SemaType.cpp revision e91593ef084479340582b2ba177b44be50a717b7
1//===--- SemaType.cpp - Semantic Analysis for Types -----------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements type-related semantic analysis.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "clang/AST/ASTContext.h"
16#include "clang/AST/Decl.h"
17#include "clang/AST/DeclObjC.h"
18#include "clang/AST/Expr.h"
19#include "clang/Basic/Diagnostic.h"
20#include "clang/Basic/LangOptions.h"
21#include "clang/Parse/DeclSpec.h"
22using namespace clang;
23
24/// ConvertDeclSpecToType - Convert the specified declspec to the appropriate
25/// type object.  This returns null on error.
26QualType Sema::ConvertDeclSpecToType(const DeclSpec &DS) {
27  // FIXME: Should move the logic from DeclSpec::Finish to here for validity
28  // checking.
29  QualType Result;
30
31  switch (DS.getTypeSpecType()) {
32  default: assert(0 && "Unknown TypeSpecType!");
33  case DeclSpec::TST_void:
34    Result = Context.VoidTy;
35    break;
36  case DeclSpec::TST_char:
37    if (DS.getTypeSpecSign() == DeclSpec::TSS_unspecified)
38      Result = Context.CharTy;
39    else if (DS.getTypeSpecSign() == DeclSpec::TSS_signed)
40      Result = Context.SignedCharTy;
41    else {
42      assert(DS.getTypeSpecSign() == DeclSpec::TSS_unsigned &&
43             "Unknown TSS value");
44      Result = Context.UnsignedCharTy;
45    }
46    break;
47  case DeclSpec::TST_wchar:
48    if (DS.getTypeSpecSign() == DeclSpec::TSS_unspecified)
49      Result = Context.WCharTy;
50    else if (DS.getTypeSpecSign() == DeclSpec::TSS_signed) {
51      Diag(DS.getTypeSpecSignLoc(), diag::ext_invalid_sign_spec,
52           DS.getSpecifierName(DS.getTypeSpecType()));
53      Result = Context.getSignedWCharType();
54    } else {
55      assert(DS.getTypeSpecSign() == DeclSpec::TSS_unsigned &&
56        "Unknown TSS value");
57      Diag(DS.getTypeSpecSignLoc(), diag::ext_invalid_sign_spec,
58           DS.getSpecifierName(DS.getTypeSpecType()));
59      Result = Context.getUnsignedWCharType();
60    }
61    break;
62  case DeclSpec::TST_unspecified:
63    // "<proto1,proto2>" is an objc qualified ID with a missing id.
64      if (DeclSpec::ProtocolQualifierListTy PQ = DS.getProtocolQualifiers()) {
65      Result = Context.getObjCQualifiedIdType((ObjCProtocolDecl**)PQ,
66                                              DS.getNumProtocolQualifiers());
67      break;
68    }
69
70    // Unspecified typespec defaults to int in C90.  However, the C90 grammar
71    // [C90 6.5] only allows a decl-spec if there was *some* type-specifier,
72    // type-qualifier, or storage-class-specifier.  If not, emit an extwarn.
73    // Note that the one exception to this is function definitions, which are
74    // allowed to be completely missing a declspec.  This is handled in the
75    // parser already though by it pretending to have seen an 'int' in this
76    // case.
77    if (getLangOptions().ImplicitInt) {
78      if ((DS.getParsedSpecifiers() & (DeclSpec::PQ_StorageClassSpecifier |
79                                       DeclSpec::PQ_TypeSpecifier |
80                                       DeclSpec::PQ_TypeQualifier)) == 0)
81        Diag(DS.getSourceRange().getBegin(), diag::ext_missing_declspec);
82    } else {
83      // C99 and C++ require a type specifier.  For example, C99 6.7.2p2 says:
84      // "At least one type specifier shall be given in the declaration
85      // specifiers in each declaration, and in the specifier-qualifier list in
86      // each struct declaration and type name."
87      if (!DS.hasTypeSpecifier())
88        Diag(DS.getSourceRange().getBegin(), diag::ext_missing_type_specifier);
89    }
90
91    // FALL THROUGH.
92  case DeclSpec::TST_int: {
93    if (DS.getTypeSpecSign() != DeclSpec::TSS_unsigned) {
94      switch (DS.getTypeSpecWidth()) {
95      case DeclSpec::TSW_unspecified: Result = Context.IntTy; break;
96      case DeclSpec::TSW_short:       Result = Context.ShortTy; break;
97      case DeclSpec::TSW_long:        Result = Context.LongTy; break;
98      case DeclSpec::TSW_longlong:    Result = Context.LongLongTy; break;
99      }
100    } else {
101      switch (DS.getTypeSpecWidth()) {
102      case DeclSpec::TSW_unspecified: Result = Context.UnsignedIntTy; break;
103      case DeclSpec::TSW_short:       Result = Context.UnsignedShortTy; break;
104      case DeclSpec::TSW_long:        Result = Context.UnsignedLongTy; break;
105      case DeclSpec::TSW_longlong:    Result =Context.UnsignedLongLongTy; break;
106      }
107    }
108    break;
109  }
110  case DeclSpec::TST_float: Result = Context.FloatTy; break;
111  case DeclSpec::TST_double:
112    if (DS.getTypeSpecWidth() == DeclSpec::TSW_long)
113      Result = Context.LongDoubleTy;
114    else
115      Result = Context.DoubleTy;
116    break;
117  case DeclSpec::TST_bool: Result = Context.BoolTy; break; // _Bool or bool
118  case DeclSpec::TST_decimal32:    // _Decimal32
119  case DeclSpec::TST_decimal64:    // _Decimal64
120  case DeclSpec::TST_decimal128:   // _Decimal128
121    assert(0 && "FIXME: GNU decimal extensions not supported yet!");
122  case DeclSpec::TST_class:
123  case DeclSpec::TST_enum:
124  case DeclSpec::TST_union:
125  case DeclSpec::TST_struct: {
126    Decl *D = static_cast<Decl *>(DS.getTypeRep());
127    assert(D && "Didn't get a decl for a class/enum/union/struct?");
128    assert(DS.getTypeSpecWidth() == 0 && DS.getTypeSpecComplex() == 0 &&
129           DS.getTypeSpecSign() == 0 &&
130           "Can't handle qualifiers on typedef names yet!");
131    // TypeQuals handled by caller.
132    Result = Context.getTypeDeclType(cast<TypeDecl>(D));
133    break;
134  }
135  case DeclSpec::TST_typedef: {
136    Decl *D = static_cast<Decl *>(DS.getTypeRep());
137    assert(D && "Didn't get a decl for a typedef?");
138    assert(DS.getTypeSpecWidth() == 0 && DS.getTypeSpecComplex() == 0 &&
139           DS.getTypeSpecSign() == 0 &&
140           "Can't handle qualifiers on typedef names yet!");
141    DeclSpec::ProtocolQualifierListTy PQ = DS.getProtocolQualifiers();
142
143    // FIXME: Adding a TST_objcInterface clause doesn't seem ideal, so
144    // we have this "hack" for now...
145    if (ObjCInterfaceDecl *ObjCIntDecl = dyn_cast<ObjCInterfaceDecl>(D)) {
146      if (PQ == 0) {
147        Result = Context.getObjCInterfaceType(ObjCIntDecl);
148        break;
149      }
150
151      Result = Context.getObjCQualifiedInterfaceType(ObjCIntDecl,
152                                                     (ObjCProtocolDecl**)PQ,
153                                                 DS.getNumProtocolQualifiers());
154      break;
155    } else if (TypedefDecl *typeDecl = dyn_cast<TypedefDecl>(D)) {
156      if (Context.getObjCIdType() == Context.getTypedefType(typeDecl) && PQ) {
157        // id<protocol-list>
158        Result = Context.getObjCQualifiedIdType((ObjCProtocolDecl**)PQ,
159                                                DS.getNumProtocolQualifiers());
160        break;
161      }
162    }
163    // TypeQuals handled by caller.
164    Result = Context.getTypeDeclType(dyn_cast<TypeDecl>(D));
165    break;
166  }
167  case DeclSpec::TST_typeofType:
168    Result = QualType::getFromOpaquePtr(DS.getTypeRep());
169    assert(!Result.isNull() && "Didn't get a type for typeof?");
170    // TypeQuals handled by caller.
171    Result = Context.getTypeOfType(Result);
172    break;
173  case DeclSpec::TST_typeofExpr: {
174    Expr *E = static_cast<Expr *>(DS.getTypeRep());
175    assert(E && "Didn't get an expression for typeof?");
176    // TypeQuals handled by caller.
177    Result = Context.getTypeOfExpr(E);
178    break;
179  }
180  }
181
182  // Handle complex types.
183  if (DS.getTypeSpecComplex() == DeclSpec::TSC_complex)
184    Result = Context.getComplexType(Result);
185
186  assert(DS.getTypeSpecComplex() != DeclSpec::TSC_imaginary &&
187         "FIXME: imaginary types not supported yet!");
188
189  // See if there are any attributes on the declspec that apply to the type (as
190  // opposed to the decl).
191  if (const AttributeList *AL = DS.getAttributes())
192    ProcessTypeAttributeList(Result, AL);
193
194  // Apply const/volatile/restrict qualifiers to T.
195  if (unsigned TypeQuals = DS.getTypeQualifiers()) {
196
197    // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
198    // or incomplete types shall not be restrict-qualified."  C++ also allows
199    // restrict-qualified references.
200    if (TypeQuals & QualType::Restrict) {
201      if (const PointerLikeType *PT = Result->getAsPointerLikeType()) {
202        QualType EltTy = PT->getPointeeType();
203
204        // If we have a pointer or reference, the pointee must have an object or
205        // incomplete type.
206        if (!EltTy->isIncompleteOrObjectType()) {
207          Diag(DS.getRestrictSpecLoc(),
208               diag::err_typecheck_invalid_restrict_invalid_pointee,
209               EltTy.getAsString(), DS.getSourceRange());
210          TypeQuals &= ~QualType::Restrict; // Remove the restrict qualifier.
211        }
212      } else {
213        Diag(DS.getRestrictSpecLoc(),
214             diag::err_typecheck_invalid_restrict_not_pointer,
215             Result.getAsString(), DS.getSourceRange());
216        TypeQuals &= ~QualType::Restrict; // Remove the restrict qualifier.
217      }
218    }
219
220    // Warn about CV qualifiers on functions: C99 6.7.3p8: "If the specification
221    // of a function type includes any type qualifiers, the behavior is
222    // undefined."
223    if (Result->isFunctionType() && TypeQuals) {
224      // Get some location to point at, either the C or V location.
225      SourceLocation Loc;
226      if (TypeQuals & QualType::Const)
227        Loc = DS.getConstSpecLoc();
228      else {
229        assert((TypeQuals & QualType::Volatile) &&
230               "Has CV quals but not C or V?");
231        Loc = DS.getVolatileSpecLoc();
232      }
233      Diag(Loc, diag::warn_typecheck_function_qualifiers,
234           Result.getAsString(), DS.getSourceRange());
235    }
236
237    Result = Result.getQualifiedType(TypeQuals);
238  }
239  return Result;
240}
241
242/// GetTypeForDeclarator - Convert the type for the specified declarator to Type
243/// instances.
244QualType Sema::GetTypeForDeclarator(Declarator &D, Scope *S) {
245  // long long is a C99 feature.
246  if (!getLangOptions().C99 && !getLangOptions().CPlusPlus0x &&
247      D.getDeclSpec().getTypeSpecWidth() == DeclSpec::TSW_longlong)
248    Diag(D.getDeclSpec().getTypeSpecWidthLoc(), diag::ext_longlong);
249
250  QualType T = ConvertDeclSpecToType(D.getDeclSpec());
251
252  // Walk the DeclTypeInfo, building the recursive type as we go.  DeclTypeInfos
253  // are ordered from the identifier out, which is opposite of what we want :).
254  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
255    DeclaratorChunk &DeclType = D.getTypeObject(e-i-1);
256    switch (DeclType.Kind) {
257    default: assert(0 && "Unknown decltype!");
258    case DeclaratorChunk::Pointer:
259      if (T->isReferenceType()) {
260        // C++ 8.3.2p4: There shall be no ... pointers to references ...
261        Diag(DeclType.Loc, diag::err_illegal_decl_pointer_to_reference,
262             D.getIdentifier() ? D.getIdentifier()->getName() : "type name");
263        D.setInvalidType(true);
264        T = Context.IntTy;
265      }
266
267      // Enforce C99 6.7.3p2: "Types other than pointer types derived from
268      // object or incomplete types shall not be restrict-qualified."
269      if ((DeclType.Ptr.TypeQuals & QualType::Restrict) &&
270          !T->isIncompleteOrObjectType()) {
271        Diag(DeclType.Loc,
272             diag::err_typecheck_invalid_restrict_invalid_pointee,
273             T.getAsString());
274        DeclType.Ptr.TypeQuals &= QualType::Restrict;
275      }
276
277      // Apply the pointer typequals to the pointer object.
278      T = Context.getPointerType(T).getQualifiedType(DeclType.Ptr.TypeQuals);
279      break;
280    case DeclaratorChunk::Reference:
281      if (const ReferenceType *RT = T->getAsReferenceType()) {
282        // C++ 8.3.2p4: There shall be no references to references.
283        Diag(DeclType.Loc, diag::err_illegal_decl_reference_to_reference,
284             D.getIdentifier() ? D.getIdentifier()->getName() : "type name");
285        D.setInvalidType(true);
286        T = RT->getPointeeType();
287      }
288
289      // Enforce C99 6.7.3p2: "Types other than pointer types derived from
290      // object or incomplete types shall not be restrict-qualified."
291      if (DeclType.Ref.HasRestrict &&
292          !T->isIncompleteOrObjectType()) {
293        Diag(DeclType.Loc,
294             diag::err_typecheck_invalid_restrict_invalid_pointee,
295             T.getAsString());
296        DeclType.Ref.HasRestrict = false;
297      }
298
299      T = Context.getReferenceType(T);
300
301      // Handle restrict on references.
302      if (DeclType.Ref.HasRestrict)
303        T.addRestrict();
304      break;
305    case DeclaratorChunk::Array: {
306      DeclaratorChunk::ArrayTypeInfo &ATI = DeclType.Arr;
307      Expr *ArraySize = static_cast<Expr*>(ATI.NumElts);
308      ArrayType::ArraySizeModifier ASM;
309      if (ATI.isStar)
310        ASM = ArrayType::Star;
311      else if (ATI.hasStatic)
312        ASM = ArrayType::Static;
313      else
314        ASM = ArrayType::Normal;
315
316      // C99 6.7.5.2p1: If the element type is an incomplete or function type,
317      // reject it (e.g. void ary[7], struct foo ary[7], void ary[7]())
318      if (T->isIncompleteType()) {
319        Diag(D.getIdentifierLoc(), diag::err_illegal_decl_array_incomplete_type,
320             T.getAsString());
321        T = Context.IntTy;
322        D.setInvalidType(true);
323      } else if (T->isFunctionType()) {
324        Diag(D.getIdentifierLoc(), diag::err_illegal_decl_array_of_functions,
325             D.getIdentifier() ? D.getIdentifier()->getName() : "type name");
326        T = Context.getPointerType(T);
327        D.setInvalidType(true);
328      } else if (const ReferenceType *RT = T->getAsReferenceType()) {
329        // C++ 8.3.2p4: There shall be no ... arrays of references ...
330        Diag(D.getIdentifierLoc(), diag::err_illegal_decl_array_of_references,
331             D.getIdentifier() ? D.getIdentifier()->getName() : "type name");
332        T = RT->getPointeeType();
333        D.setInvalidType(true);
334      } else if (const RecordType *EltTy = T->getAsRecordType()) {
335        // If the element type is a struct or union that contains a variadic
336        // array, reject it: C99 6.7.2.1p2.
337        if (EltTy->getDecl()->hasFlexibleArrayMember()) {
338          Diag(DeclType.Loc, diag::err_flexible_array_in_array,
339               T.getAsString());
340          T = Context.IntTy;
341          D.setInvalidType(true);
342        }
343      }
344      // C99 6.7.5.2p1: The size expression shall have integer type.
345      if (ArraySize && !ArraySize->getType()->isIntegerType()) {
346        Diag(ArraySize->getLocStart(), diag::err_array_size_non_int,
347             ArraySize->getType().getAsString(), ArraySize->getSourceRange());
348        D.setInvalidType(true);
349        delete ArraySize;
350        ATI.NumElts = ArraySize = 0;
351      }
352      llvm::APSInt ConstVal(32);
353      if (!ArraySize) {
354        T = Context.getIncompleteArrayType(T, ASM, ATI.TypeQuals);
355      } else if (!ArraySize->isIntegerConstantExpr(ConstVal, Context) ||
356                 !T->isConstantSizeType()) {
357        // Per C99, a variable array is an array with either a non-constant
358        // size or an element type that has a non-constant-size
359        T = Context.getVariableArrayType(T, ArraySize, ASM, ATI.TypeQuals);
360      } else {
361        // C99 6.7.5.2p1: If the expression is a constant expression, it shall
362        // have a value greater than zero.
363        if (ConstVal.isSigned()) {
364          if (ConstVal.isNegative()) {
365            Diag(ArraySize->getLocStart(),
366                 diag::err_typecheck_negative_array_size,
367                 ArraySize->getSourceRange());
368            D.setInvalidType(true);
369          } else if (ConstVal == 0) {
370            // GCC accepts zero sized static arrays.
371            Diag(ArraySize->getLocStart(), diag::ext_typecheck_zero_array_size,
372                 ArraySize->getSourceRange());
373          }
374        }
375        T = Context.getConstantArrayType(T, ConstVal, ASM, ATI.TypeQuals);
376      }
377      // If this is not C99, extwarn about VLA's and C99 array size modifiers.
378      if (!getLangOptions().C99 &&
379          (ASM != ArrayType::Normal ||
380           (ArraySize && !ArraySize->isIntegerConstantExpr(Context))))
381        Diag(D.getIdentifierLoc(), diag::ext_vla);
382      break;
383    }
384    case DeclaratorChunk::Function:
385      // If the function declarator has a prototype (i.e. it is not () and
386      // does not have a K&R-style identifier list), then the arguments are part
387      // of the type, otherwise the argument list is ().
388      const DeclaratorChunk::FunctionTypeInfo &FTI = DeclType.Fun;
389
390      // C99 6.7.5.3p1: The return type may not be a function or array type.
391      if (T->isArrayType() || T->isFunctionType()) {
392        Diag(DeclType.Loc, diag::err_func_returning_array_function,
393             T.getAsString());
394        T = Context.IntTy;
395        D.setInvalidType(true);
396      }
397
398      if (!FTI.hasPrototype) {
399        // Simple void foo(), where the incoming T is the result type.
400        T = Context.getFunctionTypeNoProto(T);
401
402        // C99 6.7.5.3p3: Reject int(x,y,z) when it's not a function definition.
403        if (FTI.NumArgs != 0)
404          Diag(FTI.ArgInfo[0].IdentLoc, diag::err_ident_list_in_fn_declaration);
405
406      } else {
407        // Otherwise, we have a function with an argument list that is
408        // potentially variadic.
409        llvm::SmallVector<QualType, 16> ArgTys;
410
411        for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
412          ParmVarDecl *Param = (ParmVarDecl *)FTI.ArgInfo[i].Param;
413          QualType ArgTy = Param->getType();
414          assert(!ArgTy.isNull() && "Couldn't parse type?");
415          //
416          // Perform the default function/array conversion (C99 6.7.5.3p[7,8]).
417          // This matches the conversion that is done in
418          // Sema::ActOnParamDeclarator(). Without this conversion, the
419          // argument type in the function prototype *will not* match the
420          // type in ParmVarDecl (which makes the code generator unhappy).
421          //
422          // FIXME: We still apparently need the conversion in
423          // Sema::ActOnParamDeclarator(). This doesn't make any sense, since
424          // it should be driving off the type being created here.
425          //
426          // FIXME: If a source translation tool needs to see the original type,
427          // then we need to consider storing both types somewhere...
428          //
429          if (ArgTy->isArrayType()) {
430            ArgTy = Context.getArrayDecayedType(ArgTy);
431          } else if (ArgTy->isFunctionType())
432            ArgTy = Context.getPointerType(ArgTy);
433
434          // Look for 'void'.  void is allowed only as a single argument to a
435          // function with no other parameters (C99 6.7.5.3p10).  We record
436          // int(void) as a FunctionTypeProto with an empty argument list.
437          else if (ArgTy->isVoidType()) {
438            // If this is something like 'float(int, void)', reject it.  'void'
439            // is an incomplete type (C99 6.2.5p19) and function decls cannot
440            // have arguments of incomplete type.
441            if (FTI.NumArgs != 1 || FTI.isVariadic) {
442              Diag(DeclType.Loc, diag::err_void_only_param);
443              ArgTy = Context.IntTy;
444              Param->setType(ArgTy);
445            } else if (FTI.ArgInfo[i].Ident) {
446              // Reject, but continue to parse 'int(void abc)'.
447              Diag(FTI.ArgInfo[i].IdentLoc,
448                   diag::err_param_with_void_type);
449              ArgTy = Context.IntTy;
450              Param->setType(ArgTy);
451            } else {
452              // Reject, but continue to parse 'float(const void)'.
453              if (ArgTy.getCVRQualifiers())
454                Diag(DeclType.Loc, diag::err_void_param_qualified);
455
456              // Do not add 'void' to the ArgTys list.
457              break;
458            }
459          }
460
461          ArgTys.push_back(ArgTy);
462        }
463        T = Context.getFunctionType(T, &ArgTys[0], ArgTys.size(),
464                                    FTI.isVariadic);
465      }
466      break;
467    }
468
469    // See if there are any attributes on this declarator chunk.
470    if (const AttributeList *AL = DeclType.getAttrs())
471      ProcessTypeAttributeList(T, AL);
472  }
473
474  // If there were any type attributes applied to the decl itself (not the
475  // type, apply the type attribute to the type!)
476  if (const AttributeList *Attrs = D.getAttributes())
477    ProcessTypeAttributeList(T, Attrs);
478
479  return T;
480}
481
482/// ObjCGetTypeForMethodDefinition - Builds the type for a method definition
483/// declarator
484QualType Sema::ObjCGetTypeForMethodDefinition(DeclTy *D) {
485  ObjCMethodDecl *MDecl = dyn_cast<ObjCMethodDecl>(static_cast<Decl *>(D));
486  QualType T = MDecl->getResultType();
487  llvm::SmallVector<QualType, 16> ArgTys;
488
489  // Add the first two invisible argument types for self and _cmd.
490  if (MDecl->isInstance()) {
491    QualType selfTy = Context.getObjCInterfaceType(MDecl->getClassInterface());
492    selfTy = Context.getPointerType(selfTy);
493    ArgTys.push_back(selfTy);
494  }
495  else
496    ArgTys.push_back(Context.getObjCIdType());
497  ArgTys.push_back(Context.getObjCSelType());
498
499  for (int i = 0, e = MDecl->getNumParams(); i != e; ++i) {
500    ParmVarDecl *PDecl = MDecl->getParamDecl(i);
501    QualType ArgTy = PDecl->getType();
502    assert(!ArgTy.isNull() && "Couldn't parse type?");
503    // Perform the default function/array conversion (C99 6.7.5.3p[7,8]).
504    // This matches the conversion that is done in
505    // Sema::ActOnParamDeclarator().
506    if (ArgTy->isArrayType())
507      ArgTy = Context.getArrayDecayedType(ArgTy);
508    else if (ArgTy->isFunctionType())
509      ArgTy = Context.getPointerType(ArgTy);
510    ArgTys.push_back(ArgTy);
511  }
512  T = Context.getFunctionType(T, &ArgTys[0], ArgTys.size(),
513                              MDecl->isVariadic());
514  return T;
515}
516
517Sema::TypeResult Sema::ActOnTypeName(Scope *S, Declarator &D) {
518  // C99 6.7.6: Type names have no identifier.  This is already validated by
519  // the parser.
520  assert(D.getIdentifier() == 0 && "Type name should have no identifier!");
521
522  QualType T = GetTypeForDeclarator(D, S);
523
524  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
525
526  // Check that there are no default arguments (C++ only).
527  if (getLangOptions().CPlusPlus)
528    CheckExtraCXXDefaultArguments(D);
529
530  // In this context, we *do not* check D.getInvalidType(). If the declarator
531  // type was invalid, GetTypeForDeclarator() still returns a "valid" type,
532  // though it will not reflect the user specified type.
533  return T.getAsOpaquePtr();
534}
535
536
537
538//===----------------------------------------------------------------------===//
539// Type Attribute Processing
540//===----------------------------------------------------------------------===//
541
542/// HandleAddressSpaceTypeAttribute - Process an address_space attribute on the
543/// specified type.  The attribute contains 1 argument, the id of the address
544/// space for the type.
545static void HandleAddressSpaceTypeAttribute(QualType &Type,
546                                            const AttributeList &Attr, Sema &S){
547  // If this type is already address space qualified, reject it.
548  // Clause 6.7.3 - Type qualifiers: "No type shall be qualified by qualifiers
549  // for two or more different address spaces."
550  if (Type.getAddressSpace()) {
551    S.Diag(Attr.getLoc(), diag::err_attribute_address_multiple_qualifiers);
552    return;
553  }
554
555  // Check the attribute arguments.
556  if (Attr.getNumArgs() != 1) {
557    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments,
558           std::string("1"));
559    return;
560  }
561  Expr *ASArgExpr = static_cast<Expr *>(Attr.getArg(0));
562  llvm::APSInt addrSpace(32);
563  if (!ASArgExpr->isIntegerConstantExpr(addrSpace, S.Context)) {
564    S.Diag(Attr.getLoc(), diag::err_attribute_address_space_not_int,
565           ASArgExpr->getSourceRange());
566    return;
567  }
568
569  unsigned ASIdx = static_cast<unsigned>(addrSpace.getZExtValue());
570  Type = S.Context.getASQualType(Type, ASIdx);
571}
572
573void Sema::ProcessTypeAttributeList(QualType &Result, const AttributeList *AL) {
574  // Scan through and apply attributes to this type where it makes sense.  Some
575  // attributes (such as __address_space__, __vector_size__, etc) apply to the
576  // type, but others can be present in the type specifiers even though they
577  // apply to the decl.  Here we apply type attributes and ignore the rest.
578  for (; AL; AL = AL->getNext()) {
579    // If this is an attribute we can handle, do so now, otherwise, add it to
580    // the LeftOverAttrs list for rechaining.
581    switch (AL->getKind()) {
582    default: break;
583    case AttributeList::AT_address_space:
584      HandleAddressSpaceTypeAttribute(Result, *AL, *this);
585      break;
586    }
587  }
588}
589
590
591