1// Copyright (c) 2007, Google Inc.
2// All rights reserved.
3//
4// Redistribution and use in source and binary forms, with or without
5// modification, are permitted provided that the following conditions are
6// met:
7//
8//     * Redistributions of source code must retain the above copyright
9// notice, this list of conditions and the following disclaimer.
10//     * Redistributions in binary form must reproduce the above
11// copyright notice, this list of conditions and the following disclaimer
12// in the documentation and/or other materials provided with the
13// distribution.
14//     * Neither the name of Google Inc. nor the names of its
15// contributors may be used to endorse or promote products derived from
16// this software without specific prior written permission.
17//
18// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
22// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
23// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
24// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
28// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29//
30// ---
31//
32// A simple mutex wrapper, supporting locks and read-write locks.
33// You should assume the locks are *not* re-entrant.
34//
35// This class is meant to be internal-only and should be wrapped by an
36// internal namespace.  Before you use this module, please give the
37// name of your internal namespace for this module.  Or, if you want
38// to expose it, you'll want to move it to the Google namespace.  We
39// cannot put this class in global namespace because there can be some
40// problems when we have multiple versions of Mutex in each shared object.
41//
42// NOTE: by default, we have #ifdef'ed out the TryLock() method.
43//       This is for two reasons:
44// 1) TryLock() under Windows is a bit annoying (it requires a
45//    #define to be defined very early).
46// 2) TryLock() is broken for NO_THREADS mode, at least in NDEBUG
47//    mode.
48// If you need TryLock(), and either these two caveats are not a
49// problem for you, or you're willing to work around them, then
50// feel free to #define GMUTEX_TRYLOCK, or to remove the #ifdefs
51// in the code below.
52//
53// CYGWIN NOTE: Cygwin support for rwlock seems to be buggy:
54//    http://www.cygwin.com/ml/cygwin/2008-12/msg00017.html
55// Because of that, we might as well use windows locks for
56// cygwin.  They seem to be more reliable than the cygwin pthreads layer.
57//
58// TRICKY IMPLEMENTATION NOTE:
59// This class is designed to be safe to use during
60// dynamic-initialization -- that is, by global constructors that are
61// run before main() starts.  The issue in this case is that
62// dynamic-initialization happens in an unpredictable order, and it
63// could be that someone else's dynamic initializer could call a
64// function that tries to acquire this mutex -- but that all happens
65// before this mutex's constructor has run.  (This can happen even if
66// the mutex and the function that uses the mutex are in the same .cc
67// file.)  Basically, because Mutex does non-trivial work in its
68// constructor, it's not, in the naive implementation, safe to use
69// before dynamic initialization has run on it.
70//
71// The solution used here is to pair the actual mutex primitive with a
72// bool that is set to true when the mutex is dynamically initialized.
73// (Before that it's false.)  Then we modify all mutex routines to
74// look at the bool, and not try to lock/unlock until the bool makes
75// it to true (which happens after the Mutex constructor has run.)
76//
77// This works because before main() starts -- particularly, during
78// dynamic initialization -- there are no threads, so a) it's ok that
79// the mutex operations are a no-op, since we don't need locking then
80// anyway; and b) we can be quite confident our bool won't change
81// state between a call to Lock() and a call to Unlock() (that would
82// require a global constructor in one translation unit to call Lock()
83// and another global constructor in another translation unit to call
84// Unlock() later, which is pretty perverse).
85//
86// That said, it's tricky, and can conceivably fail; it's safest to
87// avoid trying to acquire a mutex in a global constructor, if you
88// can.  One way it can fail is that a really smart compiler might
89// initialize the bool to true at static-initialization time (too
90// early) rather than at dynamic-initialization time.  To discourage
91// that, we set is_safe_ to true in code (not the constructor
92// colon-initializer) and set it to true via a function that always
93// evaluates to true, but that the compiler can't know always
94// evaluates to true.  This should be good enough.
95//
96// A related issue is code that could try to access the mutex
97// after it's been destroyed in the global destructors (because
98// the Mutex global destructor runs before some other global
99// destructor, that tries to acquire the mutex).  The way we
100// deal with this is by taking a constructor arg that global
101// mutexes should pass in, that causes the destructor to do no
102// work.  We still depend on the compiler not doing anything
103// weird to a Mutex's memory after it is destroyed, but for a
104// static global variable, that's pretty safe.
105
106#ifndef GFLAGS_MUTEX_H_
107#define GFLAGS_MUTEX_H_
108
109#include "gflags/gflags_declare.h"     // to figure out pthreads support
110
111#if defined(NO_THREADS)
112  typedef int MutexType;        // to keep a lock-count
113#elif defined(OS_WINDOWS)
114# ifndef WIN32_LEAN_AND_MEAN
115#   define WIN32_LEAN_AND_MEAN  // We only need minimal includes
116# endif
117# ifndef NOMINMAX
118#   define NOMINMAX             // Don't want windows to override min()/max()
119# endif
120# ifdef GMUTEX_TRYLOCK
121  // We need Windows NT or later for TryEnterCriticalSection().  If you
122  // don't need that functionality, you can remove these _WIN32_WINNT
123  // lines, and change TryLock() to assert(0) or something.
124#   ifndef _WIN32_WINNT
125#     define _WIN32_WINNT 0x0400
126#   endif
127# endif
128# include <windows.h>
129  typedef CRITICAL_SECTION MutexType;
130#elif defined(HAVE_PTHREAD) && defined(HAVE_RWLOCK)
131  // Needed for pthread_rwlock_*.  If it causes problems, you could take it
132  // out, but then you'd have to unset HAVE_RWLOCK (at least on linux -- it
133  // *does* cause problems for FreeBSD, or MacOSX, but isn't needed
134  // for locking there.)
135# ifdef __linux__
136#   if _XOPEN_SOURCE < 500      // including not being defined at all
137#     undef _XOPEN_SOURCE
138#     define _XOPEN_SOURCE 500  // may be needed to get the rwlock calls
139#   endif
140# endif
141# include <pthread.h>
142  typedef pthread_rwlock_t MutexType;
143#elif defined(HAVE_PTHREAD)
144# include <pthread.h>
145  typedef pthread_mutex_t MutexType;
146#else
147# error Need to implement mutex.h for your architecture, or #define NO_THREADS
148#endif
149
150#include <assert.h>
151#include <stdlib.h>      // for abort()
152
153#define MUTEX_NAMESPACE gflags_mutex_namespace
154
155namespace MUTEX_NAMESPACE {
156
157class Mutex {
158 public:
159  // This is used for the single-arg constructor
160  enum LinkerInitialized { LINKER_INITIALIZED };
161
162  // Create a Mutex that is not held by anybody.  This constructor is
163  // typically used for Mutexes allocated on the heap or the stack.
164  inline Mutex();
165  // This constructor should be used for global, static Mutex objects.
166  // It inhibits work being done by the destructor, which makes it
167  // safer for code that tries to acqiure this mutex in their global
168  // destructor.
169  explicit inline Mutex(LinkerInitialized);
170
171  // Destructor
172  inline ~Mutex();
173
174  inline void Lock();    // Block if needed until free then acquire exclusively
175  inline void Unlock();  // Release a lock acquired via Lock()
176#ifdef GMUTEX_TRYLOCK
177  inline bool TryLock(); // If free, Lock() and return true, else return false
178#endif
179  // Note that on systems that don't support read-write locks, these may
180  // be implemented as synonyms to Lock() and Unlock().  So you can use
181  // these for efficiency, but don't use them anyplace where being able
182  // to do shared reads is necessary to avoid deadlock.
183  inline void ReaderLock();   // Block until free or shared then acquire a share
184  inline void ReaderUnlock(); // Release a read share of this Mutex
185  inline void WriterLock() { Lock(); }     // Acquire an exclusive lock
186  inline void WriterUnlock() { Unlock(); } // Release a lock from WriterLock()
187
188 private:
189  MutexType mutex_;
190  // We want to make sure that the compiler sets is_safe_ to true only
191  // when we tell it to, and never makes assumptions is_safe_ is
192  // always true.  volatile is the most reliable way to do that.
193  volatile bool is_safe_;
194  // This indicates which constructor was called.
195  bool destroy_;
196
197  inline void SetIsSafe() { is_safe_ = true; }
198
199  // Catch the error of writing Mutex when intending MutexLock.
200  explicit Mutex(Mutex* /*ignored*/) {}
201  // Disallow "evil" constructors
202  Mutex(const Mutex&);
203  void operator=(const Mutex&);
204};
205
206// Now the implementation of Mutex for various systems
207#if defined(NO_THREADS)
208
209// When we don't have threads, we can be either reading or writing,
210// but not both.  We can have lots of readers at once (in no-threads
211// mode, that's most likely to happen in recursive function calls),
212// but only one writer.  We represent this by having mutex_ be -1 when
213// writing and a number > 0 when reading (and 0 when no lock is held).
214//
215// In debug mode, we assert these invariants, while in non-debug mode
216// we do nothing, for efficiency.  That's why everything is in an
217// assert.
218
219Mutex::Mutex() : mutex_(0) { }
220Mutex::Mutex(Mutex::LinkerInitialized) : mutex_(0) { }
221Mutex::~Mutex()            { assert(mutex_ == 0); }
222void Mutex::Lock()         { assert(--mutex_ == -1); }
223void Mutex::Unlock()       { assert(mutex_++ == -1); }
224#ifdef GMUTEX_TRYLOCK
225bool Mutex::TryLock()      { if (mutex_) return false; Lock(); return true; }
226#endif
227void Mutex::ReaderLock()   { assert(++mutex_ > 0); }
228void Mutex::ReaderUnlock() { assert(mutex_-- > 0); }
229
230#elif defined(OS_WINDOWS)
231
232Mutex::Mutex() : destroy_(true) {
233  InitializeCriticalSection(&mutex_);
234  SetIsSafe();
235}
236Mutex::Mutex(LinkerInitialized) : destroy_(false) {
237  InitializeCriticalSection(&mutex_);
238  SetIsSafe();
239}
240Mutex::~Mutex()            { if (destroy_) DeleteCriticalSection(&mutex_); }
241void Mutex::Lock()         { if (is_safe_) EnterCriticalSection(&mutex_); }
242void Mutex::Unlock()       { if (is_safe_) LeaveCriticalSection(&mutex_); }
243#ifdef GMUTEX_TRYLOCK
244bool Mutex::TryLock()      { return is_safe_ ?
245                                 TryEnterCriticalSection(&mutex_) != 0 : true; }
246#endif
247void Mutex::ReaderLock()   { Lock(); }      // we don't have read-write locks
248void Mutex::ReaderUnlock() { Unlock(); }
249
250#elif defined(HAVE_PTHREAD) && defined(HAVE_RWLOCK)
251
252#define SAFE_PTHREAD(fncall)  do {   /* run fncall if is_safe_ is true */  \
253  if (is_safe_ && fncall(&mutex_) != 0) abort();                           \
254} while (0)
255
256Mutex::Mutex() : destroy_(true) {
257  SetIsSafe();
258  if (is_safe_ && pthread_rwlock_init(&mutex_, NULL) != 0) abort();
259}
260Mutex::Mutex(Mutex::LinkerInitialized) : destroy_(false) {
261  SetIsSafe();
262  if (is_safe_ && pthread_rwlock_init(&mutex_, NULL) != 0) abort();
263}
264Mutex::~Mutex()       { if (destroy_) SAFE_PTHREAD(pthread_rwlock_destroy); }
265void Mutex::Lock()         { SAFE_PTHREAD(pthread_rwlock_wrlock); }
266void Mutex::Unlock()       { SAFE_PTHREAD(pthread_rwlock_unlock); }
267#ifdef GMUTEX_TRYLOCK
268bool Mutex::TryLock()      { return is_safe_ ?
269                               pthread_rwlock_trywrlock(&mutex_) == 0 : true; }
270#endif
271void Mutex::ReaderLock()   { SAFE_PTHREAD(pthread_rwlock_rdlock); }
272void Mutex::ReaderUnlock() { SAFE_PTHREAD(pthread_rwlock_unlock); }
273#undef SAFE_PTHREAD
274
275#elif defined(HAVE_PTHREAD)
276
277#define SAFE_PTHREAD(fncall)  do {   /* run fncall if is_safe_ is true */  \
278  if (is_safe_ && fncall(&mutex_) != 0) abort();                           \
279} while (0)
280
281Mutex::Mutex() : destroy_(true) {
282  SetIsSafe();
283  if (is_safe_ && pthread_mutex_init(&mutex_, NULL) != 0) abort();
284}
285Mutex::Mutex(Mutex::LinkerInitialized) : destroy_(false) {
286  SetIsSafe();
287  if (is_safe_ && pthread_mutex_init(&mutex_, NULL) != 0) abort();
288}
289Mutex::~Mutex()       { if (destroy_) SAFE_PTHREAD(pthread_mutex_destroy); }
290void Mutex::Lock()         { SAFE_PTHREAD(pthread_mutex_lock); }
291void Mutex::Unlock()       { SAFE_PTHREAD(pthread_mutex_unlock); }
292#ifdef GMUTEX_TRYLOCK
293bool Mutex::TryLock()      { return is_safe_ ?
294                                 pthread_mutex_trylock(&mutex_) == 0 : true; }
295#endif
296void Mutex::ReaderLock()   { Lock(); }
297void Mutex::ReaderUnlock() { Unlock(); }
298#undef SAFE_PTHREAD
299
300#endif
301
302// --------------------------------------------------------------------------
303// Some helper classes
304
305// MutexLock(mu) acquires mu when constructed and releases it when destroyed.
306class MutexLock {
307 public:
308  explicit MutexLock(Mutex *mu) : mu_(mu) { mu_->Lock(); }
309  ~MutexLock() { mu_->Unlock(); }
310 private:
311  Mutex * const mu_;
312  // Disallow "evil" constructors
313  MutexLock(const MutexLock&);
314  void operator=(const MutexLock&);
315};
316
317// ReaderMutexLock and WriterMutexLock do the same, for rwlocks
318class ReaderMutexLock {
319 public:
320  explicit ReaderMutexLock(Mutex *mu) : mu_(mu) { mu_->ReaderLock(); }
321  ~ReaderMutexLock() { mu_->ReaderUnlock(); }
322 private:
323  Mutex * const mu_;
324  // Disallow "evil" constructors
325  ReaderMutexLock(const ReaderMutexLock&);
326  void operator=(const ReaderMutexLock&);
327};
328
329class WriterMutexLock {
330 public:
331  explicit WriterMutexLock(Mutex *mu) : mu_(mu) { mu_->WriterLock(); }
332  ~WriterMutexLock() { mu_->WriterUnlock(); }
333 private:
334  Mutex * const mu_;
335  // Disallow "evil" constructors
336  WriterMutexLock(const WriterMutexLock&);
337  void operator=(const WriterMutexLock&);
338};
339
340// Catch bug where variable name is omitted, e.g. MutexLock (&mu);
341#define MutexLock(x) COMPILE_ASSERT(0, mutex_lock_decl_missing_var_name)
342#define ReaderMutexLock(x) COMPILE_ASSERT(0, rmutex_lock_decl_missing_var_name)
343#define WriterMutexLock(x) COMPILE_ASSERT(0, wmutex_lock_decl_missing_var_name)
344
345}  // namespace MUTEX_NAMESPACE
346
347
348#endif  /* #define GFLAGS_MUTEX_H__ */
349