io_u.c revision 225ba9e3433cf27d8ff7b213d9f78b7ef2776c70
1#include <unistd.h> 2#include <fcntl.h> 3#include <string.h> 4#include <signal.h> 5#include <time.h> 6#include <assert.h> 7 8#include "fio.h" 9#include "hash.h" 10#include "verify.h" 11#include "trim.h" 12#include "lib/rand.h" 13#include "lib/axmap.h" 14#include "err.h" 15 16struct io_completion_data { 17 int nr; /* input */ 18 19 int error; /* output */ 20 uint64_t bytes_done[DDIR_RWDIR_CNT]; /* output */ 21 struct timeval time; /* output */ 22}; 23 24/* 25 * The ->io_axmap contains a map of blocks we have or have not done io 26 * to yet. Used to make sure we cover the entire range in a fair fashion. 27 */ 28static int random_map_free(struct fio_file *f, const uint64_t block) 29{ 30 return !axmap_isset(f->io_axmap, block); 31} 32 33/* 34 * Mark a given offset as used in the map. 35 */ 36static void mark_random_map(struct thread_data *td, struct io_u *io_u) 37{ 38 unsigned int min_bs = td->o.rw_min_bs; 39 struct fio_file *f = io_u->file; 40 unsigned int nr_blocks; 41 uint64_t block; 42 43 block = (io_u->offset - f->file_offset) / (uint64_t) min_bs; 44 nr_blocks = (io_u->buflen + min_bs - 1) / min_bs; 45 46 if (!(io_u->flags & IO_U_F_BUSY_OK)) 47 nr_blocks = axmap_set_nr(f->io_axmap, block, nr_blocks); 48 49 if ((nr_blocks * min_bs) < io_u->buflen) 50 io_u->buflen = nr_blocks * min_bs; 51} 52 53static uint64_t last_block(struct thread_data *td, struct fio_file *f, 54 enum fio_ddir ddir) 55{ 56 uint64_t max_blocks; 57 uint64_t max_size; 58 59 assert(ddir_rw(ddir)); 60 61 /* 62 * Hmm, should we make sure that ->io_size <= ->real_file_size? 63 */ 64 max_size = f->io_size; 65 if (max_size > f->real_file_size) 66 max_size = f->real_file_size; 67 68 if (td->o.zone_range) 69 max_size = td->o.zone_range; 70 71 max_blocks = max_size / (uint64_t) td->o.ba[ddir]; 72 if (!max_blocks) 73 return 0; 74 75 return max_blocks; 76} 77 78struct rand_off { 79 struct flist_head list; 80 uint64_t off; 81}; 82 83static int __get_next_rand_offset(struct thread_data *td, struct fio_file *f, 84 enum fio_ddir ddir, uint64_t *b) 85{ 86 uint64_t r, lastb; 87 88 lastb = last_block(td, f, ddir); 89 if (!lastb) 90 return 1; 91 92 if (td->o.random_generator == FIO_RAND_GEN_TAUSWORTHE) { 93 uint64_t rmax; 94 95 rmax = td->o.use_os_rand ? OS_RAND_MAX : FRAND_MAX; 96 97 if (td->o.use_os_rand) { 98 rmax = OS_RAND_MAX; 99 r = os_random_long(&td->random_state); 100 } else { 101 rmax = FRAND_MAX; 102 r = __rand(&td->__random_state); 103 } 104 105 dprint(FD_RANDOM, "off rand %llu\n", (unsigned long long) r); 106 107 *b = (lastb - 1) * (r / ((uint64_t) rmax + 1.0)); 108 } else { 109 uint64_t off = 0; 110 111 if (lfsr_next(&f->lfsr, &off, lastb)) 112 return 1; 113 114 *b = off; 115 } 116 117 /* 118 * if we are not maintaining a random map, we are done. 119 */ 120 if (!file_randommap(td, f)) 121 goto ret; 122 123 /* 124 * calculate map offset and check if it's free 125 */ 126 if (random_map_free(f, *b)) 127 goto ret; 128 129 dprint(FD_RANDOM, "get_next_rand_offset: offset %llu busy\n", 130 (unsigned long long) *b); 131 132 *b = axmap_next_free(f->io_axmap, *b); 133 if (*b == (uint64_t) -1ULL) 134 return 1; 135ret: 136 return 0; 137} 138 139static int __get_next_rand_offset_zipf(struct thread_data *td, 140 struct fio_file *f, enum fio_ddir ddir, 141 uint64_t *b) 142{ 143 *b = zipf_next(&f->zipf); 144 return 0; 145} 146 147static int __get_next_rand_offset_pareto(struct thread_data *td, 148 struct fio_file *f, enum fio_ddir ddir, 149 uint64_t *b) 150{ 151 *b = pareto_next(&f->zipf); 152 return 0; 153} 154 155static int flist_cmp(void *data, struct flist_head *a, struct flist_head *b) 156{ 157 struct rand_off *r1 = flist_entry(a, struct rand_off, list); 158 struct rand_off *r2 = flist_entry(b, struct rand_off, list); 159 160 return r1->off - r2->off; 161} 162 163static int get_off_from_method(struct thread_data *td, struct fio_file *f, 164 enum fio_ddir ddir, uint64_t *b) 165{ 166 if (td->o.random_distribution == FIO_RAND_DIST_RANDOM) 167 return __get_next_rand_offset(td, f, ddir, b); 168 else if (td->o.random_distribution == FIO_RAND_DIST_ZIPF) 169 return __get_next_rand_offset_zipf(td, f, ddir, b); 170 else if (td->o.random_distribution == FIO_RAND_DIST_PARETO) 171 return __get_next_rand_offset_pareto(td, f, ddir, b); 172 173 log_err("fio: unknown random distribution: %d\n", td->o.random_distribution); 174 return 1; 175} 176 177/* 178 * Sort the reads for a verify phase in batches of verifysort_nr, if 179 * specified. 180 */ 181static inline int should_sort_io(struct thread_data *td) 182{ 183 if (!td->o.verifysort_nr || !td->o.do_verify) 184 return 0; 185 if (!td_random(td)) 186 return 0; 187 if (td->runstate != TD_VERIFYING) 188 return 0; 189 if (td->o.random_generator == FIO_RAND_GEN_TAUSWORTHE) 190 return 0; 191 192 return 1; 193} 194 195static int should_do_random(struct thread_data *td, enum fio_ddir ddir) 196{ 197 unsigned int v; 198 unsigned long r; 199 200 if (td->o.perc_rand[ddir] == 100) 201 return 1; 202 203 if (td->o.use_os_rand) { 204 r = os_random_long(&td->seq_rand_state[ddir]); 205 v = 1 + (int) (100.0 * (r / (OS_RAND_MAX + 1.0))); 206 } else { 207 r = __rand(&td->__seq_rand_state[ddir]); 208 v = 1 + (int) (100.0 * (r / (FRAND_MAX + 1.0))); 209 } 210 211 return v <= td->o.perc_rand[ddir]; 212} 213 214static int get_next_rand_offset(struct thread_data *td, struct fio_file *f, 215 enum fio_ddir ddir, uint64_t *b) 216{ 217 struct rand_off *r; 218 int i, ret = 1; 219 220 if (!should_sort_io(td)) 221 return get_off_from_method(td, f, ddir, b); 222 223 if (!flist_empty(&td->next_rand_list)) { 224 struct rand_off *r; 225fetch: 226 r = flist_entry(td->next_rand_list.next, struct rand_off, list); 227 flist_del(&r->list); 228 *b = r->off; 229 free(r); 230 return 0; 231 } 232 233 for (i = 0; i < td->o.verifysort_nr; i++) { 234 r = malloc(sizeof(*r)); 235 236 ret = get_off_from_method(td, f, ddir, &r->off); 237 if (ret) { 238 free(r); 239 break; 240 } 241 242 flist_add(&r->list, &td->next_rand_list); 243 } 244 245 if (ret && !i) 246 return ret; 247 248 assert(!flist_empty(&td->next_rand_list)); 249 flist_sort(NULL, &td->next_rand_list, flist_cmp); 250 goto fetch; 251} 252 253static int get_next_rand_block(struct thread_data *td, struct fio_file *f, 254 enum fio_ddir ddir, uint64_t *b) 255{ 256 if (!get_next_rand_offset(td, f, ddir, b)) 257 return 0; 258 259 if (td->o.time_based) { 260 fio_file_reset(td, f); 261 if (!get_next_rand_offset(td, f, ddir, b)) 262 return 0; 263 } 264 265 dprint(FD_IO, "%s: rand offset failed, last=%llu, size=%llu\n", 266 f->file_name, (unsigned long long) f->last_pos, 267 (unsigned long long) f->real_file_size); 268 return 1; 269} 270 271static int get_next_seq_offset(struct thread_data *td, struct fio_file *f, 272 enum fio_ddir ddir, uint64_t *offset) 273{ 274 assert(ddir_rw(ddir)); 275 276 if (f->last_pos >= f->io_size + get_start_offset(td) && td->o.time_based) 277 f->last_pos = f->last_pos - f->io_size; 278 279 if (f->last_pos < f->real_file_size) { 280 uint64_t pos; 281 282 if (f->last_pos == f->file_offset && td->o.ddir_seq_add < 0) 283 f->last_pos = f->real_file_size; 284 285 pos = f->last_pos - f->file_offset; 286 if (pos) 287 pos += td->o.ddir_seq_add; 288 289 *offset = pos; 290 return 0; 291 } 292 293 return 1; 294} 295 296static int get_next_block(struct thread_data *td, struct io_u *io_u, 297 enum fio_ddir ddir, int rw_seq, 298 unsigned int *is_random) 299{ 300 struct fio_file *f = io_u->file; 301 uint64_t b, offset; 302 int ret; 303 304 assert(ddir_rw(ddir)); 305 306 b = offset = -1ULL; 307 308 if (rw_seq) { 309 if (td_random(td)) { 310 if (should_do_random(td, ddir)) { 311 ret = get_next_rand_block(td, f, ddir, &b); 312 *is_random = 1; 313 } else { 314 *is_random = 0; 315 io_u->flags |= IO_U_F_BUSY_OK; 316 ret = get_next_seq_offset(td, f, ddir, &offset); 317 if (ret) 318 ret = get_next_rand_block(td, f, ddir, &b); 319 } 320 } else { 321 *is_random = 0; 322 ret = get_next_seq_offset(td, f, ddir, &offset); 323 } 324 } else { 325 io_u->flags |= IO_U_F_BUSY_OK; 326 *is_random = 0; 327 328 if (td->o.rw_seq == RW_SEQ_SEQ) { 329 ret = get_next_seq_offset(td, f, ddir, &offset); 330 if (ret) { 331 ret = get_next_rand_block(td, f, ddir, &b); 332 *is_random = 0; 333 } 334 } else if (td->o.rw_seq == RW_SEQ_IDENT) { 335 if (f->last_start != -1ULL) 336 offset = f->last_start - f->file_offset; 337 else 338 offset = 0; 339 ret = 0; 340 } else { 341 log_err("fio: unknown rw_seq=%d\n", td->o.rw_seq); 342 ret = 1; 343 } 344 } 345 346 if (!ret) { 347 if (offset != -1ULL) 348 io_u->offset = offset; 349 else if (b != -1ULL) 350 io_u->offset = b * td->o.ba[ddir]; 351 else { 352 log_err("fio: bug in offset generation: offset=%llu, b=%llu\n", (unsigned long long) offset, (unsigned long long) b); 353 ret = 1; 354 } 355 } 356 357 return ret; 358} 359 360/* 361 * For random io, generate a random new block and see if it's used. Repeat 362 * until we find a free one. For sequential io, just return the end of 363 * the last io issued. 364 */ 365static int __get_next_offset(struct thread_data *td, struct io_u *io_u, 366 unsigned int *is_random) 367{ 368 struct fio_file *f = io_u->file; 369 enum fio_ddir ddir = io_u->ddir; 370 int rw_seq_hit = 0; 371 372 assert(ddir_rw(ddir)); 373 374 if (td->o.ddir_seq_nr && !--td->ddir_seq_nr) { 375 rw_seq_hit = 1; 376 td->ddir_seq_nr = td->o.ddir_seq_nr; 377 } 378 379 if (get_next_block(td, io_u, ddir, rw_seq_hit, is_random)) 380 return 1; 381 382 if (io_u->offset >= f->io_size) { 383 dprint(FD_IO, "get_next_offset: offset %llu >= io_size %llu\n", 384 (unsigned long long) io_u->offset, 385 (unsigned long long) f->io_size); 386 return 1; 387 } 388 389 io_u->offset += f->file_offset; 390 if (io_u->offset >= f->real_file_size) { 391 dprint(FD_IO, "get_next_offset: offset %llu >= size %llu\n", 392 (unsigned long long) io_u->offset, 393 (unsigned long long) f->real_file_size); 394 return 1; 395 } 396 397 return 0; 398} 399 400static int get_next_offset(struct thread_data *td, struct io_u *io_u, 401 unsigned int *is_random) 402{ 403 if (td->flags & TD_F_PROFILE_OPS) { 404 struct prof_io_ops *ops = &td->prof_io_ops; 405 406 if (ops->fill_io_u_off) 407 return ops->fill_io_u_off(td, io_u, is_random); 408 } 409 410 return __get_next_offset(td, io_u, is_random); 411} 412 413static inline int io_u_fits(struct thread_data *td, struct io_u *io_u, 414 unsigned int buflen) 415{ 416 struct fio_file *f = io_u->file; 417 418 return io_u->offset + buflen <= f->io_size + get_start_offset(td); 419} 420 421static unsigned int __get_next_buflen(struct thread_data *td, struct io_u *io_u, 422 unsigned int is_random) 423{ 424 int ddir = io_u->ddir; 425 unsigned int buflen = 0; 426 unsigned int minbs, maxbs; 427 unsigned long r, rand_max; 428 429 assert(ddir_rw(io_u->ddir)); 430 431 if (td->o.bs_is_seq_rand) 432 ddir = is_random ? DDIR_WRITE: DDIR_READ; 433 else 434 ddir = io_u->ddir; 435 436 minbs = td->o.min_bs[ddir]; 437 maxbs = td->o.max_bs[ddir]; 438 439 if (minbs == maxbs) 440 return minbs; 441 442 /* 443 * If we can't satisfy the min block size from here, then fail 444 */ 445 if (!io_u_fits(td, io_u, minbs)) 446 return 0; 447 448 if (td->o.use_os_rand) 449 rand_max = OS_RAND_MAX; 450 else 451 rand_max = FRAND_MAX; 452 453 do { 454 if (td->o.use_os_rand) 455 r = os_random_long(&td->bsrange_state); 456 else 457 r = __rand(&td->__bsrange_state); 458 459 if (!td->o.bssplit_nr[ddir]) { 460 buflen = 1 + (unsigned int) ((double) maxbs * 461 (r / (rand_max + 1.0))); 462 if (buflen < minbs) 463 buflen = minbs; 464 } else { 465 long perc = 0; 466 unsigned int i; 467 468 for (i = 0; i < td->o.bssplit_nr[ddir]; i++) { 469 struct bssplit *bsp = &td->o.bssplit[ddir][i]; 470 471 buflen = bsp->bs; 472 perc += bsp->perc; 473 if ((r <= ((rand_max / 100L) * perc)) && 474 io_u_fits(td, io_u, buflen)) 475 break; 476 } 477 } 478 479 if (td->o.do_verify && td->o.verify != VERIFY_NONE) 480 buflen = (buflen + td->o.verify_interval - 1) & 481 ~(td->o.verify_interval - 1); 482 483 if (!td->o.bs_unaligned && is_power_of_2(minbs)) 484 buflen = (buflen + minbs - 1) & ~(minbs - 1); 485 486 } while (!io_u_fits(td, io_u, buflen)); 487 488 return buflen; 489} 490 491static unsigned int get_next_buflen(struct thread_data *td, struct io_u *io_u, 492 unsigned int is_random) 493{ 494 if (td->flags & TD_F_PROFILE_OPS) { 495 struct prof_io_ops *ops = &td->prof_io_ops; 496 497 if (ops->fill_io_u_size) 498 return ops->fill_io_u_size(td, io_u, is_random); 499 } 500 501 return __get_next_buflen(td, io_u, is_random); 502} 503 504static void set_rwmix_bytes(struct thread_data *td) 505{ 506 unsigned int diff; 507 508 /* 509 * we do time or byte based switch. this is needed because 510 * buffered writes may issue a lot quicker than they complete, 511 * whereas reads do not. 512 */ 513 diff = td->o.rwmix[td->rwmix_ddir ^ 1]; 514 td->rwmix_issues = (td->io_issues[td->rwmix_ddir] * diff) / 100; 515} 516 517static inline enum fio_ddir get_rand_ddir(struct thread_data *td) 518{ 519 unsigned int v; 520 unsigned long r; 521 522 if (td->o.use_os_rand) { 523 r = os_random_long(&td->rwmix_state); 524 v = 1 + (int) (100.0 * (r / (OS_RAND_MAX + 1.0))); 525 } else { 526 r = __rand(&td->__rwmix_state); 527 v = 1 + (int) (100.0 * (r / (FRAND_MAX + 1.0))); 528 } 529 530 if (v <= td->o.rwmix[DDIR_READ]) 531 return DDIR_READ; 532 533 return DDIR_WRITE; 534} 535 536void io_u_quiesce(struct thread_data *td) 537{ 538 /* 539 * We are going to sleep, ensure that we flush anything pending as 540 * not to skew our latency numbers. 541 * 542 * Changed to only monitor 'in flight' requests here instead of the 543 * td->cur_depth, b/c td->cur_depth does not accurately represent 544 * io's that have been actually submitted to an async engine, 545 * and cur_depth is meaningless for sync engines. 546 */ 547 while (td->io_u_in_flight) { 548 int fio_unused ret; 549 550 ret = io_u_queued_complete(td, 1, NULL); 551 } 552} 553 554static enum fio_ddir rate_ddir(struct thread_data *td, enum fio_ddir ddir) 555{ 556 enum fio_ddir odir = ddir ^ 1; 557 struct timeval t; 558 long usec; 559 560 assert(ddir_rw(ddir)); 561 562 if (td->rate_pending_usleep[ddir] <= 0) 563 return ddir; 564 565 /* 566 * We have too much pending sleep in this direction. See if we 567 * should switch. 568 */ 569 if (td_rw(td) && td->o.rwmix[odir]) { 570 /* 571 * Other direction does not have too much pending, switch 572 */ 573 if (td->rate_pending_usleep[odir] < 100000) 574 return odir; 575 576 /* 577 * Both directions have pending sleep. Sleep the minimum time 578 * and deduct from both. 579 */ 580 if (td->rate_pending_usleep[ddir] <= 581 td->rate_pending_usleep[odir]) { 582 usec = td->rate_pending_usleep[ddir]; 583 } else { 584 usec = td->rate_pending_usleep[odir]; 585 ddir = odir; 586 } 587 } else 588 usec = td->rate_pending_usleep[ddir]; 589 590 io_u_quiesce(td); 591 592 fio_gettime(&t, NULL); 593 usec_sleep(td, usec); 594 usec = utime_since_now(&t); 595 596 td->rate_pending_usleep[ddir] -= usec; 597 598 odir = ddir ^ 1; 599 if (td_rw(td) && __should_check_rate(td, odir)) 600 td->rate_pending_usleep[odir] -= usec; 601 602 if (ddir_trim(ddir)) 603 return ddir; 604 605 return ddir; 606} 607 608/* 609 * Return the data direction for the next io_u. If the job is a 610 * mixed read/write workload, check the rwmix cycle and switch if 611 * necessary. 612 */ 613static enum fio_ddir get_rw_ddir(struct thread_data *td) 614{ 615 enum fio_ddir ddir; 616 617 /* 618 * see if it's time to fsync 619 */ 620 if (td->o.fsync_blocks && 621 !(td->io_issues[DDIR_WRITE] % td->o.fsync_blocks) && 622 td->io_issues[DDIR_WRITE] && should_fsync(td)) 623 return DDIR_SYNC; 624 625 /* 626 * see if it's time to fdatasync 627 */ 628 if (td->o.fdatasync_blocks && 629 !(td->io_issues[DDIR_WRITE] % td->o.fdatasync_blocks) && 630 td->io_issues[DDIR_WRITE] && should_fsync(td)) 631 return DDIR_DATASYNC; 632 633 /* 634 * see if it's time to sync_file_range 635 */ 636 if (td->sync_file_range_nr && 637 !(td->io_issues[DDIR_WRITE] % td->sync_file_range_nr) && 638 td->io_issues[DDIR_WRITE] && should_fsync(td)) 639 return DDIR_SYNC_FILE_RANGE; 640 641 if (td_rw(td)) { 642 /* 643 * Check if it's time to seed a new data direction. 644 */ 645 if (td->io_issues[td->rwmix_ddir] >= td->rwmix_issues) { 646 /* 647 * Put a top limit on how many bytes we do for 648 * one data direction, to avoid overflowing the 649 * ranges too much 650 */ 651 ddir = get_rand_ddir(td); 652 653 if (ddir != td->rwmix_ddir) 654 set_rwmix_bytes(td); 655 656 td->rwmix_ddir = ddir; 657 } 658 ddir = td->rwmix_ddir; 659 } else if (td_read(td)) 660 ddir = DDIR_READ; 661 else if (td_write(td)) 662 ddir = DDIR_WRITE; 663 else 664 ddir = DDIR_TRIM; 665 666 td->rwmix_ddir = rate_ddir(td, ddir); 667 return td->rwmix_ddir; 668} 669 670static void set_rw_ddir(struct thread_data *td, struct io_u *io_u) 671{ 672 io_u->ddir = io_u->acct_ddir = get_rw_ddir(td); 673 674 if (io_u->ddir == DDIR_WRITE && (td->io_ops->flags & FIO_BARRIER) && 675 td->o.barrier_blocks && 676 !(td->io_issues[DDIR_WRITE] % td->o.barrier_blocks) && 677 td->io_issues[DDIR_WRITE]) 678 io_u->flags |= IO_U_F_BARRIER; 679} 680 681void put_file_log(struct thread_data *td, struct fio_file *f) 682{ 683 int ret = put_file(td, f); 684 685 if (ret) 686 td_verror(td, ret, "file close"); 687} 688 689void put_io_u(struct thread_data *td, struct io_u *io_u) 690{ 691 td_io_u_lock(td); 692 693 if (io_u->file && !(io_u->flags & IO_U_F_FREE_DEF)) 694 put_file_log(td, io_u->file); 695 io_u->file = NULL; 696 io_u->flags &= ~IO_U_F_FREE_DEF; 697 io_u->flags |= IO_U_F_FREE; 698 699 if (io_u->flags & IO_U_F_IN_CUR_DEPTH) 700 td->cur_depth--; 701 io_u_qpush(&td->io_u_freelist, io_u); 702 td_io_u_unlock(td); 703 td_io_u_free_notify(td); 704} 705 706void clear_io_u(struct thread_data *td, struct io_u *io_u) 707{ 708 io_u->flags &= ~IO_U_F_FLIGHT; 709 put_io_u(td, io_u); 710} 711 712void requeue_io_u(struct thread_data *td, struct io_u **io_u) 713{ 714 struct io_u *__io_u = *io_u; 715 enum fio_ddir ddir = acct_ddir(__io_u); 716 717 dprint(FD_IO, "requeue %p\n", __io_u); 718 719 td_io_u_lock(td); 720 721 __io_u->flags |= IO_U_F_FREE; 722 if ((__io_u->flags & IO_U_F_FLIGHT) && ddir_rw(ddir)) 723 td->io_issues[ddir]--; 724 725 __io_u->flags &= ~IO_U_F_FLIGHT; 726 if (__io_u->flags & IO_U_F_IN_CUR_DEPTH) 727 td->cur_depth--; 728 729 io_u_rpush(&td->io_u_requeues, __io_u); 730 td_io_u_unlock(td); 731 *io_u = NULL; 732} 733 734static int fill_io_u(struct thread_data *td, struct io_u *io_u) 735{ 736 unsigned int is_random; 737 738 if (td->io_ops->flags & FIO_NOIO) 739 goto out; 740 741 set_rw_ddir(td, io_u); 742 743 /* 744 * fsync() or fdatasync() or trim etc, we are done 745 */ 746 if (!ddir_rw(io_u->ddir)) 747 goto out; 748 749 /* 750 * See if it's time to switch to a new zone 751 */ 752 if (td->zone_bytes >= td->o.zone_size && td->o.zone_skip) { 753 td->zone_bytes = 0; 754 io_u->file->file_offset += td->o.zone_range + td->o.zone_skip; 755 io_u->file->last_pos = io_u->file->file_offset; 756 td->io_skip_bytes += td->o.zone_skip; 757 } 758 759 /* 760 * No log, let the seq/rand engine retrieve the next buflen and 761 * position. 762 */ 763 if (get_next_offset(td, io_u, &is_random)) { 764 dprint(FD_IO, "io_u %p, failed getting offset\n", io_u); 765 return 1; 766 } 767 768 io_u->buflen = get_next_buflen(td, io_u, is_random); 769 if (!io_u->buflen) { 770 dprint(FD_IO, "io_u %p, failed getting buflen\n", io_u); 771 return 1; 772 } 773 774 if (io_u->offset + io_u->buflen > io_u->file->real_file_size) { 775 dprint(FD_IO, "io_u %p, offset too large\n", io_u); 776 dprint(FD_IO, " off=%llu/%lu > %llu\n", 777 (unsigned long long) io_u->offset, io_u->buflen, 778 (unsigned long long) io_u->file->real_file_size); 779 return 1; 780 } 781 782 /* 783 * mark entry before potentially trimming io_u 784 */ 785 if (td_random(td) && file_randommap(td, io_u->file)) 786 mark_random_map(td, io_u); 787 788out: 789 dprint_io_u(io_u, "fill_io_u"); 790 td->zone_bytes += io_u->buflen; 791 return 0; 792} 793 794static void __io_u_mark_map(unsigned int *map, unsigned int nr) 795{ 796 int idx = 0; 797 798 switch (nr) { 799 default: 800 idx = 6; 801 break; 802 case 33 ... 64: 803 idx = 5; 804 break; 805 case 17 ... 32: 806 idx = 4; 807 break; 808 case 9 ... 16: 809 idx = 3; 810 break; 811 case 5 ... 8: 812 idx = 2; 813 break; 814 case 1 ... 4: 815 idx = 1; 816 case 0: 817 break; 818 } 819 820 map[idx]++; 821} 822 823void io_u_mark_submit(struct thread_data *td, unsigned int nr) 824{ 825 __io_u_mark_map(td->ts.io_u_submit, nr); 826 td->ts.total_submit++; 827} 828 829void io_u_mark_complete(struct thread_data *td, unsigned int nr) 830{ 831 __io_u_mark_map(td->ts.io_u_complete, nr); 832 td->ts.total_complete++; 833} 834 835void io_u_mark_depth(struct thread_data *td, unsigned int nr) 836{ 837 int idx = 0; 838 839 switch (td->cur_depth) { 840 default: 841 idx = 6; 842 break; 843 case 32 ... 63: 844 idx = 5; 845 break; 846 case 16 ... 31: 847 idx = 4; 848 break; 849 case 8 ... 15: 850 idx = 3; 851 break; 852 case 4 ... 7: 853 idx = 2; 854 break; 855 case 2 ... 3: 856 idx = 1; 857 case 1: 858 break; 859 } 860 861 td->ts.io_u_map[idx] += nr; 862} 863 864static void io_u_mark_lat_usec(struct thread_data *td, unsigned long usec) 865{ 866 int idx = 0; 867 868 assert(usec < 1000); 869 870 switch (usec) { 871 case 750 ... 999: 872 idx = 9; 873 break; 874 case 500 ... 749: 875 idx = 8; 876 break; 877 case 250 ... 499: 878 idx = 7; 879 break; 880 case 100 ... 249: 881 idx = 6; 882 break; 883 case 50 ... 99: 884 idx = 5; 885 break; 886 case 20 ... 49: 887 idx = 4; 888 break; 889 case 10 ... 19: 890 idx = 3; 891 break; 892 case 4 ... 9: 893 idx = 2; 894 break; 895 case 2 ... 3: 896 idx = 1; 897 case 0 ... 1: 898 break; 899 } 900 901 assert(idx < FIO_IO_U_LAT_U_NR); 902 td->ts.io_u_lat_u[idx]++; 903} 904 905static void io_u_mark_lat_msec(struct thread_data *td, unsigned long msec) 906{ 907 int idx = 0; 908 909 switch (msec) { 910 default: 911 idx = 11; 912 break; 913 case 1000 ... 1999: 914 idx = 10; 915 break; 916 case 750 ... 999: 917 idx = 9; 918 break; 919 case 500 ... 749: 920 idx = 8; 921 break; 922 case 250 ... 499: 923 idx = 7; 924 break; 925 case 100 ... 249: 926 idx = 6; 927 break; 928 case 50 ... 99: 929 idx = 5; 930 break; 931 case 20 ... 49: 932 idx = 4; 933 break; 934 case 10 ... 19: 935 idx = 3; 936 break; 937 case 4 ... 9: 938 idx = 2; 939 break; 940 case 2 ... 3: 941 idx = 1; 942 case 0 ... 1: 943 break; 944 } 945 946 assert(idx < FIO_IO_U_LAT_M_NR); 947 td->ts.io_u_lat_m[idx]++; 948} 949 950static void io_u_mark_latency(struct thread_data *td, unsigned long usec) 951{ 952 if (usec < 1000) 953 io_u_mark_lat_usec(td, usec); 954 else 955 io_u_mark_lat_msec(td, usec / 1000); 956} 957 958/* 959 * Get next file to service by choosing one at random 960 */ 961static struct fio_file *get_next_file_rand(struct thread_data *td, 962 enum fio_file_flags goodf, 963 enum fio_file_flags badf) 964{ 965 struct fio_file *f; 966 int fno; 967 968 do { 969 int opened = 0; 970 unsigned long r; 971 972 if (td->o.use_os_rand) { 973 r = os_random_long(&td->next_file_state); 974 fno = (unsigned int) ((double) td->o.nr_files 975 * (r / (OS_RAND_MAX + 1.0))); 976 } else { 977 r = __rand(&td->__next_file_state); 978 fno = (unsigned int) ((double) td->o.nr_files 979 * (r / (FRAND_MAX + 1.0))); 980 } 981 982 f = td->files[fno]; 983 if (fio_file_done(f)) 984 continue; 985 986 if (!fio_file_open(f)) { 987 int err; 988 989 if (td->nr_open_files >= td->o.open_files) 990 return ERR_PTR(-EBUSY); 991 992 err = td_io_open_file(td, f); 993 if (err) 994 continue; 995 opened = 1; 996 } 997 998 if ((!goodf || (f->flags & goodf)) && !(f->flags & badf)) { 999 dprint(FD_FILE, "get_next_file_rand: %p\n", f); 1000 return f; 1001 } 1002 if (opened) 1003 td_io_close_file(td, f); 1004 } while (1); 1005} 1006 1007/* 1008 * Get next file to service by doing round robin between all available ones 1009 */ 1010static struct fio_file *get_next_file_rr(struct thread_data *td, int goodf, 1011 int badf) 1012{ 1013 unsigned int old_next_file = td->next_file; 1014 struct fio_file *f; 1015 1016 do { 1017 int opened = 0; 1018 1019 f = td->files[td->next_file]; 1020 1021 td->next_file++; 1022 if (td->next_file >= td->o.nr_files) 1023 td->next_file = 0; 1024 1025 dprint(FD_FILE, "trying file %s %x\n", f->file_name, f->flags); 1026 if (fio_file_done(f)) { 1027 f = NULL; 1028 continue; 1029 } 1030 1031 if (!fio_file_open(f)) { 1032 int err; 1033 1034 if (td->nr_open_files >= td->o.open_files) 1035 return ERR_PTR(-EBUSY); 1036 1037 err = td_io_open_file(td, f); 1038 if (err) { 1039 dprint(FD_FILE, "error %d on open of %s\n", 1040 err, f->file_name); 1041 f = NULL; 1042 continue; 1043 } 1044 opened = 1; 1045 } 1046 1047 dprint(FD_FILE, "goodf=%x, badf=%x, ff=%x\n", goodf, badf, 1048 f->flags); 1049 if ((!goodf || (f->flags & goodf)) && !(f->flags & badf)) 1050 break; 1051 1052 if (opened) 1053 td_io_close_file(td, f); 1054 1055 f = NULL; 1056 } while (td->next_file != old_next_file); 1057 1058 dprint(FD_FILE, "get_next_file_rr: %p\n", f); 1059 return f; 1060} 1061 1062static struct fio_file *__get_next_file(struct thread_data *td) 1063{ 1064 struct fio_file *f; 1065 1066 assert(td->o.nr_files <= td->files_index); 1067 1068 if (td->nr_done_files >= td->o.nr_files) { 1069 dprint(FD_FILE, "get_next_file: nr_open=%d, nr_done=%d," 1070 " nr_files=%d\n", td->nr_open_files, 1071 td->nr_done_files, 1072 td->o.nr_files); 1073 return NULL; 1074 } 1075 1076 f = td->file_service_file; 1077 if (f && fio_file_open(f) && !fio_file_closing(f)) { 1078 if (td->o.file_service_type == FIO_FSERVICE_SEQ) 1079 goto out; 1080 if (td->file_service_left--) 1081 goto out; 1082 } 1083 1084 if (td->o.file_service_type == FIO_FSERVICE_RR || 1085 td->o.file_service_type == FIO_FSERVICE_SEQ) 1086 f = get_next_file_rr(td, FIO_FILE_open, FIO_FILE_closing); 1087 else 1088 f = get_next_file_rand(td, FIO_FILE_open, FIO_FILE_closing); 1089 1090 if (IS_ERR(f)) 1091 return f; 1092 1093 td->file_service_file = f; 1094 td->file_service_left = td->file_service_nr - 1; 1095out: 1096 if (f) 1097 dprint(FD_FILE, "get_next_file: %p [%s]\n", f, f->file_name); 1098 else 1099 dprint(FD_FILE, "get_next_file: NULL\n"); 1100 return f; 1101} 1102 1103static struct fio_file *get_next_file(struct thread_data *td) 1104{ 1105 if (!(td->flags & TD_F_PROFILE_OPS)) { 1106 struct prof_io_ops *ops = &td->prof_io_ops; 1107 1108 if (ops->get_next_file) 1109 return ops->get_next_file(td); 1110 } 1111 1112 return __get_next_file(td); 1113} 1114 1115static long set_io_u_file(struct thread_data *td, struct io_u *io_u) 1116{ 1117 struct fio_file *f; 1118 1119 do { 1120 f = get_next_file(td); 1121 if (IS_ERR_OR_NULL(f)) 1122 return PTR_ERR(f); 1123 1124 io_u->file = f; 1125 get_file(f); 1126 1127 if (!fill_io_u(td, io_u)) 1128 break; 1129 1130 put_file_log(td, f); 1131 td_io_close_file(td, f); 1132 io_u->file = NULL; 1133 fio_file_set_done(f); 1134 td->nr_done_files++; 1135 dprint(FD_FILE, "%s: is done (%d of %d)\n", f->file_name, 1136 td->nr_done_files, td->o.nr_files); 1137 } while (1); 1138 1139 return 0; 1140} 1141 1142static void lat_fatal(struct thread_data *td, struct io_completion_data *icd, 1143 unsigned long tusec, unsigned long max_usec) 1144{ 1145 if (!td->error) 1146 log_err("fio: latency of %lu usec exceeds specified max (%lu usec)\n", tusec, max_usec); 1147 td_verror(td, ETIMEDOUT, "max latency exceeded"); 1148 icd->error = ETIMEDOUT; 1149} 1150 1151static void lat_new_cycle(struct thread_data *td) 1152{ 1153 fio_gettime(&td->latency_ts, NULL); 1154 td->latency_ios = ddir_rw_sum(td->io_blocks); 1155 td->latency_failed = 0; 1156} 1157 1158/* 1159 * We had an IO outside the latency target. Reduce the queue depth. If we 1160 * are at QD=1, then it's time to give up. 1161 */ 1162static int __lat_target_failed(struct thread_data *td) 1163{ 1164 if (td->latency_qd == 1) 1165 return 1; 1166 1167 td->latency_qd_high = td->latency_qd; 1168 1169 if (td->latency_qd == td->latency_qd_low) 1170 td->latency_qd_low--; 1171 1172 td->latency_qd = (td->latency_qd + td->latency_qd_low) / 2; 1173 1174 dprint(FD_RATE, "Ramped down: %d %d %d\n", td->latency_qd_low, td->latency_qd, td->latency_qd_high); 1175 1176 /* 1177 * When we ramp QD down, quiesce existing IO to prevent 1178 * a storm of ramp downs due to pending higher depth. 1179 */ 1180 io_u_quiesce(td); 1181 lat_new_cycle(td); 1182 return 0; 1183} 1184 1185static int lat_target_failed(struct thread_data *td) 1186{ 1187 if (td->o.latency_percentile.u.f == 100.0) 1188 return __lat_target_failed(td); 1189 1190 td->latency_failed++; 1191 return 0; 1192} 1193 1194void lat_target_init(struct thread_data *td) 1195{ 1196 td->latency_end_run = 0; 1197 1198 if (td->o.latency_target) { 1199 dprint(FD_RATE, "Latency target=%llu\n", td->o.latency_target); 1200 fio_gettime(&td->latency_ts, NULL); 1201 td->latency_qd = 1; 1202 td->latency_qd_high = td->o.iodepth; 1203 td->latency_qd_low = 1; 1204 td->latency_ios = ddir_rw_sum(td->io_blocks); 1205 } else 1206 td->latency_qd = td->o.iodepth; 1207} 1208 1209void lat_target_reset(struct thread_data *td) 1210{ 1211 if (!td->latency_end_run) 1212 lat_target_init(td); 1213} 1214 1215static void lat_target_success(struct thread_data *td) 1216{ 1217 const unsigned int qd = td->latency_qd; 1218 struct thread_options *o = &td->o; 1219 1220 td->latency_qd_low = td->latency_qd; 1221 1222 /* 1223 * If we haven't failed yet, we double up to a failing value instead 1224 * of bisecting from highest possible queue depth. If we have set 1225 * a limit other than td->o.iodepth, bisect between that. 1226 */ 1227 if (td->latency_qd_high != o->iodepth) 1228 td->latency_qd = (td->latency_qd + td->latency_qd_high) / 2; 1229 else 1230 td->latency_qd *= 2; 1231 1232 if (td->latency_qd > o->iodepth) 1233 td->latency_qd = o->iodepth; 1234 1235 dprint(FD_RATE, "Ramped up: %d %d %d\n", td->latency_qd_low, td->latency_qd, td->latency_qd_high); 1236 1237 /* 1238 * Same as last one, we are done. Let it run a latency cycle, so 1239 * we get only the results from the targeted depth. 1240 */ 1241 if (td->latency_qd == qd) { 1242 if (td->latency_end_run) { 1243 dprint(FD_RATE, "We are done\n"); 1244 td->done = 1; 1245 } else { 1246 dprint(FD_RATE, "Quiesce and final run\n"); 1247 io_u_quiesce(td); 1248 td->latency_end_run = 1; 1249 reset_all_stats(td); 1250 reset_io_stats(td); 1251 } 1252 } 1253 1254 lat_new_cycle(td); 1255} 1256 1257/* 1258 * Check if we can bump the queue depth 1259 */ 1260void lat_target_check(struct thread_data *td) 1261{ 1262 uint64_t usec_window; 1263 uint64_t ios; 1264 double success_ios; 1265 1266 usec_window = utime_since_now(&td->latency_ts); 1267 if (usec_window < td->o.latency_window) 1268 return; 1269 1270 ios = ddir_rw_sum(td->io_blocks) - td->latency_ios; 1271 success_ios = (double) (ios - td->latency_failed) / (double) ios; 1272 success_ios *= 100.0; 1273 1274 dprint(FD_RATE, "Success rate: %.2f%% (target %.2f%%)\n", success_ios, td->o.latency_percentile.u.f); 1275 1276 if (success_ios >= td->o.latency_percentile.u.f) 1277 lat_target_success(td); 1278 else 1279 __lat_target_failed(td); 1280} 1281 1282/* 1283 * If latency target is enabled, we might be ramping up or down and not 1284 * using the full queue depth available. 1285 */ 1286int queue_full(struct thread_data *td) 1287{ 1288 const int qempty = io_u_qempty(&td->io_u_freelist); 1289 1290 if (qempty) 1291 return 1; 1292 if (!td->o.latency_target) 1293 return 0; 1294 1295 return td->cur_depth >= td->latency_qd; 1296} 1297 1298struct io_u *__get_io_u(struct thread_data *td) 1299{ 1300 struct io_u *io_u; 1301 1302 td_io_u_lock(td); 1303 1304again: 1305 if (!io_u_rempty(&td->io_u_requeues)) 1306 io_u = io_u_rpop(&td->io_u_requeues); 1307 else if (!queue_full(td)) { 1308 io_u = io_u_qpop(&td->io_u_freelist); 1309 1310 io_u->file = NULL; 1311 io_u->buflen = 0; 1312 io_u->resid = 0; 1313 io_u->end_io = NULL; 1314 } 1315 1316 if (io_u) { 1317 assert(io_u->flags & IO_U_F_FREE); 1318 io_u->flags &= ~(IO_U_F_FREE | IO_U_F_FREE_DEF); 1319 io_u->flags &= ~(IO_U_F_TRIMMED | IO_U_F_BARRIER); 1320 io_u->flags &= ~IO_U_F_VER_LIST; 1321 1322 io_u->error = 0; 1323 io_u->acct_ddir = -1; 1324 td->cur_depth++; 1325 io_u->flags |= IO_U_F_IN_CUR_DEPTH; 1326 io_u->ipo = NULL; 1327 } else if (td->o.verify_async) { 1328 /* 1329 * We ran out, wait for async verify threads to finish and 1330 * return one 1331 */ 1332 pthread_cond_wait(&td->free_cond, &td->io_u_lock); 1333 goto again; 1334 } 1335 1336 td_io_u_unlock(td); 1337 return io_u; 1338} 1339 1340static int check_get_trim(struct thread_data *td, struct io_u *io_u) 1341{ 1342 if (!(td->flags & TD_F_TRIM_BACKLOG)) 1343 return 0; 1344 1345 if (td->trim_entries) { 1346 int get_trim = 0; 1347 1348 if (td->trim_batch) { 1349 td->trim_batch--; 1350 get_trim = 1; 1351 } else if (!(td->io_hist_len % td->o.trim_backlog) && 1352 td->last_ddir != DDIR_READ) { 1353 td->trim_batch = td->o.trim_batch; 1354 if (!td->trim_batch) 1355 td->trim_batch = td->o.trim_backlog; 1356 get_trim = 1; 1357 } 1358 1359 if (get_trim && !get_next_trim(td, io_u)) 1360 return 1; 1361 } 1362 1363 return 0; 1364} 1365 1366static int check_get_verify(struct thread_data *td, struct io_u *io_u) 1367{ 1368 if (!(td->flags & TD_F_VER_BACKLOG)) 1369 return 0; 1370 1371 if (td->io_hist_len) { 1372 int get_verify = 0; 1373 1374 if (td->verify_batch) 1375 get_verify = 1; 1376 else if (!(td->io_hist_len % td->o.verify_backlog) && 1377 td->last_ddir != DDIR_READ) { 1378 td->verify_batch = td->o.verify_batch; 1379 if (!td->verify_batch) 1380 td->verify_batch = td->o.verify_backlog; 1381 get_verify = 1; 1382 } 1383 1384 if (get_verify && !get_next_verify(td, io_u)) { 1385 td->verify_batch--; 1386 return 1; 1387 } 1388 } 1389 1390 return 0; 1391} 1392 1393/* 1394 * Fill offset and start time into the buffer content, to prevent too 1395 * easy compressible data for simple de-dupe attempts. Do this for every 1396 * 512b block in the range, since that should be the smallest block size 1397 * we can expect from a device. 1398 */ 1399static void small_content_scramble(struct io_u *io_u) 1400{ 1401 unsigned int i, nr_blocks = io_u->buflen / 512; 1402 uint64_t boffset; 1403 unsigned int offset; 1404 void *p, *end; 1405 1406 if (!nr_blocks) 1407 return; 1408 1409 p = io_u->xfer_buf; 1410 boffset = io_u->offset; 1411 io_u->buf_filled_len = 0; 1412 1413 for (i = 0; i < nr_blocks; i++) { 1414 /* 1415 * Fill the byte offset into a "random" start offset of 1416 * the buffer, given by the product of the usec time 1417 * and the actual offset. 1418 */ 1419 offset = (io_u->start_time.tv_usec ^ boffset) & 511; 1420 offset &= ~(sizeof(uint64_t) - 1); 1421 if (offset >= 512 - sizeof(uint64_t)) 1422 offset -= sizeof(uint64_t); 1423 memcpy(p + offset, &boffset, sizeof(boffset)); 1424 1425 end = p + 512 - sizeof(io_u->start_time); 1426 memcpy(end, &io_u->start_time, sizeof(io_u->start_time)); 1427 p += 512; 1428 boffset += 512; 1429 } 1430} 1431 1432/* 1433 * Return an io_u to be processed. Gets a buflen and offset, sets direction, 1434 * etc. The returned io_u is fully ready to be prepped and submitted. 1435 */ 1436struct io_u *get_io_u(struct thread_data *td) 1437{ 1438 struct fio_file *f; 1439 struct io_u *io_u; 1440 int do_scramble = 0; 1441 long ret = 0; 1442 1443 io_u = __get_io_u(td); 1444 if (!io_u) { 1445 dprint(FD_IO, "__get_io_u failed\n"); 1446 return NULL; 1447 } 1448 1449 if (check_get_verify(td, io_u)) 1450 goto out; 1451 if (check_get_trim(td, io_u)) 1452 goto out; 1453 1454 /* 1455 * from a requeue, io_u already setup 1456 */ 1457 if (io_u->file) 1458 goto out; 1459 1460 /* 1461 * If using an iolog, grab next piece if any available. 1462 */ 1463 if (td->flags & TD_F_READ_IOLOG) { 1464 if (read_iolog_get(td, io_u)) 1465 goto err_put; 1466 } else if (set_io_u_file(td, io_u)) { 1467 ret = -EBUSY; 1468 dprint(FD_IO, "io_u %p, setting file failed\n", io_u); 1469 goto err_put; 1470 } 1471 1472 f = io_u->file; 1473 if (!f) { 1474 dprint(FD_IO, "io_u %p, setting file failed\n", io_u); 1475 goto err_put; 1476 } 1477 1478 assert(fio_file_open(f)); 1479 1480 if (ddir_rw(io_u->ddir)) { 1481 if (!io_u->buflen && !(td->io_ops->flags & FIO_NOIO)) { 1482 dprint(FD_IO, "get_io_u: zero buflen on %p\n", io_u); 1483 goto err_put; 1484 } 1485 1486 f->last_start = io_u->offset; 1487 f->last_pos = io_u->offset + io_u->buflen; 1488 1489 if (io_u->ddir == DDIR_WRITE) { 1490 if (td->flags & TD_F_REFILL_BUFFERS) { 1491 io_u_fill_buffer(td, io_u, 1492 io_u->xfer_buflen, io_u->xfer_buflen); 1493 } else if (td->flags & TD_F_SCRAMBLE_BUFFERS) 1494 do_scramble = 1; 1495 if (td->flags & TD_F_VER_NONE) { 1496 populate_verify_io_u(td, io_u); 1497 do_scramble = 0; 1498 } 1499 } else if (io_u->ddir == DDIR_READ) { 1500 /* 1501 * Reset the buf_filled parameters so next time if the 1502 * buffer is used for writes it is refilled. 1503 */ 1504 io_u->buf_filled_len = 0; 1505 } 1506 } 1507 1508 /* 1509 * Set io data pointers. 1510 */ 1511 io_u->xfer_buf = io_u->buf; 1512 io_u->xfer_buflen = io_u->buflen; 1513 1514out: 1515 assert(io_u->file); 1516 if (!td_io_prep(td, io_u)) { 1517 if (!td->o.disable_slat) 1518 fio_gettime(&io_u->start_time, NULL); 1519 if (do_scramble) 1520 small_content_scramble(io_u); 1521 return io_u; 1522 } 1523err_put: 1524 dprint(FD_IO, "get_io_u failed\n"); 1525 put_io_u(td, io_u); 1526 return ERR_PTR(ret); 1527} 1528 1529void io_u_log_error(struct thread_data *td, struct io_u *io_u) 1530{ 1531 enum error_type_bit eb = td_error_type(io_u->ddir, io_u->error); 1532 const char *msg[] = { "read", "write", "sync", "datasync", 1533 "sync_file_range", "wait", "trim" }; 1534 1535 if (td_non_fatal_error(td, eb, io_u->error) && !td->o.error_dump) 1536 return; 1537 1538 log_err("fio: io_u error"); 1539 1540 if (io_u->file) 1541 log_err(" on file %s", io_u->file->file_name); 1542 1543 log_err(": %s\n", strerror(io_u->error)); 1544 1545 log_err(" %s offset=%llu, buflen=%lu\n", msg[io_u->ddir], 1546 io_u->offset, io_u->xfer_buflen); 1547 1548 if (!td->error) 1549 td_verror(td, io_u->error, "io_u error"); 1550} 1551 1552static inline int gtod_reduce(struct thread_data *td) 1553{ 1554 return td->o.disable_clat && td->o.disable_lat && td->o.disable_slat 1555 && td->o.disable_bw; 1556} 1557 1558static void account_io_completion(struct thread_data *td, struct io_u *io_u, 1559 struct io_completion_data *icd, 1560 const enum fio_ddir idx, unsigned int bytes) 1561{ 1562 unsigned long lusec = 0; 1563 1564 if (!gtod_reduce(td)) 1565 lusec = utime_since(&io_u->issue_time, &icd->time); 1566 1567 if (!td->o.disable_lat) { 1568 unsigned long tusec; 1569 1570 tusec = utime_since(&io_u->start_time, &icd->time); 1571 add_lat_sample(td, idx, tusec, bytes); 1572 1573 if (td->flags & TD_F_PROFILE_OPS) { 1574 struct prof_io_ops *ops = &td->prof_io_ops; 1575 1576 if (ops->io_u_lat) 1577 icd->error = ops->io_u_lat(td, tusec); 1578 } 1579 1580 if (td->o.max_latency && tusec > td->o.max_latency) 1581 lat_fatal(td, icd, tusec, td->o.max_latency); 1582 if (td->o.latency_target && tusec > td->o.latency_target) { 1583 if (lat_target_failed(td)) 1584 lat_fatal(td, icd, tusec, td->o.latency_target); 1585 } 1586 } 1587 1588 if (!td->o.disable_clat) { 1589 add_clat_sample(td, idx, lusec, bytes); 1590 io_u_mark_latency(td, lusec); 1591 } 1592 1593 if (!td->o.disable_bw) 1594 add_bw_sample(td, idx, bytes, &icd->time); 1595 1596 if (!gtod_reduce(td)) 1597 add_iops_sample(td, idx, bytes, &icd->time); 1598 1599 if (td->o.number_ios && !--td->o.number_ios) 1600 td->done = 1; 1601} 1602 1603static long long usec_for_io(struct thread_data *td, enum fio_ddir ddir) 1604{ 1605 uint64_t secs, remainder, bps, bytes; 1606 1607 bytes = td->this_io_bytes[ddir]; 1608 bps = td->rate_bps[ddir]; 1609 secs = bytes / bps; 1610 remainder = bytes % bps; 1611 return remainder * 1000000 / bps + secs * 1000000; 1612} 1613 1614static void io_completed(struct thread_data *td, struct io_u *io_u, 1615 struct io_completion_data *icd) 1616{ 1617 struct fio_file *f; 1618 1619 dprint_io_u(io_u, "io complete"); 1620 1621 td_io_u_lock(td); 1622 assert(io_u->flags & IO_U_F_FLIGHT); 1623 io_u->flags &= ~(IO_U_F_FLIGHT | IO_U_F_BUSY_OK); 1624 1625 /* 1626 * Mark IO ok to verify 1627 */ 1628 if (io_u->ipo) { 1629 io_u->ipo->flags &= ~IP_F_IN_FLIGHT; 1630 write_barrier(); 1631 } 1632 1633 td_io_u_unlock(td); 1634 1635 if (ddir_sync(io_u->ddir)) { 1636 td->last_was_sync = 1; 1637 f = io_u->file; 1638 if (f) { 1639 f->first_write = -1ULL; 1640 f->last_write = -1ULL; 1641 } 1642 return; 1643 } 1644 1645 td->last_was_sync = 0; 1646 td->last_ddir = io_u->ddir; 1647 1648 if (!io_u->error && ddir_rw(io_u->ddir)) { 1649 unsigned int bytes = io_u->buflen - io_u->resid; 1650 const enum fio_ddir idx = io_u->ddir; 1651 const enum fio_ddir odx = io_u->ddir ^ 1; 1652 int ret; 1653 1654 td->io_blocks[idx]++; 1655 td->this_io_blocks[idx]++; 1656 td->io_bytes[idx] += bytes; 1657 1658 if (!(io_u->flags & IO_U_F_VER_LIST)) 1659 td->this_io_bytes[idx] += bytes; 1660 1661 if (idx == DDIR_WRITE) { 1662 f = io_u->file; 1663 if (f) { 1664 if (f->first_write == -1ULL || 1665 io_u->offset < f->first_write) 1666 f->first_write = io_u->offset; 1667 if (f->last_write == -1ULL || 1668 ((io_u->offset + bytes) > f->last_write)) 1669 f->last_write = io_u->offset + bytes; 1670 } 1671 } 1672 1673 if (ramp_time_over(td) && (td->runstate == TD_RUNNING || 1674 td->runstate == TD_VERIFYING)) { 1675 account_io_completion(td, io_u, icd, idx, bytes); 1676 1677 if (__should_check_rate(td, idx)) { 1678 td->rate_pending_usleep[idx] = 1679 (usec_for_io(td, idx) - 1680 utime_since_now(&td->start)); 1681 } 1682 if (idx != DDIR_TRIM && __should_check_rate(td, odx)) 1683 td->rate_pending_usleep[odx] = 1684 (usec_for_io(td, odx) - 1685 utime_since_now(&td->start)); 1686 } 1687 1688 icd->bytes_done[idx] += bytes; 1689 1690 if (io_u->end_io) { 1691 ret = io_u->end_io(td, io_u); 1692 if (ret && !icd->error) 1693 icd->error = ret; 1694 } 1695 } else if (io_u->error) { 1696 icd->error = io_u->error; 1697 io_u_log_error(td, io_u); 1698 } 1699 if (icd->error) { 1700 enum error_type_bit eb = td_error_type(io_u->ddir, icd->error); 1701 if (!td_non_fatal_error(td, eb, icd->error)) 1702 return; 1703 /* 1704 * If there is a non_fatal error, then add to the error count 1705 * and clear all the errors. 1706 */ 1707 update_error_count(td, icd->error); 1708 td_clear_error(td); 1709 icd->error = 0; 1710 io_u->error = 0; 1711 } 1712} 1713 1714static void init_icd(struct thread_data *td, struct io_completion_data *icd, 1715 int nr) 1716{ 1717 int ddir; 1718 1719 if (!gtod_reduce(td)) 1720 fio_gettime(&icd->time, NULL); 1721 1722 icd->nr = nr; 1723 1724 icd->error = 0; 1725 for (ddir = DDIR_READ; ddir < DDIR_RWDIR_CNT; ddir++) 1726 icd->bytes_done[ddir] = 0; 1727} 1728 1729static void ios_completed(struct thread_data *td, 1730 struct io_completion_data *icd) 1731{ 1732 struct io_u *io_u; 1733 int i; 1734 1735 for (i = 0; i < icd->nr; i++) { 1736 io_u = td->io_ops->event(td, i); 1737 1738 io_completed(td, io_u, icd); 1739 1740 if (!(io_u->flags & IO_U_F_FREE_DEF)) 1741 put_io_u(td, io_u); 1742 } 1743} 1744 1745/* 1746 * Complete a single io_u for the sync engines. 1747 */ 1748int io_u_sync_complete(struct thread_data *td, struct io_u *io_u, 1749 uint64_t *bytes) 1750{ 1751 struct io_completion_data icd; 1752 1753 init_icd(td, &icd, 1); 1754 io_completed(td, io_u, &icd); 1755 1756 if (!(io_u->flags & IO_U_F_FREE_DEF)) 1757 put_io_u(td, io_u); 1758 1759 if (icd.error) { 1760 td_verror(td, icd.error, "io_u_sync_complete"); 1761 return -1; 1762 } 1763 1764 if (bytes) { 1765 int ddir; 1766 1767 for (ddir = DDIR_READ; ddir < DDIR_RWDIR_CNT; ddir++) 1768 bytes[ddir] += icd.bytes_done[ddir]; 1769 } 1770 1771 return 0; 1772} 1773 1774/* 1775 * Called to complete min_events number of io for the async engines. 1776 */ 1777int io_u_queued_complete(struct thread_data *td, int min_evts, 1778 uint64_t *bytes) 1779{ 1780 struct io_completion_data icd; 1781 struct timespec *tvp = NULL; 1782 int ret; 1783 struct timespec ts = { .tv_sec = 0, .tv_nsec = 0, }; 1784 1785 dprint(FD_IO, "io_u_queued_completed: min=%d\n", min_evts); 1786 1787 if (!min_evts) 1788 tvp = &ts; 1789 1790 ret = td_io_getevents(td, min_evts, td->o.iodepth_batch_complete, tvp); 1791 if (ret < 0) { 1792 td_verror(td, -ret, "td_io_getevents"); 1793 return ret; 1794 } else if (!ret) 1795 return ret; 1796 1797 init_icd(td, &icd, ret); 1798 ios_completed(td, &icd); 1799 if (icd.error) { 1800 td_verror(td, icd.error, "io_u_queued_complete"); 1801 return -1; 1802 } 1803 1804 if (bytes) { 1805 int ddir; 1806 1807 for (ddir = DDIR_READ; ddir < DDIR_RWDIR_CNT; ddir++) 1808 bytes[ddir] += icd.bytes_done[ddir]; 1809 } 1810 1811 return 0; 1812} 1813 1814/* 1815 * Call when io_u is really queued, to update the submission latency. 1816 */ 1817void io_u_queued(struct thread_data *td, struct io_u *io_u) 1818{ 1819 if (!td->o.disable_slat) { 1820 unsigned long slat_time; 1821 1822 slat_time = utime_since(&io_u->start_time, &io_u->issue_time); 1823 add_slat_sample(td, io_u->ddir, slat_time, io_u->xfer_buflen); 1824 } 1825} 1826 1827void fill_io_buffer(struct thread_data *td, void *buf, unsigned int min_write, 1828 unsigned int max_bs) 1829{ 1830 if (td->o.buffer_pattern_bytes) 1831 fill_buffer_pattern(td, buf, max_bs); 1832 else if (!td->o.zero_buffers) { 1833 unsigned int perc = td->o.compress_percentage; 1834 1835 if (perc) { 1836 unsigned int seg = min_write; 1837 1838 seg = min(min_write, td->o.compress_chunk); 1839 if (!seg) 1840 seg = min_write; 1841 1842 fill_random_buf_percentage(&td->buf_state, buf, 1843 perc, seg, max_bs); 1844 } else 1845 fill_random_buf(&td->buf_state, buf, max_bs); 1846 } else 1847 memset(buf, 0, max_bs); 1848} 1849 1850/* 1851 * "randomly" fill the buffer contents 1852 */ 1853void io_u_fill_buffer(struct thread_data *td, struct io_u *io_u, 1854 unsigned int min_write, unsigned int max_bs) 1855{ 1856 io_u->buf_filled_len = 0; 1857 fill_io_buffer(td, io_u->buf, min_write, max_bs); 1858} 1859