io_u.c revision eda3a60699e1d96bb68875ef2169ca819eb8f4f9
1#include <unistd.h>
2#include <fcntl.h>
3#include <string.h>
4#include <signal.h>
5#include <time.h>
6#include <assert.h>
7
8#include "fio.h"
9#include "hash.h"
10#include "verify.h"
11#include "trim.h"
12#include "lib/rand.h"
13#include "lib/axmap.h"
14#include "err.h"
15#include "lib/pow2.h"
16#include "minmax.h"
17
18struct io_completion_data {
19	int nr;				/* input */
20
21	int error;			/* output */
22	uint64_t bytes_done[DDIR_RWDIR_CNT];	/* output */
23	struct timeval time;		/* output */
24};
25
26/*
27 * The ->io_axmap contains a map of blocks we have or have not done io
28 * to yet. Used to make sure we cover the entire range in a fair fashion.
29 */
30static bool random_map_free(struct fio_file *f, const uint64_t block)
31{
32	return !axmap_isset(f->io_axmap, block);
33}
34
35/*
36 * Mark a given offset as used in the map.
37 */
38static void mark_random_map(struct thread_data *td, struct io_u *io_u)
39{
40	unsigned int min_bs = td->o.rw_min_bs;
41	struct fio_file *f = io_u->file;
42	unsigned int nr_blocks;
43	uint64_t block;
44
45	block = (io_u->offset - f->file_offset) / (uint64_t) min_bs;
46	nr_blocks = (io_u->buflen + min_bs - 1) / min_bs;
47
48	if (!(io_u->flags & IO_U_F_BUSY_OK))
49		nr_blocks = axmap_set_nr(f->io_axmap, block, nr_blocks);
50
51	if ((nr_blocks * min_bs) < io_u->buflen)
52		io_u->buflen = nr_blocks * min_bs;
53}
54
55static uint64_t last_block(struct thread_data *td, struct fio_file *f,
56			   enum fio_ddir ddir)
57{
58	uint64_t max_blocks;
59	uint64_t max_size;
60
61	assert(ddir_rw(ddir));
62
63	/*
64	 * Hmm, should we make sure that ->io_size <= ->real_file_size?
65	 * -> not for now since there is code assuming it could go either.
66	 */
67	max_size = f->io_size;
68	if (max_size > f->real_file_size)
69		max_size = f->real_file_size;
70
71	if (td->o.zone_range)
72		max_size = td->o.zone_range;
73
74	if (td->o.min_bs[ddir] > td->o.ba[ddir])
75		max_size -= td->o.min_bs[ddir] - td->o.ba[ddir];
76
77	max_blocks = max_size / (uint64_t) td->o.ba[ddir];
78	if (!max_blocks)
79		return 0;
80
81	return max_blocks;
82}
83
84struct rand_off {
85	struct flist_head list;
86	uint64_t off;
87};
88
89static int __get_next_rand_offset(struct thread_data *td, struct fio_file *f,
90				  enum fio_ddir ddir, uint64_t *b,
91				  uint64_t lastb)
92{
93	uint64_t r;
94
95	if (td->o.random_generator == FIO_RAND_GEN_TAUSWORTHE ||
96	    td->o.random_generator == FIO_RAND_GEN_TAUSWORTHE64) {
97
98		r = __rand(&td->random_state);
99
100		dprint(FD_RANDOM, "off rand %llu\n", (unsigned long long) r);
101
102		*b = lastb * (r / (rand_max(&td->random_state) + 1.0));
103	} else {
104		uint64_t off = 0;
105
106		assert(fio_file_lfsr(f));
107
108		if (lfsr_next(&f->lfsr, &off))
109			return 1;
110
111		*b = off;
112	}
113
114	/*
115	 * if we are not maintaining a random map, we are done.
116	 */
117	if (!file_randommap(td, f))
118		goto ret;
119
120	/*
121	 * calculate map offset and check if it's free
122	 */
123	if (random_map_free(f, *b))
124		goto ret;
125
126	dprint(FD_RANDOM, "get_next_rand_offset: offset %llu busy\n",
127						(unsigned long long) *b);
128
129	*b = axmap_next_free(f->io_axmap, *b);
130	if (*b == (uint64_t) -1ULL)
131		return 1;
132ret:
133	return 0;
134}
135
136static int __get_next_rand_offset_zipf(struct thread_data *td,
137				       struct fio_file *f, enum fio_ddir ddir,
138				       uint64_t *b)
139{
140	*b = zipf_next(&f->zipf);
141	return 0;
142}
143
144static int __get_next_rand_offset_pareto(struct thread_data *td,
145					 struct fio_file *f, enum fio_ddir ddir,
146					 uint64_t *b)
147{
148	*b = pareto_next(&f->zipf);
149	return 0;
150}
151
152static int __get_next_rand_offset_gauss(struct thread_data *td,
153					struct fio_file *f, enum fio_ddir ddir,
154					uint64_t *b)
155{
156	*b = gauss_next(&f->gauss);
157	return 0;
158}
159
160static int __get_next_rand_offset_zoned(struct thread_data *td,
161					struct fio_file *f, enum fio_ddir ddir,
162					uint64_t *b)
163{
164	unsigned int v, send, stotal;
165	uint64_t offset, lastb;
166	static int warned;
167	struct zone_split_index *zsi;
168
169	lastb = last_block(td, f, ddir);
170	if (!lastb)
171		return 1;
172
173	if (!td->o.zone_split_nr[ddir]) {
174bail:
175		return __get_next_rand_offset(td, f, ddir, b, lastb);
176	}
177
178	/*
179	 * Generate a value, v, between 1 and 100, both inclusive
180	 */
181	v = rand32_between(&td->zone_state, 1, 100);
182
183	zsi = &td->zone_state_index[ddir][v - 1];
184	stotal = zsi->size_perc_prev;
185	send = zsi->size_perc;
186
187	/*
188	 * Should never happen
189	 */
190	if (send == -1U) {
191		if (!warned) {
192			log_err("fio: bug in zoned generation\n");
193			warned = 1;
194		}
195		goto bail;
196	}
197
198	/*
199	 * 'send' is some percentage below or equal to 100 that
200	 * marks the end of the current IO range. 'stotal' marks
201	 * the start, in percent.
202	 */
203	if (stotal)
204		offset = stotal * lastb / 100ULL;
205	else
206		offset = 0;
207
208	lastb = lastb * (send - stotal) / 100ULL;
209
210	/*
211	 * Generate index from 0..send-of-lastb
212	 */
213	if (__get_next_rand_offset(td, f, ddir, b, lastb) == 1)
214		return 1;
215
216	/*
217	 * Add our start offset, if any
218	 */
219	if (offset)
220		*b += offset;
221
222	return 0;
223}
224
225static int flist_cmp(void *data, struct flist_head *a, struct flist_head *b)
226{
227	struct rand_off *r1 = flist_entry(a, struct rand_off, list);
228	struct rand_off *r2 = flist_entry(b, struct rand_off, list);
229
230	return r1->off - r2->off;
231}
232
233static int get_off_from_method(struct thread_data *td, struct fio_file *f,
234			       enum fio_ddir ddir, uint64_t *b)
235{
236	if (td->o.random_distribution == FIO_RAND_DIST_RANDOM) {
237		uint64_t lastb;
238
239		lastb = last_block(td, f, ddir);
240		if (!lastb)
241			return 1;
242
243		return __get_next_rand_offset(td, f, ddir, b, lastb);
244	} else if (td->o.random_distribution == FIO_RAND_DIST_ZIPF)
245		return __get_next_rand_offset_zipf(td, f, ddir, b);
246	else if (td->o.random_distribution == FIO_RAND_DIST_PARETO)
247		return __get_next_rand_offset_pareto(td, f, ddir, b);
248	else if (td->o.random_distribution == FIO_RAND_DIST_GAUSS)
249		return __get_next_rand_offset_gauss(td, f, ddir, b);
250	else if (td->o.random_distribution == FIO_RAND_DIST_ZONED)
251		return __get_next_rand_offset_zoned(td, f, ddir, b);
252
253	log_err("fio: unknown random distribution: %d\n", td->o.random_distribution);
254	return 1;
255}
256
257/*
258 * Sort the reads for a verify phase in batches of verifysort_nr, if
259 * specified.
260 */
261static inline bool should_sort_io(struct thread_data *td)
262{
263	if (!td->o.verifysort_nr || !td->o.do_verify)
264		return false;
265	if (!td_random(td))
266		return false;
267	if (td->runstate != TD_VERIFYING)
268		return false;
269	if (td->o.random_generator == FIO_RAND_GEN_TAUSWORTHE ||
270	    td->o.random_generator == FIO_RAND_GEN_TAUSWORTHE64)
271		return false;
272
273	return true;
274}
275
276static bool should_do_random(struct thread_data *td, enum fio_ddir ddir)
277{
278	unsigned int v;
279
280	if (td->o.perc_rand[ddir] == 100)
281		return true;
282
283	v = rand32_between(&td->seq_rand_state[ddir], 1, 100);
284
285	return v <= td->o.perc_rand[ddir];
286}
287
288static int get_next_rand_offset(struct thread_data *td, struct fio_file *f,
289				enum fio_ddir ddir, uint64_t *b)
290{
291	struct rand_off *r;
292	int i, ret = 1;
293
294	if (!should_sort_io(td))
295		return get_off_from_method(td, f, ddir, b);
296
297	if (!flist_empty(&td->next_rand_list)) {
298fetch:
299		r = flist_first_entry(&td->next_rand_list, struct rand_off, list);
300		flist_del(&r->list);
301		*b = r->off;
302		free(r);
303		return 0;
304	}
305
306	for (i = 0; i < td->o.verifysort_nr; i++) {
307		r = malloc(sizeof(*r));
308
309		ret = get_off_from_method(td, f, ddir, &r->off);
310		if (ret) {
311			free(r);
312			break;
313		}
314
315		flist_add(&r->list, &td->next_rand_list);
316	}
317
318	if (ret && !i)
319		return ret;
320
321	assert(!flist_empty(&td->next_rand_list));
322	flist_sort(NULL, &td->next_rand_list, flist_cmp);
323	goto fetch;
324}
325
326static int get_next_rand_block(struct thread_data *td, struct fio_file *f,
327			       enum fio_ddir ddir, uint64_t *b)
328{
329	if (!get_next_rand_offset(td, f, ddir, b))
330		return 0;
331
332	if (td->o.time_based ||
333	    (td->o.file_service_type & __FIO_FSERVICE_NONUNIFORM)) {
334		fio_file_reset(td, f);
335		if (!get_next_rand_offset(td, f, ddir, b))
336			return 0;
337	}
338
339	dprint(FD_IO, "%s: rand offset failed, last=%llu, size=%llu\n",
340			f->file_name, (unsigned long long) f->last_pos[ddir],
341			(unsigned long long) f->real_file_size);
342	return 1;
343}
344
345static int get_next_seq_offset(struct thread_data *td, struct fio_file *f,
346			       enum fio_ddir ddir, uint64_t *offset)
347{
348	struct thread_options *o = &td->o;
349
350	assert(ddir_rw(ddir));
351
352	if (f->last_pos[ddir] >= f->io_size + get_start_offset(td, f) &&
353	    o->time_based) {
354		struct thread_options *o = &td->o;
355		uint64_t io_size = f->io_size + (f->io_size % o->min_bs[ddir]);
356
357		if (io_size > f->last_pos[ddir])
358			f->last_pos[ddir] = 0;
359		else
360			f->last_pos[ddir] = f->last_pos[ddir] - io_size;
361	}
362
363	if (f->last_pos[ddir] < f->real_file_size) {
364		uint64_t pos;
365
366		if (f->last_pos[ddir] == f->file_offset && o->ddir_seq_add < 0) {
367			if (f->real_file_size > f->io_size)
368				f->last_pos[ddir] = f->io_size;
369			else
370				f->last_pos[ddir] = f->real_file_size;
371		}
372
373		pos = f->last_pos[ddir] - f->file_offset;
374		if (pos && o->ddir_seq_add) {
375			pos += o->ddir_seq_add;
376
377			/*
378			 * If we reach beyond the end of the file
379			 * with holed IO, wrap around to the
380			 * beginning again. If we're doing backwards IO,
381			 * wrap to the end.
382			 */
383			if (pos >= f->real_file_size) {
384				if (o->ddir_seq_add > 0)
385					pos = f->file_offset;
386				else {
387					if (f->real_file_size > f->io_size)
388						pos = f->io_size;
389					else
390						pos = f->real_file_size;
391
392					pos += o->ddir_seq_add;
393				}
394			}
395		}
396
397		*offset = pos;
398		return 0;
399	}
400
401	return 1;
402}
403
404static int get_next_block(struct thread_data *td, struct io_u *io_u,
405			  enum fio_ddir ddir, int rw_seq,
406			  unsigned int *is_random)
407{
408	struct fio_file *f = io_u->file;
409	uint64_t b, offset;
410	int ret;
411
412	assert(ddir_rw(ddir));
413
414	b = offset = -1ULL;
415
416	if (rw_seq) {
417		if (td_random(td)) {
418			if (should_do_random(td, ddir)) {
419				ret = get_next_rand_block(td, f, ddir, &b);
420				*is_random = 1;
421			} else {
422				*is_random = 0;
423				io_u_set(td, io_u, IO_U_F_BUSY_OK);
424				ret = get_next_seq_offset(td, f, ddir, &offset);
425				if (ret)
426					ret = get_next_rand_block(td, f, ddir, &b);
427			}
428		} else {
429			*is_random = 0;
430			ret = get_next_seq_offset(td, f, ddir, &offset);
431		}
432	} else {
433		io_u_set(td, io_u, IO_U_F_BUSY_OK);
434		*is_random = 0;
435
436		if (td->o.rw_seq == RW_SEQ_SEQ) {
437			ret = get_next_seq_offset(td, f, ddir, &offset);
438			if (ret) {
439				ret = get_next_rand_block(td, f, ddir, &b);
440				*is_random = 0;
441			}
442		} else if (td->o.rw_seq == RW_SEQ_IDENT) {
443			if (f->last_start[ddir] != -1ULL)
444				offset = f->last_start[ddir] - f->file_offset;
445			else
446				offset = 0;
447			ret = 0;
448		} else {
449			log_err("fio: unknown rw_seq=%d\n", td->o.rw_seq);
450			ret = 1;
451		}
452	}
453
454	if (!ret) {
455		if (offset != -1ULL)
456			io_u->offset = offset;
457		else if (b != -1ULL)
458			io_u->offset = b * td->o.ba[ddir];
459		else {
460			log_err("fio: bug in offset generation: offset=%llu, b=%llu\n", (unsigned long long) offset, (unsigned long long) b);
461			ret = 1;
462		}
463	}
464
465	return ret;
466}
467
468/*
469 * For random io, generate a random new block and see if it's used. Repeat
470 * until we find a free one. For sequential io, just return the end of
471 * the last io issued.
472 */
473static int __get_next_offset(struct thread_data *td, struct io_u *io_u,
474			     unsigned int *is_random)
475{
476	struct fio_file *f = io_u->file;
477	enum fio_ddir ddir = io_u->ddir;
478	int rw_seq_hit = 0;
479
480	assert(ddir_rw(ddir));
481
482	if (td->o.ddir_seq_nr && !--td->ddir_seq_nr) {
483		rw_seq_hit = 1;
484		td->ddir_seq_nr = td->o.ddir_seq_nr;
485	}
486
487	if (get_next_block(td, io_u, ddir, rw_seq_hit, is_random))
488		return 1;
489
490	if (io_u->offset >= f->io_size) {
491		dprint(FD_IO, "get_next_offset: offset %llu >= io_size %llu\n",
492					(unsigned long long) io_u->offset,
493					(unsigned long long) f->io_size);
494		return 1;
495	}
496
497	io_u->offset += f->file_offset;
498	if (io_u->offset >= f->real_file_size) {
499		dprint(FD_IO, "get_next_offset: offset %llu >= size %llu\n",
500					(unsigned long long) io_u->offset,
501					(unsigned long long) f->real_file_size);
502		return 1;
503	}
504
505	return 0;
506}
507
508static int get_next_offset(struct thread_data *td, struct io_u *io_u,
509			   unsigned int *is_random)
510{
511	if (td->flags & TD_F_PROFILE_OPS) {
512		struct prof_io_ops *ops = &td->prof_io_ops;
513
514		if (ops->fill_io_u_off)
515			return ops->fill_io_u_off(td, io_u, is_random);
516	}
517
518	return __get_next_offset(td, io_u, is_random);
519}
520
521static inline bool io_u_fits(struct thread_data *td, struct io_u *io_u,
522			     unsigned int buflen)
523{
524	struct fio_file *f = io_u->file;
525
526	return io_u->offset + buflen <= f->io_size + get_start_offset(td, f);
527}
528
529static unsigned int __get_next_buflen(struct thread_data *td, struct io_u *io_u,
530				      unsigned int is_random)
531{
532	int ddir = io_u->ddir;
533	unsigned int buflen = 0;
534	unsigned int minbs, maxbs;
535	uint64_t frand_max, r;
536	bool power_2;
537
538	assert(ddir_rw(ddir));
539
540	if (td->o.bs_is_seq_rand)
541		ddir = is_random ? DDIR_WRITE: DDIR_READ;
542
543	minbs = td->o.min_bs[ddir];
544	maxbs = td->o.max_bs[ddir];
545
546	if (minbs == maxbs)
547		return minbs;
548
549	/*
550	 * If we can't satisfy the min block size from here, then fail
551	 */
552	if (!io_u_fits(td, io_u, minbs))
553		return 0;
554
555	frand_max = rand_max(&td->bsrange_state);
556	do {
557		r = __rand(&td->bsrange_state);
558
559		if (!td->o.bssplit_nr[ddir]) {
560			buflen = 1 + (unsigned int) ((double) maxbs *
561					(r / (frand_max + 1.0)));
562			if (buflen < minbs)
563				buflen = minbs;
564		} else {
565			long long perc = 0;
566			unsigned int i;
567
568			for (i = 0; i < td->o.bssplit_nr[ddir]; i++) {
569				struct bssplit *bsp = &td->o.bssplit[ddir][i];
570
571				buflen = bsp->bs;
572				perc += bsp->perc;
573				if (!perc)
574					break;
575				if ((r / perc <= frand_max / 100ULL) &&
576				    io_u_fits(td, io_u, buflen))
577					break;
578			}
579		}
580
581		power_2 = is_power_of_2(minbs);
582		if (!td->o.bs_unaligned && power_2)
583			buflen &= ~(minbs - 1);
584		else if (!td->o.bs_unaligned && !power_2)
585			buflen -= buflen % minbs;
586	} while (!io_u_fits(td, io_u, buflen));
587
588	return buflen;
589}
590
591static unsigned int get_next_buflen(struct thread_data *td, struct io_u *io_u,
592				    unsigned int is_random)
593{
594	if (td->flags & TD_F_PROFILE_OPS) {
595		struct prof_io_ops *ops = &td->prof_io_ops;
596
597		if (ops->fill_io_u_size)
598			return ops->fill_io_u_size(td, io_u, is_random);
599	}
600
601	return __get_next_buflen(td, io_u, is_random);
602}
603
604static void set_rwmix_bytes(struct thread_data *td)
605{
606	unsigned int diff;
607
608	/*
609	 * we do time or byte based switch. this is needed because
610	 * buffered writes may issue a lot quicker than they complete,
611	 * whereas reads do not.
612	 */
613	diff = td->o.rwmix[td->rwmix_ddir ^ 1];
614	td->rwmix_issues = (td->io_issues[td->rwmix_ddir] * diff) / 100;
615}
616
617static inline enum fio_ddir get_rand_ddir(struct thread_data *td)
618{
619	unsigned int v;
620
621	v = rand32_between(&td->rwmix_state, 1, 100);
622
623	if (v <= td->o.rwmix[DDIR_READ])
624		return DDIR_READ;
625
626	return DDIR_WRITE;
627}
628
629int io_u_quiesce(struct thread_data *td)
630{
631	int completed = 0;
632
633	/*
634	 * We are going to sleep, ensure that we flush anything pending as
635	 * not to skew our latency numbers.
636	 *
637	 * Changed to only monitor 'in flight' requests here instead of the
638	 * td->cur_depth, b/c td->cur_depth does not accurately represent
639	 * io's that have been actually submitted to an async engine,
640	 * and cur_depth is meaningless for sync engines.
641	 */
642	if (td->io_u_queued || td->cur_depth) {
643		int fio_unused ret;
644
645		ret = td_io_commit(td);
646	}
647
648	while (td->io_u_in_flight) {
649		int ret;
650
651		ret = io_u_queued_complete(td, 1);
652		if (ret > 0)
653			completed += ret;
654	}
655
656	if (td->flags & TD_F_REGROW_LOGS)
657		regrow_logs(td);
658
659	return completed;
660}
661
662static enum fio_ddir rate_ddir(struct thread_data *td, enum fio_ddir ddir)
663{
664	enum fio_ddir odir = ddir ^ 1;
665	long usec;
666	uint64_t now;
667
668	assert(ddir_rw(ddir));
669	now = utime_since_now(&td->start);
670
671	/*
672	 * if rate_next_io_time is in the past, need to catch up to rate
673	 */
674	if (td->rate_next_io_time[ddir] <= now)
675		return ddir;
676
677	/*
678	 * We are ahead of rate in this direction. See if we
679	 * should switch.
680	 */
681	if (td_rw(td) && td->o.rwmix[odir]) {
682		/*
683		 * Other direction is behind rate, switch
684		 */
685		if (td->rate_next_io_time[odir] <= now)
686			return odir;
687
688		/*
689		 * Both directions are ahead of rate. sleep the min
690		 * switch if necissary
691		 */
692		if (td->rate_next_io_time[ddir] <=
693			td->rate_next_io_time[odir]) {
694			usec = td->rate_next_io_time[ddir] - now;
695		} else {
696			usec = td->rate_next_io_time[odir] - now;
697			ddir = odir;
698		}
699	} else
700		usec = td->rate_next_io_time[ddir] - now;
701
702	if (td->o.io_submit_mode == IO_MODE_INLINE)
703		io_u_quiesce(td);
704
705	usec = usec_sleep(td, usec);
706
707	return ddir;
708}
709
710/*
711 * Return the data direction for the next io_u. If the job is a
712 * mixed read/write workload, check the rwmix cycle and switch if
713 * necessary.
714 */
715static enum fio_ddir get_rw_ddir(struct thread_data *td)
716{
717	enum fio_ddir ddir;
718
719	/*
720	 * See if it's time to fsync/fdatasync/sync_file_range first,
721	 * and if not then move on to check regular I/Os.
722	 */
723	if (should_fsync(td)) {
724		if (td->o.fsync_blocks && td->io_issues[DDIR_WRITE] &&
725		    !(td->io_issues[DDIR_WRITE] % td->o.fsync_blocks))
726			return DDIR_SYNC;
727
728		if (td->o.fdatasync_blocks && td->io_issues[DDIR_WRITE] &&
729		    !(td->io_issues[DDIR_WRITE] % td->o.fdatasync_blocks))
730			return DDIR_DATASYNC;
731
732		if (td->sync_file_range_nr && td->io_issues[DDIR_WRITE] &&
733		    !(td->io_issues[DDIR_WRITE] % td->sync_file_range_nr))
734			return DDIR_SYNC_FILE_RANGE;
735	}
736
737	if (td_rw(td)) {
738		/*
739		 * Check if it's time to seed a new data direction.
740		 */
741		if (td->io_issues[td->rwmix_ddir] >= td->rwmix_issues) {
742			/*
743			 * Put a top limit on how many bytes we do for
744			 * one data direction, to avoid overflowing the
745			 * ranges too much
746			 */
747			ddir = get_rand_ddir(td);
748
749			if (ddir != td->rwmix_ddir)
750				set_rwmix_bytes(td);
751
752			td->rwmix_ddir = ddir;
753		}
754		ddir = td->rwmix_ddir;
755	} else if (td_read(td))
756		ddir = DDIR_READ;
757	else if (td_write(td))
758		ddir = DDIR_WRITE;
759	else if (td_trim(td))
760		ddir = DDIR_TRIM;
761	else
762		ddir = DDIR_INVAL;
763
764	td->rwmix_ddir = rate_ddir(td, ddir);
765	return td->rwmix_ddir;
766}
767
768static void set_rw_ddir(struct thread_data *td, struct io_u *io_u)
769{
770	enum fio_ddir ddir = get_rw_ddir(td);
771
772	if (td_trimwrite(td)) {
773		struct fio_file *f = io_u->file;
774		if (f->last_pos[DDIR_WRITE] == f->last_pos[DDIR_TRIM])
775			ddir = DDIR_TRIM;
776		else
777			ddir = DDIR_WRITE;
778	}
779
780	io_u->ddir = io_u->acct_ddir = ddir;
781
782	if (io_u->ddir == DDIR_WRITE && td_ioengine_flagged(td, FIO_BARRIER) &&
783	    td->o.barrier_blocks &&
784	   !(td->io_issues[DDIR_WRITE] % td->o.barrier_blocks) &&
785	     td->io_issues[DDIR_WRITE])
786		io_u_set(td, io_u, IO_U_F_BARRIER);
787}
788
789void put_file_log(struct thread_data *td, struct fio_file *f)
790{
791	unsigned int ret = put_file(td, f);
792
793	if (ret)
794		td_verror(td, ret, "file close");
795}
796
797void put_io_u(struct thread_data *td, struct io_u *io_u)
798{
799	if (td->parent)
800		td = td->parent;
801
802	td_io_u_lock(td);
803
804	if (io_u->file && !(io_u->flags & IO_U_F_NO_FILE_PUT))
805		put_file_log(td, io_u->file);
806
807	io_u->file = NULL;
808	io_u_set(td, io_u, IO_U_F_FREE);
809
810	if (io_u->flags & IO_U_F_IN_CUR_DEPTH) {
811		td->cur_depth--;
812		assert(!(td->flags & TD_F_CHILD));
813	}
814	io_u_qpush(&td->io_u_freelist, io_u);
815	td_io_u_unlock(td);
816	td_io_u_free_notify(td);
817}
818
819void clear_io_u(struct thread_data *td, struct io_u *io_u)
820{
821	io_u_clear(td, io_u, IO_U_F_FLIGHT);
822	put_io_u(td, io_u);
823}
824
825void requeue_io_u(struct thread_data *td, struct io_u **io_u)
826{
827	struct io_u *__io_u = *io_u;
828	enum fio_ddir ddir = acct_ddir(__io_u);
829
830	dprint(FD_IO, "requeue %p\n", __io_u);
831
832	if (td->parent)
833		td = td->parent;
834
835	td_io_u_lock(td);
836
837	io_u_set(td, __io_u, IO_U_F_FREE);
838	if ((__io_u->flags & IO_U_F_FLIGHT) && ddir_rw(ddir))
839		td->io_issues[ddir]--;
840
841	io_u_clear(td, __io_u, IO_U_F_FLIGHT);
842	if (__io_u->flags & IO_U_F_IN_CUR_DEPTH) {
843		td->cur_depth--;
844		assert(!(td->flags & TD_F_CHILD));
845	}
846
847	io_u_rpush(&td->io_u_requeues, __io_u);
848	td_io_u_unlock(td);
849	td_io_u_free_notify(td);
850	*io_u = NULL;
851}
852
853static int fill_io_u(struct thread_data *td, struct io_u *io_u)
854{
855	unsigned int is_random;
856
857	if (td_ioengine_flagged(td, FIO_NOIO))
858		goto out;
859
860	set_rw_ddir(td, io_u);
861
862	/*
863	 * fsync() or fdatasync() or trim etc, we are done
864	 */
865	if (!ddir_rw(io_u->ddir))
866		goto out;
867
868	/*
869	 * See if it's time to switch to a new zone
870	 */
871	if (td->zone_bytes >= td->o.zone_size && td->o.zone_skip) {
872		struct fio_file *f = io_u->file;
873
874		td->zone_bytes = 0;
875		f->file_offset += td->o.zone_range + td->o.zone_skip;
876
877		/*
878		 * Wrap from the beginning, if we exceed the file size
879		 */
880		if (f->file_offset >= f->real_file_size)
881			f->file_offset = f->real_file_size - f->file_offset;
882		f->last_pos[io_u->ddir] = f->file_offset;
883		td->io_skip_bytes += td->o.zone_skip;
884	}
885
886	/*
887	 * No log, let the seq/rand engine retrieve the next buflen and
888	 * position.
889	 */
890	if (get_next_offset(td, io_u, &is_random)) {
891		dprint(FD_IO, "io_u %p, failed getting offset\n", io_u);
892		return 1;
893	}
894
895	io_u->buflen = get_next_buflen(td, io_u, is_random);
896	if (!io_u->buflen) {
897		dprint(FD_IO, "io_u %p, failed getting buflen\n", io_u);
898		return 1;
899	}
900
901	if (io_u->offset + io_u->buflen > io_u->file->real_file_size) {
902		dprint(FD_IO, "io_u %p, offset + buflen exceeds file size\n",
903			io_u);
904		dprint(FD_IO, "  offset=%llu/buflen=%lu > %llu\n",
905			(unsigned long long) io_u->offset, io_u->buflen,
906			(unsigned long long) io_u->file->real_file_size);
907		return 1;
908	}
909
910	/*
911	 * mark entry before potentially trimming io_u
912	 */
913	if (td_random(td) && file_randommap(td, io_u->file))
914		mark_random_map(td, io_u);
915
916out:
917	dprint_io_u(io_u, "fill_io_u");
918	td->zone_bytes += io_u->buflen;
919	return 0;
920}
921
922static void __io_u_mark_map(unsigned int *map, unsigned int nr)
923{
924	int idx = 0;
925
926	switch (nr) {
927	default:
928		idx = 6;
929		break;
930	case 33 ... 64:
931		idx = 5;
932		break;
933	case 17 ... 32:
934		idx = 4;
935		break;
936	case 9 ... 16:
937		idx = 3;
938		break;
939	case 5 ... 8:
940		idx = 2;
941		break;
942	case 1 ... 4:
943		idx = 1;
944	case 0:
945		break;
946	}
947
948	map[idx]++;
949}
950
951void io_u_mark_submit(struct thread_data *td, unsigned int nr)
952{
953	__io_u_mark_map(td->ts.io_u_submit, nr);
954	td->ts.total_submit++;
955}
956
957void io_u_mark_complete(struct thread_data *td, unsigned int nr)
958{
959	__io_u_mark_map(td->ts.io_u_complete, nr);
960	td->ts.total_complete++;
961}
962
963void io_u_mark_depth(struct thread_data *td, unsigned int nr)
964{
965	int idx = 0;
966
967	switch (td->cur_depth) {
968	default:
969		idx = 6;
970		break;
971	case 32 ... 63:
972		idx = 5;
973		break;
974	case 16 ... 31:
975		idx = 4;
976		break;
977	case 8 ... 15:
978		idx = 3;
979		break;
980	case 4 ... 7:
981		idx = 2;
982		break;
983	case 2 ... 3:
984		idx = 1;
985	case 1:
986		break;
987	}
988
989	td->ts.io_u_map[idx] += nr;
990}
991
992static void io_u_mark_lat_usec(struct thread_data *td, unsigned long usec)
993{
994	int idx = 0;
995
996	assert(usec < 1000);
997
998	switch (usec) {
999	case 750 ... 999:
1000		idx = 9;
1001		break;
1002	case 500 ... 749:
1003		idx = 8;
1004		break;
1005	case 250 ... 499:
1006		idx = 7;
1007		break;
1008	case 100 ... 249:
1009		idx = 6;
1010		break;
1011	case 50 ... 99:
1012		idx = 5;
1013		break;
1014	case 20 ... 49:
1015		idx = 4;
1016		break;
1017	case 10 ... 19:
1018		idx = 3;
1019		break;
1020	case 4 ... 9:
1021		idx = 2;
1022		break;
1023	case 2 ... 3:
1024		idx = 1;
1025	case 0 ... 1:
1026		break;
1027	}
1028
1029	assert(idx < FIO_IO_U_LAT_U_NR);
1030	td->ts.io_u_lat_u[idx]++;
1031}
1032
1033static void io_u_mark_lat_msec(struct thread_data *td, unsigned long msec)
1034{
1035	int idx = 0;
1036
1037	switch (msec) {
1038	default:
1039		idx = 11;
1040		break;
1041	case 1000 ... 1999:
1042		idx = 10;
1043		break;
1044	case 750 ... 999:
1045		idx = 9;
1046		break;
1047	case 500 ... 749:
1048		idx = 8;
1049		break;
1050	case 250 ... 499:
1051		idx = 7;
1052		break;
1053	case 100 ... 249:
1054		idx = 6;
1055		break;
1056	case 50 ... 99:
1057		idx = 5;
1058		break;
1059	case 20 ... 49:
1060		idx = 4;
1061		break;
1062	case 10 ... 19:
1063		idx = 3;
1064		break;
1065	case 4 ... 9:
1066		idx = 2;
1067		break;
1068	case 2 ... 3:
1069		idx = 1;
1070	case 0 ... 1:
1071		break;
1072	}
1073
1074	assert(idx < FIO_IO_U_LAT_M_NR);
1075	td->ts.io_u_lat_m[idx]++;
1076}
1077
1078static void io_u_mark_latency(struct thread_data *td, unsigned long usec)
1079{
1080	if (usec < 1000)
1081		io_u_mark_lat_usec(td, usec);
1082	else
1083		io_u_mark_lat_msec(td, usec / 1000);
1084}
1085
1086static unsigned int __get_next_fileno_rand(struct thread_data *td)
1087{
1088	unsigned long fileno;
1089
1090	if (td->o.file_service_type == FIO_FSERVICE_RANDOM) {
1091		uint64_t frand_max = rand_max(&td->next_file_state);
1092		unsigned long r;
1093
1094		r = __rand(&td->next_file_state);
1095		return (unsigned int) ((double) td->o.nr_files
1096				* (r / (frand_max + 1.0)));
1097	}
1098
1099	if (td->o.file_service_type == FIO_FSERVICE_ZIPF)
1100		fileno = zipf_next(&td->next_file_zipf);
1101	else if (td->o.file_service_type == FIO_FSERVICE_PARETO)
1102		fileno = pareto_next(&td->next_file_zipf);
1103	else if (td->o.file_service_type == FIO_FSERVICE_GAUSS)
1104		fileno = gauss_next(&td->next_file_gauss);
1105	else {
1106		log_err("fio: bad file service type: %d\n", td->o.file_service_type);
1107		assert(0);
1108		return 0;
1109	}
1110
1111	return fileno >> FIO_FSERVICE_SHIFT;
1112}
1113
1114/*
1115 * Get next file to service by choosing one at random
1116 */
1117static struct fio_file *get_next_file_rand(struct thread_data *td,
1118					   enum fio_file_flags goodf,
1119					   enum fio_file_flags badf)
1120{
1121	struct fio_file *f;
1122	int fno;
1123
1124	do {
1125		int opened = 0;
1126
1127		fno = __get_next_fileno_rand(td);
1128
1129		f = td->files[fno];
1130		if (fio_file_done(f))
1131			continue;
1132
1133		if (!fio_file_open(f)) {
1134			int err;
1135
1136			if (td->nr_open_files >= td->o.open_files)
1137				return ERR_PTR(-EBUSY);
1138
1139			err = td_io_open_file(td, f);
1140			if (err)
1141				continue;
1142			opened = 1;
1143		}
1144
1145		if ((!goodf || (f->flags & goodf)) && !(f->flags & badf)) {
1146			dprint(FD_FILE, "get_next_file_rand: %p\n", f);
1147			return f;
1148		}
1149		if (opened)
1150			td_io_close_file(td, f);
1151	} while (1);
1152}
1153
1154/*
1155 * Get next file to service by doing round robin between all available ones
1156 */
1157static struct fio_file *get_next_file_rr(struct thread_data *td, int goodf,
1158					 int badf)
1159{
1160	unsigned int old_next_file = td->next_file;
1161	struct fio_file *f;
1162
1163	do {
1164		int opened = 0;
1165
1166		f = td->files[td->next_file];
1167
1168		td->next_file++;
1169		if (td->next_file >= td->o.nr_files)
1170			td->next_file = 0;
1171
1172		dprint(FD_FILE, "trying file %s %x\n", f->file_name, f->flags);
1173		if (fio_file_done(f)) {
1174			f = NULL;
1175			continue;
1176		}
1177
1178		if (!fio_file_open(f)) {
1179			int err;
1180
1181			if (td->nr_open_files >= td->o.open_files)
1182				return ERR_PTR(-EBUSY);
1183
1184			err = td_io_open_file(td, f);
1185			if (err) {
1186				dprint(FD_FILE, "error %d on open of %s\n",
1187					err, f->file_name);
1188				f = NULL;
1189				continue;
1190			}
1191			opened = 1;
1192		}
1193
1194		dprint(FD_FILE, "goodf=%x, badf=%x, ff=%x\n", goodf, badf,
1195								f->flags);
1196		if ((!goodf || (f->flags & goodf)) && !(f->flags & badf))
1197			break;
1198
1199		if (opened)
1200			td_io_close_file(td, f);
1201
1202		f = NULL;
1203	} while (td->next_file != old_next_file);
1204
1205	dprint(FD_FILE, "get_next_file_rr: %p\n", f);
1206	return f;
1207}
1208
1209static struct fio_file *__get_next_file(struct thread_data *td)
1210{
1211	struct fio_file *f;
1212
1213	assert(td->o.nr_files <= td->files_index);
1214
1215	if (td->nr_done_files >= td->o.nr_files) {
1216		dprint(FD_FILE, "get_next_file: nr_open=%d, nr_done=%d,"
1217				" nr_files=%d\n", td->nr_open_files,
1218						  td->nr_done_files,
1219						  td->o.nr_files);
1220		return NULL;
1221	}
1222
1223	f = td->file_service_file;
1224	if (f && fio_file_open(f) && !fio_file_closing(f)) {
1225		if (td->o.file_service_type == FIO_FSERVICE_SEQ)
1226			goto out;
1227		if (td->file_service_left--)
1228			goto out;
1229	}
1230
1231	if (td->o.file_service_type == FIO_FSERVICE_RR ||
1232	    td->o.file_service_type == FIO_FSERVICE_SEQ)
1233		f = get_next_file_rr(td, FIO_FILE_open, FIO_FILE_closing);
1234	else
1235		f = get_next_file_rand(td, FIO_FILE_open, FIO_FILE_closing);
1236
1237	if (IS_ERR(f))
1238		return f;
1239
1240	td->file_service_file = f;
1241	td->file_service_left = td->file_service_nr - 1;
1242out:
1243	if (f)
1244		dprint(FD_FILE, "get_next_file: %p [%s]\n", f, f->file_name);
1245	else
1246		dprint(FD_FILE, "get_next_file: NULL\n");
1247	return f;
1248}
1249
1250static struct fio_file *get_next_file(struct thread_data *td)
1251{
1252	if (td->flags & TD_F_PROFILE_OPS) {
1253		struct prof_io_ops *ops = &td->prof_io_ops;
1254
1255		if (ops->get_next_file)
1256			return ops->get_next_file(td);
1257	}
1258
1259	return __get_next_file(td);
1260}
1261
1262static long set_io_u_file(struct thread_data *td, struct io_u *io_u)
1263{
1264	struct fio_file *f;
1265
1266	do {
1267		f = get_next_file(td);
1268		if (IS_ERR_OR_NULL(f))
1269			return PTR_ERR(f);
1270
1271		io_u->file = f;
1272		get_file(f);
1273
1274		if (!fill_io_u(td, io_u))
1275			break;
1276
1277		put_file_log(td, f);
1278		td_io_close_file(td, f);
1279		io_u->file = NULL;
1280		if (td->o.file_service_type & __FIO_FSERVICE_NONUNIFORM)
1281			fio_file_reset(td, f);
1282		else {
1283			fio_file_set_done(f);
1284			td->nr_done_files++;
1285			dprint(FD_FILE, "%s: is done (%d of %d)\n", f->file_name,
1286					td->nr_done_files, td->o.nr_files);
1287		}
1288	} while (1);
1289
1290	return 0;
1291}
1292
1293static void lat_fatal(struct thread_data *td, struct io_completion_data *icd,
1294		      unsigned long tusec, unsigned long max_usec)
1295{
1296	if (!td->error)
1297		log_err("fio: latency of %lu usec exceeds specified max (%lu usec)\n", tusec, max_usec);
1298	td_verror(td, ETIMEDOUT, "max latency exceeded");
1299	icd->error = ETIMEDOUT;
1300}
1301
1302static void lat_new_cycle(struct thread_data *td)
1303{
1304	fio_gettime(&td->latency_ts, NULL);
1305	td->latency_ios = ddir_rw_sum(td->io_blocks);
1306	td->latency_failed = 0;
1307}
1308
1309/*
1310 * We had an IO outside the latency target. Reduce the queue depth. If we
1311 * are at QD=1, then it's time to give up.
1312 */
1313static bool __lat_target_failed(struct thread_data *td)
1314{
1315	if (td->latency_qd == 1)
1316		return true;
1317
1318	td->latency_qd_high = td->latency_qd;
1319
1320	if (td->latency_qd == td->latency_qd_low)
1321		td->latency_qd_low--;
1322
1323	td->latency_qd = (td->latency_qd + td->latency_qd_low) / 2;
1324
1325	dprint(FD_RATE, "Ramped down: %d %d %d\n", td->latency_qd_low, td->latency_qd, td->latency_qd_high);
1326
1327	/*
1328	 * When we ramp QD down, quiesce existing IO to prevent
1329	 * a storm of ramp downs due to pending higher depth.
1330	 */
1331	io_u_quiesce(td);
1332	lat_new_cycle(td);
1333	return false;
1334}
1335
1336static bool lat_target_failed(struct thread_data *td)
1337{
1338	if (td->o.latency_percentile.u.f == 100.0)
1339		return __lat_target_failed(td);
1340
1341	td->latency_failed++;
1342	return false;
1343}
1344
1345void lat_target_init(struct thread_data *td)
1346{
1347	td->latency_end_run = 0;
1348
1349	if (td->o.latency_target) {
1350		dprint(FD_RATE, "Latency target=%llu\n", td->o.latency_target);
1351		fio_gettime(&td->latency_ts, NULL);
1352		td->latency_qd = 1;
1353		td->latency_qd_high = td->o.iodepth;
1354		td->latency_qd_low = 1;
1355		td->latency_ios = ddir_rw_sum(td->io_blocks);
1356	} else
1357		td->latency_qd = td->o.iodepth;
1358}
1359
1360void lat_target_reset(struct thread_data *td)
1361{
1362	if (!td->latency_end_run)
1363		lat_target_init(td);
1364}
1365
1366static void lat_target_success(struct thread_data *td)
1367{
1368	const unsigned int qd = td->latency_qd;
1369	struct thread_options *o = &td->o;
1370
1371	td->latency_qd_low = td->latency_qd;
1372
1373	/*
1374	 * If we haven't failed yet, we double up to a failing value instead
1375	 * of bisecting from highest possible queue depth. If we have set
1376	 * a limit other than td->o.iodepth, bisect between that.
1377	 */
1378	if (td->latency_qd_high != o->iodepth)
1379		td->latency_qd = (td->latency_qd + td->latency_qd_high) / 2;
1380	else
1381		td->latency_qd *= 2;
1382
1383	if (td->latency_qd > o->iodepth)
1384		td->latency_qd = o->iodepth;
1385
1386	dprint(FD_RATE, "Ramped up: %d %d %d\n", td->latency_qd_low, td->latency_qd, td->latency_qd_high);
1387
1388	/*
1389	 * Same as last one, we are done. Let it run a latency cycle, so
1390	 * we get only the results from the targeted depth.
1391	 */
1392	if (td->latency_qd == qd) {
1393		if (td->latency_end_run) {
1394			dprint(FD_RATE, "We are done\n");
1395			td->done = 1;
1396		} else {
1397			dprint(FD_RATE, "Quiesce and final run\n");
1398			io_u_quiesce(td);
1399			td->latency_end_run = 1;
1400			reset_all_stats(td);
1401			reset_io_stats(td);
1402		}
1403	}
1404
1405	lat_new_cycle(td);
1406}
1407
1408/*
1409 * Check if we can bump the queue depth
1410 */
1411void lat_target_check(struct thread_data *td)
1412{
1413	uint64_t usec_window;
1414	uint64_t ios;
1415	double success_ios;
1416
1417	usec_window = utime_since_now(&td->latency_ts);
1418	if (usec_window < td->o.latency_window)
1419		return;
1420
1421	ios = ddir_rw_sum(td->io_blocks) - td->latency_ios;
1422	success_ios = (double) (ios - td->latency_failed) / (double) ios;
1423	success_ios *= 100.0;
1424
1425	dprint(FD_RATE, "Success rate: %.2f%% (target %.2f%%)\n", success_ios, td->o.latency_percentile.u.f);
1426
1427	if (success_ios >= td->o.latency_percentile.u.f)
1428		lat_target_success(td);
1429	else
1430		__lat_target_failed(td);
1431}
1432
1433/*
1434 * If latency target is enabled, we might be ramping up or down and not
1435 * using the full queue depth available.
1436 */
1437bool queue_full(const struct thread_data *td)
1438{
1439	const int qempty = io_u_qempty(&td->io_u_freelist);
1440
1441	if (qempty)
1442		return true;
1443	if (!td->o.latency_target)
1444		return false;
1445
1446	return td->cur_depth >= td->latency_qd;
1447}
1448
1449struct io_u *__get_io_u(struct thread_data *td)
1450{
1451	struct io_u *io_u = NULL;
1452
1453	if (td->stop_io)
1454		return NULL;
1455
1456	td_io_u_lock(td);
1457
1458again:
1459	if (!io_u_rempty(&td->io_u_requeues))
1460		io_u = io_u_rpop(&td->io_u_requeues);
1461	else if (!queue_full(td)) {
1462		io_u = io_u_qpop(&td->io_u_freelist);
1463
1464		io_u->file = NULL;
1465		io_u->buflen = 0;
1466		io_u->resid = 0;
1467		io_u->end_io = NULL;
1468	}
1469
1470	if (io_u) {
1471		assert(io_u->flags & IO_U_F_FREE);
1472		io_u_clear(td, io_u, IO_U_F_FREE | IO_U_F_NO_FILE_PUT |
1473				 IO_U_F_TRIMMED | IO_U_F_BARRIER |
1474				 IO_U_F_VER_LIST);
1475
1476		io_u->error = 0;
1477		io_u->acct_ddir = -1;
1478		td->cur_depth++;
1479		assert(!(td->flags & TD_F_CHILD));
1480		io_u_set(td, io_u, IO_U_F_IN_CUR_DEPTH);
1481		io_u->ipo = NULL;
1482	} else if (td_async_processing(td)) {
1483		/*
1484		 * We ran out, wait for async verify threads to finish and
1485		 * return one
1486		 */
1487		assert(!(td->flags & TD_F_CHILD));
1488		assert(!pthread_cond_wait(&td->free_cond, &td->io_u_lock));
1489		goto again;
1490	}
1491
1492	td_io_u_unlock(td);
1493	return io_u;
1494}
1495
1496static bool check_get_trim(struct thread_data *td, struct io_u *io_u)
1497{
1498	if (!(td->flags & TD_F_TRIM_BACKLOG))
1499		return false;
1500
1501	if (td->trim_entries) {
1502		int get_trim = 0;
1503
1504		if (td->trim_batch) {
1505			td->trim_batch--;
1506			get_trim = 1;
1507		} else if (!(td->io_hist_len % td->o.trim_backlog) &&
1508			 td->last_ddir != DDIR_READ) {
1509			td->trim_batch = td->o.trim_batch;
1510			if (!td->trim_batch)
1511				td->trim_batch = td->o.trim_backlog;
1512			get_trim = 1;
1513		}
1514
1515		if (get_trim && get_next_trim(td, io_u))
1516			return true;
1517	}
1518
1519	return false;
1520}
1521
1522static bool check_get_verify(struct thread_data *td, struct io_u *io_u)
1523{
1524	if (!(td->flags & TD_F_VER_BACKLOG))
1525		return false;
1526
1527	if (td->io_hist_len) {
1528		int get_verify = 0;
1529
1530		if (td->verify_batch)
1531			get_verify = 1;
1532		else if (!(td->io_hist_len % td->o.verify_backlog) &&
1533			 td->last_ddir != DDIR_READ) {
1534			td->verify_batch = td->o.verify_batch;
1535			if (!td->verify_batch)
1536				td->verify_batch = td->o.verify_backlog;
1537			get_verify = 1;
1538		}
1539
1540		if (get_verify && !get_next_verify(td, io_u)) {
1541			td->verify_batch--;
1542			return true;
1543		}
1544	}
1545
1546	return false;
1547}
1548
1549/*
1550 * Fill offset and start time into the buffer content, to prevent too
1551 * easy compressible data for simple de-dupe attempts. Do this for every
1552 * 512b block in the range, since that should be the smallest block size
1553 * we can expect from a device.
1554 */
1555static void small_content_scramble(struct io_u *io_u)
1556{
1557	unsigned int i, nr_blocks = io_u->buflen / 512;
1558	uint64_t boffset;
1559	unsigned int offset;
1560	void *p, *end;
1561
1562	if (!nr_blocks)
1563		return;
1564
1565	p = io_u->xfer_buf;
1566	boffset = io_u->offset;
1567	io_u->buf_filled_len = 0;
1568
1569	for (i = 0; i < nr_blocks; i++) {
1570		/*
1571		 * Fill the byte offset into a "random" start offset of
1572		 * the buffer, given by the product of the usec time
1573		 * and the actual offset.
1574		 */
1575		offset = (io_u->start_time.tv_usec ^ boffset) & 511;
1576		offset &= ~(sizeof(uint64_t) - 1);
1577		if (offset >= 512 - sizeof(uint64_t))
1578			offset -= sizeof(uint64_t);
1579		memcpy(p + offset, &boffset, sizeof(boffset));
1580
1581		end = p + 512 - sizeof(io_u->start_time);
1582		memcpy(end, &io_u->start_time, sizeof(io_u->start_time));
1583		p += 512;
1584		boffset += 512;
1585	}
1586}
1587
1588/*
1589 * Return an io_u to be processed. Gets a buflen and offset, sets direction,
1590 * etc. The returned io_u is fully ready to be prepped and submitted.
1591 */
1592struct io_u *get_io_u(struct thread_data *td)
1593{
1594	struct fio_file *f;
1595	struct io_u *io_u;
1596	int do_scramble = 0;
1597	long ret = 0;
1598
1599	io_u = __get_io_u(td);
1600	if (!io_u) {
1601		dprint(FD_IO, "__get_io_u failed\n");
1602		return NULL;
1603	}
1604
1605	if (check_get_verify(td, io_u))
1606		goto out;
1607	if (check_get_trim(td, io_u))
1608		goto out;
1609
1610	/*
1611	 * from a requeue, io_u already setup
1612	 */
1613	if (io_u->file)
1614		goto out;
1615
1616	/*
1617	 * If using an iolog, grab next piece if any available.
1618	 */
1619	if (td->flags & TD_F_READ_IOLOG) {
1620		if (read_iolog_get(td, io_u))
1621			goto err_put;
1622	} else if (set_io_u_file(td, io_u)) {
1623		ret = -EBUSY;
1624		dprint(FD_IO, "io_u %p, setting file failed\n", io_u);
1625		goto err_put;
1626	}
1627
1628	f = io_u->file;
1629	if (!f) {
1630		dprint(FD_IO, "io_u %p, setting file failed\n", io_u);
1631		goto err_put;
1632	}
1633
1634	assert(fio_file_open(f));
1635
1636	if (ddir_rw(io_u->ddir)) {
1637		if (!io_u->buflen && !td_ioengine_flagged(td, FIO_NOIO)) {
1638			dprint(FD_IO, "get_io_u: zero buflen on %p\n", io_u);
1639			goto err_put;
1640		}
1641
1642		f->last_start[io_u->ddir] = io_u->offset;
1643		f->last_pos[io_u->ddir] = io_u->offset + io_u->buflen;
1644
1645		if (io_u->ddir == DDIR_WRITE) {
1646			if (td->flags & TD_F_REFILL_BUFFERS) {
1647				io_u_fill_buffer(td, io_u,
1648					td->o.min_bs[DDIR_WRITE],
1649					io_u->buflen);
1650			} else if ((td->flags & TD_F_SCRAMBLE_BUFFERS) &&
1651				   !(td->flags & TD_F_COMPRESS))
1652				do_scramble = 1;
1653			if (td->flags & TD_F_VER_NONE) {
1654				populate_verify_io_u(td, io_u);
1655				do_scramble = 0;
1656			}
1657		} else if (io_u->ddir == DDIR_READ) {
1658			/*
1659			 * Reset the buf_filled parameters so next time if the
1660			 * buffer is used for writes it is refilled.
1661			 */
1662			io_u->buf_filled_len = 0;
1663		}
1664	}
1665
1666	/*
1667	 * Set io data pointers.
1668	 */
1669	io_u->xfer_buf = io_u->buf;
1670	io_u->xfer_buflen = io_u->buflen;
1671
1672out:
1673	assert(io_u->file);
1674	if (!td_io_prep(td, io_u)) {
1675		if (!td->o.disable_lat)
1676			fio_gettime(&io_u->start_time, NULL);
1677
1678		if (do_scramble)
1679			small_content_scramble(io_u);
1680
1681		return io_u;
1682	}
1683err_put:
1684	dprint(FD_IO, "get_io_u failed\n");
1685	put_io_u(td, io_u);
1686	return ERR_PTR(ret);
1687}
1688
1689static void __io_u_log_error(struct thread_data *td, struct io_u *io_u)
1690{
1691	enum error_type_bit eb = td_error_type(io_u->ddir, io_u->error);
1692
1693	if (td_non_fatal_error(td, eb, io_u->error) && !td->o.error_dump)
1694		return;
1695
1696	log_err("fio: io_u error%s%s: %s: %s offset=%llu, buflen=%lu\n",
1697		io_u->file ? " on file " : "",
1698		io_u->file ? io_u->file->file_name : "",
1699		strerror(io_u->error),
1700		io_ddir_name(io_u->ddir),
1701		io_u->offset, io_u->xfer_buflen);
1702
1703	if (td->io_ops->errdetails) {
1704		char *err = td->io_ops->errdetails(io_u);
1705
1706		log_err("fio: %s\n", err);
1707		free(err);
1708	}
1709
1710	if (!td->error)
1711		td_verror(td, io_u->error, "io_u error");
1712}
1713
1714void io_u_log_error(struct thread_data *td, struct io_u *io_u)
1715{
1716	__io_u_log_error(td, io_u);
1717	if (td->parent)
1718		__io_u_log_error(td->parent, io_u);
1719}
1720
1721static inline bool gtod_reduce(struct thread_data *td)
1722{
1723	return (td->o.disable_clat && td->o.disable_slat && td->o.disable_bw)
1724			|| td->o.gtod_reduce;
1725}
1726
1727static void account_io_completion(struct thread_data *td, struct io_u *io_u,
1728				  struct io_completion_data *icd,
1729				  const enum fio_ddir idx, unsigned int bytes)
1730{
1731	const int no_reduce = !gtod_reduce(td);
1732	unsigned long lusec = 0;
1733
1734	if (td->parent)
1735		td = td->parent;
1736
1737	if (!td->o.stats)
1738		return;
1739
1740	if (no_reduce)
1741		lusec = utime_since(&io_u->issue_time, &icd->time);
1742
1743	if (!td->o.disable_lat) {
1744		unsigned long tusec;
1745
1746		tusec = utime_since(&io_u->start_time, &icd->time);
1747		add_lat_sample(td, idx, tusec, bytes, io_u->offset);
1748
1749		if (td->flags & TD_F_PROFILE_OPS) {
1750			struct prof_io_ops *ops = &td->prof_io_ops;
1751
1752			if (ops->io_u_lat)
1753				icd->error = ops->io_u_lat(td, tusec);
1754		}
1755
1756		if (td->o.max_latency && tusec > td->o.max_latency)
1757			lat_fatal(td, icd, tusec, td->o.max_latency);
1758		if (td->o.latency_target && tusec > td->o.latency_target) {
1759			if (lat_target_failed(td))
1760				lat_fatal(td, icd, tusec, td->o.latency_target);
1761		}
1762	}
1763
1764	if (ddir_rw(idx)) {
1765		if (!td->o.disable_clat) {
1766			add_clat_sample(td, idx, lusec, bytes, io_u->offset);
1767			io_u_mark_latency(td, lusec);
1768		}
1769
1770		if (!td->o.disable_bw && per_unit_log(td->bw_log))
1771			add_bw_sample(td, io_u, bytes, lusec);
1772
1773		if (no_reduce && per_unit_log(td->iops_log))
1774			add_iops_sample(td, io_u, bytes);
1775	}
1776
1777	if (td->ts.nr_block_infos && io_u->ddir == DDIR_TRIM) {
1778		uint32_t *info = io_u_block_info(td, io_u);
1779		if (BLOCK_INFO_STATE(*info) < BLOCK_STATE_TRIM_FAILURE) {
1780			if (io_u->ddir == DDIR_TRIM) {
1781				*info = BLOCK_INFO(BLOCK_STATE_TRIMMED,
1782						BLOCK_INFO_TRIMS(*info) + 1);
1783			} else if (io_u->ddir == DDIR_WRITE) {
1784				*info = BLOCK_INFO_SET_STATE(BLOCK_STATE_WRITTEN,
1785								*info);
1786			}
1787		}
1788	}
1789}
1790
1791static void file_log_write_comp(const struct thread_data *td, struct fio_file *f,
1792				uint64_t offset, unsigned int bytes)
1793{
1794	int idx;
1795
1796	if (!f)
1797		return;
1798
1799	if (f->first_write == -1ULL || offset < f->first_write)
1800		f->first_write = offset;
1801	if (f->last_write == -1ULL || ((offset + bytes) > f->last_write))
1802		f->last_write = offset + bytes;
1803
1804	if (!f->last_write_comp)
1805		return;
1806
1807	idx = f->last_write_idx++;
1808	f->last_write_comp[idx] = offset;
1809	if (f->last_write_idx == td->o.iodepth)
1810		f->last_write_idx = 0;
1811}
1812
1813static void io_completed(struct thread_data *td, struct io_u **io_u_ptr,
1814			 struct io_completion_data *icd)
1815{
1816	struct io_u *io_u = *io_u_ptr;
1817	enum fio_ddir ddir = io_u->ddir;
1818	struct fio_file *f = io_u->file;
1819
1820	dprint_io_u(io_u, "io complete");
1821
1822	assert(io_u->flags & IO_U_F_FLIGHT);
1823	io_u_clear(td, io_u, IO_U_F_FLIGHT | IO_U_F_BUSY_OK);
1824
1825	/*
1826	 * Mark IO ok to verify
1827	 */
1828	if (io_u->ipo) {
1829		/*
1830		 * Remove errored entry from the verification list
1831		 */
1832		if (io_u->error)
1833			unlog_io_piece(td, io_u);
1834		else {
1835			io_u->ipo->flags &= ~IP_F_IN_FLIGHT;
1836			write_barrier();
1837		}
1838	}
1839
1840	if (ddir_sync(ddir)) {
1841		td->last_was_sync = 1;
1842		if (f) {
1843			f->first_write = -1ULL;
1844			f->last_write = -1ULL;
1845		}
1846		return;
1847	}
1848
1849	td->last_was_sync = 0;
1850	td->last_ddir = ddir;
1851
1852	if (!io_u->error && ddir_rw(ddir)) {
1853		unsigned int bytes = io_u->buflen - io_u->resid;
1854		int ret;
1855
1856		td->io_blocks[ddir]++;
1857		td->this_io_blocks[ddir]++;
1858		td->io_bytes[ddir] += bytes;
1859
1860		if (!(io_u->flags & IO_U_F_VER_LIST))
1861			td->this_io_bytes[ddir] += bytes;
1862
1863		if (ddir == DDIR_WRITE)
1864			file_log_write_comp(td, f, io_u->offset, bytes);
1865
1866		if (ramp_time_over(td) && (td->runstate == TD_RUNNING ||
1867					   td->runstate == TD_VERIFYING))
1868			account_io_completion(td, io_u, icd, ddir, bytes);
1869
1870		icd->bytes_done[ddir] += bytes;
1871
1872		if (io_u->end_io) {
1873			ret = io_u->end_io(td, io_u_ptr);
1874			io_u = *io_u_ptr;
1875			if (ret && !icd->error)
1876				icd->error = ret;
1877		}
1878	} else if (io_u->error) {
1879		icd->error = io_u->error;
1880		io_u_log_error(td, io_u);
1881	}
1882	if (icd->error) {
1883		enum error_type_bit eb = td_error_type(ddir, icd->error);
1884
1885		if (!td_non_fatal_error(td, eb, icd->error))
1886			return;
1887
1888		/*
1889		 * If there is a non_fatal error, then add to the error count
1890		 * and clear all the errors.
1891		 */
1892		update_error_count(td, icd->error);
1893		td_clear_error(td);
1894		icd->error = 0;
1895		if (io_u)
1896			io_u->error = 0;
1897	}
1898}
1899
1900static void init_icd(struct thread_data *td, struct io_completion_data *icd,
1901		     int nr)
1902{
1903	int ddir;
1904
1905	if (!gtod_reduce(td))
1906		fio_gettime(&icd->time, NULL);
1907
1908	icd->nr = nr;
1909
1910	icd->error = 0;
1911	for (ddir = 0; ddir < DDIR_RWDIR_CNT; ddir++)
1912		icd->bytes_done[ddir] = 0;
1913}
1914
1915static void ios_completed(struct thread_data *td,
1916			  struct io_completion_data *icd)
1917{
1918	struct io_u *io_u;
1919	int i;
1920
1921	for (i = 0; i < icd->nr; i++) {
1922		io_u = td->io_ops->event(td, i);
1923
1924		io_completed(td, &io_u, icd);
1925
1926		if (io_u)
1927			put_io_u(td, io_u);
1928	}
1929}
1930
1931/*
1932 * Complete a single io_u for the sync engines.
1933 */
1934int io_u_sync_complete(struct thread_data *td, struct io_u *io_u)
1935{
1936	struct io_completion_data icd;
1937	int ddir;
1938
1939	init_icd(td, &icd, 1);
1940	io_completed(td, &io_u, &icd);
1941
1942	if (io_u)
1943		put_io_u(td, io_u);
1944
1945	if (icd.error) {
1946		td_verror(td, icd.error, "io_u_sync_complete");
1947		return -1;
1948	}
1949
1950	for (ddir = 0; ddir < DDIR_RWDIR_CNT; ddir++)
1951		td->bytes_done[ddir] += icd.bytes_done[ddir];
1952
1953	return 0;
1954}
1955
1956/*
1957 * Called to complete min_events number of io for the async engines.
1958 */
1959int io_u_queued_complete(struct thread_data *td, int min_evts)
1960{
1961	struct io_completion_data icd;
1962	struct timespec *tvp = NULL;
1963	int ret, ddir;
1964	struct timespec ts = { .tv_sec = 0, .tv_nsec = 0, };
1965
1966	dprint(FD_IO, "io_u_queued_complete: min=%d\n", min_evts);
1967
1968	if (!min_evts)
1969		tvp = &ts;
1970	else if (min_evts > td->cur_depth)
1971		min_evts = td->cur_depth;
1972
1973	/* No worries, td_io_getevents fixes min and max if they are
1974	 * set incorrectly */
1975	ret = td_io_getevents(td, min_evts, td->o.iodepth_batch_complete_max, tvp);
1976	if (ret < 0) {
1977		td_verror(td, -ret, "td_io_getevents");
1978		return ret;
1979	} else if (!ret)
1980		return ret;
1981
1982	init_icd(td, &icd, ret);
1983	ios_completed(td, &icd);
1984	if (icd.error) {
1985		td_verror(td, icd.error, "io_u_queued_complete");
1986		return -1;
1987	}
1988
1989	for (ddir = 0; ddir < DDIR_RWDIR_CNT; ddir++)
1990		td->bytes_done[ddir] += icd.bytes_done[ddir];
1991
1992	return ret;
1993}
1994
1995/*
1996 * Call when io_u is really queued, to update the submission latency.
1997 */
1998void io_u_queued(struct thread_data *td, struct io_u *io_u)
1999{
2000	if (!td->o.disable_slat && ramp_time_over(td) && td->o.stats) {
2001		unsigned long slat_time;
2002
2003		slat_time = utime_since(&io_u->start_time, &io_u->issue_time);
2004
2005		if (td->parent)
2006			td = td->parent;
2007
2008		add_slat_sample(td, io_u->ddir, slat_time, io_u->xfer_buflen,
2009				io_u->offset);
2010	}
2011}
2012
2013/*
2014 * See if we should reuse the last seed, if dedupe is enabled
2015 */
2016static struct frand_state *get_buf_state(struct thread_data *td)
2017{
2018	unsigned int v;
2019
2020	if (!td->o.dedupe_percentage)
2021		return &td->buf_state;
2022	else if (td->o.dedupe_percentage == 100) {
2023		frand_copy(&td->buf_state_prev, &td->buf_state);
2024		return &td->buf_state;
2025	}
2026
2027	v = rand32_between(&td->dedupe_state, 1, 100);
2028
2029	if (v <= td->o.dedupe_percentage)
2030		return &td->buf_state_prev;
2031
2032	return &td->buf_state;
2033}
2034
2035static void save_buf_state(struct thread_data *td, struct frand_state *rs)
2036{
2037	if (td->o.dedupe_percentage == 100)
2038		frand_copy(rs, &td->buf_state_prev);
2039	else if (rs == &td->buf_state)
2040		frand_copy(&td->buf_state_prev, rs);
2041}
2042
2043void fill_io_buffer(struct thread_data *td, void *buf, unsigned int min_write,
2044		    unsigned int max_bs)
2045{
2046	struct thread_options *o = &td->o;
2047
2048	if (o->mem_type == MEM_CUDA_MALLOC)
2049		return;
2050
2051	if (o->compress_percentage || o->dedupe_percentage) {
2052		unsigned int perc = td->o.compress_percentage;
2053		struct frand_state *rs;
2054		unsigned int left = max_bs;
2055		unsigned int this_write;
2056
2057		do {
2058			rs = get_buf_state(td);
2059
2060			min_write = min(min_write, left);
2061
2062			if (perc) {
2063				this_write = min_not_zero(min_write,
2064							td->o.compress_chunk);
2065
2066				fill_random_buf_percentage(rs, buf, perc,
2067					this_write, this_write,
2068					o->buffer_pattern,
2069					o->buffer_pattern_bytes);
2070			} else {
2071				fill_random_buf(rs, buf, min_write);
2072				this_write = min_write;
2073			}
2074
2075			buf += this_write;
2076			left -= this_write;
2077			save_buf_state(td, rs);
2078		} while (left);
2079	} else if (o->buffer_pattern_bytes)
2080		fill_buffer_pattern(td, buf, max_bs);
2081	else if (o->zero_buffers)
2082		memset(buf, 0, max_bs);
2083	else
2084		fill_random_buf(get_buf_state(td), buf, max_bs);
2085}
2086
2087/*
2088 * "randomly" fill the buffer contents
2089 */
2090void io_u_fill_buffer(struct thread_data *td, struct io_u *io_u,
2091		      unsigned int min_write, unsigned int max_bs)
2092{
2093	io_u->buf_filled_len = 0;
2094	fill_io_buffer(td, io_u->buf, min_write, max_bs);
2095}
2096
2097static int do_sync_file_range(const struct thread_data *td,
2098			      struct fio_file *f)
2099{
2100	off64_t offset, nbytes;
2101
2102	offset = f->first_write;
2103	nbytes = f->last_write - f->first_write;
2104
2105	if (!nbytes)
2106		return 0;
2107
2108	return sync_file_range(f->fd, offset, nbytes, td->o.sync_file_range);
2109}
2110
2111int do_io_u_sync(const struct thread_data *td, struct io_u *io_u)
2112{
2113	int ret;
2114
2115	if (io_u->ddir == DDIR_SYNC) {
2116		ret = fsync(io_u->file->fd);
2117	} else if (io_u->ddir == DDIR_DATASYNC) {
2118#ifdef CONFIG_FDATASYNC
2119		ret = fdatasync(io_u->file->fd);
2120#else
2121		ret = io_u->xfer_buflen;
2122		io_u->error = EINVAL;
2123#endif
2124	} else if (io_u->ddir == DDIR_SYNC_FILE_RANGE)
2125		ret = do_sync_file_range(td, io_u->file);
2126	else {
2127		ret = io_u->xfer_buflen;
2128		io_u->error = EINVAL;
2129	}
2130
2131	if (ret < 0)
2132		io_u->error = errno;
2133
2134	return ret;
2135}
2136
2137int do_io_u_trim(const struct thread_data *td, struct io_u *io_u)
2138{
2139#ifndef FIO_HAVE_TRIM
2140	io_u->error = EINVAL;
2141	return 0;
2142#else
2143	struct fio_file *f = io_u->file;
2144	int ret;
2145
2146	ret = os_trim(f->fd, io_u->offset, io_u->xfer_buflen);
2147	if (!ret)
2148		return io_u->xfer_buflen;
2149
2150	io_u->error = ret;
2151	return 0;
2152#endif
2153}
2154