SemaDeclCXX.cpp revision e0883603389c5f380354474e0d6d1d63827f0c30
1//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for C++ declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/AST/ASTConsumer.h"
16#include "clang/AST/ASTContext.h"
17#include "clang/AST/ASTMutationListener.h"
18#include "clang/AST/CXXInheritance.h"
19#include "clang/AST/CharUnits.h"
20#include "clang/AST/DeclVisitor.h"
21#include "clang/AST/EvaluatedExprVisitor.h"
22#include "clang/AST/ExprCXX.h"
23#include "clang/AST/RecordLayout.h"
24#include "clang/AST/RecursiveASTVisitor.h"
25#include "clang/AST/StmtVisitor.h"
26#include "clang/AST/TypeLoc.h"
27#include "clang/AST/TypeOrdering.h"
28#include "clang/Basic/PartialDiagnostic.h"
29#include "clang/Basic/TargetInfo.h"
30#include "clang/Lex/Preprocessor.h"
31#include "clang/Sema/CXXFieldCollector.h"
32#include "clang/Sema/DeclSpec.h"
33#include "clang/Sema/Initialization.h"
34#include "clang/Sema/Lookup.h"
35#include "clang/Sema/ParsedTemplate.h"
36#include "clang/Sema/Scope.h"
37#include "clang/Sema/ScopeInfo.h"
38#include "llvm/ADT/STLExtras.h"
39#include "llvm/ADT/SmallString.h"
40#include <map>
41#include <set>
42
43using namespace clang;
44
45//===----------------------------------------------------------------------===//
46// CheckDefaultArgumentVisitor
47//===----------------------------------------------------------------------===//
48
49namespace {
50  /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
51  /// the default argument of a parameter to determine whether it
52  /// contains any ill-formed subexpressions. For example, this will
53  /// diagnose the use of local variables or parameters within the
54  /// default argument expression.
55  class CheckDefaultArgumentVisitor
56    : public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
57    Expr *DefaultArg;
58    Sema *S;
59
60  public:
61    CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
62      : DefaultArg(defarg), S(s) {}
63
64    bool VisitExpr(Expr *Node);
65    bool VisitDeclRefExpr(DeclRefExpr *DRE);
66    bool VisitCXXThisExpr(CXXThisExpr *ThisE);
67    bool VisitLambdaExpr(LambdaExpr *Lambda);
68    bool VisitPseudoObjectExpr(PseudoObjectExpr *POE);
69  };
70
71  /// VisitExpr - Visit all of the children of this expression.
72  bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
73    bool IsInvalid = false;
74    for (Stmt::child_range I = Node->children(); I; ++I)
75      IsInvalid |= Visit(*I);
76    return IsInvalid;
77  }
78
79  /// VisitDeclRefExpr - Visit a reference to a declaration, to
80  /// determine whether this declaration can be used in the default
81  /// argument expression.
82  bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
83    NamedDecl *Decl = DRE->getDecl();
84    if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
85      // C++ [dcl.fct.default]p9
86      //   Default arguments are evaluated each time the function is
87      //   called. The order of evaluation of function arguments is
88      //   unspecified. Consequently, parameters of a function shall not
89      //   be used in default argument expressions, even if they are not
90      //   evaluated. Parameters of a function declared before a default
91      //   argument expression are in scope and can hide namespace and
92      //   class member names.
93      return S->Diag(DRE->getLocStart(),
94                     diag::err_param_default_argument_references_param)
95         << Param->getDeclName() << DefaultArg->getSourceRange();
96    } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
97      // C++ [dcl.fct.default]p7
98      //   Local variables shall not be used in default argument
99      //   expressions.
100      if (VDecl->isLocalVarDecl())
101        return S->Diag(DRE->getLocStart(),
102                       diag::err_param_default_argument_references_local)
103          << VDecl->getDeclName() << DefaultArg->getSourceRange();
104    }
105
106    return false;
107  }
108
109  /// VisitCXXThisExpr - Visit a C++ "this" expression.
110  bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
111    // C++ [dcl.fct.default]p8:
112    //   The keyword this shall not be used in a default argument of a
113    //   member function.
114    return S->Diag(ThisE->getLocStart(),
115                   diag::err_param_default_argument_references_this)
116               << ThisE->getSourceRange();
117  }
118
119  bool CheckDefaultArgumentVisitor::VisitPseudoObjectExpr(PseudoObjectExpr *POE) {
120    bool Invalid = false;
121    for (PseudoObjectExpr::semantics_iterator
122           i = POE->semantics_begin(), e = POE->semantics_end(); i != e; ++i) {
123      Expr *E = *i;
124
125      // Look through bindings.
126      if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(E)) {
127        E = OVE->getSourceExpr();
128        assert(E && "pseudo-object binding without source expression?");
129      }
130
131      Invalid |= Visit(E);
132    }
133    return Invalid;
134  }
135
136  bool CheckDefaultArgumentVisitor::VisitLambdaExpr(LambdaExpr *Lambda) {
137    // C++11 [expr.lambda.prim]p13:
138    //   A lambda-expression appearing in a default argument shall not
139    //   implicitly or explicitly capture any entity.
140    if (Lambda->capture_begin() == Lambda->capture_end())
141      return false;
142
143    return S->Diag(Lambda->getLocStart(),
144                   diag::err_lambda_capture_default_arg);
145  }
146}
147
148void
149Sema::ImplicitExceptionSpecification::CalledDecl(SourceLocation CallLoc,
150                                                 const CXXMethodDecl *Method) {
151  // If we have an MSAny spec already, don't bother.
152  if (!Method || ComputedEST == EST_MSAny)
153    return;
154
155  const FunctionProtoType *Proto
156    = Method->getType()->getAs<FunctionProtoType>();
157  Proto = Self->ResolveExceptionSpec(CallLoc, Proto);
158  if (!Proto)
159    return;
160
161  ExceptionSpecificationType EST = Proto->getExceptionSpecType();
162
163  // If this function can throw any exceptions, make a note of that.
164  if (EST == EST_MSAny || EST == EST_None) {
165    ClearExceptions();
166    ComputedEST = EST;
167    return;
168  }
169
170  // FIXME: If the call to this decl is using any of its default arguments, we
171  // need to search them for potentially-throwing calls.
172
173  // If this function has a basic noexcept, it doesn't affect the outcome.
174  if (EST == EST_BasicNoexcept)
175    return;
176
177  // If we have a throw-all spec at this point, ignore the function.
178  if (ComputedEST == EST_None)
179    return;
180
181  // If we're still at noexcept(true) and there's a nothrow() callee,
182  // change to that specification.
183  if (EST == EST_DynamicNone) {
184    if (ComputedEST == EST_BasicNoexcept)
185      ComputedEST = EST_DynamicNone;
186    return;
187  }
188
189  // Check out noexcept specs.
190  if (EST == EST_ComputedNoexcept) {
191    FunctionProtoType::NoexceptResult NR =
192        Proto->getNoexceptSpec(Self->Context);
193    assert(NR != FunctionProtoType::NR_NoNoexcept &&
194           "Must have noexcept result for EST_ComputedNoexcept.");
195    assert(NR != FunctionProtoType::NR_Dependent &&
196           "Should not generate implicit declarations for dependent cases, "
197           "and don't know how to handle them anyway.");
198
199    // noexcept(false) -> no spec on the new function
200    if (NR == FunctionProtoType::NR_Throw) {
201      ClearExceptions();
202      ComputedEST = EST_None;
203    }
204    // noexcept(true) won't change anything either.
205    return;
206  }
207
208  assert(EST == EST_Dynamic && "EST case not considered earlier.");
209  assert(ComputedEST != EST_None &&
210         "Shouldn't collect exceptions when throw-all is guaranteed.");
211  ComputedEST = EST_Dynamic;
212  // Record the exceptions in this function's exception specification.
213  for (FunctionProtoType::exception_iterator E = Proto->exception_begin(),
214                                          EEnd = Proto->exception_end();
215       E != EEnd; ++E)
216    if (ExceptionsSeen.insert(Self->Context.getCanonicalType(*E)))
217      Exceptions.push_back(*E);
218}
219
220void Sema::ImplicitExceptionSpecification::CalledExpr(Expr *E) {
221  if (!E || ComputedEST == EST_MSAny)
222    return;
223
224  // FIXME:
225  //
226  // C++0x [except.spec]p14:
227  //   [An] implicit exception-specification specifies the type-id T if and
228  // only if T is allowed by the exception-specification of a function directly
229  // invoked by f's implicit definition; f shall allow all exceptions if any
230  // function it directly invokes allows all exceptions, and f shall allow no
231  // exceptions if every function it directly invokes allows no exceptions.
232  //
233  // Note in particular that if an implicit exception-specification is generated
234  // for a function containing a throw-expression, that specification can still
235  // be noexcept(true).
236  //
237  // Note also that 'directly invoked' is not defined in the standard, and there
238  // is no indication that we should only consider potentially-evaluated calls.
239  //
240  // Ultimately we should implement the intent of the standard: the exception
241  // specification should be the set of exceptions which can be thrown by the
242  // implicit definition. For now, we assume that any non-nothrow expression can
243  // throw any exception.
244
245  if (Self->canThrow(E))
246    ComputedEST = EST_None;
247}
248
249bool
250Sema::SetParamDefaultArgument(ParmVarDecl *Param, Expr *Arg,
251                              SourceLocation EqualLoc) {
252  if (RequireCompleteType(Param->getLocation(), Param->getType(),
253                          diag::err_typecheck_decl_incomplete_type)) {
254    Param->setInvalidDecl();
255    return true;
256  }
257
258  // C++ [dcl.fct.default]p5
259  //   A default argument expression is implicitly converted (clause
260  //   4) to the parameter type. The default argument expression has
261  //   the same semantic constraints as the initializer expression in
262  //   a declaration of a variable of the parameter type, using the
263  //   copy-initialization semantics (8.5).
264  InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
265                                                                    Param);
266  InitializationKind Kind = InitializationKind::CreateCopy(Param->getLocation(),
267                                                           EqualLoc);
268  InitializationSequence InitSeq(*this, Entity, Kind, Arg);
269  ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Arg);
270  if (Result.isInvalid())
271    return true;
272  Arg = Result.takeAs<Expr>();
273
274  CheckCompletedExpr(Arg, EqualLoc);
275  Arg = MaybeCreateExprWithCleanups(Arg);
276
277  // Okay: add the default argument to the parameter
278  Param->setDefaultArg(Arg);
279
280  // We have already instantiated this parameter; provide each of the
281  // instantiations with the uninstantiated default argument.
282  UnparsedDefaultArgInstantiationsMap::iterator InstPos
283    = UnparsedDefaultArgInstantiations.find(Param);
284  if (InstPos != UnparsedDefaultArgInstantiations.end()) {
285    for (unsigned I = 0, N = InstPos->second.size(); I != N; ++I)
286      InstPos->second[I]->setUninstantiatedDefaultArg(Arg);
287
288    // We're done tracking this parameter's instantiations.
289    UnparsedDefaultArgInstantiations.erase(InstPos);
290  }
291
292  return false;
293}
294
295/// ActOnParamDefaultArgument - Check whether the default argument
296/// provided for a function parameter is well-formed. If so, attach it
297/// to the parameter declaration.
298void
299Sema::ActOnParamDefaultArgument(Decl *param, SourceLocation EqualLoc,
300                                Expr *DefaultArg) {
301  if (!param || !DefaultArg)
302    return;
303
304  ParmVarDecl *Param = cast<ParmVarDecl>(param);
305  UnparsedDefaultArgLocs.erase(Param);
306
307  // Default arguments are only permitted in C++
308  if (!getLangOpts().CPlusPlus) {
309    Diag(EqualLoc, diag::err_param_default_argument)
310      << DefaultArg->getSourceRange();
311    Param->setInvalidDecl();
312    return;
313  }
314
315  // Check for unexpanded parameter packs.
316  if (DiagnoseUnexpandedParameterPack(DefaultArg, UPPC_DefaultArgument)) {
317    Param->setInvalidDecl();
318    return;
319  }
320
321  // Check that the default argument is well-formed
322  CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg, this);
323  if (DefaultArgChecker.Visit(DefaultArg)) {
324    Param->setInvalidDecl();
325    return;
326  }
327
328  SetParamDefaultArgument(Param, DefaultArg, EqualLoc);
329}
330
331/// ActOnParamUnparsedDefaultArgument - We've seen a default
332/// argument for a function parameter, but we can't parse it yet
333/// because we're inside a class definition. Note that this default
334/// argument will be parsed later.
335void Sema::ActOnParamUnparsedDefaultArgument(Decl *param,
336                                             SourceLocation EqualLoc,
337                                             SourceLocation ArgLoc) {
338  if (!param)
339    return;
340
341  ParmVarDecl *Param = cast<ParmVarDecl>(param);
342  if (Param)
343    Param->setUnparsedDefaultArg();
344
345  UnparsedDefaultArgLocs[Param] = ArgLoc;
346}
347
348/// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
349/// the default argument for the parameter param failed.
350void Sema::ActOnParamDefaultArgumentError(Decl *param) {
351  if (!param)
352    return;
353
354  ParmVarDecl *Param = cast<ParmVarDecl>(param);
355
356  Param->setInvalidDecl();
357
358  UnparsedDefaultArgLocs.erase(Param);
359}
360
361/// CheckExtraCXXDefaultArguments - Check for any extra default
362/// arguments in the declarator, which is not a function declaration
363/// or definition and therefore is not permitted to have default
364/// arguments. This routine should be invoked for every declarator
365/// that is not a function declaration or definition.
366void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
367  // C++ [dcl.fct.default]p3
368  //   A default argument expression shall be specified only in the
369  //   parameter-declaration-clause of a function declaration or in a
370  //   template-parameter (14.1). It shall not be specified for a
371  //   parameter pack. If it is specified in a
372  //   parameter-declaration-clause, it shall not occur within a
373  //   declarator or abstract-declarator of a parameter-declaration.
374  bool MightBeFunction = D.isFunctionDeclarationContext();
375  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
376    DeclaratorChunk &chunk = D.getTypeObject(i);
377    if (chunk.Kind == DeclaratorChunk::Function) {
378      if (MightBeFunction) {
379        // This is a function declaration. It can have default arguments, but
380        // keep looking in case its return type is a function type with default
381        // arguments.
382        MightBeFunction = false;
383        continue;
384      }
385      for (unsigned argIdx = 0, e = chunk.Fun.NumArgs; argIdx != e; ++argIdx) {
386        ParmVarDecl *Param =
387          cast<ParmVarDecl>(chunk.Fun.ArgInfo[argIdx].Param);
388        if (Param->hasUnparsedDefaultArg()) {
389          CachedTokens *Toks = chunk.Fun.ArgInfo[argIdx].DefaultArgTokens;
390          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
391            << SourceRange((*Toks)[1].getLocation(),
392                           Toks->back().getLocation());
393          delete Toks;
394          chunk.Fun.ArgInfo[argIdx].DefaultArgTokens = 0;
395        } else if (Param->getDefaultArg()) {
396          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
397            << Param->getDefaultArg()->getSourceRange();
398          Param->setDefaultArg(0);
399        }
400      }
401    } else if (chunk.Kind != DeclaratorChunk::Paren) {
402      MightBeFunction = false;
403    }
404  }
405}
406
407static bool functionDeclHasDefaultArgument(const FunctionDecl *FD) {
408  for (unsigned NumParams = FD->getNumParams(); NumParams > 0; --NumParams) {
409    const ParmVarDecl *PVD = FD->getParamDecl(NumParams-1);
410    if (!PVD->hasDefaultArg())
411      return false;
412    if (!PVD->hasInheritedDefaultArg())
413      return true;
414  }
415  return false;
416}
417
418/// MergeCXXFunctionDecl - Merge two declarations of the same C++
419/// function, once we already know that they have the same
420/// type. Subroutine of MergeFunctionDecl. Returns true if there was an
421/// error, false otherwise.
422bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old,
423                                Scope *S) {
424  bool Invalid = false;
425
426  // C++ [dcl.fct.default]p4:
427  //   For non-template functions, default arguments can be added in
428  //   later declarations of a function in the same
429  //   scope. Declarations in different scopes have completely
430  //   distinct sets of default arguments. That is, declarations in
431  //   inner scopes do not acquire default arguments from
432  //   declarations in outer scopes, and vice versa. In a given
433  //   function declaration, all parameters subsequent to a
434  //   parameter with a default argument shall have default
435  //   arguments supplied in this or previous declarations. A
436  //   default argument shall not be redefined by a later
437  //   declaration (not even to the same value).
438  //
439  // C++ [dcl.fct.default]p6:
440  //   Except for member functions of class templates, the default arguments
441  //   in a member function definition that appears outside of the class
442  //   definition are added to the set of default arguments provided by the
443  //   member function declaration in the class definition.
444  for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) {
445    ParmVarDecl *OldParam = Old->getParamDecl(p);
446    ParmVarDecl *NewParam = New->getParamDecl(p);
447
448    bool OldParamHasDfl = OldParam->hasDefaultArg();
449    bool NewParamHasDfl = NewParam->hasDefaultArg();
450
451    NamedDecl *ND = Old;
452    if (S && !isDeclInScope(ND, New->getDeclContext(), S))
453      // Ignore default parameters of old decl if they are not in
454      // the same scope.
455      OldParamHasDfl = false;
456
457    if (OldParamHasDfl && NewParamHasDfl) {
458
459      unsigned DiagDefaultParamID =
460        diag::err_param_default_argument_redefinition;
461
462      // MSVC accepts that default parameters be redefined for member functions
463      // of template class. The new default parameter's value is ignored.
464      Invalid = true;
465      if (getLangOpts().MicrosoftExt) {
466        CXXMethodDecl* MD = dyn_cast<CXXMethodDecl>(New);
467        if (MD && MD->getParent()->getDescribedClassTemplate()) {
468          // Merge the old default argument into the new parameter.
469          NewParam->setHasInheritedDefaultArg();
470          if (OldParam->hasUninstantiatedDefaultArg())
471            NewParam->setUninstantiatedDefaultArg(
472                                      OldParam->getUninstantiatedDefaultArg());
473          else
474            NewParam->setDefaultArg(OldParam->getInit());
475          DiagDefaultParamID = diag::warn_param_default_argument_redefinition;
476          Invalid = false;
477        }
478      }
479
480      // FIXME: If we knew where the '=' was, we could easily provide a fix-it
481      // hint here. Alternatively, we could walk the type-source information
482      // for NewParam to find the last source location in the type... but it
483      // isn't worth the effort right now. This is the kind of test case that
484      // is hard to get right:
485      //   int f(int);
486      //   void g(int (*fp)(int) = f);
487      //   void g(int (*fp)(int) = &f);
488      Diag(NewParam->getLocation(), DiagDefaultParamID)
489        << NewParam->getDefaultArgRange();
490
491      // Look for the function declaration where the default argument was
492      // actually written, which may be a declaration prior to Old.
493      for (FunctionDecl *Older = Old->getPreviousDecl();
494           Older; Older = Older->getPreviousDecl()) {
495        if (!Older->getParamDecl(p)->hasDefaultArg())
496          break;
497
498        OldParam = Older->getParamDecl(p);
499      }
500
501      Diag(OldParam->getLocation(), diag::note_previous_definition)
502        << OldParam->getDefaultArgRange();
503    } else if (OldParamHasDfl) {
504      // Merge the old default argument into the new parameter.
505      // It's important to use getInit() here;  getDefaultArg()
506      // strips off any top-level ExprWithCleanups.
507      NewParam->setHasInheritedDefaultArg();
508      if (OldParam->hasUninstantiatedDefaultArg())
509        NewParam->setUninstantiatedDefaultArg(
510                                      OldParam->getUninstantiatedDefaultArg());
511      else
512        NewParam->setDefaultArg(OldParam->getInit());
513    } else if (NewParamHasDfl) {
514      if (New->getDescribedFunctionTemplate()) {
515        // Paragraph 4, quoted above, only applies to non-template functions.
516        Diag(NewParam->getLocation(),
517             diag::err_param_default_argument_template_redecl)
518          << NewParam->getDefaultArgRange();
519        Diag(Old->getLocation(), diag::note_template_prev_declaration)
520          << false;
521      } else if (New->getTemplateSpecializationKind()
522                   != TSK_ImplicitInstantiation &&
523                 New->getTemplateSpecializationKind() != TSK_Undeclared) {
524        // C++ [temp.expr.spec]p21:
525        //   Default function arguments shall not be specified in a declaration
526        //   or a definition for one of the following explicit specializations:
527        //     - the explicit specialization of a function template;
528        //     - the explicit specialization of a member function template;
529        //     - the explicit specialization of a member function of a class
530        //       template where the class template specialization to which the
531        //       member function specialization belongs is implicitly
532        //       instantiated.
533        Diag(NewParam->getLocation(), diag::err_template_spec_default_arg)
534          << (New->getTemplateSpecializationKind() ==TSK_ExplicitSpecialization)
535          << New->getDeclName()
536          << NewParam->getDefaultArgRange();
537      } else if (New->getDeclContext()->isDependentContext()) {
538        // C++ [dcl.fct.default]p6 (DR217):
539        //   Default arguments for a member function of a class template shall
540        //   be specified on the initial declaration of the member function
541        //   within the class template.
542        //
543        // Reading the tea leaves a bit in DR217 and its reference to DR205
544        // leads me to the conclusion that one cannot add default function
545        // arguments for an out-of-line definition of a member function of a
546        // dependent type.
547        int WhichKind = 2;
548        if (CXXRecordDecl *Record
549              = dyn_cast<CXXRecordDecl>(New->getDeclContext())) {
550          if (Record->getDescribedClassTemplate())
551            WhichKind = 0;
552          else if (isa<ClassTemplatePartialSpecializationDecl>(Record))
553            WhichKind = 1;
554          else
555            WhichKind = 2;
556        }
557
558        Diag(NewParam->getLocation(),
559             diag::err_param_default_argument_member_template_redecl)
560          << WhichKind
561          << NewParam->getDefaultArgRange();
562      }
563    }
564  }
565
566  // DR1344: If a default argument is added outside a class definition and that
567  // default argument makes the function a special member function, the program
568  // is ill-formed. This can only happen for constructors.
569  if (isa<CXXConstructorDecl>(New) &&
570      New->getMinRequiredArguments() < Old->getMinRequiredArguments()) {
571    CXXSpecialMember NewSM = getSpecialMember(cast<CXXMethodDecl>(New)),
572                     OldSM = getSpecialMember(cast<CXXMethodDecl>(Old));
573    if (NewSM != OldSM) {
574      ParmVarDecl *NewParam = New->getParamDecl(New->getMinRequiredArguments());
575      assert(NewParam->hasDefaultArg());
576      Diag(NewParam->getLocation(), diag::err_default_arg_makes_ctor_special)
577        << NewParam->getDefaultArgRange() << NewSM;
578      Diag(Old->getLocation(), diag::note_previous_declaration);
579    }
580  }
581
582  // C++11 [dcl.constexpr]p1: If any declaration of a function or function
583  // template has a constexpr specifier then all its declarations shall
584  // contain the constexpr specifier.
585  if (New->isConstexpr() != Old->isConstexpr()) {
586    Diag(New->getLocation(), diag::err_constexpr_redecl_mismatch)
587      << New << New->isConstexpr();
588    Diag(Old->getLocation(), diag::note_previous_declaration);
589    Invalid = true;
590  }
591
592  // C++11 [dcl.fct.default]p4: If a friend declaration specifies a default
593  // argument expression, that declaration shall be a definition and shall be
594  // the only declaration of the function or function template in the
595  // translation unit.
596  if (Old->getFriendObjectKind() == Decl::FOK_Undeclared &&
597      functionDeclHasDefaultArgument(Old)) {
598    Diag(New->getLocation(), diag::err_friend_decl_with_def_arg_redeclared);
599    Diag(Old->getLocation(), diag::note_previous_declaration);
600    Invalid = true;
601  }
602
603  if (CheckEquivalentExceptionSpec(Old, New))
604    Invalid = true;
605
606  return Invalid;
607}
608
609/// \brief Merge the exception specifications of two variable declarations.
610///
611/// This is called when there's a redeclaration of a VarDecl. The function
612/// checks if the redeclaration might have an exception specification and
613/// validates compatibility and merges the specs if necessary.
614void Sema::MergeVarDeclExceptionSpecs(VarDecl *New, VarDecl *Old) {
615  // Shortcut if exceptions are disabled.
616  if (!getLangOpts().CXXExceptions)
617    return;
618
619  assert(Context.hasSameType(New->getType(), Old->getType()) &&
620         "Should only be called if types are otherwise the same.");
621
622  QualType NewType = New->getType();
623  QualType OldType = Old->getType();
624
625  // We're only interested in pointers and references to functions, as well
626  // as pointers to member functions.
627  if (const ReferenceType *R = NewType->getAs<ReferenceType>()) {
628    NewType = R->getPointeeType();
629    OldType = OldType->getAs<ReferenceType>()->getPointeeType();
630  } else if (const PointerType *P = NewType->getAs<PointerType>()) {
631    NewType = P->getPointeeType();
632    OldType = OldType->getAs<PointerType>()->getPointeeType();
633  } else if (const MemberPointerType *M = NewType->getAs<MemberPointerType>()) {
634    NewType = M->getPointeeType();
635    OldType = OldType->getAs<MemberPointerType>()->getPointeeType();
636  }
637
638  if (!NewType->isFunctionProtoType())
639    return;
640
641  // There's lots of special cases for functions. For function pointers, system
642  // libraries are hopefully not as broken so that we don't need these
643  // workarounds.
644  if (CheckEquivalentExceptionSpec(
645        OldType->getAs<FunctionProtoType>(), Old->getLocation(),
646        NewType->getAs<FunctionProtoType>(), New->getLocation())) {
647    New->setInvalidDecl();
648  }
649}
650
651/// CheckCXXDefaultArguments - Verify that the default arguments for a
652/// function declaration are well-formed according to C++
653/// [dcl.fct.default].
654void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
655  unsigned NumParams = FD->getNumParams();
656  unsigned p;
657
658  // Find first parameter with a default argument
659  for (p = 0; p < NumParams; ++p) {
660    ParmVarDecl *Param = FD->getParamDecl(p);
661    if (Param->hasDefaultArg())
662      break;
663  }
664
665  // C++ [dcl.fct.default]p4:
666  //   In a given function declaration, all parameters
667  //   subsequent to a parameter with a default argument shall
668  //   have default arguments supplied in this or previous
669  //   declarations. A default argument shall not be redefined
670  //   by a later declaration (not even to the same value).
671  unsigned LastMissingDefaultArg = 0;
672  for (; p < NumParams; ++p) {
673    ParmVarDecl *Param = FD->getParamDecl(p);
674    if (!Param->hasDefaultArg()) {
675      if (Param->isInvalidDecl())
676        /* We already complained about this parameter. */;
677      else if (Param->getIdentifier())
678        Diag(Param->getLocation(),
679             diag::err_param_default_argument_missing_name)
680          << Param->getIdentifier();
681      else
682        Diag(Param->getLocation(),
683             diag::err_param_default_argument_missing);
684
685      LastMissingDefaultArg = p;
686    }
687  }
688
689  if (LastMissingDefaultArg > 0) {
690    // Some default arguments were missing. Clear out all of the
691    // default arguments up to (and including) the last missing
692    // default argument, so that we leave the function parameters
693    // in a semantically valid state.
694    for (p = 0; p <= LastMissingDefaultArg; ++p) {
695      ParmVarDecl *Param = FD->getParamDecl(p);
696      if (Param->hasDefaultArg()) {
697        Param->setDefaultArg(0);
698      }
699    }
700  }
701}
702
703// CheckConstexprParameterTypes - Check whether a function's parameter types
704// are all literal types. If so, return true. If not, produce a suitable
705// diagnostic and return false.
706static bool CheckConstexprParameterTypes(Sema &SemaRef,
707                                         const FunctionDecl *FD) {
708  unsigned ArgIndex = 0;
709  const FunctionProtoType *FT = FD->getType()->getAs<FunctionProtoType>();
710  for (FunctionProtoType::arg_type_iterator i = FT->arg_type_begin(),
711       e = FT->arg_type_end(); i != e; ++i, ++ArgIndex) {
712    const ParmVarDecl *PD = FD->getParamDecl(ArgIndex);
713    SourceLocation ParamLoc = PD->getLocation();
714    if (!(*i)->isDependentType() &&
715        SemaRef.RequireLiteralType(ParamLoc, *i,
716                                   diag::err_constexpr_non_literal_param,
717                                   ArgIndex+1, PD->getSourceRange(),
718                                   isa<CXXConstructorDecl>(FD)))
719      return false;
720  }
721  return true;
722}
723
724/// \brief Get diagnostic %select index for tag kind for
725/// record diagnostic message.
726/// WARNING: Indexes apply to particular diagnostics only!
727///
728/// \returns diagnostic %select index.
729static unsigned getRecordDiagFromTagKind(TagTypeKind Tag) {
730  switch (Tag) {
731  case TTK_Struct: return 0;
732  case TTK_Interface: return 1;
733  case TTK_Class:  return 2;
734  default: llvm_unreachable("Invalid tag kind for record diagnostic!");
735  }
736}
737
738// CheckConstexprFunctionDecl - Check whether a function declaration satisfies
739// the requirements of a constexpr function definition or a constexpr
740// constructor definition. If so, return true. If not, produce appropriate
741// diagnostics and return false.
742//
743// This implements C++11 [dcl.constexpr]p3,4, as amended by DR1360.
744bool Sema::CheckConstexprFunctionDecl(const FunctionDecl *NewFD) {
745  const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
746  if (MD && MD->isInstance()) {
747    // C++11 [dcl.constexpr]p4:
748    //  The definition of a constexpr constructor shall satisfy the following
749    //  constraints:
750    //  - the class shall not have any virtual base classes;
751    const CXXRecordDecl *RD = MD->getParent();
752    if (RD->getNumVBases()) {
753      Diag(NewFD->getLocation(), diag::err_constexpr_virtual_base)
754        << isa<CXXConstructorDecl>(NewFD)
755        << getRecordDiagFromTagKind(RD->getTagKind()) << RD->getNumVBases();
756      for (CXXRecordDecl::base_class_const_iterator I = RD->vbases_begin(),
757             E = RD->vbases_end(); I != E; ++I)
758        Diag(I->getLocStart(),
759             diag::note_constexpr_virtual_base_here) << I->getSourceRange();
760      return false;
761    }
762  }
763
764  if (!isa<CXXConstructorDecl>(NewFD)) {
765    // C++11 [dcl.constexpr]p3:
766    //  The definition of a constexpr function shall satisfy the following
767    //  constraints:
768    // - it shall not be virtual;
769    const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD);
770    if (Method && Method->isVirtual()) {
771      Diag(NewFD->getLocation(), diag::err_constexpr_virtual);
772
773      // If it's not obvious why this function is virtual, find an overridden
774      // function which uses the 'virtual' keyword.
775      const CXXMethodDecl *WrittenVirtual = Method;
776      while (!WrittenVirtual->isVirtualAsWritten())
777        WrittenVirtual = *WrittenVirtual->begin_overridden_methods();
778      if (WrittenVirtual != Method)
779        Diag(WrittenVirtual->getLocation(),
780             diag::note_overridden_virtual_function);
781      return false;
782    }
783
784    // - its return type shall be a literal type;
785    QualType RT = NewFD->getResultType();
786    if (!RT->isDependentType() &&
787        RequireLiteralType(NewFD->getLocation(), RT,
788                           diag::err_constexpr_non_literal_return))
789      return false;
790  }
791
792  // - each of its parameter types shall be a literal type;
793  if (!CheckConstexprParameterTypes(*this, NewFD))
794    return false;
795
796  return true;
797}
798
799/// Check the given declaration statement is legal within a constexpr function
800/// body. C++11 [dcl.constexpr]p3,p4, and C++1y [dcl.constexpr]p3.
801///
802/// \return true if the body is OK (maybe only as an extension), false if we
803///         have diagnosed a problem.
804static bool CheckConstexprDeclStmt(Sema &SemaRef, const FunctionDecl *Dcl,
805                                   DeclStmt *DS, SourceLocation &Cxx1yLoc) {
806  // C++11 [dcl.constexpr]p3 and p4:
807  //  The definition of a constexpr function(p3) or constructor(p4) [...] shall
808  //  contain only
809  for (DeclStmt::decl_iterator DclIt = DS->decl_begin(),
810         DclEnd = DS->decl_end(); DclIt != DclEnd; ++DclIt) {
811    switch ((*DclIt)->getKind()) {
812    case Decl::StaticAssert:
813    case Decl::Using:
814    case Decl::UsingShadow:
815    case Decl::UsingDirective:
816    case Decl::UnresolvedUsingTypename:
817    case Decl::UnresolvedUsingValue:
818      //   - static_assert-declarations
819      //   - using-declarations,
820      //   - using-directives,
821      continue;
822
823    case Decl::Typedef:
824    case Decl::TypeAlias: {
825      //   - typedef declarations and alias-declarations that do not define
826      //     classes or enumerations,
827      TypedefNameDecl *TN = cast<TypedefNameDecl>(*DclIt);
828      if (TN->getUnderlyingType()->isVariablyModifiedType()) {
829        // Don't allow variably-modified types in constexpr functions.
830        TypeLoc TL = TN->getTypeSourceInfo()->getTypeLoc();
831        SemaRef.Diag(TL.getBeginLoc(), diag::err_constexpr_vla)
832          << TL.getSourceRange() << TL.getType()
833          << isa<CXXConstructorDecl>(Dcl);
834        return false;
835      }
836      continue;
837    }
838
839    case Decl::Enum:
840    case Decl::CXXRecord:
841      // C++1y allows types to be defined, not just declared.
842      if (cast<TagDecl>(*DclIt)->isThisDeclarationADefinition())
843        SemaRef.Diag(DS->getLocStart(),
844                     SemaRef.getLangOpts().CPlusPlus1y
845                       ? diag::warn_cxx11_compat_constexpr_type_definition
846                       : diag::ext_constexpr_type_definition)
847          << isa<CXXConstructorDecl>(Dcl);
848      continue;
849
850    case Decl::EnumConstant:
851    case Decl::IndirectField:
852    case Decl::ParmVar:
853      // These can only appear with other declarations which are banned in
854      // C++11 and permitted in C++1y, so ignore them.
855      continue;
856
857    case Decl::Var: {
858      // C++1y [dcl.constexpr]p3 allows anything except:
859      //   a definition of a variable of non-literal type or of static or
860      //   thread storage duration or for which no initialization is performed.
861      VarDecl *VD = cast<VarDecl>(*DclIt);
862      if (VD->isThisDeclarationADefinition()) {
863        if (VD->isStaticLocal()) {
864          SemaRef.Diag(VD->getLocation(),
865                       diag::err_constexpr_local_var_static)
866            << isa<CXXConstructorDecl>(Dcl)
867            << (VD->getTLSKind() == VarDecl::TLS_Dynamic);
868          return false;
869        }
870        if (!VD->getType()->isDependentType() &&
871            SemaRef.RequireLiteralType(
872              VD->getLocation(), VD->getType(),
873              diag::err_constexpr_local_var_non_literal_type,
874              isa<CXXConstructorDecl>(Dcl)))
875          return false;
876        if (!VD->hasInit()) {
877          SemaRef.Diag(VD->getLocation(),
878                       diag::err_constexpr_local_var_no_init)
879            << isa<CXXConstructorDecl>(Dcl);
880          return false;
881        }
882      }
883      SemaRef.Diag(VD->getLocation(),
884                   SemaRef.getLangOpts().CPlusPlus1y
885                    ? diag::warn_cxx11_compat_constexpr_local_var
886                    : diag::ext_constexpr_local_var)
887        << isa<CXXConstructorDecl>(Dcl);
888      continue;
889    }
890
891    case Decl::NamespaceAlias:
892    case Decl::Function:
893      // These are disallowed in C++11 and permitted in C++1y. Allow them
894      // everywhere as an extension.
895      if (!Cxx1yLoc.isValid())
896        Cxx1yLoc = DS->getLocStart();
897      continue;
898
899    default:
900      SemaRef.Diag(DS->getLocStart(), diag::err_constexpr_body_invalid_stmt)
901        << isa<CXXConstructorDecl>(Dcl);
902      return false;
903    }
904  }
905
906  return true;
907}
908
909/// Check that the given field is initialized within a constexpr constructor.
910///
911/// \param Dcl The constexpr constructor being checked.
912/// \param Field The field being checked. This may be a member of an anonymous
913///        struct or union nested within the class being checked.
914/// \param Inits All declarations, including anonymous struct/union members and
915///        indirect members, for which any initialization was provided.
916/// \param Diagnosed Set to true if an error is produced.
917static void CheckConstexprCtorInitializer(Sema &SemaRef,
918                                          const FunctionDecl *Dcl,
919                                          FieldDecl *Field,
920                                          llvm::SmallSet<Decl*, 16> &Inits,
921                                          bool &Diagnosed) {
922  if (Field->isInvalidDecl())
923    return;
924
925  if (Field->isUnnamedBitfield())
926    return;
927
928  if (Field->isAnonymousStructOrUnion() &&
929      Field->getType()->getAsCXXRecordDecl()->isEmpty())
930    return;
931
932  if (!Inits.count(Field)) {
933    if (!Diagnosed) {
934      SemaRef.Diag(Dcl->getLocation(), diag::err_constexpr_ctor_missing_init);
935      Diagnosed = true;
936    }
937    SemaRef.Diag(Field->getLocation(), diag::note_constexpr_ctor_missing_init);
938  } else if (Field->isAnonymousStructOrUnion()) {
939    const RecordDecl *RD = Field->getType()->castAs<RecordType>()->getDecl();
940    for (RecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end();
941         I != E; ++I)
942      // If an anonymous union contains an anonymous struct of which any member
943      // is initialized, all members must be initialized.
944      if (!RD->isUnion() || Inits.count(*I))
945        CheckConstexprCtorInitializer(SemaRef, Dcl, *I, Inits, Diagnosed);
946  }
947}
948
949/// Check the provided statement is allowed in a constexpr function
950/// definition.
951static bool
952CheckConstexprFunctionStmt(Sema &SemaRef, const FunctionDecl *Dcl, Stmt *S,
953                           llvm::SmallVectorImpl<SourceLocation> &ReturnStmts,
954                           SourceLocation &Cxx1yLoc) {
955  // - its function-body shall be [...] a compound-statement that contains only
956  switch (S->getStmtClass()) {
957  case Stmt::NullStmtClass:
958    //   - null statements,
959    return true;
960
961  case Stmt::DeclStmtClass:
962    //   - static_assert-declarations
963    //   - using-declarations,
964    //   - using-directives,
965    //   - typedef declarations and alias-declarations that do not define
966    //     classes or enumerations,
967    if (!CheckConstexprDeclStmt(SemaRef, Dcl, cast<DeclStmt>(S), Cxx1yLoc))
968      return false;
969    return true;
970
971  case Stmt::ReturnStmtClass:
972    //   - and exactly one return statement;
973    if (isa<CXXConstructorDecl>(Dcl)) {
974      // C++1y allows return statements in constexpr constructors.
975      if (!Cxx1yLoc.isValid())
976        Cxx1yLoc = S->getLocStart();
977      return true;
978    }
979
980    ReturnStmts.push_back(S->getLocStart());
981    return true;
982
983  case Stmt::CompoundStmtClass: {
984    // C++1y allows compound-statements.
985    if (!Cxx1yLoc.isValid())
986      Cxx1yLoc = S->getLocStart();
987
988    CompoundStmt *CompStmt = cast<CompoundStmt>(S);
989    for (CompoundStmt::body_iterator BodyIt = CompStmt->body_begin(),
990           BodyEnd = CompStmt->body_end(); BodyIt != BodyEnd; ++BodyIt) {
991      if (!CheckConstexprFunctionStmt(SemaRef, Dcl, *BodyIt, ReturnStmts,
992                                      Cxx1yLoc))
993        return false;
994    }
995    return true;
996  }
997
998  case Stmt::AttributedStmtClass:
999    if (!Cxx1yLoc.isValid())
1000      Cxx1yLoc = S->getLocStart();
1001    return true;
1002
1003  case Stmt::IfStmtClass: {
1004    // C++1y allows if-statements.
1005    if (!Cxx1yLoc.isValid())
1006      Cxx1yLoc = S->getLocStart();
1007
1008    IfStmt *If = cast<IfStmt>(S);
1009    if (!CheckConstexprFunctionStmt(SemaRef, Dcl, If->getThen(), ReturnStmts,
1010                                    Cxx1yLoc))
1011      return false;
1012    if (If->getElse() &&
1013        !CheckConstexprFunctionStmt(SemaRef, Dcl, If->getElse(), ReturnStmts,
1014                                    Cxx1yLoc))
1015      return false;
1016    return true;
1017  }
1018
1019  case Stmt::WhileStmtClass:
1020  case Stmt::DoStmtClass:
1021  case Stmt::ForStmtClass:
1022  case Stmt::CXXForRangeStmtClass:
1023  case Stmt::ContinueStmtClass:
1024    // C++1y allows all of these. We don't allow them as extensions in C++11,
1025    // because they don't make sense without variable mutation.
1026    if (!SemaRef.getLangOpts().CPlusPlus1y)
1027      break;
1028    if (!Cxx1yLoc.isValid())
1029      Cxx1yLoc = S->getLocStart();
1030    for (Stmt::child_range Children = S->children(); Children; ++Children)
1031      if (*Children &&
1032          !CheckConstexprFunctionStmt(SemaRef, Dcl, *Children, ReturnStmts,
1033                                      Cxx1yLoc))
1034        return false;
1035    return true;
1036
1037  case Stmt::SwitchStmtClass:
1038  case Stmt::CaseStmtClass:
1039  case Stmt::DefaultStmtClass:
1040  case Stmt::BreakStmtClass:
1041    // C++1y allows switch-statements, and since they don't need variable
1042    // mutation, we can reasonably allow them in C++11 as an extension.
1043    if (!Cxx1yLoc.isValid())
1044      Cxx1yLoc = S->getLocStart();
1045    for (Stmt::child_range Children = S->children(); Children; ++Children)
1046      if (*Children &&
1047          !CheckConstexprFunctionStmt(SemaRef, Dcl, *Children, ReturnStmts,
1048                                      Cxx1yLoc))
1049        return false;
1050    return true;
1051
1052  default:
1053    if (!isa<Expr>(S))
1054      break;
1055
1056    // C++1y allows expression-statements.
1057    if (!Cxx1yLoc.isValid())
1058      Cxx1yLoc = S->getLocStart();
1059    return true;
1060  }
1061
1062  SemaRef.Diag(S->getLocStart(), diag::err_constexpr_body_invalid_stmt)
1063    << isa<CXXConstructorDecl>(Dcl);
1064  return false;
1065}
1066
1067/// Check the body for the given constexpr function declaration only contains
1068/// the permitted types of statement. C++11 [dcl.constexpr]p3,p4.
1069///
1070/// \return true if the body is OK, false if we have diagnosed a problem.
1071bool Sema::CheckConstexprFunctionBody(const FunctionDecl *Dcl, Stmt *Body) {
1072  if (isa<CXXTryStmt>(Body)) {
1073    // C++11 [dcl.constexpr]p3:
1074    //  The definition of a constexpr function shall satisfy the following
1075    //  constraints: [...]
1076    // - its function-body shall be = delete, = default, or a
1077    //   compound-statement
1078    //
1079    // C++11 [dcl.constexpr]p4:
1080    //  In the definition of a constexpr constructor, [...]
1081    // - its function-body shall not be a function-try-block;
1082    Diag(Body->getLocStart(), diag::err_constexpr_function_try_block)
1083      << isa<CXXConstructorDecl>(Dcl);
1084    return false;
1085  }
1086
1087  SmallVector<SourceLocation, 4> ReturnStmts;
1088
1089  // - its function-body shall be [...] a compound-statement that contains only
1090  //   [... list of cases ...]
1091  CompoundStmt *CompBody = cast<CompoundStmt>(Body);
1092  SourceLocation Cxx1yLoc;
1093  for (CompoundStmt::body_iterator BodyIt = CompBody->body_begin(),
1094         BodyEnd = CompBody->body_end(); BodyIt != BodyEnd; ++BodyIt) {
1095    if (!CheckConstexprFunctionStmt(*this, Dcl, *BodyIt, ReturnStmts, Cxx1yLoc))
1096      return false;
1097  }
1098
1099  if (Cxx1yLoc.isValid())
1100    Diag(Cxx1yLoc,
1101         getLangOpts().CPlusPlus1y
1102           ? diag::warn_cxx11_compat_constexpr_body_invalid_stmt
1103           : diag::ext_constexpr_body_invalid_stmt)
1104      << isa<CXXConstructorDecl>(Dcl);
1105
1106  if (const CXXConstructorDecl *Constructor
1107        = dyn_cast<CXXConstructorDecl>(Dcl)) {
1108    const CXXRecordDecl *RD = Constructor->getParent();
1109    // DR1359:
1110    // - every non-variant non-static data member and base class sub-object
1111    //   shall be initialized;
1112    // - if the class is a non-empty union, or for each non-empty anonymous
1113    //   union member of a non-union class, exactly one non-static data member
1114    //   shall be initialized;
1115    if (RD->isUnion()) {
1116      if (Constructor->getNumCtorInitializers() == 0 && !RD->isEmpty()) {
1117        Diag(Dcl->getLocation(), diag::err_constexpr_union_ctor_no_init);
1118        return false;
1119      }
1120    } else if (!Constructor->isDependentContext() &&
1121               !Constructor->isDelegatingConstructor()) {
1122      assert(RD->getNumVBases() == 0 && "constexpr ctor with virtual bases");
1123
1124      // Skip detailed checking if we have enough initializers, and we would
1125      // allow at most one initializer per member.
1126      bool AnyAnonStructUnionMembers = false;
1127      unsigned Fields = 0;
1128      for (CXXRecordDecl::field_iterator I = RD->field_begin(),
1129           E = RD->field_end(); I != E; ++I, ++Fields) {
1130        if (I->isAnonymousStructOrUnion()) {
1131          AnyAnonStructUnionMembers = true;
1132          break;
1133        }
1134      }
1135      if (AnyAnonStructUnionMembers ||
1136          Constructor->getNumCtorInitializers() != RD->getNumBases() + Fields) {
1137        // Check initialization of non-static data members. Base classes are
1138        // always initialized so do not need to be checked. Dependent bases
1139        // might not have initializers in the member initializer list.
1140        llvm::SmallSet<Decl*, 16> Inits;
1141        for (CXXConstructorDecl::init_const_iterator
1142               I = Constructor->init_begin(), E = Constructor->init_end();
1143             I != E; ++I) {
1144          if (FieldDecl *FD = (*I)->getMember())
1145            Inits.insert(FD);
1146          else if (IndirectFieldDecl *ID = (*I)->getIndirectMember())
1147            Inits.insert(ID->chain_begin(), ID->chain_end());
1148        }
1149
1150        bool Diagnosed = false;
1151        for (CXXRecordDecl::field_iterator I = RD->field_begin(),
1152             E = RD->field_end(); I != E; ++I)
1153          CheckConstexprCtorInitializer(*this, Dcl, *I, Inits, Diagnosed);
1154        if (Diagnosed)
1155          return false;
1156      }
1157    }
1158  } else {
1159    if (ReturnStmts.empty()) {
1160      // C++1y doesn't require constexpr functions to contain a 'return'
1161      // statement. We still do, unless the return type is void, because
1162      // otherwise if there's no return statement, the function cannot
1163      // be used in a core constant expression.
1164      bool OK = getLangOpts().CPlusPlus1y && Dcl->getResultType()->isVoidType();
1165      Diag(Dcl->getLocation(),
1166           OK ? diag::warn_cxx11_compat_constexpr_body_no_return
1167              : diag::err_constexpr_body_no_return);
1168      return OK;
1169    }
1170    if (ReturnStmts.size() > 1) {
1171      Diag(ReturnStmts.back(),
1172           getLangOpts().CPlusPlus1y
1173             ? diag::warn_cxx11_compat_constexpr_body_multiple_return
1174             : diag::ext_constexpr_body_multiple_return);
1175      for (unsigned I = 0; I < ReturnStmts.size() - 1; ++I)
1176        Diag(ReturnStmts[I], diag::note_constexpr_body_previous_return);
1177    }
1178  }
1179
1180  // C++11 [dcl.constexpr]p5:
1181  //   if no function argument values exist such that the function invocation
1182  //   substitution would produce a constant expression, the program is
1183  //   ill-formed; no diagnostic required.
1184  // C++11 [dcl.constexpr]p3:
1185  //   - every constructor call and implicit conversion used in initializing the
1186  //     return value shall be one of those allowed in a constant expression.
1187  // C++11 [dcl.constexpr]p4:
1188  //   - every constructor involved in initializing non-static data members and
1189  //     base class sub-objects shall be a constexpr constructor.
1190  SmallVector<PartialDiagnosticAt, 8> Diags;
1191  if (!Expr::isPotentialConstantExpr(Dcl, Diags)) {
1192    Diag(Dcl->getLocation(), diag::ext_constexpr_function_never_constant_expr)
1193      << isa<CXXConstructorDecl>(Dcl);
1194    for (size_t I = 0, N = Diags.size(); I != N; ++I)
1195      Diag(Diags[I].first, Diags[I].second);
1196    // Don't return false here: we allow this for compatibility in
1197    // system headers.
1198  }
1199
1200  return true;
1201}
1202
1203/// isCurrentClassName - Determine whether the identifier II is the
1204/// name of the class type currently being defined. In the case of
1205/// nested classes, this will only return true if II is the name of
1206/// the innermost class.
1207bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *,
1208                              const CXXScopeSpec *SS) {
1209  assert(getLangOpts().CPlusPlus && "No class names in C!");
1210
1211  CXXRecordDecl *CurDecl;
1212  if (SS && SS->isSet() && !SS->isInvalid()) {
1213    DeclContext *DC = computeDeclContext(*SS, true);
1214    CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
1215  } else
1216    CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
1217
1218  if (CurDecl && CurDecl->getIdentifier())
1219    return &II == CurDecl->getIdentifier();
1220  else
1221    return false;
1222}
1223
1224/// \brief Determine whether the given class is a base class of the given
1225/// class, including looking at dependent bases.
1226static bool findCircularInheritance(const CXXRecordDecl *Class,
1227                                    const CXXRecordDecl *Current) {
1228  SmallVector<const CXXRecordDecl*, 8> Queue;
1229
1230  Class = Class->getCanonicalDecl();
1231  while (true) {
1232    for (CXXRecordDecl::base_class_const_iterator I = Current->bases_begin(),
1233                                                  E = Current->bases_end();
1234         I != E; ++I) {
1235      CXXRecordDecl *Base = I->getType()->getAsCXXRecordDecl();
1236      if (!Base)
1237        continue;
1238
1239      Base = Base->getDefinition();
1240      if (!Base)
1241        continue;
1242
1243      if (Base->getCanonicalDecl() == Class)
1244        return true;
1245
1246      Queue.push_back(Base);
1247    }
1248
1249    if (Queue.empty())
1250      return false;
1251
1252    Current = Queue.back();
1253    Queue.pop_back();
1254  }
1255
1256  return false;
1257}
1258
1259/// \brief Check the validity of a C++ base class specifier.
1260///
1261/// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
1262/// and returns NULL otherwise.
1263CXXBaseSpecifier *
1264Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
1265                         SourceRange SpecifierRange,
1266                         bool Virtual, AccessSpecifier Access,
1267                         TypeSourceInfo *TInfo,
1268                         SourceLocation EllipsisLoc) {
1269  QualType BaseType = TInfo->getType();
1270
1271  // C++ [class.union]p1:
1272  //   A union shall not have base classes.
1273  if (Class->isUnion()) {
1274    Diag(Class->getLocation(), diag::err_base_clause_on_union)
1275      << SpecifierRange;
1276    return 0;
1277  }
1278
1279  if (EllipsisLoc.isValid() &&
1280      !TInfo->getType()->containsUnexpandedParameterPack()) {
1281    Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
1282      << TInfo->getTypeLoc().getSourceRange();
1283    EllipsisLoc = SourceLocation();
1284  }
1285
1286  SourceLocation BaseLoc = TInfo->getTypeLoc().getBeginLoc();
1287
1288  if (BaseType->isDependentType()) {
1289    // Make sure that we don't have circular inheritance among our dependent
1290    // bases. For non-dependent bases, the check for completeness below handles
1291    // this.
1292    if (CXXRecordDecl *BaseDecl = BaseType->getAsCXXRecordDecl()) {
1293      if (BaseDecl->getCanonicalDecl() == Class->getCanonicalDecl() ||
1294          ((BaseDecl = BaseDecl->getDefinition()) &&
1295           findCircularInheritance(Class, BaseDecl))) {
1296        Diag(BaseLoc, diag::err_circular_inheritance)
1297          << BaseType << Context.getTypeDeclType(Class);
1298
1299        if (BaseDecl->getCanonicalDecl() != Class->getCanonicalDecl())
1300          Diag(BaseDecl->getLocation(), diag::note_previous_decl)
1301            << BaseType;
1302
1303        return 0;
1304      }
1305    }
1306
1307    return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
1308                                          Class->getTagKind() == TTK_Class,
1309                                          Access, TInfo, EllipsisLoc);
1310  }
1311
1312  // Base specifiers must be record types.
1313  if (!BaseType->isRecordType()) {
1314    Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
1315    return 0;
1316  }
1317
1318  // C++ [class.union]p1:
1319  //   A union shall not be used as a base class.
1320  if (BaseType->isUnionType()) {
1321    Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
1322    return 0;
1323  }
1324
1325  // C++ [class.derived]p2:
1326  //   The class-name in a base-specifier shall not be an incompletely
1327  //   defined class.
1328  if (RequireCompleteType(BaseLoc, BaseType,
1329                          diag::err_incomplete_base_class, SpecifierRange)) {
1330    Class->setInvalidDecl();
1331    return 0;
1332  }
1333
1334  // If the base class is polymorphic or isn't empty, the new one is/isn't, too.
1335  RecordDecl *BaseDecl = BaseType->getAs<RecordType>()->getDecl();
1336  assert(BaseDecl && "Record type has no declaration");
1337  BaseDecl = BaseDecl->getDefinition();
1338  assert(BaseDecl && "Base type is not incomplete, but has no definition");
1339  CXXRecordDecl *CXXBaseDecl = cast<CXXRecordDecl>(BaseDecl);
1340  assert(CXXBaseDecl && "Base type is not a C++ type");
1341
1342  // C++ [class]p3:
1343  //   If a class is marked final and it appears as a base-type-specifier in
1344  //   base-clause, the program is ill-formed.
1345  if (CXXBaseDecl->hasAttr<FinalAttr>()) {
1346    Diag(BaseLoc, diag::err_class_marked_final_used_as_base)
1347      << CXXBaseDecl->getDeclName();
1348    Diag(CXXBaseDecl->getLocation(), diag::note_previous_decl)
1349      << CXXBaseDecl->getDeclName();
1350    return 0;
1351  }
1352
1353  if (BaseDecl->isInvalidDecl())
1354    Class->setInvalidDecl();
1355
1356  // Create the base specifier.
1357  return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
1358                                        Class->getTagKind() == TTK_Class,
1359                                        Access, TInfo, EllipsisLoc);
1360}
1361
1362/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
1363/// one entry in the base class list of a class specifier, for
1364/// example:
1365///    class foo : public bar, virtual private baz {
1366/// 'public bar' and 'virtual private baz' are each base-specifiers.
1367BaseResult
1368Sema::ActOnBaseSpecifier(Decl *classdecl, SourceRange SpecifierRange,
1369                         ParsedAttributes &Attributes,
1370                         bool Virtual, AccessSpecifier Access,
1371                         ParsedType basetype, SourceLocation BaseLoc,
1372                         SourceLocation EllipsisLoc) {
1373  if (!classdecl)
1374    return true;
1375
1376  AdjustDeclIfTemplate(classdecl);
1377  CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(classdecl);
1378  if (!Class)
1379    return true;
1380
1381  // We do not support any C++11 attributes on base-specifiers yet.
1382  // Diagnose any attributes we see.
1383  if (!Attributes.empty()) {
1384    for (AttributeList *Attr = Attributes.getList(); Attr;
1385         Attr = Attr->getNext()) {
1386      if (Attr->isInvalid() ||
1387          Attr->getKind() == AttributeList::IgnoredAttribute)
1388        continue;
1389      Diag(Attr->getLoc(),
1390           Attr->getKind() == AttributeList::UnknownAttribute
1391             ? diag::warn_unknown_attribute_ignored
1392             : diag::err_base_specifier_attribute)
1393        << Attr->getName();
1394    }
1395  }
1396
1397  TypeSourceInfo *TInfo = 0;
1398  GetTypeFromParser(basetype, &TInfo);
1399
1400  if (EllipsisLoc.isInvalid() &&
1401      DiagnoseUnexpandedParameterPack(SpecifierRange.getBegin(), TInfo,
1402                                      UPPC_BaseType))
1403    return true;
1404
1405  if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
1406                                                      Virtual, Access, TInfo,
1407                                                      EllipsisLoc))
1408    return BaseSpec;
1409  else
1410    Class->setInvalidDecl();
1411
1412  return true;
1413}
1414
1415/// \brief Performs the actual work of attaching the given base class
1416/// specifiers to a C++ class.
1417bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, CXXBaseSpecifier **Bases,
1418                                unsigned NumBases) {
1419 if (NumBases == 0)
1420    return false;
1421
1422  // Used to keep track of which base types we have already seen, so
1423  // that we can properly diagnose redundant direct base types. Note
1424  // that the key is always the unqualified canonical type of the base
1425  // class.
1426  std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
1427
1428  // Copy non-redundant base specifiers into permanent storage.
1429  unsigned NumGoodBases = 0;
1430  bool Invalid = false;
1431  for (unsigned idx = 0; idx < NumBases; ++idx) {
1432    QualType NewBaseType
1433      = Context.getCanonicalType(Bases[idx]->getType());
1434    NewBaseType = NewBaseType.getLocalUnqualifiedType();
1435
1436    CXXBaseSpecifier *&KnownBase = KnownBaseTypes[NewBaseType];
1437    if (KnownBase) {
1438      // C++ [class.mi]p3:
1439      //   A class shall not be specified as a direct base class of a
1440      //   derived class more than once.
1441      Diag(Bases[idx]->getLocStart(),
1442           diag::err_duplicate_base_class)
1443        << KnownBase->getType()
1444        << Bases[idx]->getSourceRange();
1445
1446      // Delete the duplicate base class specifier; we're going to
1447      // overwrite its pointer later.
1448      Context.Deallocate(Bases[idx]);
1449
1450      Invalid = true;
1451    } else {
1452      // Okay, add this new base class.
1453      KnownBase = Bases[idx];
1454      Bases[NumGoodBases++] = Bases[idx];
1455      if (const RecordType *Record = NewBaseType->getAs<RecordType>()) {
1456        const CXXRecordDecl *RD = cast<CXXRecordDecl>(Record->getDecl());
1457        if (Class->isInterface() &&
1458              (!RD->isInterface() ||
1459               KnownBase->getAccessSpecifier() != AS_public)) {
1460          // The Microsoft extension __interface does not permit bases that
1461          // are not themselves public interfaces.
1462          Diag(KnownBase->getLocStart(), diag::err_invalid_base_in_interface)
1463            << getRecordDiagFromTagKind(RD->getTagKind()) << RD->getName()
1464            << RD->getSourceRange();
1465          Invalid = true;
1466        }
1467        if (RD->hasAttr<WeakAttr>())
1468          Class->addAttr(::new (Context) WeakAttr(SourceRange(), Context));
1469      }
1470    }
1471  }
1472
1473  // Attach the remaining base class specifiers to the derived class.
1474  Class->setBases(Bases, NumGoodBases);
1475
1476  // Delete the remaining (good) base class specifiers, since their
1477  // data has been copied into the CXXRecordDecl.
1478  for (unsigned idx = 0; idx < NumGoodBases; ++idx)
1479    Context.Deallocate(Bases[idx]);
1480
1481  return Invalid;
1482}
1483
1484/// ActOnBaseSpecifiers - Attach the given base specifiers to the
1485/// class, after checking whether there are any duplicate base
1486/// classes.
1487void Sema::ActOnBaseSpecifiers(Decl *ClassDecl, CXXBaseSpecifier **Bases,
1488                               unsigned NumBases) {
1489  if (!ClassDecl || !Bases || !NumBases)
1490    return;
1491
1492  AdjustDeclIfTemplate(ClassDecl);
1493  AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl), Bases, NumBases);
1494}
1495
1496/// \brief Determine whether the type \p Derived is a C++ class that is
1497/// derived from the type \p Base.
1498bool Sema::IsDerivedFrom(QualType Derived, QualType Base) {
1499  if (!getLangOpts().CPlusPlus)
1500    return false;
1501
1502  CXXRecordDecl *DerivedRD = Derived->getAsCXXRecordDecl();
1503  if (!DerivedRD)
1504    return false;
1505
1506  CXXRecordDecl *BaseRD = Base->getAsCXXRecordDecl();
1507  if (!BaseRD)
1508    return false;
1509
1510  // If either the base or the derived type is invalid, don't try to
1511  // check whether one is derived from the other.
1512  if (BaseRD->isInvalidDecl() || DerivedRD->isInvalidDecl())
1513    return false;
1514
1515  // FIXME: instantiate DerivedRD if necessary.  We need a PoI for this.
1516  return DerivedRD->hasDefinition() && DerivedRD->isDerivedFrom(BaseRD);
1517}
1518
1519/// \brief Determine whether the type \p Derived is a C++ class that is
1520/// derived from the type \p Base.
1521bool Sema::IsDerivedFrom(QualType Derived, QualType Base, CXXBasePaths &Paths) {
1522  if (!getLangOpts().CPlusPlus)
1523    return false;
1524
1525  CXXRecordDecl *DerivedRD = Derived->getAsCXXRecordDecl();
1526  if (!DerivedRD)
1527    return false;
1528
1529  CXXRecordDecl *BaseRD = Base->getAsCXXRecordDecl();
1530  if (!BaseRD)
1531    return false;
1532
1533  return DerivedRD->isDerivedFrom(BaseRD, Paths);
1534}
1535
1536void Sema::BuildBasePathArray(const CXXBasePaths &Paths,
1537                              CXXCastPath &BasePathArray) {
1538  assert(BasePathArray.empty() && "Base path array must be empty!");
1539  assert(Paths.isRecordingPaths() && "Must record paths!");
1540
1541  const CXXBasePath &Path = Paths.front();
1542
1543  // We first go backward and check if we have a virtual base.
1544  // FIXME: It would be better if CXXBasePath had the base specifier for
1545  // the nearest virtual base.
1546  unsigned Start = 0;
1547  for (unsigned I = Path.size(); I != 0; --I) {
1548    if (Path[I - 1].Base->isVirtual()) {
1549      Start = I - 1;
1550      break;
1551    }
1552  }
1553
1554  // Now add all bases.
1555  for (unsigned I = Start, E = Path.size(); I != E; ++I)
1556    BasePathArray.push_back(const_cast<CXXBaseSpecifier*>(Path[I].Base));
1557}
1558
1559/// \brief Determine whether the given base path includes a virtual
1560/// base class.
1561bool Sema::BasePathInvolvesVirtualBase(const CXXCastPath &BasePath) {
1562  for (CXXCastPath::const_iterator B = BasePath.begin(),
1563                                BEnd = BasePath.end();
1564       B != BEnd; ++B)
1565    if ((*B)->isVirtual())
1566      return true;
1567
1568  return false;
1569}
1570
1571/// CheckDerivedToBaseConversion - Check whether the Derived-to-Base
1572/// conversion (where Derived and Base are class types) is
1573/// well-formed, meaning that the conversion is unambiguous (and
1574/// that all of the base classes are accessible). Returns true
1575/// and emits a diagnostic if the code is ill-formed, returns false
1576/// otherwise. Loc is the location where this routine should point to
1577/// if there is an error, and Range is the source range to highlight
1578/// if there is an error.
1579bool
1580Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
1581                                   unsigned InaccessibleBaseID,
1582                                   unsigned AmbigiousBaseConvID,
1583                                   SourceLocation Loc, SourceRange Range,
1584                                   DeclarationName Name,
1585                                   CXXCastPath *BasePath) {
1586  // First, determine whether the path from Derived to Base is
1587  // ambiguous. This is slightly more expensive than checking whether
1588  // the Derived to Base conversion exists, because here we need to
1589  // explore multiple paths to determine if there is an ambiguity.
1590  CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
1591                     /*DetectVirtual=*/false);
1592  bool DerivationOkay = IsDerivedFrom(Derived, Base, Paths);
1593  assert(DerivationOkay &&
1594         "Can only be used with a derived-to-base conversion");
1595  (void)DerivationOkay;
1596
1597  if (!Paths.isAmbiguous(Context.getCanonicalType(Base).getUnqualifiedType())) {
1598    if (InaccessibleBaseID) {
1599      // Check that the base class can be accessed.
1600      switch (CheckBaseClassAccess(Loc, Base, Derived, Paths.front(),
1601                                   InaccessibleBaseID)) {
1602        case AR_inaccessible:
1603          return true;
1604        case AR_accessible:
1605        case AR_dependent:
1606        case AR_delayed:
1607          break;
1608      }
1609    }
1610
1611    // Build a base path if necessary.
1612    if (BasePath)
1613      BuildBasePathArray(Paths, *BasePath);
1614    return false;
1615  }
1616
1617  if (AmbigiousBaseConvID) {
1618    // We know that the derived-to-base conversion is ambiguous, and
1619    // we're going to produce a diagnostic. Perform the derived-to-base
1620    // search just one more time to compute all of the possible paths so
1621    // that we can print them out. This is more expensive than any of
1622    // the previous derived-to-base checks we've done, but at this point
1623    // performance isn't as much of an issue.
1624    Paths.clear();
1625    Paths.setRecordingPaths(true);
1626    bool StillOkay = IsDerivedFrom(Derived, Base, Paths);
1627    assert(StillOkay && "Can only be used with a derived-to-base conversion");
1628    (void)StillOkay;
1629
1630    // Build up a textual representation of the ambiguous paths, e.g.,
1631    // D -> B -> A, that will be used to illustrate the ambiguous
1632    // conversions in the diagnostic. We only print one of the paths
1633    // to each base class subobject.
1634    std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
1635
1636    Diag(Loc, AmbigiousBaseConvID)
1637    << Derived << Base << PathDisplayStr << Range << Name;
1638  }
1639  return true;
1640}
1641
1642bool
1643Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
1644                                   SourceLocation Loc, SourceRange Range,
1645                                   CXXCastPath *BasePath,
1646                                   bool IgnoreAccess) {
1647  return CheckDerivedToBaseConversion(Derived, Base,
1648                                      IgnoreAccess ? 0
1649                                       : diag::err_upcast_to_inaccessible_base,
1650                                      diag::err_ambiguous_derived_to_base_conv,
1651                                      Loc, Range, DeclarationName(),
1652                                      BasePath);
1653}
1654
1655
1656/// @brief Builds a string representing ambiguous paths from a
1657/// specific derived class to different subobjects of the same base
1658/// class.
1659///
1660/// This function builds a string that can be used in error messages
1661/// to show the different paths that one can take through the
1662/// inheritance hierarchy to go from the derived class to different
1663/// subobjects of a base class. The result looks something like this:
1664/// @code
1665/// struct D -> struct B -> struct A
1666/// struct D -> struct C -> struct A
1667/// @endcode
1668std::string Sema::getAmbiguousPathsDisplayString(CXXBasePaths &Paths) {
1669  std::string PathDisplayStr;
1670  std::set<unsigned> DisplayedPaths;
1671  for (CXXBasePaths::paths_iterator Path = Paths.begin();
1672       Path != Paths.end(); ++Path) {
1673    if (DisplayedPaths.insert(Path->back().SubobjectNumber).second) {
1674      // We haven't displayed a path to this particular base
1675      // class subobject yet.
1676      PathDisplayStr += "\n    ";
1677      PathDisplayStr += Context.getTypeDeclType(Paths.getOrigin()).getAsString();
1678      for (CXXBasePath::const_iterator Element = Path->begin();
1679           Element != Path->end(); ++Element)
1680        PathDisplayStr += " -> " + Element->Base->getType().getAsString();
1681    }
1682  }
1683
1684  return PathDisplayStr;
1685}
1686
1687//===----------------------------------------------------------------------===//
1688// C++ class member Handling
1689//===----------------------------------------------------------------------===//
1690
1691/// ActOnAccessSpecifier - Parsed an access specifier followed by a colon.
1692bool Sema::ActOnAccessSpecifier(AccessSpecifier Access,
1693                                SourceLocation ASLoc,
1694                                SourceLocation ColonLoc,
1695                                AttributeList *Attrs) {
1696  assert(Access != AS_none && "Invalid kind for syntactic access specifier!");
1697  AccessSpecDecl *ASDecl = AccessSpecDecl::Create(Context, Access, CurContext,
1698                                                  ASLoc, ColonLoc);
1699  CurContext->addHiddenDecl(ASDecl);
1700  return ProcessAccessDeclAttributeList(ASDecl, Attrs);
1701}
1702
1703/// CheckOverrideControl - Check C++11 override control semantics.
1704void Sema::CheckOverrideControl(Decl *D) {
1705  if (D->isInvalidDecl())
1706    return;
1707
1708  const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D);
1709
1710  // Do we know which functions this declaration might be overriding?
1711  bool OverridesAreKnown = !MD ||
1712      (!MD->getParent()->hasAnyDependentBases() &&
1713       !MD->getType()->isDependentType());
1714
1715  if (!MD || !MD->isVirtual()) {
1716    if (OverridesAreKnown) {
1717      if (OverrideAttr *OA = D->getAttr<OverrideAttr>()) {
1718        Diag(OA->getLocation(),
1719             diag::override_keyword_only_allowed_on_virtual_member_functions)
1720          << "override" << FixItHint::CreateRemoval(OA->getLocation());
1721        D->dropAttr<OverrideAttr>();
1722      }
1723      if (FinalAttr *FA = D->getAttr<FinalAttr>()) {
1724        Diag(FA->getLocation(),
1725             diag::override_keyword_only_allowed_on_virtual_member_functions)
1726          << "final" << FixItHint::CreateRemoval(FA->getLocation());
1727        D->dropAttr<FinalAttr>();
1728      }
1729    }
1730    return;
1731  }
1732
1733  if (!OverridesAreKnown)
1734    return;
1735
1736  // C++11 [class.virtual]p5:
1737  //   If a virtual function is marked with the virt-specifier override and
1738  //   does not override a member function of a base class, the program is
1739  //   ill-formed.
1740  bool HasOverriddenMethods =
1741    MD->begin_overridden_methods() != MD->end_overridden_methods();
1742  if (MD->hasAttr<OverrideAttr>() && !HasOverriddenMethods)
1743    Diag(MD->getLocation(), diag::err_function_marked_override_not_overriding)
1744      << MD->getDeclName();
1745}
1746
1747/// CheckIfOverriddenFunctionIsMarkedFinal - Checks whether a virtual member
1748/// function overrides a virtual member function marked 'final', according to
1749/// C++11 [class.virtual]p4.
1750bool Sema::CheckIfOverriddenFunctionIsMarkedFinal(const CXXMethodDecl *New,
1751                                                  const CXXMethodDecl *Old) {
1752  if (!Old->hasAttr<FinalAttr>())
1753    return false;
1754
1755  Diag(New->getLocation(), diag::err_final_function_overridden)
1756    << New->getDeclName();
1757  Diag(Old->getLocation(), diag::note_overridden_virtual_function);
1758  return true;
1759}
1760
1761static bool InitializationHasSideEffects(const FieldDecl &FD) {
1762  const Type *T = FD.getType()->getBaseElementTypeUnsafe();
1763  // FIXME: Destruction of ObjC lifetime types has side-effects.
1764  if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
1765    return !RD->isCompleteDefinition() ||
1766           !RD->hasTrivialDefaultConstructor() ||
1767           !RD->hasTrivialDestructor();
1768  return false;
1769}
1770
1771static AttributeList *getMSPropertyAttr(AttributeList *list) {
1772  for (AttributeList* it = list; it != 0; it = it->getNext())
1773    if (it->isDeclspecPropertyAttribute())
1774      return it;
1775  return 0;
1776}
1777
1778/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
1779/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
1780/// bitfield width if there is one, 'InitExpr' specifies the initializer if
1781/// one has been parsed, and 'InitStyle' is set if an in-class initializer is
1782/// present (but parsing it has been deferred).
1783NamedDecl *
1784Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
1785                               MultiTemplateParamsArg TemplateParameterLists,
1786                               Expr *BW, const VirtSpecifiers &VS,
1787                               InClassInitStyle InitStyle) {
1788  const DeclSpec &DS = D.getDeclSpec();
1789  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
1790  DeclarationName Name = NameInfo.getName();
1791  SourceLocation Loc = NameInfo.getLoc();
1792
1793  // For anonymous bitfields, the location should point to the type.
1794  if (Loc.isInvalid())
1795    Loc = D.getLocStart();
1796
1797  Expr *BitWidth = static_cast<Expr*>(BW);
1798
1799  assert(isa<CXXRecordDecl>(CurContext));
1800  assert(!DS.isFriendSpecified());
1801
1802  bool isFunc = D.isDeclarationOfFunction();
1803
1804  if (cast<CXXRecordDecl>(CurContext)->isInterface()) {
1805    // The Microsoft extension __interface only permits public member functions
1806    // and prohibits constructors, destructors, operators, non-public member
1807    // functions, static methods and data members.
1808    unsigned InvalidDecl;
1809    bool ShowDeclName = true;
1810    if (!isFunc)
1811      InvalidDecl = (DS.getStorageClassSpec() == DeclSpec::SCS_typedef) ? 0 : 1;
1812    else if (AS != AS_public)
1813      InvalidDecl = 2;
1814    else if (DS.getStorageClassSpec() == DeclSpec::SCS_static)
1815      InvalidDecl = 3;
1816    else switch (Name.getNameKind()) {
1817      case DeclarationName::CXXConstructorName:
1818        InvalidDecl = 4;
1819        ShowDeclName = false;
1820        break;
1821
1822      case DeclarationName::CXXDestructorName:
1823        InvalidDecl = 5;
1824        ShowDeclName = false;
1825        break;
1826
1827      case DeclarationName::CXXOperatorName:
1828      case DeclarationName::CXXConversionFunctionName:
1829        InvalidDecl = 6;
1830        break;
1831
1832      default:
1833        InvalidDecl = 0;
1834        break;
1835    }
1836
1837    if (InvalidDecl) {
1838      if (ShowDeclName)
1839        Diag(Loc, diag::err_invalid_member_in_interface)
1840          << (InvalidDecl-1) << Name;
1841      else
1842        Diag(Loc, diag::err_invalid_member_in_interface)
1843          << (InvalidDecl-1) << "";
1844      return 0;
1845    }
1846  }
1847
1848  // C++ 9.2p6: A member shall not be declared to have automatic storage
1849  // duration (auto, register) or with the extern storage-class-specifier.
1850  // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
1851  // data members and cannot be applied to names declared const or static,
1852  // and cannot be applied to reference members.
1853  switch (DS.getStorageClassSpec()) {
1854  case DeclSpec::SCS_unspecified:
1855  case DeclSpec::SCS_typedef:
1856  case DeclSpec::SCS_static:
1857    break;
1858  case DeclSpec::SCS_mutable:
1859    if (isFunc) {
1860      Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
1861
1862      // FIXME: It would be nicer if the keyword was ignored only for this
1863      // declarator. Otherwise we could get follow-up errors.
1864      D.getMutableDeclSpec().ClearStorageClassSpecs();
1865    }
1866    break;
1867  default:
1868    Diag(DS.getStorageClassSpecLoc(),
1869         diag::err_storageclass_invalid_for_member);
1870    D.getMutableDeclSpec().ClearStorageClassSpecs();
1871    break;
1872  }
1873
1874  bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
1875                       DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
1876                      !isFunc);
1877
1878  if (DS.isConstexprSpecified() && isInstField) {
1879    SemaDiagnosticBuilder B =
1880        Diag(DS.getConstexprSpecLoc(), diag::err_invalid_constexpr_member);
1881    SourceLocation ConstexprLoc = DS.getConstexprSpecLoc();
1882    if (InitStyle == ICIS_NoInit) {
1883      B << 0 << 0 << FixItHint::CreateReplacement(ConstexprLoc, "const");
1884      D.getMutableDeclSpec().ClearConstexprSpec();
1885      const char *PrevSpec;
1886      unsigned DiagID;
1887      bool Failed = D.getMutableDeclSpec().SetTypeQual(DeclSpec::TQ_const, ConstexprLoc,
1888                                         PrevSpec, DiagID, getLangOpts());
1889      (void)Failed;
1890      assert(!Failed && "Making a constexpr member const shouldn't fail");
1891    } else {
1892      B << 1;
1893      const char *PrevSpec;
1894      unsigned DiagID;
1895      if (D.getMutableDeclSpec().SetStorageClassSpec(
1896          *this, DeclSpec::SCS_static, ConstexprLoc, PrevSpec, DiagID)) {
1897        assert(DS.getStorageClassSpec() == DeclSpec::SCS_mutable &&
1898               "This is the only DeclSpec that should fail to be applied");
1899        B << 1;
1900      } else {
1901        B << 0 << FixItHint::CreateInsertion(ConstexprLoc, "static ");
1902        isInstField = false;
1903      }
1904    }
1905  }
1906
1907  NamedDecl *Member;
1908  if (isInstField) {
1909    CXXScopeSpec &SS = D.getCXXScopeSpec();
1910
1911    // Data members must have identifiers for names.
1912    if (!Name.isIdentifier()) {
1913      Diag(Loc, diag::err_bad_variable_name)
1914        << Name;
1915      return 0;
1916    }
1917
1918    IdentifierInfo *II = Name.getAsIdentifierInfo();
1919
1920    // Member field could not be with "template" keyword.
1921    // So TemplateParameterLists should be empty in this case.
1922    if (TemplateParameterLists.size()) {
1923      TemplateParameterList* TemplateParams = TemplateParameterLists[0];
1924      if (TemplateParams->size()) {
1925        // There is no such thing as a member field template.
1926        Diag(D.getIdentifierLoc(), diag::err_template_member)
1927            << II
1928            << SourceRange(TemplateParams->getTemplateLoc(),
1929                TemplateParams->getRAngleLoc());
1930      } else {
1931        // There is an extraneous 'template<>' for this member.
1932        Diag(TemplateParams->getTemplateLoc(),
1933            diag::err_template_member_noparams)
1934            << II
1935            << SourceRange(TemplateParams->getTemplateLoc(),
1936                TemplateParams->getRAngleLoc());
1937      }
1938      return 0;
1939    }
1940
1941    if (SS.isSet() && !SS.isInvalid()) {
1942      // The user provided a superfluous scope specifier inside a class
1943      // definition:
1944      //
1945      // class X {
1946      //   int X::member;
1947      // };
1948      if (DeclContext *DC = computeDeclContext(SS, false))
1949        diagnoseQualifiedDeclaration(SS, DC, Name, D.getIdentifierLoc());
1950      else
1951        Diag(D.getIdentifierLoc(), diag::err_member_qualification)
1952          << Name << SS.getRange();
1953
1954      SS.clear();
1955    }
1956
1957    AttributeList *MSPropertyAttr =
1958      getMSPropertyAttr(D.getDeclSpec().getAttributes().getList());
1959    if (MSPropertyAttr) {
1960      Member = HandleMSProperty(S, cast<CXXRecordDecl>(CurContext), Loc, D,
1961                                BitWidth, InitStyle, AS, MSPropertyAttr);
1962      if (!Member)
1963        return 0;
1964      isInstField = false;
1965    } else {
1966      Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D,
1967                                BitWidth, InitStyle, AS);
1968      assert(Member && "HandleField never returns null");
1969    }
1970  } else {
1971    assert(InitStyle == ICIS_NoInit || D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_static);
1972
1973    Member = HandleDeclarator(S, D, TemplateParameterLists);
1974    if (!Member)
1975      return 0;
1976
1977    // Non-instance-fields can't have a bitfield.
1978    if (BitWidth) {
1979      if (Member->isInvalidDecl()) {
1980        // don't emit another diagnostic.
1981      } else if (isa<VarDecl>(Member)) {
1982        // C++ 9.6p3: A bit-field shall not be a static member.
1983        // "static member 'A' cannot be a bit-field"
1984        Diag(Loc, diag::err_static_not_bitfield)
1985          << Name << BitWidth->getSourceRange();
1986      } else if (isa<TypedefDecl>(Member)) {
1987        // "typedef member 'x' cannot be a bit-field"
1988        Diag(Loc, diag::err_typedef_not_bitfield)
1989          << Name << BitWidth->getSourceRange();
1990      } else {
1991        // A function typedef ("typedef int f(); f a;").
1992        // C++ 9.6p3: A bit-field shall have integral or enumeration type.
1993        Diag(Loc, diag::err_not_integral_type_bitfield)
1994          << Name << cast<ValueDecl>(Member)->getType()
1995          << BitWidth->getSourceRange();
1996      }
1997
1998      BitWidth = 0;
1999      Member->setInvalidDecl();
2000    }
2001
2002    Member->setAccess(AS);
2003
2004    // If we have declared a member function template, set the access of the
2005    // templated declaration as well.
2006    if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Member))
2007      FunTmpl->getTemplatedDecl()->setAccess(AS);
2008  }
2009
2010  if (VS.isOverrideSpecified())
2011    Member->addAttr(new (Context) OverrideAttr(VS.getOverrideLoc(), Context));
2012  if (VS.isFinalSpecified())
2013    Member->addAttr(new (Context) FinalAttr(VS.getFinalLoc(), Context));
2014
2015  if (VS.getLastLocation().isValid()) {
2016    // Update the end location of a method that has a virt-specifiers.
2017    if (CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(Member))
2018      MD->setRangeEnd(VS.getLastLocation());
2019  }
2020
2021  CheckOverrideControl(Member);
2022
2023  assert((Name || isInstField) && "No identifier for non-field ?");
2024
2025  if (isInstField) {
2026    FieldDecl *FD = cast<FieldDecl>(Member);
2027    FieldCollector->Add(FD);
2028
2029    if (Diags.getDiagnosticLevel(diag::warn_unused_private_field,
2030                                 FD->getLocation())
2031          != DiagnosticsEngine::Ignored) {
2032      // Remember all explicit private FieldDecls that have a name, no side
2033      // effects and are not part of a dependent type declaration.
2034      if (!FD->isImplicit() && FD->getDeclName() &&
2035          FD->getAccess() == AS_private &&
2036          !FD->hasAttr<UnusedAttr>() &&
2037          !FD->getParent()->isDependentContext() &&
2038          !InitializationHasSideEffects(*FD))
2039        UnusedPrivateFields.insert(FD);
2040    }
2041  }
2042
2043  return Member;
2044}
2045
2046namespace {
2047  class UninitializedFieldVisitor
2048      : public EvaluatedExprVisitor<UninitializedFieldVisitor> {
2049    Sema &S;
2050    ValueDecl *VD;
2051  public:
2052    typedef EvaluatedExprVisitor<UninitializedFieldVisitor> Inherited;
2053    UninitializedFieldVisitor(Sema &S, ValueDecl *VD) : Inherited(S.Context),
2054                                                        S(S) {
2055      if (IndirectFieldDecl *IFD = dyn_cast<IndirectFieldDecl>(VD))
2056        this->VD = IFD->getAnonField();
2057      else
2058        this->VD = VD;
2059    }
2060
2061    void HandleExpr(Expr *E) {
2062      if (!E) return;
2063
2064      // Expressions like x(x) sometimes lack the surrounding expressions
2065      // but need to be checked anyways.
2066      HandleValue(E);
2067      Visit(E);
2068    }
2069
2070    void HandleValue(Expr *E) {
2071      E = E->IgnoreParens();
2072
2073      if (MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
2074        if (isa<EnumConstantDecl>(ME->getMemberDecl()))
2075          return;
2076
2077        // FieldME is the inner-most MemberExpr that is not an anonymous struct
2078        // or union.
2079        MemberExpr *FieldME = ME;
2080
2081        Expr *Base = E;
2082        while (isa<MemberExpr>(Base)) {
2083          ME = cast<MemberExpr>(Base);
2084
2085          if (isa<VarDecl>(ME->getMemberDecl()))
2086            return;
2087
2088          if (FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl()))
2089            if (!FD->isAnonymousStructOrUnion())
2090              FieldME = ME;
2091
2092          Base = ME->getBase();
2093        }
2094
2095        if (VD == FieldME->getMemberDecl() && isa<CXXThisExpr>(Base)) {
2096          unsigned diag = VD->getType()->isReferenceType()
2097              ? diag::warn_reference_field_is_uninit
2098              : diag::warn_field_is_uninit;
2099          S.Diag(FieldME->getExprLoc(), diag) << VD;
2100        }
2101        return;
2102      }
2103
2104      if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
2105        HandleValue(CO->getTrueExpr());
2106        HandleValue(CO->getFalseExpr());
2107        return;
2108      }
2109
2110      if (BinaryConditionalOperator *BCO =
2111              dyn_cast<BinaryConditionalOperator>(E)) {
2112        HandleValue(BCO->getCommon());
2113        HandleValue(BCO->getFalseExpr());
2114        return;
2115      }
2116
2117      if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
2118        switch (BO->getOpcode()) {
2119        default:
2120          return;
2121        case(BO_PtrMemD):
2122        case(BO_PtrMemI):
2123          HandleValue(BO->getLHS());
2124          return;
2125        case(BO_Comma):
2126          HandleValue(BO->getRHS());
2127          return;
2128        }
2129      }
2130    }
2131
2132    void VisitImplicitCastExpr(ImplicitCastExpr *E) {
2133      if (E->getCastKind() == CK_LValueToRValue)
2134        HandleValue(E->getSubExpr());
2135
2136      Inherited::VisitImplicitCastExpr(E);
2137    }
2138
2139    void VisitCXXMemberCallExpr(CXXMemberCallExpr *E) {
2140      Expr *Callee = E->getCallee();
2141      if (isa<MemberExpr>(Callee))
2142        HandleValue(Callee);
2143
2144      Inherited::VisitCXXMemberCallExpr(E);
2145    }
2146  };
2147  static void CheckInitExprContainsUninitializedFields(Sema &S, Expr *E,
2148                                                       ValueDecl *VD) {
2149    UninitializedFieldVisitor(S, VD).HandleExpr(E);
2150  }
2151} // namespace
2152
2153/// ActOnCXXInClassMemberInitializer - This is invoked after parsing an
2154/// in-class initializer for a non-static C++ class member, and after
2155/// instantiating an in-class initializer in a class template. Such actions
2156/// are deferred until the class is complete.
2157void
2158Sema::ActOnCXXInClassMemberInitializer(Decl *D, SourceLocation InitLoc,
2159                                       Expr *InitExpr) {
2160  FieldDecl *FD = cast<FieldDecl>(D);
2161  assert(FD->getInClassInitStyle() != ICIS_NoInit &&
2162         "must set init style when field is created");
2163
2164  if (!InitExpr) {
2165    FD->setInvalidDecl();
2166    FD->removeInClassInitializer();
2167    return;
2168  }
2169
2170  if (DiagnoseUnexpandedParameterPack(InitExpr, UPPC_Initializer)) {
2171    FD->setInvalidDecl();
2172    FD->removeInClassInitializer();
2173    return;
2174  }
2175
2176  if (getDiagnostics().getDiagnosticLevel(diag::warn_field_is_uninit, InitLoc)
2177      != DiagnosticsEngine::Ignored) {
2178    CheckInitExprContainsUninitializedFields(*this, InitExpr, FD);
2179  }
2180
2181  ExprResult Init = InitExpr;
2182  if (!FD->getType()->isDependentType() && !InitExpr->isTypeDependent()) {
2183    InitializedEntity Entity = InitializedEntity::InitializeMember(FD);
2184    InitializationKind Kind = FD->getInClassInitStyle() == ICIS_ListInit
2185        ? InitializationKind::CreateDirectList(InitExpr->getLocStart())
2186        : InitializationKind::CreateCopy(InitExpr->getLocStart(), InitLoc);
2187    InitializationSequence Seq(*this, Entity, Kind, InitExpr);
2188    Init = Seq.Perform(*this, Entity, Kind, InitExpr);
2189    if (Init.isInvalid()) {
2190      FD->setInvalidDecl();
2191      return;
2192    }
2193  }
2194
2195  // C++11 [class.base.init]p7:
2196  //   The initialization of each base and member constitutes a
2197  //   full-expression.
2198  Init = ActOnFinishFullExpr(Init.take(), InitLoc);
2199  if (Init.isInvalid()) {
2200    FD->setInvalidDecl();
2201    return;
2202  }
2203
2204  InitExpr = Init.release();
2205
2206  FD->setInClassInitializer(InitExpr);
2207}
2208
2209/// \brief Find the direct and/or virtual base specifiers that
2210/// correspond to the given base type, for use in base initialization
2211/// within a constructor.
2212static bool FindBaseInitializer(Sema &SemaRef,
2213                                CXXRecordDecl *ClassDecl,
2214                                QualType BaseType,
2215                                const CXXBaseSpecifier *&DirectBaseSpec,
2216                                const CXXBaseSpecifier *&VirtualBaseSpec) {
2217  // First, check for a direct base class.
2218  DirectBaseSpec = 0;
2219  for (CXXRecordDecl::base_class_const_iterator Base
2220         = ClassDecl->bases_begin();
2221       Base != ClassDecl->bases_end(); ++Base) {
2222    if (SemaRef.Context.hasSameUnqualifiedType(BaseType, Base->getType())) {
2223      // We found a direct base of this type. That's what we're
2224      // initializing.
2225      DirectBaseSpec = &*Base;
2226      break;
2227    }
2228  }
2229
2230  // Check for a virtual base class.
2231  // FIXME: We might be able to short-circuit this if we know in advance that
2232  // there are no virtual bases.
2233  VirtualBaseSpec = 0;
2234  if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
2235    // We haven't found a base yet; search the class hierarchy for a
2236    // virtual base class.
2237    CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
2238                       /*DetectVirtual=*/false);
2239    if (SemaRef.IsDerivedFrom(SemaRef.Context.getTypeDeclType(ClassDecl),
2240                              BaseType, Paths)) {
2241      for (CXXBasePaths::paths_iterator Path = Paths.begin();
2242           Path != Paths.end(); ++Path) {
2243        if (Path->back().Base->isVirtual()) {
2244          VirtualBaseSpec = Path->back().Base;
2245          break;
2246        }
2247      }
2248    }
2249  }
2250
2251  return DirectBaseSpec || VirtualBaseSpec;
2252}
2253
2254/// \brief Handle a C++ member initializer using braced-init-list syntax.
2255MemInitResult
2256Sema::ActOnMemInitializer(Decl *ConstructorD,
2257                          Scope *S,
2258                          CXXScopeSpec &SS,
2259                          IdentifierInfo *MemberOrBase,
2260                          ParsedType TemplateTypeTy,
2261                          const DeclSpec &DS,
2262                          SourceLocation IdLoc,
2263                          Expr *InitList,
2264                          SourceLocation EllipsisLoc) {
2265  return BuildMemInitializer(ConstructorD, S, SS, MemberOrBase, TemplateTypeTy,
2266                             DS, IdLoc, InitList,
2267                             EllipsisLoc);
2268}
2269
2270/// \brief Handle a C++ member initializer using parentheses syntax.
2271MemInitResult
2272Sema::ActOnMemInitializer(Decl *ConstructorD,
2273                          Scope *S,
2274                          CXXScopeSpec &SS,
2275                          IdentifierInfo *MemberOrBase,
2276                          ParsedType TemplateTypeTy,
2277                          const DeclSpec &DS,
2278                          SourceLocation IdLoc,
2279                          SourceLocation LParenLoc,
2280                          ArrayRef<Expr *> Args,
2281                          SourceLocation RParenLoc,
2282                          SourceLocation EllipsisLoc) {
2283  Expr *List = new (Context) ParenListExpr(Context, LParenLoc,
2284                                           Args, RParenLoc);
2285  return BuildMemInitializer(ConstructorD, S, SS, MemberOrBase, TemplateTypeTy,
2286                             DS, IdLoc, List, EllipsisLoc);
2287}
2288
2289namespace {
2290
2291// Callback to only accept typo corrections that can be a valid C++ member
2292// intializer: either a non-static field member or a base class.
2293class MemInitializerValidatorCCC : public CorrectionCandidateCallback {
2294 public:
2295  explicit MemInitializerValidatorCCC(CXXRecordDecl *ClassDecl)
2296      : ClassDecl(ClassDecl) {}
2297
2298  virtual bool ValidateCandidate(const TypoCorrection &candidate) {
2299    if (NamedDecl *ND = candidate.getCorrectionDecl()) {
2300      if (FieldDecl *Member = dyn_cast<FieldDecl>(ND))
2301        return Member->getDeclContext()->getRedeclContext()->Equals(ClassDecl);
2302      else
2303        return isa<TypeDecl>(ND);
2304    }
2305    return false;
2306  }
2307
2308 private:
2309  CXXRecordDecl *ClassDecl;
2310};
2311
2312}
2313
2314/// \brief Handle a C++ member initializer.
2315MemInitResult
2316Sema::BuildMemInitializer(Decl *ConstructorD,
2317                          Scope *S,
2318                          CXXScopeSpec &SS,
2319                          IdentifierInfo *MemberOrBase,
2320                          ParsedType TemplateTypeTy,
2321                          const DeclSpec &DS,
2322                          SourceLocation IdLoc,
2323                          Expr *Init,
2324                          SourceLocation EllipsisLoc) {
2325  if (!ConstructorD)
2326    return true;
2327
2328  AdjustDeclIfTemplate(ConstructorD);
2329
2330  CXXConstructorDecl *Constructor
2331    = dyn_cast<CXXConstructorDecl>(ConstructorD);
2332  if (!Constructor) {
2333    // The user wrote a constructor initializer on a function that is
2334    // not a C++ constructor. Ignore the error for now, because we may
2335    // have more member initializers coming; we'll diagnose it just
2336    // once in ActOnMemInitializers.
2337    return true;
2338  }
2339
2340  CXXRecordDecl *ClassDecl = Constructor->getParent();
2341
2342  // C++ [class.base.init]p2:
2343  //   Names in a mem-initializer-id are looked up in the scope of the
2344  //   constructor's class and, if not found in that scope, are looked
2345  //   up in the scope containing the constructor's definition.
2346  //   [Note: if the constructor's class contains a member with the
2347  //   same name as a direct or virtual base class of the class, a
2348  //   mem-initializer-id naming the member or base class and composed
2349  //   of a single identifier refers to the class member. A
2350  //   mem-initializer-id for the hidden base class may be specified
2351  //   using a qualified name. ]
2352  if (!SS.getScopeRep() && !TemplateTypeTy) {
2353    // Look for a member, first.
2354    DeclContext::lookup_result Result
2355      = ClassDecl->lookup(MemberOrBase);
2356    if (!Result.empty()) {
2357      ValueDecl *Member;
2358      if ((Member = dyn_cast<FieldDecl>(Result.front())) ||
2359          (Member = dyn_cast<IndirectFieldDecl>(Result.front()))) {
2360        if (EllipsisLoc.isValid())
2361          Diag(EllipsisLoc, diag::err_pack_expansion_member_init)
2362            << MemberOrBase
2363            << SourceRange(IdLoc, Init->getSourceRange().getEnd());
2364
2365        return BuildMemberInitializer(Member, Init, IdLoc);
2366      }
2367    }
2368  }
2369  // It didn't name a member, so see if it names a class.
2370  QualType BaseType;
2371  TypeSourceInfo *TInfo = 0;
2372
2373  if (TemplateTypeTy) {
2374    BaseType = GetTypeFromParser(TemplateTypeTy, &TInfo);
2375  } else if (DS.getTypeSpecType() == TST_decltype) {
2376    BaseType = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc());
2377  } else {
2378    LookupResult R(*this, MemberOrBase, IdLoc, LookupOrdinaryName);
2379    LookupParsedName(R, S, &SS);
2380
2381    TypeDecl *TyD = R.getAsSingle<TypeDecl>();
2382    if (!TyD) {
2383      if (R.isAmbiguous()) return true;
2384
2385      // We don't want access-control diagnostics here.
2386      R.suppressDiagnostics();
2387
2388      if (SS.isSet() && isDependentScopeSpecifier(SS)) {
2389        bool NotUnknownSpecialization = false;
2390        DeclContext *DC = computeDeclContext(SS, false);
2391        if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(DC))
2392          NotUnknownSpecialization = !Record->hasAnyDependentBases();
2393
2394        if (!NotUnknownSpecialization) {
2395          // When the scope specifier can refer to a member of an unknown
2396          // specialization, we take it as a type name.
2397          BaseType = CheckTypenameType(ETK_None, SourceLocation(),
2398                                       SS.getWithLocInContext(Context),
2399                                       *MemberOrBase, IdLoc);
2400          if (BaseType.isNull())
2401            return true;
2402
2403          R.clear();
2404          R.setLookupName(MemberOrBase);
2405        }
2406      }
2407
2408      // If no results were found, try to correct typos.
2409      TypoCorrection Corr;
2410      MemInitializerValidatorCCC Validator(ClassDecl);
2411      if (R.empty() && BaseType.isNull() &&
2412          (Corr = CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(), S, &SS,
2413                              Validator, ClassDecl))) {
2414        std::string CorrectedStr(Corr.getAsString(getLangOpts()));
2415        std::string CorrectedQuotedStr(Corr.getQuoted(getLangOpts()));
2416        if (FieldDecl *Member = Corr.getCorrectionDeclAs<FieldDecl>()) {
2417          // We have found a non-static data member with a similar
2418          // name to what was typed; complain and initialize that
2419          // member.
2420          Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
2421            << MemberOrBase << true << CorrectedQuotedStr
2422            << FixItHint::CreateReplacement(R.getNameLoc(), CorrectedStr);
2423          Diag(Member->getLocation(), diag::note_previous_decl)
2424            << CorrectedQuotedStr;
2425
2426          return BuildMemberInitializer(Member, Init, IdLoc);
2427        } else if (TypeDecl *Type = Corr.getCorrectionDeclAs<TypeDecl>()) {
2428          const CXXBaseSpecifier *DirectBaseSpec;
2429          const CXXBaseSpecifier *VirtualBaseSpec;
2430          if (FindBaseInitializer(*this, ClassDecl,
2431                                  Context.getTypeDeclType(Type),
2432                                  DirectBaseSpec, VirtualBaseSpec)) {
2433            // We have found a direct or virtual base class with a
2434            // similar name to what was typed; complain and initialize
2435            // that base class.
2436            Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
2437              << MemberOrBase << false << CorrectedQuotedStr
2438              << FixItHint::CreateReplacement(R.getNameLoc(), CorrectedStr);
2439
2440            const CXXBaseSpecifier *BaseSpec = DirectBaseSpec? DirectBaseSpec
2441                                                             : VirtualBaseSpec;
2442            Diag(BaseSpec->getLocStart(),
2443                 diag::note_base_class_specified_here)
2444              << BaseSpec->getType()
2445              << BaseSpec->getSourceRange();
2446
2447            TyD = Type;
2448          }
2449        }
2450      }
2451
2452      if (!TyD && BaseType.isNull()) {
2453        Diag(IdLoc, diag::err_mem_init_not_member_or_class)
2454          << MemberOrBase << SourceRange(IdLoc,Init->getSourceRange().getEnd());
2455        return true;
2456      }
2457    }
2458
2459    if (BaseType.isNull()) {
2460      BaseType = Context.getTypeDeclType(TyD);
2461      if (SS.isSet()) {
2462        NestedNameSpecifier *Qualifier =
2463          static_cast<NestedNameSpecifier*>(SS.getScopeRep());
2464
2465        // FIXME: preserve source range information
2466        BaseType = Context.getElaboratedType(ETK_None, Qualifier, BaseType);
2467      }
2468    }
2469  }
2470
2471  if (!TInfo)
2472    TInfo = Context.getTrivialTypeSourceInfo(BaseType, IdLoc);
2473
2474  return BuildBaseInitializer(BaseType, TInfo, Init, ClassDecl, EllipsisLoc);
2475}
2476
2477/// Checks a member initializer expression for cases where reference (or
2478/// pointer) members are bound to by-value parameters (or their addresses).
2479static void CheckForDanglingReferenceOrPointer(Sema &S, ValueDecl *Member,
2480                                               Expr *Init,
2481                                               SourceLocation IdLoc) {
2482  QualType MemberTy = Member->getType();
2483
2484  // We only handle pointers and references currently.
2485  // FIXME: Would this be relevant for ObjC object pointers? Or block pointers?
2486  if (!MemberTy->isReferenceType() && !MemberTy->isPointerType())
2487    return;
2488
2489  const bool IsPointer = MemberTy->isPointerType();
2490  if (IsPointer) {
2491    if (const UnaryOperator *Op
2492          = dyn_cast<UnaryOperator>(Init->IgnoreParenImpCasts())) {
2493      // The only case we're worried about with pointers requires taking the
2494      // address.
2495      if (Op->getOpcode() != UO_AddrOf)
2496        return;
2497
2498      Init = Op->getSubExpr();
2499    } else {
2500      // We only handle address-of expression initializers for pointers.
2501      return;
2502    }
2503  }
2504
2505  if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Init->IgnoreParens())) {
2506    // We only warn when referring to a non-reference parameter declaration.
2507    const ParmVarDecl *Parameter = dyn_cast<ParmVarDecl>(DRE->getDecl());
2508    if (!Parameter || Parameter->getType()->isReferenceType())
2509      return;
2510
2511    S.Diag(Init->getExprLoc(),
2512           IsPointer ? diag::warn_init_ptr_member_to_parameter_addr
2513                     : diag::warn_bind_ref_member_to_parameter)
2514      << Member << Parameter << Init->getSourceRange();
2515  } else {
2516    // Other initializers are fine.
2517    return;
2518  }
2519
2520  S.Diag(Member->getLocation(), diag::note_ref_or_ptr_member_declared_here)
2521    << (unsigned)IsPointer;
2522}
2523
2524MemInitResult
2525Sema::BuildMemberInitializer(ValueDecl *Member, Expr *Init,
2526                             SourceLocation IdLoc) {
2527  FieldDecl *DirectMember = dyn_cast<FieldDecl>(Member);
2528  IndirectFieldDecl *IndirectMember = dyn_cast<IndirectFieldDecl>(Member);
2529  assert((DirectMember || IndirectMember) &&
2530         "Member must be a FieldDecl or IndirectFieldDecl");
2531
2532  if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer))
2533    return true;
2534
2535  if (Member->isInvalidDecl())
2536    return true;
2537
2538  // Diagnose value-uses of fields to initialize themselves, e.g.
2539  //   foo(foo)
2540  // where foo is not also a parameter to the constructor.
2541  // TODO: implement -Wuninitialized and fold this into that framework.
2542  MultiExprArg Args;
2543  if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) {
2544    Args = MultiExprArg(ParenList->getExprs(), ParenList->getNumExprs());
2545  } else if (InitListExpr *InitList = dyn_cast<InitListExpr>(Init)) {
2546    Args = MultiExprArg(InitList->getInits(), InitList->getNumInits());
2547  } else {
2548    // Template instantiation doesn't reconstruct ParenListExprs for us.
2549    Args = Init;
2550  }
2551
2552  if (getDiagnostics().getDiagnosticLevel(diag::warn_field_is_uninit, IdLoc)
2553        != DiagnosticsEngine::Ignored)
2554    for (unsigned i = 0, e = Args.size(); i != e; ++i)
2555      // FIXME: Warn about the case when other fields are used before being
2556      // initialized. For example, let this field be the i'th field. When
2557      // initializing the i'th field, throw a warning if any of the >= i'th
2558      // fields are used, as they are not yet initialized.
2559      // Right now we are only handling the case where the i'th field uses
2560      // itself in its initializer.
2561      // Also need to take into account that some fields may be initialized by
2562      // in-class initializers, see C++11 [class.base.init]p9.
2563      CheckInitExprContainsUninitializedFields(*this, Args[i], Member);
2564
2565  SourceRange InitRange = Init->getSourceRange();
2566
2567  if (Member->getType()->isDependentType() || Init->isTypeDependent()) {
2568    // Can't check initialization for a member of dependent type or when
2569    // any of the arguments are type-dependent expressions.
2570    DiscardCleanupsInEvaluationContext();
2571  } else {
2572    bool InitList = false;
2573    if (isa<InitListExpr>(Init)) {
2574      InitList = true;
2575      Args = Init;
2576    }
2577
2578    // Initialize the member.
2579    InitializedEntity MemberEntity =
2580      DirectMember ? InitializedEntity::InitializeMember(DirectMember, 0)
2581                   : InitializedEntity::InitializeMember(IndirectMember, 0);
2582    InitializationKind Kind =
2583      InitList ? InitializationKind::CreateDirectList(IdLoc)
2584               : InitializationKind::CreateDirect(IdLoc, InitRange.getBegin(),
2585                                                  InitRange.getEnd());
2586
2587    InitializationSequence InitSeq(*this, MemberEntity, Kind, Args);
2588    ExprResult MemberInit = InitSeq.Perform(*this, MemberEntity, Kind, Args, 0);
2589    if (MemberInit.isInvalid())
2590      return true;
2591
2592    CheckForDanglingReferenceOrPointer(*this, Member, MemberInit.get(), IdLoc);
2593
2594    // C++11 [class.base.init]p7:
2595    //   The initialization of each base and member constitutes a
2596    //   full-expression.
2597    MemberInit = ActOnFinishFullExpr(MemberInit.get(), InitRange.getBegin());
2598    if (MemberInit.isInvalid())
2599      return true;
2600
2601    Init = MemberInit.get();
2602  }
2603
2604  if (DirectMember) {
2605    return new (Context) CXXCtorInitializer(Context, DirectMember, IdLoc,
2606                                            InitRange.getBegin(), Init,
2607                                            InitRange.getEnd());
2608  } else {
2609    return new (Context) CXXCtorInitializer(Context, IndirectMember, IdLoc,
2610                                            InitRange.getBegin(), Init,
2611                                            InitRange.getEnd());
2612  }
2613}
2614
2615MemInitResult
2616Sema::BuildDelegatingInitializer(TypeSourceInfo *TInfo, Expr *Init,
2617                                 CXXRecordDecl *ClassDecl) {
2618  SourceLocation NameLoc = TInfo->getTypeLoc().getLocalSourceRange().getBegin();
2619  if (!LangOpts.CPlusPlus11)
2620    return Diag(NameLoc, diag::err_delegating_ctor)
2621      << TInfo->getTypeLoc().getLocalSourceRange();
2622  Diag(NameLoc, diag::warn_cxx98_compat_delegating_ctor);
2623
2624  bool InitList = true;
2625  MultiExprArg Args = Init;
2626  if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) {
2627    InitList = false;
2628    Args = MultiExprArg(ParenList->getExprs(), ParenList->getNumExprs());
2629  }
2630
2631  SourceRange InitRange = Init->getSourceRange();
2632  // Initialize the object.
2633  InitializedEntity DelegationEntity = InitializedEntity::InitializeDelegation(
2634                                     QualType(ClassDecl->getTypeForDecl(), 0));
2635  InitializationKind Kind =
2636    InitList ? InitializationKind::CreateDirectList(NameLoc)
2637             : InitializationKind::CreateDirect(NameLoc, InitRange.getBegin(),
2638                                                InitRange.getEnd());
2639  InitializationSequence InitSeq(*this, DelegationEntity, Kind, Args);
2640  ExprResult DelegationInit = InitSeq.Perform(*this, DelegationEntity, Kind,
2641                                              Args, 0);
2642  if (DelegationInit.isInvalid())
2643    return true;
2644
2645  assert(cast<CXXConstructExpr>(DelegationInit.get())->getConstructor() &&
2646         "Delegating constructor with no target?");
2647
2648  // C++11 [class.base.init]p7:
2649  //   The initialization of each base and member constitutes a
2650  //   full-expression.
2651  DelegationInit = ActOnFinishFullExpr(DelegationInit.get(),
2652                                       InitRange.getBegin());
2653  if (DelegationInit.isInvalid())
2654    return true;
2655
2656  // If we are in a dependent context, template instantiation will
2657  // perform this type-checking again. Just save the arguments that we
2658  // received in a ParenListExpr.
2659  // FIXME: This isn't quite ideal, since our ASTs don't capture all
2660  // of the information that we have about the base
2661  // initializer. However, deconstructing the ASTs is a dicey process,
2662  // and this approach is far more likely to get the corner cases right.
2663  if (CurContext->isDependentContext())
2664    DelegationInit = Owned(Init);
2665
2666  return new (Context) CXXCtorInitializer(Context, TInfo, InitRange.getBegin(),
2667                                          DelegationInit.takeAs<Expr>(),
2668                                          InitRange.getEnd());
2669}
2670
2671MemInitResult
2672Sema::BuildBaseInitializer(QualType BaseType, TypeSourceInfo *BaseTInfo,
2673                           Expr *Init, CXXRecordDecl *ClassDecl,
2674                           SourceLocation EllipsisLoc) {
2675  SourceLocation BaseLoc
2676    = BaseTInfo->getTypeLoc().getLocalSourceRange().getBegin();
2677
2678  if (!BaseType->isDependentType() && !BaseType->isRecordType())
2679    return Diag(BaseLoc, diag::err_base_init_does_not_name_class)
2680             << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
2681
2682  // C++ [class.base.init]p2:
2683  //   [...] Unless the mem-initializer-id names a nonstatic data
2684  //   member of the constructor's class or a direct or virtual base
2685  //   of that class, the mem-initializer is ill-formed. A
2686  //   mem-initializer-list can initialize a base class using any
2687  //   name that denotes that base class type.
2688  bool Dependent = BaseType->isDependentType() || Init->isTypeDependent();
2689
2690  SourceRange InitRange = Init->getSourceRange();
2691  if (EllipsisLoc.isValid()) {
2692    // This is a pack expansion.
2693    if (!BaseType->containsUnexpandedParameterPack())  {
2694      Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
2695        << SourceRange(BaseLoc, InitRange.getEnd());
2696
2697      EllipsisLoc = SourceLocation();
2698    }
2699  } else {
2700    // Check for any unexpanded parameter packs.
2701    if (DiagnoseUnexpandedParameterPack(BaseLoc, BaseTInfo, UPPC_Initializer))
2702      return true;
2703
2704    if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer))
2705      return true;
2706  }
2707
2708  // Check for direct and virtual base classes.
2709  const CXXBaseSpecifier *DirectBaseSpec = 0;
2710  const CXXBaseSpecifier *VirtualBaseSpec = 0;
2711  if (!Dependent) {
2712    if (Context.hasSameUnqualifiedType(QualType(ClassDecl->getTypeForDecl(),0),
2713                                       BaseType))
2714      return BuildDelegatingInitializer(BaseTInfo, Init, ClassDecl);
2715
2716    FindBaseInitializer(*this, ClassDecl, BaseType, DirectBaseSpec,
2717                        VirtualBaseSpec);
2718
2719    // C++ [base.class.init]p2:
2720    // Unless the mem-initializer-id names a nonstatic data member of the
2721    // constructor's class or a direct or virtual base of that class, the
2722    // mem-initializer is ill-formed.
2723    if (!DirectBaseSpec && !VirtualBaseSpec) {
2724      // If the class has any dependent bases, then it's possible that
2725      // one of those types will resolve to the same type as
2726      // BaseType. Therefore, just treat this as a dependent base
2727      // class initialization.  FIXME: Should we try to check the
2728      // initialization anyway? It seems odd.
2729      if (ClassDecl->hasAnyDependentBases())
2730        Dependent = true;
2731      else
2732        return Diag(BaseLoc, diag::err_not_direct_base_or_virtual)
2733          << BaseType << Context.getTypeDeclType(ClassDecl)
2734          << BaseTInfo->getTypeLoc().getLocalSourceRange();
2735    }
2736  }
2737
2738  if (Dependent) {
2739    DiscardCleanupsInEvaluationContext();
2740
2741    return new (Context) CXXCtorInitializer(Context, BaseTInfo,
2742                                            /*IsVirtual=*/false,
2743                                            InitRange.getBegin(), Init,
2744                                            InitRange.getEnd(), EllipsisLoc);
2745  }
2746
2747  // C++ [base.class.init]p2:
2748  //   If a mem-initializer-id is ambiguous because it designates both
2749  //   a direct non-virtual base class and an inherited virtual base
2750  //   class, the mem-initializer is ill-formed.
2751  if (DirectBaseSpec && VirtualBaseSpec)
2752    return Diag(BaseLoc, diag::err_base_init_direct_and_virtual)
2753      << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
2754
2755  CXXBaseSpecifier *BaseSpec = const_cast<CXXBaseSpecifier *>(DirectBaseSpec);
2756  if (!BaseSpec)
2757    BaseSpec = const_cast<CXXBaseSpecifier *>(VirtualBaseSpec);
2758
2759  // Initialize the base.
2760  bool InitList = true;
2761  MultiExprArg Args = Init;
2762  if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) {
2763    InitList = false;
2764    Args = MultiExprArg(ParenList->getExprs(), ParenList->getNumExprs());
2765  }
2766
2767  InitializedEntity BaseEntity =
2768    InitializedEntity::InitializeBase(Context, BaseSpec, VirtualBaseSpec);
2769  InitializationKind Kind =
2770    InitList ? InitializationKind::CreateDirectList(BaseLoc)
2771             : InitializationKind::CreateDirect(BaseLoc, InitRange.getBegin(),
2772                                                InitRange.getEnd());
2773  InitializationSequence InitSeq(*this, BaseEntity, Kind, Args);
2774  ExprResult BaseInit = InitSeq.Perform(*this, BaseEntity, Kind, Args, 0);
2775  if (BaseInit.isInvalid())
2776    return true;
2777
2778  // C++11 [class.base.init]p7:
2779  //   The initialization of each base and member constitutes a
2780  //   full-expression.
2781  BaseInit = ActOnFinishFullExpr(BaseInit.get(), InitRange.getBegin());
2782  if (BaseInit.isInvalid())
2783    return true;
2784
2785  // If we are in a dependent context, template instantiation will
2786  // perform this type-checking again. Just save the arguments that we
2787  // received in a ParenListExpr.
2788  // FIXME: This isn't quite ideal, since our ASTs don't capture all
2789  // of the information that we have about the base
2790  // initializer. However, deconstructing the ASTs is a dicey process,
2791  // and this approach is far more likely to get the corner cases right.
2792  if (CurContext->isDependentContext())
2793    BaseInit = Owned(Init);
2794
2795  return new (Context) CXXCtorInitializer(Context, BaseTInfo,
2796                                          BaseSpec->isVirtual(),
2797                                          InitRange.getBegin(),
2798                                          BaseInit.takeAs<Expr>(),
2799                                          InitRange.getEnd(), EllipsisLoc);
2800}
2801
2802// Create a static_cast\<T&&>(expr).
2803static Expr *CastForMoving(Sema &SemaRef, Expr *E, QualType T = QualType()) {
2804  if (T.isNull()) T = E->getType();
2805  QualType TargetType = SemaRef.BuildReferenceType(
2806      T, /*SpelledAsLValue*/false, SourceLocation(), DeclarationName());
2807  SourceLocation ExprLoc = E->getLocStart();
2808  TypeSourceInfo *TargetLoc = SemaRef.Context.getTrivialTypeSourceInfo(
2809      TargetType, ExprLoc);
2810
2811  return SemaRef.BuildCXXNamedCast(ExprLoc, tok::kw_static_cast, TargetLoc, E,
2812                                   SourceRange(ExprLoc, ExprLoc),
2813                                   E->getSourceRange()).take();
2814}
2815
2816/// ImplicitInitializerKind - How an implicit base or member initializer should
2817/// initialize its base or member.
2818enum ImplicitInitializerKind {
2819  IIK_Default,
2820  IIK_Copy,
2821  IIK_Move,
2822  IIK_Inherit
2823};
2824
2825static bool
2826BuildImplicitBaseInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
2827                             ImplicitInitializerKind ImplicitInitKind,
2828                             CXXBaseSpecifier *BaseSpec,
2829                             bool IsInheritedVirtualBase,
2830                             CXXCtorInitializer *&CXXBaseInit) {
2831  InitializedEntity InitEntity
2832    = InitializedEntity::InitializeBase(SemaRef.Context, BaseSpec,
2833                                        IsInheritedVirtualBase);
2834
2835  ExprResult BaseInit;
2836
2837  switch (ImplicitInitKind) {
2838  case IIK_Inherit: {
2839    const CXXRecordDecl *Inherited =
2840        Constructor->getInheritedConstructor()->getParent();
2841    const CXXRecordDecl *Base = BaseSpec->getType()->getAsCXXRecordDecl();
2842    if (Base && Inherited->getCanonicalDecl() == Base->getCanonicalDecl()) {
2843      // C++11 [class.inhctor]p8:
2844      //   Each expression in the expression-list is of the form
2845      //   static_cast<T&&>(p), where p is the name of the corresponding
2846      //   constructor parameter and T is the declared type of p.
2847      SmallVector<Expr*, 16> Args;
2848      for (unsigned I = 0, E = Constructor->getNumParams(); I != E; ++I) {
2849        ParmVarDecl *PD = Constructor->getParamDecl(I);
2850        ExprResult ArgExpr =
2851            SemaRef.BuildDeclRefExpr(PD, PD->getType().getNonReferenceType(),
2852                                     VK_LValue, SourceLocation());
2853        if (ArgExpr.isInvalid())
2854          return true;
2855        Args.push_back(CastForMoving(SemaRef, ArgExpr.take(), PD->getType()));
2856      }
2857
2858      InitializationKind InitKind = InitializationKind::CreateDirect(
2859          Constructor->getLocation(), SourceLocation(), SourceLocation());
2860      InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, Args);
2861      BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind, Args);
2862      break;
2863    }
2864  }
2865  // Fall through.
2866  case IIK_Default: {
2867    InitializationKind InitKind
2868      = InitializationKind::CreateDefault(Constructor->getLocation());
2869    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, None);
2870    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind, None);
2871    break;
2872  }
2873
2874  case IIK_Move:
2875  case IIK_Copy: {
2876    bool Moving = ImplicitInitKind == IIK_Move;
2877    ParmVarDecl *Param = Constructor->getParamDecl(0);
2878    QualType ParamType = Param->getType().getNonReferenceType();
2879
2880    Expr *CopyCtorArg =
2881      DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(),
2882                          SourceLocation(), Param, false,
2883                          Constructor->getLocation(), ParamType,
2884                          VK_LValue, 0);
2885
2886    SemaRef.MarkDeclRefReferenced(cast<DeclRefExpr>(CopyCtorArg));
2887
2888    // Cast to the base class to avoid ambiguities.
2889    QualType ArgTy =
2890      SemaRef.Context.getQualifiedType(BaseSpec->getType().getUnqualifiedType(),
2891                                       ParamType.getQualifiers());
2892
2893    if (Moving) {
2894      CopyCtorArg = CastForMoving(SemaRef, CopyCtorArg);
2895    }
2896
2897    CXXCastPath BasePath;
2898    BasePath.push_back(BaseSpec);
2899    CopyCtorArg = SemaRef.ImpCastExprToType(CopyCtorArg, ArgTy,
2900                                            CK_UncheckedDerivedToBase,
2901                                            Moving ? VK_XValue : VK_LValue,
2902                                            &BasePath).take();
2903
2904    InitializationKind InitKind
2905      = InitializationKind::CreateDirect(Constructor->getLocation(),
2906                                         SourceLocation(), SourceLocation());
2907    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, CopyCtorArg);
2908    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind, CopyCtorArg);
2909    break;
2910  }
2911  }
2912
2913  BaseInit = SemaRef.MaybeCreateExprWithCleanups(BaseInit);
2914  if (BaseInit.isInvalid())
2915    return true;
2916
2917  CXXBaseInit =
2918    new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
2919               SemaRef.Context.getTrivialTypeSourceInfo(BaseSpec->getType(),
2920                                                        SourceLocation()),
2921                                             BaseSpec->isVirtual(),
2922                                             SourceLocation(),
2923                                             BaseInit.takeAs<Expr>(),
2924                                             SourceLocation(),
2925                                             SourceLocation());
2926
2927  return false;
2928}
2929
2930static bool RefersToRValueRef(Expr *MemRef) {
2931  ValueDecl *Referenced = cast<MemberExpr>(MemRef)->getMemberDecl();
2932  return Referenced->getType()->isRValueReferenceType();
2933}
2934
2935static bool
2936BuildImplicitMemberInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
2937                               ImplicitInitializerKind ImplicitInitKind,
2938                               FieldDecl *Field, IndirectFieldDecl *Indirect,
2939                               CXXCtorInitializer *&CXXMemberInit) {
2940  if (Field->isInvalidDecl())
2941    return true;
2942
2943  SourceLocation Loc = Constructor->getLocation();
2944
2945  if (ImplicitInitKind == IIK_Copy || ImplicitInitKind == IIK_Move) {
2946    bool Moving = ImplicitInitKind == IIK_Move;
2947    ParmVarDecl *Param = Constructor->getParamDecl(0);
2948    QualType ParamType = Param->getType().getNonReferenceType();
2949
2950    // Suppress copying zero-width bitfields.
2951    if (Field->isBitField() && Field->getBitWidthValue(SemaRef.Context) == 0)
2952      return false;
2953
2954    Expr *MemberExprBase =
2955      DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(),
2956                          SourceLocation(), Param, false,
2957                          Loc, ParamType, VK_LValue, 0);
2958
2959    SemaRef.MarkDeclRefReferenced(cast<DeclRefExpr>(MemberExprBase));
2960
2961    if (Moving) {
2962      MemberExprBase = CastForMoving(SemaRef, MemberExprBase);
2963    }
2964
2965    // Build a reference to this field within the parameter.
2966    CXXScopeSpec SS;
2967    LookupResult MemberLookup(SemaRef, Field->getDeclName(), Loc,
2968                              Sema::LookupMemberName);
2969    MemberLookup.addDecl(Indirect ? cast<ValueDecl>(Indirect)
2970                                  : cast<ValueDecl>(Field), AS_public);
2971    MemberLookup.resolveKind();
2972    ExprResult CtorArg
2973      = SemaRef.BuildMemberReferenceExpr(MemberExprBase,
2974                                         ParamType, Loc,
2975                                         /*IsArrow=*/false,
2976                                         SS,
2977                                         /*TemplateKWLoc=*/SourceLocation(),
2978                                         /*FirstQualifierInScope=*/0,
2979                                         MemberLookup,
2980                                         /*TemplateArgs=*/0);
2981    if (CtorArg.isInvalid())
2982      return true;
2983
2984    // C++11 [class.copy]p15:
2985    //   - if a member m has rvalue reference type T&&, it is direct-initialized
2986    //     with static_cast<T&&>(x.m);
2987    if (RefersToRValueRef(CtorArg.get())) {
2988      CtorArg = CastForMoving(SemaRef, CtorArg.take());
2989    }
2990
2991    // When the field we are copying is an array, create index variables for
2992    // each dimension of the array. We use these index variables to subscript
2993    // the source array, and other clients (e.g., CodeGen) will perform the
2994    // necessary iteration with these index variables.
2995    SmallVector<VarDecl *, 4> IndexVariables;
2996    QualType BaseType = Field->getType();
2997    QualType SizeType = SemaRef.Context.getSizeType();
2998    bool InitializingArray = false;
2999    while (const ConstantArrayType *Array
3000                          = SemaRef.Context.getAsConstantArrayType(BaseType)) {
3001      InitializingArray = true;
3002      // Create the iteration variable for this array index.
3003      IdentifierInfo *IterationVarName = 0;
3004      {
3005        SmallString<8> Str;
3006        llvm::raw_svector_ostream OS(Str);
3007        OS << "__i" << IndexVariables.size();
3008        IterationVarName = &SemaRef.Context.Idents.get(OS.str());
3009      }
3010      VarDecl *IterationVar
3011        = VarDecl::Create(SemaRef.Context, SemaRef.CurContext, Loc, Loc,
3012                          IterationVarName, SizeType,
3013                        SemaRef.Context.getTrivialTypeSourceInfo(SizeType, Loc),
3014                          SC_None);
3015      IndexVariables.push_back(IterationVar);
3016
3017      // Create a reference to the iteration variable.
3018      ExprResult IterationVarRef
3019        = SemaRef.BuildDeclRefExpr(IterationVar, SizeType, VK_LValue, Loc);
3020      assert(!IterationVarRef.isInvalid() &&
3021             "Reference to invented variable cannot fail!");
3022      IterationVarRef = SemaRef.DefaultLvalueConversion(IterationVarRef.take());
3023      assert(!IterationVarRef.isInvalid() &&
3024             "Conversion of invented variable cannot fail!");
3025
3026      // Subscript the array with this iteration variable.
3027      CtorArg = SemaRef.CreateBuiltinArraySubscriptExpr(CtorArg.take(), Loc,
3028                                                        IterationVarRef.take(),
3029                                                        Loc);
3030      if (CtorArg.isInvalid())
3031        return true;
3032
3033      BaseType = Array->getElementType();
3034    }
3035
3036    // The array subscript expression is an lvalue, which is wrong for moving.
3037    if (Moving && InitializingArray)
3038      CtorArg = CastForMoving(SemaRef, CtorArg.take());
3039
3040    // Construct the entity that we will be initializing. For an array, this
3041    // will be first element in the array, which may require several levels
3042    // of array-subscript entities.
3043    SmallVector<InitializedEntity, 4> Entities;
3044    Entities.reserve(1 + IndexVariables.size());
3045    if (Indirect)
3046      Entities.push_back(InitializedEntity::InitializeMember(Indirect));
3047    else
3048      Entities.push_back(InitializedEntity::InitializeMember(Field));
3049    for (unsigned I = 0, N = IndexVariables.size(); I != N; ++I)
3050      Entities.push_back(InitializedEntity::InitializeElement(SemaRef.Context,
3051                                                              0,
3052                                                              Entities.back()));
3053
3054    // Direct-initialize to use the copy constructor.
3055    InitializationKind InitKind =
3056      InitializationKind::CreateDirect(Loc, SourceLocation(), SourceLocation());
3057
3058    Expr *CtorArgE = CtorArg.takeAs<Expr>();
3059    InitializationSequence InitSeq(SemaRef, Entities.back(), InitKind, CtorArgE);
3060
3061    ExprResult MemberInit
3062      = InitSeq.Perform(SemaRef, Entities.back(), InitKind,
3063                        MultiExprArg(&CtorArgE, 1));
3064    MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
3065    if (MemberInit.isInvalid())
3066      return true;
3067
3068    if (Indirect) {
3069      assert(IndexVariables.size() == 0 &&
3070             "Indirect field improperly initialized");
3071      CXXMemberInit
3072        = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Indirect,
3073                                                   Loc, Loc,
3074                                                   MemberInit.takeAs<Expr>(),
3075                                                   Loc);
3076    } else
3077      CXXMemberInit = CXXCtorInitializer::Create(SemaRef.Context, Field, Loc,
3078                                                 Loc, MemberInit.takeAs<Expr>(),
3079                                                 Loc,
3080                                                 IndexVariables.data(),
3081                                                 IndexVariables.size());
3082    return false;
3083  }
3084
3085  assert((ImplicitInitKind == IIK_Default || ImplicitInitKind == IIK_Inherit) &&
3086         "Unhandled implicit init kind!");
3087
3088  QualType FieldBaseElementType =
3089    SemaRef.Context.getBaseElementType(Field->getType());
3090
3091  if (FieldBaseElementType->isRecordType()) {
3092    InitializedEntity InitEntity
3093      = Indirect? InitializedEntity::InitializeMember(Indirect)
3094                : InitializedEntity::InitializeMember(Field);
3095    InitializationKind InitKind =
3096      InitializationKind::CreateDefault(Loc);
3097
3098    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, None);
3099    ExprResult MemberInit =
3100      InitSeq.Perform(SemaRef, InitEntity, InitKind, None);
3101
3102    MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
3103    if (MemberInit.isInvalid())
3104      return true;
3105
3106    if (Indirect)
3107      CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
3108                                                               Indirect, Loc,
3109                                                               Loc,
3110                                                               MemberInit.get(),
3111                                                               Loc);
3112    else
3113      CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
3114                                                               Field, Loc, Loc,
3115                                                               MemberInit.get(),
3116                                                               Loc);
3117    return false;
3118  }
3119
3120  if (!Field->getParent()->isUnion()) {
3121    if (FieldBaseElementType->isReferenceType()) {
3122      SemaRef.Diag(Constructor->getLocation(),
3123                   diag::err_uninitialized_member_in_ctor)
3124      << (int)Constructor->isImplicit()
3125      << SemaRef.Context.getTagDeclType(Constructor->getParent())
3126      << 0 << Field->getDeclName();
3127      SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
3128      return true;
3129    }
3130
3131    if (FieldBaseElementType.isConstQualified()) {
3132      SemaRef.Diag(Constructor->getLocation(),
3133                   diag::err_uninitialized_member_in_ctor)
3134      << (int)Constructor->isImplicit()
3135      << SemaRef.Context.getTagDeclType(Constructor->getParent())
3136      << 1 << Field->getDeclName();
3137      SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
3138      return true;
3139    }
3140  }
3141
3142  if (SemaRef.getLangOpts().ObjCAutoRefCount &&
3143      FieldBaseElementType->isObjCRetainableType() &&
3144      FieldBaseElementType.getObjCLifetime() != Qualifiers::OCL_None &&
3145      FieldBaseElementType.getObjCLifetime() != Qualifiers::OCL_ExplicitNone) {
3146    // ARC:
3147    //   Default-initialize Objective-C pointers to NULL.
3148    CXXMemberInit
3149      = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Field,
3150                                                 Loc, Loc,
3151                 new (SemaRef.Context) ImplicitValueInitExpr(Field->getType()),
3152                                                 Loc);
3153    return false;
3154  }
3155
3156  // Nothing to initialize.
3157  CXXMemberInit = 0;
3158  return false;
3159}
3160
3161namespace {
3162struct BaseAndFieldInfo {
3163  Sema &S;
3164  CXXConstructorDecl *Ctor;
3165  bool AnyErrorsInInits;
3166  ImplicitInitializerKind IIK;
3167  llvm::DenseMap<const void *, CXXCtorInitializer*> AllBaseFields;
3168  SmallVector<CXXCtorInitializer*, 8> AllToInit;
3169
3170  BaseAndFieldInfo(Sema &S, CXXConstructorDecl *Ctor, bool ErrorsInInits)
3171    : S(S), Ctor(Ctor), AnyErrorsInInits(ErrorsInInits) {
3172    bool Generated = Ctor->isImplicit() || Ctor->isDefaulted();
3173    if (Generated && Ctor->isCopyConstructor())
3174      IIK = IIK_Copy;
3175    else if (Generated && Ctor->isMoveConstructor())
3176      IIK = IIK_Move;
3177    else if (Ctor->getInheritedConstructor())
3178      IIK = IIK_Inherit;
3179    else
3180      IIK = IIK_Default;
3181  }
3182
3183  bool isImplicitCopyOrMove() const {
3184    switch (IIK) {
3185    case IIK_Copy:
3186    case IIK_Move:
3187      return true;
3188
3189    case IIK_Default:
3190    case IIK_Inherit:
3191      return false;
3192    }
3193
3194    llvm_unreachable("Invalid ImplicitInitializerKind!");
3195  }
3196
3197  bool addFieldInitializer(CXXCtorInitializer *Init) {
3198    AllToInit.push_back(Init);
3199
3200    // Check whether this initializer makes the field "used".
3201    if (Init->getInit()->HasSideEffects(S.Context))
3202      S.UnusedPrivateFields.remove(Init->getAnyMember());
3203
3204    return false;
3205  }
3206};
3207}
3208
3209/// \brief Determine whether the given indirect field declaration is somewhere
3210/// within an anonymous union.
3211static bool isWithinAnonymousUnion(IndirectFieldDecl *F) {
3212  for (IndirectFieldDecl::chain_iterator C = F->chain_begin(),
3213                                      CEnd = F->chain_end();
3214       C != CEnd; ++C)
3215    if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>((*C)->getDeclContext()))
3216      if (Record->isUnion())
3217        return true;
3218
3219  return false;
3220}
3221
3222/// \brief Determine whether the given type is an incomplete or zero-lenfgth
3223/// array type.
3224static bool isIncompleteOrZeroLengthArrayType(ASTContext &Context, QualType T) {
3225  if (T->isIncompleteArrayType())
3226    return true;
3227
3228  while (const ConstantArrayType *ArrayT = Context.getAsConstantArrayType(T)) {
3229    if (!ArrayT->getSize())
3230      return true;
3231
3232    T = ArrayT->getElementType();
3233  }
3234
3235  return false;
3236}
3237
3238static bool CollectFieldInitializer(Sema &SemaRef, BaseAndFieldInfo &Info,
3239                                    FieldDecl *Field,
3240                                    IndirectFieldDecl *Indirect = 0) {
3241  if (Field->isInvalidDecl())
3242    return false;
3243
3244  // Overwhelmingly common case: we have a direct initializer for this field.
3245  if (CXXCtorInitializer *Init = Info.AllBaseFields.lookup(Field))
3246    return Info.addFieldInitializer(Init);
3247
3248  // C++11 [class.base.init]p8: if the entity is a non-static data member that
3249  // has a brace-or-equal-initializer, the entity is initialized as specified
3250  // in [dcl.init].
3251  if (Field->hasInClassInitializer() && !Info.isImplicitCopyOrMove()) {
3252    Expr *DIE = CXXDefaultInitExpr::Create(SemaRef.Context,
3253                                           Info.Ctor->getLocation(), Field);
3254    CXXCtorInitializer *Init;
3255    if (Indirect)
3256      Init = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Indirect,
3257                                                      SourceLocation(),
3258                                                      SourceLocation(), DIE,
3259                                                      SourceLocation());
3260    else
3261      Init = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Field,
3262                                                      SourceLocation(),
3263                                                      SourceLocation(), DIE,
3264                                                      SourceLocation());
3265    return Info.addFieldInitializer(Init);
3266  }
3267
3268  // Don't build an implicit initializer for union members if none was
3269  // explicitly specified.
3270  if (Field->getParent()->isUnion() ||
3271      (Indirect && isWithinAnonymousUnion(Indirect)))
3272    return false;
3273
3274  // Don't initialize incomplete or zero-length arrays.
3275  if (isIncompleteOrZeroLengthArrayType(SemaRef.Context, Field->getType()))
3276    return false;
3277
3278  // Don't try to build an implicit initializer if there were semantic
3279  // errors in any of the initializers (and therefore we might be
3280  // missing some that the user actually wrote).
3281  if (Info.AnyErrorsInInits)
3282    return false;
3283
3284  CXXCtorInitializer *Init = 0;
3285  if (BuildImplicitMemberInitializer(Info.S, Info.Ctor, Info.IIK, Field,
3286                                     Indirect, Init))
3287    return true;
3288
3289  if (!Init)
3290    return false;
3291
3292  return Info.addFieldInitializer(Init);
3293}
3294
3295bool
3296Sema::SetDelegatingInitializer(CXXConstructorDecl *Constructor,
3297                               CXXCtorInitializer *Initializer) {
3298  assert(Initializer->isDelegatingInitializer());
3299  Constructor->setNumCtorInitializers(1);
3300  CXXCtorInitializer **initializer =
3301    new (Context) CXXCtorInitializer*[1];
3302  memcpy(initializer, &Initializer, sizeof (CXXCtorInitializer*));
3303  Constructor->setCtorInitializers(initializer);
3304
3305  if (CXXDestructorDecl *Dtor = LookupDestructor(Constructor->getParent())) {
3306    MarkFunctionReferenced(Initializer->getSourceLocation(), Dtor);
3307    DiagnoseUseOfDecl(Dtor, Initializer->getSourceLocation());
3308  }
3309
3310  DelegatingCtorDecls.push_back(Constructor);
3311
3312  return false;
3313}
3314
3315bool Sema::SetCtorInitializers(CXXConstructorDecl *Constructor, bool AnyErrors,
3316                               ArrayRef<CXXCtorInitializer *> Initializers) {
3317  if (Constructor->isDependentContext()) {
3318    // Just store the initializers as written, they will be checked during
3319    // instantiation.
3320    if (!Initializers.empty()) {
3321      Constructor->setNumCtorInitializers(Initializers.size());
3322      CXXCtorInitializer **baseOrMemberInitializers =
3323        new (Context) CXXCtorInitializer*[Initializers.size()];
3324      memcpy(baseOrMemberInitializers, Initializers.data(),
3325             Initializers.size() * sizeof(CXXCtorInitializer*));
3326      Constructor->setCtorInitializers(baseOrMemberInitializers);
3327    }
3328
3329    // Let template instantiation know whether we had errors.
3330    if (AnyErrors)
3331      Constructor->setInvalidDecl();
3332
3333    return false;
3334  }
3335
3336  BaseAndFieldInfo Info(*this, Constructor, AnyErrors);
3337
3338  // We need to build the initializer AST according to order of construction
3339  // and not what user specified in the Initializers list.
3340  CXXRecordDecl *ClassDecl = Constructor->getParent()->getDefinition();
3341  if (!ClassDecl)
3342    return true;
3343
3344  bool HadError = false;
3345
3346  for (unsigned i = 0; i < Initializers.size(); i++) {
3347    CXXCtorInitializer *Member = Initializers[i];
3348
3349    if (Member->isBaseInitializer())
3350      Info.AllBaseFields[Member->getBaseClass()->getAs<RecordType>()] = Member;
3351    else
3352      Info.AllBaseFields[Member->getAnyMember()] = Member;
3353  }
3354
3355  // Keep track of the direct virtual bases.
3356  llvm::SmallPtrSet<CXXBaseSpecifier *, 16> DirectVBases;
3357  for (CXXRecordDecl::base_class_iterator I = ClassDecl->bases_begin(),
3358       E = ClassDecl->bases_end(); I != E; ++I) {
3359    if (I->isVirtual())
3360      DirectVBases.insert(I);
3361  }
3362
3363  // Push virtual bases before others.
3364  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
3365       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
3366
3367    if (CXXCtorInitializer *Value
3368        = Info.AllBaseFields.lookup(VBase->getType()->getAs<RecordType>())) {
3369      // [class.base.init]p7, per DR257:
3370      //   A mem-initializer where the mem-initializer-id names a virtual base
3371      //   class is ignored during execution of a constructor of any class that
3372      //   is not the most derived class.
3373      if (ClassDecl->isAbstract()) {
3374        // FIXME: Provide a fixit to remove the base specifier. This requires
3375        // tracking the location of the associated comma for a base specifier.
3376        Diag(Value->getSourceLocation(), diag::warn_abstract_vbase_init_ignored)
3377          << VBase->getType() << ClassDecl;
3378        DiagnoseAbstractType(ClassDecl);
3379      }
3380
3381      Info.AllToInit.push_back(Value);
3382    } else if (!AnyErrors && !ClassDecl->isAbstract()) {
3383      // [class.base.init]p8, per DR257:
3384      //   If a given [...] base class is not named by a mem-initializer-id
3385      //   [...] and the entity is not a virtual base class of an abstract
3386      //   class, then [...] the entity is default-initialized.
3387      bool IsInheritedVirtualBase = !DirectVBases.count(VBase);
3388      CXXCtorInitializer *CXXBaseInit;
3389      if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
3390                                       VBase, IsInheritedVirtualBase,
3391                                       CXXBaseInit)) {
3392        HadError = true;
3393        continue;
3394      }
3395
3396      Info.AllToInit.push_back(CXXBaseInit);
3397    }
3398  }
3399
3400  // Non-virtual bases.
3401  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
3402       E = ClassDecl->bases_end(); Base != E; ++Base) {
3403    // Virtuals are in the virtual base list and already constructed.
3404    if (Base->isVirtual())
3405      continue;
3406
3407    if (CXXCtorInitializer *Value
3408          = Info.AllBaseFields.lookup(Base->getType()->getAs<RecordType>())) {
3409      Info.AllToInit.push_back(Value);
3410    } else if (!AnyErrors) {
3411      CXXCtorInitializer *CXXBaseInit;
3412      if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
3413                                       Base, /*IsInheritedVirtualBase=*/false,
3414                                       CXXBaseInit)) {
3415        HadError = true;
3416        continue;
3417      }
3418
3419      Info.AllToInit.push_back(CXXBaseInit);
3420    }
3421  }
3422
3423  // Fields.
3424  for (DeclContext::decl_iterator Mem = ClassDecl->decls_begin(),
3425                               MemEnd = ClassDecl->decls_end();
3426       Mem != MemEnd; ++Mem) {
3427    if (FieldDecl *F = dyn_cast<FieldDecl>(*Mem)) {
3428      // C++ [class.bit]p2:
3429      //   A declaration for a bit-field that omits the identifier declares an
3430      //   unnamed bit-field. Unnamed bit-fields are not members and cannot be
3431      //   initialized.
3432      if (F->isUnnamedBitfield())
3433        continue;
3434
3435      // If we're not generating the implicit copy/move constructor, then we'll
3436      // handle anonymous struct/union fields based on their individual
3437      // indirect fields.
3438      if (F->isAnonymousStructOrUnion() && !Info.isImplicitCopyOrMove())
3439        continue;
3440
3441      if (CollectFieldInitializer(*this, Info, F))
3442        HadError = true;
3443      continue;
3444    }
3445
3446    // Beyond this point, we only consider default initialization.
3447    if (Info.isImplicitCopyOrMove())
3448      continue;
3449
3450    if (IndirectFieldDecl *F = dyn_cast<IndirectFieldDecl>(*Mem)) {
3451      if (F->getType()->isIncompleteArrayType()) {
3452        assert(ClassDecl->hasFlexibleArrayMember() &&
3453               "Incomplete array type is not valid");
3454        continue;
3455      }
3456
3457      // Initialize each field of an anonymous struct individually.
3458      if (CollectFieldInitializer(*this, Info, F->getAnonField(), F))
3459        HadError = true;
3460
3461      continue;
3462    }
3463  }
3464
3465  unsigned NumInitializers = Info.AllToInit.size();
3466  if (NumInitializers > 0) {
3467    Constructor->setNumCtorInitializers(NumInitializers);
3468    CXXCtorInitializer **baseOrMemberInitializers =
3469      new (Context) CXXCtorInitializer*[NumInitializers];
3470    memcpy(baseOrMemberInitializers, Info.AllToInit.data(),
3471           NumInitializers * sizeof(CXXCtorInitializer*));
3472    Constructor->setCtorInitializers(baseOrMemberInitializers);
3473
3474    // Constructors implicitly reference the base and member
3475    // destructors.
3476    MarkBaseAndMemberDestructorsReferenced(Constructor->getLocation(),
3477                                           Constructor->getParent());
3478  }
3479
3480  return HadError;
3481}
3482
3483static void PopulateKeysForFields(FieldDecl *Field, SmallVectorImpl<const void*> &IdealInits) {
3484  if (const RecordType *RT = Field->getType()->getAs<RecordType>()) {
3485    const RecordDecl *RD = RT->getDecl();
3486    if (RD->isAnonymousStructOrUnion()) {
3487      for (RecordDecl::field_iterator Field = RD->field_begin(),
3488          E = RD->field_end(); Field != E; ++Field)
3489        PopulateKeysForFields(*Field, IdealInits);
3490      return;
3491    }
3492  }
3493  IdealInits.push_back(Field);
3494}
3495
3496static void *GetKeyForBase(ASTContext &Context, QualType BaseType) {
3497  return const_cast<Type*>(Context.getCanonicalType(BaseType).getTypePtr());
3498}
3499
3500static void *GetKeyForMember(ASTContext &Context,
3501                             CXXCtorInitializer *Member) {
3502  if (!Member->isAnyMemberInitializer())
3503    return GetKeyForBase(Context, QualType(Member->getBaseClass(), 0));
3504
3505  return Member->getAnyMember();
3506}
3507
3508static void DiagnoseBaseOrMemInitializerOrder(
3509    Sema &SemaRef, const CXXConstructorDecl *Constructor,
3510    ArrayRef<CXXCtorInitializer *> Inits) {
3511  if (Constructor->getDeclContext()->isDependentContext())
3512    return;
3513
3514  // Don't check initializers order unless the warning is enabled at the
3515  // location of at least one initializer.
3516  bool ShouldCheckOrder = false;
3517  for (unsigned InitIndex = 0; InitIndex != Inits.size(); ++InitIndex) {
3518    CXXCtorInitializer *Init = Inits[InitIndex];
3519    if (SemaRef.Diags.getDiagnosticLevel(diag::warn_initializer_out_of_order,
3520                                         Init->getSourceLocation())
3521          != DiagnosticsEngine::Ignored) {
3522      ShouldCheckOrder = true;
3523      break;
3524    }
3525  }
3526  if (!ShouldCheckOrder)
3527    return;
3528
3529  // Build the list of bases and members in the order that they'll
3530  // actually be initialized.  The explicit initializers should be in
3531  // this same order but may be missing things.
3532  SmallVector<const void*, 32> IdealInitKeys;
3533
3534  const CXXRecordDecl *ClassDecl = Constructor->getParent();
3535
3536  // 1. Virtual bases.
3537  for (CXXRecordDecl::base_class_const_iterator VBase =
3538       ClassDecl->vbases_begin(),
3539       E = ClassDecl->vbases_end(); VBase != E; ++VBase)
3540    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, VBase->getType()));
3541
3542  // 2. Non-virtual bases.
3543  for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin(),
3544       E = ClassDecl->bases_end(); Base != E; ++Base) {
3545    if (Base->isVirtual())
3546      continue;
3547    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, Base->getType()));
3548  }
3549
3550  // 3. Direct fields.
3551  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
3552       E = ClassDecl->field_end(); Field != E; ++Field) {
3553    if (Field->isUnnamedBitfield())
3554      continue;
3555
3556    PopulateKeysForFields(*Field, IdealInitKeys);
3557  }
3558
3559  unsigned NumIdealInits = IdealInitKeys.size();
3560  unsigned IdealIndex = 0;
3561
3562  CXXCtorInitializer *PrevInit = 0;
3563  for (unsigned InitIndex = 0; InitIndex != Inits.size(); ++InitIndex) {
3564    CXXCtorInitializer *Init = Inits[InitIndex];
3565    void *InitKey = GetKeyForMember(SemaRef.Context, Init);
3566
3567    // Scan forward to try to find this initializer in the idealized
3568    // initializers list.
3569    for (; IdealIndex != NumIdealInits; ++IdealIndex)
3570      if (InitKey == IdealInitKeys[IdealIndex])
3571        break;
3572
3573    // If we didn't find this initializer, it must be because we
3574    // scanned past it on a previous iteration.  That can only
3575    // happen if we're out of order;  emit a warning.
3576    if (IdealIndex == NumIdealInits && PrevInit) {
3577      Sema::SemaDiagnosticBuilder D =
3578        SemaRef.Diag(PrevInit->getSourceLocation(),
3579                     diag::warn_initializer_out_of_order);
3580
3581      if (PrevInit->isAnyMemberInitializer())
3582        D << 0 << PrevInit->getAnyMember()->getDeclName();
3583      else
3584        D << 1 << PrevInit->getTypeSourceInfo()->getType();
3585
3586      if (Init->isAnyMemberInitializer())
3587        D << 0 << Init->getAnyMember()->getDeclName();
3588      else
3589        D << 1 << Init->getTypeSourceInfo()->getType();
3590
3591      // Move back to the initializer's location in the ideal list.
3592      for (IdealIndex = 0; IdealIndex != NumIdealInits; ++IdealIndex)
3593        if (InitKey == IdealInitKeys[IdealIndex])
3594          break;
3595
3596      assert(IdealIndex != NumIdealInits &&
3597             "initializer not found in initializer list");
3598    }
3599
3600    PrevInit = Init;
3601  }
3602}
3603
3604namespace {
3605bool CheckRedundantInit(Sema &S,
3606                        CXXCtorInitializer *Init,
3607                        CXXCtorInitializer *&PrevInit) {
3608  if (!PrevInit) {
3609    PrevInit = Init;
3610    return false;
3611  }
3612
3613  if (FieldDecl *Field = Init->getAnyMember())
3614    S.Diag(Init->getSourceLocation(),
3615           diag::err_multiple_mem_initialization)
3616      << Field->getDeclName()
3617      << Init->getSourceRange();
3618  else {
3619    const Type *BaseClass = Init->getBaseClass();
3620    assert(BaseClass && "neither field nor base");
3621    S.Diag(Init->getSourceLocation(),
3622           diag::err_multiple_base_initialization)
3623      << QualType(BaseClass, 0)
3624      << Init->getSourceRange();
3625  }
3626  S.Diag(PrevInit->getSourceLocation(), diag::note_previous_initializer)
3627    << 0 << PrevInit->getSourceRange();
3628
3629  return true;
3630}
3631
3632typedef std::pair<NamedDecl *, CXXCtorInitializer *> UnionEntry;
3633typedef llvm::DenseMap<RecordDecl*, UnionEntry> RedundantUnionMap;
3634
3635bool CheckRedundantUnionInit(Sema &S,
3636                             CXXCtorInitializer *Init,
3637                             RedundantUnionMap &Unions) {
3638  FieldDecl *Field = Init->getAnyMember();
3639  RecordDecl *Parent = Field->getParent();
3640  NamedDecl *Child = Field;
3641
3642  while (Parent->isAnonymousStructOrUnion() || Parent->isUnion()) {
3643    if (Parent->isUnion()) {
3644      UnionEntry &En = Unions[Parent];
3645      if (En.first && En.first != Child) {
3646        S.Diag(Init->getSourceLocation(),
3647               diag::err_multiple_mem_union_initialization)
3648          << Field->getDeclName()
3649          << Init->getSourceRange();
3650        S.Diag(En.second->getSourceLocation(), diag::note_previous_initializer)
3651          << 0 << En.second->getSourceRange();
3652        return true;
3653      }
3654      if (!En.first) {
3655        En.first = Child;
3656        En.second = Init;
3657      }
3658      if (!Parent->isAnonymousStructOrUnion())
3659        return false;
3660    }
3661
3662    Child = Parent;
3663    Parent = cast<RecordDecl>(Parent->getDeclContext());
3664  }
3665
3666  return false;
3667}
3668}
3669
3670/// ActOnMemInitializers - Handle the member initializers for a constructor.
3671void Sema::ActOnMemInitializers(Decl *ConstructorDecl,
3672                                SourceLocation ColonLoc,
3673                                ArrayRef<CXXCtorInitializer*> MemInits,
3674                                bool AnyErrors) {
3675  if (!ConstructorDecl)
3676    return;
3677
3678  AdjustDeclIfTemplate(ConstructorDecl);
3679
3680  CXXConstructorDecl *Constructor
3681    = dyn_cast<CXXConstructorDecl>(ConstructorDecl);
3682
3683  if (!Constructor) {
3684    Diag(ColonLoc, diag::err_only_constructors_take_base_inits);
3685    return;
3686  }
3687
3688  // Mapping for the duplicate initializers check.
3689  // For member initializers, this is keyed with a FieldDecl*.
3690  // For base initializers, this is keyed with a Type*.
3691  llvm::DenseMap<void*, CXXCtorInitializer *> Members;
3692
3693  // Mapping for the inconsistent anonymous-union initializers check.
3694  RedundantUnionMap MemberUnions;
3695
3696  bool HadError = false;
3697  for (unsigned i = 0; i < MemInits.size(); i++) {
3698    CXXCtorInitializer *Init = MemInits[i];
3699
3700    // Set the source order index.
3701    Init->setSourceOrder(i);
3702
3703    if (Init->isAnyMemberInitializer()) {
3704      FieldDecl *Field = Init->getAnyMember();
3705      if (CheckRedundantInit(*this, Init, Members[Field]) ||
3706          CheckRedundantUnionInit(*this, Init, MemberUnions))
3707        HadError = true;
3708    } else if (Init->isBaseInitializer()) {
3709      void *Key = GetKeyForBase(Context, QualType(Init->getBaseClass(), 0));
3710      if (CheckRedundantInit(*this, Init, Members[Key]))
3711        HadError = true;
3712    } else {
3713      assert(Init->isDelegatingInitializer());
3714      // This must be the only initializer
3715      if (MemInits.size() != 1) {
3716        Diag(Init->getSourceLocation(),
3717             diag::err_delegating_initializer_alone)
3718          << Init->getSourceRange() << MemInits[i ? 0 : 1]->getSourceRange();
3719        // We will treat this as being the only initializer.
3720      }
3721      SetDelegatingInitializer(Constructor, MemInits[i]);
3722      // Return immediately as the initializer is set.
3723      return;
3724    }
3725  }
3726
3727  if (HadError)
3728    return;
3729
3730  DiagnoseBaseOrMemInitializerOrder(*this, Constructor, MemInits);
3731
3732  SetCtorInitializers(Constructor, AnyErrors, MemInits);
3733}
3734
3735void
3736Sema::MarkBaseAndMemberDestructorsReferenced(SourceLocation Location,
3737                                             CXXRecordDecl *ClassDecl) {
3738  // Ignore dependent contexts. Also ignore unions, since their members never
3739  // have destructors implicitly called.
3740  if (ClassDecl->isDependentContext() || ClassDecl->isUnion())
3741    return;
3742
3743  // FIXME: all the access-control diagnostics are positioned on the
3744  // field/base declaration.  That's probably good; that said, the
3745  // user might reasonably want to know why the destructor is being
3746  // emitted, and we currently don't say.
3747
3748  // Non-static data members.
3749  for (CXXRecordDecl::field_iterator I = ClassDecl->field_begin(),
3750       E = ClassDecl->field_end(); I != E; ++I) {
3751    FieldDecl *Field = *I;
3752    if (Field->isInvalidDecl())
3753      continue;
3754
3755    // Don't destroy incomplete or zero-length arrays.
3756    if (isIncompleteOrZeroLengthArrayType(Context, Field->getType()))
3757      continue;
3758
3759    QualType FieldType = Context.getBaseElementType(Field->getType());
3760
3761    const RecordType* RT = FieldType->getAs<RecordType>();
3762    if (!RT)
3763      continue;
3764
3765    CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
3766    if (FieldClassDecl->isInvalidDecl())
3767      continue;
3768    if (FieldClassDecl->hasIrrelevantDestructor())
3769      continue;
3770    // The destructor for an implicit anonymous union member is never invoked.
3771    if (FieldClassDecl->isUnion() && FieldClassDecl->isAnonymousStructOrUnion())
3772      continue;
3773
3774    CXXDestructorDecl *Dtor = LookupDestructor(FieldClassDecl);
3775    assert(Dtor && "No dtor found for FieldClassDecl!");
3776    CheckDestructorAccess(Field->getLocation(), Dtor,
3777                          PDiag(diag::err_access_dtor_field)
3778                            << Field->getDeclName()
3779                            << FieldType);
3780
3781    MarkFunctionReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
3782    DiagnoseUseOfDecl(Dtor, Location);
3783  }
3784
3785  llvm::SmallPtrSet<const RecordType *, 8> DirectVirtualBases;
3786
3787  // Bases.
3788  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
3789       E = ClassDecl->bases_end(); Base != E; ++Base) {
3790    // Bases are always records in a well-formed non-dependent class.
3791    const RecordType *RT = Base->getType()->getAs<RecordType>();
3792
3793    // Remember direct virtual bases.
3794    if (Base->isVirtual())
3795      DirectVirtualBases.insert(RT);
3796
3797    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
3798    // If our base class is invalid, we probably can't get its dtor anyway.
3799    if (BaseClassDecl->isInvalidDecl())
3800      continue;
3801    if (BaseClassDecl->hasIrrelevantDestructor())
3802      continue;
3803
3804    CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
3805    assert(Dtor && "No dtor found for BaseClassDecl!");
3806
3807    // FIXME: caret should be on the start of the class name
3808    CheckDestructorAccess(Base->getLocStart(), Dtor,
3809                          PDiag(diag::err_access_dtor_base)
3810                            << Base->getType()
3811                            << Base->getSourceRange(),
3812                          Context.getTypeDeclType(ClassDecl));
3813
3814    MarkFunctionReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
3815    DiagnoseUseOfDecl(Dtor, Location);
3816  }
3817
3818  // Virtual bases.
3819  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
3820       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
3821
3822    // Bases are always records in a well-formed non-dependent class.
3823    const RecordType *RT = VBase->getType()->castAs<RecordType>();
3824
3825    // Ignore direct virtual bases.
3826    if (DirectVirtualBases.count(RT))
3827      continue;
3828
3829    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
3830    // If our base class is invalid, we probably can't get its dtor anyway.
3831    if (BaseClassDecl->isInvalidDecl())
3832      continue;
3833    if (BaseClassDecl->hasIrrelevantDestructor())
3834      continue;
3835
3836    CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
3837    assert(Dtor && "No dtor found for BaseClassDecl!");
3838    if (CheckDestructorAccess(
3839            ClassDecl->getLocation(), Dtor,
3840            PDiag(diag::err_access_dtor_vbase)
3841                << Context.getTypeDeclType(ClassDecl) << VBase->getType(),
3842            Context.getTypeDeclType(ClassDecl)) ==
3843        AR_accessible) {
3844      CheckDerivedToBaseConversion(
3845          Context.getTypeDeclType(ClassDecl), VBase->getType(),
3846          diag::err_access_dtor_vbase, 0, ClassDecl->getLocation(),
3847          SourceRange(), DeclarationName(), 0);
3848    }
3849
3850    MarkFunctionReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
3851    DiagnoseUseOfDecl(Dtor, Location);
3852  }
3853}
3854
3855void Sema::ActOnDefaultCtorInitializers(Decl *CDtorDecl) {
3856  if (!CDtorDecl)
3857    return;
3858
3859  if (CXXConstructorDecl *Constructor
3860      = dyn_cast<CXXConstructorDecl>(CDtorDecl))
3861    SetCtorInitializers(Constructor, /*AnyErrors=*/false);
3862}
3863
3864bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
3865                                  unsigned DiagID, AbstractDiagSelID SelID) {
3866  class NonAbstractTypeDiagnoser : public TypeDiagnoser {
3867    unsigned DiagID;
3868    AbstractDiagSelID SelID;
3869
3870  public:
3871    NonAbstractTypeDiagnoser(unsigned DiagID, AbstractDiagSelID SelID)
3872      : TypeDiagnoser(DiagID == 0), DiagID(DiagID), SelID(SelID) { }
3873
3874    virtual void diagnose(Sema &S, SourceLocation Loc, QualType T) {
3875      if (Suppressed) return;
3876      if (SelID == -1)
3877        S.Diag(Loc, DiagID) << T;
3878      else
3879        S.Diag(Loc, DiagID) << SelID << T;
3880    }
3881  } Diagnoser(DiagID, SelID);
3882
3883  return RequireNonAbstractType(Loc, T, Diagnoser);
3884}
3885
3886bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
3887                                  TypeDiagnoser &Diagnoser) {
3888  if (!getLangOpts().CPlusPlus)
3889    return false;
3890
3891  if (const ArrayType *AT = Context.getAsArrayType(T))
3892    return RequireNonAbstractType(Loc, AT->getElementType(), Diagnoser);
3893
3894  if (const PointerType *PT = T->getAs<PointerType>()) {
3895    // Find the innermost pointer type.
3896    while (const PointerType *T = PT->getPointeeType()->getAs<PointerType>())
3897      PT = T;
3898
3899    if (const ArrayType *AT = Context.getAsArrayType(PT->getPointeeType()))
3900      return RequireNonAbstractType(Loc, AT->getElementType(), Diagnoser);
3901  }
3902
3903  const RecordType *RT = T->getAs<RecordType>();
3904  if (!RT)
3905    return false;
3906
3907  const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
3908
3909  // We can't answer whether something is abstract until it has a
3910  // definition.  If it's currently being defined, we'll walk back
3911  // over all the declarations when we have a full definition.
3912  const CXXRecordDecl *Def = RD->getDefinition();
3913  if (!Def || Def->isBeingDefined())
3914    return false;
3915
3916  if (!RD->isAbstract())
3917    return false;
3918
3919  Diagnoser.diagnose(*this, Loc, T);
3920  DiagnoseAbstractType(RD);
3921
3922  return true;
3923}
3924
3925void Sema::DiagnoseAbstractType(const CXXRecordDecl *RD) {
3926  // Check if we've already emitted the list of pure virtual functions
3927  // for this class.
3928  if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD))
3929    return;
3930
3931  // If the diagnostic is suppressed, don't emit the notes. We're only
3932  // going to emit them once, so try to attach them to a diagnostic we're
3933  // actually going to show.
3934  if (Diags.isLastDiagnosticIgnored())
3935    return;
3936
3937  CXXFinalOverriderMap FinalOverriders;
3938  RD->getFinalOverriders(FinalOverriders);
3939
3940  // Keep a set of seen pure methods so we won't diagnose the same method
3941  // more than once.
3942  llvm::SmallPtrSet<const CXXMethodDecl *, 8> SeenPureMethods;
3943
3944  for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
3945                                   MEnd = FinalOverriders.end();
3946       M != MEnd;
3947       ++M) {
3948    for (OverridingMethods::iterator SO = M->second.begin(),
3949                                  SOEnd = M->second.end();
3950         SO != SOEnd; ++SO) {
3951      // C++ [class.abstract]p4:
3952      //   A class is abstract if it contains or inherits at least one
3953      //   pure virtual function for which the final overrider is pure
3954      //   virtual.
3955
3956      //
3957      if (SO->second.size() != 1)
3958        continue;
3959
3960      if (!SO->second.front().Method->isPure())
3961        continue;
3962
3963      if (!SeenPureMethods.insert(SO->second.front().Method))
3964        continue;
3965
3966      Diag(SO->second.front().Method->getLocation(),
3967           diag::note_pure_virtual_function)
3968        << SO->second.front().Method->getDeclName() << RD->getDeclName();
3969    }
3970  }
3971
3972  if (!PureVirtualClassDiagSet)
3973    PureVirtualClassDiagSet.reset(new RecordDeclSetTy);
3974  PureVirtualClassDiagSet->insert(RD);
3975}
3976
3977namespace {
3978struct AbstractUsageInfo {
3979  Sema &S;
3980  CXXRecordDecl *Record;
3981  CanQualType AbstractType;
3982  bool Invalid;
3983
3984  AbstractUsageInfo(Sema &S, CXXRecordDecl *Record)
3985    : S(S), Record(Record),
3986      AbstractType(S.Context.getCanonicalType(
3987                   S.Context.getTypeDeclType(Record))),
3988      Invalid(false) {}
3989
3990  void DiagnoseAbstractType() {
3991    if (Invalid) return;
3992    S.DiagnoseAbstractType(Record);
3993    Invalid = true;
3994  }
3995
3996  void CheckType(const NamedDecl *D, TypeLoc TL, Sema::AbstractDiagSelID Sel);
3997};
3998
3999struct CheckAbstractUsage {
4000  AbstractUsageInfo &Info;
4001  const NamedDecl *Ctx;
4002
4003  CheckAbstractUsage(AbstractUsageInfo &Info, const NamedDecl *Ctx)
4004    : Info(Info), Ctx(Ctx) {}
4005
4006  void Visit(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
4007    switch (TL.getTypeLocClass()) {
4008#define ABSTRACT_TYPELOC(CLASS, PARENT)
4009#define TYPELOC(CLASS, PARENT) \
4010    case TypeLoc::CLASS: Check(TL.castAs<CLASS##TypeLoc>(), Sel); break;
4011#include "clang/AST/TypeLocNodes.def"
4012    }
4013  }
4014
4015  void Check(FunctionProtoTypeLoc TL, Sema::AbstractDiagSelID Sel) {
4016    Visit(TL.getResultLoc(), Sema::AbstractReturnType);
4017    for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
4018      if (!TL.getArg(I))
4019        continue;
4020
4021      TypeSourceInfo *TSI = TL.getArg(I)->getTypeSourceInfo();
4022      if (TSI) Visit(TSI->getTypeLoc(), Sema::AbstractParamType);
4023    }
4024  }
4025
4026  void Check(ArrayTypeLoc TL, Sema::AbstractDiagSelID Sel) {
4027    Visit(TL.getElementLoc(), Sema::AbstractArrayType);
4028  }
4029
4030  void Check(TemplateSpecializationTypeLoc TL, Sema::AbstractDiagSelID Sel) {
4031    // Visit the type parameters from a permissive context.
4032    for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
4033      TemplateArgumentLoc TAL = TL.getArgLoc(I);
4034      if (TAL.getArgument().getKind() == TemplateArgument::Type)
4035        if (TypeSourceInfo *TSI = TAL.getTypeSourceInfo())
4036          Visit(TSI->getTypeLoc(), Sema::AbstractNone);
4037      // TODO: other template argument types?
4038    }
4039  }
4040
4041  // Visit pointee types from a permissive context.
4042#define CheckPolymorphic(Type) \
4043  void Check(Type TL, Sema::AbstractDiagSelID Sel) { \
4044    Visit(TL.getNextTypeLoc(), Sema::AbstractNone); \
4045  }
4046  CheckPolymorphic(PointerTypeLoc)
4047  CheckPolymorphic(ReferenceTypeLoc)
4048  CheckPolymorphic(MemberPointerTypeLoc)
4049  CheckPolymorphic(BlockPointerTypeLoc)
4050  CheckPolymorphic(AtomicTypeLoc)
4051
4052  /// Handle all the types we haven't given a more specific
4053  /// implementation for above.
4054  void Check(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
4055    // Every other kind of type that we haven't called out already
4056    // that has an inner type is either (1) sugar or (2) contains that
4057    // inner type in some way as a subobject.
4058    if (TypeLoc Next = TL.getNextTypeLoc())
4059      return Visit(Next, Sel);
4060
4061    // If there's no inner type and we're in a permissive context,
4062    // don't diagnose.
4063    if (Sel == Sema::AbstractNone) return;
4064
4065    // Check whether the type matches the abstract type.
4066    QualType T = TL.getType();
4067    if (T->isArrayType()) {
4068      Sel = Sema::AbstractArrayType;
4069      T = Info.S.Context.getBaseElementType(T);
4070    }
4071    CanQualType CT = T->getCanonicalTypeUnqualified().getUnqualifiedType();
4072    if (CT != Info.AbstractType) return;
4073
4074    // It matched; do some magic.
4075    if (Sel == Sema::AbstractArrayType) {
4076      Info.S.Diag(Ctx->getLocation(), diag::err_array_of_abstract_type)
4077        << T << TL.getSourceRange();
4078    } else {
4079      Info.S.Diag(Ctx->getLocation(), diag::err_abstract_type_in_decl)
4080        << Sel << T << TL.getSourceRange();
4081    }
4082    Info.DiagnoseAbstractType();
4083  }
4084};
4085
4086void AbstractUsageInfo::CheckType(const NamedDecl *D, TypeLoc TL,
4087                                  Sema::AbstractDiagSelID Sel) {
4088  CheckAbstractUsage(*this, D).Visit(TL, Sel);
4089}
4090
4091}
4092
4093/// Check for invalid uses of an abstract type in a method declaration.
4094static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
4095                                    CXXMethodDecl *MD) {
4096  // No need to do the check on definitions, which require that
4097  // the return/param types be complete.
4098  if (MD->doesThisDeclarationHaveABody())
4099    return;
4100
4101  // For safety's sake, just ignore it if we don't have type source
4102  // information.  This should never happen for non-implicit methods,
4103  // but...
4104  if (TypeSourceInfo *TSI = MD->getTypeSourceInfo())
4105    Info.CheckType(MD, TSI->getTypeLoc(), Sema::AbstractNone);
4106}
4107
4108/// Check for invalid uses of an abstract type within a class definition.
4109static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
4110                                    CXXRecordDecl *RD) {
4111  for (CXXRecordDecl::decl_iterator
4112         I = RD->decls_begin(), E = RD->decls_end(); I != E; ++I) {
4113    Decl *D = *I;
4114    if (D->isImplicit()) continue;
4115
4116    // Methods and method templates.
4117    if (isa<CXXMethodDecl>(D)) {
4118      CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(D));
4119    } else if (isa<FunctionTemplateDecl>(D)) {
4120      FunctionDecl *FD = cast<FunctionTemplateDecl>(D)->getTemplatedDecl();
4121      CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(FD));
4122
4123    // Fields and static variables.
4124    } else if (isa<FieldDecl>(D)) {
4125      FieldDecl *FD = cast<FieldDecl>(D);
4126      if (TypeSourceInfo *TSI = FD->getTypeSourceInfo())
4127        Info.CheckType(FD, TSI->getTypeLoc(), Sema::AbstractFieldType);
4128    } else if (isa<VarDecl>(D)) {
4129      VarDecl *VD = cast<VarDecl>(D);
4130      if (TypeSourceInfo *TSI = VD->getTypeSourceInfo())
4131        Info.CheckType(VD, TSI->getTypeLoc(), Sema::AbstractVariableType);
4132
4133    // Nested classes and class templates.
4134    } else if (isa<CXXRecordDecl>(D)) {
4135      CheckAbstractClassUsage(Info, cast<CXXRecordDecl>(D));
4136    } else if (isa<ClassTemplateDecl>(D)) {
4137      CheckAbstractClassUsage(Info,
4138                             cast<ClassTemplateDecl>(D)->getTemplatedDecl());
4139    }
4140  }
4141}
4142
4143/// \brief Perform semantic checks on a class definition that has been
4144/// completing, introducing implicitly-declared members, checking for
4145/// abstract types, etc.
4146void Sema::CheckCompletedCXXClass(CXXRecordDecl *Record) {
4147  if (!Record)
4148    return;
4149
4150  if (Record->isAbstract() && !Record->isInvalidDecl()) {
4151    AbstractUsageInfo Info(*this, Record);
4152    CheckAbstractClassUsage(Info, Record);
4153  }
4154
4155  // If this is not an aggregate type and has no user-declared constructor,
4156  // complain about any non-static data members of reference or const scalar
4157  // type, since they will never get initializers.
4158  if (!Record->isInvalidDecl() && !Record->isDependentType() &&
4159      !Record->isAggregate() && !Record->hasUserDeclaredConstructor() &&
4160      !Record->isLambda()) {
4161    bool Complained = false;
4162    for (RecordDecl::field_iterator F = Record->field_begin(),
4163                                 FEnd = Record->field_end();
4164         F != FEnd; ++F) {
4165      if (F->hasInClassInitializer() || F->isUnnamedBitfield())
4166        continue;
4167
4168      if (F->getType()->isReferenceType() ||
4169          (F->getType().isConstQualified() && F->getType()->isScalarType())) {
4170        if (!Complained) {
4171          Diag(Record->getLocation(), diag::warn_no_constructor_for_refconst)
4172            << Record->getTagKind() << Record;
4173          Complained = true;
4174        }
4175
4176        Diag(F->getLocation(), diag::note_refconst_member_not_initialized)
4177          << F->getType()->isReferenceType()
4178          << F->getDeclName();
4179      }
4180    }
4181  }
4182
4183  if (Record->isDynamicClass() && !Record->isDependentType())
4184    DynamicClasses.push_back(Record);
4185
4186  if (Record->getIdentifier()) {
4187    // C++ [class.mem]p13:
4188    //   If T is the name of a class, then each of the following shall have a
4189    //   name different from T:
4190    //     - every member of every anonymous union that is a member of class T.
4191    //
4192    // C++ [class.mem]p14:
4193    //   In addition, if class T has a user-declared constructor (12.1), every
4194    //   non-static data member of class T shall have a name different from T.
4195    DeclContext::lookup_result R = Record->lookup(Record->getDeclName());
4196    for (DeclContext::lookup_iterator I = R.begin(), E = R.end(); I != E;
4197         ++I) {
4198      NamedDecl *D = *I;
4199      if ((isa<FieldDecl>(D) && Record->hasUserDeclaredConstructor()) ||
4200          isa<IndirectFieldDecl>(D)) {
4201        Diag(D->getLocation(), diag::err_member_name_of_class)
4202          << D->getDeclName();
4203        break;
4204      }
4205    }
4206  }
4207
4208  // Warn if the class has virtual methods but non-virtual public destructor.
4209  if (Record->isPolymorphic() && !Record->isDependentType()) {
4210    CXXDestructorDecl *dtor = Record->getDestructor();
4211    if (!dtor || (!dtor->isVirtual() && dtor->getAccess() == AS_public))
4212      Diag(dtor ? dtor->getLocation() : Record->getLocation(),
4213           diag::warn_non_virtual_dtor) << Context.getRecordType(Record);
4214  }
4215
4216  if (Record->isAbstract() && Record->hasAttr<FinalAttr>()) {
4217    Diag(Record->getLocation(), diag::warn_abstract_final_class);
4218    DiagnoseAbstractType(Record);
4219  }
4220
4221  if (!Record->isDependentType()) {
4222    for (CXXRecordDecl::method_iterator M = Record->method_begin(),
4223                                     MEnd = Record->method_end();
4224         M != MEnd; ++M) {
4225      // See if a method overloads virtual methods in a base
4226      // class without overriding any.
4227      if (!M->isStatic())
4228        DiagnoseHiddenVirtualMethods(Record, *M);
4229
4230      // Check whether the explicitly-defaulted special members are valid.
4231      if (!M->isInvalidDecl() && M->isExplicitlyDefaulted())
4232        CheckExplicitlyDefaultedSpecialMember(*M);
4233
4234      // For an explicitly defaulted or deleted special member, we defer
4235      // determining triviality until the class is complete. That time is now!
4236      if (!M->isImplicit() && !M->isUserProvided()) {
4237        CXXSpecialMember CSM = getSpecialMember(*M);
4238        if (CSM != CXXInvalid) {
4239          M->setTrivial(SpecialMemberIsTrivial(*M, CSM));
4240
4241          // Inform the class that we've finished declaring this member.
4242          Record->finishedDefaultedOrDeletedMember(*M);
4243        }
4244      }
4245    }
4246  }
4247
4248  // C++11 [dcl.constexpr]p8: A constexpr specifier for a non-static member
4249  // function that is not a constructor declares that member function to be
4250  // const. [...] The class of which that function is a member shall be
4251  // a literal type.
4252  //
4253  // If the class has virtual bases, any constexpr members will already have
4254  // been diagnosed by the checks performed on the member declaration, so
4255  // suppress this (less useful) diagnostic.
4256  //
4257  // We delay this until we know whether an explicitly-defaulted (or deleted)
4258  // destructor for the class is trivial.
4259  if (LangOpts.CPlusPlus11 && !Record->isDependentType() &&
4260      !Record->isLiteral() && !Record->getNumVBases()) {
4261    for (CXXRecordDecl::method_iterator M = Record->method_begin(),
4262                                     MEnd = Record->method_end();
4263         M != MEnd; ++M) {
4264      if (M->isConstexpr() && M->isInstance() && !isa<CXXConstructorDecl>(*M)) {
4265        switch (Record->getTemplateSpecializationKind()) {
4266        case TSK_ImplicitInstantiation:
4267        case TSK_ExplicitInstantiationDeclaration:
4268        case TSK_ExplicitInstantiationDefinition:
4269          // If a template instantiates to a non-literal type, but its members
4270          // instantiate to constexpr functions, the template is technically
4271          // ill-formed, but we allow it for sanity.
4272          continue;
4273
4274        case TSK_Undeclared:
4275        case TSK_ExplicitSpecialization:
4276          RequireLiteralType(M->getLocation(), Context.getRecordType(Record),
4277                             diag::err_constexpr_method_non_literal);
4278          break;
4279        }
4280
4281        // Only produce one error per class.
4282        break;
4283      }
4284    }
4285  }
4286
4287  // Declare inheriting constructors. We do this eagerly here because:
4288  // - The standard requires an eager diagnostic for conflicting inheriting
4289  //   constructors from different classes.
4290  // - The lazy declaration of the other implicit constructors is so as to not
4291  //   waste space and performance on classes that are not meant to be
4292  //   instantiated (e.g. meta-functions). This doesn't apply to classes that
4293  //   have inheriting constructors.
4294  DeclareInheritingConstructors(Record);
4295}
4296
4297/// Is the special member function which would be selected to perform the
4298/// specified operation on the specified class type a constexpr constructor?
4299static bool specialMemberIsConstexpr(Sema &S, CXXRecordDecl *ClassDecl,
4300                                     Sema::CXXSpecialMember CSM,
4301                                     bool ConstArg) {
4302  Sema::SpecialMemberOverloadResult *SMOR =
4303      S.LookupSpecialMember(ClassDecl, CSM, ConstArg,
4304                            false, false, false, false);
4305  if (!SMOR || !SMOR->getMethod())
4306    // A constructor we wouldn't select can't be "involved in initializing"
4307    // anything.
4308    return true;
4309  return SMOR->getMethod()->isConstexpr();
4310}
4311
4312/// Determine whether the specified special member function would be constexpr
4313/// if it were implicitly defined.
4314static bool defaultedSpecialMemberIsConstexpr(Sema &S, CXXRecordDecl *ClassDecl,
4315                                              Sema::CXXSpecialMember CSM,
4316                                              bool ConstArg) {
4317  if (!S.getLangOpts().CPlusPlus11)
4318    return false;
4319
4320  // C++11 [dcl.constexpr]p4:
4321  // In the definition of a constexpr constructor [...]
4322  bool Ctor = true;
4323  switch (CSM) {
4324  case Sema::CXXDefaultConstructor:
4325    // Since default constructor lookup is essentially trivial (and cannot
4326    // involve, for instance, template instantiation), we compute whether a
4327    // defaulted default constructor is constexpr directly within CXXRecordDecl.
4328    //
4329    // This is important for performance; we need to know whether the default
4330    // constructor is constexpr to determine whether the type is a literal type.
4331    return ClassDecl->defaultedDefaultConstructorIsConstexpr();
4332
4333  case Sema::CXXCopyConstructor:
4334  case Sema::CXXMoveConstructor:
4335    // For copy or move constructors, we need to perform overload resolution.
4336    break;
4337
4338  case Sema::CXXCopyAssignment:
4339  case Sema::CXXMoveAssignment:
4340    if (!S.getLangOpts().CPlusPlus1y)
4341      return false;
4342    // In C++1y, we need to perform overload resolution.
4343    Ctor = false;
4344    break;
4345
4346  case Sema::CXXDestructor:
4347  case Sema::CXXInvalid:
4348    return false;
4349  }
4350
4351  //   -- if the class is a non-empty union, or for each non-empty anonymous
4352  //      union member of a non-union class, exactly one non-static data member
4353  //      shall be initialized; [DR1359]
4354  //
4355  // If we squint, this is guaranteed, since exactly one non-static data member
4356  // will be initialized (if the constructor isn't deleted), we just don't know
4357  // which one.
4358  if (Ctor && ClassDecl->isUnion())
4359    return true;
4360
4361  //   -- the class shall not have any virtual base classes;
4362  if (Ctor && ClassDecl->getNumVBases())
4363    return false;
4364
4365  // C++1y [class.copy]p26:
4366  //   -- [the class] is a literal type, and
4367  if (!Ctor && !ClassDecl->isLiteral())
4368    return false;
4369
4370  //   -- every constructor involved in initializing [...] base class
4371  //      sub-objects shall be a constexpr constructor;
4372  //   -- the assignment operator selected to copy/move each direct base
4373  //      class is a constexpr function, and
4374  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
4375                                       BEnd = ClassDecl->bases_end();
4376       B != BEnd; ++B) {
4377    const RecordType *BaseType = B->getType()->getAs<RecordType>();
4378    if (!BaseType) continue;
4379
4380    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
4381    if (!specialMemberIsConstexpr(S, BaseClassDecl, CSM, ConstArg))
4382      return false;
4383  }
4384
4385  //   -- every constructor involved in initializing non-static data members
4386  //      [...] shall be a constexpr constructor;
4387  //   -- every non-static data member and base class sub-object shall be
4388  //      initialized
4389  //   -- for each non-stastic data member of X that is of class type (or array
4390  //      thereof), the assignment operator selected to copy/move that member is
4391  //      a constexpr function
4392  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
4393                               FEnd = ClassDecl->field_end();
4394       F != FEnd; ++F) {
4395    if (F->isInvalidDecl())
4396      continue;
4397    if (const RecordType *RecordTy =
4398            S.Context.getBaseElementType(F->getType())->getAs<RecordType>()) {
4399      CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
4400      if (!specialMemberIsConstexpr(S, FieldRecDecl, CSM, ConstArg))
4401        return false;
4402    }
4403  }
4404
4405  // All OK, it's constexpr!
4406  return true;
4407}
4408
4409static Sema::ImplicitExceptionSpecification
4410computeImplicitExceptionSpec(Sema &S, SourceLocation Loc, CXXMethodDecl *MD) {
4411  switch (S.getSpecialMember(MD)) {
4412  case Sema::CXXDefaultConstructor:
4413    return S.ComputeDefaultedDefaultCtorExceptionSpec(Loc, MD);
4414  case Sema::CXXCopyConstructor:
4415    return S.ComputeDefaultedCopyCtorExceptionSpec(MD);
4416  case Sema::CXXCopyAssignment:
4417    return S.ComputeDefaultedCopyAssignmentExceptionSpec(MD);
4418  case Sema::CXXMoveConstructor:
4419    return S.ComputeDefaultedMoveCtorExceptionSpec(MD);
4420  case Sema::CXXMoveAssignment:
4421    return S.ComputeDefaultedMoveAssignmentExceptionSpec(MD);
4422  case Sema::CXXDestructor:
4423    return S.ComputeDefaultedDtorExceptionSpec(MD);
4424  case Sema::CXXInvalid:
4425    break;
4426  }
4427  assert(cast<CXXConstructorDecl>(MD)->getInheritedConstructor() &&
4428         "only special members have implicit exception specs");
4429  return S.ComputeInheritingCtorExceptionSpec(cast<CXXConstructorDecl>(MD));
4430}
4431
4432static void
4433updateExceptionSpec(Sema &S, FunctionDecl *FD, const FunctionProtoType *FPT,
4434                    const Sema::ImplicitExceptionSpecification &ExceptSpec) {
4435  FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
4436  ExceptSpec.getEPI(EPI);
4437  FD->setType(S.Context.getFunctionType(FPT->getResultType(),
4438                                        FPT->getArgTypes(), EPI));
4439}
4440
4441void Sema::EvaluateImplicitExceptionSpec(SourceLocation Loc, CXXMethodDecl *MD) {
4442  const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
4443  if (FPT->getExceptionSpecType() != EST_Unevaluated)
4444    return;
4445
4446  // Evaluate the exception specification.
4447  ImplicitExceptionSpecification ExceptSpec =
4448      computeImplicitExceptionSpec(*this, Loc, MD);
4449
4450  // Update the type of the special member to use it.
4451  updateExceptionSpec(*this, MD, FPT, ExceptSpec);
4452
4453  // A user-provided destructor can be defined outside the class. When that
4454  // happens, be sure to update the exception specification on both
4455  // declarations.
4456  const FunctionProtoType *CanonicalFPT =
4457    MD->getCanonicalDecl()->getType()->castAs<FunctionProtoType>();
4458  if (CanonicalFPT->getExceptionSpecType() == EST_Unevaluated)
4459    updateExceptionSpec(*this, MD->getCanonicalDecl(),
4460                        CanonicalFPT, ExceptSpec);
4461}
4462
4463void Sema::CheckExplicitlyDefaultedSpecialMember(CXXMethodDecl *MD) {
4464  CXXRecordDecl *RD = MD->getParent();
4465  CXXSpecialMember CSM = getSpecialMember(MD);
4466
4467  assert(MD->isExplicitlyDefaulted() && CSM != CXXInvalid &&
4468         "not an explicitly-defaulted special member");
4469
4470  // Whether this was the first-declared instance of the constructor.
4471  // This affects whether we implicitly add an exception spec and constexpr.
4472  bool First = MD == MD->getCanonicalDecl();
4473
4474  bool HadError = false;
4475
4476  // C++11 [dcl.fct.def.default]p1:
4477  //   A function that is explicitly defaulted shall
4478  //     -- be a special member function (checked elsewhere),
4479  //     -- have the same type (except for ref-qualifiers, and except that a
4480  //        copy operation can take a non-const reference) as an implicit
4481  //        declaration, and
4482  //     -- not have default arguments.
4483  unsigned ExpectedParams = 1;
4484  if (CSM == CXXDefaultConstructor || CSM == CXXDestructor)
4485    ExpectedParams = 0;
4486  if (MD->getNumParams() != ExpectedParams) {
4487    // This also checks for default arguments: a copy or move constructor with a
4488    // default argument is classified as a default constructor, and assignment
4489    // operations and destructors can't have default arguments.
4490    Diag(MD->getLocation(), diag::err_defaulted_special_member_params)
4491      << CSM << MD->getSourceRange();
4492    HadError = true;
4493  } else if (MD->isVariadic()) {
4494    Diag(MD->getLocation(), diag::err_defaulted_special_member_variadic)
4495      << CSM << MD->getSourceRange();
4496    HadError = true;
4497  }
4498
4499  const FunctionProtoType *Type = MD->getType()->getAs<FunctionProtoType>();
4500
4501  bool CanHaveConstParam = false;
4502  if (CSM == CXXCopyConstructor)
4503    CanHaveConstParam = RD->implicitCopyConstructorHasConstParam();
4504  else if (CSM == CXXCopyAssignment)
4505    CanHaveConstParam = RD->implicitCopyAssignmentHasConstParam();
4506
4507  QualType ReturnType = Context.VoidTy;
4508  if (CSM == CXXCopyAssignment || CSM == CXXMoveAssignment) {
4509    // Check for return type matching.
4510    ReturnType = Type->getResultType();
4511    QualType ExpectedReturnType =
4512        Context.getLValueReferenceType(Context.getTypeDeclType(RD));
4513    if (!Context.hasSameType(ReturnType, ExpectedReturnType)) {
4514      Diag(MD->getLocation(), diag::err_defaulted_special_member_return_type)
4515        << (CSM == CXXMoveAssignment) << ExpectedReturnType;
4516      HadError = true;
4517    }
4518
4519    // A defaulted special member cannot have cv-qualifiers.
4520    if (Type->getTypeQuals()) {
4521      Diag(MD->getLocation(), diag::err_defaulted_special_member_quals)
4522        << (CSM == CXXMoveAssignment) << getLangOpts().CPlusPlus1y;
4523      HadError = true;
4524    }
4525  }
4526
4527  // Check for parameter type matching.
4528  QualType ArgType = ExpectedParams ? Type->getArgType(0) : QualType();
4529  bool HasConstParam = false;
4530  if (ExpectedParams && ArgType->isReferenceType()) {
4531    // Argument must be reference to possibly-const T.
4532    QualType ReferentType = ArgType->getPointeeType();
4533    HasConstParam = ReferentType.isConstQualified();
4534
4535    if (ReferentType.isVolatileQualified()) {
4536      Diag(MD->getLocation(),
4537           diag::err_defaulted_special_member_volatile_param) << CSM;
4538      HadError = true;
4539    }
4540
4541    if (HasConstParam && !CanHaveConstParam) {
4542      if (CSM == CXXCopyConstructor || CSM == CXXCopyAssignment) {
4543        Diag(MD->getLocation(),
4544             diag::err_defaulted_special_member_copy_const_param)
4545          << (CSM == CXXCopyAssignment);
4546        // FIXME: Explain why this special member can't be const.
4547      } else {
4548        Diag(MD->getLocation(),
4549             diag::err_defaulted_special_member_move_const_param)
4550          << (CSM == CXXMoveAssignment);
4551      }
4552      HadError = true;
4553    }
4554  } else if (ExpectedParams) {
4555    // A copy assignment operator can take its argument by value, but a
4556    // defaulted one cannot.
4557    assert(CSM == CXXCopyAssignment && "unexpected non-ref argument");
4558    Diag(MD->getLocation(), diag::err_defaulted_copy_assign_not_ref);
4559    HadError = true;
4560  }
4561
4562  // C++11 [dcl.fct.def.default]p2:
4563  //   An explicitly-defaulted function may be declared constexpr only if it
4564  //   would have been implicitly declared as constexpr,
4565  // Do not apply this rule to members of class templates, since core issue 1358
4566  // makes such functions always instantiate to constexpr functions. For
4567  // functions which cannot be constexpr (for non-constructors in C++11 and for
4568  // destructors in C++1y), this is checked elsewhere.
4569  bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, RD, CSM,
4570                                                     HasConstParam);
4571  if ((getLangOpts().CPlusPlus1y ? !isa<CXXDestructorDecl>(MD)
4572                                 : isa<CXXConstructorDecl>(MD)) &&
4573      MD->isConstexpr() && !Constexpr &&
4574      MD->getTemplatedKind() == FunctionDecl::TK_NonTemplate) {
4575    Diag(MD->getLocStart(), diag::err_incorrect_defaulted_constexpr) << CSM;
4576    // FIXME: Explain why the special member can't be constexpr.
4577    HadError = true;
4578  }
4579
4580  //   and may have an explicit exception-specification only if it is compatible
4581  //   with the exception-specification on the implicit declaration.
4582  if (Type->hasExceptionSpec()) {
4583    // Delay the check if this is the first declaration of the special member,
4584    // since we may not have parsed some necessary in-class initializers yet.
4585    if (First) {
4586      // If the exception specification needs to be instantiated, do so now,
4587      // before we clobber it with an EST_Unevaluated specification below.
4588      if (Type->getExceptionSpecType() == EST_Uninstantiated) {
4589        InstantiateExceptionSpec(MD->getLocStart(), MD);
4590        Type = MD->getType()->getAs<FunctionProtoType>();
4591      }
4592      DelayedDefaultedMemberExceptionSpecs.push_back(std::make_pair(MD, Type));
4593    } else
4594      CheckExplicitlyDefaultedMemberExceptionSpec(MD, Type);
4595  }
4596
4597  //   If a function is explicitly defaulted on its first declaration,
4598  if (First) {
4599    //  -- it is implicitly considered to be constexpr if the implicit
4600    //     definition would be,
4601    MD->setConstexpr(Constexpr);
4602
4603    //  -- it is implicitly considered to have the same exception-specification
4604    //     as if it had been implicitly declared,
4605    FunctionProtoType::ExtProtoInfo EPI = Type->getExtProtoInfo();
4606    EPI.ExceptionSpecType = EST_Unevaluated;
4607    EPI.ExceptionSpecDecl = MD;
4608    MD->setType(Context.getFunctionType(ReturnType,
4609                                        ArrayRef<QualType>(&ArgType,
4610                                                           ExpectedParams),
4611                                        EPI));
4612  }
4613
4614  if (ShouldDeleteSpecialMember(MD, CSM)) {
4615    if (First) {
4616      SetDeclDeleted(MD, MD->getLocation());
4617    } else {
4618      // C++11 [dcl.fct.def.default]p4:
4619      //   [For a] user-provided explicitly-defaulted function [...] if such a
4620      //   function is implicitly defined as deleted, the program is ill-formed.
4621      Diag(MD->getLocation(), diag::err_out_of_line_default_deletes) << CSM;
4622      HadError = true;
4623    }
4624  }
4625
4626  if (HadError)
4627    MD->setInvalidDecl();
4628}
4629
4630/// Check whether the exception specification provided for an
4631/// explicitly-defaulted special member matches the exception specification
4632/// that would have been generated for an implicit special member, per
4633/// C++11 [dcl.fct.def.default]p2.
4634void Sema::CheckExplicitlyDefaultedMemberExceptionSpec(
4635    CXXMethodDecl *MD, const FunctionProtoType *SpecifiedType) {
4636  // Compute the implicit exception specification.
4637  FunctionProtoType::ExtProtoInfo EPI;
4638  computeImplicitExceptionSpec(*this, MD->getLocation(), MD).getEPI(EPI);
4639  const FunctionProtoType *ImplicitType = cast<FunctionProtoType>(
4640    Context.getFunctionType(Context.VoidTy, None, EPI));
4641
4642  // Ensure that it matches.
4643  CheckEquivalentExceptionSpec(
4644    PDiag(diag::err_incorrect_defaulted_exception_spec)
4645      << getSpecialMember(MD), PDiag(),
4646    ImplicitType, SourceLocation(),
4647    SpecifiedType, MD->getLocation());
4648}
4649
4650void Sema::CheckDelayedExplicitlyDefaultedMemberExceptionSpecs() {
4651  for (unsigned I = 0, N = DelayedDefaultedMemberExceptionSpecs.size();
4652       I != N; ++I)
4653    CheckExplicitlyDefaultedMemberExceptionSpec(
4654      DelayedDefaultedMemberExceptionSpecs[I].first,
4655      DelayedDefaultedMemberExceptionSpecs[I].second);
4656
4657  DelayedDefaultedMemberExceptionSpecs.clear();
4658}
4659
4660namespace {
4661struct SpecialMemberDeletionInfo {
4662  Sema &S;
4663  CXXMethodDecl *MD;
4664  Sema::CXXSpecialMember CSM;
4665  bool Diagnose;
4666
4667  // Properties of the special member, computed for convenience.
4668  bool IsConstructor, IsAssignment, IsMove, ConstArg, VolatileArg;
4669  SourceLocation Loc;
4670
4671  bool AllFieldsAreConst;
4672
4673  SpecialMemberDeletionInfo(Sema &S, CXXMethodDecl *MD,
4674                            Sema::CXXSpecialMember CSM, bool Diagnose)
4675    : S(S), MD(MD), CSM(CSM), Diagnose(Diagnose),
4676      IsConstructor(false), IsAssignment(false), IsMove(false),
4677      ConstArg(false), VolatileArg(false), Loc(MD->getLocation()),
4678      AllFieldsAreConst(true) {
4679    switch (CSM) {
4680      case Sema::CXXDefaultConstructor:
4681      case Sema::CXXCopyConstructor:
4682        IsConstructor = true;
4683        break;
4684      case Sema::CXXMoveConstructor:
4685        IsConstructor = true;
4686        IsMove = true;
4687        break;
4688      case Sema::CXXCopyAssignment:
4689        IsAssignment = true;
4690        break;
4691      case Sema::CXXMoveAssignment:
4692        IsAssignment = true;
4693        IsMove = true;
4694        break;
4695      case Sema::CXXDestructor:
4696        break;
4697      case Sema::CXXInvalid:
4698        llvm_unreachable("invalid special member kind");
4699    }
4700
4701    if (MD->getNumParams()) {
4702      ConstArg = MD->getParamDecl(0)->getType().isConstQualified();
4703      VolatileArg = MD->getParamDecl(0)->getType().isVolatileQualified();
4704    }
4705  }
4706
4707  bool inUnion() const { return MD->getParent()->isUnion(); }
4708
4709  /// Look up the corresponding special member in the given class.
4710  Sema::SpecialMemberOverloadResult *lookupIn(CXXRecordDecl *Class,
4711                                              unsigned Quals) {
4712    unsigned TQ = MD->getTypeQualifiers();
4713    // cv-qualifiers on class members don't affect default ctor / dtor calls.
4714    if (CSM == Sema::CXXDefaultConstructor || CSM == Sema::CXXDestructor)
4715      Quals = 0;
4716    return S.LookupSpecialMember(Class, CSM,
4717                                 ConstArg || (Quals & Qualifiers::Const),
4718                                 VolatileArg || (Quals & Qualifiers::Volatile),
4719                                 MD->getRefQualifier() == RQ_RValue,
4720                                 TQ & Qualifiers::Const,
4721                                 TQ & Qualifiers::Volatile);
4722  }
4723
4724  typedef llvm::PointerUnion<CXXBaseSpecifier*, FieldDecl*> Subobject;
4725
4726  bool shouldDeleteForBase(CXXBaseSpecifier *Base);
4727  bool shouldDeleteForField(FieldDecl *FD);
4728  bool shouldDeleteForAllConstMembers();
4729
4730  bool shouldDeleteForClassSubobject(CXXRecordDecl *Class, Subobject Subobj,
4731                                     unsigned Quals);
4732  bool shouldDeleteForSubobjectCall(Subobject Subobj,
4733                                    Sema::SpecialMemberOverloadResult *SMOR,
4734                                    bool IsDtorCallInCtor);
4735
4736  bool isAccessible(Subobject Subobj, CXXMethodDecl *D);
4737};
4738}
4739
4740/// Is the given special member inaccessible when used on the given
4741/// sub-object.
4742bool SpecialMemberDeletionInfo::isAccessible(Subobject Subobj,
4743                                             CXXMethodDecl *target) {
4744  /// If we're operating on a base class, the object type is the
4745  /// type of this special member.
4746  QualType objectTy;
4747  AccessSpecifier access = target->getAccess();
4748  if (CXXBaseSpecifier *base = Subobj.dyn_cast<CXXBaseSpecifier*>()) {
4749    objectTy = S.Context.getTypeDeclType(MD->getParent());
4750    access = CXXRecordDecl::MergeAccess(base->getAccessSpecifier(), access);
4751
4752  // If we're operating on a field, the object type is the type of the field.
4753  } else {
4754    objectTy = S.Context.getTypeDeclType(target->getParent());
4755  }
4756
4757  return S.isSpecialMemberAccessibleForDeletion(target, access, objectTy);
4758}
4759
4760/// Check whether we should delete a special member due to the implicit
4761/// definition containing a call to a special member of a subobject.
4762bool SpecialMemberDeletionInfo::shouldDeleteForSubobjectCall(
4763    Subobject Subobj, Sema::SpecialMemberOverloadResult *SMOR,
4764    bool IsDtorCallInCtor) {
4765  CXXMethodDecl *Decl = SMOR->getMethod();
4766  FieldDecl *Field = Subobj.dyn_cast<FieldDecl*>();
4767
4768  int DiagKind = -1;
4769
4770  if (SMOR->getKind() == Sema::SpecialMemberOverloadResult::NoMemberOrDeleted)
4771    DiagKind = !Decl ? 0 : 1;
4772  else if (SMOR->getKind() == Sema::SpecialMemberOverloadResult::Ambiguous)
4773    DiagKind = 2;
4774  else if (!isAccessible(Subobj, Decl))
4775    DiagKind = 3;
4776  else if (!IsDtorCallInCtor && Field && Field->getParent()->isUnion() &&
4777           !Decl->isTrivial()) {
4778    // A member of a union must have a trivial corresponding special member.
4779    // As a weird special case, a destructor call from a union's constructor
4780    // must be accessible and non-deleted, but need not be trivial. Such a
4781    // destructor is never actually called, but is semantically checked as
4782    // if it were.
4783    DiagKind = 4;
4784  }
4785
4786  if (DiagKind == -1)
4787    return false;
4788
4789  if (Diagnose) {
4790    if (Field) {
4791      S.Diag(Field->getLocation(),
4792             diag::note_deleted_special_member_class_subobject)
4793        << CSM << MD->getParent() << /*IsField*/true
4794        << Field << DiagKind << IsDtorCallInCtor;
4795    } else {
4796      CXXBaseSpecifier *Base = Subobj.get<CXXBaseSpecifier*>();
4797      S.Diag(Base->getLocStart(),
4798             diag::note_deleted_special_member_class_subobject)
4799        << CSM << MD->getParent() << /*IsField*/false
4800        << Base->getType() << DiagKind << IsDtorCallInCtor;
4801    }
4802
4803    if (DiagKind == 1)
4804      S.NoteDeletedFunction(Decl);
4805    // FIXME: Explain inaccessibility if DiagKind == 3.
4806  }
4807
4808  return true;
4809}
4810
4811/// Check whether we should delete a special member function due to having a
4812/// direct or virtual base class or non-static data member of class type M.
4813bool SpecialMemberDeletionInfo::shouldDeleteForClassSubobject(
4814    CXXRecordDecl *Class, Subobject Subobj, unsigned Quals) {
4815  FieldDecl *Field = Subobj.dyn_cast<FieldDecl*>();
4816
4817  // C++11 [class.ctor]p5:
4818  // -- any direct or virtual base class, or non-static data member with no
4819  //    brace-or-equal-initializer, has class type M (or array thereof) and
4820  //    either M has no default constructor or overload resolution as applied
4821  //    to M's default constructor results in an ambiguity or in a function
4822  //    that is deleted or inaccessible
4823  // C++11 [class.copy]p11, C++11 [class.copy]p23:
4824  // -- a direct or virtual base class B that cannot be copied/moved because
4825  //    overload resolution, as applied to B's corresponding special member,
4826  //    results in an ambiguity or a function that is deleted or inaccessible
4827  //    from the defaulted special member
4828  // C++11 [class.dtor]p5:
4829  // -- any direct or virtual base class [...] has a type with a destructor
4830  //    that is deleted or inaccessible
4831  if (!(CSM == Sema::CXXDefaultConstructor &&
4832        Field && Field->hasInClassInitializer()) &&
4833      shouldDeleteForSubobjectCall(Subobj, lookupIn(Class, Quals), false))
4834    return true;
4835
4836  // C++11 [class.ctor]p5, C++11 [class.copy]p11:
4837  // -- any direct or virtual base class or non-static data member has a
4838  //    type with a destructor that is deleted or inaccessible
4839  if (IsConstructor) {
4840    Sema::SpecialMemberOverloadResult *SMOR =
4841        S.LookupSpecialMember(Class, Sema::CXXDestructor,
4842                              false, false, false, false, false);
4843    if (shouldDeleteForSubobjectCall(Subobj, SMOR, true))
4844      return true;
4845  }
4846
4847  return false;
4848}
4849
4850/// Check whether we should delete a special member function due to the class
4851/// having a particular direct or virtual base class.
4852bool SpecialMemberDeletionInfo::shouldDeleteForBase(CXXBaseSpecifier *Base) {
4853  CXXRecordDecl *BaseClass = Base->getType()->getAsCXXRecordDecl();
4854  return shouldDeleteForClassSubobject(BaseClass, Base, 0);
4855}
4856
4857/// Check whether we should delete a special member function due to the class
4858/// having a particular non-static data member.
4859bool SpecialMemberDeletionInfo::shouldDeleteForField(FieldDecl *FD) {
4860  QualType FieldType = S.Context.getBaseElementType(FD->getType());
4861  CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl();
4862
4863  if (CSM == Sema::CXXDefaultConstructor) {
4864    // For a default constructor, all references must be initialized in-class
4865    // and, if a union, it must have a non-const member.
4866    if (FieldType->isReferenceType() && !FD->hasInClassInitializer()) {
4867      if (Diagnose)
4868        S.Diag(FD->getLocation(), diag::note_deleted_default_ctor_uninit_field)
4869          << MD->getParent() << FD << FieldType << /*Reference*/0;
4870      return true;
4871    }
4872    // C++11 [class.ctor]p5: any non-variant non-static data member of
4873    // const-qualified type (or array thereof) with no
4874    // brace-or-equal-initializer does not have a user-provided default
4875    // constructor.
4876    if (!inUnion() && FieldType.isConstQualified() &&
4877        !FD->hasInClassInitializer() &&
4878        (!FieldRecord || !FieldRecord->hasUserProvidedDefaultConstructor())) {
4879      if (Diagnose)
4880        S.Diag(FD->getLocation(), diag::note_deleted_default_ctor_uninit_field)
4881          << MD->getParent() << FD << FD->getType() << /*Const*/1;
4882      return true;
4883    }
4884
4885    if (inUnion() && !FieldType.isConstQualified())
4886      AllFieldsAreConst = false;
4887  } else if (CSM == Sema::CXXCopyConstructor) {
4888    // For a copy constructor, data members must not be of rvalue reference
4889    // type.
4890    if (FieldType->isRValueReferenceType()) {
4891      if (Diagnose)
4892        S.Diag(FD->getLocation(), diag::note_deleted_copy_ctor_rvalue_reference)
4893          << MD->getParent() << FD << FieldType;
4894      return true;
4895    }
4896  } else if (IsAssignment) {
4897    // For an assignment operator, data members must not be of reference type.
4898    if (FieldType->isReferenceType()) {
4899      if (Diagnose)
4900        S.Diag(FD->getLocation(), diag::note_deleted_assign_field)
4901          << IsMove << MD->getParent() << FD << FieldType << /*Reference*/0;
4902      return true;
4903    }
4904    if (!FieldRecord && FieldType.isConstQualified()) {
4905      // C++11 [class.copy]p23:
4906      // -- a non-static data member of const non-class type (or array thereof)
4907      if (Diagnose)
4908        S.Diag(FD->getLocation(), diag::note_deleted_assign_field)
4909          << IsMove << MD->getParent() << FD << FD->getType() << /*Const*/1;
4910      return true;
4911    }
4912  }
4913
4914  if (FieldRecord) {
4915    // Some additional restrictions exist on the variant members.
4916    if (!inUnion() && FieldRecord->isUnion() &&
4917        FieldRecord->isAnonymousStructOrUnion()) {
4918      bool AllVariantFieldsAreConst = true;
4919
4920      // FIXME: Handle anonymous unions declared within anonymous unions.
4921      for (CXXRecordDecl::field_iterator UI = FieldRecord->field_begin(),
4922                                         UE = FieldRecord->field_end();
4923           UI != UE; ++UI) {
4924        QualType UnionFieldType = S.Context.getBaseElementType(UI->getType());
4925
4926        if (!UnionFieldType.isConstQualified())
4927          AllVariantFieldsAreConst = false;
4928
4929        CXXRecordDecl *UnionFieldRecord = UnionFieldType->getAsCXXRecordDecl();
4930        if (UnionFieldRecord &&
4931            shouldDeleteForClassSubobject(UnionFieldRecord, *UI,
4932                                          UnionFieldType.getCVRQualifiers()))
4933          return true;
4934      }
4935
4936      // At least one member in each anonymous union must be non-const
4937      if (CSM == Sema::CXXDefaultConstructor && AllVariantFieldsAreConst &&
4938          FieldRecord->field_begin() != FieldRecord->field_end()) {
4939        if (Diagnose)
4940          S.Diag(FieldRecord->getLocation(),
4941                 diag::note_deleted_default_ctor_all_const)
4942            << MD->getParent() << /*anonymous union*/1;
4943        return true;
4944      }
4945
4946      // Don't check the implicit member of the anonymous union type.
4947      // This is technically non-conformant, but sanity demands it.
4948      return false;
4949    }
4950
4951    if (shouldDeleteForClassSubobject(FieldRecord, FD,
4952                                      FieldType.getCVRQualifiers()))
4953      return true;
4954  }
4955
4956  return false;
4957}
4958
4959/// C++11 [class.ctor] p5:
4960///   A defaulted default constructor for a class X is defined as deleted if
4961/// X is a union and all of its variant members are of const-qualified type.
4962bool SpecialMemberDeletionInfo::shouldDeleteForAllConstMembers() {
4963  // This is a silly definition, because it gives an empty union a deleted
4964  // default constructor. Don't do that.
4965  if (CSM == Sema::CXXDefaultConstructor && inUnion() && AllFieldsAreConst &&
4966      (MD->getParent()->field_begin() != MD->getParent()->field_end())) {
4967    if (Diagnose)
4968      S.Diag(MD->getParent()->getLocation(),
4969             diag::note_deleted_default_ctor_all_const)
4970        << MD->getParent() << /*not anonymous union*/0;
4971    return true;
4972  }
4973  return false;
4974}
4975
4976/// Determine whether a defaulted special member function should be defined as
4977/// deleted, as specified in C++11 [class.ctor]p5, C++11 [class.copy]p11,
4978/// C++11 [class.copy]p23, and C++11 [class.dtor]p5.
4979bool Sema::ShouldDeleteSpecialMember(CXXMethodDecl *MD, CXXSpecialMember CSM,
4980                                     bool Diagnose) {
4981  if (MD->isInvalidDecl())
4982    return false;
4983  CXXRecordDecl *RD = MD->getParent();
4984  assert(!RD->isDependentType() && "do deletion after instantiation");
4985  if (!LangOpts.CPlusPlus11 || RD->isInvalidDecl())
4986    return false;
4987
4988  // C++11 [expr.lambda.prim]p19:
4989  //   The closure type associated with a lambda-expression has a
4990  //   deleted (8.4.3) default constructor and a deleted copy
4991  //   assignment operator.
4992  if (RD->isLambda() &&
4993      (CSM == CXXDefaultConstructor || CSM == CXXCopyAssignment)) {
4994    if (Diagnose)
4995      Diag(RD->getLocation(), diag::note_lambda_decl);
4996    return true;
4997  }
4998
4999  // For an anonymous struct or union, the copy and assignment special members
5000  // will never be used, so skip the check. For an anonymous union declared at
5001  // namespace scope, the constructor and destructor are used.
5002  if (CSM != CXXDefaultConstructor && CSM != CXXDestructor &&
5003      RD->isAnonymousStructOrUnion())
5004    return false;
5005
5006  // C++11 [class.copy]p7, p18:
5007  //   If the class definition declares a move constructor or move assignment
5008  //   operator, an implicitly declared copy constructor or copy assignment
5009  //   operator is defined as deleted.
5010  if (MD->isImplicit() &&
5011      (CSM == CXXCopyConstructor || CSM == CXXCopyAssignment)) {
5012    CXXMethodDecl *UserDeclaredMove = 0;
5013
5014    // In Microsoft mode, a user-declared move only causes the deletion of the
5015    // corresponding copy operation, not both copy operations.
5016    if (RD->hasUserDeclaredMoveConstructor() &&
5017        (!getLangOpts().MicrosoftMode || CSM == CXXCopyConstructor)) {
5018      if (!Diagnose) return true;
5019
5020      // Find any user-declared move constructor.
5021      for (CXXRecordDecl::ctor_iterator I = RD->ctor_begin(),
5022                                        E = RD->ctor_end(); I != E; ++I) {
5023        if (I->isMoveConstructor()) {
5024          UserDeclaredMove = *I;
5025          break;
5026        }
5027      }
5028      assert(UserDeclaredMove);
5029    } else if (RD->hasUserDeclaredMoveAssignment() &&
5030               (!getLangOpts().MicrosoftMode || CSM == CXXCopyAssignment)) {
5031      if (!Diagnose) return true;
5032
5033      // Find any user-declared move assignment operator.
5034      for (CXXRecordDecl::method_iterator I = RD->method_begin(),
5035                                          E = RD->method_end(); I != E; ++I) {
5036        if (I->isMoveAssignmentOperator()) {
5037          UserDeclaredMove = *I;
5038          break;
5039        }
5040      }
5041      assert(UserDeclaredMove);
5042    }
5043
5044    if (UserDeclaredMove) {
5045      Diag(UserDeclaredMove->getLocation(),
5046           diag::note_deleted_copy_user_declared_move)
5047        << (CSM == CXXCopyAssignment) << RD
5048        << UserDeclaredMove->isMoveAssignmentOperator();
5049      return true;
5050    }
5051  }
5052
5053  // Do access control from the special member function
5054  ContextRAII MethodContext(*this, MD);
5055
5056  // C++11 [class.dtor]p5:
5057  // -- for a virtual destructor, lookup of the non-array deallocation function
5058  //    results in an ambiguity or in a function that is deleted or inaccessible
5059  if (CSM == CXXDestructor && MD->isVirtual()) {
5060    FunctionDecl *OperatorDelete = 0;
5061    DeclarationName Name =
5062      Context.DeclarationNames.getCXXOperatorName(OO_Delete);
5063    if (FindDeallocationFunction(MD->getLocation(), MD->getParent(), Name,
5064                                 OperatorDelete, false)) {
5065      if (Diagnose)
5066        Diag(RD->getLocation(), diag::note_deleted_dtor_no_operator_delete);
5067      return true;
5068    }
5069  }
5070
5071  SpecialMemberDeletionInfo SMI(*this, MD, CSM, Diagnose);
5072
5073  for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
5074                                          BE = RD->bases_end(); BI != BE; ++BI)
5075    if (!BI->isVirtual() &&
5076        SMI.shouldDeleteForBase(BI))
5077      return true;
5078
5079  // Per DR1611, do not consider virtual bases of constructors of abstract
5080  // classes, since we are not going to construct them.
5081  if (!RD->isAbstract() || !SMI.IsConstructor) {
5082    for (CXXRecordDecl::base_class_iterator BI = RD->vbases_begin(),
5083                                            BE = RD->vbases_end();
5084         BI != BE; ++BI)
5085      if (SMI.shouldDeleteForBase(BI))
5086        return true;
5087  }
5088
5089  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
5090                                     FE = RD->field_end(); FI != FE; ++FI)
5091    if (!FI->isInvalidDecl() && !FI->isUnnamedBitfield() &&
5092        SMI.shouldDeleteForField(*FI))
5093      return true;
5094
5095  if (SMI.shouldDeleteForAllConstMembers())
5096    return true;
5097
5098  return false;
5099}
5100
5101/// Perform lookup for a special member of the specified kind, and determine
5102/// whether it is trivial. If the triviality can be determined without the
5103/// lookup, skip it. This is intended for use when determining whether a
5104/// special member of a containing object is trivial, and thus does not ever
5105/// perform overload resolution for default constructors.
5106///
5107/// If \p Selected is not \c NULL, \c *Selected will be filled in with the
5108/// member that was most likely to be intended to be trivial, if any.
5109static bool findTrivialSpecialMember(Sema &S, CXXRecordDecl *RD,
5110                                     Sema::CXXSpecialMember CSM, unsigned Quals,
5111                                     CXXMethodDecl **Selected) {
5112  if (Selected)
5113    *Selected = 0;
5114
5115  switch (CSM) {
5116  case Sema::CXXInvalid:
5117    llvm_unreachable("not a special member");
5118
5119  case Sema::CXXDefaultConstructor:
5120    // C++11 [class.ctor]p5:
5121    //   A default constructor is trivial if:
5122    //    - all the [direct subobjects] have trivial default constructors
5123    //
5124    // Note, no overload resolution is performed in this case.
5125    if (RD->hasTrivialDefaultConstructor())
5126      return true;
5127
5128    if (Selected) {
5129      // If there's a default constructor which could have been trivial, dig it
5130      // out. Otherwise, if there's any user-provided default constructor, point
5131      // to that as an example of why there's not a trivial one.
5132      CXXConstructorDecl *DefCtor = 0;
5133      if (RD->needsImplicitDefaultConstructor())
5134        S.DeclareImplicitDefaultConstructor(RD);
5135      for (CXXRecordDecl::ctor_iterator CI = RD->ctor_begin(),
5136                                        CE = RD->ctor_end(); CI != CE; ++CI) {
5137        if (!CI->isDefaultConstructor())
5138          continue;
5139        DefCtor = *CI;
5140        if (!DefCtor->isUserProvided())
5141          break;
5142      }
5143
5144      *Selected = DefCtor;
5145    }
5146
5147    return false;
5148
5149  case Sema::CXXDestructor:
5150    // C++11 [class.dtor]p5:
5151    //   A destructor is trivial if:
5152    //    - all the direct [subobjects] have trivial destructors
5153    if (RD->hasTrivialDestructor())
5154      return true;
5155
5156    if (Selected) {
5157      if (RD->needsImplicitDestructor())
5158        S.DeclareImplicitDestructor(RD);
5159      *Selected = RD->getDestructor();
5160    }
5161
5162    return false;
5163
5164  case Sema::CXXCopyConstructor:
5165    // C++11 [class.copy]p12:
5166    //   A copy constructor is trivial if:
5167    //    - the constructor selected to copy each direct [subobject] is trivial
5168    if (RD->hasTrivialCopyConstructor()) {
5169      if (Quals == Qualifiers::Const)
5170        // We must either select the trivial copy constructor or reach an
5171        // ambiguity; no need to actually perform overload resolution.
5172        return true;
5173    } else if (!Selected) {
5174      return false;
5175    }
5176    // In C++98, we are not supposed to perform overload resolution here, but we
5177    // treat that as a language defect, as suggested on cxx-abi-dev, to treat
5178    // cases like B as having a non-trivial copy constructor:
5179    //   struct A { template<typename T> A(T&); };
5180    //   struct B { mutable A a; };
5181    goto NeedOverloadResolution;
5182
5183  case Sema::CXXCopyAssignment:
5184    // C++11 [class.copy]p25:
5185    //   A copy assignment operator is trivial if:
5186    //    - the assignment operator selected to copy each direct [subobject] is
5187    //      trivial
5188    if (RD->hasTrivialCopyAssignment()) {
5189      if (Quals == Qualifiers::Const)
5190        return true;
5191    } else if (!Selected) {
5192      return false;
5193    }
5194    // In C++98, we are not supposed to perform overload resolution here, but we
5195    // treat that as a language defect.
5196    goto NeedOverloadResolution;
5197
5198  case Sema::CXXMoveConstructor:
5199  case Sema::CXXMoveAssignment:
5200  NeedOverloadResolution:
5201    Sema::SpecialMemberOverloadResult *SMOR =
5202      S.LookupSpecialMember(RD, CSM,
5203                            Quals & Qualifiers::Const,
5204                            Quals & Qualifiers::Volatile,
5205                            /*RValueThis*/false, /*ConstThis*/false,
5206                            /*VolatileThis*/false);
5207
5208    // The standard doesn't describe how to behave if the lookup is ambiguous.
5209    // We treat it as not making the member non-trivial, just like the standard
5210    // mandates for the default constructor. This should rarely matter, because
5211    // the member will also be deleted.
5212    if (SMOR->getKind() == Sema::SpecialMemberOverloadResult::Ambiguous)
5213      return true;
5214
5215    if (!SMOR->getMethod()) {
5216      assert(SMOR->getKind() ==
5217             Sema::SpecialMemberOverloadResult::NoMemberOrDeleted);
5218      return false;
5219    }
5220
5221    // We deliberately don't check if we found a deleted special member. We're
5222    // not supposed to!
5223    if (Selected)
5224      *Selected = SMOR->getMethod();
5225    return SMOR->getMethod()->isTrivial();
5226  }
5227
5228  llvm_unreachable("unknown special method kind");
5229}
5230
5231static CXXConstructorDecl *findUserDeclaredCtor(CXXRecordDecl *RD) {
5232  for (CXXRecordDecl::ctor_iterator CI = RD->ctor_begin(), CE = RD->ctor_end();
5233       CI != CE; ++CI)
5234    if (!CI->isImplicit())
5235      return *CI;
5236
5237  // Look for constructor templates.
5238  typedef CXXRecordDecl::specific_decl_iterator<FunctionTemplateDecl> tmpl_iter;
5239  for (tmpl_iter TI(RD->decls_begin()), TE(RD->decls_end()); TI != TE; ++TI) {
5240    if (CXXConstructorDecl *CD =
5241          dyn_cast<CXXConstructorDecl>(TI->getTemplatedDecl()))
5242      return CD;
5243  }
5244
5245  return 0;
5246}
5247
5248/// The kind of subobject we are checking for triviality. The values of this
5249/// enumeration are used in diagnostics.
5250enum TrivialSubobjectKind {
5251  /// The subobject is a base class.
5252  TSK_BaseClass,
5253  /// The subobject is a non-static data member.
5254  TSK_Field,
5255  /// The object is actually the complete object.
5256  TSK_CompleteObject
5257};
5258
5259/// Check whether the special member selected for a given type would be trivial.
5260static bool checkTrivialSubobjectCall(Sema &S, SourceLocation SubobjLoc,
5261                                      QualType SubType,
5262                                      Sema::CXXSpecialMember CSM,
5263                                      TrivialSubobjectKind Kind,
5264                                      bool Diagnose) {
5265  CXXRecordDecl *SubRD = SubType->getAsCXXRecordDecl();
5266  if (!SubRD)
5267    return true;
5268
5269  CXXMethodDecl *Selected;
5270  if (findTrivialSpecialMember(S, SubRD, CSM, SubType.getCVRQualifiers(),
5271                               Diagnose ? &Selected : 0))
5272    return true;
5273
5274  if (Diagnose) {
5275    if (!Selected && CSM == Sema::CXXDefaultConstructor) {
5276      S.Diag(SubobjLoc, diag::note_nontrivial_no_def_ctor)
5277        << Kind << SubType.getUnqualifiedType();
5278      if (CXXConstructorDecl *CD = findUserDeclaredCtor(SubRD))
5279        S.Diag(CD->getLocation(), diag::note_user_declared_ctor);
5280    } else if (!Selected)
5281      S.Diag(SubobjLoc, diag::note_nontrivial_no_copy)
5282        << Kind << SubType.getUnqualifiedType() << CSM << SubType;
5283    else if (Selected->isUserProvided()) {
5284      if (Kind == TSK_CompleteObject)
5285        S.Diag(Selected->getLocation(), diag::note_nontrivial_user_provided)
5286          << Kind << SubType.getUnqualifiedType() << CSM;
5287      else {
5288        S.Diag(SubobjLoc, diag::note_nontrivial_user_provided)
5289          << Kind << SubType.getUnqualifiedType() << CSM;
5290        S.Diag(Selected->getLocation(), diag::note_declared_at);
5291      }
5292    } else {
5293      if (Kind != TSK_CompleteObject)
5294        S.Diag(SubobjLoc, diag::note_nontrivial_subobject)
5295          << Kind << SubType.getUnqualifiedType() << CSM;
5296
5297      // Explain why the defaulted or deleted special member isn't trivial.
5298      S.SpecialMemberIsTrivial(Selected, CSM, Diagnose);
5299    }
5300  }
5301
5302  return false;
5303}
5304
5305/// Check whether the members of a class type allow a special member to be
5306/// trivial.
5307static bool checkTrivialClassMembers(Sema &S, CXXRecordDecl *RD,
5308                                     Sema::CXXSpecialMember CSM,
5309                                     bool ConstArg, bool Diagnose) {
5310  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
5311                                     FE = RD->field_end(); FI != FE; ++FI) {
5312    if (FI->isInvalidDecl() || FI->isUnnamedBitfield())
5313      continue;
5314
5315    QualType FieldType = S.Context.getBaseElementType(FI->getType());
5316
5317    // Pretend anonymous struct or union members are members of this class.
5318    if (FI->isAnonymousStructOrUnion()) {
5319      if (!checkTrivialClassMembers(S, FieldType->getAsCXXRecordDecl(),
5320                                    CSM, ConstArg, Diagnose))
5321        return false;
5322      continue;
5323    }
5324
5325    // C++11 [class.ctor]p5:
5326    //   A default constructor is trivial if [...]
5327    //    -- no non-static data member of its class has a
5328    //       brace-or-equal-initializer
5329    if (CSM == Sema::CXXDefaultConstructor && FI->hasInClassInitializer()) {
5330      if (Diagnose)
5331        S.Diag(FI->getLocation(), diag::note_nontrivial_in_class_init) << *FI;
5332      return false;
5333    }
5334
5335    // Objective C ARC 4.3.5:
5336    //   [...] nontrivally ownership-qualified types are [...] not trivially
5337    //   default constructible, copy constructible, move constructible, copy
5338    //   assignable, move assignable, or destructible [...]
5339    if (S.getLangOpts().ObjCAutoRefCount &&
5340        FieldType.hasNonTrivialObjCLifetime()) {
5341      if (Diagnose)
5342        S.Diag(FI->getLocation(), diag::note_nontrivial_objc_ownership)
5343          << RD << FieldType.getObjCLifetime();
5344      return false;
5345    }
5346
5347    if (ConstArg && !FI->isMutable())
5348      FieldType.addConst();
5349    if (!checkTrivialSubobjectCall(S, FI->getLocation(), FieldType, CSM,
5350                                   TSK_Field, Diagnose))
5351      return false;
5352  }
5353
5354  return true;
5355}
5356
5357/// Diagnose why the specified class does not have a trivial special member of
5358/// the given kind.
5359void Sema::DiagnoseNontrivial(const CXXRecordDecl *RD, CXXSpecialMember CSM) {
5360  QualType Ty = Context.getRecordType(RD);
5361  if (CSM == CXXCopyConstructor || CSM == CXXCopyAssignment)
5362    Ty.addConst();
5363
5364  checkTrivialSubobjectCall(*this, RD->getLocation(), Ty, CSM,
5365                            TSK_CompleteObject, /*Diagnose*/true);
5366}
5367
5368/// Determine whether a defaulted or deleted special member function is trivial,
5369/// as specified in C++11 [class.ctor]p5, C++11 [class.copy]p12,
5370/// C++11 [class.copy]p25, and C++11 [class.dtor]p5.
5371bool Sema::SpecialMemberIsTrivial(CXXMethodDecl *MD, CXXSpecialMember CSM,
5372                                  bool Diagnose) {
5373  assert(!MD->isUserProvided() && CSM != CXXInvalid && "not special enough");
5374
5375  CXXRecordDecl *RD = MD->getParent();
5376
5377  bool ConstArg = false;
5378
5379  // C++11 [class.copy]p12, p25:
5380  //   A [special member] is trivial if its declared parameter type is the same
5381  //   as if it had been implicitly declared [...]
5382  switch (CSM) {
5383  case CXXDefaultConstructor:
5384  case CXXDestructor:
5385    // Trivial default constructors and destructors cannot have parameters.
5386    break;
5387
5388  case CXXCopyConstructor:
5389  case CXXCopyAssignment: {
5390    // Trivial copy operations always have const, non-volatile parameter types.
5391    ConstArg = true;
5392    const ParmVarDecl *Param0 = MD->getParamDecl(0);
5393    const ReferenceType *RT = Param0->getType()->getAs<ReferenceType>();
5394    if (!RT || RT->getPointeeType().getCVRQualifiers() != Qualifiers::Const) {
5395      if (Diagnose)
5396        Diag(Param0->getLocation(), diag::note_nontrivial_param_type)
5397          << Param0->getSourceRange() << Param0->getType()
5398          << Context.getLValueReferenceType(
5399               Context.getRecordType(RD).withConst());
5400      return false;
5401    }
5402    break;
5403  }
5404
5405  case CXXMoveConstructor:
5406  case CXXMoveAssignment: {
5407    // Trivial move operations always have non-cv-qualified parameters.
5408    const ParmVarDecl *Param0 = MD->getParamDecl(0);
5409    const RValueReferenceType *RT =
5410      Param0->getType()->getAs<RValueReferenceType>();
5411    if (!RT || RT->getPointeeType().getCVRQualifiers()) {
5412      if (Diagnose)
5413        Diag(Param0->getLocation(), diag::note_nontrivial_param_type)
5414          << Param0->getSourceRange() << Param0->getType()
5415          << Context.getRValueReferenceType(Context.getRecordType(RD));
5416      return false;
5417    }
5418    break;
5419  }
5420
5421  case CXXInvalid:
5422    llvm_unreachable("not a special member");
5423  }
5424
5425  // FIXME: We require that the parameter-declaration-clause is equivalent to
5426  // that of an implicit declaration, not just that the declared parameter type
5427  // matches, in order to prevent absuridities like a function simultaneously
5428  // being a trivial copy constructor and a non-trivial default constructor.
5429  // This issue has not yet been assigned a core issue number.
5430  if (MD->getMinRequiredArguments() < MD->getNumParams()) {
5431    if (Diagnose)
5432      Diag(MD->getParamDecl(MD->getMinRequiredArguments())->getLocation(),
5433           diag::note_nontrivial_default_arg)
5434        << MD->getParamDecl(MD->getMinRequiredArguments())->getSourceRange();
5435    return false;
5436  }
5437  if (MD->isVariadic()) {
5438    if (Diagnose)
5439      Diag(MD->getLocation(), diag::note_nontrivial_variadic);
5440    return false;
5441  }
5442
5443  // C++11 [class.ctor]p5, C++11 [class.dtor]p5:
5444  //   A copy/move [constructor or assignment operator] is trivial if
5445  //    -- the [member] selected to copy/move each direct base class subobject
5446  //       is trivial
5447  //
5448  // C++11 [class.copy]p12, C++11 [class.copy]p25:
5449  //   A [default constructor or destructor] is trivial if
5450  //    -- all the direct base classes have trivial [default constructors or
5451  //       destructors]
5452  for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
5453                                          BE = RD->bases_end(); BI != BE; ++BI)
5454    if (!checkTrivialSubobjectCall(*this, BI->getLocStart(),
5455                                   ConstArg ? BI->getType().withConst()
5456                                            : BI->getType(),
5457                                   CSM, TSK_BaseClass, Diagnose))
5458      return false;
5459
5460  // C++11 [class.ctor]p5, C++11 [class.dtor]p5:
5461  //   A copy/move [constructor or assignment operator] for a class X is
5462  //   trivial if
5463  //    -- for each non-static data member of X that is of class type (or array
5464  //       thereof), the constructor selected to copy/move that member is
5465  //       trivial
5466  //
5467  // C++11 [class.copy]p12, C++11 [class.copy]p25:
5468  //   A [default constructor or destructor] is trivial if
5469  //    -- for all of the non-static data members of its class that are of class
5470  //       type (or array thereof), each such class has a trivial [default
5471  //       constructor or destructor]
5472  if (!checkTrivialClassMembers(*this, RD, CSM, ConstArg, Diagnose))
5473    return false;
5474
5475  // C++11 [class.dtor]p5:
5476  //   A destructor is trivial if [...]
5477  //    -- the destructor is not virtual
5478  if (CSM == CXXDestructor && MD->isVirtual()) {
5479    if (Diagnose)
5480      Diag(MD->getLocation(), diag::note_nontrivial_virtual_dtor) << RD;
5481    return false;
5482  }
5483
5484  // C++11 [class.ctor]p5, C++11 [class.copy]p12, C++11 [class.copy]p25:
5485  //   A [special member] for class X is trivial if [...]
5486  //    -- class X has no virtual functions and no virtual base classes
5487  if (CSM != CXXDestructor && MD->getParent()->isDynamicClass()) {
5488    if (!Diagnose)
5489      return false;
5490
5491    if (RD->getNumVBases()) {
5492      // Check for virtual bases. We already know that the corresponding
5493      // member in all bases is trivial, so vbases must all be direct.
5494      CXXBaseSpecifier &BS = *RD->vbases_begin();
5495      assert(BS.isVirtual());
5496      Diag(BS.getLocStart(), diag::note_nontrivial_has_virtual) << RD << 1;
5497      return false;
5498    }
5499
5500    // Must have a virtual method.
5501    for (CXXRecordDecl::method_iterator MI = RD->method_begin(),
5502                                        ME = RD->method_end(); MI != ME; ++MI) {
5503      if (MI->isVirtual()) {
5504        SourceLocation MLoc = MI->getLocStart();
5505        Diag(MLoc, diag::note_nontrivial_has_virtual) << RD << 0;
5506        return false;
5507      }
5508    }
5509
5510    llvm_unreachable("dynamic class with no vbases and no virtual functions");
5511  }
5512
5513  // Looks like it's trivial!
5514  return true;
5515}
5516
5517/// \brief Data used with FindHiddenVirtualMethod
5518namespace {
5519  struct FindHiddenVirtualMethodData {
5520    Sema *S;
5521    CXXMethodDecl *Method;
5522    llvm::SmallPtrSet<const CXXMethodDecl *, 8> OverridenAndUsingBaseMethods;
5523    SmallVector<CXXMethodDecl *, 8> OverloadedMethods;
5524  };
5525}
5526
5527/// \brief Check whether any most overriden method from MD in Methods
5528static bool CheckMostOverridenMethods(const CXXMethodDecl *MD,
5529                   const llvm::SmallPtrSet<const CXXMethodDecl *, 8>& Methods) {
5530  if (MD->size_overridden_methods() == 0)
5531    return Methods.count(MD->getCanonicalDecl());
5532  for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
5533                                      E = MD->end_overridden_methods();
5534       I != E; ++I)
5535    if (CheckMostOverridenMethods(*I, Methods))
5536      return true;
5537  return false;
5538}
5539
5540/// \brief Member lookup function that determines whether a given C++
5541/// method overloads virtual methods in a base class without overriding any,
5542/// to be used with CXXRecordDecl::lookupInBases().
5543static bool FindHiddenVirtualMethod(const CXXBaseSpecifier *Specifier,
5544                                    CXXBasePath &Path,
5545                                    void *UserData) {
5546  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
5547
5548  FindHiddenVirtualMethodData &Data
5549    = *static_cast<FindHiddenVirtualMethodData*>(UserData);
5550
5551  DeclarationName Name = Data.Method->getDeclName();
5552  assert(Name.getNameKind() == DeclarationName::Identifier);
5553
5554  bool foundSameNameMethod = false;
5555  SmallVector<CXXMethodDecl *, 8> overloadedMethods;
5556  for (Path.Decls = BaseRecord->lookup(Name);
5557       !Path.Decls.empty();
5558       Path.Decls = Path.Decls.slice(1)) {
5559    NamedDecl *D = Path.Decls.front();
5560    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
5561      MD = MD->getCanonicalDecl();
5562      foundSameNameMethod = true;
5563      // Interested only in hidden virtual methods.
5564      if (!MD->isVirtual())
5565        continue;
5566      // If the method we are checking overrides a method from its base
5567      // don't warn about the other overloaded methods.
5568      if (!Data.S->IsOverload(Data.Method, MD, false))
5569        return true;
5570      // Collect the overload only if its hidden.
5571      if (!CheckMostOverridenMethods(MD, Data.OverridenAndUsingBaseMethods))
5572        overloadedMethods.push_back(MD);
5573    }
5574  }
5575
5576  if (foundSameNameMethod)
5577    Data.OverloadedMethods.append(overloadedMethods.begin(),
5578                                   overloadedMethods.end());
5579  return foundSameNameMethod;
5580}
5581
5582/// \brief Add the most overriden methods from MD to Methods
5583static void AddMostOverridenMethods(const CXXMethodDecl *MD,
5584                         llvm::SmallPtrSet<const CXXMethodDecl *, 8>& Methods) {
5585  if (MD->size_overridden_methods() == 0)
5586    Methods.insert(MD->getCanonicalDecl());
5587  for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
5588                                      E = MD->end_overridden_methods();
5589       I != E; ++I)
5590    AddMostOverridenMethods(*I, Methods);
5591}
5592
5593/// \brief See if a method overloads virtual methods in a base class without
5594/// overriding any.
5595void Sema::DiagnoseHiddenVirtualMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
5596  if (Diags.getDiagnosticLevel(diag::warn_overloaded_virtual,
5597                               MD->getLocation()) == DiagnosticsEngine::Ignored)
5598    return;
5599  if (!MD->getDeclName().isIdentifier())
5600    return;
5601
5602  CXXBasePaths Paths(/*FindAmbiguities=*/true, // true to look in all bases.
5603                     /*bool RecordPaths=*/false,
5604                     /*bool DetectVirtual=*/false);
5605  FindHiddenVirtualMethodData Data;
5606  Data.Method = MD;
5607  Data.S = this;
5608
5609  // Keep the base methods that were overriden or introduced in the subclass
5610  // by 'using' in a set. A base method not in this set is hidden.
5611  DeclContext::lookup_result R = DC->lookup(MD->getDeclName());
5612  for (DeclContext::lookup_iterator I = R.begin(), E = R.end(); I != E; ++I) {
5613    NamedDecl *ND = *I;
5614    if (UsingShadowDecl *shad = dyn_cast<UsingShadowDecl>(*I))
5615      ND = shad->getTargetDecl();
5616    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(ND))
5617      AddMostOverridenMethods(MD, Data.OverridenAndUsingBaseMethods);
5618  }
5619
5620  if (DC->lookupInBases(&FindHiddenVirtualMethod, &Data, Paths) &&
5621      !Data.OverloadedMethods.empty()) {
5622    Diag(MD->getLocation(), diag::warn_overloaded_virtual)
5623      << MD << (Data.OverloadedMethods.size() > 1);
5624
5625    for (unsigned i = 0, e = Data.OverloadedMethods.size(); i != e; ++i) {
5626      CXXMethodDecl *overloadedMD = Data.OverloadedMethods[i];
5627      PartialDiagnostic PD = PDiag(
5628           diag::note_hidden_overloaded_virtual_declared_here) << overloadedMD;
5629      HandleFunctionTypeMismatch(PD, MD->getType(), overloadedMD->getType());
5630      Diag(overloadedMD->getLocation(), PD);
5631    }
5632  }
5633}
5634
5635void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
5636                                             Decl *TagDecl,
5637                                             SourceLocation LBrac,
5638                                             SourceLocation RBrac,
5639                                             AttributeList *AttrList) {
5640  if (!TagDecl)
5641    return;
5642
5643  AdjustDeclIfTemplate(TagDecl);
5644
5645  for (const AttributeList* l = AttrList; l; l = l->getNext()) {
5646    if (l->getKind() != AttributeList::AT_Visibility)
5647      continue;
5648    l->setInvalid();
5649    Diag(l->getLoc(), diag::warn_attribute_after_definition_ignored) <<
5650      l->getName();
5651  }
5652
5653  ActOnFields(S, RLoc, TagDecl, llvm::makeArrayRef(
5654              // strict aliasing violation!
5655              reinterpret_cast<Decl**>(FieldCollector->getCurFields()),
5656              FieldCollector->getCurNumFields()), LBrac, RBrac, AttrList);
5657
5658  CheckCompletedCXXClass(
5659                        dyn_cast_or_null<CXXRecordDecl>(TagDecl));
5660}
5661
5662/// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
5663/// special functions, such as the default constructor, copy
5664/// constructor, or destructor, to the given C++ class (C++
5665/// [special]p1).  This routine can only be executed just before the
5666/// definition of the class is complete.
5667void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) {
5668  if (!ClassDecl->hasUserDeclaredConstructor())
5669    ++ASTContext::NumImplicitDefaultConstructors;
5670
5671  if (!ClassDecl->hasUserDeclaredCopyConstructor()) {
5672    ++ASTContext::NumImplicitCopyConstructors;
5673
5674    // If the properties or semantics of the copy constructor couldn't be
5675    // determined while the class was being declared, force a declaration
5676    // of it now.
5677    if (ClassDecl->needsOverloadResolutionForCopyConstructor())
5678      DeclareImplicitCopyConstructor(ClassDecl);
5679  }
5680
5681  if (getLangOpts().CPlusPlus11 && ClassDecl->needsImplicitMoveConstructor()) {
5682    ++ASTContext::NumImplicitMoveConstructors;
5683
5684    if (ClassDecl->needsOverloadResolutionForMoveConstructor())
5685      DeclareImplicitMoveConstructor(ClassDecl);
5686  }
5687
5688  if (!ClassDecl->hasUserDeclaredCopyAssignment()) {
5689    ++ASTContext::NumImplicitCopyAssignmentOperators;
5690
5691    // If we have a dynamic class, then the copy assignment operator may be
5692    // virtual, so we have to declare it immediately. This ensures that, e.g.,
5693    // it shows up in the right place in the vtable and that we diagnose
5694    // problems with the implicit exception specification.
5695    if (ClassDecl->isDynamicClass() ||
5696        ClassDecl->needsOverloadResolutionForCopyAssignment())
5697      DeclareImplicitCopyAssignment(ClassDecl);
5698  }
5699
5700  if (getLangOpts().CPlusPlus11 && ClassDecl->needsImplicitMoveAssignment()) {
5701    ++ASTContext::NumImplicitMoveAssignmentOperators;
5702
5703    // Likewise for the move assignment operator.
5704    if (ClassDecl->isDynamicClass() ||
5705        ClassDecl->needsOverloadResolutionForMoveAssignment())
5706      DeclareImplicitMoveAssignment(ClassDecl);
5707  }
5708
5709  if (!ClassDecl->hasUserDeclaredDestructor()) {
5710    ++ASTContext::NumImplicitDestructors;
5711
5712    // If we have a dynamic class, then the destructor may be virtual, so we
5713    // have to declare the destructor immediately. This ensures that, e.g., it
5714    // shows up in the right place in the vtable and that we diagnose problems
5715    // with the implicit exception specification.
5716    if (ClassDecl->isDynamicClass() ||
5717        ClassDecl->needsOverloadResolutionForDestructor())
5718      DeclareImplicitDestructor(ClassDecl);
5719  }
5720}
5721
5722void Sema::ActOnReenterDeclaratorTemplateScope(Scope *S, DeclaratorDecl *D) {
5723  if (!D)
5724    return;
5725
5726  int NumParamList = D->getNumTemplateParameterLists();
5727  for (int i = 0; i < NumParamList; i++) {
5728    TemplateParameterList* Params = D->getTemplateParameterList(i);
5729    for (TemplateParameterList::iterator Param = Params->begin(),
5730                                      ParamEnd = Params->end();
5731          Param != ParamEnd; ++Param) {
5732      NamedDecl *Named = cast<NamedDecl>(*Param);
5733      if (Named->getDeclName()) {
5734        S->AddDecl(Named);
5735        IdResolver.AddDecl(Named);
5736      }
5737    }
5738  }
5739}
5740
5741void Sema::ActOnReenterTemplateScope(Scope *S, Decl *D) {
5742  if (!D)
5743    return;
5744
5745  TemplateParameterList *Params = 0;
5746  if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D))
5747    Params = Template->getTemplateParameters();
5748  else if (ClassTemplatePartialSpecializationDecl *PartialSpec
5749           = dyn_cast<ClassTemplatePartialSpecializationDecl>(D))
5750    Params = PartialSpec->getTemplateParameters();
5751  else
5752    return;
5753
5754  for (TemplateParameterList::iterator Param = Params->begin(),
5755                                    ParamEnd = Params->end();
5756       Param != ParamEnd; ++Param) {
5757    NamedDecl *Named = cast<NamedDecl>(*Param);
5758    if (Named->getDeclName()) {
5759      S->AddDecl(Named);
5760      IdResolver.AddDecl(Named);
5761    }
5762  }
5763}
5764
5765void Sema::ActOnStartDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
5766  if (!RecordD) return;
5767  AdjustDeclIfTemplate(RecordD);
5768  CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordD);
5769  PushDeclContext(S, Record);
5770}
5771
5772void Sema::ActOnFinishDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
5773  if (!RecordD) return;
5774  PopDeclContext();
5775}
5776
5777/// ActOnStartDelayedCXXMethodDeclaration - We have completed
5778/// parsing a top-level (non-nested) C++ class, and we are now
5779/// parsing those parts of the given Method declaration that could
5780/// not be parsed earlier (C++ [class.mem]p2), such as default
5781/// arguments. This action should enter the scope of the given
5782/// Method declaration as if we had just parsed the qualified method
5783/// name. However, it should not bring the parameters into scope;
5784/// that will be performed by ActOnDelayedCXXMethodParameter.
5785void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
5786}
5787
5788/// ActOnDelayedCXXMethodParameter - We've already started a delayed
5789/// C++ method declaration. We're (re-)introducing the given
5790/// function parameter into scope for use in parsing later parts of
5791/// the method declaration. For example, we could see an
5792/// ActOnParamDefaultArgument event for this parameter.
5793void Sema::ActOnDelayedCXXMethodParameter(Scope *S, Decl *ParamD) {
5794  if (!ParamD)
5795    return;
5796
5797  ParmVarDecl *Param = cast<ParmVarDecl>(ParamD);
5798
5799  // If this parameter has an unparsed default argument, clear it out
5800  // to make way for the parsed default argument.
5801  if (Param->hasUnparsedDefaultArg())
5802    Param->setDefaultArg(0);
5803
5804  S->AddDecl(Param);
5805  if (Param->getDeclName())
5806    IdResolver.AddDecl(Param);
5807}
5808
5809/// ActOnFinishDelayedCXXMethodDeclaration - We have finished
5810/// processing the delayed method declaration for Method. The method
5811/// declaration is now considered finished. There may be a separate
5812/// ActOnStartOfFunctionDef action later (not necessarily
5813/// immediately!) for this method, if it was also defined inside the
5814/// class body.
5815void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
5816  if (!MethodD)
5817    return;
5818
5819  AdjustDeclIfTemplate(MethodD);
5820
5821  FunctionDecl *Method = cast<FunctionDecl>(MethodD);
5822
5823  // Now that we have our default arguments, check the constructor
5824  // again. It could produce additional diagnostics or affect whether
5825  // the class has implicitly-declared destructors, among other
5826  // things.
5827  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method))
5828    CheckConstructor(Constructor);
5829
5830  // Check the default arguments, which we may have added.
5831  if (!Method->isInvalidDecl())
5832    CheckCXXDefaultArguments(Method);
5833}
5834
5835/// CheckConstructorDeclarator - Called by ActOnDeclarator to check
5836/// the well-formedness of the constructor declarator @p D with type @p
5837/// R. If there are any errors in the declarator, this routine will
5838/// emit diagnostics and set the invalid bit to true.  In any case, the type
5839/// will be updated to reflect a well-formed type for the constructor and
5840/// returned.
5841QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R,
5842                                          StorageClass &SC) {
5843  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
5844
5845  // C++ [class.ctor]p3:
5846  //   A constructor shall not be virtual (10.3) or static (9.4). A
5847  //   constructor can be invoked for a const, volatile or const
5848  //   volatile object. A constructor shall not be declared const,
5849  //   volatile, or const volatile (9.3.2).
5850  if (isVirtual) {
5851    if (!D.isInvalidType())
5852      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
5853        << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
5854        << SourceRange(D.getIdentifierLoc());
5855    D.setInvalidType();
5856  }
5857  if (SC == SC_Static) {
5858    if (!D.isInvalidType())
5859      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
5860        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
5861        << SourceRange(D.getIdentifierLoc());
5862    D.setInvalidType();
5863    SC = SC_None;
5864  }
5865
5866  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
5867  if (FTI.TypeQuals != 0) {
5868    if (FTI.TypeQuals & Qualifiers::Const)
5869      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
5870        << "const" << SourceRange(D.getIdentifierLoc());
5871    if (FTI.TypeQuals & Qualifiers::Volatile)
5872      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
5873        << "volatile" << SourceRange(D.getIdentifierLoc());
5874    if (FTI.TypeQuals & Qualifiers::Restrict)
5875      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
5876        << "restrict" << SourceRange(D.getIdentifierLoc());
5877    D.setInvalidType();
5878  }
5879
5880  // C++0x [class.ctor]p4:
5881  //   A constructor shall not be declared with a ref-qualifier.
5882  if (FTI.hasRefQualifier()) {
5883    Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_constructor)
5884      << FTI.RefQualifierIsLValueRef
5885      << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
5886    D.setInvalidType();
5887  }
5888
5889  // Rebuild the function type "R" without any type qualifiers (in
5890  // case any of the errors above fired) and with "void" as the
5891  // return type, since constructors don't have return types.
5892  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
5893  if (Proto->getResultType() == Context.VoidTy && !D.isInvalidType())
5894    return R;
5895
5896  FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
5897  EPI.TypeQuals = 0;
5898  EPI.RefQualifier = RQ_None;
5899
5900  return Context.getFunctionType(Context.VoidTy, Proto->getArgTypes(), EPI);
5901}
5902
5903/// CheckConstructor - Checks a fully-formed constructor for
5904/// well-formedness, issuing any diagnostics required. Returns true if
5905/// the constructor declarator is invalid.
5906void Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
5907  CXXRecordDecl *ClassDecl
5908    = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext());
5909  if (!ClassDecl)
5910    return Constructor->setInvalidDecl();
5911
5912  // C++ [class.copy]p3:
5913  //   A declaration of a constructor for a class X is ill-formed if
5914  //   its first parameter is of type (optionally cv-qualified) X and
5915  //   either there are no other parameters or else all other
5916  //   parameters have default arguments.
5917  if (!Constructor->isInvalidDecl() &&
5918      ((Constructor->getNumParams() == 1) ||
5919       (Constructor->getNumParams() > 1 &&
5920        Constructor->getParamDecl(1)->hasDefaultArg())) &&
5921      Constructor->getTemplateSpecializationKind()
5922                                              != TSK_ImplicitInstantiation) {
5923    QualType ParamType = Constructor->getParamDecl(0)->getType();
5924    QualType ClassTy = Context.getTagDeclType(ClassDecl);
5925    if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
5926      SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation();
5927      const char *ConstRef
5928        = Constructor->getParamDecl(0)->getIdentifier() ? "const &"
5929                                                        : " const &";
5930      Diag(ParamLoc, diag::err_constructor_byvalue_arg)
5931        << FixItHint::CreateInsertion(ParamLoc, ConstRef);
5932
5933      // FIXME: Rather that making the constructor invalid, we should endeavor
5934      // to fix the type.
5935      Constructor->setInvalidDecl();
5936    }
5937  }
5938}
5939
5940/// CheckDestructor - Checks a fully-formed destructor definition for
5941/// well-formedness, issuing any diagnostics required.  Returns true
5942/// on error.
5943bool Sema::CheckDestructor(CXXDestructorDecl *Destructor) {
5944  CXXRecordDecl *RD = Destructor->getParent();
5945
5946  if (!Destructor->getOperatorDelete() && Destructor->isVirtual()) {
5947    SourceLocation Loc;
5948
5949    if (!Destructor->isImplicit())
5950      Loc = Destructor->getLocation();
5951    else
5952      Loc = RD->getLocation();
5953
5954    // If we have a virtual destructor, look up the deallocation function
5955    FunctionDecl *OperatorDelete = 0;
5956    DeclarationName Name =
5957    Context.DeclarationNames.getCXXOperatorName(OO_Delete);
5958    if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete))
5959      return true;
5960
5961    MarkFunctionReferenced(Loc, OperatorDelete);
5962
5963    Destructor->setOperatorDelete(OperatorDelete);
5964  }
5965
5966  return false;
5967}
5968
5969static inline bool
5970FTIHasSingleVoidArgument(DeclaratorChunk::FunctionTypeInfo &FTI) {
5971  return (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
5972          FTI.ArgInfo[0].Param &&
5973          cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType());
5974}
5975
5976/// CheckDestructorDeclarator - Called by ActOnDeclarator to check
5977/// the well-formednes of the destructor declarator @p D with type @p
5978/// R. If there are any errors in the declarator, this routine will
5979/// emit diagnostics and set the declarator to invalid.  Even if this happens,
5980/// will be updated to reflect a well-formed type for the destructor and
5981/// returned.
5982QualType Sema::CheckDestructorDeclarator(Declarator &D, QualType R,
5983                                         StorageClass& SC) {
5984  // C++ [class.dtor]p1:
5985  //   [...] A typedef-name that names a class is a class-name
5986  //   (7.1.3); however, a typedef-name that names a class shall not
5987  //   be used as the identifier in the declarator for a destructor
5988  //   declaration.
5989  QualType DeclaratorType = GetTypeFromParser(D.getName().DestructorName);
5990  if (const TypedefType *TT = DeclaratorType->getAs<TypedefType>())
5991    Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
5992      << DeclaratorType << isa<TypeAliasDecl>(TT->getDecl());
5993  else if (const TemplateSpecializationType *TST =
5994             DeclaratorType->getAs<TemplateSpecializationType>())
5995    if (TST->isTypeAlias())
5996      Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
5997        << DeclaratorType << 1;
5998
5999  // C++ [class.dtor]p2:
6000  //   A destructor is used to destroy objects of its class type. A
6001  //   destructor takes no parameters, and no return type can be
6002  //   specified for it (not even void). The address of a destructor
6003  //   shall not be taken. A destructor shall not be static. A
6004  //   destructor can be invoked for a const, volatile or const
6005  //   volatile object. A destructor shall not be declared const,
6006  //   volatile or const volatile (9.3.2).
6007  if (SC == SC_Static) {
6008    if (!D.isInvalidType())
6009      Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
6010        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
6011        << SourceRange(D.getIdentifierLoc())
6012        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
6013
6014    SC = SC_None;
6015  }
6016  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
6017    // Destructors don't have return types, but the parser will
6018    // happily parse something like:
6019    //
6020    //   class X {
6021    //     float ~X();
6022    //   };
6023    //
6024    // The return type will be eliminated later.
6025    Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
6026      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
6027      << SourceRange(D.getIdentifierLoc());
6028  }
6029
6030  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
6031  if (FTI.TypeQuals != 0 && !D.isInvalidType()) {
6032    if (FTI.TypeQuals & Qualifiers::Const)
6033      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
6034        << "const" << SourceRange(D.getIdentifierLoc());
6035    if (FTI.TypeQuals & Qualifiers::Volatile)
6036      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
6037        << "volatile" << SourceRange(D.getIdentifierLoc());
6038    if (FTI.TypeQuals & Qualifiers::Restrict)
6039      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
6040        << "restrict" << SourceRange(D.getIdentifierLoc());
6041    D.setInvalidType();
6042  }
6043
6044  // C++0x [class.dtor]p2:
6045  //   A destructor shall not be declared with a ref-qualifier.
6046  if (FTI.hasRefQualifier()) {
6047    Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_destructor)
6048      << FTI.RefQualifierIsLValueRef
6049      << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
6050    D.setInvalidType();
6051  }
6052
6053  // Make sure we don't have any parameters.
6054  if (FTI.NumArgs > 0 && !FTIHasSingleVoidArgument(FTI)) {
6055    Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
6056
6057    // Delete the parameters.
6058    FTI.freeArgs();
6059    D.setInvalidType();
6060  }
6061
6062  // Make sure the destructor isn't variadic.
6063  if (FTI.isVariadic) {
6064    Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
6065    D.setInvalidType();
6066  }
6067
6068  // Rebuild the function type "R" without any type qualifiers or
6069  // parameters (in case any of the errors above fired) and with
6070  // "void" as the return type, since destructors don't have return
6071  // types.
6072  if (!D.isInvalidType())
6073    return R;
6074
6075  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
6076  FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
6077  EPI.Variadic = false;
6078  EPI.TypeQuals = 0;
6079  EPI.RefQualifier = RQ_None;
6080  return Context.getFunctionType(Context.VoidTy, None, EPI);
6081}
6082
6083/// CheckConversionDeclarator - Called by ActOnDeclarator to check the
6084/// well-formednes of the conversion function declarator @p D with
6085/// type @p R. If there are any errors in the declarator, this routine
6086/// will emit diagnostics and return true. Otherwise, it will return
6087/// false. Either way, the type @p R will be updated to reflect a
6088/// well-formed type for the conversion operator.
6089void Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
6090                                     StorageClass& SC) {
6091  // C++ [class.conv.fct]p1:
6092  //   Neither parameter types nor return type can be specified. The
6093  //   type of a conversion function (8.3.5) is "function taking no
6094  //   parameter returning conversion-type-id."
6095  if (SC == SC_Static) {
6096    if (!D.isInvalidType())
6097      Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
6098        << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
6099        << D.getName().getSourceRange();
6100    D.setInvalidType();
6101    SC = SC_None;
6102  }
6103
6104  QualType ConvType = GetTypeFromParser(D.getName().ConversionFunctionId);
6105
6106  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
6107    // Conversion functions don't have return types, but the parser will
6108    // happily parse something like:
6109    //
6110    //   class X {
6111    //     float operator bool();
6112    //   };
6113    //
6114    // The return type will be changed later anyway.
6115    Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
6116      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
6117      << SourceRange(D.getIdentifierLoc());
6118    D.setInvalidType();
6119  }
6120
6121  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
6122
6123  // Make sure we don't have any parameters.
6124  if (Proto->getNumArgs() > 0) {
6125    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
6126
6127    // Delete the parameters.
6128    D.getFunctionTypeInfo().freeArgs();
6129    D.setInvalidType();
6130  } else if (Proto->isVariadic()) {
6131    Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
6132    D.setInvalidType();
6133  }
6134
6135  // Diagnose "&operator bool()" and other such nonsense.  This
6136  // is actually a gcc extension which we don't support.
6137  if (Proto->getResultType() != ConvType) {
6138    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_complex_decl)
6139      << Proto->getResultType();
6140    D.setInvalidType();
6141    ConvType = Proto->getResultType();
6142  }
6143
6144  // C++ [class.conv.fct]p4:
6145  //   The conversion-type-id shall not represent a function type nor
6146  //   an array type.
6147  if (ConvType->isArrayType()) {
6148    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
6149    ConvType = Context.getPointerType(ConvType);
6150    D.setInvalidType();
6151  } else if (ConvType->isFunctionType()) {
6152    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
6153    ConvType = Context.getPointerType(ConvType);
6154    D.setInvalidType();
6155  }
6156
6157  // Rebuild the function type "R" without any parameters (in case any
6158  // of the errors above fired) and with the conversion type as the
6159  // return type.
6160  if (D.isInvalidType())
6161    R = Context.getFunctionType(ConvType, None, Proto->getExtProtoInfo());
6162
6163  // C++0x explicit conversion operators.
6164  if (D.getDeclSpec().isExplicitSpecified())
6165    Diag(D.getDeclSpec().getExplicitSpecLoc(),
6166         getLangOpts().CPlusPlus11 ?
6167           diag::warn_cxx98_compat_explicit_conversion_functions :
6168           diag::ext_explicit_conversion_functions)
6169      << SourceRange(D.getDeclSpec().getExplicitSpecLoc());
6170}
6171
6172/// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
6173/// the declaration of the given C++ conversion function. This routine
6174/// is responsible for recording the conversion function in the C++
6175/// class, if possible.
6176Decl *Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
6177  assert(Conversion && "Expected to receive a conversion function declaration");
6178
6179  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext());
6180
6181  // Make sure we aren't redeclaring the conversion function.
6182  QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());
6183
6184  // C++ [class.conv.fct]p1:
6185  //   [...] A conversion function is never used to convert a
6186  //   (possibly cv-qualified) object to the (possibly cv-qualified)
6187  //   same object type (or a reference to it), to a (possibly
6188  //   cv-qualified) base class of that type (or a reference to it),
6189  //   or to (possibly cv-qualified) void.
6190  // FIXME: Suppress this warning if the conversion function ends up being a
6191  // virtual function that overrides a virtual function in a base class.
6192  QualType ClassType
6193    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
6194  if (const ReferenceType *ConvTypeRef = ConvType->getAs<ReferenceType>())
6195    ConvType = ConvTypeRef->getPointeeType();
6196  if (Conversion->getTemplateSpecializationKind() != TSK_Undeclared &&
6197      Conversion->getTemplateSpecializationKind() != TSK_ExplicitSpecialization)
6198    /* Suppress diagnostics for instantiations. */;
6199  else if (ConvType->isRecordType()) {
6200    ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
6201    if (ConvType == ClassType)
6202      Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used)
6203        << ClassType;
6204    else if (IsDerivedFrom(ClassType, ConvType))
6205      Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used)
6206        <<  ClassType << ConvType;
6207  } else if (ConvType->isVoidType()) {
6208    Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used)
6209      << ClassType << ConvType;
6210  }
6211
6212  if (FunctionTemplateDecl *ConversionTemplate
6213                                = Conversion->getDescribedFunctionTemplate())
6214    return ConversionTemplate;
6215
6216  return Conversion;
6217}
6218
6219//===----------------------------------------------------------------------===//
6220// Namespace Handling
6221//===----------------------------------------------------------------------===//
6222
6223/// \brief Diagnose a mismatch in 'inline' qualifiers when a namespace is
6224/// reopened.
6225static void DiagnoseNamespaceInlineMismatch(Sema &S, SourceLocation KeywordLoc,
6226                                            SourceLocation Loc,
6227                                            IdentifierInfo *II, bool *IsInline,
6228                                            NamespaceDecl *PrevNS) {
6229  assert(*IsInline != PrevNS->isInline());
6230
6231  // HACK: Work around a bug in libstdc++4.6's <atomic>, where
6232  // std::__atomic[0,1,2] are defined as non-inline namespaces, then reopened as
6233  // inline namespaces, with the intention of bringing names into namespace std.
6234  //
6235  // We support this just well enough to get that case working; this is not
6236  // sufficient to support reopening namespaces as inline in general.
6237  if (*IsInline && II && II->getName().startswith("__atomic") &&
6238      S.getSourceManager().isInSystemHeader(Loc)) {
6239    // Mark all prior declarations of the namespace as inline.
6240    for (NamespaceDecl *NS = PrevNS->getMostRecentDecl(); NS;
6241         NS = NS->getPreviousDecl())
6242      NS->setInline(*IsInline);
6243    // Patch up the lookup table for the containing namespace. This isn't really
6244    // correct, but it's good enough for this particular case.
6245    for (DeclContext::decl_iterator I = PrevNS->decls_begin(),
6246                                    E = PrevNS->decls_end(); I != E; ++I)
6247      if (NamedDecl *ND = dyn_cast<NamedDecl>(*I))
6248        PrevNS->getParent()->makeDeclVisibleInContext(ND);
6249    return;
6250  }
6251
6252  if (PrevNS->isInline())
6253    // The user probably just forgot the 'inline', so suggest that it
6254    // be added back.
6255    S.Diag(Loc, diag::warn_inline_namespace_reopened_noninline)
6256      << FixItHint::CreateInsertion(KeywordLoc, "inline ");
6257  else
6258    S.Diag(Loc, diag::err_inline_namespace_mismatch)
6259      << IsInline;
6260
6261  S.Diag(PrevNS->getLocation(), diag::note_previous_definition);
6262  *IsInline = PrevNS->isInline();
6263}
6264
6265/// ActOnStartNamespaceDef - This is called at the start of a namespace
6266/// definition.
6267Decl *Sema::ActOnStartNamespaceDef(Scope *NamespcScope,
6268                                   SourceLocation InlineLoc,
6269                                   SourceLocation NamespaceLoc,
6270                                   SourceLocation IdentLoc,
6271                                   IdentifierInfo *II,
6272                                   SourceLocation LBrace,
6273                                   AttributeList *AttrList) {
6274  SourceLocation StartLoc = InlineLoc.isValid() ? InlineLoc : NamespaceLoc;
6275  // For anonymous namespace, take the location of the left brace.
6276  SourceLocation Loc = II ? IdentLoc : LBrace;
6277  bool IsInline = InlineLoc.isValid();
6278  bool IsInvalid = false;
6279  bool IsStd = false;
6280  bool AddToKnown = false;
6281  Scope *DeclRegionScope = NamespcScope->getParent();
6282
6283  NamespaceDecl *PrevNS = 0;
6284  if (II) {
6285    // C++ [namespace.def]p2:
6286    //   The identifier in an original-namespace-definition shall not
6287    //   have been previously defined in the declarative region in
6288    //   which the original-namespace-definition appears. The
6289    //   identifier in an original-namespace-definition is the name of
6290    //   the namespace. Subsequently in that declarative region, it is
6291    //   treated as an original-namespace-name.
6292    //
6293    // Since namespace names are unique in their scope, and we don't
6294    // look through using directives, just look for any ordinary names.
6295
6296    const unsigned IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Member |
6297    Decl::IDNS_Type | Decl::IDNS_Using | Decl::IDNS_Tag |
6298    Decl::IDNS_Namespace;
6299    NamedDecl *PrevDecl = 0;
6300    DeclContext::lookup_result R = CurContext->getRedeclContext()->lookup(II);
6301    for (DeclContext::lookup_iterator I = R.begin(), E = R.end(); I != E;
6302         ++I) {
6303      if ((*I)->getIdentifierNamespace() & IDNS) {
6304        PrevDecl = *I;
6305        break;
6306      }
6307    }
6308
6309    PrevNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl);
6310
6311    if (PrevNS) {
6312      // This is an extended namespace definition.
6313      if (IsInline != PrevNS->isInline())
6314        DiagnoseNamespaceInlineMismatch(*this, NamespaceLoc, Loc, II,
6315                                        &IsInline, PrevNS);
6316    } else if (PrevDecl) {
6317      // This is an invalid name redefinition.
6318      Diag(Loc, diag::err_redefinition_different_kind)
6319        << II;
6320      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
6321      IsInvalid = true;
6322      // Continue on to push Namespc as current DeclContext and return it.
6323    } else if (II->isStr("std") &&
6324               CurContext->getRedeclContext()->isTranslationUnit()) {
6325      // This is the first "real" definition of the namespace "std", so update
6326      // our cache of the "std" namespace to point at this definition.
6327      PrevNS = getStdNamespace();
6328      IsStd = true;
6329      AddToKnown = !IsInline;
6330    } else {
6331      // We've seen this namespace for the first time.
6332      AddToKnown = !IsInline;
6333    }
6334  } else {
6335    // Anonymous namespaces.
6336
6337    // Determine whether the parent already has an anonymous namespace.
6338    DeclContext *Parent = CurContext->getRedeclContext();
6339    if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
6340      PrevNS = TU->getAnonymousNamespace();
6341    } else {
6342      NamespaceDecl *ND = cast<NamespaceDecl>(Parent);
6343      PrevNS = ND->getAnonymousNamespace();
6344    }
6345
6346    if (PrevNS && IsInline != PrevNS->isInline())
6347      DiagnoseNamespaceInlineMismatch(*this, NamespaceLoc, NamespaceLoc, II,
6348                                      &IsInline, PrevNS);
6349  }
6350
6351  NamespaceDecl *Namespc = NamespaceDecl::Create(Context, CurContext, IsInline,
6352                                                 StartLoc, Loc, II, PrevNS);
6353  if (IsInvalid)
6354    Namespc->setInvalidDecl();
6355
6356  ProcessDeclAttributeList(DeclRegionScope, Namespc, AttrList);
6357
6358  // FIXME: Should we be merging attributes?
6359  if (const VisibilityAttr *Attr = Namespc->getAttr<VisibilityAttr>())
6360    PushNamespaceVisibilityAttr(Attr, Loc);
6361
6362  if (IsStd)
6363    StdNamespace = Namespc;
6364  if (AddToKnown)
6365    KnownNamespaces[Namespc] = false;
6366
6367  if (II) {
6368    PushOnScopeChains(Namespc, DeclRegionScope);
6369  } else {
6370    // Link the anonymous namespace into its parent.
6371    DeclContext *Parent = CurContext->getRedeclContext();
6372    if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
6373      TU->setAnonymousNamespace(Namespc);
6374    } else {
6375      cast<NamespaceDecl>(Parent)->setAnonymousNamespace(Namespc);
6376    }
6377
6378    CurContext->addDecl(Namespc);
6379
6380    // C++ [namespace.unnamed]p1.  An unnamed-namespace-definition
6381    //   behaves as if it were replaced by
6382    //     namespace unique { /* empty body */ }
6383    //     using namespace unique;
6384    //     namespace unique { namespace-body }
6385    //   where all occurrences of 'unique' in a translation unit are
6386    //   replaced by the same identifier and this identifier differs
6387    //   from all other identifiers in the entire program.
6388
6389    // We just create the namespace with an empty name and then add an
6390    // implicit using declaration, just like the standard suggests.
6391    //
6392    // CodeGen enforces the "universally unique" aspect by giving all
6393    // declarations semantically contained within an anonymous
6394    // namespace internal linkage.
6395
6396    if (!PrevNS) {
6397      UsingDirectiveDecl* UD
6398        = UsingDirectiveDecl::Create(Context, Parent,
6399                                     /* 'using' */ LBrace,
6400                                     /* 'namespace' */ SourceLocation(),
6401                                     /* qualifier */ NestedNameSpecifierLoc(),
6402                                     /* identifier */ SourceLocation(),
6403                                     Namespc,
6404                                     /* Ancestor */ Parent);
6405      UD->setImplicit();
6406      Parent->addDecl(UD);
6407    }
6408  }
6409
6410  ActOnDocumentableDecl(Namespc);
6411
6412  // Although we could have an invalid decl (i.e. the namespace name is a
6413  // redefinition), push it as current DeclContext and try to continue parsing.
6414  // FIXME: We should be able to push Namespc here, so that the each DeclContext
6415  // for the namespace has the declarations that showed up in that particular
6416  // namespace definition.
6417  PushDeclContext(NamespcScope, Namespc);
6418  return Namespc;
6419}
6420
6421/// getNamespaceDecl - Returns the namespace a decl represents. If the decl
6422/// is a namespace alias, returns the namespace it points to.
6423static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) {
6424  if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D))
6425    return AD->getNamespace();
6426  return dyn_cast_or_null<NamespaceDecl>(D);
6427}
6428
6429/// ActOnFinishNamespaceDef - This callback is called after a namespace is
6430/// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
6431void Sema::ActOnFinishNamespaceDef(Decl *Dcl, SourceLocation RBrace) {
6432  NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
6433  assert(Namespc && "Invalid parameter, expected NamespaceDecl");
6434  Namespc->setRBraceLoc(RBrace);
6435  PopDeclContext();
6436  if (Namespc->hasAttr<VisibilityAttr>())
6437    PopPragmaVisibility(true, RBrace);
6438}
6439
6440CXXRecordDecl *Sema::getStdBadAlloc() const {
6441  return cast_or_null<CXXRecordDecl>(
6442                                  StdBadAlloc.get(Context.getExternalSource()));
6443}
6444
6445NamespaceDecl *Sema::getStdNamespace() const {
6446  return cast_or_null<NamespaceDecl>(
6447                                 StdNamespace.get(Context.getExternalSource()));
6448}
6449
6450/// \brief Retrieve the special "std" namespace, which may require us to
6451/// implicitly define the namespace.
6452NamespaceDecl *Sema::getOrCreateStdNamespace() {
6453  if (!StdNamespace) {
6454    // The "std" namespace has not yet been defined, so build one implicitly.
6455    StdNamespace = NamespaceDecl::Create(Context,
6456                                         Context.getTranslationUnitDecl(),
6457                                         /*Inline=*/false,
6458                                         SourceLocation(), SourceLocation(),
6459                                         &PP.getIdentifierTable().get("std"),
6460                                         /*PrevDecl=*/0);
6461    getStdNamespace()->setImplicit(true);
6462  }
6463
6464  return getStdNamespace();
6465}
6466
6467bool Sema::isStdInitializerList(QualType Ty, QualType *Element) {
6468  assert(getLangOpts().CPlusPlus &&
6469         "Looking for std::initializer_list outside of C++.");
6470
6471  // We're looking for implicit instantiations of
6472  // template <typename E> class std::initializer_list.
6473
6474  if (!StdNamespace) // If we haven't seen namespace std yet, this can't be it.
6475    return false;
6476
6477  ClassTemplateDecl *Template = 0;
6478  const TemplateArgument *Arguments = 0;
6479
6480  if (const RecordType *RT = Ty->getAs<RecordType>()) {
6481
6482    ClassTemplateSpecializationDecl *Specialization =
6483        dyn_cast<ClassTemplateSpecializationDecl>(RT->getDecl());
6484    if (!Specialization)
6485      return false;
6486
6487    Template = Specialization->getSpecializedTemplate();
6488    Arguments = Specialization->getTemplateArgs().data();
6489  } else if (const TemplateSpecializationType *TST =
6490                 Ty->getAs<TemplateSpecializationType>()) {
6491    Template = dyn_cast_or_null<ClassTemplateDecl>(
6492        TST->getTemplateName().getAsTemplateDecl());
6493    Arguments = TST->getArgs();
6494  }
6495  if (!Template)
6496    return false;
6497
6498  if (!StdInitializerList) {
6499    // Haven't recognized std::initializer_list yet, maybe this is it.
6500    CXXRecordDecl *TemplateClass = Template->getTemplatedDecl();
6501    if (TemplateClass->getIdentifier() !=
6502            &PP.getIdentifierTable().get("initializer_list") ||
6503        !getStdNamespace()->InEnclosingNamespaceSetOf(
6504            TemplateClass->getDeclContext()))
6505      return false;
6506    // This is a template called std::initializer_list, but is it the right
6507    // template?
6508    TemplateParameterList *Params = Template->getTemplateParameters();
6509    if (Params->getMinRequiredArguments() != 1)
6510      return false;
6511    if (!isa<TemplateTypeParmDecl>(Params->getParam(0)))
6512      return false;
6513
6514    // It's the right template.
6515    StdInitializerList = Template;
6516  }
6517
6518  if (Template != StdInitializerList)
6519    return false;
6520
6521  // This is an instance of std::initializer_list. Find the argument type.
6522  if (Element)
6523    *Element = Arguments[0].getAsType();
6524  return true;
6525}
6526
6527static ClassTemplateDecl *LookupStdInitializerList(Sema &S, SourceLocation Loc){
6528  NamespaceDecl *Std = S.getStdNamespace();
6529  if (!Std) {
6530    S.Diag(Loc, diag::err_implied_std_initializer_list_not_found);
6531    return 0;
6532  }
6533
6534  LookupResult Result(S, &S.PP.getIdentifierTable().get("initializer_list"),
6535                      Loc, Sema::LookupOrdinaryName);
6536  if (!S.LookupQualifiedName(Result, Std)) {
6537    S.Diag(Loc, diag::err_implied_std_initializer_list_not_found);
6538    return 0;
6539  }
6540  ClassTemplateDecl *Template = Result.getAsSingle<ClassTemplateDecl>();
6541  if (!Template) {
6542    Result.suppressDiagnostics();
6543    // We found something weird. Complain about the first thing we found.
6544    NamedDecl *Found = *Result.begin();
6545    S.Diag(Found->getLocation(), diag::err_malformed_std_initializer_list);
6546    return 0;
6547  }
6548
6549  // We found some template called std::initializer_list. Now verify that it's
6550  // correct.
6551  TemplateParameterList *Params = Template->getTemplateParameters();
6552  if (Params->getMinRequiredArguments() != 1 ||
6553      !isa<TemplateTypeParmDecl>(Params->getParam(0))) {
6554    S.Diag(Template->getLocation(), diag::err_malformed_std_initializer_list);
6555    return 0;
6556  }
6557
6558  return Template;
6559}
6560
6561QualType Sema::BuildStdInitializerList(QualType Element, SourceLocation Loc) {
6562  if (!StdInitializerList) {
6563    StdInitializerList = LookupStdInitializerList(*this, Loc);
6564    if (!StdInitializerList)
6565      return QualType();
6566  }
6567
6568  TemplateArgumentListInfo Args(Loc, Loc);
6569  Args.addArgument(TemplateArgumentLoc(TemplateArgument(Element),
6570                                       Context.getTrivialTypeSourceInfo(Element,
6571                                                                        Loc)));
6572  return Context.getCanonicalType(
6573      CheckTemplateIdType(TemplateName(StdInitializerList), Loc, Args));
6574}
6575
6576bool Sema::isInitListConstructor(const CXXConstructorDecl* Ctor) {
6577  // C++ [dcl.init.list]p2:
6578  //   A constructor is an initializer-list constructor if its first parameter
6579  //   is of type std::initializer_list<E> or reference to possibly cv-qualified
6580  //   std::initializer_list<E> for some type E, and either there are no other
6581  //   parameters or else all other parameters have default arguments.
6582  if (Ctor->getNumParams() < 1 ||
6583      (Ctor->getNumParams() > 1 && !Ctor->getParamDecl(1)->hasDefaultArg()))
6584    return false;
6585
6586  QualType ArgType = Ctor->getParamDecl(0)->getType();
6587  if (const ReferenceType *RT = ArgType->getAs<ReferenceType>())
6588    ArgType = RT->getPointeeType().getUnqualifiedType();
6589
6590  return isStdInitializerList(ArgType, 0);
6591}
6592
6593/// \brief Determine whether a using statement is in a context where it will be
6594/// apply in all contexts.
6595static bool IsUsingDirectiveInToplevelContext(DeclContext *CurContext) {
6596  switch (CurContext->getDeclKind()) {
6597    case Decl::TranslationUnit:
6598      return true;
6599    case Decl::LinkageSpec:
6600      return IsUsingDirectiveInToplevelContext(CurContext->getParent());
6601    default:
6602      return false;
6603  }
6604}
6605
6606namespace {
6607
6608// Callback to only accept typo corrections that are namespaces.
6609class NamespaceValidatorCCC : public CorrectionCandidateCallback {
6610 public:
6611  virtual bool ValidateCandidate(const TypoCorrection &candidate) {
6612    if (NamedDecl *ND = candidate.getCorrectionDecl()) {
6613      return isa<NamespaceDecl>(ND) || isa<NamespaceAliasDecl>(ND);
6614    }
6615    return false;
6616  }
6617};
6618
6619}
6620
6621static bool TryNamespaceTypoCorrection(Sema &S, LookupResult &R, Scope *Sc,
6622                                       CXXScopeSpec &SS,
6623                                       SourceLocation IdentLoc,
6624                                       IdentifierInfo *Ident) {
6625  NamespaceValidatorCCC Validator;
6626  R.clear();
6627  if (TypoCorrection Corrected = S.CorrectTypo(R.getLookupNameInfo(),
6628                                               R.getLookupKind(), Sc, &SS,
6629                                               Validator)) {
6630    std::string CorrectedStr(Corrected.getAsString(S.getLangOpts()));
6631    std::string CorrectedQuotedStr(Corrected.getQuoted(S.getLangOpts()));
6632    if (DeclContext *DC = S.computeDeclContext(SS, false)) {
6633      bool droppedSpecifier = Corrected.WillReplaceSpecifier() &&
6634                              Ident->getName().equals(CorrectedStr);
6635      S.Diag(IdentLoc, diag::err_using_directive_member_suggest)
6636          << Ident << DC << droppedSpecifier << CorrectedQuotedStr
6637          << SS.getRange() << FixItHint::CreateReplacement(
6638                                  Corrected.getCorrectionRange(), CorrectedStr);
6639    } else {
6640      S.Diag(IdentLoc, diag::err_using_directive_suggest)
6641        << Ident << CorrectedQuotedStr
6642        << FixItHint::CreateReplacement(IdentLoc, CorrectedStr);
6643    }
6644
6645    S.Diag(Corrected.getCorrectionDecl()->getLocation(),
6646         diag::note_namespace_defined_here) << CorrectedQuotedStr;
6647
6648    R.addDecl(Corrected.getCorrectionDecl());
6649    return true;
6650  }
6651  return false;
6652}
6653
6654Decl *Sema::ActOnUsingDirective(Scope *S,
6655                                          SourceLocation UsingLoc,
6656                                          SourceLocation NamespcLoc,
6657                                          CXXScopeSpec &SS,
6658                                          SourceLocation IdentLoc,
6659                                          IdentifierInfo *NamespcName,
6660                                          AttributeList *AttrList) {
6661  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
6662  assert(NamespcName && "Invalid NamespcName.");
6663  assert(IdentLoc.isValid() && "Invalid NamespceName location.");
6664
6665  // This can only happen along a recovery path.
6666  while (S->getFlags() & Scope::TemplateParamScope)
6667    S = S->getParent();
6668  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
6669
6670  UsingDirectiveDecl *UDir = 0;
6671  NestedNameSpecifier *Qualifier = 0;
6672  if (SS.isSet())
6673    Qualifier = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
6674
6675  // Lookup namespace name.
6676  LookupResult R(*this, NamespcName, IdentLoc, LookupNamespaceName);
6677  LookupParsedName(R, S, &SS);
6678  if (R.isAmbiguous())
6679    return 0;
6680
6681  if (R.empty()) {
6682    R.clear();
6683    // Allow "using namespace std;" or "using namespace ::std;" even if
6684    // "std" hasn't been defined yet, for GCC compatibility.
6685    if ((!Qualifier || Qualifier->getKind() == NestedNameSpecifier::Global) &&
6686        NamespcName->isStr("std")) {
6687      Diag(IdentLoc, diag::ext_using_undefined_std);
6688      R.addDecl(getOrCreateStdNamespace());
6689      R.resolveKind();
6690    }
6691    // Otherwise, attempt typo correction.
6692    else TryNamespaceTypoCorrection(*this, R, S, SS, IdentLoc, NamespcName);
6693  }
6694
6695  if (!R.empty()) {
6696    NamedDecl *Named = R.getFoundDecl();
6697    assert((isa<NamespaceDecl>(Named) || isa<NamespaceAliasDecl>(Named))
6698        && "expected namespace decl");
6699    // C++ [namespace.udir]p1:
6700    //   A using-directive specifies that the names in the nominated
6701    //   namespace can be used in the scope in which the
6702    //   using-directive appears after the using-directive. During
6703    //   unqualified name lookup (3.4.1), the names appear as if they
6704    //   were declared in the nearest enclosing namespace which
6705    //   contains both the using-directive and the nominated
6706    //   namespace. [Note: in this context, "contains" means "contains
6707    //   directly or indirectly". ]
6708
6709    // Find enclosing context containing both using-directive and
6710    // nominated namespace.
6711    NamespaceDecl *NS = getNamespaceDecl(Named);
6712    DeclContext *CommonAncestor = cast<DeclContext>(NS);
6713    while (CommonAncestor && !CommonAncestor->Encloses(CurContext))
6714      CommonAncestor = CommonAncestor->getParent();
6715
6716    UDir = UsingDirectiveDecl::Create(Context, CurContext, UsingLoc, NamespcLoc,
6717                                      SS.getWithLocInContext(Context),
6718                                      IdentLoc, Named, CommonAncestor);
6719
6720    if (IsUsingDirectiveInToplevelContext(CurContext) &&
6721        !SourceMgr.isFromMainFile(SourceMgr.getExpansionLoc(IdentLoc))) {
6722      Diag(IdentLoc, diag::warn_using_directive_in_header);
6723    }
6724
6725    PushUsingDirective(S, UDir);
6726  } else {
6727    Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
6728  }
6729
6730  if (UDir)
6731    ProcessDeclAttributeList(S, UDir, AttrList);
6732
6733  return UDir;
6734}
6735
6736void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) {
6737  // If the scope has an associated entity and the using directive is at
6738  // namespace or translation unit scope, add the UsingDirectiveDecl into
6739  // its lookup structure so qualified name lookup can find it.
6740  DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity());
6741  if (Ctx && !Ctx->isFunctionOrMethod())
6742    Ctx->addDecl(UDir);
6743  else
6744    // Otherwise, it is at block sope. The using-directives will affect lookup
6745    // only to the end of the scope.
6746    S->PushUsingDirective(UDir);
6747}
6748
6749
6750Decl *Sema::ActOnUsingDeclaration(Scope *S,
6751                                  AccessSpecifier AS,
6752                                  bool HasUsingKeyword,
6753                                  SourceLocation UsingLoc,
6754                                  CXXScopeSpec &SS,
6755                                  UnqualifiedId &Name,
6756                                  AttributeList *AttrList,
6757                                  bool HasTypenameKeyword,
6758                                  SourceLocation TypenameLoc) {
6759  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
6760
6761  switch (Name.getKind()) {
6762  case UnqualifiedId::IK_ImplicitSelfParam:
6763  case UnqualifiedId::IK_Identifier:
6764  case UnqualifiedId::IK_OperatorFunctionId:
6765  case UnqualifiedId::IK_LiteralOperatorId:
6766  case UnqualifiedId::IK_ConversionFunctionId:
6767    break;
6768
6769  case UnqualifiedId::IK_ConstructorName:
6770  case UnqualifiedId::IK_ConstructorTemplateId:
6771    // C++11 inheriting constructors.
6772    Diag(Name.getLocStart(),
6773         getLangOpts().CPlusPlus11 ?
6774           diag::warn_cxx98_compat_using_decl_constructor :
6775           diag::err_using_decl_constructor)
6776      << SS.getRange();
6777
6778    if (getLangOpts().CPlusPlus11) break;
6779
6780    return 0;
6781
6782  case UnqualifiedId::IK_DestructorName:
6783    Diag(Name.getLocStart(), diag::err_using_decl_destructor)
6784      << SS.getRange();
6785    return 0;
6786
6787  case UnqualifiedId::IK_TemplateId:
6788    Diag(Name.getLocStart(), diag::err_using_decl_template_id)
6789      << SourceRange(Name.TemplateId->LAngleLoc, Name.TemplateId->RAngleLoc);
6790    return 0;
6791  }
6792
6793  DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name);
6794  DeclarationName TargetName = TargetNameInfo.getName();
6795  if (!TargetName)
6796    return 0;
6797
6798  // Warn about access declarations.
6799  if (!HasUsingKeyword) {
6800    Diag(Name.getLocStart(),
6801         getLangOpts().CPlusPlus11 ? diag::err_access_decl
6802                                   : diag::warn_access_decl_deprecated)
6803      << FixItHint::CreateInsertion(SS.getRange().getBegin(), "using ");
6804  }
6805
6806  if (DiagnoseUnexpandedParameterPack(SS, UPPC_UsingDeclaration) ||
6807      DiagnoseUnexpandedParameterPack(TargetNameInfo, UPPC_UsingDeclaration))
6808    return 0;
6809
6810  NamedDecl *UD = BuildUsingDeclaration(S, AS, UsingLoc, SS,
6811                                        TargetNameInfo, AttrList,
6812                                        /* IsInstantiation */ false,
6813                                        HasTypenameKeyword, TypenameLoc);
6814  if (UD)
6815    PushOnScopeChains(UD, S, /*AddToContext*/ false);
6816
6817  return UD;
6818}
6819
6820/// \brief Determine whether a using declaration considers the given
6821/// declarations as "equivalent", e.g., if they are redeclarations of
6822/// the same entity or are both typedefs of the same type.
6823static bool
6824IsEquivalentForUsingDecl(ASTContext &Context, NamedDecl *D1, NamedDecl *D2,
6825                         bool &SuppressRedeclaration) {
6826  if (D1->getCanonicalDecl() == D2->getCanonicalDecl()) {
6827    SuppressRedeclaration = false;
6828    return true;
6829  }
6830
6831  if (TypedefNameDecl *TD1 = dyn_cast<TypedefNameDecl>(D1))
6832    if (TypedefNameDecl *TD2 = dyn_cast<TypedefNameDecl>(D2)) {
6833      SuppressRedeclaration = true;
6834      return Context.hasSameType(TD1->getUnderlyingType(),
6835                                 TD2->getUnderlyingType());
6836    }
6837
6838  return false;
6839}
6840
6841
6842/// Determines whether to create a using shadow decl for a particular
6843/// decl, given the set of decls existing prior to this using lookup.
6844bool Sema::CheckUsingShadowDecl(UsingDecl *Using, NamedDecl *Orig,
6845                                const LookupResult &Previous) {
6846  // Diagnose finding a decl which is not from a base class of the
6847  // current class.  We do this now because there are cases where this
6848  // function will silently decide not to build a shadow decl, which
6849  // will pre-empt further diagnostics.
6850  //
6851  // We don't need to do this in C++0x because we do the check once on
6852  // the qualifier.
6853  //
6854  // FIXME: diagnose the following if we care enough:
6855  //   struct A { int foo; };
6856  //   struct B : A { using A::foo; };
6857  //   template <class T> struct C : A {};
6858  //   template <class T> struct D : C<T> { using B::foo; } // <---
6859  // This is invalid (during instantiation) in C++03 because B::foo
6860  // resolves to the using decl in B, which is not a base class of D<T>.
6861  // We can't diagnose it immediately because C<T> is an unknown
6862  // specialization.  The UsingShadowDecl in D<T> then points directly
6863  // to A::foo, which will look well-formed when we instantiate.
6864  // The right solution is to not collapse the shadow-decl chain.
6865  if (!getLangOpts().CPlusPlus11 && CurContext->isRecord()) {
6866    DeclContext *OrigDC = Orig->getDeclContext();
6867
6868    // Handle enums and anonymous structs.
6869    if (isa<EnumDecl>(OrigDC)) OrigDC = OrigDC->getParent();
6870    CXXRecordDecl *OrigRec = cast<CXXRecordDecl>(OrigDC);
6871    while (OrigRec->isAnonymousStructOrUnion())
6872      OrigRec = cast<CXXRecordDecl>(OrigRec->getDeclContext());
6873
6874    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(OrigRec)) {
6875      if (OrigDC == CurContext) {
6876        Diag(Using->getLocation(),
6877             diag::err_using_decl_nested_name_specifier_is_current_class)
6878          << Using->getQualifierLoc().getSourceRange();
6879        Diag(Orig->getLocation(), diag::note_using_decl_target);
6880        return true;
6881      }
6882
6883      Diag(Using->getQualifierLoc().getBeginLoc(),
6884           diag::err_using_decl_nested_name_specifier_is_not_base_class)
6885        << Using->getQualifier()
6886        << cast<CXXRecordDecl>(CurContext)
6887        << Using->getQualifierLoc().getSourceRange();
6888      Diag(Orig->getLocation(), diag::note_using_decl_target);
6889      return true;
6890    }
6891  }
6892
6893  if (Previous.empty()) return false;
6894
6895  NamedDecl *Target = Orig;
6896  if (isa<UsingShadowDecl>(Target))
6897    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
6898
6899  // If the target happens to be one of the previous declarations, we
6900  // don't have a conflict.
6901  //
6902  // FIXME: but we might be increasing its access, in which case we
6903  // should redeclare it.
6904  NamedDecl *NonTag = 0, *Tag = 0;
6905  for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
6906         I != E; ++I) {
6907    NamedDecl *D = (*I)->getUnderlyingDecl();
6908    bool Result;
6909    if (IsEquivalentForUsingDecl(Context, D, Target, Result))
6910      return Result;
6911
6912    (isa<TagDecl>(D) ? Tag : NonTag) = D;
6913  }
6914
6915  if (Target->isFunctionOrFunctionTemplate()) {
6916    FunctionDecl *FD;
6917    if (isa<FunctionTemplateDecl>(Target))
6918      FD = cast<FunctionTemplateDecl>(Target)->getTemplatedDecl();
6919    else
6920      FD = cast<FunctionDecl>(Target);
6921
6922    NamedDecl *OldDecl = 0;
6923    switch (CheckOverload(0, FD, Previous, OldDecl, /*IsForUsingDecl*/ true)) {
6924    case Ovl_Overload:
6925      return false;
6926
6927    case Ovl_NonFunction:
6928      Diag(Using->getLocation(), diag::err_using_decl_conflict);
6929      break;
6930
6931    // We found a decl with the exact signature.
6932    case Ovl_Match:
6933      // If we're in a record, we want to hide the target, so we
6934      // return true (without a diagnostic) to tell the caller not to
6935      // build a shadow decl.
6936      if (CurContext->isRecord())
6937        return true;
6938
6939      // If we're not in a record, this is an error.
6940      Diag(Using->getLocation(), diag::err_using_decl_conflict);
6941      break;
6942    }
6943
6944    Diag(Target->getLocation(), diag::note_using_decl_target);
6945    Diag(OldDecl->getLocation(), diag::note_using_decl_conflict);
6946    return true;
6947  }
6948
6949  // Target is not a function.
6950
6951  if (isa<TagDecl>(Target)) {
6952    // No conflict between a tag and a non-tag.
6953    if (!Tag) return false;
6954
6955    Diag(Using->getLocation(), diag::err_using_decl_conflict);
6956    Diag(Target->getLocation(), diag::note_using_decl_target);
6957    Diag(Tag->getLocation(), diag::note_using_decl_conflict);
6958    return true;
6959  }
6960
6961  // No conflict between a tag and a non-tag.
6962  if (!NonTag) return false;
6963
6964  Diag(Using->getLocation(), diag::err_using_decl_conflict);
6965  Diag(Target->getLocation(), diag::note_using_decl_target);
6966  Diag(NonTag->getLocation(), diag::note_using_decl_conflict);
6967  return true;
6968}
6969
6970/// Builds a shadow declaration corresponding to a 'using' declaration.
6971UsingShadowDecl *Sema::BuildUsingShadowDecl(Scope *S,
6972                                            UsingDecl *UD,
6973                                            NamedDecl *Orig) {
6974
6975  // If we resolved to another shadow declaration, just coalesce them.
6976  NamedDecl *Target = Orig;
6977  if (isa<UsingShadowDecl>(Target)) {
6978    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
6979    assert(!isa<UsingShadowDecl>(Target) && "nested shadow declaration");
6980  }
6981
6982  UsingShadowDecl *Shadow
6983    = UsingShadowDecl::Create(Context, CurContext,
6984                              UD->getLocation(), UD, Target);
6985  UD->addShadowDecl(Shadow);
6986
6987  Shadow->setAccess(UD->getAccess());
6988  if (Orig->isInvalidDecl() || UD->isInvalidDecl())
6989    Shadow->setInvalidDecl();
6990
6991  if (S)
6992    PushOnScopeChains(Shadow, S);
6993  else
6994    CurContext->addDecl(Shadow);
6995
6996
6997  return Shadow;
6998}
6999
7000/// Hides a using shadow declaration.  This is required by the current
7001/// using-decl implementation when a resolvable using declaration in a
7002/// class is followed by a declaration which would hide or override
7003/// one or more of the using decl's targets; for example:
7004///
7005///   struct Base { void foo(int); };
7006///   struct Derived : Base {
7007///     using Base::foo;
7008///     void foo(int);
7009///   };
7010///
7011/// The governing language is C++03 [namespace.udecl]p12:
7012///
7013///   When a using-declaration brings names from a base class into a
7014///   derived class scope, member functions in the derived class
7015///   override and/or hide member functions with the same name and
7016///   parameter types in a base class (rather than conflicting).
7017///
7018/// There are two ways to implement this:
7019///   (1) optimistically create shadow decls when they're not hidden
7020///       by existing declarations, or
7021///   (2) don't create any shadow decls (or at least don't make them
7022///       visible) until we've fully parsed/instantiated the class.
7023/// The problem with (1) is that we might have to retroactively remove
7024/// a shadow decl, which requires several O(n) operations because the
7025/// decl structures are (very reasonably) not designed for removal.
7026/// (2) avoids this but is very fiddly and phase-dependent.
7027void Sema::HideUsingShadowDecl(Scope *S, UsingShadowDecl *Shadow) {
7028  if (Shadow->getDeclName().getNameKind() ==
7029        DeclarationName::CXXConversionFunctionName)
7030    cast<CXXRecordDecl>(Shadow->getDeclContext())->removeConversion(Shadow);
7031
7032  // Remove it from the DeclContext...
7033  Shadow->getDeclContext()->removeDecl(Shadow);
7034
7035  // ...and the scope, if applicable...
7036  if (S) {
7037    S->RemoveDecl(Shadow);
7038    IdResolver.RemoveDecl(Shadow);
7039  }
7040
7041  // ...and the using decl.
7042  Shadow->getUsingDecl()->removeShadowDecl(Shadow);
7043
7044  // TODO: complain somehow if Shadow was used.  It shouldn't
7045  // be possible for this to happen, because...?
7046}
7047
7048class UsingValidatorCCC : public CorrectionCandidateCallback {
7049public:
7050  UsingValidatorCCC(bool HasTypenameKeyword, bool IsInstantiation)
7051      : HasTypenameKeyword(HasTypenameKeyword),
7052        IsInstantiation(IsInstantiation) {}
7053
7054  virtual bool ValidateCandidate(const TypoCorrection &Candidate) {
7055    if (NamedDecl *ND = Candidate.getCorrectionDecl()) {
7056      if (isa<NamespaceDecl>(ND))
7057        return false;
7058      // Completely unqualified names are invalid for a 'using' declaration.
7059      bool droppedSpecifier = Candidate.WillReplaceSpecifier() &&
7060                              !Candidate.getCorrectionSpecifier();
7061      if (droppedSpecifier)
7062        return false;
7063      else if (isa<TypeDecl>(ND))
7064        return HasTypenameKeyword || !IsInstantiation;
7065      else
7066        return !HasTypenameKeyword;
7067    } else {
7068      // Keywords are not valid here.
7069      return false;
7070    }
7071  }
7072
7073private:
7074  bool HasTypenameKeyword;
7075  bool IsInstantiation;
7076};
7077
7078/// Builds a using declaration.
7079///
7080/// \param IsInstantiation - Whether this call arises from an
7081///   instantiation of an unresolved using declaration.  We treat
7082///   the lookup differently for these declarations.
7083NamedDecl *Sema::BuildUsingDeclaration(Scope *S, AccessSpecifier AS,
7084                                       SourceLocation UsingLoc,
7085                                       CXXScopeSpec &SS,
7086                                       const DeclarationNameInfo &NameInfo,
7087                                       AttributeList *AttrList,
7088                                       bool IsInstantiation,
7089                                       bool HasTypenameKeyword,
7090                                       SourceLocation TypenameLoc) {
7091  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
7092  SourceLocation IdentLoc = NameInfo.getLoc();
7093  assert(IdentLoc.isValid() && "Invalid TargetName location.");
7094
7095  // FIXME: We ignore attributes for now.
7096
7097  if (SS.isEmpty()) {
7098    Diag(IdentLoc, diag::err_using_requires_qualname);
7099    return 0;
7100  }
7101
7102  // Do the redeclaration lookup in the current scope.
7103  LookupResult Previous(*this, NameInfo, LookupUsingDeclName,
7104                        ForRedeclaration);
7105  Previous.setHideTags(false);
7106  if (S) {
7107    LookupName(Previous, S);
7108
7109    // It is really dumb that we have to do this.
7110    LookupResult::Filter F = Previous.makeFilter();
7111    while (F.hasNext()) {
7112      NamedDecl *D = F.next();
7113      if (!isDeclInScope(D, CurContext, S))
7114        F.erase();
7115    }
7116    F.done();
7117  } else {
7118    assert(IsInstantiation && "no scope in non-instantiation");
7119    assert(CurContext->isRecord() && "scope not record in instantiation");
7120    LookupQualifiedName(Previous, CurContext);
7121  }
7122
7123  // Check for invalid redeclarations.
7124  if (CheckUsingDeclRedeclaration(UsingLoc, HasTypenameKeyword,
7125                                  SS, IdentLoc, Previous))
7126    return 0;
7127
7128  // Check for bad qualifiers.
7129  if (CheckUsingDeclQualifier(UsingLoc, SS, IdentLoc))
7130    return 0;
7131
7132  DeclContext *LookupContext = computeDeclContext(SS);
7133  NamedDecl *D;
7134  NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
7135  if (!LookupContext) {
7136    if (HasTypenameKeyword) {
7137      // FIXME: not all declaration name kinds are legal here
7138      D = UnresolvedUsingTypenameDecl::Create(Context, CurContext,
7139                                              UsingLoc, TypenameLoc,
7140                                              QualifierLoc,
7141                                              IdentLoc, NameInfo.getName());
7142    } else {
7143      D = UnresolvedUsingValueDecl::Create(Context, CurContext, UsingLoc,
7144                                           QualifierLoc, NameInfo);
7145    }
7146  } else {
7147    D = UsingDecl::Create(Context, CurContext, UsingLoc, QualifierLoc,
7148                          NameInfo, HasTypenameKeyword);
7149  }
7150  D->setAccess(AS);
7151  CurContext->addDecl(D);
7152
7153  if (!LookupContext) return D;
7154  UsingDecl *UD = cast<UsingDecl>(D);
7155
7156  if (RequireCompleteDeclContext(SS, LookupContext)) {
7157    UD->setInvalidDecl();
7158    return UD;
7159  }
7160
7161  // The normal rules do not apply to inheriting constructor declarations.
7162  if (NameInfo.getName().getNameKind() == DeclarationName::CXXConstructorName) {
7163    if (CheckInheritingConstructorUsingDecl(UD))
7164      UD->setInvalidDecl();
7165    return UD;
7166  }
7167
7168  // Otherwise, look up the target name.
7169
7170  LookupResult R(*this, NameInfo, LookupOrdinaryName);
7171
7172  // Unlike most lookups, we don't always want to hide tag
7173  // declarations: tag names are visible through the using declaration
7174  // even if hidden by ordinary names, *except* in a dependent context
7175  // where it's important for the sanity of two-phase lookup.
7176  if (!IsInstantiation)
7177    R.setHideTags(false);
7178
7179  // For the purposes of this lookup, we have a base object type
7180  // equal to that of the current context.
7181  if (CurContext->isRecord()) {
7182    R.setBaseObjectType(
7183                   Context.getTypeDeclType(cast<CXXRecordDecl>(CurContext)));
7184  }
7185
7186  LookupQualifiedName(R, LookupContext);
7187
7188  // Try to correct typos if possible.
7189  if (R.empty()) {
7190    UsingValidatorCCC CCC(HasTypenameKeyword, IsInstantiation);
7191    if (TypoCorrection Corrected = CorrectTypo(R.getLookupNameInfo(),
7192                                               R.getLookupKind(), S, &SS, CCC)){
7193      // We reject any correction for which ND would be NULL.
7194      NamedDecl *ND = Corrected.getCorrectionDecl();
7195      std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
7196      std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOpts()));
7197      R.setLookupName(Corrected.getCorrection());
7198      R.addDecl(ND);
7199      // We reject candidates where droppedSpecifier == true, hence the
7200      // literal '0' below.
7201      Diag(R.getNameLoc(), diag::err_no_member_suggest)
7202        << NameInfo.getName() << LookupContext << 0
7203        << CorrectedQuotedStr << SS.getRange()
7204        << FixItHint::CreateReplacement(Corrected.getCorrectionRange(),
7205                                        CorrectedStr);
7206      Diag(ND->getLocation(), diag::note_previous_decl)
7207        << CorrectedQuotedStr;
7208    } else {
7209      Diag(IdentLoc, diag::err_no_member)
7210        << NameInfo.getName() << LookupContext << SS.getRange();
7211      UD->setInvalidDecl();
7212      return UD;
7213    }
7214  }
7215
7216  if (R.isAmbiguous()) {
7217    UD->setInvalidDecl();
7218    return UD;
7219  }
7220
7221  if (HasTypenameKeyword) {
7222    // If we asked for a typename and got a non-type decl, error out.
7223    if (!R.getAsSingle<TypeDecl>()) {
7224      Diag(IdentLoc, diag::err_using_typename_non_type);
7225      for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
7226        Diag((*I)->getUnderlyingDecl()->getLocation(),
7227             diag::note_using_decl_target);
7228      UD->setInvalidDecl();
7229      return UD;
7230    }
7231  } else {
7232    // If we asked for a non-typename and we got a type, error out,
7233    // but only if this is an instantiation of an unresolved using
7234    // decl.  Otherwise just silently find the type name.
7235    if (IsInstantiation && R.getAsSingle<TypeDecl>()) {
7236      Diag(IdentLoc, diag::err_using_dependent_value_is_type);
7237      Diag(R.getFoundDecl()->getLocation(), diag::note_using_decl_target);
7238      UD->setInvalidDecl();
7239      return UD;
7240    }
7241  }
7242
7243  // C++0x N2914 [namespace.udecl]p6:
7244  // A using-declaration shall not name a namespace.
7245  if (R.getAsSingle<NamespaceDecl>()) {
7246    Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_namespace)
7247      << SS.getRange();
7248    UD->setInvalidDecl();
7249    return UD;
7250  }
7251
7252  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
7253    if (!CheckUsingShadowDecl(UD, *I, Previous))
7254      BuildUsingShadowDecl(S, UD, *I);
7255  }
7256
7257  return UD;
7258}
7259
7260/// Additional checks for a using declaration referring to a constructor name.
7261bool Sema::CheckInheritingConstructorUsingDecl(UsingDecl *UD) {
7262  assert(!UD->hasTypename() && "expecting a constructor name");
7263
7264  const Type *SourceType = UD->getQualifier()->getAsType();
7265  assert(SourceType &&
7266         "Using decl naming constructor doesn't have type in scope spec.");
7267  CXXRecordDecl *TargetClass = cast<CXXRecordDecl>(CurContext);
7268
7269  // Check whether the named type is a direct base class.
7270  CanQualType CanonicalSourceType = SourceType->getCanonicalTypeUnqualified();
7271  CXXRecordDecl::base_class_iterator BaseIt, BaseE;
7272  for (BaseIt = TargetClass->bases_begin(), BaseE = TargetClass->bases_end();
7273       BaseIt != BaseE; ++BaseIt) {
7274    CanQualType BaseType = BaseIt->getType()->getCanonicalTypeUnqualified();
7275    if (CanonicalSourceType == BaseType)
7276      break;
7277    if (BaseIt->getType()->isDependentType())
7278      break;
7279  }
7280
7281  if (BaseIt == BaseE) {
7282    // Did not find SourceType in the bases.
7283    Diag(UD->getUsingLoc(),
7284         diag::err_using_decl_constructor_not_in_direct_base)
7285      << UD->getNameInfo().getSourceRange()
7286      << QualType(SourceType, 0) << TargetClass;
7287    return true;
7288  }
7289
7290  if (!CurContext->isDependentContext())
7291    BaseIt->setInheritConstructors();
7292
7293  return false;
7294}
7295
7296/// Checks that the given using declaration is not an invalid
7297/// redeclaration.  Note that this is checking only for the using decl
7298/// itself, not for any ill-formedness among the UsingShadowDecls.
7299bool Sema::CheckUsingDeclRedeclaration(SourceLocation UsingLoc,
7300                                       bool HasTypenameKeyword,
7301                                       const CXXScopeSpec &SS,
7302                                       SourceLocation NameLoc,
7303                                       const LookupResult &Prev) {
7304  // C++03 [namespace.udecl]p8:
7305  // C++0x [namespace.udecl]p10:
7306  //   A using-declaration is a declaration and can therefore be used
7307  //   repeatedly where (and only where) multiple declarations are
7308  //   allowed.
7309  //
7310  // That's in non-member contexts.
7311  if (!CurContext->getRedeclContext()->isRecord())
7312    return false;
7313
7314  NestedNameSpecifier *Qual
7315    = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
7316
7317  for (LookupResult::iterator I = Prev.begin(), E = Prev.end(); I != E; ++I) {
7318    NamedDecl *D = *I;
7319
7320    bool DTypename;
7321    NestedNameSpecifier *DQual;
7322    if (UsingDecl *UD = dyn_cast<UsingDecl>(D)) {
7323      DTypename = UD->hasTypename();
7324      DQual = UD->getQualifier();
7325    } else if (UnresolvedUsingValueDecl *UD
7326                 = dyn_cast<UnresolvedUsingValueDecl>(D)) {
7327      DTypename = false;
7328      DQual = UD->getQualifier();
7329    } else if (UnresolvedUsingTypenameDecl *UD
7330                 = dyn_cast<UnresolvedUsingTypenameDecl>(D)) {
7331      DTypename = true;
7332      DQual = UD->getQualifier();
7333    } else continue;
7334
7335    // using decls differ if one says 'typename' and the other doesn't.
7336    // FIXME: non-dependent using decls?
7337    if (HasTypenameKeyword != DTypename) continue;
7338
7339    // using decls differ if they name different scopes (but note that
7340    // template instantiation can cause this check to trigger when it
7341    // didn't before instantiation).
7342    if (Context.getCanonicalNestedNameSpecifier(Qual) !=
7343        Context.getCanonicalNestedNameSpecifier(DQual))
7344      continue;
7345
7346    Diag(NameLoc, diag::err_using_decl_redeclaration) << SS.getRange();
7347    Diag(D->getLocation(), diag::note_using_decl) << 1;
7348    return true;
7349  }
7350
7351  return false;
7352}
7353
7354
7355/// Checks that the given nested-name qualifier used in a using decl
7356/// in the current context is appropriately related to the current
7357/// scope.  If an error is found, diagnoses it and returns true.
7358bool Sema::CheckUsingDeclQualifier(SourceLocation UsingLoc,
7359                                   const CXXScopeSpec &SS,
7360                                   SourceLocation NameLoc) {
7361  DeclContext *NamedContext = computeDeclContext(SS);
7362
7363  if (!CurContext->isRecord()) {
7364    // C++03 [namespace.udecl]p3:
7365    // C++0x [namespace.udecl]p8:
7366    //   A using-declaration for a class member shall be a member-declaration.
7367
7368    // If we weren't able to compute a valid scope, it must be a
7369    // dependent class scope.
7370    if (!NamedContext || NamedContext->isRecord()) {
7371      Diag(NameLoc, diag::err_using_decl_can_not_refer_to_class_member)
7372        << SS.getRange();
7373      return true;
7374    }
7375
7376    // Otherwise, everything is known to be fine.
7377    return false;
7378  }
7379
7380  // The current scope is a record.
7381
7382  // If the named context is dependent, we can't decide much.
7383  if (!NamedContext) {
7384    // FIXME: in C++0x, we can diagnose if we can prove that the
7385    // nested-name-specifier does not refer to a base class, which is
7386    // still possible in some cases.
7387
7388    // Otherwise we have to conservatively report that things might be
7389    // okay.
7390    return false;
7391  }
7392
7393  if (!NamedContext->isRecord()) {
7394    // Ideally this would point at the last name in the specifier,
7395    // but we don't have that level of source info.
7396    Diag(SS.getRange().getBegin(),
7397         diag::err_using_decl_nested_name_specifier_is_not_class)
7398      << (NestedNameSpecifier*) SS.getScopeRep() << SS.getRange();
7399    return true;
7400  }
7401
7402  if (!NamedContext->isDependentContext() &&
7403      RequireCompleteDeclContext(const_cast<CXXScopeSpec&>(SS), NamedContext))
7404    return true;
7405
7406  if (getLangOpts().CPlusPlus11) {
7407    // C++0x [namespace.udecl]p3:
7408    //   In a using-declaration used as a member-declaration, the
7409    //   nested-name-specifier shall name a base class of the class
7410    //   being defined.
7411
7412    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(
7413                                 cast<CXXRecordDecl>(NamedContext))) {
7414      if (CurContext == NamedContext) {
7415        Diag(NameLoc,
7416             diag::err_using_decl_nested_name_specifier_is_current_class)
7417          << SS.getRange();
7418        return true;
7419      }
7420
7421      Diag(SS.getRange().getBegin(),
7422           diag::err_using_decl_nested_name_specifier_is_not_base_class)
7423        << (NestedNameSpecifier*) SS.getScopeRep()
7424        << cast<CXXRecordDecl>(CurContext)
7425        << SS.getRange();
7426      return true;
7427    }
7428
7429    return false;
7430  }
7431
7432  // C++03 [namespace.udecl]p4:
7433  //   A using-declaration used as a member-declaration shall refer
7434  //   to a member of a base class of the class being defined [etc.].
7435
7436  // Salient point: SS doesn't have to name a base class as long as
7437  // lookup only finds members from base classes.  Therefore we can
7438  // diagnose here only if we can prove that that can't happen,
7439  // i.e. if the class hierarchies provably don't intersect.
7440
7441  // TODO: it would be nice if "definitely valid" results were cached
7442  // in the UsingDecl and UsingShadowDecl so that these checks didn't
7443  // need to be repeated.
7444
7445  struct UserData {
7446    llvm::SmallPtrSet<const CXXRecordDecl*, 4> Bases;
7447
7448    static bool collect(const CXXRecordDecl *Base, void *OpaqueData) {
7449      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
7450      Data->Bases.insert(Base);
7451      return true;
7452    }
7453
7454    bool hasDependentBases(const CXXRecordDecl *Class) {
7455      return !Class->forallBases(collect, this);
7456    }
7457
7458    /// Returns true if the base is dependent or is one of the
7459    /// accumulated base classes.
7460    static bool doesNotContain(const CXXRecordDecl *Base, void *OpaqueData) {
7461      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
7462      return !Data->Bases.count(Base);
7463    }
7464
7465    bool mightShareBases(const CXXRecordDecl *Class) {
7466      return Bases.count(Class) || !Class->forallBases(doesNotContain, this);
7467    }
7468  };
7469
7470  UserData Data;
7471
7472  // Returns false if we find a dependent base.
7473  if (Data.hasDependentBases(cast<CXXRecordDecl>(CurContext)))
7474    return false;
7475
7476  // Returns false if the class has a dependent base or if it or one
7477  // of its bases is present in the base set of the current context.
7478  if (Data.mightShareBases(cast<CXXRecordDecl>(NamedContext)))
7479    return false;
7480
7481  Diag(SS.getRange().getBegin(),
7482       diag::err_using_decl_nested_name_specifier_is_not_base_class)
7483    << (NestedNameSpecifier*) SS.getScopeRep()
7484    << cast<CXXRecordDecl>(CurContext)
7485    << SS.getRange();
7486
7487  return true;
7488}
7489
7490Decl *Sema::ActOnAliasDeclaration(Scope *S,
7491                                  AccessSpecifier AS,
7492                                  MultiTemplateParamsArg TemplateParamLists,
7493                                  SourceLocation UsingLoc,
7494                                  UnqualifiedId &Name,
7495                                  AttributeList *AttrList,
7496                                  TypeResult Type) {
7497  // Skip up to the relevant declaration scope.
7498  while (S->getFlags() & Scope::TemplateParamScope)
7499    S = S->getParent();
7500  assert((S->getFlags() & Scope::DeclScope) &&
7501         "got alias-declaration outside of declaration scope");
7502
7503  if (Type.isInvalid())
7504    return 0;
7505
7506  bool Invalid = false;
7507  DeclarationNameInfo NameInfo = GetNameFromUnqualifiedId(Name);
7508  TypeSourceInfo *TInfo = 0;
7509  GetTypeFromParser(Type.get(), &TInfo);
7510
7511  if (DiagnoseClassNameShadow(CurContext, NameInfo))
7512    return 0;
7513
7514  if (DiagnoseUnexpandedParameterPack(Name.StartLocation, TInfo,
7515                                      UPPC_DeclarationType)) {
7516    Invalid = true;
7517    TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy,
7518                                             TInfo->getTypeLoc().getBeginLoc());
7519  }
7520
7521  LookupResult Previous(*this, NameInfo, LookupOrdinaryName, ForRedeclaration);
7522  LookupName(Previous, S);
7523
7524  // Warn about shadowing the name of a template parameter.
7525  if (Previous.isSingleResult() &&
7526      Previous.getFoundDecl()->isTemplateParameter()) {
7527    DiagnoseTemplateParameterShadow(Name.StartLocation,Previous.getFoundDecl());
7528    Previous.clear();
7529  }
7530
7531  assert(Name.Kind == UnqualifiedId::IK_Identifier &&
7532         "name in alias declaration must be an identifier");
7533  TypeAliasDecl *NewTD = TypeAliasDecl::Create(Context, CurContext, UsingLoc,
7534                                               Name.StartLocation,
7535                                               Name.Identifier, TInfo);
7536
7537  NewTD->setAccess(AS);
7538
7539  if (Invalid)
7540    NewTD->setInvalidDecl();
7541
7542  ProcessDeclAttributeList(S, NewTD, AttrList);
7543
7544  CheckTypedefForVariablyModifiedType(S, NewTD);
7545  Invalid |= NewTD->isInvalidDecl();
7546
7547  bool Redeclaration = false;
7548
7549  NamedDecl *NewND;
7550  if (TemplateParamLists.size()) {
7551    TypeAliasTemplateDecl *OldDecl = 0;
7552    TemplateParameterList *OldTemplateParams = 0;
7553
7554    if (TemplateParamLists.size() != 1) {
7555      Diag(UsingLoc, diag::err_alias_template_extra_headers)
7556        << SourceRange(TemplateParamLists[1]->getTemplateLoc(),
7557         TemplateParamLists[TemplateParamLists.size()-1]->getRAngleLoc());
7558    }
7559    TemplateParameterList *TemplateParams = TemplateParamLists[0];
7560
7561    // Only consider previous declarations in the same scope.
7562    FilterLookupForScope(Previous, CurContext, S, /*ConsiderLinkage*/false,
7563                         /*ExplicitInstantiationOrSpecialization*/false);
7564    if (!Previous.empty()) {
7565      Redeclaration = true;
7566
7567      OldDecl = Previous.getAsSingle<TypeAliasTemplateDecl>();
7568      if (!OldDecl && !Invalid) {
7569        Diag(UsingLoc, diag::err_redefinition_different_kind)
7570          << Name.Identifier;
7571
7572        NamedDecl *OldD = Previous.getRepresentativeDecl();
7573        if (OldD->getLocation().isValid())
7574          Diag(OldD->getLocation(), diag::note_previous_definition);
7575
7576        Invalid = true;
7577      }
7578
7579      if (!Invalid && OldDecl && !OldDecl->isInvalidDecl()) {
7580        if (TemplateParameterListsAreEqual(TemplateParams,
7581                                           OldDecl->getTemplateParameters(),
7582                                           /*Complain=*/true,
7583                                           TPL_TemplateMatch))
7584          OldTemplateParams = OldDecl->getTemplateParameters();
7585        else
7586          Invalid = true;
7587
7588        TypeAliasDecl *OldTD = OldDecl->getTemplatedDecl();
7589        if (!Invalid &&
7590            !Context.hasSameType(OldTD->getUnderlyingType(),
7591                                 NewTD->getUnderlyingType())) {
7592          // FIXME: The C++0x standard does not clearly say this is ill-formed,
7593          // but we can't reasonably accept it.
7594          Diag(NewTD->getLocation(), diag::err_redefinition_different_typedef)
7595            << 2 << NewTD->getUnderlyingType() << OldTD->getUnderlyingType();
7596          if (OldTD->getLocation().isValid())
7597            Diag(OldTD->getLocation(), diag::note_previous_definition);
7598          Invalid = true;
7599        }
7600      }
7601    }
7602
7603    // Merge any previous default template arguments into our parameters,
7604    // and check the parameter list.
7605    if (CheckTemplateParameterList(TemplateParams, OldTemplateParams,
7606                                   TPC_TypeAliasTemplate))
7607      return 0;
7608
7609    TypeAliasTemplateDecl *NewDecl =
7610      TypeAliasTemplateDecl::Create(Context, CurContext, UsingLoc,
7611                                    Name.Identifier, TemplateParams,
7612                                    NewTD);
7613
7614    NewDecl->setAccess(AS);
7615
7616    if (Invalid)
7617      NewDecl->setInvalidDecl();
7618    else if (OldDecl)
7619      NewDecl->setPreviousDeclaration(OldDecl);
7620
7621    NewND = NewDecl;
7622  } else {
7623    ActOnTypedefNameDecl(S, CurContext, NewTD, Previous, Redeclaration);
7624    NewND = NewTD;
7625  }
7626
7627  if (!Redeclaration)
7628    PushOnScopeChains(NewND, S);
7629
7630  ActOnDocumentableDecl(NewND);
7631  return NewND;
7632}
7633
7634Decl *Sema::ActOnNamespaceAliasDef(Scope *S,
7635                                             SourceLocation NamespaceLoc,
7636                                             SourceLocation AliasLoc,
7637                                             IdentifierInfo *Alias,
7638                                             CXXScopeSpec &SS,
7639                                             SourceLocation IdentLoc,
7640                                             IdentifierInfo *Ident) {
7641
7642  // Lookup the namespace name.
7643  LookupResult R(*this, Ident, IdentLoc, LookupNamespaceName);
7644  LookupParsedName(R, S, &SS);
7645
7646  // Check if we have a previous declaration with the same name.
7647  NamedDecl *PrevDecl
7648    = LookupSingleName(S, Alias, AliasLoc, LookupOrdinaryName,
7649                       ForRedeclaration);
7650  if (PrevDecl && !isDeclInScope(PrevDecl, CurContext, S))
7651    PrevDecl = 0;
7652
7653  if (PrevDecl) {
7654    if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) {
7655      // We already have an alias with the same name that points to the same
7656      // namespace, so don't create a new one.
7657      // FIXME: At some point, we'll want to create the (redundant)
7658      // declaration to maintain better source information.
7659      if (!R.isAmbiguous() && !R.empty() &&
7660          AD->getNamespace()->Equals(getNamespaceDecl(R.getFoundDecl())))
7661        return 0;
7662    }
7663
7664    unsigned DiagID = isa<NamespaceDecl>(PrevDecl) ? diag::err_redefinition :
7665      diag::err_redefinition_different_kind;
7666    Diag(AliasLoc, DiagID) << Alias;
7667    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
7668    return 0;
7669  }
7670
7671  if (R.isAmbiguous())
7672    return 0;
7673
7674  if (R.empty()) {
7675    if (!TryNamespaceTypoCorrection(*this, R, S, SS, IdentLoc, Ident)) {
7676      Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
7677      return 0;
7678    }
7679  }
7680
7681  NamespaceAliasDecl *AliasDecl =
7682    NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc,
7683                               Alias, SS.getWithLocInContext(Context),
7684                               IdentLoc, R.getFoundDecl());
7685
7686  PushOnScopeChains(AliasDecl, S);
7687  return AliasDecl;
7688}
7689
7690Sema::ImplicitExceptionSpecification
7691Sema::ComputeDefaultedDefaultCtorExceptionSpec(SourceLocation Loc,
7692                                               CXXMethodDecl *MD) {
7693  CXXRecordDecl *ClassDecl = MD->getParent();
7694
7695  // C++ [except.spec]p14:
7696  //   An implicitly declared special member function (Clause 12) shall have an
7697  //   exception-specification. [...]
7698  ImplicitExceptionSpecification ExceptSpec(*this);
7699  if (ClassDecl->isInvalidDecl())
7700    return ExceptSpec;
7701
7702  // Direct base-class constructors.
7703  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
7704                                       BEnd = ClassDecl->bases_end();
7705       B != BEnd; ++B) {
7706    if (B->isVirtual()) // Handled below.
7707      continue;
7708
7709    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
7710      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
7711      CXXConstructorDecl *Constructor = LookupDefaultConstructor(BaseClassDecl);
7712      // If this is a deleted function, add it anyway. This might be conformant
7713      // with the standard. This might not. I'm not sure. It might not matter.
7714      if (Constructor)
7715        ExceptSpec.CalledDecl(B->getLocStart(), Constructor);
7716    }
7717  }
7718
7719  // Virtual base-class constructors.
7720  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
7721                                       BEnd = ClassDecl->vbases_end();
7722       B != BEnd; ++B) {
7723    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
7724      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
7725      CXXConstructorDecl *Constructor = LookupDefaultConstructor(BaseClassDecl);
7726      // If this is a deleted function, add it anyway. This might be conformant
7727      // with the standard. This might not. I'm not sure. It might not matter.
7728      if (Constructor)
7729        ExceptSpec.CalledDecl(B->getLocStart(), Constructor);
7730    }
7731  }
7732
7733  // Field constructors.
7734  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
7735                               FEnd = ClassDecl->field_end();
7736       F != FEnd; ++F) {
7737    if (F->hasInClassInitializer()) {
7738      if (Expr *E = F->getInClassInitializer())
7739        ExceptSpec.CalledExpr(E);
7740      else if (!F->isInvalidDecl())
7741        // DR1351:
7742        //   If the brace-or-equal-initializer of a non-static data member
7743        //   invokes a defaulted default constructor of its class or of an
7744        //   enclosing class in a potentially evaluated subexpression, the
7745        //   program is ill-formed.
7746        //
7747        // This resolution is unworkable: the exception specification of the
7748        // default constructor can be needed in an unevaluated context, in
7749        // particular, in the operand of a noexcept-expression, and we can be
7750        // unable to compute an exception specification for an enclosed class.
7751        //
7752        // We do not allow an in-class initializer to require the evaluation
7753        // of the exception specification for any in-class initializer whose
7754        // definition is not lexically complete.
7755        Diag(Loc, diag::err_in_class_initializer_references_def_ctor) << MD;
7756    } else if (const RecordType *RecordTy
7757              = Context.getBaseElementType(F->getType())->getAs<RecordType>()) {
7758      CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
7759      CXXConstructorDecl *Constructor = LookupDefaultConstructor(FieldRecDecl);
7760      // If this is a deleted function, add it anyway. This might be conformant
7761      // with the standard. This might not. I'm not sure. It might not matter.
7762      // In particular, the problem is that this function never gets called. It
7763      // might just be ill-formed because this function attempts to refer to
7764      // a deleted function here.
7765      if (Constructor)
7766        ExceptSpec.CalledDecl(F->getLocation(), Constructor);
7767    }
7768  }
7769
7770  return ExceptSpec;
7771}
7772
7773Sema::ImplicitExceptionSpecification
7774Sema::ComputeInheritingCtorExceptionSpec(CXXConstructorDecl *CD) {
7775  CXXRecordDecl *ClassDecl = CD->getParent();
7776
7777  // C++ [except.spec]p14:
7778  //   An inheriting constructor [...] shall have an exception-specification. [...]
7779  ImplicitExceptionSpecification ExceptSpec(*this);
7780  if (ClassDecl->isInvalidDecl())
7781    return ExceptSpec;
7782
7783  // Inherited constructor.
7784  const CXXConstructorDecl *InheritedCD = CD->getInheritedConstructor();
7785  const CXXRecordDecl *InheritedDecl = InheritedCD->getParent();
7786  // FIXME: Copying or moving the parameters could add extra exceptions to the
7787  // set, as could the default arguments for the inherited constructor. This
7788  // will be addressed when we implement the resolution of core issue 1351.
7789  ExceptSpec.CalledDecl(CD->getLocStart(), InheritedCD);
7790
7791  // Direct base-class constructors.
7792  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
7793                                       BEnd = ClassDecl->bases_end();
7794       B != BEnd; ++B) {
7795    if (B->isVirtual()) // Handled below.
7796      continue;
7797
7798    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
7799      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
7800      if (BaseClassDecl == InheritedDecl)
7801        continue;
7802      CXXConstructorDecl *Constructor = LookupDefaultConstructor(BaseClassDecl);
7803      if (Constructor)
7804        ExceptSpec.CalledDecl(B->getLocStart(), Constructor);
7805    }
7806  }
7807
7808  // Virtual base-class constructors.
7809  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
7810                                       BEnd = ClassDecl->vbases_end();
7811       B != BEnd; ++B) {
7812    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
7813      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
7814      if (BaseClassDecl == InheritedDecl)
7815        continue;
7816      CXXConstructorDecl *Constructor = LookupDefaultConstructor(BaseClassDecl);
7817      if (Constructor)
7818        ExceptSpec.CalledDecl(B->getLocStart(), Constructor);
7819    }
7820  }
7821
7822  // Field constructors.
7823  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
7824                               FEnd = ClassDecl->field_end();
7825       F != FEnd; ++F) {
7826    if (F->hasInClassInitializer()) {
7827      if (Expr *E = F->getInClassInitializer())
7828        ExceptSpec.CalledExpr(E);
7829      else if (!F->isInvalidDecl())
7830        Diag(CD->getLocation(),
7831             diag::err_in_class_initializer_references_def_ctor) << CD;
7832    } else if (const RecordType *RecordTy
7833              = Context.getBaseElementType(F->getType())->getAs<RecordType>()) {
7834      CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
7835      CXXConstructorDecl *Constructor = LookupDefaultConstructor(FieldRecDecl);
7836      if (Constructor)
7837        ExceptSpec.CalledDecl(F->getLocation(), Constructor);
7838    }
7839  }
7840
7841  return ExceptSpec;
7842}
7843
7844namespace {
7845/// RAII object to register a special member as being currently declared.
7846struct DeclaringSpecialMember {
7847  Sema &S;
7848  Sema::SpecialMemberDecl D;
7849  bool WasAlreadyBeingDeclared;
7850
7851  DeclaringSpecialMember(Sema &S, CXXRecordDecl *RD, Sema::CXXSpecialMember CSM)
7852    : S(S), D(RD, CSM) {
7853    WasAlreadyBeingDeclared = !S.SpecialMembersBeingDeclared.insert(D);
7854    if (WasAlreadyBeingDeclared)
7855      // This almost never happens, but if it does, ensure that our cache
7856      // doesn't contain a stale result.
7857      S.SpecialMemberCache.clear();
7858
7859    // FIXME: Register a note to be produced if we encounter an error while
7860    // declaring the special member.
7861  }
7862  ~DeclaringSpecialMember() {
7863    if (!WasAlreadyBeingDeclared)
7864      S.SpecialMembersBeingDeclared.erase(D);
7865  }
7866
7867  /// \brief Are we already trying to declare this special member?
7868  bool isAlreadyBeingDeclared() const {
7869    return WasAlreadyBeingDeclared;
7870  }
7871};
7872}
7873
7874CXXConstructorDecl *Sema::DeclareImplicitDefaultConstructor(
7875                                                     CXXRecordDecl *ClassDecl) {
7876  // C++ [class.ctor]p5:
7877  //   A default constructor for a class X is a constructor of class X
7878  //   that can be called without an argument. If there is no
7879  //   user-declared constructor for class X, a default constructor is
7880  //   implicitly declared. An implicitly-declared default constructor
7881  //   is an inline public member of its class.
7882  assert(ClassDecl->needsImplicitDefaultConstructor() &&
7883         "Should not build implicit default constructor!");
7884
7885  DeclaringSpecialMember DSM(*this, ClassDecl, CXXDefaultConstructor);
7886  if (DSM.isAlreadyBeingDeclared())
7887    return 0;
7888
7889  bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl,
7890                                                     CXXDefaultConstructor,
7891                                                     false);
7892
7893  // Create the actual constructor declaration.
7894  CanQualType ClassType
7895    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
7896  SourceLocation ClassLoc = ClassDecl->getLocation();
7897  DeclarationName Name
7898    = Context.DeclarationNames.getCXXConstructorName(ClassType);
7899  DeclarationNameInfo NameInfo(Name, ClassLoc);
7900  CXXConstructorDecl *DefaultCon = CXXConstructorDecl::Create(
7901      Context, ClassDecl, ClassLoc, NameInfo, /*Type*/QualType(), /*TInfo=*/0,
7902      /*isExplicit=*/false, /*isInline=*/true, /*isImplicitlyDeclared=*/true,
7903      Constexpr);
7904  DefaultCon->setAccess(AS_public);
7905  DefaultCon->setDefaulted();
7906  DefaultCon->setImplicit();
7907
7908  // Build an exception specification pointing back at this constructor.
7909  FunctionProtoType::ExtProtoInfo EPI;
7910  EPI.ExceptionSpecType = EST_Unevaluated;
7911  EPI.ExceptionSpecDecl = DefaultCon;
7912  DefaultCon->setType(Context.getFunctionType(Context.VoidTy, None, EPI));
7913
7914  // We don't need to use SpecialMemberIsTrivial here; triviality for default
7915  // constructors is easy to compute.
7916  DefaultCon->setTrivial(ClassDecl->hasTrivialDefaultConstructor());
7917
7918  if (ShouldDeleteSpecialMember(DefaultCon, CXXDefaultConstructor))
7919    SetDeclDeleted(DefaultCon, ClassLoc);
7920
7921  // Note that we have declared this constructor.
7922  ++ASTContext::NumImplicitDefaultConstructorsDeclared;
7923
7924  if (Scope *S = getScopeForContext(ClassDecl))
7925    PushOnScopeChains(DefaultCon, S, false);
7926  ClassDecl->addDecl(DefaultCon);
7927
7928  return DefaultCon;
7929}
7930
7931void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,
7932                                            CXXConstructorDecl *Constructor) {
7933  assert((Constructor->isDefaulted() && Constructor->isDefaultConstructor() &&
7934          !Constructor->doesThisDeclarationHaveABody() &&
7935          !Constructor->isDeleted()) &&
7936    "DefineImplicitDefaultConstructor - call it for implicit default ctor");
7937
7938  CXXRecordDecl *ClassDecl = Constructor->getParent();
7939  assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor");
7940
7941  SynthesizedFunctionScope Scope(*this, Constructor);
7942  DiagnosticErrorTrap Trap(Diags);
7943  if (SetCtorInitializers(Constructor, /*AnyErrors=*/false) ||
7944      Trap.hasErrorOccurred()) {
7945    Diag(CurrentLocation, diag::note_member_synthesized_at)
7946      << CXXDefaultConstructor << Context.getTagDeclType(ClassDecl);
7947    Constructor->setInvalidDecl();
7948    return;
7949  }
7950
7951  SourceLocation Loc = Constructor->getLocation();
7952  Constructor->setBody(new (Context) CompoundStmt(Loc));
7953
7954  Constructor->setUsed();
7955  MarkVTableUsed(CurrentLocation, ClassDecl);
7956
7957  if (ASTMutationListener *L = getASTMutationListener()) {
7958    L->CompletedImplicitDefinition(Constructor);
7959  }
7960}
7961
7962void Sema::ActOnFinishDelayedMemberInitializers(Decl *D) {
7963  // Check that any explicitly-defaulted methods have exception specifications
7964  // compatible with their implicit exception specifications.
7965  CheckDelayedExplicitlyDefaultedMemberExceptionSpecs();
7966}
7967
7968namespace {
7969/// Information on inheriting constructors to declare.
7970class InheritingConstructorInfo {
7971public:
7972  InheritingConstructorInfo(Sema &SemaRef, CXXRecordDecl *Derived)
7973      : SemaRef(SemaRef), Derived(Derived) {
7974    // Mark the constructors that we already have in the derived class.
7975    //
7976    // C++11 [class.inhctor]p3: [...] a constructor is implicitly declared [...]
7977    //   unless there is a user-declared constructor with the same signature in
7978    //   the class where the using-declaration appears.
7979    visitAll(Derived, &InheritingConstructorInfo::noteDeclaredInDerived);
7980  }
7981
7982  void inheritAll(CXXRecordDecl *RD) {
7983    visitAll(RD, &InheritingConstructorInfo::inherit);
7984  }
7985
7986private:
7987  /// Information about an inheriting constructor.
7988  struct InheritingConstructor {
7989    InheritingConstructor()
7990      : DeclaredInDerived(false), BaseCtor(0), DerivedCtor(0) {}
7991
7992    /// If \c true, a constructor with this signature is already declared
7993    /// in the derived class.
7994    bool DeclaredInDerived;
7995
7996    /// The constructor which is inherited.
7997    const CXXConstructorDecl *BaseCtor;
7998
7999    /// The derived constructor we declared.
8000    CXXConstructorDecl *DerivedCtor;
8001  };
8002
8003  /// Inheriting constructors with a given canonical type. There can be at
8004  /// most one such non-template constructor, and any number of templated
8005  /// constructors.
8006  struct InheritingConstructorsForType {
8007    InheritingConstructor NonTemplate;
8008    llvm::SmallVector<
8009      std::pair<TemplateParameterList*, InheritingConstructor>, 4> Templates;
8010
8011    InheritingConstructor &getEntry(Sema &S, const CXXConstructorDecl *Ctor) {
8012      if (FunctionTemplateDecl *FTD = Ctor->getDescribedFunctionTemplate()) {
8013        TemplateParameterList *ParamList = FTD->getTemplateParameters();
8014        for (unsigned I = 0, N = Templates.size(); I != N; ++I)
8015          if (S.TemplateParameterListsAreEqual(ParamList, Templates[I].first,
8016                                               false, S.TPL_TemplateMatch))
8017            return Templates[I].second;
8018        Templates.push_back(std::make_pair(ParamList, InheritingConstructor()));
8019        return Templates.back().second;
8020      }
8021
8022      return NonTemplate;
8023    }
8024  };
8025
8026  /// Get or create the inheriting constructor record for a constructor.
8027  InheritingConstructor &getEntry(const CXXConstructorDecl *Ctor,
8028                                  QualType CtorType) {
8029    return Map[CtorType.getCanonicalType()->castAs<FunctionProtoType>()]
8030        .getEntry(SemaRef, Ctor);
8031  }
8032
8033  typedef void (InheritingConstructorInfo::*VisitFn)(const CXXConstructorDecl*);
8034
8035  /// Process all constructors for a class.
8036  void visitAll(const CXXRecordDecl *RD, VisitFn Callback) {
8037    for (CXXRecordDecl::ctor_iterator CtorIt = RD->ctor_begin(),
8038                                      CtorE = RD->ctor_end();
8039         CtorIt != CtorE; ++CtorIt)
8040      (this->*Callback)(*CtorIt);
8041    for (CXXRecordDecl::specific_decl_iterator<FunctionTemplateDecl>
8042             I(RD->decls_begin()), E(RD->decls_end());
8043         I != E; ++I) {
8044      const FunctionDecl *FD = (*I)->getTemplatedDecl();
8045      if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD))
8046        (this->*Callback)(CD);
8047    }
8048  }
8049
8050  /// Note that a constructor (or constructor template) was declared in Derived.
8051  void noteDeclaredInDerived(const CXXConstructorDecl *Ctor) {
8052    getEntry(Ctor, Ctor->getType()).DeclaredInDerived = true;
8053  }
8054
8055  /// Inherit a single constructor.
8056  void inherit(const CXXConstructorDecl *Ctor) {
8057    const FunctionProtoType *CtorType =
8058        Ctor->getType()->castAs<FunctionProtoType>();
8059    ArrayRef<QualType> ArgTypes(CtorType->getArgTypes());
8060    FunctionProtoType::ExtProtoInfo EPI = CtorType->getExtProtoInfo();
8061
8062    SourceLocation UsingLoc = getUsingLoc(Ctor->getParent());
8063
8064    // Core issue (no number yet): the ellipsis is always discarded.
8065    if (EPI.Variadic) {
8066      SemaRef.Diag(UsingLoc, diag::warn_using_decl_constructor_ellipsis);
8067      SemaRef.Diag(Ctor->getLocation(),
8068                   diag::note_using_decl_constructor_ellipsis);
8069      EPI.Variadic = false;
8070    }
8071
8072    // Declare a constructor for each number of parameters.
8073    //
8074    // C++11 [class.inhctor]p1:
8075    //   The candidate set of inherited constructors from the class X named in
8076    //   the using-declaration consists of [... modulo defects ...] for each
8077    //   constructor or constructor template of X, the set of constructors or
8078    //   constructor templates that results from omitting any ellipsis parameter
8079    //   specification and successively omitting parameters with a default
8080    //   argument from the end of the parameter-type-list
8081    unsigned MinParams = minParamsToInherit(Ctor);
8082    unsigned Params = Ctor->getNumParams();
8083    if (Params >= MinParams) {
8084      do
8085        declareCtor(UsingLoc, Ctor,
8086                    SemaRef.Context.getFunctionType(
8087                        Ctor->getResultType(), ArgTypes.slice(0, Params), EPI));
8088      while (Params > MinParams &&
8089             Ctor->getParamDecl(--Params)->hasDefaultArg());
8090    }
8091  }
8092
8093  /// Find the using-declaration which specified that we should inherit the
8094  /// constructors of \p Base.
8095  SourceLocation getUsingLoc(const CXXRecordDecl *Base) {
8096    // No fancy lookup required; just look for the base constructor name
8097    // directly within the derived class.
8098    ASTContext &Context = SemaRef.Context;
8099    DeclarationName Name = Context.DeclarationNames.getCXXConstructorName(
8100        Context.getCanonicalType(Context.getRecordType(Base)));
8101    DeclContext::lookup_const_result Decls = Derived->lookup(Name);
8102    return Decls.empty() ? Derived->getLocation() : Decls[0]->getLocation();
8103  }
8104
8105  unsigned minParamsToInherit(const CXXConstructorDecl *Ctor) {
8106    // C++11 [class.inhctor]p3:
8107    //   [F]or each constructor template in the candidate set of inherited
8108    //   constructors, a constructor template is implicitly declared
8109    if (Ctor->getDescribedFunctionTemplate())
8110      return 0;
8111
8112    //   For each non-template constructor in the candidate set of inherited
8113    //   constructors other than a constructor having no parameters or a
8114    //   copy/move constructor having a single parameter, a constructor is
8115    //   implicitly declared [...]
8116    if (Ctor->getNumParams() == 0)
8117      return 1;
8118    if (Ctor->isCopyOrMoveConstructor())
8119      return 2;
8120
8121    // Per discussion on core reflector, never inherit a constructor which
8122    // would become a default, copy, or move constructor of Derived either.
8123    const ParmVarDecl *PD = Ctor->getParamDecl(0);
8124    const ReferenceType *RT = PD->getType()->getAs<ReferenceType>();
8125    return (RT && RT->getPointeeCXXRecordDecl() == Derived) ? 2 : 1;
8126  }
8127
8128  /// Declare a single inheriting constructor, inheriting the specified
8129  /// constructor, with the given type.
8130  void declareCtor(SourceLocation UsingLoc, const CXXConstructorDecl *BaseCtor,
8131                   QualType DerivedType) {
8132    InheritingConstructor &Entry = getEntry(BaseCtor, DerivedType);
8133
8134    // C++11 [class.inhctor]p3:
8135    //   ... a constructor is implicitly declared with the same constructor
8136    //   characteristics unless there is a user-declared constructor with
8137    //   the same signature in the class where the using-declaration appears
8138    if (Entry.DeclaredInDerived)
8139      return;
8140
8141    // C++11 [class.inhctor]p7:
8142    //   If two using-declarations declare inheriting constructors with the
8143    //   same signature, the program is ill-formed
8144    if (Entry.DerivedCtor) {
8145      if (BaseCtor->getParent() != Entry.BaseCtor->getParent()) {
8146        // Only diagnose this once per constructor.
8147        if (Entry.DerivedCtor->isInvalidDecl())
8148          return;
8149        Entry.DerivedCtor->setInvalidDecl();
8150
8151        SemaRef.Diag(UsingLoc, diag::err_using_decl_constructor_conflict);
8152        SemaRef.Diag(BaseCtor->getLocation(),
8153                     diag::note_using_decl_constructor_conflict_current_ctor);
8154        SemaRef.Diag(Entry.BaseCtor->getLocation(),
8155                     diag::note_using_decl_constructor_conflict_previous_ctor);
8156        SemaRef.Diag(Entry.DerivedCtor->getLocation(),
8157                     diag::note_using_decl_constructor_conflict_previous_using);
8158      } else {
8159        // Core issue (no number): if the same inheriting constructor is
8160        // produced by multiple base class constructors from the same base
8161        // class, the inheriting constructor is defined as deleted.
8162        SemaRef.SetDeclDeleted(Entry.DerivedCtor, UsingLoc);
8163      }
8164
8165      return;
8166    }
8167
8168    ASTContext &Context = SemaRef.Context;
8169    DeclarationName Name = Context.DeclarationNames.getCXXConstructorName(
8170        Context.getCanonicalType(Context.getRecordType(Derived)));
8171    DeclarationNameInfo NameInfo(Name, UsingLoc);
8172
8173    TemplateParameterList *TemplateParams = 0;
8174    if (const FunctionTemplateDecl *FTD =
8175            BaseCtor->getDescribedFunctionTemplate()) {
8176      TemplateParams = FTD->getTemplateParameters();
8177      // We're reusing template parameters from a different DeclContext. This
8178      // is questionable at best, but works out because the template depth in
8179      // both places is guaranteed to be 0.
8180      // FIXME: Rebuild the template parameters in the new context, and
8181      // transform the function type to refer to them.
8182    }
8183
8184    // Build type source info pointing at the using-declaration. This is
8185    // required by template instantiation.
8186    TypeSourceInfo *TInfo =
8187        Context.getTrivialTypeSourceInfo(DerivedType, UsingLoc);
8188    FunctionProtoTypeLoc ProtoLoc =
8189        TInfo->getTypeLoc().IgnoreParens().castAs<FunctionProtoTypeLoc>();
8190
8191    CXXConstructorDecl *DerivedCtor = CXXConstructorDecl::Create(
8192        Context, Derived, UsingLoc, NameInfo, DerivedType,
8193        TInfo, BaseCtor->isExplicit(), /*Inline=*/true,
8194        /*ImplicitlyDeclared=*/true, /*Constexpr=*/BaseCtor->isConstexpr());
8195
8196    // Build an unevaluated exception specification for this constructor.
8197    const FunctionProtoType *FPT = DerivedType->castAs<FunctionProtoType>();
8198    FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
8199    EPI.ExceptionSpecType = EST_Unevaluated;
8200    EPI.ExceptionSpecDecl = DerivedCtor;
8201    DerivedCtor->setType(Context.getFunctionType(FPT->getResultType(),
8202                                                 FPT->getArgTypes(), EPI));
8203
8204    // Build the parameter declarations.
8205    SmallVector<ParmVarDecl *, 16> ParamDecls;
8206    for (unsigned I = 0, N = FPT->getNumArgs(); I != N; ++I) {
8207      TypeSourceInfo *TInfo =
8208          Context.getTrivialTypeSourceInfo(FPT->getArgType(I), UsingLoc);
8209      ParmVarDecl *PD = ParmVarDecl::Create(
8210          Context, DerivedCtor, UsingLoc, UsingLoc, /*IdentifierInfo=*/0,
8211          FPT->getArgType(I), TInfo, SC_None, /*DefaultArg=*/0);
8212      PD->setScopeInfo(0, I);
8213      PD->setImplicit();
8214      ParamDecls.push_back(PD);
8215      ProtoLoc.setArg(I, PD);
8216    }
8217
8218    // Set up the new constructor.
8219    DerivedCtor->setAccess(BaseCtor->getAccess());
8220    DerivedCtor->setParams(ParamDecls);
8221    DerivedCtor->setInheritedConstructor(BaseCtor);
8222    if (BaseCtor->isDeleted())
8223      SemaRef.SetDeclDeleted(DerivedCtor, UsingLoc);
8224
8225    // If this is a constructor template, build the template declaration.
8226    if (TemplateParams) {
8227      FunctionTemplateDecl *DerivedTemplate =
8228          FunctionTemplateDecl::Create(SemaRef.Context, Derived, UsingLoc, Name,
8229                                       TemplateParams, DerivedCtor);
8230      DerivedTemplate->setAccess(BaseCtor->getAccess());
8231      DerivedCtor->setDescribedFunctionTemplate(DerivedTemplate);
8232      Derived->addDecl(DerivedTemplate);
8233    } else {
8234      Derived->addDecl(DerivedCtor);
8235    }
8236
8237    Entry.BaseCtor = BaseCtor;
8238    Entry.DerivedCtor = DerivedCtor;
8239  }
8240
8241  Sema &SemaRef;
8242  CXXRecordDecl *Derived;
8243  typedef llvm::DenseMap<const Type *, InheritingConstructorsForType> MapType;
8244  MapType Map;
8245};
8246}
8247
8248void Sema::DeclareInheritingConstructors(CXXRecordDecl *ClassDecl) {
8249  // Defer declaring the inheriting constructors until the class is
8250  // instantiated.
8251  if (ClassDecl->isDependentContext())
8252    return;
8253
8254  // Find base classes from which we might inherit constructors.
8255  SmallVector<CXXRecordDecl*, 4> InheritedBases;
8256  for (CXXRecordDecl::base_class_iterator BaseIt = ClassDecl->bases_begin(),
8257                                          BaseE = ClassDecl->bases_end();
8258       BaseIt != BaseE; ++BaseIt)
8259    if (BaseIt->getInheritConstructors())
8260      InheritedBases.push_back(BaseIt->getType()->getAsCXXRecordDecl());
8261
8262  // Go no further if we're not inheriting any constructors.
8263  if (InheritedBases.empty())
8264    return;
8265
8266  // Declare the inherited constructors.
8267  InheritingConstructorInfo ICI(*this, ClassDecl);
8268  for (unsigned I = 0, N = InheritedBases.size(); I != N; ++I)
8269    ICI.inheritAll(InheritedBases[I]);
8270}
8271
8272void Sema::DefineInheritingConstructor(SourceLocation CurrentLocation,
8273                                       CXXConstructorDecl *Constructor) {
8274  CXXRecordDecl *ClassDecl = Constructor->getParent();
8275  assert(Constructor->getInheritedConstructor() &&
8276         !Constructor->doesThisDeclarationHaveABody() &&
8277         !Constructor->isDeleted());
8278
8279  SynthesizedFunctionScope Scope(*this, Constructor);
8280  DiagnosticErrorTrap Trap(Diags);
8281  if (SetCtorInitializers(Constructor, /*AnyErrors=*/false) ||
8282      Trap.hasErrorOccurred()) {
8283    Diag(CurrentLocation, diag::note_inhctor_synthesized_at)
8284      << Context.getTagDeclType(ClassDecl);
8285    Constructor->setInvalidDecl();
8286    return;
8287  }
8288
8289  SourceLocation Loc = Constructor->getLocation();
8290  Constructor->setBody(new (Context) CompoundStmt(Loc));
8291
8292  Constructor->setUsed();
8293  MarkVTableUsed(CurrentLocation, ClassDecl);
8294
8295  if (ASTMutationListener *L = getASTMutationListener()) {
8296    L->CompletedImplicitDefinition(Constructor);
8297  }
8298}
8299
8300
8301Sema::ImplicitExceptionSpecification
8302Sema::ComputeDefaultedDtorExceptionSpec(CXXMethodDecl *MD) {
8303  CXXRecordDecl *ClassDecl = MD->getParent();
8304
8305  // C++ [except.spec]p14:
8306  //   An implicitly declared special member function (Clause 12) shall have
8307  //   an exception-specification.
8308  ImplicitExceptionSpecification ExceptSpec(*this);
8309  if (ClassDecl->isInvalidDecl())
8310    return ExceptSpec;
8311
8312  // Direct base-class destructors.
8313  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
8314                                       BEnd = ClassDecl->bases_end();
8315       B != BEnd; ++B) {
8316    if (B->isVirtual()) // Handled below.
8317      continue;
8318
8319    if (const RecordType *BaseType = B->getType()->getAs<RecordType>())
8320      ExceptSpec.CalledDecl(B->getLocStart(),
8321                   LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
8322  }
8323
8324  // Virtual base-class destructors.
8325  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
8326                                       BEnd = ClassDecl->vbases_end();
8327       B != BEnd; ++B) {
8328    if (const RecordType *BaseType = B->getType()->getAs<RecordType>())
8329      ExceptSpec.CalledDecl(B->getLocStart(),
8330                  LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
8331  }
8332
8333  // Field destructors.
8334  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
8335                               FEnd = ClassDecl->field_end();
8336       F != FEnd; ++F) {
8337    if (const RecordType *RecordTy
8338        = Context.getBaseElementType(F->getType())->getAs<RecordType>())
8339      ExceptSpec.CalledDecl(F->getLocation(),
8340                  LookupDestructor(cast<CXXRecordDecl>(RecordTy->getDecl())));
8341  }
8342
8343  return ExceptSpec;
8344}
8345
8346CXXDestructorDecl *Sema::DeclareImplicitDestructor(CXXRecordDecl *ClassDecl) {
8347  // C++ [class.dtor]p2:
8348  //   If a class has no user-declared destructor, a destructor is
8349  //   declared implicitly. An implicitly-declared destructor is an
8350  //   inline public member of its class.
8351  assert(ClassDecl->needsImplicitDestructor());
8352
8353  DeclaringSpecialMember DSM(*this, ClassDecl, CXXDestructor);
8354  if (DSM.isAlreadyBeingDeclared())
8355    return 0;
8356
8357  // Create the actual destructor declaration.
8358  CanQualType ClassType
8359    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
8360  SourceLocation ClassLoc = ClassDecl->getLocation();
8361  DeclarationName Name
8362    = Context.DeclarationNames.getCXXDestructorName(ClassType);
8363  DeclarationNameInfo NameInfo(Name, ClassLoc);
8364  CXXDestructorDecl *Destructor
8365      = CXXDestructorDecl::Create(Context, ClassDecl, ClassLoc, NameInfo,
8366                                  QualType(), 0, /*isInline=*/true,
8367                                  /*isImplicitlyDeclared=*/true);
8368  Destructor->setAccess(AS_public);
8369  Destructor->setDefaulted();
8370  Destructor->setImplicit();
8371
8372  // Build an exception specification pointing back at this destructor.
8373  FunctionProtoType::ExtProtoInfo EPI;
8374  EPI.ExceptionSpecType = EST_Unevaluated;
8375  EPI.ExceptionSpecDecl = Destructor;
8376  Destructor->setType(Context.getFunctionType(Context.VoidTy, None, EPI));
8377
8378  AddOverriddenMethods(ClassDecl, Destructor);
8379
8380  // We don't need to use SpecialMemberIsTrivial here; triviality for
8381  // destructors is easy to compute.
8382  Destructor->setTrivial(ClassDecl->hasTrivialDestructor());
8383
8384  if (ShouldDeleteSpecialMember(Destructor, CXXDestructor))
8385    SetDeclDeleted(Destructor, ClassLoc);
8386
8387  // Note that we have declared this destructor.
8388  ++ASTContext::NumImplicitDestructorsDeclared;
8389
8390  // Introduce this destructor into its scope.
8391  if (Scope *S = getScopeForContext(ClassDecl))
8392    PushOnScopeChains(Destructor, S, false);
8393  ClassDecl->addDecl(Destructor);
8394
8395  return Destructor;
8396}
8397
8398void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation,
8399                                    CXXDestructorDecl *Destructor) {
8400  assert((Destructor->isDefaulted() &&
8401          !Destructor->doesThisDeclarationHaveABody() &&
8402          !Destructor->isDeleted()) &&
8403         "DefineImplicitDestructor - call it for implicit default dtor");
8404  CXXRecordDecl *ClassDecl = Destructor->getParent();
8405  assert(ClassDecl && "DefineImplicitDestructor - invalid destructor");
8406
8407  if (Destructor->isInvalidDecl())
8408    return;
8409
8410  SynthesizedFunctionScope Scope(*this, Destructor);
8411
8412  DiagnosticErrorTrap Trap(Diags);
8413  MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
8414                                         Destructor->getParent());
8415
8416  if (CheckDestructor(Destructor) || Trap.hasErrorOccurred()) {
8417    Diag(CurrentLocation, diag::note_member_synthesized_at)
8418      << CXXDestructor << Context.getTagDeclType(ClassDecl);
8419
8420    Destructor->setInvalidDecl();
8421    return;
8422  }
8423
8424  SourceLocation Loc = Destructor->getLocation();
8425  Destructor->setBody(new (Context) CompoundStmt(Loc));
8426  Destructor->setImplicitlyDefined(true);
8427  Destructor->setUsed();
8428  MarkVTableUsed(CurrentLocation, ClassDecl);
8429
8430  if (ASTMutationListener *L = getASTMutationListener()) {
8431    L->CompletedImplicitDefinition(Destructor);
8432  }
8433}
8434
8435/// \brief Perform any semantic analysis which needs to be delayed until all
8436/// pending class member declarations have been parsed.
8437void Sema::ActOnFinishCXXMemberDecls() {
8438  // If the context is an invalid C++ class, just suppress these checks.
8439  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(CurContext)) {
8440    if (Record->isInvalidDecl()) {
8441      DelayedDestructorExceptionSpecChecks.clear();
8442      return;
8443    }
8444  }
8445
8446  // Perform any deferred checking of exception specifications for virtual
8447  // destructors.
8448  for (unsigned i = 0, e = DelayedDestructorExceptionSpecChecks.size();
8449       i != e; ++i) {
8450    const CXXDestructorDecl *Dtor =
8451        DelayedDestructorExceptionSpecChecks[i].first;
8452    assert(!Dtor->getParent()->isDependentType() &&
8453           "Should not ever add destructors of templates into the list.");
8454    CheckOverridingFunctionExceptionSpec(Dtor,
8455        DelayedDestructorExceptionSpecChecks[i].second);
8456  }
8457  DelayedDestructorExceptionSpecChecks.clear();
8458}
8459
8460void Sema::AdjustDestructorExceptionSpec(CXXRecordDecl *ClassDecl,
8461                                         CXXDestructorDecl *Destructor) {
8462  assert(getLangOpts().CPlusPlus11 &&
8463         "adjusting dtor exception specs was introduced in c++11");
8464
8465  // C++11 [class.dtor]p3:
8466  //   A declaration of a destructor that does not have an exception-
8467  //   specification is implicitly considered to have the same exception-
8468  //   specification as an implicit declaration.
8469  const FunctionProtoType *DtorType = Destructor->getType()->
8470                                        getAs<FunctionProtoType>();
8471  if (DtorType->hasExceptionSpec())
8472    return;
8473
8474  // Replace the destructor's type, building off the existing one. Fortunately,
8475  // the only thing of interest in the destructor type is its extended info.
8476  // The return and arguments are fixed.
8477  FunctionProtoType::ExtProtoInfo EPI = DtorType->getExtProtoInfo();
8478  EPI.ExceptionSpecType = EST_Unevaluated;
8479  EPI.ExceptionSpecDecl = Destructor;
8480  Destructor->setType(Context.getFunctionType(Context.VoidTy, None, EPI));
8481
8482  // FIXME: If the destructor has a body that could throw, and the newly created
8483  // spec doesn't allow exceptions, we should emit a warning, because this
8484  // change in behavior can break conforming C++03 programs at runtime.
8485  // However, we don't have a body or an exception specification yet, so it
8486  // needs to be done somewhere else.
8487}
8488
8489/// When generating a defaulted copy or move assignment operator, if a field
8490/// should be copied with __builtin_memcpy rather than via explicit assignments,
8491/// do so. This optimization only applies for arrays of scalars, and for arrays
8492/// of class type where the selected copy/move-assignment operator is trivial.
8493static StmtResult
8494buildMemcpyForAssignmentOp(Sema &S, SourceLocation Loc, QualType T,
8495                           Expr *To, Expr *From) {
8496  // Compute the size of the memory buffer to be copied.
8497  QualType SizeType = S.Context.getSizeType();
8498  llvm::APInt Size(S.Context.getTypeSize(SizeType),
8499                   S.Context.getTypeSizeInChars(T).getQuantity());
8500
8501  // Take the address of the field references for "from" and "to". We
8502  // directly construct UnaryOperators here because semantic analysis
8503  // does not permit us to take the address of an xvalue.
8504  From = new (S.Context) UnaryOperator(From, UO_AddrOf,
8505                         S.Context.getPointerType(From->getType()),
8506                         VK_RValue, OK_Ordinary, Loc);
8507  To = new (S.Context) UnaryOperator(To, UO_AddrOf,
8508                       S.Context.getPointerType(To->getType()),
8509                       VK_RValue, OK_Ordinary, Loc);
8510
8511  const Type *E = T->getBaseElementTypeUnsafe();
8512  bool NeedsCollectableMemCpy =
8513    E->isRecordType() && E->getAs<RecordType>()->getDecl()->hasObjectMember();
8514
8515  // Create a reference to the __builtin_objc_memmove_collectable function
8516  StringRef MemCpyName = NeedsCollectableMemCpy ?
8517    "__builtin_objc_memmove_collectable" :
8518    "__builtin_memcpy";
8519  LookupResult R(S, &S.Context.Idents.get(MemCpyName), Loc,
8520                 Sema::LookupOrdinaryName);
8521  S.LookupName(R, S.TUScope, true);
8522
8523  FunctionDecl *MemCpy = R.getAsSingle<FunctionDecl>();
8524  if (!MemCpy)
8525    // Something went horribly wrong earlier, and we will have complained
8526    // about it.
8527    return StmtError();
8528
8529  ExprResult MemCpyRef = S.BuildDeclRefExpr(MemCpy, S.Context.BuiltinFnTy,
8530                                            VK_RValue, Loc, 0);
8531  assert(MemCpyRef.isUsable() && "Builtin reference cannot fail");
8532
8533  Expr *CallArgs[] = {
8534    To, From, IntegerLiteral::Create(S.Context, Size, SizeType, Loc)
8535  };
8536  ExprResult Call = S.ActOnCallExpr(/*Scope=*/0, MemCpyRef.take(),
8537                                    Loc, CallArgs, Loc);
8538
8539  assert(!Call.isInvalid() && "Call to __builtin_memcpy cannot fail!");
8540  return S.Owned(Call.takeAs<Stmt>());
8541}
8542
8543/// \brief Builds a statement that copies/moves the given entity from \p From to
8544/// \c To.
8545///
8546/// This routine is used to copy/move the members of a class with an
8547/// implicitly-declared copy/move assignment operator. When the entities being
8548/// copied are arrays, this routine builds for loops to copy them.
8549///
8550/// \param S The Sema object used for type-checking.
8551///
8552/// \param Loc The location where the implicit copy/move is being generated.
8553///
8554/// \param T The type of the expressions being copied/moved. Both expressions
8555/// must have this type.
8556///
8557/// \param To The expression we are copying/moving to.
8558///
8559/// \param From The expression we are copying/moving from.
8560///
8561/// \param CopyingBaseSubobject Whether we're copying/moving a base subobject.
8562/// Otherwise, it's a non-static member subobject.
8563///
8564/// \param Copying Whether we're copying or moving.
8565///
8566/// \param Depth Internal parameter recording the depth of the recursion.
8567///
8568/// \returns A statement or a loop that copies the expressions, or StmtResult(0)
8569/// if a memcpy should be used instead.
8570static StmtResult
8571buildSingleCopyAssignRecursively(Sema &S, SourceLocation Loc, QualType T,
8572                                 Expr *To, Expr *From,
8573                                 bool CopyingBaseSubobject, bool Copying,
8574                                 unsigned Depth = 0) {
8575  // C++11 [class.copy]p28:
8576  //   Each subobject is assigned in the manner appropriate to its type:
8577  //
8578  //     - if the subobject is of class type, as if by a call to operator= with
8579  //       the subobject as the object expression and the corresponding
8580  //       subobject of x as a single function argument (as if by explicit
8581  //       qualification; that is, ignoring any possible virtual overriding
8582  //       functions in more derived classes);
8583  //
8584  // C++03 [class.copy]p13:
8585  //     - if the subobject is of class type, the copy assignment operator for
8586  //       the class is used (as if by explicit qualification; that is,
8587  //       ignoring any possible virtual overriding functions in more derived
8588  //       classes);
8589  if (const RecordType *RecordTy = T->getAs<RecordType>()) {
8590    CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
8591
8592    // Look for operator=.
8593    DeclarationName Name
8594      = S.Context.DeclarationNames.getCXXOperatorName(OO_Equal);
8595    LookupResult OpLookup(S, Name, Loc, Sema::LookupOrdinaryName);
8596    S.LookupQualifiedName(OpLookup, ClassDecl, false);
8597
8598    // Prior to C++11, filter out any result that isn't a copy/move-assignment
8599    // operator.
8600    if (!S.getLangOpts().CPlusPlus11) {
8601      LookupResult::Filter F = OpLookup.makeFilter();
8602      while (F.hasNext()) {
8603        NamedDecl *D = F.next();
8604        if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
8605          if (Method->isCopyAssignmentOperator() ||
8606              (!Copying && Method->isMoveAssignmentOperator()))
8607            continue;
8608
8609        F.erase();
8610      }
8611      F.done();
8612    }
8613
8614    // Suppress the protected check (C++ [class.protected]) for each of the
8615    // assignment operators we found. This strange dance is required when
8616    // we're assigning via a base classes's copy-assignment operator. To
8617    // ensure that we're getting the right base class subobject (without
8618    // ambiguities), we need to cast "this" to that subobject type; to
8619    // ensure that we don't go through the virtual call mechanism, we need
8620    // to qualify the operator= name with the base class (see below). However,
8621    // this means that if the base class has a protected copy assignment
8622    // operator, the protected member access check will fail. So, we
8623    // rewrite "protected" access to "public" access in this case, since we
8624    // know by construction that we're calling from a derived class.
8625    if (CopyingBaseSubobject) {
8626      for (LookupResult::iterator L = OpLookup.begin(), LEnd = OpLookup.end();
8627           L != LEnd; ++L) {
8628        if (L.getAccess() == AS_protected)
8629          L.setAccess(AS_public);
8630      }
8631    }
8632
8633    // Create the nested-name-specifier that will be used to qualify the
8634    // reference to operator=; this is required to suppress the virtual
8635    // call mechanism.
8636    CXXScopeSpec SS;
8637    const Type *CanonicalT = S.Context.getCanonicalType(T.getTypePtr());
8638    SS.MakeTrivial(S.Context,
8639                   NestedNameSpecifier::Create(S.Context, 0, false,
8640                                               CanonicalT),
8641                   Loc);
8642
8643    // Create the reference to operator=.
8644    ExprResult OpEqualRef
8645      = S.BuildMemberReferenceExpr(To, T, Loc, /*isArrow=*/false, SS,
8646                                   /*TemplateKWLoc=*/SourceLocation(),
8647                                   /*FirstQualifierInScope=*/0,
8648                                   OpLookup,
8649                                   /*TemplateArgs=*/0,
8650                                   /*SuppressQualifierCheck=*/true);
8651    if (OpEqualRef.isInvalid())
8652      return StmtError();
8653
8654    // Build the call to the assignment operator.
8655
8656    ExprResult Call = S.BuildCallToMemberFunction(/*Scope=*/0,
8657                                                  OpEqualRef.takeAs<Expr>(),
8658                                                  Loc, From, Loc);
8659    if (Call.isInvalid())
8660      return StmtError();
8661
8662    // If we built a call to a trivial 'operator=' while copying an array,
8663    // bail out. We'll replace the whole shebang with a memcpy.
8664    CXXMemberCallExpr *CE = dyn_cast<CXXMemberCallExpr>(Call.get());
8665    if (CE && CE->getMethodDecl()->isTrivial() && Depth)
8666      return StmtResult((Stmt*)0);
8667
8668    // Convert to an expression-statement, and clean up any produced
8669    // temporaries.
8670    return S.ActOnExprStmt(Call);
8671  }
8672
8673  //     - if the subobject is of scalar type, the built-in assignment
8674  //       operator is used.
8675  const ConstantArrayType *ArrayTy = S.Context.getAsConstantArrayType(T);
8676  if (!ArrayTy) {
8677    ExprResult Assignment = S.CreateBuiltinBinOp(Loc, BO_Assign, To, From);
8678    if (Assignment.isInvalid())
8679      return StmtError();
8680    return S.ActOnExprStmt(Assignment);
8681  }
8682
8683  //     - if the subobject is an array, each element is assigned, in the
8684  //       manner appropriate to the element type;
8685
8686  // Construct a loop over the array bounds, e.g.,
8687  //
8688  //   for (__SIZE_TYPE__ i0 = 0; i0 != array-size; ++i0)
8689  //
8690  // that will copy each of the array elements.
8691  QualType SizeType = S.Context.getSizeType();
8692
8693  // Create the iteration variable.
8694  IdentifierInfo *IterationVarName = 0;
8695  {
8696    SmallString<8> Str;
8697    llvm::raw_svector_ostream OS(Str);
8698    OS << "__i" << Depth;
8699    IterationVarName = &S.Context.Idents.get(OS.str());
8700  }
8701  VarDecl *IterationVar = VarDecl::Create(S.Context, S.CurContext, Loc, Loc,
8702                                          IterationVarName, SizeType,
8703                            S.Context.getTrivialTypeSourceInfo(SizeType, Loc),
8704                                          SC_None);
8705
8706  // Initialize the iteration variable to zero.
8707  llvm::APInt Zero(S.Context.getTypeSize(SizeType), 0);
8708  IterationVar->setInit(IntegerLiteral::Create(S.Context, Zero, SizeType, Loc));
8709
8710  // Create a reference to the iteration variable; we'll use this several
8711  // times throughout.
8712  Expr *IterationVarRef
8713    = S.BuildDeclRefExpr(IterationVar, SizeType, VK_LValue, Loc).take();
8714  assert(IterationVarRef && "Reference to invented variable cannot fail!");
8715  Expr *IterationVarRefRVal = S.DefaultLvalueConversion(IterationVarRef).take();
8716  assert(IterationVarRefRVal && "Conversion of invented variable cannot fail!");
8717
8718  // Create the DeclStmt that holds the iteration variable.
8719  Stmt *InitStmt = new (S.Context) DeclStmt(DeclGroupRef(IterationVar),Loc,Loc);
8720
8721  // Subscript the "from" and "to" expressions with the iteration variable.
8722  From = AssertSuccess(S.CreateBuiltinArraySubscriptExpr(From, Loc,
8723                                                         IterationVarRefRVal,
8724                                                         Loc));
8725  To = AssertSuccess(S.CreateBuiltinArraySubscriptExpr(To, Loc,
8726                                                       IterationVarRefRVal,
8727                                                       Loc));
8728  if (!Copying) // Cast to rvalue
8729    From = CastForMoving(S, From);
8730
8731  // Build the copy/move for an individual element of the array.
8732  StmtResult Copy =
8733    buildSingleCopyAssignRecursively(S, Loc, ArrayTy->getElementType(),
8734                                     To, From, CopyingBaseSubobject,
8735                                     Copying, Depth + 1);
8736  // Bail out if copying fails or if we determined that we should use memcpy.
8737  if (Copy.isInvalid() || !Copy.get())
8738    return Copy;
8739
8740  // Create the comparison against the array bound.
8741  llvm::APInt Upper
8742    = ArrayTy->getSize().zextOrTrunc(S.Context.getTypeSize(SizeType));
8743  Expr *Comparison
8744    = new (S.Context) BinaryOperator(IterationVarRefRVal,
8745                     IntegerLiteral::Create(S.Context, Upper, SizeType, Loc),
8746                                     BO_NE, S.Context.BoolTy,
8747                                     VK_RValue, OK_Ordinary, Loc, false);
8748
8749  // Create the pre-increment of the iteration variable.
8750  Expr *Increment
8751    = new (S.Context) UnaryOperator(IterationVarRef, UO_PreInc, SizeType,
8752                                    VK_LValue, OK_Ordinary, Loc);
8753
8754  // Construct the loop that copies all elements of this array.
8755  return S.ActOnForStmt(Loc, Loc, InitStmt,
8756                        S.MakeFullExpr(Comparison),
8757                        0, S.MakeFullDiscardedValueExpr(Increment),
8758                        Loc, Copy.take());
8759}
8760
8761static StmtResult
8762buildSingleCopyAssign(Sema &S, SourceLocation Loc, QualType T,
8763                      Expr *To, Expr *From,
8764                      bool CopyingBaseSubobject, bool Copying) {
8765  // Maybe we should use a memcpy?
8766  if (T->isArrayType() && !T.isConstQualified() && !T.isVolatileQualified() &&
8767      T.isTriviallyCopyableType(S.Context))
8768    return buildMemcpyForAssignmentOp(S, Loc, T, To, From);
8769
8770  StmtResult Result(buildSingleCopyAssignRecursively(S, Loc, T, To, From,
8771                                                     CopyingBaseSubobject,
8772                                                     Copying, 0));
8773
8774  // If we ended up picking a trivial assignment operator for an array of a
8775  // non-trivially-copyable class type, just emit a memcpy.
8776  if (!Result.isInvalid() && !Result.get())
8777    return buildMemcpyForAssignmentOp(S, Loc, T, To, From);
8778
8779  return Result;
8780}
8781
8782Sema::ImplicitExceptionSpecification
8783Sema::ComputeDefaultedCopyAssignmentExceptionSpec(CXXMethodDecl *MD) {
8784  CXXRecordDecl *ClassDecl = MD->getParent();
8785
8786  ImplicitExceptionSpecification ExceptSpec(*this);
8787  if (ClassDecl->isInvalidDecl())
8788    return ExceptSpec;
8789
8790  const FunctionProtoType *T = MD->getType()->castAs<FunctionProtoType>();
8791  assert(T->getNumArgs() == 1 && "not a copy assignment op");
8792  unsigned ArgQuals = T->getArgType(0).getNonReferenceType().getCVRQualifiers();
8793
8794  // C++ [except.spec]p14:
8795  //   An implicitly declared special member function (Clause 12) shall have an
8796  //   exception-specification. [...]
8797
8798  // It is unspecified whether or not an implicit copy assignment operator
8799  // attempts to deduplicate calls to assignment operators of virtual bases are
8800  // made. As such, this exception specification is effectively unspecified.
8801  // Based on a similar decision made for constness in C++0x, we're erring on
8802  // the side of assuming such calls to be made regardless of whether they
8803  // actually happen.
8804  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
8805                                       BaseEnd = ClassDecl->bases_end();
8806       Base != BaseEnd; ++Base) {
8807    if (Base->isVirtual())
8808      continue;
8809
8810    CXXRecordDecl *BaseClassDecl
8811      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8812    if (CXXMethodDecl *CopyAssign = LookupCopyingAssignment(BaseClassDecl,
8813                                                            ArgQuals, false, 0))
8814      ExceptSpec.CalledDecl(Base->getLocStart(), CopyAssign);
8815  }
8816
8817  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
8818                                       BaseEnd = ClassDecl->vbases_end();
8819       Base != BaseEnd; ++Base) {
8820    CXXRecordDecl *BaseClassDecl
8821      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8822    if (CXXMethodDecl *CopyAssign = LookupCopyingAssignment(BaseClassDecl,
8823                                                            ArgQuals, false, 0))
8824      ExceptSpec.CalledDecl(Base->getLocStart(), CopyAssign);
8825  }
8826
8827  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
8828                                  FieldEnd = ClassDecl->field_end();
8829       Field != FieldEnd;
8830       ++Field) {
8831    QualType FieldType = Context.getBaseElementType(Field->getType());
8832    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
8833      if (CXXMethodDecl *CopyAssign =
8834          LookupCopyingAssignment(FieldClassDecl,
8835                                  ArgQuals | FieldType.getCVRQualifiers(),
8836                                  false, 0))
8837        ExceptSpec.CalledDecl(Field->getLocation(), CopyAssign);
8838    }
8839  }
8840
8841  return ExceptSpec;
8842}
8843
8844CXXMethodDecl *Sema::DeclareImplicitCopyAssignment(CXXRecordDecl *ClassDecl) {
8845  // Note: The following rules are largely analoguous to the copy
8846  // constructor rules. Note that virtual bases are not taken into account
8847  // for determining the argument type of the operator. Note also that
8848  // operators taking an object instead of a reference are allowed.
8849  assert(ClassDecl->needsImplicitCopyAssignment());
8850
8851  DeclaringSpecialMember DSM(*this, ClassDecl, CXXCopyAssignment);
8852  if (DSM.isAlreadyBeingDeclared())
8853    return 0;
8854
8855  QualType ArgType = Context.getTypeDeclType(ClassDecl);
8856  QualType RetType = Context.getLValueReferenceType(ArgType);
8857  bool Const = ClassDecl->implicitCopyAssignmentHasConstParam();
8858  if (Const)
8859    ArgType = ArgType.withConst();
8860  ArgType = Context.getLValueReferenceType(ArgType);
8861
8862  bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl,
8863                                                     CXXCopyAssignment,
8864                                                     Const);
8865
8866  //   An implicitly-declared copy assignment operator is an inline public
8867  //   member of its class.
8868  DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
8869  SourceLocation ClassLoc = ClassDecl->getLocation();
8870  DeclarationNameInfo NameInfo(Name, ClassLoc);
8871  CXXMethodDecl *CopyAssignment =
8872      CXXMethodDecl::Create(Context, ClassDecl, ClassLoc, NameInfo, QualType(),
8873                            /*TInfo=*/ 0, /*StorageClass=*/ SC_None,
8874                            /*isInline=*/ true, Constexpr, SourceLocation());
8875  CopyAssignment->setAccess(AS_public);
8876  CopyAssignment->setDefaulted();
8877  CopyAssignment->setImplicit();
8878
8879  // Build an exception specification pointing back at this member.
8880  FunctionProtoType::ExtProtoInfo EPI;
8881  EPI.ExceptionSpecType = EST_Unevaluated;
8882  EPI.ExceptionSpecDecl = CopyAssignment;
8883  CopyAssignment->setType(Context.getFunctionType(RetType, ArgType, EPI));
8884
8885  // Add the parameter to the operator.
8886  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment,
8887                                               ClassLoc, ClassLoc, /*Id=*/0,
8888                                               ArgType, /*TInfo=*/0,
8889                                               SC_None, 0);
8890  CopyAssignment->setParams(FromParam);
8891
8892  AddOverriddenMethods(ClassDecl, CopyAssignment);
8893
8894  CopyAssignment->setTrivial(
8895    ClassDecl->needsOverloadResolutionForCopyAssignment()
8896      ? SpecialMemberIsTrivial(CopyAssignment, CXXCopyAssignment)
8897      : ClassDecl->hasTrivialCopyAssignment());
8898
8899  // C++11 [class.copy]p19:
8900  //   ....  If the class definition does not explicitly declare a copy
8901  //   assignment operator, there is no user-declared move constructor, and
8902  //   there is no user-declared move assignment operator, a copy assignment
8903  //   operator is implicitly declared as defaulted.
8904  if (ShouldDeleteSpecialMember(CopyAssignment, CXXCopyAssignment))
8905    SetDeclDeleted(CopyAssignment, ClassLoc);
8906
8907  // Note that we have added this copy-assignment operator.
8908  ++ASTContext::NumImplicitCopyAssignmentOperatorsDeclared;
8909
8910  if (Scope *S = getScopeForContext(ClassDecl))
8911    PushOnScopeChains(CopyAssignment, S, false);
8912  ClassDecl->addDecl(CopyAssignment);
8913
8914  return CopyAssignment;
8915}
8916
8917/// Diagnose an implicit copy operation for a class which is odr-used, but
8918/// which is deprecated because the class has a user-declared copy constructor,
8919/// copy assignment operator, or destructor.
8920static void diagnoseDeprecatedCopyOperation(Sema &S, CXXMethodDecl *CopyOp,
8921                                            SourceLocation UseLoc) {
8922  assert(CopyOp->isImplicit());
8923
8924  CXXRecordDecl *RD = CopyOp->getParent();
8925  CXXMethodDecl *UserDeclaredOperation = 0;
8926
8927  // In Microsoft mode, assignment operations don't affect constructors and
8928  // vice versa.
8929  if (RD->hasUserDeclaredDestructor()) {
8930    UserDeclaredOperation = RD->getDestructor();
8931  } else if (!isa<CXXConstructorDecl>(CopyOp) &&
8932             RD->hasUserDeclaredCopyConstructor() &&
8933             !S.getLangOpts().MicrosoftMode) {
8934    // Find any user-declared copy constructor.
8935    for (CXXRecordDecl::ctor_iterator I = RD->ctor_begin(),
8936                                      E = RD->ctor_end(); I != E; ++I) {
8937      if (I->isCopyConstructor()) {
8938        UserDeclaredOperation = *I;
8939        break;
8940      }
8941    }
8942    assert(UserDeclaredOperation);
8943  } else if (isa<CXXConstructorDecl>(CopyOp) &&
8944             RD->hasUserDeclaredCopyAssignment() &&
8945             !S.getLangOpts().MicrosoftMode) {
8946    // Find any user-declared move assignment operator.
8947    for (CXXRecordDecl::method_iterator I = RD->method_begin(),
8948                                        E = RD->method_end(); I != E; ++I) {
8949      if (I->isCopyAssignmentOperator()) {
8950        UserDeclaredOperation = *I;
8951        break;
8952      }
8953    }
8954    assert(UserDeclaredOperation);
8955  }
8956
8957  if (UserDeclaredOperation) {
8958    S.Diag(UserDeclaredOperation->getLocation(),
8959         diag::warn_deprecated_copy_operation)
8960      << RD << /*copy assignment*/!isa<CXXConstructorDecl>(CopyOp)
8961      << /*destructor*/isa<CXXDestructorDecl>(UserDeclaredOperation);
8962    S.Diag(UseLoc, diag::note_member_synthesized_at)
8963      << (isa<CXXConstructorDecl>(CopyOp) ? Sema::CXXCopyConstructor
8964                                          : Sema::CXXCopyAssignment)
8965      << RD;
8966  }
8967}
8968
8969void Sema::DefineImplicitCopyAssignment(SourceLocation CurrentLocation,
8970                                        CXXMethodDecl *CopyAssignOperator) {
8971  assert((CopyAssignOperator->isDefaulted() &&
8972          CopyAssignOperator->isOverloadedOperator() &&
8973          CopyAssignOperator->getOverloadedOperator() == OO_Equal &&
8974          !CopyAssignOperator->doesThisDeclarationHaveABody() &&
8975          !CopyAssignOperator->isDeleted()) &&
8976         "DefineImplicitCopyAssignment called for wrong function");
8977
8978  CXXRecordDecl *ClassDecl = CopyAssignOperator->getParent();
8979
8980  if (ClassDecl->isInvalidDecl() || CopyAssignOperator->isInvalidDecl()) {
8981    CopyAssignOperator->setInvalidDecl();
8982    return;
8983  }
8984
8985  // C++11 [class.copy]p18:
8986  //   The [definition of an implicitly declared copy assignment operator] is
8987  //   deprecated if the class has a user-declared copy constructor or a
8988  //   user-declared destructor.
8989  if (getLangOpts().CPlusPlus11 && CopyAssignOperator->isImplicit())
8990    diagnoseDeprecatedCopyOperation(*this, CopyAssignOperator, CurrentLocation);
8991
8992  CopyAssignOperator->setUsed();
8993
8994  SynthesizedFunctionScope Scope(*this, CopyAssignOperator);
8995  DiagnosticErrorTrap Trap(Diags);
8996
8997  // C++0x [class.copy]p30:
8998  //   The implicitly-defined or explicitly-defaulted copy assignment operator
8999  //   for a non-union class X performs memberwise copy assignment of its
9000  //   subobjects. The direct base classes of X are assigned first, in the
9001  //   order of their declaration in the base-specifier-list, and then the
9002  //   immediate non-static data members of X are assigned, in the order in
9003  //   which they were declared in the class definition.
9004
9005  // The statements that form the synthesized function body.
9006  SmallVector<Stmt*, 8> Statements;
9007
9008  // The parameter for the "other" object, which we are copying from.
9009  ParmVarDecl *Other = CopyAssignOperator->getParamDecl(0);
9010  Qualifiers OtherQuals = Other->getType().getQualifiers();
9011  QualType OtherRefType = Other->getType();
9012  if (const LValueReferenceType *OtherRef
9013                                = OtherRefType->getAs<LValueReferenceType>()) {
9014    OtherRefType = OtherRef->getPointeeType();
9015    OtherQuals = OtherRefType.getQualifiers();
9016  }
9017
9018  // Our location for everything implicitly-generated.
9019  SourceLocation Loc = CopyAssignOperator->getLocation();
9020
9021  // Construct a reference to the "other" object. We'll be using this
9022  // throughout the generated ASTs.
9023  Expr *OtherRef = BuildDeclRefExpr(Other, OtherRefType, VK_LValue, Loc).take();
9024  assert(OtherRef && "Reference to parameter cannot fail!");
9025
9026  // Construct the "this" pointer. We'll be using this throughout the generated
9027  // ASTs.
9028  Expr *This = ActOnCXXThis(Loc).takeAs<Expr>();
9029  assert(This && "Reference to this cannot fail!");
9030
9031  // Assign base classes.
9032  bool Invalid = false;
9033  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
9034       E = ClassDecl->bases_end(); Base != E; ++Base) {
9035    // Form the assignment:
9036    //   static_cast<Base*>(this)->Base::operator=(static_cast<Base&>(other));
9037    QualType BaseType = Base->getType().getUnqualifiedType();
9038    if (!BaseType->isRecordType()) {
9039      Invalid = true;
9040      continue;
9041    }
9042
9043    CXXCastPath BasePath;
9044    BasePath.push_back(Base);
9045
9046    // Construct the "from" expression, which is an implicit cast to the
9047    // appropriately-qualified base type.
9048    Expr *From = OtherRef;
9049    From = ImpCastExprToType(From, Context.getQualifiedType(BaseType, OtherQuals),
9050                             CK_UncheckedDerivedToBase,
9051                             VK_LValue, &BasePath).take();
9052
9053    // Dereference "this".
9054    ExprResult To = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
9055
9056    // Implicitly cast "this" to the appropriately-qualified base type.
9057    To = ImpCastExprToType(To.take(),
9058                           Context.getCVRQualifiedType(BaseType,
9059                                     CopyAssignOperator->getTypeQualifiers()),
9060                           CK_UncheckedDerivedToBase,
9061                           VK_LValue, &BasePath);
9062
9063    // Build the copy.
9064    StmtResult Copy = buildSingleCopyAssign(*this, Loc, BaseType,
9065                                            To.get(), From,
9066                                            /*CopyingBaseSubobject=*/true,
9067                                            /*Copying=*/true);
9068    if (Copy.isInvalid()) {
9069      Diag(CurrentLocation, diag::note_member_synthesized_at)
9070        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
9071      CopyAssignOperator->setInvalidDecl();
9072      return;
9073    }
9074
9075    // Success! Record the copy.
9076    Statements.push_back(Copy.takeAs<Expr>());
9077  }
9078
9079  // Assign non-static members.
9080  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
9081                                  FieldEnd = ClassDecl->field_end();
9082       Field != FieldEnd; ++Field) {
9083    if (Field->isUnnamedBitfield())
9084      continue;
9085
9086    if (Field->isInvalidDecl()) {
9087      Invalid = true;
9088      continue;
9089    }
9090
9091    // Check for members of reference type; we can't copy those.
9092    if (Field->getType()->isReferenceType()) {
9093      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
9094        << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
9095      Diag(Field->getLocation(), diag::note_declared_at);
9096      Diag(CurrentLocation, diag::note_member_synthesized_at)
9097        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
9098      Invalid = true;
9099      continue;
9100    }
9101
9102    // Check for members of const-qualified, non-class type.
9103    QualType BaseType = Context.getBaseElementType(Field->getType());
9104    if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) {
9105      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
9106        << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
9107      Diag(Field->getLocation(), diag::note_declared_at);
9108      Diag(CurrentLocation, diag::note_member_synthesized_at)
9109        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
9110      Invalid = true;
9111      continue;
9112    }
9113
9114    // Suppress assigning zero-width bitfields.
9115    if (Field->isBitField() && Field->getBitWidthValue(Context) == 0)
9116      continue;
9117
9118    QualType FieldType = Field->getType().getNonReferenceType();
9119    if (FieldType->isIncompleteArrayType()) {
9120      assert(ClassDecl->hasFlexibleArrayMember() &&
9121             "Incomplete array type is not valid");
9122      continue;
9123    }
9124
9125    // Build references to the field in the object we're copying from and to.
9126    CXXScopeSpec SS; // Intentionally empty
9127    LookupResult MemberLookup(*this, Field->getDeclName(), Loc,
9128                              LookupMemberName);
9129    MemberLookup.addDecl(*Field);
9130    MemberLookup.resolveKind();
9131    ExprResult From = BuildMemberReferenceExpr(OtherRef, OtherRefType,
9132                                               Loc, /*IsArrow=*/false,
9133                                               SS, SourceLocation(), 0,
9134                                               MemberLookup, 0);
9135    ExprResult To = BuildMemberReferenceExpr(This, This->getType(),
9136                                             Loc, /*IsArrow=*/true,
9137                                             SS, SourceLocation(), 0,
9138                                             MemberLookup, 0);
9139    assert(!From.isInvalid() && "Implicit field reference cannot fail");
9140    assert(!To.isInvalid() && "Implicit field reference cannot fail");
9141
9142    // Build the copy of this field.
9143    StmtResult Copy = buildSingleCopyAssign(*this, Loc, FieldType,
9144                                            To.get(), From.get(),
9145                                            /*CopyingBaseSubobject=*/false,
9146                                            /*Copying=*/true);
9147    if (Copy.isInvalid()) {
9148      Diag(CurrentLocation, diag::note_member_synthesized_at)
9149        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
9150      CopyAssignOperator->setInvalidDecl();
9151      return;
9152    }
9153
9154    // Success! Record the copy.
9155    Statements.push_back(Copy.takeAs<Stmt>());
9156  }
9157
9158  if (!Invalid) {
9159    // Add a "return *this;"
9160    ExprResult ThisObj = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
9161
9162    StmtResult Return = ActOnReturnStmt(Loc, ThisObj.get());
9163    if (Return.isInvalid())
9164      Invalid = true;
9165    else {
9166      Statements.push_back(Return.takeAs<Stmt>());
9167
9168      if (Trap.hasErrorOccurred()) {
9169        Diag(CurrentLocation, diag::note_member_synthesized_at)
9170          << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
9171        Invalid = true;
9172      }
9173    }
9174  }
9175
9176  if (Invalid) {
9177    CopyAssignOperator->setInvalidDecl();
9178    return;
9179  }
9180
9181  StmtResult Body;
9182  {
9183    CompoundScopeRAII CompoundScope(*this);
9184    Body = ActOnCompoundStmt(Loc, Loc, Statements,
9185                             /*isStmtExpr=*/false);
9186    assert(!Body.isInvalid() && "Compound statement creation cannot fail");
9187  }
9188  CopyAssignOperator->setBody(Body.takeAs<Stmt>());
9189
9190  if (ASTMutationListener *L = getASTMutationListener()) {
9191    L->CompletedImplicitDefinition(CopyAssignOperator);
9192  }
9193}
9194
9195Sema::ImplicitExceptionSpecification
9196Sema::ComputeDefaultedMoveAssignmentExceptionSpec(CXXMethodDecl *MD) {
9197  CXXRecordDecl *ClassDecl = MD->getParent();
9198
9199  ImplicitExceptionSpecification ExceptSpec(*this);
9200  if (ClassDecl->isInvalidDecl())
9201    return ExceptSpec;
9202
9203  // C++0x [except.spec]p14:
9204  //   An implicitly declared special member function (Clause 12) shall have an
9205  //   exception-specification. [...]
9206
9207  // It is unspecified whether or not an implicit move assignment operator
9208  // attempts to deduplicate calls to assignment operators of virtual bases are
9209  // made. As such, this exception specification is effectively unspecified.
9210  // Based on a similar decision made for constness in C++0x, we're erring on
9211  // the side of assuming such calls to be made regardless of whether they
9212  // actually happen.
9213  // Note that a move constructor is not implicitly declared when there are
9214  // virtual bases, but it can still be user-declared and explicitly defaulted.
9215  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
9216                                       BaseEnd = ClassDecl->bases_end();
9217       Base != BaseEnd; ++Base) {
9218    if (Base->isVirtual())
9219      continue;
9220
9221    CXXRecordDecl *BaseClassDecl
9222      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
9223    if (CXXMethodDecl *MoveAssign = LookupMovingAssignment(BaseClassDecl,
9224                                                           0, false, 0))
9225      ExceptSpec.CalledDecl(Base->getLocStart(), MoveAssign);
9226  }
9227
9228  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
9229                                       BaseEnd = ClassDecl->vbases_end();
9230       Base != BaseEnd; ++Base) {
9231    CXXRecordDecl *BaseClassDecl
9232      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
9233    if (CXXMethodDecl *MoveAssign = LookupMovingAssignment(BaseClassDecl,
9234                                                           0, false, 0))
9235      ExceptSpec.CalledDecl(Base->getLocStart(), MoveAssign);
9236  }
9237
9238  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
9239                                  FieldEnd = ClassDecl->field_end();
9240       Field != FieldEnd;
9241       ++Field) {
9242    QualType FieldType = Context.getBaseElementType(Field->getType());
9243    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
9244      if (CXXMethodDecl *MoveAssign =
9245              LookupMovingAssignment(FieldClassDecl,
9246                                     FieldType.getCVRQualifiers(),
9247                                     false, 0))
9248        ExceptSpec.CalledDecl(Field->getLocation(), MoveAssign);
9249    }
9250  }
9251
9252  return ExceptSpec;
9253}
9254
9255/// Determine whether the class type has any direct or indirect virtual base
9256/// classes which have a non-trivial move assignment operator.
9257static bool
9258hasVirtualBaseWithNonTrivialMoveAssignment(Sema &S, CXXRecordDecl *ClassDecl) {
9259  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
9260                                          BaseEnd = ClassDecl->vbases_end();
9261       Base != BaseEnd; ++Base) {
9262    CXXRecordDecl *BaseClass =
9263        cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
9264
9265    // Try to declare the move assignment. If it would be deleted, then the
9266    // class does not have a non-trivial move assignment.
9267    if (BaseClass->needsImplicitMoveAssignment())
9268      S.DeclareImplicitMoveAssignment(BaseClass);
9269
9270    if (BaseClass->hasNonTrivialMoveAssignment())
9271      return true;
9272  }
9273
9274  return false;
9275}
9276
9277/// Determine whether the given type either has a move constructor or is
9278/// trivially copyable.
9279static bool
9280hasMoveOrIsTriviallyCopyable(Sema &S, QualType Type, bool IsConstructor) {
9281  Type = S.Context.getBaseElementType(Type);
9282
9283  // FIXME: Technically, non-trivially-copyable non-class types, such as
9284  // reference types, are supposed to return false here, but that appears
9285  // to be a standard defect.
9286  CXXRecordDecl *ClassDecl = Type->getAsCXXRecordDecl();
9287  if (!ClassDecl || !ClassDecl->getDefinition() || ClassDecl->isInvalidDecl())
9288    return true;
9289
9290  if (Type.isTriviallyCopyableType(S.Context))
9291    return true;
9292
9293  if (IsConstructor) {
9294    // FIXME: Need this because otherwise hasMoveConstructor isn't guaranteed to
9295    // give the right answer.
9296    if (ClassDecl->needsImplicitMoveConstructor())
9297      S.DeclareImplicitMoveConstructor(ClassDecl);
9298    return ClassDecl->hasMoveConstructor();
9299  }
9300
9301  // FIXME: Need this because otherwise hasMoveAssignment isn't guaranteed to
9302  // give the right answer.
9303  if (ClassDecl->needsImplicitMoveAssignment())
9304    S.DeclareImplicitMoveAssignment(ClassDecl);
9305  return ClassDecl->hasMoveAssignment();
9306}
9307
9308/// Determine whether all non-static data members and direct or virtual bases
9309/// of class \p ClassDecl have either a move operation, or are trivially
9310/// copyable.
9311static bool subobjectsHaveMoveOrTrivialCopy(Sema &S, CXXRecordDecl *ClassDecl,
9312                                            bool IsConstructor) {
9313  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
9314                                          BaseEnd = ClassDecl->bases_end();
9315       Base != BaseEnd; ++Base) {
9316    if (Base->isVirtual())
9317      continue;
9318
9319    if (!hasMoveOrIsTriviallyCopyable(S, Base->getType(), IsConstructor))
9320      return false;
9321  }
9322
9323  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
9324                                          BaseEnd = ClassDecl->vbases_end();
9325       Base != BaseEnd; ++Base) {
9326    if (!hasMoveOrIsTriviallyCopyable(S, Base->getType(), IsConstructor))
9327      return false;
9328  }
9329
9330  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
9331                                     FieldEnd = ClassDecl->field_end();
9332       Field != FieldEnd; ++Field) {
9333    if (!hasMoveOrIsTriviallyCopyable(S, Field->getType(), IsConstructor))
9334      return false;
9335  }
9336
9337  return true;
9338}
9339
9340CXXMethodDecl *Sema::DeclareImplicitMoveAssignment(CXXRecordDecl *ClassDecl) {
9341  // C++11 [class.copy]p20:
9342  //   If the definition of a class X does not explicitly declare a move
9343  //   assignment operator, one will be implicitly declared as defaulted
9344  //   if and only if:
9345  //
9346  //   - [first 4 bullets]
9347  assert(ClassDecl->needsImplicitMoveAssignment());
9348
9349  DeclaringSpecialMember DSM(*this, ClassDecl, CXXMoveAssignment);
9350  if (DSM.isAlreadyBeingDeclared())
9351    return 0;
9352
9353  // [Checked after we build the declaration]
9354  //   - the move assignment operator would not be implicitly defined as
9355  //     deleted,
9356
9357  // [DR1402]:
9358  //   - X has no direct or indirect virtual base class with a non-trivial
9359  //     move assignment operator, and
9360  //   - each of X's non-static data members and direct or virtual base classes
9361  //     has a type that either has a move assignment operator or is trivially
9362  //     copyable.
9363  if (hasVirtualBaseWithNonTrivialMoveAssignment(*this, ClassDecl) ||
9364      !subobjectsHaveMoveOrTrivialCopy(*this, ClassDecl,/*Constructor*/false)) {
9365    ClassDecl->setFailedImplicitMoveAssignment();
9366    return 0;
9367  }
9368
9369  // Note: The following rules are largely analoguous to the move
9370  // constructor rules.
9371
9372  QualType ArgType = Context.getTypeDeclType(ClassDecl);
9373  QualType RetType = Context.getLValueReferenceType(ArgType);
9374  ArgType = Context.getRValueReferenceType(ArgType);
9375
9376  bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl,
9377                                                     CXXMoveAssignment,
9378                                                     false);
9379
9380  //   An implicitly-declared move assignment operator is an inline public
9381  //   member of its class.
9382  DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
9383  SourceLocation ClassLoc = ClassDecl->getLocation();
9384  DeclarationNameInfo NameInfo(Name, ClassLoc);
9385  CXXMethodDecl *MoveAssignment =
9386      CXXMethodDecl::Create(Context, ClassDecl, ClassLoc, NameInfo, QualType(),
9387                            /*TInfo=*/0, /*StorageClass=*/SC_None,
9388                            /*isInline=*/true, Constexpr, SourceLocation());
9389  MoveAssignment->setAccess(AS_public);
9390  MoveAssignment->setDefaulted();
9391  MoveAssignment->setImplicit();
9392
9393  // Build an exception specification pointing back at this member.
9394  FunctionProtoType::ExtProtoInfo EPI;
9395  EPI.ExceptionSpecType = EST_Unevaluated;
9396  EPI.ExceptionSpecDecl = MoveAssignment;
9397  MoveAssignment->setType(Context.getFunctionType(RetType, ArgType, EPI));
9398
9399  // Add the parameter to the operator.
9400  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, MoveAssignment,
9401                                               ClassLoc, ClassLoc, /*Id=*/0,
9402                                               ArgType, /*TInfo=*/0,
9403                                               SC_None, 0);
9404  MoveAssignment->setParams(FromParam);
9405
9406  AddOverriddenMethods(ClassDecl, MoveAssignment);
9407
9408  MoveAssignment->setTrivial(
9409    ClassDecl->needsOverloadResolutionForMoveAssignment()
9410      ? SpecialMemberIsTrivial(MoveAssignment, CXXMoveAssignment)
9411      : ClassDecl->hasTrivialMoveAssignment());
9412
9413  // C++0x [class.copy]p9:
9414  //   If the definition of a class X does not explicitly declare a move
9415  //   assignment operator, one will be implicitly declared as defaulted if and
9416  //   only if:
9417  //   [...]
9418  //   - the move assignment operator would not be implicitly defined as
9419  //     deleted.
9420  if (ShouldDeleteSpecialMember(MoveAssignment, CXXMoveAssignment)) {
9421    // Cache this result so that we don't try to generate this over and over
9422    // on every lookup, leaking memory and wasting time.
9423    ClassDecl->setFailedImplicitMoveAssignment();
9424    return 0;
9425  }
9426
9427  // Note that we have added this copy-assignment operator.
9428  ++ASTContext::NumImplicitMoveAssignmentOperatorsDeclared;
9429
9430  if (Scope *S = getScopeForContext(ClassDecl))
9431    PushOnScopeChains(MoveAssignment, S, false);
9432  ClassDecl->addDecl(MoveAssignment);
9433
9434  return MoveAssignment;
9435}
9436
9437void Sema::DefineImplicitMoveAssignment(SourceLocation CurrentLocation,
9438                                        CXXMethodDecl *MoveAssignOperator) {
9439  assert((MoveAssignOperator->isDefaulted() &&
9440          MoveAssignOperator->isOverloadedOperator() &&
9441          MoveAssignOperator->getOverloadedOperator() == OO_Equal &&
9442          !MoveAssignOperator->doesThisDeclarationHaveABody() &&
9443          !MoveAssignOperator->isDeleted()) &&
9444         "DefineImplicitMoveAssignment called for wrong function");
9445
9446  CXXRecordDecl *ClassDecl = MoveAssignOperator->getParent();
9447
9448  if (ClassDecl->isInvalidDecl() || MoveAssignOperator->isInvalidDecl()) {
9449    MoveAssignOperator->setInvalidDecl();
9450    return;
9451  }
9452
9453  MoveAssignOperator->setUsed();
9454
9455  SynthesizedFunctionScope Scope(*this, MoveAssignOperator);
9456  DiagnosticErrorTrap Trap(Diags);
9457
9458  // C++0x [class.copy]p28:
9459  //   The implicitly-defined or move assignment operator for a non-union class
9460  //   X performs memberwise move assignment of its subobjects. The direct base
9461  //   classes of X are assigned first, in the order of their declaration in the
9462  //   base-specifier-list, and then the immediate non-static data members of X
9463  //   are assigned, in the order in which they were declared in the class
9464  //   definition.
9465
9466  // The statements that form the synthesized function body.
9467  SmallVector<Stmt*, 8> Statements;
9468
9469  // The parameter for the "other" object, which we are move from.
9470  ParmVarDecl *Other = MoveAssignOperator->getParamDecl(0);
9471  QualType OtherRefType = Other->getType()->
9472      getAs<RValueReferenceType>()->getPointeeType();
9473  assert(!OtherRefType.getQualifiers() &&
9474         "Bad argument type of defaulted move assignment");
9475
9476  // Our location for everything implicitly-generated.
9477  SourceLocation Loc = MoveAssignOperator->getLocation();
9478
9479  // Construct a reference to the "other" object. We'll be using this
9480  // throughout the generated ASTs.
9481  Expr *OtherRef = BuildDeclRefExpr(Other, OtherRefType, VK_LValue, Loc).take();
9482  assert(OtherRef && "Reference to parameter cannot fail!");
9483  // Cast to rvalue.
9484  OtherRef = CastForMoving(*this, OtherRef);
9485
9486  // Construct the "this" pointer. We'll be using this throughout the generated
9487  // ASTs.
9488  Expr *This = ActOnCXXThis(Loc).takeAs<Expr>();
9489  assert(This && "Reference to this cannot fail!");
9490
9491  // Assign base classes.
9492  bool Invalid = false;
9493  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
9494       E = ClassDecl->bases_end(); Base != E; ++Base) {
9495    // Form the assignment:
9496    //   static_cast<Base*>(this)->Base::operator=(static_cast<Base&&>(other));
9497    QualType BaseType = Base->getType().getUnqualifiedType();
9498    if (!BaseType->isRecordType()) {
9499      Invalid = true;
9500      continue;
9501    }
9502
9503    CXXCastPath BasePath;
9504    BasePath.push_back(Base);
9505
9506    // Construct the "from" expression, which is an implicit cast to the
9507    // appropriately-qualified base type.
9508    Expr *From = OtherRef;
9509    From = ImpCastExprToType(From, BaseType, CK_UncheckedDerivedToBase,
9510                             VK_XValue, &BasePath).take();
9511
9512    // Dereference "this".
9513    ExprResult To = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
9514
9515    // Implicitly cast "this" to the appropriately-qualified base type.
9516    To = ImpCastExprToType(To.take(),
9517                           Context.getCVRQualifiedType(BaseType,
9518                                     MoveAssignOperator->getTypeQualifiers()),
9519                           CK_UncheckedDerivedToBase,
9520                           VK_LValue, &BasePath);
9521
9522    // Build the move.
9523    StmtResult Move = buildSingleCopyAssign(*this, Loc, BaseType,
9524                                            To.get(), From,
9525                                            /*CopyingBaseSubobject=*/true,
9526                                            /*Copying=*/false);
9527    if (Move.isInvalid()) {
9528      Diag(CurrentLocation, diag::note_member_synthesized_at)
9529        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
9530      MoveAssignOperator->setInvalidDecl();
9531      return;
9532    }
9533
9534    // Success! Record the move.
9535    Statements.push_back(Move.takeAs<Expr>());
9536  }
9537
9538  // Assign non-static members.
9539  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
9540                                  FieldEnd = ClassDecl->field_end();
9541       Field != FieldEnd; ++Field) {
9542    if (Field->isUnnamedBitfield())
9543      continue;
9544
9545    if (Field->isInvalidDecl()) {
9546      Invalid = true;
9547      continue;
9548    }
9549
9550    // Check for members of reference type; we can't move those.
9551    if (Field->getType()->isReferenceType()) {
9552      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
9553        << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
9554      Diag(Field->getLocation(), diag::note_declared_at);
9555      Diag(CurrentLocation, diag::note_member_synthesized_at)
9556        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
9557      Invalid = true;
9558      continue;
9559    }
9560
9561    // Check for members of const-qualified, non-class type.
9562    QualType BaseType = Context.getBaseElementType(Field->getType());
9563    if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) {
9564      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
9565        << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
9566      Diag(Field->getLocation(), diag::note_declared_at);
9567      Diag(CurrentLocation, diag::note_member_synthesized_at)
9568        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
9569      Invalid = true;
9570      continue;
9571    }
9572
9573    // Suppress assigning zero-width bitfields.
9574    if (Field->isBitField() && Field->getBitWidthValue(Context) == 0)
9575      continue;
9576
9577    QualType FieldType = Field->getType().getNonReferenceType();
9578    if (FieldType->isIncompleteArrayType()) {
9579      assert(ClassDecl->hasFlexibleArrayMember() &&
9580             "Incomplete array type is not valid");
9581      continue;
9582    }
9583
9584    // Build references to the field in the object we're copying from and to.
9585    CXXScopeSpec SS; // Intentionally empty
9586    LookupResult MemberLookup(*this, Field->getDeclName(), Loc,
9587                              LookupMemberName);
9588    MemberLookup.addDecl(*Field);
9589    MemberLookup.resolveKind();
9590    ExprResult From = BuildMemberReferenceExpr(OtherRef, OtherRefType,
9591                                               Loc, /*IsArrow=*/false,
9592                                               SS, SourceLocation(), 0,
9593                                               MemberLookup, 0);
9594    ExprResult To = BuildMemberReferenceExpr(This, This->getType(),
9595                                             Loc, /*IsArrow=*/true,
9596                                             SS, SourceLocation(), 0,
9597                                             MemberLookup, 0);
9598    assert(!From.isInvalid() && "Implicit field reference cannot fail");
9599    assert(!To.isInvalid() && "Implicit field reference cannot fail");
9600
9601    assert(!From.get()->isLValue() && // could be xvalue or prvalue
9602        "Member reference with rvalue base must be rvalue except for reference "
9603        "members, which aren't allowed for move assignment.");
9604
9605    // Build the move of this field.
9606    StmtResult Move = buildSingleCopyAssign(*this, Loc, FieldType,
9607                                            To.get(), From.get(),
9608                                            /*CopyingBaseSubobject=*/false,
9609                                            /*Copying=*/false);
9610    if (Move.isInvalid()) {
9611      Diag(CurrentLocation, diag::note_member_synthesized_at)
9612        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
9613      MoveAssignOperator->setInvalidDecl();
9614      return;
9615    }
9616
9617    // Success! Record the copy.
9618    Statements.push_back(Move.takeAs<Stmt>());
9619  }
9620
9621  if (!Invalid) {
9622    // Add a "return *this;"
9623    ExprResult ThisObj = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
9624
9625    StmtResult Return = ActOnReturnStmt(Loc, ThisObj.get());
9626    if (Return.isInvalid())
9627      Invalid = true;
9628    else {
9629      Statements.push_back(Return.takeAs<Stmt>());
9630
9631      if (Trap.hasErrorOccurred()) {
9632        Diag(CurrentLocation, diag::note_member_synthesized_at)
9633          << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
9634        Invalid = true;
9635      }
9636    }
9637  }
9638
9639  if (Invalid) {
9640    MoveAssignOperator->setInvalidDecl();
9641    return;
9642  }
9643
9644  StmtResult Body;
9645  {
9646    CompoundScopeRAII CompoundScope(*this);
9647    Body = ActOnCompoundStmt(Loc, Loc, Statements,
9648                             /*isStmtExpr=*/false);
9649    assert(!Body.isInvalid() && "Compound statement creation cannot fail");
9650  }
9651  MoveAssignOperator->setBody(Body.takeAs<Stmt>());
9652
9653  if (ASTMutationListener *L = getASTMutationListener()) {
9654    L->CompletedImplicitDefinition(MoveAssignOperator);
9655  }
9656}
9657
9658Sema::ImplicitExceptionSpecification
9659Sema::ComputeDefaultedCopyCtorExceptionSpec(CXXMethodDecl *MD) {
9660  CXXRecordDecl *ClassDecl = MD->getParent();
9661
9662  ImplicitExceptionSpecification ExceptSpec(*this);
9663  if (ClassDecl->isInvalidDecl())
9664    return ExceptSpec;
9665
9666  const FunctionProtoType *T = MD->getType()->castAs<FunctionProtoType>();
9667  assert(T->getNumArgs() >= 1 && "not a copy ctor");
9668  unsigned Quals = T->getArgType(0).getNonReferenceType().getCVRQualifiers();
9669
9670  // C++ [except.spec]p14:
9671  //   An implicitly declared special member function (Clause 12) shall have an
9672  //   exception-specification. [...]
9673  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
9674                                       BaseEnd = ClassDecl->bases_end();
9675       Base != BaseEnd;
9676       ++Base) {
9677    // Virtual bases are handled below.
9678    if (Base->isVirtual())
9679      continue;
9680
9681    CXXRecordDecl *BaseClassDecl
9682      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
9683    if (CXXConstructorDecl *CopyConstructor =
9684          LookupCopyingConstructor(BaseClassDecl, Quals))
9685      ExceptSpec.CalledDecl(Base->getLocStart(), CopyConstructor);
9686  }
9687  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
9688                                       BaseEnd = ClassDecl->vbases_end();
9689       Base != BaseEnd;
9690       ++Base) {
9691    CXXRecordDecl *BaseClassDecl
9692      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
9693    if (CXXConstructorDecl *CopyConstructor =
9694          LookupCopyingConstructor(BaseClassDecl, Quals))
9695      ExceptSpec.CalledDecl(Base->getLocStart(), CopyConstructor);
9696  }
9697  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
9698                                  FieldEnd = ClassDecl->field_end();
9699       Field != FieldEnd;
9700       ++Field) {
9701    QualType FieldType = Context.getBaseElementType(Field->getType());
9702    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
9703      if (CXXConstructorDecl *CopyConstructor =
9704              LookupCopyingConstructor(FieldClassDecl,
9705                                       Quals | FieldType.getCVRQualifiers()))
9706      ExceptSpec.CalledDecl(Field->getLocation(), CopyConstructor);
9707    }
9708  }
9709
9710  return ExceptSpec;
9711}
9712
9713CXXConstructorDecl *Sema::DeclareImplicitCopyConstructor(
9714                                                    CXXRecordDecl *ClassDecl) {
9715  // C++ [class.copy]p4:
9716  //   If the class definition does not explicitly declare a copy
9717  //   constructor, one is declared implicitly.
9718  assert(ClassDecl->needsImplicitCopyConstructor());
9719
9720  DeclaringSpecialMember DSM(*this, ClassDecl, CXXCopyConstructor);
9721  if (DSM.isAlreadyBeingDeclared())
9722    return 0;
9723
9724  QualType ClassType = Context.getTypeDeclType(ClassDecl);
9725  QualType ArgType = ClassType;
9726  bool Const = ClassDecl->implicitCopyConstructorHasConstParam();
9727  if (Const)
9728    ArgType = ArgType.withConst();
9729  ArgType = Context.getLValueReferenceType(ArgType);
9730
9731  bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl,
9732                                                     CXXCopyConstructor,
9733                                                     Const);
9734
9735  DeclarationName Name
9736    = Context.DeclarationNames.getCXXConstructorName(
9737                                           Context.getCanonicalType(ClassType));
9738  SourceLocation ClassLoc = ClassDecl->getLocation();
9739  DeclarationNameInfo NameInfo(Name, ClassLoc);
9740
9741  //   An implicitly-declared copy constructor is an inline public
9742  //   member of its class.
9743  CXXConstructorDecl *CopyConstructor = CXXConstructorDecl::Create(
9744      Context, ClassDecl, ClassLoc, NameInfo, QualType(), /*TInfo=*/0,
9745      /*isExplicit=*/false, /*isInline=*/true, /*isImplicitlyDeclared=*/true,
9746      Constexpr);
9747  CopyConstructor->setAccess(AS_public);
9748  CopyConstructor->setDefaulted();
9749
9750  // Build an exception specification pointing back at this member.
9751  FunctionProtoType::ExtProtoInfo EPI;
9752  EPI.ExceptionSpecType = EST_Unevaluated;
9753  EPI.ExceptionSpecDecl = CopyConstructor;
9754  CopyConstructor->setType(
9755      Context.getFunctionType(Context.VoidTy, ArgType, EPI));
9756
9757  // Add the parameter to the constructor.
9758  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor,
9759                                               ClassLoc, ClassLoc,
9760                                               /*IdentifierInfo=*/0,
9761                                               ArgType, /*TInfo=*/0,
9762                                               SC_None, 0);
9763  CopyConstructor->setParams(FromParam);
9764
9765  CopyConstructor->setTrivial(
9766    ClassDecl->needsOverloadResolutionForCopyConstructor()
9767      ? SpecialMemberIsTrivial(CopyConstructor, CXXCopyConstructor)
9768      : ClassDecl->hasTrivialCopyConstructor());
9769
9770  // C++11 [class.copy]p8:
9771  //   ... If the class definition does not explicitly declare a copy
9772  //   constructor, there is no user-declared move constructor, and there is no
9773  //   user-declared move assignment operator, a copy constructor is implicitly
9774  //   declared as defaulted.
9775  if (ShouldDeleteSpecialMember(CopyConstructor, CXXCopyConstructor))
9776    SetDeclDeleted(CopyConstructor, ClassLoc);
9777
9778  // Note that we have declared this constructor.
9779  ++ASTContext::NumImplicitCopyConstructorsDeclared;
9780
9781  if (Scope *S = getScopeForContext(ClassDecl))
9782    PushOnScopeChains(CopyConstructor, S, false);
9783  ClassDecl->addDecl(CopyConstructor);
9784
9785  return CopyConstructor;
9786}
9787
9788void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation,
9789                                   CXXConstructorDecl *CopyConstructor) {
9790  assert((CopyConstructor->isDefaulted() &&
9791          CopyConstructor->isCopyConstructor() &&
9792          !CopyConstructor->doesThisDeclarationHaveABody() &&
9793          !CopyConstructor->isDeleted()) &&
9794         "DefineImplicitCopyConstructor - call it for implicit copy ctor");
9795
9796  CXXRecordDecl *ClassDecl = CopyConstructor->getParent();
9797  assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor");
9798
9799  // C++11 [class.copy]p7:
9800  //   The [definition of an implicitly declared copy constructro] is
9801  //   deprecated if the class has a user-declared copy assignment operator
9802  //   or a user-declared destructor.
9803  if (getLangOpts().CPlusPlus11 && CopyConstructor->isImplicit())
9804    diagnoseDeprecatedCopyOperation(*this, CopyConstructor, CurrentLocation);
9805
9806  SynthesizedFunctionScope Scope(*this, CopyConstructor);
9807  DiagnosticErrorTrap Trap(Diags);
9808
9809  if (SetCtorInitializers(CopyConstructor, /*AnyErrors=*/false) ||
9810      Trap.hasErrorOccurred()) {
9811    Diag(CurrentLocation, diag::note_member_synthesized_at)
9812      << CXXCopyConstructor << Context.getTagDeclType(ClassDecl);
9813    CopyConstructor->setInvalidDecl();
9814  }  else {
9815    Sema::CompoundScopeRAII CompoundScope(*this);
9816    CopyConstructor->setBody(ActOnCompoundStmt(CopyConstructor->getLocation(),
9817                                               CopyConstructor->getLocation(),
9818                                               MultiStmtArg(),
9819                                               /*isStmtExpr=*/false)
9820                                                              .takeAs<Stmt>());
9821    CopyConstructor->setImplicitlyDefined(true);
9822  }
9823
9824  CopyConstructor->setUsed();
9825  if (ASTMutationListener *L = getASTMutationListener()) {
9826    L->CompletedImplicitDefinition(CopyConstructor);
9827  }
9828}
9829
9830Sema::ImplicitExceptionSpecification
9831Sema::ComputeDefaultedMoveCtorExceptionSpec(CXXMethodDecl *MD) {
9832  CXXRecordDecl *ClassDecl = MD->getParent();
9833
9834  // C++ [except.spec]p14:
9835  //   An implicitly declared special member function (Clause 12) shall have an
9836  //   exception-specification. [...]
9837  ImplicitExceptionSpecification ExceptSpec(*this);
9838  if (ClassDecl->isInvalidDecl())
9839    return ExceptSpec;
9840
9841  // Direct base-class constructors.
9842  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
9843                                       BEnd = ClassDecl->bases_end();
9844       B != BEnd; ++B) {
9845    if (B->isVirtual()) // Handled below.
9846      continue;
9847
9848    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
9849      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
9850      CXXConstructorDecl *Constructor =
9851          LookupMovingConstructor(BaseClassDecl, 0);
9852      // If this is a deleted function, add it anyway. This might be conformant
9853      // with the standard. This might not. I'm not sure. It might not matter.
9854      if (Constructor)
9855        ExceptSpec.CalledDecl(B->getLocStart(), Constructor);
9856    }
9857  }
9858
9859  // Virtual base-class constructors.
9860  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
9861                                       BEnd = ClassDecl->vbases_end();
9862       B != BEnd; ++B) {
9863    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
9864      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
9865      CXXConstructorDecl *Constructor =
9866          LookupMovingConstructor(BaseClassDecl, 0);
9867      // If this is a deleted function, add it anyway. This might be conformant
9868      // with the standard. This might not. I'm not sure. It might not matter.
9869      if (Constructor)
9870        ExceptSpec.CalledDecl(B->getLocStart(), Constructor);
9871    }
9872  }
9873
9874  // Field constructors.
9875  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
9876                               FEnd = ClassDecl->field_end();
9877       F != FEnd; ++F) {
9878    QualType FieldType = Context.getBaseElementType(F->getType());
9879    if (CXXRecordDecl *FieldRecDecl = FieldType->getAsCXXRecordDecl()) {
9880      CXXConstructorDecl *Constructor =
9881          LookupMovingConstructor(FieldRecDecl, FieldType.getCVRQualifiers());
9882      // If this is a deleted function, add it anyway. This might be conformant
9883      // with the standard. This might not. I'm not sure. It might not matter.
9884      // In particular, the problem is that this function never gets called. It
9885      // might just be ill-formed because this function attempts to refer to
9886      // a deleted function here.
9887      if (Constructor)
9888        ExceptSpec.CalledDecl(F->getLocation(), Constructor);
9889    }
9890  }
9891
9892  return ExceptSpec;
9893}
9894
9895CXXConstructorDecl *Sema::DeclareImplicitMoveConstructor(
9896                                                    CXXRecordDecl *ClassDecl) {
9897  // C++11 [class.copy]p9:
9898  //   If the definition of a class X does not explicitly declare a move
9899  //   constructor, one will be implicitly declared as defaulted if and only if:
9900  //
9901  //   - [first 4 bullets]
9902  assert(ClassDecl->needsImplicitMoveConstructor());
9903
9904  DeclaringSpecialMember DSM(*this, ClassDecl, CXXMoveConstructor);
9905  if (DSM.isAlreadyBeingDeclared())
9906    return 0;
9907
9908  // [Checked after we build the declaration]
9909  //   - the move assignment operator would not be implicitly defined as
9910  //     deleted,
9911
9912  // [DR1402]:
9913  //   - each of X's non-static data members and direct or virtual base classes
9914  //     has a type that either has a move constructor or is trivially copyable.
9915  if (!subobjectsHaveMoveOrTrivialCopy(*this, ClassDecl, /*Constructor*/true)) {
9916    ClassDecl->setFailedImplicitMoveConstructor();
9917    return 0;
9918  }
9919
9920  QualType ClassType = Context.getTypeDeclType(ClassDecl);
9921  QualType ArgType = Context.getRValueReferenceType(ClassType);
9922
9923  bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl,
9924                                                     CXXMoveConstructor,
9925                                                     false);
9926
9927  DeclarationName Name
9928    = Context.DeclarationNames.getCXXConstructorName(
9929                                           Context.getCanonicalType(ClassType));
9930  SourceLocation ClassLoc = ClassDecl->getLocation();
9931  DeclarationNameInfo NameInfo(Name, ClassLoc);
9932
9933  // C++11 [class.copy]p11:
9934  //   An implicitly-declared copy/move constructor is an inline public
9935  //   member of its class.
9936  CXXConstructorDecl *MoveConstructor = CXXConstructorDecl::Create(
9937      Context, ClassDecl, ClassLoc, NameInfo, QualType(), /*TInfo=*/0,
9938      /*isExplicit=*/false, /*isInline=*/true, /*isImplicitlyDeclared=*/true,
9939      Constexpr);
9940  MoveConstructor->setAccess(AS_public);
9941  MoveConstructor->setDefaulted();
9942
9943  // Build an exception specification pointing back at this member.
9944  FunctionProtoType::ExtProtoInfo EPI;
9945  EPI.ExceptionSpecType = EST_Unevaluated;
9946  EPI.ExceptionSpecDecl = MoveConstructor;
9947  MoveConstructor->setType(
9948      Context.getFunctionType(Context.VoidTy, ArgType, EPI));
9949
9950  // Add the parameter to the constructor.
9951  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, MoveConstructor,
9952                                               ClassLoc, ClassLoc,
9953                                               /*IdentifierInfo=*/0,
9954                                               ArgType, /*TInfo=*/0,
9955                                               SC_None, 0);
9956  MoveConstructor->setParams(FromParam);
9957
9958  MoveConstructor->setTrivial(
9959    ClassDecl->needsOverloadResolutionForMoveConstructor()
9960      ? SpecialMemberIsTrivial(MoveConstructor, CXXMoveConstructor)
9961      : ClassDecl->hasTrivialMoveConstructor());
9962
9963  // C++0x [class.copy]p9:
9964  //   If the definition of a class X does not explicitly declare a move
9965  //   constructor, one will be implicitly declared as defaulted if and only if:
9966  //   [...]
9967  //   - the move constructor would not be implicitly defined as deleted.
9968  if (ShouldDeleteSpecialMember(MoveConstructor, CXXMoveConstructor)) {
9969    // Cache this result so that we don't try to generate this over and over
9970    // on every lookup, leaking memory and wasting time.
9971    ClassDecl->setFailedImplicitMoveConstructor();
9972    return 0;
9973  }
9974
9975  // Note that we have declared this constructor.
9976  ++ASTContext::NumImplicitMoveConstructorsDeclared;
9977
9978  if (Scope *S = getScopeForContext(ClassDecl))
9979    PushOnScopeChains(MoveConstructor, S, false);
9980  ClassDecl->addDecl(MoveConstructor);
9981
9982  return MoveConstructor;
9983}
9984
9985void Sema::DefineImplicitMoveConstructor(SourceLocation CurrentLocation,
9986                                   CXXConstructorDecl *MoveConstructor) {
9987  assert((MoveConstructor->isDefaulted() &&
9988          MoveConstructor->isMoveConstructor() &&
9989          !MoveConstructor->doesThisDeclarationHaveABody() &&
9990          !MoveConstructor->isDeleted()) &&
9991         "DefineImplicitMoveConstructor - call it for implicit move ctor");
9992
9993  CXXRecordDecl *ClassDecl = MoveConstructor->getParent();
9994  assert(ClassDecl && "DefineImplicitMoveConstructor - invalid constructor");
9995
9996  SynthesizedFunctionScope Scope(*this, MoveConstructor);
9997  DiagnosticErrorTrap Trap(Diags);
9998
9999  if (SetCtorInitializers(MoveConstructor, /*AnyErrors=*/false) ||
10000      Trap.hasErrorOccurred()) {
10001    Diag(CurrentLocation, diag::note_member_synthesized_at)
10002      << CXXMoveConstructor << Context.getTagDeclType(ClassDecl);
10003    MoveConstructor->setInvalidDecl();
10004  }  else {
10005    Sema::CompoundScopeRAII CompoundScope(*this);
10006    MoveConstructor->setBody(ActOnCompoundStmt(MoveConstructor->getLocation(),
10007                                               MoveConstructor->getLocation(),
10008                                               MultiStmtArg(),
10009                                               /*isStmtExpr=*/false)
10010                                                              .takeAs<Stmt>());
10011    MoveConstructor->setImplicitlyDefined(true);
10012  }
10013
10014  MoveConstructor->setUsed();
10015
10016  if (ASTMutationListener *L = getASTMutationListener()) {
10017    L->CompletedImplicitDefinition(MoveConstructor);
10018  }
10019}
10020
10021bool Sema::isImplicitlyDeleted(FunctionDecl *FD) {
10022  return FD->isDeleted() && FD->isDefaulted() && isa<CXXMethodDecl>(FD);
10023}
10024
10025/// \brief Mark the call operator of the given lambda closure type as "used".
10026static void markLambdaCallOperatorUsed(Sema &S, CXXRecordDecl *Lambda) {
10027  CXXMethodDecl *CallOperator
10028    = cast<CXXMethodDecl>(
10029        Lambda->lookup(
10030          S.Context.DeclarationNames.getCXXOperatorName(OO_Call)).front());
10031  CallOperator->setReferenced();
10032  CallOperator->setUsed();
10033}
10034
10035void Sema::DefineImplicitLambdaToFunctionPointerConversion(
10036       SourceLocation CurrentLocation,
10037       CXXConversionDecl *Conv)
10038{
10039  CXXRecordDecl *Lambda = Conv->getParent();
10040
10041  // Make sure that the lambda call operator is marked used.
10042  markLambdaCallOperatorUsed(*this, Lambda);
10043
10044  Conv->setUsed();
10045
10046  SynthesizedFunctionScope Scope(*this, Conv);
10047  DiagnosticErrorTrap Trap(Diags);
10048
10049  // Return the address of the __invoke function.
10050  DeclarationName InvokeName = &Context.Idents.get("__invoke");
10051  CXXMethodDecl *Invoke
10052    = cast<CXXMethodDecl>(Lambda->lookup(InvokeName).front());
10053  Expr *FunctionRef = BuildDeclRefExpr(Invoke, Invoke->getType(),
10054                                       VK_LValue, Conv->getLocation()).take();
10055  assert(FunctionRef && "Can't refer to __invoke function?");
10056  Stmt *Return = ActOnReturnStmt(Conv->getLocation(), FunctionRef).take();
10057  Conv->setBody(new (Context) CompoundStmt(Context, Return,
10058                                           Conv->getLocation(),
10059                                           Conv->getLocation()));
10060
10061  // Fill in the __invoke function with a dummy implementation. IR generation
10062  // will fill in the actual details.
10063  Invoke->setUsed();
10064  Invoke->setReferenced();
10065  Invoke->setBody(new (Context) CompoundStmt(Conv->getLocation()));
10066
10067  if (ASTMutationListener *L = getASTMutationListener()) {
10068    L->CompletedImplicitDefinition(Conv);
10069    L->CompletedImplicitDefinition(Invoke);
10070  }
10071}
10072
10073void Sema::DefineImplicitLambdaToBlockPointerConversion(
10074       SourceLocation CurrentLocation,
10075       CXXConversionDecl *Conv)
10076{
10077  Conv->setUsed();
10078
10079  SynthesizedFunctionScope Scope(*this, Conv);
10080  DiagnosticErrorTrap Trap(Diags);
10081
10082  // Copy-initialize the lambda object as needed to capture it.
10083  Expr *This = ActOnCXXThis(CurrentLocation).take();
10084  Expr *DerefThis =CreateBuiltinUnaryOp(CurrentLocation, UO_Deref, This).take();
10085
10086  ExprResult BuildBlock = BuildBlockForLambdaConversion(CurrentLocation,
10087                                                        Conv->getLocation(),
10088                                                        Conv, DerefThis);
10089
10090  // If we're not under ARC, make sure we still get the _Block_copy/autorelease
10091  // behavior.  Note that only the general conversion function does this
10092  // (since it's unusable otherwise); in the case where we inline the
10093  // block literal, it has block literal lifetime semantics.
10094  if (!BuildBlock.isInvalid() && !getLangOpts().ObjCAutoRefCount)
10095    BuildBlock = ImplicitCastExpr::Create(Context, BuildBlock.get()->getType(),
10096                                          CK_CopyAndAutoreleaseBlockObject,
10097                                          BuildBlock.get(), 0, VK_RValue);
10098
10099  if (BuildBlock.isInvalid()) {
10100    Diag(CurrentLocation, diag::note_lambda_to_block_conv);
10101    Conv->setInvalidDecl();
10102    return;
10103  }
10104
10105  // Create the return statement that returns the block from the conversion
10106  // function.
10107  StmtResult Return = ActOnReturnStmt(Conv->getLocation(), BuildBlock.get());
10108  if (Return.isInvalid()) {
10109    Diag(CurrentLocation, diag::note_lambda_to_block_conv);
10110    Conv->setInvalidDecl();
10111    return;
10112  }
10113
10114  // Set the body of the conversion function.
10115  Stmt *ReturnS = Return.take();
10116  Conv->setBody(new (Context) CompoundStmt(Context, ReturnS,
10117                                           Conv->getLocation(),
10118                                           Conv->getLocation()));
10119
10120  // We're done; notify the mutation listener, if any.
10121  if (ASTMutationListener *L = getASTMutationListener()) {
10122    L->CompletedImplicitDefinition(Conv);
10123  }
10124}
10125
10126/// \brief Determine whether the given list arguments contains exactly one
10127/// "real" (non-default) argument.
10128static bool hasOneRealArgument(MultiExprArg Args) {
10129  switch (Args.size()) {
10130  case 0:
10131    return false;
10132
10133  default:
10134    if (!Args[1]->isDefaultArgument())
10135      return false;
10136
10137    // fall through
10138  case 1:
10139    return !Args[0]->isDefaultArgument();
10140  }
10141
10142  return false;
10143}
10144
10145ExprResult
10146Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
10147                            CXXConstructorDecl *Constructor,
10148                            MultiExprArg ExprArgs,
10149                            bool HadMultipleCandidates,
10150                            bool IsListInitialization,
10151                            bool RequiresZeroInit,
10152                            unsigned ConstructKind,
10153                            SourceRange ParenRange) {
10154  bool Elidable = false;
10155
10156  // C++0x [class.copy]p34:
10157  //   When certain criteria are met, an implementation is allowed to
10158  //   omit the copy/move construction of a class object, even if the
10159  //   copy/move constructor and/or destructor for the object have
10160  //   side effects. [...]
10161  //     - when a temporary class object that has not been bound to a
10162  //       reference (12.2) would be copied/moved to a class object
10163  //       with the same cv-unqualified type, the copy/move operation
10164  //       can be omitted by constructing the temporary object
10165  //       directly into the target of the omitted copy/move
10166  if (ConstructKind == CXXConstructExpr::CK_Complete &&
10167      Constructor->isCopyOrMoveConstructor() && hasOneRealArgument(ExprArgs)) {
10168    Expr *SubExpr = ExprArgs[0];
10169    Elidable = SubExpr->isTemporaryObject(Context, Constructor->getParent());
10170  }
10171
10172  return BuildCXXConstructExpr(ConstructLoc, DeclInitType, Constructor,
10173                               Elidable, ExprArgs, HadMultipleCandidates,
10174                               IsListInitialization, RequiresZeroInit,
10175                               ConstructKind, ParenRange);
10176}
10177
10178/// BuildCXXConstructExpr - Creates a complete call to a constructor,
10179/// including handling of its default argument expressions.
10180ExprResult
10181Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
10182                            CXXConstructorDecl *Constructor, bool Elidable,
10183                            MultiExprArg ExprArgs,
10184                            bool HadMultipleCandidates,
10185                            bool IsListInitialization,
10186                            bool RequiresZeroInit,
10187                            unsigned ConstructKind,
10188                            SourceRange ParenRange) {
10189  MarkFunctionReferenced(ConstructLoc, Constructor);
10190  return Owned(CXXConstructExpr::Create(Context, DeclInitType, ConstructLoc,
10191                                        Constructor, Elidable, ExprArgs,
10192                                        HadMultipleCandidates,
10193                                        IsListInitialization, RequiresZeroInit,
10194              static_cast<CXXConstructExpr::ConstructionKind>(ConstructKind),
10195                                        ParenRange));
10196}
10197
10198void Sema::FinalizeVarWithDestructor(VarDecl *VD, const RecordType *Record) {
10199  if (VD->isInvalidDecl()) return;
10200
10201  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Record->getDecl());
10202  if (ClassDecl->isInvalidDecl()) return;
10203  if (ClassDecl->hasIrrelevantDestructor()) return;
10204  if (ClassDecl->isDependentContext()) return;
10205
10206  CXXDestructorDecl *Destructor = LookupDestructor(ClassDecl);
10207  MarkFunctionReferenced(VD->getLocation(), Destructor);
10208  CheckDestructorAccess(VD->getLocation(), Destructor,
10209                        PDiag(diag::err_access_dtor_var)
10210                        << VD->getDeclName()
10211                        << VD->getType());
10212  DiagnoseUseOfDecl(Destructor, VD->getLocation());
10213
10214  if (!VD->hasGlobalStorage()) return;
10215
10216  // Emit warning for non-trivial dtor in global scope (a real global,
10217  // class-static, function-static).
10218  Diag(VD->getLocation(), diag::warn_exit_time_destructor);
10219
10220  // TODO: this should be re-enabled for static locals by !CXAAtExit
10221  if (!VD->isStaticLocal())
10222    Diag(VD->getLocation(), diag::warn_global_destructor);
10223}
10224
10225/// \brief Given a constructor and the set of arguments provided for the
10226/// constructor, convert the arguments and add any required default arguments
10227/// to form a proper call to this constructor.
10228///
10229/// \returns true if an error occurred, false otherwise.
10230bool
10231Sema::CompleteConstructorCall(CXXConstructorDecl *Constructor,
10232                              MultiExprArg ArgsPtr,
10233                              SourceLocation Loc,
10234                              SmallVectorImpl<Expr*> &ConvertedArgs,
10235                              bool AllowExplicit,
10236                              bool IsListInitialization) {
10237  // FIXME: This duplicates a lot of code from Sema::ConvertArgumentsForCall.
10238  unsigned NumArgs = ArgsPtr.size();
10239  Expr **Args = ArgsPtr.data();
10240
10241  const FunctionProtoType *Proto
10242    = Constructor->getType()->getAs<FunctionProtoType>();
10243  assert(Proto && "Constructor without a prototype?");
10244  unsigned NumArgsInProto = Proto->getNumArgs();
10245
10246  // If too few arguments are available, we'll fill in the rest with defaults.
10247  if (NumArgs < NumArgsInProto)
10248    ConvertedArgs.reserve(NumArgsInProto);
10249  else
10250    ConvertedArgs.reserve(NumArgs);
10251
10252  VariadicCallType CallType =
10253    Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply;
10254  SmallVector<Expr *, 8> AllArgs;
10255  bool Invalid = GatherArgumentsForCall(Loc, Constructor,
10256                                        Proto, 0,
10257                                        llvm::makeArrayRef(Args, NumArgs),
10258                                        AllArgs,
10259                                        CallType, AllowExplicit,
10260                                        IsListInitialization);
10261  ConvertedArgs.append(AllArgs.begin(), AllArgs.end());
10262
10263  DiagnoseSentinelCalls(Constructor, Loc, AllArgs);
10264
10265  CheckConstructorCall(Constructor,
10266                       llvm::makeArrayRef<const Expr *>(AllArgs.data(),
10267                                                        AllArgs.size()),
10268                       Proto, Loc);
10269
10270  return Invalid;
10271}
10272
10273static inline bool
10274CheckOperatorNewDeleteDeclarationScope(Sema &SemaRef,
10275                                       const FunctionDecl *FnDecl) {
10276  const DeclContext *DC = FnDecl->getDeclContext()->getRedeclContext();
10277  if (isa<NamespaceDecl>(DC)) {
10278    return SemaRef.Diag(FnDecl->getLocation(),
10279                        diag::err_operator_new_delete_declared_in_namespace)
10280      << FnDecl->getDeclName();
10281  }
10282
10283  if (isa<TranslationUnitDecl>(DC) &&
10284      FnDecl->getStorageClass() == SC_Static) {
10285    return SemaRef.Diag(FnDecl->getLocation(),
10286                        diag::err_operator_new_delete_declared_static)
10287      << FnDecl->getDeclName();
10288  }
10289
10290  return false;
10291}
10292
10293static inline bool
10294CheckOperatorNewDeleteTypes(Sema &SemaRef, const FunctionDecl *FnDecl,
10295                            CanQualType ExpectedResultType,
10296                            CanQualType ExpectedFirstParamType,
10297                            unsigned DependentParamTypeDiag,
10298                            unsigned InvalidParamTypeDiag) {
10299  QualType ResultType =
10300    FnDecl->getType()->getAs<FunctionType>()->getResultType();
10301
10302  // Check that the result type is not dependent.
10303  if (ResultType->isDependentType())
10304    return SemaRef.Diag(FnDecl->getLocation(),
10305                        diag::err_operator_new_delete_dependent_result_type)
10306    << FnDecl->getDeclName() << ExpectedResultType;
10307
10308  // Check that the result type is what we expect.
10309  if (SemaRef.Context.getCanonicalType(ResultType) != ExpectedResultType)
10310    return SemaRef.Diag(FnDecl->getLocation(),
10311                        diag::err_operator_new_delete_invalid_result_type)
10312    << FnDecl->getDeclName() << ExpectedResultType;
10313
10314  // A function template must have at least 2 parameters.
10315  if (FnDecl->getDescribedFunctionTemplate() && FnDecl->getNumParams() < 2)
10316    return SemaRef.Diag(FnDecl->getLocation(),
10317                      diag::err_operator_new_delete_template_too_few_parameters)
10318        << FnDecl->getDeclName();
10319
10320  // The function decl must have at least 1 parameter.
10321  if (FnDecl->getNumParams() == 0)
10322    return SemaRef.Diag(FnDecl->getLocation(),
10323                        diag::err_operator_new_delete_too_few_parameters)
10324      << FnDecl->getDeclName();
10325
10326  // Check the first parameter type is not dependent.
10327  QualType FirstParamType = FnDecl->getParamDecl(0)->getType();
10328  if (FirstParamType->isDependentType())
10329    return SemaRef.Diag(FnDecl->getLocation(), DependentParamTypeDiag)
10330      << FnDecl->getDeclName() << ExpectedFirstParamType;
10331
10332  // Check that the first parameter type is what we expect.
10333  if (SemaRef.Context.getCanonicalType(FirstParamType).getUnqualifiedType() !=
10334      ExpectedFirstParamType)
10335    return SemaRef.Diag(FnDecl->getLocation(), InvalidParamTypeDiag)
10336    << FnDecl->getDeclName() << ExpectedFirstParamType;
10337
10338  return false;
10339}
10340
10341static bool
10342CheckOperatorNewDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
10343  // C++ [basic.stc.dynamic.allocation]p1:
10344  //   A program is ill-formed if an allocation function is declared in a
10345  //   namespace scope other than global scope or declared static in global
10346  //   scope.
10347  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
10348    return true;
10349
10350  CanQualType SizeTy =
10351    SemaRef.Context.getCanonicalType(SemaRef.Context.getSizeType());
10352
10353  // C++ [basic.stc.dynamic.allocation]p1:
10354  //  The return type shall be void*. The first parameter shall have type
10355  //  std::size_t.
10356  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidPtrTy,
10357                                  SizeTy,
10358                                  diag::err_operator_new_dependent_param_type,
10359                                  diag::err_operator_new_param_type))
10360    return true;
10361
10362  // C++ [basic.stc.dynamic.allocation]p1:
10363  //  The first parameter shall not have an associated default argument.
10364  if (FnDecl->getParamDecl(0)->hasDefaultArg())
10365    return SemaRef.Diag(FnDecl->getLocation(),
10366                        diag::err_operator_new_default_arg)
10367      << FnDecl->getDeclName() << FnDecl->getParamDecl(0)->getDefaultArgRange();
10368
10369  return false;
10370}
10371
10372static bool
10373CheckOperatorDeleteDeclaration(Sema &SemaRef, FunctionDecl *FnDecl) {
10374  // C++ [basic.stc.dynamic.deallocation]p1:
10375  //   A program is ill-formed if deallocation functions are declared in a
10376  //   namespace scope other than global scope or declared static in global
10377  //   scope.
10378  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
10379    return true;
10380
10381  // C++ [basic.stc.dynamic.deallocation]p2:
10382  //   Each deallocation function shall return void and its first parameter
10383  //   shall be void*.
10384  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidTy,
10385                                  SemaRef.Context.VoidPtrTy,
10386                                 diag::err_operator_delete_dependent_param_type,
10387                                 diag::err_operator_delete_param_type))
10388    return true;
10389
10390  return false;
10391}
10392
10393/// CheckOverloadedOperatorDeclaration - Check whether the declaration
10394/// of this overloaded operator is well-formed. If so, returns false;
10395/// otherwise, emits appropriate diagnostics and returns true.
10396bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
10397  assert(FnDecl && FnDecl->isOverloadedOperator() &&
10398         "Expected an overloaded operator declaration");
10399
10400  OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
10401
10402  // C++ [over.oper]p5:
10403  //   The allocation and deallocation functions, operator new,
10404  //   operator new[], operator delete and operator delete[], are
10405  //   described completely in 3.7.3. The attributes and restrictions
10406  //   found in the rest of this subclause do not apply to them unless
10407  //   explicitly stated in 3.7.3.
10408  if (Op == OO_Delete || Op == OO_Array_Delete)
10409    return CheckOperatorDeleteDeclaration(*this, FnDecl);
10410
10411  if (Op == OO_New || Op == OO_Array_New)
10412    return CheckOperatorNewDeclaration(*this, FnDecl);
10413
10414  // C++ [over.oper]p6:
10415  //   An operator function shall either be a non-static member
10416  //   function or be a non-member function and have at least one
10417  //   parameter whose type is a class, a reference to a class, an
10418  //   enumeration, or a reference to an enumeration.
10419  if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) {
10420    if (MethodDecl->isStatic())
10421      return Diag(FnDecl->getLocation(),
10422                  diag::err_operator_overload_static) << FnDecl->getDeclName();
10423  } else {
10424    bool ClassOrEnumParam = false;
10425    for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
10426                                   ParamEnd = FnDecl->param_end();
10427         Param != ParamEnd; ++Param) {
10428      QualType ParamType = (*Param)->getType().getNonReferenceType();
10429      if (ParamType->isDependentType() || ParamType->isRecordType() ||
10430          ParamType->isEnumeralType()) {
10431        ClassOrEnumParam = true;
10432        break;
10433      }
10434    }
10435
10436    if (!ClassOrEnumParam)
10437      return Diag(FnDecl->getLocation(),
10438                  diag::err_operator_overload_needs_class_or_enum)
10439        << FnDecl->getDeclName();
10440  }
10441
10442  // C++ [over.oper]p8:
10443  //   An operator function cannot have default arguments (8.3.6),
10444  //   except where explicitly stated below.
10445  //
10446  // Only the function-call operator allows default arguments
10447  // (C++ [over.call]p1).
10448  if (Op != OO_Call) {
10449    for (FunctionDecl::param_iterator Param = FnDecl->param_begin();
10450         Param != FnDecl->param_end(); ++Param) {
10451      if ((*Param)->hasDefaultArg())
10452        return Diag((*Param)->getLocation(),
10453                    diag::err_operator_overload_default_arg)
10454          << FnDecl->getDeclName() << (*Param)->getDefaultArgRange();
10455    }
10456  }
10457
10458  static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
10459    { false, false, false }
10460#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
10461    , { Unary, Binary, MemberOnly }
10462#include "clang/Basic/OperatorKinds.def"
10463  };
10464
10465  bool CanBeUnaryOperator = OperatorUses[Op][0];
10466  bool CanBeBinaryOperator = OperatorUses[Op][1];
10467  bool MustBeMemberOperator = OperatorUses[Op][2];
10468
10469  // C++ [over.oper]p8:
10470  //   [...] Operator functions cannot have more or fewer parameters
10471  //   than the number required for the corresponding operator, as
10472  //   described in the rest of this subclause.
10473  unsigned NumParams = FnDecl->getNumParams()
10474                     + (isa<CXXMethodDecl>(FnDecl)? 1 : 0);
10475  if (Op != OO_Call &&
10476      ((NumParams == 1 && !CanBeUnaryOperator) ||
10477       (NumParams == 2 && !CanBeBinaryOperator) ||
10478       (NumParams < 1) || (NumParams > 2))) {
10479    // We have the wrong number of parameters.
10480    unsigned ErrorKind;
10481    if (CanBeUnaryOperator && CanBeBinaryOperator) {
10482      ErrorKind = 2;  // 2 -> unary or binary.
10483    } else if (CanBeUnaryOperator) {
10484      ErrorKind = 0;  // 0 -> unary
10485    } else {
10486      assert(CanBeBinaryOperator &&
10487             "All non-call overloaded operators are unary or binary!");
10488      ErrorKind = 1;  // 1 -> binary
10489    }
10490
10491    return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be)
10492      << FnDecl->getDeclName() << NumParams << ErrorKind;
10493  }
10494
10495  // Overloaded operators other than operator() cannot be variadic.
10496  if (Op != OO_Call &&
10497      FnDecl->getType()->getAs<FunctionProtoType>()->isVariadic()) {
10498    return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
10499      << FnDecl->getDeclName();
10500  }
10501
10502  // Some operators must be non-static member functions.
10503  if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) {
10504    return Diag(FnDecl->getLocation(),
10505                diag::err_operator_overload_must_be_member)
10506      << FnDecl->getDeclName();
10507  }
10508
10509  // C++ [over.inc]p1:
10510  //   The user-defined function called operator++ implements the
10511  //   prefix and postfix ++ operator. If this function is a member
10512  //   function with no parameters, or a non-member function with one
10513  //   parameter of class or enumeration type, it defines the prefix
10514  //   increment operator ++ for objects of that type. If the function
10515  //   is a member function with one parameter (which shall be of type
10516  //   int) or a non-member function with two parameters (the second
10517  //   of which shall be of type int), it defines the postfix
10518  //   increment operator ++ for objects of that type.
10519  if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
10520    ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
10521    bool ParamIsInt = false;
10522    if (const BuiltinType *BT = LastParam->getType()->getAs<BuiltinType>())
10523      ParamIsInt = BT->getKind() == BuiltinType::Int;
10524
10525    if (!ParamIsInt)
10526      return Diag(LastParam->getLocation(),
10527                  diag::err_operator_overload_post_incdec_must_be_int)
10528        << LastParam->getType() << (Op == OO_MinusMinus);
10529  }
10530
10531  return false;
10532}
10533
10534/// CheckLiteralOperatorDeclaration - Check whether the declaration
10535/// of this literal operator function is well-formed. If so, returns
10536/// false; otherwise, emits appropriate diagnostics and returns true.
10537bool Sema::CheckLiteralOperatorDeclaration(FunctionDecl *FnDecl) {
10538  if (isa<CXXMethodDecl>(FnDecl)) {
10539    Diag(FnDecl->getLocation(), diag::err_literal_operator_outside_namespace)
10540      << FnDecl->getDeclName();
10541    return true;
10542  }
10543
10544  if (FnDecl->isExternC()) {
10545    Diag(FnDecl->getLocation(), diag::err_literal_operator_extern_c);
10546    return true;
10547  }
10548
10549  bool Valid = false;
10550
10551  // This might be the definition of a literal operator template.
10552  FunctionTemplateDecl *TpDecl = FnDecl->getDescribedFunctionTemplate();
10553  // This might be a specialization of a literal operator template.
10554  if (!TpDecl)
10555    TpDecl = FnDecl->getPrimaryTemplate();
10556
10557  // template <char...> type operator "" name() is the only valid template
10558  // signature, and the only valid signature with no parameters.
10559  if (TpDecl) {
10560    if (FnDecl->param_size() == 0) {
10561      // Must have only one template parameter
10562      TemplateParameterList *Params = TpDecl->getTemplateParameters();
10563      if (Params->size() == 1) {
10564        NonTypeTemplateParmDecl *PmDecl =
10565          dyn_cast<NonTypeTemplateParmDecl>(Params->getParam(0));
10566
10567        // The template parameter must be a char parameter pack.
10568        if (PmDecl && PmDecl->isTemplateParameterPack() &&
10569            Context.hasSameType(PmDecl->getType(), Context.CharTy))
10570          Valid = true;
10571      }
10572    }
10573  } else if (FnDecl->param_size()) {
10574    // Check the first parameter
10575    FunctionDecl::param_iterator Param = FnDecl->param_begin();
10576
10577    QualType T = (*Param)->getType().getUnqualifiedType();
10578
10579    // unsigned long long int, long double, and any character type are allowed
10580    // as the only parameters.
10581    if (Context.hasSameType(T, Context.UnsignedLongLongTy) ||
10582        Context.hasSameType(T, Context.LongDoubleTy) ||
10583        Context.hasSameType(T, Context.CharTy) ||
10584        Context.hasSameType(T, Context.WideCharTy) ||
10585        Context.hasSameType(T, Context.Char16Ty) ||
10586        Context.hasSameType(T, Context.Char32Ty)) {
10587      if (++Param == FnDecl->param_end())
10588        Valid = true;
10589      goto FinishedParams;
10590    }
10591
10592    // Otherwise it must be a pointer to const; let's strip those qualifiers.
10593    const PointerType *PT = T->getAs<PointerType>();
10594    if (!PT)
10595      goto FinishedParams;
10596    T = PT->getPointeeType();
10597    if (!T.isConstQualified() || T.isVolatileQualified())
10598      goto FinishedParams;
10599    T = T.getUnqualifiedType();
10600
10601    // Move on to the second parameter;
10602    ++Param;
10603
10604    // If there is no second parameter, the first must be a const char *
10605    if (Param == FnDecl->param_end()) {
10606      if (Context.hasSameType(T, Context.CharTy))
10607        Valid = true;
10608      goto FinishedParams;
10609    }
10610
10611    // const char *, const wchar_t*, const char16_t*, and const char32_t*
10612    // are allowed as the first parameter to a two-parameter function
10613    if (!(Context.hasSameType(T, Context.CharTy) ||
10614          Context.hasSameType(T, Context.WideCharTy) ||
10615          Context.hasSameType(T, Context.Char16Ty) ||
10616          Context.hasSameType(T, Context.Char32Ty)))
10617      goto FinishedParams;
10618
10619    // The second and final parameter must be an std::size_t
10620    T = (*Param)->getType().getUnqualifiedType();
10621    if (Context.hasSameType(T, Context.getSizeType()) &&
10622        ++Param == FnDecl->param_end())
10623      Valid = true;
10624  }
10625
10626  // FIXME: This diagnostic is absolutely terrible.
10627FinishedParams:
10628  if (!Valid) {
10629    Diag(FnDecl->getLocation(), diag::err_literal_operator_params)
10630      << FnDecl->getDeclName();
10631    return true;
10632  }
10633
10634  // A parameter-declaration-clause containing a default argument is not
10635  // equivalent to any of the permitted forms.
10636  for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
10637                                    ParamEnd = FnDecl->param_end();
10638       Param != ParamEnd; ++Param) {
10639    if ((*Param)->hasDefaultArg()) {
10640      Diag((*Param)->getDefaultArgRange().getBegin(),
10641           diag::err_literal_operator_default_argument)
10642        << (*Param)->getDefaultArgRange();
10643      break;
10644    }
10645  }
10646
10647  StringRef LiteralName
10648    = FnDecl->getDeclName().getCXXLiteralIdentifier()->getName();
10649  if (LiteralName[0] != '_') {
10650    // C++11 [usrlit.suffix]p1:
10651    //   Literal suffix identifiers that do not start with an underscore
10652    //   are reserved for future standardization.
10653    Diag(FnDecl->getLocation(), diag::warn_user_literal_reserved);
10654  }
10655
10656  return false;
10657}
10658
10659/// ActOnStartLinkageSpecification - Parsed the beginning of a C++
10660/// linkage specification, including the language and (if present)
10661/// the '{'. ExternLoc is the location of the 'extern', LangLoc is
10662/// the location of the language string literal, which is provided
10663/// by Lang/StrSize. LBraceLoc, if valid, provides the location of
10664/// the '{' brace. Otherwise, this linkage specification does not
10665/// have any braces.
10666Decl *Sema::ActOnStartLinkageSpecification(Scope *S, SourceLocation ExternLoc,
10667                                           SourceLocation LangLoc,
10668                                           StringRef Lang,
10669                                           SourceLocation LBraceLoc) {
10670  LinkageSpecDecl::LanguageIDs Language;
10671  if (Lang == "\"C\"")
10672    Language = LinkageSpecDecl::lang_c;
10673  else if (Lang == "\"C++\"")
10674    Language = LinkageSpecDecl::lang_cxx;
10675  else {
10676    Diag(LangLoc, diag::err_bad_language);
10677    return 0;
10678  }
10679
10680  // FIXME: Add all the various semantics of linkage specifications
10681
10682  LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext,
10683                                               ExternLoc, LangLoc, Language,
10684                                               LBraceLoc.isValid());
10685  CurContext->addDecl(D);
10686  PushDeclContext(S, D);
10687  return D;
10688}
10689
10690/// ActOnFinishLinkageSpecification - Complete the definition of
10691/// the C++ linkage specification LinkageSpec. If RBraceLoc is
10692/// valid, it's the position of the closing '}' brace in a linkage
10693/// specification that uses braces.
10694Decl *Sema::ActOnFinishLinkageSpecification(Scope *S,
10695                                            Decl *LinkageSpec,
10696                                            SourceLocation RBraceLoc) {
10697  if (LinkageSpec) {
10698    if (RBraceLoc.isValid()) {
10699      LinkageSpecDecl* LSDecl = cast<LinkageSpecDecl>(LinkageSpec);
10700      LSDecl->setRBraceLoc(RBraceLoc);
10701    }
10702    PopDeclContext();
10703  }
10704  return LinkageSpec;
10705}
10706
10707Decl *Sema::ActOnEmptyDeclaration(Scope *S,
10708                                  AttributeList *AttrList,
10709                                  SourceLocation SemiLoc) {
10710  Decl *ED = EmptyDecl::Create(Context, CurContext, SemiLoc);
10711  // Attribute declarations appertain to empty declaration so we handle
10712  // them here.
10713  if (AttrList)
10714    ProcessDeclAttributeList(S, ED, AttrList);
10715
10716  CurContext->addDecl(ED);
10717  return ED;
10718}
10719
10720/// \brief Perform semantic analysis for the variable declaration that
10721/// occurs within a C++ catch clause, returning the newly-created
10722/// variable.
10723VarDecl *Sema::BuildExceptionDeclaration(Scope *S,
10724                                         TypeSourceInfo *TInfo,
10725                                         SourceLocation StartLoc,
10726                                         SourceLocation Loc,
10727                                         IdentifierInfo *Name) {
10728  bool Invalid = false;
10729  QualType ExDeclType = TInfo->getType();
10730
10731  // Arrays and functions decay.
10732  if (ExDeclType->isArrayType())
10733    ExDeclType = Context.getArrayDecayedType(ExDeclType);
10734  else if (ExDeclType->isFunctionType())
10735    ExDeclType = Context.getPointerType(ExDeclType);
10736
10737  // C++ 15.3p1: The exception-declaration shall not denote an incomplete type.
10738  // The exception-declaration shall not denote a pointer or reference to an
10739  // incomplete type, other than [cv] void*.
10740  // N2844 forbids rvalue references.
10741  if (!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) {
10742    Diag(Loc, diag::err_catch_rvalue_ref);
10743    Invalid = true;
10744  }
10745
10746  QualType BaseType = ExDeclType;
10747  int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference
10748  unsigned DK = diag::err_catch_incomplete;
10749  if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
10750    BaseType = Ptr->getPointeeType();
10751    Mode = 1;
10752    DK = diag::err_catch_incomplete_ptr;
10753  } else if (const ReferenceType *Ref = BaseType->getAs<ReferenceType>()) {
10754    // For the purpose of error recovery, we treat rvalue refs like lvalue refs.
10755    BaseType = Ref->getPointeeType();
10756    Mode = 2;
10757    DK = diag::err_catch_incomplete_ref;
10758  }
10759  if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) &&
10760      !BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK))
10761    Invalid = true;
10762
10763  if (!Invalid && !ExDeclType->isDependentType() &&
10764      RequireNonAbstractType(Loc, ExDeclType,
10765                             diag::err_abstract_type_in_decl,
10766                             AbstractVariableType))
10767    Invalid = true;
10768
10769  // Only the non-fragile NeXT runtime currently supports C++ catches
10770  // of ObjC types, and no runtime supports catching ObjC types by value.
10771  if (!Invalid && getLangOpts().ObjC1) {
10772    QualType T = ExDeclType;
10773    if (const ReferenceType *RT = T->getAs<ReferenceType>())
10774      T = RT->getPointeeType();
10775
10776    if (T->isObjCObjectType()) {
10777      Diag(Loc, diag::err_objc_object_catch);
10778      Invalid = true;
10779    } else if (T->isObjCObjectPointerType()) {
10780      // FIXME: should this be a test for macosx-fragile specifically?
10781      if (getLangOpts().ObjCRuntime.isFragile())
10782        Diag(Loc, diag::warn_objc_pointer_cxx_catch_fragile);
10783    }
10784  }
10785
10786  VarDecl *ExDecl = VarDecl::Create(Context, CurContext, StartLoc, Loc, Name,
10787                                    ExDeclType, TInfo, SC_None);
10788  ExDecl->setExceptionVariable(true);
10789
10790  // In ARC, infer 'retaining' for variables of retainable type.
10791  if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(ExDecl))
10792    Invalid = true;
10793
10794  if (!Invalid && !ExDeclType->isDependentType()) {
10795    if (const RecordType *recordType = ExDeclType->getAs<RecordType>()) {
10796      // Insulate this from anything else we might currently be parsing.
10797      EnterExpressionEvaluationContext scope(*this, PotentiallyEvaluated);
10798
10799      // C++ [except.handle]p16:
10800      //   The object declared in an exception-declaration or, if the
10801      //   exception-declaration does not specify a name, a temporary (12.2) is
10802      //   copy-initialized (8.5) from the exception object. [...]
10803      //   The object is destroyed when the handler exits, after the destruction
10804      //   of any automatic objects initialized within the handler.
10805      //
10806      // We just pretend to initialize the object with itself, then make sure
10807      // it can be destroyed later.
10808      QualType initType = ExDeclType;
10809
10810      InitializedEntity entity =
10811        InitializedEntity::InitializeVariable(ExDecl);
10812      InitializationKind initKind =
10813        InitializationKind::CreateCopy(Loc, SourceLocation());
10814
10815      Expr *opaqueValue =
10816        new (Context) OpaqueValueExpr(Loc, initType, VK_LValue, OK_Ordinary);
10817      InitializationSequence sequence(*this, entity, initKind, opaqueValue);
10818      ExprResult result = sequence.Perform(*this, entity, initKind, opaqueValue);
10819      if (result.isInvalid())
10820        Invalid = true;
10821      else {
10822        // If the constructor used was non-trivial, set this as the
10823        // "initializer".
10824        CXXConstructExpr *construct = cast<CXXConstructExpr>(result.take());
10825        if (!construct->getConstructor()->isTrivial()) {
10826          Expr *init = MaybeCreateExprWithCleanups(construct);
10827          ExDecl->setInit(init);
10828        }
10829
10830        // And make sure it's destructable.
10831        FinalizeVarWithDestructor(ExDecl, recordType);
10832      }
10833    }
10834  }
10835
10836  if (Invalid)
10837    ExDecl->setInvalidDecl();
10838
10839  return ExDecl;
10840}
10841
10842/// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch
10843/// handler.
10844Decl *Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) {
10845  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
10846  bool Invalid = D.isInvalidType();
10847
10848  // Check for unexpanded parameter packs.
10849  if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
10850                                      UPPC_ExceptionType)) {
10851    TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy,
10852                                             D.getIdentifierLoc());
10853    Invalid = true;
10854  }
10855
10856  IdentifierInfo *II = D.getIdentifier();
10857  if (NamedDecl *PrevDecl = LookupSingleName(S, II, D.getIdentifierLoc(),
10858                                             LookupOrdinaryName,
10859                                             ForRedeclaration)) {
10860    // The scope should be freshly made just for us. There is just no way
10861    // it contains any previous declaration.
10862    assert(!S->isDeclScope(PrevDecl));
10863    if (PrevDecl->isTemplateParameter()) {
10864      // Maybe we will complain about the shadowed template parameter.
10865      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
10866      PrevDecl = 0;
10867    }
10868  }
10869
10870  if (D.getCXXScopeSpec().isSet() && !Invalid) {
10871    Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator)
10872      << D.getCXXScopeSpec().getRange();
10873    Invalid = true;
10874  }
10875
10876  VarDecl *ExDecl = BuildExceptionDeclaration(S, TInfo,
10877                                              D.getLocStart(),
10878                                              D.getIdentifierLoc(),
10879                                              D.getIdentifier());
10880  if (Invalid)
10881    ExDecl->setInvalidDecl();
10882
10883  // Add the exception declaration into this scope.
10884  if (II)
10885    PushOnScopeChains(ExDecl, S);
10886  else
10887    CurContext->addDecl(ExDecl);
10888
10889  ProcessDeclAttributes(S, ExDecl, D);
10890  return ExDecl;
10891}
10892
10893Decl *Sema::ActOnStaticAssertDeclaration(SourceLocation StaticAssertLoc,
10894                                         Expr *AssertExpr,
10895                                         Expr *AssertMessageExpr,
10896                                         SourceLocation RParenLoc) {
10897  StringLiteral *AssertMessage = cast<StringLiteral>(AssertMessageExpr);
10898
10899  if (DiagnoseUnexpandedParameterPack(AssertExpr, UPPC_StaticAssertExpression))
10900    return 0;
10901
10902  return BuildStaticAssertDeclaration(StaticAssertLoc, AssertExpr,
10903                                      AssertMessage, RParenLoc, false);
10904}
10905
10906Decl *Sema::BuildStaticAssertDeclaration(SourceLocation StaticAssertLoc,
10907                                         Expr *AssertExpr,
10908                                         StringLiteral *AssertMessage,
10909                                         SourceLocation RParenLoc,
10910                                         bool Failed) {
10911  if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent() &&
10912      !Failed) {
10913    // In a static_assert-declaration, the constant-expression shall be a
10914    // constant expression that can be contextually converted to bool.
10915    ExprResult Converted = PerformContextuallyConvertToBool(AssertExpr);
10916    if (Converted.isInvalid())
10917      Failed = true;
10918
10919    llvm::APSInt Cond;
10920    if (!Failed && VerifyIntegerConstantExpression(Converted.get(), &Cond,
10921          diag::err_static_assert_expression_is_not_constant,
10922          /*AllowFold=*/false).isInvalid())
10923      Failed = true;
10924
10925    if (!Failed && !Cond) {
10926      SmallString<256> MsgBuffer;
10927      llvm::raw_svector_ostream Msg(MsgBuffer);
10928      AssertMessage->printPretty(Msg, 0, getPrintingPolicy());
10929      Diag(StaticAssertLoc, diag::err_static_assert_failed)
10930        << Msg.str() << AssertExpr->getSourceRange();
10931      Failed = true;
10932    }
10933  }
10934
10935  Decl *Decl = StaticAssertDecl::Create(Context, CurContext, StaticAssertLoc,
10936                                        AssertExpr, AssertMessage, RParenLoc,
10937                                        Failed);
10938
10939  CurContext->addDecl(Decl);
10940  return Decl;
10941}
10942
10943/// \brief Perform semantic analysis of the given friend type declaration.
10944///
10945/// \returns A friend declaration that.
10946FriendDecl *Sema::CheckFriendTypeDecl(SourceLocation LocStart,
10947                                      SourceLocation FriendLoc,
10948                                      TypeSourceInfo *TSInfo) {
10949  assert(TSInfo && "NULL TypeSourceInfo for friend type declaration");
10950
10951  QualType T = TSInfo->getType();
10952  SourceRange TypeRange = TSInfo->getTypeLoc().getLocalSourceRange();
10953
10954  // C++03 [class.friend]p2:
10955  //   An elaborated-type-specifier shall be used in a friend declaration
10956  //   for a class.*
10957  //
10958  //   * The class-key of the elaborated-type-specifier is required.
10959  if (!ActiveTemplateInstantiations.empty()) {
10960    // Do not complain about the form of friend template types during
10961    // template instantiation; we will already have complained when the
10962    // template was declared.
10963  } else {
10964    if (!T->isElaboratedTypeSpecifier()) {
10965      // If we evaluated the type to a record type, suggest putting
10966      // a tag in front.
10967      if (const RecordType *RT = T->getAs<RecordType>()) {
10968        RecordDecl *RD = RT->getDecl();
10969
10970        std::string InsertionText = std::string(" ") + RD->getKindName();
10971
10972        Diag(TypeRange.getBegin(),
10973             getLangOpts().CPlusPlus11 ?
10974               diag::warn_cxx98_compat_unelaborated_friend_type :
10975               diag::ext_unelaborated_friend_type)
10976          << (unsigned) RD->getTagKind()
10977          << T
10978          << FixItHint::CreateInsertion(PP.getLocForEndOfToken(FriendLoc),
10979                                        InsertionText);
10980      } else {
10981        Diag(FriendLoc,
10982             getLangOpts().CPlusPlus11 ?
10983               diag::warn_cxx98_compat_nonclass_type_friend :
10984               diag::ext_nonclass_type_friend)
10985          << T
10986          << TypeRange;
10987      }
10988    } else if (T->getAs<EnumType>()) {
10989      Diag(FriendLoc,
10990           getLangOpts().CPlusPlus11 ?
10991             diag::warn_cxx98_compat_enum_friend :
10992             diag::ext_enum_friend)
10993        << T
10994        << TypeRange;
10995    }
10996
10997    // C++11 [class.friend]p3:
10998    //   A friend declaration that does not declare a function shall have one
10999    //   of the following forms:
11000    //     friend elaborated-type-specifier ;
11001    //     friend simple-type-specifier ;
11002    //     friend typename-specifier ;
11003    if (getLangOpts().CPlusPlus11 && LocStart != FriendLoc)
11004      Diag(FriendLoc, diag::err_friend_not_first_in_declaration) << T;
11005  }
11006
11007  //   If the type specifier in a friend declaration designates a (possibly
11008  //   cv-qualified) class type, that class is declared as a friend; otherwise,
11009  //   the friend declaration is ignored.
11010  return FriendDecl::Create(Context, CurContext, LocStart, TSInfo, FriendLoc);
11011}
11012
11013/// Handle a friend tag declaration where the scope specifier was
11014/// templated.
11015Decl *Sema::ActOnTemplatedFriendTag(Scope *S, SourceLocation FriendLoc,
11016                                    unsigned TagSpec, SourceLocation TagLoc,
11017                                    CXXScopeSpec &SS,
11018                                    IdentifierInfo *Name,
11019                                    SourceLocation NameLoc,
11020                                    AttributeList *Attr,
11021                                    MultiTemplateParamsArg TempParamLists) {
11022  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
11023
11024  bool isExplicitSpecialization = false;
11025  bool Invalid = false;
11026
11027  if (TemplateParameterList *TemplateParams =
11028          MatchTemplateParametersToScopeSpecifier(
11029              TagLoc, NameLoc, SS, TempParamLists, /*friend*/ true,
11030              isExplicitSpecialization, Invalid)) {
11031    if (TemplateParams->size() > 0) {
11032      // This is a declaration of a class template.
11033      if (Invalid)
11034        return 0;
11035
11036      return CheckClassTemplate(S, TagSpec, TUK_Friend, TagLoc,
11037                                SS, Name, NameLoc, Attr,
11038                                TemplateParams, AS_public,
11039                                /*ModulePrivateLoc=*/SourceLocation(),
11040                                TempParamLists.size() - 1,
11041                                TempParamLists.data()).take();
11042    } else {
11043      // The "template<>" header is extraneous.
11044      Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
11045        << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
11046      isExplicitSpecialization = true;
11047    }
11048  }
11049
11050  if (Invalid) return 0;
11051
11052  bool isAllExplicitSpecializations = true;
11053  for (unsigned I = TempParamLists.size(); I-- > 0; ) {
11054    if (TempParamLists[I]->size()) {
11055      isAllExplicitSpecializations = false;
11056      break;
11057    }
11058  }
11059
11060  // FIXME: don't ignore attributes.
11061
11062  // If it's explicit specializations all the way down, just forget
11063  // about the template header and build an appropriate non-templated
11064  // friend.  TODO: for source fidelity, remember the headers.
11065  if (isAllExplicitSpecializations) {
11066    if (SS.isEmpty()) {
11067      bool Owned = false;
11068      bool IsDependent = false;
11069      return ActOnTag(S, TagSpec, TUK_Friend, TagLoc, SS, Name, NameLoc,
11070                      Attr, AS_public,
11071                      /*ModulePrivateLoc=*/SourceLocation(),
11072                      MultiTemplateParamsArg(), Owned, IsDependent,
11073                      /*ScopedEnumKWLoc=*/SourceLocation(),
11074                      /*ScopedEnumUsesClassTag=*/false,
11075                      /*UnderlyingType=*/TypeResult());
11076    }
11077
11078    NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
11079    ElaboratedTypeKeyword Keyword
11080      = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
11081    QualType T = CheckTypenameType(Keyword, TagLoc, QualifierLoc,
11082                                   *Name, NameLoc);
11083    if (T.isNull())
11084      return 0;
11085
11086    TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
11087    if (isa<DependentNameType>(T)) {
11088      DependentNameTypeLoc TL =
11089          TSI->getTypeLoc().castAs<DependentNameTypeLoc>();
11090      TL.setElaboratedKeywordLoc(TagLoc);
11091      TL.setQualifierLoc(QualifierLoc);
11092      TL.setNameLoc(NameLoc);
11093    } else {
11094      ElaboratedTypeLoc TL = TSI->getTypeLoc().castAs<ElaboratedTypeLoc>();
11095      TL.setElaboratedKeywordLoc(TagLoc);
11096      TL.setQualifierLoc(QualifierLoc);
11097      TL.getNamedTypeLoc().castAs<TypeSpecTypeLoc>().setNameLoc(NameLoc);
11098    }
11099
11100    FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
11101                                            TSI, FriendLoc, TempParamLists);
11102    Friend->setAccess(AS_public);
11103    CurContext->addDecl(Friend);
11104    return Friend;
11105  }
11106
11107  assert(SS.isNotEmpty() && "valid templated tag with no SS and no direct?");
11108
11109
11110
11111  // Handle the case of a templated-scope friend class.  e.g.
11112  //   template <class T> class A<T>::B;
11113  // FIXME: we don't support these right now.
11114  ElaboratedTypeKeyword ETK = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
11115  QualType T = Context.getDependentNameType(ETK, SS.getScopeRep(), Name);
11116  TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
11117  DependentNameTypeLoc TL = TSI->getTypeLoc().castAs<DependentNameTypeLoc>();
11118  TL.setElaboratedKeywordLoc(TagLoc);
11119  TL.setQualifierLoc(SS.getWithLocInContext(Context));
11120  TL.setNameLoc(NameLoc);
11121
11122  FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
11123                                          TSI, FriendLoc, TempParamLists);
11124  Friend->setAccess(AS_public);
11125  Friend->setUnsupportedFriend(true);
11126  CurContext->addDecl(Friend);
11127  return Friend;
11128}
11129
11130
11131/// Handle a friend type declaration.  This works in tandem with
11132/// ActOnTag.
11133///
11134/// Notes on friend class templates:
11135///
11136/// We generally treat friend class declarations as if they were
11137/// declaring a class.  So, for example, the elaborated type specifier
11138/// in a friend declaration is required to obey the restrictions of a
11139/// class-head (i.e. no typedefs in the scope chain), template
11140/// parameters are required to match up with simple template-ids, &c.
11141/// However, unlike when declaring a template specialization, it's
11142/// okay to refer to a template specialization without an empty
11143/// template parameter declaration, e.g.
11144///   friend class A<T>::B<unsigned>;
11145/// We permit this as a special case; if there are any template
11146/// parameters present at all, require proper matching, i.e.
11147///   template <> template \<class T> friend class A<int>::B;
11148Decl *Sema::ActOnFriendTypeDecl(Scope *S, const DeclSpec &DS,
11149                                MultiTemplateParamsArg TempParams) {
11150  SourceLocation Loc = DS.getLocStart();
11151
11152  assert(DS.isFriendSpecified());
11153  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
11154
11155  // Try to convert the decl specifier to a type.  This works for
11156  // friend templates because ActOnTag never produces a ClassTemplateDecl
11157  // for a TUK_Friend.
11158  Declarator TheDeclarator(DS, Declarator::MemberContext);
11159  TypeSourceInfo *TSI = GetTypeForDeclarator(TheDeclarator, S);
11160  QualType T = TSI->getType();
11161  if (TheDeclarator.isInvalidType())
11162    return 0;
11163
11164  if (DiagnoseUnexpandedParameterPack(Loc, TSI, UPPC_FriendDeclaration))
11165    return 0;
11166
11167  // This is definitely an error in C++98.  It's probably meant to
11168  // be forbidden in C++0x, too, but the specification is just
11169  // poorly written.
11170  //
11171  // The problem is with declarations like the following:
11172  //   template <T> friend A<T>::foo;
11173  // where deciding whether a class C is a friend or not now hinges
11174  // on whether there exists an instantiation of A that causes
11175  // 'foo' to equal C.  There are restrictions on class-heads
11176  // (which we declare (by fiat) elaborated friend declarations to
11177  // be) that makes this tractable.
11178  //
11179  // FIXME: handle "template <> friend class A<T>;", which
11180  // is possibly well-formed?  Who even knows?
11181  if (TempParams.size() && !T->isElaboratedTypeSpecifier()) {
11182    Diag(Loc, diag::err_tagless_friend_type_template)
11183      << DS.getSourceRange();
11184    return 0;
11185  }
11186
11187  // C++98 [class.friend]p1: A friend of a class is a function
11188  //   or class that is not a member of the class . . .
11189  // This is fixed in DR77, which just barely didn't make the C++03
11190  // deadline.  It's also a very silly restriction that seriously
11191  // affects inner classes and which nobody else seems to implement;
11192  // thus we never diagnose it, not even in -pedantic.
11193  //
11194  // But note that we could warn about it: it's always useless to
11195  // friend one of your own members (it's not, however, worthless to
11196  // friend a member of an arbitrary specialization of your template).
11197
11198  Decl *D;
11199  if (unsigned NumTempParamLists = TempParams.size())
11200    D = FriendTemplateDecl::Create(Context, CurContext, Loc,
11201                                   NumTempParamLists,
11202                                   TempParams.data(),
11203                                   TSI,
11204                                   DS.getFriendSpecLoc());
11205  else
11206    D = CheckFriendTypeDecl(Loc, DS.getFriendSpecLoc(), TSI);
11207
11208  if (!D)
11209    return 0;
11210
11211  D->setAccess(AS_public);
11212  CurContext->addDecl(D);
11213
11214  return D;
11215}
11216
11217NamedDecl *Sema::ActOnFriendFunctionDecl(Scope *S, Declarator &D,
11218                                        MultiTemplateParamsArg TemplateParams) {
11219  const DeclSpec &DS = D.getDeclSpec();
11220
11221  assert(DS.isFriendSpecified());
11222  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
11223
11224  SourceLocation Loc = D.getIdentifierLoc();
11225  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
11226
11227  // C++ [class.friend]p1
11228  //   A friend of a class is a function or class....
11229  // Note that this sees through typedefs, which is intended.
11230  // It *doesn't* see through dependent types, which is correct
11231  // according to [temp.arg.type]p3:
11232  //   If a declaration acquires a function type through a
11233  //   type dependent on a template-parameter and this causes
11234  //   a declaration that does not use the syntactic form of a
11235  //   function declarator to have a function type, the program
11236  //   is ill-formed.
11237  if (!TInfo->getType()->isFunctionType()) {
11238    Diag(Loc, diag::err_unexpected_friend);
11239
11240    // It might be worthwhile to try to recover by creating an
11241    // appropriate declaration.
11242    return 0;
11243  }
11244
11245  // C++ [namespace.memdef]p3
11246  //  - If a friend declaration in a non-local class first declares a
11247  //    class or function, the friend class or function is a member
11248  //    of the innermost enclosing namespace.
11249  //  - The name of the friend is not found by simple name lookup
11250  //    until a matching declaration is provided in that namespace
11251  //    scope (either before or after the class declaration granting
11252  //    friendship).
11253  //  - If a friend function is called, its name may be found by the
11254  //    name lookup that considers functions from namespaces and
11255  //    classes associated with the types of the function arguments.
11256  //  - When looking for a prior declaration of a class or a function
11257  //    declared as a friend, scopes outside the innermost enclosing
11258  //    namespace scope are not considered.
11259
11260  CXXScopeSpec &SS = D.getCXXScopeSpec();
11261  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
11262  DeclarationName Name = NameInfo.getName();
11263  assert(Name);
11264
11265  // Check for unexpanded parameter packs.
11266  if (DiagnoseUnexpandedParameterPack(Loc, TInfo, UPPC_FriendDeclaration) ||
11267      DiagnoseUnexpandedParameterPack(NameInfo, UPPC_FriendDeclaration) ||
11268      DiagnoseUnexpandedParameterPack(SS, UPPC_FriendDeclaration))
11269    return 0;
11270
11271  // The context we found the declaration in, or in which we should
11272  // create the declaration.
11273  DeclContext *DC;
11274  Scope *DCScope = S;
11275  LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
11276                        ForRedeclaration);
11277
11278  // FIXME: there are different rules in local classes
11279
11280  // There are four cases here.
11281  //   - There's no scope specifier, in which case we just go to the
11282  //     appropriate scope and look for a function or function template
11283  //     there as appropriate.
11284  // Recover from invalid scope qualifiers as if they just weren't there.
11285  if (SS.isInvalid() || !SS.isSet()) {
11286    // C++0x [namespace.memdef]p3:
11287    //   If the name in a friend declaration is neither qualified nor
11288    //   a template-id and the declaration is a function or an
11289    //   elaborated-type-specifier, the lookup to determine whether
11290    //   the entity has been previously declared shall not consider
11291    //   any scopes outside the innermost enclosing namespace.
11292    // C++0x [class.friend]p11:
11293    //   If a friend declaration appears in a local class and the name
11294    //   specified is an unqualified name, a prior declaration is
11295    //   looked up without considering scopes that are outside the
11296    //   innermost enclosing non-class scope. For a friend function
11297    //   declaration, if there is no prior declaration, the program is
11298    //   ill-formed.
11299    bool isLocal = cast<CXXRecordDecl>(CurContext)->isLocalClass();
11300    bool isTemplateId = D.getName().getKind() == UnqualifiedId::IK_TemplateId;
11301
11302    // Find the appropriate context according to the above.
11303    DC = CurContext;
11304
11305    // Skip class contexts.  If someone can cite chapter and verse
11306    // for this behavior, that would be nice --- it's what GCC and
11307    // EDG do, and it seems like a reasonable intent, but the spec
11308    // really only says that checks for unqualified existing
11309    // declarations should stop at the nearest enclosing namespace,
11310    // not that they should only consider the nearest enclosing
11311    // namespace.
11312    while (DC->isRecord())
11313      DC = DC->getParent();
11314
11315    DeclContext *LookupDC = DC;
11316    while (LookupDC->isTransparentContext())
11317      LookupDC = LookupDC->getParent();
11318
11319    while (true) {
11320      LookupQualifiedName(Previous, LookupDC);
11321
11322      // TODO: decide what we think about using declarations.
11323      if (isLocal)
11324        break;
11325
11326      if (!Previous.empty()) {
11327        DC = LookupDC;
11328        break;
11329      }
11330
11331      if (isTemplateId) {
11332        if (isa<TranslationUnitDecl>(LookupDC)) break;
11333      } else {
11334        if (LookupDC->isFileContext()) break;
11335      }
11336      LookupDC = LookupDC->getParent();
11337    }
11338
11339    DCScope = getScopeForDeclContext(S, DC);
11340
11341    // C++ [class.friend]p6:
11342    //   A function can be defined in a friend declaration of a class if and
11343    //   only if the class is a non-local class (9.8), the function name is
11344    //   unqualified, and the function has namespace scope.
11345    if (isLocal && D.isFunctionDefinition()) {
11346      Diag(NameInfo.getBeginLoc(), diag::err_friend_def_in_local_class);
11347    }
11348
11349  //   - There's a non-dependent scope specifier, in which case we
11350  //     compute it and do a previous lookup there for a function
11351  //     or function template.
11352  } else if (!SS.getScopeRep()->isDependent()) {
11353    DC = computeDeclContext(SS);
11354    if (!DC) return 0;
11355
11356    if (RequireCompleteDeclContext(SS, DC)) return 0;
11357
11358    LookupQualifiedName(Previous, DC);
11359
11360    // Ignore things found implicitly in the wrong scope.
11361    // TODO: better diagnostics for this case.  Suggesting the right
11362    // qualified scope would be nice...
11363    LookupResult::Filter F = Previous.makeFilter();
11364    while (F.hasNext()) {
11365      NamedDecl *D = F.next();
11366      if (!DC->InEnclosingNamespaceSetOf(
11367              D->getDeclContext()->getRedeclContext()))
11368        F.erase();
11369    }
11370    F.done();
11371
11372    if (Previous.empty()) {
11373      D.setInvalidType();
11374      Diag(Loc, diag::err_qualified_friend_not_found)
11375          << Name << TInfo->getType();
11376      return 0;
11377    }
11378
11379    // C++ [class.friend]p1: A friend of a class is a function or
11380    //   class that is not a member of the class . . .
11381    if (DC->Equals(CurContext))
11382      Diag(DS.getFriendSpecLoc(),
11383           getLangOpts().CPlusPlus11 ?
11384             diag::warn_cxx98_compat_friend_is_member :
11385             diag::err_friend_is_member);
11386
11387    if (D.isFunctionDefinition()) {
11388      // C++ [class.friend]p6:
11389      //   A function can be defined in a friend declaration of a class if and
11390      //   only if the class is a non-local class (9.8), the function name is
11391      //   unqualified, and the function has namespace scope.
11392      SemaDiagnosticBuilder DB
11393        = Diag(SS.getRange().getBegin(), diag::err_qualified_friend_def);
11394
11395      DB << SS.getScopeRep();
11396      if (DC->isFileContext())
11397        DB << FixItHint::CreateRemoval(SS.getRange());
11398      SS.clear();
11399    }
11400
11401  //   - There's a scope specifier that does not match any template
11402  //     parameter lists, in which case we use some arbitrary context,
11403  //     create a method or method template, and wait for instantiation.
11404  //   - There's a scope specifier that does match some template
11405  //     parameter lists, which we don't handle right now.
11406  } else {
11407    if (D.isFunctionDefinition()) {
11408      // C++ [class.friend]p6:
11409      //   A function can be defined in a friend declaration of a class if and
11410      //   only if the class is a non-local class (9.8), the function name is
11411      //   unqualified, and the function has namespace scope.
11412      Diag(SS.getRange().getBegin(), diag::err_qualified_friend_def)
11413        << SS.getScopeRep();
11414    }
11415
11416    DC = CurContext;
11417    assert(isa<CXXRecordDecl>(DC) && "friend declaration not in class?");
11418  }
11419
11420  if (!DC->isRecord()) {
11421    // This implies that it has to be an operator or function.
11422    if (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ||
11423        D.getName().getKind() == UnqualifiedId::IK_DestructorName ||
11424        D.getName().getKind() == UnqualifiedId::IK_ConversionFunctionId) {
11425      Diag(Loc, diag::err_introducing_special_friend) <<
11426        (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ? 0 :
11427         D.getName().getKind() == UnqualifiedId::IK_DestructorName ? 1 : 2);
11428      return 0;
11429    }
11430  }
11431
11432  // FIXME: This is an egregious hack to cope with cases where the scope stack
11433  // does not contain the declaration context, i.e., in an out-of-line
11434  // definition of a class.
11435  Scope FakeDCScope(S, Scope::DeclScope, Diags);
11436  if (!DCScope) {
11437    FakeDCScope.setEntity(DC);
11438    DCScope = &FakeDCScope;
11439  }
11440
11441  bool AddToScope = true;
11442  NamedDecl *ND = ActOnFunctionDeclarator(DCScope, D, DC, TInfo, Previous,
11443                                          TemplateParams, AddToScope);
11444  if (!ND) return 0;
11445
11446  assert(ND->getDeclContext() == DC);
11447  assert(ND->getLexicalDeclContext() == CurContext);
11448
11449  // Add the function declaration to the appropriate lookup tables,
11450  // adjusting the redeclarations list as necessary.  We don't
11451  // want to do this yet if the friending class is dependent.
11452  //
11453  // Also update the scope-based lookup if the target context's
11454  // lookup context is in lexical scope.
11455  if (!CurContext->isDependentContext()) {
11456    DC = DC->getRedeclContext();
11457    DC->makeDeclVisibleInContext(ND);
11458    if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
11459      PushOnScopeChains(ND, EnclosingScope, /*AddToContext=*/ false);
11460  }
11461
11462  FriendDecl *FrD = FriendDecl::Create(Context, CurContext,
11463                                       D.getIdentifierLoc(), ND,
11464                                       DS.getFriendSpecLoc());
11465  FrD->setAccess(AS_public);
11466  CurContext->addDecl(FrD);
11467
11468  if (ND->isInvalidDecl()) {
11469    FrD->setInvalidDecl();
11470  } else {
11471    if (DC->isRecord()) CheckFriendAccess(ND);
11472
11473    FunctionDecl *FD;
11474    if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND))
11475      FD = FTD->getTemplatedDecl();
11476    else
11477      FD = cast<FunctionDecl>(ND);
11478
11479    // C++11 [dcl.fct.default]p4: If a friend declaration specifies a
11480    // default argument expression, that declaration shall be a definition
11481    // and shall be the only declaration of the function or function
11482    // template in the translation unit.
11483    if (functionDeclHasDefaultArgument(FD)) {
11484      if (FunctionDecl *OldFD = FD->getPreviousDecl()) {
11485        Diag(FD->getLocation(), diag::err_friend_decl_with_def_arg_redeclared);
11486        Diag(OldFD->getLocation(), diag::note_previous_declaration);
11487      } else if (!D.isFunctionDefinition())
11488        Diag(FD->getLocation(), diag::err_friend_decl_with_def_arg_must_be_def);
11489    }
11490
11491    // Mark templated-scope function declarations as unsupported.
11492    if (FD->getNumTemplateParameterLists())
11493      FrD->setUnsupportedFriend(true);
11494  }
11495
11496  return ND;
11497}
11498
11499void Sema::SetDeclDeleted(Decl *Dcl, SourceLocation DelLoc) {
11500  AdjustDeclIfTemplate(Dcl);
11501
11502  FunctionDecl *Fn = dyn_cast_or_null<FunctionDecl>(Dcl);
11503  if (!Fn) {
11504    Diag(DelLoc, diag::err_deleted_non_function);
11505    return;
11506  }
11507
11508  if (const FunctionDecl *Prev = Fn->getPreviousDecl()) {
11509    // Don't consider the implicit declaration we generate for explicit
11510    // specializations. FIXME: Do not generate these implicit declarations.
11511    if ((Prev->getTemplateSpecializationKind() != TSK_ExplicitSpecialization
11512        || Prev->getPreviousDecl()) && !Prev->isDefined()) {
11513      Diag(DelLoc, diag::err_deleted_decl_not_first);
11514      Diag(Prev->getLocation(), diag::note_previous_declaration);
11515    }
11516    // If the declaration wasn't the first, we delete the function anyway for
11517    // recovery.
11518    Fn = Fn->getCanonicalDecl();
11519  }
11520
11521  if (Fn->isDeleted())
11522    return;
11523
11524  // See if we're deleting a function which is already known to override a
11525  // non-deleted virtual function.
11526  if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Fn)) {
11527    bool IssuedDiagnostic = false;
11528    for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
11529                                        E = MD->end_overridden_methods();
11530         I != E; ++I) {
11531      if (!(*MD->begin_overridden_methods())->isDeleted()) {
11532        if (!IssuedDiagnostic) {
11533          Diag(DelLoc, diag::err_deleted_override) << MD->getDeclName();
11534          IssuedDiagnostic = true;
11535        }
11536        Diag((*I)->getLocation(), diag::note_overridden_virtual_function);
11537      }
11538    }
11539  }
11540
11541  Fn->setDeletedAsWritten();
11542}
11543
11544void Sema::SetDeclDefaulted(Decl *Dcl, SourceLocation DefaultLoc) {
11545  CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(Dcl);
11546
11547  if (MD) {
11548    if (MD->getParent()->isDependentType()) {
11549      MD->setDefaulted();
11550      MD->setExplicitlyDefaulted();
11551      return;
11552    }
11553
11554    CXXSpecialMember Member = getSpecialMember(MD);
11555    if (Member == CXXInvalid) {
11556      if (!MD->isInvalidDecl())
11557        Diag(DefaultLoc, diag::err_default_special_members);
11558      return;
11559    }
11560
11561    MD->setDefaulted();
11562    MD->setExplicitlyDefaulted();
11563
11564    // If this definition appears within the record, do the checking when
11565    // the record is complete.
11566    const FunctionDecl *Primary = MD;
11567    if (const FunctionDecl *Pattern = MD->getTemplateInstantiationPattern())
11568      // Find the uninstantiated declaration that actually had the '= default'
11569      // on it.
11570      Pattern->isDefined(Primary);
11571
11572    // If the method was defaulted on its first declaration, we will have
11573    // already performed the checking in CheckCompletedCXXClass. Such a
11574    // declaration doesn't trigger an implicit definition.
11575    if (Primary == Primary->getCanonicalDecl())
11576      return;
11577
11578    CheckExplicitlyDefaultedSpecialMember(MD);
11579
11580    // The exception specification is needed because we are defining the
11581    // function.
11582    ResolveExceptionSpec(DefaultLoc,
11583                         MD->getType()->castAs<FunctionProtoType>());
11584
11585    switch (Member) {
11586    case CXXDefaultConstructor: {
11587      CXXConstructorDecl *CD = cast<CXXConstructorDecl>(MD);
11588      if (!CD->isInvalidDecl())
11589        DefineImplicitDefaultConstructor(DefaultLoc, CD);
11590      break;
11591    }
11592
11593    case CXXCopyConstructor: {
11594      CXXConstructorDecl *CD = cast<CXXConstructorDecl>(MD);
11595      if (!CD->isInvalidDecl())
11596        DefineImplicitCopyConstructor(DefaultLoc, CD);
11597      break;
11598    }
11599
11600    case CXXCopyAssignment: {
11601      if (!MD->isInvalidDecl())
11602        DefineImplicitCopyAssignment(DefaultLoc, MD);
11603      break;
11604    }
11605
11606    case CXXDestructor: {
11607      CXXDestructorDecl *DD = cast<CXXDestructorDecl>(MD);
11608      if (!DD->isInvalidDecl())
11609        DefineImplicitDestructor(DefaultLoc, DD);
11610      break;
11611    }
11612
11613    case CXXMoveConstructor: {
11614      CXXConstructorDecl *CD = cast<CXXConstructorDecl>(MD);
11615      if (!CD->isInvalidDecl())
11616        DefineImplicitMoveConstructor(DefaultLoc, CD);
11617      break;
11618    }
11619
11620    case CXXMoveAssignment: {
11621      if (!MD->isInvalidDecl())
11622        DefineImplicitMoveAssignment(DefaultLoc, MD);
11623      break;
11624    }
11625
11626    case CXXInvalid:
11627      llvm_unreachable("Invalid special member.");
11628    }
11629  } else {
11630    Diag(DefaultLoc, diag::err_default_special_members);
11631  }
11632}
11633
11634static void SearchForReturnInStmt(Sema &Self, Stmt *S) {
11635  for (Stmt::child_range CI = S->children(); CI; ++CI) {
11636    Stmt *SubStmt = *CI;
11637    if (!SubStmt)
11638      continue;
11639    if (isa<ReturnStmt>(SubStmt))
11640      Self.Diag(SubStmt->getLocStart(),
11641           diag::err_return_in_constructor_handler);
11642    if (!isa<Expr>(SubStmt))
11643      SearchForReturnInStmt(Self, SubStmt);
11644  }
11645}
11646
11647void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) {
11648  for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) {
11649    CXXCatchStmt *Handler = TryBlock->getHandler(I);
11650    SearchForReturnInStmt(*this, Handler);
11651  }
11652}
11653
11654bool Sema::CheckOverridingFunctionAttributes(const CXXMethodDecl *New,
11655                                             const CXXMethodDecl *Old) {
11656  const FunctionType *NewFT = New->getType()->getAs<FunctionType>();
11657  const FunctionType *OldFT = Old->getType()->getAs<FunctionType>();
11658
11659  CallingConv NewCC = NewFT->getCallConv(), OldCC = OldFT->getCallConv();
11660
11661  // If the calling conventions match, everything is fine
11662  if (NewCC == OldCC)
11663    return false;
11664
11665  // If either of the calling conventions are set to "default", we need to pick
11666  // something more sensible based on the target. This supports code where the
11667  // one method explicitly sets thiscall, and another has no explicit calling
11668  // convention.
11669  CallingConv Default =
11670    Context.getTargetInfo().getDefaultCallingConv(TargetInfo::CCMT_Member);
11671  if (NewCC == CC_Default)
11672    NewCC = Default;
11673  if (OldCC == CC_Default)
11674    OldCC = Default;
11675
11676  // If the calling conventions still don't match, then report the error
11677  if (NewCC != OldCC) {
11678    Diag(New->getLocation(),
11679         diag::err_conflicting_overriding_cc_attributes)
11680      << New->getDeclName() << New->getType() << Old->getType();
11681    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
11682    return true;
11683  }
11684
11685  return false;
11686}
11687
11688bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New,
11689                                             const CXXMethodDecl *Old) {
11690  QualType NewTy = New->getType()->getAs<FunctionType>()->getResultType();
11691  QualType OldTy = Old->getType()->getAs<FunctionType>()->getResultType();
11692
11693  if (Context.hasSameType(NewTy, OldTy) ||
11694      NewTy->isDependentType() || OldTy->isDependentType())
11695    return false;
11696
11697  // Check if the return types are covariant
11698  QualType NewClassTy, OldClassTy;
11699
11700  /// Both types must be pointers or references to classes.
11701  if (const PointerType *NewPT = NewTy->getAs<PointerType>()) {
11702    if (const PointerType *OldPT = OldTy->getAs<PointerType>()) {
11703      NewClassTy = NewPT->getPointeeType();
11704      OldClassTy = OldPT->getPointeeType();
11705    }
11706  } else if (const ReferenceType *NewRT = NewTy->getAs<ReferenceType>()) {
11707    if (const ReferenceType *OldRT = OldTy->getAs<ReferenceType>()) {
11708      if (NewRT->getTypeClass() == OldRT->getTypeClass()) {
11709        NewClassTy = NewRT->getPointeeType();
11710        OldClassTy = OldRT->getPointeeType();
11711      }
11712    }
11713  }
11714
11715  // The return types aren't either both pointers or references to a class type.
11716  if (NewClassTy.isNull()) {
11717    Diag(New->getLocation(),
11718         diag::err_different_return_type_for_overriding_virtual_function)
11719      << New->getDeclName() << NewTy << OldTy;
11720    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
11721
11722    return true;
11723  }
11724
11725  // C++ [class.virtual]p6:
11726  //   If the return type of D::f differs from the return type of B::f, the
11727  //   class type in the return type of D::f shall be complete at the point of
11728  //   declaration of D::f or shall be the class type D.
11729  if (const RecordType *RT = NewClassTy->getAs<RecordType>()) {
11730    if (!RT->isBeingDefined() &&
11731        RequireCompleteType(New->getLocation(), NewClassTy,
11732                            diag::err_covariant_return_incomplete,
11733                            New->getDeclName()))
11734    return true;
11735  }
11736
11737  if (!Context.hasSameUnqualifiedType(NewClassTy, OldClassTy)) {
11738    // Check if the new class derives from the old class.
11739    if (!IsDerivedFrom(NewClassTy, OldClassTy)) {
11740      Diag(New->getLocation(),
11741           diag::err_covariant_return_not_derived)
11742      << New->getDeclName() << NewTy << OldTy;
11743      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
11744      return true;
11745    }
11746
11747    // Check if we the conversion from derived to base is valid.
11748    if (CheckDerivedToBaseConversion(NewClassTy, OldClassTy,
11749                    diag::err_covariant_return_inaccessible_base,
11750                    diag::err_covariant_return_ambiguous_derived_to_base_conv,
11751                    // FIXME: Should this point to the return type?
11752                    New->getLocation(), SourceRange(), New->getDeclName(), 0)) {
11753      // FIXME: this note won't trigger for delayed access control
11754      // diagnostics, and it's impossible to get an undelayed error
11755      // here from access control during the original parse because
11756      // the ParsingDeclSpec/ParsingDeclarator are still in scope.
11757      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
11758      return true;
11759    }
11760  }
11761
11762  // The qualifiers of the return types must be the same.
11763  if (NewTy.getLocalCVRQualifiers() != OldTy.getLocalCVRQualifiers()) {
11764    Diag(New->getLocation(),
11765         diag::err_covariant_return_type_different_qualifications)
11766    << New->getDeclName() << NewTy << OldTy;
11767    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
11768    return true;
11769  };
11770
11771
11772  // The new class type must have the same or less qualifiers as the old type.
11773  if (NewClassTy.isMoreQualifiedThan(OldClassTy)) {
11774    Diag(New->getLocation(),
11775         diag::err_covariant_return_type_class_type_more_qualified)
11776    << New->getDeclName() << NewTy << OldTy;
11777    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
11778    return true;
11779  };
11780
11781  return false;
11782}
11783
11784/// \brief Mark the given method pure.
11785///
11786/// \param Method the method to be marked pure.
11787///
11788/// \param InitRange the source range that covers the "0" initializer.
11789bool Sema::CheckPureMethod(CXXMethodDecl *Method, SourceRange InitRange) {
11790  SourceLocation EndLoc = InitRange.getEnd();
11791  if (EndLoc.isValid())
11792    Method->setRangeEnd(EndLoc);
11793
11794  if (Method->isVirtual() || Method->getParent()->isDependentContext()) {
11795    Method->setPure();
11796    return false;
11797  }
11798
11799  if (!Method->isInvalidDecl())
11800    Diag(Method->getLocation(), diag::err_non_virtual_pure)
11801      << Method->getDeclName() << InitRange;
11802  return true;
11803}
11804
11805/// \brief Determine whether the given declaration is a static data member.
11806static bool isStaticDataMember(Decl *D) {
11807  VarDecl *Var = dyn_cast_or_null<VarDecl>(D);
11808  if (!Var)
11809    return false;
11810
11811  return Var->isStaticDataMember();
11812}
11813/// ActOnCXXEnterDeclInitializer - Invoked when we are about to parse
11814/// an initializer for the out-of-line declaration 'Dcl'.  The scope
11815/// is a fresh scope pushed for just this purpose.
11816///
11817/// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a
11818/// static data member of class X, names should be looked up in the scope of
11819/// class X.
11820void Sema::ActOnCXXEnterDeclInitializer(Scope *S, Decl *D) {
11821  // If there is no declaration, there was an error parsing it.
11822  if (D == 0 || D->isInvalidDecl()) return;
11823
11824  // We should only get called for declarations with scope specifiers, like:
11825  //   int foo::bar;
11826  assert(D->isOutOfLine());
11827  EnterDeclaratorContext(S, D->getDeclContext());
11828
11829  // If we are parsing the initializer for a static data member, push a
11830  // new expression evaluation context that is associated with this static
11831  // data member.
11832  if (isStaticDataMember(D))
11833    PushExpressionEvaluationContext(PotentiallyEvaluated, D);
11834}
11835
11836/// ActOnCXXExitDeclInitializer - Invoked after we are finished parsing an
11837/// initializer for the out-of-line declaration 'D'.
11838void Sema::ActOnCXXExitDeclInitializer(Scope *S, Decl *D) {
11839  // If there is no declaration, there was an error parsing it.
11840  if (D == 0 || D->isInvalidDecl()) return;
11841
11842  if (isStaticDataMember(D))
11843    PopExpressionEvaluationContext();
11844
11845  assert(D->isOutOfLine());
11846  ExitDeclaratorContext(S);
11847}
11848
11849/// ActOnCXXConditionDeclarationExpr - Parsed a condition declaration of a
11850/// C++ if/switch/while/for statement.
11851/// e.g: "if (int x = f()) {...}"
11852DeclResult Sema::ActOnCXXConditionDeclaration(Scope *S, Declarator &D) {
11853  // C++ 6.4p2:
11854  // The declarator shall not specify a function or an array.
11855  // The type-specifier-seq shall not contain typedef and shall not declare a
11856  // new class or enumeration.
11857  assert(D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
11858         "Parser allowed 'typedef' as storage class of condition decl.");
11859
11860  Decl *Dcl = ActOnDeclarator(S, D);
11861  if (!Dcl)
11862    return true;
11863
11864  if (isa<FunctionDecl>(Dcl)) { // The declarator shall not specify a function.
11865    Diag(Dcl->getLocation(), diag::err_invalid_use_of_function_type)
11866      << D.getSourceRange();
11867    return true;
11868  }
11869
11870  return Dcl;
11871}
11872
11873void Sema::LoadExternalVTableUses() {
11874  if (!ExternalSource)
11875    return;
11876
11877  SmallVector<ExternalVTableUse, 4> VTables;
11878  ExternalSource->ReadUsedVTables(VTables);
11879  SmallVector<VTableUse, 4> NewUses;
11880  for (unsigned I = 0, N = VTables.size(); I != N; ++I) {
11881    llvm::DenseMap<CXXRecordDecl *, bool>::iterator Pos
11882      = VTablesUsed.find(VTables[I].Record);
11883    // Even if a definition wasn't required before, it may be required now.
11884    if (Pos != VTablesUsed.end()) {
11885      if (!Pos->second && VTables[I].DefinitionRequired)
11886        Pos->second = true;
11887      continue;
11888    }
11889
11890    VTablesUsed[VTables[I].Record] = VTables[I].DefinitionRequired;
11891    NewUses.push_back(VTableUse(VTables[I].Record, VTables[I].Location));
11892  }
11893
11894  VTableUses.insert(VTableUses.begin(), NewUses.begin(), NewUses.end());
11895}
11896
11897void Sema::MarkVTableUsed(SourceLocation Loc, CXXRecordDecl *Class,
11898                          bool DefinitionRequired) {
11899  // Ignore any vtable uses in unevaluated operands or for classes that do
11900  // not have a vtable.
11901  if (!Class->isDynamicClass() || Class->isDependentContext() ||
11902      CurContext->isDependentContext() || isUnevaluatedContext())
11903    return;
11904
11905  // Try to insert this class into the map.
11906  LoadExternalVTableUses();
11907  Class = cast<CXXRecordDecl>(Class->getCanonicalDecl());
11908  std::pair<llvm::DenseMap<CXXRecordDecl *, bool>::iterator, bool>
11909    Pos = VTablesUsed.insert(std::make_pair(Class, DefinitionRequired));
11910  if (!Pos.second) {
11911    // If we already had an entry, check to see if we are promoting this vtable
11912    // to required a definition. If so, we need to reappend to the VTableUses
11913    // list, since we may have already processed the first entry.
11914    if (DefinitionRequired && !Pos.first->second) {
11915      Pos.first->second = true;
11916    } else {
11917      // Otherwise, we can early exit.
11918      return;
11919    }
11920  }
11921
11922  // Local classes need to have their virtual members marked
11923  // immediately. For all other classes, we mark their virtual members
11924  // at the end of the translation unit.
11925  if (Class->isLocalClass())
11926    MarkVirtualMembersReferenced(Loc, Class);
11927  else
11928    VTableUses.push_back(std::make_pair(Class, Loc));
11929}
11930
11931bool Sema::DefineUsedVTables() {
11932  LoadExternalVTableUses();
11933  if (VTableUses.empty())
11934    return false;
11935
11936  // Note: The VTableUses vector could grow as a result of marking
11937  // the members of a class as "used", so we check the size each
11938  // time through the loop and prefer indices (which are stable) to
11939  // iterators (which are not).
11940  bool DefinedAnything = false;
11941  for (unsigned I = 0; I != VTableUses.size(); ++I) {
11942    CXXRecordDecl *Class = VTableUses[I].first->getDefinition();
11943    if (!Class)
11944      continue;
11945
11946    SourceLocation Loc = VTableUses[I].second;
11947
11948    bool DefineVTable = true;
11949
11950    // If this class has a key function, but that key function is
11951    // defined in another translation unit, we don't need to emit the
11952    // vtable even though we're using it.
11953    const CXXMethodDecl *KeyFunction = Context.getCurrentKeyFunction(Class);
11954    if (KeyFunction && !KeyFunction->hasBody()) {
11955      switch (KeyFunction->getTemplateSpecializationKind()) {
11956      case TSK_Undeclared:
11957      case TSK_ExplicitSpecialization:
11958      case TSK_ExplicitInstantiationDeclaration:
11959        // The key function is in another translation unit.
11960        DefineVTable = false;
11961        break;
11962
11963      case TSK_ExplicitInstantiationDefinition:
11964      case TSK_ImplicitInstantiation:
11965        // We will be instantiating the key function.
11966        break;
11967      }
11968    } else if (!KeyFunction) {
11969      // If we have a class with no key function that is the subject
11970      // of an explicit instantiation declaration, suppress the
11971      // vtable; it will live with the explicit instantiation
11972      // definition.
11973      bool IsExplicitInstantiationDeclaration
11974        = Class->getTemplateSpecializationKind()
11975                                      == TSK_ExplicitInstantiationDeclaration;
11976      for (TagDecl::redecl_iterator R = Class->redecls_begin(),
11977                                 REnd = Class->redecls_end();
11978           R != REnd; ++R) {
11979        TemplateSpecializationKind TSK
11980          = cast<CXXRecordDecl>(*R)->getTemplateSpecializationKind();
11981        if (TSK == TSK_ExplicitInstantiationDeclaration)
11982          IsExplicitInstantiationDeclaration = true;
11983        else if (TSK == TSK_ExplicitInstantiationDefinition) {
11984          IsExplicitInstantiationDeclaration = false;
11985          break;
11986        }
11987      }
11988
11989      if (IsExplicitInstantiationDeclaration)
11990        DefineVTable = false;
11991    }
11992
11993    // The exception specifications for all virtual members may be needed even
11994    // if we are not providing an authoritative form of the vtable in this TU.
11995    // We may choose to emit it available_externally anyway.
11996    if (!DefineVTable) {
11997      MarkVirtualMemberExceptionSpecsNeeded(Loc, Class);
11998      continue;
11999    }
12000
12001    // Mark all of the virtual members of this class as referenced, so
12002    // that we can build a vtable. Then, tell the AST consumer that a
12003    // vtable for this class is required.
12004    DefinedAnything = true;
12005    MarkVirtualMembersReferenced(Loc, Class);
12006    CXXRecordDecl *Canonical = cast<CXXRecordDecl>(Class->getCanonicalDecl());
12007    Consumer.HandleVTable(Class, VTablesUsed[Canonical]);
12008
12009    // Optionally warn if we're emitting a weak vtable.
12010    if (Class->isExternallyVisible() &&
12011        Class->getTemplateSpecializationKind() != TSK_ImplicitInstantiation) {
12012      const FunctionDecl *KeyFunctionDef = 0;
12013      if (!KeyFunction ||
12014          (KeyFunction->hasBody(KeyFunctionDef) &&
12015           KeyFunctionDef->isInlined()))
12016        Diag(Class->getLocation(), Class->getTemplateSpecializationKind() ==
12017             TSK_ExplicitInstantiationDefinition
12018             ? diag::warn_weak_template_vtable : diag::warn_weak_vtable)
12019          << Class;
12020    }
12021  }
12022  VTableUses.clear();
12023
12024  return DefinedAnything;
12025}
12026
12027void Sema::MarkVirtualMemberExceptionSpecsNeeded(SourceLocation Loc,
12028                                                 const CXXRecordDecl *RD) {
12029  for (CXXRecordDecl::method_iterator I = RD->method_begin(),
12030                                      E = RD->method_end(); I != E; ++I)
12031    if ((*I)->isVirtual() && !(*I)->isPure())
12032      ResolveExceptionSpec(Loc, (*I)->getType()->castAs<FunctionProtoType>());
12033}
12034
12035void Sema::MarkVirtualMembersReferenced(SourceLocation Loc,
12036                                        const CXXRecordDecl *RD) {
12037  // Mark all functions which will appear in RD's vtable as used.
12038  CXXFinalOverriderMap FinalOverriders;
12039  RD->getFinalOverriders(FinalOverriders);
12040  for (CXXFinalOverriderMap::const_iterator I = FinalOverriders.begin(),
12041                                            E = FinalOverriders.end();
12042       I != E; ++I) {
12043    for (OverridingMethods::const_iterator OI = I->second.begin(),
12044                                           OE = I->second.end();
12045         OI != OE; ++OI) {
12046      assert(OI->second.size() > 0 && "no final overrider");
12047      CXXMethodDecl *Overrider = OI->second.front().Method;
12048
12049      // C++ [basic.def.odr]p2:
12050      //   [...] A virtual member function is used if it is not pure. [...]
12051      if (!Overrider->isPure())
12052        MarkFunctionReferenced(Loc, Overrider);
12053    }
12054  }
12055
12056  // Only classes that have virtual bases need a VTT.
12057  if (RD->getNumVBases() == 0)
12058    return;
12059
12060  for (CXXRecordDecl::base_class_const_iterator i = RD->bases_begin(),
12061           e = RD->bases_end(); i != e; ++i) {
12062    const CXXRecordDecl *Base =
12063        cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
12064    if (Base->getNumVBases() == 0)
12065      continue;
12066    MarkVirtualMembersReferenced(Loc, Base);
12067  }
12068}
12069
12070/// SetIvarInitializers - This routine builds initialization ASTs for the
12071/// Objective-C implementation whose ivars need be initialized.
12072void Sema::SetIvarInitializers(ObjCImplementationDecl *ObjCImplementation) {
12073  if (!getLangOpts().CPlusPlus)
12074    return;
12075  if (ObjCInterfaceDecl *OID = ObjCImplementation->getClassInterface()) {
12076    SmallVector<ObjCIvarDecl*, 8> ivars;
12077    CollectIvarsToConstructOrDestruct(OID, ivars);
12078    if (ivars.empty())
12079      return;
12080    SmallVector<CXXCtorInitializer*, 32> AllToInit;
12081    for (unsigned i = 0; i < ivars.size(); i++) {
12082      FieldDecl *Field = ivars[i];
12083      if (Field->isInvalidDecl())
12084        continue;
12085
12086      CXXCtorInitializer *Member;
12087      InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field);
12088      InitializationKind InitKind =
12089        InitializationKind::CreateDefault(ObjCImplementation->getLocation());
12090
12091      InitializationSequence InitSeq(*this, InitEntity, InitKind, None);
12092      ExprResult MemberInit =
12093        InitSeq.Perform(*this, InitEntity, InitKind, None);
12094      MemberInit = MaybeCreateExprWithCleanups(MemberInit);
12095      // Note, MemberInit could actually come back empty if no initialization
12096      // is required (e.g., because it would call a trivial default constructor)
12097      if (!MemberInit.get() || MemberInit.isInvalid())
12098        continue;
12099
12100      Member =
12101        new (Context) CXXCtorInitializer(Context, Field, SourceLocation(),
12102                                         SourceLocation(),
12103                                         MemberInit.takeAs<Expr>(),
12104                                         SourceLocation());
12105      AllToInit.push_back(Member);
12106
12107      // Be sure that the destructor is accessible and is marked as referenced.
12108      if (const RecordType *RecordTy
12109                  = Context.getBaseElementType(Field->getType())
12110                                                        ->getAs<RecordType>()) {
12111                    CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl());
12112        if (CXXDestructorDecl *Destructor = LookupDestructor(RD)) {
12113          MarkFunctionReferenced(Field->getLocation(), Destructor);
12114          CheckDestructorAccess(Field->getLocation(), Destructor,
12115                            PDiag(diag::err_access_dtor_ivar)
12116                              << Context.getBaseElementType(Field->getType()));
12117        }
12118      }
12119    }
12120    ObjCImplementation->setIvarInitializers(Context,
12121                                            AllToInit.data(), AllToInit.size());
12122  }
12123}
12124
12125static
12126void DelegatingCycleHelper(CXXConstructorDecl* Ctor,
12127                           llvm::SmallSet<CXXConstructorDecl*, 4> &Valid,
12128                           llvm::SmallSet<CXXConstructorDecl*, 4> &Invalid,
12129                           llvm::SmallSet<CXXConstructorDecl*, 4> &Current,
12130                           Sema &S) {
12131  llvm::SmallSet<CXXConstructorDecl*, 4>::iterator CI = Current.begin(),
12132                                                   CE = Current.end();
12133  if (Ctor->isInvalidDecl())
12134    return;
12135
12136  CXXConstructorDecl *Target = Ctor->getTargetConstructor();
12137
12138  // Target may not be determinable yet, for instance if this is a dependent
12139  // call in an uninstantiated template.
12140  if (Target) {
12141    const FunctionDecl *FNTarget = 0;
12142    (void)Target->hasBody(FNTarget);
12143    Target = const_cast<CXXConstructorDecl*>(
12144      cast_or_null<CXXConstructorDecl>(FNTarget));
12145  }
12146
12147  CXXConstructorDecl *Canonical = Ctor->getCanonicalDecl(),
12148                     // Avoid dereferencing a null pointer here.
12149                     *TCanonical = Target ? Target->getCanonicalDecl() : 0;
12150
12151  if (!Current.insert(Canonical))
12152    return;
12153
12154  // We know that beyond here, we aren't chaining into a cycle.
12155  if (!Target || !Target->isDelegatingConstructor() ||
12156      Target->isInvalidDecl() || Valid.count(TCanonical)) {
12157    for (CI = Current.begin(), CE = Current.end(); CI != CE; ++CI)
12158      Valid.insert(*CI);
12159    Current.clear();
12160  // We've hit a cycle.
12161  } else if (TCanonical == Canonical || Invalid.count(TCanonical) ||
12162             Current.count(TCanonical)) {
12163    // If we haven't diagnosed this cycle yet, do so now.
12164    if (!Invalid.count(TCanonical)) {
12165      S.Diag((*Ctor->init_begin())->getSourceLocation(),
12166             diag::warn_delegating_ctor_cycle)
12167        << Ctor;
12168
12169      // Don't add a note for a function delegating directly to itself.
12170      if (TCanonical != Canonical)
12171        S.Diag(Target->getLocation(), diag::note_it_delegates_to);
12172
12173      CXXConstructorDecl *C = Target;
12174      while (C->getCanonicalDecl() != Canonical) {
12175        const FunctionDecl *FNTarget = 0;
12176        (void)C->getTargetConstructor()->hasBody(FNTarget);
12177        assert(FNTarget && "Ctor cycle through bodiless function");
12178
12179        C = const_cast<CXXConstructorDecl*>(
12180          cast<CXXConstructorDecl>(FNTarget));
12181        S.Diag(C->getLocation(), diag::note_which_delegates_to);
12182      }
12183    }
12184
12185    for (CI = Current.begin(), CE = Current.end(); CI != CE; ++CI)
12186      Invalid.insert(*CI);
12187    Current.clear();
12188  } else {
12189    DelegatingCycleHelper(Target, Valid, Invalid, Current, S);
12190  }
12191}
12192
12193
12194void Sema::CheckDelegatingCtorCycles() {
12195  llvm::SmallSet<CXXConstructorDecl*, 4> Valid, Invalid, Current;
12196
12197  llvm::SmallSet<CXXConstructorDecl*, 4>::iterator CI = Current.begin(),
12198                                                   CE = Current.end();
12199
12200  for (DelegatingCtorDeclsType::iterator
12201         I = DelegatingCtorDecls.begin(ExternalSource),
12202         E = DelegatingCtorDecls.end();
12203       I != E; ++I)
12204    DelegatingCycleHelper(*I, Valid, Invalid, Current, *this);
12205
12206  for (CI = Invalid.begin(), CE = Invalid.end(); CI != CE; ++CI)
12207    (*CI)->setInvalidDecl();
12208}
12209
12210namespace {
12211  /// \brief AST visitor that finds references to the 'this' expression.
12212  class FindCXXThisExpr : public RecursiveASTVisitor<FindCXXThisExpr> {
12213    Sema &S;
12214
12215  public:
12216    explicit FindCXXThisExpr(Sema &S) : S(S) { }
12217
12218    bool VisitCXXThisExpr(CXXThisExpr *E) {
12219      S.Diag(E->getLocation(), diag::err_this_static_member_func)
12220        << E->isImplicit();
12221      return false;
12222    }
12223  };
12224}
12225
12226bool Sema::checkThisInStaticMemberFunctionType(CXXMethodDecl *Method) {
12227  TypeSourceInfo *TSInfo = Method->getTypeSourceInfo();
12228  if (!TSInfo)
12229    return false;
12230
12231  TypeLoc TL = TSInfo->getTypeLoc();
12232  FunctionProtoTypeLoc ProtoTL = TL.getAs<FunctionProtoTypeLoc>();
12233  if (!ProtoTL)
12234    return false;
12235
12236  // C++11 [expr.prim.general]p3:
12237  //   [The expression this] shall not appear before the optional
12238  //   cv-qualifier-seq and it shall not appear within the declaration of a
12239  //   static member function (although its type and value category are defined
12240  //   within a static member function as they are within a non-static member
12241  //   function). [ Note: this is because declaration matching does not occur
12242  //  until the complete declarator is known. - end note ]
12243  const FunctionProtoType *Proto = ProtoTL.getTypePtr();
12244  FindCXXThisExpr Finder(*this);
12245
12246  // If the return type came after the cv-qualifier-seq, check it now.
12247  if (Proto->hasTrailingReturn() &&
12248      !Finder.TraverseTypeLoc(ProtoTL.getResultLoc()))
12249    return true;
12250
12251  // Check the exception specification.
12252  if (checkThisInStaticMemberFunctionExceptionSpec(Method))
12253    return true;
12254
12255  return checkThisInStaticMemberFunctionAttributes(Method);
12256}
12257
12258bool Sema::checkThisInStaticMemberFunctionExceptionSpec(CXXMethodDecl *Method) {
12259  TypeSourceInfo *TSInfo = Method->getTypeSourceInfo();
12260  if (!TSInfo)
12261    return false;
12262
12263  TypeLoc TL = TSInfo->getTypeLoc();
12264  FunctionProtoTypeLoc ProtoTL = TL.getAs<FunctionProtoTypeLoc>();
12265  if (!ProtoTL)
12266    return false;
12267
12268  const FunctionProtoType *Proto = ProtoTL.getTypePtr();
12269  FindCXXThisExpr Finder(*this);
12270
12271  switch (Proto->getExceptionSpecType()) {
12272  case EST_Uninstantiated:
12273  case EST_Unevaluated:
12274  case EST_BasicNoexcept:
12275  case EST_DynamicNone:
12276  case EST_MSAny:
12277  case EST_None:
12278    break;
12279
12280  case EST_ComputedNoexcept:
12281    if (!Finder.TraverseStmt(Proto->getNoexceptExpr()))
12282      return true;
12283
12284  case EST_Dynamic:
12285    for (FunctionProtoType::exception_iterator E = Proto->exception_begin(),
12286         EEnd = Proto->exception_end();
12287         E != EEnd; ++E) {
12288      if (!Finder.TraverseType(*E))
12289        return true;
12290    }
12291    break;
12292  }
12293
12294  return false;
12295}
12296
12297bool Sema::checkThisInStaticMemberFunctionAttributes(CXXMethodDecl *Method) {
12298  FindCXXThisExpr Finder(*this);
12299
12300  // Check attributes.
12301  for (Decl::attr_iterator A = Method->attr_begin(), AEnd = Method->attr_end();
12302       A != AEnd; ++A) {
12303    // FIXME: This should be emitted by tblgen.
12304    Expr *Arg = 0;
12305    ArrayRef<Expr *> Args;
12306    if (GuardedByAttr *G = dyn_cast<GuardedByAttr>(*A))
12307      Arg = G->getArg();
12308    else if (PtGuardedByAttr *G = dyn_cast<PtGuardedByAttr>(*A))
12309      Arg = G->getArg();
12310    else if (AcquiredAfterAttr *AA = dyn_cast<AcquiredAfterAttr>(*A))
12311      Args = ArrayRef<Expr *>(AA->args_begin(), AA->args_size());
12312    else if (AcquiredBeforeAttr *AB = dyn_cast<AcquiredBeforeAttr>(*A))
12313      Args = ArrayRef<Expr *>(AB->args_begin(), AB->args_size());
12314    else if (ExclusiveLockFunctionAttr *ELF
12315               = dyn_cast<ExclusiveLockFunctionAttr>(*A))
12316      Args = ArrayRef<Expr *>(ELF->args_begin(), ELF->args_size());
12317    else if (SharedLockFunctionAttr *SLF
12318               = dyn_cast<SharedLockFunctionAttr>(*A))
12319      Args = ArrayRef<Expr *>(SLF->args_begin(), SLF->args_size());
12320    else if (ExclusiveTrylockFunctionAttr *ETLF
12321               = dyn_cast<ExclusiveTrylockFunctionAttr>(*A)) {
12322      Arg = ETLF->getSuccessValue();
12323      Args = ArrayRef<Expr *>(ETLF->args_begin(), ETLF->args_size());
12324    } else if (SharedTrylockFunctionAttr *STLF
12325                 = dyn_cast<SharedTrylockFunctionAttr>(*A)) {
12326      Arg = STLF->getSuccessValue();
12327      Args = ArrayRef<Expr *>(STLF->args_begin(), STLF->args_size());
12328    } else if (UnlockFunctionAttr *UF = dyn_cast<UnlockFunctionAttr>(*A))
12329      Args = ArrayRef<Expr *>(UF->args_begin(), UF->args_size());
12330    else if (LockReturnedAttr *LR = dyn_cast<LockReturnedAttr>(*A))
12331      Arg = LR->getArg();
12332    else if (LocksExcludedAttr *LE = dyn_cast<LocksExcludedAttr>(*A))
12333      Args = ArrayRef<Expr *>(LE->args_begin(), LE->args_size());
12334    else if (ExclusiveLocksRequiredAttr *ELR
12335               = dyn_cast<ExclusiveLocksRequiredAttr>(*A))
12336      Args = ArrayRef<Expr *>(ELR->args_begin(), ELR->args_size());
12337    else if (SharedLocksRequiredAttr *SLR
12338               = dyn_cast<SharedLocksRequiredAttr>(*A))
12339      Args = ArrayRef<Expr *>(SLR->args_begin(), SLR->args_size());
12340
12341    if (Arg && !Finder.TraverseStmt(Arg))
12342      return true;
12343
12344    for (unsigned I = 0, N = Args.size(); I != N; ++I) {
12345      if (!Finder.TraverseStmt(Args[I]))
12346        return true;
12347    }
12348  }
12349
12350  return false;
12351}
12352
12353void
12354Sema::checkExceptionSpecification(ExceptionSpecificationType EST,
12355                                  ArrayRef<ParsedType> DynamicExceptions,
12356                                  ArrayRef<SourceRange> DynamicExceptionRanges,
12357                                  Expr *NoexceptExpr,
12358                                  SmallVectorImpl<QualType> &Exceptions,
12359                                  FunctionProtoType::ExtProtoInfo &EPI) {
12360  Exceptions.clear();
12361  EPI.ExceptionSpecType = EST;
12362  if (EST == EST_Dynamic) {
12363    Exceptions.reserve(DynamicExceptions.size());
12364    for (unsigned ei = 0, ee = DynamicExceptions.size(); ei != ee; ++ei) {
12365      // FIXME: Preserve type source info.
12366      QualType ET = GetTypeFromParser(DynamicExceptions[ei]);
12367
12368      SmallVector<UnexpandedParameterPack, 2> Unexpanded;
12369      collectUnexpandedParameterPacks(ET, Unexpanded);
12370      if (!Unexpanded.empty()) {
12371        DiagnoseUnexpandedParameterPacks(DynamicExceptionRanges[ei].getBegin(),
12372                                         UPPC_ExceptionType,
12373                                         Unexpanded);
12374        continue;
12375      }
12376
12377      // Check that the type is valid for an exception spec, and
12378      // drop it if not.
12379      if (!CheckSpecifiedExceptionType(ET, DynamicExceptionRanges[ei]))
12380        Exceptions.push_back(ET);
12381    }
12382    EPI.NumExceptions = Exceptions.size();
12383    EPI.Exceptions = Exceptions.data();
12384    return;
12385  }
12386
12387  if (EST == EST_ComputedNoexcept) {
12388    // If an error occurred, there's no expression here.
12389    if (NoexceptExpr) {
12390      assert((NoexceptExpr->isTypeDependent() ||
12391              NoexceptExpr->getType()->getCanonicalTypeUnqualified() ==
12392              Context.BoolTy) &&
12393             "Parser should have made sure that the expression is boolean");
12394      if (NoexceptExpr && DiagnoseUnexpandedParameterPack(NoexceptExpr)) {
12395        EPI.ExceptionSpecType = EST_BasicNoexcept;
12396        return;
12397      }
12398
12399      if (!NoexceptExpr->isValueDependent())
12400        NoexceptExpr = VerifyIntegerConstantExpression(NoexceptExpr, 0,
12401                         diag::err_noexcept_needs_constant_expression,
12402                         /*AllowFold*/ false).take();
12403      EPI.NoexceptExpr = NoexceptExpr;
12404    }
12405    return;
12406  }
12407}
12408
12409/// IdentifyCUDATarget - Determine the CUDA compilation target for this function
12410Sema::CUDAFunctionTarget Sema::IdentifyCUDATarget(const FunctionDecl *D) {
12411  // Implicitly declared functions (e.g. copy constructors) are
12412  // __host__ __device__
12413  if (D->isImplicit())
12414    return CFT_HostDevice;
12415
12416  if (D->hasAttr<CUDAGlobalAttr>())
12417    return CFT_Global;
12418
12419  if (D->hasAttr<CUDADeviceAttr>()) {
12420    if (D->hasAttr<CUDAHostAttr>())
12421      return CFT_HostDevice;
12422    else
12423      return CFT_Device;
12424  }
12425
12426  return CFT_Host;
12427}
12428
12429bool Sema::CheckCUDATarget(CUDAFunctionTarget CallerTarget,
12430                           CUDAFunctionTarget CalleeTarget) {
12431  // CUDA B.1.1 "The __device__ qualifier declares a function that is...
12432  // Callable from the device only."
12433  if (CallerTarget == CFT_Host && CalleeTarget == CFT_Device)
12434    return true;
12435
12436  // CUDA B.1.2 "The __global__ qualifier declares a function that is...
12437  // Callable from the host only."
12438  // CUDA B.1.3 "The __host__ qualifier declares a function that is...
12439  // Callable from the host only."
12440  if ((CallerTarget == CFT_Device || CallerTarget == CFT_Global) &&
12441      (CalleeTarget == CFT_Host || CalleeTarget == CFT_Global))
12442    return true;
12443
12444  if (CallerTarget == CFT_HostDevice && CalleeTarget != CFT_HostDevice)
12445    return true;
12446
12447  return false;
12448}
12449
12450/// HandleMSProperty - Analyze a __delcspec(property) field of a C++ class.
12451///
12452MSPropertyDecl *Sema::HandleMSProperty(Scope *S, RecordDecl *Record,
12453                                       SourceLocation DeclStart,
12454                                       Declarator &D, Expr *BitWidth,
12455                                       InClassInitStyle InitStyle,
12456                                       AccessSpecifier AS,
12457                                       AttributeList *MSPropertyAttr) {
12458  IdentifierInfo *II = D.getIdentifier();
12459  if (!II) {
12460    Diag(DeclStart, diag::err_anonymous_property);
12461    return NULL;
12462  }
12463  SourceLocation Loc = D.getIdentifierLoc();
12464
12465  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
12466  QualType T = TInfo->getType();
12467  if (getLangOpts().CPlusPlus) {
12468    CheckExtraCXXDefaultArguments(D);
12469
12470    if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
12471                                        UPPC_DataMemberType)) {
12472      D.setInvalidType();
12473      T = Context.IntTy;
12474      TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
12475    }
12476  }
12477
12478  DiagnoseFunctionSpecifiers(D.getDeclSpec());
12479
12480  if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec())
12481    Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
12482         diag::err_invalid_thread)
12483      << DeclSpec::getSpecifierName(TSCS);
12484
12485  // Check to see if this name was declared as a member previously
12486  NamedDecl *PrevDecl = 0;
12487  LookupResult Previous(*this, II, Loc, LookupMemberName, ForRedeclaration);
12488  LookupName(Previous, S);
12489  switch (Previous.getResultKind()) {
12490  case LookupResult::Found:
12491  case LookupResult::FoundUnresolvedValue:
12492    PrevDecl = Previous.getAsSingle<NamedDecl>();
12493    break;
12494
12495  case LookupResult::FoundOverloaded:
12496    PrevDecl = Previous.getRepresentativeDecl();
12497    break;
12498
12499  case LookupResult::NotFound:
12500  case LookupResult::NotFoundInCurrentInstantiation:
12501  case LookupResult::Ambiguous:
12502    break;
12503  }
12504
12505  if (PrevDecl && PrevDecl->isTemplateParameter()) {
12506    // Maybe we will complain about the shadowed template parameter.
12507    DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
12508    // Just pretend that we didn't see the previous declaration.
12509    PrevDecl = 0;
12510  }
12511
12512  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
12513    PrevDecl = 0;
12514
12515  SourceLocation TSSL = D.getLocStart();
12516  MSPropertyDecl *NewPD;
12517  const AttributeList::PropertyData &Data = MSPropertyAttr->getPropertyData();
12518  NewPD = new (Context) MSPropertyDecl(Record, Loc,
12519                                       II, T, TInfo, TSSL,
12520                                       Data.GetterId, Data.SetterId);
12521  ProcessDeclAttributes(TUScope, NewPD, D);
12522  NewPD->setAccess(AS);
12523
12524  if (NewPD->isInvalidDecl())
12525    Record->setInvalidDecl();
12526
12527  if (D.getDeclSpec().isModulePrivateSpecified())
12528    NewPD->setModulePrivate();
12529
12530  if (NewPD->isInvalidDecl() && PrevDecl) {
12531    // Don't introduce NewFD into scope; there's already something
12532    // with the same name in the same scope.
12533  } else if (II) {
12534    PushOnScopeChains(NewPD, S);
12535  } else
12536    Record->addDecl(NewPD);
12537
12538  return NewPD;
12539}
12540