io_u.c revision 126d65c6fc97d6acdc568aa5a969c012018daf15
1#include <unistd.h> 2#include <fcntl.h> 3#include <string.h> 4#include <signal.h> 5#include <time.h> 6#include <assert.h> 7 8#include "fio.h" 9 10/* 11 * Change this define to play with the timeout handling 12 */ 13#undef FIO_USE_TIMEOUT 14 15struct io_completion_data { 16 int nr; /* input */ 17 18 int error; /* output */ 19 unsigned long bytes_done[2]; /* output */ 20 struct timeval time; /* output */ 21}; 22 23/* 24 * The ->file_map[] contains a map of blocks we have or have not done io 25 * to yet. Used to make sure we cover the entire range in a fair fashion. 26 */ 27static int random_map_free(struct thread_data *td, struct fio_file *f, 28 const unsigned long long block) 29{ 30 unsigned int idx = RAND_MAP_IDX(td, f, block); 31 unsigned int bit = RAND_MAP_BIT(td, f, block); 32 33 dprint(FD_RANDOM, "free: b=%llu, idx=%u, bit=%u\n", block, idx, bit); 34 35 return (f->file_map[idx] & (1UL << bit)) == 0; 36} 37 38/* 39 * Mark a given offset as used in the map. 40 */ 41static void mark_random_map(struct thread_data *td, struct io_u *io_u) 42{ 43 unsigned int min_bs = td->o.rw_min_bs; 44 struct fio_file *f = io_u->file; 45 unsigned long long block; 46 unsigned int blocks; 47 unsigned int nr_blocks; 48 49 block = (io_u->offset - f->file_offset) / (unsigned long long) min_bs; 50 blocks = 0; 51 nr_blocks = (io_u->buflen + min_bs - 1) / min_bs; 52 53 while (blocks < nr_blocks) { 54 unsigned int idx, bit; 55 56 /* 57 * If we have a mixed random workload, we may 58 * encounter blocks we already did IO to. 59 */ 60 if ((td->o.ddir_nr == 1) && !random_map_free(td, f, block)) 61 break; 62 63 idx = RAND_MAP_IDX(td, f, block); 64 bit = RAND_MAP_BIT(td, f, block); 65 66 fio_assert(td, idx < f->num_maps); 67 68 f->file_map[idx] |= (1UL << bit); 69 block++; 70 blocks++; 71 } 72 73 if ((blocks * min_bs) < io_u->buflen) 74 io_u->buflen = blocks * min_bs; 75} 76 77static inline unsigned long long last_block(struct thread_data *td, 78 struct fio_file *f, 79 enum fio_ddir ddir) 80{ 81 unsigned long long max_blocks; 82 83 max_blocks = f->io_size / (unsigned long long) td->o.min_bs[ddir]; 84 if (!max_blocks) 85 return 0; 86 87 return max_blocks - 1; 88} 89 90/* 91 * Return the next free block in the map. 92 */ 93static int get_next_free_block(struct thread_data *td, struct fio_file *f, 94 enum fio_ddir ddir, unsigned long long *b) 95{ 96 unsigned long long min_bs = td->o.rw_min_bs; 97 int i; 98 99 i = f->last_free_lookup; 100 *b = (i * BLOCKS_PER_MAP); 101 while ((*b) * min_bs < f->real_file_size) { 102 if (f->file_map[i] != -1UL) { 103 *b += fio_ffz(f->file_map[i]); 104 if (*b > last_block(td, f, ddir)) 105 break; 106 f->last_free_lookup = i; 107 return 0; 108 } 109 110 *b += BLOCKS_PER_MAP; 111 i++; 112 } 113 114 dprint(FD_IO, "failed finding a free block\n"); 115 return 1; 116} 117 118static int get_next_rand_offset(struct thread_data *td, struct fio_file *f, 119 enum fio_ddir ddir, unsigned long long *b) 120{ 121 unsigned long long r; 122 int loops = 5; 123 124 do { 125 r = os_random_long(&td->random_state); 126 dprint(FD_RANDOM, "off rand %llu\n", r); 127 *b = (last_block(td, f, ddir) - 1) * (r / ((unsigned long long) RAND_MAX + 1.0)); 128 129 /* 130 * if we are not maintaining a random map, we are done. 131 */ 132 if (td->o.norandommap) 133 return 0; 134 135 /* 136 * calculate map offset and check if it's free 137 */ 138 if (random_map_free(td, f, *b)) 139 return 0; 140 141 dprint(FD_RANDOM, "get_next_rand_offset: offset %llu busy\n", 142 *b); 143 } while (--loops); 144 145 /* 146 * we get here, if we didn't suceed in looking up a block. generate 147 * a random start offset into the filemap, and find the first free 148 * block from there. 149 */ 150 loops = 10; 151 do { 152 f->last_free_lookup = (f->num_maps - 1) * (r / (RAND_MAX+1.0)); 153 if (!get_next_free_block(td, f, ddir, b)) 154 return 0; 155 156 r = os_random_long(&td->random_state); 157 } while (--loops); 158 159 /* 160 * that didn't work either, try exhaustive search from the start 161 */ 162 f->last_free_lookup = 0; 163 return get_next_free_block(td, f, ddir, b); 164} 165 166/* 167 * For random io, generate a random new block and see if it's used. Repeat 168 * until we find a free one. For sequential io, just return the end of 169 * the last io issued. 170 */ 171static int get_next_offset(struct thread_data *td, struct io_u *io_u) 172{ 173 struct fio_file *f = io_u->file; 174 unsigned long long b; 175 enum fio_ddir ddir = io_u->ddir; 176 177 if (td_random(td) && (td->o.ddir_nr && !--td->ddir_nr)) { 178 td->ddir_nr = td->o.ddir_nr; 179 180 if (get_next_rand_offset(td, f, ddir, &b)) 181 return 1; 182 } else { 183 if (f->last_pos >= f->real_file_size) { 184 if (!td_random(td) || 185 get_next_rand_offset(td, f, ddir, &b)) 186 return 1; 187 } else 188 b = (f->last_pos - f->file_offset) / td->o.min_bs[ddir]; 189 } 190 191 io_u->offset = (b * td->o.min_bs[ddir]) + f->file_offset; 192 if (io_u->offset >= f->real_file_size) { 193 dprint(FD_IO, "get_next_offset: offset %llu >= size %llu\n", 194 io_u->offset, f->real_file_size); 195 return 1; 196 } 197 198 return 0; 199} 200 201static unsigned int get_next_buflen(struct thread_data *td, struct io_u *io_u) 202{ 203 const int ddir = io_u->ddir; 204 unsigned int buflen; 205 long r; 206 207 if (td->o.min_bs[ddir] == td->o.max_bs[ddir]) 208 buflen = td->o.min_bs[ddir]; 209 else { 210 r = os_random_long(&td->bsrange_state); 211 if (!td->o.bssplit_nr) 212 buflen = (unsigned int) (1 + (double) (td->o.max_bs[ddir] - 1) * r / (RAND_MAX + 1.0)); 213 else { 214 long perc = 0; 215 unsigned int i; 216 217 for (i = 0; i < td->o.bssplit_nr; i++) { 218 struct bssplit *bsp = &td->o.bssplit[i]; 219 220 buflen = bsp->bs; 221 perc += bsp->perc; 222 if (r <= ((LONG_MAX / 100L) * perc)) 223 break; 224 } 225 } 226 if (!td->o.bs_unaligned) 227 buflen = (buflen + td->o.min_bs[ddir] - 1) & ~(td->o.min_bs[ddir] - 1); 228 } 229 230 if (io_u->offset + buflen > io_u->file->real_file_size) { 231 dprint(FD_IO, "lower buflen %u -> %u (ddir=%d)\n", buflen, 232 td->o.min_bs[ddir], ddir); 233 buflen = td->o.min_bs[ddir]; 234 } 235 236 return buflen; 237} 238 239static void set_rwmix_bytes(struct thread_data *td) 240{ 241 unsigned long long rbytes; 242 unsigned int diff; 243 244 /* 245 * we do time or byte based switch. this is needed because 246 * buffered writes may issue a lot quicker than they complete, 247 * whereas reads do not. 248 */ 249 rbytes = td->io_bytes[td->rwmix_ddir] - td->rwmix_bytes; 250 diff = td->o.rwmix[td->rwmix_ddir ^ 1]; 251 252 td->rwmix_bytes = td->io_bytes[td->rwmix_ddir] + (rbytes * ((100 - diff)) / diff); 253} 254 255static inline enum fio_ddir get_rand_ddir(struct thread_data *td) 256{ 257 unsigned int v; 258 long r; 259 260 r = os_random_long(&td->rwmix_state); 261 v = 1 + (int) (100.0 * (r / (RAND_MAX + 1.0))); 262 if (v < td->o.rwmix[DDIR_READ]) 263 return DDIR_READ; 264 265 return DDIR_WRITE; 266} 267 268/* 269 * Return the data direction for the next io_u. If the job is a 270 * mixed read/write workload, check the rwmix cycle and switch if 271 * necessary. 272 */ 273static enum fio_ddir get_rw_ddir(struct thread_data *td) 274{ 275 if (td_rw(td)) { 276 struct timeval now; 277 unsigned long elapsed; 278 unsigned int cycle; 279 280 fio_gettime(&now, NULL); 281 elapsed = mtime_since_now(&td->rwmix_switch); 282 283 /* 284 * if this is the first cycle, make it shorter 285 */ 286 cycle = td->o.rwmixcycle; 287 if (!td->rwmix_bytes) 288 cycle /= 10; 289 290 /* 291 * Check if it's time to seed a new data direction. 292 */ 293 if (elapsed >= cycle || 294 td->io_bytes[td->rwmix_ddir] >= td->rwmix_bytes) { 295 unsigned long long max_bytes; 296 enum fio_ddir ddir; 297 298 /* 299 * Put a top limit on how many bytes we do for 300 * one data direction, to avoid overflowing the 301 * ranges too much 302 */ 303 ddir = get_rand_ddir(td); 304 max_bytes = td->this_io_bytes[ddir]; 305 if (max_bytes >= (td->o.size * td->o.rwmix[ddir] / 100)) { 306 if (!td->rw_end_set[ddir]) { 307 td->rw_end_set[ddir] = 1; 308 memcpy(&td->rw_end[ddir], &now, sizeof(now)); 309 } 310 ddir ^= 1; 311 } 312 313 if (ddir != td->rwmix_ddir) 314 set_rwmix_bytes(td); 315 316 td->rwmix_ddir = ddir; 317 memcpy(&td->rwmix_switch, &now, sizeof(now)); 318 } 319 return td->rwmix_ddir; 320 } else if (td_read(td)) 321 return DDIR_READ; 322 else 323 return DDIR_WRITE; 324} 325 326void put_io_u(struct thread_data *td, struct io_u *io_u) 327{ 328 assert((io_u->flags & IO_U_F_FREE) == 0); 329 io_u->flags |= IO_U_F_FREE; 330 331 if (io_u->file) { 332 int ret = put_file(td, io_u->file); 333 334 if (ret) 335 td_verror(td, ret, "file close"); 336 } 337 338 io_u->file = NULL; 339 list_del(&io_u->list); 340 list_add(&io_u->list, &td->io_u_freelist); 341 td->cur_depth--; 342} 343 344void requeue_io_u(struct thread_data *td, struct io_u **io_u) 345{ 346 struct io_u *__io_u = *io_u; 347 348 __io_u->flags |= IO_U_F_FREE; 349 if ((__io_u->flags & IO_U_F_FLIGHT) && (__io_u->ddir != DDIR_SYNC)) 350 td->io_issues[__io_u->ddir]--; 351 352 __io_u->flags &= ~IO_U_F_FLIGHT; 353 354 list_del(&__io_u->list); 355 list_add_tail(&__io_u->list, &td->io_u_requeues); 356 td->cur_depth--; 357 *io_u = NULL; 358} 359 360static int fill_io_u(struct thread_data *td, struct io_u *io_u) 361{ 362 if (td->io_ops->flags & FIO_NOIO) 363 goto out; 364 365 /* 366 * see if it's time to sync 367 */ 368 if (td->o.fsync_blocks && 369 !(td->io_issues[DDIR_WRITE] % td->o.fsync_blocks) && 370 td->io_issues[DDIR_WRITE] && should_fsync(td)) { 371 io_u->ddir = DDIR_SYNC; 372 goto out; 373 } 374 375 io_u->ddir = get_rw_ddir(td); 376 377 /* 378 * See if it's time to switch to a new zone 379 */ 380 if (td->zone_bytes >= td->o.zone_size) { 381 td->zone_bytes = 0; 382 io_u->file->last_pos += td->o.zone_skip; 383 td->io_skip_bytes += td->o.zone_skip; 384 } 385 386 /* 387 * No log, let the seq/rand engine retrieve the next buflen and 388 * position. 389 */ 390 if (get_next_offset(td, io_u)) { 391 dprint(FD_IO, "io_u %p, failed getting offset\n", io_u); 392 return 1; 393 } 394 395 io_u->buflen = get_next_buflen(td, io_u); 396 if (!io_u->buflen) { 397 dprint(FD_IO, "io_u %p, failed getting buflen\n", io_u); 398 return 1; 399 } 400 401 if (io_u->offset + io_u->buflen > io_u->file->real_file_size) { 402 dprint(FD_IO, "io_u %p, offset too large\n", io_u); 403 dprint(FD_IO, " off=%llu/%lu > %llu\n", io_u->offset, 404 io_u->buflen, io_u->file->real_file_size); 405 return 1; 406 } 407 408 /* 409 * mark entry before potentially trimming io_u 410 */ 411 if (td_random(td) && !td->o.norandommap) 412 mark_random_map(td, io_u); 413 414 /* 415 * If using a write iolog, store this entry. 416 */ 417out: 418 dprint_io_u(io_u, "fill_io_u"); 419 td->zone_bytes += io_u->buflen; 420 log_io_u(td, io_u); 421 return 0; 422} 423 424void io_u_mark_depth(struct thread_data *td, struct io_u *io_u) 425{ 426 int index = 0; 427 428 if (io_u->ddir == DDIR_SYNC) 429 return; 430 431 switch (td->cur_depth) { 432 default: 433 index = 6; 434 break; 435 case 32 ... 63: 436 index = 5; 437 break; 438 case 16 ... 31: 439 index = 4; 440 break; 441 case 8 ... 15: 442 index = 3; 443 break; 444 case 4 ... 7: 445 index = 2; 446 break; 447 case 2 ... 3: 448 index = 1; 449 case 1: 450 break; 451 } 452 453 td->ts.io_u_map[index]++; 454 td->ts.total_io_u[io_u->ddir]++; 455} 456 457static void io_u_mark_lat_usec(struct thread_data *td, unsigned long usec) 458{ 459 int index = 0; 460 461 assert(usec < 1000); 462 463 switch (usec) { 464 case 750 ... 999: 465 index = 9; 466 break; 467 case 500 ... 749: 468 index = 8; 469 break; 470 case 250 ... 499: 471 index = 7; 472 break; 473 case 100 ... 249: 474 index = 6; 475 break; 476 case 50 ... 99: 477 index = 5; 478 break; 479 case 20 ... 49: 480 index = 4; 481 break; 482 case 10 ... 19: 483 index = 3; 484 break; 485 case 4 ... 9: 486 index = 2; 487 break; 488 case 2 ... 3: 489 index = 1; 490 case 0 ... 1: 491 break; 492 } 493 494 assert(index < FIO_IO_U_LAT_U_NR); 495 td->ts.io_u_lat_u[index]++; 496} 497 498static void io_u_mark_lat_msec(struct thread_data *td, unsigned long msec) 499{ 500 int index = 0; 501 502 switch (msec) { 503 default: 504 index = 11; 505 break; 506 case 1000 ... 1999: 507 index = 10; 508 break; 509 case 750 ... 999: 510 index = 9; 511 break; 512 case 500 ... 749: 513 index = 8; 514 break; 515 case 250 ... 499: 516 index = 7; 517 break; 518 case 100 ... 249: 519 index = 6; 520 break; 521 case 50 ... 99: 522 index = 5; 523 break; 524 case 20 ... 49: 525 index = 4; 526 break; 527 case 10 ... 19: 528 index = 3; 529 break; 530 case 4 ... 9: 531 index = 2; 532 break; 533 case 2 ... 3: 534 index = 1; 535 case 0 ... 1: 536 break; 537 } 538 539 assert(index < FIO_IO_U_LAT_M_NR); 540 td->ts.io_u_lat_m[index]++; 541} 542 543static void io_u_mark_latency(struct thread_data *td, unsigned long usec) 544{ 545 if (usec < 1000) 546 io_u_mark_lat_usec(td, usec); 547 else 548 io_u_mark_lat_msec(td, usec / 1000); 549} 550 551/* 552 * Get next file to service by choosing one at random 553 */ 554static struct fio_file *get_next_file_rand(struct thread_data *td, int goodf, 555 int badf) 556{ 557 struct fio_file *f; 558 int fno; 559 560 do { 561 long r = os_random_long(&td->next_file_state); 562 563 fno = (unsigned int) ((double) td->o.nr_files * (r / (RAND_MAX + 1.0))); 564 f = td->files[fno]; 565 if (f->flags & FIO_FILE_DONE) 566 continue; 567 568 if ((!goodf || (f->flags & goodf)) && !(f->flags & badf)) { 569 dprint(FD_FILE, "get_next_file_rand: %p\n", f); 570 return f; 571 } 572 } while (1); 573} 574 575/* 576 * Get next file to service by doing round robin between all available ones 577 */ 578static struct fio_file *get_next_file_rr(struct thread_data *td, int goodf, 579 int badf) 580{ 581 unsigned int old_next_file = td->next_file; 582 struct fio_file *f; 583 584 do { 585 f = td->files[td->next_file]; 586 587 td->next_file++; 588 if (td->next_file >= td->o.nr_files) 589 td->next_file = 0; 590 591 if (f->flags & FIO_FILE_DONE) { 592 f = NULL; 593 continue; 594 } 595 596 if ((!goodf || (f->flags & goodf)) && !(f->flags & badf)) 597 break; 598 599 f = NULL; 600 } while (td->next_file != old_next_file); 601 602 dprint(FD_FILE, "get_next_file_rr: %p\n", f); 603 return f; 604} 605 606static struct fio_file *get_next_file(struct thread_data *td) 607{ 608 struct fio_file *f; 609 610 assert(td->o.nr_files <= td->files_index); 611 612 if (!td->nr_open_files || td->nr_done_files >= td->o.nr_files) { 613 dprint(FD_FILE, "get_next_file: nr_open=%d, nr_done=%d, nr_files=%d\n", td->nr_open_files, td->nr_done_files, td->o.nr_files); 614 return NULL; 615 } 616 617 f = td->file_service_file; 618 if (f && (f->flags & FIO_FILE_OPEN) && td->file_service_left--) 619 goto out; 620 621 if (td->o.file_service_type == FIO_FSERVICE_RR) 622 f = get_next_file_rr(td, FIO_FILE_OPEN, FIO_FILE_CLOSING); 623 else 624 f = get_next_file_rand(td, FIO_FILE_OPEN, FIO_FILE_CLOSING); 625 626 td->file_service_file = f; 627 td->file_service_left = td->file_service_nr - 1; 628out: 629 dprint(FD_FILE, "get_next_file: %p\n", f); 630 return f; 631} 632 633static struct fio_file *find_next_new_file(struct thread_data *td) 634{ 635 struct fio_file *f; 636 637 if (!td->nr_open_files || td->nr_done_files >= td->o.nr_files) 638 return NULL; 639 640 if (td->o.file_service_type == FIO_FSERVICE_RR) 641 f = get_next_file_rr(td, 0, FIO_FILE_OPEN); 642 else 643 f = get_next_file_rand(td, 0, FIO_FILE_OPEN); 644 645 return f; 646} 647 648static int set_io_u_file(struct thread_data *td, struct io_u *io_u) 649{ 650 struct fio_file *f; 651 652 do { 653 f = get_next_file(td); 654 if (!f) 655 return 1; 656 657set_file: 658 io_u->file = f; 659 get_file(f); 660 661 if (!fill_io_u(td, io_u)) 662 break; 663 664 /* 665 * td_io_close() does a put_file() as well, so no need to 666 * do that here. 667 */ 668 io_u->file = NULL; 669 td_io_close_file(td, f); 670 f->flags |= FIO_FILE_DONE; 671 td->nr_done_files++; 672 673 /* 674 * probably not the right place to do this, but see 675 * if we need to open a new file 676 */ 677 if (td->nr_open_files < td->o.open_files && 678 td->o.open_files != td->o.nr_files) { 679 f = find_next_new_file(td); 680 681 if (!f || td_io_open_file(td, f)) 682 return 1; 683 684 goto set_file; 685 } 686 } while (1); 687 688 return 0; 689} 690 691 692struct io_u *__get_io_u(struct thread_data *td) 693{ 694 struct io_u *io_u = NULL; 695 696 if (!list_empty(&td->io_u_requeues)) 697 io_u = list_entry(td->io_u_requeues.next, struct io_u, list); 698 else if (!queue_full(td)) { 699 io_u = list_entry(td->io_u_freelist.next, struct io_u, list); 700 701 io_u->buflen = 0; 702 io_u->resid = 0; 703 io_u->file = NULL; 704 io_u->end_io = NULL; 705 } 706 707 if (io_u) { 708 assert(io_u->flags & IO_U_F_FREE); 709 io_u->flags &= ~IO_U_F_FREE; 710 711 io_u->error = 0; 712 list_del(&io_u->list); 713 list_add(&io_u->list, &td->io_u_busylist); 714 td->cur_depth++; 715 } 716 717 return io_u; 718} 719 720/* 721 * Return an io_u to be processed. Gets a buflen and offset, sets direction, 722 * etc. The returned io_u is fully ready to be prepped and submitted. 723 */ 724struct io_u *get_io_u(struct thread_data *td) 725{ 726 struct fio_file *f; 727 struct io_u *io_u; 728 729 io_u = __get_io_u(td); 730 if (!io_u) { 731 dprint(FD_IO, "__get_io_u failed\n"); 732 return NULL; 733 } 734 735 /* 736 * from a requeue, io_u already setup 737 */ 738 if (io_u->file) 739 goto out; 740 741 /* 742 * If using an iolog, grab next piece if any available. 743 */ 744 if (td->o.read_iolog_file) { 745 if (read_iolog_get(td, io_u)) 746 goto err_put; 747 } else if (set_io_u_file(td, io_u)) { 748 dprint(FD_IO, "io_u %p, setting file failed\n", io_u); 749 goto err_put; 750 } 751 752 f = io_u->file; 753 assert(f->flags & FIO_FILE_OPEN); 754 755 if (io_u->ddir != DDIR_SYNC) { 756 if (!io_u->buflen && !(td->io_ops->flags & FIO_NOIO)) { 757 dprint(FD_IO, "get_io_u: zero buflen on %p\n", io_u); 758 goto err_put; 759 } 760 761 f->last_pos = io_u->offset + io_u->buflen; 762 763 if (td->o.verify != VERIFY_NONE) 764 populate_verify_io_u(td, io_u); 765 } 766 767 /* 768 * Set io data pointers. 769 */ 770 io_u->endpos = io_u->offset + io_u->buflen; 771 io_u->xfer_buf = io_u->buf; 772 io_u->xfer_buflen = io_u->buflen; 773out: 774 if (!td_io_prep(td, io_u)) { 775 fio_gettime(&io_u->start_time, NULL); 776 return io_u; 777 } 778err_put: 779 dprint(FD_IO, "get_io_u failed\n"); 780 put_io_u(td, io_u); 781 return NULL; 782} 783 784void io_u_log_error(struct thread_data *td, struct io_u *io_u) 785{ 786 const char *msg[] = { "read", "write", "sync" }; 787 788 log_err("fio: io_u error"); 789 790 if (io_u->file) 791 log_err(" on file %s", io_u->file->file_name); 792 793 log_err(": %s\n", strerror(io_u->error)); 794 795 log_err(" %s offset=%llu, buflen=%lu\n", msg[io_u->ddir], io_u->offset, io_u->xfer_buflen); 796 797 if (!td->error) 798 td_verror(td, io_u->error, "io_u error"); 799} 800 801static void io_completed(struct thread_data *td, struct io_u *io_u, 802 struct io_completion_data *icd) 803{ 804 unsigned long usec; 805 806 dprint_io_u(io_u, "io complete"); 807 808 assert(io_u->flags & IO_U_F_FLIGHT); 809 io_u->flags &= ~IO_U_F_FLIGHT; 810 811 if (io_u->ddir == DDIR_SYNC) { 812 td->last_was_sync = 1; 813 return; 814 } 815 816 td->last_was_sync = 0; 817 818 if (!io_u->error) { 819 unsigned int bytes = io_u->buflen - io_u->resid; 820 const enum fio_ddir idx = io_u->ddir; 821 int ret; 822 823 td->io_blocks[idx]++; 824 td->io_bytes[idx] += bytes; 825 td->this_io_bytes[idx] += bytes; 826 827 io_u->file->last_completed_pos = io_u->endpos; 828 829 usec = utime_since(&io_u->issue_time, &icd->time); 830 831 add_clat_sample(td, idx, usec); 832 add_bw_sample(td, idx, &icd->time); 833 io_u_mark_latency(td, usec); 834 835 if (td_write(td) && idx == DDIR_WRITE && 836 td->o.do_verify && 837 td->o.verify != VERIFY_NONE) 838 log_io_piece(td, io_u); 839 840 icd->bytes_done[idx] += bytes; 841 842 if (io_u->end_io) { 843 ret = io_u->end_io(td, io_u); 844 if (ret && !icd->error) 845 icd->error = ret; 846 } 847 } else { 848 icd->error = io_u->error; 849 io_u_log_error(td, io_u); 850 } 851} 852 853static void init_icd(struct io_completion_data *icd, int nr) 854{ 855 fio_gettime(&icd->time, NULL); 856 857 icd->nr = nr; 858 859 icd->error = 0; 860 icd->bytes_done[0] = icd->bytes_done[1] = 0; 861} 862 863static void ios_completed(struct thread_data *td, 864 struct io_completion_data *icd) 865{ 866 struct io_u *io_u; 867 int i; 868 869 for (i = 0; i < icd->nr; i++) { 870 io_u = td->io_ops->event(td, i); 871 872 io_completed(td, io_u, icd); 873 put_io_u(td, io_u); 874 } 875} 876 877/* 878 * Complete a single io_u for the sync engines. 879 */ 880long io_u_sync_complete(struct thread_data *td, struct io_u *io_u) 881{ 882 struct io_completion_data icd; 883 884 init_icd(&icd, 1); 885 io_completed(td, io_u, &icd); 886 put_io_u(td, io_u); 887 888 if (!icd.error) 889 return icd.bytes_done[0] + icd.bytes_done[1]; 890 891 td_verror(td, icd.error, "io_u_sync_complete"); 892 return -1; 893} 894 895/* 896 * Called to complete min_events number of io for the async engines. 897 */ 898long io_u_queued_complete(struct thread_data *td, int min_events) 899{ 900 struct io_completion_data icd; 901 struct timespec *tvp = NULL; 902 int ret; 903 struct timespec ts = { .tv_sec = 0, .tv_nsec = 0, }; 904 905 dprint(FD_IO, "io_u_queued_completed: min=%d\n", min_events); 906 907 if (!min_events) 908 tvp = &ts; 909 910 ret = td_io_getevents(td, min_events, td->cur_depth, tvp); 911 if (ret < 0) { 912 td_verror(td, -ret, "td_io_getevents"); 913 return ret; 914 } else if (!ret) 915 return ret; 916 917 init_icd(&icd, ret); 918 ios_completed(td, &icd); 919 if (!icd.error) 920 return icd.bytes_done[0] + icd.bytes_done[1]; 921 922 td_verror(td, icd.error, "io_u_queued_complete"); 923 return -1; 924} 925 926/* 927 * Call when io_u is really queued, to update the submission latency. 928 */ 929void io_u_queued(struct thread_data *td, struct io_u *io_u) 930{ 931 unsigned long slat_time; 932 933 slat_time = utime_since(&io_u->start_time, &io_u->issue_time); 934 add_slat_sample(td, io_u->ddir, slat_time); 935} 936 937#ifdef FIO_USE_TIMEOUT 938void io_u_set_timeout(struct thread_data *td) 939{ 940 assert(td->cur_depth); 941 942 td->timer.it_interval.tv_sec = 0; 943 td->timer.it_interval.tv_usec = 0; 944 td->timer.it_value.tv_sec = IO_U_TIMEOUT + IO_U_TIMEOUT_INC; 945 td->timer.it_value.tv_usec = 0; 946 setitimer(ITIMER_REAL, &td->timer, NULL); 947 fio_gettime(&td->timeout_end, NULL); 948} 949 950static void io_u_dump(struct io_u *io_u) 951{ 952 unsigned long t_start = mtime_since_now(&io_u->start_time); 953 unsigned long t_issue = mtime_since_now(&io_u->issue_time); 954 955 log_err("io_u=%p, t_start=%lu, t_issue=%lu\n", io_u, t_start, t_issue); 956 log_err(" buf=%p/%p, len=%lu/%lu, offset=%llu\n", io_u->buf, io_u->xfer_buf, io_u->buflen, io_u->xfer_buflen, io_u->offset); 957 log_err(" ddir=%d, fname=%s\n", io_u->ddir, io_u->file->file_name); 958} 959#else 960void io_u_set_timeout(struct thread_data fio_unused *td) 961{ 962} 963#endif 964 965#ifdef FIO_USE_TIMEOUT 966static void io_u_timeout_handler(int fio_unused sig) 967{ 968 struct thread_data *td, *__td; 969 pid_t pid = getpid(); 970 struct list_head *entry; 971 struct io_u *io_u; 972 int i; 973 974 log_err("fio: io_u timeout\n"); 975 976 /* 977 * TLS would be nice... 978 */ 979 td = NULL; 980 for_each_td(__td, i) { 981 if (__td->pid == pid) { 982 td = __td; 983 break; 984 } 985 } 986 987 if (!td) { 988 log_err("fio: io_u timeout, can't find job\n"); 989 exit(1); 990 } 991 992 if (!td->cur_depth) { 993 log_err("fio: timeout without pending work?\n"); 994 return; 995 } 996 997 log_err("fio: io_u timeout: job=%s, pid=%d\n", td->o.name, td->pid); 998 999 list_for_each(entry, &td->io_u_busylist) { 1000 io_u = list_entry(entry, struct io_u, list); 1001 1002 io_u_dump(io_u); 1003 } 1004 1005 td_verror(td, ETIMEDOUT, "io_u timeout"); 1006 exit(1); 1007} 1008#endif 1009 1010void io_u_init_timeout(void) 1011{ 1012#ifdef FIO_USE_TIMEOUT 1013 signal(SIGALRM, io_u_timeout_handler); 1014#endif 1015} 1016