12b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang// This file is part of Eigen, a lightweight C++ template library 22b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang// for linear algebra. 32b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang// 42b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com> 52b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang// 62b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang// This Source Code Form is subject to the terms of the Mozilla 72b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang// Public License v. 2.0. If a copy of the MPL was not distributed 82b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. 92b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang 102b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang#include "main.h" 112b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang#include <limits> 122b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang#include <numeric> 132b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang#include <Eigen/CXX11/Tensor> 142b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang 152b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wangusing Eigen::Tensor; 162b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang 172b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wangtemplate <int DataLayout> 182b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wangstatic void test_trivial_reductions() { 192b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang { 202b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang Tensor<float, 0, DataLayout> tensor; 212b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang tensor.setRandom(); 222b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang array<ptrdiff_t, 0> reduction_axis; 232b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang 242b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang Tensor<float, 0, DataLayout> result = tensor.sum(reduction_axis); 252b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang VERIFY_IS_EQUAL(result(), tensor()); 262b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang } 272b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang 282b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang { 292b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang Tensor<float, 1, DataLayout> tensor(7); 302b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang tensor.setRandom(); 312b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang array<ptrdiff_t, 0> reduction_axis; 322b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang 332b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang Tensor<float, 1, DataLayout> result = tensor.sum(reduction_axis); 342b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang VERIFY_IS_EQUAL(result.dimension(0), 7); 352b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang for (int i = 0; i < 7; ++i) { 362b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang VERIFY_IS_EQUAL(result(i), tensor(i)); 372b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang } 382b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang } 392b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang 402b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang { 412b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang Tensor<float, 2, DataLayout> tensor(2, 3); 422b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang tensor.setRandom(); 432b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang array<ptrdiff_t, 0> reduction_axis; 442b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang 452b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang Tensor<float, 2, DataLayout> result = tensor.sum(reduction_axis); 462b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang VERIFY_IS_EQUAL(result.dimension(0), 2); 472b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang VERIFY_IS_EQUAL(result.dimension(1), 3); 482b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang for (int i = 0; i < 2; ++i) { 492b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang for (int j = 0; j < 3; ++j) { 502b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang VERIFY_IS_EQUAL(result(i, j), tensor(i, j)); 512b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang } 522b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang } 532b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang } 542b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang} 552b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang 562b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wangtemplate <int DataLayout> 572b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wangstatic void test_simple_reductions() { 582b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang Tensor<float, 4, DataLayout> tensor(2, 3, 5, 7); 592b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang tensor.setRandom(); 602b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang array<ptrdiff_t, 2> reduction_axis2; 612b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang reduction_axis2[0] = 1; 622b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang reduction_axis2[1] = 3; 632b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang 642b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang Tensor<float, 2, DataLayout> result = tensor.sum(reduction_axis2); 652b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang VERIFY_IS_EQUAL(result.dimension(0), 2); 662b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang VERIFY_IS_EQUAL(result.dimension(1), 5); 672b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang for (int i = 0; i < 2; ++i) { 682b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang for (int j = 0; j < 5; ++j) { 692b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang float sum = 0.0f; 702b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang for (int k = 0; k < 3; ++k) { 712b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang for (int l = 0; l < 7; ++l) { 722b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang sum += tensor(i, k, j, l); 732b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang } 742b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang } 752b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang VERIFY_IS_APPROX(result(i, j), sum); 762b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang } 772b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang } 782b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang 792b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang { 802b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang Tensor<float, 0, DataLayout> sum1 = tensor.sum(); 812b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang VERIFY_IS_EQUAL(sum1.rank(), 0); 822b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang 832b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang array<ptrdiff_t, 4> reduction_axis4; 842b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang reduction_axis4[0] = 0; 852b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang reduction_axis4[1] = 1; 862b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang reduction_axis4[2] = 2; 872b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang reduction_axis4[3] = 3; 882b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang Tensor<float, 0, DataLayout> sum2 = tensor.sum(reduction_axis4); 892b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang VERIFY_IS_EQUAL(sum2.rank(), 0); 902b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang 912b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang VERIFY_IS_APPROX(sum1(), sum2()); 922b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang } 932b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang 942b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang reduction_axis2[0] = 0; 952b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang reduction_axis2[1] = 2; 962b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang result = tensor.prod(reduction_axis2); 972b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang VERIFY_IS_EQUAL(result.dimension(0), 3); 982b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang VERIFY_IS_EQUAL(result.dimension(1), 7); 992b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang for (int i = 0; i < 3; ++i) { 1002b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang for (int j = 0; j < 7; ++j) { 1012b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang float prod = 1.0f; 1022b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang for (int k = 0; k < 2; ++k) { 1032b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang for (int l = 0; l < 5; ++l) { 1042b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang prod *= tensor(k, i, l, j); 1052b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang } 1062b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang } 1072b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang VERIFY_IS_APPROX(result(i, j), prod); 1082b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang } 1092b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang } 1102b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang 1112b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang { 1122b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang Tensor<float, 0, DataLayout> prod1 = tensor.prod(); 1132b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang VERIFY_IS_EQUAL(prod1.rank(), 0); 1142b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang 1152b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang array<ptrdiff_t, 4> reduction_axis4; 1162b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang reduction_axis4[0] = 0; 1172b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang reduction_axis4[1] = 1; 1182b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang reduction_axis4[2] = 2; 1192b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang reduction_axis4[3] = 3; 1202b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang Tensor<float, 0, DataLayout> prod2 = tensor.prod(reduction_axis4); 1212b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang VERIFY_IS_EQUAL(prod2.rank(), 0); 1222b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang 1232b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang VERIFY_IS_APPROX(prod1(), prod2()); 1242b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang } 1252b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang 1262b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang reduction_axis2[0] = 0; 1272b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang reduction_axis2[1] = 2; 1282b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang result = tensor.maximum(reduction_axis2); 1292b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang VERIFY_IS_EQUAL(result.dimension(0), 3); 1302b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang VERIFY_IS_EQUAL(result.dimension(1), 7); 1312b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang for (int i = 0; i < 3; ++i) { 1322b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang for (int j = 0; j < 7; ++j) { 1332b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang float max_val = std::numeric_limits<float>::lowest(); 1342b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang for (int k = 0; k < 2; ++k) { 1352b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang for (int l = 0; l < 5; ++l) { 1362b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang max_val = (std::max)(max_val, tensor(k, i, l, j)); 1372b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang } 1382b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang } 1392b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang VERIFY_IS_APPROX(result(i, j), max_val); 1402b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang } 1412b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang } 1422b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang 1432b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang { 1442b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang Tensor<float, 0, DataLayout> max1 = tensor.maximum(); 1452b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang VERIFY_IS_EQUAL(max1.rank(), 0); 1462b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang 1472b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang array<ptrdiff_t, 4> reduction_axis4; 1482b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang reduction_axis4[0] = 0; 1492b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang reduction_axis4[1] = 1; 1502b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang reduction_axis4[2] = 2; 1512b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang reduction_axis4[3] = 3; 1522b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang Tensor<float, 0, DataLayout> max2 = tensor.maximum(reduction_axis4); 1532b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang VERIFY_IS_EQUAL(max2.rank(), 0); 1542b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang 1552b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang VERIFY_IS_APPROX(max1(), max2()); 1562b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang } 1572b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang 1582b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang reduction_axis2[0] = 0; 1592b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang reduction_axis2[1] = 1; 1602b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang result = tensor.minimum(reduction_axis2); 1612b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang VERIFY_IS_EQUAL(result.dimension(0), 5); 1622b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang VERIFY_IS_EQUAL(result.dimension(1), 7); 1632b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang for (int i = 0; i < 5; ++i) { 1642b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang for (int j = 0; j < 7; ++j) { 1652b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang float min_val = (std::numeric_limits<float>::max)(); 1662b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang for (int k = 0; k < 2; ++k) { 1672b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang for (int l = 0; l < 3; ++l) { 1682b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang min_val = (std::min)(min_val, tensor(k, l, i, j)); 1692b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang } 1702b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang } 1712b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang VERIFY_IS_APPROX(result(i, j), min_val); 1722b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang } 1732b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang } 1742b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang 1752b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang { 1762b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang Tensor<float, 0, DataLayout> min1 = tensor.minimum(); 1772b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang VERIFY_IS_EQUAL(min1.rank(), 0); 1782b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang 1792b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang array<ptrdiff_t, 4> reduction_axis4; 1802b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang reduction_axis4[0] = 0; 1812b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang reduction_axis4[1] = 1; 1822b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang reduction_axis4[2] = 2; 1832b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang reduction_axis4[3] = 3; 1842b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang Tensor<float, 0, DataLayout> min2 = tensor.minimum(reduction_axis4); 1852b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang VERIFY_IS_EQUAL(min2.rank(), 0); 1862b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang 1872b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang VERIFY_IS_APPROX(min1(), min2()); 1882b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang } 1892b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang 1902b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang reduction_axis2[0] = 0; 1912b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang reduction_axis2[1] = 1; 1922b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang result = tensor.mean(reduction_axis2); 1932b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang VERIFY_IS_EQUAL(result.dimension(0), 5); 1942b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang VERIFY_IS_EQUAL(result.dimension(1), 7); 1952b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang for (int i = 0; i < 5; ++i) { 1962b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang for (int j = 0; j < 7; ++j) { 1972b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang float sum = 0.0f; 1982b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang int count = 0; 1992b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang for (int k = 0; k < 2; ++k) { 2002b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang for (int l = 0; l < 3; ++l) { 2012b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang sum += tensor(k, l, i, j); 2022b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang ++count; 2032b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang } 2042b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang } 2052b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang VERIFY_IS_APPROX(result(i, j), sum / count); 2062b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang } 2072b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang } 2082b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang 2092b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang { 2102b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang Tensor<float, 0, DataLayout> mean1 = tensor.mean(); 2112b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang VERIFY_IS_EQUAL(mean1.rank(), 0); 2122b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang 2132b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang array<ptrdiff_t, 4> reduction_axis4; 2142b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang reduction_axis4[0] = 0; 2152b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang reduction_axis4[1] = 1; 2162b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang reduction_axis4[2] = 2; 2172b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang reduction_axis4[3] = 3; 2182b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang Tensor<float, 0, DataLayout> mean2 = tensor.mean(reduction_axis4); 2192b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang VERIFY_IS_EQUAL(mean2.rank(), 0); 2202b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang 2212b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang VERIFY_IS_APPROX(mean1(), mean2()); 2222b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang } 2232b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang 2242b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang { 2252b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang Tensor<int, 1> ints(10); 2262b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang std::iota(ints.data(), ints.data() + ints.dimension(0), 0); 2272b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang 2282b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang TensorFixedSize<bool, Sizes<> > all; 2292b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang all = ints.all(); 2302b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang VERIFY(!all()); 2312b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang all = (ints >= ints.constant(0)).all(); 2322b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang VERIFY(all()); 2332b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang 2342b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang TensorFixedSize<bool, Sizes<> > any; 2352b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang any = (ints > ints.constant(10)).any(); 2362b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang VERIFY(!any()); 2372b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang any = (ints < ints.constant(1)).any(); 2382b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang VERIFY(any()); 2392b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang } 2402b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang} 2412b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang 2422b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang 2432b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wangtemplate <int DataLayout> 2442b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wangstatic void test_reductions_in_expr() { 2452b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang Tensor<float, 4, DataLayout> tensor(2, 3, 5, 7); 2462b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang tensor.setRandom(); 2472b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang array<ptrdiff_t, 2> reduction_axis2; 2482b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang reduction_axis2[0] = 1; 2492b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang reduction_axis2[1] = 3; 2502b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang 2512b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang Tensor<float, 2, DataLayout> result(2, 5); 2522b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang result = result.constant(1.0f) - tensor.sum(reduction_axis2); 2532b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang VERIFY_IS_EQUAL(result.dimension(0), 2); 2542b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang VERIFY_IS_EQUAL(result.dimension(1), 5); 2552b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang for (int i = 0; i < 2; ++i) { 2562b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang for (int j = 0; j < 5; ++j) { 2572b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang float sum = 0.0f; 2582b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang for (int k = 0; k < 3; ++k) { 2592b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang for (int l = 0; l < 7; ++l) { 2602b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang sum += tensor(i, k, j, l); 2612b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang } 2622b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang } 2632b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang VERIFY_IS_APPROX(result(i, j), 1.0f - sum); 2642b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang } 2652b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang } 2662b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang} 2672b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang 2682b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang 2692b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wangtemplate <int DataLayout> 2702b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wangstatic void test_full_reductions() { 2712b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang Tensor<float, 2, DataLayout> tensor(2, 3); 2722b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang tensor.setRandom(); 2732b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang array<ptrdiff_t, 2> reduction_axis; 2742b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang reduction_axis[0] = 0; 2752b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang reduction_axis[1] = 1; 2762b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang 2772b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang Tensor<float, 0, DataLayout> result = tensor.sum(reduction_axis); 2782b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang VERIFY_IS_EQUAL(result.rank(), 0); 2792b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang 2802b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang float sum = 0.0f; 2812b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang for (int i = 0; i < 2; ++i) { 2822b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang for (int j = 0; j < 3; ++j) { 2832b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang sum += tensor(i, j); 2842b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang } 2852b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang } 2862b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang VERIFY_IS_APPROX(result(0), sum); 2872b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang 2882b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang result = tensor.square().sum(reduction_axis).sqrt(); 2892b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang VERIFY_IS_EQUAL(result.rank(), 0); 2902b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang 2912b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang sum = 0.0f; 2922b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang for (int i = 0; i < 2; ++i) { 2932b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang for (int j = 0; j < 3; ++j) { 2942b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang sum += tensor(i, j) * tensor(i, j); 2952b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang } 2962b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang } 2972b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang VERIFY_IS_APPROX(result(), sqrtf(sum)); 2982b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang} 2992b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang 3002b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wangstruct UserReducer { 3012b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang static const bool PacketAccess = false; 3022b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang UserReducer(float offset) : offset_(offset) {} 3032b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang void reduce(const float val, float* accum) { *accum += val * val; } 3042b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang float initialize() const { return 0; } 3052b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang float finalize(const float accum) const { return 1.0f / (accum + offset_); } 3062b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang 3072b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang private: 3082b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang const float offset_; 3092b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang}; 3102b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang 3112b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wangtemplate <int DataLayout> 3122b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wangstatic void test_user_defined_reductions() { 3132b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang Tensor<float, 2, DataLayout> tensor(5, 7); 3142b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang tensor.setRandom(); 3152b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang array<ptrdiff_t, 1> reduction_axis; 3162b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang reduction_axis[0] = 1; 3172b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang 3182b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang UserReducer reducer(10.0f); 3192b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang Tensor<float, 1, DataLayout> result = tensor.reduce(reduction_axis, reducer); 3202b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang VERIFY_IS_EQUAL(result.dimension(0), 5); 3212b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang for (int i = 0; i < 5; ++i) { 3222b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang float expected = 10.0f; 3232b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang for (int j = 0; j < 7; ++j) { 3242b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang expected += tensor(i, j) * tensor(i, j); 3252b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang } 3262b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang expected = 1.0f / expected; 3272b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang VERIFY_IS_APPROX(result(i), expected); 3282b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang } 3292b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang} 3302b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang 3312b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wangtemplate <int DataLayout> 3322b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wangstatic void test_tensor_maps() { 3332b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang int inputs[2 * 3 * 5 * 7]; 3342b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang TensorMap<Tensor<int, 4, DataLayout> > tensor_map(inputs, 2, 3, 5, 7); 3352b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang TensorMap<Tensor<const int, 4, DataLayout> > tensor_map_const(inputs, 2, 3, 5, 3362b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang 7); 3372b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang const TensorMap<Tensor<const int, 4, DataLayout> > tensor_map_const_const( 3382b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang inputs, 2, 3, 5, 7); 3392b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang 3402b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang tensor_map.setRandom(); 3412b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang array<ptrdiff_t, 2> reduction_axis; 3422b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang reduction_axis[0] = 1; 3432b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang reduction_axis[1] = 3; 3442b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang 3452b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang Tensor<int, 2, DataLayout> result = tensor_map.sum(reduction_axis); 3462b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang Tensor<int, 2, DataLayout> result2 = tensor_map_const.sum(reduction_axis); 3472b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang Tensor<int, 2, DataLayout> result3 = 3482b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang tensor_map_const_const.sum(reduction_axis); 3492b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang 3502b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang for (int i = 0; i < 2; ++i) { 3512b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang for (int j = 0; j < 5; ++j) { 3522b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang int sum = 0; 3532b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang for (int k = 0; k < 3; ++k) { 3542b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang for (int l = 0; l < 7; ++l) { 3552b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang sum += tensor_map(i, k, j, l); 3562b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang } 3572b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang } 3582b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang VERIFY_IS_EQUAL(result(i, j), sum); 3592b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang VERIFY_IS_EQUAL(result2(i, j), sum); 3602b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang VERIFY_IS_EQUAL(result3(i, j), sum); 3612b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang } 3622b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang } 3632b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang} 3642b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang 3652b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wangtemplate <int DataLayout> 3662b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wangstatic void test_static_dims() { 3672b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang Tensor<float, 4, DataLayout> in(72, 53, 97, 113); 3682b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang Tensor<float, 2, DataLayout> out(72, 97); 3692b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang in.setRandom(); 3702b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang 3712b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang#if !EIGEN_HAS_CONSTEXPR 3722b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang array<int, 2> reduction_axis; 3732b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang reduction_axis[0] = 1; 3742b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang reduction_axis[1] = 3; 3752b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang#else 3762b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang Eigen::IndexList<Eigen::type2index<1>, Eigen::type2index<3> > reduction_axis; 3772b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang#endif 3782b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang 3792b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang out = in.maximum(reduction_axis); 3802b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang 3812b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang for (int i = 0; i < 72; ++i) { 3822b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang for (int j = 0; j < 97; ++j) { 3832b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang float expected = -1e10f; 3842b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang for (int k = 0; k < 53; ++k) { 3852b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang for (int l = 0; l < 113; ++l) { 3862b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang expected = (std::max)(expected, in(i, k, j, l)); 3872b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang } 3882b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang } 3892b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang VERIFY_IS_APPROX(out(i, j), expected); 3902b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang } 3912b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang } 3922b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang} 3932b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang 3942b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wangtemplate <int DataLayout> 3952b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wangstatic void test_innermost_last_dims() { 3962b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang Tensor<float, 4, DataLayout> in(72, 53, 97, 113); 3972b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang Tensor<float, 2, DataLayout> out(97, 113); 3982b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang in.setRandom(); 3992b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang 4002b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang// Reduce on the innermost dimensions. 4012b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang#if !EIGEN_HAS_CONSTEXPR 4022b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang array<int, 2> reduction_axis; 4032b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang reduction_axis[0] = 0; 4042b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang reduction_axis[1] = 1; 4052b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang#else 4062b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang // This triggers the use of packets for ColMajor. 4072b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang Eigen::IndexList<Eigen::type2index<0>, Eigen::type2index<1> > reduction_axis; 4082b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang#endif 4092b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang 4102b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang out = in.maximum(reduction_axis); 4112b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang 4122b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang for (int i = 0; i < 97; ++i) { 4132b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang for (int j = 0; j < 113; ++j) { 4142b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang float expected = -1e10f; 4152b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang for (int k = 0; k < 53; ++k) { 4162b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang for (int l = 0; l < 72; ++l) { 4172b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang expected = (std::max)(expected, in(l, k, i, j)); 4182b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang } 4192b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang } 4202b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang VERIFY_IS_APPROX(out(i, j), expected); 4212b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang } 4222b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang } 4232b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang} 4242b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang 4252b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wangtemplate <int DataLayout> 4262b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wangstatic void test_innermost_first_dims() { 4272b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang Tensor<float, 4, DataLayout> in(72, 53, 97, 113); 4282b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang Tensor<float, 2, DataLayout> out(72, 53); 4292b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang in.setRandom(); 4302b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang 4312b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang// Reduce on the innermost dimensions. 4322b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang#if !EIGEN_HAS_CONSTEXPR 4332b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang array<int, 2> reduction_axis; 4342b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang reduction_axis[0] = 2; 4352b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang reduction_axis[1] = 3; 4362b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang#else 4372b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang // This triggers the use of packets for RowMajor. 4382b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang Eigen::IndexList<Eigen::type2index<2>, Eigen::type2index<3>> reduction_axis; 4392b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang#endif 4402b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang 4412b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang out = in.maximum(reduction_axis); 4422b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang 4432b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang for (int i = 0; i < 72; ++i) { 4442b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang for (int j = 0; j < 53; ++j) { 4452b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang float expected = -1e10f; 4462b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang for (int k = 0; k < 97; ++k) { 4472b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang for (int l = 0; l < 113; ++l) { 4482b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang expected = (std::max)(expected, in(i, j, k, l)); 4492b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang } 4502b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang } 4512b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang VERIFY_IS_APPROX(out(i, j), expected); 4522b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang } 4532b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang } 4542b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang} 4552b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang 4562b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wangtemplate <int DataLayout> 4572b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wangstatic void test_reduce_middle_dims() { 4582b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang Tensor<float, 4, DataLayout> in(72, 53, 97, 113); 4592b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang Tensor<float, 2, DataLayout> out(72, 53); 4602b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang in.setRandom(); 4612b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang 4622b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang// Reduce on the innermost dimensions. 4632b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang#if !EIGEN_HAS_CONSTEXPR 4642b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang array<int, 2> reduction_axis; 4652b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang reduction_axis[0] = 1; 4662b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang reduction_axis[1] = 2; 4672b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang#else 4682b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang // This triggers the use of packets for RowMajor. 4692b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang Eigen::IndexList<Eigen::type2index<1>, Eigen::type2index<2>> reduction_axis; 4702b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang#endif 4712b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang 4722b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang out = in.maximum(reduction_axis); 4732b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang 4742b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang for (int i = 0; i < 72; ++i) { 4752b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang for (int j = 0; j < 113; ++j) { 4762b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang float expected = -1e10f; 4772b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang for (int k = 0; k < 53; ++k) { 4782b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang for (int l = 0; l < 97; ++l) { 4792b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang expected = (std::max)(expected, in(i, k, l, j)); 4802b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang } 4812b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang } 4822b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang VERIFY_IS_APPROX(out(i, j), expected); 4832b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang } 4842b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang } 4852b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang} 4862b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang 4872b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wangvoid test_cxx11_tensor_reduction() { 4882b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang CALL_SUBTEST(test_trivial_reductions<ColMajor>()); 4892b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang CALL_SUBTEST(test_trivial_reductions<RowMajor>()); 4902b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang CALL_SUBTEST(test_simple_reductions<ColMajor>()); 4912b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang CALL_SUBTEST(test_simple_reductions<RowMajor>()); 4922b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang CALL_SUBTEST(test_reductions_in_expr<ColMajor>()); 4932b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang CALL_SUBTEST(test_reductions_in_expr<RowMajor>()); 4942b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang CALL_SUBTEST(test_full_reductions<ColMajor>()); 4952b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang CALL_SUBTEST(test_full_reductions<RowMajor>()); 4962b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang CALL_SUBTEST(test_user_defined_reductions<ColMajor>()); 4972b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang CALL_SUBTEST(test_user_defined_reductions<RowMajor>()); 4982b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang CALL_SUBTEST(test_tensor_maps<ColMajor>()); 4992b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang CALL_SUBTEST(test_tensor_maps<RowMajor>()); 5002b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang CALL_SUBTEST(test_static_dims<ColMajor>()); 5012b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang CALL_SUBTEST(test_static_dims<RowMajor>()); 5022b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang CALL_SUBTEST(test_innermost_last_dims<ColMajor>()); 5032b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang CALL_SUBTEST(test_innermost_last_dims<RowMajor>()); 5042b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang CALL_SUBTEST(test_innermost_first_dims<ColMajor>()); 5052b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang CALL_SUBTEST(test_innermost_first_dims<RowMajor>()); 5062b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang CALL_SUBTEST(test_reduce_middle_dims<ColMajor>()); 5072b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang CALL_SUBTEST(test_reduce_middle_dims<RowMajor>()); 5082b8756b6f1de65d3f8bffab45be6c44ceb7411fcMiao Wang} 509