1// This file is part of Eigen, a lightweight C++ template library
2// for linear algebra.
3//
4// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
5//
6// This Source Code Form is subject to the terms of the Mozilla
7// Public License v. 2.0. If a copy of the MPL was not distributed
8// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9
10#include "main.h"
11
12#include <Eigen/CXX11/Tensor>
13
14using Eigen::Tensor;
15using Eigen::RowMajor;
16
17
18static void test_0d()
19{
20  TensorFixedSize<float, Sizes<> > scalar1;
21  TensorFixedSize<float, Sizes<>, RowMajor> scalar2;
22  VERIFY_IS_EQUAL(scalar1.rank(), 0);
23  VERIFY_IS_EQUAL(scalar1.size(), 1);
24  VERIFY_IS_EQUAL(array_prod(scalar1.dimensions()), 1);
25
26  scalar1() = 7.0;
27  scalar2() = 13.0;
28
29  // Test against shallow copy.
30  TensorFixedSize<float, Sizes<> > copy = scalar1;
31  VERIFY_IS_NOT_EQUAL(scalar1.data(), copy.data());
32  VERIFY_IS_APPROX(scalar1(), copy());
33  copy = scalar1;
34  VERIFY_IS_NOT_EQUAL(scalar1.data(), copy.data());
35  VERIFY_IS_APPROX(scalar1(), copy());
36
37  TensorFixedSize<float, Sizes<> > scalar3 = scalar1.sqrt();
38  TensorFixedSize<float, Sizes<>, RowMajor> scalar4 = scalar2.sqrt();
39  VERIFY_IS_EQUAL(scalar3.rank(), 0);
40  VERIFY_IS_APPROX(scalar3(), sqrtf(7.0));
41  VERIFY_IS_APPROX(scalar4(), sqrtf(13.0));
42
43  scalar3 = scalar1 + scalar2;
44  VERIFY_IS_APPROX(scalar3(), 7.0f + 13.0f);
45}
46
47static void test_1d()
48{
49  TensorFixedSize<float, Sizes<6> > vec1;
50  TensorFixedSize<float, Sizes<6>, RowMajor> vec2;
51
52  VERIFY_IS_EQUAL((vec1.size()), 6);
53  //  VERIFY_IS_EQUAL((vec1.dimensions()[0]), 6);
54  //  VERIFY_IS_EQUAL((vec1.dimension(0)), 6);
55
56  vec1(0) = 4.0;  vec2(0) = 0.0;
57  vec1(1) = 8.0;  vec2(1) = 1.0;
58  vec1(2) = 15.0; vec2(2) = 2.0;
59  vec1(3) = 16.0; vec2(3) = 3.0;
60  vec1(4) = 23.0; vec2(4) = 4.0;
61  vec1(5) = 42.0; vec2(5) = 5.0;
62
63  // Test against shallow copy.
64  TensorFixedSize<float, Sizes<6> > copy = vec1;
65  VERIFY_IS_NOT_EQUAL(vec1.data(), copy.data());
66  for (int i = 0; i < 6; ++i) {
67    VERIFY_IS_APPROX(vec1(i), copy(i));
68  }
69  copy = vec1;
70  VERIFY_IS_NOT_EQUAL(vec1.data(), copy.data());
71  for (int i = 0; i < 6; ++i) {
72    VERIFY_IS_APPROX(vec1(i), copy(i));
73  }
74
75  TensorFixedSize<float, Sizes<6> > vec3 = vec1.sqrt();
76  TensorFixedSize<float, Sizes<6>, RowMajor> vec4 = vec2.sqrt();
77
78  VERIFY_IS_EQUAL((vec3.size()), 6);
79  VERIFY_IS_EQUAL(vec3.rank(), 1);
80  //  VERIFY_IS_EQUAL((vec3.dimensions()[0]), 6);
81  //  VERIFY_IS_EQUAL((vec3.dimension(0)), 6);
82
83  VERIFY_IS_APPROX(vec3(0), sqrtf(4.0));
84  VERIFY_IS_APPROX(vec3(1), sqrtf(8.0));
85  VERIFY_IS_APPROX(vec3(2), sqrtf(15.0));
86  VERIFY_IS_APPROX(vec3(3), sqrtf(16.0));
87  VERIFY_IS_APPROX(vec3(4), sqrtf(23.0));
88  VERIFY_IS_APPROX(vec3(5), sqrtf(42.0));
89
90  VERIFY_IS_APPROX(vec4(0), sqrtf(0.0));
91  VERIFY_IS_APPROX(vec4(1), sqrtf(1.0));
92  VERIFY_IS_APPROX(vec4(2), sqrtf(2.0));
93  VERIFY_IS_APPROX(vec4(3), sqrtf(3.0));
94  VERIFY_IS_APPROX(vec4(4), sqrtf(4.0));
95  VERIFY_IS_APPROX(vec4(5), sqrtf(5.0));
96
97  vec3 = vec1 + vec2;
98  VERIFY_IS_APPROX(vec3(0), 4.0f + 0.0f);
99  VERIFY_IS_APPROX(vec3(1), 8.0f + 1.0f);
100  VERIFY_IS_APPROX(vec3(2), 15.0f + 2.0f);
101  VERIFY_IS_APPROX(vec3(3), 16.0f + 3.0f);
102  VERIFY_IS_APPROX(vec3(4), 23.0f + 4.0f);
103  VERIFY_IS_APPROX(vec3(5), 42.0f + 5.0f);
104}
105
106static void test_tensor_map()
107{
108  TensorFixedSize<float, Sizes<6> > vec1;
109  TensorFixedSize<float, Sizes<6>, RowMajor> vec2;
110
111  vec1(0) = 4.0;  vec2(0) = 0.0;
112  vec1(1) = 8.0;  vec2(1) = 1.0;
113  vec1(2) = 15.0; vec2(2) = 2.0;
114  vec1(3) = 16.0; vec2(3) = 3.0;
115  vec1(4) = 23.0; vec2(4) = 4.0;
116  vec1(5) = 42.0; vec2(5) = 5.0;
117
118  float data3[6];
119  TensorMap<TensorFixedSize<float, Sizes<6> > > vec3(data3, 6);
120  vec3 = vec1.sqrt() + vec2;
121
122  VERIFY_IS_APPROX(vec3(0), sqrtf(4.0));
123  VERIFY_IS_APPROX(vec3(1), sqrtf(8.0) + 1.0f);
124  VERIFY_IS_APPROX(vec3(2), sqrtf(15.0) + 2.0f);
125  VERIFY_IS_APPROX(vec3(3), sqrtf(16.0) + 3.0f);
126  VERIFY_IS_APPROX(vec3(4), sqrtf(23.0) + 4.0f);
127  VERIFY_IS_APPROX(vec3(5), sqrtf(42.0) + 5.0f);
128}
129
130static void test_2d()
131{
132  float data1[6];
133  TensorMap<TensorFixedSize<float, Sizes<2, 3> > > mat1(data1,2,3);
134  float data2[6];
135  TensorMap<TensorFixedSize<float, Sizes<2, 3>, RowMajor> > mat2(data2,2,3);
136
137  VERIFY_IS_EQUAL((mat1.size()), 2*3);
138  VERIFY_IS_EQUAL(mat1.rank(), 2);
139  //  VERIFY_IS_EQUAL((mat1.dimension(0)), 2);
140  //  VERIFY_IS_EQUAL((mat1.dimension(1)), 3);
141
142  mat1(0,0) = 0.0;
143  mat1(0,1) = 1.0;
144  mat1(0,2) = 2.0;
145  mat1(1,0) = 3.0;
146  mat1(1,1) = 4.0;
147  mat1(1,2) = 5.0;
148
149  mat2(0,0) = -0.0;
150  mat2(0,1) = -1.0;
151  mat2(0,2) = -2.0;
152  mat2(1,0) = -3.0;
153  mat2(1,1) = -4.0;
154  mat2(1,2) = -5.0;
155
156  TensorFixedSize<float, Sizes<2, 3> > mat3;
157  TensorFixedSize<float, Sizes<2, 3>, RowMajor> mat4;
158  mat3 = mat1.abs();
159  mat4 = mat2.abs();
160
161  VERIFY_IS_EQUAL((mat3.size()), 2*3);
162    //  VERIFY_IS_EQUAL((mat3.dimension(0)), 2);
163    //  VERIFY_IS_EQUAL((mat3.dimension(1)), 3);
164
165  VERIFY_IS_APPROX(mat3(0,0), 0.0f);
166  VERIFY_IS_APPROX(mat3(0,1), 1.0f);
167  VERIFY_IS_APPROX(mat3(0,2), 2.0f);
168  VERIFY_IS_APPROX(mat3(1,0), 3.0f);
169  VERIFY_IS_APPROX(mat3(1,1), 4.0f);
170  VERIFY_IS_APPROX(mat3(1,2), 5.0f);
171
172  VERIFY_IS_APPROX(mat4(0,0), 0.0f);
173  VERIFY_IS_APPROX(mat4(0,1), 1.0f);
174  VERIFY_IS_APPROX(mat4(0,2), 2.0f);
175  VERIFY_IS_APPROX(mat4(1,0), 3.0f);
176  VERIFY_IS_APPROX(mat4(1,1), 4.0f);
177  VERIFY_IS_APPROX(mat4(1,2), 5.0f);
178}
179
180static void test_3d()
181{
182  TensorFixedSize<float, Sizes<2, 3, 7> > mat1;
183  TensorFixedSize<float, Sizes<2, 3, 7>, RowMajor> mat2;
184
185  VERIFY_IS_EQUAL((mat1.size()), 2*3*7);
186  VERIFY_IS_EQUAL(mat1.rank(), 3);
187  //  VERIFY_IS_EQUAL((mat1.dimension(0)), 2);
188  //  VERIFY_IS_EQUAL((mat1.dimension(1)), 3);
189  //  VERIFY_IS_EQUAL((mat1.dimension(2)), 7);
190
191  float val = 0.0f;
192  for (int i = 0; i < 2; ++i) {
193    for (int j = 0; j < 3; ++j) {
194      for (int k = 0; k < 7; ++k) {
195        mat1(i,j,k) = val;
196        mat2(i,j,k) = val;
197        val += 1.0f;
198      }
199    }
200  }
201
202  TensorFixedSize<float, Sizes<2, 3, 7> > mat3;
203  mat3 = mat1.sqrt();
204  TensorFixedSize<float, Sizes<2, 3, 7>, RowMajor> mat4;
205  mat4 = mat2.sqrt();
206
207  VERIFY_IS_EQUAL((mat3.size()), 2*3*7);
208  //  VERIFY_IS_EQUAL((mat3.dimension(0)), 2);
209  //  VERIFY_IS_EQUAL((mat3.dimension(1)), 3);
210  //  VERIFY_IS_EQUAL((mat3.dimension(2)), 7);
211
212
213  val = 0.0f;
214  for (int i = 0; i < 2; ++i) {
215    for (int j = 0; j < 3; ++j) {
216      for (int k = 0; k < 7; ++k) {
217        VERIFY_IS_APPROX(mat3(i,j,k), sqrtf(val));
218        VERIFY_IS_APPROX(mat4(i,j,k), sqrtf(val));
219        val += 1.0f;
220      }
221    }
222  }
223}
224
225
226static void test_array()
227{
228  TensorFixedSize<float, Sizes<2, 3, 7> > mat1;
229  float val = 0.0f;
230  for (int i = 0; i < 2; ++i) {
231    for (int j = 0; j < 3; ++j) {
232      for (int k = 0; k < 7; ++k) {
233        mat1(i,j,k) = val;
234        val += 1.0f;
235      }
236    }
237  }
238
239  TensorFixedSize<float, Sizes<2, 3, 7> > mat3;
240  mat3 = mat1.pow(3.5f);
241
242  val = 0.0f;
243  for (int i = 0; i < 2; ++i) {
244    for (int j = 0; j < 3; ++j) {
245      for (int k = 0; k < 7; ++k) {
246        VERIFY_IS_APPROX(mat3(i,j,k), powf(val, 3.5f));
247        val += 1.0f;
248      }
249    }
250  }
251}
252
253void test_cxx11_tensor_fixed_size()
254{
255  CALL_SUBTEST(test_0d());
256  CALL_SUBTEST(test_1d());
257  CALL_SUBTEST(test_tensor_map());
258  CALL_SUBTEST(test_2d());
259  CALL_SUBTEST(test_3d());
260  CALL_SUBTEST(test_array());
261}
262