SemaInit.cpp revision e737f5041a36d0befb39ffeed8d50ba15916d3da
1//===--- SemaInit.cpp - Semantic Analysis for Initializers ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements semantic analysis for initializers. The main entry
11// point is Sema::CheckInitList(), but all of the work is performed
12// within the InitListChecker class.
13//
14// This file also implements Sema::CheckInitializerTypes.
15//
16//===----------------------------------------------------------------------===//
17
18#include "clang/Sema/Initialization.h"
19#include "clang/Sema/Lookup.h"
20#include "clang/Sema/Sema.h"
21#include "clang/Lex/Preprocessor.h"
22#include "clang/Parse/Designator.h"
23#include "clang/AST/ASTContext.h"
24#include "clang/AST/ExprCXX.h"
25#include "clang/AST/ExprObjC.h"
26#include "clang/AST/TypeLoc.h"
27#include "llvm/Support/ErrorHandling.h"
28#include <map>
29using namespace clang;
30
31//===----------------------------------------------------------------------===//
32// Sema Initialization Checking
33//===----------------------------------------------------------------------===//
34
35static Expr *IsStringInit(Expr *Init, QualType DeclType, ASTContext &Context) {
36  const ArrayType *AT = Context.getAsArrayType(DeclType);
37  if (!AT) return 0;
38
39  if (!isa<ConstantArrayType>(AT) && !isa<IncompleteArrayType>(AT))
40    return 0;
41
42  // See if this is a string literal or @encode.
43  Init = Init->IgnoreParens();
44
45  // Handle @encode, which is a narrow string.
46  if (isa<ObjCEncodeExpr>(Init) && AT->getElementType()->isCharType())
47    return Init;
48
49  // Otherwise we can only handle string literals.
50  StringLiteral *SL = dyn_cast<StringLiteral>(Init);
51  if (SL == 0) return 0;
52
53  QualType ElemTy = Context.getCanonicalType(AT->getElementType());
54  // char array can be initialized with a narrow string.
55  // Only allow char x[] = "foo";  not char x[] = L"foo";
56  if (!SL->isWide())
57    return ElemTy->isCharType() ? Init : 0;
58
59  // wchar_t array can be initialized with a wide string: C99 6.7.8p15 (with
60  // correction from DR343): "An array with element type compatible with a
61  // qualified or unqualified version of wchar_t may be initialized by a wide
62  // string literal, optionally enclosed in braces."
63  if (Context.typesAreCompatible(Context.getWCharType(),
64                                 ElemTy.getUnqualifiedType()))
65    return Init;
66
67  return 0;
68}
69
70static void CheckStringInit(Expr *Str, QualType &DeclT, Sema &S) {
71  // Get the length of the string as parsed.
72  uint64_t StrLength =
73    cast<ConstantArrayType>(Str->getType())->getSize().getZExtValue();
74
75
76  const ArrayType *AT = S.Context.getAsArrayType(DeclT);
77  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) {
78    // C99 6.7.8p14. We have an array of character type with unknown size
79    // being initialized to a string literal.
80    llvm::APSInt ConstVal(32);
81    ConstVal = StrLength;
82    // Return a new array type (C99 6.7.8p22).
83    DeclT = S.Context.getConstantArrayType(IAT->getElementType(),
84                                           ConstVal,
85                                           ArrayType::Normal, 0);
86    return;
87  }
88
89  const ConstantArrayType *CAT = cast<ConstantArrayType>(AT);
90
91  // C99 6.7.8p14. We have an array of character type with known size.  However,
92  // the size may be smaller or larger than the string we are initializing.
93  // FIXME: Avoid truncation for 64-bit length strings.
94  if (StrLength-1 > CAT->getSize().getZExtValue())
95    S.Diag(Str->getSourceRange().getBegin(),
96           diag::warn_initializer_string_for_char_array_too_long)
97      << Str->getSourceRange();
98
99  // Set the type to the actual size that we are initializing.  If we have
100  // something like:
101  //   char x[1] = "foo";
102  // then this will set the string literal's type to char[1].
103  Str->setType(DeclT);
104}
105
106//===----------------------------------------------------------------------===//
107// Semantic checking for initializer lists.
108//===----------------------------------------------------------------------===//
109
110/// @brief Semantic checking for initializer lists.
111///
112/// The InitListChecker class contains a set of routines that each
113/// handle the initialization of a certain kind of entity, e.g.,
114/// arrays, vectors, struct/union types, scalars, etc. The
115/// InitListChecker itself performs a recursive walk of the subobject
116/// structure of the type to be initialized, while stepping through
117/// the initializer list one element at a time. The IList and Index
118/// parameters to each of the Check* routines contain the active
119/// (syntactic) initializer list and the index into that initializer
120/// list that represents the current initializer. Each routine is
121/// responsible for moving that Index forward as it consumes elements.
122///
123/// Each Check* routine also has a StructuredList/StructuredIndex
124/// arguments, which contains the current the "structured" (semantic)
125/// initializer list and the index into that initializer list where we
126/// are copying initializers as we map them over to the semantic
127/// list. Once we have completed our recursive walk of the subobject
128/// structure, we will have constructed a full semantic initializer
129/// list.
130///
131/// C99 designators cause changes in the initializer list traversal,
132/// because they make the initialization "jump" into a specific
133/// subobject and then continue the initialization from that
134/// point. CheckDesignatedInitializer() recursively steps into the
135/// designated subobject and manages backing out the recursion to
136/// initialize the subobjects after the one designated.
137namespace {
138class InitListChecker {
139  Sema &SemaRef;
140  bool hadError;
141  std::map<InitListExpr *, InitListExpr *> SyntacticToSemantic;
142  InitListExpr *FullyStructuredList;
143
144  void CheckImplicitInitList(const InitializedEntity &Entity,
145                             InitListExpr *ParentIList, QualType T,
146                             unsigned &Index, InitListExpr *StructuredList,
147                             unsigned &StructuredIndex,
148                             bool TopLevelObject = false);
149  void CheckExplicitInitList(const InitializedEntity &Entity,
150                             InitListExpr *IList, QualType &T,
151                             unsigned &Index, InitListExpr *StructuredList,
152                             unsigned &StructuredIndex,
153                             bool TopLevelObject = false);
154  void CheckListElementTypes(const InitializedEntity &Entity,
155                             InitListExpr *IList, QualType &DeclType,
156                             bool SubobjectIsDesignatorContext,
157                             unsigned &Index,
158                             InitListExpr *StructuredList,
159                             unsigned &StructuredIndex,
160                             bool TopLevelObject = false);
161  void CheckSubElementType(const InitializedEntity &Entity,
162                           InitListExpr *IList, QualType ElemType,
163                           unsigned &Index,
164                           InitListExpr *StructuredList,
165                           unsigned &StructuredIndex);
166  void CheckScalarType(const InitializedEntity &Entity,
167                       InitListExpr *IList, QualType DeclType,
168                       unsigned &Index,
169                       InitListExpr *StructuredList,
170                       unsigned &StructuredIndex);
171  void CheckReferenceType(const InitializedEntity &Entity,
172                          InitListExpr *IList, QualType DeclType,
173                          unsigned &Index,
174                          InitListExpr *StructuredList,
175                          unsigned &StructuredIndex);
176  void CheckVectorType(const InitializedEntity &Entity,
177                       InitListExpr *IList, QualType DeclType, unsigned &Index,
178                       InitListExpr *StructuredList,
179                       unsigned &StructuredIndex);
180  void CheckStructUnionTypes(const InitializedEntity &Entity,
181                             InitListExpr *IList, QualType DeclType,
182                             RecordDecl::field_iterator Field,
183                             bool SubobjectIsDesignatorContext, unsigned &Index,
184                             InitListExpr *StructuredList,
185                             unsigned &StructuredIndex,
186                             bool TopLevelObject = false);
187  void CheckArrayType(const InitializedEntity &Entity,
188                      InitListExpr *IList, QualType &DeclType,
189                      llvm::APSInt elementIndex,
190                      bool SubobjectIsDesignatorContext, unsigned &Index,
191                      InitListExpr *StructuredList,
192                      unsigned &StructuredIndex);
193  bool CheckDesignatedInitializer(const InitializedEntity &Entity,
194                                  InitListExpr *IList, DesignatedInitExpr *DIE,
195                                  unsigned DesigIdx,
196                                  QualType &CurrentObjectType,
197                                  RecordDecl::field_iterator *NextField,
198                                  llvm::APSInt *NextElementIndex,
199                                  unsigned &Index,
200                                  InitListExpr *StructuredList,
201                                  unsigned &StructuredIndex,
202                                  bool FinishSubobjectInit,
203                                  bool TopLevelObject);
204  InitListExpr *getStructuredSubobjectInit(InitListExpr *IList, unsigned Index,
205                                           QualType CurrentObjectType,
206                                           InitListExpr *StructuredList,
207                                           unsigned StructuredIndex,
208                                           SourceRange InitRange);
209  void UpdateStructuredListElement(InitListExpr *StructuredList,
210                                   unsigned &StructuredIndex,
211                                   Expr *expr);
212  int numArrayElements(QualType DeclType);
213  int numStructUnionElements(QualType DeclType);
214
215  void FillInValueInitForField(unsigned Init, FieldDecl *Field,
216                               const InitializedEntity &ParentEntity,
217                               InitListExpr *ILE, bool &RequiresSecondPass);
218  void FillInValueInitializations(const InitializedEntity &Entity,
219                                  InitListExpr *ILE, bool &RequiresSecondPass);
220public:
221  InitListChecker(Sema &S, const InitializedEntity &Entity,
222                  InitListExpr *IL, QualType &T);
223  bool HadError() { return hadError; }
224
225  // @brief Retrieves the fully-structured initializer list used for
226  // semantic analysis and code generation.
227  InitListExpr *getFullyStructuredList() const { return FullyStructuredList; }
228};
229} // end anonymous namespace
230
231void InitListChecker::FillInValueInitForField(unsigned Init, FieldDecl *Field,
232                                        const InitializedEntity &ParentEntity,
233                                              InitListExpr *ILE,
234                                              bool &RequiresSecondPass) {
235  SourceLocation Loc = ILE->getSourceRange().getBegin();
236  unsigned NumInits = ILE->getNumInits();
237  InitializedEntity MemberEntity
238    = InitializedEntity::InitializeMember(Field, &ParentEntity);
239  if (Init >= NumInits || !ILE->getInit(Init)) {
240    // FIXME: We probably don't need to handle references
241    // specially here, since value-initialization of references is
242    // handled in InitializationSequence.
243    if (Field->getType()->isReferenceType()) {
244      // C++ [dcl.init.aggr]p9:
245      //   If an incomplete or empty initializer-list leaves a
246      //   member of reference type uninitialized, the program is
247      //   ill-formed.
248      SemaRef.Diag(Loc, diag::err_init_reference_member_uninitialized)
249        << Field->getType()
250        << ILE->getSyntacticForm()->getSourceRange();
251      SemaRef.Diag(Field->getLocation(),
252                   diag::note_uninit_reference_member);
253      hadError = true;
254      return;
255    }
256
257    InitializationKind Kind = InitializationKind::CreateValue(Loc, Loc, Loc,
258                                                              true);
259    InitializationSequence InitSeq(SemaRef, MemberEntity, Kind, 0, 0);
260    if (!InitSeq) {
261      InitSeq.Diagnose(SemaRef, MemberEntity, Kind, 0, 0);
262      hadError = true;
263      return;
264    }
265
266    Sema::OwningExprResult MemberInit
267      = InitSeq.Perform(SemaRef, MemberEntity, Kind,
268                        Sema::MultiExprArg(SemaRef, 0, 0));
269    if (MemberInit.isInvalid()) {
270      hadError = true;
271      return;
272    }
273
274    if (hadError) {
275      // Do nothing
276    } else if (Init < NumInits) {
277      ILE->setInit(Init, MemberInit.takeAs<Expr>());
278    } else if (InitSeq.getKind()
279                 == InitializationSequence::ConstructorInitialization) {
280      // Value-initialization requires a constructor call, so
281      // extend the initializer list to include the constructor
282      // call and make a note that we'll need to take another pass
283      // through the initializer list.
284      ILE->updateInit(SemaRef.Context, Init, MemberInit.takeAs<Expr>());
285      RequiresSecondPass = true;
286    }
287  } else if (InitListExpr *InnerILE
288               = dyn_cast<InitListExpr>(ILE->getInit(Init)))
289    FillInValueInitializations(MemberEntity, InnerILE,
290                               RequiresSecondPass);
291}
292
293/// Recursively replaces NULL values within the given initializer list
294/// with expressions that perform value-initialization of the
295/// appropriate type.
296void
297InitListChecker::FillInValueInitializations(const InitializedEntity &Entity,
298                                            InitListExpr *ILE,
299                                            bool &RequiresSecondPass) {
300  assert((ILE->getType() != SemaRef.Context.VoidTy) &&
301         "Should not have void type");
302  SourceLocation Loc = ILE->getSourceRange().getBegin();
303  if (ILE->getSyntacticForm())
304    Loc = ILE->getSyntacticForm()->getSourceRange().getBegin();
305
306  if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) {
307    if (RType->getDecl()->isUnion() &&
308        ILE->getInitializedFieldInUnion())
309      FillInValueInitForField(0, ILE->getInitializedFieldInUnion(),
310                              Entity, ILE, RequiresSecondPass);
311    else {
312      unsigned Init = 0;
313      for (RecordDecl::field_iterator
314             Field = RType->getDecl()->field_begin(),
315             FieldEnd = RType->getDecl()->field_end();
316           Field != FieldEnd; ++Field) {
317        if (Field->isUnnamedBitfield())
318          continue;
319
320        if (hadError)
321          return;
322
323        FillInValueInitForField(Init, *Field, Entity, ILE, RequiresSecondPass);
324        if (hadError)
325          return;
326
327        ++Init;
328
329        // Only look at the first initialization of a union.
330        if (RType->getDecl()->isUnion())
331          break;
332      }
333    }
334
335    return;
336  }
337
338  QualType ElementType;
339
340  InitializedEntity ElementEntity = Entity;
341  unsigned NumInits = ILE->getNumInits();
342  unsigned NumElements = NumInits;
343  if (const ArrayType *AType = SemaRef.Context.getAsArrayType(ILE->getType())) {
344    ElementType = AType->getElementType();
345    if (const ConstantArrayType *CAType = dyn_cast<ConstantArrayType>(AType))
346      NumElements = CAType->getSize().getZExtValue();
347    ElementEntity = InitializedEntity::InitializeElement(SemaRef.Context,
348                                                         0, Entity);
349  } else if (const VectorType *VType = ILE->getType()->getAs<VectorType>()) {
350    ElementType = VType->getElementType();
351    NumElements = VType->getNumElements();
352    ElementEntity = InitializedEntity::InitializeElement(SemaRef.Context,
353                                                         0, Entity);
354  } else
355    ElementType = ILE->getType();
356
357
358  for (unsigned Init = 0; Init != NumElements; ++Init) {
359    if (hadError)
360      return;
361
362    if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement ||
363        ElementEntity.getKind() == InitializedEntity::EK_VectorElement)
364      ElementEntity.setElementIndex(Init);
365
366    if (Init >= NumInits || !ILE->getInit(Init)) {
367      InitializationKind Kind = InitializationKind::CreateValue(Loc, Loc, Loc,
368                                                                true);
369      InitializationSequence InitSeq(SemaRef, ElementEntity, Kind, 0, 0);
370      if (!InitSeq) {
371        InitSeq.Diagnose(SemaRef, ElementEntity, Kind, 0, 0);
372        hadError = true;
373        return;
374      }
375
376      Sema::OwningExprResult ElementInit
377        = InitSeq.Perform(SemaRef, ElementEntity, Kind,
378                          Sema::MultiExprArg(SemaRef, 0, 0));
379      if (ElementInit.isInvalid()) {
380        hadError = true;
381        return;
382      }
383
384      if (hadError) {
385        // Do nothing
386      } else if (Init < NumInits) {
387        ILE->setInit(Init, ElementInit.takeAs<Expr>());
388      } else if (InitSeq.getKind()
389                   == InitializationSequence::ConstructorInitialization) {
390        // Value-initialization requires a constructor call, so
391        // extend the initializer list to include the constructor
392        // call and make a note that we'll need to take another pass
393        // through the initializer list.
394        ILE->updateInit(SemaRef.Context, Init, ElementInit.takeAs<Expr>());
395        RequiresSecondPass = true;
396      }
397    } else if (InitListExpr *InnerILE
398                 = dyn_cast<InitListExpr>(ILE->getInit(Init)))
399      FillInValueInitializations(ElementEntity, InnerILE, RequiresSecondPass);
400  }
401}
402
403
404InitListChecker::InitListChecker(Sema &S, const InitializedEntity &Entity,
405                                 InitListExpr *IL, QualType &T)
406  : SemaRef(S) {
407  hadError = false;
408
409  unsigned newIndex = 0;
410  unsigned newStructuredIndex = 0;
411  FullyStructuredList
412    = getStructuredSubobjectInit(IL, newIndex, T, 0, 0, IL->getSourceRange());
413  CheckExplicitInitList(Entity, IL, T, newIndex,
414                        FullyStructuredList, newStructuredIndex,
415                        /*TopLevelObject=*/true);
416
417  if (!hadError) {
418    bool RequiresSecondPass = false;
419    FillInValueInitializations(Entity, FullyStructuredList, RequiresSecondPass);
420    if (RequiresSecondPass && !hadError)
421      FillInValueInitializations(Entity, FullyStructuredList,
422                                 RequiresSecondPass);
423  }
424}
425
426int InitListChecker::numArrayElements(QualType DeclType) {
427  // FIXME: use a proper constant
428  int maxElements = 0x7FFFFFFF;
429  if (const ConstantArrayType *CAT =
430        SemaRef.Context.getAsConstantArrayType(DeclType)) {
431    maxElements = static_cast<int>(CAT->getSize().getZExtValue());
432  }
433  return maxElements;
434}
435
436int InitListChecker::numStructUnionElements(QualType DeclType) {
437  RecordDecl *structDecl = DeclType->getAs<RecordType>()->getDecl();
438  int InitializableMembers = 0;
439  for (RecordDecl::field_iterator
440         Field = structDecl->field_begin(),
441         FieldEnd = structDecl->field_end();
442       Field != FieldEnd; ++Field) {
443    if ((*Field)->getIdentifier() || !(*Field)->isBitField())
444      ++InitializableMembers;
445  }
446  if (structDecl->isUnion())
447    return std::min(InitializableMembers, 1);
448  return InitializableMembers - structDecl->hasFlexibleArrayMember();
449}
450
451void InitListChecker::CheckImplicitInitList(const InitializedEntity &Entity,
452                                            InitListExpr *ParentIList,
453                                            QualType T, unsigned &Index,
454                                            InitListExpr *StructuredList,
455                                            unsigned &StructuredIndex,
456                                            bool TopLevelObject) {
457  int maxElements = 0;
458
459  if (T->isArrayType())
460    maxElements = numArrayElements(T);
461  else if (T->isRecordType())
462    maxElements = numStructUnionElements(T);
463  else if (T->isVectorType())
464    maxElements = T->getAs<VectorType>()->getNumElements();
465  else
466    assert(0 && "CheckImplicitInitList(): Illegal type");
467
468  if (maxElements == 0) {
469    SemaRef.Diag(ParentIList->getInit(Index)->getLocStart(),
470                  diag::err_implicit_empty_initializer);
471    ++Index;
472    hadError = true;
473    return;
474  }
475
476  // Build a structured initializer list corresponding to this subobject.
477  InitListExpr *StructuredSubobjectInitList
478    = getStructuredSubobjectInit(ParentIList, Index, T, StructuredList,
479                                 StructuredIndex,
480          SourceRange(ParentIList->getInit(Index)->getSourceRange().getBegin(),
481                      ParentIList->getSourceRange().getEnd()));
482  unsigned StructuredSubobjectInitIndex = 0;
483
484  // Check the element types and build the structural subobject.
485  unsigned StartIndex = Index;
486  CheckListElementTypes(Entity, ParentIList, T,
487                        /*SubobjectIsDesignatorContext=*/false, Index,
488                        StructuredSubobjectInitList,
489                        StructuredSubobjectInitIndex,
490                        TopLevelObject);
491  unsigned EndIndex = (Index == StartIndex? StartIndex : Index - 1);
492  StructuredSubobjectInitList->setType(T);
493
494  // Update the structured sub-object initializer so that it's ending
495  // range corresponds with the end of the last initializer it used.
496  if (EndIndex < ParentIList->getNumInits()) {
497    SourceLocation EndLoc
498      = ParentIList->getInit(EndIndex)->getSourceRange().getEnd();
499    StructuredSubobjectInitList->setRBraceLoc(EndLoc);
500  }
501
502  // Warn about missing braces.
503  if (T->isArrayType() || T->isRecordType()) {
504    SemaRef.Diag(StructuredSubobjectInitList->getLocStart(),
505                 diag::warn_missing_braces)
506    << StructuredSubobjectInitList->getSourceRange()
507    << FixItHint::CreateInsertion(StructuredSubobjectInitList->getLocStart(),
508                                  "{")
509    << FixItHint::CreateInsertion(SemaRef.PP.getLocForEndOfToken(
510                                      StructuredSubobjectInitList->getLocEnd()),
511                                  "}");
512  }
513}
514
515void InitListChecker::CheckExplicitInitList(const InitializedEntity &Entity,
516                                            InitListExpr *IList, QualType &T,
517                                            unsigned &Index,
518                                            InitListExpr *StructuredList,
519                                            unsigned &StructuredIndex,
520                                            bool TopLevelObject) {
521  assert(IList->isExplicit() && "Illegal Implicit InitListExpr");
522  SyntacticToSemantic[IList] = StructuredList;
523  StructuredList->setSyntacticForm(IList);
524  CheckListElementTypes(Entity, IList, T, /*SubobjectIsDesignatorContext=*/true,
525                        Index, StructuredList, StructuredIndex, TopLevelObject);
526  QualType ExprTy = T.getNonLValueExprType(SemaRef.Context);
527  IList->setType(ExprTy);
528  StructuredList->setType(ExprTy);
529  if (hadError)
530    return;
531
532  if (Index < IList->getNumInits()) {
533    // We have leftover initializers
534    if (StructuredIndex == 1 &&
535        IsStringInit(StructuredList->getInit(0), T, SemaRef.Context)) {
536      unsigned DK = diag::warn_excess_initializers_in_char_array_initializer;
537      if (SemaRef.getLangOptions().CPlusPlus) {
538        DK = diag::err_excess_initializers_in_char_array_initializer;
539        hadError = true;
540      }
541      // Special-case
542      SemaRef.Diag(IList->getInit(Index)->getLocStart(), DK)
543        << IList->getInit(Index)->getSourceRange();
544    } else if (!T->isIncompleteType()) {
545      // Don't complain for incomplete types, since we'll get an error
546      // elsewhere
547      QualType CurrentObjectType = StructuredList->getType();
548      int initKind =
549        CurrentObjectType->isArrayType()? 0 :
550        CurrentObjectType->isVectorType()? 1 :
551        CurrentObjectType->isScalarType()? 2 :
552        CurrentObjectType->isUnionType()? 3 :
553        4;
554
555      unsigned DK = diag::warn_excess_initializers;
556      if (SemaRef.getLangOptions().CPlusPlus) {
557        DK = diag::err_excess_initializers;
558        hadError = true;
559      }
560      if (SemaRef.getLangOptions().OpenCL && initKind == 1) {
561        DK = diag::err_excess_initializers;
562        hadError = true;
563      }
564
565      SemaRef.Diag(IList->getInit(Index)->getLocStart(), DK)
566        << initKind << IList->getInit(Index)->getSourceRange();
567    }
568  }
569
570  if (T->isScalarType() && !TopLevelObject)
571    SemaRef.Diag(IList->getLocStart(), diag::warn_braces_around_scalar_init)
572      << IList->getSourceRange()
573      << FixItHint::CreateRemoval(IList->getLocStart())
574      << FixItHint::CreateRemoval(IList->getLocEnd());
575}
576
577void InitListChecker::CheckListElementTypes(const InitializedEntity &Entity,
578                                            InitListExpr *IList,
579                                            QualType &DeclType,
580                                            bool SubobjectIsDesignatorContext,
581                                            unsigned &Index,
582                                            InitListExpr *StructuredList,
583                                            unsigned &StructuredIndex,
584                                            bool TopLevelObject) {
585  if (DeclType->isScalarType()) {
586    CheckScalarType(Entity, IList, DeclType, Index,
587                    StructuredList, StructuredIndex);
588  } else if (DeclType->isVectorType()) {
589    CheckVectorType(Entity, IList, DeclType, Index,
590                    StructuredList, StructuredIndex);
591  } else if (DeclType->isAggregateType()) {
592    if (DeclType->isRecordType()) {
593      RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl();
594      CheckStructUnionTypes(Entity, IList, DeclType, RD->field_begin(),
595                            SubobjectIsDesignatorContext, Index,
596                            StructuredList, StructuredIndex,
597                            TopLevelObject);
598    } else if (DeclType->isArrayType()) {
599      llvm::APSInt Zero(
600                      SemaRef.Context.getTypeSize(SemaRef.Context.getSizeType()),
601                      false);
602      CheckArrayType(Entity, IList, DeclType, Zero,
603                     SubobjectIsDesignatorContext, Index,
604                     StructuredList, StructuredIndex);
605    } else
606      assert(0 && "Aggregate that isn't a structure or array?!");
607  } else if (DeclType->isVoidType() || DeclType->isFunctionType()) {
608    // This type is invalid, issue a diagnostic.
609    ++Index;
610    SemaRef.Diag(IList->getLocStart(), diag::err_illegal_initializer_type)
611      << DeclType;
612    hadError = true;
613  } else if (DeclType->isRecordType()) {
614    // C++ [dcl.init]p14:
615    //   [...] If the class is an aggregate (8.5.1), and the initializer
616    //   is a brace-enclosed list, see 8.5.1.
617    //
618    // Note: 8.5.1 is handled below; here, we diagnose the case where
619    // we have an initializer list and a destination type that is not
620    // an aggregate.
621    // FIXME: In C++0x, this is yet another form of initialization.
622    SemaRef.Diag(IList->getLocStart(), diag::err_init_non_aggr_init_list)
623      << DeclType << IList->getSourceRange();
624    hadError = true;
625  } else if (DeclType->isReferenceType()) {
626    CheckReferenceType(Entity, IList, DeclType, Index,
627                       StructuredList, StructuredIndex);
628  } else if (DeclType->isObjCObjectType()) {
629    SemaRef.Diag(IList->getLocStart(), diag::err_init_objc_class)
630      << DeclType;
631    hadError = true;
632  } else {
633    SemaRef.Diag(IList->getLocStart(), diag::err_illegal_initializer_type)
634      << DeclType;
635    hadError = true;
636  }
637}
638
639void InitListChecker::CheckSubElementType(const InitializedEntity &Entity,
640                                          InitListExpr *IList,
641                                          QualType ElemType,
642                                          unsigned &Index,
643                                          InitListExpr *StructuredList,
644                                          unsigned &StructuredIndex) {
645  Expr *expr = IList->getInit(Index);
646  if (InitListExpr *SubInitList = dyn_cast<InitListExpr>(expr)) {
647    unsigned newIndex = 0;
648    unsigned newStructuredIndex = 0;
649    InitListExpr *newStructuredList
650      = getStructuredSubobjectInit(IList, Index, ElemType,
651                                   StructuredList, StructuredIndex,
652                                   SubInitList->getSourceRange());
653    CheckExplicitInitList(Entity, SubInitList, ElemType, newIndex,
654                          newStructuredList, newStructuredIndex);
655    ++StructuredIndex;
656    ++Index;
657  } else if (Expr *Str = IsStringInit(expr, ElemType, SemaRef.Context)) {
658    CheckStringInit(Str, ElemType, SemaRef);
659    UpdateStructuredListElement(StructuredList, StructuredIndex, Str);
660    ++Index;
661  } else if (ElemType->isScalarType()) {
662    CheckScalarType(Entity, IList, ElemType, Index,
663                    StructuredList, StructuredIndex);
664  } else if (ElemType->isReferenceType()) {
665    CheckReferenceType(Entity, IList, ElemType, Index,
666                       StructuredList, StructuredIndex);
667  } else {
668    if (SemaRef.getLangOptions().CPlusPlus) {
669      // C++ [dcl.init.aggr]p12:
670      //   All implicit type conversions (clause 4) are considered when
671      //   initializing the aggregate member with an ini- tializer from
672      //   an initializer-list. If the initializer can initialize a
673      //   member, the member is initialized. [...]
674
675      // FIXME: Better EqualLoc?
676      InitializationKind Kind =
677        InitializationKind::CreateCopy(expr->getLocStart(), SourceLocation());
678      InitializationSequence Seq(SemaRef, Entity, Kind, &expr, 1);
679
680      if (Seq) {
681        Sema::OwningExprResult Result =
682          Seq.Perform(SemaRef, Entity, Kind,
683                      Sema::MultiExprArg(SemaRef, (void **)&expr, 1));
684        if (Result.isInvalid())
685          hadError = true;
686
687        UpdateStructuredListElement(StructuredList, StructuredIndex,
688                                    Result.takeAs<Expr>());
689        ++Index;
690        return;
691      }
692
693      // Fall through for subaggregate initialization
694    } else {
695      // C99 6.7.8p13:
696      //
697      //   The initializer for a structure or union object that has
698      //   automatic storage duration shall be either an initializer
699      //   list as described below, or a single expression that has
700      //   compatible structure or union type. In the latter case, the
701      //   initial value of the object, including unnamed members, is
702      //   that of the expression.
703      if ((ElemType->isRecordType() || ElemType->isVectorType()) &&
704          SemaRef.Context.hasSameUnqualifiedType(expr->getType(), ElemType)) {
705        UpdateStructuredListElement(StructuredList, StructuredIndex, expr);
706        ++Index;
707        return;
708      }
709
710      // Fall through for subaggregate initialization
711    }
712
713    // C++ [dcl.init.aggr]p12:
714    //
715    //   [...] Otherwise, if the member is itself a non-empty
716    //   subaggregate, brace elision is assumed and the initializer is
717    //   considered for the initialization of the first member of
718    //   the subaggregate.
719    if (ElemType->isAggregateType() || ElemType->isVectorType()) {
720      CheckImplicitInitList(Entity, IList, ElemType, Index, StructuredList,
721                            StructuredIndex);
722      ++StructuredIndex;
723    } else {
724      // We cannot initialize this element, so let
725      // PerformCopyInitialization produce the appropriate diagnostic.
726      SemaRef.PerformCopyInitialization(Entity, SourceLocation(),
727                                        SemaRef.Owned(expr));
728      IList->setInit(Index, 0);
729      hadError = true;
730      ++Index;
731      ++StructuredIndex;
732    }
733  }
734}
735
736void InitListChecker::CheckScalarType(const InitializedEntity &Entity,
737                                      InitListExpr *IList, QualType DeclType,
738                                      unsigned &Index,
739                                      InitListExpr *StructuredList,
740                                      unsigned &StructuredIndex) {
741  if (Index < IList->getNumInits()) {
742    Expr *expr = IList->getInit(Index);
743    if (isa<InitListExpr>(expr)) {
744      SemaRef.Diag(IList->getLocStart(),
745                    diag::err_many_braces_around_scalar_init)
746        << IList->getSourceRange();
747      hadError = true;
748      ++Index;
749      ++StructuredIndex;
750      return;
751    } else if (isa<DesignatedInitExpr>(expr)) {
752      SemaRef.Diag(expr->getSourceRange().getBegin(),
753                    diag::err_designator_for_scalar_init)
754        << DeclType << expr->getSourceRange();
755      hadError = true;
756      ++Index;
757      ++StructuredIndex;
758      return;
759    }
760
761    Sema::OwningExprResult Result =
762      SemaRef.PerformCopyInitialization(Entity, expr->getLocStart(),
763                                        SemaRef.Owned(expr));
764
765    Expr *ResultExpr = 0;
766
767    if (Result.isInvalid())
768      hadError = true; // types weren't compatible.
769    else {
770      ResultExpr = Result.takeAs<Expr>();
771
772      if (ResultExpr != expr) {
773        // The type was promoted, update initializer list.
774        IList->setInit(Index, ResultExpr);
775      }
776    }
777    if (hadError)
778      ++StructuredIndex;
779    else
780      UpdateStructuredListElement(StructuredList, StructuredIndex, ResultExpr);
781    ++Index;
782  } else {
783    SemaRef.Diag(IList->getLocStart(), diag::err_empty_scalar_initializer)
784      << IList->getSourceRange();
785    hadError = true;
786    ++Index;
787    ++StructuredIndex;
788    return;
789  }
790}
791
792void InitListChecker::CheckReferenceType(const InitializedEntity &Entity,
793                                         InitListExpr *IList, QualType DeclType,
794                                         unsigned &Index,
795                                         InitListExpr *StructuredList,
796                                         unsigned &StructuredIndex) {
797  if (Index < IList->getNumInits()) {
798    Expr *expr = IList->getInit(Index);
799    if (isa<InitListExpr>(expr)) {
800      SemaRef.Diag(IList->getLocStart(), diag::err_init_non_aggr_init_list)
801        << DeclType << IList->getSourceRange();
802      hadError = true;
803      ++Index;
804      ++StructuredIndex;
805      return;
806    }
807
808    Sema::OwningExprResult Result =
809      SemaRef.PerformCopyInitialization(Entity, expr->getLocStart(),
810                                        SemaRef.Owned(expr));
811
812    if (Result.isInvalid())
813      hadError = true;
814
815    expr = Result.takeAs<Expr>();
816    IList->setInit(Index, expr);
817
818    if (hadError)
819      ++StructuredIndex;
820    else
821      UpdateStructuredListElement(StructuredList, StructuredIndex, expr);
822    ++Index;
823  } else {
824    // FIXME: It would be wonderful if we could point at the actual member. In
825    // general, it would be useful to pass location information down the stack,
826    // so that we know the location (or decl) of the "current object" being
827    // initialized.
828    SemaRef.Diag(IList->getLocStart(),
829                  diag::err_init_reference_member_uninitialized)
830      << DeclType
831      << IList->getSourceRange();
832    hadError = true;
833    ++Index;
834    ++StructuredIndex;
835    return;
836  }
837}
838
839void InitListChecker::CheckVectorType(const InitializedEntity &Entity,
840                                      InitListExpr *IList, QualType DeclType,
841                                      unsigned &Index,
842                                      InitListExpr *StructuredList,
843                                      unsigned &StructuredIndex) {
844  if (Index < IList->getNumInits()) {
845    const VectorType *VT = DeclType->getAs<VectorType>();
846    unsigned maxElements = VT->getNumElements();
847    unsigned numEltsInit = 0;
848    QualType elementType = VT->getElementType();
849
850    if (!SemaRef.getLangOptions().OpenCL) {
851      InitializedEntity ElementEntity =
852        InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
853
854      for (unsigned i = 0; i < maxElements; ++i, ++numEltsInit) {
855        // Don't attempt to go past the end of the init list
856        if (Index >= IList->getNumInits())
857          break;
858
859        ElementEntity.setElementIndex(Index);
860        CheckSubElementType(ElementEntity, IList, elementType, Index,
861                            StructuredList, StructuredIndex);
862      }
863    } else {
864      InitializedEntity ElementEntity =
865        InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
866
867      // OpenCL initializers allows vectors to be constructed from vectors.
868      for (unsigned i = 0; i < maxElements; ++i) {
869        // Don't attempt to go past the end of the init list
870        if (Index >= IList->getNumInits())
871          break;
872
873        ElementEntity.setElementIndex(Index);
874
875        QualType IType = IList->getInit(Index)->getType();
876        if (!IType->isVectorType()) {
877          CheckSubElementType(ElementEntity, IList, elementType, Index,
878                              StructuredList, StructuredIndex);
879          ++numEltsInit;
880        } else {
881          QualType VecType;
882          const VectorType *IVT = IType->getAs<VectorType>();
883          unsigned numIElts = IVT->getNumElements();
884
885          if (IType->isExtVectorType())
886            VecType = SemaRef.Context.getExtVectorType(elementType, numIElts);
887          else
888            VecType = SemaRef.Context.getVectorType(elementType, numIElts,
889                                                    IVT->getAltiVecSpecific());
890          CheckSubElementType(ElementEntity, IList, VecType, Index,
891                              StructuredList, StructuredIndex);
892          numEltsInit += numIElts;
893        }
894      }
895    }
896
897    // OpenCL requires all elements to be initialized.
898    if (numEltsInit != maxElements)
899      if (SemaRef.getLangOptions().OpenCL)
900        SemaRef.Diag(IList->getSourceRange().getBegin(),
901                     diag::err_vector_incorrect_num_initializers)
902          << (numEltsInit < maxElements) << maxElements << numEltsInit;
903  }
904}
905
906void InitListChecker::CheckArrayType(const InitializedEntity &Entity,
907                                     InitListExpr *IList, QualType &DeclType,
908                                     llvm::APSInt elementIndex,
909                                     bool SubobjectIsDesignatorContext,
910                                     unsigned &Index,
911                                     InitListExpr *StructuredList,
912                                     unsigned &StructuredIndex) {
913  // Check for the special-case of initializing an array with a string.
914  if (Index < IList->getNumInits()) {
915    if (Expr *Str = IsStringInit(IList->getInit(Index), DeclType,
916                                 SemaRef.Context)) {
917      CheckStringInit(Str, DeclType, SemaRef);
918      // We place the string literal directly into the resulting
919      // initializer list. This is the only place where the structure
920      // of the structured initializer list doesn't match exactly,
921      // because doing so would involve allocating one character
922      // constant for each string.
923      UpdateStructuredListElement(StructuredList, StructuredIndex, Str);
924      StructuredList->resizeInits(SemaRef.Context, StructuredIndex);
925      ++Index;
926      return;
927    }
928  }
929  if (const VariableArrayType *VAT =
930        SemaRef.Context.getAsVariableArrayType(DeclType)) {
931    // Check for VLAs; in standard C it would be possible to check this
932    // earlier, but I don't know where clang accepts VLAs (gcc accepts
933    // them in all sorts of strange places).
934    SemaRef.Diag(VAT->getSizeExpr()->getLocStart(),
935                  diag::err_variable_object_no_init)
936      << VAT->getSizeExpr()->getSourceRange();
937    hadError = true;
938    ++Index;
939    ++StructuredIndex;
940    return;
941  }
942
943  // We might know the maximum number of elements in advance.
944  llvm::APSInt maxElements(elementIndex.getBitWidth(),
945                           elementIndex.isUnsigned());
946  bool maxElementsKnown = false;
947  if (const ConstantArrayType *CAT =
948        SemaRef.Context.getAsConstantArrayType(DeclType)) {
949    maxElements = CAT->getSize();
950    elementIndex.extOrTrunc(maxElements.getBitWidth());
951    elementIndex.setIsUnsigned(maxElements.isUnsigned());
952    maxElementsKnown = true;
953  }
954
955  QualType elementType = SemaRef.Context.getAsArrayType(DeclType)
956                             ->getElementType();
957  while (Index < IList->getNumInits()) {
958    Expr *Init = IList->getInit(Index);
959    if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) {
960      // If we're not the subobject that matches up with the '{' for
961      // the designator, we shouldn't be handling the
962      // designator. Return immediately.
963      if (!SubobjectIsDesignatorContext)
964        return;
965
966      // Handle this designated initializer. elementIndex will be
967      // updated to be the next array element we'll initialize.
968      if (CheckDesignatedInitializer(Entity, IList, DIE, 0,
969                                     DeclType, 0, &elementIndex, Index,
970                                     StructuredList, StructuredIndex, true,
971                                     false)) {
972        hadError = true;
973        continue;
974      }
975
976      if (elementIndex.getBitWidth() > maxElements.getBitWidth())
977        maxElements.extend(elementIndex.getBitWidth());
978      else if (elementIndex.getBitWidth() < maxElements.getBitWidth())
979        elementIndex.extend(maxElements.getBitWidth());
980      elementIndex.setIsUnsigned(maxElements.isUnsigned());
981
982      // If the array is of incomplete type, keep track of the number of
983      // elements in the initializer.
984      if (!maxElementsKnown && elementIndex > maxElements)
985        maxElements = elementIndex;
986
987      continue;
988    }
989
990    // If we know the maximum number of elements, and we've already
991    // hit it, stop consuming elements in the initializer list.
992    if (maxElementsKnown && elementIndex == maxElements)
993      break;
994
995    InitializedEntity ElementEntity =
996      InitializedEntity::InitializeElement(SemaRef.Context, StructuredIndex,
997                                           Entity);
998    // Check this element.
999    CheckSubElementType(ElementEntity, IList, elementType, Index,
1000                        StructuredList, StructuredIndex);
1001    ++elementIndex;
1002
1003    // If the array is of incomplete type, keep track of the number of
1004    // elements in the initializer.
1005    if (!maxElementsKnown && elementIndex > maxElements)
1006      maxElements = elementIndex;
1007  }
1008  if (!hadError && DeclType->isIncompleteArrayType()) {
1009    // If this is an incomplete array type, the actual type needs to
1010    // be calculated here.
1011    llvm::APSInt Zero(maxElements.getBitWidth(), maxElements.isUnsigned());
1012    if (maxElements == Zero) {
1013      // Sizing an array implicitly to zero is not allowed by ISO C,
1014      // but is supported by GNU.
1015      SemaRef.Diag(IList->getLocStart(),
1016                    diag::ext_typecheck_zero_array_size);
1017    }
1018
1019    DeclType = SemaRef.Context.getConstantArrayType(elementType, maxElements,
1020                                                     ArrayType::Normal, 0);
1021  }
1022}
1023
1024void InitListChecker::CheckStructUnionTypes(const InitializedEntity &Entity,
1025                                            InitListExpr *IList,
1026                                            QualType DeclType,
1027                                            RecordDecl::field_iterator Field,
1028                                            bool SubobjectIsDesignatorContext,
1029                                            unsigned &Index,
1030                                            InitListExpr *StructuredList,
1031                                            unsigned &StructuredIndex,
1032                                            bool TopLevelObject) {
1033  RecordDecl* structDecl = DeclType->getAs<RecordType>()->getDecl();
1034
1035  // If the record is invalid, some of it's members are invalid. To avoid
1036  // confusion, we forgo checking the intializer for the entire record.
1037  if (structDecl->isInvalidDecl()) {
1038    hadError = true;
1039    return;
1040  }
1041
1042  if (DeclType->isUnionType() && IList->getNumInits() == 0) {
1043    // Value-initialize the first named member of the union.
1044    RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl();
1045    for (RecordDecl::field_iterator FieldEnd = RD->field_end();
1046         Field != FieldEnd; ++Field) {
1047      if (Field->getDeclName()) {
1048        StructuredList->setInitializedFieldInUnion(*Field);
1049        break;
1050      }
1051    }
1052    return;
1053  }
1054
1055  // If structDecl is a forward declaration, this loop won't do
1056  // anything except look at designated initializers; That's okay,
1057  // because an error should get printed out elsewhere. It might be
1058  // worthwhile to skip over the rest of the initializer, though.
1059  RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl();
1060  RecordDecl::field_iterator FieldEnd = RD->field_end();
1061  bool InitializedSomething = false;
1062  bool CheckForMissingFields = true;
1063  while (Index < IList->getNumInits()) {
1064    Expr *Init = IList->getInit(Index);
1065
1066    if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) {
1067      // If we're not the subobject that matches up with the '{' for
1068      // the designator, we shouldn't be handling the
1069      // designator. Return immediately.
1070      if (!SubobjectIsDesignatorContext)
1071        return;
1072
1073      // Handle this designated initializer. Field will be updated to
1074      // the next field that we'll be initializing.
1075      if (CheckDesignatedInitializer(Entity, IList, DIE, 0,
1076                                     DeclType, &Field, 0, Index,
1077                                     StructuredList, StructuredIndex,
1078                                     true, TopLevelObject))
1079        hadError = true;
1080
1081      InitializedSomething = true;
1082
1083      // Disable check for missing fields when designators are used.
1084      // This matches gcc behaviour.
1085      CheckForMissingFields = false;
1086      continue;
1087    }
1088
1089    if (Field == FieldEnd) {
1090      // We've run out of fields. We're done.
1091      break;
1092    }
1093
1094    // We've already initialized a member of a union. We're done.
1095    if (InitializedSomething && DeclType->isUnionType())
1096      break;
1097
1098    // If we've hit the flexible array member at the end, we're done.
1099    if (Field->getType()->isIncompleteArrayType())
1100      break;
1101
1102    if (Field->isUnnamedBitfield()) {
1103      // Don't initialize unnamed bitfields, e.g. "int : 20;"
1104      ++Field;
1105      continue;
1106    }
1107
1108    InitializedEntity MemberEntity =
1109      InitializedEntity::InitializeMember(*Field, &Entity);
1110    CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
1111                        StructuredList, StructuredIndex);
1112    InitializedSomething = true;
1113
1114    if (DeclType->isUnionType()) {
1115      // Initialize the first field within the union.
1116      StructuredList->setInitializedFieldInUnion(*Field);
1117    }
1118
1119    ++Field;
1120  }
1121
1122  // Emit warnings for missing struct field initializers.
1123  if (InitializedSomething && CheckForMissingFields && Field != FieldEnd &&
1124      !Field->getType()->isIncompleteArrayType() && !DeclType->isUnionType()) {
1125    // It is possible we have one or more unnamed bitfields remaining.
1126    // Find first (if any) named field and emit warning.
1127    for (RecordDecl::field_iterator it = Field, end = RD->field_end();
1128         it != end; ++it) {
1129      if (!it->isUnnamedBitfield()) {
1130        SemaRef.Diag(IList->getSourceRange().getEnd(),
1131                     diag::warn_missing_field_initializers) << it->getName();
1132        break;
1133      }
1134    }
1135  }
1136
1137  if (Field == FieldEnd || !Field->getType()->isIncompleteArrayType() ||
1138      Index >= IList->getNumInits())
1139    return;
1140
1141  // Handle GNU flexible array initializers.
1142  if (!TopLevelObject &&
1143      (!isa<InitListExpr>(IList->getInit(Index)) ||
1144       cast<InitListExpr>(IList->getInit(Index))->getNumInits() > 0)) {
1145    SemaRef.Diag(IList->getInit(Index)->getSourceRange().getBegin(),
1146                  diag::err_flexible_array_init_nonempty)
1147      << IList->getInit(Index)->getSourceRange().getBegin();
1148    SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
1149      << *Field;
1150    hadError = true;
1151    ++Index;
1152    return;
1153  } else {
1154    SemaRef.Diag(IList->getInit(Index)->getSourceRange().getBegin(),
1155                 diag::ext_flexible_array_init)
1156      << IList->getInit(Index)->getSourceRange().getBegin();
1157    SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
1158      << *Field;
1159  }
1160
1161  InitializedEntity MemberEntity =
1162    InitializedEntity::InitializeMember(*Field, &Entity);
1163
1164  if (isa<InitListExpr>(IList->getInit(Index)))
1165    CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
1166                        StructuredList, StructuredIndex);
1167  else
1168    CheckImplicitInitList(MemberEntity, IList, Field->getType(), Index,
1169                          StructuredList, StructuredIndex);
1170}
1171
1172/// \brief Expand a field designator that refers to a member of an
1173/// anonymous struct or union into a series of field designators that
1174/// refers to the field within the appropriate subobject.
1175///
1176/// Field/FieldIndex will be updated to point to the (new)
1177/// currently-designated field.
1178static void ExpandAnonymousFieldDesignator(Sema &SemaRef,
1179                                           DesignatedInitExpr *DIE,
1180                                           unsigned DesigIdx,
1181                                           FieldDecl *Field,
1182                                        RecordDecl::field_iterator &FieldIter,
1183                                           unsigned &FieldIndex) {
1184  typedef DesignatedInitExpr::Designator Designator;
1185
1186  // Build the path from the current object to the member of the
1187  // anonymous struct/union (backwards).
1188  llvm::SmallVector<FieldDecl *, 4> Path;
1189  SemaRef.BuildAnonymousStructUnionMemberPath(Field, Path);
1190
1191  // Build the replacement designators.
1192  llvm::SmallVector<Designator, 4> Replacements;
1193  for (llvm::SmallVector<FieldDecl *, 4>::reverse_iterator
1194         FI = Path.rbegin(), FIEnd = Path.rend();
1195       FI != FIEnd; ++FI) {
1196    if (FI + 1 == FIEnd)
1197      Replacements.push_back(Designator((IdentifierInfo *)0,
1198                                    DIE->getDesignator(DesigIdx)->getDotLoc(),
1199                                DIE->getDesignator(DesigIdx)->getFieldLoc()));
1200    else
1201      Replacements.push_back(Designator((IdentifierInfo *)0, SourceLocation(),
1202                                        SourceLocation()));
1203    Replacements.back().setField(*FI);
1204  }
1205
1206  // Expand the current designator into the set of replacement
1207  // designators, so we have a full subobject path down to where the
1208  // member of the anonymous struct/union is actually stored.
1209  DIE->ExpandDesignator(SemaRef.Context, DesigIdx, &Replacements[0],
1210                        &Replacements[0] + Replacements.size());
1211
1212  // Update FieldIter/FieldIndex;
1213  RecordDecl *Record = cast<RecordDecl>(Path.back()->getDeclContext());
1214  FieldIter = Record->field_begin();
1215  FieldIndex = 0;
1216  for (RecordDecl::field_iterator FEnd = Record->field_end();
1217       FieldIter != FEnd; ++FieldIter) {
1218    if (FieldIter->isUnnamedBitfield())
1219        continue;
1220
1221    if (*FieldIter == Path.back())
1222      return;
1223
1224    ++FieldIndex;
1225  }
1226
1227  assert(false && "Unable to find anonymous struct/union field");
1228}
1229
1230/// @brief Check the well-formedness of a C99 designated initializer.
1231///
1232/// Determines whether the designated initializer @p DIE, which
1233/// resides at the given @p Index within the initializer list @p
1234/// IList, is well-formed for a current object of type @p DeclType
1235/// (C99 6.7.8). The actual subobject that this designator refers to
1236/// within the current subobject is returned in either
1237/// @p NextField or @p NextElementIndex (whichever is appropriate).
1238///
1239/// @param IList  The initializer list in which this designated
1240/// initializer occurs.
1241///
1242/// @param DIE The designated initializer expression.
1243///
1244/// @param DesigIdx  The index of the current designator.
1245///
1246/// @param DeclType  The type of the "current object" (C99 6.7.8p17),
1247/// into which the designation in @p DIE should refer.
1248///
1249/// @param NextField  If non-NULL and the first designator in @p DIE is
1250/// a field, this will be set to the field declaration corresponding
1251/// to the field named by the designator.
1252///
1253/// @param NextElementIndex  If non-NULL and the first designator in @p
1254/// DIE is an array designator or GNU array-range designator, this
1255/// will be set to the last index initialized by this designator.
1256///
1257/// @param Index  Index into @p IList where the designated initializer
1258/// @p DIE occurs.
1259///
1260/// @param StructuredList  The initializer list expression that
1261/// describes all of the subobject initializers in the order they'll
1262/// actually be initialized.
1263///
1264/// @returns true if there was an error, false otherwise.
1265bool
1266InitListChecker::CheckDesignatedInitializer(const InitializedEntity &Entity,
1267                                            InitListExpr *IList,
1268                                      DesignatedInitExpr *DIE,
1269                                      unsigned DesigIdx,
1270                                      QualType &CurrentObjectType,
1271                                      RecordDecl::field_iterator *NextField,
1272                                      llvm::APSInt *NextElementIndex,
1273                                      unsigned &Index,
1274                                      InitListExpr *StructuredList,
1275                                      unsigned &StructuredIndex,
1276                                            bool FinishSubobjectInit,
1277                                            bool TopLevelObject) {
1278  if (DesigIdx == DIE->size()) {
1279    // Check the actual initialization for the designated object type.
1280    bool prevHadError = hadError;
1281
1282    // Temporarily remove the designator expression from the
1283    // initializer list that the child calls see, so that we don't try
1284    // to re-process the designator.
1285    unsigned OldIndex = Index;
1286    IList->setInit(OldIndex, DIE->getInit());
1287
1288    CheckSubElementType(Entity, IList, CurrentObjectType, Index,
1289                        StructuredList, StructuredIndex);
1290
1291    // Restore the designated initializer expression in the syntactic
1292    // form of the initializer list.
1293    if (IList->getInit(OldIndex) != DIE->getInit())
1294      DIE->setInit(IList->getInit(OldIndex));
1295    IList->setInit(OldIndex, DIE);
1296
1297    return hadError && !prevHadError;
1298  }
1299
1300  bool IsFirstDesignator = (DesigIdx == 0);
1301  assert((IsFirstDesignator || StructuredList) &&
1302         "Need a non-designated initializer list to start from");
1303
1304  DesignatedInitExpr::Designator *D = DIE->getDesignator(DesigIdx);
1305  // Determine the structural initializer list that corresponds to the
1306  // current subobject.
1307  StructuredList = IsFirstDesignator? SyntacticToSemantic[IList]
1308    : getStructuredSubobjectInit(IList, Index, CurrentObjectType,
1309                                 StructuredList, StructuredIndex,
1310                                 SourceRange(D->getStartLocation(),
1311                                             DIE->getSourceRange().getEnd()));
1312  assert(StructuredList && "Expected a structured initializer list");
1313
1314  if (D->isFieldDesignator()) {
1315    // C99 6.7.8p7:
1316    //
1317    //   If a designator has the form
1318    //
1319    //      . identifier
1320    //
1321    //   then the current object (defined below) shall have
1322    //   structure or union type and the identifier shall be the
1323    //   name of a member of that type.
1324    const RecordType *RT = CurrentObjectType->getAs<RecordType>();
1325    if (!RT) {
1326      SourceLocation Loc = D->getDotLoc();
1327      if (Loc.isInvalid())
1328        Loc = D->getFieldLoc();
1329      SemaRef.Diag(Loc, diag::err_field_designator_non_aggr)
1330        << SemaRef.getLangOptions().CPlusPlus << CurrentObjectType;
1331      ++Index;
1332      return true;
1333    }
1334
1335    // Note: we perform a linear search of the fields here, despite
1336    // the fact that we have a faster lookup method, because we always
1337    // need to compute the field's index.
1338    FieldDecl *KnownField = D->getField();
1339    IdentifierInfo *FieldName = D->getFieldName();
1340    unsigned FieldIndex = 0;
1341    RecordDecl::field_iterator
1342      Field = RT->getDecl()->field_begin(),
1343      FieldEnd = RT->getDecl()->field_end();
1344    for (; Field != FieldEnd; ++Field) {
1345      if (Field->isUnnamedBitfield())
1346        continue;
1347
1348      if (KnownField == *Field || Field->getIdentifier() == FieldName)
1349        break;
1350
1351      ++FieldIndex;
1352    }
1353
1354    if (Field == FieldEnd) {
1355      // There was no normal field in the struct with the designated
1356      // name. Perform another lookup for this name, which may find
1357      // something that we can't designate (e.g., a member function),
1358      // may find nothing, or may find a member of an anonymous
1359      // struct/union.
1360      DeclContext::lookup_result Lookup = RT->getDecl()->lookup(FieldName);
1361      FieldDecl *ReplacementField = 0;
1362      if (Lookup.first == Lookup.second) {
1363        // Name lookup didn't find anything. Determine whether this
1364        // was a typo for another field name.
1365        LookupResult R(SemaRef, FieldName, D->getFieldLoc(),
1366                       Sema::LookupMemberName);
1367        if (SemaRef.CorrectTypo(R, /*Scope=*/0, /*SS=*/0, RT->getDecl(), false,
1368                                Sema::CTC_NoKeywords) &&
1369            (ReplacementField = R.getAsSingle<FieldDecl>()) &&
1370            ReplacementField->getDeclContext()->getLookupContext()
1371                                                      ->Equals(RT->getDecl())) {
1372          SemaRef.Diag(D->getFieldLoc(),
1373                       diag::err_field_designator_unknown_suggest)
1374            << FieldName << CurrentObjectType << R.getLookupName()
1375            << FixItHint::CreateReplacement(D->getFieldLoc(),
1376                                            R.getLookupName().getAsString());
1377          SemaRef.Diag(ReplacementField->getLocation(),
1378                       diag::note_previous_decl)
1379            << ReplacementField->getDeclName();
1380        } else {
1381          SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_unknown)
1382            << FieldName << CurrentObjectType;
1383          ++Index;
1384          return true;
1385        }
1386      } else if (!KnownField) {
1387        // Determine whether we found a field at all.
1388        ReplacementField = dyn_cast<FieldDecl>(*Lookup.first);
1389      }
1390
1391      if (!ReplacementField) {
1392        // Name lookup found something, but it wasn't a field.
1393        SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_nonfield)
1394          << FieldName;
1395        SemaRef.Diag((*Lookup.first)->getLocation(),
1396                      diag::note_field_designator_found);
1397        ++Index;
1398        return true;
1399      }
1400
1401      if (!KnownField &&
1402          cast<RecordDecl>((ReplacementField)->getDeclContext())
1403                                                 ->isAnonymousStructOrUnion()) {
1404        // Handle an field designator that refers to a member of an
1405        // anonymous struct or union.
1406        ExpandAnonymousFieldDesignator(SemaRef, DIE, DesigIdx,
1407                                       ReplacementField,
1408                                       Field, FieldIndex);
1409        D = DIE->getDesignator(DesigIdx);
1410      } else if (!KnownField) {
1411        // The replacement field comes from typo correction; find it
1412        // in the list of fields.
1413        FieldIndex = 0;
1414        Field = RT->getDecl()->field_begin();
1415        for (; Field != FieldEnd; ++Field) {
1416          if (Field->isUnnamedBitfield())
1417            continue;
1418
1419          if (ReplacementField == *Field ||
1420              Field->getIdentifier() == ReplacementField->getIdentifier())
1421            break;
1422
1423          ++FieldIndex;
1424        }
1425      }
1426    } else if (!KnownField &&
1427               cast<RecordDecl>((*Field)->getDeclContext())
1428                 ->isAnonymousStructOrUnion()) {
1429      ExpandAnonymousFieldDesignator(SemaRef, DIE, DesigIdx, *Field,
1430                                     Field, FieldIndex);
1431      D = DIE->getDesignator(DesigIdx);
1432    }
1433
1434    // All of the fields of a union are located at the same place in
1435    // the initializer list.
1436    if (RT->getDecl()->isUnion()) {
1437      FieldIndex = 0;
1438      StructuredList->setInitializedFieldInUnion(*Field);
1439    }
1440
1441    // Update the designator with the field declaration.
1442    D->setField(*Field);
1443
1444    // Make sure that our non-designated initializer list has space
1445    // for a subobject corresponding to this field.
1446    if (FieldIndex >= StructuredList->getNumInits())
1447      StructuredList->resizeInits(SemaRef.Context, FieldIndex + 1);
1448
1449    // This designator names a flexible array member.
1450    if (Field->getType()->isIncompleteArrayType()) {
1451      bool Invalid = false;
1452      if ((DesigIdx + 1) != DIE->size()) {
1453        // We can't designate an object within the flexible array
1454        // member (because GCC doesn't allow it).
1455        DesignatedInitExpr::Designator *NextD
1456          = DIE->getDesignator(DesigIdx + 1);
1457        SemaRef.Diag(NextD->getStartLocation(),
1458                      diag::err_designator_into_flexible_array_member)
1459          << SourceRange(NextD->getStartLocation(),
1460                         DIE->getSourceRange().getEnd());
1461        SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
1462          << *Field;
1463        Invalid = true;
1464      }
1465
1466      if (!hadError && !isa<InitListExpr>(DIE->getInit())) {
1467        // The initializer is not an initializer list.
1468        SemaRef.Diag(DIE->getInit()->getSourceRange().getBegin(),
1469                      diag::err_flexible_array_init_needs_braces)
1470          << DIE->getInit()->getSourceRange();
1471        SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
1472          << *Field;
1473        Invalid = true;
1474      }
1475
1476      // Handle GNU flexible array initializers.
1477      if (!Invalid && !TopLevelObject &&
1478          cast<InitListExpr>(DIE->getInit())->getNumInits() > 0) {
1479        SemaRef.Diag(DIE->getSourceRange().getBegin(),
1480                      diag::err_flexible_array_init_nonempty)
1481          << DIE->getSourceRange().getBegin();
1482        SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
1483          << *Field;
1484        Invalid = true;
1485      }
1486
1487      if (Invalid) {
1488        ++Index;
1489        return true;
1490      }
1491
1492      // Initialize the array.
1493      bool prevHadError = hadError;
1494      unsigned newStructuredIndex = FieldIndex;
1495      unsigned OldIndex = Index;
1496      IList->setInit(Index, DIE->getInit());
1497
1498      InitializedEntity MemberEntity =
1499        InitializedEntity::InitializeMember(*Field, &Entity);
1500      CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
1501                          StructuredList, newStructuredIndex);
1502
1503      IList->setInit(OldIndex, DIE);
1504      if (hadError && !prevHadError) {
1505        ++Field;
1506        ++FieldIndex;
1507        if (NextField)
1508          *NextField = Field;
1509        StructuredIndex = FieldIndex;
1510        return true;
1511      }
1512    } else {
1513      // Recurse to check later designated subobjects.
1514      QualType FieldType = (*Field)->getType();
1515      unsigned newStructuredIndex = FieldIndex;
1516
1517      InitializedEntity MemberEntity =
1518        InitializedEntity::InitializeMember(*Field, &Entity);
1519      if (CheckDesignatedInitializer(MemberEntity, IList, DIE, DesigIdx + 1,
1520                                     FieldType, 0, 0, Index,
1521                                     StructuredList, newStructuredIndex,
1522                                     true, false))
1523        return true;
1524    }
1525
1526    // Find the position of the next field to be initialized in this
1527    // subobject.
1528    ++Field;
1529    ++FieldIndex;
1530
1531    // If this the first designator, our caller will continue checking
1532    // the rest of this struct/class/union subobject.
1533    if (IsFirstDesignator) {
1534      if (NextField)
1535        *NextField = Field;
1536      StructuredIndex = FieldIndex;
1537      return false;
1538    }
1539
1540    if (!FinishSubobjectInit)
1541      return false;
1542
1543    // We've already initialized something in the union; we're done.
1544    if (RT->getDecl()->isUnion())
1545      return hadError;
1546
1547    // Check the remaining fields within this class/struct/union subobject.
1548    bool prevHadError = hadError;
1549
1550    CheckStructUnionTypes(Entity, IList, CurrentObjectType, Field, false, Index,
1551                          StructuredList, FieldIndex);
1552    return hadError && !prevHadError;
1553  }
1554
1555  // C99 6.7.8p6:
1556  //
1557  //   If a designator has the form
1558  //
1559  //      [ constant-expression ]
1560  //
1561  //   then the current object (defined below) shall have array
1562  //   type and the expression shall be an integer constant
1563  //   expression. If the array is of unknown size, any
1564  //   nonnegative value is valid.
1565  //
1566  // Additionally, cope with the GNU extension that permits
1567  // designators of the form
1568  //
1569  //      [ constant-expression ... constant-expression ]
1570  const ArrayType *AT = SemaRef.Context.getAsArrayType(CurrentObjectType);
1571  if (!AT) {
1572    SemaRef.Diag(D->getLBracketLoc(), diag::err_array_designator_non_array)
1573      << CurrentObjectType;
1574    ++Index;
1575    return true;
1576  }
1577
1578  Expr *IndexExpr = 0;
1579  llvm::APSInt DesignatedStartIndex, DesignatedEndIndex;
1580  if (D->isArrayDesignator()) {
1581    IndexExpr = DIE->getArrayIndex(*D);
1582    DesignatedStartIndex = IndexExpr->EvaluateAsInt(SemaRef.Context);
1583    DesignatedEndIndex = DesignatedStartIndex;
1584  } else {
1585    assert(D->isArrayRangeDesignator() && "Need array-range designator");
1586
1587
1588    DesignatedStartIndex =
1589      DIE->getArrayRangeStart(*D)->EvaluateAsInt(SemaRef.Context);
1590    DesignatedEndIndex =
1591      DIE->getArrayRangeEnd(*D)->EvaluateAsInt(SemaRef.Context);
1592    IndexExpr = DIE->getArrayRangeEnd(*D);
1593
1594    if (DesignatedStartIndex.getZExtValue() !=DesignatedEndIndex.getZExtValue())
1595      FullyStructuredList->sawArrayRangeDesignator();
1596  }
1597
1598  if (isa<ConstantArrayType>(AT)) {
1599    llvm::APSInt MaxElements(cast<ConstantArrayType>(AT)->getSize(), false);
1600    DesignatedStartIndex.extOrTrunc(MaxElements.getBitWidth());
1601    DesignatedStartIndex.setIsUnsigned(MaxElements.isUnsigned());
1602    DesignatedEndIndex.extOrTrunc(MaxElements.getBitWidth());
1603    DesignatedEndIndex.setIsUnsigned(MaxElements.isUnsigned());
1604    if (DesignatedEndIndex >= MaxElements) {
1605      SemaRef.Diag(IndexExpr->getSourceRange().getBegin(),
1606                    diag::err_array_designator_too_large)
1607        << DesignatedEndIndex.toString(10) << MaxElements.toString(10)
1608        << IndexExpr->getSourceRange();
1609      ++Index;
1610      return true;
1611    }
1612  } else {
1613    // Make sure the bit-widths and signedness match.
1614    if (DesignatedStartIndex.getBitWidth() > DesignatedEndIndex.getBitWidth())
1615      DesignatedEndIndex.extend(DesignatedStartIndex.getBitWidth());
1616    else if (DesignatedStartIndex.getBitWidth() <
1617             DesignatedEndIndex.getBitWidth())
1618      DesignatedStartIndex.extend(DesignatedEndIndex.getBitWidth());
1619    DesignatedStartIndex.setIsUnsigned(true);
1620    DesignatedEndIndex.setIsUnsigned(true);
1621  }
1622
1623  // Make sure that our non-designated initializer list has space
1624  // for a subobject corresponding to this array element.
1625  if (DesignatedEndIndex.getZExtValue() >= StructuredList->getNumInits())
1626    StructuredList->resizeInits(SemaRef.Context,
1627                                DesignatedEndIndex.getZExtValue() + 1);
1628
1629  // Repeatedly perform subobject initializations in the range
1630  // [DesignatedStartIndex, DesignatedEndIndex].
1631
1632  // Move to the next designator
1633  unsigned ElementIndex = DesignatedStartIndex.getZExtValue();
1634  unsigned OldIndex = Index;
1635
1636  InitializedEntity ElementEntity =
1637    InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
1638
1639  while (DesignatedStartIndex <= DesignatedEndIndex) {
1640    // Recurse to check later designated subobjects.
1641    QualType ElementType = AT->getElementType();
1642    Index = OldIndex;
1643
1644    ElementEntity.setElementIndex(ElementIndex);
1645    if (CheckDesignatedInitializer(ElementEntity, IList, DIE, DesigIdx + 1,
1646                                   ElementType, 0, 0, Index,
1647                                   StructuredList, ElementIndex,
1648                                   (DesignatedStartIndex == DesignatedEndIndex),
1649                                   false))
1650      return true;
1651
1652    // Move to the next index in the array that we'll be initializing.
1653    ++DesignatedStartIndex;
1654    ElementIndex = DesignatedStartIndex.getZExtValue();
1655  }
1656
1657  // If this the first designator, our caller will continue checking
1658  // the rest of this array subobject.
1659  if (IsFirstDesignator) {
1660    if (NextElementIndex)
1661      *NextElementIndex = DesignatedStartIndex;
1662    StructuredIndex = ElementIndex;
1663    return false;
1664  }
1665
1666  if (!FinishSubobjectInit)
1667    return false;
1668
1669  // Check the remaining elements within this array subobject.
1670  bool prevHadError = hadError;
1671  CheckArrayType(Entity, IList, CurrentObjectType, DesignatedStartIndex,
1672                 /*SubobjectIsDesignatorContext=*/false, Index,
1673                 StructuredList, ElementIndex);
1674  return hadError && !prevHadError;
1675}
1676
1677// Get the structured initializer list for a subobject of type
1678// @p CurrentObjectType.
1679InitListExpr *
1680InitListChecker::getStructuredSubobjectInit(InitListExpr *IList, unsigned Index,
1681                                            QualType CurrentObjectType,
1682                                            InitListExpr *StructuredList,
1683                                            unsigned StructuredIndex,
1684                                            SourceRange InitRange) {
1685  Expr *ExistingInit = 0;
1686  if (!StructuredList)
1687    ExistingInit = SyntacticToSemantic[IList];
1688  else if (StructuredIndex < StructuredList->getNumInits())
1689    ExistingInit = StructuredList->getInit(StructuredIndex);
1690
1691  if (InitListExpr *Result = dyn_cast_or_null<InitListExpr>(ExistingInit))
1692    return Result;
1693
1694  if (ExistingInit) {
1695    // We are creating an initializer list that initializes the
1696    // subobjects of the current object, but there was already an
1697    // initialization that completely initialized the current
1698    // subobject, e.g., by a compound literal:
1699    //
1700    // struct X { int a, b; };
1701    // struct X xs[] = { [0] = (struct X) { 1, 2 }, [0].b = 3 };
1702    //
1703    // Here, xs[0].a == 0 and xs[0].b == 3, since the second,
1704    // designated initializer re-initializes the whole
1705    // subobject [0], overwriting previous initializers.
1706    SemaRef.Diag(InitRange.getBegin(),
1707                 diag::warn_subobject_initializer_overrides)
1708      << InitRange;
1709    SemaRef.Diag(ExistingInit->getSourceRange().getBegin(),
1710                  diag::note_previous_initializer)
1711      << /*FIXME:has side effects=*/0
1712      << ExistingInit->getSourceRange();
1713  }
1714
1715  InitListExpr *Result
1716    = new (SemaRef.Context) InitListExpr(SemaRef.Context,
1717                                         InitRange.getBegin(), 0, 0,
1718                                         InitRange.getEnd());
1719
1720  Result->setType(CurrentObjectType.getNonLValueExprType(SemaRef.Context));
1721
1722  // Pre-allocate storage for the structured initializer list.
1723  unsigned NumElements = 0;
1724  unsigned NumInits = 0;
1725  if (!StructuredList)
1726    NumInits = IList->getNumInits();
1727  else if (Index < IList->getNumInits()) {
1728    if (InitListExpr *SubList = dyn_cast<InitListExpr>(IList->getInit(Index)))
1729      NumInits = SubList->getNumInits();
1730  }
1731
1732  if (const ArrayType *AType
1733      = SemaRef.Context.getAsArrayType(CurrentObjectType)) {
1734    if (const ConstantArrayType *CAType = dyn_cast<ConstantArrayType>(AType)) {
1735      NumElements = CAType->getSize().getZExtValue();
1736      // Simple heuristic so that we don't allocate a very large
1737      // initializer with many empty entries at the end.
1738      if (NumInits && NumElements > NumInits)
1739        NumElements = 0;
1740    }
1741  } else if (const VectorType *VType = CurrentObjectType->getAs<VectorType>())
1742    NumElements = VType->getNumElements();
1743  else if (const RecordType *RType = CurrentObjectType->getAs<RecordType>()) {
1744    RecordDecl *RDecl = RType->getDecl();
1745    if (RDecl->isUnion())
1746      NumElements = 1;
1747    else
1748      NumElements = std::distance(RDecl->field_begin(),
1749                                  RDecl->field_end());
1750  }
1751
1752  if (NumElements < NumInits)
1753    NumElements = IList->getNumInits();
1754
1755  Result->reserveInits(SemaRef.Context, NumElements);
1756
1757  // Link this new initializer list into the structured initializer
1758  // lists.
1759  if (StructuredList)
1760    StructuredList->updateInit(SemaRef.Context, StructuredIndex, Result);
1761  else {
1762    Result->setSyntacticForm(IList);
1763    SyntacticToSemantic[IList] = Result;
1764  }
1765
1766  return Result;
1767}
1768
1769/// Update the initializer at index @p StructuredIndex within the
1770/// structured initializer list to the value @p expr.
1771void InitListChecker::UpdateStructuredListElement(InitListExpr *StructuredList,
1772                                                  unsigned &StructuredIndex,
1773                                                  Expr *expr) {
1774  // No structured initializer list to update
1775  if (!StructuredList)
1776    return;
1777
1778  if (Expr *PrevInit = StructuredList->updateInit(SemaRef.Context,
1779                                                  StructuredIndex, expr)) {
1780    // This initializer overwrites a previous initializer. Warn.
1781    SemaRef.Diag(expr->getSourceRange().getBegin(),
1782                  diag::warn_initializer_overrides)
1783      << expr->getSourceRange();
1784    SemaRef.Diag(PrevInit->getSourceRange().getBegin(),
1785                  diag::note_previous_initializer)
1786      << /*FIXME:has side effects=*/0
1787      << PrevInit->getSourceRange();
1788  }
1789
1790  ++StructuredIndex;
1791}
1792
1793/// Check that the given Index expression is a valid array designator
1794/// value. This is essentailly just a wrapper around
1795/// VerifyIntegerConstantExpression that also checks for negative values
1796/// and produces a reasonable diagnostic if there is a
1797/// failure. Returns true if there was an error, false otherwise.  If
1798/// everything went okay, Value will receive the value of the constant
1799/// expression.
1800static bool
1801CheckArrayDesignatorExpr(Sema &S, Expr *Index, llvm::APSInt &Value) {
1802  SourceLocation Loc = Index->getSourceRange().getBegin();
1803
1804  // Make sure this is an integer constant expression.
1805  if (S.VerifyIntegerConstantExpression(Index, &Value))
1806    return true;
1807
1808  if (Value.isSigned() && Value.isNegative())
1809    return S.Diag(Loc, diag::err_array_designator_negative)
1810      << Value.toString(10) << Index->getSourceRange();
1811
1812  Value.setIsUnsigned(true);
1813  return false;
1814}
1815
1816Sema::OwningExprResult Sema::ActOnDesignatedInitializer(Designation &Desig,
1817                                                        SourceLocation Loc,
1818                                                        bool GNUSyntax,
1819                                                        OwningExprResult Init) {
1820  typedef DesignatedInitExpr::Designator ASTDesignator;
1821
1822  bool Invalid = false;
1823  llvm::SmallVector<ASTDesignator, 32> Designators;
1824  llvm::SmallVector<Expr *, 32> InitExpressions;
1825
1826  // Build designators and check array designator expressions.
1827  for (unsigned Idx = 0; Idx < Desig.getNumDesignators(); ++Idx) {
1828    const Designator &D = Desig.getDesignator(Idx);
1829    switch (D.getKind()) {
1830    case Designator::FieldDesignator:
1831      Designators.push_back(ASTDesignator(D.getField(), D.getDotLoc(),
1832                                          D.getFieldLoc()));
1833      break;
1834
1835    case Designator::ArrayDesignator: {
1836      Expr *Index = static_cast<Expr *>(D.getArrayIndex());
1837      llvm::APSInt IndexValue;
1838      if (!Index->isTypeDependent() &&
1839          !Index->isValueDependent() &&
1840          CheckArrayDesignatorExpr(*this, Index, IndexValue))
1841        Invalid = true;
1842      else {
1843        Designators.push_back(ASTDesignator(InitExpressions.size(),
1844                                            D.getLBracketLoc(),
1845                                            D.getRBracketLoc()));
1846        InitExpressions.push_back(Index);
1847      }
1848      break;
1849    }
1850
1851    case Designator::ArrayRangeDesignator: {
1852      Expr *StartIndex = static_cast<Expr *>(D.getArrayRangeStart());
1853      Expr *EndIndex = static_cast<Expr *>(D.getArrayRangeEnd());
1854      llvm::APSInt StartValue;
1855      llvm::APSInt EndValue;
1856      bool StartDependent = StartIndex->isTypeDependent() ||
1857                            StartIndex->isValueDependent();
1858      bool EndDependent = EndIndex->isTypeDependent() ||
1859                          EndIndex->isValueDependent();
1860      if ((!StartDependent &&
1861           CheckArrayDesignatorExpr(*this, StartIndex, StartValue)) ||
1862          (!EndDependent &&
1863           CheckArrayDesignatorExpr(*this, EndIndex, EndValue)))
1864        Invalid = true;
1865      else {
1866        // Make sure we're comparing values with the same bit width.
1867        if (StartDependent || EndDependent) {
1868          // Nothing to compute.
1869        } else if (StartValue.getBitWidth() > EndValue.getBitWidth())
1870          EndValue.extend(StartValue.getBitWidth());
1871        else if (StartValue.getBitWidth() < EndValue.getBitWidth())
1872          StartValue.extend(EndValue.getBitWidth());
1873
1874        if (!StartDependent && !EndDependent && EndValue < StartValue) {
1875          Diag(D.getEllipsisLoc(), diag::err_array_designator_empty_range)
1876            << StartValue.toString(10) << EndValue.toString(10)
1877            << StartIndex->getSourceRange() << EndIndex->getSourceRange();
1878          Invalid = true;
1879        } else {
1880          Designators.push_back(ASTDesignator(InitExpressions.size(),
1881                                              D.getLBracketLoc(),
1882                                              D.getEllipsisLoc(),
1883                                              D.getRBracketLoc()));
1884          InitExpressions.push_back(StartIndex);
1885          InitExpressions.push_back(EndIndex);
1886        }
1887      }
1888      break;
1889    }
1890    }
1891  }
1892
1893  if (Invalid || Init.isInvalid())
1894    return ExprError();
1895
1896  // Clear out the expressions within the designation.
1897  Desig.ClearExprs(*this);
1898
1899  DesignatedInitExpr *DIE
1900    = DesignatedInitExpr::Create(Context,
1901                                 Designators.data(), Designators.size(),
1902                                 InitExpressions.data(), InitExpressions.size(),
1903                                 Loc, GNUSyntax, Init.takeAs<Expr>());
1904  return Owned(DIE);
1905}
1906
1907bool Sema::CheckInitList(const InitializedEntity &Entity,
1908                         InitListExpr *&InitList, QualType &DeclType) {
1909  InitListChecker CheckInitList(*this, Entity, InitList, DeclType);
1910  if (!CheckInitList.HadError())
1911    InitList = CheckInitList.getFullyStructuredList();
1912
1913  return CheckInitList.HadError();
1914}
1915
1916//===----------------------------------------------------------------------===//
1917// Initialization entity
1918//===----------------------------------------------------------------------===//
1919
1920InitializedEntity::InitializedEntity(ASTContext &Context, unsigned Index,
1921                                     const InitializedEntity &Parent)
1922  : Parent(&Parent), Index(Index)
1923{
1924  if (const ArrayType *AT = Context.getAsArrayType(Parent.getType())) {
1925    Kind = EK_ArrayElement;
1926    Type = AT->getElementType();
1927  } else {
1928    Kind = EK_VectorElement;
1929    Type = Parent.getType()->getAs<VectorType>()->getElementType();
1930  }
1931}
1932
1933InitializedEntity InitializedEntity::InitializeBase(ASTContext &Context,
1934                                                    CXXBaseSpecifier *Base,
1935                                                    bool IsInheritedVirtualBase)
1936{
1937  InitializedEntity Result;
1938  Result.Kind = EK_Base;
1939  Result.Base = reinterpret_cast<uintptr_t>(Base);
1940  if (IsInheritedVirtualBase)
1941    Result.Base |= 0x01;
1942
1943  Result.Type = Base->getType();
1944  return Result;
1945}
1946
1947DeclarationName InitializedEntity::getName() const {
1948  switch (getKind()) {
1949  case EK_Parameter:
1950    if (!VariableOrMember)
1951      return DeclarationName();
1952    // Fall through
1953
1954  case EK_Variable:
1955  case EK_Member:
1956    return VariableOrMember->getDeclName();
1957
1958  case EK_Result:
1959  case EK_Exception:
1960  case EK_New:
1961  case EK_Temporary:
1962  case EK_Base:
1963  case EK_ArrayElement:
1964  case EK_VectorElement:
1965  case EK_BlockElement:
1966    return DeclarationName();
1967  }
1968
1969  // Silence GCC warning
1970  return DeclarationName();
1971}
1972
1973DeclaratorDecl *InitializedEntity::getDecl() const {
1974  switch (getKind()) {
1975  case EK_Variable:
1976  case EK_Parameter:
1977  case EK_Member:
1978    return VariableOrMember;
1979
1980  case EK_Result:
1981  case EK_Exception:
1982  case EK_New:
1983  case EK_Temporary:
1984  case EK_Base:
1985  case EK_ArrayElement:
1986  case EK_VectorElement:
1987  case EK_BlockElement:
1988    return 0;
1989  }
1990
1991  // Silence GCC warning
1992  return 0;
1993}
1994
1995bool InitializedEntity::allowsNRVO() const {
1996  switch (getKind()) {
1997  case EK_Result:
1998  case EK_Exception:
1999    return LocAndNRVO.NRVO;
2000
2001  case EK_Variable:
2002  case EK_Parameter:
2003  case EK_Member:
2004  case EK_New:
2005  case EK_Temporary:
2006  case EK_Base:
2007  case EK_ArrayElement:
2008  case EK_VectorElement:
2009  case EK_BlockElement:
2010    break;
2011  }
2012
2013  return false;
2014}
2015
2016//===----------------------------------------------------------------------===//
2017// Initialization sequence
2018//===----------------------------------------------------------------------===//
2019
2020void InitializationSequence::Step::Destroy() {
2021  switch (Kind) {
2022  case SK_ResolveAddressOfOverloadedFunction:
2023  case SK_CastDerivedToBaseRValue:
2024  case SK_CastDerivedToBaseXValue:
2025  case SK_CastDerivedToBaseLValue:
2026  case SK_BindReference:
2027  case SK_BindReferenceToTemporary:
2028  case SK_ExtraneousCopyToTemporary:
2029  case SK_UserConversion:
2030  case SK_QualificationConversionRValue:
2031  case SK_QualificationConversionXValue:
2032  case SK_QualificationConversionLValue:
2033  case SK_ListInitialization:
2034  case SK_ConstructorInitialization:
2035  case SK_ZeroInitialization:
2036  case SK_CAssignment:
2037  case SK_StringInit:
2038  case SK_ObjCObjectConversion:
2039    break;
2040
2041  case SK_ConversionSequence:
2042    delete ICS;
2043  }
2044}
2045
2046bool InitializationSequence::isDirectReferenceBinding() const {
2047  return getKind() == ReferenceBinding && Steps.back().Kind == SK_BindReference;
2048}
2049
2050bool InitializationSequence::isAmbiguous() const {
2051  if (getKind() != FailedSequence)
2052    return false;
2053
2054  switch (getFailureKind()) {
2055  case FK_TooManyInitsForReference:
2056  case FK_ArrayNeedsInitList:
2057  case FK_ArrayNeedsInitListOrStringLiteral:
2058  case FK_AddressOfOverloadFailed: // FIXME: Could do better
2059  case FK_NonConstLValueReferenceBindingToTemporary:
2060  case FK_NonConstLValueReferenceBindingToUnrelated:
2061  case FK_RValueReferenceBindingToLValue:
2062  case FK_ReferenceInitDropsQualifiers:
2063  case FK_ReferenceInitFailed:
2064  case FK_ConversionFailed:
2065  case FK_TooManyInitsForScalar:
2066  case FK_ReferenceBindingToInitList:
2067  case FK_InitListBadDestinationType:
2068  case FK_DefaultInitOfConst:
2069  case FK_Incomplete:
2070    return false;
2071
2072  case FK_ReferenceInitOverloadFailed:
2073  case FK_UserConversionOverloadFailed:
2074  case FK_ConstructorOverloadFailed:
2075    return FailedOverloadResult == OR_Ambiguous;
2076  }
2077
2078  return false;
2079}
2080
2081bool InitializationSequence::isConstructorInitialization() const {
2082  return !Steps.empty() && Steps.back().Kind == SK_ConstructorInitialization;
2083}
2084
2085void InitializationSequence::AddAddressOverloadResolutionStep(
2086                                                      FunctionDecl *Function,
2087                                                      DeclAccessPair Found) {
2088  Step S;
2089  S.Kind = SK_ResolveAddressOfOverloadedFunction;
2090  S.Type = Function->getType();
2091  S.Function.Function = Function;
2092  S.Function.FoundDecl = Found;
2093  Steps.push_back(S);
2094}
2095
2096void InitializationSequence::AddDerivedToBaseCastStep(QualType BaseType,
2097                                    ImplicitCastExpr::ResultCategory Category) {
2098  Step S;
2099  switch (Category) {
2100  case ImplicitCastExpr::RValue: S.Kind = SK_CastDerivedToBaseRValue; break;
2101  case ImplicitCastExpr::XValue: S.Kind = SK_CastDerivedToBaseXValue; break;
2102  case ImplicitCastExpr::LValue: S.Kind = SK_CastDerivedToBaseLValue; break;
2103  default: llvm_unreachable("No such category");
2104  }
2105  S.Type = BaseType;
2106  Steps.push_back(S);
2107}
2108
2109void InitializationSequence::AddReferenceBindingStep(QualType T,
2110                                                     bool BindingTemporary) {
2111  Step S;
2112  S.Kind = BindingTemporary? SK_BindReferenceToTemporary : SK_BindReference;
2113  S.Type = T;
2114  Steps.push_back(S);
2115}
2116
2117void InitializationSequence::AddExtraneousCopyToTemporary(QualType T) {
2118  Step S;
2119  S.Kind = SK_ExtraneousCopyToTemporary;
2120  S.Type = T;
2121  Steps.push_back(S);
2122}
2123
2124void InitializationSequence::AddUserConversionStep(FunctionDecl *Function,
2125                                                   DeclAccessPair FoundDecl,
2126                                                   QualType T) {
2127  Step S;
2128  S.Kind = SK_UserConversion;
2129  S.Type = T;
2130  S.Function.Function = Function;
2131  S.Function.FoundDecl = FoundDecl;
2132  Steps.push_back(S);
2133}
2134
2135void InitializationSequence::AddQualificationConversionStep(QualType Ty,
2136                                    ImplicitCastExpr::ResultCategory Category) {
2137  Step S;
2138  switch (Category) {
2139  case ImplicitCastExpr::RValue:
2140    S.Kind = SK_QualificationConversionRValue;
2141    break;
2142  case ImplicitCastExpr::XValue:
2143    S.Kind = SK_QualificationConversionXValue;
2144    break;
2145  case ImplicitCastExpr::LValue:
2146    S.Kind = SK_QualificationConversionLValue;
2147    break;
2148  default: llvm_unreachable("No such category");
2149  }
2150  S.Type = Ty;
2151  Steps.push_back(S);
2152}
2153
2154void InitializationSequence::AddConversionSequenceStep(
2155                                       const ImplicitConversionSequence &ICS,
2156                                                       QualType T) {
2157  Step S;
2158  S.Kind = SK_ConversionSequence;
2159  S.Type = T;
2160  S.ICS = new ImplicitConversionSequence(ICS);
2161  Steps.push_back(S);
2162}
2163
2164void InitializationSequence::AddListInitializationStep(QualType T) {
2165  Step S;
2166  S.Kind = SK_ListInitialization;
2167  S.Type = T;
2168  Steps.push_back(S);
2169}
2170
2171void
2172InitializationSequence::AddConstructorInitializationStep(
2173                                              CXXConstructorDecl *Constructor,
2174                                                       AccessSpecifier Access,
2175                                                         QualType T) {
2176  Step S;
2177  S.Kind = SK_ConstructorInitialization;
2178  S.Type = T;
2179  S.Function.Function = Constructor;
2180  S.Function.FoundDecl = DeclAccessPair::make(Constructor, Access);
2181  Steps.push_back(S);
2182}
2183
2184void InitializationSequence::AddZeroInitializationStep(QualType T) {
2185  Step S;
2186  S.Kind = SK_ZeroInitialization;
2187  S.Type = T;
2188  Steps.push_back(S);
2189}
2190
2191void InitializationSequence::AddCAssignmentStep(QualType T) {
2192  Step S;
2193  S.Kind = SK_CAssignment;
2194  S.Type = T;
2195  Steps.push_back(S);
2196}
2197
2198void InitializationSequence::AddStringInitStep(QualType T) {
2199  Step S;
2200  S.Kind = SK_StringInit;
2201  S.Type = T;
2202  Steps.push_back(S);
2203}
2204
2205void InitializationSequence::AddObjCObjectConversionStep(QualType T) {
2206  Step S;
2207  S.Kind = SK_ObjCObjectConversion;
2208  S.Type = T;
2209  Steps.push_back(S);
2210}
2211
2212void InitializationSequence::SetOverloadFailure(FailureKind Failure,
2213                                                OverloadingResult Result) {
2214  SequenceKind = FailedSequence;
2215  this->Failure = Failure;
2216  this->FailedOverloadResult = Result;
2217}
2218
2219//===----------------------------------------------------------------------===//
2220// Attempt initialization
2221//===----------------------------------------------------------------------===//
2222
2223/// \brief Attempt list initialization (C++0x [dcl.init.list])
2224static void TryListInitialization(Sema &S,
2225                                  const InitializedEntity &Entity,
2226                                  const InitializationKind &Kind,
2227                                  InitListExpr *InitList,
2228                                  InitializationSequence &Sequence) {
2229  // FIXME: We only perform rudimentary checking of list
2230  // initializations at this point, then assume that any list
2231  // initialization of an array, aggregate, or scalar will be
2232  // well-formed. When we actually "perform" list initialization, we'll
2233  // do all of the necessary checking.  C++0x initializer lists will
2234  // force us to perform more checking here.
2235  Sequence.setSequenceKind(InitializationSequence::ListInitialization);
2236
2237  QualType DestType = Entity.getType();
2238
2239  // C++ [dcl.init]p13:
2240  //   If T is a scalar type, then a declaration of the form
2241  //
2242  //     T x = { a };
2243  //
2244  //   is equivalent to
2245  //
2246  //     T x = a;
2247  if (DestType->isScalarType()) {
2248    if (InitList->getNumInits() > 1 && S.getLangOptions().CPlusPlus) {
2249      Sequence.SetFailed(InitializationSequence::FK_TooManyInitsForScalar);
2250      return;
2251    }
2252
2253    // Assume scalar initialization from a single value works.
2254  } else if (DestType->isAggregateType()) {
2255    // Assume aggregate initialization works.
2256  } else if (DestType->isVectorType()) {
2257    // Assume vector initialization works.
2258  } else if (DestType->isReferenceType()) {
2259    // FIXME: C++0x defines behavior for this.
2260    Sequence.SetFailed(InitializationSequence::FK_ReferenceBindingToInitList);
2261    return;
2262  } else if (DestType->isRecordType()) {
2263    // FIXME: C++0x defines behavior for this
2264    Sequence.SetFailed(InitializationSequence::FK_InitListBadDestinationType);
2265  }
2266
2267  // Add a general "list initialization" step.
2268  Sequence.AddListInitializationStep(DestType);
2269}
2270
2271/// \brief Try a reference initialization that involves calling a conversion
2272/// function.
2273static OverloadingResult TryRefInitWithConversionFunction(Sema &S,
2274                                             const InitializedEntity &Entity,
2275                                             const InitializationKind &Kind,
2276                                                          Expr *Initializer,
2277                                                          bool AllowRValues,
2278                                             InitializationSequence &Sequence) {
2279  QualType DestType = Entity.getType();
2280  QualType cv1T1 = DestType->getAs<ReferenceType>()->getPointeeType();
2281  QualType T1 = cv1T1.getUnqualifiedType();
2282  QualType cv2T2 = Initializer->getType();
2283  QualType T2 = cv2T2.getUnqualifiedType();
2284
2285  bool DerivedToBase;
2286  bool ObjCConversion;
2287  assert(!S.CompareReferenceRelationship(Initializer->getLocStart(),
2288                                         T1, T2, DerivedToBase,
2289                                         ObjCConversion) &&
2290         "Must have incompatible references when binding via conversion");
2291  (void)DerivedToBase;
2292  (void)ObjCConversion;
2293
2294  // Build the candidate set directly in the initialization sequence
2295  // structure, so that it will persist if we fail.
2296  OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
2297  CandidateSet.clear();
2298
2299  // Determine whether we are allowed to call explicit constructors or
2300  // explicit conversion operators.
2301  bool AllowExplicit = Kind.getKind() == InitializationKind::IK_Direct;
2302
2303  const RecordType *T1RecordType = 0;
2304  if (AllowRValues && (T1RecordType = T1->getAs<RecordType>()) &&
2305      !S.RequireCompleteType(Kind.getLocation(), T1, 0)) {
2306    // The type we're converting to is a class type. Enumerate its constructors
2307    // to see if there is a suitable conversion.
2308    CXXRecordDecl *T1RecordDecl = cast<CXXRecordDecl>(T1RecordType->getDecl());
2309    DeclContext::lookup_iterator Con, ConEnd;
2310    for (llvm::tie(Con, ConEnd) = S.LookupConstructors(T1RecordDecl);
2311         Con != ConEnd; ++Con) {
2312      NamedDecl *D = *Con;
2313      DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess());
2314
2315      // Find the constructor (which may be a template).
2316      CXXConstructorDecl *Constructor = 0;
2317      FunctionTemplateDecl *ConstructorTmpl = dyn_cast<FunctionTemplateDecl>(D);
2318      if (ConstructorTmpl)
2319        Constructor = cast<CXXConstructorDecl>(
2320                                         ConstructorTmpl->getTemplatedDecl());
2321      else
2322        Constructor = cast<CXXConstructorDecl>(D);
2323
2324      if (!Constructor->isInvalidDecl() &&
2325          Constructor->isConvertingConstructor(AllowExplicit)) {
2326        if (ConstructorTmpl)
2327          S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl,
2328                                         /*ExplicitArgs*/ 0,
2329                                         &Initializer, 1, CandidateSet);
2330        else
2331          S.AddOverloadCandidate(Constructor, FoundDecl,
2332                                 &Initializer, 1, CandidateSet);
2333      }
2334    }
2335  }
2336
2337  const RecordType *T2RecordType = 0;
2338  if ((T2RecordType = T2->getAs<RecordType>()) &&
2339      !S.RequireCompleteType(Kind.getLocation(), T2, 0)) {
2340    // The type we're converting from is a class type, enumerate its conversion
2341    // functions.
2342    CXXRecordDecl *T2RecordDecl = cast<CXXRecordDecl>(T2RecordType->getDecl());
2343
2344    // Determine the type we are converting to. If we are allowed to
2345    // convert to an rvalue, take the type that the destination type
2346    // refers to.
2347    QualType ToType = AllowRValues? cv1T1 : DestType;
2348
2349    const UnresolvedSetImpl *Conversions
2350      = T2RecordDecl->getVisibleConversionFunctions();
2351    for (UnresolvedSetImpl::const_iterator I = Conversions->begin(),
2352           E = Conversions->end(); I != E; ++I) {
2353      NamedDecl *D = *I;
2354      CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
2355      if (isa<UsingShadowDecl>(D))
2356        D = cast<UsingShadowDecl>(D)->getTargetDecl();
2357
2358      FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D);
2359      CXXConversionDecl *Conv;
2360      if (ConvTemplate)
2361        Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
2362      else
2363        Conv = cast<CXXConversionDecl>(D);
2364
2365      // If the conversion function doesn't return a reference type,
2366      // it can't be considered for this conversion unless we're allowed to
2367      // consider rvalues.
2368      // FIXME: Do we need to make sure that we only consider conversion
2369      // candidates with reference-compatible results? That might be needed to
2370      // break recursion.
2371      if ((AllowExplicit || !Conv->isExplicit()) &&
2372          (AllowRValues || Conv->getConversionType()->isLValueReferenceType())){
2373        if (ConvTemplate)
2374          S.AddTemplateConversionCandidate(ConvTemplate, I.getPair(),
2375                                           ActingDC, Initializer,
2376                                           ToType, CandidateSet);
2377        else
2378          S.AddConversionCandidate(Conv, I.getPair(), ActingDC,
2379                                   Initializer, ToType, CandidateSet);
2380      }
2381    }
2382  }
2383
2384  SourceLocation DeclLoc = Initializer->getLocStart();
2385
2386  // Perform overload resolution. If it fails, return the failed result.
2387  OverloadCandidateSet::iterator Best;
2388  if (OverloadingResult Result
2389        = S.BestViableFunction(CandidateSet, DeclLoc, Best))
2390    return Result;
2391
2392  FunctionDecl *Function = Best->Function;
2393
2394  // Compute the returned type of the conversion.
2395  if (isa<CXXConversionDecl>(Function))
2396    T2 = Function->getResultType();
2397  else
2398    T2 = cv1T1;
2399
2400  // Add the user-defined conversion step.
2401  Sequence.AddUserConversionStep(Function, Best->FoundDecl,
2402                                 T2.getNonLValueExprType(S.Context));
2403
2404  // Determine whether we need to perform derived-to-base or
2405  // cv-qualification adjustments.
2406  ImplicitCastExpr::ResultCategory Category = ImplicitCastExpr::RValue;
2407  if (T2->isLValueReferenceType())
2408    Category = ImplicitCastExpr::LValue;
2409  else if (const RValueReferenceType *RRef = T2->getAs<RValueReferenceType>())
2410    Category = RRef->getPointeeType()->isFunctionType() ?
2411        ImplicitCastExpr::LValue : ImplicitCastExpr::XValue;
2412
2413  bool NewDerivedToBase = false;
2414  bool NewObjCConversion = false;
2415  Sema::ReferenceCompareResult NewRefRelationship
2416    = S.CompareReferenceRelationship(DeclLoc, T1,
2417                                     T2.getNonLValueExprType(S.Context),
2418                                     NewDerivedToBase, NewObjCConversion);
2419  if (NewRefRelationship == Sema::Ref_Incompatible) {
2420    // If the type we've converted to is not reference-related to the
2421    // type we're looking for, then there is another conversion step
2422    // we need to perform to produce a temporary of the right type
2423    // that we'll be binding to.
2424    ImplicitConversionSequence ICS;
2425    ICS.setStandard();
2426    ICS.Standard = Best->FinalConversion;
2427    T2 = ICS.Standard.getToType(2);
2428    Sequence.AddConversionSequenceStep(ICS, T2);
2429  } else if (NewDerivedToBase)
2430    Sequence.AddDerivedToBaseCastStep(
2431                                S.Context.getQualifiedType(T1,
2432                                  T2.getNonReferenceType().getQualifiers()),
2433                                      Category);
2434  else if (NewObjCConversion)
2435    Sequence.AddObjCObjectConversionStep(
2436                                S.Context.getQualifiedType(T1,
2437                                  T2.getNonReferenceType().getQualifiers()));
2438
2439  if (cv1T1.getQualifiers() != T2.getNonReferenceType().getQualifiers())
2440    Sequence.AddQualificationConversionStep(cv1T1, Category);
2441
2442  Sequence.AddReferenceBindingStep(cv1T1, !T2->isReferenceType());
2443  return OR_Success;
2444}
2445
2446/// \brief Attempt reference initialization (C++0x [dcl.init.ref])
2447static void TryReferenceInitialization(Sema &S,
2448                                       const InitializedEntity &Entity,
2449                                       const InitializationKind &Kind,
2450                                       Expr *Initializer,
2451                                       InitializationSequence &Sequence) {
2452  Sequence.setSequenceKind(InitializationSequence::ReferenceBinding);
2453
2454  QualType DestType = Entity.getType();
2455  QualType cv1T1 = DestType->getAs<ReferenceType>()->getPointeeType();
2456  Qualifiers T1Quals;
2457  QualType T1 = S.Context.getUnqualifiedArrayType(cv1T1, T1Quals);
2458  QualType cv2T2 = Initializer->getType();
2459  Qualifiers T2Quals;
2460  QualType T2 = S.Context.getUnqualifiedArrayType(cv2T2, T2Quals);
2461  SourceLocation DeclLoc = Initializer->getLocStart();
2462
2463  // If the initializer is the address of an overloaded function, try
2464  // to resolve the overloaded function. If all goes well, T2 is the
2465  // type of the resulting function.
2466  if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) {
2467    DeclAccessPair Found;
2468    FunctionDecl *Fn = S.ResolveAddressOfOverloadedFunction(Initializer,
2469                                                            T1,
2470                                                            false,
2471                                                            Found);
2472    if (!Fn) {
2473      Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
2474      return;
2475    }
2476
2477    Sequence.AddAddressOverloadResolutionStep(Fn, Found);
2478    cv2T2 = Fn->getType();
2479    T2 = cv2T2.getUnqualifiedType();
2480  }
2481
2482  // Compute some basic properties of the types and the initializer.
2483  bool isLValueRef = DestType->isLValueReferenceType();
2484  bool isRValueRef = !isLValueRef;
2485  bool DerivedToBase = false;
2486  bool ObjCConversion = false;
2487  Expr::Classification InitCategory = Initializer->Classify(S.Context);
2488  Sema::ReferenceCompareResult RefRelationship
2489    = S.CompareReferenceRelationship(DeclLoc, cv1T1, cv2T2, DerivedToBase,
2490                                     ObjCConversion);
2491
2492  // C++0x [dcl.init.ref]p5:
2493  //   A reference to type "cv1 T1" is initialized by an expression of type
2494  //   "cv2 T2" as follows:
2495  //
2496  //     - If the reference is an lvalue reference and the initializer
2497  //       expression
2498  // Note the analogous bullet points for rvlaue refs to functions. Because
2499  // there are no function rvalues in C++, rvalue refs to functions are treated
2500  // like lvalue refs.
2501  OverloadingResult ConvOvlResult = OR_Success;
2502  bool T1Function = T1->isFunctionType();
2503  if (isLValueRef || T1Function) {
2504    if (InitCategory.isLValue() &&
2505        RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification) {
2506      //   - is an lvalue (but is not a bit-field), and "cv1 T1" is
2507      //     reference-compatible with "cv2 T2," or
2508      //
2509      // Per C++ [over.best.ics]p2, we don't diagnose whether the lvalue is a
2510      // bit-field when we're determining whether the reference initialization
2511      // can occur. However, we do pay attention to whether it is a bit-field
2512      // to decide whether we're actually binding to a temporary created from
2513      // the bit-field.
2514      if (DerivedToBase)
2515        Sequence.AddDerivedToBaseCastStep(
2516                         S.Context.getQualifiedType(T1, T2Quals),
2517                         ImplicitCastExpr::LValue);
2518      else if (ObjCConversion)
2519        Sequence.AddObjCObjectConversionStep(
2520                                     S.Context.getQualifiedType(T1, T2Quals));
2521
2522      if (T1Quals != T2Quals)
2523        Sequence.AddQualificationConversionStep(cv1T1,ImplicitCastExpr::LValue);
2524      bool BindingTemporary = T1Quals.hasConst() && !T1Quals.hasVolatile() &&
2525        (Initializer->getBitField() || Initializer->refersToVectorElement());
2526      Sequence.AddReferenceBindingStep(cv1T1, BindingTemporary);
2527      return;
2528    }
2529
2530    //     - has a class type (i.e., T2 is a class type), where T1 is not
2531    //       reference-related to T2, and can be implicitly converted to an
2532    //       lvalue of type "cv3 T3," where "cv1 T1" is reference-compatible
2533    //       with "cv3 T3" (this conversion is selected by enumerating the
2534    //       applicable conversion functions (13.3.1.6) and choosing the best
2535    //       one through overload resolution (13.3)),
2536    // If we have an rvalue ref to function type here, the rhs must be
2537    // an rvalue.
2538    if (RefRelationship == Sema::Ref_Incompatible && T2->isRecordType() &&
2539        (isLValueRef || InitCategory.isRValue())) {
2540      ConvOvlResult = TryRefInitWithConversionFunction(S, Entity, Kind,
2541                                                       Initializer,
2542                                                   /*AllowRValues=*/isRValueRef,
2543                                                       Sequence);
2544      if (ConvOvlResult == OR_Success)
2545        return;
2546      if (ConvOvlResult != OR_No_Viable_Function) {
2547        Sequence.SetOverloadFailure(
2548                      InitializationSequence::FK_ReferenceInitOverloadFailed,
2549                                    ConvOvlResult);
2550      }
2551    }
2552  }
2553
2554  //     - Otherwise, the reference shall be an lvalue reference to a
2555  //       non-volatile const type (i.e., cv1 shall be const), or the reference
2556  //       shall be an rvalue reference and the initializer expression shall
2557  //       be an rvalue or have a function type.
2558  // We handled the function type stuff above.
2559  if (!((isLValueRef && T1Quals.hasConst() && !T1Quals.hasVolatile()) ||
2560        (isRValueRef && InitCategory.isRValue()))) {
2561    if (ConvOvlResult && !Sequence.getFailedCandidateSet().empty())
2562      Sequence.SetOverloadFailure(
2563                        InitializationSequence::FK_ReferenceInitOverloadFailed,
2564                                  ConvOvlResult);
2565    else if (isLValueRef)
2566      Sequence.SetFailed(InitCategory.isLValue()
2567        ? (RefRelationship == Sema::Ref_Related
2568             ? InitializationSequence::FK_ReferenceInitDropsQualifiers
2569             : InitializationSequence::FK_NonConstLValueReferenceBindingToUnrelated)
2570        : InitializationSequence::FK_NonConstLValueReferenceBindingToTemporary);
2571    else
2572      Sequence.SetFailed(
2573                    InitializationSequence::FK_RValueReferenceBindingToLValue);
2574
2575    return;
2576  }
2577
2578  //       - [If T1 is not a function type], if T2 is a class type and
2579  if (!T1Function && T2->isRecordType()) {
2580    bool isXValue = InitCategory.isXValue();
2581    //       - the initializer expression is an rvalue and "cv1 T1" is
2582    //         reference-compatible with "cv2 T2", or
2583    if (InitCategory.isRValue() &&
2584        RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification) {
2585      // The corresponding bullet in C++03 [dcl.init.ref]p5 gives the
2586      // compiler the freedom to perform a copy here or bind to the
2587      // object, while C++0x requires that we bind directly to the
2588      // object. Hence, we always bind to the object without making an
2589      // extra copy. However, in C++03 requires that we check for the
2590      // presence of a suitable copy constructor:
2591      //
2592      //   The constructor that would be used to make the copy shall
2593      //   be callable whether or not the copy is actually done.
2594      if (!S.getLangOptions().CPlusPlus0x)
2595        Sequence.AddExtraneousCopyToTemporary(cv2T2);
2596
2597      if (DerivedToBase)
2598        Sequence.AddDerivedToBaseCastStep(
2599                         S.Context.getQualifiedType(T1, T2Quals),
2600                         isXValue ? ImplicitCastExpr::XValue
2601                                  : ImplicitCastExpr::RValue);
2602      else if (ObjCConversion)
2603        Sequence.AddObjCObjectConversionStep(
2604                                     S.Context.getQualifiedType(T1, T2Quals));
2605
2606      if (T1Quals != T2Quals)
2607        Sequence.AddQualificationConversionStep(cv1T1,
2608                     isXValue ? ImplicitCastExpr::XValue
2609                              : ImplicitCastExpr::RValue);
2610      Sequence.AddReferenceBindingStep(cv1T1, /*bindingTemporary=*/!isXValue);
2611      return;
2612    }
2613
2614    //       - T1 is not reference-related to T2 and the initializer expression
2615    //         can be implicitly converted to an rvalue of type "cv3 T3" (this
2616    //         conversion is selected by enumerating the applicable conversion
2617    //         functions (13.3.1.6) and choosing the best one through overload
2618    //         resolution (13.3)),
2619    if (RefRelationship == Sema::Ref_Incompatible) {
2620      ConvOvlResult = TryRefInitWithConversionFunction(S, Entity,
2621                                                       Kind, Initializer,
2622                                                       /*AllowRValues=*/true,
2623                                                       Sequence);
2624      if (ConvOvlResult)
2625        Sequence.SetOverloadFailure(
2626                      InitializationSequence::FK_ReferenceInitOverloadFailed,
2627                                    ConvOvlResult);
2628
2629      return;
2630    }
2631
2632    Sequence.SetFailed(InitializationSequence::FK_ReferenceInitDropsQualifiers);
2633    return;
2634  }
2635
2636  //      - If the initializer expression is an rvalue, with T2 an array type,
2637  //        and "cv1 T1" is reference-compatible with "cv2 T2," the reference
2638  //        is bound to the object represented by the rvalue (see 3.10).
2639  // FIXME: How can an array type be reference-compatible with anything?
2640  // Don't we mean the element types of T1 and T2?
2641
2642  //      - Otherwise, a temporary of type “cv1 T1” is created and initialized
2643  //        from the initializer expression using the rules for a non-reference
2644  //        copy initialization (8.5). The reference is then bound to the
2645  //        temporary. [...]
2646
2647  // Determine whether we are allowed to call explicit constructors or
2648  // explicit conversion operators.
2649  bool AllowExplicit = (Kind.getKind() == InitializationKind::IK_Direct);
2650
2651  InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(cv1T1);
2652
2653  if (S.TryImplicitConversion(Sequence, TempEntity, Initializer,
2654                              /*SuppressUserConversions*/ false,
2655                              AllowExplicit,
2656                              /*FIXME:InOverloadResolution=*/false)) {
2657    // FIXME: Use the conversion function set stored in ICS to turn
2658    // this into an overloading ambiguity diagnostic. However, we need
2659    // to keep that set as an OverloadCandidateSet rather than as some
2660    // other kind of set.
2661    if (ConvOvlResult && !Sequence.getFailedCandidateSet().empty())
2662      Sequence.SetOverloadFailure(
2663                        InitializationSequence::FK_ReferenceInitOverloadFailed,
2664                                  ConvOvlResult);
2665    else
2666      Sequence.SetFailed(InitializationSequence::FK_ReferenceInitFailed);
2667    return;
2668  }
2669
2670  //        [...] If T1 is reference-related to T2, cv1 must be the
2671  //        same cv-qualification as, or greater cv-qualification
2672  //        than, cv2; otherwise, the program is ill-formed.
2673  unsigned T1CVRQuals = T1Quals.getCVRQualifiers();
2674  unsigned T2CVRQuals = T2Quals.getCVRQualifiers();
2675  if (RefRelationship == Sema::Ref_Related &&
2676      (T1CVRQuals | T2CVRQuals) != T1CVRQuals) {
2677    Sequence.SetFailed(InitializationSequence::FK_ReferenceInitDropsQualifiers);
2678    return;
2679  }
2680
2681  Sequence.AddReferenceBindingStep(cv1T1, /*bindingTemporary=*/true);
2682  return;
2683}
2684
2685/// \brief Attempt character array initialization from a string literal
2686/// (C++ [dcl.init.string], C99 6.7.8).
2687static void TryStringLiteralInitialization(Sema &S,
2688                                           const InitializedEntity &Entity,
2689                                           const InitializationKind &Kind,
2690                                           Expr *Initializer,
2691                                       InitializationSequence &Sequence) {
2692  Sequence.setSequenceKind(InitializationSequence::StringInit);
2693  Sequence.AddStringInitStep(Entity.getType());
2694}
2695
2696/// \brief Attempt initialization by constructor (C++ [dcl.init]), which
2697/// enumerates the constructors of the initialized entity and performs overload
2698/// resolution to select the best.
2699static void TryConstructorInitialization(Sema &S,
2700                                         const InitializedEntity &Entity,
2701                                         const InitializationKind &Kind,
2702                                         Expr **Args, unsigned NumArgs,
2703                                         QualType DestType,
2704                                         InitializationSequence &Sequence) {
2705  Sequence.setSequenceKind(InitializationSequence::ConstructorInitialization);
2706
2707  // Build the candidate set directly in the initialization sequence
2708  // structure, so that it will persist if we fail.
2709  OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
2710  CandidateSet.clear();
2711
2712  // Determine whether we are allowed to call explicit constructors or
2713  // explicit conversion operators.
2714  bool AllowExplicit = (Kind.getKind() == InitializationKind::IK_Direct ||
2715                        Kind.getKind() == InitializationKind::IK_Value ||
2716                        Kind.getKind() == InitializationKind::IK_Default);
2717
2718  // The type we're constructing needs to be complete.
2719  if (S.RequireCompleteType(Kind.getLocation(), DestType, 0)) {
2720    Sequence.SetFailed(InitializationSequence::FK_Incomplete);
2721    return;
2722  }
2723
2724  // The type we're converting to is a class type. Enumerate its constructors
2725  // to see if one is suitable.
2726  const RecordType *DestRecordType = DestType->getAs<RecordType>();
2727  assert(DestRecordType && "Constructor initialization requires record type");
2728  CXXRecordDecl *DestRecordDecl
2729    = cast<CXXRecordDecl>(DestRecordType->getDecl());
2730
2731  DeclContext::lookup_iterator Con, ConEnd;
2732  for (llvm::tie(Con, ConEnd) = S.LookupConstructors(DestRecordDecl);
2733       Con != ConEnd; ++Con) {
2734    NamedDecl *D = *Con;
2735    DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess());
2736    bool SuppressUserConversions = false;
2737
2738    // Find the constructor (which may be a template).
2739    CXXConstructorDecl *Constructor = 0;
2740    FunctionTemplateDecl *ConstructorTmpl = dyn_cast<FunctionTemplateDecl>(D);
2741    if (ConstructorTmpl)
2742      Constructor = cast<CXXConstructorDecl>(
2743                                           ConstructorTmpl->getTemplatedDecl());
2744    else {
2745      Constructor = cast<CXXConstructorDecl>(D);
2746
2747      // If we're performing copy initialization using a copy constructor, we
2748      // suppress user-defined conversions on the arguments.
2749      // FIXME: Move constructors?
2750      if (Kind.getKind() == InitializationKind::IK_Copy &&
2751          Constructor->isCopyConstructor())
2752        SuppressUserConversions = true;
2753    }
2754
2755    if (!Constructor->isInvalidDecl() &&
2756        (AllowExplicit || !Constructor->isExplicit())) {
2757      if (ConstructorTmpl)
2758        S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl,
2759                                       /*ExplicitArgs*/ 0,
2760                                       Args, NumArgs, CandidateSet,
2761                                       SuppressUserConversions);
2762      else
2763        S.AddOverloadCandidate(Constructor, FoundDecl,
2764                               Args, NumArgs, CandidateSet,
2765                               SuppressUserConversions);
2766    }
2767  }
2768
2769  SourceLocation DeclLoc = Kind.getLocation();
2770
2771  // Perform overload resolution. If it fails, return the failed result.
2772  OverloadCandidateSet::iterator Best;
2773  if (OverloadingResult Result
2774        = S.BestViableFunction(CandidateSet, DeclLoc, Best)) {
2775    Sequence.SetOverloadFailure(
2776                          InitializationSequence::FK_ConstructorOverloadFailed,
2777                                Result);
2778    return;
2779  }
2780
2781  // C++0x [dcl.init]p6:
2782  //   If a program calls for the default initialization of an object
2783  //   of a const-qualified type T, T shall be a class type with a
2784  //   user-provided default constructor.
2785  if (Kind.getKind() == InitializationKind::IK_Default &&
2786      Entity.getType().isConstQualified() &&
2787      cast<CXXConstructorDecl>(Best->Function)->isImplicit()) {
2788    Sequence.SetFailed(InitializationSequence::FK_DefaultInitOfConst);
2789    return;
2790  }
2791
2792  // Add the constructor initialization step. Any cv-qualification conversion is
2793  // subsumed by the initialization.
2794  Sequence.AddConstructorInitializationStep(
2795                                      cast<CXXConstructorDecl>(Best->Function),
2796                                      Best->FoundDecl.getAccess(),
2797                                      DestType);
2798}
2799
2800/// \brief Attempt value initialization (C++ [dcl.init]p7).
2801static void TryValueInitialization(Sema &S,
2802                                   const InitializedEntity &Entity,
2803                                   const InitializationKind &Kind,
2804                                   InitializationSequence &Sequence) {
2805  // C++ [dcl.init]p5:
2806  //
2807  //   To value-initialize an object of type T means:
2808  QualType T = Entity.getType();
2809
2810  //     -- if T is an array type, then each element is value-initialized;
2811  while (const ArrayType *AT = S.Context.getAsArrayType(T))
2812    T = AT->getElementType();
2813
2814  if (const RecordType *RT = T->getAs<RecordType>()) {
2815    if (CXXRecordDecl *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
2816      // -- if T is a class type (clause 9) with a user-declared
2817      //    constructor (12.1), then the default constructor for T is
2818      //    called (and the initialization is ill-formed if T has no
2819      //    accessible default constructor);
2820      //
2821      // FIXME: we really want to refer to a single subobject of the array,
2822      // but Entity doesn't have a way to capture that (yet).
2823      if (ClassDecl->hasUserDeclaredConstructor())
2824        return TryConstructorInitialization(S, Entity, Kind, 0, 0, T, Sequence);
2825
2826      // -- if T is a (possibly cv-qualified) non-union class type
2827      //    without a user-provided constructor, then the object is
2828      //    zero-initialized and, if T’s implicitly-declared default
2829      //    constructor is non-trivial, that constructor is called.
2830      if ((ClassDecl->getTagKind() == TTK_Class ||
2831           ClassDecl->getTagKind() == TTK_Struct)) {
2832        Sequence.AddZeroInitializationStep(Entity.getType());
2833        return TryConstructorInitialization(S, Entity, Kind, 0, 0, T, Sequence);
2834      }
2835    }
2836  }
2837
2838  Sequence.AddZeroInitializationStep(Entity.getType());
2839  Sequence.setSequenceKind(InitializationSequence::ZeroInitialization);
2840}
2841
2842/// \brief Attempt default initialization (C++ [dcl.init]p6).
2843static void TryDefaultInitialization(Sema &S,
2844                                     const InitializedEntity &Entity,
2845                                     const InitializationKind &Kind,
2846                                     InitializationSequence &Sequence) {
2847  assert(Kind.getKind() == InitializationKind::IK_Default);
2848
2849  // C++ [dcl.init]p6:
2850  //   To default-initialize an object of type T means:
2851  //     - if T is an array type, each element is default-initialized;
2852  QualType DestType = Entity.getType();
2853  while (const ArrayType *Array = S.Context.getAsArrayType(DestType))
2854    DestType = Array->getElementType();
2855
2856  //     - if T is a (possibly cv-qualified) class type (Clause 9), the default
2857  //       constructor for T is called (and the initialization is ill-formed if
2858  //       T has no accessible default constructor);
2859  if (DestType->isRecordType() && S.getLangOptions().CPlusPlus) {
2860    return TryConstructorInitialization(S, Entity, Kind, 0, 0, DestType,
2861                                        Sequence);
2862  }
2863
2864  //     - otherwise, no initialization is performed.
2865  Sequence.setSequenceKind(InitializationSequence::NoInitialization);
2866
2867  //   If a program calls for the default initialization of an object of
2868  //   a const-qualified type T, T shall be a class type with a user-provided
2869  //   default constructor.
2870  if (DestType.isConstQualified() && S.getLangOptions().CPlusPlus)
2871    Sequence.SetFailed(InitializationSequence::FK_DefaultInitOfConst);
2872}
2873
2874/// \brief Attempt a user-defined conversion between two types (C++ [dcl.init]),
2875/// which enumerates all conversion functions and performs overload resolution
2876/// to select the best.
2877static void TryUserDefinedConversion(Sema &S,
2878                                     const InitializedEntity &Entity,
2879                                     const InitializationKind &Kind,
2880                                     Expr *Initializer,
2881                                     InitializationSequence &Sequence) {
2882  Sequence.setSequenceKind(InitializationSequence::UserDefinedConversion);
2883
2884  QualType DestType = Entity.getType();
2885  assert(!DestType->isReferenceType() && "References are handled elsewhere");
2886  QualType SourceType = Initializer->getType();
2887  assert((DestType->isRecordType() || SourceType->isRecordType()) &&
2888         "Must have a class type to perform a user-defined conversion");
2889
2890  // Build the candidate set directly in the initialization sequence
2891  // structure, so that it will persist if we fail.
2892  OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
2893  CandidateSet.clear();
2894
2895  // Determine whether we are allowed to call explicit constructors or
2896  // explicit conversion operators.
2897  bool AllowExplicit = Kind.getKind() == InitializationKind::IK_Direct;
2898
2899  if (const RecordType *DestRecordType = DestType->getAs<RecordType>()) {
2900    // The type we're converting to is a class type. Enumerate its constructors
2901    // to see if there is a suitable conversion.
2902    CXXRecordDecl *DestRecordDecl
2903      = cast<CXXRecordDecl>(DestRecordType->getDecl());
2904
2905    // Try to complete the type we're converting to.
2906    if (!S.RequireCompleteType(Kind.getLocation(), DestType, 0)) {
2907      DeclContext::lookup_iterator Con, ConEnd;
2908      for (llvm::tie(Con, ConEnd) = S.LookupConstructors(DestRecordDecl);
2909           Con != ConEnd; ++Con) {
2910        NamedDecl *D = *Con;
2911        DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess());
2912
2913        // Find the constructor (which may be a template).
2914        CXXConstructorDecl *Constructor = 0;
2915        FunctionTemplateDecl *ConstructorTmpl
2916          = dyn_cast<FunctionTemplateDecl>(D);
2917        if (ConstructorTmpl)
2918          Constructor = cast<CXXConstructorDecl>(
2919                                           ConstructorTmpl->getTemplatedDecl());
2920        else
2921          Constructor = cast<CXXConstructorDecl>(D);
2922
2923        if (!Constructor->isInvalidDecl() &&
2924            Constructor->isConvertingConstructor(AllowExplicit)) {
2925          if (ConstructorTmpl)
2926            S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl,
2927                                           /*ExplicitArgs*/ 0,
2928                                           &Initializer, 1, CandidateSet,
2929                                           /*SuppressUserConversions=*/true);
2930          else
2931            S.AddOverloadCandidate(Constructor, FoundDecl,
2932                                   &Initializer, 1, CandidateSet,
2933                                   /*SuppressUserConversions=*/true);
2934        }
2935      }
2936    }
2937  }
2938
2939  SourceLocation DeclLoc = Initializer->getLocStart();
2940
2941  if (const RecordType *SourceRecordType = SourceType->getAs<RecordType>()) {
2942    // The type we're converting from is a class type, enumerate its conversion
2943    // functions.
2944
2945    // We can only enumerate the conversion functions for a complete type; if
2946    // the type isn't complete, simply skip this step.
2947    if (!S.RequireCompleteType(DeclLoc, SourceType, 0)) {
2948      CXXRecordDecl *SourceRecordDecl
2949        = cast<CXXRecordDecl>(SourceRecordType->getDecl());
2950
2951      const UnresolvedSetImpl *Conversions
2952        = SourceRecordDecl->getVisibleConversionFunctions();
2953      for (UnresolvedSetImpl::const_iterator I = Conversions->begin(),
2954           E = Conversions->end();
2955           I != E; ++I) {
2956        NamedDecl *D = *I;
2957        CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
2958        if (isa<UsingShadowDecl>(D))
2959          D = cast<UsingShadowDecl>(D)->getTargetDecl();
2960
2961        FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D);
2962        CXXConversionDecl *Conv;
2963        if (ConvTemplate)
2964          Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
2965        else
2966          Conv = cast<CXXConversionDecl>(D);
2967
2968        if (AllowExplicit || !Conv->isExplicit()) {
2969          if (ConvTemplate)
2970            S.AddTemplateConversionCandidate(ConvTemplate, I.getPair(),
2971                                             ActingDC, Initializer, DestType,
2972                                             CandidateSet);
2973          else
2974            S.AddConversionCandidate(Conv, I.getPair(), ActingDC,
2975                                     Initializer, DestType, CandidateSet);
2976        }
2977      }
2978    }
2979  }
2980
2981  // Perform overload resolution. If it fails, return the failed result.
2982  OverloadCandidateSet::iterator Best;
2983  if (OverloadingResult Result
2984        = S.BestViableFunction(CandidateSet, DeclLoc, Best)) {
2985    Sequence.SetOverloadFailure(
2986                        InitializationSequence::FK_UserConversionOverloadFailed,
2987                                Result);
2988    return;
2989  }
2990
2991  FunctionDecl *Function = Best->Function;
2992
2993  if (isa<CXXConstructorDecl>(Function)) {
2994    // Add the user-defined conversion step. Any cv-qualification conversion is
2995    // subsumed by the initialization.
2996    Sequence.AddUserConversionStep(Function, Best->FoundDecl, DestType);
2997    return;
2998  }
2999
3000  // Add the user-defined conversion step that calls the conversion function.
3001  QualType ConvType = Function->getCallResultType();
3002  if (ConvType->getAs<RecordType>()) {
3003    // If we're converting to a class type, there may be an copy if
3004    // the resulting temporary object (possible to create an object of
3005    // a base class type). That copy is not a separate conversion, so
3006    // we just make a note of the actual destination type (possibly a
3007    // base class of the type returned by the conversion function) and
3008    // let the user-defined conversion step handle the conversion.
3009    Sequence.AddUserConversionStep(Function, Best->FoundDecl, DestType);
3010    return;
3011  }
3012
3013  Sequence.AddUserConversionStep(Function, Best->FoundDecl, ConvType);
3014
3015  // If the conversion following the call to the conversion function
3016  // is interesting, add it as a separate step.
3017  if (Best->FinalConversion.First || Best->FinalConversion.Second ||
3018      Best->FinalConversion.Third) {
3019    ImplicitConversionSequence ICS;
3020    ICS.setStandard();
3021    ICS.Standard = Best->FinalConversion;
3022    Sequence.AddConversionSequenceStep(ICS, DestType);
3023  }
3024}
3025
3026bool Sema::TryImplicitConversion(InitializationSequence &Sequence,
3027                                 const InitializedEntity &Entity,
3028                                 Expr *Initializer,
3029                                 bool SuppressUserConversions,
3030                                 bool AllowExplicitConversions,
3031                                 bool InOverloadResolution) {
3032  ImplicitConversionSequence ICS
3033    = TryImplicitConversion(Initializer, Entity.getType(),
3034                            SuppressUserConversions,
3035                            AllowExplicitConversions,
3036                            InOverloadResolution);
3037  if (ICS.isBad()) return true;
3038
3039  // Perform the actual conversion.
3040  Sequence.AddConversionSequenceStep(ICS, Entity.getType());
3041  return false;
3042}
3043
3044InitializationSequence::InitializationSequence(Sema &S,
3045                                               const InitializedEntity &Entity,
3046                                               const InitializationKind &Kind,
3047                                               Expr **Args,
3048                                               unsigned NumArgs)
3049    : FailedCandidateSet(Kind.getLocation()) {
3050  ASTContext &Context = S.Context;
3051
3052  // C++0x [dcl.init]p16:
3053  //   The semantics of initializers are as follows. The destination type is
3054  //   the type of the object or reference being initialized and the source
3055  //   type is the type of the initializer expression. The source type is not
3056  //   defined when the initializer is a braced-init-list or when it is a
3057  //   parenthesized list of expressions.
3058  QualType DestType = Entity.getType();
3059
3060  if (DestType->isDependentType() ||
3061      Expr::hasAnyTypeDependentArguments(Args, NumArgs)) {
3062    SequenceKind = DependentSequence;
3063    return;
3064  }
3065
3066  QualType SourceType;
3067  Expr *Initializer = 0;
3068  if (NumArgs == 1) {
3069    Initializer = Args[0];
3070    if (!isa<InitListExpr>(Initializer))
3071      SourceType = Initializer->getType();
3072  }
3073
3074  //     - If the initializer is a braced-init-list, the object is
3075  //       list-initialized (8.5.4).
3076  if (InitListExpr *InitList = dyn_cast_or_null<InitListExpr>(Initializer)) {
3077    TryListInitialization(S, Entity, Kind, InitList, *this);
3078    return;
3079  }
3080
3081  //     - If the destination type is a reference type, see 8.5.3.
3082  if (DestType->isReferenceType()) {
3083    // C++0x [dcl.init.ref]p1:
3084    //   A variable declared to be a T& or T&&, that is, "reference to type T"
3085    //   (8.3.2), shall be initialized by an object, or function, of type T or
3086    //   by an object that can be converted into a T.
3087    // (Therefore, multiple arguments are not permitted.)
3088    if (NumArgs != 1)
3089      SetFailed(FK_TooManyInitsForReference);
3090    else
3091      TryReferenceInitialization(S, Entity, Kind, Args[0], *this);
3092    return;
3093  }
3094
3095  //     - If the destination type is an array of characters, an array of
3096  //       char16_t, an array of char32_t, or an array of wchar_t, and the
3097  //       initializer is a string literal, see 8.5.2.
3098  if (Initializer && IsStringInit(Initializer, DestType, Context)) {
3099    TryStringLiteralInitialization(S, Entity, Kind, Initializer, *this);
3100    return;
3101  }
3102
3103  //     - If the initializer is (), the object is value-initialized.
3104  if (Kind.getKind() == InitializationKind::IK_Value ||
3105      (Kind.getKind() == InitializationKind::IK_Direct && NumArgs == 0)) {
3106    TryValueInitialization(S, Entity, Kind, *this);
3107    return;
3108  }
3109
3110  // Handle default initialization.
3111  if (Kind.getKind() == InitializationKind::IK_Default){
3112    TryDefaultInitialization(S, Entity, Kind, *this);
3113    return;
3114  }
3115
3116  //     - Otherwise, if the destination type is an array, the program is
3117  //       ill-formed.
3118  if (const ArrayType *AT = Context.getAsArrayType(DestType)) {
3119    if (AT->getElementType()->isAnyCharacterType())
3120      SetFailed(FK_ArrayNeedsInitListOrStringLiteral);
3121    else
3122      SetFailed(FK_ArrayNeedsInitList);
3123
3124    return;
3125  }
3126
3127  // Handle initialization in C
3128  if (!S.getLangOptions().CPlusPlus) {
3129    setSequenceKind(CAssignment);
3130    AddCAssignmentStep(DestType);
3131    return;
3132  }
3133
3134  //     - If the destination type is a (possibly cv-qualified) class type:
3135  if (DestType->isRecordType()) {
3136    //     - If the initialization is direct-initialization, or if it is
3137    //       copy-initialization where the cv-unqualified version of the
3138    //       source type is the same class as, or a derived class of, the
3139    //       class of the destination, constructors are considered. [...]
3140    if (Kind.getKind() == InitializationKind::IK_Direct ||
3141        (Kind.getKind() == InitializationKind::IK_Copy &&
3142         (Context.hasSameUnqualifiedType(SourceType, DestType) ||
3143          S.IsDerivedFrom(SourceType, DestType))))
3144      TryConstructorInitialization(S, Entity, Kind, Args, NumArgs,
3145                                   Entity.getType(), *this);
3146    //     - Otherwise (i.e., for the remaining copy-initialization cases),
3147    //       user-defined conversion sequences that can convert from the source
3148    //       type to the destination type or (when a conversion function is
3149    //       used) to a derived class thereof are enumerated as described in
3150    //       13.3.1.4, and the best one is chosen through overload resolution
3151    //       (13.3).
3152    else
3153      TryUserDefinedConversion(S, Entity, Kind, Initializer, *this);
3154    return;
3155  }
3156
3157  if (NumArgs > 1) {
3158    SetFailed(FK_TooManyInitsForScalar);
3159    return;
3160  }
3161  assert(NumArgs == 1 && "Zero-argument case handled above");
3162
3163  //    - Otherwise, if the source type is a (possibly cv-qualified) class
3164  //      type, conversion functions are considered.
3165  if (!SourceType.isNull() && SourceType->isRecordType()) {
3166    TryUserDefinedConversion(S, Entity, Kind, Initializer, *this);
3167    return;
3168  }
3169
3170  //    - Otherwise, the initial value of the object being initialized is the
3171  //      (possibly converted) value of the initializer expression. Standard
3172  //      conversions (Clause 4) will be used, if necessary, to convert the
3173  //      initializer expression to the cv-unqualified version of the
3174  //      destination type; no user-defined conversions are considered.
3175  if (S.TryImplicitConversion(*this, Entity, Initializer,
3176                              /*SuppressUserConversions*/ true,
3177                              /*AllowExplicitConversions*/ false,
3178                              /*InOverloadResolution*/ false))
3179    SetFailed(InitializationSequence::FK_ConversionFailed);
3180  else
3181    setSequenceKind(StandardConversion);
3182}
3183
3184InitializationSequence::~InitializationSequence() {
3185  for (llvm::SmallVectorImpl<Step>::iterator Step = Steps.begin(),
3186                                          StepEnd = Steps.end();
3187       Step != StepEnd; ++Step)
3188    Step->Destroy();
3189}
3190
3191//===----------------------------------------------------------------------===//
3192// Perform initialization
3193//===----------------------------------------------------------------------===//
3194static Sema::AssignmentAction
3195getAssignmentAction(const InitializedEntity &Entity) {
3196  switch(Entity.getKind()) {
3197  case InitializedEntity::EK_Variable:
3198  case InitializedEntity::EK_New:
3199    return Sema::AA_Initializing;
3200
3201  case InitializedEntity::EK_Parameter:
3202    if (Entity.getDecl() &&
3203        isa<ObjCMethodDecl>(Entity.getDecl()->getDeclContext()))
3204      return Sema::AA_Sending;
3205
3206    return Sema::AA_Passing;
3207
3208  case InitializedEntity::EK_Result:
3209    return Sema::AA_Returning;
3210
3211  case InitializedEntity::EK_Exception:
3212  case InitializedEntity::EK_Base:
3213    llvm_unreachable("No assignment action for C++-specific initialization");
3214    break;
3215
3216  case InitializedEntity::EK_Temporary:
3217    // FIXME: Can we tell apart casting vs. converting?
3218    return Sema::AA_Casting;
3219
3220  case InitializedEntity::EK_Member:
3221  case InitializedEntity::EK_ArrayElement:
3222  case InitializedEntity::EK_VectorElement:
3223  case InitializedEntity::EK_BlockElement:
3224    return Sema::AA_Initializing;
3225  }
3226
3227  return Sema::AA_Converting;
3228}
3229
3230/// \brief Whether we should binding a created object as a temporary when
3231/// initializing the given entity.
3232static bool shouldBindAsTemporary(const InitializedEntity &Entity) {
3233  switch (Entity.getKind()) {
3234  case InitializedEntity::EK_ArrayElement:
3235  case InitializedEntity::EK_Member:
3236  case InitializedEntity::EK_Result:
3237  case InitializedEntity::EK_New:
3238  case InitializedEntity::EK_Variable:
3239  case InitializedEntity::EK_Base:
3240  case InitializedEntity::EK_VectorElement:
3241  case InitializedEntity::EK_Exception:
3242  case InitializedEntity::EK_BlockElement:
3243    return false;
3244
3245  case InitializedEntity::EK_Parameter:
3246  case InitializedEntity::EK_Temporary:
3247    return true;
3248  }
3249
3250  llvm_unreachable("missed an InitializedEntity kind?");
3251}
3252
3253/// \brief Whether the given entity, when initialized with an object
3254/// created for that initialization, requires destruction.
3255static bool shouldDestroyTemporary(const InitializedEntity &Entity) {
3256  switch (Entity.getKind()) {
3257    case InitializedEntity::EK_Member:
3258    case InitializedEntity::EK_Result:
3259    case InitializedEntity::EK_New:
3260    case InitializedEntity::EK_Base:
3261    case InitializedEntity::EK_VectorElement:
3262    case InitializedEntity::EK_BlockElement:
3263      return false;
3264
3265    case InitializedEntity::EK_Variable:
3266    case InitializedEntity::EK_Parameter:
3267    case InitializedEntity::EK_Temporary:
3268    case InitializedEntity::EK_ArrayElement:
3269    case InitializedEntity::EK_Exception:
3270      return true;
3271  }
3272
3273  llvm_unreachable("missed an InitializedEntity kind?");
3274}
3275
3276/// \brief Make a (potentially elidable) temporary copy of the object
3277/// provided by the given initializer by calling the appropriate copy
3278/// constructor.
3279///
3280/// \param S The Sema object used for type-checking.
3281///
3282/// \param T The type of the temporary object, which must either by
3283/// the type of the initializer expression or a superclass thereof.
3284///
3285/// \param Enter The entity being initialized.
3286///
3287/// \param CurInit The initializer expression.
3288///
3289/// \param IsExtraneousCopy Whether this is an "extraneous" copy that
3290/// is permitted in C++03 (but not C++0x) when binding a reference to
3291/// an rvalue.
3292///
3293/// \returns An expression that copies the initializer expression into
3294/// a temporary object, or an error expression if a copy could not be
3295/// created.
3296static Sema::OwningExprResult CopyObject(Sema &S,
3297                                         QualType T,
3298                                         const InitializedEntity &Entity,
3299                                         Sema::OwningExprResult CurInit,
3300                                         bool IsExtraneousCopy) {
3301  // Determine which class type we're copying to.
3302  Expr *CurInitExpr = (Expr *)CurInit.get();
3303  CXXRecordDecl *Class = 0;
3304  if (const RecordType *Record = T->getAs<RecordType>())
3305    Class = cast<CXXRecordDecl>(Record->getDecl());
3306  if (!Class)
3307    return move(CurInit);
3308
3309  // C++0x [class.copy]p34:
3310  //   When certain criteria are met, an implementation is allowed to
3311  //   omit the copy/move construction of a class object, even if the
3312  //   copy/move constructor and/or destructor for the object have
3313  //   side effects. [...]
3314  //     - when a temporary class object that has not been bound to a
3315  //       reference (12.2) would be copied/moved to a class object
3316  //       with the same cv-unqualified type, the copy/move operation
3317  //       can be omitted by constructing the temporary object
3318  //       directly into the target of the omitted copy/move
3319  //
3320  // Note that the other three bullets are handled elsewhere. Copy
3321  // elision for return statements and throw expressions are handled as part
3322  // of constructor initialization, while copy elision for exception handlers
3323  // is handled by the run-time.
3324  bool Elidable = CurInitExpr->isTemporaryObject() &&
3325     S.Context.hasSameUnqualifiedType(T, CurInitExpr->getType());
3326  SourceLocation Loc;
3327  switch (Entity.getKind()) {
3328  case InitializedEntity::EK_Result:
3329    Loc = Entity.getReturnLoc();
3330    break;
3331
3332  case InitializedEntity::EK_Exception:
3333    Loc = Entity.getThrowLoc();
3334    break;
3335
3336  case InitializedEntity::EK_Variable:
3337    Loc = Entity.getDecl()->getLocation();
3338    break;
3339
3340  case InitializedEntity::EK_ArrayElement:
3341  case InitializedEntity::EK_Member:
3342  case InitializedEntity::EK_Parameter:
3343  case InitializedEntity::EK_Temporary:
3344  case InitializedEntity::EK_New:
3345  case InitializedEntity::EK_Base:
3346  case InitializedEntity::EK_VectorElement:
3347  case InitializedEntity::EK_BlockElement:
3348    Loc = CurInitExpr->getLocStart();
3349    break;
3350  }
3351
3352  // Make sure that the type we are copying is complete.
3353  if (S.RequireCompleteType(Loc, T, S.PDiag(diag::err_temp_copy_incomplete)))
3354    return move(CurInit);
3355
3356  // Perform overload resolution using the class's copy constructors.
3357  DeclContext::lookup_iterator Con, ConEnd;
3358  OverloadCandidateSet CandidateSet(Loc);
3359  for (llvm::tie(Con, ConEnd) = S.LookupConstructors(Class);
3360       Con != ConEnd; ++Con) {
3361    // Only consider copy constructors.
3362    CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(*Con);
3363    if (!Constructor || Constructor->isInvalidDecl() ||
3364        !Constructor->isCopyConstructor() ||
3365        !Constructor->isConvertingConstructor(/*AllowExplicit=*/false))
3366      continue;
3367
3368    DeclAccessPair FoundDecl
3369      = DeclAccessPair::make(Constructor, Constructor->getAccess());
3370    S.AddOverloadCandidate(Constructor, FoundDecl,
3371                           &CurInitExpr, 1, CandidateSet);
3372  }
3373
3374  OverloadCandidateSet::iterator Best;
3375  switch (S.BestViableFunction(CandidateSet, Loc, Best)) {
3376  case OR_Success:
3377    break;
3378
3379  case OR_No_Viable_Function:
3380    S.Diag(Loc, IsExtraneousCopy && !S.isSFINAEContext()
3381           ? diag::ext_rvalue_to_reference_temp_copy_no_viable
3382           : diag::err_temp_copy_no_viable)
3383      << (int)Entity.getKind() << CurInitExpr->getType()
3384      << CurInitExpr->getSourceRange();
3385    S.PrintOverloadCandidates(CandidateSet, Sema::OCD_AllCandidates,
3386                              &CurInitExpr, 1);
3387    if (!IsExtraneousCopy || S.isSFINAEContext())
3388      return S.ExprError();
3389    return move(CurInit);
3390
3391  case OR_Ambiguous:
3392    S.Diag(Loc, diag::err_temp_copy_ambiguous)
3393      << (int)Entity.getKind() << CurInitExpr->getType()
3394      << CurInitExpr->getSourceRange();
3395    S.PrintOverloadCandidates(CandidateSet, Sema::OCD_ViableCandidates,
3396                              &CurInitExpr, 1);
3397    return S.ExprError();
3398
3399  case OR_Deleted:
3400    S.Diag(Loc, diag::err_temp_copy_deleted)
3401      << (int)Entity.getKind() << CurInitExpr->getType()
3402      << CurInitExpr->getSourceRange();
3403    S.Diag(Best->Function->getLocation(), diag::note_unavailable_here)
3404      << Best->Function->isDeleted();
3405    return S.ExprError();
3406  }
3407
3408  CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Best->Function);
3409  ASTOwningVector<&ActionBase::DeleteExpr> ConstructorArgs(S);
3410  CurInit.release(); // Ownership transferred into MultiExprArg, below.
3411
3412  S.CheckConstructorAccess(Loc, Constructor, Entity,
3413                           Best->FoundDecl.getAccess(), IsExtraneousCopy);
3414
3415  if (IsExtraneousCopy) {
3416    // If this is a totally extraneous copy for C++03 reference
3417    // binding purposes, just return the original initialization
3418    // expression. We don't generate an (elided) copy operation here
3419    // because doing so would require us to pass down a flag to avoid
3420    // infinite recursion, where each step adds another extraneous,
3421    // elidable copy.
3422
3423    // Instantiate the default arguments of any extra parameters in
3424    // the selected copy constructor, as if we were going to create a
3425    // proper call to the copy constructor.
3426    for (unsigned I = 1, N = Constructor->getNumParams(); I != N; ++I) {
3427      ParmVarDecl *Parm = Constructor->getParamDecl(I);
3428      if (S.RequireCompleteType(Loc, Parm->getType(),
3429                                S.PDiag(diag::err_call_incomplete_argument)))
3430        break;
3431
3432      // Build the default argument expression; we don't actually care
3433      // if this succeeds or not, because this routine will complain
3434      // if there was a problem.
3435      S.BuildCXXDefaultArgExpr(Loc, Constructor, Parm);
3436    }
3437
3438    return S.Owned(CurInitExpr);
3439  }
3440
3441  // Determine the arguments required to actually perform the
3442  // constructor call (we might have derived-to-base conversions, or
3443  // the copy constructor may have default arguments).
3444  if (S.CompleteConstructorCall(Constructor,
3445                                Sema::MultiExprArg(S,
3446                                                   (void **)&CurInitExpr,
3447                                                   1),
3448                                Loc, ConstructorArgs))
3449    return S.ExprError();
3450
3451  // Actually perform the constructor call.
3452  CurInit = S.BuildCXXConstructExpr(Loc, T, Constructor, Elidable,
3453                                    move_arg(ConstructorArgs));
3454
3455  // If we're supposed to bind temporaries, do so.
3456  if (!CurInit.isInvalid() && shouldBindAsTemporary(Entity))
3457    CurInit = S.MaybeBindToTemporary(CurInit.takeAs<Expr>());
3458  return move(CurInit);
3459}
3460
3461void InitializationSequence::PrintInitLocationNote(Sema &S,
3462                                              const InitializedEntity &Entity) {
3463  if (Entity.getKind() == InitializedEntity::EK_Parameter && Entity.getDecl()) {
3464    if (Entity.getDecl()->getLocation().isInvalid())
3465      return;
3466
3467    if (Entity.getDecl()->getDeclName())
3468      S.Diag(Entity.getDecl()->getLocation(), diag::note_parameter_named_here)
3469        << Entity.getDecl()->getDeclName();
3470    else
3471      S.Diag(Entity.getDecl()->getLocation(), diag::note_parameter_here);
3472  }
3473}
3474
3475Action::OwningExprResult
3476InitializationSequence::Perform(Sema &S,
3477                                const InitializedEntity &Entity,
3478                                const InitializationKind &Kind,
3479                                Action::MultiExprArg Args,
3480                                QualType *ResultType) {
3481  if (SequenceKind == FailedSequence) {
3482    unsigned NumArgs = Args.size();
3483    Diagnose(S, Entity, Kind, (Expr **)Args.release(), NumArgs);
3484    return S.ExprError();
3485  }
3486
3487  if (SequenceKind == DependentSequence) {
3488    // If the declaration is a non-dependent, incomplete array type
3489    // that has an initializer, then its type will be completed once
3490    // the initializer is instantiated.
3491    if (ResultType && !Entity.getType()->isDependentType() &&
3492        Args.size() == 1) {
3493      QualType DeclType = Entity.getType();
3494      if (const IncompleteArrayType *ArrayT
3495                           = S.Context.getAsIncompleteArrayType(DeclType)) {
3496        // FIXME: We don't currently have the ability to accurately
3497        // compute the length of an initializer list without
3498        // performing full type-checking of the initializer list
3499        // (since we have to determine where braces are implicitly
3500        // introduced and such).  So, we fall back to making the array
3501        // type a dependently-sized array type with no specified
3502        // bound.
3503        if (isa<InitListExpr>((Expr *)Args.get()[0])) {
3504          SourceRange Brackets;
3505
3506          // Scavange the location of the brackets from the entity, if we can.
3507          if (DeclaratorDecl *DD = Entity.getDecl()) {
3508            if (TypeSourceInfo *TInfo = DD->getTypeSourceInfo()) {
3509              TypeLoc TL = TInfo->getTypeLoc();
3510              if (IncompleteArrayTypeLoc *ArrayLoc
3511                                      = dyn_cast<IncompleteArrayTypeLoc>(&TL))
3512              Brackets = ArrayLoc->getBracketsRange();
3513            }
3514          }
3515
3516          *ResultType
3517            = S.Context.getDependentSizedArrayType(ArrayT->getElementType(),
3518                                                   /*NumElts=*/0,
3519                                                   ArrayT->getSizeModifier(),
3520                                       ArrayT->getIndexTypeCVRQualifiers(),
3521                                                   Brackets);
3522        }
3523
3524      }
3525    }
3526
3527    if (Kind.getKind() == InitializationKind::IK_Copy || Kind.isExplicitCast())
3528      return Sema::OwningExprResult(S, Args.release()[0]);
3529
3530    if (Args.size() == 0)
3531      return S.Owned((Expr *)0);
3532
3533    unsigned NumArgs = Args.size();
3534    return S.Owned(new (S.Context) ParenListExpr(S.Context,
3535                                                 SourceLocation(),
3536                                                 (Expr **)Args.release(),
3537                                                 NumArgs,
3538                                                 SourceLocation()));
3539  }
3540
3541  if (SequenceKind == NoInitialization)
3542    return S.Owned((Expr *)0);
3543
3544  QualType DestType = Entity.getType().getNonReferenceType();
3545  // FIXME: Ugly hack around the fact that Entity.getType() is not
3546  // the same as Entity.getDecl()->getType() in cases involving type merging,
3547  //  and we want latter when it makes sense.
3548  if (ResultType)
3549    *ResultType = Entity.getDecl() ? Entity.getDecl()->getType() :
3550                                     Entity.getType();
3551
3552  Sema::OwningExprResult CurInit = S.Owned((Expr *)0);
3553
3554  assert(!Steps.empty() && "Cannot have an empty initialization sequence");
3555
3556  // For initialization steps that start with a single initializer,
3557  // grab the only argument out the Args and place it into the "current"
3558  // initializer.
3559  switch (Steps.front().Kind) {
3560  case SK_ResolveAddressOfOverloadedFunction:
3561  case SK_CastDerivedToBaseRValue:
3562  case SK_CastDerivedToBaseXValue:
3563  case SK_CastDerivedToBaseLValue:
3564  case SK_BindReference:
3565  case SK_BindReferenceToTemporary:
3566  case SK_ExtraneousCopyToTemporary:
3567  case SK_UserConversion:
3568  case SK_QualificationConversionLValue:
3569  case SK_QualificationConversionXValue:
3570  case SK_QualificationConversionRValue:
3571  case SK_ConversionSequence:
3572  case SK_ListInitialization:
3573  case SK_CAssignment:
3574  case SK_StringInit:
3575  case SK_ObjCObjectConversion:
3576    assert(Args.size() == 1);
3577    CurInit = Sema::OwningExprResult(S, ((Expr **)(Args.get()))[0]->Retain());
3578    if (CurInit.isInvalid())
3579      return S.ExprError();
3580    break;
3581
3582  case SK_ConstructorInitialization:
3583  case SK_ZeroInitialization:
3584    break;
3585  }
3586
3587  // Walk through the computed steps for the initialization sequence,
3588  // performing the specified conversions along the way.
3589  bool ConstructorInitRequiresZeroInit = false;
3590  for (step_iterator Step = step_begin(), StepEnd = step_end();
3591       Step != StepEnd; ++Step) {
3592    if (CurInit.isInvalid())
3593      return S.ExprError();
3594
3595    Expr *CurInitExpr = (Expr *)CurInit.get();
3596    QualType SourceType = CurInitExpr? CurInitExpr->getType() : QualType();
3597
3598    switch (Step->Kind) {
3599    case SK_ResolveAddressOfOverloadedFunction:
3600      // Overload resolution determined which function invoke; update the
3601      // initializer to reflect that choice.
3602      S.CheckAddressOfMemberAccess(CurInitExpr, Step->Function.FoundDecl);
3603      S.DiagnoseUseOfDecl(Step->Function.FoundDecl, Kind.getLocation());
3604      CurInit = S.FixOverloadedFunctionReference(move(CurInit),
3605                                                 Step->Function.FoundDecl,
3606                                                 Step->Function.Function);
3607      break;
3608
3609    case SK_CastDerivedToBaseRValue:
3610    case SK_CastDerivedToBaseXValue:
3611    case SK_CastDerivedToBaseLValue: {
3612      // We have a derived-to-base cast that produces either an rvalue or an
3613      // lvalue. Perform that cast.
3614
3615      CXXCastPath BasePath;
3616
3617      // Casts to inaccessible base classes are allowed with C-style casts.
3618      bool IgnoreBaseAccess = Kind.isCStyleOrFunctionalCast();
3619      if (S.CheckDerivedToBaseConversion(SourceType, Step->Type,
3620                                         CurInitExpr->getLocStart(),
3621                                         CurInitExpr->getSourceRange(),
3622                                         &BasePath, IgnoreBaseAccess))
3623        return S.ExprError();
3624
3625      if (S.BasePathInvolvesVirtualBase(BasePath)) {
3626        QualType T = SourceType;
3627        if (const PointerType *Pointer = T->getAs<PointerType>())
3628          T = Pointer->getPointeeType();
3629        if (const RecordType *RecordTy = T->getAs<RecordType>())
3630          S.MarkVTableUsed(CurInitExpr->getLocStart(),
3631                           cast<CXXRecordDecl>(RecordTy->getDecl()));
3632      }
3633
3634      ImplicitCastExpr::ResultCategory Category =
3635          Step->Kind == SK_CastDerivedToBaseLValue ?
3636              ImplicitCastExpr::LValue :
3637              (Step->Kind == SK_CastDerivedToBaseXValue ?
3638                   ImplicitCastExpr::XValue :
3639                   ImplicitCastExpr::RValue);
3640      CurInit = S.Owned(ImplicitCastExpr::Create(S.Context,
3641                                                 Step->Type,
3642                                                 CastExpr::CK_DerivedToBase,
3643                                                 (Expr*)CurInit.release(),
3644                                                 &BasePath, Category));
3645      break;
3646    }
3647
3648    case SK_BindReference:
3649      if (FieldDecl *BitField = CurInitExpr->getBitField()) {
3650        // References cannot bind to bit fields (C++ [dcl.init.ref]p5).
3651        S.Diag(Kind.getLocation(), diag::err_reference_bind_to_bitfield)
3652          << Entity.getType().isVolatileQualified()
3653          << BitField->getDeclName()
3654          << CurInitExpr->getSourceRange();
3655        S.Diag(BitField->getLocation(), diag::note_bitfield_decl);
3656        return S.ExprError();
3657      }
3658
3659      if (CurInitExpr->refersToVectorElement()) {
3660        // References cannot bind to vector elements.
3661        S.Diag(Kind.getLocation(), diag::err_reference_bind_to_vector_element)
3662          << Entity.getType().isVolatileQualified()
3663          << CurInitExpr->getSourceRange();
3664        PrintInitLocationNote(S, Entity);
3665        return S.ExprError();
3666      }
3667
3668      // Reference binding does not have any corresponding ASTs.
3669
3670      // Check exception specifications
3671      if (S.CheckExceptionSpecCompatibility(CurInitExpr, DestType))
3672        return S.ExprError();
3673
3674      break;
3675
3676    case SK_BindReferenceToTemporary:
3677      // Reference binding does not have any corresponding ASTs.
3678
3679      // Check exception specifications
3680      if (S.CheckExceptionSpecCompatibility(CurInitExpr, DestType))
3681        return S.ExprError();
3682
3683      break;
3684
3685    case SK_ExtraneousCopyToTemporary:
3686      CurInit = CopyObject(S, Step->Type, Entity, move(CurInit),
3687                           /*IsExtraneousCopy=*/true);
3688      break;
3689
3690    case SK_UserConversion: {
3691      // We have a user-defined conversion that invokes either a constructor
3692      // or a conversion function.
3693      CastExpr::CastKind CastKind = CastExpr::CK_Unknown;
3694      bool IsCopy = false;
3695      FunctionDecl *Fn = Step->Function.Function;
3696      DeclAccessPair FoundFn = Step->Function.FoundDecl;
3697      bool CreatedObject = false;
3698      bool IsLvalue = false;
3699      if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Fn)) {
3700        // Build a call to the selected constructor.
3701        ASTOwningVector<&ActionBase::DeleteExpr> ConstructorArgs(S);
3702        SourceLocation Loc = CurInitExpr->getLocStart();
3703        CurInit.release(); // Ownership transferred into MultiExprArg, below.
3704
3705        // Determine the arguments required to actually perform the constructor
3706        // call.
3707        if (S.CompleteConstructorCall(Constructor,
3708                                      Sema::MultiExprArg(S,
3709                                                         (void **)&CurInitExpr,
3710                                                         1),
3711                                      Loc, ConstructorArgs))
3712          return S.ExprError();
3713
3714        // Build the an expression that constructs a temporary.
3715        CurInit = S.BuildCXXConstructExpr(Loc, Step->Type, Constructor,
3716                                          move_arg(ConstructorArgs));
3717        if (CurInit.isInvalid())
3718          return S.ExprError();
3719
3720        S.CheckConstructorAccess(Kind.getLocation(), Constructor, Entity,
3721                                 FoundFn.getAccess());
3722        S.DiagnoseUseOfDecl(FoundFn, Kind.getLocation());
3723
3724        CastKind = CastExpr::CK_ConstructorConversion;
3725        QualType Class = S.Context.getTypeDeclType(Constructor->getParent());
3726        if (S.Context.hasSameUnqualifiedType(SourceType, Class) ||
3727            S.IsDerivedFrom(SourceType, Class))
3728          IsCopy = true;
3729
3730        CreatedObject = true;
3731      } else {
3732        // Build a call to the conversion function.
3733        CXXConversionDecl *Conversion = cast<CXXConversionDecl>(Fn);
3734        IsLvalue = Conversion->getResultType()->isLValueReferenceType();
3735        S.CheckMemberOperatorAccess(Kind.getLocation(), CurInitExpr, 0,
3736                                    FoundFn);
3737        S.DiagnoseUseOfDecl(FoundFn, Kind.getLocation());
3738
3739        // FIXME: Should we move this initialization into a separate
3740        // derived-to-base conversion? I believe the answer is "no", because
3741        // we don't want to turn off access control here for c-style casts.
3742        if (S.PerformObjectArgumentInitialization(CurInitExpr, /*Qualifier=*/0,
3743                                                  FoundFn, Conversion))
3744          return S.ExprError();
3745
3746        // Do a little dance to make sure that CurInit has the proper
3747        // pointer.
3748        CurInit.release();
3749
3750        // Build the actual call to the conversion function.
3751        CurInit = S.Owned(S.BuildCXXMemberCallExpr(CurInitExpr, FoundFn,
3752                                                   Conversion));
3753        if (CurInit.isInvalid() || !CurInit.get())
3754          return S.ExprError();
3755
3756        CastKind = CastExpr::CK_UserDefinedConversion;
3757
3758        CreatedObject = Conversion->getResultType()->isRecordType();
3759      }
3760
3761      bool RequiresCopy = !IsCopy &&
3762        getKind() != InitializationSequence::ReferenceBinding;
3763      if (RequiresCopy || shouldBindAsTemporary(Entity))
3764        CurInit = S.MaybeBindToTemporary(CurInit.takeAs<Expr>());
3765      else if (CreatedObject && shouldDestroyTemporary(Entity)) {
3766        CurInitExpr = static_cast<Expr *>(CurInit.get());
3767        QualType T = CurInitExpr->getType();
3768        if (const RecordType *Record = T->getAs<RecordType>()) {
3769          CXXDestructorDecl *Destructor
3770            = S.LookupDestructor(cast<CXXRecordDecl>(Record->getDecl()));
3771          S.CheckDestructorAccess(CurInitExpr->getLocStart(), Destructor,
3772                                  S.PDiag(diag::err_access_dtor_temp) << T);
3773          S.MarkDeclarationReferenced(CurInitExpr->getLocStart(), Destructor);
3774        }
3775      }
3776
3777      CurInitExpr = CurInit.takeAs<Expr>();
3778      // FIXME: xvalues
3779      CurInit = S.Owned(ImplicitCastExpr::Create(S.Context,
3780                                                 CurInitExpr->getType(),
3781                                                 CastKind, CurInitExpr, 0,
3782               IsLvalue ? ImplicitCastExpr::LValue : ImplicitCastExpr::RValue));
3783
3784      if (RequiresCopy)
3785        CurInit = CopyObject(S, Entity.getType().getNonReferenceType(), Entity,
3786                             move(CurInit), /*IsExtraneousCopy=*/false);
3787
3788      break;
3789    }
3790
3791    case SK_QualificationConversionLValue:
3792    case SK_QualificationConversionXValue:
3793    case SK_QualificationConversionRValue: {
3794      // Perform a qualification conversion; these can never go wrong.
3795      ImplicitCastExpr::ResultCategory Category =
3796          Step->Kind == SK_QualificationConversionLValue ?
3797              ImplicitCastExpr::LValue :
3798              (Step->Kind == SK_QualificationConversionXValue ?
3799                   ImplicitCastExpr::XValue :
3800                   ImplicitCastExpr::RValue);
3801      S.ImpCastExprToType(CurInitExpr, Step->Type, CastExpr::CK_NoOp, Category);
3802      CurInit.release();
3803      CurInit = S.Owned(CurInitExpr);
3804      break;
3805    }
3806
3807    case SK_ConversionSequence: {
3808      bool IgnoreBaseAccess = Kind.isCStyleOrFunctionalCast();
3809
3810      if (S.PerformImplicitConversion(CurInitExpr, Step->Type, *Step->ICS,
3811                                      Sema::AA_Converting, IgnoreBaseAccess))
3812        return S.ExprError();
3813
3814      CurInit.release();
3815      CurInit = S.Owned(CurInitExpr);
3816      break;
3817    }
3818
3819    case SK_ListInitialization: {
3820      InitListExpr *InitList = cast<InitListExpr>(CurInitExpr);
3821      QualType Ty = Step->Type;
3822      if (S.CheckInitList(Entity, InitList, ResultType? *ResultType : Ty))
3823        return S.ExprError();
3824
3825      CurInit.release();
3826      CurInit = S.Owned(InitList);
3827      break;
3828    }
3829
3830    case SK_ConstructorInitialization: {
3831      unsigned NumArgs = Args.size();
3832      CXXConstructorDecl *Constructor
3833        = cast<CXXConstructorDecl>(Step->Function.Function);
3834
3835      // Build a call to the selected constructor.
3836      ASTOwningVector<&ActionBase::DeleteExpr> ConstructorArgs(S);
3837      SourceLocation Loc = (Kind.isCopyInit() && Kind.getEqualLoc().isValid())
3838                             ? Kind.getEqualLoc()
3839                             : Kind.getLocation();
3840
3841      // Determine the arguments required to actually perform the constructor
3842      // call.
3843      if (S.CompleteConstructorCall(Constructor, move(Args),
3844                                    Loc, ConstructorArgs))
3845        return S.ExprError();
3846
3847      // Build the expression that constructs a temporary.
3848      if (Entity.getKind() == InitializedEntity::EK_Temporary &&
3849          NumArgs != 1 && // FIXME: Hack to work around cast weirdness
3850          (Kind.getKind() == InitializationKind::IK_Direct ||
3851           Kind.getKind() == InitializationKind::IK_Value)) {
3852        // An explicitly-constructed temporary, e.g., X(1, 2).
3853        unsigned NumExprs = ConstructorArgs.size();
3854        Expr **Exprs = (Expr **)ConstructorArgs.take();
3855        S.MarkDeclarationReferenced(Loc, Constructor);
3856        CurInit = S.Owned(new (S.Context) CXXTemporaryObjectExpr(S.Context,
3857                                                                 Constructor,
3858                                                              Entity.getType(),
3859                                                                 Loc,
3860                                                                 Exprs,
3861                                                                 NumExprs,
3862                                                Kind.getParenRange().getEnd(),
3863                                             ConstructorInitRequiresZeroInit));
3864      } else {
3865        CXXConstructExpr::ConstructionKind ConstructKind =
3866          CXXConstructExpr::CK_Complete;
3867
3868        if (Entity.getKind() == InitializedEntity::EK_Base) {
3869          ConstructKind = Entity.getBaseSpecifier()->isVirtual() ?
3870            CXXConstructExpr::CK_VirtualBase :
3871            CXXConstructExpr::CK_NonVirtualBase;
3872        }
3873
3874        // If the entity allows NRVO, mark the construction as elidable
3875        // unconditionally.
3876        if (Entity.allowsNRVO())
3877          CurInit = S.BuildCXXConstructExpr(Loc, Entity.getType(),
3878                                            Constructor, /*Elidable=*/true,
3879                                            move_arg(ConstructorArgs),
3880                                            ConstructorInitRequiresZeroInit,
3881                                            ConstructKind);
3882        else
3883          CurInit = S.BuildCXXConstructExpr(Loc, Entity.getType(),
3884                                            Constructor,
3885                                            move_arg(ConstructorArgs),
3886                                            ConstructorInitRequiresZeroInit,
3887                                            ConstructKind);
3888      }
3889      if (CurInit.isInvalid())
3890        return S.ExprError();
3891
3892      // Only check access if all of that succeeded.
3893      S.CheckConstructorAccess(Loc, Constructor, Entity,
3894                               Step->Function.FoundDecl.getAccess());
3895      S.DiagnoseUseOfDecl(Step->Function.FoundDecl, Loc);
3896
3897      if (shouldBindAsTemporary(Entity))
3898        CurInit = S.MaybeBindToTemporary(CurInit.takeAs<Expr>());
3899
3900      break;
3901    }
3902
3903    case SK_ZeroInitialization: {
3904      step_iterator NextStep = Step;
3905      ++NextStep;
3906      if (NextStep != StepEnd &&
3907          NextStep->Kind == SK_ConstructorInitialization) {
3908        // The need for zero-initialization is recorded directly into
3909        // the call to the object's constructor within the next step.
3910        ConstructorInitRequiresZeroInit = true;
3911      } else if (Kind.getKind() == InitializationKind::IK_Value &&
3912                 S.getLangOptions().CPlusPlus &&
3913                 !Kind.isImplicitValueInit()) {
3914        CurInit = S.Owned(new (S.Context) CXXScalarValueInitExpr(Step->Type,
3915                                                   Kind.getRange().getBegin(),
3916                                                    Kind.getRange().getEnd()));
3917      } else {
3918        CurInit = S.Owned(new (S.Context) ImplicitValueInitExpr(Step->Type));
3919      }
3920      break;
3921    }
3922
3923    case SK_CAssignment: {
3924      QualType SourceType = CurInitExpr->getType();
3925      Sema::AssignConvertType ConvTy =
3926        S.CheckSingleAssignmentConstraints(Step->Type, CurInitExpr);
3927
3928      // If this is a call, allow conversion to a transparent union.
3929      if (ConvTy != Sema::Compatible &&
3930          Entity.getKind() == InitializedEntity::EK_Parameter &&
3931          S.CheckTransparentUnionArgumentConstraints(Step->Type, CurInitExpr)
3932            == Sema::Compatible)
3933        ConvTy = Sema::Compatible;
3934
3935      bool Complained;
3936      if (S.DiagnoseAssignmentResult(ConvTy, Kind.getLocation(),
3937                                     Step->Type, SourceType,
3938                                     CurInitExpr,
3939                                     getAssignmentAction(Entity),
3940                                     &Complained)) {
3941        PrintInitLocationNote(S, Entity);
3942        return S.ExprError();
3943      } else if (Complained)
3944        PrintInitLocationNote(S, Entity);
3945
3946      CurInit.release();
3947      CurInit = S.Owned(CurInitExpr);
3948      break;
3949    }
3950
3951    case SK_StringInit: {
3952      QualType Ty = Step->Type;
3953      CheckStringInit(CurInitExpr, ResultType ? *ResultType : Ty, S);
3954      break;
3955    }
3956
3957    case SK_ObjCObjectConversion:
3958      S.ImpCastExprToType(CurInitExpr, Step->Type,
3959                          CastExpr::CK_ObjCObjectLValueCast,
3960                          S.CastCategory(CurInitExpr));
3961      CurInit.release();
3962      CurInit = S.Owned(CurInitExpr);
3963      break;
3964    }
3965  }
3966
3967  return move(CurInit);
3968}
3969
3970//===----------------------------------------------------------------------===//
3971// Diagnose initialization failures
3972//===----------------------------------------------------------------------===//
3973bool InitializationSequence::Diagnose(Sema &S,
3974                                      const InitializedEntity &Entity,
3975                                      const InitializationKind &Kind,
3976                                      Expr **Args, unsigned NumArgs) {
3977  if (SequenceKind != FailedSequence)
3978    return false;
3979
3980  QualType DestType = Entity.getType();
3981  switch (Failure) {
3982  case FK_TooManyInitsForReference:
3983    // FIXME: Customize for the initialized entity?
3984    if (NumArgs == 0)
3985      S.Diag(Kind.getLocation(), diag::err_reference_without_init)
3986        << DestType.getNonReferenceType();
3987    else  // FIXME: diagnostic below could be better!
3988      S.Diag(Kind.getLocation(), diag::err_reference_has_multiple_inits)
3989        << SourceRange(Args[0]->getLocStart(), Args[NumArgs - 1]->getLocEnd());
3990    break;
3991
3992  case FK_ArrayNeedsInitList:
3993  case FK_ArrayNeedsInitListOrStringLiteral:
3994    S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list)
3995      << (Failure == FK_ArrayNeedsInitListOrStringLiteral);
3996    break;
3997
3998  case FK_AddressOfOverloadFailed: {
3999    DeclAccessPair Found;
4000    S.ResolveAddressOfOverloadedFunction(Args[0],
4001                                         DestType.getNonReferenceType(),
4002                                         true,
4003                                         Found);
4004    break;
4005  }
4006
4007  case FK_ReferenceInitOverloadFailed:
4008  case FK_UserConversionOverloadFailed:
4009    switch (FailedOverloadResult) {
4010    case OR_Ambiguous:
4011      if (Failure == FK_UserConversionOverloadFailed)
4012        S.Diag(Kind.getLocation(), diag::err_typecheck_ambiguous_condition)
4013          << Args[0]->getType() << DestType
4014          << Args[0]->getSourceRange();
4015      else
4016        S.Diag(Kind.getLocation(), diag::err_ref_init_ambiguous)
4017          << DestType << Args[0]->getType()
4018          << Args[0]->getSourceRange();
4019
4020      S.PrintOverloadCandidates(FailedCandidateSet, Sema::OCD_ViableCandidates,
4021                                Args, NumArgs);
4022      break;
4023
4024    case OR_No_Viable_Function:
4025      S.Diag(Kind.getLocation(), diag::err_typecheck_nonviable_condition)
4026        << Args[0]->getType() << DestType.getNonReferenceType()
4027        << Args[0]->getSourceRange();
4028      S.PrintOverloadCandidates(FailedCandidateSet, Sema::OCD_AllCandidates,
4029                                Args, NumArgs);
4030      break;
4031
4032    case OR_Deleted: {
4033      S.Diag(Kind.getLocation(), diag::err_typecheck_deleted_function)
4034        << Args[0]->getType() << DestType.getNonReferenceType()
4035        << Args[0]->getSourceRange();
4036      OverloadCandidateSet::iterator Best;
4037      OverloadingResult Ovl = S.BestViableFunction(FailedCandidateSet,
4038                                                   Kind.getLocation(),
4039                                                   Best);
4040      if (Ovl == OR_Deleted) {
4041        S.Diag(Best->Function->getLocation(), diag::note_unavailable_here)
4042          << Best->Function->isDeleted();
4043      } else {
4044        llvm_unreachable("Inconsistent overload resolution?");
4045      }
4046      break;
4047    }
4048
4049    case OR_Success:
4050      llvm_unreachable("Conversion did not fail!");
4051      break;
4052    }
4053    break;
4054
4055  case FK_NonConstLValueReferenceBindingToTemporary:
4056  case FK_NonConstLValueReferenceBindingToUnrelated:
4057    S.Diag(Kind.getLocation(),
4058           Failure == FK_NonConstLValueReferenceBindingToTemporary
4059             ? diag::err_lvalue_reference_bind_to_temporary
4060             : diag::err_lvalue_reference_bind_to_unrelated)
4061      << DestType.getNonReferenceType().isVolatileQualified()
4062      << DestType.getNonReferenceType()
4063      << Args[0]->getType()
4064      << Args[0]->getSourceRange();
4065    break;
4066
4067  case FK_RValueReferenceBindingToLValue:
4068    S.Diag(Kind.getLocation(), diag::err_lvalue_to_rvalue_ref)
4069      << Args[0]->getSourceRange();
4070    break;
4071
4072  case FK_ReferenceInitDropsQualifiers:
4073    S.Diag(Kind.getLocation(), diag::err_reference_bind_drops_quals)
4074      << DestType.getNonReferenceType()
4075      << Args[0]->getType()
4076      << Args[0]->getSourceRange();
4077    break;
4078
4079  case FK_ReferenceInitFailed:
4080    S.Diag(Kind.getLocation(), diag::err_reference_bind_failed)
4081      << DestType.getNonReferenceType()
4082      << (Args[0]->isLvalue(S.Context) == Expr::LV_Valid)
4083      << Args[0]->getType()
4084      << Args[0]->getSourceRange();
4085    break;
4086
4087  case FK_ConversionFailed:
4088    S.Diag(Kind.getLocation(), diag::err_init_conversion_failed)
4089      << (int)Entity.getKind()
4090      << DestType
4091      << (Args[0]->isLvalue(S.Context) == Expr::LV_Valid)
4092      << Args[0]->getType()
4093      << Args[0]->getSourceRange();
4094    break;
4095
4096  case FK_TooManyInitsForScalar: {
4097    SourceRange R;
4098
4099    if (InitListExpr *InitList = dyn_cast<InitListExpr>(Args[0]))
4100      R = SourceRange(InitList->getInit(1)->getLocStart(),
4101                      InitList->getLocEnd());
4102    else
4103      R = SourceRange(Args[0]->getLocStart(), Args[NumArgs - 1]->getLocEnd());
4104
4105    S.Diag(Kind.getLocation(), diag::err_excess_initializers)
4106      << /*scalar=*/2 << R;
4107    break;
4108  }
4109
4110  case FK_ReferenceBindingToInitList:
4111    S.Diag(Kind.getLocation(), diag::err_reference_bind_init_list)
4112      << DestType.getNonReferenceType() << Args[0]->getSourceRange();
4113    break;
4114
4115  case FK_InitListBadDestinationType:
4116    S.Diag(Kind.getLocation(), diag::err_init_list_bad_dest_type)
4117      << (DestType->isRecordType()) << DestType << Args[0]->getSourceRange();
4118    break;
4119
4120  case FK_ConstructorOverloadFailed: {
4121    SourceRange ArgsRange;
4122    if (NumArgs)
4123      ArgsRange = SourceRange(Args[0]->getLocStart(),
4124                              Args[NumArgs - 1]->getLocEnd());
4125
4126    // FIXME: Using "DestType" for the entity we're printing is probably
4127    // bad.
4128    switch (FailedOverloadResult) {
4129      case OR_Ambiguous:
4130        S.Diag(Kind.getLocation(), diag::err_ovl_ambiguous_init)
4131          << DestType << ArgsRange;
4132        S.PrintOverloadCandidates(FailedCandidateSet,
4133                                  Sema::OCD_ViableCandidates, Args, NumArgs);
4134        break;
4135
4136      case OR_No_Viable_Function:
4137        if (Kind.getKind() == InitializationKind::IK_Default &&
4138            (Entity.getKind() == InitializedEntity::EK_Base ||
4139             Entity.getKind() == InitializedEntity::EK_Member) &&
4140            isa<CXXConstructorDecl>(S.CurContext)) {
4141          // This is implicit default initialization of a member or
4142          // base within a constructor. If no viable function was
4143          // found, notify the user that she needs to explicitly
4144          // initialize this base/member.
4145          CXXConstructorDecl *Constructor
4146            = cast<CXXConstructorDecl>(S.CurContext);
4147          if (Entity.getKind() == InitializedEntity::EK_Base) {
4148            S.Diag(Kind.getLocation(), diag::err_missing_default_ctor)
4149              << Constructor->isImplicit()
4150              << S.Context.getTypeDeclType(Constructor->getParent())
4151              << /*base=*/0
4152              << Entity.getType();
4153
4154            RecordDecl *BaseDecl
4155              = Entity.getBaseSpecifier()->getType()->getAs<RecordType>()
4156                                                                  ->getDecl();
4157            S.Diag(BaseDecl->getLocation(), diag::note_previous_decl)
4158              << S.Context.getTagDeclType(BaseDecl);
4159          } else {
4160            S.Diag(Kind.getLocation(), diag::err_missing_default_ctor)
4161              << Constructor->isImplicit()
4162              << S.Context.getTypeDeclType(Constructor->getParent())
4163              << /*member=*/1
4164              << Entity.getName();
4165            S.Diag(Entity.getDecl()->getLocation(), diag::note_field_decl);
4166
4167            if (const RecordType *Record
4168                                 = Entity.getType()->getAs<RecordType>())
4169              S.Diag(Record->getDecl()->getLocation(),
4170                     diag::note_previous_decl)
4171                << S.Context.getTagDeclType(Record->getDecl());
4172          }
4173          break;
4174        }
4175
4176        S.Diag(Kind.getLocation(), diag::err_ovl_no_viable_function_in_init)
4177          << DestType << ArgsRange;
4178        S.PrintOverloadCandidates(FailedCandidateSet, Sema::OCD_AllCandidates,
4179                                  Args, NumArgs);
4180        break;
4181
4182      case OR_Deleted: {
4183        S.Diag(Kind.getLocation(), diag::err_ovl_deleted_init)
4184          << true << DestType << ArgsRange;
4185        OverloadCandidateSet::iterator Best;
4186        OverloadingResult Ovl = S.BestViableFunction(FailedCandidateSet,
4187                                                     Kind.getLocation(),
4188                                                     Best);
4189        if (Ovl == OR_Deleted) {
4190          S.Diag(Best->Function->getLocation(), diag::note_unavailable_here)
4191            << Best->Function->isDeleted();
4192        } else {
4193          llvm_unreachable("Inconsistent overload resolution?");
4194        }
4195        break;
4196      }
4197
4198      case OR_Success:
4199        llvm_unreachable("Conversion did not fail!");
4200        break;
4201    }
4202    break;
4203  }
4204
4205  case FK_DefaultInitOfConst:
4206    if (Entity.getKind() == InitializedEntity::EK_Member &&
4207        isa<CXXConstructorDecl>(S.CurContext)) {
4208      // This is implicit default-initialization of a const member in
4209      // a constructor. Complain that it needs to be explicitly
4210      // initialized.
4211      CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(S.CurContext);
4212      S.Diag(Kind.getLocation(), diag::err_uninitialized_member_in_ctor)
4213        << Constructor->isImplicit()
4214        << S.Context.getTypeDeclType(Constructor->getParent())
4215        << /*const=*/1
4216        << Entity.getName();
4217      S.Diag(Entity.getDecl()->getLocation(), diag::note_previous_decl)
4218        << Entity.getName();
4219    } else {
4220      S.Diag(Kind.getLocation(), diag::err_default_init_const)
4221        << DestType << (bool)DestType->getAs<RecordType>();
4222    }
4223    break;
4224
4225    case FK_Incomplete:
4226      S.RequireCompleteType(Kind.getLocation(), DestType,
4227                            diag::err_init_incomplete_type);
4228      break;
4229  }
4230
4231  PrintInitLocationNote(S, Entity);
4232  return true;
4233}
4234
4235void InitializationSequence::dump(llvm::raw_ostream &OS) const {
4236  switch (SequenceKind) {
4237  case FailedSequence: {
4238    OS << "Failed sequence: ";
4239    switch (Failure) {
4240    case FK_TooManyInitsForReference:
4241      OS << "too many initializers for reference";
4242      break;
4243
4244    case FK_ArrayNeedsInitList:
4245      OS << "array requires initializer list";
4246      break;
4247
4248    case FK_ArrayNeedsInitListOrStringLiteral:
4249      OS << "array requires initializer list or string literal";
4250      break;
4251
4252    case FK_AddressOfOverloadFailed:
4253      OS << "address of overloaded function failed";
4254      break;
4255
4256    case FK_ReferenceInitOverloadFailed:
4257      OS << "overload resolution for reference initialization failed";
4258      break;
4259
4260    case FK_NonConstLValueReferenceBindingToTemporary:
4261      OS << "non-const lvalue reference bound to temporary";
4262      break;
4263
4264    case FK_NonConstLValueReferenceBindingToUnrelated:
4265      OS << "non-const lvalue reference bound to unrelated type";
4266      break;
4267
4268    case FK_RValueReferenceBindingToLValue:
4269      OS << "rvalue reference bound to an lvalue";
4270      break;
4271
4272    case FK_ReferenceInitDropsQualifiers:
4273      OS << "reference initialization drops qualifiers";
4274      break;
4275
4276    case FK_ReferenceInitFailed:
4277      OS << "reference initialization failed";
4278      break;
4279
4280    case FK_ConversionFailed:
4281      OS << "conversion failed";
4282      break;
4283
4284    case FK_TooManyInitsForScalar:
4285      OS << "too many initializers for scalar";
4286      break;
4287
4288    case FK_ReferenceBindingToInitList:
4289      OS << "referencing binding to initializer list";
4290      break;
4291
4292    case FK_InitListBadDestinationType:
4293      OS << "initializer list for non-aggregate, non-scalar type";
4294      break;
4295
4296    case FK_UserConversionOverloadFailed:
4297      OS << "overloading failed for user-defined conversion";
4298      break;
4299
4300    case FK_ConstructorOverloadFailed:
4301      OS << "constructor overloading failed";
4302      break;
4303
4304    case FK_DefaultInitOfConst:
4305      OS << "default initialization of a const variable";
4306      break;
4307
4308    case FK_Incomplete:
4309      OS << "initialization of incomplete type";
4310      break;
4311    }
4312    OS << '\n';
4313    return;
4314  }
4315
4316  case DependentSequence:
4317    OS << "Dependent sequence: ";
4318    return;
4319
4320  case UserDefinedConversion:
4321    OS << "User-defined conversion sequence: ";
4322    break;
4323
4324  case ConstructorInitialization:
4325    OS << "Constructor initialization sequence: ";
4326    break;
4327
4328  case ReferenceBinding:
4329    OS << "Reference binding: ";
4330    break;
4331
4332  case ListInitialization:
4333    OS << "List initialization: ";
4334    break;
4335
4336  case ZeroInitialization:
4337    OS << "Zero initialization\n";
4338    return;
4339
4340  case NoInitialization:
4341    OS << "No initialization\n";
4342    return;
4343
4344  case StandardConversion:
4345    OS << "Standard conversion: ";
4346    break;
4347
4348  case CAssignment:
4349    OS << "C assignment: ";
4350    break;
4351
4352  case StringInit:
4353    OS << "String initialization: ";
4354    break;
4355  }
4356
4357  for (step_iterator S = step_begin(), SEnd = step_end(); S != SEnd; ++S) {
4358    if (S != step_begin()) {
4359      OS << " -> ";
4360    }
4361
4362    switch (S->Kind) {
4363    case SK_ResolveAddressOfOverloadedFunction:
4364      OS << "resolve address of overloaded function";
4365      break;
4366
4367    case SK_CastDerivedToBaseRValue:
4368      OS << "derived-to-base case (rvalue" << S->Type.getAsString() << ")";
4369      break;
4370
4371    case SK_CastDerivedToBaseXValue:
4372      OS << "derived-to-base case (xvalue" << S->Type.getAsString() << ")";
4373      break;
4374
4375    case SK_CastDerivedToBaseLValue:
4376      OS << "derived-to-base case (lvalue" << S->Type.getAsString() << ")";
4377      break;
4378
4379    case SK_BindReference:
4380      OS << "bind reference to lvalue";
4381      break;
4382
4383    case SK_BindReferenceToTemporary:
4384      OS << "bind reference to a temporary";
4385      break;
4386
4387    case SK_ExtraneousCopyToTemporary:
4388      OS << "extraneous C++03 copy to temporary";
4389      break;
4390
4391    case SK_UserConversion:
4392      OS << "user-defined conversion via " << S->Function.Function;
4393      break;
4394
4395    case SK_QualificationConversionRValue:
4396      OS << "qualification conversion (rvalue)";
4397
4398    case SK_QualificationConversionXValue:
4399      OS << "qualification conversion (xvalue)";
4400
4401    case SK_QualificationConversionLValue:
4402      OS << "qualification conversion (lvalue)";
4403      break;
4404
4405    case SK_ConversionSequence:
4406      OS << "implicit conversion sequence (";
4407      S->ICS->DebugPrint(); // FIXME: use OS
4408      OS << ")";
4409      break;
4410
4411    case SK_ListInitialization:
4412      OS << "list initialization";
4413      break;
4414
4415    case SK_ConstructorInitialization:
4416      OS << "constructor initialization";
4417      break;
4418
4419    case SK_ZeroInitialization:
4420      OS << "zero initialization";
4421      break;
4422
4423    case SK_CAssignment:
4424      OS << "C assignment";
4425      break;
4426
4427    case SK_StringInit:
4428      OS << "string initialization";
4429      break;
4430
4431    case SK_ObjCObjectConversion:
4432      OS << "Objective-C object conversion";
4433      break;
4434    }
4435  }
4436}
4437
4438void InitializationSequence::dump() const {
4439  dump(llvm::errs());
4440}
4441
4442//===----------------------------------------------------------------------===//
4443// Initialization helper functions
4444//===----------------------------------------------------------------------===//
4445Sema::OwningExprResult
4446Sema::PerformCopyInitialization(const InitializedEntity &Entity,
4447                                SourceLocation EqualLoc,
4448                                OwningExprResult Init) {
4449  if (Init.isInvalid())
4450    return ExprError();
4451
4452  Expr *InitE = (Expr *)Init.get();
4453  assert(InitE && "No initialization expression?");
4454
4455  if (EqualLoc.isInvalid())
4456    EqualLoc = InitE->getLocStart();
4457
4458  InitializationKind Kind = InitializationKind::CreateCopy(InitE->getLocStart(),
4459                                                           EqualLoc);
4460  InitializationSequence Seq(*this, Entity, Kind, &InitE, 1);
4461  Init.release();
4462  return Seq.Perform(*this, Entity, Kind,
4463                     MultiExprArg(*this, (void**)&InitE, 1));
4464}
4465