lsan_common.cc revision 86277eb844c4983c81de62d7c050e92fe7155788
1//=-- lsan_common.cc ------------------------------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file is a part of LeakSanitizer.
11// Implementation of common leak checking functionality.
12//
13//===----------------------------------------------------------------------===//
14
15#include "lsan_common.h"
16
17#include "sanitizer_common/sanitizer_common.h"
18#include "sanitizer_common/sanitizer_flags.h"
19#include "sanitizer_common/sanitizer_flag_parser.h"
20#include "sanitizer_common/sanitizer_placement_new.h"
21#include "sanitizer_common/sanitizer_procmaps.h"
22#include "sanitizer_common/sanitizer_stackdepot.h"
23#include "sanitizer_common/sanitizer_stacktrace.h"
24#include "sanitizer_common/sanitizer_suppressions.h"
25#include "sanitizer_common/sanitizer_report_decorator.h"
26
27#if CAN_SANITIZE_LEAKS
28namespace __lsan {
29
30// This mutex is used to prevent races between DoLeakCheck and IgnoreObject, and
31// also to protect the global list of root regions.
32BlockingMutex global_mutex(LINKER_INITIALIZED);
33
34THREADLOCAL int disable_counter;
35bool DisabledInThisThread() { return disable_counter > 0; }
36
37Flags lsan_flags;
38
39void Flags::SetDefaults() {
40#define LSAN_FLAG(Type, Name, DefaultValue, Description) Name = DefaultValue;
41#include "lsan_flags.inc"
42#undef LSAN_FLAG
43}
44
45void RegisterLsanFlags(FlagParser *parser, Flags *f) {
46#define LSAN_FLAG(Type, Name, DefaultValue, Description) \
47  RegisterFlag(parser, #Name, Description, &f->Name);
48#include "lsan_flags.inc"
49#undef LSAN_FLAG
50}
51
52#define LOG_POINTERS(...)                           \
53  do {                                              \
54    if (flags()->log_pointers) Report(__VA_ARGS__); \
55  } while (0);
56
57#define LOG_THREADS(...)                           \
58  do {                                             \
59    if (flags()->log_threads) Report(__VA_ARGS__); \
60  } while (0);
61
62ALIGNED(64) static char suppression_placeholder[sizeof(SuppressionContext)];
63static SuppressionContext *suppression_ctx = nullptr;
64static const char kSuppressionLeak[] = "leak";
65static const char *kSuppressionTypes[] = { kSuppressionLeak };
66
67void InitializeSuppressions() {
68  CHECK_EQ(nullptr, suppression_ctx);
69  suppression_ctx = new (suppression_placeholder) // NOLINT
70      SuppressionContext(kSuppressionTypes, ARRAY_SIZE(kSuppressionTypes));
71  suppression_ctx->ParseFromFile(flags()->suppressions);
72  if (&__lsan_default_suppressions)
73    suppression_ctx->Parse(__lsan_default_suppressions());
74}
75
76static SuppressionContext *GetSuppressionContext() {
77  CHECK(suppression_ctx);
78  return suppression_ctx;
79}
80
81struct RootRegion {
82  const void *begin;
83  uptr size;
84};
85
86InternalMmapVector<RootRegion> *root_regions;
87
88void InitializeRootRegions() {
89  CHECK(!root_regions);
90  ALIGNED(64) static char placeholder[sizeof(InternalMmapVector<RootRegion>)];
91  root_regions = new(placeholder) InternalMmapVector<RootRegion>(1);
92}
93
94void InitCommonLsan() {
95  InitializeRootRegions();
96  if (common_flags()->detect_leaks) {
97    // Initialization which can fail or print warnings should only be done if
98    // LSan is actually enabled.
99    InitializeSuppressions();
100    InitializePlatformSpecificModules();
101  }
102}
103
104class Decorator: public __sanitizer::SanitizerCommonDecorator {
105 public:
106  Decorator() : SanitizerCommonDecorator() { }
107  const char *Error() { return Red(); }
108  const char *Leak() { return Blue(); }
109  const char *End() { return Default(); }
110};
111
112static inline bool CanBeAHeapPointer(uptr p) {
113  // Since our heap is located in mmap-ed memory, we can assume a sensible lower
114  // bound on heap addresses.
115  const uptr kMinAddress = 4 * 4096;
116  if (p < kMinAddress) return false;
117#if defined(__x86_64__)
118  // Accept only canonical form user-space addresses.
119  return ((p >> 47) == 0);
120#elif defined(__mips64)
121  return ((p >> 40) == 0);
122#else
123  return true;
124#endif
125}
126
127// Scans the memory range, looking for byte patterns that point into allocator
128// chunks. Marks those chunks with |tag| and adds them to |frontier|.
129// There are two usage modes for this function: finding reachable or ignored
130// chunks (|tag| = kReachable or kIgnored) and finding indirectly leaked chunks
131// (|tag| = kIndirectlyLeaked). In the second case, there's no flood fill,
132// so |frontier| = 0.
133void ScanRangeForPointers(uptr begin, uptr end,
134                          Frontier *frontier,
135                          const char *region_type, ChunkTag tag) {
136  const uptr alignment = flags()->pointer_alignment();
137  LOG_POINTERS("Scanning %s range %p-%p.\n", region_type, begin, end);
138  uptr pp = begin;
139  if (pp % alignment)
140    pp = pp + alignment - pp % alignment;
141  for (; pp + sizeof(void *) <= end; pp += alignment) {  // NOLINT
142    void *p = *reinterpret_cast<void **>(pp);
143    if (!CanBeAHeapPointer(reinterpret_cast<uptr>(p))) continue;
144    uptr chunk = PointsIntoChunk(p);
145    if (!chunk) continue;
146    // Pointers to self don't count. This matters when tag == kIndirectlyLeaked.
147    if (chunk == begin) continue;
148    LsanMetadata m(chunk);
149    // Reachable beats ignored beats leaked.
150    if (m.tag() == kReachable) continue;
151    if (m.tag() == kIgnored && tag != kReachable) continue;
152
153    // Do this check relatively late so we can log only the interesting cases.
154    if (!flags()->use_poisoned && WordIsPoisoned(pp)) {
155      LOG_POINTERS(
156          "%p is poisoned: ignoring %p pointing into chunk %p-%p of size "
157          "%zu.\n",
158          pp, p, chunk, chunk + m.requested_size(), m.requested_size());
159      continue;
160    }
161
162    m.set_tag(tag);
163    LOG_POINTERS("%p: found %p pointing into chunk %p-%p of size %zu.\n", pp, p,
164                 chunk, chunk + m.requested_size(), m.requested_size());
165    if (frontier)
166      frontier->push_back(chunk);
167  }
168}
169
170void ForEachExtraStackRangeCb(uptr begin, uptr end, void* arg) {
171  Frontier *frontier = reinterpret_cast<Frontier *>(arg);
172  ScanRangeForPointers(begin, end, frontier, "FAKE STACK", kReachable);
173}
174
175// Scans thread data (stacks and TLS) for heap pointers.
176static void ProcessThreads(SuspendedThreadsList const &suspended_threads,
177                           Frontier *frontier) {
178  InternalScopedBuffer<uptr> registers(SuspendedThreadsList::RegisterCount());
179  uptr registers_begin = reinterpret_cast<uptr>(registers.data());
180  uptr registers_end = registers_begin + registers.size();
181  for (uptr i = 0; i < suspended_threads.thread_count(); i++) {
182    uptr os_id = static_cast<uptr>(suspended_threads.GetThreadID(i));
183    LOG_THREADS("Processing thread %d.\n", os_id);
184    uptr stack_begin, stack_end, tls_begin, tls_end, cache_begin, cache_end;
185    bool thread_found = GetThreadRangesLocked(os_id, &stack_begin, &stack_end,
186                                              &tls_begin, &tls_end,
187                                              &cache_begin, &cache_end);
188    if (!thread_found) {
189      // If a thread can't be found in the thread registry, it's probably in the
190      // process of destruction. Log this event and move on.
191      LOG_THREADS("Thread %d not found in registry.\n", os_id);
192      continue;
193    }
194    uptr sp;
195    bool have_registers =
196        (suspended_threads.GetRegistersAndSP(i, registers.data(), &sp) == 0);
197    if (!have_registers) {
198      Report("Unable to get registers from thread %d.\n");
199      // If unable to get SP, consider the entire stack to be reachable.
200      sp = stack_begin;
201    }
202
203    if (flags()->use_registers && have_registers)
204      ScanRangeForPointers(registers_begin, registers_end, frontier,
205                           "REGISTERS", kReachable);
206
207    if (flags()->use_stacks) {
208      LOG_THREADS("Stack at %p-%p (SP = %p).\n", stack_begin, stack_end, sp);
209      if (sp < stack_begin || sp >= stack_end) {
210        // SP is outside the recorded stack range (e.g. the thread is running a
211        // signal handler on alternate stack). Again, consider the entire stack
212        // range to be reachable.
213        LOG_THREADS("WARNING: stack pointer not in stack range.\n");
214      } else {
215        // Shrink the stack range to ignore out-of-scope values.
216        stack_begin = sp;
217      }
218      ScanRangeForPointers(stack_begin, stack_end, frontier, "STACK",
219                           kReachable);
220      ForEachExtraStackRange(os_id, ForEachExtraStackRangeCb, frontier);
221    }
222
223    if (flags()->use_tls) {
224      LOG_THREADS("TLS at %p-%p.\n", tls_begin, tls_end);
225      if (cache_begin == cache_end) {
226        ScanRangeForPointers(tls_begin, tls_end, frontier, "TLS", kReachable);
227      } else {
228        // Because LSan should not be loaded with dlopen(), we can assume
229        // that allocator cache will be part of static TLS image.
230        CHECK_LE(tls_begin, cache_begin);
231        CHECK_GE(tls_end, cache_end);
232        if (tls_begin < cache_begin)
233          ScanRangeForPointers(tls_begin, cache_begin, frontier, "TLS",
234                               kReachable);
235        if (tls_end > cache_end)
236          ScanRangeForPointers(cache_end, tls_end, frontier, "TLS", kReachable);
237      }
238    }
239  }
240}
241
242static void ProcessRootRegion(Frontier *frontier, uptr root_begin,
243                              uptr root_end) {
244  MemoryMappingLayout proc_maps(/*cache_enabled*/true);
245  uptr begin, end, prot;
246  while (proc_maps.Next(&begin, &end,
247                        /*offset*/ 0, /*filename*/ 0, /*filename_size*/ 0,
248                        &prot)) {
249    uptr intersection_begin = Max(root_begin, begin);
250    uptr intersection_end = Min(end, root_end);
251    if (intersection_begin >= intersection_end) continue;
252    bool is_readable = prot & MemoryMappingLayout::kProtectionRead;
253    LOG_POINTERS("Root region %p-%p intersects with mapped region %p-%p (%s)\n",
254                 root_begin, root_end, begin, end,
255                 is_readable ? "readable" : "unreadable");
256    if (is_readable)
257      ScanRangeForPointers(intersection_begin, intersection_end, frontier,
258                           "ROOT", kReachable);
259  }
260}
261
262// Scans root regions for heap pointers.
263static void ProcessRootRegions(Frontier *frontier) {
264  if (!flags()->use_root_regions) return;
265  CHECK(root_regions);
266  for (uptr i = 0; i < root_regions->size(); i++) {
267    RootRegion region = (*root_regions)[i];
268    uptr begin_addr = reinterpret_cast<uptr>(region.begin);
269    ProcessRootRegion(frontier, begin_addr, begin_addr + region.size);
270  }
271}
272
273static void FloodFillTag(Frontier *frontier, ChunkTag tag) {
274  while (frontier->size()) {
275    uptr next_chunk = frontier->back();
276    frontier->pop_back();
277    LsanMetadata m(next_chunk);
278    ScanRangeForPointers(next_chunk, next_chunk + m.requested_size(), frontier,
279                         "HEAP", tag);
280  }
281}
282
283// ForEachChunk callback. If the chunk is marked as leaked, marks all chunks
284// which are reachable from it as indirectly leaked.
285static void MarkIndirectlyLeakedCb(uptr chunk, void *arg) {
286  chunk = GetUserBegin(chunk);
287  LsanMetadata m(chunk);
288  if (m.allocated() && m.tag() != kReachable) {
289    ScanRangeForPointers(chunk, chunk + m.requested_size(),
290                         /* frontier */ 0, "HEAP", kIndirectlyLeaked);
291  }
292}
293
294// ForEachChunk callback. If chunk is marked as ignored, adds its address to
295// frontier.
296static void CollectIgnoredCb(uptr chunk, void *arg) {
297  CHECK(arg);
298  chunk = GetUserBegin(chunk);
299  LsanMetadata m(chunk);
300  if (m.allocated() && m.tag() == kIgnored)
301    reinterpret_cast<Frontier *>(arg)->push_back(chunk);
302}
303
304// Sets the appropriate tag on each chunk.
305static void ClassifyAllChunks(SuspendedThreadsList const &suspended_threads) {
306  // Holds the flood fill frontier.
307  Frontier frontier(1);
308
309  ProcessGlobalRegions(&frontier);
310  ProcessThreads(suspended_threads, &frontier);
311  ProcessRootRegions(&frontier);
312  FloodFillTag(&frontier, kReachable);
313  // The check here is relatively expensive, so we do this in a separate flood
314  // fill. That way we can skip the check for chunks that are reachable
315  // otherwise.
316  LOG_POINTERS("Processing platform-specific allocations.\n");
317  ProcessPlatformSpecificAllocations(&frontier);
318  FloodFillTag(&frontier, kReachable);
319
320  LOG_POINTERS("Scanning ignored chunks.\n");
321  CHECK_EQ(0, frontier.size());
322  ForEachChunk(CollectIgnoredCb, &frontier);
323  FloodFillTag(&frontier, kIgnored);
324
325  // Iterate over leaked chunks and mark those that are reachable from other
326  // leaked chunks.
327  LOG_POINTERS("Scanning leaked chunks.\n");
328  ForEachChunk(MarkIndirectlyLeakedCb, 0 /* arg */);
329}
330
331static void PrintStackTraceById(u32 stack_trace_id) {
332  CHECK(stack_trace_id);
333  StackDepotGet(stack_trace_id).Print();
334}
335
336// ForEachChunk callback. Aggregates information about unreachable chunks into
337// a LeakReport.
338static void CollectLeaksCb(uptr chunk, void *arg) {
339  CHECK(arg);
340  LeakReport *leak_report = reinterpret_cast<LeakReport *>(arg);
341  chunk = GetUserBegin(chunk);
342  LsanMetadata m(chunk);
343  if (!m.allocated()) return;
344  if (m.tag() == kDirectlyLeaked || m.tag() == kIndirectlyLeaked) {
345    u32 resolution = flags()->resolution;
346    u32 stack_trace_id = 0;
347    if (resolution > 0) {
348      StackTrace stack = StackDepotGet(m.stack_trace_id());
349      stack.size = Min(stack.size, resolution);
350      stack_trace_id = StackDepotPut(stack);
351    } else {
352      stack_trace_id = m.stack_trace_id();
353    }
354    leak_report->AddLeakedChunk(chunk, stack_trace_id, m.requested_size(),
355                                m.tag());
356  }
357}
358
359static void PrintMatchedSuppressions() {
360  InternalMmapVector<Suppression *> matched(1);
361  GetSuppressionContext()->GetMatched(&matched);
362  if (!matched.size())
363    return;
364  const char *line = "-----------------------------------------------------";
365  Printf("%s\n", line);
366  Printf("Suppressions used:\n");
367  Printf("  count      bytes template\n");
368  for (uptr i = 0; i < matched.size(); i++)
369    Printf("%7zu %10zu %s\n", static_cast<uptr>(matched[i]->hit_count),
370           matched[i]->weight, matched[i]->templ);
371  Printf("%s\n\n", line);
372}
373
374struct DoLeakCheckParam {
375  bool success;
376  LeakReport leak_report;
377};
378
379static void DoLeakCheckCallback(const SuspendedThreadsList &suspended_threads,
380                                void *arg) {
381  DoLeakCheckParam *param = reinterpret_cast<DoLeakCheckParam *>(arg);
382  CHECK(param);
383  CHECK(!param->success);
384  ClassifyAllChunks(suspended_threads);
385  ForEachChunk(CollectLeaksCb, &param->leak_report);
386  param->success = true;
387}
388
389void DoLeakCheck() {
390  EnsureMainThreadIDIsCorrect();
391  BlockingMutexLock l(&global_mutex);
392  static bool already_done;
393  if (already_done) return;
394  already_done = true;
395  if (&__lsan_is_turned_off && __lsan_is_turned_off())
396      return;
397
398  DoLeakCheckParam param;
399  param.success = false;
400  LockThreadRegistry();
401  LockAllocator();
402  DoStopTheWorld(DoLeakCheckCallback, &param);
403  UnlockAllocator();
404  UnlockThreadRegistry();
405
406  if (!param.success) {
407    Report("LeakSanitizer has encountered a fatal error.\n");
408    Die();
409  }
410  param.leak_report.ApplySuppressions();
411  uptr unsuppressed_count = param.leak_report.UnsuppressedLeakCount();
412  if (unsuppressed_count > 0) {
413    Decorator d;
414    Printf("\n"
415           "================================================================="
416           "\n");
417    Printf("%s", d.Error());
418    Report("ERROR: LeakSanitizer: detected memory leaks\n");
419    Printf("%s", d.End());
420    param.leak_report.ReportTopLeaks(flags()->max_leaks);
421  }
422  if (common_flags()->print_suppressions)
423    PrintMatchedSuppressions();
424  if (unsuppressed_count > 0) {
425    param.leak_report.PrintSummary();
426    if (flags()->exitcode) {
427      if (common_flags()->coverage)
428        __sanitizer_cov_dump();
429      internal__exit(flags()->exitcode);
430    }
431  }
432}
433
434static Suppression *GetSuppressionForAddr(uptr addr) {
435  Suppression *s = nullptr;
436
437  // Suppress by module name.
438  const char *module_name;
439  uptr module_offset;
440  SuppressionContext *suppressions = GetSuppressionContext();
441  if (Symbolizer::GetOrInit()->GetModuleNameAndOffsetForPC(addr, &module_name,
442                                                           &module_offset) &&
443      suppressions->Match(module_name, kSuppressionLeak, &s))
444    return s;
445
446  // Suppress by file or function name.
447  SymbolizedStack *frames = Symbolizer::GetOrInit()->SymbolizePC(addr);
448  for (SymbolizedStack *cur = frames; cur; cur = cur->next) {
449    if (suppressions->Match(cur->info.function, kSuppressionLeak, &s) ||
450        suppressions->Match(cur->info.file, kSuppressionLeak, &s)) {
451      break;
452    }
453  }
454  frames->ClearAll();
455  return s;
456}
457
458static Suppression *GetSuppressionForStack(u32 stack_trace_id) {
459  StackTrace stack = StackDepotGet(stack_trace_id);
460  for (uptr i = 0; i < stack.size; i++) {
461    Suppression *s = GetSuppressionForAddr(
462        StackTrace::GetPreviousInstructionPc(stack.trace[i]));
463    if (s) return s;
464  }
465  return 0;
466}
467
468///// LeakReport implementation. /////
469
470// A hard limit on the number of distinct leaks, to avoid quadratic complexity
471// in LeakReport::AddLeakedChunk(). We don't expect to ever see this many leaks
472// in real-world applications.
473// FIXME: Get rid of this limit by changing the implementation of LeakReport to
474// use a hash table.
475const uptr kMaxLeaksConsidered = 5000;
476
477void LeakReport::AddLeakedChunk(uptr chunk, u32 stack_trace_id,
478                                uptr leaked_size, ChunkTag tag) {
479  CHECK(tag == kDirectlyLeaked || tag == kIndirectlyLeaked);
480  bool is_directly_leaked = (tag == kDirectlyLeaked);
481  uptr i;
482  for (i = 0; i < leaks_.size(); i++) {
483    if (leaks_[i].stack_trace_id == stack_trace_id &&
484        leaks_[i].is_directly_leaked == is_directly_leaked) {
485      leaks_[i].hit_count++;
486      leaks_[i].total_size += leaked_size;
487      break;
488    }
489  }
490  if (i == leaks_.size()) {
491    if (leaks_.size() == kMaxLeaksConsidered) return;
492    Leak leak = { next_id_++, /* hit_count */ 1, leaked_size, stack_trace_id,
493                  is_directly_leaked, /* is_suppressed */ false };
494    leaks_.push_back(leak);
495  }
496  if (flags()->report_objects) {
497    LeakedObject obj = {leaks_[i].id, chunk, leaked_size};
498    leaked_objects_.push_back(obj);
499  }
500}
501
502static bool LeakComparator(const Leak &leak1, const Leak &leak2) {
503  if (leak1.is_directly_leaked == leak2.is_directly_leaked)
504    return leak1.total_size > leak2.total_size;
505  else
506    return leak1.is_directly_leaked;
507}
508
509void LeakReport::ReportTopLeaks(uptr num_leaks_to_report) {
510  CHECK(leaks_.size() <= kMaxLeaksConsidered);
511  Printf("\n");
512  if (leaks_.size() == kMaxLeaksConsidered)
513    Printf("Too many leaks! Only the first %zu leaks encountered will be "
514           "reported.\n",
515           kMaxLeaksConsidered);
516
517  uptr unsuppressed_count = UnsuppressedLeakCount();
518  if (num_leaks_to_report > 0 && num_leaks_to_report < unsuppressed_count)
519    Printf("The %zu top leak(s):\n", num_leaks_to_report);
520  InternalSort(&leaks_, leaks_.size(), LeakComparator);
521  uptr leaks_reported = 0;
522  for (uptr i = 0; i < leaks_.size(); i++) {
523    if (leaks_[i].is_suppressed) continue;
524    PrintReportForLeak(i);
525    leaks_reported++;
526    if (leaks_reported == num_leaks_to_report) break;
527  }
528  if (leaks_reported < unsuppressed_count) {
529    uptr remaining = unsuppressed_count - leaks_reported;
530    Printf("Omitting %zu more leak(s).\n", remaining);
531  }
532}
533
534void LeakReport::PrintReportForLeak(uptr index) {
535  Decorator d;
536  Printf("%s", d.Leak());
537  Printf("%s leak of %zu byte(s) in %zu object(s) allocated from:\n",
538         leaks_[index].is_directly_leaked ? "Direct" : "Indirect",
539         leaks_[index].total_size, leaks_[index].hit_count);
540  Printf("%s", d.End());
541
542  PrintStackTraceById(leaks_[index].stack_trace_id);
543
544  if (flags()->report_objects) {
545    Printf("Objects leaked above:\n");
546    PrintLeakedObjectsForLeak(index);
547    Printf("\n");
548  }
549}
550
551void LeakReport::PrintLeakedObjectsForLeak(uptr index) {
552  u32 leak_id = leaks_[index].id;
553  for (uptr j = 0; j < leaked_objects_.size(); j++) {
554    if (leaked_objects_[j].leak_id == leak_id)
555      Printf("%p (%zu bytes)\n", leaked_objects_[j].addr,
556             leaked_objects_[j].size);
557  }
558}
559
560void LeakReport::PrintSummary() {
561  CHECK(leaks_.size() <= kMaxLeaksConsidered);
562  uptr bytes = 0, allocations = 0;
563  for (uptr i = 0; i < leaks_.size(); i++) {
564      if (leaks_[i].is_suppressed) continue;
565      bytes += leaks_[i].total_size;
566      allocations += leaks_[i].hit_count;
567  }
568  InternalScopedString summary(kMaxSummaryLength);
569  summary.append("%zu byte(s) leaked in %zu allocation(s).", bytes,
570                 allocations);
571  ReportErrorSummary(summary.data());
572}
573
574void LeakReport::ApplySuppressions() {
575  for (uptr i = 0; i < leaks_.size(); i++) {
576    Suppression *s = GetSuppressionForStack(leaks_[i].stack_trace_id);
577    if (s) {
578      s->weight += leaks_[i].total_size;
579      s->hit_count += leaks_[i].hit_count;
580      leaks_[i].is_suppressed = true;
581    }
582  }
583}
584
585uptr LeakReport::UnsuppressedLeakCount() {
586  uptr result = 0;
587  for (uptr i = 0; i < leaks_.size(); i++)
588    if (!leaks_[i].is_suppressed) result++;
589  return result;
590}
591
592}  // namespace __lsan
593#endif  // CAN_SANITIZE_LEAKS
594
595using namespace __lsan;  // NOLINT
596
597extern "C" {
598SANITIZER_INTERFACE_ATTRIBUTE
599void __lsan_ignore_object(const void *p) {
600#if CAN_SANITIZE_LEAKS
601  if (!common_flags()->detect_leaks)
602    return;
603  // Cannot use PointsIntoChunk or LsanMetadata here, since the allocator is not
604  // locked.
605  BlockingMutexLock l(&global_mutex);
606  IgnoreObjectResult res = IgnoreObjectLocked(p);
607  if (res == kIgnoreObjectInvalid)
608    VReport(1, "__lsan_ignore_object(): no heap object found at %p", p);
609  if (res == kIgnoreObjectAlreadyIgnored)
610    VReport(1, "__lsan_ignore_object(): "
611           "heap object at %p is already being ignored\n", p);
612  if (res == kIgnoreObjectSuccess)
613    VReport(1, "__lsan_ignore_object(): ignoring heap object at %p\n", p);
614#endif  // CAN_SANITIZE_LEAKS
615}
616
617SANITIZER_INTERFACE_ATTRIBUTE
618void __lsan_register_root_region(const void *begin, uptr size) {
619#if CAN_SANITIZE_LEAKS
620  BlockingMutexLock l(&global_mutex);
621  CHECK(root_regions);
622  RootRegion region = {begin, size};
623  root_regions->push_back(region);
624  VReport(1, "Registered root region at %p of size %llu\n", begin, size);
625#endif  // CAN_SANITIZE_LEAKS
626}
627
628SANITIZER_INTERFACE_ATTRIBUTE
629void __lsan_unregister_root_region(const void *begin, uptr size) {
630#if CAN_SANITIZE_LEAKS
631  BlockingMutexLock l(&global_mutex);
632  CHECK(root_regions);
633  bool removed = false;
634  for (uptr i = 0; i < root_regions->size(); i++) {
635    RootRegion region = (*root_regions)[i];
636    if (region.begin == begin && region.size == size) {
637      removed = true;
638      uptr last_index = root_regions->size() - 1;
639      (*root_regions)[i] = (*root_regions)[last_index];
640      root_regions->pop_back();
641      VReport(1, "Unregistered root region at %p of size %llu\n", begin, size);
642      break;
643    }
644  }
645  if (!removed) {
646    Report(
647        "__lsan_unregister_root_region(): region at %p of size %llu has not "
648        "been registered.\n",
649        begin, size);
650    Die();
651  }
652#endif  // CAN_SANITIZE_LEAKS
653}
654
655SANITIZER_INTERFACE_ATTRIBUTE
656void __lsan_disable() {
657#if CAN_SANITIZE_LEAKS
658  __lsan::disable_counter++;
659#endif
660}
661
662SANITIZER_INTERFACE_ATTRIBUTE
663void __lsan_enable() {
664#if CAN_SANITIZE_LEAKS
665  if (!__lsan::disable_counter && common_flags()->detect_leaks) {
666    Report("Unmatched call to __lsan_enable().\n");
667    Die();
668  }
669  __lsan::disable_counter--;
670#endif
671}
672
673SANITIZER_INTERFACE_ATTRIBUTE
674void __lsan_do_leak_check() {
675#if CAN_SANITIZE_LEAKS
676  if (common_flags()->detect_leaks)
677    __lsan::DoLeakCheck();
678#endif  // CAN_SANITIZE_LEAKS
679}
680
681#if !SANITIZER_SUPPORTS_WEAK_HOOKS
682SANITIZER_INTERFACE_ATTRIBUTE SANITIZER_WEAK_ATTRIBUTE
683int __lsan_is_turned_off() {
684  return 0;
685}
686#endif
687}  // extern "C"
688