safe_sprintf.cc revision cce46a0c214b37e8da48c522c83037e8ffa4f9fd
1// Copyright 2013 The Chromium Authors. All rights reserved.
2// Use of this source code is governed by a BSD-style license that can be
3// found in the LICENSE file.
4
5#include "base/strings/safe_sprintf.h"
6
7#include <errno.h>
8#include <string.h>
9
10#include <limits>
11
12#include "base/macros.h"
13#include "build/build_config.h"
14
15#if !defined(NDEBUG)
16// In debug builds, we use RAW_CHECK() to print useful error messages, if
17// SafeSPrintf() is called with broken arguments.
18// As our contract promises that SafeSPrintf() can be called from any
19// restricted run-time context, it is not actually safe to call logging
20// functions from it; and we only ever do so for debug builds and hope for the
21// best. We should _never_ call any logging function other than RAW_CHECK(),
22// and we should _never_ include any logging code that is active in production
23// builds. Most notably, we should not include these logging functions in
24// unofficial release builds, even though those builds would otherwise have
25// DCHECKS() enabled.
26// In other words; please do not remove the #ifdef around this #include.
27// Instead, in production builds we opt for returning a degraded result,
28// whenever an error is encountered.
29// E.g. The broken function call
30//        SafeSPrintf("errno = %d (%x)", errno, strerror(errno))
31//      will print something like
32//        errno = 13, (%x)
33//      instead of
34//        errno = 13 (Access denied)
35//      In most of the anticipated use cases, that's probably the preferred
36//      behavior.
37#include "base/logging.h"
38#define DEBUG_CHECK RAW_CHECK
39#else
40#define DEBUG_CHECK(x) do { if (x) { } } while (0)
41#endif
42
43namespace base {
44namespace strings {
45
46// The code in this file is extremely careful to be async-signal-safe.
47//
48// Most obviously, we avoid calling any code that could dynamically allocate
49// memory. Doing so would almost certainly result in bugs and dead-locks.
50// We also avoid calling any other STL functions that could have unintended
51// side-effects involving memory allocation or access to other shared
52// resources.
53//
54// But on top of that, we also avoid calling other library functions, as many
55// of them have the side-effect of calling getenv() (in order to deal with
56// localization) or accessing errno. The latter sounds benign, but there are
57// several execution contexts where it isn't even possible to safely read let
58// alone write errno.
59//
60// The stated design goal of the SafeSPrintf() function is that it can be
61// called from any context that can safely call C or C++ code (i.e. anything
62// that doesn't require assembly code).
63//
64// For a brief overview of some but not all of the issues with async-signal-
65// safety, refer to:
66// http://pubs.opengroup.org/onlinepubs/009695399/functions/xsh_chap02_04.html
67
68namespace {
69const size_t kSSizeMaxConst = ((size_t)(ssize_t)-1) >> 1;
70
71const char kUpCaseHexDigits[]   = "0123456789ABCDEF";
72const char kDownCaseHexDigits[] = "0123456789abcdef";
73}
74
75#if defined(NDEBUG)
76// We would like to define kSSizeMax as std::numeric_limits<ssize_t>::max(),
77// but C++ doesn't allow us to do that for constants. Instead, we have to
78// use careful casting and shifting. We later use a static_assert to
79// verify that this worked correctly.
80namespace {
81const size_t kSSizeMax = kSSizeMaxConst;
82}
83#else  // defined(NDEBUG)
84// For efficiency, we really need kSSizeMax to be a constant. But for unit
85// tests, it should be adjustable. This allows us to verify edge cases without
86// having to fill the entire available address space. As a compromise, we make
87// kSSizeMax adjustable in debug builds, and then only compile that particular
88// part of the unit test in debug builds.
89namespace {
90static size_t kSSizeMax = kSSizeMaxConst;
91}
92
93namespace internal {
94void SetSafeSPrintfSSizeMaxForTest(size_t max) {
95  kSSizeMax = max;
96}
97
98size_t GetSafeSPrintfSSizeMaxForTest() {
99  return kSSizeMax;
100}
101}
102#endif  // defined(NDEBUG)
103
104namespace {
105class Buffer {
106 public:
107  // |buffer| is caller-allocated storage that SafeSPrintf() writes to. It
108  // has |size| bytes of writable storage. It is the caller's responsibility
109  // to ensure that the buffer is at least one byte in size, so that it fits
110  // the trailing NUL that will be added by the destructor. The buffer also
111  // must be smaller or equal to kSSizeMax in size.
112  Buffer(char* buffer, size_t size)
113      : buffer_(buffer),
114        size_(size - 1),  // Account for trailing NUL byte
115        count_(0) {
116// MSVS2013's standard library doesn't mark max() as constexpr yet. cl.exe
117// supports static_cast but doesn't really implement constexpr yet so it doesn't
118// complain, but clang does.
119#if __cplusplus >= 201103 && !(defined(__clang__) && defined(OS_WIN))
120    static_assert(kSSizeMaxConst ==
121                      static_cast<size_t>(std::numeric_limits<ssize_t>::max()),
122                  "kSSizeMaxConst should be the max value of an ssize_t");
123#endif
124    DEBUG_CHECK(size > 0);
125    DEBUG_CHECK(size <= kSSizeMax);
126  }
127
128  ~Buffer() {
129    // The code calling the constructor guaranteed that there was enough space
130    // to store a trailing NUL -- and in debug builds, we are actually
131    // verifying this with DEBUG_CHECK()s in the constructor. So, we can
132    // always unconditionally write the NUL byte in the destructor.  We do not
133    // need to adjust the count_, as SafeSPrintf() copies snprintf() in not
134    // including the NUL byte in its return code.
135    *GetInsertionPoint() = '\000';
136  }
137
138  // Returns true, iff the buffer is filled all the way to |kSSizeMax-1|. The
139  // caller can now stop adding more data, as GetCount() has reached its
140  // maximum possible value.
141  inline bool OutOfAddressableSpace() const {
142    return count_ == static_cast<size_t>(kSSizeMax - 1);
143  }
144
145  // Returns the number of bytes that would have been emitted to |buffer_|
146  // if it was sized sufficiently large. This number can be larger than
147  // |size_|, if the caller provided an insufficiently large output buffer.
148  // But it will never be bigger than |kSSizeMax-1|.
149  inline ssize_t GetCount() const {
150    DEBUG_CHECK(count_ < kSSizeMax);
151    return static_cast<ssize_t>(count_);
152  }
153
154  // Emits one |ch| character into the |buffer_| and updates the |count_| of
155  // characters that are currently supposed to be in the buffer.
156  // Returns "false", iff the buffer was already full.
157  // N.B. |count_| increases even if no characters have been written. This is
158  // needed so that GetCount() can return the number of bytes that should
159  // have been allocated for the |buffer_|.
160  inline bool Out(char ch) {
161    if (size_ >= 1 && count_ < size_) {
162      buffer_[count_] = ch;
163      return IncrementCountByOne();
164    }
165    // |count_| still needs to be updated, even if the buffer has been
166    // filled completely. This allows SafeSPrintf() to return the number of
167    // bytes that should have been emitted.
168    IncrementCountByOne();
169    return false;
170  }
171
172  // Inserts |padding|-|len| bytes worth of padding into the |buffer_|.
173  // |count_| will also be incremented by the number of bytes that were meant
174  // to be emitted. The |pad| character is typically either a ' ' space
175  // or a '0' zero, but other non-NUL values are legal.
176  // Returns "false", iff the the |buffer_| filled up (i.e. |count_|
177  // overflowed |size_|) at any time during padding.
178  inline bool Pad(char pad, size_t padding, size_t len) {
179    DEBUG_CHECK(pad);
180    DEBUG_CHECK(padding <= kSSizeMax);
181    for (; padding > len; --padding) {
182      if (!Out(pad)) {
183        if (--padding) {
184          IncrementCount(padding-len);
185        }
186        return false;
187      }
188    }
189    return true;
190  }
191
192  // POSIX doesn't define any async-signal-safe function for converting
193  // an integer to ASCII. Define our own version.
194  //
195  // This also gives us the ability to make the function a little more
196  // powerful and have it deal with |padding|, with truncation, and with
197  // predicting the length of the untruncated output.
198  //
199  // IToASCII() converts an integer |i| to ASCII.
200  //
201  // Unlike similar functions in the standard C library, it never appends a
202  // NUL character. This is left for the caller to do.
203  //
204  // While the function signature takes a signed int64_t, the code decides at
205  // run-time whether to treat the argument as signed (int64_t) or as unsigned
206  // (uint64_t) based on the value of |sign|.
207  //
208  // It supports |base|s 2 through 16. Only a |base| of 10 is allowed to have
209  // a |sign|. Otherwise, |i| is treated as unsigned.
210  //
211  // For bases larger than 10, |upcase| decides whether lower-case or upper-
212  // case letters should be used to designate digits greater than 10.
213  //
214  // Padding can be done with either '0' zeros or ' ' spaces. Padding has to
215  // be positive and will always be applied to the left of the output.
216  //
217  // Prepends a |prefix| to the number (e.g. "0x"). This prefix goes to
218  // the left of |padding|, if |pad| is '0'; and to the right of |padding|
219  // if |pad| is ' '.
220  //
221  // Returns "false", if the |buffer_| overflowed at any time.
222  bool IToASCII(bool sign, bool upcase, int64_t i, int base,
223                char pad, size_t padding, const char* prefix);
224
225 private:
226  // Increments |count_| by |inc| unless this would cause |count_| to
227  // overflow |kSSizeMax-1|. Returns "false", iff an overflow was detected;
228  // it then clamps |count_| to |kSSizeMax-1|.
229  inline bool IncrementCount(size_t inc) {
230    // "inc" is either 1 or a "padding" value. Padding is clamped at
231    // run-time to at most kSSizeMax-1. So, we know that "inc" is always in
232    // the range 1..kSSizeMax-1.
233    // This allows us to compute "kSSizeMax - 1 - inc" without incurring any
234    // integer overflows.
235    DEBUG_CHECK(inc <= kSSizeMax - 1);
236    if (count_ > kSSizeMax - 1 - inc) {
237      count_ = kSSizeMax - 1;
238      return false;
239    } else {
240      count_ += inc;
241      return true;
242    }
243  }
244
245  // Convenience method for the common case of incrementing |count_| by one.
246  inline bool IncrementCountByOne() {
247    return IncrementCount(1);
248  }
249
250  // Return the current insertion point into the buffer. This is typically
251  // at |buffer_| + |count_|, but could be before that if truncation
252  // happened. It always points to one byte past the last byte that was
253  // successfully placed into the |buffer_|.
254  inline char* GetInsertionPoint() const {
255    size_t idx = count_;
256    if (idx > size_) {
257      idx = size_;
258    }
259    return buffer_ + idx;
260  }
261
262  // User-provided buffer that will receive the fully formatted output string.
263  char* buffer_;
264
265  // Number of bytes that are available in the buffer excluding the trailing
266  // NUL byte that will be added by the destructor.
267  const size_t size_;
268
269  // Number of bytes that would have been emitted to the buffer, if the buffer
270  // was sufficiently big. This number always excludes the trailing NUL byte
271  // and it is guaranteed to never grow bigger than kSSizeMax-1.
272  size_t count_;
273
274  DISALLOW_COPY_AND_ASSIGN(Buffer);
275};
276
277
278bool Buffer::IToASCII(bool sign, bool upcase, int64_t i, int base,
279                      char pad, size_t padding, const char* prefix) {
280  // Sanity check for parameters. None of these should ever fail, but see
281  // above for the rationale why we can't call CHECK().
282  DEBUG_CHECK(base >= 2);
283  DEBUG_CHECK(base <= 16);
284  DEBUG_CHECK(!sign || base == 10);
285  DEBUG_CHECK(pad == '0' || pad == ' ');
286  DEBUG_CHECK(padding <= kSSizeMax);
287  DEBUG_CHECK(!(sign && prefix && *prefix));
288
289  // Handle negative numbers, if the caller indicated that |i| should be
290  // treated as a signed number; otherwise treat |i| as unsigned (even if the
291  // MSB is set!)
292  // Details are tricky, because of limited data-types, but equivalent pseudo-
293  // code would look like:
294  //   if (sign && i < 0)
295  //     prefix = "-";
296  //   num = abs(i);
297  int minint = 0;
298  uint64_t num;
299  if (sign && i < 0) {
300    prefix = "-";
301
302    // Turn our number positive.
303    if (i == std::numeric_limits<int64_t>::min()) {
304      // The most negative integer needs special treatment.
305      minint = 1;
306      num = static_cast<uint64_t>(-(i + 1));
307    } else {
308      // "Normal" negative numbers are easy.
309      num = static_cast<uint64_t>(-i);
310    }
311  } else {
312    num = static_cast<uint64_t>(i);
313  }
314
315  // If padding with '0' zero, emit the prefix or '-' character now. Otherwise,
316  // make the prefix accessible in reverse order, so that we can later output
317  // it right between padding and the number.
318  // We cannot choose the easier approach of just reversing the number, as that
319  // fails in situations where we need to truncate numbers that have padding
320  // and/or prefixes.
321  const char* reverse_prefix = NULL;
322  if (prefix && *prefix) {
323    if (pad == '0') {
324      while (*prefix) {
325        if (padding) {
326          --padding;
327        }
328        Out(*prefix++);
329      }
330      prefix = NULL;
331    } else {
332      for (reverse_prefix = prefix; *reverse_prefix; ++reverse_prefix) {
333      }
334    }
335  } else
336    prefix = NULL;
337  const size_t prefix_length = reverse_prefix - prefix;
338
339  // Loop until we have converted the entire number. Output at least one
340  // character (i.e. '0').
341  size_t start = count_;
342  size_t discarded = 0;
343  bool started = false;
344  do {
345    // Make sure there is still enough space left in our output buffer.
346    if (count_ >= size_) {
347      if (start < size_) {
348        // It is rare that we need to output a partial number. But if asked
349        // to do so, we will still make sure we output the correct number of
350        // leading digits.
351        // Since we are generating the digits in reverse order, we actually
352        // have to discard digits in the order that we have already emitted
353        // them. This is essentially equivalent to:
354        //   memmove(buffer_ + start, buffer_ + start + 1, size_ - start - 1)
355        for (char* move = buffer_ + start, *end = buffer_ + size_ - 1;
356             move < end;
357             ++move) {
358          *move = move[1];
359        }
360        ++discarded;
361        --count_;
362      } else if (count_ - size_ > 1) {
363        // Need to increment either |count_| or |discarded| to make progress.
364        // The latter is more efficient, as it eventually triggers fast
365        // handling of padding. But we have to ensure we don't accidentally
366        // change the overall state (i.e. switch the state-machine from
367        // discarding to non-discarding). |count_| needs to always stay
368        // bigger than |size_|.
369        --count_;
370        ++discarded;
371      }
372    }
373
374    // Output the next digit and (if necessary) compensate for the most
375    // negative integer needing special treatment. This works because,
376    // no matter the bit width of the integer, the lowest-most decimal
377    // integer always ends in 2, 4, 6, or 8.
378    if (!num && started) {
379      if (reverse_prefix > prefix) {
380        Out(*--reverse_prefix);
381      } else {
382        Out(pad);
383      }
384    } else {
385      started = true;
386      Out((upcase ? kUpCaseHexDigits : kDownCaseHexDigits)[num%base + minint]);
387    }
388
389    minint = 0;
390    num /= base;
391
392    // Add padding, if requested.
393    if (padding > 0) {
394      --padding;
395
396      // Performance optimization for when we are asked to output excessive
397      // padding, but our output buffer is limited in size.  Even if we output
398      // a 64bit number in binary, we would never write more than 64 plus
399      // prefix non-padding characters. So, once this limit has been passed,
400      // any further state change can be computed arithmetically; we know that
401      // by this time, our entire final output consists of padding characters
402      // that have all already been output.
403      if (discarded > 8*sizeof(num) + prefix_length) {
404        IncrementCount(padding);
405        padding = 0;
406      }
407    }
408  } while (num || padding || (reverse_prefix > prefix));
409
410  // Conversion to ASCII actually resulted in the digits being in reverse
411  // order. We can't easily generate them in forward order, as we can't tell
412  // the number of characters needed until we are done converting.
413  // So, now, we reverse the string (except for the possible '-' sign).
414  char* front = buffer_ + start;
415  char* back = GetInsertionPoint();
416  while (--back > front) {
417    char ch = *back;
418    *back = *front;
419    *front++ = ch;
420  }
421
422  IncrementCount(discarded);
423  return !discarded;
424}
425
426}  // anonymous namespace
427
428namespace internal {
429
430ssize_t SafeSNPrintf(char* buf, size_t sz, const char* fmt, const Arg* args,
431                     const size_t max_args) {
432  // Make sure that at least one NUL byte can be written, and that the buffer
433  // never overflows kSSizeMax. Not only does that use up most or all of the
434  // address space, it also would result in a return code that cannot be
435  // represented.
436  if (static_cast<ssize_t>(sz) < 1) {
437    return -1;
438  } else if (sz > kSSizeMax) {
439    sz = kSSizeMax;
440  }
441
442  // Iterate over format string and interpret '%' arguments as they are
443  // encountered.
444  Buffer buffer(buf, sz);
445  size_t padding;
446  char pad;
447  for (unsigned int cur_arg = 0; *fmt && !buffer.OutOfAddressableSpace(); ) {
448    if (*fmt++ == '%') {
449      padding = 0;
450      pad = ' ';
451      char ch = *fmt++;
452    format_character_found:
453      switch (ch) {
454      case '0': case '1': case '2': case '3': case '4':
455      case '5': case '6': case '7': case '8': case '9':
456        // Found a width parameter. Convert to an integer value and store in
457        // "padding". If the leading digit is a zero, change the padding
458        // character from a space ' ' to a zero '0'.
459        pad = ch == '0' ? '0' : ' ';
460        for (;;) {
461          // The maximum allowed padding fills all the available address
462          // space and leaves just enough space to insert the trailing NUL.
463          const size_t max_padding = kSSizeMax - 1;
464          if (padding > max_padding/10 ||
465              10*padding > max_padding - (ch - '0')) {
466            DEBUG_CHECK(padding <= max_padding/10 &&
467                        10*padding <= max_padding - (ch - '0'));
468            // Integer overflow detected. Skip the rest of the width until
469            // we find the format character, then do the normal error handling.
470          padding_overflow:
471            padding = max_padding;
472            while ((ch = *fmt++) >= '0' && ch <= '9') {
473            }
474            if (cur_arg < max_args) {
475              ++cur_arg;
476            }
477            goto fail_to_expand;
478          }
479          padding = 10*padding + ch - '0';
480          if (padding > max_padding) {
481            // This doesn't happen for "sane" values of kSSizeMax. But once
482            // kSSizeMax gets smaller than about 10, our earlier range checks
483            // are incomplete. Unittests do trigger this artificial corner
484            // case.
485            DEBUG_CHECK(padding <= max_padding);
486            goto padding_overflow;
487          }
488          ch = *fmt++;
489          if (ch < '0' || ch > '9') {
490            // Reached the end of the width parameter. This is where the format
491            // character is found.
492            goto format_character_found;
493          }
494        }
495        break;
496      case 'c': {  // Output an ASCII character.
497        // Check that there are arguments left to be inserted.
498        if (cur_arg >= max_args) {
499          DEBUG_CHECK(cur_arg < max_args);
500          goto fail_to_expand;
501        }
502
503        // Check that the argument has the expected type.
504        const Arg& arg = args[cur_arg++];
505        if (arg.type != Arg::INT && arg.type != Arg::UINT) {
506          DEBUG_CHECK(arg.type == Arg::INT || arg.type == Arg::UINT);
507          goto fail_to_expand;
508        }
509
510        // Apply padding, if needed.
511        buffer.Pad(' ', padding, 1);
512
513        // Convert the argument to an ASCII character and output it.
514        char as_char = static_cast<char>(arg.integer.i);
515        if (!as_char) {
516          goto end_of_output_buffer;
517        }
518        buffer.Out(as_char);
519        break; }
520      case 'd':    // Output a possibly signed decimal value.
521      case 'o':    // Output an unsigned octal value.
522      case 'x':    // Output an unsigned hexadecimal value.
523      case 'X':
524      case 'p': {  // Output a pointer value.
525        // Check that there are arguments left to be inserted.
526        if (cur_arg >= max_args) {
527          DEBUG_CHECK(cur_arg < max_args);
528          goto fail_to_expand;
529        }
530
531        const Arg& arg = args[cur_arg++];
532        int64_t i;
533        const char* prefix = NULL;
534        if (ch != 'p') {
535          // Check that the argument has the expected type.
536          if (arg.type != Arg::INT && arg.type != Arg::UINT) {
537            DEBUG_CHECK(arg.type == Arg::INT || arg.type == Arg::UINT);
538            goto fail_to_expand;
539          }
540          i = arg.integer.i;
541
542          if (ch != 'd') {
543            // The Arg() constructor automatically performed sign expansion on
544            // signed parameters. This is great when outputting a %d decimal
545            // number, but can result in unexpected leading 0xFF bytes when
546            // outputting a %x hexadecimal number. Mask bits, if necessary.
547            // We have to do this here, instead of in the Arg() constructor, as
548            // the Arg() constructor cannot tell whether we will output a %d
549            // or a %x. Only the latter should experience masking.
550            if (arg.integer.width < sizeof(int64_t)) {
551              i &= (1LL << (8*arg.integer.width)) - 1;
552            }
553          }
554        } else {
555          // Pointer values require an actual pointer or a string.
556          if (arg.type == Arg::POINTER) {
557            i = reinterpret_cast<uintptr_t>(arg.ptr);
558          } else if (arg.type == Arg::STRING) {
559            i = reinterpret_cast<uintptr_t>(arg.str);
560          } else if (arg.type == Arg::INT &&
561                     arg.integer.width == sizeof(NULL) &&
562                     arg.integer.i == 0) {  // Allow C++'s version of NULL
563            i = 0;
564          } else {
565            DEBUG_CHECK(arg.type == Arg::POINTER || arg.type == Arg::STRING);
566            goto fail_to_expand;
567          }
568
569          // Pointers always include the "0x" prefix.
570          prefix = "0x";
571        }
572
573        // Use IToASCII() to convert to ASCII representation. For decimal
574        // numbers, optionally print a sign. For hexadecimal numbers,
575        // distinguish between upper and lower case. %p addresses are always
576        // printed as upcase. Supports base 8, 10, and 16. Prints padding
577        // and/or prefixes, if so requested.
578        buffer.IToASCII(ch == 'd' && arg.type == Arg::INT,
579                        ch != 'x', i,
580                        ch == 'o' ? 8 : ch == 'd' ? 10 : 16,
581                        pad, padding, prefix);
582        break; }
583      case 's': {
584        // Check that there are arguments left to be inserted.
585        if (cur_arg >= max_args) {
586          DEBUG_CHECK(cur_arg < max_args);
587          goto fail_to_expand;
588        }
589
590        // Check that the argument has the expected type.
591        const Arg& arg = args[cur_arg++];
592        const char *s;
593        if (arg.type == Arg::STRING) {
594          s = arg.str ? arg.str : "<NULL>";
595        } else if (arg.type == Arg::INT && arg.integer.width == sizeof(NULL) &&
596                   arg.integer.i == 0) {  // Allow C++'s version of NULL
597          s = "<NULL>";
598        } else {
599          DEBUG_CHECK(arg.type == Arg::STRING);
600          goto fail_to_expand;
601        }
602
603        // Apply padding, if needed. This requires us to first check the
604        // length of the string that we are outputting.
605        if (padding) {
606          size_t len = 0;
607          for (const char* src = s; *src++; ) {
608            ++len;
609          }
610          buffer.Pad(' ', padding, len);
611        }
612
613        // Printing a string involves nothing more than copying it into the
614        // output buffer and making sure we don't output more bytes than
615        // available space; Out() takes care of doing that.
616        for (const char* src = s; *src; ) {
617          buffer.Out(*src++);
618        }
619        break; }
620      case '%':
621        // Quoted percent '%' character.
622        goto copy_verbatim;
623      fail_to_expand:
624        // C++ gives us tools to do type checking -- something that snprintf()
625        // could never really do. So, whenever we see arguments that don't
626        // match up with the format string, we refuse to output them. But
627        // since we have to be extremely conservative about being async-
628        // signal-safe, we are limited in the type of error handling that we
629        // can do in production builds (in debug builds we can use
630        // DEBUG_CHECK() and hope for the best). So, all we do is pass the
631        // format string unchanged. That should eventually get the user's
632        // attention; and in the meantime, it hopefully doesn't lose too much
633        // data.
634      default:
635        // Unknown or unsupported format character. Just copy verbatim to
636        // output.
637        buffer.Out('%');
638        DEBUG_CHECK(ch);
639        if (!ch) {
640          goto end_of_format_string;
641        }
642        buffer.Out(ch);
643        break;
644      }
645    } else {
646  copy_verbatim:
647    buffer.Out(fmt[-1]);
648    }
649  }
650 end_of_format_string:
651 end_of_output_buffer:
652  return buffer.GetCount();
653}
654
655}  // namespace internal
656
657ssize_t SafeSNPrintf(char* buf, size_t sz, const char* fmt) {
658  // Make sure that at least one NUL byte can be written, and that the buffer
659  // never overflows kSSizeMax. Not only does that use up most or all of the
660  // address space, it also would result in a return code that cannot be
661  // represented.
662  if (static_cast<ssize_t>(sz) < 1) {
663    return -1;
664  } else if (sz > kSSizeMax) {
665    sz = kSSizeMax;
666  }
667
668  Buffer buffer(buf, sz);
669
670  // In the slow-path, we deal with errors by copying the contents of
671  // "fmt" unexpanded. This means, if there are no arguments passed, the
672  // SafeSPrintf() function always degenerates to a version of strncpy() that
673  // de-duplicates '%' characters.
674  const char* src = fmt;
675  for (; *src; ++src) {
676    buffer.Out(*src);
677    DEBUG_CHECK(src[0] != '%' || src[1] == '%');
678    if (src[0] == '%' && src[1] == '%') {
679      ++src;
680    }
681  }
682  return buffer.GetCount();
683}
684
685}  // namespace strings
686}  // namespace base
687