gpt.cc revision bdbab02f71097593c879a552951d73969305d0ae
1fb3e5ca53b412a41d26bb4316f10e68aa72f65f6Bill Wendling/* gpt.cc -- Functions for loading, saving, and manipulating legacy MBR and GPT partition 21999ff1d810b13425fcb80ac8bbccdff4c3a7cf8Nick Lewycky data. */ 31999ff1d810b13425fcb80ac8bbccdff4c3a7cf8Nick Lewycky 41999ff1d810b13425fcb80ac8bbccdff4c3a7cf8Nick Lewycky/* By Rod Smith, initial coding January to February, 2009 */ 51999ff1d810b13425fcb80ac8bbccdff4c3a7cf8Nick Lewycky 61999ff1d810b13425fcb80ac8bbccdff4c3a7cf8Nick Lewycky/* This program is copyright (c) 2009-2013 by Roderick W. Smith. It is distributed 71999ff1d810b13425fcb80ac8bbccdff4c3a7cf8Nick Lewycky under the terms of the GNU GPL version 2, as detailed in the COPYING file. */ 81999ff1d810b13425fcb80ac8bbccdff4c3a7cf8Nick Lewycky 91999ff1d810b13425fcb80ac8bbccdff4c3a7cf8Nick Lewycky#define __STDC_LIMIT_MACROS 101999ff1d810b13425fcb80ac8bbccdff4c3a7cf8Nick Lewycky#ifndef __STDC_CONSTANT_MACROS 11de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar#define __STDC_CONSTANT_MACROS 122e734269e3f354e52bd9e55d791e1885aa7d4cd8Misha Brukman#endif 135a88dda4be791426ab4d20a6a6c9c65d66614a27Chandler Carruth 14f3ef5332fa3f4d5ec72c178a2b19dac363a19383Pirama Arumuga Nainar#include <stdio.h> 151999ff1d810b13425fcb80ac8bbccdff4c3a7cf8Nick Lewycky#include <stdlib.h> 161999ff1d810b13425fcb80ac8bbccdff4c3a7cf8Nick Lewycky#include <stdint.h> 171999ff1d810b13425fcb80ac8bbccdff4c3a7cf8Nick Lewycky#include <fcntl.h> 181999ff1d810b13425fcb80ac8bbccdff4c3a7cf8Nick Lewycky#include <string.h> 191999ff1d810b13425fcb80ac8bbccdff4c3a7cf8Nick Lewycky#include <math.h> 20f3ef5332fa3f4d5ec72c178a2b19dac363a19383Pirama Arumuga Nainar#include <time.h> 21f3ef5332fa3f4d5ec72c178a2b19dac363a19383Pirama Arumuga Nainar#include <sys/stat.h> 22f3ef5332fa3f4d5ec72c178a2b19dac363a19383Pirama Arumuga Nainar#include <errno.h> 23f3ef5332fa3f4d5ec72c178a2b19dac363a19383Pirama Arumuga Nainar#include <iostream> 24f3ef5332fa3f4d5ec72c178a2b19dac363a19383Pirama Arumuga Nainar#include <algorithm> 25f3ef5332fa3f4d5ec72c178a2b19dac363a19383Pirama Arumuga Nainar#include "crc32.h" 26f3ef5332fa3f4d5ec72c178a2b19dac363a19383Pirama Arumuga Nainar#include "gpt.h" 271999ff1d810b13425fcb80ac8bbccdff4c3a7cf8Nick Lewycky#include "bsd.h" 281999ff1d810b13425fcb80ac8bbccdff4c3a7cf8Nick Lewycky#include "support.h" 291999ff1d810b13425fcb80ac8bbccdff4c3a7cf8Nick Lewycky#include "parttypes.h" 301999ff1d810b13425fcb80ac8bbccdff4c3a7cf8Nick Lewycky#include "attributes.h" 3148b17fa5bebf46ecdbcb51ebab1c3d8b483afd3cChandler Carruth#include "diskio.h" 3248b17fa5bebf46ecdbcb51ebab1c3d8b483afd3cChandler Carruth 332d0f1c57c3f95e43a8b18bfe8481d90b665d5efeTorok Edwinusing namespace std; 342d0f1c57c3f95e43a8b18bfe8481d90b665d5efeTorok Edwin 352e734269e3f354e52bd9e55d791e1885aa7d4cd8Misha Brukman#ifdef __FreeBSD__ 36e3bc46ede58d9c02b8f1a630e70ee1c98a1e4229Misha Brukman#define log2(x) (log(x) / M_LN2) 372d0f1c57c3f95e43a8b18bfe8481d90b665d5efeTorok Edwin#endif // __FreeBSD__ 382d0f1c57c3f95e43a8b18bfe8481d90b665d5efeTorok Edwin 392d0f1c57c3f95e43a8b18bfe8481d90b665d5efeTorok Edwin#ifdef _MSC_VER 40e3bc46ede58d9c02b8f1a630e70ee1c98a1e4229Misha Brukman#define log2(x) (log((double) x) / log(2.0)) 412d0f1c57c3f95e43a8b18bfe8481d90b665d5efeTorok Edwin#endif // Microsoft Visual C++ 422d0f1c57c3f95e43a8b18bfe8481d90b665d5efeTorok Edwin 432d0f1c57c3f95e43a8b18bfe8481d90b665d5efeTorok Edwin#ifdef EFI 442d0f1c57c3f95e43a8b18bfe8481d90b665d5efeTorok Edwin// in UEFI mode MMX registers are not yet available so using the 452d0f1c57c3f95e43a8b18bfe8481d90b665d5efeTorok Edwin// x86_64 ABI to move "double" values around is not an option. 462d0f1c57c3f95e43a8b18bfe8481d90b665d5efeTorok Edwin#ifdef log2 472d0f1c57c3f95e43a8b18bfe8481d90b665d5efeTorok Edwin#undef log2 482d0f1c57c3f95e43a8b18bfe8481d90b665d5efeTorok Edwin#endif 492d0f1c57c3f95e43a8b18bfe8481d90b665d5efeTorok Edwin#define log2(x) log2_32( x ) 50bc9c36bb7c436d7691d12d51d2b67f309b25df4fJakob Stoklund Olesenstatic inline uint32_t log2_32(uint32_t v) { 51bc9c36bb7c436d7691d12d51d2b67f309b25df4fJakob Stoklund Olesen int r = -1; 52bc9c36bb7c436d7691d12d51d2b67f309b25df4fJakob Stoklund Olesen while (v >= 1) { 532e734269e3f354e52bd9e55d791e1885aa7d4cd8Misha Brukman r++; 54e3bc46ede58d9c02b8f1a630e70ee1c98a1e4229Misha Brukman v >>= 1; 552d0f1c57c3f95e43a8b18bfe8481d90b665d5efeTorok Edwin } 562d0f1c57c3f95e43a8b18bfe8481d90b665d5efeTorok Edwin return r; 572d0f1c57c3f95e43a8b18bfe8481d90b665d5efeTorok Edwin} 582d0f1c57c3f95e43a8b18bfe8481d90b665d5efeTorok Edwin#endif 592d0f1c57c3f95e43a8b18bfe8481d90b665d5efeTorok Edwin 602d0f1c57c3f95e43a8b18bfe8481d90b665d5efeTorok Edwin/**************************************** 612d0f1c57c3f95e43a8b18bfe8481d90b665d5efeTorok Edwin * * 622d0f1c57c3f95e43a8b18bfe8481d90b665d5efeTorok Edwin * GPTData class and related structures * 632d0f1c57c3f95e43a8b18bfe8481d90b665d5efeTorok Edwin * * 64bc9c36bb7c436d7691d12d51d2b67f309b25df4fJakob Stoklund Olesen ****************************************/ 65bc9c36bb7c436d7691d12d51d2b67f309b25df4fJakob Stoklund Olesen 662e734269e3f354e52bd9e55d791e1885aa7d4cd8Misha Brukman// Default constructor 6735b1423ee67a6ec7052016dda486e6ee4a118db4Meador IngeGPTData::GPTData(void) { 6835b1423ee67a6ec7052016dda486e6ee4a118db4Meador Inge blockSize = SECTOR_SIZE; // set a default 6935b1423ee67a6ec7052016dda486e6ee4a118db4Meador Inge diskSize = 0; 7035b1423ee67a6ec7052016dda486e6ee4a118db4Meador Inge partitions = NULL; 7135b1423ee67a6ec7052016dda486e6ee4a118db4Meador Inge state = gpt_valid; 7235b1423ee67a6ec7052016dda486e6ee4a118db4Meador Inge device = ""; 7335b1423ee67a6ec7052016dda486e6ee4a118db4Meador Inge justLooking = 0; 7435b1423ee67a6ec7052016dda486e6ee4a118db4Meador Inge mainCrcOk = 0; 752d0f1c57c3f95e43a8b18bfe8481d90b665d5efeTorok Edwin secondCrcOk = 0; 767a874ddda037349184fbeb22838cc11a1a9bb78fJay Foad mainPartsCrcOk = 0; 772d0f1c57c3f95e43a8b18bfe8481d90b665d5efeTorok Edwin secondPartsCrcOk = 0; 782d0f1c57c3f95e43a8b18bfe8481d90b665d5efeTorok Edwin apmFound = 0; 792d0f1c57c3f95e43a8b18bfe8481d90b665d5efeTorok Edwin bsdFound = 0; 802d0f1c57c3f95e43a8b18bfe8481d90b665d5efeTorok Edwin sectorAlignment = MIN_AF_ALIGNMENT; // Align partitions on 4096-byte boundaries by default 812d0f1c57c3f95e43a8b18bfe8481d90b665d5efeTorok Edwin beQuiet = 0; 822d0f1c57c3f95e43a8b18bfe8481d90b665d5efeTorok Edwin whichWasUsed = use_new; 832d0f1c57c3f95e43a8b18bfe8481d90b665d5efeTorok Edwin mainHeader.numParts = 0; 842e734269e3f354e52bd9e55d791e1885aa7d4cd8Misha Brukman numParts = 0; 852d0f1c57c3f95e43a8b18bfe8481d90b665d5efeTorok Edwin SetGPTSize(NUM_GPT_ENTRIES); 862d0f1c57c3f95e43a8b18bfe8481d90b665d5efeTorok Edwin // Initialize CRC functions... 872d0f1c57c3f95e43a8b18bfe8481d90b665d5efeTorok Edwin chksum_crc32gentab(); 882d0f1c57c3f95e43a8b18bfe8481d90b665d5efeTorok Edwin} // GPTData default constructor 892d0f1c57c3f95e43a8b18bfe8481d90b665d5efeTorok Edwin 902d0f1c57c3f95e43a8b18bfe8481d90b665d5efeTorok Edwin// The following constructor loads GPT data from a device file 912d0f1c57c3f95e43a8b18bfe8481d90b665d5efeTorok EdwinGPTData::GPTData(string filename) { 922d0f1c57c3f95e43a8b18bfe8481d90b665d5efeTorok Edwin blockSize = SECTOR_SIZE; // set a default 93e3bc46ede58d9c02b8f1a630e70ee1c98a1e4229Misha Brukman diskSize = 0; 942d0f1c57c3f95e43a8b18bfe8481d90b665d5efeTorok Edwin partitions = NULL; 952d0f1c57c3f95e43a8b18bfe8481d90b665d5efeTorok Edwin state = gpt_invalid; 962d0f1c57c3f95e43a8b18bfe8481d90b665d5efeTorok Edwin device = ""; 972d0f1c57c3f95e43a8b18bfe8481d90b665d5efeTorok Edwin justLooking = 0; 982d0f1c57c3f95e43a8b18bfe8481d90b665d5efeTorok Edwin mainCrcOk = 0; 992d0f1c57c3f95e43a8b18bfe8481d90b665d5efeTorok Edwin secondCrcOk = 0; 1002d0f1c57c3f95e43a8b18bfe8481d90b665d5efeTorok Edwin mainPartsCrcOk = 0; 1012d0f1c57c3f95e43a8b18bfe8481d90b665d5efeTorok Edwin secondPartsCrcOk = 0; 1022d0f1c57c3f95e43a8b18bfe8481d90b665d5efeTorok Edwin apmFound = 0; 1032d0f1c57c3f95e43a8b18bfe8481d90b665d5efeTorok Edwin bsdFound = 0; 1042d0f1c57c3f95e43a8b18bfe8481d90b665d5efeTorok Edwin sectorAlignment = MIN_AF_ALIGNMENT; // Align partitions on 4096-byte boundaries by default 1052d0f1c57c3f95e43a8b18bfe8481d90b665d5efeTorok Edwin beQuiet = 0; 1062d0f1c57c3f95e43a8b18bfe8481d90b665d5efeTorok Edwin whichWasUsed = use_new; 1072d0f1c57c3f95e43a8b18bfe8481d90b665d5efeTorok Edwin mainHeader.numParts = 0; 1082d0f1c57c3f95e43a8b18bfe8481d90b665d5efeTorok Edwin numParts = 0; 1092d0f1c57c3f95e43a8b18bfe8481d90b665d5efeTorok Edwin // Initialize CRC functions... 1102d0f1c57c3f95e43a8b18bfe8481d90b665d5efeTorok Edwin chksum_crc32gentab(); 1112d0f1c57c3f95e43a8b18bfe8481d90b665d5efeTorok Edwin if (!LoadPartitions(filename)) 1122d0f1c57c3f95e43a8b18bfe8481d90b665d5efeTorok Edwin exit(2); 1132d0f1c57c3f95e43a8b18bfe8481d90b665d5efeTorok Edwin} // GPTData(string filename) constructor 1142d0f1c57c3f95e43a8b18bfe8481d90b665d5efeTorok Edwin 1152d0f1c57c3f95e43a8b18bfe8481d90b665d5efeTorok Edwin// Destructor 1162d0f1c57c3f95e43a8b18bfe8481d90b665d5efeTorok EdwinGPTData::~GPTData(void) { 1172d0f1c57c3f95e43a8b18bfe8481d90b665d5efeTorok Edwin delete[] partitions; 1182d0f1c57c3f95e43a8b18bfe8481d90b665d5efeTorok Edwin} // GPTData destructor 1192d0f1c57c3f95e43a8b18bfe8481d90b665d5efeTorok Edwin 1202d0f1c57c3f95e43a8b18bfe8481d90b665d5efeTorok Edwin// Assignment operator 1211999ff1d810b13425fcb80ac8bbccdff4c3a7cf8Nick LewyckyGPTData & GPTData::operator=(const GPTData & orig) { 1221999ff1d810b13425fcb80ac8bbccdff4c3a7cf8Nick Lewycky uint32_t i; 1232e734269e3f354e52bd9e55d791e1885aa7d4cd8Misha Brukman 124e3bc46ede58d9c02b8f1a630e70ee1c98a1e4229Misha Brukman mainHeader = orig.mainHeader; 125e3bc46ede58d9c02b8f1a630e70ee1c98a1e4229Misha Brukman numParts = orig.numParts; 1262e734269e3f354e52bd9e55d791e1885aa7d4cd8Misha Brukman secondHeader = orig.secondHeader; 1272e734269e3f354e52bd9e55d791e1885aa7d4cd8Misha Brukman protectiveMBR = orig.protectiveMBR; 1282e734269e3f354e52bd9e55d791e1885aa7d4cd8Misha Brukman device = orig.device; 1292e734269e3f354e52bd9e55d791e1885aa7d4cd8Misha Brukman blockSize = orig.blockSize; 1302e734269e3f354e52bd9e55d791e1885aa7d4cd8Misha Brukman diskSize = orig.diskSize; 1312e734269e3f354e52bd9e55d791e1885aa7d4cd8Misha Brukman state = orig.state; 1322e734269e3f354e52bd9e55d791e1885aa7d4cd8Misha Brukman justLooking = orig.justLooking; 1332e734269e3f354e52bd9e55d791e1885aa7d4cd8Misha Brukman mainCrcOk = orig.mainCrcOk; 1342e734269e3f354e52bd9e55d791e1885aa7d4cd8Misha Brukman secondCrcOk = orig.secondCrcOk; 1352e734269e3f354e52bd9e55d791e1885aa7d4cd8Misha Brukman mainPartsCrcOk = orig.mainPartsCrcOk; 1362e734269e3f354e52bd9e55d791e1885aa7d4cd8Misha Brukman secondPartsCrcOk = orig.secondPartsCrcOk; 1372e734269e3f354e52bd9e55d791e1885aa7d4cd8Misha Brukman apmFound = orig.apmFound; 1382e734269e3f354e52bd9e55d791e1885aa7d4cd8Misha Brukman bsdFound = orig.bsdFound; 1392e734269e3f354e52bd9e55d791e1885aa7d4cd8Misha Brukman sectorAlignment = orig.sectorAlignment; 1402e734269e3f354e52bd9e55d791e1885aa7d4cd8Misha Brukman beQuiet = orig.beQuiet; 1412e734269e3f354e52bd9e55d791e1885aa7d4cd8Misha Brukman whichWasUsed = orig.whichWasUsed; 1422e734269e3f354e52bd9e55d791e1885aa7d4cd8Misha Brukman 1432e734269e3f354e52bd9e55d791e1885aa7d4cd8Misha Brukman myDisk.OpenForRead(orig.myDisk.GetName()); 1442e734269e3f354e52bd9e55d791e1885aa7d4cd8Misha Brukman 1456948897e478cbd66626159776a8017b3c18579b9Pirama Arumuga Nainar delete[] partitions; 1466948897e478cbd66626159776a8017b3c18579b9Pirama Arumuga Nainar partitions = new GPTPart [numParts]; 1476948897e478cbd66626159776a8017b3c18579b9Pirama Arumuga Nainar if (partitions == NULL) { 1486948897e478cbd66626159776a8017b3c18579b9Pirama Arumuga Nainar cerr << "Error! Could not allocate memory for partitions in GPTData::operator=()!\n" 1496948897e478cbd66626159776a8017b3c18579b9Pirama Arumuga Nainar << "Terminating!\n"; 1506948897e478cbd66626159776a8017b3c18579b9Pirama Arumuga Nainar exit(1); 1512e734269e3f354e52bd9e55d791e1885aa7d4cd8Misha Brukman } // if 1522e734269e3f354e52bd9e55d791e1885aa7d4cd8Misha Brukman for (i = 0; i < numParts; i++) { 1532e734269e3f354e52bd9e55d791e1885aa7d4cd8Misha Brukman partitions[i] = orig.partitions[i]; 1542e734269e3f354e52bd9e55d791e1885aa7d4cd8Misha Brukman } // for 1552e734269e3f354e52bd9e55d791e1885aa7d4cd8Misha Brukman 1562e734269e3f354e52bd9e55d791e1885aa7d4cd8Misha Brukman return *this; 1572e734269e3f354e52bd9e55d791e1885aa7d4cd8Misha Brukman} // GPTData::operator=() 1582e734269e3f354e52bd9e55d791e1885aa7d4cd8Misha Brukman 1592e734269e3f354e52bd9e55d791e1885aa7d4cd8Misha Brukman/********************************************************************* 1602e734269e3f354e52bd9e55d791e1885aa7d4cd8Misha Brukman * * 1612e734269e3f354e52bd9e55d791e1885aa7d4cd8Misha Brukman * Begin functions that verify data, or that adjust the verification * 1622e734269e3f354e52bd9e55d791e1885aa7d4cd8Misha Brukman * information (compute CRCs, rebuild headers) * 1632e734269e3f354e52bd9e55d791e1885aa7d4cd8Misha Brukman * * 1642e734269e3f354e52bd9e55d791e1885aa7d4cd8Misha Brukman *********************************************************************/ 1652e734269e3f354e52bd9e55d791e1885aa7d4cd8Misha Brukman 1662e734269e3f354e52bd9e55d791e1885aa7d4cd8Misha Brukman// Perform detailed verification, reporting on any problems found, but 1672e734269e3f354e52bd9e55d791e1885aa7d4cd8Misha Brukman// do *NOT* recover from these problems. Returns the total number of 1682e734269e3f354e52bd9e55d791e1885aa7d4cd8Misha Brukman// problems identified. 1693a3a424a248717487de826ddb48f14deec1d2446Eli Friedmanint GPTData::Verify(void) { 1703a3a424a248717487de826ddb48f14deec1d2446Eli Friedman int problems = 0, alignProbs = 0; 1713a3a424a248717487de826ddb48f14deec1d2446Eli Friedman uint32_t i, numSegments; 1723a3a424a248717487de826ddb48f14deec1d2446Eli Friedman uint64_t totalFree, largestSegment; 1733a3a424a248717487de826ddb48f14deec1d2446Eli Friedman 1743a3a424a248717487de826ddb48f14deec1d2446Eli Friedman // First, check for CRC errors in the GPT data.... 1752e734269e3f354e52bd9e55d791e1885aa7d4cd8Misha Brukman if (!mainCrcOk) { 1762e734269e3f354e52bd9e55d791e1885aa7d4cd8Misha Brukman problems++; 1772e734269e3f354e52bd9e55d791e1885aa7d4cd8Misha Brukman cout << "\nProblem: The CRC for the main GPT header is invalid. The main GPT header may\n" 1782e734269e3f354e52bd9e55d791e1885aa7d4cd8Misha Brukman << "be corrupt. Consider loading the backup GPT header to rebuild the main GPT\n" 1792e734269e3f354e52bd9e55d791e1885aa7d4cd8Misha Brukman << "header ('b' on the recovery & transformation menu). This report may be a false\n" 1802e734269e3f354e52bd9e55d791e1885aa7d4cd8Misha Brukman << "alarm if you've already corrected other problems.\n"; 1812e734269e3f354e52bd9e55d791e1885aa7d4cd8Misha Brukman } // if 1822e734269e3f354e52bd9e55d791e1885aa7d4cd8Misha Brukman if (!mainPartsCrcOk) { 1832e734269e3f354e52bd9e55d791e1885aa7d4cd8Misha Brukman problems++; 1842e734269e3f354e52bd9e55d791e1885aa7d4cd8Misha Brukman cout << "\nProblem: The CRC for the main partition table is invalid. This table may be\n" 1852e734269e3f354e52bd9e55d791e1885aa7d4cd8Misha Brukman << "corrupt. Consider loading the backup partition table ('c' on the recovery &\n" 1862e734269e3f354e52bd9e55d791e1885aa7d4cd8Misha Brukman << "transformation menu). This report may be a false alarm if you've already\n" 1872e734269e3f354e52bd9e55d791e1885aa7d4cd8Misha Brukman << "corrected other problems.\n"; 1882e734269e3f354e52bd9e55d791e1885aa7d4cd8Misha Brukman } // if 1892e734269e3f354e52bd9e55d791e1885aa7d4cd8Misha Brukman if (!secondCrcOk) { 1902e734269e3f354e52bd9e55d791e1885aa7d4cd8Misha Brukman problems++; 1912e734269e3f354e52bd9e55d791e1885aa7d4cd8Misha Brukman cout << "\nProblem: The CRC for the backup GPT header is invalid. The backup GPT header\n" 1922e734269e3f354e52bd9e55d791e1885aa7d4cd8Misha Brukman << "may be corrupt. Consider using the main GPT header to rebuild the backup GPT\n" 1932e734269e3f354e52bd9e55d791e1885aa7d4cd8Misha Brukman << "header ('d' on the recovery & transformation menu). This report may be a false\n" 1942e734269e3f354e52bd9e55d791e1885aa7d4cd8Misha Brukman << "alarm if you've already corrected other problems.\n"; 1952e734269e3f354e52bd9e55d791e1885aa7d4cd8Misha Brukman } // if 196a7a2a3635f2fbe46d7d9074798e79e853f69d40bNuno Lopes if (!secondPartsCrcOk) { 197a7a2a3635f2fbe46d7d9074798e79e853f69d40bNuno Lopes problems++; 198a7a2a3635f2fbe46d7d9074798e79e853f69d40bNuno Lopes cout << "\nCaution: The CRC for the backup partition table is invalid. This table may\n" 199a7a2a3635f2fbe46d7d9074798e79e853f69d40bNuno Lopes << "be corrupt. This program will automatically create a new backup partition\n" 200a7a2a3635f2fbe46d7d9074798e79e853f69d40bNuno Lopes << "table when you save your partitions.\n"; 201a7a2a3635f2fbe46d7d9074798e79e853f69d40bNuno Lopes } // if 202a7a2a3635f2fbe46d7d9074798e79e853f69d40bNuno Lopes 203a7a2a3635f2fbe46d7d9074798e79e853f69d40bNuno Lopes // Now check that the main and backup headers both point to themselves.... 204a7a2a3635f2fbe46d7d9074798e79e853f69d40bNuno Lopes if (mainHeader.currentLBA != 1) { 205a7a2a3635f2fbe46d7d9074798e79e853f69d40bNuno Lopes problems++; 206a7a2a3635f2fbe46d7d9074798e79e853f69d40bNuno Lopes cout << "\nProblem: The main header's self-pointer doesn't point to itself. This problem\n" 207a7a2a3635f2fbe46d7d9074798e79e853f69d40bNuno Lopes << "is being automatically corrected, but it may be a symptom of more serious\n" 208a7a2a3635f2fbe46d7d9074798e79e853f69d40bNuno Lopes << "problems. Think carefully before saving changes with 'w' or using this disk.\n"; 209a7a2a3635f2fbe46d7d9074798e79e853f69d40bNuno Lopes mainHeader.currentLBA = 1; 210a7a2a3635f2fbe46d7d9074798e79e853f69d40bNuno Lopes } // if 211a7a2a3635f2fbe46d7d9074798e79e853f69d40bNuno Lopes if (secondHeader.currentLBA != (diskSize - UINT64_C(1))) { 212a7a2a3635f2fbe46d7d9074798e79e853f69d40bNuno Lopes problems++; 213a7a2a3635f2fbe46d7d9074798e79e853f69d40bNuno Lopes cout << "\nProblem: The secondary header's self-pointer indicates that it doesn't reside\n" 214a7a2a3635f2fbe46d7d9074798e79e853f69d40bNuno Lopes << "at the end of the disk. If you've added a disk to a RAID array, use the 'e'\n" 215a7a2a3635f2fbe46d7d9074798e79e853f69d40bNuno Lopes << "option on the experts' menu to adjust the secondary header's and partition\n" 216a7a2a3635f2fbe46d7d9074798e79e853f69d40bNuno Lopes << "table's locations.\n"; 217a7a2a3635f2fbe46d7d9074798e79e853f69d40bNuno Lopes } // if 218a7a2a3635f2fbe46d7d9074798e79e853f69d40bNuno Lopes 219a7a2a3635f2fbe46d7d9074798e79e853f69d40bNuno Lopes // Now check that critical main and backup GPT entries match each other 220a7a2a3635f2fbe46d7d9074798e79e853f69d40bNuno Lopes if (mainHeader.currentLBA != secondHeader.backupLBA) { 221a7a2a3635f2fbe46d7d9074798e79e853f69d40bNuno Lopes problems++; 222a7a2a3635f2fbe46d7d9074798e79e853f69d40bNuno Lopes cout << "\nProblem: main GPT header's current LBA pointer (" << mainHeader.currentLBA 223a7a2a3635f2fbe46d7d9074798e79e853f69d40bNuno Lopes << ") doesn't\nmatch the backup GPT header's alternate LBA pointer(" 2242e734269e3f354e52bd9e55d791e1885aa7d4cd8Misha Brukman << secondHeader.backupLBA << ").\n"; 2252e734269e3f354e52bd9e55d791e1885aa7d4cd8Misha Brukman } // if 226f3ef5332fa3f4d5ec72c178a2b19dac363a19383Pirama Arumuga Nainar if (mainHeader.backupLBA != secondHeader.currentLBA) { 227f3ef5332fa3f4d5ec72c178a2b19dac363a19383Pirama Arumuga Nainar problems++; 228f3ef5332fa3f4d5ec72c178a2b19dac363a19383Pirama Arumuga Nainar cout << "\nProblem: main GPT header's backup LBA pointer (" << mainHeader.backupLBA 229f3ef5332fa3f4d5ec72c178a2b19dac363a19383Pirama Arumuga Nainar << ") doesn't\nmatch the backup GPT header's current LBA pointer (" 230f3ef5332fa3f4d5ec72c178a2b19dac363a19383Pirama Arumuga Nainar << secondHeader.currentLBA << ").\n" 231f3ef5332fa3f4d5ec72c178a2b19dac363a19383Pirama Arumuga Nainar << "The 'e' option on the experts' menu may fix this problem.\n"; 232f3ef5332fa3f4d5ec72c178a2b19dac363a19383Pirama Arumuga Nainar } // if 233f3ef5332fa3f4d5ec72c178a2b19dac363a19383Pirama Arumuga Nainar if (mainHeader.firstUsableLBA != secondHeader.firstUsableLBA) { 234f3ef5332fa3f4d5ec72c178a2b19dac363a19383Pirama Arumuga Nainar problems++; 235f3ef5332fa3f4d5ec72c178a2b19dac363a19383Pirama Arumuga Nainar cout << "\nProblem: main GPT header's first usable LBA pointer (" << mainHeader.firstUsableLBA 236f3ef5332fa3f4d5ec72c178a2b19dac363a19383Pirama Arumuga Nainar << ") doesn't\nmatch the backup GPT header's first usable LBA pointer (" 237f3ef5332fa3f4d5ec72c178a2b19dac363a19383Pirama Arumuga Nainar << secondHeader.firstUsableLBA << ")\n"; 238f3ef5332fa3f4d5ec72c178a2b19dac363a19383Pirama Arumuga Nainar } // if 239f3ef5332fa3f4d5ec72c178a2b19dac363a19383Pirama Arumuga Nainar if (mainHeader.lastUsableLBA != secondHeader.lastUsableLBA) { 240f3ef5332fa3f4d5ec72c178a2b19dac363a19383Pirama Arumuga Nainar problems++; 241f3ef5332fa3f4d5ec72c178a2b19dac363a19383Pirama Arumuga Nainar cout << "\nProblem: main GPT header's last usable LBA pointer (" << mainHeader.lastUsableLBA 242f3ef5332fa3f4d5ec72c178a2b19dac363a19383Pirama Arumuga Nainar << ") doesn't\nmatch the backup GPT header's last usable LBA pointer (" 243f3ef5332fa3f4d5ec72c178a2b19dac363a19383Pirama Arumuga Nainar << secondHeader.lastUsableLBA << ")\n" 244f3ef5332fa3f4d5ec72c178a2b19dac363a19383Pirama Arumuga Nainar << "The 'e' option on the experts' menu can probably fix this problem.\n"; 245f3ef5332fa3f4d5ec72c178a2b19dac363a19383Pirama Arumuga Nainar } // if 246f3ef5332fa3f4d5ec72c178a2b19dac363a19383Pirama Arumuga Nainar if ((mainHeader.diskGUID != secondHeader.diskGUID)) { 247f3ef5332fa3f4d5ec72c178a2b19dac363a19383Pirama Arumuga Nainar problems++; 248f3ef5332fa3f4d5ec72c178a2b19dac363a19383Pirama Arumuga Nainar cout << "\nProblem: main header's disk GUID (" << mainHeader.diskGUID 249f3ef5332fa3f4d5ec72c178a2b19dac363a19383Pirama Arumuga Nainar << ") doesn't\nmatch the backup GPT header's disk GUID (" 250f3ef5332fa3f4d5ec72c178a2b19dac363a19383Pirama Arumuga Nainar << secondHeader.diskGUID << ")\n" 251f3ef5332fa3f4d5ec72c178a2b19dac363a19383Pirama Arumuga Nainar << "You should use the 'b' or 'd' option on the recovery & transformation menu to\n" 252f3ef5332fa3f4d5ec72c178a2b19dac363a19383Pirama Arumuga Nainar << "select one or the other header.\n"; 253f3ef5332fa3f4d5ec72c178a2b19dac363a19383Pirama Arumuga Nainar } // if 254f3ef5332fa3f4d5ec72c178a2b19dac363a19383Pirama Arumuga Nainar if (mainHeader.numParts != secondHeader.numParts) { 255f3ef5332fa3f4d5ec72c178a2b19dac363a19383Pirama Arumuga Nainar problems++; 256f3ef5332fa3f4d5ec72c178a2b19dac363a19383Pirama Arumuga Nainar cout << "\nProblem: main GPT header's number of partitions (" << mainHeader.numParts 257f3ef5332fa3f4d5ec72c178a2b19dac363a19383Pirama Arumuga Nainar << ") doesn't\nmatch the backup GPT header's number of partitions (" 258f3ef5332fa3f4d5ec72c178a2b19dac363a19383Pirama Arumuga Nainar << secondHeader.numParts << ")\n" 259f3ef5332fa3f4d5ec72c178a2b19dac363a19383Pirama Arumuga Nainar << "Resizing the partition table ('s' on the experts' menu) may help.\n"; 260f3ef5332fa3f4d5ec72c178a2b19dac363a19383Pirama Arumuga Nainar } // if 261f3ef5332fa3f4d5ec72c178a2b19dac363a19383Pirama Arumuga Nainar if (mainHeader.sizeOfPartitionEntries != secondHeader.sizeOfPartitionEntries) { 262f3ef5332fa3f4d5ec72c178a2b19dac363a19383Pirama Arumuga Nainar problems++; 263f3ef5332fa3f4d5ec72c178a2b19dac363a19383Pirama Arumuga Nainar cout << "\nProblem: main GPT header's size of partition entries (" 264f3ef5332fa3f4d5ec72c178a2b19dac363a19383Pirama Arumuga Nainar << mainHeader.sizeOfPartitionEntries << ") doesn't\n" 265f3ef5332fa3f4d5ec72c178a2b19dac363a19383Pirama Arumuga Nainar << "match the backup GPT header's size of partition entries (" 266f3ef5332fa3f4d5ec72c178a2b19dac363a19383Pirama Arumuga Nainar << secondHeader.sizeOfPartitionEntries << ")\n" 267f3ef5332fa3f4d5ec72c178a2b19dac363a19383Pirama Arumuga Nainar << "You should use the 'b' or 'd' option on the recovery & transformation menu to\n" 268f3ef5332fa3f4d5ec72c178a2b19dac363a19383Pirama Arumuga Nainar << "select one or the other header.\n"; 269f3ef5332fa3f4d5ec72c178a2b19dac363a19383Pirama Arumuga Nainar } // if 270f3ef5332fa3f4d5ec72c178a2b19dac363a19383Pirama Arumuga Nainar 271f3ef5332fa3f4d5ec72c178a2b19dac363a19383Pirama Arumuga Nainar // Now check for a few other miscellaneous problems... 272f3ef5332fa3f4d5ec72c178a2b19dac363a19383Pirama Arumuga Nainar // Check that the disk size will hold the data... 273f3ef5332fa3f4d5ec72c178a2b19dac363a19383Pirama Arumuga Nainar if (mainHeader.backupLBA >= diskSize) { 274f3ef5332fa3f4d5ec72c178a2b19dac363a19383Pirama Arumuga Nainar problems++; 275f3ef5332fa3f4d5ec72c178a2b19dac363a19383Pirama Arumuga Nainar cout << "\nProblem: Disk is too small to hold all the data!\n" 276f3ef5332fa3f4d5ec72c178a2b19dac363a19383Pirama Arumuga Nainar << "(Disk size is " << diskSize << " sectors, needs to be " 277f3ef5332fa3f4d5ec72c178a2b19dac363a19383Pirama Arumuga Nainar << mainHeader.backupLBA + UINT64_C(1) << " sectors.)\n" 278f3ef5332fa3f4d5ec72c178a2b19dac363a19383Pirama Arumuga Nainar << "The 'e' option on the experts' menu may fix this problem.\n"; 279f3ef5332fa3f4d5ec72c178a2b19dac363a19383Pirama Arumuga Nainar } // if 280f3ef5332fa3f4d5ec72c178a2b19dac363a19383Pirama Arumuga Nainar 281f3ef5332fa3f4d5ec72c178a2b19dac363a19383Pirama Arumuga Nainar if ((mainHeader.lastUsableLBA >= diskSize) || (mainHeader.lastUsableLBA > mainHeader.backupLBA)) { 282f3ef5332fa3f4d5ec72c178a2b19dac363a19383Pirama Arumuga Nainar problems++; 283f3ef5332fa3f4d5ec72c178a2b19dac363a19383Pirama Arumuga Nainar cout << "\nProblem: GPT claims the disk is larger than it is! (Claimed last usable\n" 284f3ef5332fa3f4d5ec72c178a2b19dac363a19383Pirama Arumuga Nainar << "sector is " << mainHeader.lastUsableLBA << ", but backup header is at\n" 285f3ef5332fa3f4d5ec72c178a2b19dac363a19383Pirama Arumuga Nainar << mainHeader.backupLBA << " and disk size is " << diskSize << " sectors.\n" 286f3ef5332fa3f4d5ec72c178a2b19dac363a19383Pirama Arumuga Nainar << "The 'e' option on the experts' menu will probably fix this problem\n"; 287f3ef5332fa3f4d5ec72c178a2b19dac363a19383Pirama Arumuga Nainar } 288f3ef5332fa3f4d5ec72c178a2b19dac363a19383Pirama Arumuga Nainar 289f3ef5332fa3f4d5ec72c178a2b19dac363a19383Pirama Arumuga Nainar // Check for overlapping partitions.... 290f3ef5332fa3f4d5ec72c178a2b19dac363a19383Pirama Arumuga Nainar problems += FindOverlaps(); 291f3ef5332fa3f4d5ec72c178a2b19dac363a19383Pirama Arumuga Nainar 292f3ef5332fa3f4d5ec72c178a2b19dac363a19383Pirama Arumuga Nainar // Check for insane partitions (start after end, hugely big, etc.) 293f3ef5332fa3f4d5ec72c178a2b19dac363a19383Pirama Arumuga Nainar problems += FindInsanePartitions(); 294f3ef5332fa3f4d5ec72c178a2b19dac363a19383Pirama Arumuga Nainar 295f3ef5332fa3f4d5ec72c178a2b19dac363a19383Pirama Arumuga Nainar // Check for mismatched MBR and GPT partitions... 296f3ef5332fa3f4d5ec72c178a2b19dac363a19383Pirama Arumuga Nainar problems += FindHybridMismatches(); 297f3ef5332fa3f4d5ec72c178a2b19dac363a19383Pirama Arumuga Nainar 298f3ef5332fa3f4d5ec72c178a2b19dac363a19383Pirama Arumuga Nainar // Check for MBR-specific problems.... 299f3ef5332fa3f4d5ec72c178a2b19dac363a19383Pirama Arumuga Nainar problems += VerifyMBR(); 300f3ef5332fa3f4d5ec72c178a2b19dac363a19383Pirama Arumuga Nainar 301f3ef5332fa3f4d5ec72c178a2b19dac363a19383Pirama Arumuga Nainar // Check for a 0xEE protective partition that's marked as active.... 302f3ef5332fa3f4d5ec72c178a2b19dac363a19383Pirama Arumuga Nainar if (protectiveMBR.IsEEActive()) { 303f3ef5332fa3f4d5ec72c178a2b19dac363a19383Pirama Arumuga Nainar cout << "\nWarning: The 0xEE protective partition in the MBR is marked as active. This is\n" 304f3ef5332fa3f4d5ec72c178a2b19dac363a19383Pirama Arumuga Nainar << "technically a violation of the GPT specification, and can cause some EFIs to\n" 305f3ef5332fa3f4d5ec72c178a2b19dac363a19383Pirama Arumuga Nainar << "ignore the disk, but it is required to boot from a GPT disk on some BIOS-based\n" 306f3ef5332fa3f4d5ec72c178a2b19dac363a19383Pirama Arumuga Nainar << "computers. You can clear this flag by creating a fresh protective MBR using\n" 307f3ef5332fa3f4d5ec72c178a2b19dac363a19383Pirama Arumuga Nainar << "the 'n' option on the experts' menu.\n"; 308f3ef5332fa3f4d5ec72c178a2b19dac363a19383Pirama Arumuga Nainar } 309f3ef5332fa3f4d5ec72c178a2b19dac363a19383Pirama Arumuga Nainar 310f3ef5332fa3f4d5ec72c178a2b19dac363a19383Pirama Arumuga Nainar // Verify that partitions don't run into GPT data areas.... 311f3ef5332fa3f4d5ec72c178a2b19dac363a19383Pirama Arumuga Nainar problems += CheckGPTSize(); 312f3ef5332fa3f4d5ec72c178a2b19dac363a19383Pirama Arumuga Nainar 313f3ef5332fa3f4d5ec72c178a2b19dac363a19383Pirama Arumuga Nainar if (!protectiveMBR.DoTheyFit()) { 314f3ef5332fa3f4d5ec72c178a2b19dac363a19383Pirama Arumuga Nainar cout << "\nPartition(s) in the protective MBR are too big for the disk! Creating a\n" 315f3ef5332fa3f4d5ec72c178a2b19dac363a19383Pirama Arumuga Nainar << "fresh protective or hybrid MBR is recommended.\n"; 316f3ef5332fa3f4d5ec72c178a2b19dac363a19383Pirama Arumuga Nainar problems++; 317f3ef5332fa3f4d5ec72c178a2b19dac363a19383Pirama Arumuga Nainar } 318f3ef5332fa3f4d5ec72c178a2b19dac363a19383Pirama Arumuga Nainar 319f3ef5332fa3f4d5ec72c178a2b19dac363a19383Pirama Arumuga Nainar // Check that partitions are aligned on proper boundaries (for WD Advanced 320f3ef5332fa3f4d5ec72c178a2b19dac363a19383Pirama Arumuga Nainar // Format and similar disks).... 321f3ef5332fa3f4d5ec72c178a2b19dac363a19383Pirama Arumuga Nainar for (i = 0; i < numParts; i++) { 322f3ef5332fa3f4d5ec72c178a2b19dac363a19383Pirama Arumuga Nainar if ((partitions[i].IsUsed()) && (partitions[i].GetFirstLBA() % sectorAlignment) != 0) { 323f3ef5332fa3f4d5ec72c178a2b19dac363a19383Pirama Arumuga Nainar cout << "\nCaution: Partition " << i + 1 << " doesn't begin on a " 324f3ef5332fa3f4d5ec72c178a2b19dac363a19383Pirama Arumuga Nainar << sectorAlignment << "-sector boundary. This may\nresult " 325f3ef5332fa3f4d5ec72c178a2b19dac363a19383Pirama Arumuga Nainar << "in degraded performance on some modern (2009 and later) hard disks.\n"; 326f3ef5332fa3f4d5ec72c178a2b19dac363a19383Pirama Arumuga Nainar alignProbs++; 327f3ef5332fa3f4d5ec72c178a2b19dac363a19383Pirama Arumuga Nainar } // if 328f3ef5332fa3f4d5ec72c178a2b19dac363a19383Pirama Arumuga Nainar } // for 329f3ef5332fa3f4d5ec72c178a2b19dac363a19383Pirama Arumuga Nainar if (alignProbs > 0) 330f3ef5332fa3f4d5ec72c178a2b19dac363a19383Pirama Arumuga Nainar cout << "\nConsult http://www.ibm.com/developerworks/linux/library/l-4kb-sector-disks/\n" 331f3ef5332fa3f4d5ec72c178a2b19dac363a19383Pirama Arumuga Nainar << "for information on disk alignment.\n"; 332f3ef5332fa3f4d5ec72c178a2b19dac363a19383Pirama Arumuga Nainar 333f3ef5332fa3f4d5ec72c178a2b19dac363a19383Pirama Arumuga Nainar // Now compute available space, but only if no problems found, since 334f3ef5332fa3f4d5ec72c178a2b19dac363a19383Pirama Arumuga Nainar // problems could affect the results 335f3ef5332fa3f4d5ec72c178a2b19dac363a19383Pirama Arumuga Nainar if (problems == 0) { 336f3ef5332fa3f4d5ec72c178a2b19dac363a19383Pirama Arumuga Nainar totalFree = FindFreeBlocks(&numSegments, &largestSegment); 337f3ef5332fa3f4d5ec72c178a2b19dac363a19383Pirama Arumuga Nainar cout << "\nNo problems found. " << totalFree << " free sectors (" 338f3ef5332fa3f4d5ec72c178a2b19dac363a19383Pirama Arumuga Nainar << BytesToIeee(totalFree, blockSize) << ") available in " 339f3ef5332fa3f4d5ec72c178a2b19dac363a19383Pirama Arumuga Nainar << numSegments << "\nsegments, the largest of which is " 340f3ef5332fa3f4d5ec72c178a2b19dac363a19383Pirama Arumuga Nainar << largestSegment << " (" << BytesToIeee(largestSegment, blockSize) 341f3ef5332fa3f4d5ec72c178a2b19dac363a19383Pirama Arumuga Nainar << ") in size.\n"; 342f3ef5332fa3f4d5ec72c178a2b19dac363a19383Pirama Arumuga Nainar } else { 343f3ef5332fa3f4d5ec72c178a2b19dac363a19383Pirama Arumuga Nainar cout << "\nIdentified " << problems << " problems!\n"; 344f3ef5332fa3f4d5ec72c178a2b19dac363a19383Pirama Arumuga Nainar } // if/else 345f3ef5332fa3f4d5ec72c178a2b19dac363a19383Pirama Arumuga Nainar 346f3ef5332fa3f4d5ec72c178a2b19dac363a19383Pirama Arumuga Nainar return (problems); 347f3ef5332fa3f4d5ec72c178a2b19dac363a19383Pirama Arumuga Nainar} // GPTData::Verify() 348f3ef5332fa3f4d5ec72c178a2b19dac363a19383Pirama Arumuga Nainar 349f3ef5332fa3f4d5ec72c178a2b19dac363a19383Pirama Arumuga Nainar// Checks to see if the GPT tables overrun existing partitions; if they 350f3ef5332fa3f4d5ec72c178a2b19dac363a19383Pirama Arumuga Nainar// do, issues a warning but takes no action. Returns number of problems 351f3ef5332fa3f4d5ec72c178a2b19dac363a19383Pirama Arumuga Nainar// detected (0 if OK, 1 to 2 if problems). 352f3ef5332fa3f4d5ec72c178a2b19dac363a19383Pirama Arumuga Nainarint GPTData::CheckGPTSize(void) { 353f3ef5332fa3f4d5ec72c178a2b19dac363a19383Pirama Arumuga Nainar uint64_t overlap, firstUsedBlock, lastUsedBlock; 354f3ef5332fa3f4d5ec72c178a2b19dac363a19383Pirama Arumuga Nainar uint32_t i; 355f3ef5332fa3f4d5ec72c178a2b19dac363a19383Pirama Arumuga Nainar int numProbs = 0; 356f3ef5332fa3f4d5ec72c178a2b19dac363a19383Pirama Arumuga Nainar 357f3ef5332fa3f4d5ec72c178a2b19dac363a19383Pirama Arumuga Nainar // first, locate the first & last used blocks 358f3ef5332fa3f4d5ec72c178a2b19dac363a19383Pirama Arumuga Nainar firstUsedBlock = UINT64_MAX; 359f3ef5332fa3f4d5ec72c178a2b19dac363a19383Pirama Arumuga Nainar lastUsedBlock = 0; 360f3ef5332fa3f4d5ec72c178a2b19dac363a19383Pirama Arumuga Nainar for (i = 0; i < numParts; i++) { 361f3ef5332fa3f4d5ec72c178a2b19dac363a19383Pirama Arumuga Nainar if (partitions[i].IsUsed()) { 362f3ef5332fa3f4d5ec72c178a2b19dac363a19383Pirama Arumuga Nainar if (partitions[i].GetFirstLBA() < firstUsedBlock) 363f3ef5332fa3f4d5ec72c178a2b19dac363a19383Pirama Arumuga Nainar firstUsedBlock = partitions[i].GetFirstLBA(); 364f3ef5332fa3f4d5ec72c178a2b19dac363a19383Pirama Arumuga Nainar if (partitions[i].GetLastLBA() > lastUsedBlock) { 365f3ef5332fa3f4d5ec72c178a2b19dac363a19383Pirama Arumuga Nainar lastUsedBlock = partitions[i].GetLastLBA(); 366f3ef5332fa3f4d5ec72c178a2b19dac363a19383Pirama Arumuga Nainar } // if 367f3ef5332fa3f4d5ec72c178a2b19dac363a19383Pirama Arumuga Nainar } // if 368f3ef5332fa3f4d5ec72c178a2b19dac363a19383Pirama Arumuga Nainar } // for 369f3ef5332fa3f4d5ec72c178a2b19dac363a19383Pirama Arumuga Nainar 370f3ef5332fa3f4d5ec72c178a2b19dac363a19383Pirama Arumuga Nainar // If the disk size is 0 (the default), then it means that various 371f3ef5332fa3f4d5ec72c178a2b19dac363a19383Pirama Arumuga Nainar // variables aren't yet set, so the below tests will be useless; 372f3ef5332fa3f4d5ec72c178a2b19dac363a19383Pirama Arumuga Nainar // therefore we should skip everything 373f3ef5332fa3f4d5ec72c178a2b19dac363a19383Pirama Arumuga Nainar if (diskSize != 0) { 374f3ef5332fa3f4d5ec72c178a2b19dac363a19383Pirama Arumuga Nainar if (mainHeader.firstUsableLBA > firstUsedBlock) { 375f3ef5332fa3f4d5ec72c178a2b19dac363a19383Pirama Arumuga Nainar overlap = mainHeader.firstUsableLBA - firstUsedBlock; 376f3ef5332fa3f4d5ec72c178a2b19dac363a19383Pirama Arumuga Nainar cout << "Warning! Main partition table overlaps the first partition by " 377f3ef5332fa3f4d5ec72c178a2b19dac363a19383Pirama Arumuga Nainar << overlap << " blocks!\n"; 378f3ef5332fa3f4d5ec72c178a2b19dac363a19383Pirama Arumuga Nainar if (firstUsedBlock > 2) { 379f3ef5332fa3f4d5ec72c178a2b19dac363a19383Pirama Arumuga Nainar cout << "Try reducing the partition table size by " << overlap * 4 380f3ef5332fa3f4d5ec72c178a2b19dac363a19383Pirama Arumuga Nainar << " entries.\n(Use the 's' item on the experts' menu.)\n"; 381f3ef5332fa3f4d5ec72c178a2b19dac363a19383Pirama Arumuga Nainar } else { 382f3ef5332fa3f4d5ec72c178a2b19dac363a19383Pirama Arumuga Nainar cout << "You will need to delete this partition or resize it in another utility.\n"; 383f3ef5332fa3f4d5ec72c178a2b19dac363a19383Pirama Arumuga Nainar } // if/else 384f3ef5332fa3f4d5ec72c178a2b19dac363a19383Pirama Arumuga Nainar numProbs++; 385f3ef5332fa3f4d5ec72c178a2b19dac363a19383Pirama Arumuga Nainar } // Problem at start of disk 386f3ef5332fa3f4d5ec72c178a2b19dac363a19383Pirama Arumuga Nainar if (mainHeader.lastUsableLBA < lastUsedBlock) { 387f3ef5332fa3f4d5ec72c178a2b19dac363a19383Pirama Arumuga Nainar overlap = lastUsedBlock - mainHeader.lastUsableLBA; 388f3ef5332fa3f4d5ec72c178a2b19dac363a19383Pirama Arumuga Nainar cout << "\nWarning! Secondary partition table overlaps the last partition by\n" 389f3ef5332fa3f4d5ec72c178a2b19dac363a19383Pirama Arumuga Nainar << overlap << " blocks!\n"; 390f3ef5332fa3f4d5ec72c178a2b19dac363a19383Pirama Arumuga Nainar if (lastUsedBlock > (diskSize - 2)) { 391de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar cout << "You will need to delete this partition or resize it in another utility.\n"; 392de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar } else { 393de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar cout << "Try reducing the partition table size by " << overlap * 4 394de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar << " entries.\n(Use the 's' item on the experts' menu.)\n"; 395de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar } // if/else 396de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar numProbs++; 397de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar } // Problem at end of disk 398de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar } // if (diskSize != 0) 399de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar return numProbs; 400de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar} // GPTData::CheckGPTSize() 401de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar 402de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar// Check the validity of the GPT header. Returns 1 if the main header 403de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar// is valid, 2 if the backup header is valid, 3 if both are valid, and 404de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar// 0 if neither is valid. Note that this function checks the GPT signature, 405de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar// revision value, and CRCs in both headers. 406de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainarint GPTData::CheckHeaderValidity(void) { 407de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar int valid = 3; 408de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar 409de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar cout.setf(ios::uppercase); 410de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar cout.fill('0'); 411de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar 412de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar // Note: failed GPT signature checks produce no error message because 413de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar // a message is displayed in the ReversePartitionBytes() function 414de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar if ((mainHeader.signature != GPT_SIGNATURE) || (!CheckHeaderCRC(&mainHeader, 1))) { 415de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar valid -= 1; 416de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar } else if ((mainHeader.revision != 0x00010000) && valid) { 417de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar valid -= 1; 418de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar cout << "Unsupported GPT version in main header; read 0x"; 4196948897e478cbd66626159776a8017b3c18579b9Pirama Arumuga Nainar cout.width(8); 4206948897e478cbd66626159776a8017b3c18579b9Pirama Arumuga Nainar cout << hex << mainHeader.revision << ", should be\n0x"; 4216948897e478cbd66626159776a8017b3c18579b9Pirama Arumuga Nainar cout.width(8); 4226948897e478cbd66626159776a8017b3c18579b9Pirama Arumuga Nainar cout << UINT32_C(0x00010000) << dec << "\n"; 4236948897e478cbd66626159776a8017b3c18579b9Pirama Arumuga Nainar } // if/else/if 4244c5e43da7792f75567b693105cc53e3f1992ad98Pirama Arumuga Nainar 4254c5e43da7792f75567b693105cc53e3f1992ad98Pirama Arumuga Nainar if ((secondHeader.signature != GPT_SIGNATURE) || (!CheckHeaderCRC(&secondHeader))) { 4266948897e478cbd66626159776a8017b3c18579b9Pirama Arumuga Nainar valid -= 2; 4274c5e43da7792f75567b693105cc53e3f1992ad98Pirama Arumuga Nainar } else if ((secondHeader.revision != 0x00010000) && valid) { 4284c5e43da7792f75567b693105cc53e3f1992ad98Pirama Arumuga Nainar valid -= 2; 4296948897e478cbd66626159776a8017b3c18579b9Pirama Arumuga Nainar cout << "Unsupported GPT version in backup header; read 0x"; 4306948897e478cbd66626159776a8017b3c18579b9Pirama Arumuga Nainar cout.width(8); 4314c5e43da7792f75567b693105cc53e3f1992ad98Pirama Arumuga Nainar cout << hex << secondHeader.revision << ", should be\n0x"; 4326948897e478cbd66626159776a8017b3c18579b9Pirama Arumuga Nainar cout.width(8); 4336948897e478cbd66626159776a8017b3c18579b9Pirama Arumuga Nainar cout << UINT32_C(0x00010000) << dec << "\n"; 4344c5e43da7792f75567b693105cc53e3f1992ad98Pirama Arumuga Nainar } // if/else/if 4354c5e43da7792f75567b693105cc53e3f1992ad98Pirama Arumuga Nainar 4366948897e478cbd66626159776a8017b3c18579b9Pirama Arumuga Nainar // Check for an Apple disk signature 4376948897e478cbd66626159776a8017b3c18579b9Pirama Arumuga Nainar if (((mainHeader.signature << 32) == APM_SIGNATURE1) || 4384c5e43da7792f75567b693105cc53e3f1992ad98Pirama Arumuga Nainar (mainHeader.signature << 32) == APM_SIGNATURE2) { 4396948897e478cbd66626159776a8017b3c18579b9Pirama Arumuga Nainar apmFound = 1; // Will display warning message later 4406948897e478cbd66626159776a8017b3c18579b9Pirama Arumuga Nainar } // if 4416948897e478cbd66626159776a8017b3c18579b9Pirama Arumuga Nainar cout.fill(' '); 4426948897e478cbd66626159776a8017b3c18579b9Pirama Arumuga Nainar 4436948897e478cbd66626159776a8017b3c18579b9Pirama Arumuga Nainar return valid; 4446948897e478cbd66626159776a8017b3c18579b9Pirama Arumuga Nainar} // GPTData::CheckHeaderValidity() 4456948897e478cbd66626159776a8017b3c18579b9Pirama Arumuga Nainar 4466948897e478cbd66626159776a8017b3c18579b9Pirama Arumuga Nainar// Check the header CRC to see if it's OK... 4476948897e478cbd66626159776a8017b3c18579b9Pirama Arumuga Nainar// Note: Must be called with header in platform-ordered byte order. 4486948897e478cbd66626159776a8017b3c18579b9Pirama Arumuga Nainar// Returns 1 if header's computed CRC matches the stored value, 0 if the 4496948897e478cbd66626159776a8017b3c18579b9Pirama Arumuga Nainar// computed and stored values don't match 4506948897e478cbd66626159776a8017b3c18579b9Pirama Arumuga Nainarint GPTData::CheckHeaderCRC(struct GPTHeader* header, int warn) { 4516948897e478cbd66626159776a8017b3c18579b9Pirama Arumuga Nainar uint32_t oldCRC, newCRC, hSize; 4526948897e478cbd66626159776a8017b3c18579b9Pirama Arumuga Nainar uint8_t *temp; 4536948897e478cbd66626159776a8017b3c18579b9Pirama Arumuga Nainar 4546948897e478cbd66626159776a8017b3c18579b9Pirama Arumuga Nainar // Back up old header CRC and then blank it, since it must be 0 for 4556948897e478cbd66626159776a8017b3c18579b9Pirama Arumuga Nainar // computation to be valid 4566948897e478cbd66626159776a8017b3c18579b9Pirama Arumuga Nainar oldCRC = header->headerCRC; 4576948897e478cbd66626159776a8017b3c18579b9Pirama Arumuga Nainar header->headerCRC = UINT32_C(0); 4584c5e43da7792f75567b693105cc53e3f1992ad98Pirama Arumuga Nainar 4594c5e43da7792f75567b693105cc53e3f1992ad98Pirama Arumuga Nainar hSize = header->headerSize; 4606948897e478cbd66626159776a8017b3c18579b9Pirama Arumuga Nainar 4614c5e43da7792f75567b693105cc53e3f1992ad98Pirama Arumuga Nainar if (IsLittleEndian() == 0) 4626948897e478cbd66626159776a8017b3c18579b9Pirama Arumuga Nainar ReverseHeaderBytes(header); 4636948897e478cbd66626159776a8017b3c18579b9Pirama Arumuga Nainar 4646948897e478cbd66626159776a8017b3c18579b9Pirama Arumuga Nainar if ((hSize > blockSize) || (hSize < HEADER_SIZE)) { 4656948897e478cbd66626159776a8017b3c18579b9Pirama Arumuga Nainar if (warn) { 4664c5e43da7792f75567b693105cc53e3f1992ad98Pirama Arumuga Nainar cerr << "\aWarning! Header size is specified as " << hSize << ", which is invalid.\n"; 4676948897e478cbd66626159776a8017b3c18579b9Pirama Arumuga Nainar cerr << "Setting the header size for CRC computation to " << HEADER_SIZE << "\n"; 4686948897e478cbd66626159776a8017b3c18579b9Pirama Arumuga Nainar } // if 4696948897e478cbd66626159776a8017b3c18579b9Pirama Arumuga Nainar hSize = HEADER_SIZE; 4706948897e478cbd66626159776a8017b3c18579b9Pirama Arumuga Nainar } else if ((hSize > sizeof(GPTHeader)) && warn) { 4716948897e478cbd66626159776a8017b3c18579b9Pirama Arumuga Nainar cout << "\aCaution! Header size for CRC check is " << hSize << ", which is greater than " << sizeof(GPTHeader) << ".\n"; 4726948897e478cbd66626159776a8017b3c18579b9Pirama Arumuga Nainar cout << "If stray data exists after the header on the header sector, it will be ignored,\n" 4736948897e478cbd66626159776a8017b3c18579b9Pirama Arumuga Nainar << "which may result in a CRC false alarm.\n"; 4746948897e478cbd66626159776a8017b3c18579b9Pirama Arumuga Nainar } // if/elseif 4756948897e478cbd66626159776a8017b3c18579b9Pirama Arumuga Nainar temp = new uint8_t[hSize]; 4766948897e478cbd66626159776a8017b3c18579b9Pirama Arumuga Nainar if (temp != NULL) { 4776948897e478cbd66626159776a8017b3c18579b9Pirama Arumuga Nainar memset(temp, 0, hSize); 4786948897e478cbd66626159776a8017b3c18579b9Pirama Arumuga Nainar if (hSize < sizeof(GPTHeader)) 4794c5e43da7792f75567b693105cc53e3f1992ad98Pirama Arumuga Nainar memcpy(temp, header, hSize); 4804c5e43da7792f75567b693105cc53e3f1992ad98Pirama Arumuga Nainar else 4814c5e43da7792f75567b693105cc53e3f1992ad98Pirama Arumuga Nainar memcpy(temp, header, sizeof(GPTHeader)); 4824c5e43da7792f75567b693105cc53e3f1992ad98Pirama Arumuga Nainar 4836948897e478cbd66626159776a8017b3c18579b9Pirama Arumuga Nainar newCRC = chksum_crc32((unsigned char*) temp, hSize); 4846948897e478cbd66626159776a8017b3c18579b9Pirama Arumuga Nainar delete[] temp; 4856948897e478cbd66626159776a8017b3c18579b9Pirama Arumuga Nainar } else { 4864c5e43da7792f75567b693105cc53e3f1992ad98Pirama Arumuga Nainar cerr << "Could not allocate memory in GPTData::CheckHeaderCRC()! Aborting!\n"; 4874c5e43da7792f75567b693105cc53e3f1992ad98Pirama Arumuga Nainar exit(1); 4884c5e43da7792f75567b693105cc53e3f1992ad98Pirama Arumuga Nainar } 4894c5e43da7792f75567b693105cc53e3f1992ad98Pirama Arumuga Nainar if (IsLittleEndian() == 0) 4906948897e478cbd66626159776a8017b3c18579b9Pirama Arumuga Nainar ReverseHeaderBytes(header); 4916948897e478cbd66626159776a8017b3c18579b9Pirama Arumuga Nainar header->headerCRC = oldCRC; 4926948897e478cbd66626159776a8017b3c18579b9Pirama Arumuga Nainar return (oldCRC == newCRC); 4934c5e43da7792f75567b693105cc53e3f1992ad98Pirama Arumuga Nainar} // GPTData::CheckHeaderCRC() 4944c5e43da7792f75567b693105cc53e3f1992ad98Pirama Arumuga Nainar 4954c5e43da7792f75567b693105cc53e3f1992ad98Pirama Arumuga Nainar// Recompute all the CRCs. Must be called before saving if any changes have 4964c5e43da7792f75567b693105cc53e3f1992ad98Pirama Arumuga Nainar// been made. Must be called on platform-ordered data (this function reverses 4976948897e478cbd66626159776a8017b3c18579b9Pirama Arumuga Nainar// byte order and then undoes that reversal.) 4986948897e478cbd66626159776a8017b3c18579b9Pirama Arumuga Nainarvoid GPTData::RecomputeCRCs(void) { 4996948897e478cbd66626159776a8017b3c18579b9Pirama Arumuga Nainar uint32_t crc, hSize; 5006948897e478cbd66626159776a8017b3c18579b9Pirama Arumuga Nainar int littleEndian = 1; 5014c5e43da7792f75567b693105cc53e3f1992ad98Pirama Arumuga Nainar 5026948897e478cbd66626159776a8017b3c18579b9Pirama Arumuga Nainar // If the header size is bigger than the GPT header data structure, reset it; 5036948897e478cbd66626159776a8017b3c18579b9Pirama Arumuga Nainar // otherwise, set both header sizes to whatever the main one is.... 5046948897e478cbd66626159776a8017b3c18579b9Pirama Arumuga Nainar if (mainHeader.headerSize > sizeof(GPTHeader)) 5056948897e478cbd66626159776a8017b3c18579b9Pirama Arumuga Nainar hSize = secondHeader.headerSize = mainHeader.headerSize = HEADER_SIZE; 5066948897e478cbd66626159776a8017b3c18579b9Pirama Arumuga Nainar else 5076948897e478cbd66626159776a8017b3c18579b9Pirama Arumuga Nainar hSize = secondHeader.headerSize = mainHeader.headerSize; 5086948897e478cbd66626159776a8017b3c18579b9Pirama Arumuga Nainar 5096948897e478cbd66626159776a8017b3c18579b9Pirama Arumuga Nainar if ((littleEndian = IsLittleEndian()) == 0) { 5106948897e478cbd66626159776a8017b3c18579b9Pirama Arumuga Nainar ReversePartitionBytes(); 5116948897e478cbd66626159776a8017b3c18579b9Pirama Arumuga Nainar ReverseHeaderBytes(&mainHeader); 5126948897e478cbd66626159776a8017b3c18579b9Pirama Arumuga Nainar ReverseHeaderBytes(&secondHeader); 5136948897e478cbd66626159776a8017b3c18579b9Pirama Arumuga Nainar } // if 5144c5e43da7792f75567b693105cc53e3f1992ad98Pirama Arumuga Nainar 5154c5e43da7792f75567b693105cc53e3f1992ad98Pirama Arumuga Nainar // Compute CRC of partition tables & store in main and secondary headers 51638300e91f5ff2d427d98f81fb25df8cc2800d985Chris Lattner crc = chksum_crc32((unsigned char*) partitions, numParts * GPT_SIZE); 517bb97531a5a13c9d5b2f04b3b714037b1eff7e9a9Erick Tryzelaar mainHeader.partitionEntriesCRC = crc; 518bb97531a5a13c9d5b2f04b3b714037b1eff7e9a9Erick Tryzelaar secondHeader.partitionEntriesCRC = crc; 519bb97531a5a13c9d5b2f04b3b714037b1eff7e9a9Erick Tryzelaar if (littleEndian == 0) { 520bb97531a5a13c9d5b2f04b3b714037b1eff7e9a9Erick Tryzelaar ReverseBytes(&mainHeader.partitionEntriesCRC, 4); 521bb97531a5a13c9d5b2f04b3b714037b1eff7e9a9Erick Tryzelaar ReverseBytes(&secondHeader.partitionEntriesCRC, 4); 522bb97531a5a13c9d5b2f04b3b714037b1eff7e9a9Erick Tryzelaar } // if 523bb97531a5a13c9d5b2f04b3b714037b1eff7e9a9Erick Tryzelaar 524bb97531a5a13c9d5b2f04b3b714037b1eff7e9a9Erick Tryzelaar // Zero out GPT headers' own CRCs (required for correct computation) 525bb97531a5a13c9d5b2f04b3b714037b1eff7e9a9Erick Tryzelaar mainHeader.headerCRC = 0; 526bb97531a5a13c9d5b2f04b3b714037b1eff7e9a9Erick Tryzelaar secondHeader.headerCRC = 0; 527bb97531a5a13c9d5b2f04b3b714037b1eff7e9a9Erick Tryzelaar 528bb97531a5a13c9d5b2f04b3b714037b1eff7e9a9Erick Tryzelaar crc = chksum_crc32((unsigned char*) &mainHeader, hSize); 529393317975c0620360c54a6a3052c06db0b56f7e9Daniel Dunbar if (littleEndian == 0) 530393317975c0620360c54a6a3052c06db0b56f7e9Daniel Dunbar ReverseBytes(&crc, 4); 531393317975c0620360c54a6a3052c06db0b56f7e9Daniel Dunbar mainHeader.headerCRC = crc; 532393317975c0620360c54a6a3052c06db0b56f7e9Daniel Dunbar crc = chksum_crc32((unsigned char*) &secondHeader, hSize); 533393317975c0620360c54a6a3052c06db0b56f7e9Daniel Dunbar if (littleEndian == 0) 534bb97531a5a13c9d5b2f04b3b714037b1eff7e9a9Erick Tryzelaar ReverseBytes(&crc, 4); 535bb97531a5a13c9d5b2f04b3b714037b1eff7e9a9Erick Tryzelaar secondHeader.headerCRC = crc; 536bb97531a5a13c9d5b2f04b3b714037b1eff7e9a9Erick Tryzelaar 537bb97531a5a13c9d5b2f04b3b714037b1eff7e9a9Erick Tryzelaar if (littleEndian == 0) { 538bb97531a5a13c9d5b2f04b3b714037b1eff7e9a9Erick Tryzelaar ReverseHeaderBytes(&mainHeader); 539bb97531a5a13c9d5b2f04b3b714037b1eff7e9a9Erick Tryzelaar ReverseHeaderBytes(&secondHeader); 540bb97531a5a13c9d5b2f04b3b714037b1eff7e9a9Erick Tryzelaar ReversePartitionBytes(); 541bb97531a5a13c9d5b2f04b3b714037b1eff7e9a9Erick Tryzelaar } // if 542bb97531a5a13c9d5b2f04b3b714037b1eff7e9a9Erick Tryzelaar} // GPTData::RecomputeCRCs() 543bb97531a5a13c9d5b2f04b3b714037b1eff7e9a9Erick Tryzelaar 544bb97531a5a13c9d5b2f04b3b714037b1eff7e9a9Erick Tryzelaar// Rebuild the main GPT header, using the secondary header as a model. 545bb97531a5a13c9d5b2f04b3b714037b1eff7e9a9Erick Tryzelaar// Typically called when the main header has been found to be corrupt. 546bb97531a5a13c9d5b2f04b3b714037b1eff7e9a9Erick Tryzelaarvoid GPTData::RebuildMainHeader(void) { 547bb97531a5a13c9d5b2f04b3b714037b1eff7e9a9Erick Tryzelaar mainHeader.signature = GPT_SIGNATURE; 548bb97531a5a13c9d5b2f04b3b714037b1eff7e9a9Erick Tryzelaar mainHeader.revision = secondHeader.revision; 549bb97531a5a13c9d5b2f04b3b714037b1eff7e9a9Erick Tryzelaar mainHeader.headerSize = secondHeader.headerSize; 550f74610b5e79031ecb39a7ca67093ff9cda8852f3Daniel Dunbar mainHeader.headerCRC = UINT32_C(0); 551f74610b5e79031ecb39a7ca67093ff9cda8852f3Daniel Dunbar mainHeader.reserved = secondHeader.reserved; 552f74610b5e79031ecb39a7ca67093ff9cda8852f3Daniel Dunbar mainHeader.currentLBA = secondHeader.backupLBA; 553f74610b5e79031ecb39a7ca67093ff9cda8852f3Daniel Dunbar mainHeader.backupLBA = secondHeader.currentLBA; 554f74610b5e79031ecb39a7ca67093ff9cda8852f3Daniel Dunbar mainHeader.firstUsableLBA = secondHeader.firstUsableLBA; 555f74610b5e79031ecb39a7ca67093ff9cda8852f3Daniel Dunbar mainHeader.lastUsableLBA = secondHeader.lastUsableLBA; 556bb97531a5a13c9d5b2f04b3b714037b1eff7e9a9Erick Tryzelaar mainHeader.diskGUID = secondHeader.diskGUID; 557bb97531a5a13c9d5b2f04b3b714037b1eff7e9a9Erick Tryzelaar mainHeader.partitionEntriesLBA = UINT64_C(2); 558bb97531a5a13c9d5b2f04b3b714037b1eff7e9a9Erick Tryzelaar mainHeader.numParts = secondHeader.numParts; 559bb97531a5a13c9d5b2f04b3b714037b1eff7e9a9Erick Tryzelaar mainHeader.sizeOfPartitionEntries = secondHeader.sizeOfPartitionEntries; 560bb97531a5a13c9d5b2f04b3b714037b1eff7e9a9Erick Tryzelaar mainHeader.partitionEntriesCRC = secondHeader.partitionEntriesCRC; 561bb97531a5a13c9d5b2f04b3b714037b1eff7e9a9Erick Tryzelaar memcpy(mainHeader.reserved2, secondHeader.reserved2, sizeof(mainHeader.reserved2)); 562bb97531a5a13c9d5b2f04b3b714037b1eff7e9a9Erick Tryzelaar mainCrcOk = secondCrcOk; 563bb97531a5a13c9d5b2f04b3b714037b1eff7e9a9Erick Tryzelaar SetGPTSize(mainHeader.numParts, 0); 564bb97531a5a13c9d5b2f04b3b714037b1eff7e9a9Erick Tryzelaar} // GPTData::RebuildMainHeader() 565f74610b5e79031ecb39a7ca67093ff9cda8852f3Daniel Dunbar 566f74610b5e79031ecb39a7ca67093ff9cda8852f3Daniel Dunbar// Rebuild the secondary GPT header, using the main header as a model. 567f74610b5e79031ecb39a7ca67093ff9cda8852f3Daniel Dunbarvoid GPTData::RebuildSecondHeader(void) { 568f74610b5e79031ecb39a7ca67093ff9cda8852f3Daniel Dunbar secondHeader.signature = GPT_SIGNATURE; 569f74610b5e79031ecb39a7ca67093ff9cda8852f3Daniel Dunbar secondHeader.revision = mainHeader.revision; 570f74610b5e79031ecb39a7ca67093ff9cda8852f3Daniel Dunbar secondHeader.headerSize = mainHeader.headerSize; 571bb97531a5a13c9d5b2f04b3b714037b1eff7e9a9Erick Tryzelaar secondHeader.headerCRC = UINT32_C(0); 572bb97531a5a13c9d5b2f04b3b714037b1eff7e9a9Erick Tryzelaar secondHeader.reserved = mainHeader.reserved; 573bb97531a5a13c9d5b2f04b3b714037b1eff7e9a9Erick Tryzelaar secondHeader.currentLBA = mainHeader.backupLBA; 574bb97531a5a13c9d5b2f04b3b714037b1eff7e9a9Erick Tryzelaar secondHeader.backupLBA = mainHeader.currentLBA; 575bb97531a5a13c9d5b2f04b3b714037b1eff7e9a9Erick Tryzelaar secondHeader.firstUsableLBA = mainHeader.firstUsableLBA; 576bb97531a5a13c9d5b2f04b3b714037b1eff7e9a9Erick Tryzelaar secondHeader.lastUsableLBA = mainHeader.lastUsableLBA; 577bb97531a5a13c9d5b2f04b3b714037b1eff7e9a9Erick Tryzelaar secondHeader.diskGUID = mainHeader.diskGUID; 578bb97531a5a13c9d5b2f04b3b714037b1eff7e9a9Erick Tryzelaar secondHeader.partitionEntriesLBA = secondHeader.lastUsableLBA + UINT64_C(1); 579bb97531a5a13c9d5b2f04b3b714037b1eff7e9a9Erick Tryzelaar secondHeader.numParts = mainHeader.numParts; 580f74610b5e79031ecb39a7ca67093ff9cda8852f3Daniel Dunbar secondHeader.sizeOfPartitionEntries = mainHeader.sizeOfPartitionEntries; 581f74610b5e79031ecb39a7ca67093ff9cda8852f3Daniel Dunbar secondHeader.partitionEntriesCRC = mainHeader.partitionEntriesCRC; 582f74610b5e79031ecb39a7ca67093ff9cda8852f3Daniel Dunbar memcpy(secondHeader.reserved2, mainHeader.reserved2, sizeof(secondHeader.reserved2)); 583f74610b5e79031ecb39a7ca67093ff9cda8852f3Daniel Dunbar secondCrcOk = mainCrcOk; 584f74610b5e79031ecb39a7ca67093ff9cda8852f3Daniel Dunbar SetGPTSize(secondHeader.numParts, 0); 585f74610b5e79031ecb39a7ca67093ff9cda8852f3Daniel Dunbar} // GPTData::RebuildSecondHeader() 586dcd999624159842886d4be21efcc3ba0e61bab99Douglas Gregor 587dcd999624159842886d4be21efcc3ba0e61bab99Douglas Gregor// Search for hybrid MBR entries that have no corresponding GPT partition. 588dcd999624159842886d4be21efcc3ba0e61bab99Douglas Gregor// Returns number of such mismatches found 589dcd999624159842886d4be21efcc3ba0e61bab99Douglas Gregorint GPTData::FindHybridMismatches(void) { 590dcd999624159842886d4be21efcc3ba0e61bab99Douglas Gregor int i, found, numFound = 0; 591dcd999624159842886d4be21efcc3ba0e61bab99Douglas Gregor uint32_t j; 592dcd999624159842886d4be21efcc3ba0e61bab99Douglas Gregor uint64_t mbrFirst, mbrLast; 593dcd999624159842886d4be21efcc3ba0e61bab99Douglas Gregor 594dcd999624159842886d4be21efcc3ba0e61bab99Douglas Gregor for (i = 0; i < 4; i++) { 595dcd999624159842886d4be21efcc3ba0e61bab99Douglas Gregor if ((protectiveMBR.GetType(i) != 0xEE) && (protectiveMBR.GetType(i) != 0x00)) { 596dcd999624159842886d4be21efcc3ba0e61bab99Douglas Gregor j = 0; 597dcd999624159842886d4be21efcc3ba0e61bab99Douglas Gregor found = 0; 598dcd999624159842886d4be21efcc3ba0e61bab99Douglas Gregor mbrFirst = (uint64_t) protectiveMBR.GetFirstSector(i); 599dcd999624159842886d4be21efcc3ba0e61bab99Douglas Gregor mbrLast = mbrFirst + (uint64_t) protectiveMBR.GetLength(i) - UINT64_C(1); 60038300e91f5ff2d427d98f81fb25df8cc2800d985Chris Lattner do { 60138300e91f5ff2d427d98f81fb25df8cc2800d985Chris Lattner if ((j < numParts) && (partitions[j].GetFirstLBA() == mbrFirst) && 6023ba292dbc2acee2d1052fb7ffe332e2164147b47Jeffrey Yasskin (partitions[j].GetLastLBA() == mbrLast) && (partitions[j].IsUsed())) 6033ba292dbc2acee2d1052fb7ffe332e2164147b47Jeffrey Yasskin found = 1; 6043ba292dbc2acee2d1052fb7ffe332e2164147b47Jeffrey Yasskin j++; 6053ba292dbc2acee2d1052fb7ffe332e2164147b47Jeffrey Yasskin } while ((!found) && (j < numParts)); 606ae8f78d4de403965603ed2b61898d820db2449f9Erick Tryzelaar if (!found) { 607ae8f78d4de403965603ed2b61898d820db2449f9Erick Tryzelaar numFound++; 608ae8f78d4de403965603ed2b61898d820db2449f9Erick Tryzelaar cout << "\nWarning! Mismatched GPT and MBR partition! MBR partition " 609ae8f78d4de403965603ed2b61898d820db2449f9Erick Tryzelaar << i + 1 << ", of type 0x"; 610ae8f78d4de403965603ed2b61898d820db2449f9Erick Tryzelaar cout.fill('0'); 611ae8f78d4de403965603ed2b61898d820db2449f9Erick Tryzelaar cout.setf(ios::uppercase); 612ae8f78d4de403965603ed2b61898d820db2449f9Erick Tryzelaar cout.width(2); 613ae8f78d4de403965603ed2b61898d820db2449f9Erick Tryzelaar cout << hex << (int) protectiveMBR.GetType(i) << ",\n" 614ae8f78d4de403965603ed2b61898d820db2449f9Erick Tryzelaar << "has no corresponding GPT partition! You may continue, but this condition\n" 615ae8f78d4de403965603ed2b61898d820db2449f9Erick Tryzelaar << "might cause data loss in the future!\a\n" << dec; 616ae8f78d4de403965603ed2b61898d820db2449f9Erick Tryzelaar cout.fill(' '); 617ae8f78d4de403965603ed2b61898d820db2449f9Erick Tryzelaar } // if 618ae8f78d4de403965603ed2b61898d820db2449f9Erick Tryzelaar } // if 619ae8f78d4de403965603ed2b61898d820db2449f9Erick Tryzelaar } // for 620ae8f78d4de403965603ed2b61898d820db2449f9Erick Tryzelaar return numFound; 621ae8f78d4de403965603ed2b61898d820db2449f9Erick Tryzelaar} // GPTData::FindHybridMismatches 622ae8f78d4de403965603ed2b61898d820db2449f9Erick Tryzelaar 623ae8f78d4de403965603ed2b61898d820db2449f9Erick Tryzelaar// Find overlapping partitions and warn user about them. Returns number of 624ae8f78d4de403965603ed2b61898d820db2449f9Erick Tryzelaar// overlapping partitions. 625ae8f78d4de403965603ed2b61898d820db2449f9Erick Tryzelaar// Returns number of overlapping segments found. 626ae8f78d4de403965603ed2b61898d820db2449f9Erick Tryzelaarint GPTData::FindOverlaps(void) { 627ae8f78d4de403965603ed2b61898d820db2449f9Erick Tryzelaar int problems = 0; 628ae8f78d4de403965603ed2b61898d820db2449f9Erick Tryzelaar uint32_t i, j; 629ae8f78d4de403965603ed2b61898d820db2449f9Erick Tryzelaar 630ae8f78d4de403965603ed2b61898d820db2449f9Erick Tryzelaar for (i = 1; i < numParts; i++) { 631ae8f78d4de403965603ed2b61898d820db2449f9Erick Tryzelaar for (j = 0; j < i; j++) { 632ae8f78d4de403965603ed2b61898d820db2449f9Erick Tryzelaar if ((partitions[i].IsUsed()) && (partitions[j].IsUsed()) && 633ae8f78d4de403965603ed2b61898d820db2449f9Erick Tryzelaar (partitions[i].DoTheyOverlap(partitions[j]))) { 634ae8f78d4de403965603ed2b61898d820db2449f9Erick Tryzelaar problems++; 635ae8f78d4de403965603ed2b61898d820db2449f9Erick Tryzelaar cout << "\nProblem: partitions " << i + 1 << " and " << j + 1 << " overlap:\n"; 636ae8f78d4de403965603ed2b61898d820db2449f9Erick Tryzelaar cout << " Partition " << i + 1 << ": " << partitions[i].GetFirstLBA() 637ae8f78d4de403965603ed2b61898d820db2449f9Erick Tryzelaar << " to " << partitions[i].GetLastLBA() << "\n"; 638ae8f78d4de403965603ed2b61898d820db2449f9Erick Tryzelaar cout << " Partition " << j + 1 << ": " << partitions[j].GetFirstLBA() 639ae8f78d4de403965603ed2b61898d820db2449f9Erick Tryzelaar << " to " << partitions[j].GetLastLBA() << "\n"; 640ae8f78d4de403965603ed2b61898d820db2449f9Erick Tryzelaar } // if 641ae8f78d4de403965603ed2b61898d820db2449f9Erick Tryzelaar } // for j... 642ae8f78d4de403965603ed2b61898d820db2449f9Erick Tryzelaar } // for i... 643ae8f78d4de403965603ed2b61898d820db2449f9Erick Tryzelaar return problems; 644ae8f78d4de403965603ed2b61898d820db2449f9Erick Tryzelaar} // GPTData::FindOverlaps() 645ae8f78d4de403965603ed2b61898d820db2449f9Erick Tryzelaar 646ae8f78d4de403965603ed2b61898d820db2449f9Erick Tryzelaar// Find partitions that are insane -- they start after they end or are too 647ae8f78d4de403965603ed2b61898d820db2449f9Erick Tryzelaar// big for the disk. (The latter should duplicate detection of overlaps 648ae8f78d4de403965603ed2b61898d820db2449f9Erick Tryzelaar// with GPT backup data structures, but better to err on the side of 649ae8f78d4de403965603ed2b61898d820db2449f9Erick Tryzelaar// redundant tests than to miss something....) 650ae8f78d4de403965603ed2b61898d820db2449f9Erick Tryzelaar// Returns number of problems found. 651ae8f78d4de403965603ed2b61898d820db2449f9Erick Tryzelaarint GPTData::FindInsanePartitions(void) { 652ae8f78d4de403965603ed2b61898d820db2449f9Erick Tryzelaar uint32_t i; 653ae8f78d4de403965603ed2b61898d820db2449f9Erick Tryzelaar int problems = 0; 654ae8f78d4de403965603ed2b61898d820db2449f9Erick Tryzelaar 655ae8f78d4de403965603ed2b61898d820db2449f9Erick Tryzelaar for (i = 0; i < numParts; i++) { 656ae8f78d4de403965603ed2b61898d820db2449f9Erick Tryzelaar if (partitions[i].IsUsed()) { 657ae8f78d4de403965603ed2b61898d820db2449f9Erick Tryzelaar if (partitions[i].GetFirstLBA() > partitions[i].GetLastLBA()) { 658ae8f78d4de403965603ed2b61898d820db2449f9Erick Tryzelaar problems++; 659ae8f78d4de403965603ed2b61898d820db2449f9Erick Tryzelaar cout << "\nProblem: partition " << i + 1 << " ends before it begins.\n"; 660ae8f78d4de403965603ed2b61898d820db2449f9Erick Tryzelaar } // if 661ae8f78d4de403965603ed2b61898d820db2449f9Erick Tryzelaar if (partitions[i].GetLastLBA() >= diskSize) { 662ae8f78d4de403965603ed2b61898d820db2449f9Erick Tryzelaar problems++; 663ae8f78d4de403965603ed2b61898d820db2449f9Erick Tryzelaar cout << "\nProblem: partition " << i + 1 << " is too big for the disk.\n"; 664ae8f78d4de403965603ed2b61898d820db2449f9Erick Tryzelaar } // if 665ae8f78d4de403965603ed2b61898d820db2449f9Erick Tryzelaar } // if 666ae8f78d4de403965603ed2b61898d820db2449f9Erick Tryzelaar } // for 667ae8f78d4de403965603ed2b61898d820db2449f9Erick Tryzelaar return problems; 668ae8f78d4de403965603ed2b61898d820db2449f9Erick Tryzelaar} // GPTData::FindInsanePartitions(void) 669ae8f78d4de403965603ed2b61898d820db2449f9Erick Tryzelaar 670ae8f78d4de403965603ed2b61898d820db2449f9Erick Tryzelaar 671ae8f78d4de403965603ed2b61898d820db2449f9Erick Tryzelaar/****************************************************************** 672ae8f78d4de403965603ed2b61898d820db2449f9Erick Tryzelaar * * 673ae8f78d4de403965603ed2b61898d820db2449f9Erick Tryzelaar * Begin functions that load data from disk or save data to disk. * 674ae8f78d4de403965603ed2b61898d820db2449f9Erick Tryzelaar * * 675ae8f78d4de403965603ed2b61898d820db2449f9Erick Tryzelaar ******************************************************************/ 676ae8f78d4de403965603ed2b61898d820db2449f9Erick Tryzelaar 677ae8f78d4de403965603ed2b61898d820db2449f9Erick Tryzelaar// Change the filename associated with the GPT. Used for duplicating 678ae8f78d4de403965603ed2b61898d820db2449f9Erick Tryzelaar// the partition table to a new disk and saving backups. 679ae8f78d4de403965603ed2b61898d820db2449f9Erick Tryzelaar// Returns 1 on success, 0 on failure. 680ae8f78d4de403965603ed2b61898d820db2449f9Erick Tryzelaarint GPTData::SetDisk(const string & deviceFilename) { 681ae8f78d4de403965603ed2b61898d820db2449f9Erick Tryzelaar int err, allOK = 1; 682ae8f78d4de403965603ed2b61898d820db2449f9Erick Tryzelaar 683ae8f78d4de403965603ed2b61898d820db2449f9Erick Tryzelaar device = deviceFilename; 684ae8f78d4de403965603ed2b61898d820db2449f9Erick Tryzelaar if (allOK && myDisk.OpenForRead(deviceFilename)) { 685ae8f78d4de403965603ed2b61898d820db2449f9Erick Tryzelaar // store disk information.... 686ae8f78d4de403965603ed2b61898d820db2449f9Erick Tryzelaar diskSize = myDisk.DiskSize(&err); 6875f36bb1759e35bd3aef4b6ce226e091849f6b816Dylan Noblesmith blockSize = (uint32_t) myDisk.GetBlockSize(); 6885f36bb1759e35bd3aef4b6ce226e091849f6b816Dylan Noblesmith } // if 6895f36bb1759e35bd3aef4b6ce226e091849f6b816Dylan Noblesmith protectiveMBR.SetDisk(&myDisk); 6905f36bb1759e35bd3aef4b6ce226e091849f6b816Dylan Noblesmith protectiveMBR.SetDiskSize(diskSize); 6915f36bb1759e35bd3aef4b6ce226e091849f6b816Dylan Noblesmith protectiveMBR.SetBlockSize(blockSize); 6925f36bb1759e35bd3aef4b6ce226e091849f6b816Dylan Noblesmith return allOK; 6935f36bb1759e35bd3aef4b6ce226e091849f6b816Dylan Noblesmith} // GPTData::SetDisk() 6945f36bb1759e35bd3aef4b6ce226e091849f6b816Dylan Noblesmith 6955f36bb1759e35bd3aef4b6ce226e091849f6b816Dylan Noblesmith// Scan for partition data. This function loads the MBR data (regular MBR or 6965f36bb1759e35bd3aef4b6ce226e091849f6b816Dylan Noblesmith// protective MBR) and loads BSD disklabel data (which is probably invalid). 6975f36bb1759e35bd3aef4b6ce226e091849f6b816Dylan Noblesmith// It also looks for APM data, forces a load of GPT data, and summarizes 6985f36bb1759e35bd3aef4b6ce226e091849f6b816Dylan Noblesmith// the results. 6995f36bb1759e35bd3aef4b6ce226e091849f6b816Dylan Noblesmithvoid GPTData::PartitionScan(void) { 7005f36bb1759e35bd3aef4b6ce226e091849f6b816Dylan Noblesmith BSDData bsdDisklabel; 7015f36bb1759e35bd3aef4b6ce226e091849f6b816Dylan Noblesmith 7025f36bb1759e35bd3aef4b6ce226e091849f6b816Dylan Noblesmith // Read the MBR & check for BSD disklabel 703efb0d1e42f266efbd3d15b0c12c0790e90c5be66Dylan Noblesmith protectiveMBR.ReadMBRData(&myDisk); 704dcd999624159842886d4be21efcc3ba0e61bab99Douglas Gregor bsdDisklabel.ReadBSDData(&myDisk, 0, diskSize - 1); 705dcd999624159842886d4be21efcc3ba0e61bab99Douglas Gregor 7065f36bb1759e35bd3aef4b6ce226e091849f6b816Dylan Noblesmith // Load the GPT data, whether or not it's valid 7075f36bb1759e35bd3aef4b6ce226e091849f6b816Dylan Noblesmith ForceLoadGPTData(); 7085f36bb1759e35bd3aef4b6ce226e091849f6b816Dylan Noblesmith 7095f36bb1759e35bd3aef4b6ce226e091849f6b816Dylan Noblesmith // Some tools create a 0xEE partition that's too big. If this is detected, 7105f36bb1759e35bd3aef4b6ce226e091849f6b816Dylan Noblesmith // normalize it.... 7115f36bb1759e35bd3aef4b6ce226e091849f6b816Dylan Noblesmith if ((state == gpt_valid) && !protectiveMBR.DoTheyFit() && (protectiveMBR.GetValidity() == gpt)) { 7125f36bb1759e35bd3aef4b6ce226e091849f6b816Dylan Noblesmith if (!beQuiet) { 7135f36bb1759e35bd3aef4b6ce226e091849f6b816Dylan Noblesmith cerr << "\aThe protective MBR's 0xEE partition is oversized! Auto-repairing.\n\n"; 7145f36bb1759e35bd3aef4b6ce226e091849f6b816Dylan Noblesmith } // if 7155f36bb1759e35bd3aef4b6ce226e091849f6b816Dylan Noblesmith protectiveMBR.MakeProtectiveMBR(); 7165f36bb1759e35bd3aef4b6ce226e091849f6b816Dylan Noblesmith } // if 7175f36bb1759e35bd3aef4b6ce226e091849f6b816Dylan Noblesmith 7185f36bb1759e35bd3aef4b6ce226e091849f6b816Dylan Noblesmith if (!beQuiet) { 7195f36bb1759e35bd3aef4b6ce226e091849f6b816Dylan Noblesmith cout << "Partition table scan:\n"; 720efb0d1e42f266efbd3d15b0c12c0790e90c5be66Dylan Noblesmith protectiveMBR.ShowState(); 721dcd999624159842886d4be21efcc3ba0e61bab99Douglas Gregor bsdDisklabel.ShowState(); 722dcd999624159842886d4be21efcc3ba0e61bab99Douglas Gregor ShowAPMState(); // Show whether there's an Apple Partition Map present 7235f36bb1759e35bd3aef4b6ce226e091849f6b816Dylan Noblesmith ShowGPTState(); // Show GPT status 7245f36bb1759e35bd3aef4b6ce226e091849f6b816Dylan Noblesmith cout << "\n"; 7255f36bb1759e35bd3aef4b6ce226e091849f6b816Dylan Noblesmith } // if 7265f36bb1759e35bd3aef4b6ce226e091849f6b816Dylan Noblesmith 7275f36bb1759e35bd3aef4b6ce226e091849f6b816Dylan Noblesmith if (apmFound) { 7285f36bb1759e35bd3aef4b6ce226e091849f6b816Dylan Noblesmith cout << "\n*******************************************************************\n" 7295f36bb1759e35bd3aef4b6ce226e091849f6b816Dylan Noblesmith << "This disk appears to contain an Apple-format (APM) partition table!\n"; 7305f36bb1759e35bd3aef4b6ce226e091849f6b816Dylan Noblesmith if (!justLooking) { 7315f36bb1759e35bd3aef4b6ce226e091849f6b816Dylan Noblesmith cout << "It will be destroyed if you continue!\n"; 7325f36bb1759e35bd3aef4b6ce226e091849f6b816Dylan Noblesmith } // if 7335f36bb1759e35bd3aef4b6ce226e091849f6b816Dylan Noblesmith cout << "*******************************************************************\n\n\a"; 7345f36bb1759e35bd3aef4b6ce226e091849f6b816Dylan Noblesmith } // if 7355f36bb1759e35bd3aef4b6ce226e091849f6b816Dylan Noblesmith} // GPTData::PartitionScan() 7365f36bb1759e35bd3aef4b6ce226e091849f6b816Dylan Noblesmith 737efb0d1e42f266efbd3d15b0c12c0790e90c5be66Dylan Noblesmith// Read GPT data from a disk. 738dcd999624159842886d4be21efcc3ba0e61bab99Douglas Gregorint GPTData::LoadPartitions(const string & deviceFilename) { 739dcd999624159842886d4be21efcc3ba0e61bab99Douglas Gregor BSDData bsdDisklabel; 7405f36bb1759e35bd3aef4b6ce226e091849f6b816Dylan Noblesmith int err, allOK = 1; 7415f36bb1759e35bd3aef4b6ce226e091849f6b816Dylan Noblesmith MBRValidity mbrState; 742cbc7cc63b6c7ee1008f92064388c37327c183328Dan Gohman 743937708cea9de4bc65c8d3297fcf0396686729912Duncan Sands if (myDisk.OpenForRead(deviceFilename)) { 744937708cea9de4bc65c8d3297fcf0396686729912Duncan Sands err = myDisk.OpenForWrite(deviceFilename); 745cbc7cc63b6c7ee1008f92064388c37327c183328Dan Gohman if ((err == 0) && (!justLooking)) { 746937708cea9de4bc65c8d3297fcf0396686729912Duncan Sands cout << "\aNOTE: Write test failed with error number " << errno 747937708cea9de4bc65c8d3297fcf0396686729912Duncan Sands << ". It will be impossible to save\nchanges to this disk's partition table!\n"; 748cbc7cc63b6c7ee1008f92064388c37327c183328Dan Gohman#if defined (__FreeBSD__) || defined (__FreeBSD_kernel__) 749937708cea9de4bc65c8d3297fcf0396686729912Duncan Sands cout << "You may be able to enable writes by exiting this program, typing\n" 750937708cea9de4bc65c8d3297fcf0396686729912Duncan Sands << "'sysctl kern.geom.debugflags=16' at a shell prompt, and re-running this\n" 751cbc7cc63b6c7ee1008f92064388c37327c183328Dan Gohman << "program.\n"; 752cbc7cc63b6c7ee1008f92064388c37327c183328Dan Gohman#endif 753ae8f78d4de403965603ed2b61898d820db2449f9Erick Tryzelaar cout << "\n"; 7548d7285d0e5eb5937a6682e884b883516377e903dCameron Zwarich } // if 7558d7285d0e5eb5937a6682e884b883516377e903dCameron Zwarich myDisk.Close(); // Close and re-open read-only in case of bugs 7568d7285d0e5eb5937a6682e884b883516377e903dCameron Zwarich } else allOK = 0; // if 7578d7285d0e5eb5937a6682e884b883516377e903dCameron Zwarich 7588d7285d0e5eb5937a6682e884b883516377e903dCameron Zwarich if (allOK && myDisk.OpenForRead(deviceFilename)) { 7598d7285d0e5eb5937a6682e884b883516377e903dCameron Zwarich // store disk information.... 7608d7285d0e5eb5937a6682e884b883516377e903dCameron Zwarich diskSize = myDisk.DiskSize(&err); 7618d7285d0e5eb5937a6682e884b883516377e903dCameron Zwarich blockSize = (uint32_t) myDisk.GetBlockSize(); 7628d7285d0e5eb5937a6682e884b883516377e903dCameron Zwarich device = deviceFilename; 7638d7285d0e5eb5937a6682e884b883516377e903dCameron Zwarich PartitionScan(); // Check for partition types, load GPT, & print summary 7648d7285d0e5eb5937a6682e884b883516377e903dCameron Zwarich 7658d7285d0e5eb5937a6682e884b883516377e903dCameron Zwarich whichWasUsed = UseWhichPartitions(); 7668d7285d0e5eb5937a6682e884b883516377e903dCameron Zwarich switch (whichWasUsed) { 7678d7285d0e5eb5937a6682e884b883516377e903dCameron Zwarich case use_mbr: 7688d7285d0e5eb5937a6682e884b883516377e903dCameron Zwarich XFormPartitions(); 7698d7285d0e5eb5937a6682e884b883516377e903dCameron Zwarich break; 770d9103df51b858cf051a1650ac7eb33d416e9ac41Benjamin Kramer case use_bsd: 771d9103df51b858cf051a1650ac7eb33d416e9ac41Benjamin Kramer bsdDisklabel.ReadBSDData(&myDisk, 0, diskSize - 1); 7728d7285d0e5eb5937a6682e884b883516377e903dCameron Zwarich// bsdDisklabel.DisplayBSDData(); 7738d7285d0e5eb5937a6682e884b883516377e903dCameron Zwarich ClearGPTData(); 7742ad40a3663cb06c5f6d89a22933e22dc8b985574Erick Tryzelaar protectiveMBR.MakeProtectiveMBR(1); // clear boot area (option 1) 775b5f59f5cf07babed5b4ba872815238e29386b0c5Jeffrey Yasskin XFormDisklabel(&bsdDisklabel); 7761b9104ff80ec708dee522128b1f6a929fdd323ddErick Tryzelaar break; 777bb97531a5a13c9d5b2f04b3b714037b1eff7e9a9Erick Tryzelaar case use_gpt: 778bb97531a5a13c9d5b2f04b3b714037b1eff7e9a9Erick Tryzelaar mbrState = protectiveMBR.GetValidity(); 779dcd999624159842886d4be21efcc3ba0e61bab99Douglas Gregor if ((mbrState == invalid) || (mbrState == mbr)) 7801b9104ff80ec708dee522128b1f6a929fdd323ddErick Tryzelaar protectiveMBR.MakeProtectiveMBR(); 7815504225c2accd5331ec56a739576c5b027ca868aBill Wendling break; 7821b9104ff80ec708dee522128b1f6a929fdd323ddErick Tryzelaar case use_new: 7831b9104ff80ec708dee522128b1f6a929fdd323ddErick Tryzelaar ClearGPTData(); 7841b9104ff80ec708dee522128b1f6a929fdd323ddErick Tryzelaar protectiveMBR.MakeProtectiveMBR(); 7851b9104ff80ec708dee522128b1f6a929fdd323ddErick Tryzelaar break; 7861b9104ff80ec708dee522128b1f6a929fdd323ddErick Tryzelaar case use_abort: 7872ad40a3663cb06c5f6d89a22933e22dc8b985574Erick Tryzelaar allOK = 0; 788b5f59f5cf07babed5b4ba872815238e29386b0c5Jeffrey Yasskin cerr << "Invalid partition data!\n"; 7891b9104ff80ec708dee522128b1f6a929fdd323ddErick Tryzelaar break; 7909eb6b4d91b83448ec818089754c74bbdcf7dfd7aEli Friedman } // switch 7919eb6b4d91b83448ec818089754c74bbdcf7dfd7aEli Friedman 7929eb6b4d91b83448ec818089754c74bbdcf7dfd7aEli Friedman if (allOK) 7939eb6b4d91b83448ec818089754c74bbdcf7dfd7aEli Friedman CheckGPTSize(); 7949eb6b4d91b83448ec818089754c74bbdcf7dfd7aEli Friedman myDisk.Close(); 7959eb6b4d91b83448ec818089754c74bbdcf7dfd7aEli Friedman ComputeAlignment(); 7969eb6b4d91b83448ec818089754c74bbdcf7dfd7aEli Friedman } else { 7979eb6b4d91b83448ec818089754c74bbdcf7dfd7aEli Friedman allOK = 0; 7989eb6b4d91b83448ec818089754c74bbdcf7dfd7aEli Friedman } // if/else 7993a3a424a248717487de826ddb48f14deec1d2446Eli Friedman return (allOK); 8003a3a424a248717487de826ddb48f14deec1d2446Eli Friedman} // GPTData::LoadPartitions() 8013a3a424a248717487de826ddb48f14deec1d2446Eli Friedman 8023a3a424a248717487de826ddb48f14deec1d2446Eli Friedman// Loads the GPT, as much as possible. Returns 1 if this seems to have 8033a3a424a248717487de826ddb48f14deec1d2446Eli Friedman// succeeded, 0 if there are obvious problems.... 8043a3a424a248717487de826ddb48f14deec1d2446Eli Friedmanint GPTData::ForceLoadGPTData(void) { 8053a3a424a248717487de826ddb48f14deec1d2446Eli Friedman int allOK, validHeaders, loadedTable = 1; 8063a3a424a248717487de826ddb48f14deec1d2446Eli Friedman 8073a3a424a248717487de826ddb48f14deec1d2446Eli Friedman allOK = LoadHeader(&mainHeader, myDisk, 1, &mainCrcOk); 8083a3a424a248717487de826ddb48f14deec1d2446Eli Friedman 8093a3a424a248717487de826ddb48f14deec1d2446Eli Friedman if (mainCrcOk && (mainHeader.backupLBA < diskSize)) { 8103a3a424a248717487de826ddb48f14deec1d2446Eli Friedman allOK = LoadHeader(&secondHeader, myDisk, mainHeader.backupLBA, &secondCrcOk) && allOK; 8113a3a424a248717487de826ddb48f14deec1d2446Eli Friedman } else { 8123a3a424a248717487de826ddb48f14deec1d2446Eli Friedman allOK = LoadHeader(&secondHeader, myDisk, diskSize - UINT64_C(1), &secondCrcOk) && allOK; 8133a3a424a248717487de826ddb48f14deec1d2446Eli Friedman if (mainCrcOk && (mainHeader.backupLBA >= diskSize)) 8143a3a424a248717487de826ddb48f14deec1d2446Eli Friedman cout << "Warning! Disk size is smaller than the main header indicates! Loading\n" 8153a3a424a248717487de826ddb48f14deec1d2446Eli Friedman << "secondary header from the last sector of the disk! You should use 'v' to\n" 8163a3a424a248717487de826ddb48f14deec1d2446Eli Friedman << "verify disk integrity, and perhaps options on the experts' menu to repair\n" 8173a3a424a248717487de826ddb48f14deec1d2446Eli Friedman << "the disk.\n"; 8183a3a424a248717487de826ddb48f14deec1d2446Eli Friedman } // if/else 8193a3a424a248717487de826ddb48f14deec1d2446Eli Friedman if (!allOK) 8203a3a424a248717487de826ddb48f14deec1d2446Eli Friedman state = gpt_invalid; 8213a3a424a248717487de826ddb48f14deec1d2446Eli Friedman 8223a3a424a248717487de826ddb48f14deec1d2446Eli Friedman // Return valid headers code: 0 = both headers bad; 1 = main header 8230ae29a6b37204d95761a859d647f3e13a415c2d2Benjamin Kramer // good, backup bad; 2 = backup header good, main header bad; 8240ae29a6b37204d95761a859d647f3e13a415c2d2Benjamin Kramer // 3 = both headers good. Note these codes refer to valid GPT 8250ae29a6b37204d95761a859d647f3e13a415c2d2Benjamin Kramer // signatures, version numbers, and CRCs. 8260ae29a6b37204d95761a859d647f3e13a415c2d2Benjamin Kramer validHeaders = CheckHeaderValidity(); 8273a3a424a248717487de826ddb48f14deec1d2446Eli Friedman 8283a3a424a248717487de826ddb48f14deec1d2446Eli Friedman // Read partitions (from primary array) 829ad4da0fc321230261b4d0387f0ec216eb8aa50caBenjamin Kramer if (validHeaders > 0) { // if at least one header is OK.... 830ad4da0fc321230261b4d0387f0ec216eb8aa50caBenjamin Kramer // GPT appears to be valid.... 831ad4da0fc321230261b4d0387f0ec216eb8aa50caBenjamin Kramer state = gpt_valid; 832ad4da0fc321230261b4d0387f0ec216eb8aa50caBenjamin Kramer 833ad4da0fc321230261b4d0387f0ec216eb8aa50caBenjamin Kramer // We're calling the GPT valid, but there's a possibility that one 834ad4da0fc321230261b4d0387f0ec216eb8aa50caBenjamin Kramer // of the two headers is corrupt. If so, use the one that seems to 835ad4da0fc321230261b4d0387f0ec216eb8aa50caBenjamin Kramer // be in better shape to regenerate the bad one 836ad4da0fc321230261b4d0387f0ec216eb8aa50caBenjamin Kramer if (validHeaders == 1) { // valid main header, invalid backup header 837ad4da0fc321230261b4d0387f0ec216eb8aa50caBenjamin Kramer cerr << "\aCaution: invalid backup GPT header, but valid main header; regenerating\n" 838ad4da0fc321230261b4d0387f0ec216eb8aa50caBenjamin Kramer << "backup header from main header.\n\n"; 839a32edcfbc5b99b808b67360311d513af650eab44Michael Gottesman RebuildSecondHeader(); 840a32edcfbc5b99b808b67360311d513af650eab44Michael Gottesman state = gpt_corrupt; 841a32edcfbc5b99b808b67360311d513af650eab44Michael Gottesman secondCrcOk = mainCrcOk; // Since regenerated, use CRC validity of main 842a32edcfbc5b99b808b67360311d513af650eab44Michael Gottesman } else if (validHeaders == 2) { // valid backup header, invalid main header 843a32edcfbc5b99b808b67360311d513af650eab44Michael Gottesman cerr << "\aCaution: invalid main GPT header, but valid backup; regenerating main header\n" 844a32edcfbc5b99b808b67360311d513af650eab44Michael Gottesman << "from backup!\n\n"; 845a32edcfbc5b99b808b67360311d513af650eab44Michael Gottesman RebuildMainHeader(); 846a32edcfbc5b99b808b67360311d513af650eab44Michael Gottesman state = gpt_corrupt; 847a32edcfbc5b99b808b67360311d513af650eab44Michael Gottesman mainCrcOk = secondCrcOk; // Since copied, use CRC validity of backup 848a32edcfbc5b99b808b67360311d513af650eab44Michael Gottesman } // if/else/if 849a32edcfbc5b99b808b67360311d513af650eab44Michael Gottesman 850a32edcfbc5b99b808b67360311d513af650eab44Michael Gottesman // Figure out which partition table to load.... 851a32edcfbc5b99b808b67360311d513af650eab44Michael Gottesman // Load the main partition table, since either its header's CRC is OK or the 852a32edcfbc5b99b808b67360311d513af650eab44Michael Gottesman // backup header's CRC is not OK.... 853a32edcfbc5b99b808b67360311d513af650eab44Michael Gottesman if (mainCrcOk || !secondCrcOk) { 854a32edcfbc5b99b808b67360311d513af650eab44Michael Gottesman if (LoadMainTable() == 0) 855a32edcfbc5b99b808b67360311d513af650eab44Michael Gottesman allOK = 0; 856a32edcfbc5b99b808b67360311d513af650eab44Michael Gottesman } else { // bad main header CRC and backup header CRC is OK 857a32edcfbc5b99b808b67360311d513af650eab44Michael Gottesman state = gpt_corrupt; 858a32edcfbc5b99b808b67360311d513af650eab44Michael Gottesman if (LoadSecondTableAsMain()) { 859a32edcfbc5b99b808b67360311d513af650eab44Michael Gottesman loadedTable = 2; 860a32edcfbc5b99b808b67360311d513af650eab44Michael Gottesman cerr << "\aWarning: Invalid CRC on main header data; loaded backup partition table.\n"; 861a32edcfbc5b99b808b67360311d513af650eab44Michael Gottesman } else { // backup table bad, bad main header CRC, but try main table in desperation.... 862a32edcfbc5b99b808b67360311d513af650eab44Michael Gottesman if (LoadMainTable() == 0) { 863a32edcfbc5b99b808b67360311d513af650eab44Michael Gottesman allOK = 0; 864a32edcfbc5b99b808b67360311d513af650eab44Michael Gottesman loadedTable = 0; 865a32edcfbc5b99b808b67360311d513af650eab44Michael Gottesman cerr << "\a\aWarning! Unable to load either main or backup partition table!\n"; 866a32edcfbc5b99b808b67360311d513af650eab44Michael Gottesman } // if 867a32edcfbc5b99b808b67360311d513af650eab44Michael Gottesman } // if/else (LoadSecondTableAsMain()) 868a32edcfbc5b99b808b67360311d513af650eab44Michael Gottesman } // if/else (load partition table) 869a32edcfbc5b99b808b67360311d513af650eab44Michael Gottesman 870a32edcfbc5b99b808b67360311d513af650eab44Michael Gottesman if (loadedTable == 1) 871a32edcfbc5b99b808b67360311d513af650eab44Michael Gottesman secondPartsCrcOk = CheckTable(&secondHeader); 872a32edcfbc5b99b808b67360311d513af650eab44Michael Gottesman else if (loadedTable == 2) 873a32edcfbc5b99b808b67360311d513af650eab44Michael Gottesman mainPartsCrcOk = CheckTable(&mainHeader); 874a32edcfbc5b99b808b67360311d513af650eab44Michael Gottesman else 875a32edcfbc5b99b808b67360311d513af650eab44Michael Gottesman mainPartsCrcOk = secondPartsCrcOk = 0; 876a32edcfbc5b99b808b67360311d513af650eab44Michael Gottesman 877a32edcfbc5b99b808b67360311d513af650eab44Michael Gottesman // Problem with main partition table; if backup is OK, use it instead.... 878a32edcfbc5b99b808b67360311d513af650eab44Michael Gottesman if (secondPartsCrcOk && secondCrcOk && !mainPartsCrcOk) { 879a32edcfbc5b99b808b67360311d513af650eab44Michael Gottesman state = gpt_corrupt; 880a32edcfbc5b99b808b67360311d513af650eab44Michael Gottesman allOK = allOK && LoadSecondTableAsMain(); 881a32edcfbc5b99b808b67360311d513af650eab44Michael Gottesman mainPartsCrcOk = 0; // LoadSecondTableAsMain() resets this, so re-flag as bad 882a32edcfbc5b99b808b67360311d513af650eab44Michael Gottesman cerr << "\aWarning! Main partition table CRC mismatch! Loaded backup " 883a32edcfbc5b99b808b67360311d513af650eab44Michael Gottesman << "partition table\ninstead of main partition table!\n\n"; 884a32edcfbc5b99b808b67360311d513af650eab44Michael Gottesman } // if */ 885a32edcfbc5b99b808b67360311d513af650eab44Michael Gottesman 886a32edcfbc5b99b808b67360311d513af650eab44Michael Gottesman // Check for valid CRCs and warn if there are problems 887a32edcfbc5b99b808b67360311d513af650eab44Michael Gottesman if ((mainCrcOk == 0) || (secondCrcOk == 0) || (mainPartsCrcOk == 0) || 888a32edcfbc5b99b808b67360311d513af650eab44Michael Gottesman (secondPartsCrcOk == 0)) { 889a32edcfbc5b99b808b67360311d513af650eab44Michael Gottesman cerr << "Warning! One or more CRCs don't match. You should repair the disk!\n\n"; 890a32edcfbc5b99b808b67360311d513af650eab44Michael Gottesman state = gpt_corrupt; 891a32edcfbc5b99b808b67360311d513af650eab44Michael Gottesman } // if 892a32edcfbc5b99b808b67360311d513af650eab44Michael Gottesman } else { 893a32edcfbc5b99b808b67360311d513af650eab44Michael Gottesman state = gpt_invalid; 894a32edcfbc5b99b808b67360311d513af650eab44Michael Gottesman } // if/else 895a32edcfbc5b99b808b67360311d513af650eab44Michael Gottesman return allOK; 896a32edcfbc5b99b808b67360311d513af650eab44Michael Gottesman} // GPTData::ForceLoadGPTData() 897a32edcfbc5b99b808b67360311d513af650eab44Michael Gottesman 898a32edcfbc5b99b808b67360311d513af650eab44Michael Gottesman// Loads the partition table pointed to by the main GPT header. The 899a32edcfbc5b99b808b67360311d513af650eab44Michael Gottesman// main GPT header in memory MUST be valid for this call to do anything 900a32edcfbc5b99b808b67360311d513af650eab44Michael Gottesman// sensible! 901a32edcfbc5b99b808b67360311d513af650eab44Michael Gottesman// Returns 1 on success, 0 on failure. CRC errors do NOT count as failure. 902a32edcfbc5b99b808b67360311d513af650eab44Michael Gottesmanint GPTData::LoadMainTable(void) { 903a32edcfbc5b99b808b67360311d513af650eab44Michael Gottesman return LoadPartitionTable(mainHeader, myDisk); 90436b56886974eae4f9c5ebc96befd3e7bfe5de338Stephen Hines} // GPTData::LoadMainTable() 90536b56886974eae4f9c5ebc96befd3e7bfe5de338Stephen Hines 90636b56886974eae4f9c5ebc96befd3e7bfe5de338Stephen Hines// Load the second (backup) partition table as the primary partition 90736b56886974eae4f9c5ebc96befd3e7bfe5de338Stephen Hines// table. Used in repair functions, and when starting up if the main 90836b56886974eae4f9c5ebc96befd3e7bfe5de338Stephen Hines// partition table is damaged. 90936b56886974eae4f9c5ebc96befd3e7bfe5de338Stephen Hines// Returns 1 on success, 0 on failure. CRC errors do NOT count as failure. 91036b56886974eae4f9c5ebc96befd3e7bfe5de338Stephen Hinesint GPTData::LoadSecondTableAsMain(void) { 91136b56886974eae4f9c5ebc96befd3e7bfe5de338Stephen Hines return LoadPartitionTable(secondHeader, myDisk); 91236b56886974eae4f9c5ebc96befd3e7bfe5de338Stephen Hines} // GPTData::LoadSecondTableAsMain() 91336b56886974eae4f9c5ebc96befd3e7bfe5de338Stephen Hines 91436b56886974eae4f9c5ebc96befd3e7bfe5de338Stephen Hines// Load a single GPT header (main or backup) from the specified disk device and 91536b56886974eae4f9c5ebc96befd3e7bfe5de338Stephen Hines// sector. Applies byte-order corrections on big-endian platforms. Sets crcOk 91636b56886974eae4f9c5ebc96befd3e7bfe5de338Stephen Hines// value appropriately. 91736b56886974eae4f9c5ebc96befd3e7bfe5de338Stephen Hines// Returns 1 on success, 0 on failure. Note that CRC errors do NOT qualify as 91836b56886974eae4f9c5ebc96befd3e7bfe5de338Stephen Hines// failure. 91936b56886974eae4f9c5ebc96befd3e7bfe5de338Stephen Hinesint GPTData::LoadHeader(struct GPTHeader *header, DiskIO & disk, uint64_t sector, int *crcOk) { 92036b56886974eae4f9c5ebc96befd3e7bfe5de338Stephen Hines int allOK = 1; 92137ed9c199ca639565f6ce88105f9e39e898d82d0Stephen Hines GPTHeader tempHeader; 92236b56886974eae4f9c5ebc96befd3e7bfe5de338Stephen Hines 92336b56886974eae4f9c5ebc96befd3e7bfe5de338Stephen Hines disk.Seek(sector); 92436b56886974eae4f9c5ebc96befd3e7bfe5de338Stephen Hines if (disk.Read(&tempHeader, 512) != 512) { 92536b56886974eae4f9c5ebc96befd3e7bfe5de338Stephen Hines cerr << "Warning! Read error " << errno << "; strange behavior now likely!\n"; 92636b56886974eae4f9c5ebc96befd3e7bfe5de338Stephen Hines allOK = 0; 92736b56886974eae4f9c5ebc96befd3e7bfe5de338Stephen Hines } // if 92836b56886974eae4f9c5ebc96befd3e7bfe5de338Stephen Hines 92936b56886974eae4f9c5ebc96befd3e7bfe5de338Stephen Hines // Reverse byte order, if necessary 93036b56886974eae4f9c5ebc96befd3e7bfe5de338Stephen Hines if (IsLittleEndian() == 0) { 93136b56886974eae4f9c5ebc96befd3e7bfe5de338Stephen Hines ReverseHeaderBytes(&tempHeader); 93236b56886974eae4f9c5ebc96befd3e7bfe5de338Stephen Hines } // if 93336b56886974eae4f9c5ebc96befd3e7bfe5de338Stephen Hines *crcOk = CheckHeaderCRC(&tempHeader); 93436b56886974eae4f9c5ebc96befd3e7bfe5de338Stephen Hines 93536b56886974eae4f9c5ebc96befd3e7bfe5de338Stephen Hines if (allOK && (numParts != tempHeader.numParts) && *crcOk) { 93636b56886974eae4f9c5ebc96befd3e7bfe5de338Stephen Hines allOK = SetGPTSize(tempHeader.numParts, 0); 93736b56886974eae4f9c5ebc96befd3e7bfe5de338Stephen Hines } 93836b56886974eae4f9c5ebc96befd3e7bfe5de338Stephen Hines 93936b56886974eae4f9c5ebc96befd3e7bfe5de338Stephen Hines *header = tempHeader; 94036b56886974eae4f9c5ebc96befd3e7bfe5de338Stephen Hines return allOK; 94136b56886974eae4f9c5ebc96befd3e7bfe5de338Stephen Hines} // GPTData::LoadHeader 94236b56886974eae4f9c5ebc96befd3e7bfe5de338Stephen Hines 94336b56886974eae4f9c5ebc96befd3e7bfe5de338Stephen Hines// Load a partition table (either main or secondary) from the specified disk, 94436b56886974eae4f9c5ebc96befd3e7bfe5de338Stephen Hines// using header as a reference for what to load. If sector != 0 (the default 94536b56886974eae4f9c5ebc96befd3e7bfe5de338Stephen Hines// is 0), loads from the specified sector; otherwise loads from the sector 94636b56886974eae4f9c5ebc96befd3e7bfe5de338Stephen Hines// indicated in header. 94736b56886974eae4f9c5ebc96befd3e7bfe5de338Stephen Hines// Returns 1 on success, 0 on failure. CRC errors do NOT count as failure. 94836b56886974eae4f9c5ebc96befd3e7bfe5de338Stephen Hinesint GPTData::LoadPartitionTable(const struct GPTHeader & header, DiskIO & disk, uint64_t sector) { 94936b56886974eae4f9c5ebc96befd3e7bfe5de338Stephen Hines uint32_t sizeOfParts, newCRC; 95036b56886974eae4f9c5ebc96befd3e7bfe5de338Stephen Hines int retval; 95136b56886974eae4f9c5ebc96befd3e7bfe5de338Stephen Hines 95236b56886974eae4f9c5ebc96befd3e7bfe5de338Stephen Hines if (disk.OpenForRead()) { 95336b56886974eae4f9c5ebc96befd3e7bfe5de338Stephen Hines if (sector == 0) { 95436b56886974eae4f9c5ebc96befd3e7bfe5de338Stephen Hines retval = disk.Seek(header.partitionEntriesLBA); 95536b56886974eae4f9c5ebc96befd3e7bfe5de338Stephen Hines } else { 95636b56886974eae4f9c5ebc96befd3e7bfe5de338Stephen Hines retval = disk.Seek(sector); 95736b56886974eae4f9c5ebc96befd3e7bfe5de338Stephen Hines } // if/else 95836b56886974eae4f9c5ebc96befd3e7bfe5de338Stephen Hines if (retval == 1) 95936b56886974eae4f9c5ebc96befd3e7bfe5de338Stephen Hines retval = SetGPTSize(header.numParts, 0); 96037ed9c199ca639565f6ce88105f9e39e898d82d0Stephen Hines if (retval == 1) { 96136b56886974eae4f9c5ebc96befd3e7bfe5de338Stephen Hines sizeOfParts = header.numParts * header.sizeOfPartitionEntries; 96236b56886974eae4f9c5ebc96befd3e7bfe5de338Stephen Hines if (disk.Read(partitions, sizeOfParts) != (int) sizeOfParts) { 96336b56886974eae4f9c5ebc96befd3e7bfe5de338Stephen Hines cerr << "Warning! Read error " << errno << "! Misbehavior now likely!\n"; 96436b56886974eae4f9c5ebc96befd3e7bfe5de338Stephen Hines retval = 0; 96537ed9c199ca639565f6ce88105f9e39e898d82d0Stephen Hines } // if 96636b56886974eae4f9c5ebc96befd3e7bfe5de338Stephen Hines newCRC = chksum_crc32((unsigned char*) partitions, sizeOfParts); 96736b56886974eae4f9c5ebc96befd3e7bfe5de338Stephen Hines mainPartsCrcOk = secondPartsCrcOk = (newCRC == header.partitionEntriesCRC); 96836b56886974eae4f9c5ebc96befd3e7bfe5de338Stephen Hines if (IsLittleEndian() == 0) 96936b56886974eae4f9c5ebc96befd3e7bfe5de338Stephen Hines ReversePartitionBytes(); 97037ed9c199ca639565f6ce88105f9e39e898d82d0Stephen Hines if (!mainPartsCrcOk) { 97136b56886974eae4f9c5ebc96befd3e7bfe5de338Stephen Hines cout << "Caution! After loading partitions, the CRC doesn't check out!\n"; 97236b56886974eae4f9c5ebc96befd3e7bfe5de338Stephen Hines } // if 97336b56886974eae4f9c5ebc96befd3e7bfe5de338Stephen Hines } else { 97436b56886974eae4f9c5ebc96befd3e7bfe5de338Stephen Hines cerr << "Error! Couldn't seek to partition table!\n"; 97536b56886974eae4f9c5ebc96befd3e7bfe5de338Stephen Hines } // if/else 97636b56886974eae4f9c5ebc96befd3e7bfe5de338Stephen Hines } else { 97736b56886974eae4f9c5ebc96befd3e7bfe5de338Stephen Hines cerr << "Error! Couldn't open device " << device 97836b56886974eae4f9c5ebc96befd3e7bfe5de338Stephen Hines << " when reading partition table!\n"; 97936b56886974eae4f9c5ebc96befd3e7bfe5de338Stephen Hines retval = 0; 98036b56886974eae4f9c5ebc96befd3e7bfe5de338Stephen Hines } // if/else 98136b56886974eae4f9c5ebc96befd3e7bfe5de338Stephen Hines return retval; 98236b56886974eae4f9c5ebc96befd3e7bfe5de338Stephen Hines} // GPTData::LoadPartitionsTable() 98336b56886974eae4f9c5ebc96befd3e7bfe5de338Stephen Hines 98436b56886974eae4f9c5ebc96befd3e7bfe5de338Stephen Hines// Check the partition table pointed to by header, but don't keep it 9854c5e43da7792f75567b693105cc53e3f1992ad98Pirama Arumuga Nainar// around. 9864c5e43da7792f75567b693105cc53e3f1992ad98Pirama Arumuga Nainar// Returns 1 if the CRC is OK & this table matches the one already in memory, 9874c5e43da7792f75567b693105cc53e3f1992ad98Pirama Arumuga Nainar// 0 if not or if there was a read error. 9884c5e43da7792f75567b693105cc53e3f1992ad98Pirama Arumuga Nainarint GPTData::CheckTable(struct GPTHeader *header) { 9894c5e43da7792f75567b693105cc53e3f1992ad98Pirama Arumuga Nainar uint32_t sizeOfParts, newCRC; 9904c5e43da7792f75567b693105cc53e3f1992ad98Pirama Arumuga Nainar GPTPart *partsToCheck; 9914c5e43da7792f75567b693105cc53e3f1992ad98Pirama Arumuga Nainar GPTHeader *otherHeader; 9924c5e43da7792f75567b693105cc53e3f1992ad98Pirama Arumuga Nainar int allOK = 0; 9934c5e43da7792f75567b693105cc53e3f1992ad98Pirama Arumuga Nainar 9944c5e43da7792f75567b693105cc53e3f1992ad98Pirama Arumuga Nainar // Load partition table into temporary storage to check 9954c5e43da7792f75567b693105cc53e3f1992ad98Pirama Arumuga Nainar // its CRC and store the results, then discard this temporary 9964c5e43da7792f75567b693105cc53e3f1992ad98Pirama Arumuga Nainar // storage, since we don't use it in any but recovery operations 9974c5e43da7792f75567b693105cc53e3f1992ad98Pirama Arumuga Nainar if (myDisk.Seek(header->partitionEntriesLBA)) { 9984c5e43da7792f75567b693105cc53e3f1992ad98Pirama Arumuga Nainar partsToCheck = new GPTPart[header->numParts]; 9994c5e43da7792f75567b693105cc53e3f1992ad98Pirama Arumuga Nainar sizeOfParts = header->numParts * header->sizeOfPartitionEntries; 10004c5e43da7792f75567b693105cc53e3f1992ad98Pirama Arumuga Nainar if (partsToCheck == NULL) { 10014c5e43da7792f75567b693105cc53e3f1992ad98Pirama Arumuga Nainar cerr << "Could not allocate memory in GPTData::CheckTable()! Terminating!\n"; 10024c5e43da7792f75567b693105cc53e3f1992ad98Pirama Arumuga Nainar exit(1); 10034c5e43da7792f75567b693105cc53e3f1992ad98Pirama Arumuga Nainar } // if 10044c5e43da7792f75567b693105cc53e3f1992ad98Pirama Arumuga Nainar if (myDisk.Read(partsToCheck, sizeOfParts) != (int) sizeOfParts) { 10054c5e43da7792f75567b693105cc53e3f1992ad98Pirama Arumuga Nainar cerr << "Warning! Error " << errno << " reading partition table for CRC check!\n"; 10064c5e43da7792f75567b693105cc53e3f1992ad98Pirama Arumuga Nainar } else { 10074c5e43da7792f75567b693105cc53e3f1992ad98Pirama Arumuga Nainar newCRC = chksum_crc32((unsigned char*) partsToCheck, sizeOfParts); 10084c5e43da7792f75567b693105cc53e3f1992ad98Pirama Arumuga Nainar allOK = (newCRC == header->partitionEntriesCRC); 10094c5e43da7792f75567b693105cc53e3f1992ad98Pirama Arumuga Nainar if (header == &mainHeader) 10104c5e43da7792f75567b693105cc53e3f1992ad98Pirama Arumuga Nainar otherHeader = &secondHeader; 10114c5e43da7792f75567b693105cc53e3f1992ad98Pirama Arumuga Nainar else 10124c5e43da7792f75567b693105cc53e3f1992ad98Pirama Arumuga Nainar otherHeader = &mainHeader; 10134c5e43da7792f75567b693105cc53e3f1992ad98Pirama Arumuga Nainar if (newCRC != otherHeader->partitionEntriesCRC) { 10144c5e43da7792f75567b693105cc53e3f1992ad98Pirama Arumuga Nainar cerr << "Warning! Main and backup partition tables differ! Use the 'c' and 'e' options\n" 10154c5e43da7792f75567b693105cc53e3f1992ad98Pirama Arumuga Nainar << "on the recovery & transformation menu to examine the two tables.\n\n"; 10164c5e43da7792f75567b693105cc53e3f1992ad98Pirama Arumuga Nainar allOK = 0; 10174c5e43da7792f75567b693105cc53e3f1992ad98Pirama Arumuga Nainar } // if 10184c5e43da7792f75567b693105cc53e3f1992ad98Pirama Arumuga Nainar } // if/else 10194c5e43da7792f75567b693105cc53e3f1992ad98Pirama Arumuga Nainar delete[] partsToCheck; 10204c5e43da7792f75567b693105cc53e3f1992ad98Pirama Arumuga Nainar } // if 10214c5e43da7792f75567b693105cc53e3f1992ad98Pirama Arumuga Nainar return allOK; 10224c5e43da7792f75567b693105cc53e3f1992ad98Pirama Arumuga Nainar} // GPTData::CheckTable() 10234c5e43da7792f75567b693105cc53e3f1992ad98Pirama Arumuga Nainar 10244c5e43da7792f75567b693105cc53e3f1992ad98Pirama Arumuga Nainar// Writes GPT (and protective MBR) to disk. If quiet==1, moves the second 1025de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar// header later on the disk without asking for permission, if necessary, and 1026de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar// doesn't confirm the operation before writing. If quiet==0, asks permission 1027de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar// before moving the second header and asks for final confirmation of any 1028de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar// write. 1029de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar// Returns 1 on successful write, 0 if there was a problem. 1030de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainarint GPTData::SaveGPTData(int quiet) { 1031de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar int allOK = 1, syncIt = 1; 1032de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar char answer; 1033de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar 1034de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar // First do some final sanity checks.... 1035de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar 1036de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar // This test should only fail on read-only disks.... 1037de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar if (justLooking) { 1038de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar cout << "The justLooking flag is set. This probably means you can't write to the disk.\n"; 1039de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar allOK = 0; 1040de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar } // if 1041de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar 1042ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines // Check that disk is really big enough to handle the second header... 1043ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines if (mainHeader.backupLBA >= diskSize) { 1044ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines cerr << "Caution! Secondary header was placed beyond the disk's limits! Moving the\n" 1045ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines << "header, but other problems may occur!\n"; 1046ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines MoveSecondHeaderToEnd(); 1047ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines } // if 1048ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines 1049ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines // Is there enough space to hold the GPT headers and partition tables, 105037ed9c199ca639565f6ce88105f9e39e898d82d0Stephen Hines // given the partition sizes? 105137ed9c199ca639565f6ce88105f9e39e898d82d0Stephen Hines if (CheckGPTSize() > 0) { 105237ed9c199ca639565f6ce88105f9e39e898d82d0Stephen Hines allOK = 0; 105337ed9c199ca639565f6ce88105f9e39e898d82d0Stephen Hines } // if 105437ed9c199ca639565f6ce88105f9e39e898d82d0Stephen Hines 105537ed9c199ca639565f6ce88105f9e39e898d82d0Stephen Hines // Check that second header is properly placed. Warn and ask if this should 105637ed9c199ca639565f6ce88105f9e39e898d82d0Stephen Hines // be corrected if the test fails.... 105737ed9c199ca639565f6ce88105f9e39e898d82d0Stephen Hines if (mainHeader.backupLBA < (diskSize - UINT64_C(1))) { 105837ed9c199ca639565f6ce88105f9e39e898d82d0Stephen Hines if (quiet == 0) { 105937ed9c199ca639565f6ce88105f9e39e898d82d0Stephen Hines cout << "Warning! Secondary header is placed too early on the disk! Do you want to\n" 106037ed9c199ca639565f6ce88105f9e39e898d82d0Stephen Hines << "correct this problem? "; 106137ed9c199ca639565f6ce88105f9e39e898d82d0Stephen Hines if (GetYN() == 'Y') { 106237ed9c199ca639565f6ce88105f9e39e898d82d0Stephen Hines MoveSecondHeaderToEnd(); 106337ed9c199ca639565f6ce88105f9e39e898d82d0Stephen Hines cout << "Have moved second header and partition table to correct location.\n"; 106437ed9c199ca639565f6ce88105f9e39e898d82d0Stephen Hines } else { 106537ed9c199ca639565f6ce88105f9e39e898d82d0Stephen Hines cout << "Have not corrected the problem. Strange problems may occur in the future!\n"; 1066ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines } // if correction requested 1067ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines } else { // Go ahead and do correction automatically 1068ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines MoveSecondHeaderToEnd(); 1069ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines } // if/else quiet 10701999ff1d810b13425fcb80ac8bbccdff4c3a7cf8Nick Lewycky } // if 1071de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar 1072de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar if ((mainHeader.lastUsableLBA >= diskSize) || (mainHeader.lastUsableLBA > mainHeader.backupLBA)) { 1073de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar if (quiet == 0) { 1074de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar cout << "Warning! The claimed last usable sector is incorrect! Do you want to correct\n" 1075de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar << "this problem? "; 1076de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar if (GetYN() == 'Y') { 1077de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar MoveSecondHeaderToEnd(); 1078de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar cout << "Have adjusted the second header and last usable sector value.\n"; 1079de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar } else { 1080de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar cout << "Have not corrected the problem. Strange problems may occur in the future!\n"; 1081de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar } // if correction requested 1082de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar } else { // go ahead and do correction automatically 1083de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar MoveSecondHeaderToEnd(); 1084de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar } // if/else quiet 1085de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar } // if 1086de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar 1087de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar // Check for overlapping or insane partitions.... 1088de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar if ((FindOverlaps() > 0) || (FindInsanePartitions() > 0)) { 1089de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar allOK = 0; 1090de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar cerr << "Aborting write operation!\n"; 1091de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar } // if 1092de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar 1093de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar // Check that protective MBR fits, and warn if it doesn't.... 1094de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar if (!protectiveMBR.DoTheyFit()) { 1095de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar cerr << "\nPartition(s) in the protective MBR are too big for the disk! Creating a\n" 1096de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar << "fresh protective or hybrid MBR is recommended.\n"; 1097de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar } 1098de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar 1099de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar // Check for mismatched MBR and GPT data, but let it pass if found 1100de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar // (function displays warning message) 1101de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar FindHybridMismatches(); 1102de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar 1103de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar RecomputeCRCs(); 1104de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar 1105de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar if ((allOK) && (!quiet)) { 1106de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar cout << "\nFinal checks complete. About to write GPT data. THIS WILL OVERWRITE EXISTING\n" 1107de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar << "PARTITIONS!!\n\nDo you want to proceed? "; 1108de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar answer = GetYN(); 1109de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar if (answer == 'Y') { 1110de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar cout << "OK; writing new GUID partition table (GPT) to " << myDisk.GetName() << ".\n"; 1111de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar } else { 1112de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar allOK = 0; 1113 } // if/else 1114 } // if 1115 1116 // Do it! 1117 if (allOK) { 1118 if (myDisk.OpenForWrite()) { 1119 // As per UEFI specs, write the secondary table and GPT first.... 1120 allOK = SavePartitionTable(myDisk, secondHeader.partitionEntriesLBA); 1121 if (!allOK) { 1122 cerr << "Unable to save backup partition table! Perhaps the 'e' option on the experts'\n" 1123 << "menu will resolve this problem.\n"; 1124 syncIt = 0; 1125 } // if 1126 1127 // Now write the secondary GPT header... 1128 allOK = allOK && SaveHeader(&secondHeader, myDisk, mainHeader.backupLBA); 1129 1130 // Now write the main partition tables... 1131 allOK = allOK && SavePartitionTable(myDisk, mainHeader.partitionEntriesLBA); 1132 1133 // Now write the main GPT header... 1134 allOK = allOK && SaveHeader(&mainHeader, myDisk, 1); 1135 1136 // To top it off, write the protective MBR... 1137 allOK = allOK && protectiveMBR.WriteMBRData(&myDisk); 1138 1139 // re-read the partition table 1140 // Note: Done even if some write operations failed, but not if all of them failed. 1141 // Done this way because I've received one problem report from a user one whose 1142 // system the MBR write failed but everything else was OK (on a GPT disk under 1143 // Windows), and the failure to sync therefore caused Windows to restore the 1144 // original partition table from its cache. OTOH, such restoration might be 1145 // desirable if the error occurs later; but that seems unlikely unless the initial 1146 // write fails.... 1147 if (syncIt) 1148 myDisk.DiskSync(); 1149 1150 if (allOK) { // writes completed OK 1151 cout << "The operation has completed successfully.\n"; 1152 } else { 1153 cerr << "Warning! An error was reported when writing the partition table! This error\n" 1154 << "MIGHT be harmless, or the disk might be damaged! Checking it is advisable.\n"; 1155 } // if/else 1156 1157 myDisk.Close(); 1158 } else { 1159 cerr << "Unable to open device '" << myDisk.GetName() << "' for writing! Errno is " 1160 << errno << "! Aborting write!\n"; 1161 allOK = 0; 1162 } // if/else 1163 } else { 1164 cout << "Aborting write of new partition table.\n"; 1165 } // if 1166 1167 return (allOK); 1168} // GPTData::SaveGPTData() 1169 1170// Save GPT data to a backup file. This function does much less error 1171// checking than SaveGPTData(). It can therefore preserve many types of 1172// corruption for later analysis; however, it preserves only the MBR, 1173// the main GPT header, the backup GPT header, and the main partition 1174// table; it discards the backup partition table, since it should be 1175// identical to the main partition table on healthy disks. 1176int GPTData::SaveGPTBackup(const string & filename) { 1177 int allOK = 1; 1178 DiskIO backupFile; 1179 1180 if (backupFile.OpenForWrite(filename)) { 1181 // Recomputing the CRCs is likely to alter them, which could be bad 1182 // if the intent is to save a potentially bad GPT for later analysis; 1183 // but if we don't do this, we get bogus errors when we load the 1184 // backup. I'm favoring misses over false alarms.... 1185 RecomputeCRCs(); 1186 1187 protectiveMBR.WriteMBRData(&backupFile); 1188 protectiveMBR.SetDisk(&myDisk); 1189 1190 if (allOK) { 1191 // MBR write closed disk, so re-open and seek to end.... 1192 backupFile.OpenForWrite(); 1193 allOK = SaveHeader(&mainHeader, backupFile, 1); 1194 } // if (allOK) 1195 1196 if (allOK) 1197 allOK = SaveHeader(&secondHeader, backupFile, 2); 1198 1199 if (allOK) 1200 allOK = SavePartitionTable(backupFile, 3); 1201 1202 if (allOK) { // writes completed OK 1203 cout << "The operation has completed successfully.\n"; 1204 } else { 1205 cerr << "Warning! An error was reported when writing the backup file.\n" 1206 << "It may not be usable!\n"; 1207 } // if/else 1208 backupFile.Close(); 1209 } else { 1210 cerr << "Unable to open file '" << filename << "' for writing! Aborting!\n"; 1211 allOK = 0; 1212 } // if/else 1213 return allOK; 1214} // GPTData::SaveGPTBackup() 1215 1216// Write a GPT header (main or backup) to the specified sector. Used by both 1217// the SaveGPTData() and SaveGPTBackup() functions. 1218// Should be passed an architecture-appropriate header (DO NOT call 1219// ReverseHeaderBytes() on the header before calling this function) 1220// Returns 1 on success, 0 on failure 1221int GPTData::SaveHeader(struct GPTHeader *header, DiskIO & disk, uint64_t sector) { 1222 int littleEndian, allOK = 1; 1223 1224 littleEndian = IsLittleEndian(); 1225 if (!littleEndian) 1226 ReverseHeaderBytes(header); 1227 if (disk.Seek(sector)) { 1228 if (disk.Write(header, 512) == -1) 1229 allOK = 0; 1230 } else allOK = 0; // if (disk.Seek()...) 1231 if (!littleEndian) 1232 ReverseHeaderBytes(header); 1233 return allOK; 1234} // GPTData::SaveHeader() 1235 1236// Save the partitions to the specified sector. Used by both the SaveGPTData() 1237// and SaveGPTBackup() functions. 1238// Should be passed an architecture-appropriate header (DO NOT call 1239// ReverseHeaderBytes() on the header before calling this function) 1240// Returns 1 on success, 0 on failure 1241int GPTData::SavePartitionTable(DiskIO & disk, uint64_t sector) { 1242 int littleEndian, allOK = 1; 1243 1244 littleEndian = IsLittleEndian(); 1245 if (disk.Seek(sector)) { 1246 if (!littleEndian) 1247 ReversePartitionBytes(); 1248 if (disk.Write(partitions, mainHeader.sizeOfPartitionEntries * numParts) == -1) 1249 allOK = 0; 1250 if (!littleEndian) 1251 ReversePartitionBytes(); 1252 } else allOK = 0; // if (myDisk.Seek()...) 1253 return allOK; 1254} // GPTData::SavePartitionTable() 1255 1256// Load GPT data from a backup file created by SaveGPTBackup(). This function 1257// does minimal error checking. It returns 1 if it completed successfully, 1258// 0 if there was a problem. In the latter case, it creates a new empty 1259// set of partitions. 1260int GPTData::LoadGPTBackup(const string & filename) { 1261 int allOK = 1, val, err; 1262 int shortBackup = 0; 1263 DiskIO backupFile; 1264 1265 if (backupFile.OpenForRead(filename)) { 1266 // Let the MBRData class load the saved MBR... 1267 protectiveMBR.ReadMBRData(&backupFile, 0); // 0 = don't check block size 1268 protectiveMBR.SetDisk(&myDisk); 1269 1270 LoadHeader(&mainHeader, backupFile, 1, &mainCrcOk); 1271 1272 // Check backup file size and rebuild second header if file is right 1273 // size to be direct dd copy of MBR, main header, and main partition 1274 // table; if other size, treat it like a GPT fdisk-generated backup 1275 // file 1276 shortBackup = ((backupFile.DiskSize(&err) * backupFile.GetBlockSize()) == 1277 (mainHeader.numParts * mainHeader.sizeOfPartitionEntries) + 1024); 1278 if (shortBackup) { 1279 RebuildSecondHeader(); 1280 secondCrcOk = mainCrcOk; 1281 } else { 1282 LoadHeader(&secondHeader, backupFile, 2, &secondCrcOk); 1283 } // if/else 1284 1285 // Return valid headers code: 0 = both headers bad; 1 = main header 1286 // good, backup bad; 2 = backup header good, main header bad; 1287 // 3 = both headers good. Note these codes refer to valid GPT 1288 // signatures and version numbers; more subtle problems will elude 1289 // this check! 1290 if ((val = CheckHeaderValidity()) > 0) { 1291 if (val == 2) { // only backup header seems to be good 1292 SetGPTSize(secondHeader.numParts, 0); 1293 } else { // main header is OK 1294 SetGPTSize(mainHeader.numParts, 0); 1295 } // if/else 1296 1297 if (secondHeader.currentLBA != diskSize - UINT64_C(1)) { 1298 cout << "Warning! Current disk size doesn't match that of the backup!\n" 1299 << "Adjusting sizes to match, but subsequent problems are possible!\n"; 1300 MoveSecondHeaderToEnd(); 1301 } // if 1302 1303 if (!LoadPartitionTable(mainHeader, backupFile, (uint64_t) (3 - shortBackup))) 1304 cerr << "Warning! Read error " << errno 1305 << " loading partition table; strange behavior now likely!\n"; 1306 } else { 1307 allOK = 0; 1308 } // if/else 1309 // Something went badly wrong, so blank out partitions 1310 if (allOK == 0) { 1311 cerr << "Improper backup file! Clearing all partition data!\n"; 1312 ClearGPTData(); 1313 protectiveMBR.MakeProtectiveMBR(); 1314 } // if 1315 } else { 1316 allOK = 0; 1317 cerr << "Unable to open file '" << filename << "' for reading! Aborting!\n"; 1318 } // if/else 1319 1320 return allOK; 1321} // GPTData::LoadGPTBackup() 1322 1323int GPTData::SaveMBR(void) { 1324 return protectiveMBR.WriteMBRData(&myDisk); 1325} // GPTData::SaveMBR() 1326 1327// This function destroys the on-disk GPT structures, but NOT the on-disk 1328// MBR. 1329// Returns 1 if the operation succeeds, 0 if not. 1330int GPTData::DestroyGPT(void) { 1331 int sum, tableSize, allOK = 1; 1332 uint8_t blankSector[512]; 1333 uint8_t* emptyTable; 1334 1335 memset(blankSector, 0, sizeof(blankSector)); 1336 ClearGPTData(); 1337 1338 if (myDisk.OpenForWrite()) { 1339 if (!myDisk.Seek(mainHeader.currentLBA)) 1340 allOK = 0; 1341 if (myDisk.Write(blankSector, 512) != 512) { // blank it out 1342 cerr << "Warning! GPT main header not overwritten! Error is " << errno << "\n"; 1343 allOK = 0; 1344 } // if 1345 if (!myDisk.Seek(mainHeader.partitionEntriesLBA)) 1346 allOK = 0; 1347 tableSize = numParts * mainHeader.sizeOfPartitionEntries; 1348 emptyTable = new uint8_t[tableSize]; 1349 if (emptyTable == NULL) { 1350 cerr << "Could not allocate memory in GPTData::DestroyGPT()! Terminating!\n"; 1351 exit(1); 1352 } // if 1353 memset(emptyTable, 0, tableSize); 1354 if (allOK) { 1355 sum = myDisk.Write(emptyTable, tableSize); 1356 if (sum != tableSize) { 1357 cerr << "Warning! GPT main partition table not overwritten! Error is " << errno << "\n"; 1358 allOK = 0; 1359 } // if write failed 1360 } // if 1361 if (!myDisk.Seek(secondHeader.partitionEntriesLBA)) 1362 allOK = 0; 1363 if (allOK) { 1364 sum = myDisk.Write(emptyTable, tableSize); 1365 if (sum != tableSize) { 1366 cerr << "Warning! GPT backup partition table not overwritten! Error is " 1367 << errno << "\n"; 1368 allOK = 0; 1369 } // if wrong size written 1370 } // if 1371 if (!myDisk.Seek(secondHeader.currentLBA)) 1372 allOK = 0; 1373 if (allOK) { 1374 if (myDisk.Write(blankSector, 512) != 512) { // blank it out 1375 cerr << "Warning! GPT backup header not overwritten! Error is " << errno << "\n"; 1376 allOK = 0; 1377 } // if 1378 } // if 1379 myDisk.DiskSync(); 1380 myDisk.Close(); 1381 cout << "GPT data structures destroyed! You may now partition the disk using fdisk or\n" 1382 << "other utilities.\n"; 1383 delete[] emptyTable; 1384 } else { 1385 cerr << "Problem opening '" << device << "' for writing! Program will now terminate.\n"; 1386 } // if/else (fd != -1) 1387 return (allOK); 1388} // GPTDataTextUI::DestroyGPT() 1389 1390// Wipe MBR data from the disk (zero it out completely) 1391// Returns 1 on success, 0 on failure. 1392int GPTData::DestroyMBR(void) { 1393 int allOK; 1394 uint8_t blankSector[512]; 1395 1396 memset(blankSector, 0, sizeof(blankSector)); 1397 1398 allOK = myDisk.OpenForWrite() && myDisk.Seek(0) && (myDisk.Write(blankSector, 512) == 512); 1399 1400 if (!allOK) 1401 cerr << "Warning! MBR not overwritten! Error is " << errno << "!\n"; 1402 return allOK; 1403} // GPTData::DestroyMBR(void) 1404 1405// Tell user whether Apple Partition Map (APM) was discovered.... 1406void GPTData::ShowAPMState(void) { 1407 if (apmFound) 1408 cout << " APM: present\n"; 1409 else 1410 cout << " APM: not present\n"; 1411} // GPTData::ShowAPMState() 1412 1413// Tell user about the state of the GPT data.... 1414void GPTData::ShowGPTState(void) { 1415 switch (state) { 1416 case gpt_invalid: 1417 cout << " GPT: not present\n"; 1418 break; 1419 case gpt_valid: 1420 cout << " GPT: present\n"; 1421 break; 1422 case gpt_corrupt: 1423 cout << " GPT: damaged\n"; 1424 break; 1425 default: 1426 cout << "\a GPT: unknown -- bug!\n"; 1427 break; 1428 } // switch 1429} // GPTData::ShowGPTState() 1430 1431// Display the basic GPT data 1432void GPTData::DisplayGPTData(void) { 1433 uint32_t i; 1434 uint64_t temp, totalFree; 1435 1436 cout << "Disk " << device << ": " << diskSize << " sectors, " 1437 << BytesToIeee(diskSize, blockSize) << "\n"; 1438 cout << "Logical sector size: " << blockSize << " bytes\n"; 1439 cout << "Disk identifier (GUID): " << mainHeader.diskGUID << "\n"; 1440 cout << "Partition table holds up to " << numParts << " entries\n"; 1441 cout << "First usable sector is " << mainHeader.firstUsableLBA 1442 << ", last usable sector is " << mainHeader.lastUsableLBA << "\n"; 1443 totalFree = FindFreeBlocks(&i, &temp); 1444 cout << "Partitions will be aligned on " << sectorAlignment << "-sector boundaries\n"; 1445 cout << "Total free space is " << totalFree << " sectors (" 1446 << BytesToIeee(totalFree, blockSize) << ")\n"; 1447 cout << "\nNumber Start (sector) End (sector) Size Code Name\n"; 1448 for (i = 0; i < numParts; i++) { 1449 partitions[i].ShowSummary(i, blockSize); 1450 } // for 1451} // GPTData::DisplayGPTData() 1452 1453// Show detailed information on the specified partition 1454void GPTData::ShowPartDetails(uint32_t partNum) { 1455 if ((partNum < numParts) && !IsFreePartNum(partNum)) { 1456 partitions[partNum].ShowDetails(blockSize); 1457 } else { 1458 cout << "Partition #" << partNum + 1 << " does not exist.\n"; 1459 } // if 1460} // GPTData::ShowPartDetails() 1461 1462/************************************************************************** 1463 * * 1464 * Partition table transformation functions (MBR or BSD disklabel to GPT) * 1465 * (some of these functions may require user interaction) * 1466 * * 1467 **************************************************************************/ 1468 1469// Examines the MBR & GPT data to determine which set of data to use: the 1470// MBR (use_mbr), the GPT (use_gpt), the BSD disklabel (use_bsd), or create 1471// a new set of partitions (use_new). A return value of use_abort indicates 1472// that this function couldn't determine what to do. Overriding functions 1473// in derived classes may ask users questions in such cases. 1474WhichToUse GPTData::UseWhichPartitions(void) { 1475 WhichToUse which = use_new; 1476 MBRValidity mbrState; 1477 1478 mbrState = protectiveMBR.GetValidity(); 1479 1480 if ((state == gpt_invalid) && ((mbrState == mbr) || (mbrState == hybrid))) { 1481 cout << "\n***************************************************************\n" 1482 << "Found invalid GPT and valid MBR; converting MBR to GPT format\n" 1483 << "in memory. "; 1484 if (!justLooking) { 1485 cout << "\aTHIS OPERATION IS POTENTIALLY DESTRUCTIVE! Exit by\n" 1486 << "typing 'q' if you don't want to convert your MBR partitions\n" 1487 << "to GPT format!"; 1488 } // if 1489 cout << "\n***************************************************************\n\n"; 1490 which = use_mbr; 1491 } // if 1492 1493 if ((state == gpt_invalid) && bsdFound) { 1494 cout << "\n**********************************************************************\n" 1495 << "Found invalid GPT and valid BSD disklabel; converting BSD disklabel\n" 1496 << "to GPT format."; 1497 if ((!justLooking) && (!beQuiet)) { 1498 cout << "\a THIS OPERATION IS POTENTIALLY DESTRUCTIVE! Your first\n" 1499 << "BSD partition will likely be unusable. Exit by typing 'q' if you don't\n" 1500 << "want to convert your BSD partitions to GPT format!"; 1501 } // if 1502 cout << "\n**********************************************************************\n\n"; 1503 which = use_bsd; 1504 } // if 1505 1506 if ((state == gpt_valid) && (mbrState == gpt)) { 1507 which = use_gpt; 1508 if (!beQuiet) 1509 cout << "Found valid GPT with protective MBR; using GPT.\n"; 1510 } // if 1511 if ((state == gpt_valid) && (mbrState == hybrid)) { 1512 which = use_gpt; 1513 if (!beQuiet) 1514 cout << "Found valid GPT with hybrid MBR; using GPT.\n"; 1515 } // if 1516 if ((state == gpt_valid) && (mbrState == invalid)) { 1517 cout << "\aFound valid GPT with corrupt MBR; using GPT and will write new\n" 1518 << "protective MBR on save.\n"; 1519 which = use_gpt; 1520 } // if 1521 if ((state == gpt_valid) && (mbrState == mbr)) { 1522 which = use_abort; 1523 } // if 1524 1525 if (state == gpt_corrupt) { 1526 if (mbrState == gpt) { 1527 cout << "\a\a****************************************************************************\n" 1528 << "Caution: Found protective or hybrid MBR and corrupt GPT. Using GPT, but disk\n" 1529 << "verification and recovery are STRONGLY recommended.\n" 1530 << "****************************************************************************\n"; 1531 which = use_gpt; 1532 } else { 1533 which = use_abort; 1534 } // if/else MBR says disk is GPT 1535 } // if GPT corrupt 1536 1537 if (which == use_new) 1538 cout << "Creating new GPT entries.\n"; 1539 1540 return which; 1541} // UseWhichPartitions() 1542 1543// Convert MBR partition table into GPT form. 1544void GPTData::XFormPartitions(void) { 1545 int i, numToConvert; 1546 uint8_t origType; 1547 1548 // Clear out old data & prepare basics.... 1549 ClearGPTData(); 1550 1551 // Convert the smaller of the # of GPT or MBR partitions 1552 if (numParts > MAX_MBR_PARTS) 1553 numToConvert = MAX_MBR_PARTS; 1554 else 1555 numToConvert = numParts; 1556 1557 for (i = 0; i < numToConvert; i++) { 1558 origType = protectiveMBR.GetType(i); 1559 // don't waste CPU time trying to convert extended, hybrid protective, or 1560 // null (non-existent) partitions 1561 if ((origType != 0x05) && (origType != 0x0f) && (origType != 0x85) && 1562 (origType != 0x00) && (origType != 0xEE)) 1563 partitions[i] = protectiveMBR.AsGPT(i); 1564 } // for 1565 1566 // Convert MBR into protective MBR 1567 protectiveMBR.MakeProtectiveMBR(); 1568 1569 // Record that all original CRCs were OK so as not to raise flags 1570 // when doing a disk verification 1571 mainCrcOk = secondCrcOk = mainPartsCrcOk = secondPartsCrcOk = 1; 1572} // GPTData::XFormPartitions() 1573 1574// Transforms BSD disklabel on the specified partition (numbered from 0). 1575// If an invalid partition number is given, the program does nothing. 1576// Returns the number of new partitions created. 1577int GPTData::XFormDisklabel(uint32_t partNum) { 1578 uint32_t low, high; 1579 int goOn = 1, numDone = 0; 1580 BSDData disklabel; 1581 1582 if (GetPartRange(&low, &high) == 0) { 1583 goOn = 0; 1584 cout << "No partitions!\n"; 1585 } // if 1586 if (partNum > high) { 1587 goOn = 0; 1588 cout << "Specified partition is invalid!\n"; 1589 } // if 1590 1591 // If all is OK, read the disklabel and convert it. 1592 if (goOn) { 1593 goOn = disklabel.ReadBSDData(&myDisk, partitions[partNum].GetFirstLBA(), 1594 partitions[partNum].GetLastLBA()); 1595 if ((goOn) && (disklabel.IsDisklabel())) { 1596 numDone = XFormDisklabel(&disklabel); 1597 if (numDone == 1) 1598 cout << "Converted 1 BSD partition.\n"; 1599 else 1600 cout << "Converted " << numDone << " BSD partitions.\n"; 1601 } else { 1602 cout << "Unable to convert partitions! Unrecognized BSD disklabel.\n"; 1603 } // if/else 1604 } // if 1605 if (numDone > 0) { // converted partitions; delete carrier 1606 partitions[partNum].BlankPartition(); 1607 } // if 1608 return numDone; 1609} // GPTData::XFormDisklabel(uint32_t i) 1610 1611// Transform the partitions on an already-loaded BSD disklabel... 1612int GPTData::XFormDisklabel(BSDData* disklabel) { 1613 int i, partNum = 0, numDone = 0; 1614 1615 if (disklabel->IsDisklabel()) { 1616 for (i = 0; i < disklabel->GetNumParts(); i++) { 1617 partNum = FindFirstFreePart(); 1618 if (partNum >= 0) { 1619 partitions[partNum] = disklabel->AsGPT(i); 1620 if (partitions[partNum].IsUsed()) 1621 numDone++; 1622 } // if 1623 } // for 1624 if (partNum == -1) 1625 cerr << "Warning! Too many partitions to convert!\n"; 1626 } // if 1627 1628 // Record that all original CRCs were OK so as not to raise flags 1629 // when doing a disk verification 1630 mainCrcOk = secondCrcOk = mainPartsCrcOk = secondPartsCrcOk = 1; 1631 1632 return numDone; 1633} // GPTData::XFormDisklabel(BSDData* disklabel) 1634 1635// Add one GPT partition to MBR. Used by PartsToMBR() functions. Created 1636// partition has the active/bootable flag UNset and uses the GPT fdisk 1637// type code divided by 0x0100 as the MBR type code. 1638// Returns 1 if operation was 100% successful, 0 if there were ANY 1639// problems. 1640int GPTData::OnePartToMBR(uint32_t gptPart, int mbrPart) { 1641 int allOK = 1; 1642 1643 if ((mbrPart < 0) || (mbrPart > 3)) { 1644 cout << "MBR partition " << mbrPart + 1 << " is out of range; omitting it.\n"; 1645 allOK = 0; 1646 } // if 1647 if (gptPart >= numParts) { 1648 cout << "GPT partition " << gptPart + 1 << " is out of range; omitting it.\n"; 1649 allOK = 0; 1650 } // if 1651 if (allOK && (partitions[gptPart].GetLastLBA() == UINT64_C(0))) { 1652 cout << "GPT partition " << gptPart + 1 << " is undefined; omitting it.\n"; 1653 allOK = 0; 1654 } // if 1655 if (allOK && (partitions[gptPart].GetFirstLBA() <= UINT32_MAX) && 1656 (partitions[gptPart].GetLengthLBA() <= UINT32_MAX)) { 1657 if (partitions[gptPart].GetLastLBA() > UINT32_MAX) { 1658 cout << "Caution: Partition end point past 32-bit pointer boundary;" 1659 << " some OSes may\nreact strangely.\n"; 1660 } // if 1661 protectiveMBR.MakePart(mbrPart, (uint32_t) partitions[gptPart].GetFirstLBA(), 1662 (uint32_t) partitions[gptPart].GetLengthLBA(), 1663 partitions[gptPart].GetHexType() / 256, 0); 1664 } else { // partition out of range 1665 if (allOK) // Display only if "else" triggered by out-of-bounds condition 1666 cout << "Partition " << gptPart + 1 << " begins beyond the 32-bit pointer limit of MBR " 1667 << "partitions, or is\n too big; omitting it.\n"; 1668 allOK = 0; 1669 } // if/else 1670 return allOK; 1671} // GPTData::OnePartToMBR() 1672 1673 1674/********************************************************************** 1675 * * 1676 * Functions that adjust GPT data structures WITHOUT user interaction * 1677 * (they may display information for the user's benefit, though) * 1678 * * 1679 **********************************************************************/ 1680 1681// Resizes GPT to specified number of entries. Creates a new table if 1682// necessary, copies data if it already exists. If fillGPTSectors is 1 1683// (the default), rounds numEntries to fill all the sectors necessary to 1684// hold the GPT. 1685// Returns 1 if all goes well, 0 if an error is encountered. 1686int GPTData::SetGPTSize(uint32_t numEntries, int fillGPTSectors) { 1687 GPTPart* newParts; 1688 uint32_t i, high, copyNum, entriesPerSector; 1689 int allOK = 1; 1690 1691 // First, adjust numEntries upward, if necessary, to get a number 1692 // that fills the allocated sectors 1693 entriesPerSector = blockSize / GPT_SIZE; 1694 if (fillGPTSectors && ((numEntries % entriesPerSector) != 0)) { 1695 cout << "Adjusting GPT size from " << numEntries << " to "; 1696 numEntries = ((numEntries / entriesPerSector) + 1) * entriesPerSector; 1697 cout << numEntries << " to fill the sector\n"; 1698 } // if 1699 1700 // Do the work only if the # of partitions is changing. Along with being 1701 // efficient, this prevents mucking with the location of the secondary 1702 // partition table, which causes problems when loading data from a RAID 1703 // array that's been expanded because this function is called when loading 1704 // data. 1705 if (((numEntries != numParts) || (partitions == NULL)) && (numEntries > 0)) { 1706 newParts = new GPTPart [numEntries]; 1707 if (newParts != NULL) { 1708 if (partitions != NULL) { // existing partitions; copy them over 1709 GetPartRange(&i, &high); 1710 if (numEntries < (high + 1)) { // Highest entry too high for new # 1711 cout << "The highest-numbered partition is " << high + 1 1712 << ", which is greater than the requested\n" 1713 << "partition table size of " << numEntries 1714 << "; cannot resize. Perhaps sorting will help.\n"; 1715 allOK = 0; 1716 delete[] newParts; 1717 } else { // go ahead with copy 1718 if (numEntries < numParts) 1719 copyNum = numEntries; 1720 else 1721 copyNum = numParts; 1722 for (i = 0; i < copyNum; i++) { 1723 newParts[i] = partitions[i]; 1724 } // for 1725 delete[] partitions; 1726 partitions = newParts; 1727 } // if 1728 } else { // No existing partition table; just create it 1729 partitions = newParts; 1730 } // if/else existing partitions 1731 numParts = numEntries; 1732 mainHeader.firstUsableLBA = ((numEntries * GPT_SIZE) / blockSize) + (((numEntries * GPT_SIZE) % blockSize) != 0) + 2 ; 1733 secondHeader.firstUsableLBA = mainHeader.firstUsableLBA; 1734 MoveSecondHeaderToEnd(); 1735 if (diskSize > 0) 1736 CheckGPTSize(); 1737 } else { // Bad memory allocation 1738 cerr << "Error allocating memory for partition table! Size is unchanged!\n"; 1739 allOK = 0; 1740 } // if/else 1741 } // if/else 1742 mainHeader.numParts = numParts; 1743 secondHeader.numParts = numParts; 1744 return (allOK); 1745} // GPTData::SetGPTSize() 1746 1747// Blank the partition array 1748void GPTData::BlankPartitions(void) { 1749 uint32_t i; 1750 1751 for (i = 0; i < numParts; i++) { 1752 partitions[i].BlankPartition(); 1753 } // for 1754} // GPTData::BlankPartitions() 1755 1756// Delete a partition by number. Returns 1 if successful, 1757// 0 if there was a problem. Returns 1 if partition was in 1758// range, 0 if it was out of range. 1759int GPTData::DeletePartition(uint32_t partNum) { 1760 uint64_t startSector, length; 1761 uint32_t low, high, numUsedParts, retval = 1;; 1762 1763 numUsedParts = GetPartRange(&low, &high); 1764 if ((numUsedParts > 0) && (partNum >= low) && (partNum <= high)) { 1765 // In case there's a protective MBR, look for & delete matching 1766 // MBR partition.... 1767 startSector = partitions[partNum].GetFirstLBA(); 1768 length = partitions[partNum].GetLengthLBA(); 1769 protectiveMBR.DeleteByLocation(startSector, length); 1770 1771 // Now delete the GPT partition 1772 partitions[partNum].BlankPartition(); 1773 } else { 1774 cerr << "Partition number " << partNum + 1 << " out of range!\n"; 1775 retval = 0; 1776 } // if/else 1777 return retval; 1778} // GPTData::DeletePartition(uint32_t partNum) 1779 1780// Non-interactively create a partition. 1781// Returns 1 if the operation was successful, 0 if a problem was discovered. 1782uint32_t GPTData::CreatePartition(uint32_t partNum, uint64_t startSector, uint64_t endSector) { 1783 int retval = 1; // assume there'll be no problems 1784 uint64_t origSector = startSector; 1785 1786 if (IsFreePartNum(partNum)) { 1787 if (Align(&startSector)) { 1788 cout << "Information: Moved requested sector from " << origSector << " to " 1789 << startSector << " in\norder to align on " << sectorAlignment 1790 << "-sector boundaries.\n"; 1791 } // if 1792 if (IsFree(startSector) && (startSector <= endSector)) { 1793 if (FindLastInFree(startSector) >= endSector) { 1794 partitions[partNum].SetFirstLBA(startSector); 1795 partitions[partNum].SetLastLBA(endSector); 1796 partitions[partNum].SetType(DEFAULT_GPT_TYPE); 1797 partitions[partNum].RandomizeUniqueGUID(); 1798 } else retval = 0; // if free space until endSector 1799 } else retval = 0; // if startSector is free 1800 } else retval = 0; // if legal partition number 1801 return retval; 1802} // GPTData::CreatePartition(partNum, startSector, endSector) 1803 1804// Sort the GPT entries, eliminating gaps and making for a logical 1805// ordering. 1806void GPTData::SortGPT(void) { 1807 if (numParts > 0) 1808 sort(partitions, partitions + numParts); 1809} // GPTData::SortGPT() 1810 1811// Swap the contents of two partitions. 1812// Returns 1 if successful, 0 if either partition is out of range 1813// (that is, not a legal number; either or both can be empty). 1814// Note that if partNum1 = partNum2 and this number is in range, 1815// it will be considered successful. 1816int GPTData::SwapPartitions(uint32_t partNum1, uint32_t partNum2) { 1817 GPTPart temp; 1818 int allOK = 1; 1819 1820 if ((partNum1 < numParts) && (partNum2 < numParts)) { 1821 if (partNum1 != partNum2) { 1822 temp = partitions[partNum1]; 1823 partitions[partNum1] = partitions[partNum2]; 1824 partitions[partNum2] = temp; 1825 } // if 1826 } else allOK = 0; // partition numbers are valid 1827 return allOK; 1828} // GPTData::SwapPartitions() 1829 1830// Set up data structures for entirely new set of partitions on the 1831// specified device. Returns 1 if OK, 0 if there were problems. 1832// Note that this function does NOT clear the protectiveMBR data 1833// structure, since it may hold the original MBR partitions if the 1834// program was launched on an MBR disk, and those may need to be 1835// converted to GPT format. 1836int GPTData::ClearGPTData(void) { 1837 int goOn = 1, i; 1838 1839 // Set up the partition table.... 1840 delete[] partitions; 1841 partitions = NULL; 1842 SetGPTSize(NUM_GPT_ENTRIES); 1843 1844 // Now initialize a bunch of stuff that's static.... 1845 mainHeader.signature = GPT_SIGNATURE; 1846 mainHeader.revision = 0x00010000; 1847 mainHeader.headerSize = HEADER_SIZE; 1848 mainHeader.reserved = 0; 1849 mainHeader.currentLBA = UINT64_C(1); 1850 mainHeader.partitionEntriesLBA = (uint64_t) 2; 1851 mainHeader.sizeOfPartitionEntries = GPT_SIZE; 1852 for (i = 0; i < GPT_RESERVED; i++) { 1853 mainHeader.reserved2[i] = '\0'; 1854 } // for 1855 if (blockSize > 0) 1856 sectorAlignment = DEFAULT_ALIGNMENT * SECTOR_SIZE / blockSize; 1857 else 1858 sectorAlignment = DEFAULT_ALIGNMENT; 1859 1860 // Now some semi-static items (computed based on end of disk) 1861 mainHeader.backupLBA = diskSize - UINT64_C(1); 1862 mainHeader.lastUsableLBA = diskSize - mainHeader.firstUsableLBA; 1863 1864 // Set a unique GUID for the disk, based on random numbers 1865 mainHeader.diskGUID.Randomize(); 1866 1867 // Copy main header to backup header 1868 RebuildSecondHeader(); 1869 1870 // Blank out the partitions array.... 1871 BlankPartitions(); 1872 1873 // Flag all CRCs as being OK.... 1874 mainCrcOk = 1; 1875 secondCrcOk = 1; 1876 mainPartsCrcOk = 1; 1877 secondPartsCrcOk = 1; 1878 1879 return (goOn); 1880} // GPTData::ClearGPTData() 1881 1882// Set the location of the second GPT header data to the end of the disk. 1883// If the disk size has actually changed, this also adjusts the protective 1884// entry in the MBR, since it's probably no longer correct. 1885// Used internally and called by the 'e' option on the recovery & 1886// transformation menu, to help users of RAID arrays who add disk space 1887// to their arrays or to adjust data structures in restore operations 1888// involving unequal-sized disks. 1889void GPTData::MoveSecondHeaderToEnd() { 1890 mainHeader.backupLBA = secondHeader.currentLBA = diskSize - UINT64_C(1); 1891 if (mainHeader.lastUsableLBA != diskSize - mainHeader.firstUsableLBA) { 1892 if (protectiveMBR.GetValidity() == hybrid) { 1893 protectiveMBR.OptimizeEESize(); 1894 RecomputeCHS(); 1895 } // if 1896 if (protectiveMBR.GetValidity() == gpt) 1897 MakeProtectiveMBR(); 1898 } // if 1899 mainHeader.lastUsableLBA = secondHeader.lastUsableLBA = diskSize - mainHeader.firstUsableLBA; 1900 secondHeader.partitionEntriesLBA = secondHeader.lastUsableLBA + UINT64_C(1); 1901} // GPTData::FixSecondHeaderLocation() 1902 1903// Sets the partition's name to the specified UnicodeString without 1904// user interaction. 1905// Returns 1 on success, 0 on failure (invalid partition number). 1906int GPTData::SetName(uint32_t partNum, const UnicodeString & theName) { 1907 int retval = 1; 1908 1909 if (IsUsedPartNum(partNum)) 1910 partitions[partNum].SetName(theName); 1911 else 1912 retval = 0; 1913 1914 return retval; 1915} // GPTData::SetName 1916 1917// Set the disk GUID to the specified value. Note that the header CRCs must 1918// be recomputed after calling this function. 1919void GPTData::SetDiskGUID(GUIDData newGUID) { 1920 mainHeader.diskGUID = newGUID; 1921 secondHeader.diskGUID = newGUID; 1922} // SetDiskGUID() 1923 1924// Set the unique GUID of the specified partition. Returns 1 on 1925// successful completion, 0 if there were problems (invalid 1926// partition number). 1927int GPTData::SetPartitionGUID(uint32_t pn, GUIDData theGUID) { 1928 int retval = 0; 1929 1930 if (pn < numParts) { 1931 if (partitions[pn].IsUsed()) { 1932 partitions[pn].SetUniqueGUID(theGUID); 1933 retval = 1; 1934 } // if 1935 } // if 1936 return retval; 1937} // GPTData::SetPartitionGUID() 1938 1939// Set new random GUIDs for the disk and all partitions. Intended to be used 1940// after disk cloning or similar operations that don't randomize the GUIDs. 1941void GPTData::RandomizeGUIDs(void) { 1942 uint32_t i; 1943 1944 mainHeader.diskGUID.Randomize(); 1945 secondHeader.diskGUID = mainHeader.diskGUID; 1946 for (i = 0; i < numParts; i++) 1947 if (partitions[i].IsUsed()) 1948 partitions[i].RandomizeUniqueGUID(); 1949} // GPTData::RandomizeGUIDs() 1950 1951// Change partition type code non-interactively. Returns 1 if 1952// successful, 0 if not.... 1953int GPTData::ChangePartType(uint32_t partNum, PartType theGUID) { 1954 int retval = 1; 1955 1956 if (!IsFreePartNum(partNum)) { 1957 partitions[partNum].SetType(theGUID); 1958 } else retval = 0; 1959 return retval; 1960} // GPTData::ChangePartType() 1961 1962// Recompute the CHS values of all the MBR partitions. Used to reset 1963// CHS values that some BIOSes require, despite the fact that the 1964// resulting CHS values violate the GPT standard. 1965void GPTData::RecomputeCHS(void) { 1966 int i; 1967 1968 for (i = 0; i < 4; i++) 1969 protectiveMBR.RecomputeCHS(i); 1970} // GPTData::RecomputeCHS() 1971 1972// Adjust sector number so that it falls on a sector boundary that's a 1973// multiple of sectorAlignment. This is done to improve the performance 1974// of Western Digital Advanced Format disks and disks with similar 1975// technology from other companies, which use 4096-byte sectors 1976// internally although they translate to 512-byte sectors for the 1977// benefit of the OS. If partitions aren't properly aligned on these 1978// disks, some filesystem data structures can span multiple physical 1979// sectors, degrading performance. This function should be called 1980// only on the FIRST sector of the partition, not the last! 1981// This function returns 1 if the alignment was altered, 0 if it 1982// was unchanged. 1983int GPTData::Align(uint64_t* sector) { 1984 int retval = 0, sectorOK = 0; 1985 uint64_t earlier, later, testSector; 1986 1987 if ((*sector % sectorAlignment) != 0) { 1988 earlier = (*sector / sectorAlignment) * sectorAlignment; 1989 later = earlier + (uint64_t) sectorAlignment; 1990 1991 // Check to see that every sector between the earlier one and the 1992 // requested one is clear, and that it's not too early.... 1993 if (earlier >= mainHeader.firstUsableLBA) { 1994 sectorOK = 1; 1995 testSector = earlier; 1996 do { 1997 sectorOK = IsFree(testSector++); 1998 } while ((sectorOK == 1) && (testSector < *sector)); 1999 if (sectorOK == 1) { 2000 *sector = earlier; 2001 retval = 1; 2002 } // if 2003 } // if firstUsableLBA check 2004 2005 // If couldn't move the sector earlier, try to move it later instead.... 2006 if ((sectorOK != 1) && (later <= mainHeader.lastUsableLBA)) { 2007 sectorOK = 1; 2008 testSector = later; 2009 do { 2010 sectorOK = IsFree(testSector--); 2011 } while ((sectorOK == 1) && (testSector > *sector)); 2012 if (sectorOK == 1) { 2013 *sector = later; 2014 retval = 1; 2015 } // if 2016 } // if 2017 } // if 2018 return retval; 2019} // GPTData::Align() 2020 2021/******************************************************** 2022 * * 2023 * Functions that return data about GPT data structures * 2024 * (most of these are inline in gpt.h) * 2025 * * 2026 ********************************************************/ 2027 2028// Find the low and high used partition numbers (numbered from 0). 2029// Return value is the number of partitions found. Note that the 2030// *low and *high values are both set to 0 when no partitions 2031// are found, as well as when a single partition in the first 2032// position exists. Thus, the return value is the only way to 2033// tell when no partitions exist. 2034int GPTData::GetPartRange(uint32_t *low, uint32_t *high) { 2035 uint32_t i; 2036 int numFound = 0; 2037 2038 *low = numParts + 1; // code for "not found" 2039 *high = 0; 2040 for (i = 0; i < numParts; i++) { 2041 if (partitions[i].IsUsed()) { // it exists 2042 *high = i; // since we're counting up, set the high value 2043 // Set the low value only if it's not yet found... 2044 if (*low == (numParts + 1)) *low = i; 2045 numFound++; 2046 } // if 2047 } // for 2048 2049 // Above will leave *low pointing to its "not found" value if no partitions 2050 // are defined, so reset to 0 if this is the case.... 2051 if (*low == (numParts + 1)) 2052 *low = 0; 2053 return numFound; 2054} // GPTData::GetPartRange() 2055 2056// Returns the value of the first free partition, or -1 if none is 2057// unused. 2058int GPTData::FindFirstFreePart(void) { 2059 int i = 0; 2060 2061 if (partitions != NULL) { 2062 while ((i < (int) numParts) && (partitions[i].IsUsed())) 2063 i++; 2064 if (i >= (int) numParts) 2065 i = -1; 2066 } else i = -1; 2067 return i; 2068} // GPTData::FindFirstFreePart() 2069 2070// Returns the number of defined partitions. 2071uint32_t GPTData::CountParts(void) { 2072 uint32_t i, counted = 0; 2073 2074 for (i = 0; i < numParts; i++) { 2075 if (partitions[i].IsUsed()) 2076 counted++; 2077 } // for 2078 return counted; 2079} // GPTData::CountParts() 2080 2081/**************************************************** 2082 * * 2083 * Functions that return data about disk free space * 2084 * * 2085 ****************************************************/ 2086 2087// Find the first available block after the starting point; returns 0 if 2088// there are no available blocks left 2089uint64_t GPTData::FindFirstAvailable(uint64_t start) { 2090 uint64_t first; 2091 uint32_t i; 2092 int firstMoved = 0; 2093 2094 // Begin from the specified starting point or from the first usable 2095 // LBA, whichever is greater... 2096 if (start < mainHeader.firstUsableLBA) 2097 first = mainHeader.firstUsableLBA; 2098 else 2099 first = start; 2100 2101 // ...now search through all partitions; if first is within an 2102 // existing partition, move it to the next sector after that 2103 // partition and repeat. If first was moved, set firstMoved 2104 // flag; repeat until firstMoved is not set, so as to catch 2105 // cases where partitions are out of sequential order.... 2106 do { 2107 firstMoved = 0; 2108 for (i = 0; i < numParts; i++) { 2109 if ((partitions[i].IsUsed()) && (first >= partitions[i].GetFirstLBA()) && 2110 (first <= partitions[i].GetLastLBA())) { // in existing part. 2111 first = partitions[i].GetLastLBA() + 1; 2112 firstMoved = 1; 2113 } // if 2114 } // for 2115 } while (firstMoved == 1); 2116 if (first > mainHeader.lastUsableLBA) 2117 first = 0; 2118 return (first); 2119} // GPTData::FindFirstAvailable() 2120 2121// Finds the first available sector in the largest block of unallocated 2122// space on the disk. Returns 0 if there are no available blocks left 2123uint64_t GPTData::FindFirstInLargest(void) { 2124 uint64_t start, firstBlock, lastBlock, segmentSize, selectedSize = 0, selectedSegment = 0; 2125 2126 start = 0; 2127 do { 2128 firstBlock = FindFirstAvailable(start); 2129 if (firstBlock != UINT32_C(0)) { // something's free... 2130 lastBlock = FindLastInFree(firstBlock); 2131 segmentSize = lastBlock - firstBlock + UINT32_C(1); 2132 if (segmentSize > selectedSize) { 2133 selectedSize = segmentSize; 2134 selectedSegment = firstBlock; 2135 } // if 2136 start = lastBlock + 1; 2137 } // if 2138 } while (firstBlock != 0); 2139 return selectedSegment; 2140} // GPTData::FindFirstInLargest() 2141 2142// Find the last available block on the disk. 2143// Returns 0 if there are no available sectors 2144uint64_t GPTData::FindLastAvailable(void) { 2145 uint64_t last; 2146 uint32_t i; 2147 int lastMoved = 0; 2148 2149 // Start by assuming the last usable LBA is available.... 2150 last = mainHeader.lastUsableLBA; 2151 2152 // ...now, similar to algorithm in FindFirstAvailable(), search 2153 // through all partitions, moving last when it's in an existing 2154 // partition. Set the lastMoved flag so we repeat to catch cases 2155 // where partitions are out of logical order. 2156 do { 2157 lastMoved = 0; 2158 for (i = 0; i < numParts; i++) { 2159 if ((last >= partitions[i].GetFirstLBA()) && 2160 (last <= partitions[i].GetLastLBA())) { // in existing part. 2161 last = partitions[i].GetFirstLBA() - 1; 2162 lastMoved = 1; 2163 } // if 2164 } // for 2165 } while (lastMoved == 1); 2166 if (last < mainHeader.firstUsableLBA) 2167 last = 0; 2168 return (last); 2169} // GPTData::FindLastAvailable() 2170 2171// Find the last available block in the free space pointed to by start. 2172uint64_t GPTData::FindLastInFree(uint64_t start) { 2173 uint64_t nearestStart; 2174 uint32_t i; 2175 2176 nearestStart = mainHeader.lastUsableLBA; 2177 for (i = 0; i < numParts; i++) { 2178 if ((nearestStart > partitions[i].GetFirstLBA()) && 2179 (partitions[i].GetFirstLBA() > start)) { 2180 nearestStart = partitions[i].GetFirstLBA() - 1; 2181 } // if 2182 } // for 2183 return (nearestStart); 2184} // GPTData::FindLastInFree() 2185 2186// Finds the total number of free blocks, the number of segments in which 2187// they reside, and the size of the largest of those segments 2188uint64_t GPTData::FindFreeBlocks(uint32_t *numSegments, uint64_t *largestSegment) { 2189 uint64_t start = UINT64_C(0); // starting point for each search 2190 uint64_t totalFound = UINT64_C(0); // running total 2191 uint64_t firstBlock; // first block in a segment 2192 uint64_t lastBlock; // last block in a segment 2193 uint64_t segmentSize; // size of segment in blocks 2194 uint32_t num = 0; 2195 2196 *largestSegment = UINT64_C(0); 2197 if (diskSize > 0) { 2198 do { 2199 firstBlock = FindFirstAvailable(start); 2200 if (firstBlock != UINT64_C(0)) { // something's free... 2201 lastBlock = FindLastInFree(firstBlock); 2202 segmentSize = lastBlock - firstBlock + UINT64_C(1); 2203 if (segmentSize > *largestSegment) { 2204 *largestSegment = segmentSize; 2205 } // if 2206 totalFound += segmentSize; 2207 num++; 2208 start = lastBlock + 1; 2209 } // if 2210 } while (firstBlock != 0); 2211 } // if 2212 *numSegments = num; 2213 return totalFound; 2214} // GPTData::FindFreeBlocks() 2215 2216// Returns 1 if sector is unallocated, 0 if it's allocated to a partition. 2217// If it's allocated, return the partition number to which it's allocated 2218// in partNum, if that variable is non-NULL. (A value of UINT32_MAX is 2219// returned in partNum if the sector is in use by basic GPT data structures.) 2220int GPTData::IsFree(uint64_t sector, uint32_t *partNum) { 2221 int isFree = 1; 2222 uint32_t i; 2223 2224 for (i = 0; i < numParts; i++) { 2225 if ((sector >= partitions[i].GetFirstLBA()) && 2226 (sector <= partitions[i].GetLastLBA())) { 2227 isFree = 0; 2228 if (partNum != NULL) 2229 *partNum = i; 2230 } // if 2231 } // for 2232 if ((sector < mainHeader.firstUsableLBA) || 2233 (sector > mainHeader.lastUsableLBA)) { 2234 isFree = 0; 2235 if (partNum != NULL) 2236 *partNum = UINT32_MAX; 2237 } // if 2238 return (isFree); 2239} // GPTData::IsFree() 2240 2241// Returns 1 if partNum is unused AND if it's a legal value. 2242int GPTData::IsFreePartNum(uint32_t partNum) { 2243 return ((partNum < numParts) && (partitions != NULL) && 2244 (!partitions[partNum].IsUsed())); 2245} // GPTData::IsFreePartNum() 2246 2247// Returns 1 if partNum is in use. 2248int GPTData::IsUsedPartNum(uint32_t partNum) { 2249 return ((partNum < numParts) && (partitions != NULL) && 2250 (partitions[partNum].IsUsed())); 2251} // GPTData::IsUsedPartNum() 2252 2253/*********************************************************** 2254 * * 2255 * Change how functions work or return information on them * 2256 * * 2257 ***********************************************************/ 2258 2259// Set partition alignment value; partitions will begin on multiples of 2260// the specified value 2261void GPTData::SetAlignment(uint32_t n) { 2262 if (n > 0) 2263 sectorAlignment = n; 2264 else 2265 cerr << "Attempt to set partition alignment to 0!\n"; 2266} // GPTData::SetAlignment() 2267 2268// Compute sector alignment based on the current partitions (if any). Each 2269// partition's starting LBA is examined, and if it's divisible by a power-of-2 2270// value less than or equal to the DEFAULT_ALIGNMENT value (adjusted for the 2271// sector size), but not by the previously-located alignment value, then the 2272// alignment value is adjusted down. If the computed alignment is less than 8 2273// and the disk is bigger than SMALLEST_ADVANCED_FORMAT, resets it to 8. This 2274// is a safety measure for Advanced Format drives. If no partitions are 2275// defined, the alignment value is set to DEFAULT_ALIGNMENT (2048) (or an 2276// adjustment of that based on the current sector size). The result is that new 2277// drives are aligned to 2048-sector multiples but the program won't complain 2278// about other alignments on existing disks unless a smaller-than-8 alignment 2279// is used on big disks (as safety for Advanced Format drives). 2280// Returns the computed alignment value. 2281uint32_t GPTData::ComputeAlignment(void) { 2282 uint32_t i = 0, found, exponent = 31; 2283 uint32_t align = DEFAULT_ALIGNMENT; 2284 2285 if (blockSize > 0) 2286 align = DEFAULT_ALIGNMENT * SECTOR_SIZE / blockSize; 2287 exponent = (uint32_t) log2(align); 2288 for (i = 0; i < numParts; i++) { 2289 if (partitions[i].IsUsed()) { 2290 found = 0; 2291 while (!found) { 2292 align = UINT64_C(1) << exponent; 2293 if ((partitions[i].GetFirstLBA() % align) == 0) { 2294 found = 1; 2295 } else { 2296 exponent--; 2297 } // if/else 2298 } // while 2299 } // if 2300 } // for 2301 if ((align < MIN_AF_ALIGNMENT) && (diskSize >= SMALLEST_ADVANCED_FORMAT)) 2302 align = MIN_AF_ALIGNMENT; 2303 sectorAlignment = align; 2304 return align; 2305} // GPTData::ComputeAlignment() 2306 2307/******************************** 2308 * * 2309 * Endianness support functions * 2310 * * 2311 ********************************/ 2312 2313void GPTData::ReverseHeaderBytes(struct GPTHeader* header) { 2314 ReverseBytes(&header->signature, 8); 2315 ReverseBytes(&header->revision, 4); 2316 ReverseBytes(&header->headerSize, 4); 2317 ReverseBytes(&header->headerCRC, 4); 2318 ReverseBytes(&header->reserved, 4); 2319 ReverseBytes(&header->currentLBA, 8); 2320 ReverseBytes(&header->backupLBA, 8); 2321 ReverseBytes(&header->firstUsableLBA, 8); 2322 ReverseBytes(&header->lastUsableLBA, 8); 2323 ReverseBytes(&header->partitionEntriesLBA, 8); 2324 ReverseBytes(&header->numParts, 4); 2325 ReverseBytes(&header->sizeOfPartitionEntries, 4); 2326 ReverseBytes(&header->partitionEntriesCRC, 4); 2327 ReverseBytes(header->reserved2, GPT_RESERVED); 2328} // GPTData::ReverseHeaderBytes() 2329 2330// Reverse byte order for all partitions. 2331void GPTData::ReversePartitionBytes() { 2332 uint32_t i; 2333 2334 for (i = 0; i < numParts; i++) { 2335 partitions[i].ReversePartBytes(); 2336 } // for 2337} // GPTData::ReversePartitionBytes() 2338 2339// Validate partition number 2340bool GPTData::ValidPartNum (const uint32_t partNum) { 2341 if (partNum >= numParts) { 2342 cerr << "Partition number out of range: " << partNum << "\n"; 2343 return false; 2344 } // if 2345 return true; 2346} // GPTData::ValidPartNum 2347 2348// Return a single partition for inspection (not modification!) by other 2349// functions. 2350const GPTPart & GPTData::operator[](uint32_t partNum) const { 2351 if (partNum >= numParts) { 2352 cerr << "Partition number out of range (" << partNum << " requested, but only " 2353 << numParts << " available)\n"; 2354 exit(1); 2355 } // if 2356 if (partitions == NULL) { 2357 cerr << "No partitions defined in GPTData::operator[]; fatal error!\n"; 2358 exit(1); 2359 } // if 2360 return partitions[partNum]; 2361} // operator[] 2362 2363// Return (not for modification!) the disk's GUID value 2364const GUIDData & GPTData::GetDiskGUID(void) const { 2365 return mainHeader.diskGUID; 2366} // GPTData::GetDiskGUID() 2367 2368// Manage attributes for a partition, based on commands passed to this function. 2369// (Function is non-interactive.) 2370// Returns 1 if a modification command succeeded, 0 if the command should not have 2371// modified data, and -1 if a modification command failed. 2372int GPTData::ManageAttributes(int partNum, const string & command, const string & bits) { 2373 int retval = 0; 2374 Attributes theAttr; 2375 2376 if (partNum >= (int) numParts) { 2377 cerr << "Invalid partition number (" << partNum + 1 << ")\n"; 2378 retval = -1; 2379 } else { 2380 if (command == "show") { 2381 ShowAttributes(partNum); 2382 } else if (command == "get") { 2383 GetAttribute(partNum, bits); 2384 } else { 2385 theAttr = partitions[partNum].GetAttributes(); 2386 if (theAttr.OperateOnAttributes(partNum, command, bits)) { 2387 partitions[partNum].SetAttributes(theAttr.GetAttributes()); 2388 retval = 1; 2389 } else { 2390 retval = -1; 2391 } // if/else 2392 } // if/elseif/else 2393 } // if/else invalid partition # 2394 2395 return retval; 2396} // GPTData::ManageAttributes() 2397 2398// Show all attributes for a specified partition.... 2399void GPTData::ShowAttributes(const uint32_t partNum) { 2400 if ((partNum < numParts) && partitions[partNum].IsUsed()) 2401 partitions[partNum].ShowAttributes(partNum); 2402} // GPTData::ShowAttributes 2403 2404// Show whether a single attribute bit is set (terse output)... 2405void GPTData::GetAttribute(const uint32_t partNum, const string& attributeBits) { 2406 if (partNum < numParts) 2407 partitions[partNum].GetAttributes().OperateOnAttributes(partNum, "get", attributeBits); 2408} // GPTData::GetAttribute 2409 2410 2411/****************************************** 2412 * * 2413 * Additional non-class support functions * 2414 * * 2415 ******************************************/ 2416 2417// Check to be sure that data type sizes are correct. The basic types (uint*_t) should 2418// never fail these tests, but the struct types may fail depending on compile options. 2419// Specifically, the -fpack-struct option to gcc may be required to ensure proper structure 2420// sizes. 2421int SizesOK(void) { 2422 int allOK = 1; 2423 2424 if (sizeof(uint8_t) != 1) { 2425 cerr << "uint8_t is " << sizeof(uint8_t) << " bytes, should be 1 byte; aborting!\n"; 2426 allOK = 0; 2427 } // if 2428 if (sizeof(uint16_t) != 2) { 2429 cerr << "uint16_t is " << sizeof(uint16_t) << " bytes, should be 2 bytes; aborting!\n"; 2430 allOK = 0; 2431 } // if 2432 if (sizeof(uint32_t) != 4) { 2433 cerr << "uint32_t is " << sizeof(uint32_t) << " bytes, should be 4 bytes; aborting!\n"; 2434 allOK = 0; 2435 } // if 2436 if (sizeof(uint64_t) != 8) { 2437 cerr << "uint64_t is " << sizeof(uint64_t) << " bytes, should be 8 bytes; aborting!\n"; 2438 allOK = 0; 2439 } // if 2440 if (sizeof(struct MBRRecord) != 16) { 2441 cerr << "MBRRecord is " << sizeof(MBRRecord) << " bytes, should be 16 bytes; aborting!\n"; 2442 allOK = 0; 2443 } // if 2444 if (sizeof(struct TempMBR) != 512) { 2445 cerr << "TempMBR is " << sizeof(TempMBR) << " bytes, should be 512 bytes; aborting!\n"; 2446 allOK = 0; 2447 } // if 2448 if (sizeof(struct GPTHeader) != 512) { 2449 cerr << "GPTHeader is " << sizeof(GPTHeader) << " bytes, should be 512 bytes; aborting!\n"; 2450 allOK = 0; 2451 } // if 2452 if (sizeof(GPTPart) != 128) { 2453 cerr << "GPTPart is " << sizeof(GPTPart) << " bytes, should be 128 bytes; aborting!\n"; 2454 allOK = 0; 2455 } // if 2456 if (sizeof(GUIDData) != 16) { 2457 cerr << "GUIDData is " << sizeof(GUIDData) << " bytes, should be 16 bytes; aborting!\n"; 2458 allOK = 0; 2459 } // if 2460 if (sizeof(PartType) != 16) { 2461 cerr << "PartType is " << sizeof(PartType) << " bytes, should be 16 bytes; aborting!\n"; 2462 allOK = 0; 2463 } // if 2464 return (allOK); 2465} // SizesOK() 2466 2467