geo_hyperplane.cpp revision 615d816d068b4d0f5e8df601930b5f160bf7eda1
1// This file is part of Eigen, a lightweight C++ template library
2// for linear algebra.
3//
4// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
5// Copyright (C) 2008 Benoit Jacob <jacob.benoit.1@gmail.com>
6//
7// This Source Code Form is subject to the terms of the Mozilla
8// Public License v. 2.0. If a copy of the MPL was not distributed
9// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
10
11#include "main.h"
12#include <Eigen/Geometry>
13#include <Eigen/LU>
14#include <Eigen/QR>
15
16template<typename HyperplaneType> void hyperplane(const HyperplaneType& _plane)
17{
18  /* this test covers the following files:
19     Hyperplane.h
20  */
21  typedef typename HyperplaneType::Index Index;
22  const Index dim = _plane.dim();
23  enum { Options = HyperplaneType::Options };
24  typedef typename HyperplaneType::Scalar Scalar;
25  typedef Matrix<Scalar, HyperplaneType::AmbientDimAtCompileTime, 1> VectorType;
26  typedef Matrix<Scalar, HyperplaneType::AmbientDimAtCompileTime,
27                         HyperplaneType::AmbientDimAtCompileTime> MatrixType;
28
29  VectorType p0 = VectorType::Random(dim);
30  VectorType p1 = VectorType::Random(dim);
31
32  VectorType n0 = VectorType::Random(dim).normalized();
33  VectorType n1 = VectorType::Random(dim).normalized();
34
35  HyperplaneType pl0(n0, p0);
36  HyperplaneType pl1(n1, p1);
37  HyperplaneType pl2 = pl1;
38
39  Scalar s0 = internal::random<Scalar>();
40  Scalar s1 = internal::random<Scalar>();
41
42  VERIFY_IS_APPROX( n1.dot(n1), Scalar(1) );
43
44  VERIFY_IS_MUCH_SMALLER_THAN( pl0.absDistance(p0), Scalar(1) );
45  VERIFY_IS_APPROX( pl1.signedDistance(p1 + n1 * s0), s0 );
46  VERIFY_IS_MUCH_SMALLER_THAN( pl1.signedDistance(pl1.projection(p0)), Scalar(1) );
47  VERIFY_IS_MUCH_SMALLER_THAN( pl1.absDistance(p1 +  pl1.normal().unitOrthogonal() * s1), Scalar(1) );
48
49  // transform
50  if (!NumTraits<Scalar>::IsComplex)
51  {
52    MatrixType rot = MatrixType::Random(dim,dim).householderQr().householderQ();
53    DiagonalMatrix<Scalar,HyperplaneType::AmbientDimAtCompileTime> scaling(VectorType::Random());
54    Translation<Scalar,HyperplaneType::AmbientDimAtCompileTime> translation(VectorType::Random());
55
56    pl2 = pl1;
57    VERIFY_IS_MUCH_SMALLER_THAN( pl2.transform(rot).absDistance(rot * p1), Scalar(1) );
58    pl2 = pl1;
59    VERIFY_IS_MUCH_SMALLER_THAN( pl2.transform(rot,Isometry).absDistance(rot * p1), Scalar(1) );
60    pl2 = pl1;
61    VERIFY_IS_MUCH_SMALLER_THAN( pl2.transform(rot*scaling).absDistance((rot*scaling) * p1), Scalar(1) );
62    pl2 = pl1;
63    VERIFY_IS_MUCH_SMALLER_THAN( pl2.transform(rot*scaling*translation)
64                                 .absDistance((rot*scaling*translation) * p1), Scalar(1) );
65    pl2 = pl1;
66    VERIFY_IS_MUCH_SMALLER_THAN( pl2.transform(rot*translation,Isometry)
67                                 .absDistance((rot*translation) * p1), Scalar(1) );
68  }
69
70  // casting
71  const int Dim = HyperplaneType::AmbientDimAtCompileTime;
72  typedef typename GetDifferentType<Scalar>::type OtherScalar;
73  Hyperplane<OtherScalar,Dim,Options> hp1f = pl1.template cast<OtherScalar>();
74  VERIFY_IS_APPROX(hp1f.template cast<Scalar>(),pl1);
75  Hyperplane<Scalar,Dim,Options> hp1d = pl1.template cast<Scalar>();
76  VERIFY_IS_APPROX(hp1d.template cast<Scalar>(),pl1);
77}
78
79template<typename Scalar> void lines()
80{
81  using std::abs;
82  typedef Hyperplane<Scalar, 2> HLine;
83  typedef ParametrizedLine<Scalar, 2> PLine;
84  typedef Matrix<Scalar,2,1> Vector;
85  typedef Matrix<Scalar,3,1> CoeffsType;
86
87  for(int i = 0; i < 10; i++)
88  {
89    Vector center = Vector::Random();
90    Vector u = Vector::Random();
91    Vector v = Vector::Random();
92    Scalar a = internal::random<Scalar>();
93    while (abs(a-1) < 1e-4) a = internal::random<Scalar>();
94    while (u.norm() < 1e-4) u = Vector::Random();
95    while (v.norm() < 1e-4) v = Vector::Random();
96
97    HLine line_u = HLine::Through(center + u, center + a*u);
98    HLine line_v = HLine::Through(center + v, center + a*v);
99
100    // the line equations should be normalized so that a^2+b^2=1
101    VERIFY_IS_APPROX(line_u.normal().norm(), Scalar(1));
102    VERIFY_IS_APPROX(line_v.normal().norm(), Scalar(1));
103
104    Vector result = line_u.intersection(line_v);
105
106    // the lines should intersect at the point we called "center"
107    VERIFY_IS_APPROX(result, center);
108
109    // check conversions between two types of lines
110    PLine pl(line_u); // gcc 3.3 will commit suicide if we don't name this variable
111    CoeffsType converted_coeffs = HLine(pl).coeffs();
112    converted_coeffs *= (line_u.coeffs()[0])/(converted_coeffs[0]);
113    VERIFY(line_u.coeffs().isApprox(converted_coeffs));
114  }
115}
116
117template<typename Scalar> void planes()
118{
119  using std::abs;
120  typedef Hyperplane<Scalar, 3> Plane;
121  typedef Matrix<Scalar,3,1> Vector;
122
123  for(int i = 0; i < 10; i++)
124  {
125    Vector v0 = Vector::Random();
126    Vector v1(v0), v2(v0);
127    if(internal::random<double>(0,1)>0.25)
128      v1 += Vector::Random();
129    if(internal::random<double>(0,1)>0.25)
130      v2 += v1 * std::pow(internal::random<Scalar>(0,1),internal::random<int>(1,16));
131    if(internal::random<double>(0,1)>0.25)
132      v2 += Vector::Random() * std::pow(internal::random<Scalar>(0,1),internal::random<int>(1,16));
133
134    Plane p0 = Plane::Through(v0, v1, v2);
135
136    VERIFY_IS_APPROX(p0.normal().norm(), Scalar(1));
137    VERIFY_IS_MUCH_SMALLER_THAN(p0.absDistance(v0), Scalar(1));
138    VERIFY_IS_MUCH_SMALLER_THAN(p0.absDistance(v1), Scalar(1));
139    VERIFY_IS_MUCH_SMALLER_THAN(p0.absDistance(v2), Scalar(1));
140  }
141}
142
143template<typename Scalar> void hyperplane_alignment()
144{
145  typedef Hyperplane<Scalar,3,AutoAlign> Plane3a;
146  typedef Hyperplane<Scalar,3,DontAlign> Plane3u;
147
148  EIGEN_ALIGN16 Scalar array1[4];
149  EIGEN_ALIGN16 Scalar array2[4];
150  EIGEN_ALIGN16 Scalar array3[4+1];
151  Scalar* array3u = array3+1;
152
153  Plane3a *p1 = ::new(reinterpret_cast<void*>(array1)) Plane3a;
154  Plane3u *p2 = ::new(reinterpret_cast<void*>(array2)) Plane3u;
155  Plane3u *p3 = ::new(reinterpret_cast<void*>(array3u)) Plane3u;
156
157  p1->coeffs().setRandom();
158  *p2 = *p1;
159  *p3 = *p1;
160
161  VERIFY_IS_APPROX(p1->coeffs(), p2->coeffs());
162  VERIFY_IS_APPROX(p1->coeffs(), p3->coeffs());
163
164  #if defined(EIGEN_VECTORIZE) && EIGEN_ALIGN_STATICALLY
165  if(internal::packet_traits<Scalar>::Vectorizable)
166    VERIFY_RAISES_ASSERT((::new(reinterpret_cast<void*>(array3u)) Plane3a));
167  #endif
168}
169
170
171void test_geo_hyperplane()
172{
173  for(int i = 0; i < g_repeat; i++) {
174    CALL_SUBTEST_1( hyperplane(Hyperplane<float,2>()) );
175    CALL_SUBTEST_2( hyperplane(Hyperplane<float,3>()) );
176    CALL_SUBTEST_2( hyperplane(Hyperplane<float,3,DontAlign>()) );
177    CALL_SUBTEST_2( hyperplane_alignment<float>() );
178    CALL_SUBTEST_3( hyperplane(Hyperplane<double,4>()) );
179    CALL_SUBTEST_4( hyperplane(Hyperplane<std::complex<double>,5>()) );
180    CALL_SUBTEST_1( lines<float>() );
181    CALL_SUBTEST_3( lines<double>() );
182    CALL_SUBTEST_2( planes<float>() );
183    CALL_SUBTEST_5( planes<double>() );
184  }
185}
186