag::err_friend_def_in_local_class);
10367    }
10368
10369  //   - There's a non-dependent scope specifier, in which case we
10370  //     compute it and do a previous lookup there for a function
10371  //     or function template.
10372  } else if (!SS.getScopeRep()->isDependent()) {
10373    DC = computeDeclContext(SS);
10374    if (!DC) return 0;
10375
10376    if (RequireCompleteDeclContext(SS, DC)) return 0;
10377
10378    LookupQualifiedName(Previous, DC);
10379
10380    // Ignore things found implicitly in the wrong scope.
10381    // TODO: better diagnostics for this case.  Suggesting the right
10382    // qualified scope would be nice...
10383    LookupResult::Filter F = Previous.makeFilter();
10384    while (F.hasNext()) {
10385      NamedDecl *D = F.next();
10386      if (!DC->InEnclosingNamespaceSetOf(
10387              D->getDeclContext()->getRedeclContext()))
10388        F.erase();
10389    }
10390    F.done();
10391
10392    if (Previous.empty()) {
10393      D.setInvalidType();
10394      Diag(Loc, diag::err_qualified_friend_not_found)
10395          << Name << TInfo->getType();
10396      return 0;
10397    }
10398
10399    // C++ [class.friend]p1: A friend of a class is a function or
10400    //   class that is not a member of the class . . .
10401    if (DC->Equals(CurContext))
10402      Diag(DS.getFriendSpecLoc(),
10403           getLangOpts().CPlusPlus0x ?
10404             diag::warn_cxx98_compat_friend_is_member :
10405             diag::err_friend_is_member);
10406
10407    if (D.isFunctionDefinition()) {
10408      // C++ [class.friend]p6:
10409      //   A function can be defined in a friend declaration of a class if and
10410      //   only if the class is a non-local class (9.8), the function name is
10411      //   unqualified, and the function has namespace scope.
10412      SemaDiagnosticBuilder DB
10413        = Diag(SS.getRange().getBegin(), diag::err_qualified_friend_def);
10414
10415      DB << SS.getScopeRep();
10416      if (DC->isFileContext())
10417        DB << FixItHint::CreateRemoval(SS.getRange());
10418      SS.clear();
10419    }
10420
10421  //   - There's a scope specifier that does not match any template
10422  //     parameter lists, in which case we use some arbitrary context,
10423  //     create a method or method template, and wait for instantiation.
10424  //   - There's a scope specifier that does match some template
10425  //     parameter lists, which we don't handle right now.
10426  } else {
10427    if (D.isFunctionDefinition()) {
10428      // C++ [class.friend]p6:
10429      //   A function can be defined in a friend declaration of a class if and
10430      //   only if the class is a non-local class (9.8), the function name is
10431      //   unqualified, and the function has namespace scope.
10432      Diag(SS.getRange().getBegin(), diag::err_qualified_friend_def)
10433        << SS.getScopeRep();
10434    }
10435
10436    DC = CurContext;
10437    assert(isa<CXXRecordDecl>(DC) && "friend declaration not in class?");
10438  }
10439
10440  if (!DC->isRecord()) {
10441    // This implies that it has to be an operator or function.
10442    if (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ||
10443        D.getName().getKind() == UnqualifiedId::IK_DestructorName ||
10444        D.getName().getKind() == UnqualifiedId::IK_ConversionFunctionId) {
10445      Diag(Loc, diag::err_introducing_special_friend) <<
10446        (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ? 0 :
10447         D.getName().getKind() == UnqualifiedId::IK_DestructorName ? 1 : 2);
10448      return 0;
10449    }
10450  }
10451
10452  // FIXME: This is an egregious hack to cope with cases where the scope stack
10453  // does not contain the declaration context, i.e., in an out-of-line
10454  // definition of a class.
10455  Scope FakeDCScope(S, Scope::DeclScope, Diags);
10456  if (!DCScope) {
10457    FakeDCScope.setEntity(DC);
10458    DCScope = &FakeDCScope;
10459  }
10460
10461  bool AddToScope = true;
10462  NamedDecl *ND = ActOnFunctionDeclarator(DCScope, D, DC, TInfo, Previous,
10463                                          TemplateParams, AddToScope);
10464  if (!ND) return 0;
10465
10466  assert(ND->getDeclContext() == DC);
10467  assert(ND->getLexicalDeclContext() == CurContext);
10468
10469  // Add the function declaration to the appropriate lookup tables,
10470  // adjusting the redeclarations list as necessary.  We don't
10471  // want to do this yet if the friending class is dependent.
10472  //
10473  // Also update the scope-based lookup if the target context's
10474  // lookup context is in lexical scope.
10475  if (!CurContext->isDependentContext()) {
10476    DC = DC->getRedeclContext();
10477    DC->makeDeclVisibleInContext(ND);
10478    if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
10479      PushOnScopeChains(ND, EnclosingScope, /*AddToContext=*/ false);
10480  }
10481
10482  FriendDecl *FrD = FriendDecl::Create(Context, CurContext,
10483                                       D.getIdentifierLoc(), ND,
10484                                       DS.getFriendSpecLoc());
10485  FrD->setAccess(AS_public);
10486  CurContext->addDecl(FrD);
10487
10488  if (ND->isInvalidDecl()) {
10489    FrD->setInvalidDecl();
10490  } else {
10491    if (DC->isRecord()) CheckFriendAccess(ND);
10492
10493    FunctionDecl *FD;
10494    if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND))
10495      FD = FTD->getTemplatedDecl();
10496    else
10497      FD = cast<FunctionDecl>(ND);
10498
10499    // Mark templated-scope function declarations as unsupported.
10500    if (FD->getNumTemplateParameterLists())
10501      FrD->setUnsupportedFriend(true);
10502  }
10503
10504  return ND;
10505}
10506
10507void Sema::SetDeclDeleted(Decl *Dcl, SourceLocation DelLoc) {
10508  AdjustDeclIfTemplate(Dcl);
10509
10510  FunctionDecl *Fn = dyn_cast<FunctionDecl>(Dcl);
10511  if (!Fn) {
10512    Diag(DelLoc, diag::err_deleted_non_function);
10513    return;
10514  }
10515  if (const FunctionDecl *Prev = Fn->getPreviousDecl()) {
10516    // Don't consider the implicit declaration we generate for explicit
10517    // specializations. FIXME: Do not generate these implicit declarations.
10518    if ((Prev->getTemplateSpecializationKind() != TSK_ExplicitSpecialization
10519        || Prev->getPreviousDecl()) && !Prev->isDefined()) {
10520      Diag(DelLoc, diag::err_deleted_decl_not_first);
10521      Diag(Prev->getLocation(), diag::note_previous_declaration);
10522    }
10523    // If the declaration wasn't the first, we delete the function anyway for
10524    // recovery.
10525  }
10526  Fn->setDeletedAsWritten();
10527
10528  CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Dcl);
10529  if (!MD)
10530    return;
10531
10532  // A deleted special member function is trivial if the corresponding
10533  // implicitly-declared function would have been.
10534  switch (getSpecialMember(MD)) {
10535  case CXXInvalid:
10536    break;
10537  case CXXDefaultConstructor:
10538    MD->setTrivial(MD->getParent()->hasTrivialDefaultConstructor());
10539    break;
10540  case CXXCopyConstructor:
10541    MD->setTrivial(MD->getParent()->hasTrivialCopyConstructor());
10542    break;
10543  case CXXMoveConstructor:
10544    MD->setTrivial(MD->getParent()->hasTrivialMoveConstructor());
10545    break;
10546  case CXXCopyAssignment:
10547    MD->setTrivial(MD->getParent()->hasTrivialCopyAssignment());
10548    break;
10549  case CXXMoveAssignment:
10550    MD->setTrivial(MD->getParent()->hasTrivialMoveAssignment());
10551    break;
10552  case CXXDestructor:
10553    MD->setTrivial(MD->getParent()->hasTrivialDestructor());
10554    break;
10555  }
10556}
10557
10558void Sema::SetDeclDefaulted(Decl *Dcl, SourceLocation DefaultLoc) {
10559  CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Dcl);
10560
10561  if (MD) {
10562    if (MD->getParent()->isDependentType()) {
10563      MD->setDefaulted();
10564      MD->setExplicitlyDefaulted();
10565      return;
10566    }
10567
10568    CXXSpecialMember Member = getSpecialMember(MD);
10569    if (Member == CXXInvalid) {
10570      Diag(DefaultLoc, diag::err_default_special_members);
10571      return;
10572    }
10573
10574    MD->setDefaulted();
10575    MD->setExplicitlyDefaulted();
10576
10577    // If this definition appears within the record, do the checking when
10578    // the record is complete.
10579    const FunctionDecl *Primary = MD;
10580    if (const FunctionDecl *Pattern = MD->getTemplateInstantiationPattern())
10581      // Find the uninstantiated declaration that actually had the '= default'
10582      // on it.
10583      Pattern->isDefined(Primary);
10584
10585    if (Primary == Primary->getCanonicalDecl())
10586      return;
10587
10588    CheckExplicitlyDefaultedSpecialMember(MD);
10589
10590    switch (Member) {
10591    case CXXDefaultConstructor: {
10592      CXXConstructorDecl *CD = cast<CXXConstructorDecl>(MD);
10593      if (!CD->isInvalidDecl())
10594        DefineImplicitDefaultConstructor(DefaultLoc, CD);
10595      break;
10596    }
10597
10598    case CXXCopyConstructor: {
10599      CXXConstructorDecl *CD = cast<CXXConstructorDecl>(MD);
10600      if (!CD->isInvalidDecl())
10601        DefineImplicitCopyConstructor(DefaultLoc, CD);
10602      break;
10603    }
10604
10605    case CXXCopyAssignment: {
10606      if (!MD->isInvalidDecl())
10607        DefineImplicitCopyAssignment(DefaultLoc, MD);
10608      break;
10609    }
10610
10611    case CXXDestructor: {
10612      CXXDestructorDecl *DD = cast<CXXDestructorDecl>(MD);
10613      if (!DD->isInvalidDecl())
10614        DefineImplicitDestructor(DefaultLoc, DD);
10615      break;
10616    }
10617
10618    case CXXMoveConstructor: {
10619      CXXConstructorDecl *CD = cast<CXXConstructorDecl>(MD);
10620      if (!CD->isInvalidDecl())
10621        DefineImplicitMoveConstructor(DefaultLoc, CD);
10622      break;
10623    }
10624
10625    case CXXMoveAssignment: {
10626      if (!MD->isInvalidDecl())
10627        DefineImplicitMoveAssignment(DefaultLoc, MD);
10628      break;
10629    }
10630
10631    case CXXInvalid:
10632      llvm_unreachable("Invalid special member.");
10633    }
10634  } else {
10635    Diag(DefaultLoc, diag::err_default_special_members);
10636  }
10637}
10638
10639static void SearchForReturnInStmt(Sema &Self, Stmt *S) {
10640  for (Stmt::child_range CI = S->children(); CI; ++CI) {
10641    Stmt *SubStmt = *CI;
10642    if (!SubStmt)
10643      continue;
10644    if (isa<ReturnStmt>(SubStmt))
10645      Self.Diag(SubStmt->getLocStart(),
10646           diag::err_return_in_constructor_handler);
10647    if (!isa<Expr>(SubStmt))
10648      SearchForReturnInStmt(Self, SubStmt);
10649  }
10650}
10651
10652void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) {
10653  for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) {
10654    CXXCatchStmt *Handler = TryBlock->getHandler(I);
10655    SearchForReturnInStmt(*this, Handler);
10656  }
10657}
10658
10659bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New,
10660                                             const CXXMethodDecl *Old) {
10661  QualType NewTy = New->getType()->getAs<FunctionType>()->getResultType();
10662  QualType OldTy = Old->getType()->getAs<FunctionType>()->getResultType();
10663
10664  if (Context.hasSameType(NewTy, OldTy) ||
10665      NewTy->isDependentType() || OldTy->isDependentType())
10666    return false;
10667
10668  // Check if the return types are covariant
10669  QualType NewClassTy, OldClassTy;
10670
10671  /// Both types must be pointers or references to classes.
10672  if (const PointerType *NewPT = NewTy->getAs<PointerType>()) {
10673    if (const PointerType *OldPT = OldTy->getAs<PointerType>()) {
10674      NewClassTy = NewPT->getPointeeType();
10675      OldClassTy = OldPT->getPointeeType();
10676    }
10677  } else if (const ReferenceType *NewRT = NewTy->getAs<ReferenceType>()) {
10678    if (const ReferenceType *OldRT = OldTy->getAs<ReferenceType>()) {
10679      if (NewRT->getTypeClass() == OldRT->getTypeClass()) {
10680        NewClassTy = NewRT->getPointeeType();
10681        OldClassTy = OldRT->getPointeeType();
10682      }
10683    }
10684  }
10685
10686  // The return types aren't either both pointers or references to a class type.
10687  if (NewClassTy.isNull()) {
10688    Diag(New->getLocation(),
10689         diag::err_different_return_type_for_overriding_virtual_function)
10690      << New->getDeclName() << NewTy << OldTy;
10691    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
10692
10693    return true;
10694  }
10695
10696  // C++ [class.virtual]p6:
10697  //   If the return type of D::f differs from the return type of B::f, the
10698  //   class type in the return type of D::f shall be complete at the point of
10699  //   declaration of D::f or shall be the class type D.
10700  if (const RecordType *RT = NewClassTy->getAs<RecordType>()) {
10701    if (!RT->isBeingDefined() &&
10702        RequireCompleteType(New->getLocation(), NewClassTy,
10703                            diag::err_covariant_return_incomplete,
10704                            New->getDeclName()))
10705    return true;
10706  }
10707
10708  if (!Context.hasSameUnqualifiedType(NewClassTy, OldClassTy)) {
10709    // Check if the new class derives from the old class.
10710    if (!IsDerivedFrom(NewClassTy, OldClassTy)) {
10711      Diag(New->getLocation(),
10712           diag::err_covariant_return_not_derived)
10713      << New->getDeclName() << NewTy << OldTy;
10714      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
10715      return true;
10716    }
10717
10718    // Check if we the conversion from derived to base is valid.
10719    if (CheckDerivedToBaseConversion(NewClassTy, OldClassTy,
10720                    diag::err_covariant_return_inaccessible_base,
10721                    diag::err_covariant_return_ambiguous_derived_to_base_conv,
10722                    // FIXME: Should this point to the return type?
10723                    New->getLocation(), SourceRange(), New->getDeclName(), 0)) {
10724      // FIXME: this note won't trigger for delayed access control
10725      // diagnostics, and it's impossible to get an undelayed error
10726      // here from access control during the original parse because
10727      // the ParsingDeclSpec/ParsingDeclarator are still in scope.
10728      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
10729      return true;
10730    }
10731  }
10732
10733  // The qualifiers of the return types must be the same.
10734  if (NewTy.getLocalCVRQualifiers() != OldTy.getLocalCVRQualifiers()) {
10735    Diag(New->getLocation(),
10736         diag::err_covariant_return_type_different_qualifications)
10737    << New->getDeclName() << NewTy << OldTy;
10738    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
10739    return true;
10740  };
10741
10742
10743  // The new class type must have the same or less qualifiers as the old type.
10744  if (NewClassTy.isMoreQualifiedThan(OldClassTy)) {
10745    Diag(New->getLocation(),
10746         diag::err_covariant_return_type_class_type_more_qualified)
10747    << New->getDeclName() << NewTy << OldTy;
10748    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
10749    return true;
10750  };
10751
10752  return false;
10753}
10754
10755/// \brief Mark the given method pure.
10756///
10757/// \param Method the method to be marked pure.
10758///
10759/// \param InitRange the source range that covers the "0" initializer.
10760bool Sema::CheckPureMethod(CXXMethodDecl *Method, SourceRange InitRange) {
10761  SourceLocation EndLoc = InitRange.getEnd();
10762  if (EndLoc.isValid())
10763    Method->setRangeEnd(EndLoc);
10764
10765  if (Method->isVirtual() || Method->getParent()->isDependentContext()) {
10766    Method->setPure();
10767    return false;
10768  }
10769
10770  if (!Method->isInvalidDecl())
10771    Diag(Method->getLocation(), diag::err_non_virtual_pure)
10772      << Method->getDeclName() << InitRange;
10773  return true;
10774}
10775
10776/// \brief Determine whether the given declaration is a static data member.
10777static bool isStaticDataMember(Decl *D) {
10778  VarDecl *Var = dyn_cast_or_null<VarDecl>(D);
10779  if (!Var)
10780    return false;
10781
10782  return Var->isStaticDataMember();
10783}
10784/// ActOnCXXEnterDeclInitializer - Invoked when we are about to parse
10785/// an initializer for the out-of-line declaration 'Dcl'.  The scope
10786/// is a fresh scope pushed for just this purpose.
10787///
10788/// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a
10789/// static data member of class X, names should be looked up in the scope of
10790/// class X.
10791void Sema::ActOnCXXEnterDeclInitializer(Scope *S, Decl *D) {
10792  // If there is no declaration, there was an error parsing it.
10793  if (D == 0 || D->isInvalidDecl()) return;
10794
10795  // We should only get called for declarations with scope specifiers, like:
10796  //   int foo::bar;
10797  assert(D->isOutOfLine());
10798  EnterDeclaratorContext(S, D->getDeclContext());
10799
10800  // If we are parsing the initializer for a static data member, push a
10801  // new expression evaluation context that is associated with this static
10802  // data member.
10803  if (isStaticDataMember(D))
10804    PushExpressionEvaluationContext(PotentiallyEvaluated, D);
10805}
10806
10807/// ActOnCXXExitDeclInitializer - Invoked after we are finished parsing an
10808/// initializer for the out-of-line declaration 'D'.
10809void Sema::ActOnCXXExitDeclInitializer(Scope *S, Decl *D) {
10810  // If there is no declaration, there was an error parsing it.
10811  if (D == 0 || D->isInvalidDecl()) return;
10812
10813  if (isStaticDataMember(D))
10814    PopExpressionEvaluationContext();
10815
10816  assert(D->isOutOfLine());
10817  ExitDeclaratorContext(S);
10818}
10819
10820/// ActOnCXXConditionDeclarationExpr - Parsed a condition declaration of a
10821/// C++ if/switch/while/for statement.
10822/// e.g: "if (int x = f()) {...}"
10823DeclResult Sema::ActOnCXXConditionDeclaration(Scope *S, Declarator &D) {
10824  // C++ 6.4p2:
10825  // The declarator shall not specify a function or an array.
10826  // The type-specifier-seq shall not contain typedef and shall not declare a
10827  // new class or enumeration.
10828  assert(D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
10829         "Parser allowed 'typedef' as storage class of condition decl.");
10830
10831  Decl *Dcl = ActOnDeclarator(S, D);
10832  if (!Dcl)
10833    return true;
10834
10835  if (isa<FunctionDecl>(Dcl)) { // The declarator shall not specify a function.
10836    Diag(Dcl->getLocation(), diag::err_invalid_use_of_function_type)
10837      << D.getSourceRange();
10838    return true;
10839  }
10840
10841  return Dcl;
10842}
10843
10844void Sema::LoadExternalVTableUses() {
10845  if (!ExternalSource)
10846    return;
10847
10848  SmallVector<ExternalVTableUse, 4> VTables;
10849  ExternalSource->ReadUsedVTables(VTables);
10850  SmallVector<VTableUse, 4> NewUses;
10851  for (unsigned I = 0, N = VTables.size(); I != N; ++I) {
10852    llvm::DenseMap<CXXRecordDecl *, bool>::iterator Pos
10853      = VTablesUsed.find(VTables[I].Record);
10854    // Even if a definition wasn't required before, it may be required now.
10855    if (Pos != VTablesUsed.end()) {
10856      if (!Pos->second && VTables[I].DefinitionRequired)
10857        Pos->second = true;
10858      continue;
10859    }
10860
10861    VTablesUsed[VTables[I].Record] = VTables[I].DefinitionRequired;
10862    NewUses.push_back(VTableUse(VTables[I].Record, VTables[I].Location));
10863  }
10864
10865  VTableUses.insert(VTableUses.begin(), NewUses.begin(), NewUses.end());
10866}
10867
10868void Sema::MarkVTableUsed(SourceLocation Loc, CXXRecordDecl *Class,
10869                          bool DefinitionRequired) {
10870  // Ignore any vtable uses in unevaluated operands or for classes that do
10871  // not have a vtable.
10872  if (!Class->isDynamicClass() || Class->isDependentContext() ||
10873      CurContext->isDependentContext() ||
10874      ExprEvalContexts.back().Context == Unevaluated)
10875    return;
10876
10877  // Try to insert this class into the map.
10878  LoadExternalVTableUses();
10879  Class = cast<CXXRecordDecl>(Class->getCanonicalDecl());
10880  std::pair<llvm::DenseMap<CXXRecordDecl *, bool>::iterator, bool>
10881    Pos = VTablesUsed.insert(std::make_pair(Class, DefinitionRequired));
10882  if (!Pos.second) {
10883    // If we already had an entry, check to see if we are promoting this vtable
10884    // to required a definition. If so, we need to reappend to the VTableUses
10885    // list, since we may have already processed the first entry.
10886    if (DefinitionRequired && !Pos.first->second) {
10887      Pos.first->second = true;
10888    } else {
10889      // Otherwise, we can early exit.
10890      return;
10891    }
10892  }
10893
10894  // Local classes need to have their virtual members marked
10895  // immediately. For all other classes, we mark their virtual members
10896  // at the end of the translation unit.
10897  if (Class->isLocalClass())
10898    MarkVirtualMembersReferenced(Loc, Class);
10899  else
10900    VTableUses.push_back(std::make_pair(Class, Loc));
10901}
10902
10903bool Sema::DefineUsedVTables() {
10904  LoadExternalVTableUses();
10905  if (VTableUses.empty())
10906    return false;
10907
10908  // Note: The VTableUses vector could grow as a result of marking
10909  // the members of a class as "used", so we check the size each
10910  // time through the loop and prefer indices (which are stable) to
10911  // iterators (which are not).
10912  bool DefinedAnything = false;
10913  for (unsigned I = 0; I != VTableUses.size(); ++I) {
10914    CXXRecordDecl *Class = VTableUses[I].first->getDefinition();
10915    if (!Class)
10916      continue;
10917
10918    SourceLocation Loc = VTableUses[I].second;
10919
10920    bool DefineVTable = true;
10921
10922    // If this class has a key function, but that key function is
10923    // defined in another translation unit, we don't need to emit the
10924    // vtable even though we're using it.
10925    const CXXMethodDecl *KeyFunction = Context.getKeyFunction(Class);
10926    if (KeyFunction && !KeyFunction->hasBody()) {
10927      switch (KeyFunction->getTemplateSpecializationKind()) {
10928      case TSK_Undeclared:
10929      case TSK_ExplicitSpecialization:
10930      case TSK_ExplicitInstantiationDeclaration:
10931        // The key function is in another translation unit.
10932        DefineVTable = false;
10933        break;
10934
10935      case TSK_ExplicitInstantiationDefinition:
10936      case TSK_ImplicitInstantiation:
10937        // We will be instantiating the key function.
10938        break;
10939      }
10940    } else if (!KeyFunction) {
10941      // If we have a class with no key function that is the subject
10942      // of an explicit instantiation declaration, suppress the
10943      // vtable; it will live with the explicit instantiation
10944      // definition.
10945      bool IsExplicitInstantiationDeclaration
10946        = Class->getTemplateSpecializationKind()
10947                                      == TSK_ExplicitInstantiationDeclaration;
10948      for (TagDecl::redecl_iterator R = Class->redecls_begin(),
10949                                 REnd = Class->redecls_end();
10950           R != REnd; ++R) {
10951        TemplateSpecializationKind TSK
10952          = cast<CXXRecordDecl>(*R)->getTemplateSpecializationKind();
10953        if (TSK == TSK_ExplicitInstantiationDeclaration)
10954          IsExplicitInstantiationDeclaration = true;
10955        else if (TSK == TSK_ExplicitInstantiationDefinition) {
10956          IsExplicitInstantiationDeclaration = false;
10957          break;
10958        }
10959      }
10960
10961      if (IsExplicitInstantiationDeclaration)
10962        DefineVTable = false;
10963    }
10964
10965    // The exception specifications for all virtual members may be needed even
10966    // if we are not providing an authoritative form of the vtable in this TU.
10967    // We may choose to emit it available_externally anyway.
10968    if (!DefineVTable) {
10969      MarkVirtualMemberExceptionSpecsNeeded(Loc, Class);
10970      continue;
10971    }
10972
10973    // Mark all of the virtual members of this class as referenced, so
10974    // that we can build a vtable. Then, tell the AST consumer that a
10975    // vtable for this class is required.
10976    DefinedAnything = true;
10977    MarkVirtualMembersReferenced(Loc, Class);
10978    CXXRecordDecl *Canonical = cast<CXXRecordDecl>(Class->getCanonicalDecl());
10979    Consumer.HandleVTable(Class, VTablesUsed[Canonical]);
10980
10981    // Optionally warn if we're emitting a weak vtable.
10982    if (Class->getLinkage() == ExternalLinkage &&
10983        Class->getTemplateSpecializationKind() != TSK_ImplicitInstantiation) {
10984      const FunctionDecl *KeyFunctionDef = 0;
10985      if (!KeyFunction ||
10986          (KeyFunction->hasBody(KeyFunctionDef) &&
10987           KeyFunctionDef->isInlined()))
10988        Diag(Class->getLocation(), Class->getTemplateSpecializationKind() ==
10989             TSK_ExplicitInstantiationDefinition
10990             ? diag::warn_weak_template_vtable : diag::warn_weak_vtable)
10991          << Class;
10992    }
10993  }
10994  VTableUses.clear();
10995
10996  return DefinedAnything;
10997}
10998
10999void Sema::MarkVirtualMemberExceptionSpecsNeeded(SourceLocation Loc,
11000                                                 const CXXRecordDecl *RD) {
11001  for (CXXRecordDecl::method_iterator I = RD->method_begin(),
11002                                      E = RD->method_end(); I != E; ++I)
11003    if ((*I)->isVirtual() && !(*I)->isPure())
11004      ResolveExceptionSpec(Loc, (*I)->getType()->castAs<FunctionProtoType>());
11005}
11006
11007void Sema::MarkVirtualMembersReferenced(SourceLocation Loc,
11008                                        const CXXRecordDecl *RD) {
11009  // Mark all functions which will appear in RD's vtable as used.
11010  CXXFinalOverriderMap FinalOverriders;
11011  RD->getFinalOverriders(FinalOverriders);
11012  for (CXXFinalOverriderMap::const_iterator I = FinalOverriders.begin(),
11013                                            E = FinalOverriders.end();
11014       I != E; ++I) {
11015    for (OverridingMethods::const_iterator OI = I->second.begin(),
11016                                           OE = I->second.end();
11017         OI != OE; ++OI) {
11018      assert(OI->second.size() > 0 && "no final overrider");
11019      CXXMethodDecl *Overrider = OI->second.front().Method;
11020
11021      // C++ [basic.def.odr]p2:
11022      //   [...] A virtual member function is used if it is not pure. [...]
11023      if (!Overrider->isPure())
11024        MarkFunctionReferenced(Loc, Overrider);
11025    }
11026  }
11027
11028  // Only classes that have virtual bases need a VTT.
11029  if (RD->getNumVBases() == 0)
11030    return;
11031
11032  for (CXXRecordDecl::base_class_const_iterator i = RD->bases_begin(),
11033           e = RD->bases_end(); i != e; ++i) {
11034    const CXXRecordDecl *Base =
11035        cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
11036    if (Base->getNumVBases() == 0)
11037      continue;
11038    MarkVirtualMembersReferenced(Loc, Base);
11039  }
11040}
11041
11042/// SetIvarInitializers - This routine builds initialization ASTs for the
11043/// Objective-C implementation whose ivars need be initialized.
11044void Sema::SetIvarInitializers(ObjCImplementationDecl *ObjCImplementation) {
11045  if (!getLangOpts().CPlusPlus)
11046    return;
11047  if (ObjCInterfaceDecl *OID = ObjCImplementation->getClassInterface()) {
11048    SmallVector<ObjCIvarDecl*, 8> ivars;
11049    CollectIvarsToConstructOrDestruct(OID, ivars);
11050    if (ivars.empty())
11051      return;
11052    SmallVector<CXXCtorInitializer*, 32> AllToInit;
11053    for (unsigned i = 0; i < ivars.size(); i++) {
11054      FieldDecl *Field = ivars[i];
11055      if (Field->isInvalidDecl())
11056        continue;
11057
11058      CXXCtorInitializer *Member;
11059      InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field);
11060      InitializationKind InitKind =
11061        InitializationKind::CreateDefault(ObjCImplementation->getLocation());
11062
11063      InitializationSequence InitSeq(*this, InitEntity, InitKind, 0, 0);
11064      ExprResult MemberInit =
11065        InitSeq.Perform(*this, InitEntity, InitKind, MultiExprArg());
11066      MemberInit = MaybeCreateExprWithCleanups(MemberInit);
11067      // Note, MemberInit could actually come back empty if no initialization
11068      // is required (e.g., because it would call a trivial default constructor)
11069      if (!MemberInit.get() || MemberInit.isInvalid())
11070        continue;
11071
11072      Member =
11073        new (Context) CXXCtorInitializer(Context, Field, SourceLocation(),
11074                                         SourceLocation(),
11075                                         MemberInit.takeAs<Expr>(),
11076                                         SourceLocation());
11077      AllToInit.push_back(Member);
11078
11079      // Be sure that the destructor is accessible and is marked as referenced.
11080      if (const RecordType *RecordTy
11081                  = Context.getBaseElementType(Field->getType())
11082                                                        ->getAs<RecordType>()) {
11083                    CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl());
11084        if (CXXDestructorDecl *Destructor = LookupDestructor(RD)) {
11085          MarkFunctionReferenced(Field->getLocation(), Destructor);
11086          CheckDestructorAccess(Field->getLocation(), Destructor,
11087                            PDiag(diag::err_access_dtor_ivar)
11088                              << Context.getBaseElementType(Field->getType()));
11089        }
11090      }
11091    }
11092    ObjCImplementation->setIvarInitializers(Context,
11093                                            AllToInit.data(), AllToInit.size());
11094  }
11095}
11096
11097static
11098void DelegatingCycleHelper(CXXConstructorDecl* Ctor,
11099                           llvm::SmallSet<CXXConstructorDecl*, 4> &Valid,
11100                           llvm::SmallSet<CXXConstructorDecl*, 4> &Invalid,
11101                           llvm::SmallSet<CXXConstructorDecl*, 4> &Current,
11102                           Sema &S) {
11103  llvm::SmallSet<CXXConstructorDecl*, 4>::iterator CI = Current.begin(),
11104                                                   CE = Current.end();
11105  if (Ctor->isInvalidDecl())
11106    return;
11107
11108  CXXConstructorDecl *Target = Ctor->getTargetConstructor();
11109
11110  // Target may not be determinable yet, for instance if this is a dependent
11111  // call in an uninstantiated template.
11112  if (Target) {
11113    const FunctionDecl *FNTarget = 0;
11114    (void)Target->hasBody(FNTarget);
11115    Target = const_cast<CXXConstructorDecl*>(
11116      cast_or_null<CXXConstructorDecl>(FNTarget));
11117  }
11118
11119  CXXConstructorDecl *Canonical = Ctor->getCanonicalDecl(),
11120                     // Avoid dereferencing a null pointer here.
11121                     *TCanonical = Target ? Target->getCanonicalDecl() : 0;
11122
11123  if (!Current.insert(Canonical))
11124    return;
11125
11126  // We know that beyond here, we aren't chaining into a cycle.
11127  if (!Target || !Target->isDelegatingConstructor() ||
11128      Target->isInvalidDecl() || Valid.count(TCanonical)) {
11129    for (CI = Current.begin(), CE = Current.end(); CI != CE; ++CI)
11130      Valid.insert(*CI);
11131    Current.clear();
11132  // We've hit a cycle.
11133  } else if (TCanonical == Canonical || Invalid.count(TCanonical) ||
11134             Current.count(TCanonical)) {
11135    // If we haven't diagnosed this cycle yet, do so now.
11136    if (!Invalid.count(TCanonical)) {
11137      S.Diag((*Ctor->init_begin())->getSourceLocation(),
11138             diag::warn_delegating_ctor_cycle)
11139        << Ctor;
11140
11141      // Don't add a note for a function delegating directly to itself.
11142      if (TCanonical != Canonical)
11143        S.Diag(Target->getLocation(), diag::note_it_delegates_to);
11144
11145      CXXConstructorDecl *C = Target;
11146      while (C->getCanonicalDecl() != Canonical) {
11147        const FunctionDecl *FNTarget = 0;
11148        (void)C->getTargetConstructor()->hasBody(FNTarget);
11149        assert(FNTarget && "Ctor cycle through bodiless function");
11150
11151        C = const_cast<CXXConstructorDecl*>(
11152          cast<CXXConstructorDecl>(FNTarget));
11153        S.Diag(C->getLocation(), diag::note_which_delegates_to);
11154      }
11155    }
11156
11157    for (CI = Current.begin(), CE = Current.end(); CI != CE; ++CI)
11158      Invalid.insert(*CI);
11159    Current.clear();
11160  } else {
11161    DelegatingCycleHelper(Target, Valid, Invalid, Current, S);
11162  }
11163}
11164
11165
11166void Sema::CheckDelegatingCtorCycles() {
11167  llvm::SmallSet<CXXConstructorDecl*, 4> Valid, Invalid, Current;
11168
11169  llvm::SmallSet<CXXConstructorDecl*, 4>::iterator CI = Current.begin(),
11170                                                   CE = Current.end();
11171
11172  for (DelegatingCtorDeclsType::iterator
11173         I = DelegatingCtorDecls.begin(ExternalSource),
11174         E = DelegatingCtorDecls.end();
11175       I != E; ++I)
11176    DelegatingCycleHelper(*I, Valid, Invalid, Current, *this);
11177
11178  for (CI = Invalid.begin(), CE = Invalid.end(); CI != CE; ++CI)
11179    (*CI)->setInvalidDecl();
11180}
11181
11182namespace {
11183  /// \brief AST visitor that finds references to the 'this' expression.
11184  class FindCXXThisExpr : public RecursiveASTVisitor<FindCXXThisExpr> {
11185    Sema &S;
11186
11187  public:
11188    explicit FindCXXThisExpr(Sema &S) : S(S) { }
11189
11190    bool VisitCXXThisExpr(CXXThisExpr *E) {
11191      S.Diag(E->getLocation(), diag::err_this_static_member_func)
11192        << E->isImplicit();
11193      return false;
11194    }
11195  };
11196}
11197
11198bool Sema::checkThisInStaticMemberFunctionType(CXXMethodDecl *Method) {
11199  TypeSourceInfo *TSInfo = Method->getTypeSourceInfo();
11200  if (!TSInfo)
11201    return false;
11202
11203  TypeLoc TL = TSInfo->getTypeLoc();
11204  FunctionProtoTypeLoc *ProtoTL = dyn_cast<FunctionProtoTypeLoc>(&TL);
11205  if (!ProtoTL)
11206    return false;
11207
11208  // C++11 [expr.prim.general]p3:
11209  //   [The expression this] shall not appear before the optional
11210  //   cv-qualifier-seq and it shall not appear within the declaration of a
11211  //   static member function (although its type and value category are defined
11212  //   within a static member function as they are within a non-static member
11213  //   function). [ Note: this is because declaration matching does not occur
11214  //  until the complete declarator is known. - end note ]
11215  const FunctionProtoType *Proto = ProtoTL->getTypePtr();
11216  FindCXXThisExpr Finder(*this);
11217
11218  // If the return type came after the cv-qualifier-seq, check it now.
11219  if (Proto->hasTrailingReturn() &&
11220      !Finder.TraverseTypeLoc(ProtoTL->getResultLoc()))
11221    return true;
11222
11223  // Check the exception specification.
11224  if (checkThisInStaticMemberFunctionExceptionSpec(Method))
11225    return true;
11226
11227  return checkThisInStaticMemberFunctionAttributes(Method);
11228}
11229
11230bool Sema::checkThisInStaticMemberFunctionExceptionSpec(CXXMethodDecl *Method) {
11231  TypeSourceInfo *TSInfo = Method->getTypeSourceInfo();
11232  if (!TSInfo)
11233    return false;
11234
11235  TypeLoc TL = TSInfo->getTypeLoc();
11236  FunctionProtoTypeLoc *ProtoTL = dyn_cast<FunctionProtoTypeLoc>(&TL);
11237  if (!ProtoTL)
11238    return false;
11239
11240  const FunctionProtoType *Proto = ProtoTL->getTypePtr();
11241  FindCXXThisExpr Finder(*this);
11242
11243  switch (Proto->getExceptionSpecType()) {
11244  case EST_Uninstantiated:
11245  case EST_Unevaluated:
11246  case EST_BasicNoexcept:
11247  case EST_DynamicNone:
11248  case EST_MSAny:
11249  case EST_None:
11250    break;
11251
11252  case EST_ComputedNoexcept:
11253    if (!Finder.TraverseStmt(Proto->getNoexceptExpr()))
11254      return true;
11255
11256  case EST_Dynamic:
11257    for (FunctionProtoType::exception_iterator E = Proto->exception_begin(),
11258         EEnd = Proto->exception_end();
11259         E != EEnd; ++E) {
11260      if (!Finder.TraverseType(*E))
11261        return true;
11262    }
11263    break;
11264  }
11265
11266  return false;
11267}
11268
11269bool Sema::checkThisInStaticMemberFunctionAttributes(CXXMethodDecl *Method) {
11270  FindCXXThisExpr Finder(*this);
11271
11272  // Check attributes.
11273  for (Decl::attr_iterator A = Method->attr_begin(), AEnd = Method->attr_end();
11274       A != AEnd; ++A) {
11275    // FIXME: This should be emitted by tblgen.
11276    Expr *Arg = 0;
11277    ArrayRef<Expr *> Args;
11278    if (GuardedByAttr *G = dyn_cast<GuardedByAttr>(*A))
11279      Arg = G->getArg();
11280    else if (PtGuardedByAttr *G = dyn_cast<PtGuardedByAttr>(*A))
11281      Arg = G->getArg();
11282    else if (AcquiredAfterAttr *AA = dyn_cast<AcquiredAfterAttr>(*A))
11283      Args = ArrayRef<Expr *>(AA->args_begin(), AA->args_size());
11284    else if (AcquiredBeforeAttr *AB = dyn_cast<AcquiredBeforeAttr>(*A))
11285      Args = ArrayRef<Expr *>(AB->args_begin(), AB->args_size());
11286    else if (ExclusiveLockFunctionAttr *ELF
11287               = dyn_cast<ExclusiveLockFunctionAttr>(*A))
11288      Args = ArrayRef<Expr *>(ELF->args_begin(), ELF->args_size());
11289    else if (SharedLockFunctionAttr *SLF
11290               = dyn_cast<SharedLockFunctionAttr>(*A))
11291      Args = ArrayRef<Expr *>(SLF->args_begin(), SLF->args_size());
11292    else if (ExclusiveTrylockFunctionAttr *ETLF
11293               = dyn_cast<ExclusiveTrylockFunctionAttr>(*A)) {
11294      Arg = ETLF->getSuccessValue();
11295      Args = ArrayRef<Expr *>(ETLF->args_begin(), ETLF->args_size());
11296    } else if (SharedTrylockFunctionAttr *STLF
11297                 = dyn_cast<SharedTrylockFunctionAttr>(*A)) {
11298      Arg = STLF->getSuccessValue();
11299      Args = ArrayRef<Expr *>(STLF->args_begin(), STLF->args_size());
11300    } else if (UnlockFunctionAttr *UF = dyn_cast<UnlockFunctionAttr>(*A))
11301      Args = ArrayRef<Expr *>(UF->args_begin(), UF->args_size());
11302    else if (LockReturnedAttr *LR = dyn_cast<LockReturnedAttr>(*A))
11303      Arg = LR->getArg();
11304    else if (LocksExcludedAttr *LE = dyn_cast<LocksExcludedAttr>(*A))
11305      Args = ArrayRef<Expr *>(LE->args_begin(), LE->args_size());
11306    else if (ExclusiveLocksRequiredAttr *ELR
11307               = dyn_cast<ExclusiveLocksRequiredAttr>(*A))
11308      Args = ArrayRef<Expr *>(ELR->args_begin(), ELR->args_size());
11309    else if (SharedLocksRequiredAttr *SLR
11310               = dyn_cast<SharedLocksRequiredAttr>(*A))
11311      Args = ArrayRef<Expr *>(SLR->args_begin(), SLR->args_size());
11312
11313    if (Arg && !Finder.TraverseStmt(Arg))
11314      return true;
11315
11316    for (unsigned I = 0, N = Args.size(); I != N; ++I) {
11317      if (!Finder.TraverseStmt(Args[I]))
11318        return true;
11319    }
11320  }
11321
11322  return false;
11323}
11324
11325void
11326Sema::checkExceptionSpecification(ExceptionSpecificationType EST,
11327                                  ArrayRef<ParsedType> DynamicExceptions,
11328                                  ArrayRef<SourceRange> DynamicExceptionRanges,
11329                                  Expr *NoexceptExpr,
11330                                  llvm::SmallVectorImpl<QualType> &Exceptions,
11331                                  FunctionProtoType::ExtProtoInfo &EPI) {
11332  Exceptions.clear();
11333  EPI.ExceptionSpecType = EST;
11334  if (EST == EST_Dynamic) {
11335    Exceptions.reserve(DynamicExceptions.size());
11336    for (unsigned ei = 0, ee = DynamicExceptions.size(); ei != ee; ++ei) {
11337      // FIXME: Preserve type source info.
11338      QualType ET = GetTypeFromParser(DynamicExceptions[ei]);
11339
11340      SmallVector<UnexpandedParameterPack, 2> Unexpanded;
11341      collectUnexpandedParameterPacks(ET, Unexpanded);
11342      if (!Unexpanded.empty()) {
11343        DiagnoseUnexpandedParameterPacks(DynamicExceptionRanges[ei].getBegin(),
11344                                         UPPC_ExceptionType,
11345                                         Unexpanded);
11346        continue;
11347      }
11348
11349      // Check that the type is valid for an exception spec, and
11350      // drop it if not.
11351      if (!CheckSpecifiedExceptionType(ET, DynamicExceptionRanges[ei]))
11352        Exceptions.push_back(ET);
11353    }
11354    EPI.NumExceptions = Exceptions.size();
11355    EPI.Exceptions = Exceptions.data();
11356    return;
11357  }
11358
11359  if (EST == EST_ComputedNoexcept) {
11360    // If an error occurred, there's no expression here.
11361    if (NoexceptExpr) {
11362      assert((NoexceptExpr->isTypeDependent() ||
11363              NoexceptExpr->getType()->getCanonicalTypeUnqualified() ==
11364              Context.BoolTy) &&
11365             "Parser should have made sure that the expression is boolean");
11366      if (NoexceptExpr && DiagnoseUnexpandedParameterPack(NoexceptExpr)) {
11367        EPI.ExceptionSpecType = EST_BasicNoexcept;
11368        return;
11369      }
11370
11371      if (!NoexceptExpr->isValueDependent())
11372        NoexceptExpr = VerifyIntegerConstantExpression(NoexceptExpr, 0,
11373                         diag::err_noexcept_needs_constant_expression,
11374                         /*AllowFold*/ false).take();
11375      EPI.NoexceptExpr = NoexceptExpr;
11376    }
11377    return;
11378  }
11379}
11380
11381/// IdentifyCUDATarget - Determine the CUDA compilation target for this function
11382Sema::CUDAFunctionTarget Sema::IdentifyCUDATarget(const FunctionDecl *D) {
11383  // Implicitly declared functions (e.g. copy constructors) are
11384  // __host__ __device__
11385  if (D->isImplicit())
11386    return CFT_HostDevice;
11387
11388  if (D->hasAttr<CUDAGlobalAttr>())
11389    return CFT_Global;
11390
11391  if (D->hasAttr<CUDADeviceAttr>()) {
11392    if (D->hasAttr<CUDAHostAttr>())
11393      return CFT_HostDevice;
11394    else
11395      return CFT_Device;
11396  }
11397
11398  return CFT_Host;
11399}
11400
11401bool Sema::CheckCUDATarget(CUDAFunctionTarget CallerTarget,
11402                           CUDAFunctionTarget CalleeTarget) {
11403  // CUDA B.1.1 "The __device__ qualifier declares a function that is...
11404  // Callable from the device only."
11405  if (CallerTarget == CFT_Host && CalleeTarget == CFT_Device)
11406    return true;
11407
11408  // CUDA B.1.2 "The __global__ qualifier declares a function that is...
11409  // Callable from the host only."
11410  // CUDA B.1.3 "The __host__ qualifier declares a function that is...
11411  // Callable from the host only."
11412  if ((CallerTarget == CFT_Device || CallerTarget == CFT_Global) &&
11413      (CalleeTarget == CFT_Host || CalleeTarget == CFT_Global))
11414    return true;
11415
11416  if (CallerTarget == CFT_HostDevice && CalleeTarget != CFT_HostDevice)
11417    return true;
11418
11419  return false;
11420}
11421