1// © 2016 and later: Unicode, Inc. and others.
2// License & terms of use: http://www.unicode.org/copyright.html
3/*
4*******************************************************************************
5* Copyright (C) 2010-2014, International Business Machines
6* Corporation and others.  All Rights Reserved.
7*******************************************************************************
8* collationiterator.cpp
9*
10* created on: 2010oct27
11* created by: Markus W. Scherer
12*/
13
14#include "utypeinfo.h"  // for 'typeid' to work
15
16#include "unicode/utypes.h"
17
18#if !UCONFIG_NO_COLLATION
19
20#include "unicode/ucharstrie.h"
21#include "unicode/ustringtrie.h"
22#include "charstr.h"
23#include "cmemory.h"
24#include "collation.h"
25#include "collationdata.h"
26#include "collationfcd.h"
27#include "collationiterator.h"
28#include "normalizer2impl.h"
29#include "uassert.h"
30#include "uvectr32.h"
31
32U_NAMESPACE_BEGIN
33
34CollationIterator::CEBuffer::~CEBuffer() {}
35
36UBool
37CollationIterator::CEBuffer::ensureAppendCapacity(int32_t appCap, UErrorCode &errorCode) {
38    int32_t capacity = buffer.getCapacity();
39    if((length + appCap) <= capacity) { return TRUE; }
40    if(U_FAILURE(errorCode)) { return FALSE; }
41    do {
42        if(capacity < 1000) {
43            capacity *= 4;
44        } else {
45            capacity *= 2;
46        }
47    } while(capacity < (length + appCap));
48    int64_t *p = buffer.resize(capacity, length);
49    if(p == NULL) {
50        errorCode = U_MEMORY_ALLOCATION_ERROR;
51        return FALSE;
52    }
53    return TRUE;
54}
55
56// State of combining marks skipped in discontiguous contraction.
57// We create a state object on first use and keep it around deactivated between uses.
58class SkippedState : public UMemory {
59public:
60    // Born active but empty.
61    SkippedState() : pos(0), skipLengthAtMatch(0) {}
62    void clear() {
63        oldBuffer.remove();
64        pos = 0;
65        // The newBuffer is reset by setFirstSkipped().
66    }
67
68    UBool isEmpty() const { return oldBuffer.isEmpty(); }
69
70    UBool hasNext() const { return pos < oldBuffer.length(); }
71
72    // Requires hasNext().
73    UChar32 next() {
74        UChar32 c = oldBuffer.char32At(pos);
75        pos += U16_LENGTH(c);
76        return c;
77    }
78
79    // Accounts for one more input code point read beyond the end of the marks buffer.
80    void incBeyond() {
81        U_ASSERT(!hasNext());
82        ++pos;
83    }
84
85    // Goes backward through the skipped-marks buffer.
86    // Returns the number of code points read beyond the skipped marks
87    // that need to be backtracked through normal input.
88    int32_t backwardNumCodePoints(int32_t n) {
89        int32_t length = oldBuffer.length();
90        int32_t beyond = pos - length;
91        if(beyond > 0) {
92            if(beyond >= n) {
93                // Not back far enough to re-enter the oldBuffer.
94                pos -= n;
95                return n;
96            } else {
97                // Back out all beyond-oldBuffer code points and re-enter the buffer.
98                pos = oldBuffer.moveIndex32(length, beyond - n);
99                return beyond;
100            }
101        } else {
102            // Go backwards from inside the oldBuffer.
103            pos = oldBuffer.moveIndex32(pos, -n);
104            return 0;
105        }
106    }
107
108    void setFirstSkipped(UChar32 c) {
109        skipLengthAtMatch = 0;
110        newBuffer.setTo(c);
111    }
112
113    void skip(UChar32 c) {
114        newBuffer.append(c);
115    }
116
117    void recordMatch() { skipLengthAtMatch = newBuffer.length(); }
118
119    // Replaces the characters we consumed with the newly skipped ones.
120    void replaceMatch() {
121        // Note: UnicodeString.replace() pins pos to at most length().
122        oldBuffer.replace(0, pos, newBuffer, 0, skipLengthAtMatch);
123        pos = 0;
124    }
125
126    void saveTrieState(const UCharsTrie &trie) { trie.saveState(state); }
127    void resetToTrieState(UCharsTrie &trie) const { trie.resetToState(state); }
128
129private:
130    // Combining marks skipped in previous discontiguous-contraction matching.
131    // After that discontiguous contraction was completed, we start reading them from here.
132    UnicodeString oldBuffer;
133    // Combining marks newly skipped in current discontiguous-contraction matching.
134    // These might have been read from the normal text or from the oldBuffer.
135    UnicodeString newBuffer;
136    // Reading index in oldBuffer,
137    // or counter for how many code points have been read beyond oldBuffer (pos-oldBuffer.length()).
138    int32_t pos;
139    // newBuffer.length() at the time of the last matching character.
140    // When a partial match fails, we back out skipped and partial-matching input characters.
141    int32_t skipLengthAtMatch;
142    // We save the trie state before we attempt to match a character,
143    // so that we can skip it and try the next one.
144    UCharsTrie::State state;
145};
146
147CollationIterator::CollationIterator(const CollationIterator &other)
148        : UObject(other),
149          trie(other.trie),
150          data(other.data),
151          cesIndex(other.cesIndex),
152          skipped(NULL),
153          numCpFwd(other.numCpFwd),
154          isNumeric(other.isNumeric) {
155    UErrorCode errorCode = U_ZERO_ERROR;
156    int32_t length = other.ceBuffer.length;
157    if(length > 0 && ceBuffer.ensureAppendCapacity(length, errorCode)) {
158        for(int32_t i = 0; i < length; ++i) {
159            ceBuffer.set(i, other.ceBuffer.get(i));
160        }
161        ceBuffer.length = length;
162    } else {
163        cesIndex = 0;
164    }
165}
166
167CollationIterator::~CollationIterator() {
168    delete skipped;
169}
170
171UBool
172CollationIterator::operator==(const CollationIterator &other) const {
173    // Subclasses: Call this method and then add more specific checks.
174    // Compare the iterator state but not the collation data (trie & data fields):
175    // Assume that the caller compares the data.
176    // Ignore skipped since that should be unused between calls to nextCE().
177    // (It only stays around to avoid another memory allocation.)
178    if(!(typeid(*this) == typeid(other) &&
179            ceBuffer.length == other.ceBuffer.length &&
180            cesIndex == other.cesIndex &&
181            numCpFwd == other.numCpFwd &&
182            isNumeric == other.isNumeric)) {
183        return FALSE;
184    }
185    for(int32_t i = 0; i < ceBuffer.length; ++i) {
186        if(ceBuffer.get(i) != other.ceBuffer.get(i)) { return FALSE; }
187    }
188    return TRUE;
189}
190
191void
192CollationIterator::reset() {
193    cesIndex = ceBuffer.length = 0;
194    if(skipped != NULL) { skipped->clear(); }
195}
196
197int32_t
198CollationIterator::fetchCEs(UErrorCode &errorCode) {
199    while(U_SUCCESS(errorCode) && nextCE(errorCode) != Collation::NO_CE) {
200        // No need to loop for each expansion CE.
201        cesIndex = ceBuffer.length;
202    }
203    return ceBuffer.length;
204}
205
206uint32_t
207CollationIterator::handleNextCE32(UChar32 &c, UErrorCode &errorCode) {
208    c = nextCodePoint(errorCode);
209    return (c < 0) ? Collation::FALLBACK_CE32 : data->getCE32(c);
210}
211
212UChar
213CollationIterator::handleGetTrailSurrogate() {
214    return 0;
215}
216
217UBool
218CollationIterator::foundNULTerminator() {
219    return FALSE;
220}
221
222UBool
223CollationIterator::forbidSurrogateCodePoints() const {
224    return FALSE;
225}
226
227uint32_t
228CollationIterator::getDataCE32(UChar32 c) const {
229    return data->getCE32(c);
230}
231
232uint32_t
233CollationIterator::getCE32FromBuilderData(uint32_t /*ce32*/, UErrorCode &errorCode) {
234    if(U_SUCCESS(errorCode)) { errorCode = U_INTERNAL_PROGRAM_ERROR; }
235    return 0;
236}
237
238int64_t
239CollationIterator::nextCEFromCE32(const CollationData *d, UChar32 c, uint32_t ce32,
240                                  UErrorCode &errorCode) {
241    --ceBuffer.length;  // Undo ceBuffer.incLength().
242    appendCEsFromCE32(d, c, ce32, TRUE, errorCode);
243    if(U_SUCCESS(errorCode)) {
244        return ceBuffer.get(cesIndex++);
245    } else {
246        return Collation::NO_CE_PRIMARY;
247    }
248}
249
250void
251CollationIterator::appendCEsFromCE32(const CollationData *d, UChar32 c, uint32_t ce32,
252                                     UBool forward, UErrorCode &errorCode) {
253    while(Collation::isSpecialCE32(ce32)) {
254        switch(Collation::tagFromCE32(ce32)) {
255        case Collation::FALLBACK_TAG:
256        case Collation::RESERVED_TAG_3:
257            if(U_SUCCESS(errorCode)) { errorCode = U_INTERNAL_PROGRAM_ERROR; }
258            return;
259        case Collation::LONG_PRIMARY_TAG:
260            ceBuffer.append(Collation::ceFromLongPrimaryCE32(ce32), errorCode);
261            return;
262        case Collation::LONG_SECONDARY_TAG:
263            ceBuffer.append(Collation::ceFromLongSecondaryCE32(ce32), errorCode);
264            return;
265        case Collation::LATIN_EXPANSION_TAG:
266            if(ceBuffer.ensureAppendCapacity(2, errorCode)) {
267                ceBuffer.set(ceBuffer.length, Collation::latinCE0FromCE32(ce32));
268                ceBuffer.set(ceBuffer.length + 1, Collation::latinCE1FromCE32(ce32));
269                ceBuffer.length += 2;
270            }
271            return;
272        case Collation::EXPANSION32_TAG: {
273            const uint32_t *ce32s = d->ce32s + Collation::indexFromCE32(ce32);
274            int32_t length = Collation::lengthFromCE32(ce32);
275            if(ceBuffer.ensureAppendCapacity(length, errorCode)) {
276                do {
277                    ceBuffer.appendUnsafe(Collation::ceFromCE32(*ce32s++));
278                } while(--length > 0);
279            }
280            return;
281        }
282        case Collation::EXPANSION_TAG: {
283            const int64_t *ces = d->ces + Collation::indexFromCE32(ce32);
284            int32_t length = Collation::lengthFromCE32(ce32);
285            if(ceBuffer.ensureAppendCapacity(length, errorCode)) {
286                do {
287                    ceBuffer.appendUnsafe(*ces++);
288                } while(--length > 0);
289            }
290            return;
291        }
292        case Collation::BUILDER_DATA_TAG:
293            ce32 = getCE32FromBuilderData(ce32, errorCode);
294            if(U_FAILURE(errorCode)) { return; }
295            if(ce32 == Collation::FALLBACK_CE32) {
296                d = data->base;
297                ce32 = d->getCE32(c);
298            }
299            break;
300        case Collation::PREFIX_TAG:
301            if(forward) { backwardNumCodePoints(1, errorCode); }
302            ce32 = getCE32FromPrefix(d, ce32, errorCode);
303            if(forward) { forwardNumCodePoints(1, errorCode); }
304            break;
305        case Collation::CONTRACTION_TAG: {
306            const UChar *p = d->contexts + Collation::indexFromCE32(ce32);
307            uint32_t defaultCE32 = CollationData::readCE32(p);  // Default if no suffix match.
308            if(!forward) {
309                // Backward contractions are handled by previousCEUnsafe().
310                // c has contractions but they were not found.
311                ce32 = defaultCE32;
312                break;
313            }
314            UChar32 nextCp;
315            if(skipped == NULL && numCpFwd < 0) {
316                // Some portion of nextCE32FromContraction() pulled out here as an ASCII fast path,
317                // avoiding the function call and the nextSkippedCodePoint() overhead.
318                nextCp = nextCodePoint(errorCode);
319                if(nextCp < 0) {
320                    // No more text.
321                    ce32 = defaultCE32;
322                    break;
323                } else if((ce32 & Collation::CONTRACT_NEXT_CCC) != 0 &&
324                        !CollationFCD::mayHaveLccc(nextCp)) {
325                    // All contraction suffixes start with characters with lccc!=0
326                    // but the next code point has lccc==0.
327                    backwardNumCodePoints(1, errorCode);
328                    ce32 = defaultCE32;
329                    break;
330                }
331            } else {
332                nextCp = nextSkippedCodePoint(errorCode);
333                if(nextCp < 0) {
334                    // No more text.
335                    ce32 = defaultCE32;
336                    break;
337                } else if((ce32 & Collation::CONTRACT_NEXT_CCC) != 0 &&
338                        !CollationFCD::mayHaveLccc(nextCp)) {
339                    // All contraction suffixes start with characters with lccc!=0
340                    // but the next code point has lccc==0.
341                    backwardNumSkipped(1, errorCode);
342                    ce32 = defaultCE32;
343                    break;
344                }
345            }
346            ce32 = nextCE32FromContraction(d, ce32, p + 2, defaultCE32, nextCp, errorCode);
347            if(ce32 == Collation::NO_CE32) {
348                // CEs from a discontiguous contraction plus the skipped combining marks
349                // have been appended already.
350                return;
351            }
352            break;
353        }
354        case Collation::DIGIT_TAG:
355            if(isNumeric) {
356                appendNumericCEs(ce32, forward, errorCode);
357                return;
358            } else {
359                // Fetch the non-numeric-collation CE32 and continue.
360                ce32 = d->ce32s[Collation::indexFromCE32(ce32)];
361                break;
362            }
363        case Collation::U0000_TAG:
364            U_ASSERT(c == 0);
365            if(forward && foundNULTerminator()) {
366                // Handle NUL-termination. (Not needed in Java.)
367                ceBuffer.append(Collation::NO_CE, errorCode);
368                return;
369            } else {
370                // Fetch the normal ce32 for U+0000 and continue.
371                ce32 = d->ce32s[0];
372                break;
373            }
374        case Collation::HANGUL_TAG: {
375            const uint32_t *jamoCE32s = d->jamoCE32s;
376            c -= Hangul::HANGUL_BASE;
377            UChar32 t = c % Hangul::JAMO_T_COUNT;
378            c /= Hangul::JAMO_T_COUNT;
379            UChar32 v = c % Hangul::JAMO_V_COUNT;
380            c /= Hangul::JAMO_V_COUNT;
381            if((ce32 & Collation::HANGUL_NO_SPECIAL_JAMO) != 0) {
382                // None of the Jamo CE32s are isSpecialCE32().
383                // Avoid recursive function calls and per-Jamo tests.
384                if(ceBuffer.ensureAppendCapacity(t == 0 ? 2 : 3, errorCode)) {
385                    ceBuffer.set(ceBuffer.length, Collation::ceFromCE32(jamoCE32s[c]));
386                    ceBuffer.set(ceBuffer.length + 1, Collation::ceFromCE32(jamoCE32s[19 + v]));
387                    ceBuffer.length += 2;
388                    if(t != 0) {
389                        ceBuffer.appendUnsafe(Collation::ceFromCE32(jamoCE32s[39 + t]));
390                    }
391                }
392                return;
393            } else {
394                // We should not need to compute each Jamo code point.
395                // In particular, there should be no offset or implicit ce32.
396                appendCEsFromCE32(d, U_SENTINEL, jamoCE32s[c], forward, errorCode);
397                appendCEsFromCE32(d, U_SENTINEL, jamoCE32s[19 + v], forward, errorCode);
398                if(t == 0) { return; }
399                // offset 39 = 19 + 21 - 1:
400                // 19 = JAMO_L_COUNT
401                // 21 = JAMO_T_COUNT
402                // -1 = omit t==0
403                ce32 = jamoCE32s[39 + t];
404                c = U_SENTINEL;
405                break;
406            }
407        }
408        case Collation::LEAD_SURROGATE_TAG: {
409            U_ASSERT(forward);  // Backward iteration should never see lead surrogate code _unit_ data.
410            U_ASSERT(U16_IS_LEAD(c));
411            UChar trail;
412            if(U16_IS_TRAIL(trail = handleGetTrailSurrogate())) {
413                c = U16_GET_SUPPLEMENTARY(c, trail);
414                ce32 &= Collation::LEAD_TYPE_MASK;
415                if(ce32 == Collation::LEAD_ALL_UNASSIGNED) {
416                    ce32 = Collation::UNASSIGNED_CE32;  // unassigned-implicit
417                } else if(ce32 == Collation::LEAD_ALL_FALLBACK ||
418                        (ce32 = d->getCE32FromSupplementary(c)) == Collation::FALLBACK_CE32) {
419                    // fall back to the base data
420                    d = d->base;
421                    ce32 = d->getCE32FromSupplementary(c);
422                }
423            } else {
424                // c is an unpaired surrogate.
425                ce32 = Collation::UNASSIGNED_CE32;
426            }
427            break;
428        }
429        case Collation::OFFSET_TAG:
430            U_ASSERT(c >= 0);
431            ceBuffer.append(d->getCEFromOffsetCE32(c, ce32), errorCode);
432            return;
433        case Collation::IMPLICIT_TAG:
434            U_ASSERT(c >= 0);
435            if(U_IS_SURROGATE(c) && forbidSurrogateCodePoints()) {
436                ce32 = Collation::FFFD_CE32;
437                break;
438            } else {
439                ceBuffer.append(Collation::unassignedCEFromCodePoint(c), errorCode);
440                return;
441            }
442        }
443    }
444    ceBuffer.append(Collation::ceFromSimpleCE32(ce32), errorCode);
445}
446
447uint32_t
448CollationIterator::getCE32FromPrefix(const CollationData *d, uint32_t ce32,
449                                     UErrorCode &errorCode) {
450    const UChar *p = d->contexts + Collation::indexFromCE32(ce32);
451    ce32 = CollationData::readCE32(p);  // Default if no prefix match.
452    p += 2;
453    // Number of code points read before the original code point.
454    int32_t lookBehind = 0;
455    UCharsTrie prefixes(p);
456    for(;;) {
457        UChar32 c = previousCodePoint(errorCode);
458        if(c < 0) { break; }
459        ++lookBehind;
460        UStringTrieResult match = prefixes.nextForCodePoint(c);
461        if(USTRINGTRIE_HAS_VALUE(match)) {
462            ce32 = (uint32_t)prefixes.getValue();
463        }
464        if(!USTRINGTRIE_HAS_NEXT(match)) { break; }
465    }
466    forwardNumCodePoints(lookBehind, errorCode);
467    return ce32;
468}
469
470UChar32
471CollationIterator::nextSkippedCodePoint(UErrorCode &errorCode) {
472    if(skipped != NULL && skipped->hasNext()) { return skipped->next(); }
473    if(numCpFwd == 0) { return U_SENTINEL; }
474    UChar32 c = nextCodePoint(errorCode);
475    if(skipped != NULL && !skipped->isEmpty() && c >= 0) { skipped->incBeyond(); }
476    if(numCpFwd > 0 && c >= 0) { --numCpFwd; }
477    return c;
478}
479
480void
481CollationIterator::backwardNumSkipped(int32_t n, UErrorCode &errorCode) {
482    if(skipped != NULL && !skipped->isEmpty()) {
483        n = skipped->backwardNumCodePoints(n);
484    }
485    backwardNumCodePoints(n, errorCode);
486    if(numCpFwd >= 0) { numCpFwd += n; }
487}
488
489uint32_t
490CollationIterator::nextCE32FromContraction(const CollationData *d, uint32_t contractionCE32,
491                                           const UChar *p, uint32_t ce32, UChar32 c,
492                                           UErrorCode &errorCode) {
493    // c: next code point after the original one
494
495    // Number of code points read beyond the original code point.
496    // Needed for discontiguous contraction matching.
497    int32_t lookAhead = 1;
498    // Number of code points read since the last match (initially only c).
499    int32_t sinceMatch = 1;
500    // Normally we only need a contiguous match,
501    // and therefore need not remember the suffixes state from before a mismatch for retrying.
502    // If we are already processing skipped combining marks, then we do track the state.
503    UCharsTrie suffixes(p);
504    if(skipped != NULL && !skipped->isEmpty()) { skipped->saveTrieState(suffixes); }
505    UStringTrieResult match = suffixes.firstForCodePoint(c);
506    for(;;) {
507        UChar32 nextCp;
508        if(USTRINGTRIE_HAS_VALUE(match)) {
509            ce32 = (uint32_t)suffixes.getValue();
510            if(!USTRINGTRIE_HAS_NEXT(match) || (c = nextSkippedCodePoint(errorCode)) < 0) {
511                return ce32;
512            }
513            if(skipped != NULL && !skipped->isEmpty()) { skipped->saveTrieState(suffixes); }
514            sinceMatch = 1;
515        } else if(match == USTRINGTRIE_NO_MATCH || (nextCp = nextSkippedCodePoint(errorCode)) < 0) {
516            // No match for c, or partial match (USTRINGTRIE_NO_VALUE) and no further text.
517            // Back up if necessary, and try a discontiguous contraction.
518            if((contractionCE32 & Collation::CONTRACT_TRAILING_CCC) != 0 &&
519                    // Discontiguous contraction matching extends an existing match.
520                    // If there is no match yet, then there is nothing to do.
521                    ((contractionCE32 & Collation::CONTRACT_SINGLE_CP_NO_MATCH) == 0 ||
522                        sinceMatch < lookAhead)) {
523                // The last character of at least one suffix has lccc!=0,
524                // allowing for discontiguous contractions.
525                // UCA S2.1.1 only processes non-starters immediately following
526                // "a match in the table" (sinceMatch=1).
527                if(sinceMatch > 1) {
528                    // Return to the state after the last match.
529                    // (Return to sinceMatch=0 and re-fetch the first partially-matched character.)
530                    backwardNumSkipped(sinceMatch, errorCode);
531                    c = nextSkippedCodePoint(errorCode);
532                    lookAhead -= sinceMatch - 1;
533                    sinceMatch = 1;
534                }
535                if(d->getFCD16(c) > 0xff) {
536                    return nextCE32FromDiscontiguousContraction(
537                        d, suffixes, ce32, lookAhead, c, errorCode);
538                }
539            }
540            break;
541        } else {
542            // Continue after partial match (USTRINGTRIE_NO_VALUE) for c.
543            // It does not have a result value, therefore it is not itself "a match in the table".
544            // If a partially-matched c has ccc!=0 then
545            // it might be skipped in discontiguous contraction.
546            c = nextCp;
547            ++sinceMatch;
548        }
549        ++lookAhead;
550        match = suffixes.nextForCodePoint(c);
551    }
552    backwardNumSkipped(sinceMatch, errorCode);
553    return ce32;
554}
555
556uint32_t
557CollationIterator::nextCE32FromDiscontiguousContraction(
558        const CollationData *d, UCharsTrie &suffixes, uint32_t ce32,
559        int32_t lookAhead, UChar32 c,
560        UErrorCode &errorCode) {
561    if(U_FAILURE(errorCode)) { return 0; }
562
563    // UCA section 3.3.2 Contractions:
564    // Contractions that end with non-starter characters
565    // are known as discontiguous contractions.
566    // ... discontiguous contractions must be detected in input text
567    // whenever the final sequence of non-starter characters could be rearranged
568    // so as to make a contiguous matching sequence that is canonically equivalent.
569
570    // UCA: http://www.unicode.org/reports/tr10/#S2.1
571    // S2.1 Find the longest initial substring S at each point that has a match in the table.
572    // S2.1.1 If there are any non-starters following S, process each non-starter C.
573    // S2.1.2 If C is not blocked from S, find if S + C has a match in the table.
574    //     Note: A non-starter in a string is called blocked
575    //     if there is another non-starter of the same canonical combining class or zero
576    //     between it and the last character of canonical combining class 0.
577    // S2.1.3 If there is a match, replace S by S + C, and remove C.
578
579    // First: Is a discontiguous contraction even possible?
580    uint16_t fcd16 = d->getFCD16(c);
581    U_ASSERT(fcd16 > 0xff);  // The caller checked this already, as a shortcut.
582    UChar32 nextCp = nextSkippedCodePoint(errorCode);
583    if(nextCp < 0) {
584        // No further text.
585        backwardNumSkipped(1, errorCode);
586        return ce32;
587    }
588    ++lookAhead;
589    uint8_t prevCC = (uint8_t)fcd16;
590    fcd16 = d->getFCD16(nextCp);
591    if(fcd16 <= 0xff) {
592        // The next code point after c is a starter (S2.1.1 "process each non-starter").
593        backwardNumSkipped(2, errorCode);
594        return ce32;
595    }
596
597    // We have read and matched (lookAhead-2) code points,
598    // read non-matching c and peeked ahead at nextCp.
599    // Return to the state before the mismatch and continue matching with nextCp.
600    if(skipped == NULL || skipped->isEmpty()) {
601        if(skipped == NULL) {
602            skipped = new SkippedState();
603            if(skipped == NULL) {
604                errorCode = U_MEMORY_ALLOCATION_ERROR;
605                return 0;
606            }
607        }
608        suffixes.reset();
609        if(lookAhead > 2) {
610            // Replay the partial match so far.
611            backwardNumCodePoints(lookAhead, errorCode);
612            suffixes.firstForCodePoint(nextCodePoint(errorCode));
613            for(int32_t i = 3; i < lookAhead; ++i) {
614                suffixes.nextForCodePoint(nextCodePoint(errorCode));
615            }
616            // Skip c (which did not match) and nextCp (which we will try now).
617            forwardNumCodePoints(2, errorCode);
618        }
619        skipped->saveTrieState(suffixes);
620    } else {
621        // Reset to the trie state before the failed match of c.
622        skipped->resetToTrieState(suffixes);
623    }
624
625    skipped->setFirstSkipped(c);
626    // Number of code points read since the last match (at this point: c and nextCp).
627    int32_t sinceMatch = 2;
628    c = nextCp;
629    for(;;) {
630        UStringTrieResult match;
631        // "If C is not blocked from S, find if S + C has a match in the table." (S2.1.2)
632        if(prevCC < (fcd16 >> 8) && USTRINGTRIE_HAS_VALUE(match = suffixes.nextForCodePoint(c))) {
633            // "If there is a match, replace S by S + C, and remove C." (S2.1.3)
634            // Keep prevCC unchanged.
635            ce32 = (uint32_t)suffixes.getValue();
636            sinceMatch = 0;
637            skipped->recordMatch();
638            if(!USTRINGTRIE_HAS_NEXT(match)) { break; }
639            skipped->saveTrieState(suffixes);
640        } else {
641            // No match for "S + C", skip C.
642            skipped->skip(c);
643            skipped->resetToTrieState(suffixes);
644            prevCC = (uint8_t)fcd16;
645        }
646        if((c = nextSkippedCodePoint(errorCode)) < 0) { break; }
647        ++sinceMatch;
648        fcd16 = d->getFCD16(c);
649        if(fcd16 <= 0xff) {
650            // The next code point after c is a starter (S2.1.1 "process each non-starter").
651            break;
652        }
653    }
654    backwardNumSkipped(sinceMatch, errorCode);
655    UBool isTopDiscontiguous = skipped->isEmpty();
656    skipped->replaceMatch();
657    if(isTopDiscontiguous && !skipped->isEmpty()) {
658        // We did get a match after skipping one or more combining marks,
659        // and we are not in a recursive discontiguous contraction.
660        // Append CEs from the contraction ce32
661        // and then from the combining marks that we skipped before the match.
662        c = U_SENTINEL;
663        for(;;) {
664            appendCEsFromCE32(d, c, ce32, TRUE, errorCode);
665            // Fetch CE32s for skipped combining marks from the normal data, with fallback,
666            // rather than from the CollationData where we found the contraction.
667            if(!skipped->hasNext()) { break; }
668            c = skipped->next();
669            ce32 = getDataCE32(c);
670            if(ce32 == Collation::FALLBACK_CE32) {
671                d = data->base;
672                ce32 = d->getCE32(c);
673            } else {
674                d = data;
675            }
676            // Note: A nested discontiguous-contraction match
677            // replaces consumed combining marks with newly skipped ones
678            // and resets the reading position to the beginning.
679        }
680        skipped->clear();
681        ce32 = Collation::NO_CE32;  // Signal to the caller that the result is in the ceBuffer.
682    }
683    return ce32;
684}
685
686void
687CollationIterator::appendNumericCEs(uint32_t ce32, UBool forward, UErrorCode &errorCode) {
688    // Collect digits.
689    CharString digits;
690    if(forward) {
691        for(;;) {
692            char digit = Collation::digitFromCE32(ce32);
693            digits.append(digit, errorCode);
694            if(numCpFwd == 0) { break; }
695            UChar32 c = nextCodePoint(errorCode);
696            if(c < 0) { break; }
697            ce32 = data->getCE32(c);
698            if(ce32 == Collation::FALLBACK_CE32) {
699                ce32 = data->base->getCE32(c);
700            }
701            if(!Collation::hasCE32Tag(ce32, Collation::DIGIT_TAG)) {
702                backwardNumCodePoints(1, errorCode);
703                break;
704            }
705            if(numCpFwd > 0) { --numCpFwd; }
706        }
707    } else {
708        for(;;) {
709            char digit = Collation::digitFromCE32(ce32);
710            digits.append(digit, errorCode);
711            UChar32 c = previousCodePoint(errorCode);
712            if(c < 0) { break; }
713            ce32 = data->getCE32(c);
714            if(ce32 == Collation::FALLBACK_CE32) {
715                ce32 = data->base->getCE32(c);
716            }
717            if(!Collation::hasCE32Tag(ce32, Collation::DIGIT_TAG)) {
718                forwardNumCodePoints(1, errorCode);
719                break;
720            }
721        }
722        // Reverse the digit string.
723        char *p = digits.data();
724        char *q = p + digits.length() - 1;
725        while(p < q) {
726            char digit = *p;
727            *p++ = *q;
728            *q-- = digit;
729        }
730    }
731    if(U_FAILURE(errorCode)) { return; }
732    int32_t pos = 0;
733    do {
734        // Skip leading zeros.
735        while(pos < (digits.length() - 1) && digits[pos] == 0) { ++pos; }
736        // Write a sequence of CEs for at most 254 digits at a time.
737        int32_t segmentLength = digits.length() - pos;
738        if(segmentLength > 254) { segmentLength = 254; }
739        appendNumericSegmentCEs(digits.data() + pos, segmentLength, errorCode);
740        pos += segmentLength;
741    } while(U_SUCCESS(errorCode) && pos < digits.length());
742}
743
744void
745CollationIterator::appendNumericSegmentCEs(const char *digits, int32_t length, UErrorCode &errorCode) {
746    U_ASSERT(1 <= length && length <= 254);
747    U_ASSERT(length == 1 || digits[0] != 0);
748    uint32_t numericPrimary = data->numericPrimary;
749    // Note: We use primary byte values 2..255: digits are not compressible.
750    if(length <= 7) {
751        // Very dense encoding for small numbers.
752        int32_t value = digits[0];
753        for(int32_t i = 1; i < length; ++i) {
754            value = value * 10 + digits[i];
755        }
756        // Primary weight second byte values:
757        //     74 byte values   2.. 75 for small numbers in two-byte primary weights.
758        //     40 byte values  76..115 for medium numbers in three-byte primary weights.
759        //     16 byte values 116..131 for large numbers in four-byte primary weights.
760        //    124 byte values 132..255 for very large numbers with 4..127 digit pairs.
761        int32_t firstByte = 2;
762        int32_t numBytes = 74;
763        if(value < numBytes) {
764            // Two-byte primary for 0..73, good for day & month numbers etc.
765            uint32_t primary = numericPrimary | ((firstByte + value) << 16);
766            ceBuffer.append(Collation::makeCE(primary), errorCode);
767            return;
768        }
769        value -= numBytes;
770        firstByte += numBytes;
771        numBytes = 40;
772        if(value < numBytes * 254) {
773            // Three-byte primary for 74..10233=74+40*254-1, good for year numbers and more.
774            uint32_t primary = numericPrimary |
775                ((firstByte + value / 254) << 16) | ((2 + value % 254) << 8);
776            ceBuffer.append(Collation::makeCE(primary), errorCode);
777            return;
778        }
779        value -= numBytes * 254;
780        firstByte += numBytes;
781        numBytes = 16;
782        if(value < numBytes * 254 * 254) {
783            // Four-byte primary for 10234..1042489=10234+16*254*254-1.
784            uint32_t primary = numericPrimary | (2 + value % 254);
785            value /= 254;
786            primary |= (2 + value % 254) << 8;
787            value /= 254;
788            primary |= (firstByte + value % 254) << 16;
789            ceBuffer.append(Collation::makeCE(primary), errorCode);
790            return;
791        }
792        // original value > 1042489
793    }
794    U_ASSERT(length >= 7);
795
796    // The second primary byte value 132..255 indicates the number of digit pairs (4..127),
797    // then we generate primary bytes with those pairs.
798    // Omit trailing 00 pairs.
799    // Decrement the value for the last pair.
800
801    // Set the exponent. 4 pairs->132, 5 pairs->133, ..., 127 pairs->255.
802    int32_t numPairs = (length + 1) / 2;
803    uint32_t primary = numericPrimary | ((132 - 4 + numPairs) << 16);
804    // Find the length without trailing 00 pairs.
805    while(digits[length - 1] == 0 && digits[length - 2] == 0) {
806        length -= 2;
807    }
808    // Read the first pair.
809    uint32_t pair;
810    int32_t pos;
811    if(length & 1) {
812        // Only "half a pair" if we have an odd number of digits.
813        pair = digits[0];
814        pos = 1;
815    } else {
816        pair = digits[0] * 10 + digits[1];
817        pos = 2;
818    }
819    pair = 11 + 2 * pair;
820    // Add the pairs of digits between pos and length.
821    int32_t shift = 8;
822    while(pos < length) {
823        if(shift == 0) {
824            // Every three pairs/bytes we need to store a 4-byte-primary CE
825            // and start with a new CE with the '0' primary lead byte.
826            primary |= pair;
827            ceBuffer.append(Collation::makeCE(primary), errorCode);
828            primary = numericPrimary;
829            shift = 16;
830        } else {
831            primary |= pair << shift;
832            shift -= 8;
833        }
834        pair = 11 + 2 * (digits[pos] * 10 + digits[pos + 1]);
835        pos += 2;
836    }
837    primary |= (pair - 1) << shift;
838    ceBuffer.append(Collation::makeCE(primary), errorCode);
839}
840
841int64_t
842CollationIterator::previousCE(UVector32 &offsets, UErrorCode &errorCode) {
843    if(ceBuffer.length > 0) {
844        // Return the previous buffered CE.
845        return ceBuffer.get(--ceBuffer.length);
846    }
847    offsets.removeAllElements();
848    int32_t limitOffset = getOffset();
849    UChar32 c = previousCodePoint(errorCode);
850    if(c < 0) { return Collation::NO_CE; }
851    if(data->isUnsafeBackward(c, isNumeric)) {
852        return previousCEUnsafe(c, offsets, errorCode);
853    }
854    // Simple, safe-backwards iteration:
855    // Get a CE going backwards, handle prefixes but no contractions.
856    uint32_t ce32 = data->getCE32(c);
857    const CollationData *d;
858    if(ce32 == Collation::FALLBACK_CE32) {
859        d = data->base;
860        ce32 = d->getCE32(c);
861    } else {
862        d = data;
863    }
864    if(Collation::isSimpleOrLongCE32(ce32)) {
865        return Collation::ceFromCE32(ce32);
866    }
867    appendCEsFromCE32(d, c, ce32, FALSE, errorCode);
868    if(U_SUCCESS(errorCode)) {
869        if(ceBuffer.length > 1) {
870            offsets.addElement(getOffset(), errorCode);
871            // For an expansion, the offset of each non-initial CE is the limit offset,
872            // consistent with forward iteration.
873            while(offsets.size() <= ceBuffer.length) {
874                offsets.addElement(limitOffset, errorCode);
875            };
876        }
877        return ceBuffer.get(--ceBuffer.length);
878    } else {
879        return Collation::NO_CE_PRIMARY;
880    }
881}
882
883int64_t
884CollationIterator::previousCEUnsafe(UChar32 c, UVector32 &offsets, UErrorCode &errorCode) {
885    // We just move through the input counting safe and unsafe code points
886    // without collecting the unsafe-backward substring into a buffer and
887    // switching to it.
888    // This is to keep the logic simple. Otherwise we would have to handle
889    // prefix matching going before the backward buffer, switching
890    // to iteration and back, etc.
891    // In the most important case of iterating over a normal string,
892    // reading from the string itself is already maximally fast.
893    // The only drawback there is that after getting the CEs we always
894    // skip backward to the safe character rather than switching out
895    // of a backwardBuffer.
896    // But this should not be the common case for previousCE(),
897    // and correctness and maintainability are more important than
898    // complex optimizations.
899    // Find the first safe character before c.
900    int32_t numBackward = 1;
901    while((c = previousCodePoint(errorCode)) >= 0) {
902        ++numBackward;
903        if(!data->isUnsafeBackward(c, isNumeric)) {
904            break;
905        }
906    }
907    // Set the forward iteration limit.
908    // Note: This counts code points.
909    // We cannot enforce a limit in the middle of a surrogate pair or similar.
910    numCpFwd = numBackward;
911    // Reset the forward iterator.
912    cesIndex = 0;
913    U_ASSERT(ceBuffer.length == 0);
914    // Go forward and collect the CEs.
915    int32_t offset = getOffset();
916    while(numCpFwd > 0) {
917        // nextCE() normally reads one code point.
918        // Contraction matching and digit specials read more and check numCpFwd.
919        --numCpFwd;
920        // Append one or more CEs to the ceBuffer.
921        (void)nextCE(errorCode);
922        U_ASSERT(U_FAILURE(errorCode) || ceBuffer.get(ceBuffer.length - 1) != Collation::NO_CE);
923        // No need to loop for getting each expansion CE from nextCE().
924        cesIndex = ceBuffer.length;
925        // However, we need to write an offset for each CE.
926        // This is for CollationElementIterator::getOffset() to return
927        // intermediate offsets from the unsafe-backwards segment.
928        U_ASSERT(offsets.size() < ceBuffer.length);
929        offsets.addElement(offset, errorCode);
930        // For an expansion, the offset of each non-initial CE is the limit offset,
931        // consistent with forward iteration.
932        offset = getOffset();
933        while(offsets.size() < ceBuffer.length) {
934            offsets.addElement(offset, errorCode);
935        };
936    }
937    U_ASSERT(offsets.size() == ceBuffer.length);
938    // End offset corresponding to just after the unsafe-backwards segment.
939    offsets.addElement(offset, errorCode);
940    // Reset the forward iteration limit
941    // and move backward to before the segment for which we fetched CEs.
942    numCpFwd = -1;
943    backwardNumCodePoints(numBackward, errorCode);
944    // Use the collected CEs and return the last one.
945    cesIndex = 0;  // Avoid cesIndex > ceBuffer.length when that gets decremented.
946    if(U_SUCCESS(errorCode)) {
947        return ceBuffer.get(--ceBuffer.length);
948    } else {
949        return Collation::NO_CE_PRIMARY;
950    }
951}
952
953U_NAMESPACE_END
954
955#endif  // !UCONFIG_NO_COLLATION
956