revoke.c revision 97f168b67eb1d0b46ec08bf2751313604e67fc16
1/*
2 * linux/fs/jbd2/revoke.c
3 *
4 * Written by Stephen C. Tweedie <sct@redhat.com>, 2000
5 *
6 * Copyright 2000 Red Hat corp --- All Rights Reserved
7 *
8 * This file is part of the Linux kernel and is made available under
9 * the terms of the GNU General Public License, version 2, or at your
10 * option, any later version, incorporated herein by reference.
11 *
12 * Journal revoke routines for the generic filesystem journaling code;
13 * part of the ext2fs journaling system.
14 *
15 * Revoke is the mechanism used to prevent old log records for deleted
16 * metadata from being replayed on top of newer data using the same
17 * blocks.  The revoke mechanism is used in two separate places:
18 *
19 * + Commit: during commit we write the entire list of the current
20 *   transaction's revoked blocks to the journal
21 *
22 * + Recovery: during recovery we record the transaction ID of all
23 *   revoked blocks.  If there are multiple revoke records in the log
24 *   for a single block, only the last one counts, and if there is a log
25 *   entry for a block beyond the last revoke, then that log entry still
26 *   gets replayed.
27 *
28 * We can get interactions between revokes and new log data within a
29 * single transaction:
30 *
31 * Block is revoked and then journaled:
32 *   The desired end result is the journaling of the new block, so we
33 *   cancel the revoke before the transaction commits.
34 *
35 * Block is journaled and then revoked:
36 *   The revoke must take precedence over the write of the block, so we
37 *   need either to cancel the journal entry or to write the revoke
38 *   later in the log than the log block.  In this case, we choose the
39 *   latter: journaling a block cancels any revoke record for that block
40 *   in the current transaction, so any revoke for that block in the
41 *   transaction must have happened after the block was journaled and so
42 *   the revoke must take precedence.
43 *
44 * Block is revoked and then written as data:
45 *   The data write is allowed to succeed, but the revoke is _not_
46 *   cancelled.  We still need to prevent old log records from
47 *   overwriting the new data.  We don't even need to clear the revoke
48 *   bit here.
49 *
50 * We cache revoke status of a buffer in the current transaction in b_states
51 * bits.  As the name says, revokevalid flag indicates that the cached revoke
52 * status of a buffer is valid and we can rely on the cached status.
53 *
54 * Revoke information on buffers is a tri-state value:
55 *
56 * RevokeValid clear:	no cached revoke status, need to look it up
57 * RevokeValid set, Revoked clear:
58 *			buffer has not been revoked, and cancel_revoke
59 *			need do nothing.
60 * RevokeValid set, Revoked set:
61 *			buffer has been revoked.
62 *
63 * Locking rules:
64 * We keep two hash tables of revoke records. One hashtable belongs to the
65 * running transaction (is pointed to by journal->j_revoke), the other one
66 * belongs to the committing transaction. Accesses to the second hash table
67 * happen only from the kjournald and no other thread touches this table.  Also
68 * journal_switch_revoke_table() which switches which hashtable belongs to the
69 * running and which to the committing transaction is called only from
70 * kjournald. Therefore we need no locks when accessing the hashtable belonging
71 * to the committing transaction.
72 *
73 * All users operating on the hash table belonging to the running transaction
74 * have a handle to the transaction. Therefore they are safe from kjournald
75 * switching hash tables under them. For operations on the lists of entries in
76 * the hash table j_revoke_lock is used.
77 *
78 * Finally, also replay code uses the hash tables but at this moment no one else
79 * can touch them (filesystem isn't mounted yet) and hence no locking is
80 * needed.
81 */
82
83#ifndef __KERNEL__
84#include "jfs_user.h"
85#else
86#include <linux/time.h>
87#include <linux/fs.h>
88#include <linux/jbd2.h>
89#include <linux/errno.h>
90#include <linux/slab.h>
91#include <linux/list.h>
92#include <linux/init.h>
93#include <linux/bio.h>
94#include <linux/log2.h>
95#endif
96
97static lkmem_cache_t *jbd2_revoke_record_cache;
98static lkmem_cache_t *jbd2_revoke_table_cache;
99
100/* Each revoke record represents one single revoked block.  During
101   journal replay, this involves recording the transaction ID of the
102   last transaction to revoke this block. */
103
104struct jbd2_revoke_record_s
105{
106	struct list_head  hash;
107	tid_t		  sequence;	/* Used for recovery only */
108	unsigned long long	  blocknr;
109};
110
111
112/* The revoke table is just a simple hash table of revoke records. */
113struct jbd2_revoke_table_s
114{
115	/* It is conceivable that we might want a larger hash table
116	 * for recovery.  Must be a power of two. */
117	int		  hash_size;
118	int		  hash_shift;
119	struct list_head *hash_table;
120};
121
122
123#ifdef __KERNEL__
124static void write_one_revoke_record(journal_t *, transaction_t *,
125				    struct list_head *,
126				    struct buffer_head **, int *,
127				    struct jbd2_revoke_record_s *, int);
128static void flush_descriptor(journal_t *, struct buffer_head *, int, int);
129#endif
130
131/* Utility functions to maintain the revoke table */
132
133/* Borrowed from buffer.c: this is a tried and tested block hash function */
134static inline int hash(journal_t *journal, unsigned long long block)
135{
136	struct jbd2_revoke_table_s *table = journal->j_revoke;
137	int hash_shift = table->hash_shift;
138	int hash = (int)block ^ (int)((block >> 31) >> 1);
139
140	return ((hash << (hash_shift - 6)) ^
141		(hash >> 13) ^
142		(hash << (hash_shift - 12))) & (table->hash_size - 1);
143}
144
145static int insert_revoke_hash(journal_t *journal, unsigned long long blocknr,
146			      tid_t seq)
147{
148	struct list_head *hash_list;
149	struct jbd2_revoke_record_s *record;
150
151repeat:
152	record = kmem_cache_alloc(jbd2_revoke_record_cache, GFP_NOFS);
153	if (!record)
154		goto oom;
155
156	record->sequence = seq;
157	record->blocknr = blocknr;
158	hash_list = &journal->j_revoke->hash_table[hash(journal, blocknr)];
159	spin_lock(&journal->j_revoke_lock);
160	list_add(&record->hash, hash_list);
161	spin_unlock(&journal->j_revoke_lock);
162	return 0;
163
164oom:
165	if (!journal_oom_retry)
166		return -ENOMEM;
167	jbd_debug(1, "ENOMEM in %s, retrying\n", __func__);
168	yield();
169	goto repeat;
170}
171
172/* Find a revoke record in the journal's hash table. */
173
174static struct jbd2_revoke_record_s *find_revoke_record(journal_t *journal,
175						      unsigned long long blocknr)
176{
177	struct list_head *hash_list;
178	struct jbd2_revoke_record_s *record;
179
180	hash_list = &journal->j_revoke->hash_table[hash(journal, blocknr)];
181
182	spin_lock(&journal->j_revoke_lock);
183	record = (struct jbd2_revoke_record_s *) hash_list->next;
184	while (&(record->hash) != hash_list) {
185		if (record->blocknr == blocknr) {
186			spin_unlock(&journal->j_revoke_lock);
187			return record;
188		}
189		record = (struct jbd2_revoke_record_s *) record->hash.next;
190	}
191	spin_unlock(&journal->j_revoke_lock);
192	return NULL;
193}
194
195void journal_destroy_revoke_caches(void)
196{
197	if (jbd2_revoke_record_cache) {
198		kmem_cache_destroy(jbd2_revoke_record_cache);
199		jbd2_revoke_record_cache = NULL;
200	}
201	if (jbd2_revoke_table_cache) {
202		kmem_cache_destroy(jbd2_revoke_table_cache);
203		jbd2_revoke_table_cache = NULL;
204	}
205}
206
207int __init journal_init_revoke_caches(void)
208{
209	J_ASSERT(!jbd2_revoke_record_cache);
210	J_ASSERT(!jbd2_revoke_table_cache);
211
212	jbd2_revoke_record_cache = KMEM_CACHE(jbd2_revoke_record_s,
213					SLAB_HWCACHE_ALIGN|SLAB_TEMPORARY);
214	if (!jbd2_revoke_record_cache)
215		goto record_cache_failure;
216
217	jbd2_revoke_table_cache = KMEM_CACHE(jbd2_revoke_table_s,
218					     SLAB_TEMPORARY);
219	if (!jbd2_revoke_table_cache)
220		goto table_cache_failure;
221	return 0;
222table_cache_failure:
223	journal_destroy_revoke_caches();
224record_cache_failure:
225		return -ENOMEM;
226}
227
228static struct jbd2_revoke_table_s *journal_init_revoke_table(int hash_size)
229{
230	int shift = 0;
231	int tmp = hash_size;
232	struct jbd2_revoke_table_s *table;
233
234	table = kmem_cache_alloc(jbd2_revoke_table_cache, GFP_KERNEL);
235	if (!table)
236		goto out;
237
238	while((tmp >>= 1UL) != 0UL)
239		shift++;
240
241	table->hash_size = hash_size;
242	table->hash_shift = shift;
243	table->hash_table =
244		kmalloc(hash_size * sizeof(struct list_head), GFP_KERNEL);
245	if (!table->hash_table) {
246		kmem_cache_free(jbd2_revoke_table_cache, table);
247		table = NULL;
248		goto out;
249	}
250
251	for (tmp = 0; tmp < hash_size; tmp++)
252		INIT_LIST_HEAD(&table->hash_table[tmp]);
253
254out:
255	return table;
256}
257
258static void journal_destroy_revoke_table(struct jbd2_revoke_table_s *table)
259{
260	int i;
261	struct list_head *hash_list;
262
263	for (i = 0; i < table->hash_size; i++) {
264		hash_list = &table->hash_table[i];
265		J_ASSERT(list_empty(hash_list));
266	}
267
268	kfree(table->hash_table);
269	kmem_cache_free(jbd2_revoke_table_cache, table);
270}
271
272/* Initialise the revoke table for a given journal to a given size. */
273int journal_init_revoke(journal_t *journal, int hash_size)
274{
275	J_ASSERT(journal->j_revoke_table[0] == NULL);
276	J_ASSERT(is_power_of_2(hash_size));
277
278	journal->j_revoke_table[0] = journal_init_revoke_table(hash_size);
279	if (!journal->j_revoke_table[0])
280		goto fail0;
281
282	journal->j_revoke_table[1] = journal_init_revoke_table(hash_size);
283	if (!journal->j_revoke_table[1])
284		goto fail1;
285
286	journal->j_revoke = journal->j_revoke_table[1];
287
288	spin_lock_init(&journal->j_revoke_lock);
289
290	return 0;
291
292fail1:
293	journal_destroy_revoke_table(journal->j_revoke_table[0]);
294fail0:
295	return -ENOMEM;
296}
297
298/* Destroy a journal's revoke table.  The table must already be empty! */
299void journal_destroy_revoke(journal_t *journal)
300{
301	journal->j_revoke = NULL;
302	if (journal->j_revoke_table[0])
303		journal_destroy_revoke_table(journal->j_revoke_table[0]);
304	if (journal->j_revoke_table[1])
305		journal_destroy_revoke_table(journal->j_revoke_table[1]);
306}
307
308
309#ifdef __KERNEL__
310
311/*
312 * journal_revoke: revoke a given buffer_head from the journal.  This
313 * prevents the block from being replayed during recovery if we take a
314 * crash after this current transaction commits.  Any subsequent
315 * metadata writes of the buffer in this transaction cancel the
316 * revoke.
317 *
318 * Note that this call may block --- it is up to the caller to make
319 * sure that there are no further calls to journal_write_metadata
320 * before the revoke is complete.  In ext3, this implies calling the
321 * revoke before clearing the block bitmap when we are deleting
322 * metadata.
323 *
324 * Revoke performs a journal_forget on any buffer_head passed in as a
325 * parameter, but does _not_ forget the buffer_head if the bh was only
326 * found implicitly.
327 *
328 * bh_in may not be a journalled buffer - it may have come off
329 * the hash tables without an attached journal_head.
330 *
331 * If bh_in is non-zero, journal_revoke() will decrement its b_count
332 * by one.
333 */
334
335int journal_revoke(handle_t *handle, unsigned long long blocknr,
336		   struct buffer_head *bh_in)
337{
338	struct buffer_head *bh = NULL;
339	journal_t *journal;
340	struct block_device *bdev;
341	int err;
342
343	might_sleep();
344	if (bh_in)
345		BUFFER_TRACE(bh_in, "enter");
346
347	journal = handle->h_transaction->t_journal;
348	if (!journal_set_features(journal, 0, 0, JFS_FEATURE_INCOMPAT_REVOKE)){
349		J_ASSERT (!"Cannot set revoke feature!");
350		return -EINVAL;
351	}
352
353	bdev = journal->j_fs_dev;
354	bh = bh_in;
355
356	if (!bh) {
357		bh = __find_get_block(bdev, blocknr, journal->j_blocksize);
358		if (bh)
359			BUFFER_TRACE(bh, "found on hash");
360	}
361#ifdef JFS_EXPENSIVE_CHECKING
362	else {
363		struct buffer_head *bh2;
364
365		/* If there is a different buffer_head lying around in
366		 * memory anywhere... */
367		bh2 = __find_get_block(bdev, blocknr, journal->j_blocksize);
368		if (bh2) {
369			/* ... and it has RevokeValid status... */
370			if (bh2 != bh && buffer_revokevalid(bh2))
371				/* ...then it better be revoked too,
372				 * since it's illegal to create a revoke
373				 * record against a buffer_head which is
374				 * not marked revoked --- that would
375				 * risk missing a subsequent revoke
376				 * cancel. */
377				J_ASSERT_BH(bh2, buffer_revoked(bh2));
378			put_bh(bh2);
379		}
380	}
381#endif
382
383	/* We really ought not ever to revoke twice in a row without
384           first having the revoke cancelled: it's illegal to free a
385           block twice without allocating it in between! */
386	if (bh) {
387		if (!J_EXPECT_BH(bh, !buffer_revoked(bh),
388				 "inconsistent data on disk")) {
389			if (!bh_in)
390				brelse(bh);
391			return -EIO;
392		}
393		set_buffer_revoked(bh);
394		set_buffer_revokevalid(bh);
395		if (bh_in) {
396			BUFFER_TRACE(bh_in, "call journal_forget");
397			journal_forget(handle, bh_in);
398		} else {
399			BUFFER_TRACE(bh, "call brelse");
400			__brelse(bh);
401		}
402	}
403
404	jbd_debug(2, "insert revoke for block %llu, bh_in=%p\n",blocknr, bh_in);
405	err = insert_revoke_hash(journal, blocknr,
406				handle->h_transaction->t_tid);
407	BUFFER_TRACE(bh_in, "exit");
408	return err;
409}
410
411/*
412 * Cancel an outstanding revoke.  For use only internally by the
413 * journaling code (called from journal_get_write_access).
414 *
415 * We trust buffer_revoked() on the buffer if the buffer is already
416 * being journaled: if there is no revoke pending on the buffer, then we
417 * don't do anything here.
418 *
419 * This would break if it were possible for a buffer to be revoked and
420 * discarded, and then reallocated within the same transaction.  In such
421 * a case we would have lost the revoked bit, but when we arrived here
422 * the second time we would still have a pending revoke to cancel.  So,
423 * do not trust the Revoked bit on buffers unless RevokeValid is also
424 * set.
425 */
426int journal_cancel_revoke(handle_t *handle, struct journal_head *jh)
427{
428	struct jbd2_revoke_record_s *record;
429	journal_t *journal = handle->h_transaction->t_journal;
430	int need_cancel;
431	int did_revoke = 0;	/* akpm: debug */
432	struct buffer_head *bh = jh2bh(jh);
433
434	jbd_debug(4, "journal_head %p, cancelling revoke\n", jh);
435
436	/* Is the existing Revoke bit valid?  If so, we trust it, and
437	 * only perform the full cancel if the revoke bit is set.  If
438	 * not, we can't trust the revoke bit, and we need to do the
439	 * full search for a revoke record. */
440	if (test_set_buffer_revokevalid(bh)) {
441		need_cancel = test_clear_buffer_revoked(bh);
442	} else {
443		need_cancel = 1;
444		clear_buffer_revoked(bh);
445	}
446
447	if (need_cancel) {
448		record = find_revoke_record(journal, bh->b_blocknr);
449		if (record) {
450			jbd_debug(4, "cancelled existing revoke on "
451				  "blocknr %llu\n", (unsigned long long)bh->b_blocknr);
452			spin_lock(&journal->j_revoke_lock);
453			list_del(&record->hash);
454			spin_unlock(&journal->j_revoke_lock);
455			kmem_cache_free(jbd2_revoke_record_cache, record);
456			did_revoke = 1;
457		}
458	}
459
460#ifdef JFS_EXPENSIVE_CHECKING
461	/* There better not be one left behind by now! */
462	record = find_revoke_record(journal, bh->b_blocknr);
463	J_ASSERT_JH(jh, record == NULL);
464#endif
465
466	/* Finally, have we just cleared revoke on an unhashed
467	 * buffer_head?  If so, we'd better make sure we clear the
468	 * revoked status on any hashed alias too, otherwise the revoke
469	 * state machine will get very upset later on. */
470	if (need_cancel) {
471		struct buffer_head *bh2;
472		bh2 = __find_get_block(bh->b_bdev, bh->b_blocknr, bh->b_size);
473		if (bh2) {
474			if (bh2 != bh)
475				clear_buffer_revoked(bh2);
476			__brelse(bh2);
477		}
478	}
479	return did_revoke;
480}
481
482/*
483 * journal_clear_revoked_flag clears revoked flag of buffers in
484 * revoke table to reflect there is no revoked buffers in the next
485 * transaction which is going to be started.
486 */
487void jbd2_clear_buffer_revoked_flags(journal_t *journal)
488{
489	struct jbd2_revoke_table_s *revoke = journal->j_revoke;
490	int i = 0;
491
492	for (i = 0; i < revoke->hash_size; i++) {
493		struct list_head *hash_list;
494		struct list_head *list_entry;
495		hash_list = &revoke->hash_table[i];
496
497		list_for_each(list_entry, hash_list) {
498			struct jbd2_revoke_record_s *record;
499			struct buffer_head *bh;
500			record = (struct jbd2_revoke_record_s *)list_entry;
501			bh = __find_get_block(journal->j_fs_dev,
502					      record->blocknr,
503					      journal->j_blocksize);
504			if (bh) {
505				clear_buffer_revoked(bh);
506				__brelse(bh);
507			}
508		}
509	}
510}
511
512/* journal_switch_revoke table select j_revoke for next transaction
513 * we do not want to suspend any processing until all revokes are
514 * written -bzzz
515 */
516void journal_switch_revoke_table(journal_t *journal)
517{
518	int i;
519
520	if (journal->j_revoke == journal->j_revoke_table[0])
521		journal->j_revoke = journal->j_revoke_table[1];
522	else
523		journal->j_revoke = journal->j_revoke_table[0];
524
525	for (i = 0; i < journal->j_revoke->hash_size; i++)
526		INIT_LIST_HEAD(&journal->j_revoke->hash_table[i]);
527}
528
529/*
530 * Write revoke records to the journal for all entries in the current
531 * revoke hash, deleting the entries as we go.
532 */
533void journal_write_revoke_records(journal_t *journal,
534				       transaction_t *transaction,
535				       struct list_head *log_bufs,
536				       int write_op)
537{
538	struct buffer_head *descriptor;
539	struct jbd2_revoke_record_s *record;
540	struct jbd2_revoke_table_s *revoke;
541	struct list_head *hash_list;
542	int i, offset, count;
543
544	descriptor = NULL;
545	offset = 0;
546	count = 0;
547
548	/* select revoke table for committing transaction */
549	revoke = journal->j_revoke == journal->j_revoke_table[0] ?
550		journal->j_revoke_table[1] : journal->j_revoke_table[0];
551
552	for (i = 0; i < revoke->hash_size; i++) {
553		hash_list = &revoke->hash_table[i];
554
555		while (!list_empty(hash_list)) {
556			record = (struct jbd2_revoke_record_s *)
557				hash_list->next;
558			write_one_revoke_record(journal, transaction, log_bufs,
559						&descriptor, &offset,
560						record, write_op);
561			count++;
562			list_del(&record->hash);
563			kmem_cache_free(jbd2_revoke_record_cache, record);
564		}
565	}
566	if (descriptor)
567		flush_descriptor(journal, descriptor, offset, write_op);
568	jbd_debug(1, "Wrote %d revoke records\n", count);
569}
570
571/*
572 * Write out one revoke record.  We need to create a new descriptor
573 * block if the old one is full or if we have not already created one.
574 */
575
576static void write_one_revoke_record(journal_t *journal,
577				    transaction_t *transaction,
578				    struct list_head *log_bufs,
579				    struct buffer_head **descriptorp,
580				    int *offsetp,
581				    struct jbd2_revoke_record_s *record,
582				    int write_op)
583{
584	int csum_size = 0;
585	struct buffer_head *descriptor;
586	int offset;
587	journal_header_t *header;
588
589	/* If we are already aborting, this all becomes a noop.  We
590           still need to go round the loop in
591           journal_write_revoke_records in order to free all of the
592           revoke records: only the IO to the journal is omitted. */
593	if (is_journal_aborted(journal))
594		return;
595
596	descriptor = *descriptorp;
597	offset = *offsetp;
598
599	/* Do we need to leave space at the end for a checksum? */
600	if (JFS_HAS_INCOMPAT_FEATURE(journal, JFS_FEATURE_INCOMPAT_CSUM_V2))
601		csum_size = sizeof(struct journal_revoke_tail);
602
603	/* Make sure we have a descriptor with space left for the record */
604	if (descriptor) {
605		if (offset >= journal->j_blocksize - csum_size) {
606			flush_descriptor(journal, descriptor, offset, write_op);
607			descriptor = NULL;
608		}
609	}
610
611	if (!descriptor) {
612		descriptor = journal_get_descriptor_buffer(journal);
613		if (!descriptor)
614			return;
615		header = (journal_header_t *)descriptor->b_data;
616		header->h_magic     = ext2fs_cpu_to_be32(JFS_MAGIC_NUMBER);
617		header->h_blocktype = ext2fs_cpu_to_be32(JFS_REVOKE_BLOCK);
618		header->h_sequence  = ext2fs_cpu_to_be32(transaction->t_tid);
619
620		/* Record it so that we can wait for IO completion later */
621		BUFFER_TRACE(descriptor, "file in log_bufs");
622		jbd2_file_log_bh(log_bufs, descriptor);
623
624		offset = sizeof(journal_revoke_header_t);
625		*descriptorp = descriptor;
626	}
627
628	if (JFS_HAS_INCOMPAT_FEATURE(journal, JFS_FEATURE_INCOMPAT_64BIT)) {
629		* ((__u64 *)(&descriptor->b_data[offset])) =
630			ext2fs_cpu_to_be64(record->blocknr);
631		offset += 8;
632
633	} else {
634		* ((__u32 *)(&descriptor->b_data[offset])) =
635			ext2fs_cpu_to_be32(record->blocknr);
636		offset += 4;
637	}
638
639	*offsetp = offset;
640}
641
642static void jbd2_revoke_csum_set(journal_t *j, struct buffer_head *bh)
643{
644	struct journal_revoke_tail *tail;
645	__u32 csum;
646
647	if (!JFS_HAS_INCOMPAT_FEATURE(j, JFS_FEATURE_INCOMPAT_CSUM_V2))
648		return;
649
650	tail = (struct journal_revoke_tail *)(bh->b_data + j->j_blocksize -
651			sizeof(struct journal_revoke_tail));
652	tail->r_checksum = 0;
653	csum = jbd2_chksum(j, j->j_csum_seed, bh->b_data, j->j_blocksize);
654	tail->r_checksum = ext2fs_cpu_to_be32(csum);
655}
656
657/*
658 * Flush a revoke descriptor out to the journal.  If we are aborting,
659 * this is a noop; otherwise we are generating a buffer which needs to
660 * be waited for during commit, so it has to go onto the appropriate
661 * journal buffer list.
662 */
663
664static void flush_descriptor(journal_t *journal,
665			     struct buffer_head *descriptor,
666			     int offset, int write_op)
667{
668	journal_revoke_header_t *header;
669
670	if (is_journal_aborted(journal)) {
671		put_bh(descriptor);
672		return;
673	}
674
675	header = (journal_revoke_header_t *)descriptor->b_data;
676	header->r_count = ext2fs_cpu_to_be32(offset);
677	jbd2_revoke_csum_set(journal, descriptor);
678
679	set_buffer_jwrite(descriptor);
680	BUFFER_TRACE(descriptor, "write");
681	set_buffer_dirty(descriptor);
682	write_dirty_buffer(descriptor, write_op);
683}
684#endif
685
686/*
687 * Revoke support for recovery.
688 *
689 * Recovery needs to be able to:
690 *
691 *  record all revoke records, including the tid of the latest instance
692 *  of each revoke in the journal
693 *
694 *  check whether a given block in a given transaction should be replayed
695 *  (ie. has not been revoked by a revoke record in that or a subsequent
696 *  transaction)
697 *
698 *  empty the revoke table after recovery.
699 */
700
701/*
702 * First, setting revoke records.  We create a new revoke record for
703 * every block ever revoked in the log as we scan it for recovery, and
704 * we update the existing records if we find multiple revokes for a
705 * single block.
706 */
707
708int journal_set_revoke(journal_t *journal,
709		       unsigned long long blocknr,
710		       tid_t sequence)
711{
712	struct jbd2_revoke_record_s *record;
713
714	record = find_revoke_record(journal, blocknr);
715	if (record) {
716		/* If we have multiple occurrences, only record the
717		 * latest sequence number in the hashed record */
718		if (tid_gt(sequence, record->sequence))
719			record->sequence = sequence;
720		return 0;
721	}
722	return insert_revoke_hash(journal, blocknr, sequence);
723}
724
725/*
726 * Test revoke records.  For a given block referenced in the log, has
727 * that block been revoked?  A revoke record with a given transaction
728 * sequence number revokes all blocks in that transaction and earlier
729 * ones, but later transactions still need replayed.
730 */
731
732int journal_test_revoke(journal_t *journal,
733			unsigned long long blocknr,
734			tid_t sequence)
735{
736	struct jbd2_revoke_record_s *record;
737
738	record = find_revoke_record(journal, blocknr);
739	if (!record)
740		return 0;
741	if (tid_gt(sequence, record->sequence))
742		return 0;
743	return 1;
744}
745
746/*
747 * Finally, once recovery is over, we need to clear the revoke table so
748 * that it can be reused by the running filesystem.
749 */
750
751void journal_clear_revoke(journal_t *journal)
752{
753	int i;
754	struct list_head *hash_list;
755	struct jbd2_revoke_record_s *record;
756	struct jbd2_revoke_table_s *revoke;
757
758	revoke = journal->j_revoke;
759
760	for (i = 0; i < revoke->hash_size; i++) {
761		hash_list = &revoke->hash_table[i];
762		while (!list_empty(hash_list)) {
763			record = (struct jbd2_revoke_record_s*) hash_list->next;
764			list_del(&record->hash);
765			kmem_cache_free(jbd2_revoke_record_cache, record);
766		}
767	}
768}
769