1/* SPDX-License-Identifier: GPL-2.0 WITH Linux-syscall-note */
2/*
3 *
4 * Copyright (c) 2011, Microsoft Corporation.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2, as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
17 * Place - Suite 330, Boston, MA 02111-1307 USA.
18 *
19 * Authors:
20 *   Haiyang Zhang <haiyangz@microsoft.com>
21 *   Hank Janssen  <hjanssen@microsoft.com>
22 *   K. Y. Srinivasan <kys@microsoft.com>
23 *
24 */
25
26#ifndef _UAPI_HYPERV_H
27#define _UAPI_HYPERV_H
28
29#include <linux/uuid.h>
30
31/*
32 * Framework version for util services.
33 */
34#define UTIL_FW_MINOR  0
35
36#define UTIL_WS2K8_FW_MAJOR  1
37#define UTIL_WS2K8_FW_VERSION     (UTIL_WS2K8_FW_MAJOR << 16 | UTIL_FW_MINOR)
38
39#define UTIL_FW_MAJOR  3
40#define UTIL_FW_VERSION     (UTIL_FW_MAJOR << 16 | UTIL_FW_MINOR)
41
42
43/*
44 * Implementation of host controlled snapshot of the guest.
45 */
46
47#define VSS_OP_REGISTER 128
48
49/*
50  Daemon code with full handshake support.
51 */
52#define VSS_OP_REGISTER1 129
53
54enum hv_vss_op {
55	VSS_OP_CREATE = 0,
56	VSS_OP_DELETE,
57	VSS_OP_HOT_BACKUP,
58	VSS_OP_GET_DM_INFO,
59	VSS_OP_BU_COMPLETE,
60	/*
61	 * Following operations are only supported with IC version >= 5.0
62	 */
63	VSS_OP_FREEZE, /* Freeze the file systems in the VM */
64	VSS_OP_THAW, /* Unfreeze the file systems */
65	VSS_OP_AUTO_RECOVER,
66	VSS_OP_COUNT /* Number of operations, must be last */
67};
68
69
70/*
71 * Header for all VSS messages.
72 */
73struct hv_vss_hdr {
74	__u8 operation;
75	__u8 reserved[7];
76} __attribute__((packed));
77
78
79/*
80 * Flag values for the hv_vss_check_feature. Linux supports only
81 * one value.
82 */
83#define VSS_HBU_NO_AUTO_RECOVERY	0x00000005
84
85struct hv_vss_check_feature {
86	__u32 flags;
87} __attribute__((packed));
88
89struct hv_vss_check_dm_info {
90	__u32 flags;
91} __attribute__((packed));
92
93struct hv_vss_msg {
94	union {
95		struct hv_vss_hdr vss_hdr;
96		int error;
97	};
98	union {
99		struct hv_vss_check_feature vss_cf;
100		struct hv_vss_check_dm_info dm_info;
101	};
102} __attribute__((packed));
103
104/*
105 * Implementation of a host to guest copy facility.
106 */
107
108#define FCOPY_VERSION_0 0
109#define FCOPY_VERSION_1 1
110#define FCOPY_CURRENT_VERSION FCOPY_VERSION_1
111#define W_MAX_PATH 260
112
113enum hv_fcopy_op {
114	START_FILE_COPY = 0,
115	WRITE_TO_FILE,
116	COMPLETE_FCOPY,
117	CANCEL_FCOPY,
118};
119
120struct hv_fcopy_hdr {
121	__u32 operation;
122	uuid_le service_id0; /* currently unused */
123	uuid_le service_id1; /* currently unused */
124} __attribute__((packed));
125
126#define OVER_WRITE	0x1
127#define CREATE_PATH	0x2
128
129struct hv_start_fcopy {
130	struct hv_fcopy_hdr hdr;
131	__u16 file_name[W_MAX_PATH];
132	__u16 path_name[W_MAX_PATH];
133	__u32 copy_flags;
134	__u64 file_size;
135} __attribute__((packed));
136
137/*
138 * The file is chunked into fragments.
139 */
140#define DATA_FRAGMENT	(6 * 1024)
141
142struct hv_do_fcopy {
143	struct hv_fcopy_hdr hdr;
144	__u32   pad;
145	__u64	offset;
146	__u32	size;
147	__u8	data[DATA_FRAGMENT];
148} __attribute__((packed));
149
150/*
151 * An implementation of HyperV key value pair (KVP) functionality for Linux.
152 *
153 *
154 * Copyright (C) 2010, Novell, Inc.
155 * Author : K. Y. Srinivasan <ksrinivasan@novell.com>
156 *
157 */
158
159/*
160 * Maximum value size - used for both key names and value data, and includes
161 * any applicable NULL terminators.
162 *
163 * Note:  This limit is somewhat arbitrary, but falls easily within what is
164 * supported for all native guests (back to Win 2000) and what is reasonable
165 * for the IC KVP exchange functionality.  Note that Windows Me/98/95 are
166 * limited to 255 character key names.
167 *
168 * MSDN recommends not storing data values larger than 2048 bytes in the
169 * registry.
170 *
171 * Note:  This value is used in defining the KVP exchange message - this value
172 * cannot be modified without affecting the message size and compatibility.
173 */
174
175/*
176 * bytes, including any null terminators
177 */
178#define HV_KVP_EXCHANGE_MAX_VALUE_SIZE          (2048)
179
180
181/*
182 * Maximum key size - the registry limit for the length of an entry name
183 * is 256 characters, including the null terminator
184 */
185
186#define HV_KVP_EXCHANGE_MAX_KEY_SIZE            (512)
187
188/*
189 * In Linux, we implement the KVP functionality in two components:
190 * 1) The kernel component which is packaged as part of the hv_utils driver
191 * is responsible for communicating with the host and responsible for
192 * implementing the host/guest protocol. 2) A user level daemon that is
193 * responsible for data gathering.
194 *
195 * Host/Guest Protocol: The host iterates over an index and expects the guest
196 * to assign a key name to the index and also return the value corresponding to
197 * the key. The host will have atmost one KVP transaction outstanding at any
198 * given point in time. The host side iteration stops when the guest returns
199 * an error. Microsoft has specified the following mapping of key names to
200 * host specified index:
201 *
202 *	Index		Key Name
203 *	0		FullyQualifiedDomainName
204 *	1		IntegrationServicesVersion
205 *	2		NetworkAddressIPv4
206 *	3		NetworkAddressIPv6
207 *	4		OSBuildNumber
208 *	5		OSName
209 *	6		OSMajorVersion
210 *	7		OSMinorVersion
211 *	8		OSVersion
212 *	9		ProcessorArchitecture
213 *
214 * The Windows host expects the Key Name and Key Value to be encoded in utf16.
215 *
216 * Guest Kernel/KVP Daemon Protocol: As noted earlier, we implement all of the
217 * data gathering functionality in a user mode daemon. The user level daemon
218 * is also responsible for binding the key name to the index as well. The
219 * kernel and user-level daemon communicate using a connector channel.
220 *
221 * The user mode component first registers with the
222 * the kernel component. Subsequently, the kernel component requests, data
223 * for the specified keys. In response to this message the user mode component
224 * fills in the value corresponding to the specified key. We overload the
225 * sequence field in the cn_msg header to define our KVP message types.
226 *
227 *
228 * The kernel component simply acts as a conduit for communication between the
229 * Windows host and the user-level daemon. The kernel component passes up the
230 * index received from the Host to the user-level daemon. If the index is
231 * valid (supported), the corresponding key as well as its
232 * value (both are strings) is returned. If the index is invalid
233 * (not supported), a NULL key string is returned.
234 */
235
236
237/*
238 * Registry value types.
239 */
240
241#define REG_SZ 1
242#define REG_U32 4
243#define REG_U64 8
244
245/*
246 * As we look at expanding the KVP functionality to include
247 * IP injection functionality, we need to maintain binary
248 * compatibility with older daemons.
249 *
250 * The KVP opcodes are defined by the host and it was unfortunate
251 * that I chose to treat the registration operation as part of the
252 * KVP operations defined by the host.
253 * Here is the level of compatibility
254 * (between the user level daemon and the kernel KVP driver) that we
255 * will implement:
256 *
257 * An older daemon will always be supported on a newer driver.
258 * A given user level daemon will require a minimal version of the
259 * kernel driver.
260 * If we cannot handle the version differences, we will fail gracefully
261 * (this can happen when we have a user level daemon that is more
262 * advanced than the KVP driver.
263 *
264 * We will use values used in this handshake for determining if we have
265 * workable user level daemon and the kernel driver. We begin by taking the
266 * registration opcode out of the KVP opcode namespace. We will however,
267 * maintain compatibility with the existing user-level daemon code.
268 */
269
270/*
271 * Daemon code not supporting IP injection (legacy daemon).
272 */
273
274#define KVP_OP_REGISTER	4
275
276/*
277 * Daemon code supporting IP injection.
278 * The KVP opcode field is used to communicate the
279 * registration information; so define a namespace that
280 * will be distinct from the host defined KVP opcode.
281 */
282
283#define KVP_OP_REGISTER1 100
284
285enum hv_kvp_exchg_op {
286	KVP_OP_GET = 0,
287	KVP_OP_SET,
288	KVP_OP_DELETE,
289	KVP_OP_ENUMERATE,
290	KVP_OP_GET_IP_INFO,
291	KVP_OP_SET_IP_INFO,
292	KVP_OP_COUNT /* Number of operations, must be last. */
293};
294
295enum hv_kvp_exchg_pool {
296	KVP_POOL_EXTERNAL = 0,
297	KVP_POOL_GUEST,
298	KVP_POOL_AUTO,
299	KVP_POOL_AUTO_EXTERNAL,
300	KVP_POOL_AUTO_INTERNAL,
301	KVP_POOL_COUNT /* Number of pools, must be last. */
302};
303
304/*
305 * Some Hyper-V status codes.
306 */
307
308#define HV_S_OK				0x00000000
309#define HV_E_FAIL			0x80004005
310#define HV_S_CONT			0x80070103
311#define HV_ERROR_NOT_SUPPORTED		0x80070032
312#define HV_ERROR_MACHINE_LOCKED		0x800704F7
313#define HV_ERROR_DEVICE_NOT_CONNECTED	0x8007048F
314#define HV_INVALIDARG			0x80070057
315#define HV_GUID_NOTFOUND		0x80041002
316#define HV_ERROR_ALREADY_EXISTS		0x80070050
317#define HV_ERROR_DISK_FULL		0x80070070
318
319#define ADDR_FAMILY_NONE	0x00
320#define ADDR_FAMILY_IPV4	0x01
321#define ADDR_FAMILY_IPV6	0x02
322
323#define MAX_ADAPTER_ID_SIZE	128
324#define MAX_IP_ADDR_SIZE	1024
325#define MAX_GATEWAY_SIZE	512
326
327
328struct hv_kvp_ipaddr_value {
329	__u16	adapter_id[MAX_ADAPTER_ID_SIZE];
330	__u8	addr_family;
331	__u8	dhcp_enabled;
332	__u16	ip_addr[MAX_IP_ADDR_SIZE];
333	__u16	sub_net[MAX_IP_ADDR_SIZE];
334	__u16	gate_way[MAX_GATEWAY_SIZE];
335	__u16	dns_addr[MAX_IP_ADDR_SIZE];
336} __attribute__((packed));
337
338
339struct hv_kvp_hdr {
340	__u8 operation;
341	__u8 pool;
342	__u16 pad;
343} __attribute__((packed));
344
345struct hv_kvp_exchg_msg_value {
346	__u32 value_type;
347	__u32 key_size;
348	__u32 value_size;
349	__u8 key[HV_KVP_EXCHANGE_MAX_KEY_SIZE];
350	union {
351		__u8 value[HV_KVP_EXCHANGE_MAX_VALUE_SIZE];
352		__u32 value_u32;
353		__u64 value_u64;
354	};
355} __attribute__((packed));
356
357struct hv_kvp_msg_enumerate {
358	__u32 index;
359	struct hv_kvp_exchg_msg_value data;
360} __attribute__((packed));
361
362struct hv_kvp_msg_get {
363	struct hv_kvp_exchg_msg_value data;
364};
365
366struct hv_kvp_msg_set {
367	struct hv_kvp_exchg_msg_value data;
368};
369
370struct hv_kvp_msg_delete {
371	__u32 key_size;
372	__u8 key[HV_KVP_EXCHANGE_MAX_KEY_SIZE];
373};
374
375struct hv_kvp_register {
376	__u8 version[HV_KVP_EXCHANGE_MAX_KEY_SIZE];
377};
378
379struct hv_kvp_msg {
380	union {
381		struct hv_kvp_hdr	kvp_hdr;
382		int error;
383	};
384	union {
385		struct hv_kvp_msg_get		kvp_get;
386		struct hv_kvp_msg_set		kvp_set;
387		struct hv_kvp_msg_delete	kvp_delete;
388		struct hv_kvp_msg_enumerate	kvp_enum_data;
389		struct hv_kvp_ipaddr_value      kvp_ip_val;
390		struct hv_kvp_register		kvp_register;
391	} body;
392} __attribute__((packed));
393
394struct hv_kvp_ip_msg {
395	__u8 operation;
396	__u8 pool;
397	struct hv_kvp_ipaddr_value      kvp_ip_val;
398} __attribute__((packed));
399
400#endif /* _UAPI_HYPERV_H */
401